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1 Zusammenfassung

Die vorliegende Doktorarbeit beschäftigt sich mit Computersimulationen der Elektrophorese
kolloidaler Teilchen in Salzlösungen. Kolloide, Teilchen mit Durchmessern zwischen Nano-
und Mikrometer, sind ein wichtiger Bestandteil der sogenannten “Weichen Materie”. Diese be-
finden sich in vielen unterschiedlichen Systemen, wie z.B. Blut, Milch und Farbe, und haben
verschiedene Anwendungen in der Biologie und Industrie. Da diese meist in einer polaren Flüs-
sigkeit gelöst sind, ist ihre Oberfläche oft geladen, was deren Verhalten stark beeinflusst. Hier
wird die Elektrophorese kolloidaler Teilchen mit Hilfe vergröbter Molekulardynamik (MD) Si-
mulationen untersucht. Zwei unterschiedliche Typen von Kolloiden werden betrachtet; nackte
Kolliode (bare colloids) und Polyelektrolyt-beschichtete (polyelectrolyte-grafted) Kolloide, die
auch als weiche Kolloide (soft colloids) bezeichnet werden. Ein neues Modell wird entwickelt,
das Simulationen von großen nackten Kolloiden in Gegenwart von expliziten Ionen ermöglicht.
Dabei helfen Vergleiche mit unabhängigen Experimenten, die Simulationen mancher Phäno-
mene besser zu verstehen. Außerdem, wird ein neues, bisher unbekanntes, elekrophoretisches
Verhalten von Polyelektrolyt-beschichteten Kolloiden, durch Computersimulationen entdeckt,
die eine vollständige Beschreibung der hydrodynamischen Wechselwirkungen einschließen. Da-
bei werden die Simulationsergebnisse mit bestehenden Theorien verglichen, deren Gültigkeit
und Grenzen dadurch überprüft werden.

Die für den Simulationen nötigen Konzepte und Algorithmen werden zunächst kurz vorgestellt,
worauf eine kurze Zusammenfassung der wichtigsten Ergebnisse folgt.

1.1 Die Prinzipien der Molekulardynamik

Molekulardynamik (MD) Simulationen sind Algorithmen, mit deren Hilfe die Bahnen von
Teilchen nach den Newton’schen Bewegungsgesetzen berechnet werden können, indem der
Ort und die Geschwindigkeit aller Teilchen in diskreten Zeitschritten berechnet wird. Dafür
müssen die Kräfte, die auf jedes Teilchen wirken, von Wechselwirkungspotentialen abgeleitet
und durch Integration der Ort und die Geschwindigkeit des Teilchens kalkuliert werden. Dabei
ist das Kraftberechnungsverfahren der zeitaufwendigste Teil der Simulation und wird in jedem
Zeitschritt für jedes einzelne Teilchen im System durchgeführt. Die berechneten Positionen
und Geschwindigkeiten jedes Zeitschritts werden als Anfangswerte in dem nächsten verwendet.
So wird im Laufe der Zeit die Dynamik eines Systems simuliert. Schließlich erlaubt uns die
statistische Mechanik, aus diesen mikroskopischen Informationen makroskopische Mittelwerte
zu gewinnen.

Erstens benötigt eine MD Simulation eine gute, möglichst einfache, mathematische Beschrei-
bung der Wechselwirkungen im System, und zweitens ein effizientes Kraftberechnungsverfah-
ren, womit große Systeme mit vielen Teilchen behandelt werden können. Es gibt unterschied-
liche Methoden dafür, verschiedene Kräfte schnell auszurechnen. Ein Beispiel für kurzreich-
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weitige Kräfte ist die Verwendung eines “cutoffs”, der über eine Verlet- oder eine Zellenliste
realisiert werden kann. Langreichweitige Kräfte sind schwieriger zu behandeln, da sich durch
die Anwendung der periodische Randbedingungen unendliche Summen ergeben. Dafür sind
spezielle Verfahren für verschiedene Fälle vorhanden. In dieser Arbeit gibt es als Beispiel die
elektrostatischen Wechselwirkungen, die durch sogenannte Ewald-Methoden oder die darauf
basierenden und schnelleren Particle-Mesh-Methoden berechnet werden.

Der Integrationsschritt selbst ist nicht zeitaufwendig, aber jedoch sehr wichtig, da viele Hauptei-
genschaften des Systems, wie z.B. die Zeitreversibilität oder die Energieerhaltung, dadurch
bestimmt sind. Die häufigsten Verfahren sind der Velocity-Verlet und der Leap-Frog Algorith-
mus.

1.2 Grobkörnige Modelle

Eine Simulation eines Systems mit vielen Teilchen, die alle Freiheitsgrade in Betracht zieht,
ist für die meisten interessanten Systeme, wenn überhaupt möglich, sehr zeitaufwendig. In
vielen Fällen sind nicht alle Details relevant für eine Studie, so dass manche Effekte durch ein
effektives Potential beschrieben werden können. So kann man die Anzahl der Freiheitsgrade
stark reduzieren und damit die Simulation beschleunigen oder erst ermöglichen. Zum Beispiel,
wenn die chemische Zusammensetzung oder die genaue Struktur eines Teilchens keine wichtige
Rolle spielt, kann das Teilchen durch das Lennard-Jones Potential (LJ) dargestellt werden.
Das LJ modelliert die Wechselwirkungen zwischen zwei ungeladenen ungebundenen Teilchen
durch ein Kombination der anziehenden Van-der-Waals-Kräfte und des abstoßenden Effekts
des Paulisches Ausschließungsprinzips, und nähert damit die finite Größe des Teilchens an.

1.3 Elektrophorese großer nackter Kolloide

Elektrophorese ist die Bewegung geladener Teilchen durch eine Flüssigkeit unter Einwirkung
eines angelegten elektrischen Feldes. Diese hat zahlreiche Anwendungen als Trenntechnik für
Moleküle oder bei der Charakterisierung der Oberflächeneigenschaften geladener Teilchen. Ein
solches Teilchen beschleunigt unter den Einwirkung des angelegten Feldes bis alle beteiligten
Kräfte ins Gleichgewicht geraten und sich eine konstante Driftgeschwindigkeit einstellt. Die
interessante Größe eines Elektrophoreseexperiments ist die elektrophoretische Mobilität, d.h.
der Quotient von Driftgeschwindigkeit und elektrischer Feldstärke. Dabei ist für schwache
Felder die Mobilität unabhängig von der Feldstärke.

Die überschüssigen Gegenionen, die sich um eine geladene Oberfläche in einer Lösung sammeln,
bewegen sich auch unter der Einwirkung das angelegten Feldes und setzen dadurch auch die
Flüssigkeit in Bewegung. Diese Strömung ist als der elektro-osmotische Fluß bekannt und weit
weg von der Oberfläche ist seine Größe äquivalent zur negativen elektrophoretischen Mobilität
eines stationären Teilchens.

Im Fokus dieser Arbeit liegt die Elektrophorese von Kolloiden. Die kolloidalen Teilchen, die
in Experimenten benutzt werden, haben meist einen Durchmesser von etwa einem Mikrome-
ter, womit sie mehrere Ordnungen größer als Ionen sind. Dieser Unterschied der auftretenden
Längenskalen macht eine explizite Simulation, in der sowohl die Kolloide als auch die Ionen
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als Teilchen dargestellt werden, praktisch unmöglich. Wenn die Ionen-Korrelationen schwach
sind, kann man Molekularfeldtheorie (mean-field theory) benutzen, wobei die Ionen in der
Simulation nur als Ladungsdichte in die Berechnung der elektrostatischen Wechselwirkungen
eingehen. In manchen Fällen wie denjenigen, die in dieser Arbeit untersucht wurden, spielen
die Ionen-Korrelationen eine große Rolle und können nicht ignoriert werden. Dafür wurde ein
neues Model entwickelt, das die Größe des Kolloids ausnutzt und es erlaubt, Ionen explizit
zu simulieren. Ist die Debye Länge des Systems viel kleiner als alle seine anderen charak-
teristischen Längen, sind die meisten Gegenionen so nah an der Oberfläche, dass die lokale
Krümmung ignoriert werden kann. Die Geometrie ist planar und das kugelförmige Teilchen
kann als eine flache Ebene dargestellt werden. Mit Hilfe dieses Modells können Simulationen
ohne die Anwesenheit eines elektrischen Feldes durchgeführt werden, wobei das sogenannte
Zeta-Potential bestimmt wird. Das Zeta-Potential ist das elektrische Potential am Rand der
Abscherschicht, an der die Scherung von der Flüssigkeit in Bezug auf das Teilchen anfängt.
Die elektrophoretische Mobilität steht in Zusammenhang mit dem Zeta-Potential und kann
davon abgeleitet werden. Die Umrechnung kann in manchen Grenzfällen durch analytische Nä-
herungen geschehen oder numerisch berechnet werden, wofür häufig das sogenannte standard
Electrokinetic Model (SEM) benutzt wird. Es basiert auf einer molekularfeldtheoretischen Be-
schreibung der elektrostatischen Wechselwirkungen, die mit der Nernst-Planck-Gleichung für
die Beschreibung des Ionen Transports, einschließlich Advektion, kombiniert wird. Schließlich
wird die Mobilität aus dem Zeta-Potential berechnet, das hier durch Simulationen bestimmt
wurde. So werden die wichtigen Ionen Korrelationen, trotz der Molekularfeldnäherung des
SEM berücksichtigt.

Dieses Modell wird mit experimentell bestimmten Mobilitäten kolloidarer Teilchen in Salzlö-
sungen verschiedener Valenzen und Konzentrationen verglichen. Dabei wurde das Phänomen
der Mobilitätumkehr (mobility reversal) in Relation zur Salzkonzentration genauer untersucht,
die in Experimenten mit trivalenten Gegenionen beobachtet wurde. Mobilitätumkehr wird
durch Landungsumkehr (charge inversion) verursacht, die durch Anziehung zusätzlicher Ge-
genionen passiert. Ionen Korrelationen spielen dabei eine entscheidende Rolle und werden von
vielen als Hauptursache vermutet. Die durchgeführten Simulationen zeigen, dass dies für die
hieruntersuchten Systeme nicht der Fall ist und ein zusätzlicher Einfluss nötig ist, die Lan-
dungsumkehr hervorzurufen. Es stellt sich heraus, dass dieser mit der spezifische Adsorption
(specific adsorption) zwischen den trivalente Gegenionen und Kolloidarfläche erklärt werden
kann und es wird vermutet, dass diese in den untersuchten Fälle durch Hydrolyse der Ionen
verursacht wird. Leider erlaubt das verwendete Modell keine genauere Aussage darüber.

1.4 Elektrophorese weicher Kolloide

Polyelektrolyt-gepfropfte Kolloide, die man auch als weiche Kolloide bezeichnet, haben wich-
tige Anwendungen in biologischen, wie auch in industriellen Systemen. Die gepfropften Po-
lymere beeinflussen manche Eigenschaften des Teilchens oder der Oberfläche, unter anderem
die elektrokinetischen. Da die Polymere gepfropft sind und sich nicht frei bewegen können,
üben sie eine zusätzliche Reibungskraft auf die Flüssigkeit aus und schirmen damit den elek-
troosmotischen Fluss ab, der durch die Ionenbewegung innerhalb der Polyelektrolytschicht
entsteht. Dabei nimmt die Abschirmung mit der Dicke der Schicht zu. Falls geladen, ändern
die Polymere auch die Ladungsverteilung, was auch auf das elektrokinetische Verhalten des
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Systems Einfluss nimmt. Für eine korrekte Beschreibung derartiger Teilchen, z.B. biologischer
Zellen, die oft natürlich behaart sind, ist es dann wichtig, dass die Theorie diese Effekte in Be-
tracht zieht. Die Darcy-Brinkman-Gleichung, die ursprünglich für poröse Medien entwickelt
wurde, beschreibt die zusätzliche Reibung der gepfropften Polymere durch eine dissipative
Volumenkraft in der Stokes’sche Gleichung. Diese hängt von der Permeabilität der Polymer-
schicht ab, die hingegen selbst vom Ort abhängt. Je größer die Permeabilität ist desto kleiner
ist die Reibung. Im Falle von geladenen Polymeren ist die fixierte Ladung in der elektro-
statischen Volumenkraft inbegriffen. Zusammen mit einer Nernst-Planck-Gleichung für den
Ionentransport einschlißlich Advektion bietet die Darcy-Brinkman Gleichung eine gute Basis
für die Beschreibung des elektrokinetischen Verhaltens weicher Teilchen.

Im zweiten Teil dieser Arbeit wurde die Elektrophorese weicher Kolloide durch Teilchen-
basierte MD Simulation studiert. Zu diesem Zweck wurden die hydrodynamischen Wechsel-
wirkungen, die eine wichtige Rolle spielen, mit Hilfe des Lattice-Boltzmann (LB) Algorithmus
simuliert. Das Kolloid wird wie eine sphärische Brombeere dargestellt, die aus einem zentra-
len Teilchen besteht, dessen Oberfläche von mehreren Teilchen im Abstand der gewünschten
Radiuses gebildet wird. Dieses Model heißt Brombeer-Modell (the raspberry model) und er-
möglicht die Beschreibung der hydrodynamischen Wechselwirkung des Kolloids als eine Sphäre
mit bestimmtem Radius. Die Oberflächenteilchen werden dabei durch eine punktuelle Rei-
bungskraft an eine LB-Gitter-Flüssigkeit gekoppelt. Falls nötig, wird dem zentralen Teilchen
eine negative Ladung gegeben. Für die Polymere wird das Massenpunkt-Feder-Modell benutzt,
wobei die Monomere sphärische Kugeln sind, die durch elastische Bindungen verbunden wer-
den. Hier wird die Bindung mit dem “Finitely Extensible Nonlinear Elastic“ Potential (FENE)
modelliert. M Polymere mit je N Monomeren sind gleichmäßig an die Brombeerenoberflächen-
massenpunkte durch FENE Bindungen aufgepfropft. Einem Teil der Monomere wird zufällig
eine positive Einheitsladung gegeben. Die Gegenionen und die Salzionen sind geladene Ku-
geln, und alle Teilchen sind durch ein Reibungspotential mit der Flüssigkeit gekoppelt.
Um die elektrophoretische Mobilität zu messen, wird ein externes elektrisches Feld angelegt,
so dass eine elektrostatische Kraft auf alle geladenen Teilchen wirkt. Nach einer Weile er-
reicht das Kolloid einen stationären Zustand, in dem die Massenschwerpunktsgeschwindigkeit
des Kolloids sich mit der Zeit nicht mehr ändert. Diese Driftgeschwindigkeit wird schließlich
durch die Feldstärke geteilt, woraus sich die Mobilität ergibt.

Der Einfluss von Salzkonzentration und Ladungen wurde an zwei Typen weicher Kolloide un-
tersucht; ein insgesamt ungeladener und ein insgesamt geladener. Im ersten Fall balanzieren
sich die Ladungen auf den Polyelektrolyten und dem Kolloid aus, wohingegen im zweiten Fall
die eine größer ist als die andere, wodurch der weiche Kolloid eine Nettoladung erhält. Bei der
Elektrophorese weicher Kolloide spielt die Relation zwischen der Höhe der gepfropften Poly-
merschicht und der Debye-Länge des Systems eine entscheidende Rolle. Beide Gegenionenar-
ten, die des zentralen Kolloids und die der Polyelektrolyte, erzeugen eine elektro-osmotische
Strömung. Da sie entgegengesetzte Ladungen haben, fließen die zwei Strömungen in entge-
gengesetzte Richtungen und arbeiten gegeneinander. Wenn die Debye-Länge viel kürzer ist
als die Höhe der Schicht, befinden sich die Gegenionen innerhalb der Schicht und deren Strö-
mung wird abgeschirmt. Da die Gegenionen des Kernkolloids weiter nach innen dringen als
die der Polyelektrolyte, wird der Fluss den sie erzeugen stärker abgeschirmt und die elektro-
osmotische Strömung der Polyelektrolyte dominiert. Dieser einfache Mechanismus bewirkt
interessante und überaschende Phänomene, die hier teilweise zum ersten Mal beschrieben und
untersucht werden. Eines dieser Phänomene ist die Elektrophorese eines insgesamt ungela-
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denen weichen Kolloids in positiver Richtung bei moderaten und hohen Salzkonzentrationen.
Die positive Mobilität ist ein Hinweis auf die Dominanz der positiv geladenen Polyelektrolyte
und der Wert steht im Einklang mit theoretische Vorhersagen. Genaue Untersuchungen an
den Monomer- und Ladungsverteilungen zeigen, dass die obengenanten Mechanismus dafür
verantwortlich ist.

Das wichtigste Ergebnis dieses Teils meiner Arbeit ist die Beobachtung, dass ein insgesamt
negativ geladener weicher Kolloid eine Mobilitätumkehr durchgeht, wenn die Konzentration
des monovalenten Salzes geändert wird. Bei niedrigen Salzkonzentrationen befinden sich Ge-
genionen außerhalb der Polyelektrolyteschicht und ihre elektro-osmotische Strömung ist nicht
abgeschirmt. In diesem Regime verhält sich das weiche Kolloid wie ein nacktes und die Ge-
samtladung bestimmt die Mobilität. In dem Regime hoher Salzkonzentration dominiert die
durch den Polyelektrolyten erzeugte Strömung und der negative weiche Kolloid hat eine po-
sitive Mobilität. Dieses Phänomen wird in dieser Form zum ersten Mal hier beschrieben, ist
aber in Übereinstimmung mit Kontinuumstheorien. Dabei ist es wichtig zu beachten, dass
diese Mobilitäts-umkehrung von ganz anderer Natur ist als die jenige, die durch Ladungskor-
relationen von multivalent Salzen hervorgerufen wird.

Zu Vergleichszwecken ist ein numerisches Modell benutzt worden, wobei die gepfropften Po-
lyelektrolyte als gleichmäßig verteilte Stokes Teilchen dargestellt wurden, die durch die oben-
genannten Darcy-Brinkman-Gleichung eine zusätzliche Reibungskraft ausüben. Alle Mobi-
litätsergebnisse wurden mit numerisch erhaltenen Resultaten verglichen und bestätigen die
Gültigkeit der Darcy-Brinkman Gleichung und ihre Brauchbarkeit für die Beschreibung des
elektrokinetischen Verhaltens weicher Teilchen. Nur in Fällen, in denen Simulationen mit
extrem hoher Ladung benutzt wurden, bricht die Molekularfeldbeschreibung der elektrosta-
tischen Wechselwirkungen zusammen und somit auch die Theorie. Solche Fälle sind zwar
unrealistisch, zeigen jedoch die beteiligten Mechanismen der Elektrophorese weicher Kolloide
sehr gut.

Durch die numerische Methode wurde gezeigt, dass die in den Simulationen beobachtete Mobi-
litätsumkehr in Bezug auf monovalente Salzkonzentration auch für Kolloide mit experimentell
relevanten Durchmessern auftritt. Dieses Phänomen könnte wichtige Anwendungen finden,
wie z.B. bei der Messung lokaler Salzkonzentrationen.
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2 Introduction

Soft condensed matter, or simply soft matter, is a branch of condensed matter in which the
materials are neither simple liquids nor crystallised solids. Soft matter is an important part of
everyday life and also has many applications in industry. Familiar materials such as cosmetics,
paints, glues, most foods, soaps, as well as less familiar ones like complex fluids and polymer
melts fall within the soft matter category. Most significantly, biological systems share many
properties with soft matter and the physical mechanisms involved in living beings can be
understood using the concepts of this branch of physics.

The important properties which characterize soft matter are the length scale (between atomic
size and macroscopic scales) and the energy scale (of the order of the thermal energy). The
relatively large length scales allow one to use coarse-grained models and theories where not
every atomistic detail needs to be taken into account. A direct consequence of this is the
universality of many aspects of soft matter. The comparability of the typical enthalpies in
such systems to the thermal energy makes the role of fluctuations and Brownian motion
crucial. The propensity of soft matter to self-assemble is related to this fact; the balance
between entropy and energy drives the system towards complex equilibrium states, making
the phase diagram of soft matter systems richer and more interesting.

Figure 2.1: A schematic diagram of the typical soft matter systems. Figure taken from the website
of the Center for Soft Condensed Matter Physics and Interdisciplinary Research.

Fig. 2.1 shows some of the typical systems of soft condensed matter. Colloids and poly-
mers, ubiquitous in biological and technological systems, are two of the most important ones.
Polymers are large molecules comprised of many small subunits called monomers connected
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together via bonds as shown schematically in Fig. 3.11. Biological polymers such as DNA and
proteins are an essential and inseparable part of biological systems. Synthesized artificially
for the first time in the early 1900s [8], artificial polymers (e.g. plastics) have become om-
nipresent in everyday life such that modern living without them is unimaginable. Colloidal
suspensions consist of nm − µm-sized particles, usually referred to as colloids, dispersed in a
liquid. They include many substances, such as milk, paints, and blood, and are encountered
frequently in various fields, from industry to medicine and pharmacology. They also serve as
simple models for a variety of systems like atoms, proteins, and bacteria. As such, colloids
can be used to study many different physical phenomena, for example crystallization [9, 10]
and crystal melting [11–13], phase behavior [14–16], and the effect of electrostatic interactions
on biological processes [17].

When suspended in a polar liquid like water, most particles become electrically charged be-
cause they possess surface groups which can dissociate. This plays an important role in their
behaviour, for example stabilizes colloidal suspensions against coagulation. The magnitude
and distribution of the surface charge is, however, usually not a priori known and needs to
be inferred from related quantities and experimental observations. One of the key techniques
used for this purpose is electrophoresis, in which an electric field is externally applied on a
system comprised of charged particles. Electrophoresis is also often used to separate particles
according to their length and/or charge. For example, without it the sequencing of the entire
human genome would have not been possible [18, 19].

As a result of the electric force exerted on a charged particle in electrophoresis, it starts moving.
The fluid opposes this movement by exerting a hydrodynamic drag force. In addition, in an
electrolytic solution the salt ions form an ionic could around the charged particle usually
referred to as the electric double layer. It consists of a layer of counterions co-moving with
the particle, the so-called Stern layer, and a diffuse layer of both counterions and coions. The
part close to the interface mainly consists of counterions, i.e. ions with a charge opposite
to that of the particle. These ions also respond to the applied electric field and exert direct
and indirect forces on the particle, retarding its motion. In the steady state, the net force on
the particle is zero and it acquires a constant drift velocity, the ratio of whose magnitude to
the applied field strength defines the central quantity in electrophoresis, the electrophoretic
mobility. The counterpart of the electrophoretic mobility for stationary surfaces is the electro-
osmotic mobility. When brought to move by the applied field, the excess charge in the electric
double layer drags the fluid along with it, creating a far-field disturbance in the fluid called
the electro-osmotic flow (EOF). The velocity of the fluid far from the surface is equal to the
negative of the electrophoretic velocity and the ratio of its magnitude to the field strength
yields the electro-osmotic mobility.

Theoretically, a set of coupled second-order differential equations, referred to as the electroki-
netic equations, needs to be solved in order to calculate the electrophoretic mobility. One of
the boundary conditions used to solve the electrokinetic equations, is the so-called ζ-potential,
i.e. the potential drop at the slip plane, where the fluid starts shearing with respect to the
particle. The mobility is thus related to particle properties, such as its shape and surface
charge density, and can be used to extract useful and important information about charged
particles, such as colloids and polyelectrolytes. This is, however, not always a straight for-
ward task and requires an appropriate theory which takes all the important properties of the
system into account. Most theories use mean-field approaches, such as Poisson-Boltzmann, to
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calculate the ion distribution in the electric double layer. Mean-field theories neglect the ion
correlations, crucial to many behaviors of charged systems, and thus fail to explain some of the
important phenomena. An example of this is the reversal of the electrophoretic mobility in the
presence of multivalent salt observed in many experiments [4, 5, 20–23]. It is closely related to
charge inversion, where the surface charge is overcompensated by the counterions, which is in
turn mainly caused by ion correlations. Computer simulations can help understanding these
important and interesting phenomena and give more insight into the mechanisms involved.
Therefore, this thesis is devoted to a molecular dynamics study of colloidal electrophoresis. Be-
low, the main aspects of the methods developed here for this purpose and the most important
results are summarized.

2.1 Electrophoresis of Large Bare Colloids

Ch. 4 of this thesis deals with molecular dynamics simulations of the electrophoresis of bare
colloids, with the focus on the mobility reversal in the presence of trivalent ions. The colloids
considered are a few orders of magnitude larger than the ions, rendering efficient simulations
with explicit colloids and ions even at the coarse-grained level. On the other hand, the ion
correlations need to be present for the charge inversion, and consequently the mobility rever-
sal, to occur. In order to resolve this problem, a model is developed here which makes use
of the length scale separation in the system and considers the colloid as a uniformly charged
flat surface. The validity of the planar assumption is checked by comparing the ζ−potentials
obtained from numerical solutions to the spherical and planar nonlinear Poisson-Boltzmann
equation. The restricted primitive model is employed, where the solvent is modeled implicitly
as a dielectric continuum medium and the ions explicitly as charged spherical particles. Peri-
odic boundary conditions are applied parallel to the charged plate, and the system is confined
in the perpendicular direction.

Since most experiments are performed using weak applied fields for which the linear response
regime is valid, it is safe to assume that the electric double layer is not deformed significantly.
Thus, the ζ−potential can be obtained from equilibrium simulations in the absence of an
applied electric field. The so-called standard electrokinetic model (SEM) [24, 25] is then used
to convert this quantity to the electrophoretic mobility. It uses the Poisson-Nernst-Planck
equation, with an additional advection term, coupled to the Stokes equation and applies a
first-order perturbation with respect to the electric field to linearize and eventually uncouple
the electrokinetic equations. It needs to be emphasized that even though the SEM is based
on a mean-field theory for the electrostatic interactions, the ζ-potentials are obtained from
simulations with explicit ions and thus, the crucial ion correlations are incorporated.

This novel simulation method is applied to two distinct experimental data sets of the elec-
trophoretic mobility of large bare colloids (few hundred nm to few µm in radius) in mono-, di-,
and trivalent salt solutions of varying ionic strengths. The results agree very good with the
experiments for the mono- and divalent cases. Most importantly, they reproduce the mobility
maximums at roughly the same ionic strengths as in the experiments. In both data sets, a
mobility reversal is reported in the presence of trivalent ions. Simulations reveal that the
correlations are not strong enough in the systems investigated and an additional short-ranged
attraction is needed for the mobility reversal to occur at the experimentally observed salt
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concentrations. This attraction mimics specific adsorption between the trivalent ions and the
colloid, the existence of which has been suggested by many authors. The simulation results
also show that charge inversion is a necessary but not sufficient condition for mobility reversal.

2.2 Electrophoresis of Soft Colloids

In Ch. 5 of the work in hand, the electrophoretic behaviour of polyelectrolyte-grafted colloids,
also referred to as soft colloids, is investigated. Soft particles are often encountered in biological
and artificial systems; they exist in most vascular boundaries and tissues [26], many cells and
bacteria are coated with polymers [27, 28]. The coating affects the adhesion of microbes
and bacteria [29], and as such the infection rate [30], as well as the rheological properties
of electrorheological fluids [31, 32] and the stability of colloidal suspensions [33]. In tissue
engineering, thermoresponsive polymer-grafted surfaces are used to duplicate natural tissue
functions more effectively and control cell adhesion/detachment dynamics [34, 35]. Evidence
from electrophoresis experiments suggests that humic substances, involved in many processes
in soils and natural waters, have a permeable layer and can be modeled as polymer-grafted
colloids [36]. Soft particles have also proven to be useful as drugs and gene delivery vehicles [37–
39] in the body. They also have many applications in industry and are used to control the
electrokinetic properties of surfaces in micro- or nanofluidic devices [40–42]. It is therefore of
great importance to investigate such surfaces and electrophoresis provides a good means for
studying and understanding their electrical and surface properties.

Since the polymers are grafted and cannot move with respect to the substrate, they screen
the electro-osmotic flow generated by the penetrated ions in an electrophoresis procedure.
The extent of the screening is larger for larger monomer concentrations, and is therefore
distant-dependent in e.g. spherical geometry. When the grafted chains are charged, the
EOF produced by their counterions competes with that of the underlying surface, which
leads to complex electrokinetic behaviors. The simulations discussed in Ch. 5 reveal some
counterintuitive phenomena in electrophoresis of soft colloids and help understanding them
by careful investigation of the ions and monomers distributions. The colloidal core is simulated
using the raspberry model consisting of a central particle wrapped around by many surface
beads. The central particle is given a negative charge and the surface beads are used as
grafting points for the chains. The number of the polymers is chosen such that the layer is
in the brush regime, i.e. the chains stretch out due to steric interactions in order to avoid
overlapping each other. Only in this regime is the EOF effectively screened. A fraction of the
monomers are charged positively and the ions are also modeled explicitly as charged spheres.
Hydrodynamic interactions are taken into account via a lattice-Boltzmann (LB) solvent in
which all the particles are treated as point particles dissipatively coupled via a Stokes’ force
scheme. The use of the raspberry model for the core is therefore necessary in order to take
into account its finite hydrodynamic size. The coupling also acts as a thermostat and keeps
the temperature at room temperature. An electric field is applied as a constant force on the
charged particles and the drift velocity of the center of mass of the colloid is measured after
equilibrating the system in order to calculate directly the electrophoretic mobility.

Investigations of the effect of monovalent salt concentration on the mobility of a net-neutral
soft colloid, where the negative charge of the core is compensated by the total positive charge
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on the polyelectrolytes, show that it moves in the direction of the applied field at moderate
and high salt concentrations. At low salt concentrations, there are hardly any ions in the
system and even less enter the brush. The soft colloid behaves similar to a neutral bare sphere
and has a negligible mobility. As the salt concentration increases, the Debye length becomes
comparable to the brush height and more and more ions penetrate the polymer layer where
their EOF is screened. Since the counterions of the polyelectrolytes are further from the
surface, the EOF they generate is less strongly screened and partly reaches the bulk, driving
the soft colloid in the positive direction.

The most important result of this part of the thesis is the mobility reversal of a negatively
net-charged soft colloid with respect to monovalent salt concentration. Again at low salt
concentrations, one could compare the composite to a solid sphere which moves in the opposite
direction of the applied field due to its negative charge. Upon adding more salt, more ions
penetrate the polymer layer, where the two competing EOFs, namely that of the core and that
of the polyelectrolytes, are unequally screened. The EOF produced by the negative counterions
partially reaches the bulk and the negative soft colloid moves in the positive direction. It is
important to note that this mobility reversal is completely different from the one reported for
bare surfaces in the presence of multivalent salt mentioned in the previous section. While the
latter results from overcharging due to ion correlations and/or specific attractions, the former
is a consequence of the screening effect of the grafted layer and the interplay between the two
characteristic length scales of the system, i.e. the Debye length and the brush height.

Further, the effect of other parameters, such as core and polyelectrolyte charges, on the mobil-
ity of net-neutral and net-charged soft colloids are investigated. All the results are compared
to both approximate analytic expressions derived by Ohshima et al. [43, 44] and numerical
solutions based on a Darcy-Brinkman formulation of the standard electrokinetic model for
polymer-grafted spherical colloids developed by Hill et al. [7]. The agreement between simula-
tion and numerical results is very good except at extremely large charge densities, where the
excluded volume of the ions, which are ignored in the underlying mean-field theory used in
the numerical approach, start to play an important role. The good agreement at reasonable
charge densities, confirms the validity of the coupled differential equations used in the litera-
ture to describe the electrokinetic behavior of soft interfaces. The agreement with Ohshima’s
approximate expressions, on the other hand, is restricted to regions where the underlying as-
sumptions of the theory are met and the effect of the ionic finite size can be ignored. This
effect is only considerable at very large charges which are unlikely to occur in experiments, and
both the theoretical and numerical approaches can be safely used to describe the electrokinetic
behaviour of soft colloids given that other criteria for their validity are fulfilled.
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This chapter deals with theoretical principles used in this thesis. In Sec. 3.1 the classical
molecular dynamics is introduced. The concept of coarse graining, and the coarse-grained
potentials employed in the simulations in this thesis are discussed in Sec. 3.2. Hydrodynamic
and electrostatic interactions, and the corresponding algorithms used here to include them in
the simulations, are explained in sections 3.3 and 3.4, respectively. Electrophoresis, the main
topic of this thesis, is discussed in Sec. 3.5 where the electrokinetic equations, and theoretical
and numerical methods to solve them are presented for both bare and polymer-coated colloids.
The basics of polymer statics are introduced in Sec. 3.6.

3.1 Classical Molecular Dynamics

Computer simulations provide a powerful tool for studying diverse systems, especially those
not directly accessible by experiment. They also serve as a means of validating theories
or deriving additional information that is not extractable from experiments. It is easier to
control different parameters in a simulation, interactions can be tuned or even completely
turned off to investigate their effect on the behavior of the system at hand; something which
is extremely helpful for finding the cause of an observed phenomenon. With todays ever-
improving computational resources, computer simulations have become an important part of
modern physics and are now considered on par with theory and experiment. In what follows
the principles of classical Molecular Dynamics (MD), one of the main simulation methods, is
described. Most of the content in this section has been taken from Allen and Tildesley’s book
“Computer Simulation of Liquids” [45] and Frenkel and Smit’s book “Understanding Molecular
Simulations” [1]. Also some parts have been taken from the statistical mechanics textbook of
Pathria [46].

MD is a computer simulation method in which the time evolution of particle trajectories is
calculated based on Newton’s equations of motion. It can be used to simulate systems of
hundreds of thousands to millions of atoms as well as molecules. The fact that in many
cases the classical equations of motion can be used to describe the trajectories of atoms is a
consequence of the two basic assumptions made in all classical MD simulations, namely the
Born-Oppenheimer (BO) approximation and the treatment of the nuclei as point particles
following classical dynamics. The BO approximation makes use of the high ratio between
nuclear and electron masses and allows for the separation of the wavefunction of a molecule
into an electronic and a nuclear part. The electrons are much faster than the nuclei and
can adjust themselves almost instantaneously to the movements of the latter so that their
effect can be considered as a potential energy surface. The energy of the system is then only
a function of the nuclei’s coordinates. Without the BO approximation, the electrons would
need to be considered explicitly, which would limit the applicability of MD simulations to
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very simple systems. The validity of the second basic assumption in MD simulations can be
determined by the thermal de Broglie wavelength, Λth = h/

√
2πmkBT where h is the Planck

constant, m the mass, and kBT the thermal energy. Quantum effects are significant only when
Λth is of the order of or larger than the interparticle distances, d. Except for the lightest
atoms, the condition Λth � d applies at sufficiently high temperatures and the atoms can be
safely considered as classical particles. For example, the thermal de Broglie wavelength of gold
atoms (Au) at room temperature is Λth = 0.07 Å whereas the typical interatomic distance in
solids is d ∼ 1− 3 Å.

MD simulations are used to measure macroscopic equilibrium and transport properties of the
system from microscopic information using the laws of classical thermodynamics and statistical
mechanics. A short review of the important laws, without proofs, is presented below.

The most important assumption in thermodynamics is that a system consisting of a fixed
number of particles N in a fixed volume V having a fixed energy E is equally likely to be
in any of its Ω(N, V,E) microstates. Consider two weakly interacting systems, exchanging
only energy with the total energy of the composite system E = E1 + E2 being fixed. Each
subsystem n is equally likely to be found in any of its Ωn(En) microstates, thus the composite
system has Ω(E1, E2) equally likely microstates which can be written as:

Ω(E1, E2) = Ω1(E1)Ω2(E2) = Ω1(E1)Ω2(E − E1) = Ω(E,E1) (3.1)

Equilibrium is the state in which the number of possible microstates of a system is maximized.
Maximizing Ω(E,E1) with respect to E1 and making use of the fact that ∂E2/∂E1 = −1, one
obtains that in equilibrium the following condition holds:(

∂ ln Ω1(E1)

∂E1

)
E1=Ē1

=

(
∂ ln Ω1(E2)

∂E2

)
E2=Ē2

, (3.2)

where Ēn denotes the equilibrium value of En. Defining β(E, V,N) as:

β(E, V,N) ≡
(
∂ ln Ω(E,N, V )

∂E

)
N,V

, (3.3)

the two systems are said to be in equilibrium with each other when β(E1, V1, N1) = β(E2, V2, N2).
Comparing Eq. 3.3 with the thermodynamic definition of absolute temperature T as 1/T =
(∂S/∂E)N,V , where S(N, V,E) ≡ kB ln Ω(N, V,E) is the entropy, one finds that β−1 = kBT .
kB is the Boltzmann constant and kBT the thermal energy (kBT = 4.11 × 10−21 J at room
temperature T = 298 K).

As mentioned above, the energy states of the composite system, for which the energy is fixed,
are all equally likely; but the distribution of energies over the two subsystems has different
probabilities. The probability to find system 1 in state i with Ei = E − E2, is

Pi =
Ω2(E − Ei)∑
j Ω2(E − Ej)

. (3.4)

If one system, say system 2, is much larger than the other, it can be considered as an energy
reservoir with Ei � E2 ≈ E. In this case, to find Ω2(E−Ei), ln Ω2(E−Ei) is Taylor expanded

32



3.1 Classical Molecular Dynamics

to the second degree in Ei(� E) and the definition of β is used. One then obtains

Pi =
exp(−βEi)∑
j exp(−βEj)

, (3.5)

which can be used to calculate the average of a system’s property such as its energy

〈E〉 =
∑
i

EiPi =

∑
iEi exp(−βEi)∑
j exp(−βEj)

= −∂ ln
∑

i exp(−βEi)
∂β

= − ∂ lnQ

∂1/kBT
, (3.6)

where Q ≡ ∑i exp(−βEi) is the partition function. The Helmholtz free energy FH with the
thermodynamical definition E = ∂FH/T

∂1/T
, can be written as

FH = −kBT lnQ = −kBT ln

(∑
i

exp(−Ei/kBT )

)
. (3.7)

Since the number of possible microstates is maximum in equilibrium, the Helmholtz free energy
of a system with constant temperature and volume is minimised.

The averaging process introduced in Eq. 3.6 is called ensemble averaging and is static, i.e.
it considers the instantaneous state of the system. On the other hand, an MD program is,
as the name suggests, dynamic and its goal is to simulate the evolution of the system and
the average properties over time. In general these two are not equivalent. In addition, in
practice as well as in simulations, the requirement tobs → ∞ for finding the observable value
from a time average, is not satisfied. Instead many measurements are performed at different
times for a finite time length tobs. The question is then if the average of these measurements
is equal to the desired time average. The microstate of a system at any time t is specified
by the (generalized) positions ~qi and momenta ~pi of all the particles constituting it. For
a system with N particles these form a 6N -dimensional space, called phase space. Each
possible microstate can be viewed as a member of an ensemble of systems all having the same
macrostate. Different ensembles exist, denoted by the corresponding fixed properties such as
the microcanonical ensemble NV E, the canonical NV T ensemble, and the isothermal–isobaric
NPT ensemble where P is the pressure. The microstates, or equivalently the members of the
ensemble, are distributed according to a density function ρ(q, p; t) . Therefore, the ensemble
average of a physical quantity f reads

〈f〉 =

∫
f(q, p)ρ(q, p; t)d3Nqd3Np∫

ρ(q, p; t)d3Nqd3Np
. (3.8)

In equilibrium, ∂ρ/∂t = 0 and therefore, 〈f〉 does not change with time and taking its time
average does not change the result. Consequently,

the ensemble average of f=the time average of the ensemble average of f .

These two averaging processes are independent and the order in which they are taken can be
switched. Therefore,

〈f〉 =the ensemble average of the time average of f .
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Taken over a sufficiently long time, the time average of f must be the same for all members of
the ensemble and thus the ensemble average should not change it and 〈f〉 can be written as

〈f〉 =the long-time average of f .

The ultimate result of this long line of argument is that for an ergodic system (see below) in
equilibrium, the time average can be replaced by the ensemble average.

It is important to emphasize that the assertion made in the last step of the arguments above
is not true when the time average is taken only over a short time. In that case, only a subset
of microstates (or equivalently a small region of the phase space) will be spanned and some
states will be favored over others. Employing a long time interval, however, one can expect the
system to pass through almost all possible states, i.e. almost the whole allowed region of the
phase space is explored. Such a system for which a representative point ultimately traverses
every possible phase point when evolved over a long time, is called an ergodic system. In
this case, the averages depend only on the macrostate and not the microstates of the system.
Ergodicity is only a hypothesis and there exist systems which are not ergodic, e.g. glasses,
metastable phases, or systems for which the phase space is disconnected.

As the phase points evolve in time, ρ(~q, ~p; t) changes as well. According to Liouville’s theorem
the total time derivative of the probability density is conserved. In other words, no system is
created or destroyed in the ensemble. Mathematically, this means

dρ

dt
=
∂ρ

∂t
+
∑
i

~̇ iq · ~∇~qiρ+
∑
i

~̇ ip · ~∇~piρ =
∂ρ

∂t
+ ~̇q · ~∇~qρ+ ~̇p · ~∇~pρ = 0. (3.9)

where ẋ represents the time derivative of x. Defining the Liouville operator L as iL = ~̇q · ~∇~q +

~̇p · ~∇~p, Eq. 3.9 can be written as
∂ρ

∂t
= −iLρ, (3.10)

with the formal solution ρ(~q, ~p; t) = ρ(~q, ~p; 0) exp(−iLt).
The equilibrium condition ∂ρ/∂t = 0 mentioned above is a balance equation and means that
whenever a representative phase point (or a member of the ensemble) evolves from {~q(t), ~p(t)}
to {~q(t+ δt), ~p(t+ δt)}, another will evolve from {~q(t− δt), ~p(t− δt)} to {~q(t)~p(t)}.

We now have the necessary background knowledge to understand how an MD simulation
works. An MD simulation is nothing but a computer program that integrates Newton’s equa-
tions of motion (EOM) to obtain the trajectories of all the particles in the system and allows
for computing averages according to the laws of statistical mechanics. This is done in mainly
four steps, as shown in the diagram in Fig. 3.1.

First the positions and the velocities of all the particles are initialized, from which the po-
tentials Φ acting between the particles are calculated. Conservative forces are derived from
potentials via the relation ~F = −~∇Φ. In case of pairwise “non-bonded” interactions, this reads
~Fi = −~∇Φ(rij), where rij = |~ri−~rj| is the distance between the two interacting particles. The
so-called “bonded” potentials depend specifically on the coordinates of more than two particles
and the angles between them. Other forces, such as frictional forces, thermostats, or exter-
nally applied forces, as well as constraints are added separately. Usually the forces considered
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Initialize
~qi,~pi

Calculate
Forces

Integrate
EOM

Calculate
~qi,~pi

Figure 3.1: A diagram showing the steps taken in an MD simulation.

are pairwise additive and to calculate the force acting on a particle, all the forces acting be-
tween that particle and all other particles are summed. The force calculation is therefore the
most time-consuming step in an MD simulation and without any special treatment scales as
N(N − 1)/2. Some of the methods for saving computational time and making the simulation
more efficient are introduced in subsection 3.1.1. The integration step is not time-consuming,
but it is important because many of the principal properties of the simulation, such as time-
reversibility or conservation of energy, are determined by the method used. The most common
method for the integration is the Verlet algorithm which uses a truncated Taylor expansion of
the positions to calculate the new and old coordinates:

~r(t+ ∆t) = ~r(t) + ~v(t)∆t+
~f(t)

2m
∆t2 +

∆t3

3!

...
~r (t) +O(∆t4),

~r(t−∆t) = ~r(t)− ~v(t)∆t+
~f(t)

2m
∆t2 − ∆t3

3!

...
~r (t) +O(∆t4),

(3.11)

where ~r(t) is the position at time t, ∆t is the time step, ~v is the velocity, ~f is the force, and...
~r (t) denotes the third derivative of the position with respect to time. Summing these two
equations yields:

~r(t+ ∆t) ≈ 2~r(t)− ~r(t−∆t) +
~f(t)

m
∆t2. (3.12)

Using ~r(t+ ∆t)− ~r(t−∆t) = 2~v(t)∆t+O(∆t3), the velocity is obtained as:

~v(t) =
~r(t+ ∆t)− ~r(t−∆t)

2∆t
+O(∆t)2. (3.13)

The Verlet algorithm is time-reversible and symplectic (i.e. phase space area preserving) and
has the advantage of being fast and using very little computer memory. It has a moderate
energy conservation at short times and a small long-term energy drift.
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Another commonly used integration method in MD simulations is the leap frog algorithm
which has the same properties as the Verlet algorithm. It uses the velocities at half-integer
time steps to compute the positions

~v(t−∆t/2) ≡ ~r(t)− ~r(t−∆t)

∆t
,

~v(t+ ∆t/2) ≡ ~r(t+ ∆t)− ~r(t)
∆t

.

(3.14)

From the second equation in Eq. 3.14, one directly finds the positions at the next time step
as ~r(t+ ∆t) = ~r(t) +~v(t+ ∆t/2)∆t. Replacing ~r(t+ ∆t) from Eq. 3.12 in this expression, the
relation between the two velocities is obtained as

~v(t+ ∆t/2) = ~v(t−∆t/2) +
~f(t)

m
∆t. (3.15)

With the leap frog method, the velocities are not calculated at the same time as the positions.
This is possible with the similar method of velocity Verlet in which:

~r(t+ ∆t) = ~r(t) + ~v(t)∆t+
~f(t)

2m
∆t2,

~v(t+ ∆t) = ~v(t) +
~f(t) + ~f(t+ ∆t)

2m
∆t.

(3.16)

Once the equations of motion are integrated and the new positions of all the particles are com-
puted, the whole procedure of calculating the forces and consequently the new positions and
velocities is repeated as often as needed and thus the system evolves in time. The properties
of interest can then be time-averaged after the system is equilibrated. As explained above, in
the limit of very long simulation times, this is equivalent to the ensemble average. However,
often one does not simulate the system so long and the phase space is not sampled thoroughly.
In practice, to resolve this problem in an efficient manner, one can run many simulations of
the same system with different initial parameters and take the average of the time-averages
obtained from each.

One is usually interested in the bulk properties of a macroscopic sample and the number of
particles even in a very large simulation is by far not enough for the thermodynamic limit
(N ∼ 1023). This changes the surface to volume ratio of the system which in turn affects its
behaviour significantly. To avoid this shortcoming, periodic boundary conditions (PBC) are
employed where the volume containing the N particles is only considered as the primitive cell
in an infinite periodic lattice of identical cells, as depicted in Fig. 3.2. Each particle interacts
with all the images of all particles in this lattice. For example, in the case of pairwise additive
interactions the total potential acting on a particle i is an infinite sum over the potential
between i and all the other particles, including their periodic images:

Φi =
∑
i,j,n̂

′Φ(|~rij + n̂L|), (3.17)
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Figure 3.2: A sketch of the periodic boundary conditions. Figure taken from [1].

where n̂ is an arbitrary unitary vector, and L is the box length. The prime on the sum
indicates that i 6= j for n̂ = ~0. In this general form PBCs render the simulation impossible
since the summation is over an infinite number of image boxes. But many potentials are short-
ranged and are truncated beyond a cutoff, so the sum is in practice not to infinity. In the
case of long-ranged interactions, such as electrostatic or gravitational interactions, cutting off
introduces large errors and hence, there are special methods to deal with them, as discussed
in the following sections. Below, I first introduce some commonly-used tricks to minimize the
time needed for the force calculation step.

3.1.1 CPU-Time Optimizing Algorithms

As mentioned above, the most time-consuming part of every MD simulation is the force cal-
culation step, which being computed between each pair of particles, will scale as N2 if naively
implemented. Here, three such treatments commonly used to minimize the time consumption
of this step are introduced.

1. Verlet list:
Many potentials are short-ranged in nature or are truncated at a cutoff radius rc for
convenience. Particles whose distance to another particle (say, i) is larger than the
cutoff do not contribute to the forces acting on particle i and it is then useful to limit
the force calculation to those particle pairs which are actually interacting. Verlet [47]
introduced such a method by considering a second cutoff radius rv larger than rc. Each
particle i has a neighbour list or Verlet list consisting of the particles in a radius rv from
it, as shown in Fig. 3.3. Only these particles are considered in the force calculations,
which makes this step scale as N instead of N2. When a particle in a list moves more
than (rv − rc)/2 and thus comes in interacting distance with particle i, the lists are
updated in order to take the new interaction into account. The update is an order N2

process, and will dominate the time consumption for very large systems, which makes
the overall scaling of the Verlet list algorithm of order N2.

2. Cell list:
A force-calculation algorithm which scales as N is the cell list [48], in which the simu-
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i

rc

rv

Figure 3.3: A 2D schematic representation of the Verlet list method.

lation box is decomposed into cells of size rc (or slightly larger) as shown in Fig. 3.4.
Instead of storing the particle data particle-wise in one long array, it is done cell-wise,
i.e. the information about all the particles in each cell is stored in one array. Each
particle interacts only with particles in the same or the nearest neighboring cells. It is
only assigning each particle to a cell, which scales as N , that consumes time, making
the cell list algorithm an order N algorithm.

3. Combined Verlet-Cell list:
Besides having many advantages, both of these two methods introduced above also
have their disadvantages. The Verlet lists are not efficient enough for today’s multi-
core, parallel computing architecture. By storing the particle data cell-wise instead of
particle-wise, the cell list algorithm is more local and therefore easier to parallelize, yet
the neighbourhood of each particle is not restricted to those with which it interacts.
Combining these two algorithms puts their advantages together to make a parallelizable
force-calculation method with significantly improved efficiency [49]. In the combined
Verlet-Cell list algorithm, also called pairwise Verlet list, the domain is again divided
into cells of edge length ≥ rc and the particle data is stored cell-wise. Similar to the
cell list method, only the nearest-neighbour cell pairs interact with each other. A local
Verlet list is then assigned to each of these pairs; e.g. for the two interacting cells Cα

and Cβ, the ith row of this local array stores the indices of all the particles in Cβ within
rv of the ith particle in Cα.

4. Long-range interactions:
Long-range interactions, e.g. electrostatics and hydrodynamics, are more difficult to
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rc

i

Figure 3.4: Cell list schematic. The simulation domain is decomposed into cells of length ≥ rc and
the pair interactions are only calculated for particles in the same (say i) or nearest-
neighboring (hatched area) cells.

optimize since they cannot be truncated. There are different methods to deal with such
interactions in PBC. Electrostatics and hydrodynamics, the two long-ranged interac-
tions occurring in this thesis, and their respective simulation methods are introduced in
sections 3.4 and 3.3.

3.2 Coarse-grained potentials

A thermodynamic system consists of N ∼ 1023 particles, each having 3 translational degrees
of freedom when free to move in 3D. If the particles have complex structures there will be
extra rotational and vibrational degrees of freedom as well. The total number of degrees of
freedom in a typical macroscopic system is therefore of the order of 1024 and considering them
all in a computer simulation is rarely feasible. In many cases, experimentally relevant time
scales cannot be reached for the experimentally relevant length scales. One should then either
be content with much smaller scales or reduce the number of degrees of freedom. In the latter
case, referred to as coarse-graining, the “unimportant” details of the system are neglected and
their effect is coarse-grained into an averaged potential called a force field. On the other hand,
the “important” degrees of freedom needed to describe the system accurately are taken into
account explicitly. Distinguishing between the important and unimportant details of a system
is not always a straightforward task and demands a lot of care.

The systems studied in this thesis are macroscopic ones for which efficient all-atom simu-
lations would require unreasonably long computing time even with today’s computational
resources. Thus simpler physical models are considered and coarse-grained (CG) simulations
are performed. In the following, the force fields used for this purpose are introduced.
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3.2.1 Lennard-Jones Potential

In nature particles, no matter how small, have a finite size and do not occupy the same position
in space. In order to introduce this steric nature of particles in simulations, a potential needs to
act between them to prevent them from overlapping. Neutral particles repel each other at very
small distances due to the Pauli exclusion principle and attract each other at larger distances
as a result of London dispersion forces. These are included in a very simple mathematical
model called the Lennard-Jones (LJ) potential shown in Fig. 3.5:

ULJ(r) =

4εlj

((
σlj

r−roff

)12

−
(

σlj

r−roff

)6

+ cshift

)
, roff < r < rcut + roff

0, elsewhere,
(3.18)

Here εlj defines the potential strength and the sum of the radii of the interacting particles
is determined by roff + σlj. The potential has a minimum at rmin = roff + 21/6σlj for which
ULJ(rmin) = −εlj +4εljcshift. In order to optimize the force calculation in simulations with PBC
as discussed in subsection 3.1.1, the potential can be truncated at rcut. It then needs to be
shifted by an appropriate amount cshift in order to maintain potential and force continuity.
The special case of rcut = 21/6σlj and cshift = 0.25 corresponds to a purely repulsive interaction
called the Weeks-Chandler-Anderson (WCA) potential [50] depicted by the dashed line in
Fig. 3.5.
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Figure 3.5: (blue line) Lennard-Jones potential ULJ, Eq. 3.18, for εlj = 1, σlj = 1, roff = 0, and
cshift = 0. The WCA potential UWCA with εlj = 1, σlj = 1 is depicted by the dashed red
line for comparison.

3.2.2 Finitely-extensible nonlinear elastic bonds

Some of the simulations in this thesis involve polymers. The commonly used potential to
model the bonds between the monomers is the finitely-extensible nonlinear elastic (FENE)
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bonds [51, 52] (see Fig. 3.6):

UFENE(r) = −kR
2
0

2
ln

(
1−

(
r

R0

)2
)
, (3.19)

where k is the stiffness of the bond, R0 is its maximum extension, and r the distance between
the centers of the two interacting monomers. The advantage of the FENE potential to other
bonded potentials, such as a harmonic potential UH(r) = kHr

2, is that it is finitely extensible,
hence the name. This prevents the polymer from stretching infinitely, as a harmonic bond
would do. The FENE potential is shown and compared to the harmonic potential in Fig. 3.6.
It is seen that FENE diverges as the distance between the connected beads approaches its
maximum value R0. k and R0 are typically chosen such that bond-crossing does not occur in
CG simulations.
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Figure 3.6: (red line) FENE potential UFENE for k = 1 and R0 = 1. The blue line shows the harmonic
potential UH = kHr

2 with kH = 1 for comparison.

3.3 Hydrodynamic Interactions and Solvent Models

Fluids are a crucial part of many physical systems ranging from microscopic biological envi-
ronments all the way up to large scale systems encountered e.g. in meteorology. Most of the
processes in the field of soft matter happen in solution, which makes modeling the liquid as
solvent crucial. The long-ranged hydrodynamic interactions occurring when a fluid is set to
move also have a significant impact on many processes. It is therefore important to understand
these effects and to model them in a computer simulation as well. This section introduces
the concept of these hydrodynamic interactions, followed by a discussion of the CG solvent
models used in this thesis in subsection 3.3.1.

Hydrodynamics is the physics of fluids in motion as well as the forces they exert on relatively
moving immersed particles. When a fluid is set to motion locally by a moving particle or
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pressure gradient, etc., the local distribution of its constituents is disturbed. This disturbance
is then transmitted by the medium, creating a flow which propagates through the fluid. Hy-
drodynamic interactions (HIs) are long-ranged interactions caused by a flow which affect and
can be affected by the movement of submerged particles.
Consider a dense Newtonian fluid1, to which the continuum hypothesis can be applied, i.e.
its Knudsen number2 is small. When such a fluid moves with a speed much smaller than the
speed of light, the equations of motion can be described by the Navier-Stokes equation (NS):

ρ

(
∂~u

∂t
+ (~u · ∇)~u

)
= −~∇p+ ~∇ ·T + ~f. (3.20)

Here, ρ and ~u are respectively the mass density and the velocity of the fluid, t is the time,
p is the hydrostatic pressure, T is the trace-free stress tensor, and ~f represents body forces
per unit volume acting on the fluid (e.g. electrostatic or gravitational forces). The left-hand
side of Eq. 3.20 represents the inertia per volume where (~u · ~∇)~u describes the convective
acceleration of the fluid. The first two terms on the right-hand side take into account the
divergence of stress due to pressure gradient and shear stress, respectively. In the case of
incompressible Newtonian flows, which can even be assumed in compressible fluids as long as
the Mach number3 is smaller than 0.3 [54], the NS equation reduces to:

ρ

(
∂~u

∂t
+ (~u · ~∇)~u

)
= −~∇p+ η∇2~u+ ~f, (3.21)

where η is the dynamic viscosity.

In many systems, HIs play a significant role and their effect cannot be ignored, and therefore
need to be included in MD simulations efficiently. There are many different methods to do so
which can be categorized into two main groups. One is the group of particle-based methods
where fluid atoms (or molecules) are either considered individually or clustered together such
that each particle represents a few constituents. Examples of this category include Dissipative
Particle Dynamics (DPD) [55] and Multi-Particle Collision Dynamics (MPCD) [56]. The
other category is based on the solution of the discretized NS on a lattice, known as the lattice-
Boltzmann (LB) method [57–59].

For systems including mesoscopic particles, there is a separation of length and time scales due
to the large difference between the size and relaxation time of the solvent and the solute. As
a result, the details of the small and fast solvent particles can be ignored and the fluid can
be considered as a hydrodynamic continuum on the scale of the mesoscopic particles. This
significantly reduces the number of degrees of freedom and makes it possible to simulate such
systems more efficiently. This coarse graining might appear to be a very severe simplification

1A Newtonian fluid is a liquid for which the strain rate due to an applied shear stress is independent of the
shear rate and proportional to the stress, with the constant of proportionality being the viscosity [53].

2The Knudsen number is a dimensionless quantity defined as the ratio of the molecular mean free path
length to a characteristic length of the system, e.g. radius of a particle in a fluid. The Knudsen number
is essentially a measure of how many of its own size will a particle move before colliding with others. The
continuum description is improper for systems with Knudsen number equal to or larger than one

3Mach number is the ratio of the speed of an object moving in a fluid to the local speed of sound. This dimen-
sionless quantity is a measure of the incompressibility of a flow. For low Mach numbers, the compressibility
effects are small and can be ignored.
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but it has been shown by MD simulations that the validity of a continuum description of the
solvent holds up to very small scales, of the order of a few molecular collisions [59, 60].

Here, I focus on such cases that allow the solvent to be treated as a continuum and discuss in
the next subsection only the MD simulation methods used in this thesis. The discussions are
kept short for the sake of brevity, the reader is referred to [57, 59] for detailed explanations
and derivations on LB and [61, 62] for the implicit solvent model.

3.3.1 Solvent Models

To include the different effects liquids have on a system as solvents, various models with
different levels of detail exist. Depending on the system properties and the scope of the
problem under study, the solvent constituents may be simulated directly or the fluid can be
considered as a continuum with or without long-ranged HIs. Here, two coarse-grained methods
employed in this thesis, lattice-Boltzmann and implicit solvent without HIs, are introduced.

The lattice-Boltzmann Method

The lattice-Boltzmann (LB) method can be viewed as a solver for the discretized Navier-Stokes
equations (NS), suitable for simulating hydrodynamics on a grid. It is based on the discrete
formulation of the Boltzmann equation which, using the Chapman-Enskog expansion, leads to
the NS in the limit of low Mach number [58, 63, 64]. The state of the fluid is characterized by
the number of particles ni(~r, t) (i = 1, · · · , b) in a volume a3 at the lattice point r at time t,
where a is the grid spacing. A velocity of ~ci(a/τ) is associated with ni, τ being the time step.
The vector ~ci connects each grid point to its ith neighbor. In other words, ni is the fraction
of particles that will move to grid node i towards which ~ci points. In this work, the D3Q19
implementation of the LB [59] is used which considers 19 velocities in 3 dimensions. In this
model the velocity vector can be either (0, 0, 0) or pointing to one of the 18 grid points of the
nearest and next-nearest neighboring cells as shown in Fig. 3.7. There are two steps involved
in the algorithm; the collision step and the streaming step. In the first one, the populations
on the lattice sites, i.e. ni, are updated locally, according to the scheme discussed below,
and in the second step these propagate to the neighboring sites according to their associated
velocities ~ci. The mesoscopic hydrodynamic modes are derived from ni as:

ρ(~r, t) =
∑

i ni(~r, t) (mass density),

~j(~r, t) =
∑

i ni(~r, t)~ci (momentum density),

~u(~r, t) = ~j(~r, t)/ρ(~r, t) (fluid velocity).

(3.22)

The update of the populations in the collision step occurs according to the thermalized lattice-
Boltzmann equation:

ni(~r + ~cit, t+ τ) = ni(~r, t) + ∆ncoll
i (~r, t) + n′i(~r, t). (3.23)

The collision term can be written as ∆ncoll
i (~r, t) =

∑b
j=1 Lij(nj(~r, t)−neq

j (ρ, ~u)), where L is the
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Figure 3.7: A sketch of the D3Q19 lattice geometry showing the 19 discrete LB velocity vectors ~ci.
Image taken from [2].

collision operator and drives the velocity distributions towards the local Maxwell-Boltzmann
equilibrium distribution neq

j (ρ, ~u). In general, the choice of the form of the collision operator is
free as long as it fulfills the mass and momentum conservation constraint. A simple choice is
the well-known Bhatnagar-Gross-Krook collision operator [58, 65], which is a diagonal matrix
with Lii = τ/τr, where τr is the relaxation time related to the viscosity. A better and more
commonly used choice for the collision operator is the multiple-relaxation-time scheme [66]
which considers different relaxation times for each velocity mode. In Eq. 3.23, n′i(~r, t) is a
stochastic term included to model the thermal fluctuations consistent with the fluctuation-
dissipation theorem. It is chosen such that the random stress fluctuations are uncorrelated
both in time and in space [57, 67]:

〈σ′αβ(~r, t)σ′γδ(~r
′, t′)〉 = Aδ~r~r′δtt′(δαγδβδ + δαδδβγ −

2

3
δαβδγδ). (3.24)

Here, α, β, γ, δ = x, y, z and the variance A defines the effective temperature of the fluid
through A = 2ηkBTλ

2/(a3τ) [58], where λ is the eigenvalue of Lij belonging to the eigenvector
ciαciβ (α 6= β). The i in say ciα is the number of the velocity mode. For example for D3Q19,
i = 1, .., 19 as shown in Fig. 3.7.

When there are MD particles in the system, they are coupled dissipatively to the fluid. For
that purpose the particles are treated as point particles subject to a Stokes-like dissipative
force:

~Ffl = −ζbare[~V − ~u(~R, t)] + ~f, (3.25)

where ~V is the velocity of the particle and ζbare is the “bare” friction coefficient. ~f is a random
force with zero mean added due to the dissipative nature of the coupling for which the following
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relation must be satisfied:

〈fα(t)fβ(t′)〉 = δ(t− t′)2δαβkBTζbare. (3.26)

Note that the temperature appearing in Eq. 3.26 is the same as used to thermalize the fluid
and hence the coupling also functions as a thermostat. Since the fluid is treated discretely, its
velocity ~u(~R, t) at the position of the MD particle is not known. To calculate it, the velocities
~u(~r, t) at the grid sites of the primary cell within which the particle is positioned are linearly
interpolated (see Fig. 3.8):

~u(~R, t) =
∑
~r∈ng

δ~r~u(~r, t), (3.27)

where ng in the sum limit denotes the nearest grid points, i.e. those of the considered cell,
and (see Fig. 3.8).

δ(0,0,0) = (1− ∆x
a

)(1− ∆y
a

)(1− ∆z
a

),

δ(1,0,0) = ∆x
a

(1− ∆y
a

)(1− ∆z
a

),

...

(3.28)
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Figure 3.8: 2D schematic of a particle within an LB cell. The fluid velocity at the position of
the particle is obtained by interpolating the velocities at the grid points, see equa-
tions 3.27 and 3.28.

In order to get the correct hydrodynamic behavior, the total momentum needs to be conserved,
i.e. the opposite force has to be applied to the fluid in the cell where the MD particle resides.
This is done via a momentum density transfer per MD time step ∆t:

−
~Ffl

a3
=

∆~j

∆t
=
∑
i,~r∈ng

∆ni(~r, t)~ci
µ

a2τ∆t
. (3.29)

Here, µ is the mass of the fluid particles and ∆ni(~r, t) is the population change at grid point ~r
due to the existence of the particle. The other quantity which needs to be conserved is mass:∑

i,~r∈ng
∆ni(~r, t) = 0. (3.30)
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This leads to the fact that ρ would not change by this local momentum transfer while ~j →
~j + δ~r∆~j.

It needs to be emphasized that the proportionality constant used in Eq. 3.25 is the bare friction
coefficient. According to Stokes law, for a sphere this would be ζbare = 6πηR with R being
the radius of the particle. In the LB algorithm, MD particles are considered as point particles
and the velocity of the fluid at the position of each is an interpolation of the fluid velocities
at the nearest grid points. As shown below, this discretization introduces an effective Stokes
radius to the particle. Consider a particle being dragged at constant velocity by a constant
force. Then according to Eq. 3.25 (ignoring the random force ~f which averages to zero) its
velocity is given by:

~V =
1

ζbare

~F + ~u (3.31)

On the other hand, ~u can be approximated by ~u(~r) = ~F · J(~r) where the Oseen tensor J is
given by:

J(~r) =
1

8πηr

(
I +

~r~r

r2

)
. (3.32)

Taking the center of the spherical particle to be roughly a distance a from the considered grid
points, this results in ~u = ~F/(gηa). g is a numerical constant and reflects the geometry of the
lattice and the interpolation procedure. Together with Eq. 3.31, this results in:

~V =

(
1

ζbare

+
1

gηa

)
~F ≡ 1

ζeff

~F . (3.33)

For the cubic lattice used in the LB implementation employed here, g has been found to be
g ≈ 25 [58]. Eq. 3.33 reveals the fact that ζbare actually has no physical meaning, it is merely
a coupling constant. It is the effective friction coefficient ζeff which determines the mobility of
the MD particles. Since this quantity contains the grid spacing, it is clear that besides deter-
mining the accuracy with which the NS is solved, a also influences the effective hydrodynamic
radius of the solute particles.

Implicit Solvent Excluding HI

When the hydrodynamic effects of the solvent are not relevant for the description of the
system’s behavior, the solvent can be simulated implicitly [68, 69] without taking into account
the HI. Implicit solvent models also disregard effects such as liquid layering or the conformation
of solvent molecule around an object. In this approach, the solvent is considered as a continuum
manifesting itself through its impact on the forces acting between (charged) particles via a
relative dielectric constant εr and viscosity η. The electrostatic interaction between two charges
q1 and q2 is then given by U(r) = lBkBTq1q2/r where lB = e2/(4πε0εrkBT ) is the Bjerrum
length with e being the elementary charge and ε0 is the vacuum permittivity (ε0 ' 8.85×10−12

F/m). The drag force exerted by the fluid on the particle enters the simulation through a
thermostat used to keep the temperature constant. One of the commonly used thermostats is
the Langevin thermostat, which works by adding two extra forces ~Fd and ~Fr to the total force
acting on the particles. Instead of the Newtonian equation of motion, the Langevin equation
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m~a(t) = −~∇Φ − Γ~V (t) + ~Fr(t) is then solved, where m is the mass of the particle and ~a
its acceleration. The first term in this equation is the force due to interactions with other
particles or externally applied forces. ~Fd = −Γ~V is the viscous drag force resulting from the
resistance of the fluid to particle’s motion, with Γ being the friction coefficient. Γ depends
on the shape of the particle and some properties of the solvent such as its viscosity. For a
spherical particle with radius R in a Newtonian fluid with dynamic viscosity η, Γ = 6πηR.
Using the hydrodynamic radius Rh, defined as the radius of an equivalent sphere having the
same drag coefficient, the drag force can be written as Fd = −6πηRh for any particle.

In order to get the correct average velocity and average temperature, a source of energy
needs to be considered in addition to the drag force, which dissipates energy. This energy
is maintained by the collisions between the particle and the molecules of the heat bath, i.e.
the solvent. Due to the random nature of these collisions, the energy source term is taken
to be a random force. Einstein [70, 71] explained that these random collisions, which lead to
the Brownian motion of the particle, are also the cause of the drag exerted on the particle
when pulled through a fluid. This is a manifestation of the fluctuation-dissipation theorem.
Therefore, ~Fd and ~Fr are related to each other. Writing the random force as ~Fr = ~ζi(t), thus
it can be shown that

〈~ζi(t)〉 = ~0 and 〈~ζi(t).~ζj(t′)〉 = 6ΓkBTδijδ(t− t′). (3.34)

Similar to the LB random force 3.26, ~ζi(t) is a random distribution, usually chosen to be
Gaussian, leading to the correct Maxwell-Boltzmann velocity distribution.

Note that the Langevin thermostat does not conserve momentum and energy. The implicit
solvent model is suitable for analyzing static thermodynamic properties such as ions distribu-
tion [61, 62], structural changes induced by an external field, or energy of solvation.

3.4 Electrostatics

Since this thesis deals with charged particles in aqueous solutions, it is necessary to introduce
the electrostatic methods employed in the simulations, and the theories used to compare their
results to. In this section, I first outline the basic concepts of calculating long-ranged electro-
static interactions in a simulation. Subsections 3.4.1 and 3.4.2 deal with the two computational
algorithms used in the simulations and subsection 3.4.3 gives a review on the theoretical back-
ground of charged surfaces in contact with an electrolyte solution. All the discussions are very
brief and without explicit proofs. The reader is referred to [48, 72–77] for detailed discussions.

The electrostatic potential at position ~r due to a system consisting of N point charges qi
(i = 1 · · ·N) respectively at positions ~ri is given by Coulomb’s law:

φ(~r) =
1

4πε0εr

N∑
i=1

qi
|~r − ~ri|

. (3.35)

The potential decays as 1/r and therefore, electrostatic interactions are long-ranged. For a
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system with PBC, the total electrostatic energy is an infinite sum:

E =
1

2

∞∑
m̂∈Z3

N∑
i,j=1

′ qiqj
|~ri − ~rj + m̂L| , (3.36)

with m̂ counting the periodic images and L being the box length. The prime on the second
sum indicates that only particles i and j with ~ri 6= ~rj for m̂ = 0 are taken into account in order
to avoid self-energies. The 1/r nature of this potential and the fact that it is only conditionally
convergent (i.e. the result depends on the order of the terms in the sum), make it impossible
to calculate Eq. 3.36 exactly in PBC. Applying a cutoff to a long-ranged interaction has its
own draw backs, too short a cutoff would create a large error whereas a long enough cutoff
would be computationally very demanding. Besides, the value of the potential would depend
on the cutoff radius. Another intrinsic difficulty with this potential is that it varies strongly
at small distances and decays slowly at large distances. Treated separately, each of these
parts would be much easier to deal with. The fast varying short-ranged part could be cut off
and the slowly varying periodic long-ranged part could be represented by its first few Fourier
series accurately enough. It is the combination of these two behaviours at short and large
distances which causes severe problems. Working on ionic crystals (the Madelung problem),
Ewald [73, 78] developed a method based on a simple and ingenious trick to solve the problem
of long-ranged interactions in periodic systems and improve the efficiency of the computation;
he split the potential into two parts using a trivial identity:

1

r
=
f(r)

r
+

1− f(r)

r
. (3.37)

f(r) should be chosen such that the two parts of Eq. 3.37 can be solved separately:

• f(r)
r

should have a very small value, if not zero, beyond a cutoff rmax. This allows the
summation to be safely terminated after the cutoff.

• 1−f(r)
r

should vary slowly over the whole range. Its Fourier transformation can then be
represented by only a few ~k-vectors where |~k| ≤ kmax.

The traditional choice for f(r) is f(r) = erfc(αr) [73, 79–81] where erfc(r) is the compli-
mentary error function. The Ewald splitting parameter α is an inverse length which tunes
the relative weights between the real and reciprocal spaces. Decomposed in this manner,
the sum converges much faster and the complexity of the computation reduces to O(N2) or
even O(N3/2) when the parameters are optimized [73, 82]. Ewald summation works very well
for small systems with hundreds of particles, but it is still computationally too expensive
for most of the physical systems of interest, which include thousands to millions of charged
particles. The most time-consuming part of it is the Fourier transformations; i.e. replacing
it by a faster method increases the calculation speed appreciably. This idea is exploited by
the more advanced family of the so-called mesh-based techniques such as the Particle-Mesh
Ewald [83, 84] (PME) method, the Smooth Particle-Mesh Ewald (SPME) method [74, 85], or
Particle-Particle Particle-Mesh (P3M) method [48, 74], which reduce the computation time
to scale with N logN by replacing the Fourier transform by a fast Fourier transform (FFT).
This requires the space and charge to be discretized which is done by mapping the charges
onto a mesh. In doing so, these methods gain speed at the cost of losing resolution as the
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mapping smears out the (point) charges onto the grid points. The representation of a point
charge is not accurate anymore, but it can be interpreted as the accurate representation of a
“cloud” of charge of the size of the grid spacing a [72]. P3M is the most convenient mesh-based
method [76, 86] and is widely used to compute electrostatic interactions in periodic systems.
It is also used in this work and is introduced briefly below.

3.4.1 Particle-Particle Particle-Mesh (P3M) method

In mesh-based methods charges are mapped onto a mesh via a charge assigning function W :

ρM(~rp) =
1

a3

N∑
i=1

qiW (~rp − ~ri), (3.38)

with ~rp being the mesh point position. In the case of P3M algorithm, a cardinal B-spline
of order P is chosen for W [73, 87], where P determines the number of grid points per
dimension over which a point charge is distributed. Taking advantage of the FFT, solving the
Poisson equation for this discrete charge distribution is a relatively straightforward task. The
Laplace operator reduces to a simple multiplication by the wavenumber k in Fourier space
and the Green’s function takes on the simple form 4π/k2. The Green’s function is further
adjusted to minimize the deviation of the discrete solution from the continuous one. The forces
are next calculated from the mesh-based potential via either of the following differentiation
methods [74, 76]: i) using finite differences in real space, ii) using the exact gradient of the
assignment function in real space, or iii) multiplying the potential by i~k in Fourier space. In
the last method, known as the i~k-differentiation or force-interpolation scheme [74], the field
~E(~rp) is calculated at each mesh point and then interpolated back to the particle position:

~Fi = qi
∑
~rp∈M

~E(~rp)W (~ri − ~rp). (3.39)

In this equation, the summation is over the complete mesh M. P3M is relatively easy to
implement and can be efficiently parallelized. Analytical estimates exist for the error arising
from the discretization [77] allowing one to quickly choose parameters for a desired level of
accuracy.

3.4.2 Electrostatic Layer Correction (ELC) Method

The method introduced in the previous part relies on the periodicity of the system in all
three dimensions. This is not applicable when the system under study is finite in one or
two directions, e.g. in micro- and nanofluidic devices, or thin films. Methods based on the
MMM algorithm [73, 88, 89], called MMM1D [90] and MMM2D [75, 91], exist for systems
with partial periodicity, but they are only efficient for small systems with a few hundred
particles [73]. The common way to handle the electrostatic interactions in a large system
which is not fully periodic is to use a 3D method and place a large gap between the images
in the non-periodic directions where there are no particles. Until recently the error due to
this approach was not estimated and had to be found out by trial and error. Arnold et al.
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derived exact calculations of the error due to the unwanted periodicities [75, 92] which can be
subtracted from the energy. This method is called the electrostatic layer correction (ELC) and
allows for significant reduction of the gap size. Calculating this correction term scales linearly
with the number of particles and it is therefore the 3D method used in combination with ELC
which determines the overall scaling, e.g. N logN in case of P3M. Also the precision of ELC
can be tuned to the same value used in the 3D method. Since partially periodic systems are
encountered in the first part of this thesis, below I give a very brief explanation of this method.
A full discussion can be found in [75, 91, 93].

To understand the idea behind ELC, assume we have a system of charges in a box of size
λx × λy × h, which is confined in the z direction, where h is the maximum distance between
two charges in the confined direction. This partially periodic system is placed in a fully periodic
box with edge lengths λx, λy, λz where λz � h, i.e. large gaps of size δg = λz − h separate
the system replicas in the z direction. Now consider a charge qj in the original cell together
with its periodic images in the x − y plane. The nth undesired replica of these charges at a
distance nλz far away can be viewed as a homogeneously charged sheet with charge density
σj = qj/(λxλy) which has a potential φj = 2πσj|z|. Due to the overall charge neutrality of
the system (a prerequisite for a finite potential), the energy of interaction between an original
charge qi and all symmetric pairs of such image layers at ±nλz sums up to zero. This fact
can be exploited to calculate the exact electrostatic energy of a slab-like system. In theory,
the only error due to this method arises from approximating the discrete charge distributions
as continuous charge slab. The accuracy of this assumption becomes better with increasing
distance from qi. In practice, however, there are other sources of error [73, 94]. Eq. 3.36 is a
conditionally convergent sum and its value is well-defined only when the precise order in which
the terms, i.e. the simulation boxes, are added is specified. Conventionally, an approximately
spherical summation is considered (see [95–97] and Fig. 8 in [73]). A “slab-wise” summation,
however, serves the purpose of ELC better [94] (also see Fig. 8 in [73]) and can be obtained
from the spherical result as shown by Smith [98]. The total energy of a fully periodic system
can then be written as [73]:

E = Es + Ec + Elc, (3.40)

where Es is the spherical standard 3D Coulomb summation, Ec is the slab-wise summation
correction, and Elc is the contribution of the image layers. The sum of the two first terms
corresponds to the 3D method mentioned above which uses a large gap between the images
in the non-periodic direction. By adding the third term, Arnold et al. [75, 92] created the
much more efficient ELC method where a much smaller gap can be used. They derived an
exact expression for Elc with a linear computation time with respect to N . Still, like any other
method, ELC has also some disadvantages; namely, the associated error of considering homo-
geneously charged layers is position-dependent and can only be estimated numerically. Due to
symmetry arguments, for a system with uniform charge distribution no error is incorporated
in the energy of the particles in the middle of a slab whereas that of the surface particles is
subject to the highest error. The appropriate gap size for the system under investigation can
be found by using successively larger gaps and choosing a reasonable one for which the forces
do not change much when enlarging it further.

50



3.4 Electrostatics

3.4.3 Theoretical Background: Poisson-Boltzmann Equation

In this subsection I give a short survey of the existing theories for the electrostatics of charged
particles and surfaces in an electrolyte solution used in this thesis for comparison with simu-
lation results.

When a charged solid surface is put into contact with an ionic solution, it changes the equi-
librium distribution of the ions. A so-called electric double layer (EDL) forms at the surface:
the first layer, known as the Stern layer, consists of counterions, i.e. ions having a charge
of opposite sign to that of the surface. The ions in this layer are considered to be strongly
attached to the surface, due to either electrostatic attraction or specific chemical adsorption,
and not free to move. This layer partially screens the electrostatic field of the surface, causing
the ions further away from it to interact less strongly with the object. The ions in the next
layer therefore move more freely under the influence of thermal motion and distribute more
or less diffusively. Hence the second layer is usually referred to as the diffuse layer. This is
a simplified picture of the EDL and a more detailed description is sometimes necessary to
describe the structure of the ionic cloud surrounding a charged surface [99–101], but it suffices
for the purposes of this thesis.

Like any other charged system, to find the distribution of the ions in the EDL the Poisson
equation needs to be solved:

∇2φ(~r) = −ρ(~r)/ε, (3.41)

in which ρ(~r) is the charge density and the permittivity of the medium ε = ε0εr is considered
to be constant. The mutual dependency of the potential and charge distribution renders
this nonlinear second-order differential equation far from straight forward to solve. In many
systems this can be simplified by considering a Boltzmann distribution for the ions:

ci(~r) = c0
i exp

(−zieφ(~r)

kBT

)
, (3.42)

where ci(~r) is the local molar concentration of ion species i with valency zi. c0
i is the ith

ion molar concentration where φ(~r) ≡ 0, which is usually the bulk. This is a mean-field
approximation which disregards the correlations between the ions and treats them as point
charges. The charge density in Eq. 3.41 can then be written as:

ρ(~r) = F
N∑
i=1

zici(~r) = F
N∑
i=1

zic
0
i exp

(−zieφ(~r)

kBT

)
, (3.43)

where F = eNA ' 9.65× 104 C/mol is the Faraday constant. Inserting Eq. 3.43 into Eq. 3.41
yields the well-known Poisson-Boltzmann equation (PBE):

∇2φ(~r) = −F
ε

∑
i

zic
0
i exp

(
−zieφ(~r)

kBT

)
(3.44)

For a symmetric z − z electrolyte, consisting of two ion species with z1 = −z2 ≡ z, PBE
reduces to:

∇2φ(~r) =
kBT

ze
κ2 sinh

(
zeφ

kBT

)
. (3.45)
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where κ = λ−1
D , the inverse Debye length λD, is defined as:

κ =

(
NA

∑
i(zie)

2c0
i

εkBT

)1/2

=

√
4πlBNA

∑
i

z2
i c

0
i . (3.46)

Defining the dimensionless potential ψ ≡ eφ/(kBT ), Eq. 3.45 reduces to:

∇2ψ(~r) =
κ2

z
sinh(zψ(~r)). (3.47)

Eq. 3.45 (or equivalently Eq. 3.47) is known as the Debye-Hückel (DH) theory in case of
z = 1 [102]. When zeφ� kBT , i.e. high temperatures or low surface potentials, Eq. 3.47 (or
equivalently Eq. 3.45) can be linearized using the Taylor expansion sinh(x) ≈ x:

∇2ψ(~r) ≈ κ2ψ(~r). (3.48)

An example can help make the physical meaning of the Debye length more clear; in case
of a plane (e.g. an electrode) with reduced surface potential ψ0, the solution to Eq. 3.48 is
ψ(y) = ψ0 exp(−y/λD) where y is the vertical distance from the surface. It is seen that the
potential decays exponentially with distance, where λD is the characteristic length scale. The
general solution to Eq. 3.48 for a spherical particle has the form:

ψ(r) = A
exp(−κr)

r
+B

exp(κr)

r
. (3.49)

B = 0 since otherwise the potential becomes infinite as r → ∞, so only A remains to be
determined. When the size of the particle can be ignored, the potential is that of a point
charge Q at small distances where there are no other ions, i.e. ψ(r → 0) = lBQ/r. At such
small distances exp(−κr) ∼= 1 and A = lBQ, so the potential is:

ψ(r) = lBQ
e−κr

r
= lB

Q

r
− lB

Q (1− e−κr)
r

. (3.50)

The first term on the right-hand side of this equation is the contribution of a point charge,
and the second term that of the surrounding ions. When the considered ion has a finite size
R, the potential outside the sphere is again ψout(r) = A exp(−κr)/r, while the potential inside
is like that of a point charge ψin(r) = linBQ/r + C. The constants A and C can be found from
continuity conditions at r = R to be A = lBQ exp(κR)/(1 + κR) and B = −linBQκ/(1 + κR).
Thus, the linear approximation of the potential outside a spherical particle in an electrolyte
is:

ψ(r > R) = lBQ
eκR

1 + κR

e−κr

r
. (3.51)

Analytical solutions of the nonlinear PBE, Eq. 3.44 (or Eq. 3.47), exist only for a few limited
cases, for example, a flat charged surface with uniform charge density σs. Using the Cartesian
coordinates system and assuming that the charged plate is located at the y = 0 plane, Eq. 3.47
reads:

d2ψ

dy2
=
κ2

z
sinh (zψ(y)) . (3.52)
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Using Neumann boundary condition ψ′(∞) = 0, the Dirichlet boundary condition ψ(∞) = 0,
and the identities:

d

dy

(
df

dy

)2

= 2
d2f

dy2

df

dy
, and cosh(x)− 1 = 2 sinh2(x/2), (3.53)

it follows from Eq. 3.52 that: (
dψ

dy

)2

=
4κ2

z
sinh

(
zψ

2

)
, (3.54)

for a z − z electrolyte. Taking the Dirichlet boundary condition for ψ at the surface to be
ψ(0) = ψ0, the solution of Eq. 3.54, known as the Gouy-Chapman equation (GC) [103, 104],
is obtained after some algebraic calculations as:

ψ(y) =
2

z
ln

[
1 + tanh(zψ0/4) exp(−κy)

1− tanh(zψ0/4) exp(−κy)

]
, (3.55)

The total charge neutrality of the system demands that the charges on the surface and in the
EDL sum up to zero, therefore:

σs = −
∞∫

0

ρ(y)dy =
εkBT

e

∞∫
0

d2ψ

dy2
dy = −εdψ

dy

∣∣
y=0

. (3.56)

Replacing Eq. 3.54 in the last term on the right-hand side, the surface charge density can be
related to the surface potential via the Grahame equation [105]:

σs =
2κεkBT

ze
sinh

(
zψ0

2

)
. (3.57)

This relation is useful in cases where only σs is known (e.g. from titration experiments) for
the surface.

In Fig. 3.9, the solution to the linearized PB, Eq. 3.48, in planar geometry is compared to
Eq. 3.55 for two surfaces having different surface potentials in the presence of monovalent salt
with κ = 1. For ψ0 = 1 (blue curves) the two results are almost identical, whereas for ψ0 = 10
(red curves) the difference is significant.

53



3 Theory

0 1 2 3 4 5

0

2

4

6

8

10

y

ψ
(y
)

Figure 3.9: The reduced electric potential as a function of the perpendicular distance to the surface.
The dashed lines are the solutions to the linearized PB, Eq. 3.48 in planar geometry, and
the solid lines show the results of Eq. 3.55. The red lines are for ψ0 = 10 whereas the
blue lines are for ψ0 = 1. In both cases z = 1 and κ = 1. The effects of the nonlinearity
in the Poisson-Boltzmann is more significant when the surface potential is large.

3.5 Electrophoresis

As the name suggests, electrophoresis, electro+phoresis (Greek for being carried), is the motion
of a charged particle in a medium (usually a fluid) as a result of an applied electric field. The
dependence of the electric force on the charge, and the friction force on the particle size, makes
electrophoresis a very useful tool for characterizing particles and one of the main separation
techniques. Different types of electrophoresis (e.g. capillary, gel, free-flow, or end-labeled
free-solution electrophoresis) can be used to separate different types of molecules based on
size or charge. Perhaps the most interesting example is the separation of DNA fragments
with different lengths, which was crucial in sequencing the entire human genome [18, 19].
Another important application of electrophoresis is to extract information about the value
and distribution of a particle’s charge [106–108]. Electrophoresis can be performed on different
particles, from single ions and small molecules, to macromolecules such as DNA and proteins.
Here, I focus on the electrophoresis of colloids, particles of size nm−µm, in free solutions, i.e.
the supporting medium only consists of an electrolyte and no gels are involved.

In this section, first the theoretical principles of electrophoresis and the governing electrokinetic
equations are introduced. In Sec. 3.5.2, the most commonly used numerical method for solving
the electrokinetic equations for spherical particles, which is also employed in parts of this thesis,
is discussed. As will seen later, even in the case of numerical solutions, approximations have
to be made and tricks need to be used in order to simplify the problem to a level where it is
solvable. After that, the modified electrokinetic equations and the common numerical method
of solving them for soft particles encountered in the second part of this thesis are discussed.
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3.5.1 Electrokinetic equations

When a charged particle immersed in a fluid is subject to a uniform applied electric field
~E, it moves in a process termed electrophoresis as illustrated in Fig. 3.10. The medium
resists the particle’s motion by exerting a drag force ~Fd. Usually, the particle is surrounded
by counterions and in an electrolyte solution, an EDL will form around it as introduced in
subsection 3.4.3. The counterions in the EDL also move under the influence of the electric
field, dragging the fluid along with them. This generates an electro-osmotic flow (EOF) in the
fluid, the velocity of which is the counterpart of the electrophoretic velocity of the particle.
Since the counterions have a charge opposite to that of the particle, they move in the opposite
direction and thus exert an extra hydrodynamic friction force on the particle, mediated by the
surrounding solvent. This force is known as the retardation force ~Frt.
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Figure 3.10: A sketch of the electrophoresis of a positively charged colloid (large red sphere). On
the left-hand side the ions are depicted explicitly, the negative ones shown in gray and
the positive ones shown in red, while the equivalent mean-field implicit ion approach is
illustrated on the right-hand side. In the steady state, the electric force ~Fe exerted on
the colloid is canceled by the sum of the drag force ~Fd, the retardation force ~Frt, and
the relaxation force ~Frl.

The concurrent action of the applied field and that of the particle motion deforms the coun-
terion cloud, creating a dipole which causes an electric retarding force to act on the particle
called the relaxation force ~Frl. The retardation and relaxation forces are coupled; the asymme-
try of the counterions cloud affects the retardation force, and the fluid’s velocity distribution
needs to be explicitly taken into account in the calculation of ion densities leading to relaxation
force. In the steady state, the net force acting on the particle is zero and it acquires a drift
speed vd. At low field strengths, vd is linearly proportional to the strength of the applied field
| ~E| ≡ E and the proportionality constant is defined as the electrophoretic mobility:

µ =
vd

E
(3.58)

µ is the main quantity of interest in electrophoresis and also the one measured in experiments.
It is related to ζ, the potential drop at the shear plane (introduced below) with respect to the
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bulk, and hence to the charge density of the object. When the fluid adjacent to a surface flows
tangentially as a result of electrical forces, or shear mechanical forces, or etc., a thin layer,
referred to as the Stern layer, is shown to adhere to the surface and become stagnant [100, 109].
No hydrodynamic flow can develop within this layer and the fluid starts to shear beyond it.
The imaginary surface separating this stagnant layer from the mobile part of the fluid is
referred to as the shear or slip plane. Information about the value and distribution of the
particle’s charge, often unknown a priori, can be extracted by measuring µ and converting
it to ζ. As will become clear in the course of this section, the conversion from µ to ζ, or
vice versa, is not always straight forward and needs a theory which takes into account all the
important properties of the system.

In order to calculate the electrophoretic mobility theoretically, a set of coupled nonlinear
differential equations, referred to as the electrokinetic (EK) equations, needs to be solved.
They describe the motion of the fluid as well as that of the particle and the ions. In the
following, the origin of the co-moving coordinate system is fixed on the particle. The force
balance in the liquid can be described via the NS equations (Eq. 3.20), as introduced in
Sec. 3.3. In the limit of low Reynolds numbers4, the convective accelerations can be neglected
and the NS reduces to Stokes equation which in the steady state (∂~u/∂t = ~0) reads:

η∇2~u(~r)− ~∇p(~r)−
N∑
j=1

njzje~∇φ(~r) = ~0, (3.59)

where nj is the number density of the ion species j. The last term in this equation is the
body force density due to the electrostatic interactions and introduces the retardation force
in the equations. The electric potential ψ (including the applied field) satisfies the Poisson
equation, Eq. 3.41. At the low velocities typically encountered in electrophoresis, the fluid
can in a good approximation be considered as incompressible, in which case the continuity
equation simplifies to:

~∇ · ~u(~r) = 0. (3.60)

The number of ions in the system is conserved:

∂nj
∂t

= −~∇ · (nj~vj) = 0, (3.61)

where the ion velocities ~vj can be found from the Nernst-Planck (NP) equation plus an ad-
vective term in the steady state:

λj(~u(~r)− ~vj)− zje~∇φ(~r)− kBT ~∇ log nj = ~0. (3.62)

The first term of this equation is the advective contribution due to the fluid flow with λj being
the drag coefficient of the ith ion species. The second term is the electric force due to the
external field, and the last term is the diffusive contribution due to the ideal gas contribution
to the chemical potential.

4The Reynolds number is a dimensionless quantity defined as the ratio of the inertial to the viscous forces
and is used to determine the flow regime in a fluid or find similar flow patterns in different ones. Since
it is the only parameter present in the non-dimensional form of the NS equation, the Reynold number
characterizes the flow for a given geometry.
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The boundary conditions needed to solve these equations are:

{
~u(|~r| = rs) = ~0,

~u(|~r| → ∞) = −µ~E, (3.63)

associated with equations 3.59 and 3.61, where rs is the position of the shear plane, and:{
~vi(|~r| = rs) · n̂ = 0,

ni(|~r| → ∞) = n0
i (∞),

(3.64)

for the ions, where n̂ is the unit vector perpendicular to the surface and n0
i (∞) is the equilib-

rium density of the ions in the bulk.

These equations govern electrokinetic phenomena and can, in principle, be used for solid
surfaces of arbitrary shape. In this work, I will focus on the electrophoresis of spherical
colloids. Solving this set of coupled nonlinear partial differential equations analytically is
possible only for the most simple geometries or situations. Recently, Lizana et al. [110] derived
asymptotically exact expressions for the electrophoretic mobility of weakly charged spheres in
a monovalent salt solution using the DH approximation. However, for generic conditions the
usual approach is numerical, and analytical solutions exist only for a few limiting cases which
will be introduced below.

Hückel limit

In the absence of added salt, the only ions in the system are the intrinsic counterions produced
by the dissociation of surface groups. For a charged sphere the electrical potential decreases
as 1/r with distance and cannot compete with the increase in entropy which causes the coun-
terions to “evaporate” from the surface. In an infinite volume or in the limit of no salt, the
particle is merely a sphere with charge Q subject to an electric force ~Fe = Q~E. The only force
opposing its motion is the Stokes viscous drag force exerted by the fluid ~Fd = 6πηR~v, where
R is the radius of the particle and ~v its velocity. In the steady state, these two forces cancel
each other and the particle moves with a drift velocity vd:

~vd =
Q

6πηR
~E. (3.65)

For low applied field strengths, the electrophoretic mobility in this salt-free limit, known as
the “Hückel limit” [111–113], is then simply given by:

µ =
Q

6πηR
. (3.66)

Since the potential vanishes at infinity, the zeta potential in this case is merely the potential
at the surface:

ζ =
Q

4πεR
, (3.67)
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such that the mobility in Eq. 3.66 can be rewritten as:

µ =
2ε

3η
ζ. (3.68)

This analytical expression derived for the Hückel limit can be used as an approximation for
very low salt conditions where κR� 1.

Helmholtz-Smoluchowski limit

In contrast to the Hückel limit, at very high salt concentrations the Debye layer is thin,
κR � 1. Most counterions accumulate in the close vicinity of the interface and “see” the
particle as effectively flat. In other words, the local radius at each point is much larger than
the Debye length and the geometry is essentially planar. This is the well-known “Helmholtz-
Smoluchowski limit”. Under these conditions at low Reynolds numbers, the Stokes equation
(Eq. 3.59), with a body force proportional to a tangentially applied electric field ~E = {Ex, 0, 0},
yields the tangential fluid speed ux as:

d2ux
dh2

= −Exρ(h)

η
, (3.69)

where h is the vertical distance from the surface and ~∇p = ~0 parallel to it due to symmetry
arguments. The pressure gradient perpendicular to the surface is cancelled by the perpen-
dicular force component arising from the gradient in the ion distribution. Substituting the
Poisson equation, Eq. 3.41, we obtain:

d2ux
dh2

=
εEx
η

d2φ

dh2
. (3.70)

This ordinary differential equation is straight forward to solve. Integrating both sides twice
with respect to h and applying the boundary conditions dux/dh = dφ/dh = 0 as h → ∞,
ux(hs) = 0, ux(∞) = ueo, φ(hs) = ζ, and φ(∞) = 0, we find the Helmholtz-Smoluchowski
(HS) equation for the EOF velocity:

ux = ueo = −εζ
η
Ex. (3.71)

The electrophoretic mobility in this limit is then:

µ = −ueo/Ex = εζ/η. (3.72)

The HS equation describes the constant plug flow velocity profile outside the Debye layer.
Inside the layer the charge density decreases exponentially with distance from the surface as
discussed in subsection 3.4.3, and so does the velocity:

ux(h) = ueo

(
1− e−κh

)
. (3.73)

The HS formula applies to all particle shapes as long as the condition κR� 1 is fulfilled and
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ζ is low, i.e. at very high salt concentrations the electrophoretic mobility is independent of
the shape [114]. For high zeta potentials (ζ & 2 kBT/e ' 50 mV) other effects such as the
polarization of the Debye layer and surface conductance [100] become important and need to
be taken into account. This is done either by solving the EK equations numerically or using
approximate analytical expressions[100]. O’Brien provided such an expression which account
for the diffuse-layer conductivity [115]:

µred ≡
3

2

ηe

εkBT
µ =

3

2
ζred −

6
[
ζred

2
− ln 2

z
(1− exp (−zζred))

]
2 + κR

1+3m/z2 exp
(
− zζred

2

) , (3.74)

where µred and ζred = eζ/(kBT ) are respectively the reduced electrophoretic mobility and the
reduced ζ−potential, and m is the dimensionless mobility of the ions (m ' 0.15 in aqueous
solution). The O’Brien equation (Eq. 3.74) is a simplified form of an equation derived by
Dukhin and Semenikhin [100, 116] by neglecting terms of order (κR)−1.

Henry’s formula

Henry [117] deduced a formula for the electrophoretic mobility of a spherical particle at inter-
mediate salt concentrations, assuming the zeta potential to be low (ζ ≤ 50 mV):

µ =
2εζ

3η
f(κR), (3.75)

where f(κR) is a function smoothly varying between 1 (Hückel limit) and 1.5 (Helmholtz-
Smoluchowski limit):

f(κR) = 1 +
(κR)2

16
− 5(κR)3

48
− (κR)4

96
+

(κR)5

96
+

(
(κR)4

8
− (κR)6

96

)
exp(κR)

κR∫
∞

exp(−t)
t

dt.

(3.76)
In needs to be mentioned that retardation effects are taken into account in this expression [118].

3.5.2 The Standard Electrokinetic Model (SEM)

The most commonly used method for solving the EK equations introduced in subsection 3.5.1
is the standard electrokinetic model (SEM) established by Wiersema et al. [24] and developed
further by O’Brien and White [25]. Wiersema et al. employed an iterative numerical scheme to
calculate the electrophoretic mobility of a spherical particle as a function of the zeta potential
in the linear response regime, i.e. weak applied field. In this regime, E � κζ, the distortion
of the ionic cloud due to the applied field is assumed to be linear in E and a first-order
perturbation can be applied to the EK equations. In this manner, besides the retardation force
which is represented by the electric body force in the Stokes equation (Eq. 3.59), the theory
takes into account small deformations of the EDL and thus, the first-order electrophoretic
relaxation effect. Even though the theory is valid only for small applied fields, it makes no
assumptions about the salt concentration or the size of the particle and can be used for the
whole range of κR. Their method, however, suffers from a convergence problem for large
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values of ζ. O’Brien and White [25] used symmetry arguments to simplify the EK equations
and thus, managed to solve the problem for large ζ-potentials. To linearize the set of coupled
second-order differential EK equations, they write the number density of the ions and the
electric potential respectively as:

ni(~r) = neq
i (~r) + δni(~r), (3.77)

φi(~r) = φeq(~r) + δφ(~r), (3.78)

where neq
i (~r) and φeq(~r) are the equilibrium values of the two quantities. Substituting these

in the EK equations and neglecting smaller terms such as δni~u or (δni)
2 yields:

∇2δφ = −4π
ε
δρ,

η∇2~u− ~∇p = ρeq~∇δφ+ δρ~∇φeq,

~∇ ·
(
kBT ~∇δni + zien

eq
i
~∇δφ+ zieδni~∇φeq − neqλi~u

)
= 0.

(3.79)

The main idea of O’Brien and White for solving this set of linearized EK equations is to
decouple the electrophoretic problem into two separate subproblems. Fixing the origin of the
reference frame on the center of the particle, these are:

(1) No electric field is applied and the particle is held fixed in a fluid flow −~U . The corre-
sponding boundary conditions far from the particle in the limit ~r →∞ are:{

~u→ −~U,
δφ→ 0.

(3.80)

δφ is the linear perturbation of the equilibrium potential φeq(~r) due to the applied field,
φ(~r) = φeq(~r) + δφ(~r). This subproblem regards the purely hydrodynamic part of the problem
and the force needed to fix the particle is ~F1 = α~U with α being a constant.

(2) The particle is held fixed under the application of an electric field and the electrolyte is
assumed to be at rest far from it. The far-field boundary conditions in this case read:{

~u→ ~0,

δφ→ − ~E ·~r. (3.81)

The force needed to hold the particle against the applied electric field is ~F2 = β ~E where β is
the proportionality constant.

The superposition of the solutions to these uncoupled subproblems, solves the main elec-
trophoretic problem. The constraint of zero net force determines the velocity ~U obtained from
the sum of equations 3.80 and 3.81. O’Brien and White [25] then set ~F1 and ~F2 to be equal,
and use the definition of the electrophoretic mobility to find:

µ = −β
α
. (3.82)

The constants α and β are obtained numerically by solving problems (1) and (2) with |~U | = 1
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and | ~E| = 1, respectively, considering a Boltzmann-like distribution of the ions. The details
of the numerical scheme is outside of the scope of this thesis and can be found in [25].

For the purposes of this thesis, it is important to emphasize on the fact that this model
accounts for small EDL deformations and takes into account relaxation effects.

3.5.3 Modified Electrokinetic Equations for Soft Surfaces

In this section, the modified EK equations for polymer-grafted surfaces, referred to as soft
surfaces or particles, are introduced. Soft particles play an important role in biology as well
as in technology. Many cells and surfaces are coated with polymers influencing the adhesion
of bacteria and as such, the infection rates [27–30]. The coating also affects the rheological
properties of electrorheological fluids and can have important industrial applications [31, 32].
In the laboratory, polymer coatings are used to manipulate the electrokinetic properties of
surfaces in micro- and nanofluidic devices [40–42]. The broad range of occurrences and ap-
plications necessitates a good understanding of soft particles. Their behavior is, on the other
hand, more complex due to the non-uniform surface properties and the effect of the grafted
polymers on the electro-osmotic flow. These effects should be considered in the theory as
well in order explain and predict their behaviour correctly. In Ch. 5, the electrophoresis of
soft particles are studied via computer simulations and it is therefore necessary to know the
underlying theory for the electrokinetics of such systems.

The electrokinetic behaviour of soft particles is more complex than that of solid surfaces
due to the extra viscous friction of the coating layer and, in case of grafted polyelectrolytes,
the inhomogeneous surface charge density. A good model should take these effects into ac-
count by modifying the EK equations introduced in the previous section. Since the polymers
are grafted to the surface, when subject to an EOF they will move with the same velocity ~V
as the particle relative to the fluid and cause extra friction. This additional hydrodynamic
drag enters the steady-state Stokes equation, Eq. 3.59, as a body force:

η∇2~u(~r)− ~∇p(~r) +
η

l2(~r)
(~V − ~u(~r))−

N∑
j=1

njzje~∇φ(~r) = ~0. (3.83)

This modified Stokes equation is referred to as the Darcy-Brinkman equation and accounts for
the local viscous shearing stresses acting on a volume element of the fluid. It was originally
proposed to describe the fluid around a spherical particle embedded in a porous media by
Brinkman [119]. The important parameter here is the Brinkman length l related to the
monomer distribution, with l2 being the permeability of the coating. The higher the monomers
density, the less permeable the polymer layer that acts like a porous medium, and hence the
larger the extra hydrodynamic drag it exerts on the fluid. The relation between l and the
monomer distribution can be established via different strategies. Harden et al. [120] use the
de Gennes’ blob picture discussed in subsection 3.6.3 to describe the Brinkman screening
length, while Hill et al. [7] interpret the grafted layer as a random distribution of resistance
centers. The concept of zeta potential used to characterize bare colloids is not helpful in the
case of soft particles due to the nonuniform surface structure and charge distribution (for
polyelectrolytes). Defining the location of the slip plane becomes unclear and even if defined,
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the conversion of ζ to µ would be dependent on the specific system [28, 44]. Instead, the charge
density or the electrostatic potential at the core particle’s surface and the Donan potential
at the layer’s edge are used as boundary conditions [7, 121–123]. Below, I first introduce
the theoretical work of Harden et al. [120] and some of their results which are used later in
Ch. 5. Next, I present the main concepts of a numerical method for solving the modified EK
equations similar to the SEM (see 3.5.2) developed by Hill et al. [7] and exploited later in
Ch. 5

3.5.4 A Scaling Theory for the Electrokinetics of
Polyelectrolyte-Grafted Surfaces

Harden et al. [120] investigated the influence of grafted polyelectrolytes on the EOF past a
charged flat surface. They focus on the limit of a thin Debye layer where λD is the smallest
length scale of the system and consider the two cases of sparsely and densely grafted chains.
In the former case, the “mushroom regime”, the distance between the grafting points d is
large so that the chains retain their equilibrium shape and form a coil of radius R where
R � d. The latter case is the “brush regime” where R � d, the chains overlap strongly and
as a result stretch to form a brush of height H. The high salt concentration guarantees that
the electrostatic interactions between the monomers are screened and have no influence on
the polymer configurations. They also disregard the deformation of the grafted layer due to
electrostatic attraction/repulsion to the substrate.

Independent of the chains regime, each component, i.e. the surface and the polyelectrolytes,
generates its own EOF. Characterizing the charged substrate by its electrophoretic mobility
µs and similarly the chains by µp, the slip velocity of the fluid far away due to each part is
~Us = −µs

~E and ~Up = −µp
~E, respectively. The authors of [120] decompose the system into

two parts: {
1− µs = µ̂, µp = 0,

2− µs = µp 6= 0,

where µ̂ ≡ µs − µp is the electrophoretic mobility of the composite. In the first case, the
polymers are considered to be neutral and the surface is assigned an effective mobility. In
the second case, both the surface and the chains are charged and have the same mobility.
The superposition of these two reconstructs the original situation of the charged flat surface
grafted with charged polymers. In the mushroom regime, the first case is analogous to a
flat surface with heterogeneous charge density [124] where the mobility can be written as
µ̂eff = µ̂s(1− σR2), with σ ∼ 1/d2 being the grafting density. Here, the neutral polymer coils
respond hydrodynamically as impermeable bumps and affect the fluid flow. This is regarded
for by a prefactor α in writing the effective mobility as µ̂eff = µ̂s(1 − ασR2). α is constant
of the order of unity and depends on the shape of the bump. Applying the aforementioned
superposition strategy, the mobility of the original composite surface and polyelectrolytes
reads:

µeff = µ̂eff + µp = µs − (µs − µp)σR2. (3.84)

For the first problem (charged substrate and neutral polymers) in the brush regime, the grafted
layer can be viewed as a collection of blobs which behaves as a porous media with characteristic
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pore size ξ = d that screens the hydrodynamic flow of the solvent, see Fig. 3.12. Calculating
the permeability from the blob size and solving the equation ∇2~U(z) ∝ (~U(z) − µs

~E)/d, it
is found that the EOF decays exponentially within the brush as ~U(z < H) ' ~Us cosh[(H −
z)/d]/ cosh[H/d]. It needs to be noted that this differential equation for ~U is a variant of the
Darcy-Brinkman equation, Eq. 3.83 introduced in subsection 3.5.3. Outside the grafted layer,
there are no screening effects and the uniform plug flow is ~U> = ~U(z = H) = −µ̂eff

~E where:

µ̂eff =
µ̂s

cosh[(σR2)5/6]
. (3.85)

(σR2)5/6 = H/d is the dimensionless brush thickness. When the chains are charged, the effec-
tive mobility is the sum of Eq. 3.85 and the mobility of the polyelectrolytes µp as discussed
above, i.e. µeff = µ̂eff + µp. Note that in the limit of H/d → ∞ this effective mobility ap-
proaches that of the polyelectrolytes, µeff → µp.

The results reported here from Harden et al.’s work [120] are for weak applied fields where
the deformation of the grafted chains is negligible. The authors discuss in length the effects
of strong fields on the layer conformation which in turn affects the induced EOF. But this is
not relevant to the subject of this thesis as it is restricted to weak fields and therefore not
considered here.

3.5.5 Numerical Method for Solving the Modified EK Equations

Using a different method as discussed in the previous subsection to describe the grafted layer
and viewing the monomers as uniformly distributed resistance centers, Ohshima [43, 44, 122,
123] has derived analytical approximations for the mobility of spherical soft particles at dif-
ferent limits of salt concentration and layer thickness. Nevertheless, as in the case of bare
particles, to obtain the electrophoretic mobility of a soft particle under general conditions,
the modified EK equations introduced in subsection 3.5.3 should be solved numerically. Hill
et al. have developed such a numerical method, which uses a technique similar to the SEM,
discussed in subsection 3.5.2, to solve the governing set of equations [7, 125]. Considering the
monomers as fixed spherical Stokes particles with radius as, they obtain the Brinkman length
by equating the Darcy drag term, the third term on the right-hand side of Eq. 3.83, to the
total drag force exerted on the polymer segments 6πηns(r)as(~u− ~V )Fs:

l2 = 1/(6πnsasFs) = 2a2
s/(9ϕsFs). (3.86)

ns(r) is the monomer density which is assumed to be spherically symmetric, as is the monomer
size, and ϕs = 4

3
πnsa

3
s is the volume fraction of the segments. Fs is a dimensionless constant

taking into account the collective effect of the other monomers on the fluid flow or equivalently
the hydrodynamic drag. For randomly distributed spherical segments considered here, Fs only
depends on ϕs:

Fs =
1 + 3(ϕs/2)1/2 + (135/64)ϕs lnϕs + 16.456ϕs

1 + 0.681ϕs − 8.48ϕ2
s + 8.16ϕ3

s

. (3.87)

The boundary conditions are the same as in the SEM except one could specify the surface
charge density instead of using ζ-potential. In that case, the following equation is applied at
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the interface:
ε0εs∇ψ

∣∣
+
· n̂− ε0εp∇ψ

∣∣
− · n̂ = −σs at r = κR, (3.88)

where εp and εs are the dielectric constant of the particle and the solvent, respectively. In this
equation, the distances are scaled with the Debye length λD, potentials with kBT/e, and the
surface charge density with κε0kBT/e. The authors then use the separation method of SEM
to obtain µ numerically.

More recently, Bhattacharyya et al. used a different technique to calculate the electrophoretic
mobility of soft particles numerically [126, 127]. Their method is also based on the nonlinear
Poisson-Nernst-Planck equation coupled with the Darcy-Brinkman equation. But, to analyze
the fluid flow field, they use a numerical approach in which the porous media is considered as
a pseudo-fluid and the composite region as continuum.

In Ch. 5 of my work, I use the computer program provided by Rhegan Hill [125] to compare
my simulations with numerical results. A more detailed description of this method can be
found there.

3.6 Polymers

Polymers are an important component of many biological and technological systems. Most
familiar examples are DNA, proteins, and plastics. They are also encountered in the second
part of this thesis where polyelectrolyte-grafted spherical particles are investigated. Therefore,
here some basics of polymer physics are provided. The content in this section is mostly
gathered from Rubinstein and Colby’s book of “Polymer Physics” [128], de Gennes’ book
of “Scaling concepts in Polymer Physics” [129], and Iwao Teraoka’s “Polymer Solutions: An
Introduction to Physical Properties” [130].
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Figure 3.11: A schematic of a polymer. The gray circles are the monomers connected via bonds
represented by the springs.
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3.6.1 Conformation of an Ideal Chain

In an ideal polymer chain, the interactions between monomers i and j far apart from each other
along the chain, i.e. |j − i| � 1, are ignored even as they approach each other spatially. This
is a subtle assumption which is not generally met for real polymers, but in many situations
real polymers behave like ideal chains. The conformation of an ideal chain is relatively easy
to derive and many of the same ideas can be used in the study of real polymers with small
modifications. It is therefore useful to start with deriving the conformation of ideal chains.

The simplest model to describe an ideal polymer is the freely jointed chain model in which it
is assumed that there are no preferred bond directions between two adjacent monomers. The
end-to-end vector connecting the two ends of a single polymer chain consisting of n monomers
is:

~Rn =
n∑
i=1

~ri, (3.89)

where ~ri is the bond vector between monomers i−1 and i. A direct consequence of the assump-
tion mentioned above is that

〈
~Rn

〉
= ~0. The first nonzero quantity containing information

about the size of a chain is the mean-square end-to-end distance:

〈
R2
〉
≡
〈
~R2
n

〉
=
〈
~Rn · ~Rn

〉
=

n∑
i,j=1

〈~ri ·~rj〉 . (3.90)

Considering the equilibrium bond length to be |~ri| = l for all i, and using the fact that
〈cos θij〉 = 0 for i 6= j, with θij being the angle between ~ri and ~rj, we find 〈R2〉 for an ideal
polymer chain as: 〈

R2
〉

= nl2. (3.91)

The condition 〈cos θij〉 = 0 is an oversimplification. In general, the main assumption for ideal
chains is that correlations between bond vector orientations are negligible only for monomers
distant along the chain contour, i.e.

lim
|i−j|→∞

〈cos θij〉 = 0.

Defining C ′i ≡
∑n

j=1 〈cos θij〉, the mean-square end-to-end distance for an ideal chain in general
reads: 〈

R2
〉

= l2
n∑
i=1

C ′i = Cnnl
2, (3.92)

where in the last step Flory’s characteristic ratio Cn is introduced. Due to steric repulsions
and bond angle restrictions, Cn > 1 for all polymers, its exact value depends on the local
stiffness of the polymer. This makes the description of flexible ideal polymers non-universal.
By considering groups of monomers such that no correlation exists between them even when
they are distant, it is possible to map any ideal polymer into a freely jointed chain model. Each
such group of monomers is called a “Kuhn monomer” (often simply referred to as a monomer),
and an effective bond of length b, termed the “Kuhn length”, connects them together.The so-
called “equivalent freely jointed chain” model uses the concept of Kuhn length and monomers
to provide a unified description of all ideal chains. The effective bonds have no preferred

65



3 Theory

direction and the maximum chain length Rmax = Nb is obtained when all the monomers are
aligned. The root-mean-square end-to-end distance is usually denoted by R0 and for an ideal
chain reads:

R0 ≡
√
〈R2〉 = bN1/2. (3.93)

Another important quantity used to characterize the size of a chain is the radius of gyration
defined as the average square distance between monomers and the center of mass of the polymer
in a given conformation:

R2
g =

1

N

N∑
i=1

(
~Ri − ~Rcm

)2

. (3.94)

In this equation, ~Ri and ~Rcm are the positions of the ith monomer and the center of mass,
respectively. For a linear (i.e. not ring or branched) ideal chain with N � 1 segments, the
sum can be replaced by an integral and, making use of the definition of the center of mass and
treating each subsection also as an ideal chain, the average radius of gyration can be written
as: 〈

R2
g

〉
=
b2N

6
=
〈R2〉

6
. (3.95)

For determining the hydrodynamic friction coefficient of a polymer, the hydrodynamic radius
Rh is defined as:

1

Rh

≡ 1

N2

〈∑
i 6=j

1

|~rij|

〉
. (3.96)

Rh is the radius of an equivalent sphere having the same friction coefficient as the polymer
when dragged in a fluid.

The (equivalent) freely jointed chain model is equivalent to a random walk and each possible
conformation of a polymer withN monomers can be considered as a possible trajectory afterN
steps. The statistics of a random walk can therefore be used to derive further information about
the static conformation of an ideal chain. For example the number of possible configurations
for a fixed N corresponds to the number of distinct walks with N steps on a discrete lattice
of size b: ∑

~r

RN(~r) = zN , (3.97)

where z is the number of nearest neighbors at each lattice site and ~r is the position of the
last step (i.e. the end monomer). One of the interesting quantities is the distribution of the
end-to-end distance. Putting the origin of the coordinate system on the first monomer, this
is,

p(~r) =
RN(~r)∑
~rRN(~r)

. (3.98)

It can be shown [130] that p(~r) is Gaussian for N � 1 and in 3D can be written as:

p(~r) = (2πNb2/3)−3/2 exp

(
− 3~r 2

2Nb2

)
. (3.99)

The entropy S(~r) = kB ln(RN(~r)) associated with all chain conformations in 3D can be calcu-
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lated from p(~r) obtained above as:

S(~r) = S(0)− 3kB

2R2
0

~r 2. (3.100)

The corresponding Helmholtz free energy is then obtained to be:

F(~r) = F(0) +
3kBT

2R2
0

~r 2. (3.101)

In equilibrium the end-to-end vector ~r is minimized in order to minimize the free energy. The
spring constant of the ideal chain can thus be calculated by taking the derivative of F with
respect to ~r.

3.6.2 Conformation of a Real Chain

In a real polymer, the excluded volume of the monomers plays a role and the interaction
between monomers far apart along the chain cannot be neglected when they come close to each
other in space. Each monomer has an excluded volume v where it is energetically unfavorable
for other monomers to enter. This changes the chain conformation compared to an ideal
polymer. The bond orientations are no longer equally probable and the random walk model
cannot be applied to real polymers. The simplest model in this case is the self-avoiding random
walk (SAW) where a lattice point is not visited more than once. This represents the fact that
in real polymers monomers do not overlap each other even when they lie far apart along the
chain contour. The total number of distinct SAW trajectories with N steps has the asymptotic
behavior:

RN(tot) ≈ z̃NNγ−1, (3.102)

in the limit of N → ∞. z̃ is the equivalent of the number of lattice nearest neighbors z in a
random walk, but is smaller than z for the same grid geometry. The exponent γ is a universal
quantity depending only on the dimensionality. Using the SAW statistics, the end-to-end
distance of a real chain RF is found to be:

RF =
√
〈r2〉 = bN ν . (3.103)

ν is another universal exponent called the Flory exponent for reasons that will become clear
below. In 3D γ = γ3

∼= 7/6 and ν = ν3
∼= 3/5.

When the chain is immersed in a solvent, the monomers interact both with each other and the
solvent particles. The difference between the direct interaction of a monomer with another
monomer and its interaction with a solvent molecule determines if the effective monomer-
monomer interaction is attractive, or repulsive, which in turn dictates the conformation of the
chain. Solvents are categorized in different types with regard to this effective interaction, the
main ones being:

• Good Solvent: the attractive well of the monomer-monomer interaction is slightly deeper
than that of the monomer-solvent interaction. The net attraction reduces the excluded
volume effect but the chain is still larger than the ideal case and has a ν = 3/5 behavior.
Hence, usually a polymer in a good solvent is simply referred to as a real chain.
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• Theta Solvent: The attractive and repulsive contributions to the effective monomer-
monomer interaction exactly cancel at a special temperature called the θ-temperature.
The net excluded volume is zero and the chains behave like ideal polymers.

• Poor solvent: At T < θ, the attractive part dominates, monomers prefer each other to
solvent particles and the chain forms a coil to minimize its free energy. In the limiting
case of a poor solvent, called a non-solvent, almost all the solvent molecules are excluded
from the polymer coil.

Flory and Huggins developed a mean-field theory, known as the Flory theory, to address the
problem of the equilibrium conformation of polymers in different solvent types. It is based on
the minimization of the free energy F with respect to enthalpy and entropy. Here I focus on
the case of good solvents such as the model used in our simulations, introduced in Ch. 5.

Assume a uniform distribution of monomers in a polymer of size R, neglecting all correlations.
The probability of a monomer being in the excluded volume of another is Nv/R3 and its
energy cost is of the order of kBT . The energetic contribution due to dispersive interactions
of all monomers is then:

Fint ≈ kBTv
N2

R3
. (3.104)

The contribution due the entropy loss is found from the energy needed to stretch an ideal
chain to size R (see Eq. (2.101) of Ref. [128]) and can be written as:

Fent ≈ kBT
R2

Nb2
(3.105)

The total free energy is the sum of these two parts and minimizing it with respect to R, the
characteristic size of a polymer in a good solvent RF is obtained:

RF ≈ v1/5b2/5N3/5. (3.106)

Calculating the swelling ratio RF/R0 ∼ (vN1/2/b3)1/5 reveals that a real polymer is larger than
an ideal chain containing the same number of monomers. In the general case of d-dimensions,
the total free energy is Ftot ∝ vN2/Rd +R2/(Nb2) and the generalized Flory exponent can be
obtained by

∂Ftot

∂R
∝ −dvN

2

Rd+1
+

2R

Nb2
= 0 ⇒ R ∝ N

3
d+2 ,

to be ν = 3/(d+ 2).

As shown in the previous subsection, the Flory exponent ν for a linear ideal chain (or a
polymer in a Theta solvent) has the value ν = 1/2. The Flory approximation ν = 3/5 for a
swollen linear chain in a good solvent in 3D has been proven to be a very good approximation by
experiments [131], numerical calculations [129, 132], and more sophisticated theories [130, 133].

3.6.3 Polymer Brushes

Surfaces grafted with polymers are found in a wide variety of biological as well as artificial
systems. When the grafting density σ is high enough so that the chains partially overlap, they
stretch in order to minimize their free energy and form a brush. Depending on the geometry
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H

ξ

Figure 3.12: 2D schematic view of a polymer Alexander-de Gennes brush. The dashed circles visu-
alize the de Gennes blobs.

of the substrate (e.g. planar, spherical or cylindrical), the brush can have different forms. The
case of a flat grafting surface is known as the Alexander-de Gennes brush where it is assumed
that all chains have a height H which is also then the height of the layer. To find H, the
chains are considered as a stretched array of “blobs” of size ξ, as shown in Fig. 3.12. ξ ≈ 1/

√
σ

is the distance between the grafting points and defines the correlation length in the layer. The
chain segment within the correlation volume behaves like a self-avoiding random walk and the
number of monomers g in each blob can be determined via the SAW statistics to be:

g ≈
(
ξ

b

)1/ν

≈ σ−1/2νb−1/ν . (3.107)

The number of blobs in each chain is then simply N/g ≈ Nσ1/2νb1/ν and the height of the
brush reads:

H ≈ ξ
N

g
≈ Nσ(1−ν)/2νb1/ν . (3.108)

Similar arguments can be applied to other brush geometries assuming step-like polymer seg-
ments distribution, having a uniform density within the layer and dropping to zero abruptly
at a well-defined height, as done in the Alexander-de Gennes brush model. This assumption is
an oversimplification not met in real systems where the monomer distribution is continuous.
Duval et al. [134, 135] were the first to relax this restriction in the context of electrokinetics by
considering a gradual change in the diffuse layer properties. The impact of the inhomogeneous
distribution adopted on the electrokinetic behavior of such systems was further investigated
by Duval and Ohshima [136]. They found that the electrokinetic properties of polymer-grafted
particles are greatly affected by the inhomogeneity of the layer, for example minima and max-
ima in the electrophoretic mobility disappears by increasing the heterogeneity of the brush.
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4 Electrophoretic Mobility Reversal of
Bare Colloids in Multivalent Salt
Solutions

The topic of electrophoresis dates back as far as the late 19th century [137]. The earnest
study of the electrophoresis of colloidal particles began in the early 1900s [137, 138] and
has developed significantly since then. Extensive experimental, numerical, and theoretical
studies had been performed [24, 25, 111, 112, 139, 140], and many related phenomena are
now quite well understood, but not all of them. In recent years some experiments have
demonstrated phenomena which cannot be explained by the common theories such as the
standard electrokinetic model (SEM) [24, 25] (introduced in subsection 3.5.2). For example,
charge inversion, and the closely related phenomenon of mobility reversal in the presence of
multivalent salt observed in many experiments [4, 5, 20–23] are beyond the capacity of the
mean-field approach employed by these theories. In charge inversion, more counterions are
attracted to the surface than necessary to neutralize the particle and consequently its effective
charge [141, 142] becomes opposite in sign to that of the surface charge, which can, in turn,
lead to mobility reversal. Most theoretical studies attribute charge inversion to the ion-ion
correlations at high concentrations of multivalent salt [143–153], an important feature absent
in PB and other mean-field theories. Comprehensive discussions on this view can be found
in refs [154, 155]. Another view claims specific ion adsorption of the counterions in the Stern
layer to the surface to be responsible for charge inversion [5, 156–158]. In this context, specific
means of non-Coulombic origin. Most works on this subject recognize only one of these effects
as the cause of the charge inversion and the resulting mobility reversal. In this part of the
thesis it is shown that in some cases neither the Coulombic correlations, nor the non-Coulombic
specific adsorption singly explains this counter-intuitive phenomenon.

Here, the interesting and counter-intuitive phenomena of mobility reversal is investigated
and some experimental results are explained using a new technique which employs both MD
simulations and the SEM. There have been a wide variety of computational models developed
for the electrophoretic mobility of colloids [61, 159], however these methods have certain
drawbacks. Several studies have looked at the mobility of colloids by modeling the colloid,
as well as the ions, explicitly via charged spheres coupled to a lattice-Boltzmann (LB) model
(see subsection 3.3.1) for the fluid [160–162]. This approach has the disadvantage that it
is limited to colloids of a few tens of nanometers, which is much smaller than the colloids
used in experiments that are typically on the order of micrometers. Other approaches such
as [163–166] are able to access much larger length scales by considering the ions on a mean-
field level. This essentially produces the same results as one gets by solving the EK equations
using PB to describe the electrostatics, ignoring the ion-ion correlations which are crucial
for multivalent salt. We circumvents these deficiencies by employing MD simulations of the
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restricted primitive model (described in detail in Sec. 4.1) to examine the ionic structure
and to calculate the ζ−potential. The electrophoretic mobility is then computed by using
the obtained ζ−potential as an input for the numerical solver available for the SEM. In this
manner, we take into account the ion correlations explicitly and produce a modified boundary
condition for the mean-field treatment in the sense of Perel and Shklovskii [167]. We apply our
method to two different colloids having different radii and surface charge densities studied in
two distinct experiments [4, 5] in the presence of mono-, di-, and trivalent salt. Our simulations
show that for these systems both the Coulombic correlations and the specific adsorptions are
responsible for the mobility reversal observed in the trivalent case.

Here, I first introduce the simulation method used for this purpose in Sec. 4.1, and then discuss
the results in Sec. 4.2. It needs to be noted that most of the content in this chapter is directly
taken from the publication “Langmuir, 2014, 30(7), pp 1758− 1767” [3].

4.1 Simulation Method

Figure 4.1: An MD snapshot of the bare colloid in the presence of cs = 0.003 M of divalent salt.
The colloid (red surface at the bottom) is modelled as a flat homogeneously charged
plane with surface charge density σs = −5.64 µC/cm2 ' −0.35 e/nm2. The positive and
negative ions are represented via blue and red spheres, respectively.

We perform MD simulations, using the Extensible Simulation Package for Research on Soft
matter (ESPResSo) package [168], to calculate the ζ of a single colloid and use numerical
solutions of the SEM (see subsection 3.5.2) to obtain the corresponding electrophoretic mo-
bility. The colloidal particles investigated are quite large (with radii about one micrometer)
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compared to the surrounding salt ions (of Angstrom size), having radii about 104 times larger.
Direct modeling of the colloid as a sphere in the presence of explicit ions would thus require
an unreasonably large number of counterions, even at a coarse grained level. As shown in the
next section, the large size of the colloid assures that the Debye length is smaller than the
particle size (κR � 1) over the whole salt concentration rage considered here. As discussed
in 3.5.1, this is the Helmholtz-Smoluchowski limit in which the geometry is essentially planar
and the colloid can be safely modeled as a uniformly-charged flat plate as shown in Fig. 4.1.
This model has the limitation that the mobility cannot be obtained directly by applying an
electric field and measuring the particle velocity, or the equivalent electroosmotic flow veloc-
ity. However, we take advantage of the fact that in the limit of low applied field strength, the
distortion of the ionic cloud due to the field can be ignored. This means that the ζ calculated
from the ion distribution in equilibrium can be assumed to be equal to that of a system subject
to a weak applied field, allowing us to perform equilibrium simulations, i.e., with no applied
electric field. Using this potential as an input in the SEM numerical solver, we obtain the
corresponding electrophoretic mobility. In this manner we take into account ion correlations,
crucial in the case of multivalent salt, which are ignored in the PB approach used in the SEM.

We make use of the restricted primitive model, where ions are treated explicitly as charged
spheres all having the same size, as shown in Fig. 4.1, and the solvent is considered as a
homogeneous dielectric medium having the electric permittivity of water at room temperature.
This method is called “primitive” because it ignores the structural details of the fluid, and
“restricted” since all ion species have the same size. We simulate mono-, di-, and trivalent salts,
with the coions having valency −1 and the counterions valency z = 1, 2 or 3, respectively.
The system is simulated at different salt ionic strengths, I = 1

2

∑N
i=1 ciz

2
i , where ci is the

molar concentration of the ith salt species and zi is its valency. In order to find the molar
concentrations corresponding to the ionic strength, the relation ccoions = zccounterion is used.
Charge neutrality of the whole system is maintained by inserting additional counterions of
valency z to neutralize the charged plate, whose charge density is taken from the experiments.
Periodic boundary conditions are applied parallel to the charged plate and the system is
confined in the perpendicular direction. The electrostatic interactions are calculated taking
into account the contribution from all periodic copies in the x−y plane using the Electrostatic
Layer Correction (ELC) method combined with the particle-particle-particle mesh (P3M)
algorithm (see subsections 3.4.2 and 3.4.1 for introductions to these methods). The size of the
MD box is at least five Debye lengths in the non-periodic direction. In the periodic directions,
the minimum of the box size is one Debye length and it is chosen such that the ionic strength
is not strongly changed due to the wall counterions.

In addition to the electrostatic interactions, the ions interact via a Weeks-Chandler-Anderson
(WCA) potential, introduced in subsection 3.4.3 of chapter 3, with each other as well as with
the wall. The unit system is defined by σlj = 3.5 Å, εlj =kBT = εMD and putting the mass
of all particles to m = 1m0, corresponding to the mass of an ion (∼ 10−26 kg). roff = 0 for
ion-ion as well as ion-wall interaction and the ion-wall interaction strength is εcol = 4 kBT .
The simulations where we refer to the full Lennard-Jones (LJ) interaction (introduced in
subsection 3.4.3) also include an attractive part by setting rcut = 2.5σlj and in this case
εcol = 4 kBT for the trivalent La+3 counterions. The Bjerrum length takes on the value
lB = 2σlj = 7 Å which corresponds to water at room temperature. Simulations are performed
in the canonical NVT ensemble, using a Langevin thermostat (see subsection 3.3.1) to keep
the temperature constant. The time step is ∆t = 0.01τ where τ is the unit of time derived
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4 Electrophoretic Mobility Reversal of Bare Colloids in Multivalent Salt Solutions

from the length, mass and energy units as τ = σlj

√
m/εlj. Each system is first equilibrated

for at least 106 MD steps, assuring that the ion distribution does not change with time, before
running eight production simulations with different random number generator seeds for 107

MD steps each.
We extract the average ion density and the total integrated charge density as a function of
the distance from the wall from the MD simulation data. The reduced electric potential
(Φ = eΨ/kBT , Ψ being the electric potential) is then calculated via double integration of the
latter

d2Φ

dz2
= −ρ/ε ⇒ Φ(z) = −1

ε

z∫
0

z′∫
0

ρ(z
′′
) dz′′ dz′ (4.1)

As the SEM requires ζ as an input, we need to first define the shear plane. Due to the absence
of explicit water and drag forces, it is not possible to determine directly the position of the
shear plane as the location of the no-slip boundary condition. However, the dependence of the
no-slip boundary condition as a function of several parameters such as surface corrugation,
shear rate, or contact angle has been investigated in many studies (see, e.g., [169–172]), also
in the presence of charged surfaces [173]. For hydrophilic surfaces one can safely approximate
this boundary with the position of the shear plane [173]. This is applicable to the polystyrene
sulfonate colloids which we investigate here since they are hydrophilic due to the presence of
sulfonate groups. Note that while in the presence of explicit solvent, the density profile of
ions shows marked layering compared to the coarse-grained case, the electrostatic potentials
computed in the two cases are very close to each other [173]. Based on the aforementioned
studies, a distance slightly larger than one ion diameter from the surface, that encompasses the
majority of ions in contact with the surface, should be a good approximation of the position
of the slip plane. In our case we have chosen a shear plane at distance zsp = 1.5σlj from the
wall, corresponding to 5.25 Å. Note that for our interaction definitions, the distance of the
closest approach of the center of an ion of diameter σlj to the wall is approximately σlj. Thus,
at zsp = 1.5σlj we take into calculation the ions in the first layer. As shown in the next section,
slight changes in the location of the slip plane do not significantly alter the results.
It is worth noting here that despite the fact that the SEM is based on a mean-field theory (PB),
we do take the ion correlations into account by obtaining the ζ-potentials from simulations
with explicit finite-sized ions. These correlations are crucial in systems with highly charged
surfaces and/or multivalent salt.

4.2 Results and Discussions

In this section, the results of the electrophoretic mobility for large colloids with different
charge densities, obtained from simulations performed using the method discussed in the
previous section, are compared to two different sets of experimental results [4, 5, 174, 175] that
have been obtained with very different techniques, but with exactly the same salt molecular
composition.
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4.2.1 Simulations Vs. Experiments of Semenov et al.

Semenov et al. [4, 174, 175] measured the electrophoretic mobility of a single colloid in so-
lutions of varying salt concentration and valency (KCl, CaCl2 and LaCl3) using low applied
electric fields to ensure the validity of the linear regime. They use a technique based on optical
tweezers to measure the electrophoretic mobility of a single colloid. The partially sulfonated
polystyrene latex colloids used in their experiments have a diameter of 2.23 µm and a sur-
face charge density of σs = −0.31 µC/cm2 ' −0.02 e/nm2, and are considered to have both
hydroxyl and carboxyl surface groups. These colloids are much larger than the experimen-
tal Debye lengths, and κR is notably larger than one. For the investigated systems we have
values 11.6 < κR < 2800, and therefore the planar approximation should be reasonable over
the whole range of salt concentration. To test the validity of this assumption we calculate the
ζ−potentials in the monovalent salt case from numerical results of the nonlinear PB in both
spherical and planar geometries. Figure 4.2 shows the reduced ζ−potentials as a function
of ionic strength. The results for the spherical geometry using different radii are compared
with the planar result. As can be seen, the difference between the two geometries decreases
by increasing the ionic strength or the radius. For R > 400 nm, the two geometries are al-
most identical over the whole range of ionic strengths. This validates the use of the planar
geometry for the mean-field case without an applied electric field. The convective flow and
the ionic electric current might change the ion distribution in non-mean-field systems out of
equilibrium. We are not able to investigate these changes directly in the simulations which are
performed in equilibrium. However, as discussed in description of the SEM in subsection 3.5.2
of chapter 3, all these effects are actually taken into account by the SEM numerical solver. On
the other hand, by inserting the ζ−potential obtained from the simulations, we include the
important correlations, which are strongest within the shear plane, explicitly and the SEM
equations are solved beyond this plane, where the correlations are much weaker. Based on
this and the excellent agreement of our results with the experimental data, we believe that
the use of the planar geometry is also valid for the non-mean-field cases out of equilibrium.
Although, strictly speaking, we have no analytical proof for the validity of this approximation
in the non-equilibrium case.

In Fig. 4.3, the experimental electrophoretic mobilities as a function of ionic strength are
compared to simulation results for the three different valencies. The reduced mobility reported
in this work is defined as µred = 3ηeµ/(2εkBT ). It should be noted here that we use only
experimentally measured parameters such as the surface charge density and salt concentration
in our simulations and there are no fitting parameters. An exception is in the full LJ trivalent
case where we add a specific adsorption potential of 4 kBT between the counterions and the
surface, as discussed in detail further in this section.

In the monovalent case, our simulation results (blue circles) are in excellent agreement with
the numerical PB curves, where the ζ−potentials are obtained from numerical solution to the
nonlinear spherical or planar PB equation and converted to electrophoretic mobilities using the
O’Brien’s formula, Eq. 3.74. These numerical results are shown respectively by the solid blue
and dotted red lines in Fig. 4.3. Also shown are the mobilities computed from the simulations
ζ-potentials via the Helmholtz-Smoluchowski (HS) equation, Eq. 3.72 (solid black lines). The
HS calculations match the simulations only at large ionic strengths where the ζ−potential is
low. As discussed in subsection 3.5.1, it is known that the HS formulation is not appropriate
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Figure 4.2: Numerically calculated reduced ζ, ζred = eζ/(kBT ), as a function of monovalent salt
ionic strength I and the corresponding Debye length λD. The solutions for the spherical
geometry with surface charge density σs = −0.31 µC/cm2 ' −0.02 e/nm2 for different
radii R are compared to the solution for the planar geometry. Figure taken from [3].
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Figure 4.3: Reduced mobility µred of a latex colloid with surface charge density σs = −0.31 µC/cm2 '
−0.02 e/nm2 and diameter 2.23 µm as a function of salt ionic strength I, and the cor-
responding Debye length λD, for mono-, di-, and trivalent salt. Simulation and exper-
imental results (taken from [4]) are represented via the blue circles and black squares,
respectively. Numerical calculations using the nonlinear spherical or planar PB, are
shown as red dotted and blue solid lines, respectively. The black solid lines represent
the Helmholtz-Smoluchowski equation (Eq. 3.72) using the ζ-potentials obtained from
simulations.
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for high ζ-potentials (|ζ| & 2 kBT/e ' 50 mV ) since it ignores the surface conductivity and
relaxation effects of the EDL. Fig. 4.4 shows the corresponding ζred-potentials and it is seen
that it increases monotonically with decreasing ionic strength and ζred ' −3 at I = 0.0001 M
in the monovalent case. The O’Brien approximative expression, on the other hand, takes these
effects into account to the first order and the perfect agreement between the simulations and
the numerical results in Fig. 4.3, shows that for this set of parameters the ion correlations
are negligible. Thus, they can be ignored and the mean-field treatment matches the explicit
ion simulations excellently. Furthermore, the numerical results for spherical nonlinear PB is
almost identical to that of the planar case, certifying once again the validity of the planar
approximation. The results show a mobility maximum of a similar height at roughly the same
ionic strength (I = 5×10−5 M) as in the experiment and semiquantitative agreement with the
experiment is achieved for all values of the ionic strength. The discrepancy between simulation
and experiment increases at higher ionic strengths. As discussed later in this section, part of
this might be due to systematic errors in the experimental determination of the mobilities.
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Figure 4.4: Reduced ζ-potential ζred as a function of ionic strength I obtained from MD simulations.
The position of the shear plane is zsp = 1.5σlj and data corresponds to the MD simulation
electrophoretic mobilities depicted by blue circles in Fig. 4.3.

In the divalent case, shown in the middle panel of Fig. 4.3, we see a semiquantitative agreement
between simulation and experiment. Simulation data perfectly matches the results obtained
via the numerical solution to the nonlinear planar PB using the O’Brien formula to convert ζ
to µ. This indicates that the ion correlations are weak even for divalent ions at this surface
charge density. The numerical solutions show a maximum at ionic strength I ∼ 10−4 M.
The agreement of the simulation results with the HS calculations, which use the HS equation
(Eq. 3.72) to convert the ζ-potentials obtained from simulation to mobilities, is however lim-
ited to high ionic strengths, i.e. small ζ. It is seen in Fig. 4.4 that |ζred| > 2 for I < 0.0001 M
in the divalent case, which explains the discrepancies between HS and simulation mobilities
at lower ionic strengths as discussed above.

The experimentally observed mobility reversal in the trivalent case could not be reproduced
and the data shown in Fig. 4.3 are thus not even qualitatively correct. The electrostatic in-
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teractions alone seem to be not strong enough to attract sufficient counterions to the charged
surface to produce the experimentally observed mobility reversal. The relative unimportance
of the electrostatic correlations is corroborated by the good agreement between simulation
and the PB+O’Brien results. The disagreement of the former with PB+HS results at low
ionic strength is the consequence of ignoring the surface conductivity effect in HS. As in the
divalent case, the PB+O’Brien curve exhibits a maximum around I = 10−4 M.

The strong coupling theory of Netz et al. [176] also supports the conclusion that the charge
inversion necessary for mobility reversal observed here cannot be caused by pure electrostatic
interactions. This theory states that the dimensionless Coulomb coupling parameter Ξ =
2πσsl

2
Bz

3 needs to be larger than about 10 to produce charge inversion purely by electrostatic
effects. For the most strongly coupled system, the trivalent La3+ salt system, we have only
Ξ = 1.7, which is well below the threshold for charge inversion, and consequently mobility
reversal through electrostatic interactions alone does not occur. This also explains why the
PB curves fit the simulation results so remarkably well.
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Figure 4.5: Reduced mobility µred as a function of ionic strength I for mono-, di-, and trivalent
salts. The results are obtained by numerically solving the nonlinear planar PB with and
without the specific adsorption between the counterions and the surface (blue lines and
red symbols respectively). The ζ-potential is converted to µ using Eq. 3.74. The surface
charge density is σs = −0.31 µC/cm2 ' −0.02 e/nm2 as the colloids used in Semenov et
al.’s experiments [4].

As mentioned in the introduction to this chapter, specific adsorption is considered by some
authors to be responsible for charge inversion. To test if it also plays a role here, we replaced
the WCA potential between the counterions and the charged surface with a full LJ interaction,
described in Sec. 4.1, implying a specific adsorption of the La3+ ions on the latex colloid. We
used interaction strengths εcol = 2 kBT , and εcol = 4 kBT for a system at the experimental ionic
strength for which the mobility is zero. The two strengths resulted in µred = −0.31 and µred =
0.12, respectively. Therefore, we chose εcol = 4 kBT and all the reported results with full LJ use
this value for the interaction strength. This is essentially a fitting parameter and is in line with
previous studies of colloidal electrophoresis, where a reasonable value for the energy of specific
adsorption was found to be a few kBT [156]. In Fig. 4.6, the potential distribution is shown for
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I= 0.6 M, both with and without the full LJ interaction. As can be seen ζ−potential reversal,
and consequently mobility reversal, does not occur in the absence of specific adsorption. The
effect of this additional attraction on the mobility for all three salt valencies is depicted
in Fig. 4.5. The specific adsorption between the counterions and the surface is also taken
into account in the nemerical calculations by including the full LJ interaction in the PB
equation. In the trivalent case, the simulations with the additional attraction (red circles)
match the experiments very good. Since the agreement between PB+O’Brien calculations
and simulations are perfect (see Fig. 4.3), we suffice to provide only numerical results in the
mono-, and divalent cases. It is seen that extra adsorption does not influence the mono-, and
divalent cases since the electrostatic interaction between the counterions and the surface is
weak and most of them are not close enough to enter the short-ranged LJ attraction part.
Therefore, if existing, the specific adsorption between K+ and Ca2+ cannot be observed here.
On the other hand, the full LJ PB calculations in the trivalent case are again in perfect
agreement with the simulations showing that the electrostatic correlations are very weak even
for higher valency.
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Figure 4.6: Reduced potential, ψred, as a function of the distance from the surface z for σs =
−0.31 µC/cm2 ' −0.02 e/nm2 and I = 0.6 M of trivalent salt with WCA or full LJ
interaction between the counterions and the charged surface (red dashed and blue solid
lines respectively). The position of the shear plane zsp is marked by the vertical solid
black line. Figure also used in [3].

It has been pointed out several times that using a discrete surface charge distribution in
simulations can increase the ionic correlations and lead to stronger attraction of the counterions
to the surface [177–180]. We found, however, that even the discreteness of the surface charge
does not induce a mobility reversal in this system. For this purpose, we simulated the system
at I = 0.026 M using 100 monovalent charges distributed on a surface of area A = 200×200σ2

lj.
The discrete charges are modeled as spheres of size 1σlj, interacting with all other ions via a
WCA potential with εcol = 4 kBT . Two different distributions were used; in the regular one,
the surface charges were fixed at on a square grid of lattice size 20σlj. In the second case, the
charges were disorderly distributed, having a minimum distance of 2σlj. The result is observed
in Fig. 4.7 where the total charge density is shown for the different discrete surface charge
distributions and compared to those obtained from the homogeneous case with and without
the full LJ interaction between the counterions and the wall. Overcharging occurs only in the
presence of the additional specific adsorption. The dicretization results in minimal differences
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Disordered discrete (WCA) Regular discrete (WCA) Continuous (WCA) Continuous (full LJ)
ζred -0.26 -0.28 -0.29 0.06
µred -0.38 -0.42 -0.43 0.1

Table 4.1: Reduced zeta-potential ζred and the corresponding reduced mobility µred values for an
interface with σs = −0.31 µC/cm2 ' −0.02 e/nm2 at I = 0.026 M of trivalent salt, using
different surface charge distribution models in the simulations. The non-electrostatic
interaction between the counterions and the interface is mentioned in parentheses. Data
used in [4] with the shear plane at zsp = 1.5σlj.

to the continuous counterpart, which are slightly larger in the case disorderd distribution. The
corresponding reduced ζ-potential and mobility values are listed in Table 4.1.
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Figure 4.7: Cumulative total surface charge density σtot as a function of the distance from the inter-
face obtained from simulations with σs = −0.31 µC/cm2 ' −0.02 e/nm2 at I = 0.026 M
of trivalent salt for different surface charge distributions on the interface. In addition to
electrostatic interactions, there is a WCA potential acting between the counterions and
the charged surface in the discrete models between. The corresponding values of ζred and
µred are listed in Table 4.1. Data taken from [4].

The simulations results including the attractive part of the LJ interaction between the coun-
terions and the wall exhibit very good quantitative agreement with the experiment. We also
show the reduced mobility curve calculated via the nonlinear planar PB with the additional
full LJ interaction in Fig. 4.3. Again, the numerical curve matches our simulation results very
well, indicating the weakness of the electrostatic correlations.

In Fig. 4.8 the simulation results for ion densities and the reduced potential are compared to
the numerical solutions of the nonlinear planar PB for mono-, di-, and trivalent salt (with and
without the specific adsorption) at the specified ionic strengths. The PB equations are modified
to include a WCA interaction between the ions and the charged surface. In the trivalent
cases where specific adsorption is considered, the interaction between the counterions and the
surface is replaced by a full LJ potential with εcol = 4 kBT . It is seen that in the monovalent
case, where ion correlations are negligible, simulation and numerical results match each other
perfectly. In the divalent case small deviations are observed due to weak ion correlations, but
the overall agreement between is very good. Deviations are observed for the trivalent salt
with WCA interaction, due to the ion correlations absent in PB. These correlation effects are
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not very strong and overwhelmed by the attraction between the counterions and the charged
plane when full LJ interaction is used. Only when including the specific ion interaction does
the potential inverse sign.

The existence of this specific interaction between La+3 and polystyrene latex has also been
reported by several other authors [5, 157, 158, 181]. Its origin is suspected to be the hydrolysis
of lanthanum; it is known that lanthanum ions hydrolyze around pH' 6 [182, 183] which leads
to specific adsorption. Given the fact that despite the explicit presence of ion correlations in
our simulations no mobility reversal occurs at the experimentally observed ionic strength
without modeling the specific adsorption, we strongly believe that the latter is the key to the
reversal in this system. The coarse-grained nature of our model and the absence of explicit
water makes it impossible for us to investigate directly the origin of this adsorption and more
detailed simulations would be required for this purpose. It is interesting to note that Martín-
Molina et al. [22] reported mobility reversal of sulfonated polystyrene latex in the presence of
La3+ ions at pH = 5.8. Using ions correlation theories to explain their results without taking
into account specific adsorption, they are able to reproduce the mobility reversal at the same
salt concentration as in the experiment. However, the overall agreement between theory and
experiment is otherwise poor which might be due to the usage of the Helmholtz-Smoluchowski
equation for converting their results to mobilities. The colloids they study possess a much
higher charge density (σs = −11.5 µC/cm2 ' −0.72 e/nm2) which increases the electrostatic
correlations significantly. The Coulomb parameter in their case is Ξ = 62.

Finally, as mentioned in the Sec. 4.1, slight changes in the position of the shear plane do not
affect the results significantly. This is shown in Fig. 4.9 where the results obtained using two
different slip plane positions (zsp = 1.025σlj and zsp = 1.5σlj) are compared with each other.
It is seen that the two cases are almost indistinguishable.
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Figure 4.8: Number density of positive and negative ions (ρ+ and ρ− respectively) and reduced
potential ψred as a function of the distance z from a surface with surface charge density
σs = −0.31 µC/cm2 ' −0.02 e/nm2 for mono-, di-, and trivalent salt at the stated ionic
strengths. The simulation results (red) are compared to the numerical results of planar
PB. The non-electrostatic interaction between the counterions and the charged surface is
maintained via a WCA potential (Eq. 3.18) except in the furthest right column where a
full LJ with εcol = 4 kBT acts between the trivalent counterions and the interface, both
in the simulations and the PB approach.
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Figure 4.9: Reduced electrophoretic mobility µred as a function of ionic strength I for monovalent
(KCl), divalent (CaCl2) and trivalent (LaCl3) salt solutions for latex colloids of diameter
2.23 µm and surface charge density −0.31 µC/cm2 ' −0.02 e/nm2. The results are
obtained from MD simulations, in the absence of an applied field, combined with the
SEM. Results obtained with WCA interaction are represented by blue circles (full circles
for zsp = 1.025σlj and empty ones for zsp = 1.5σlj) whereas the results using full LJ
interaction in the trivalent case is shown via red circles (full circles for zsp = 1.025σlj and
empty ones for zsp = 1.5σlj). Figure taken from [3].

4.2.2 Simulations Vs. Experiments of Elimelech et al.

Elimelech et al. [5] have also performed experiments where they measure electrophoretic mo-
bilities of latex colloids in mono-, di- and trivalent salt (KCl, CaCl2 and LaCl3, respectively) as
a function of ionic strength using a Mark II microelectrophoresis apparatus. We compare our
simulation results to their experimental data for a colloid of diameter 0.753 µm and surface
charge density σs = −5.64 µC/cm2 ' −0.35 e/nm2. Due to the large size of the colloid in com-
parison to the Debye length in the considered range of salt concentrations, 12 < κR < 391, the
planar geometry inherent in our simulation technique is also appropriate for this system. This
assumption is verified by comparing numerical results for the planar case with that of spheres
of different radii having the same surface charge density as illustrated in Fig. 4.10. Here, the
planar geometry is an acceptable approximation even for the smallest sphere (R = 5 nm) at
low salt concentrations. For R > 20 nm the planar and spherical results are almost identical.
The reason why in this case the planar geometry becomes applicable for smaller spherical par-
ticles in comparison to the previous case shown in Fig. 4.2, is the higher surface charge density
of the particle. As the counterion densities in Fig. 4.11 show, the surface with higher charge
density attracts more counterions to the close vicinity of the surface where the geometry can
be considered as planar. This implies that κR is not the only criterion for the validity of this
approximation. At low surface charge densities where ψred � 1, Eq. 3.44 can be linearized
and the Debye-Hückel limit applies in which the scaling of the potential distributions in the
spherical and planar geometry differ by a factor of 1/r. This is not the case at high surface
charge densities, i.e., high surface potentials. The large accumulation of counterions close to
the interface causes the nonlinear part of the PBE to dominate, reducing the difference be-

83



4 Electrophoretic Mobility Reversal of Bare Colloids in Multivalent Salt Solutions

tween the planar and spherical geometries. In Fig. 4.11, the potentials for both the spherical
and planar cases are also compared for the low and high surface charge densities mentioned
above.
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Figure 4.10: Numerically calculated reduced ζ−potentials, ζred = eζ/(kBT ), as a function of mono-
valent salt ionic strength I and the corresponding Debye length λD. The solutions for
the spherical geometry with surface charge density σs = −5.64 µC/cm2 ' −0.35 e/nm2

for different radii R are compared to the solution for the planar geometry.
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Figure 4.12: Reduced mobility µred of a latex colloid with surface charge density σs =
−5.64 µC/cm2 ' −0.35 e/nm2 and diameter 0.753 µm as a function of salt ionic
strength I, and the corresponding Debye length λD, for mono-, di-, and trivalent salt.
Simulation and experimental results (taken from [5]) are represented via the blue circles
and black squares, respectively. Numerical calculations using the nonlinear spherical or
planar PB, are shown as red dotted and blue solid lines, respectively. The black solid
lines represent the Helmholtz-Smoluchowski equation (Eq. 3.72) using the ζ-potentials
obtained from simulations.

The mobility results are shown in Fig. 4.12. For the monovalent case there is a fairly good
qualitative agreement between the simulation results and the experiments of Elimelech et al.
Importantly, the simulations reproduce the peak in the mobility at roughly the same value
of the ionic strength as the experimental data. This peak is shifted towards higher ionic
strengths, about 100 times higher compared to the data from Semenov et al. (Fig. 4.3). Given
that the colloids in this case are about three times smaller, this means that the peak occurs
not only at higher ionic strengths, but also at about three times larger κR. This shift is due
to the higher charge density of the colloid and in line with the findings of Antonietti and
Vorweg [184]. Calculating the ζ−potentials from the solution to the nonlinear planar and
spherical PB, and using the O’Brien formula, Eq. 3.74 to convert them to mobilities, we again
find superb agreement between the two geometries. These numerical curves are also in good
agreement with the simulation results except for the two points of lowest salt concentration.
The deviation seems to increase with decreasing ionic strength which we believe is due to the
increased ionic correlations between ions very close to the colloid that are taken into account
in our simulations, but ignored in the PB theory. It is known that mean-field theory is only
exact in the weak coupling regime, Ξ � 1 but it breaks down in the strong coupling limit,
when Ξ � 1 and the Gouy-Chapman length, lGC = 1/(2πzσslB), κlGC < 1. Since here
lGC ' 6.45 Å, hence 0.02 < κlGC < 0.6, and Ξ = 1.13 some slight deviations from mean-field
theory are expected [185–187]. Using the HS equation, Eq. 3.72 to convert the ζ-potentials
obtained from simulations to µ (black solid line), the agreement with simulation is limited to
the highest ionic strengths where the ζ is relatively small. It is known that HS is only exact
for |ζ| . 2 kBT/e ' 50 mV and at higher ζ, i.e. lower ionic strengths, the neglect of relaxation
effects leads to large deviations. The corresponding reduced ζ-potentials shown in Fig. 4.13

86



4.2 Results and Discussions

reveal that in the monovalent case ζred exceeds this value for I < 0.1 M which is much larger
than it is in the case Semenov et al.’s system (see Fig. 4.4) due to the higher surface charge
density.
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Figure 4.13: Reduced ζ-potential ζred as a function of ionic strength I obtained from MD simula-
tions. The position of the shear plane is zsp = 1.5σlj and data corresponds to the MD
simulation electrophoretic mobilities depicted by blue circles in Fig. 4.12.

The divalent data in Fig. 4.12 also shows good agreement between our simulations and the
experimental results. In contrast to the previous experimental set (Fig. 4.3), the divalent
numerical calculations (blue solid curve) match the simulations only qualitatively. Most no-
tably at higher ionic strengths there is a systematic overestimation of the mobility. This is
the result of stronger ion correlations in this system due to the higher surface charge density
(more than 10 times higher than in the Semenov et al.’s experiments), which are not captured
by PB. It should be noted that the good agreement between simulation and numerical results
for low ionic strengths is partly due to the fact that the µ− ζ curves are non-monotonic and
show a maximum around this ζ−potential. More specifically, in the case of I = 0.003 M the
difference between the ζ−potential obtained from simulation and PB is about 25%, but the
nonlinearity of mobility as a function of ζ−potential results in smaller deviations in mobility,
in this case about 10%, see Fig. 4.14. The non-monotonicity of the mobility as a function
of ζ−potential is related to surface conductivity and relaxation effect. The excess charge in
the EDL can move in and out of the layer under the influence of the applied electric field,
creating an excess electric conduction referred to as the surface conduction [100]. As a re-
sult, the ionic cloud deforms and an electric field is generated in the opposite direction as
the applied field which slows down the particle. Furthermore, the surface conductivity results
in a concentration polarization in the bulk, which in turn affects the electrophoretic mobility
by establishing a chemiosmotic flow opposing the electroosmotic flow [188]. The effect of the
surface conductivity becomes considerable for large ζ (|ζred| & 2, say) and thin Debye layers,
which leads to the non-monotonicity of the µ− ζ.
This combination of colloidal diameter and surface charge density produces a maximum in
the mobility for the divalent case. Our simulation results reproduce this maximum at approx-
imately the same value of the ionic strength as seen in experiment. In Fig. 4.12 we get quite
accurate values for low ionic strengths while we systematically overestimate the experimental
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Figure 4.14: Reduced mobility µred as a function of the reduced ζ−potential ζred for a spherical
colloid of diameter 0.753 µm in I = 0.003 M of divalent salt calculated via the SEM nu-
merical solver. The dashed line corresponds to the ζ−potential obtained via numerically
solution of the nonlinear planar PB for surface charge density σs = −5.64 µC/cm2 '
−0.35 e/nm2. The dot-dashed line marks the ζ-potential obtained from equilibrium
MD simulations (i.e. no applied electric field) of a plane with the same charge density.
The non-monotonicity of the µ− ζ curve results in a mobility difference (∼ 10%) much
smaller than the corresponding ζ−potential difference (∼ 25%). Figure taken from [3].

mobility values at high ionic strengths. This systematic overestimation of the mobilities at
high ionic strength appears both in the mono- and divalent cases, and is in contrast to the
results in Fig. 4.3, where we overestimate the mobility at low ionic strengths and underes-
timate it at high ionic strengths. In the absence of a better explanation we speculate that
at least some of the discrepancy could be due to systematic errors of the experiments. The
agreement between the HS calculations (black solid line) and simulation breaks down at mod-
erate to low ionic strengths. This can be explained by the corresponding ζres data depicted
in Fig. 4.13 and noting that ζred > 2 for I < 0.02 M. The considerable effect of relaxation at
high ζ which is ignored by the HS equation leads to the observed discrepancies in the mobilities.

The trivalent simulation results in Fig. 4.12 show a strong resemblance to the previously
presented data for Semenov et al.’s system in Fig. 4.3. No mobility reversal is observed,
indicating that also for this system, the electrostatic correlations alone are not strong enough
to cause a mobility reversal. The discrepancy between the numerical calculations (the blue
solid line) and the simulation data is larger than it is in the divalent case due to stronger
correlations absent in the mean-field theory. As noted above, the good agreement between the
two results at low ionic strengths partly stems from the nonmonotonicity of µ with respect
to ζ as a result of surface condutivity and relaxation effects. The black curve, depicting the
mobilities computed from simulation ζ-potentials via HS equation (Eq. 3.74), again matches
the simulation only at high ionic strength. The corresponding ζred data shown in Fig. 4.13
are only slightly larger than 2 for the lowest ionic strength, but the stronger electrostatic
interactions of the trivalent ions cause the relaxation effect to be significant at smaller ζ-
potentials than in the mono- and divalent cases.

The effect of including the additional specific attraction as done in the case of Semenov et
al.’s system, is shown in Fig. 4.15. Remarkably, the same attractive interaction of 4 kBT be-
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Figure 4.15: Reduced mobility µred as a function of ionic strength I for mono-, di-, and trivalent
salts. The results are obtained by numerically solving the nonlinear planar PB with
and without the specific adsorption between the counterions and the surface (blue lines
and red symbols respectively). The ζ-potential is converted to µ using Eq. 3.74. The
surface charge density is σs = −5.64 µC/cm2 ' −0.35 e/nm2 as the colloids used in
Elimelech et al.’s experiments [5].

tween the counterions and the surface again yields an excellent agreement between simulation
(red circles) and the experimental data, suggesting that our added potential stems from an
underlying specific physical interaction for La3+. Including the full LJ interaction between
the counterions and the surface in the nonlinear planar PB (red asterisks), a mobility reversal
is obtained at I ∼ 0.3 M, about ten times higher than the ionic strength for which mobility
reversal is observed in the experiment. This is a consequence of ignoring the important ion
correlations in the mean-field theory which results in fewer counterions near the surface, and
thus higher ζ-potential. The PB results both with and without the LJ attraction show a
maximum in the mobility around I ∼ 10−3 M in the trivalent case. In the mono- and divalent
cases, we have again sufficed to numerical calculations to investigate the effect of the extra at-
traction between the counterions and the surface. This is justified by the excellent agreement
between simulation and PB+O’Brien for the monovalent, and the acceptable agreement for
divalent salt, see Fig. 4.12. The additional attraction seems to have a negligible influence on
the mobility for these valencies, rendering our ability to further hypothesizing its existence.

In order to assure that surface charge discreteness does not result in mobility reversal in
this system without the specific adsorption, we used two different types of discrete surface
charge distribution in the presence of 0.06 M of trivalent salt; regular and disordered. For
the first case, 484 monovalent charges were regularly distributed over a square grid of lattice
size of about 4.8σlj. In the second case, the same number of surface charges were disorderly
distributed over the surface with a minimum distance of 2σlj. In both cases, the surface
charges have a diameter of 1σlj and interact only via the WCA potential and electrostatic
interactions with the free ions. The area of the surface is chosen to be about 105 × 105σ2

lj,
giving rise to the experimental surface charge density. The integrated surface charge density
profile computed from the two discrete charge distributions are compared to the corresponding
results of continuous surface charge, both with and without the additional LJ attraction, in
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Disordered discrete (WCA) Regular discrete (WCA) Continuous (WCA) Continuous (full LJ)
ζred -0.28 -0.35 -0.38 0.55
µred -0.41 -0.51 -0.57 0.82

Table 4.2: Reduced zeta-potential ζred, and the corresponding reduced mobility µred values for an
interface with σs = −5.64 µC/cm2 ' −0.35 e/nm2 at I = 0.06 M of trivalent salt, using
different surface charge distribution models in the simulations. The non-electrostatic
interaction between the counterions and the interface is mentioned in parentheses. Data
used in [3].

Fig. 4.16. It is clearly seen that the discreteness of the surface charge distribution does not have
a significant impact on the results and the additional LJ attraction is indeed required in order
to reproduce the experimentally observed mobility reversal. The values of the ζ−potentials
and the corresponding electrophoretic mobilities are listed in Table 4.2.
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Figure 4.16: Cumulative total surface charge density σtot as a function of the distance to the interface
z obtained from simulations with σs = −5.64 µC/cm2 ' −0.35 e/nm2 at I = 0.06 M of
trivalent salt for different surface charge distributions on the interface. In addition to
electrostatic interactions, there is a WCA potential acting between the counterions and
the charged surface in the discrete models. The corresponding values of ζred and µred

are listed in Table 4.2. Data taken from [3].

The comparison between simulation results and numerical solution to the nonlinear planar PB
for ion densities and the reduced potential is shown in Fig. 4.17. As in the cases presented
in Fig. 4.8, the PB equation is modified to include a WCA interaction between the ions and
the charged surface. In the trivalent case, a full LJ potential with εcol = 4 kBT is set between
the counterions and the wall when specific adsorption is considered. The ionic correlations
are negligible in monovalent salt at I = 0.1 M and the simulation results match the PB
calculations perfectly. For divalent salt at, the effect of correlations is larger than it was
for Semenov et al.’s system (see Fig. 4.8) since the surface charge density is much higher.
This leads to some deviations between simulation and numerical results which become more
evident in the trivalent case. In contrast to the system investigated in the previous section,
here the deviations are not overwhelmed by the inclusion of the full LJ interaction between
the counterions and the surface due to the higher surface charge density. As discussed above,
the Coulombic correlations are much stronger for this system than in the case of Semenov et
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al., but still not strong enough to explain the observed mobility reversal alone.

The authors in [143] used hypernetted chain/mean-spherical approximation (HNC/MSA),
which includes electrostatic and excluded volume correlation effects, to fit the experimental
data of Elimelech et al. [5] for the trivalent salt. While being able to observe a mobility re-
versal, they obtain only qualitative agreement with the experimental results. The mobility
reversal predicted by their theory occurs at much higher salt concentrations compared to the
experiment. In fact, their results are very much comparable to our MD simulations in the
absence of the full LJ interaction. Extrapolating our WCA results to higher ionic strengths
would also produce a mobility reversal at an ionic strength greater than 1 M. This strongly
supports our argument that pure electrostatic correlations are not strong enough to cause
mobility reversal at the experimentally observed ionic strength in the system under study and
an additional specific adsorption term is required.

It is interesting to mention that the coupling parameter, in this case is Ξ = 30 and, as dis-
cussed before, electrostatic interactions can lead to overcharging for Ξ > 10. This might sound
contradictory, but as shown in Fig. 4.18, the system is overcharged at high ionic strengths,
yet the ζ−potential does not change sign, and thus no mobility reversal occurs. This shows
that although the reversal of the electrophoretic mobility is related to the overcharging of the
particle, overcharging does not always lead to mobility reversal. All-atom MD simulations
have shown similar behavior for DNA [189]. The electrophoretic mobility of the DNA reverses
at high concentrations of trivalent (spermidine3+) and quadrivalent (spermine4+) salt, whereas
charge inversion can occur at lower concentrations. For divalent salt (Mg2+), only charge in-
version of the DNA is observed. The mobility reversal of the DNA is demonstrated to be a
complex interplay of electrostatics and hydrodynamics; charge inversion is characterized by
the change of sign of the cumulative radial charge density, that is the sum over all ions within a
certain distance. It is clear that the whole charge of each ion contributes to the sum. Mobility
reversal, on the other hand, is due to the electro-osmotic flow generated by the counterions
which applies a shear force on the DNA. If this force is strong enough, the DNA will change
direction. Since only a fraction of the counterions’ momentum is transfered to the DNA, it
can happen that despite overcharging the mobility does not reverse.
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Figure 4.17: Number density of positive and negative ions (ρ+ and ρ− respectively) and reduced
potential ψred as a function of the distance z from a surface with surface charge density
σs = −5.64 µC/cm2 ' −0.35 e/nm2 for mono-, di-, and trivalent salt at the stated ionic
strength. The simulation results (red) are compared to the numerical results of planar
PB. The non-electrostatic interaction between the counterions and the charged surface
is maintained via a WCA potential (Eq. 3.18) except in the furthest right column where
a full LJ with εcol = 4 kBT acts between the trivalent counterions and the interface,
both in the simulations and the PB approach.
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Figure 4.18: (a) Cumulative total surface charge density σtot, and (b) reduced potential ψred as a
function of the distance from the surface z for σs = −5.64 µC/cm2 ' −0.35 e/nm2 and
trivalent salt of stated ionic strengths. The position of the shear plane is marked by the
dashed vertical line. The inset in (a) shows a close up. Data also used in [3].
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4.3 Summary

In this chapter, I presented in detail a novel method for studying the electrophoretic mobility
of colloids whose radii are much larger than the Debye length. The method represents a unique
approach to predicting the electrophoretic mobility of colloids in electrolytic solutions of dif-
ferent valencies for colloids with diameters from 100 nm up to the order of micrometers. While
this is the regime in which most experiments are conducted, most of the existing methods used
to model colloidal electrophoresis are incapable of capturing it. In the method presented here,
this problem is circumvented by taking advantage of the usability of the planar geometry in
such cases. First the ζ-potential of the colloids was calculated by means of equilibrium (i.e.,
no applied electric field) MD simulations of the restricted primitive model using a planar ge-
ometry. This ζ−potential was then used as an input into the SEM continuum description to
extract the corresponding mobility.

The electrophoretic mobility of large colloids (κR � 1) was computed in salt solutions of
varying valency and concentration. The results were compared to two independent sets of ex-
perimental results [4, 5, 174, 175] for latex colloids in mono- (KCl), di- (CaCl2), and trivalent
(LaCl3) salt and good agreement was found between our simulations and experimental data.
The results demonstrate the validity and usefulness of the planar approximation for studying
the electrophoretic behavior of colloids whose radii are much larger than the Debye length,
where modeling the whole colloid still remains far beyond what is possible using modern su-
percomputers. Furthermore, the good agreement between simulation results and experimental
data shows that the SEM can be used to obtain the electrophoretic mobility in the presence
of multivalent salt, given that the important ion correlations are taken into account when
calculating the ζ−potential.
It was further shown that in the trivalent cases considered here, electrostatic attraction alone
is not enough to reproduce the experimentally observed mobility reversal of latex colloids
in the presence of La3+ ions and an additional attractive LJ potential acting between the
counterions and the colloidal surface is needed. This further supports the existence of ion-
specific adsorption between La3+ ions and latex colloids which has also been suggested by
several other authors [5, 157, 181]. The effect of the additional attraction in the mono- and
divalent cases was investigated via numerical calculations and was found to be negligible in
both systems.

Furthermore, an example for the system with higher surface charge density and trivalent salt
was provided where the surface is overcharged by the counterions in its vicinity but no mobility
reversal occurs, revealing that overcharging does not always lead to mobility reversal.

Numerical solutions to the nonlinear PB equation were used to check the validity of the planar
approximation and also to compare mobility results obtained from numerically-calculated
ζ−potentials with simulations. For low surface charge densities, the effect of ion correlations
is negligible and only causes slight deviations in the case of trivalent salt. This is not the case
for high surface charge densities were ion correlations play an important role and cannot be
disregarded. The comparison between theory and simulation shows these effects clearly in ion
densities and potential profiles.
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Colloids in Monovalent Salt
Solutions

Electro-osmotic flow (EOF) plays a crucial role in the electrokinetic behavior of soft colloids,
introduced in subsection 3.5.3, where the charges on the polyelectrolytes contribute more to
the overall EOF than the surface charges whose EOF is screened by the polymer coating [6,
120, 122, 125, 190–193]. A very interesting and counterintuitive phenomenon observed in
electrophoresis, is the non-zero electrophoretic mobility (or non-zero EOF in case of stationary
objects) of net neutral objects [42, 190, 194–197]. Notably, in the field of induced-charge
electroosmosis (ICEO) electrodes bearing no net charge have been used in order to pump fluid
in micro- and nanofluidic devices [198]. Since the charges on the electrodes are induced there
is no net charge on the electrodes, which, if they are asymmetric, nevertheless generate a
net EOF. This effect has been shown to be enhanced by the production of structured three-
dimensional (3D) electrodes in which one section is elevated creating a “conveyor-belt” effect.
Similar phenomena are known for the case of polyelectrolyte-grafted surfaces; the coating
changes the electrokinetic properties of the surface and results in the electrophoretic movement
of a net-neutral object [190]. Grafted polymers are also often used as a means of controlling
the EOF to optimize the resolution by grafting either charged or uncharged polymers to the
surface of capillaries [199–201].

In this section, MD simulation results of the electrophoretic mobility of spherical soft colloids
are presented. Both net-neutral and charged soft colloids are considered and the effect of
charge and salt concentration on their mobility is investigated. The results are compared by
the numerical solutions to the modified electrokinetic equations presented in subsection 3.5.1,
and approximate analytic expressions. Also the validity of the theoretical predictions discussed
in subsection 3.5.4 is tested through simulations.

Most of the material of this section is directly taken from publications [190, 202].

5.1 Simulation Method

We perform coarse-grained MD simulations in the canonical (isothermal-isochoric) ensemble
(NVT) using the Extensible Simulation Package for Research on Soft matter (ESPResSo)
[168, 203]. The simulations are carried out in a periodic box of length L = 48σlj, where σlj is
the fundamental MD length scale. The application of periodic boundary conditions introduces
some finite size effects since both electrostatic and hydrodynamic interactions present in this
system are long-ranged and the image particles can interact with each other. But here due to
the existence of salt and the charge neutrality outside the Debye layer, these interactions are
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Figure 5.1: An MD snapshot of a net-neutral soft colloid at monovalent salt concentration cs = 0.1M.
Gray spheres represent the colloidal core, green beads are the neutral monomers, and the
yellow ones are the charged monomers. The positive and negative ions are depicted via
red and blue spheres, respectively. The inset shows a closeup of the colloidal core cut in
half with the (negatively charged) central bead in blue.
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screened on longer length scales. It has been shown that in electrophoresis, the far-field fluid
velocity decays as 1/L3 as opposed to the 1/L decay in systems not including charges [161, 204].
Therefore, as long as the sum of the Debye length and the hydrodynamic radius of the soft
colloid, RH, is smaller than L/2, the finite size effects are negligible. As will become clear
in the course of the discussions, for our parameters the finite size effects only play a role at
the lowest salt concentration considered. Even there, the existence of counterions reduces the
effect of finite box size.

The fundamental MD energy and length units are ε = kBT , σlj = 3.5 Å, respectively. The
fundamental MD mass unit m0 corresponds to the mass of an ion (∼ 10−26 kg) and all of
the ions and monomers are given a mass m = 1m0. τ is the fundamental MD unit of time
derived from the length, mass and energy units as τ = σlj

√
m0/ε. The system consists of a

spherical colloid grafted with polyelectrolytes and salt ions as seen in Fig. 5.1. All particles in
the simulation interact via the WCA potential, introduced in subsection 3.2.2. roff in Eq. 3.18
is set to 0 except for the central particle where roff = 3.0σlj which sets the radius of the colloid
to Rcol = 3σlj.

The colloidal core is simulated with the raspberry model [111, 160, 205, 206]. It consists
of a central particle and 113 neutral particles at a distance Rcol = 3σlj such that the whole
object resembles a raspberry, as shown in the inset of Fig. 5.1. By using the raspberry model,
as opposed to a single sphere with a large radius, we take into account the hydrodynamic
interactions as explained in detail later in this section. The surface beads also serve as grafting
points for the polymers. The colloidal core is rigid and uses the virtual sites algorithm in
ESPResSo. The raspberry has a mass m = 114m0 and a moment of inertia of 678m0σ

2
lj

corresponding to a hollow sphere. Making the colloidal core rigid allows for larger time steps
compared to previous studies using the non-virtual raspberry model [111, 160, 205]. This is
due to the absence of the fast vibrations of the internal bonds within the raspberry. The
electric charge of the colloid Qcol is put on the raspberry’s central particle in the case of
charged colloids.

M polyelectrolytes of degree of polymerization N are grafted to the colloid’s surface beads
in such a way that they are almost uniformly distributed on the surface with a minimum
distance of 1.5σlj between the chains. In our simulations, we use N = 20 and M = 20. The
connectivity of the monomers both to each other and to the surface is maintained through
Finitely Extensible Non-linear elastic (FENE) bonds (see Eq. 3.19). In these simulations
k = 30ε/σ2

lj and R0 = 1.5σlj between monomers and k = 30ε/σ2
lj and R0 = 2.0σlj for the

grafting of the chains to the surface beads of the colloid. The SAW model introduced in
subsection 3.6.2 is used for the chains. Since only fully-repulsive potentials are used, the
solvent behaves rather as an athermal solvent where the excluded volume of the monomers is
temperature-independent.

A fraction λ of the monomers are given a charge +1 e. The total charge on the polymers
is λNM . Note that the monomers are chosen at random from the entire group of MN
monomers meaning that not all chains have the same number of charges. In order to have a
fair comparison between different parameters, we used the same configuration (i.e. the same
grafting points and charged monomers) for all systems with the same λ. For systems with
different polyelectrolyte charge densities, the configuration with the closest smaller λ is used as
the initial configuration and then the appropriate number of charges are added to the chains.
For example, when we already have a system with λ = 0.4 and want to simulate a system
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with λ = 0.5, we start with the polymer and charge configuration of the former system and
charge up neutral monomers until we have reached the desired charge density of λ = 0.5.

The salt ions are modeled explicitly as LJ spheres and Ni = csVNA ions with charge ±1 e
are added to simulate a system with molar concentration cs of monovalent salt. V = L3

is the volume of the simulation box. Electrostatic interactions are calculated via the P3M
algorithm [76, 77] (refer to subsection 3.4.1 for an introduction) with an absolute accuracy of
10−2ε/σlj in the forces and λB = 2σlj = 7 Å, which is the value for the Bjerrum length in water
at room temperature. An electric field of strength E = 0.1ε/(eσlj) is applied in the x-direction
as a constant force qiE on all particles where qi is the charge of the ith particle. The time
step is ∆t = 0.01τ .

The D3Q19 lattice-Boltzmann (LB) method [58, 207], explained in subsection 3.3.1, is used
as implemented in ESPResSo [208] with an LB-lattice constant a = 1σlj and time step τLB =
0.01τ . The LB fluid has a density ρ = 0.85m0/σ

3
lj and kinematic viscosity ν = 3σ2

lj/τ , yielding
a dynamic viscosity of η = 2.55m0/(σljτ) [209–211]. All particles are dissipatively coupled to
this background lattice-fluid by a bare coupling constant Γ0 = 20σljm0/τ using the scheme
proposed by Ahlrichs and Dünweg [58]. As explained in subsection 3.3.1, this yields an effective
mobility µeff of the beads (see Eq. 3.33):

µeff =
1

Γ
=

1

6πηRH0

=
1

Γ0

+
1

gηa
, (5.1)

where g = 25 is an empirical constant, Γ is the hydrodynamic friction coefficient, and RH0 is
the effective hydrodynamic radius. In our simulations µeff ' 0.065τ/m0 and RH0 ' 0.32σlj.
This results in an effective hydrodynamic core radius slightly larger than the one given, RH

col =
(3 + 0.32)σlj. An LB thermostat with temperature kBT = ε keeps the temperature constant
at room temperature.

Each system is simulated for 3 × 107 MD steps and found to be equilibrated after 5 × 106

steps, as the speed of the center of the mass of the colloid is constant. This speed is the drift
speed of the colloid, which is in turn used to calculate its electrophoretic mobility. Here, the
reduced mobility µred = 3µηe/(2εrsε0kBT ) is reported.

The simulation results are compared to the numerical solutions of the modified electrokinetic
equations, introduced in subsection 3.5.3, obtained via the program provided by Reghan Hill.
It solves the set of modified electrokinetic equations using a theory developed by Hill et
al. [7, 125] (see subsection 3.5.5) based on the standard electrokinetic model discussed in
subsection 3.5.2. The program requires several system parameters to calculate the mobility.
One of the main inputs is the monomer density distribution, for which the solver allows the
user to select from a number of functions. Here, an exponential function is chosen which fits
the simulation monomer densities best:

ρmono(r) = Ns exp[(r −Rcol)/δ], (5.2)

Ns is the monomer density at the surface, r is the characteristic distance from the center of
the colloid, Rcol is the colloidal core’s radius, and δ is the characteristic distance over which
the density decays. The position of the shear plane is set to be the sum of the radius of
the colloid and one ion diameter yielding Rcol = 14 Å. The radius of the spherical resistance
centers, i.e. the monomers, is chosen to be the effective Stoke’s radius of an ion as = aeff =
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1/(6πηµeff) = 1.12 Å, where µeff is the effective ion mobility calculated by Eq. 5.1. The value of
µeff is 2.535×10−7 m2/(V.s). Since the monomer density fits are only approximations, the total
number of the monomersNmono in the numerical calculations, which is computed by integrating
the fit function Eq. 5.2, is different from its value in the simulations. Thus, the charge fraction
on the polymers λ used in the calculations is chosen such that λNmono + Qcol = Qnet, where
Qnet is the net charge of the whole complex.

Taking advantage of the spherical symmetry, Gauss’ law is used to calculate the gradient of the
potential at the core’s surface (scaled with κkBT/e) from its surface charge density (scaled with
κεkBT/e) as ∂ψ0/∂r|r=κRcol

= −σs. The program also takes in the scaled electric field strength
E ′ = eE/κkBT which, setting E = 0.1kBT/(eσlj) to be equal to that in the simulations, gives
E ′ = 0.1/κσlj. The limiting ionic conductivity used to calculate the drag coefficient of the
ions is determined from the effective mobility to be Λ = eNAµeff ' 0.024 m2A/(Vmol−1). The
radial extent of the calculations is set to be Rmin = 5λD or Rmax = L/2 − Rcol depending on
which is larger.

5.2 A Toy Model for the Electrokinetics of
Polymer-Grafted surfaces

Before discussing the results, it is helpful to get a qualitative realization of the solution to the
modified electrokinetic equations, introduced in subsection 3.5.3, and the effect of the grafted
polymers on the EOF. A toy model is developed here for this purpose in which an approach
similar to the Green’s function method is used to solve Eq. 3.83 by placing a single test point
charge q(x) at different distances x from a surface. The charge distribution is given by a
delta-like function centered at position x = m:

q(x) =
1

σ
√

2π
exp

(
−(x−m)2

2σ2

)
, (5.3)

where σ is the standard deviation chosen to be σ = 0.05 in order to strongly localize the
distribution around position x = m, see Fig. 5.2.

In order to simplify the problem and gain some basic understanding of the underlying physics,
the Darcy-Brinkman equation is considered as one-dimensional (1D) and solved in the Carte-
sian coordinates. This is only strictly valid for the EOF above a flat polymer-grafted surface
or in the limit of thin Debye layer, however the qualitative behavior is the same as for e.g.
a spherical soft colloid. When an electric field is applied parallel to the surface, it exerts a
force on the test charge which in turn causes a fluid flow in that direction. The electrostatic
body force, the last term on the left-hand side of Eq. 3.83, is Exq(x). The pressure gradient
is considered to be zero and, as a further simplification, the polymer layer is modeled by a
step-like function as plotted in Fig. 5.3. In this picture, the monomer density is constant
within the layer and drops abruptly to zero outside. The following expression can then be
used to calculate the permeability of the polymer layer:

1

l2(x)
=

1

2l20

(
1− tanh

(
x−H
εd

))
, (5.4)
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Figure 5.2: The charge distribution function q(x) (see Eq. 5.3) with σ = 0.05 and m = 6, used to
solve Eq. 3.83 in 1D. This represents an approximation of the delta peak that corresponds
to a single point charge located at point x = 6.

where l0 is the Brinkman length at the surface, and H and εd are the height and the char-
acteristic decay length of the polymer layer, respectively. The smaller the decay length, the
more homogeneous the polymer distribution is. In this case study εd = 0.1, H = 5, and
l0 =

√
R2/M to imitate the parameters used in the simulations of the spherical soft colloid

presented here. M/(R2) is the grafting density with R = 3 being the radius and M = 20 the
number of grafted chains. The origin of the coordinate system is fixed on the surface and,

3 4 5 6 7 8

0

1

2

x

1/
l2
(x
)

Figure 5.3: The monomer distribution function 1/l2(x) (see Eq. 5.4) used to solve Eq. 3.83 in 1D
with l0 =

√
R2/M ' 0.67, H = 5, and εd = 0.1.

therefore, the particle velocity ~V = ~0. The velocity of the fluid in the bulk in the co-moving
frame of reference represents the negative of the substrate’s velocity in the lab frame. In
Fig. 5.4 the fluid flow is shown for different positions of the test point charge. Unlike the
plug flow typical for the EOF at bare surfaces, the results show a strong dependence of the
flow far from the surface on the position of the charge. When the charge is positioned within
the polymer layer, i.e. m < H, the fluid velocity increases from zero at the surface to a
maximum value at the position of the charge. It then decreases exponentially due to the drag
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5.3 Characterization of the Polymer Layer

force exerted on it by the polymers and reaches a constant value, the electro-osmotic speed,
outside the layer. On the other hand, when m > H, the velocity increases from zero at the
surface up to the position of the charge and then remains constant. The fluid speed depends
on the position of the charge; it increases with m both inside as well as outside the brush.
This shows that the screening effect decreases further away from the surface. The position of
the test charge in this simplified toy model can be interpreted as the thickness of the Debye
layer which, as will become clear below, has important and interesting consequences on the
electrophoretic mobility of the soft particle.
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Figure 5.4: Fluid flows u as a function of the distance to the center of the colloid x obtained from
solving Eq. 3.83 in 1D with a single point charge placed at different positions x = m.
The equation is solved in the stationary state, i.e., ∂~u/∂t = 0, with the origin of the
coordinate system on the center of the colloid, i.e., V = 0. Other parameters are as in
Figs. 5.3 and 5.2.

5.3 Characterization of the Polymer Layer

In this section, the typical structure of the polymers is examined as it plays an important
role in the electrokinetic behavior of the soft colloid. In most cases studied here, the grafted
polymers are charged and can therefore be polarized by the applied electric field. If this is
the case, the induced dipole of the layer will interact with the applied field and thus affect
the mobility of the particle. To verify that this does not occur for the parameters used in this
work, we analysed the simulated density of the charged monomers on the left and the right
side of the colloidal core. The applied electric field is from left to right. An example is shown
in Fig. 5.5 where is seen that the distribution of the charged monomers is fairly symmetric
and no significant polarization occurs. The same is also shown for all monomers (charged and
uncharged) in Fig. 5.6.

In the thin Debye layer limit, the scaling behavior of the effective electrophoretic mobility of a
composite is different in the mushroom or brush regime [120] as discussed in subsection 3.5.4.
In the mushroom regime the polymers are grafted far from each other and maintain their
equilibrium form, while in the brush regime the grafting density is high and the chains stretch
out due to steric interactions. The brush regime is characterized by strong screening of the
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Figure 5.5: Radial density distribution of the charged monomers ρch
mono(r) on the right (solid line)

and the left (dashed line) halves of the polyelectrolyte-grafted colloid with Qcol = −90 e
and λ = 0.1 (Qnet = −50 e) at cs = 0.001 M of monovalent salt. The applied electric
field is from left to right.
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Figure 5.6: Radial density distribution of monomers ρmono(r) on the right (solid line) and the left
(dashed line) halves of the polyelectrolyte-grafted colloid with Qcol = −90 e and λ = 0.1
(Qnet = −50 e) at cs = 0.001 M of monovalent salt. The applied electric field is from left
to right.
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Figure 5.7: Hydrodynamic radius RH, radius of gyration RG, and its component perpendicular to the
surface of the colloid R⊥G of the grafted polyelectrolytes as a function of salt concentration
cs and the Debye length λD for a soft colloid with Qcol = 0 e and λ = 0.1. The
dimensionless ’effective’ surface coverage γ∗ = γπ(2RH)

2 is used to determine the regime
in which the grafted polymers are [6]. Here, γ∗ > 15 � 1 over the whole range of salt
concentration and thus the system is always in the brush regime.

EOF produced by the underlying surface, resulting in a mobility similar in value to the mobility
of the coating polyelectrolytes [7, 120, 190, 212]. This screening effect is significantly weaker
in the mushroom regime and the mobility is dominated by the bare surface.

The hydrodynamic radius, Eq. 3.96, is used as a measure of the size of the polymer chains and
shown over a range of salt concentrations in Fig. 5.7 for a composite object with Qcol = 0 e
and λ = 0.1. Also the ensemble average of the radius of gyration RG of the polymers (see
Eq. 3.94), and its perpendicular component R⊥G, which can be used to estimate the height of
the polymer layer, in Fig. 5.7. All three quantities are roughly constant over the whole range
of salt concentrations. As the concentration increases, the electrostatic repulsion between
the charged monomers is increasingly screened, which results in a slightly smaller size of the
polyelectrolytes.

To determine whether the system is in the mushroom or the brush regime, the dimension-
less quantity γ∗ = γπ(2RH)2 is used as a measure of the coverage of the surface by the
polyelectrolytes (an appropriate measure based on [6]). γ is the grafting density, i.e. here
γ = M/(4πR2

col). For γ∗ � 1 the system is in the mushroom regime and for γ∗ � 1 it is in the
brush regime. Here, the effective surface coverage is γ∗ > 15� 1 putting our system firmly in
the brush regime over the whole range of salt concentrations. This implies a strong screening
of the EOF produced by the underlying colloid at high salt concentrations [120].
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5.4 Results and Discussion

In this section, the results for the electrophoresis of a polyelectrolyte-grafted spherical colloid
are presented. The effect of different parameters, such as the salt concentration and charges,
is discussed.

5.4.1 Effect of Salt Concentration on the Mobility of a Net-Neutral
Soft Colloid

We start by studying the influence of monovalent salt concentration on the mobility of a soft
colloid with a negatively charged core and positively charged polyelectrolyte brush. This is
shown in Fig. 5.8 for the case of Qcol = −40 e and λ = 0.1 (resulting in Qnet = 0 e), together
with three simulation snapshots for cs = {0.001, 0.1, 1.0} M.

In the Hückel limit of no salt, one could think of the polyelectrolytes and the colloid as a
solid sphere with the shear plane roughly at the edge of the polymer layer. The total charge
is then zero and the object does not move under an applied electric field. This is borne
out by the low salt mobility values in Fig. 5.8. This can also be seen by examining the net
charge of the fluid, ρch. It is minimal even close to the colloid as seen in Fig. 5.9 (b) for the
lowest salt concentration cs = 0.001 M. This is because the Debye length λD ≈ 27σlj is much
larger than the height of the polymer brush H ∼ 2R⊥G ≈ 4σlj. The counterions are mostly
outside the coating and thus the charges on the polymers neutralize the core. Since they
are grafted to the colloid, they are unable to move relative to it and thus produce no EOF,
resulting in only a negligible velocity of the complex. This can also be seen in the numerically
calculated tangential velocity as a function of the radial distance from the center of the colloid
perpendicular to the applied electric field in Fig. 5.9 (c).

The approximative analytical expression derived by Ohshima [44] for a soft colloid, also show
that at low salt concentrations it behaves like a bare particle in the Hückel limit. The mobility
is proportional to the net charge as µ = Qnet/DH, where DH is the hydrodynamic drag
coefficient of the soft colloid and depends on the height and the softness of the polymer layer
through rigorous equations. Here, Qnet = 0 e and the formula results in µ = 0.

Naively, one might expect the mobility to be zero for all salt concentrations since the object
as a whole is charge neutral. However, as discussed in subsection 3.5.3, the polymers exert a
viscous drag on the fluid locally and thus partially screen its flow. When the core’s counterions
are predominantly within the polymer layer, i.e. when λD ≤ H, the polymers screen their
EOF. In contrast, the EOF generated by the polyelectrolytes’ counterions, which are further
from the surface and thus subject to less screening, dominates and the electrophoretic mobility
of the soft colloid becomes non-zero. This is what happens when more salt is added, the Debye
length decreases and more and more counterions of the colloid penetrate the brush (as can
be seen in the snapshots in Fig. 5.8). At cs = 0.1 M the Debye length is λD ≈ 3σlj and we
see in Fig. 5.9 (b) that there is now a significant accumulation of counterions within a few
ion diameter of the colloidal core. It is evident from the initial increase and the following
exponential decrease of the tangential velocity as a function of the radial distance from the
center of the colloid perpendicular to the applied electric field in Fig. 5.9 (c) that the EOF
generated by these ions is mostly screened. On the other hand, a larger part of the EOF
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generated by the polyelectrolytes’ counterions reaches the bulk, resulting in a positive mobility
of the neutral soft colloid. At yet higher salt concentrations there are even more counterions
around the colloidal core as shown in Fig. 5.9 (b). There is thus even more screening of the EOF
generated by the underlying colloid’s counterions. This is why we see the highest mobilities at
the highest salt concentrations, in contrast to bare colloids where the electrophoretic mobility
generally decreases with increasing salt concentration [3, 4].

A secondary cause for the increase of the mobility with salt concentration is the effect of salt
on the height of the polymer layer, as can be seen in Fig. 5.9 (a). Since the colloid and the
polyelectrolytes are oppositely charged, they attract each other reducing the layer thickness.
With increasing salt concentration the electrostatic attraction is progressively screened and the
polyelectrolytes stretch farther into the fluid, increasing the thickness of the layer. This in turn
increases the screening of the colloid’s EOF and thereby, the net mobility of the composite.

Ohshima also derived an approximative equation for the mobility of a soft colloid with small
surface and brush charge densities in the κH & 1 regime

µ =
zpeλ

6πasη

[
1 +

(
λp

κ

)2
1 + λp/(2κ)

1 + λp/κ

]
+
σs

ηκ

[
e−κH/κ

1/λp + 1/κ
+

2

λp

e−λpH/λp − e−κH/κ
(1/λp)2 − (1/κ)2

]
. (5.5)

Here, zp is the valency of the charged monomers, σs is the surface charge density of the
substrate, and λp = (6πasnp)1/2, with np being the uniform monomer volume density. 1/λp is
the electrophoretic softness of the brush. Note that in the limit of κ→∞, Eq. 5.5 reduces to
µ = zeλ/(6πasη) which depends only on the charge density of the brush. Taking H = 2R⊥G
and np ' NM/Vp, with Vp being the volume of the polymer layer, the result of Eq. 5.5 is
shown in Fig. 5.8. Due to the exponential dependence of this expression to κ, it diverges
rapidly with decreasing salt, where the large κ assumption becomes less and less valid.

The numerical results, depicted in Fig. 5.8 by the solid lines, agree well with the simulation
results. The differences are mostly due to the small discrepancies of the fits to the simulations
monomer density profiles shown in Fig. 5.9 (a). The fits underestimate the monomer density
near the surface where the simulations show a peak, then overestimate it slightly farther
from the surface, followed by a slight underestimation far from the surface. Underestimation
of the monomers’ density decreases the total mobility by decreasing the viscous drag force
exerted by the monomers and thus increasing the portion of the core’s EOF reaching the
bulk. Similarly, overestimation of the monomer density tends to increase the total mobility.
Likewise, the ion density near the colloid’s surface in Fig. 5.9 (b) is slightly higher in the
case of the numerical calculations due to the absence of steric interactions in the mean-field
approach. The discrepancies with the simulation values are, however, small and therefore have
only a minimal influence on the calculated mobilities.
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Figure 5.8: The reduced mobility µred of a neutral soft colloid as a function of monovalent salt
concentration cs and the corresponding Debye length λD. MD simulations (blue circles)
are compared to the numerical results produced using the program provided by Hill [7]
(red line), and Eq. 5.5 (black line). At the top three simulation snapshots are shown for
cs = {0.001, 0.1, 1.0}M, respectively from left to right. The snapshots show only a radius
of 14σ from the center of the colloid and are cut in half, the color coding is the same as
in Fig. 5.1. The applied electric field is from left to right in these pictures.
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Figure 5.9: (a) Radial density profiles for cs = 0.001 M (dashed black lines), cs = 0.1 M (dash-dotted
blue lines) and cs = 1 M (dotted red lines) of the monomers ρmono(r) and (b) fluid
charge excluding the fixed charges ρch(r) for a neutral composite with Qcol = −40 e and
λ = 0.1. The monomer density profiles are shifted vertically by factors of 0.35 for the
sake of visibility. The solid lines represent the numerical results. (c) The numerically
obtained rescaled tangential fluid flow field as a function of the radial distance from the
center of the colloid perpendicular to the applied electric field uT(r)/E. The reference
frame is fixed on the center of the colloid, i.e., the rescaled velocity values at the surface
of the colloid correspond to the reduced electrophoretic mobilities and they converge to
zero far from the surface.
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5.4.2 Effect of Charge on the Mobility of a Net-Neutral Soft Colloid

In Subsection 5.4.1, it was shown that the screening of the core’s EOF by the grafted poly-
electrolytes causes a net-neutral soft colloid to have a positive mobility at moderate to high
salt concentrations. In this subsection, the effect of charge on the electrophoretic mobility of
net-neutral soft colloids is investigated at fixed salt concentration cs = 0.5 M (λD = 1.2σlj).
Specifically, the charges on the colloidal core and the grafted polyelectrolytes are varied such
that the object as a whole remains charge neutral (Qcol + λMN = 0).

The simulation results are plotted in Fig. 5.10. The system is in the polyelectrolyte-dominated
regime (λD < H at cs = 0.5 M), i.e. the EOF generated by the core’s counterions is screened
by the brush and the EOF of the polyelectrolytes’ counterions dominate. It is therefore not
surprising that the mobilities are all positive. They increase with increasing charge up to
Qcol = −160 e (λ = 0.4) and then decrease slightly, converging to a similar value as in the case
of Qcol = −40 e (λ = 0.1). The reason can be gleaned from the three simulation snapshots
shown at the top of Fig. 5.10 for Qcol = {−40,−160,−400} e. The initial increase in the
mobility is due to the increasing charge fraction on the monomers.

On increasing the charges further, the electrostatic attraction between the polyelectrolytes
and the core increases and a second peak appears in the monomer density profile, as the
brush becomes more compact (Fig. 5.11 (a)). As a result of the compression of the brush, the
contribution of the competing EOF generated by the core’s counterions increases and thus the
total mobility decreases. The simulation snapshot for Qcol = −400 e (λ = 1.0) in Fig. 5.10
shows that in this case all the chains are collapsed and there are virtually no counterions
within the monomers (see also Fig. 5.11 (b)). It is only the tails of the chains which are not
completely collapsed that drive the whole composite in the positive direction.

The initial linear increase of the mobility with respect to the charge in Fig. 5.10 is in line with
the theoretical expression of Ohshima [43], which predicts the mobility to scale linearly with
λ:

µ = zpeλ/(6πηas), κ→∞. (5.6)

The agreement between our simulations and Eq. 5.6, also depicted in Fig. 5.10, worsens with
increasing charge and is only acceptable for the three lowest charges. This is to be expected
since this expression is only strictly valid in the limit of infinite κ. For large but finite values
of κ Eq. 5.5 simplifies to an approximative expression for the mobility of a brush of uniform
density with an error of the order O(1/κ2) [43]:

µ =
zpeλ

6πηas

+
2σs

ηκ
e−H
√

6πasnp , (5.7)

The second term in this equation formulates the contribution from the substrate (assumed
to be a flat surface here) to the EOF and the exponential decay due to the screening by the
brush. The importance of the core therefore increases with increasing σs and decreasing H.
Comparing our results with Eq. 5.7, we see, as shown in Fig. 5.10, that the second term makes
the agreement better for the three lowest charges, but does not change the overall agreement.
For the parameters used here, Eq. 5.7 behaves linearly and fails to capture the nonlinearity in
the mobility. The reason is that this equation is simplified for small λ and σs. A secondary
source of disagreement between Eq. 5.7 and our results is that in the theory all particles are
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considered as point particles and the ions can penetrate the brush even at very high charges
where all the chains are collapsed on the core. The high charge densities at which this occurs,
however, are unlikely to occur in experiment and the formula does an excellent job of predict-
ing the mobility at low to moderate charge densities.
Interestingly, Eq. 5.5, on the other hand agrees fairly good with our simulations. The dis-
crepancy is significant only at Qcol = −400 e, where the mean-field approach of the theory
breaks. The systematic underestimation of the mobility is the result of the overestimation
of the core’s contribution, formulated in the second term of Eq. 5.5. As mentioned above,
the lack of ionic size causes the core’s counterions to penetrate the brush even at very large
charges, and therefore produce a larger EOF. In fact, if not for the increase in λ and the
decrease in H, the agreement would not have been so good.

The numerical calculations in Fig. 5.10 show large discrepancies in comparison to the sim-
ulation data. For the two lowest charges the numerical approach slightly overestimates the
mobilities, while at higher charges the mobilities are strongly underestimated. The main
reason for the discrepancies is the absence of ionic size in the mean-field theory used for the
electrostatic interactions in the numerical approach. This manifests itself in the numerical fluid
charge density profiles shown in Fig. 5.11 (b), where due to the absence of dispersive forces,
there are no layering effects as observed for the simulation results. At very high charges, all
the positive ions congregate on the core’s surface. In the case of Qcol = −400 e (λ = 1.0), the
numerical fluid charge density is as high as 30e/σ3 at the surface (only shown to ρ = 3e/σ3 here
for the sake of visibility) and becomes significantly negative afterward. This is accompanied
by the fact that the second peak in the simulated monomer density, which is underestimated
by the fit at lower charges, becomes so large that it influences the fit. The result is that the
overall monomer density is now overestimated by the fit, making the brush layer effectively
thicker. As a consequence the mobility increases, resulting in an overestimation of the mobility
with respect to the simulation result. It needs to be emphasized here that such large charges
are unrealistic and that the continuum model provides good agreement for all experimentally
realizable charge densities.
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Figure 5.10: The reduced mobility µred as a function of the colloid charge Qcol and the corresponding
charge fraction on the polyelectrolytes λ for neutral soft colloids at fixed salt concen-
tration cs = 0.5 M. The simulation results (blue circles) are compared with the nu-
merical results (red solid line), Eq. 5.6 (black dashed line), Eq. 5.7 (solid black line),
and Eq. 5.5 (blue solid line). At the top, three simulation snapshots are shown for
Qcol = {−40,−160,−400} e, respectively from left to right. The snapshots show only a
radius of 14σ from the center of the colloid and are cut in half, the color coding is the
same as in Fig. 5.1. The applied electric field is from left to right in these pictures.
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Figure 5.11: (a) Radial density profiles forQcol = −40 e (λ = 0.1) (dashed black lines), Qcol = −160 e
(λ = 0.4) (dash-dotted blue lines) and Qcol = −400 e (λ = 1.0) (dotted red lines) of
the monomers ρmono(r) and (b) fluid charge excluding the fixed charges ρch(r). The
monomer density profiles are shifted vertically by factors of 1 for the sake of visibility.
The solid lines represent the numerical results. (c) The numerically obtained rescaled
tangential fluid flow field as a function of the radial distance from the center of the
colloid perpendicular to the applied electric field uT(r)/E. The reference frame is fixed
on the center of the colloid, i.e., the rescaled velocity values at the surface of the colloid
correspond to the reduced electrophoretic mobilities and they converge to zero far from
the surface.
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5.4.3 Comparison with Theoretical Predictions: Decomposition of a
Net-Neutral Soft Colloid

In subsection 3.5.4, a scaling theory for the electrokinetics of soft surfaces in the thin Debye
layer limit was discussed. Harden et al. [120], who developed this theory, decomposed the
calculation of the electrokinetic response of a polyelectrolyte-grafted charged surface into two
separate subproblems; i) a negatively charged surface and neutral grafted polymers, ii) a neu-
tral surface grafted with positively charged polymers. The superposition of the two subcases is
equivalent to the original system. Here, the validity of this prediction is tested by simulations
of spherical soft colloids. Figure 5.12 shows the mobility of the two complementary soft col-
loids corresponding to the two cases mentioned above. The magnitude of both mobility curves
decreases with increasing salt concentration, but have opposite signs. The absolute value of
the mobility of the neutral colloid with positively charged polymers is greater than that of
the negatively charged colloid with neutral polymers. This is because the EOF generated by
the polyelectrolytes on a neutral colloid is less screened than the EOF generated by a charged
colloid with a neutral coating. It is also notable that the mobility of the charged colloid ap-
proaches zero at hight salt concentrations whereas in the charged brush case it converges to
a finite value which, as discussed in the next subsection, is related to the charge density of
the grafted polyelectrolytes [7, 43, 120]. In Fig. 5.13, the result for the neutral soft colloid
is compared to the superposition result. While the qualitative behavior is the same in both
cases, the quantitative differences are significant even at higher salt concentrations, where the
requirement of a thin Debye length should be fulfilled, and the theory predicts the two to
have the same mobility. Only at cs = 2.0 M are the two results quantitatively similar. This
is due to the fact that for the parameters used here the polyelectrolytes are deformed due
to electrostatic attraction to the colloid as seen in Fig. 5.14. This source of deformation is
neglected in the theory since the surface potential is considered to be low. The discrepancy
decreases with increasing salt concentration as the electrostatic interactions are more strongly
screened. This is why the two mobilities approach each other at higher salt concentrations,
where the underlying assumption of screened electrostatic interactions is increasingly valid.
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Figure 5.12: The reduced electrophoretic mobility µred as a function of salt concentration cs and the
corresponding Debye length λD for two different composites; one with neutral colloid and
charged grafted polymers (λ = 0.1) shown via filled circles, and the other with charged
colloid (Qcol = −40 e) and neutral grafted polymers depicted by the filled squares. The
solid lines depict the numerical results obtained using the program provided by Hill et
al. [7].
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Figure 5.13: The reduced electrophoretic mobility µred as a function of salt concentration cs and the
corresponding Debye length λD for two cases; (i) neutral composite with Qcol = −40 e
and λ = 0.1 (red squares), and (ii) the superposition of a composite with Qcol = −40 e
and λ = 0.0, and another with λ = 0.1 and Qcol = 0 e (blue circles). The solid lines
with the corresponding colors are the numerical results obtained via Hill’s solver.
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Figure 5.14: Monomer number density ρmono(r) as a function of the distance to the center of the
colloid r at cs = 10−3 M (top panel) and cs = 2.0 M (bottom panel) for three different
cases; charged colloid (Qcol = −40 e) grafted with neutral polymers (red dash-dotted
line), neutral colloid with charged polymers (λ = 0.1) (blue dashed line), and charged
colloid (Qcol = −40 e) with charged polymers (λ = 0.1) (black solid line).
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5.4.4 Comparison with Theoretical Predictions: Net-Neutral Soft
Colloid vs. Single Free Polyelectrolyte

The mobility of a single polyelectrolyte and that of a colloid coated with a thick layer of poly-
electrolytes with the same physical properties have been shown to be roughly equal at high salt
concentrations through theoretical calculations [120], experiments [41], and simulations [42].
Here, we check the validity of this scaling behaviour by comparing the mobility of the neutral
soft colloid to that of a single polyelectrolyte. Experimentalists have long known that the
mobility of free polyelectrolytes first increases with increasing chain length up to N ∼ 20
and then decreases slightly for longer chains, converging to its long-chain or “free-draining”
limit [213, 214]. More recently, the same behavior has also been observed in computer simu-
lations which explicitly account for hydrodynamic interactions [209, 215, 216]. Therefore, the
length of the polyelectrolyte used here to determine the mobility is chosen to be N = 50. This
result in the free-draining limit of the mobility for most of the salt concentration range, only
at the lowest salt concentrations some small length dependencies might still be present.

The results in Fig. 5.15 verify that the mobility of the single polyelectrolyte chain in solution
decreases with increasing salt concentration as expected for bare particles and in agreement
with both experiment [213] and simulation [217]. This is in juxtaposition to the behavior of
the soft colloid, which actually has an increasing mobility with increasing salt concentration.
Since our system is in the brush regime as verified in Sec. 5.3, at high salt concentrations
we expect the mobility of the composite to be roughly equal to the mobility of a single free
polyelectrolyte having the same linear charge density based on the theory of Harden et al. [120].

The two mobilities in Fig. 5.15 approach each other at higher salt concentrations, but they
are equal only at cs = 2.0 M. The reason is again the deformation of the polymer layer due
to the strong electrostatic attraction to the oppositely charged colloid which decreases the
height of the grafted layer. This conclusion is drawn since the mobility of the soft colloid with
Qcol = 0 e and λ = 0.1 also depicted in Fig. 5.15 does become equal to that of a single free
polyelectrolyte for a larger range of salt concentration. The large discrepancy between the two
mobilities at low salt concentration is because the underlying theory assumption λD < H is
invalid in this regime.
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Figure 5.15: Reduced electrophoretic mobility µred as a function of salt concentration cs and the
corresponding Debye length λD for a single free polyelectrolyte with N = 50 and λ = 0.1
(blue filled circles) compared to the that of the neutral soft colloid with Qcol = −40 e
and λ = 0.1 (red squares). Also shown is the result for the soft colloid with Qcol = 0 e
and λ = 0.1 (magenta circles).

5.4.5 Effect of Salt Concentration on the Electrophoretic Mobility of
a Net-Charged Soft Colloid

Thus far either neutral soft colloids, where the charge on the colloidal core is canceled by
the charges on the grafted polyelectrolytes, or cases where only one of the two components
is charged were considered. Here, a net negative soft colloid, with Qcol = −90e and λ = 0.1,
is examined and the effect of monovalent salt concentration on its electrophoretic mobility is
investigated.

At low salt concentrations, the Debye length is larger than the brush height and the counterions
extend outside the brush where the EOF they generate is not damped, making the negatively
charged composite move in the opposite direction of the applied electric field. This is confirmed
by the negative low salt mobility of the net-negative soft colloid plotted in Fig. 5.16. In the
salt-free Hückel limit, all the counterions “evaporate” from the particle’s surface to increase
their entropy, and the mobility of a spherical particle is given by µ = Qnet/(6πηRH). For
the system under investigation here, RH ∼ Rcol + 2R⊥G ∼ 7σlj should result in µred ∼ −15,
which is much larger than the results at the lowest salt concentration cs = 0.001 M. Also
the approximation µ = Qnet/DH derived by Ohshima [44] for the mobility of a soft colloid
in the Hückel limit strongly overestimates our simulation results at low salt concentration.
The reason is the high net charge of the composite and the finite size of the simulation box
which prevent us from reaching the Hückel limit. As can be seen from Fig. 5.17 (b) and the
left-most snapshot at the top of Fig. 5.16, there are still a significant number of counterions
within the brush at cs = 0.001 M, decreasing the mobility significantly compared to the Hückel
limit [218].

At cs = 0.05 M, λD ∼ 4σlj is the same as the height of the brush H = 2R⊥G ∼ 4σlj. Increasing
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the salt concentration further decreases the Debye length and the counterions penetrate more
and more into the brush as seen in Fig. 5.17 (b). These ions have their EOF screened and do not
contribute to the total mobility of the soft colloid. The mobility undergoes a transition from a
regime where the net charge dominates (low salt concentrations) to a regime where the brush
charge dominates (high salt concentrations) and thus, reverses sign with respect to monovalent
salt as observed in Fig. 5.16. The crossover occurs at about cs = 0.1 M corresponding to
λD ∼ 3σlj, which is slightly smaller than the height of the polymer layer. At the highest
salt concentration, cs = 2.0 M, the mobility approaches the same value as in the case of the
net-neutral soft colloid (see Fig. 5.8). This is a characteristic behaviour of soft surfaces that
in the limit of thin Debye layers, the mobility is governed by the physical properties of grafted
layer, independent of the charge of the underlying interface [7, 41, 42, 120, 212].

The type of the mobility reversal encountered here in monovalent salt has a very different
nature from that in multivalent salt studied in chapter 4. It is purely the result of two com-
peting EOFs and the interplay between the two relevant length scales, namely λD and H, and
should not be mistaken for the well-known mobility reversal in the presence of multivalent salt
at high ionic strengths. As discussed at length in the previous chapter, the mobility reversal
of bare surfaces is a result of overcharging due to strong ion correlations or specific adsorption
of the counterions to the surface [3, 4]. Recently, Marconi et al. have observed similar results
for the electroosmotic flow in a polyelectrolyte-grafted capillary, using a numerical method
to solve the modified electrokinetic equations based on implicit ion description and a lattice-
Boltzmann method for the fluid [219]. They provide a phase diagram, showing the effect of
the core’s and the polyelectrolytes’ charges on the sign of the electroosmotic flow at different
salt concentrations.

The high-salt results are compared to Eq. 5.5, as shown in Fig. 5.16. The agreement quickly
breaks down when the Debye layer increases as the equation is only valid in the high salt limit.
It should also be noted, that Eq. 5.5 is for low surface charge density, which is not the case
here.

The numerical results are also shown in Fig. 5.16 and their agreement with the simulations is
quite good. The mobility reversal occurs at the same salt concentration as in simulations. The
slight discrepancies are again due the fits to the monomers’ density shown in Fig. 5.17 (a),
which are used as an input to the numerical solver, and the slight overestimation of the fluid
charge adjacent to the colloid as seen in Fig. 5.17 (b). This mobility reversal is also expected
to occur for much larger, experimentally accessible, colloids. This is verified numerically as
shown in Fig. 5.16 for Rcol = 1 µm. To do so, the monomer density parameters are taken
from the fit to the simulation data for cs = 0.001 M and the core’s surface charge density as
well as the net charge density are kept the same. This results in a higher charge fraction on
the polyelectrolytes due to the constraint Qnet = Qcol + λMN , which in turn leads to higher
mobilities in the polyelectrolyte-dominated regime compared to the small colloid. In the net-
charge-dominated regime, it is the larger size of the core that causes the mobility to have higher
absolute values, as also observed in case of bare colloids [220]. The data show that the salt
concentration at which the mobility reversal occurs remains the same since it is determined
by the brush height. The fact that this phenomenon is experimentally achievable gives it the
potentiality to have different applications in soft-colloid electrophoresis and microfluidics. It
can be exploited to measure the salt concentration locally or extract information about the
grafted layer.
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Figure 5.16: The reduced mobility µred of a colloid with Qcol = −90 e grafted with positively charged
polymers with λ = 0.1 as a function of the monovalent salt concentration cs and the
corresponding Debye length λD. The net charge of the soft colloid is Qnet = −50 e.
MD simulations (blue circles) are compared to the numerical results produced using the
program provided by Hill [7] (red line) and Eq. 5.5 (black solid line). The dashed line
indicates the numerical results for Rcol = 1 µm. At the top three simulation snapshots
are shown for cs = 0.001 M, cs = 0.1 M, and cs = 1.0 M, respectively from left to right.
The snapshots show only a radius of 14σ from the center of the colloid and are cut in
half, the color coding is the same as in Fig. 5.1. The applied electric field is from left
to right in these pictures.
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Figure 5.17: (a) Radial density profiles for cs = 0.001 M (dashed black lines), cs = 0.1 M (dash-
dotted blue lines) and cs = 1 M (dotted red lines) of the monomers ρmono(r) and
(b) fluid charge excluding the fixed charges ρch(r) for a composite with Qcol = −90 e
and λ = 0.1 (Qnet = −50 e). Both monomer and fluid charge density profiles are
shifted vertically by factors of 0.5 for the sake of visibility. The solid lines represent
the numerical results. (c) The numerically obtained rescaled tangential fluid flow field
as a function of the radial distance from the center of the colloid perpendicular to the
applied electric field uT(r)/E. The reference frame is fixed on the center of the colloid,
i.e., the rescaled velocity values at the surface of the colloid correspond to the reduced
electrophoretic mobilities and they converge to zero far from the surface.
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5.4.6 Effect of Net Charge on the Electrophoretic Mobility of a Soft
Colloid

In this subsection the effect of net charge on the electrophoretic mobility of a charged soft
colloid is examined. The salt concentration is fixed at cs = 0.5 M and the charge fraction
of the polyelectrolytes to λ = 0.1, while Qcol is varied. The net charge ranges from positive
values where Qcol = 0 e to extremely high negative values.

As can be seen in Fig. 5.18, the mobility changes sign long after the net charge goes from
positive to negative. It is zero around Qnet = −110 e and acquires small negative values
for Qnet > −250 e. At this salt concentration λD = 1.22σlj < H and the system is in the
polyelectrolyte-dominated regime. This is why the mobilities for low net charges are positive.

The monomer and fluid charge densities are shown in Fig. 5.19 (a) and (b), respectively. The
strong electrostatic attraction at high net charges causes the positive ions to form layers at
the surface and to form layers as can be seen in the snapshots at the top of Fig. 5.18. The
strong layering of the counterions on the surface of the colloid makes them much less mobile.
This is why the mobilities in Fig. 5.18 are very small even at extremely high net charges. This
is unlikely to occur in experiments due to the impracticably high charge densities considered
(tens of e/nm2), but it nicely demonstrates the complex effects of grafted polyelectrolytes on
the mobility of a charged surface.

Unlike in subsection 5.4.2, Eq. 5.5 only agrees with the simulations at low net charges and be-
comes largely negative when the net charge changes sign. The mean-field nature of Ohshima’s
theory, which neglects the finite size of the ions, causes the effect of the core to be overesti-
mated. Whereas in the simulations the core’s counterions are strongly layered and thus less
mobile at high surface charges, in the theory they all accumulate at the surface and remain
mobile.

The numerically calculated mobilities are also shown in Fig. 5.18 and they agree with simula-
tion data only for the three lowest net charges. The reason is, as discussed in subsection 5.4.2,
the absence of the excluded volume if ions in the underlying mean-field theory in the numerical
approach. This results in the unreasonably large accumulations of positive ions right at the
surface in Fig. 5.19 (b). For Qnet = −460 e, the numerical fluid charge density gets as large
as 80e/σ3 (the y-axis only goes to 15e/σ for the sake of visibility). The EOF of the ions near
the surface is, however, almost completely screened, which is why the numerical mobilities in
Fig. 5.18 are independent of Qcol at high charges. It should be noted that the high charge
densities, at which both the numerical results and the analytical approximations of Ohshima
fail, are unrealistically high.
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Figure 5.18: The reduced mobility µred as a function of the net charge of a soft colloid at fixed salt
concentration cs = 0.5 M. The fraction of charged monomers is fixed, λ = 0.1 and
the net charge is changed by changing the charge on the colloidal core. The results of
the MD simulations (blue circles) are compared to the numerical results (red line), and
Eq. 5.5. At the top three simulation snapshots are shown for Qnet = {40,−160,−460} e,
respectively from left to right. The snapshots show only a radius of 14σ from the center
of the colloid and are cut in half, the color coding is the same as in Fig. 5.1. The applied
electric field is from left to right in these pictures.
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Figure 5.19: (a) Radial density profiles for Qnet = 40 e (dashed black lines), Qnet = −160 e (dash-
dotted blue lines) and Qnet = −460 e (dotted red lines) of the monomers ρmono(r) and
(b) fluid charge excluding the fixed charges ρch(r) for λ = 0.1. The monomer density
profiles are shifted vertically by factors of 0.5 for the sake of visibility. The solid lines
represent the numerical results. (c) The numerically obtained rescaled tangential fluid
flow field as a function of the radial distance from the center of the colloid perpendicular
to the applied electric field uT(r)/E. The reference frame is fixed on the center of the
colloid, i.e., the rescaled velocity values at the surface of the colloid correspond to the
reduced electrophoretic mobilities and they converge to zero far from the surface.
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5.4.7 Effect of Charges on the Electrophoretic Mobility of a Soft
Colloid with a Fixed Net-Charge

Finally, the effect of changing both the charge on the colloid and on the polyelectrolytes, such
that the net charge of the composite remains fixed, is investigated on the mobility of a charged
soft colloid. The net charge is fixed at Qnet = −40 e and the salt concentration at cs = 0.5 M,
i.e. the system is in the polyelectrolyte-dominated regime.

The results are shown in Fig. 5.20. For Qcol = −40 e the polyelectrolytes are neutral (λ = 0)
and the soft colloid has a negative mobility with a small magnitude due to the screening
the EOF by the brush. Increasing the charges, the mobility passes to positive values and
increases with increasing the polyelectrolytes’ charge up to λ = 0.5 (Qcol = −240 e). Upon
further increase, the mobility decreases and becomes negative again around Qcol = −280 e
(λ = 0.6). The reason can be understood from the simulation snapshots shown at the top
of Fig. 5.20; the electrostatic attraction between the core and the polyelectrolytes causes the
brush to compress, which in turn reduces the mobility. At λ = 1.0, all polyelectrolytes are
collapsed on the core and their screening effect is negligible. The soft colloid behaves like a
negatively charged bare colloid and moves in the opposite direction of the applied field.

The mobilities calculated by Ohshima’s approximative expressions are also shown in Fig. 5.20.
Eq. 5.6 (depicted by the dashed line) is linear in λ and does not take into account the effect
of the underlying charged surface. This is true for the extreme case when λD is infinitely
thin and the core’s EOF is completely screened by the brush. Eq. 5.7 includes a O(1/κ)
term for the contribution of the surface. The result (black solid line) agrees better with
simulations, starting from small negative values and changing sign for λ > 0. Nevertheless,
it fails to capture the nonlinearity of the mobility. The agreement worsen upon increasing
the charges as the core’s surface charge density increases and the brush thickness decreases.
The more general expression is Eq. 5.5, which results in a nonlinear mobility curve but all
values are negative. As mentioned in the previous subsections, this formula overestimates
the contribution of the substrate. This is partly due to the absence of excluded volume in
the theory; there are no layering effects and the ions penetrate the brush even at the highest
charges. Besides, the ratio between the two terms in Eq. 5.5 depends on κ and is therefore
affected by the fact that the apparent salt concentration is larger than 0.5 M since Qnet 6= 0
and the box size is finite. Inserting a higher salt concentration in the calculations improves the
agreement at low charges, but worsens the high-charge results. It should also be kept in mind
that this approximation is valid for low surface charge densities and polymer charge fractions.
The reason why the shape of the mobility curve agrees with the simulation, is the increase in
both Qcol as well as λ at the same time.

The numerical results are in good agreement with the simulations only for the three lowest
charges. As discussed earlier, this is a consequence of the mean-field approach employed by
the theory which neglects the finite sizes of the ions and monomers. As a results, the ions
can penetrate the brush even at high charges, where the monomers are strongly layered, and
aggregate at the surface. These effects can be seen in Fig. 5.21 (a and b). In the case of
highest charges (Qcol ≤ −360 e) the second peak in the simulated monomer densities become
so large that densities are being overestimated by the fits, making the brush layer thicker in the
numerical approach. On the other hand, the large accumulation of the core’s counterions at
it’s surface causes the fluid charge density to become significantly negative at larger distances.
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Figure 5.20: The reduced mobility µred as a function of the colloids charge Qcol, and the corre-
sponding polyelectrolytes’ charge fraction λ, for a soft colloid with fixed net charge
Qnet = −40 e at fixed salt concentration cs = 0.5 M. The results of the MD simulations
(blue circles) are compared to the numerical results (red line), Eq. 5.6 (black dashed
line), Eq. 5.7 (black line), and Eq. 5.5 (blue line). At the top three simulation snap-
shots are shown for Qcol = {−80,−240,−440} e, respectively from left to right. The
snapshots show only a radius of 14σlj from the center of the colloid and are cut in half,
the color coding is the same as in Fig. 5.1. The applied electric field is from left to right
in these pictures.

These combination of these two artifacts, leads to a large positive numerically calculated
mobilities at high charges. The fluid flow fields shown in Fig. 5.21 (c) also reflect these effects.
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Figure 5.21: (a) Radial density profiles for Qcol = −80 e (dashed black lines), Qcol = −240 e (dash-
dotted blue lines) and Qcol = −440 e (dotted red lines) of the monomers ρmono(r) and
(b) fluid charge excluding the fixed charges ρch(r) for a soft colloid with fixed net charge
Qnet = −40 e. The density profiles are shifted vertically by factors of 0.75 for the sake of
visibility. The solid lines represent the numerical results. (c) The numerically obtained
rescaled tangential fluid flow field as a function of the radial distance from the center of
the colloid perpendicular to the applied electric field uT(r)/E. The reference frame is
fixed on the center of the colloid, i.e., the rescaled velocity values at the surface of the
colloid correspond to the reduced electrophoretic mobilities and they converge to zero
far from the surface.
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5.5 Summary

In this chapter ion-explicit MD simulations were used to measure the electrophoretic mobility
of a polyelectrolyte-grafted colloid, referred to as a soft colloid. The results confirm that
for thick coatings at high ionic strengths, the mobility is largely determined by the coating
properties [41–43, 123, 125]. This is because the brush partially screens the EOF generated
by the core’s counterions, while its own counterions’ EOF is less screened and in part reaches
the bulk.

The phenomena observed in this chapter are a nice demonstration of the rather complex nature
of electrokinetics in polymeric systems, namely how the behavior of such systems often runs
contrary to simple intuition. These were explained by careful examination of the monomer
and fluid charge density radial distributions and the ratio of the Debye length to the brush
height.

It was shown here that as a consequent of the EOF screening, a neutral composite has a
non-zero mobility in the presence of monovalent salt in the direction determined by the charge
of the grafted polyelectrolytes. The investigation of the effect of charge on the mobility of
neutral colloids at fixed salt concentration revealed that it remains polyelectrolyte-dominated
even at very large charges where the electrostatic attraction causes the chains to collapse on
the colloid. Furthermore, the validity of the scaling theory proposed by Harden et al. [120]
was tested, according to which, in the limit of thick brushes and high salt concentrations, the
system is equivalent to the superposition of i) a charged colloid coated with neutral polymers,
and ii) a neutral colloid coated with charged polymers. This approach provided qualitatively
similar results but significant quantitative deviations; only at the highest salt concentrations
did the two subproblems have quantitatively similar mobilities. The reason is the electrostatic
attraction of the grafted polyelectrolytes to the oppositely charged core, which changes their
conformation and thereby their mobility. By increasing the salt concentration the attraction
is screened and the two mobilities approach the same value.

Most importantly, it was shown that the mobility of a net-charged soft colloid changes sign
with respect to monovalent salt concentration. The hydrodynamically driven mobility reversal
is the result of a transition between two regimes and should not be mistaken for the mobility
reversal of bare colloids in multivalent salt solution studied in Ch. 4. In the case of soft
colloids, at low salt concentrations most counterions are outside of the brush and the mobility
is determined by the net charge. In contrast, at high salt concentrations where the Debye layer
is thin and most counterions accumulate close to the surface, their EOF is strongly screened
and the polyelectrolytes dominate. The crossover occurs at the salt concentration for which
the two important system length scales, namely the Debye layer and the brush height, are the
same and the two EOFs cancel each other.

It was further shown that a net-negatively charged soft colloid in the brush regime, moves
in the positive direction as determined by the positively charged grafted polymers, even at
fairly large net charges. This is again due to strong screening of the EOF generated by
the colloidal core’s counterions, which are close to the surface. The soft colloid had only a
negligible negative mobility, even at extremely high net negative charges, which is attributed
to the crystallization of counterions around the colloid.

Finally, the effect of charge of the mobility of a soft colloid with fixed negative net charge was
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studied in the brush-dominated regime. The mobility increases with increasing the charges,
passing from negative values in the case of neutral grafted polyelectrolytes to positive values.
Upon further increase, the electrostatic attraction causes the polyelectrolytes to collapse on
the core and thus the mobility to decrease. It eventually becomes negative again at high
charges, acquiring large values when the polyelectrolytes are completely collapsed and the
particle behaves like a bare colloid.

All simulation data were compared with approximate analytic expressions of Ohshima and the
numerical results obtained from the computer program MPEK-0.02 provided by Reghan Hill.
The numerical solver is based on the Darcy-Brinkman formalism and solved the modified EK
equations for a spherical soft colloid [7]. The agreement between simulation and analytical
expressions depended strongly on salt concentration and charge densities. On the other hand,
the agreement between simulation and numerical results was very good except at unphysically
large charge densities, where excluded volume plays an important role and the underlying
mean-field theory breaks down. The good agreement at reasonable charge densities, confirms
the validity of the Darcy-Brinkman equation combined with the Poisson-Nernst-Planck equa-
tion including a advective term to describe the electrokinetic behavior of such systems. The
Darcy-Brinkman equation has previously been used in many theoretical studies that have been
able to explain experimental results, however these studies still required fitting parameters. In
contrast, here the necessary parameters were extracted directly from simulations. The results
thus show that it does not require any additional factors in order to provide quantitatively
accurate predictions.
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This thesis dealt with coarse-grained (CG) molecular dynamics (MD) simulations of colloidal
electrophoresis where charged colloids in electrolytes move under the action of an externally
applied electric field. All simulations were done using the Extensible Simulation Package for
Research on Soft matter (ESPResSo) [168, 203]. In CG simulations, the less important degrees
of freedom of the system are disregarded in favour of reducing the computational complexity
in order to achieve larger sizes and longer times. The “coarse-grained” details are replaced by
“effective” interactions, e.g. a molecule consisting of different atoms can be coarse-grained into
a sphere with an effective size realized via a Lennard-Jones (LJ) potential.

Depending on the size of the colloids, which can range from nm to µm, and the detailed
requirements of the study, different models can be used to simulate electrophoresis of colloids.
For example, the solvent and/or the ions can be considered explicitly or implicitly, and the
colloid itself might be modeled as a hard sphere, a raspberry-like particle, or even a flat
charged surface. In this work, two different types of colloids are considered, namely bare and
soft colloids. Electrophoresis of large bare colloids is the topic of Ch. 4, where the effect of
mono-, di-, and trivalent salt concentration is investigated on the electrophoretic mobility.
When the size of the colloid is orders of magnitude larger than the ions’ size, as was the
case for the particular colloids considered here, a simulation where all particles are explicit is
computationally too expensive and not feasible. An efficient model has to necessitate extreme
approximations without disregarding the important factors. In some methods a mean-field
approach for the ions is used, but in case of multivalent salt, ion correlations usually play a
crucial role which is not captured in implicit mean-field simulation methods. On the other
hand, in the limit of a thin Debye layer, known as the Helmholtz-Smoluchowski (HS) limit,
most of the excess counterions accumulate in the close vicinity of the particle, the local surface
curvature can be ignored. The electrophoretic mobility becomes independent of the particle’s
shape and the planar geometry can be employed.

A novel method was developed here for simulating electrophoresis of large colloids in the HS
limit. The colloid was modeled as a homogeneously charged flat surface, in contact with ex-
plicit ions in a “primitive model” implicit solvent. The solvent imitates a uniform dielectric
medium at a specific temperature maintained via a thermostat, in our case, a Langevin ther-
mostat. Using this method, colloids of µm size can be studied with explicit ions. The finite
size of the ions is taken into account through Weeks-Chandler-Andersen (WCA) interactions
with each other as well as the charged wall. Periodic boundary conditions were applied in
the lateral directions. The Electrostatic Layer Correction (ELC) method[75, 92] combined
with the particle-particle-particle mesh (P3M) algorithm [76, 77] were used to calculate the
electrostatic interactions.

The drawback of the model is that the electrophoretic mobility cannot be measured directly
by measuring the particle’s velocity or equivalently the electro-osmotic flow (EOF) of the fluid
in bulk. Instead, the ζ−potential is calculated from simulations of the electric double layer in
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equilibrium, i.e. in the absence of an applied electric field and a numerical solver based on the
standard electrokinetic model (SEM) [24, 25] is used to convert it into mobility. This can be
done since in the limit of low applied field strength, which is usually the case in experiments, the
distortion of the ionic cloud due to the field can be ignored. The SEM is based on a mean-field
description of the electrolyte and solves the Stokes equation together with the Poisson-Nernst-
Plank equation including a convective term in order to obtain the electrophoretic mobility.
The fact that ion correlations are included in the ζ−potential, compensates for the mean-field
approach employed by SEM.

The proposed simulation method was applied to colloids used in two distinct sets of ex-
periments. In the first set by Semenov et al. [4, 174, 175], single colloid electrophoresis is
performed on latex colloids having a diameter of 2.23 µm and surface charge density σs =
−0.31 µC/cm2 ≈ −0.02 e/nm2. The second set is performed by Elimelech et al. [5] using latex
colloids of diameter 0.753 µm and surface charge density σs = −5.64 µC/cm2 ≈ −0.35 e/nm2.
The validity of the planar geometry was verified for each by comparing the ζ−potentials ob-
tained from numerical solutions to the nonlinear Poisson-Boltzmann (PB) equation in planar
and spherical geometries, using the experimental surface charge density and radius (in the
spherical case) of the colloid in monovalent salt. In both cases, the results in the two geome-
tries agreed extremely good and ensured the precision of the planar approximation. It was
also found that for higher surface charge densities, this approximation can be used for smaller
particles.

In the experiments considered, the electrophoretic mobility of latex colloids were measured in
the presence of mono- (KCl), di- (CaCl2), and trivalent (LaCl3) salt of varying concentration.
The main subject of interest in this part of this thesis was the mobility reversal observed in
these experiments in the presence of trivalent salt. While the agreement between simulation
and experiment was good in both cases for mono-, and divalent salt, the experimentally ob-
served mobility reversal in trivalent salt could not be reproduced without further assumptions
and the agreement was not even qualitative. Interestingly, the simulations revealed that in
the cases under study, the electrostatic interactions alone are not strong enough and an addi-
tional specific adsorption is required for the mobility reversal to occur at the observed ionic
strength. This indicated that La+3 ions experience a specific adsorption of strength of about
4 kBT which we can be due to hydrolysis effects. Comparison of the ion density and potential
profiles obtained from simulations and numerical solutions to the nonlinear PB for all three
salt valencies showed that the correlations can be neglected in Semenov et al.’s system. For
Elimelech et al.’s system which has a much higher surface charge density, the PB results de-
viate significantly from simulations for multivalent salt. The electrostatic coupling was found
to be strong enough to cause charge inversion, nevertheless not strong enough to drive the
observed mobility reversal without the specific adsorption. This shows that charge inversion
is a necessary but not sufficient condition for mobility reversal.

In the second part of this thesis, the electrophoresis of polyelectrolyte-grafted colloids, referred
to as soft colloids, in monovalent salt was investigated by means of CG MD simulations.
The colloid as well as the ions are simulated explicitly, and full hydrodynamic interactions
were taken into account using the lattice-Boltzmann (LB) algorithm [208] for the solvent.
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The raspberry model [160, 205] was used for the colloid in order to insert its size in the
hydrodynamic interactions and also for the purpose of grafting the polyelectrolytes on its
surface. The raspberry model consists of a central particle, to which charge is assigned when
needed, wrapped by a number of surface beads at a distance equal to the radius of the colloid.
The point-particle coupling of each particle with the underlying LB fluid results in the finite
size of the colloid. A fixed number of polymers all having the same degree of polymerization are
grafted to randomly-chosen surface beads such that their distribution can be considered to be
uniform. The connectivity of the monomers as well as the monomer-surface bead is maintained
via Finitely Extensible Nonlinear Elastic (FENE) bonds. In cases were the polymers are
charged, a fraction of the monomers are randomly chosen and given a unit positive charge.
Periodic boundary conditions are applied in all directions and the P3M algorithm is used
for the electrostatic interactions. The mobility is obtained directly by applying an external
electric field and measuring the drift velocity.

The effect of salt concentration and charge on the mobility of both net-neutral and net-
charged soft colloids was investigated. All the results were explained by careful examination
of monomer and fluid charge density profiles. Simulations of a net-neutral soft colloid where
the magnitude of the magnitude of the negative charge on the core is equal to the total charge
on the polyelectrolytes, showed a non-zero mobility at higher salt concentrations. The grafted
polymers partially screen the EOF generated by the ions in the Debye layer by exerting an
extra drag force on them. This effects is stronger closer to the surface where the monomer
number density is larger. At higher salt concentrations where the Debye length is smaller than
the height of the brush, the contribution of the core to the total EOF is strongly screened,
the polyelectrolytes’ EOF dominates and the net-neutral particle acquires a positive mobility.
This high salt regime is referred to as the polyelectrolyte-dominated regime in this work.
Changing the charges on both the core and the polyelectrolytes at a fixed salt concentration
in the polyelectrolyte-dominated regime showed that the mobility remains positive even at
very high charges when all the chains are collapsed on the core because of the strong Coulomb
attraction.

The most important finding of the second part of this thesis was the mobility reversal of a net-
negative soft colloid with respect to monovalent salt concentration. At low salt concentrations,
referred to as the net-charge-dominated regime in this work, the Debye length is larger than
the brush height and most of the ions are outside the polymer layer where their EOF is not
screened. The soft colloid behaves similar to a bare particle in this regime and its mobility is
determined by its net charge. The transition from this regime to the polyelectrolyte-dominated
regime upon increasing the salt concentration results in a mobility reversal. The origins of
this mobility reversal differs fundamentally from the one studied in the first part and should
not be mistaken for it. The effect of charge on the mobility was also investigated in the case
of net-charged soft colloids in the polyelectrolyte-dominated regime. The results showed that
the mobility becomes negative only at very high charges where the chains collapse due to the
strong Coulomb attraction to the oppositely charged core.

All simulation results were compared to Ohshima’s approximate analytical expressions [43, 44]
as well as to results obtained from numerical solutions to the modified SEM for soft particles
developed by Hill et al. [7]. In the modified SEM, Stokes equation is replaced by Darcy-
Brinkman equation and the set of electrokinetic equations is solved in a manner similar to
the SEM. The agreement between simulation and numerical results is very good, except when
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the charges are very large and the mean-field approach of the theory breaks down. The good
agreement at reasonable charge densities, confirms the validity of the Darcy-Brinkman equa-
tion combined with the Poisson-Nernst-Planck equation including a advective term to describe
the electrokinetic behavior of such systems. The agreement between Ohshima’s analytical ex-
pressions and the simulations is restricted to salt concentrations for which the underlying
assumptions of theory are met and to charge values where the finite size of the ions can be
neglected.
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