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Ṡ . . . . . . . . . . . . . . . . . average entropy production rate
τ , T . . . . . . . . . . . . . . . time intervals
θ+, θ−, θα,+ij , θα,−ij . . mechanical load sharing factors
µi . . . . . . . . . . . . . . . . . chemical potential of nucleotide species i
∆µ, ∆µαij . . . . . . . . . . free-energy change of the solvent due to nucleotide binding,

release or ATP hydrolysis/synthesis
V . . . . . . . . . . . . . . . . . potential of the linker
V . . . . . . . . . . . . . . . . . potential or free energy
ν . . . . . . . . . . . . . . . . . . local mean velocity
v . . . . . . . . . . . . . . . . . . average velocity
W . . . . . . . . . . . . . . . . work, corresponding to the external force
w0, kαij . . . . . . . . . . . . attempt frequencies
wij, wαij(x), w± . . . . transition rates of the motor; discrete, hybrid state space,

one-state process
χ . . . . . . . . . . . . . . . . . microstates
χij . . . . . . . . . . . . . . . . chemical load sharing factor
ξ(t), ζ(t) . . . . . . . . . . Gaussian white noise
x, n . . . . . . . . . . . . . . . spatial variables
y . . . . . . . . . . . . . . . . . . elongation of the linker

7





Kurzfassung
Diese Arbeit widmet sich der Dynamik und Thermodynamik molekularer Motoren.
Insbesondere wird der Einfluss eines angekoppelten Testteilchens auf die Eigen-
schaften des Motors untersucht. Molekulare Motoren sind Enzyme, die chemische
Energie, die z.B. aus der Hydrolyse von ATP gewonnen wird, in mechanische Be-
wegung umwandeln können. Sie sind an einer Reihe von wichtigen Vorgängen,
die die Funktionsweise biologischer Zellen ausmachen, beteiligt, wie beispielsweise
dem Transport von Organellen, der Zellteilung, der Kontraktion von Muskeln oder
sogar der Synthese von ATP.
Obwohl sie mikroskopische Objekte von der Größenordnung einiger Nanometer

sind und daher stark von thermischen Fluktuationen beeinflusst werden, zeigen sie
eine außergewöhnlich stabile und effiziente Funktionsweise. Folglich ist es in der
Physik, Biologie, Chemie und Medizin von großem wissenschaftlichen Belang, ihre
Struktur und Wirkungsweise zu verstehen.
Experimentelle Untersuchungen beinhalten üblicherweise Testteilchen, die am

Motor befestigt sind und dazu dienen, die Motorbewegung darzustellen und exter-
ne Kräfte auf den zu untersuchenden Motor auszuüben. Da diese Testteilchen oft
mehr als zehn mal größer sind als der Motor selbst, kann man davon ausgehen, dass
sie eine erhebliche Beeinträchtigung für den Motor darstellen und dessen Dynamik
und Thermodynamik nachhaltig beeinflussen. Eigenschaften des Motors aus expe-
rimentellen Daten abzuleiten ist eine heikle Angelegenheit, da einerseits nur die
Trajektorie des Testteilchens zugänglich ist und andererseits jedes Messergebnis
dem Gesamtsystem bestehend aus Motor und Testteilchen zuzuordnen ist anstatt
nur dem Motor. Oftmals ist es a priori unklar, welche Motoreigenschaften vom
Testteilchen beeinflusst werden und wie stark sich der Einfluss der Testteilchens
auswirkt.
Da sie Teil mesoskopischer biologischer Systeme sind, ist die Dynamik moleku-

larer Motoren nicht nur von thermischen Fluktuationen beeinflusst sondern findet
meist sogar im Nichtgleichgewicht statt. Die theoretische Beschreibung dieser mi-
kroskopischen Maschinen erfordert daher die Berücksichtigung von Fluktuationen
und Nichtgleichgewichtsbedingungen. Einen solchen Rahmen bieten die stochasti-
sche Dynamik und stochastische Thermodynamik.
In dieser theoretischen Arbeit untersuchen wir die Dynamik und Energetik mo-

lekularer Motoren, die an ein Testteilchen gekoppelt sind, im Hinblick auf Effekte,
die durch das Vorhandensein des Testteilchens verursacht werden. Unser Ziel ist es,
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festzustellen, wie das Testteilchen verschiedene Eigenschaften der Motordynamik
und -Energetik beeinflusst und Charakteristika experimenteller Daten zu iden-
tifizieren, die Auswirkungen des angekoppelten Testteilchens darstellen. Zudem
entwickeln wir eine thermodynamisch konsistente Methode zur Vereinfachung der
theoretischen Beschreibung, wobei das System aus Motor und Testteilchen auf ein
effektives Motorteilchen abgebildet wird. Um derartige Effekte zu untersuchen,
erstellen wir ein allgemeines Modell mit zwei Freiheitsgraden, welche Motor und
Testteilchen darstellen und über eine elastische Verbindung gekoppelt sind. Mit-
tels Monte Carlo Simulationen oder durch numerisches Lösen der Fokker-Planck
Gleichung erhalten wir Ergebnisse, die wir anschließend mit experimentellen Daten
vergleichen. Gelegentlich verwenden wir auch vereinfachte Modelle, die analytisch
gelöst werden können.

Kapitel 2: Grundlagen Dieses Kapitel bietet einen kurzen Überblick über sto-
chastische Dynamik, stochastische Thermodynamik und molekulare Motoren. Zum
Konzept der stochastischen Dynamik gehört die Langevin-Gleichung für einzelne
Trajektorien ebenso wie die Fokker-Planck- und die Master-Gleichung auf Ensemble-
Ebene. Die Interpretation des ersten und zweiten Hauptsatzes entlang einer Ein-
zeltrajektorie bildet das Grundprinzip der stochastischen Thermodynamik. Wir
bieten einen kurzen Einblick in das Vorkommen und die Funktionsweisen mole-
kularer Motoren sowie eine kurze Übersicht über experimentelle und theoretische
Herangehensweisen, die bei der Erforschung molekularer Motoren zum Einsatz
kommen.

Kapitel 3: Modellierung Viele Experimente mit einzelnen molekularen Motoren
beinhalten Testteilchen, die an den Motor gekoppelt sind. Die theoretische Analyse
solcher Untersuchungen berücksichtigt hingegen oftmals nur die Freiheitsgrade, die
den Motor darstellen. In diesem Kapitel stellen wir ein einfaches Modell mit zwei
Freiheitsgraden vor, welche Motor und Kugel repräsentieren. Beide Teilchen sind
mittels einer elastischen Verbindung gekoppelt. Die Dynamik des kombinierten
Systems besteht aus diskreten Sprüngen des Motors und kontinuierlicher Brown-
scher Bewegung des Testteilchens. Wir berücksichtigen sowohl Motormodelle mit
nur einem internen Zustand als auch solche mit mehreren internen Zuständen.
Diese Art von Modellen bezeichnen wir als Hybrid-Modelle.

Kapitel 4: Effizienz molekularer Motoren mit Testteilchen Da molekulare Mo-
toren oftmals Arbeit gegen Reibungskräfte verrichten, existieren verschiedene Ef-
fizienzdefinitionen. Die thermodynamische Effizienz bezieht sich auf die Arbeit
gegen externe Kräfte, wohingegen die Stokes oder verallgemeinerte Effizienz und
die Pseudo-Effizienz auch Arbeit gegen Reibungskräfte berücksichtigen, im Falle
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der Pseudo-Effizienz werden sogar Fluktuationen erfasst. Diese drei Effizienzde-
finitionen wurden alle anhand der F1-ATPase untersucht. Die F1-ATPase ist ein
rotierender Motor, der an der ATP Synthese in biologischen Zellen beteiligt ist.
Diese Experimente lieferten Effizienzen von nahezu 1 was bedeutet, dass die F1-
ATPase fast die gesamte chemische Energie in Rotation umzusetzen vermag. Wir
verwenden das Hybrid-Modell mit einem Ein-Zustands-Motor, um die drei Effizi-
enzdefinitionen sowohl mittels Simulationen als auch mittels einer Gauß-Näherung
zu untersuchen. Da unser Motor eine direkte Kopplung zwischen chemischer Re-
aktion und mechanischem Schritt enthält, erreicht die thermodynamische Effizi-
enz den Wert 1 bei Maximallast. Aufgrund der diskreten Sprünge des Motors ist
die Stokes-Effizienz wesentlich kleiner als 1 für kleine ATP Konzentrationen, was
jedoch für höhere ATP Konzentrationen weniger relevant wird. Im Gegensatz da-
zu erreicht die Pseudo-Effizienz Werte größer als 1 nahe dem Gleichgewicht und
für eine sehr asymmetrische Freie Energie Oberfläche mit einer Barriere nahe des
Ausgangszustands. Im Vergleich mit experimentellen Daten zeigt sich eine gu-
te Übereinstimmung für alle drei Effizienzen. Abweichungen, die bei sehr kleinen
Phosphatkonzentrationen auftreten, sind der Einfachheit unseres Modells geschul-
det.

Kapitel 5: Einfluss des Testteilchens auf die Motordynamik Dieses Kapitel
befasst sich mit Auswirkungen des Testteilchens auf die Dynamik des Motors,
die sich in experimentell zugänglichen Größen zeigen, welche aus der Testteil-
chentrajektorie gewonnen werden können. Wir befassen uns insbesondere mit der
Geschwindigkeitsautokorrelationsfunktion (VACF) und der Antwortfunktion des
Testteilchens sowie der Wartezeitenverteilung der Motorsprünge. Zunächst be-
trachten wir drei analytisch lösbare vereinfachte Versionen des Hybrid-Modells
mit einem Ein-Zustands-Motor, um festzustellen, welche Art von Motordynamik
welche Art Struktur in der VACF und der Antwortfunktion verursacht. Wir un-
tersuchen speziell Motormodelle mit von der Kugelposition unabhängigen Sprun-
graten, vollständig gekoppelte kontinuierliche Motormodelle und Modelle mit de-
terministischen Sprungzeiten. Dies zeigt uns, dass jegliche Art von Struktur in
der VACF, die über einen exponentiellen Zerfall hinausgeht, diskrete Motorsprün-
ge voraussetzt, die nicht rein zufällig auftreten. Simulationen des ursprünglichen
Modells zeigen ausgeprägte Oszillationen, die der periodischen Struktur bei deter-
ministischen Sprungzeiten ähneln. Folglich muss die Kopplung dazu führen, dass
Motorsprünge nicht rein zufällig auftreten. Übereinstimmend damit zeigt sich in
der Wartezeitenverteilung ein Maximum, was auf eine nicht markovsche Dynamik
hinweist. Dies ist besonders zu beachten, da ein Maximum in der Wartezeitenver-
teilung üblicherweise weiteren Zwischenzuständen des Motors zugeschrieben wird.
In Experimenten mit der F1-ATPase bestimmte Korrelations- und Antwortfunk-
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tionen stimmen qualitativ mit unseren Simulationsergebnissen überein.

Kapitel 6: Mechanismus der Energieumwandlung In diesem Kapitel untersu-
chen wir den Einfluss des Testteilchens auf den Mechanismus der Energieumwand-
lung im Motor. Der Vorgang der Energieumwandlung im Motor kann untersucht
werden, indem man so starke externe Kräfte am Testteilchen anlegt bis der Mo-
tor stehen bleibt und die Geschwindigkeit im Mittel verschwindet. Die maximale
Kraft entspricht dann der maximalen Arbeit pro Motorschritt, die aus dem Sys-
tem entnommen werden kann. Um die Auswirkungen des Testteilchens auf die
Energetik des Motors zu bestimmen, vergleichen wir die Maximalkraft, je nach-
dem ob die externe Kraft am Testteilchen oder direkt am Motor angreift. Da sich
der Einfluss des Testteilchens auf die Motordynamik mithilfe der Netzwerktheorie
einsichtig darstellen lässt, führen wir in diesem Kapitel zunächst die Netzwerkdar-
stellung des Hybrid-Modells ein. Diese erhält man, indem man die Kugelvariable
diskretisiert. Zudem simulieren wir spezielle Hybrid-Modelle mit unizyklischen und
multizyklischen Motoren. Unsere Analyse zeigt, dass die Maximalkraft für unizy-
klische Motoren mit und ohne Testteilchen gleich ist. Bei multizykilschen Motoren
hingegen hängt die Maximalkraft von der Kugelgröße ab und kann kleiner, gleich
oder sogar größer als im Fall ohne Testteilchen sein. Aus experimenteller Sicht ist es
wichtig zu berücksichtigen, dass die gemessene Maximalkraft dem Gesamtsystem
Motor-Testteilchen entspricht und nicht notwendigerweise Eigenschaften des Mo-
tors widerspiegelt. Die beobachtete Variation der Maximalkraft dient als Beweis,
dass der untersuchte Motor multizyklisch ist. Erstaunlicherweise kann durch An-
bringen eines Testteilchens die maximal zu extrahierende Arbeit sogar vergrößert
werden.

Kapitel 7: Thermodynamisch konsistente Vergröberung der Dynamik Wäh-
rend Modelle mit mehreren Freiheitsgraden, wie unser Hybrid-Modell, präziser
sind und den eigentlichen experimentellen Versuchsaufbau widerspiegeln, beste-
hen die meisten theoretischen Modelle nur aus einem Teilchen, das den Motor
darstellt. Die Vorteile solcher Ein-Teilchen Modelle ist naheliegend: sie sind ma-
thematisch wesentlich einfacher zu handhaben. Außerdem werden sie oft verwen-
det, um grundsätzliche Konzepte zu illustrieren. In diesem Kapitel entwickeln wir
eine Methode zur Vergröberung der Dynamik, die ein Modell mit zwei gekoppelten
Freiheitsgraden für Motor und Testteilchen auf ein effektives Ein-Teilchen Modell
abbildet, indem die Dynamik des Testteilchens dynamisch und thermodynamisch
konsistent aus der Beschreibung entfernt wird. Die vergröberten Raten unterliegen
einer lokalen detaillierten Balance Bedingung und fühern zu den korrekten mitt-
leren Strömen. Zusätzlich bleiben die mittlere Entropieproduktion und die ther-
modynamische Effizienz erhalten. Im Allgemeinen zeigen die vergröberten Raten
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eine kompliziertere Kraft- und Konzentrationsabhängigkeit als die Raten eines ent-
sprechenden Ein-Teilchen Modells. Nur unter der unrealistischen Annahme, dass
das Testteilchen extrem schnell relaxiert, stimmen die Raten überein. Schließlich
wenden wir unsere Vergröberungsmethode auf zwei beispielhafte Modelle für die
F1-ATPase und Kinesin an und zeigen, wie ein solches vergröbertes Modell aus
experimentellen Daten konstruiert werden kann.
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Abstract
This thesis is dedicated to the dynamics and thermodynamics of molecular mo-
tors. In particular, it focuses on the influence of a coupled probe particle on
the properties of the motor protein. Molecular motors are enzymes that are able
to convert chemical energy available from, e.g., ATP hydrolysis into mechanical
motion. They are involved in a variety of important processes that account for
cellular function like transport of organelles, cell division, muscle contraction and
even ATP synthesis.
Although molecular motors are microscopic objects of the size of several nanome-

ters whose dynamics is strongly influenced by thermal fluctuations, they exhibit
a surprisingly stable and efficient performance. Hence, understanding the struc-
ture and mode of operation is of great scientific relevance in the fields of physics,
biology, chemistry and medicine.
Experimental studies typically imply some kind of probe particle that is attached

to the motor and serves as a sensor to visualize the motor motion and that allows to
exert forces on the motor under investigation. Since these probe particles are often
more than ten times larger than the motor itself, they can be expected to constitute
a considerable hindrance to the motor and to severely influence its dynamics and
thermodynamics. Inferring properties of the motor from experimental data is a
delicate task since on the one hand, only the trajectory of the probe is directly
accessible, while on the other hand any measurement results apply to the motor-
probe complex rather than the motor itself. In the first place, it is often unclear
which properties of the motor are influenced by the coupled probe and to what
extent.
Belonging to the class of mesoscopic biological systems, the dynamics of molec-

ular motors is subject to thermal fluctuations. Furthermore, the motors operate
under genuine nonequilibrium conditions. Hence, a theoretical description of these
microscopic machines requires the consideration of fluctuations and nonequilib-
rium conditions, which is provided by the framework of stochastic dynamics and
stochastic thermodynamics.
In this thesis, we theoretically analyze the dynamics and energetics of a molec-

ular motor coupled to a probe particle with regard to the effects caused by the
presence of the probe. Our goal is to determine the influence of the probe par-
ticle on several properties of the motor dynamics and energetics and to identify
features in the experimental data that are consequences of attaching a probe and
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do not belong to the motor itself. Furthermore, we provide a thermodynamically
consistent procedure to simplify the theoretical description by mapping motor and
probe to an effective motor particle. In order to investigate these effects we set
up a generic model comprising two degrees of freedom representing motor and
probe, respectively, that are coupled via an elastic linker. Results are obtained
from Monte Carlo simulations of the system and from numerically solving the
Fokker-Planck equation. In some cases, we also apply simplified models that can
be solved analytically. We also compare our results to available experimental data.

Chapter 2: Basics In this chapter, we briefly present an overview of stochas-
tic dynamics, stochastic thermodynamics and molecular motors. The concept of
stochastic dynamics includes the Langevin equation for an individual trajectory
and the Fokker-Planck and master equation on the ensemble level. The interpre-
tation of the first and second law along a single fluctuating trajectory constitute
the basic principles of stochastic thermodynamics. We briefly review the field of
application and the general mode of operation of molecular motors and present
experimental as well as theoretical approaches applied to motor proteins.

Chapter 3: Modeling of motor and probe dynamics Many single molecule
experiments for molecular motors comprise not only the motor but also large
probe particles coupled to it. The theoretical analysis of these assays, however,
often takes into account only the degrees of freedom representing the motor. In
this chapter, we introduce a simple model comprising two degrees of freedom
representing the motor and the probe particle. Both constituents are coupled
via an elastic linker. The combined dynamics consists of discrete steps of the
motor and continuous Brownian motion of the probe. We discuss motor models
with a single internal state as well as motor models with several internal states.
We will refer to these kind of models as hybrid models.

Chapter 4: Efficiencies of molecular motors with probe particles Since molec-
ular motors often perform work only against viscous load, several different defi-
nitions of efficiency exist. The genuine thermodynamic efficiency focuses on the
work against an external force, whereas the Stokes or generalized efficiency and the
pseudo efficiency also consider work against viscous friction, the latter even fluc-
tuations. These three definitions of efficiency have all been experimentally studied
for the F1-ATPase, which is a specific rotary motor involved in ATP synthesis
within cells. These experiments indicated values of almost 1 for all efficiencies
suggesting that the F1-ATPase can use the complete chemical energy to rotate the
probe. Here we apply the hybrid model with a one-state motor to investigate the
three types of efficiencies both in simulations and in a Gaussian approximation.

16



We find that the thermodynamic efficiency becomes 1 at stall conditions since our
motor is tightly coupled. The Stokes efficiency is much smaller than 1 for small
ATP concentrations due to the discrete nature of the motor steps which become
less relevant with increasing ATP concentration. In contrast, we find that the
pseudo efficiency becomes larger than 1 close to equilibrium conditions and for
a very asymmetric free-energy landscape with a barrier close to the initial state.
Comparing our theoretical results to the experimental data, we find overall good
agreement for all three types of efficiencies. Deviations concerning the pseudo ef-
ficiency occur for small Pi concentrations due to the simplicity of the one-state
motor model.

Chapter 5: Influence of cargo particle on motor dynamics This chapter is
dedicated to effects caused by the influence of the probe on the motor dynamics
that are visible in experimentally accessible quantities obtained from the trajectory
of the probe. In particular, we investigate the velocity autocorrelation function
(VACF) and the response function of the probe as well as the dwell-time distri-
bution of the motor jumps. First, we use three simplified hybrid models with
one-state motors that can be solved analytically to determine which kind of motor
dynamics causes which kind of structure in the VACF of the probe. Specifically,
we investigate a motor model with jump rates independent of the probe, a fully
coupled motor model with continuous state space and a motor model with deter-
ministic jump times. We find that additional structure in the VACF and response
function beyond a single exponential decay requires discrete motor jumps that
are not purely random and symmetric coupling between motor and probe. Since
simulation results of the original hybrid model show distinct oscillatory behavior
reminiscent of the periodic structure obtained for the deterministic motor jumps,
we conjecture that the coupling of the probe causes the motor to jump less ran-
domly. This is consistent with the analysis of the dwell-time distribution which
exhibits a peak indicating a non-Markovian dynamics. Such a phenomenon is of
particular interest since a peaked dwell-time distribution is usually attributed to
additional (hidden) motor states. Experimentally obtained VACFs and response
functions of the F1-ATPase qualitatively agree with our simulation results.

Chapter 6: Energy transduction mechanism and stall force anomaly Here we
focus on the influence of the probe on the energy transduction mechanism of the
motor. Information about the energy transduction mechanism can be obtained by
applying external forces to the motor-probe setup until the system reaches stall
conditions with zero average velocity. The stall force corresponds to the maximum
extractable work per motor step. In order to investigate the effect of the probe
on the energetics of the motor, we compare the stall conditions when the external
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force is applied via the probe particle with the case where it is applied directly to
the motor. Since the effects of the probe particle on the energy transduction can
be clearly presented using elements of network theory, we introduce the network
description of the hybrid model in this chapter. The network representation is
obtained by discretizing the state space of the probe. Additionally, we perform
simulations of specific hybrid models with unicyclic and multicyclic motors. Our
analysis reveals that for one-state motor models and unicyclic motor models, the
stall force is not altered by the presence of the probe. For multicyclic motor
models, however, the stall force with probe particle varies with probe size and can
be smaller, equal to or even larger than the stall force of the bare motor. From an
experimental point of view it is important to keep in mind that the measured stall
force corresponds to the motor-probe setup and does not necessarily represent the
motor properties. The observed variation of the stall force with probe size serves
as proof that the motor is multicyclic. Furthermore, applying a probe particle can
have the surprising effect that the maximum extractable work can be increased.

Chapter 7: Thermodynamically consistent coarse-graining method While
multiparticle models like our hybrid model are more precise and represent the
actual experimental setup, most theoretical models include only one particle rep-
resenting the motor. The advantage of one-particle models is obvious: they are
much easier to handle mathematically. Furthermore, they are often applied to
illustrate basic ideas. In this chapter, we present a coarse-graining method that
maps a model comprising two coupled degrees of freedom which represent motor
and probe particle to such an effective one-particle model by eliminating the dy-
namics of the probe particle in a thermodynamically and dynamically consistent
way. The coarse-grained rates obey a local detailed balance condition and repro-
duce the net currents. Moreover, the average entropy production as well as the
thermodynamic efficiency is invariant under this coarse-graining procedure. Our
analysis reveals that in general the coarse-grained rates exhibit a more complex
force and concentration dependence than the corresponding a priori one-particle
rates. Only by assuming unrealistically fast probe particles, the rates coincide. We
apply this coarse-graining method to specific case studies of the F1-ATPase and
the kinesin motor. We also provide guidelines how such a coarse-grained model
can be constructed on the basis of experimental data.
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1. Introduction
Embedded in an aqueous solution, small biological systems like cells, proteins,
DNA and vesicles as well as colloidal particles belong to the large class of soft
matter objects. Such microscopic objects with a size of several nm to µm are sub-
ject to thermal fluctuations induced by collisions with the molecules constituting
the surrounding solution. The resulting stochastic dynamics of the object is well
known as Brownian motion and has been first described in the 19th century by
R. Brown [1]. Most biological systems perform specific operations that require
permanent energy input. In the case of molecular motors, the energy supply is
used to generate directed motion which comes along with dissipation of energy
into the surrounding solvent. For constant energy input, the system reaches a
nonequilibrium steady state (NESS) with constant average currents.
The mathematical and physical framework suitable to study such stochastic

dynamics is based on the work of Einstein, Langevin and Smoluchowski [2–4]. The
Langevin equation describes the evolution of a single trajectory subject to thermal
noise whereas the Fokker-Planck and the master equation represent continuity
equations for the probability distribution of an observable.
Concerning the thermodynamic interpretation of small systems, classical ther-

modynamics is inadequate since fluctuations are not taken into account. Moreover,
biological systems often operate far away from equilibrium [5]. A consistent inter-
pretation of thermodynamic quantities like heat, work and entropy along a single
fluctuating trajectory is provided by stochastic thermodynamics [6–8].
A particularly interesting class of small biological systems are molecular mo-

tors, enzymatic complexes that convert chemical energy into mechanical motion.
Molecular motors constitute the “machinery of life”: They are essential compo-
nents involved in a variety of biological processes. From the generation of ATP
in mitochondria, the transport of organelles inside cells, DNA replication and cell
division, the motion of cilia, e.g., in the lung, the propulsion of sperm and bacte-
ria up to the contraction of muscles, all these processes depend on various kinds
of molecular motors [9–11]. While most motors like kinesin or myosin consume
ATP to gain energy from the hydrolysis reaction, the FoF1-ATPase is a special
motor that re-synthesizes the hydrolyzed ATP using energy from electrochemical
potential gradients across membranes (see Nobel Prize in Chemistry 1997 [12]).
Humans convert roughly 40 kg of ATP per day that way [11, 13].
One of the most intriguing properties of molecular motors is their ability to
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maintain a stable and efficient performance despite ubiquitous thermal fluctu-
ations. Much scientific attention has been paid to the structure and function of
these microscopic machines which attain much larger efficiencies than their macro-
scopic counterparts [14]. The F1-ATPase is in principle able to use the full free
energy obtained from ATP hydrolysis to rotate attached objects through viscous
solvent without notable dissipation in the motor domain itself [15–17]. Kinesin
has been found to transport its cargo for roughly hundred steps before detaching
from its track [18, 19].
The first motors discovered in 1940s were myosins, followed by dyneins in 1960s,

kinesins in 1985 and the FoF1-ATPase in the 1990s [9, 20–22]. Since then, ex-
perimental and theoretical studies of molecular motors have become a broad and
current field of research.
New experimental techniques which allow to investigate a single molecule along

a individual trajectories have evolved since the 1990s and are commonly known
as single molecule techniques [14, 23–25]. Many of these setups comprise colloidal
particles coupled to the motor to serve as probe to visualize the trajectory or to
exert forces on the motor under investigation. Those probe particles are often
much larger than the motor itself. On the basis of experimental data, theoretical
models are designed and properties of the motor are inferred from these exper-
imental setups. In the theoretical analysis of such assays, the motor is usually
modeled as a particle hopping on a discrete state space with transitions governed
by a master equation [26–31]. Alternatively, the so-called ratchet models combine
continuous diffusive spatial motion with stochastic switching between different po-
tentials corresponding to different chemical states [32, 33]. These approaches often
comprise only one particle explicitly, representing the motor. The contribution of
external forces which in the experiments act on the motor only via the probe are
then included in the transition rates [28, 29, 34–40] (or Langevin equation for the
spatial coordinate [41, 42]) of the motor particle directly. However, theoretical
models that are used to reproduce the experimental observations should comprise
at least two (coupled) degrees of freedom, one for the motor and one for the probe
particle. Omitting the explicit dynamics of the probe and attributing the experi-
mentally observed features to only the motor yields overly complex motor models
with possibly unrealistic thermodynamic properties. In general, it is a priori un-
clear which properties of the motor dynamics and energetics and to what extent
they are influenced by the coupling to the probe. Thus, for theoretical modeling as
well as interpretation of experimental data it is crucial to consider both the motor
and the probe as equal constituents of the setup.
In this thesis, we study theoretically the dynamics and thermodynamics of single

molecular motors coupled to a probe particle. We especially focus on the influence
of the probe on the motor which affects various properties of the dynamics and
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energetics accessible in experiments. In chapter 2, we provide a brief overview of
stochastic dynamics, stochastic thermodynamics and experimental and theoretical
research concerning molecular motors. Chapter 3 introduces the so-called hybrid
model representing a generic motor-probe setup that we will use to investigate
several effects caused by the coupling between motor and probe. In chapter 4
we study three different definitions of efficiency for molecular motors using hy-
brid models with a one-state motor. We apply our model to the F1-ATPase and
compare our results with recent experimental data. We then focus on the velocity
autocorrelation function and the response function of the probe as well as on the
dwell-time distribution, which can be obtained rather easily in experiments, in
chapter 5. We apply three simplified one-state models to obtain analytical results
providing insights into the connection between the motor dynamics and the ob-
served velocity autocorrelation of the probe. We compare the analytical results
with simulations and experimental data of the F1-ATPase. The last two chapters
address more general aspects concerning generic unicyclic and multicyclic motors.
We introduce the network representation of the hybrid models in chapter 6 and
show how the presence of the probe affects the net currents in the network Chapter
7 provides a thermodynamically consistent coarse-graining procedure that allows
to map hybrid models to effective one-particle models maintaining the correct
average currents, local detailed balance conditions and entropy production. A
concluding perspective can be found in chapter 8.

Publications

Parts of this thesis involve the following publications:

• “Efficiencies of a molecular motor: A generic hybrid model applied to the
F1-ATPase”
E. Zimmermann and U. Seifert, New J. Phys. 14, 103023 (2012)

• “Fine-structured large deviations and the fluctuation theorem: Molecular
motors and beyond”
P. Pietzonka, E. Zimmermann, and U. Seifert, EPL 107, 20002 (2014)

• “Effective rates from thermodynamically consistent coarse-graining of models
for molecular motors with probe particles”
E. Zimmermann and U. Seifert, Phys. Rev. E 91, 022709 (2015)
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2. Basics

2.1. Stochastic dynamics
Since molecular motors and colloidal particles are mesoscopic objects, thermal
fluctuations have a strong impact on their dynamics and energetics. The random
motion of such particles immersed in an aqueous solvent is well known as Brow-
nian motion. Since the smaller molecules of the solvent relax much faster than
the Brownian particle, the dynamics exhibit a time-scale separation between the
dynamics of the fast degrees of freedom and the slower ones. Thus, the random mo-
tion of the Brownian particle can be approximated very well by a Markov process
[43]. We will restrict the discussion here to one spatial dimension. The random dy-
namics along a continuous coordinate x can be described by the Langevin equation
[44, 45]

mẍ = −γẋ− ∂xV(x) + f + ξ(t), (2.1)
which is Newton’s equation of motion augmented by a random force ξ(t) that
the solvent molecules exert on the Brownian particle. The mass of the Brownian
particle is denoted bym, γ is the friction coefficient, f a (constant) external driving
force and V(x) a potential or, if the particle has internal degrees of freedom or if the
dynamics involves chemical reactions in the solvent, the free energy of system and
solvent. If inertial effects are negligible, the Langevin equation in the overdamped
limit reads

ẋ = (−∂xV(x) + f) /γ + ζ(t) (2.2)
with ζ(t) = ξ(t)/γ. The random contributions are usually modeled as Gaussian
white noise with zero mean and correlations

〈ζ(t2)ζ(t1)〉 = 2Dδ(t2 − t1). (2.3)
In the following, we set Boltzmann’s constant kB = 1 and temperature T = 1.

In equilibrium, the Einstein relation D = 1/γ relates the diffusion coefficient D
of the Brownian particle to its friction coefficient, which is a special case of the
fluctuation-dissipation theorem [46]. We will assume that driving the system out
of equilibrium does not affect the heat-bath properties of the solvent and D = 1/γ
remains valid.
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AKramers-Moyal expansion [44] provides the corresponding Fokker-Planck equa-
tion for the evolution of the probability distribution p(x)

∂tp(x, t) = −∂x
(
(−∂xV(x) + f)p(x, t)− ∂xp(x, t)

)
/γ (2.4)

≡ −∂xj(x, t) (2.5)
which constitutes a continuity equation for the probability current j(x, t).
On a discrete state space with states labeled by i, the equivalent to the Fokker-

Planck equation is given by the master equation [43]
∂tpi(t) =

∑
j

(pj(t)wji(t)− pi(t)wij(t)) , (2.6)

with transition rates wij ≥ 0. The master equation is a balance equation for fluxes
into and out of state i involving all other states j linked to i. The directed (net)
transition current between two states is denoted by

jij(t) ≡ pi(t)wij(t)− pj(t)wji(t) = −jji(t). (2.7)
In a stationary state, the left hand sides of Eqs. (2.5, 2.6) vanish. In genuine

equilibrium the currents j(x, t) and jij(t) are zero and the stationary distribution
corresponds to the Boltzmann distribution

peq(x) = exp[−V(y)]∫∞
−∞ exp[−V(y)] dy (2.8)

or

peq
i = exp[−Vi]∑

i exp[−Vi]
, (2.9)

respectively. Hence, from Eqs. (2.7, 2.9) one obtains
peq
i wij
peq
j wji

= 1 or peq
i

peq
j

= wji
wij

= exp[−∆Veq
ji ] (2.10)

which is known as detailed balance condition [43]. The potential or free-energy
difference between the states i, j is denoted by ∆Vij = Vj − Vi. In a nonequi-
librium steady state (NESS), there are in general constant nonzero currents. A
NESS can be generated by, e.g., external driving forces or, in the case of enzy-
matic reactions, by constant nonequilibrium concentrations of the involved solvent
molecules. The chemical reaction then delivers free energy driving the system out
of equilibrium which is incorporated in ∆Vij 6= ∆Veq

ij . For thermodynamic consis-
tency it is mandatory to impose the so-called local detailed balance condition on
the transition rates which can additionally include work Wij corresponding to the
external driving force [6, 37, 47–52]

wij
wji

= exp[−∆Vij +Wij]. (2.11)
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2.2. Stochastic thermodynamics

2.2. Stochastic thermodynamics
The solvent molecules surrounding a Brownian particle can be considered as a
heat bath in contact with the system of interest, which allows a consistent ther-
modynamic interpretation [6]. The framework of stochastic thermodynamics then
provides an identification of thermodynamic quantities on the level of a single
fluctuating trajectory.
Suppose the potential or free energy V(x) is not affected by the external driving,

then the work applied to the system is given by [7, 53]

d̄w = f dx or Wij = fdij (2.12)

for a discrete state space with a spatial separation of dij between states i, j. Using
the first law, d̄w = dE +d̄q, the heat can be identified as [6, 51]

d̄q = −∂xV(x) dx+ f dx− dssys(x) (2.13)

or, using Eq. (2.11),

qij = −∆Vij + fdij −∆ssys
ij = ln wij

wji
−∆ssys

ij . (2.14)

The intrinsic entropy of the system ssys = senz + ssol originating from fast internal
degrees of freedom and chemical reactions in the solvent occurs only if V is not a
bare potential but a free energy. For the first law, one then has to split the internal
energy into E = V + ssys [6, 51].
The total entropy production of the system and the surrounding solvent consists

of the following contributions. First, the entropy change of the solvent ṡmed, which
is caused by the dissipated heat (2.13, 2.14), second the internal entropy change of
the system ṡsys, which accounts for entropy changes of the particle and the solvent
due to chemical reactions. Third, the contribution of the stochastic entropy [54]

s(t) = − ln p(x(t), t) or s(t) = − ln pi(t)(t) (2.15)

with p(x(t), t), pi(t),t being the solution of Eqs. (2.5, 2.6), which represents the
entropy produced along a trajectory due to changing p(x, t). Hence, the total
entropy production reads [54]

ṡtot(t) =ṡmed + ṡsys + ṡ(t) = −∂tp(x, t)
p(x, t)

∣∣∣
x(t)

+ γj(x, t)
p(x, t)

∣∣∣
x(t)
ẋ (2.16)

for continuous dynamics where we have made use of the probability current defined
in Eq. (2.5). On a discrete state space, using Eq. (2.14), the total entropy
production rate is given by [6]

ṡtot(t) =− ∂tpi(t)
pi(t)

∣∣∣
i(t)

+
∑
k

δ(t− τk) ln pik(τk)wikjk
pjk(τk)wjkik

. (2.17)
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On average, the total entropy production fulfills the second law,

Ṡtot ≡ 〈stot〉 =
∫ γj2(x, t)

p(x, t) dx ≥ 0 and (2.18)

Ṡtot ≡ 〈stot〉 = 1
2
∑
ij

(
pi(t)wij − pj(t)wji

)
ln pi(t)wij
pj(t)wji

≥ 0. (2.19)

Note that in Eq. (2.19), the average entropy production is positive along each link
and hence also for any subgroup of states.

2.3. Molecular motors
2.3.1. General aspects
In this section, we will briefly provide an overview of molecular motors, the various
experimental approaches that are used to investigate these nanomachines as well
as popular theoretical modeling.
Biological cells are active systems operating in nonequilibrium environment.

Many of the processes involved in cellular function are conducted by molecular
motors. Molecular motors are enzymatic complexes on the size of a few nanometers
that are able to transduce energy available from chemical reactions into mechanical
motion. Their field of activity ranges from the synthesis of ATP, providing the
energy source for further processes, transport of vesicles and organelles, DNA
polymerization, production of proteins up to contraction of muscles and propulsion
of flagella [9, 10, 20, 55–57].
Within the cell, molecular motors operate in aqueous solution. Unbalanced

concentrations of the nucleotides providing chemical energy release during ATP
hydrolysis cause the motor proteins to operate under nonequilibrium conditions,
which allows for a rectified motion with non-zero average velocity. Under physi-
ological conditions, the free energy released from the hydrolysis of a single ATP
molecule is roughly 20 kBT [10]. Due to their small size and since they operate
at energy scales comparable to the thermal energy of the surrounding solvent,
molecular motors are subject to thermal fluctuations. Hence, their dynamics and
energetics become stochastic. Moreover, they move in a crowded environment.
Surprisingly, molecular motors exhibit a very efficient and robust performance
which makes them a very interesting object of research for physical, chemical and
biological science. The microscopic details of the energy conversion mechanism of
molecular motors have been of scientific interest for quite some time and are still
not fully understood [20].
In general, binding or hydrolysis of a nucleotide molecule causes configurational

changes in the motor molecule that finally yield rotations of parts of the molecule
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2.3. Molecular motors

Figure 2.1.: Structural model of the FoF1-ATPase [62]. Both the space-filling
model (a) and the ribbon model (b) have been constructed on the basis of several
partial structures provided by the Protein Data Bank [63]. During proton translo-
cation, the c subunit (purple) of the membrane-embedded Fo rotates and drives
the rotation of the asymmetric central γ stalk (red). The rotation of γ induces
conformational changes in the α and β subunits of F1 since the stator (subunits a,
b, δ; gray) fixes the orientation of α and β relative to the membrane. Reprinted
by permission from Macmillan Publishers Ltd: Nature, Ref. [62], c©2009

[58, 59] or a stronger or weaker coupling to the filament [60, 61]. This mechanism
allows for directed rotation along the preferred direction or for linear motion along
a filament. After releasing the hydrolysis products into the solvent, the chemo-
mechanical cycle is completed and the motor is in its original configurational state
yet having advanced a certain distance.
Since we will later apply our theoretical models and compare simulation results

with experimental data of the F1-ATPase and the kinesin motor, we will briefly
present these motors in more detail.
Oxidative phosphorylation is the process that provides energy on the cellular

level from oxidation of nutrients. Several protein complexes are involved including
the FoF1-ATPase which finally synthesizes ATP. It can be found in the mitochon-
dria of human and animal cells, in the thylakoid membranes of chloroplasts and
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Figure 2.2: Structural
models of the cytoskele-
ton motors kinesin,
myosin and dynein [64].
The catalytic domains
involving ATP hydrolysis
and binding and unbind-
ing from the filaments
are colored blue whereas
the tail domains that
attach to the cargo are
shown in purple. The
models are based on the
crystal structure of the
respective motor when
available. Reprinted
from Ref. [64], c©2003,
with permission from
Elsevier.

in bacterial plasma membranes. It consists of two parts, the membrane-embedded
Fo that uses a proton gradient to rotate a central stalk connected to the F1 part
inside the mitochondrion or bacterium, see Fig. 2.1. The rotation of the asym-
metric stalk induces conformational changes in the subunits of the F1 part which
facilitates binding of ADP and P and synthesis of an ATP molecule [22, 62, 65–
70]. This mechanism works also in reverse [71]. Both parts can be separated
and studied in detail [15, 16, 41, 58, 66, 72–77]. The particularly well studied
F1-motor consists of three α and three β subunits arranged around the central γ
stalk [78, 79]. Forced ATP synthesis has not only been observed within the cell
[80] but also in experiments exerting torque on the stalk [81]. In the absence of
an external torque and in the presence of ATP in excess, the F1-ATPase prefers
to run in the reverse direction hydrolyzing ATP. Binding and hydrolysis of an
ATP molecule at a β subunit drives a rotation of the γ shaft of 120◦ [73] which
has been observed to consist of two substeps of 90◦ (80◦) and 30◦ (40◦) [74]. The
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Figure 2.3: Kinesin and dynein
transporting cargo along a micro-
tubule [64]. Bidirectional transport
involving different motor species is
useful, e.g., to overcome obstacles on
the microtubule. Reprinted from Ref.
[64], c©2003, with permission from El-
sevier.

structural composition [82, 83] as well as the chemomechanical reaction pathway
of the F1-ATPase has been studied in detail [84–90]. These studies suggest that
for the F1-ATPase chemical and mechanical processes are tightly coupled due to
a single chemomechanical cycle that relates chemical energy input to mechanical
output.

The ATP that has been generated by the FoF1-ATPase is used by cytoskele-
ton motors like kinesin, dynein and myosin [61, 64]. Structural models of several
cytoskeleton motors are shown in Fig. 2.2. Cytoskeletal motor proteins move lin-
early along cytoskeletal filaments that serve as a track. Myosin moves along actin
filaments and is well known for causing muscle contraction [91, 92] while dynein
moves towards the minus end of microtubules and occurs in spindle formation,
chromosome segregation and transport of organelles [93].

Kinesin is a dimeric motor that moves along microtubules in the plus direction
[9, 93]. It steps in a hand-over-hand fashion [94] with a step size of 8 nm [95] and
is involved mainly in transport of organelles and vesicles. It is a highly processive
motor taking many steps before detaching from the microtubule [18, 19]. ATP
hydrolysis is used to weaken the coupling of one “head” with the filament [60,
61, 96]. Thus, the (rear) head can unbind and diffuse forward searching the next
binding site. Kinesin has been studied extensively both experimentally [18, 19,
95–99] and theoretically [28, 49, 100–103]. It was found that kinesin is able to
walk backwards hydrolyzing ATP [104]. Hence, these studies suggest that several
chemomechanical cycles are involved in the energy transduction process [28, 103,
105].

In addition to research on single motor molecules transporting cargo, various
experimental and theoretical studies have focused on several coupled motors or
several teams of motors coupled to the same cargo as depicted in Fig. 2.3. Such
collective transport seems to be the most realistic view of cargo translocation in
cells [106–112].
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2.3.2. Experimental techniques
Since the early 1990, in vitro experiments with single molecules have experienced
broad application in the field of molecular motors. The fact that molecular motors
are objects of only ∼ 10 nm in size but can take more than 100 steps per second [74,
99] poses challenges to experimental methods. Techniques that have been applied
successfully to molecular motors comprise fluorescence labeling and spectroscopy
as well as the investigation of large attached probe particles suitable for optical
trap and magnetic tweezer experiments [14, 20, 24, 25].
Fluorescent dyes can be attached directly to the motor in order to observe its

motion [19, 113]. Using an optical microscope, the resolution is limited by the
diffraction limit (∼ 200 nm) which is much larger than the motor itself (∼ 10
nm). Improved spatial resolution below the diffraction limit can be obtained using
a variety of methods known as super-resolution microscopy (see Nobel Prize in
Chemistry 2014 [114]) [24, 115]. Fluorescence imaging provided the insight that
kinesin moves hand-over-hand [94]. Förster resonance energy transfer (FRET) can
be used to detect conformational changes during the catalytic cycles [24, 116, 117].
Another group of very popular experimental methods involve probe particles of

the size of micrometers that are attached to the motor. The probe particles are
linked via biotin and streptavidin molecules to the motors which are assumed to
constitute a relatively soft linker. Concerning kinesin, the probe takes over the
role of the transported vesicle, whereas in the case of the F1-ATPase, the probe
is attached at the rotating central stalk. The applied probe particles range from
actin filaments [73] over dimeric and monomeric polystyrene beads [15, 77, 98, 99,
118], magnetic beads [15, 119] down to gold colloids of the size of only 40 nm
[74, 87, 120, 121].
The advantages of these methods are on the one hand that at least the larger

probes can be observed using conventional microscopy and, on the other hand,
that such probes allow to exert forces on the motors. Many optical and magnetic
tweezer experiments have been performed using such motor-probe setups [15, 73,
77, 81, 99, 122]. These techniques are of great importance since they allow to
gain insights not only in the dynamics but also in the thermodynamics and energy
transduction mechanism of molecular motors.
Despite their relevance, motor-probe setups also have shortcomings. Literally

speaking, in these assays one cannot observe the motion of the motor directly but
rather has to infer its properties from analyzing the trajectory of the probe particle.
Since the probe is often almost an order of magnitude larger, it often constitutes a
considerable hindrance to the motor and can severely influence its dynamics (and
thermodynamics). Inferring properties of the motor protein requires to consider
the interaction effects that depend on the linkage between motor protein and probe
[16, 101, 108, 110, 123–128].
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Figure 2.4: Trajectory of a motor-
probe setup with the F1-ATPase mo-
tor as used in [15]. Concentrations:
cT = 0.4µM, cD = 0.4µM, cPi =
1mM. Experimental data kindly pro-
vided by S. Toyabe.

A typical experimental trajectory of a motor-probe setup is shown in Fig. 2.4.
The trajectory of the probe shows a distinct staircase form indicating that the
motor advances with fast discrete steps.

2.3.3. Theoretical modeling
Operating in aqueous solution, the dynamics and energetics of molecular motors
are subject to thermal fluctuations. Hence, a stochastic dynamics approach is best
suited to model molecular motors.
Molecular motors are complex proteins that contain a large number of micro-

scopic degrees of freedom. In order to simplify the description, one usually focuses
on a set of relevant mesoscopic states x of the motor like, e.g., ATP bound to the
motor, hydrolysis products bound or nothing bound to the motor. Equilibration
among the microstates corresponding to the same mesostate has to be fast com-
pared to transitions between the mesostates. Nevertheless, the microscopic degrees
of freedom can influence the latter processes and should not be ignored [6, 51]. The
microstates of the motor and its surrounding solvent, collectively denoted by χ,
have a configurational energy Φ(χ) which includes interactions between motor and
solvent. The influence of the fast degrees of freedom on the mesoscopic dynamics
is then captured in the notion of a free-energy surface acting on x which is formally
obtained by summing over all χ belonging to the specific x [6, 51, 129],

F (x) = − ln
∑
χ|x

exp[−Φ(χ)]. (2.20)

Hence, investigation of the dynamics and thermodynamics of molecular motors
requires the notion of a free energy instead of a potential as presented in the
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Figure 2.5.: Schematic representation of a ratchet model (left) and a discrete
state model (right), adapted from [20]. The red arrows indicate the mechanism
of directed motion in the ratchet or the network. The ratchet potentials F enz

1 (x)
and F enz

2 (x) have a periodicity interval of length d. In the discrete state model,
each transition involves a mechanical step. Within one cycle of length d the motor
jumps between several internal states with rates wi,i+1, wi,i−1.

previous section.
The dynamics of x subject to the free-energy surface F (x) can now be described

using Langevin, Fokker-Planck or master equations [20, 26, 32, 57, 129, 130]. We
will briefly discuss two classes of models that have become very popular in modeling
molecular motors and are sketched in Fig. 2.5.
The so called ratchet models combine continuous diffusive spatial motion with

stochastic switching between different spatially periodic potentials F enz
i (x) ≡ Fi(x)−

F sol
i corresponding to different chemical states i and representing only enzymatic

conformations [32, 33, 41, 42]. The dynamics of the system is described by a set
of Fokker-Planck equations with source terms

∂tpi(x, t) =− ∂x((−∂xF enz
i (x) + f)pi(x, t)− ∂xpi(x, t))/γ

+
∑
j

(pj(t)wji(x)− pi(t)wij(x)) . (2.21)

Directed motion can be generated when the system is not in equilibrium and the
switching rates wij do not obey detailed balance. The energy input ∆F sol

ij is then
used to switch the potentials in such a way that the motor diffuses on average in
one direction. A simple ratchet model with two chemical states is shown in Fig.
2.5. Ratchet models need the explicit form of the free-energy landscape which
is not known in most cases. They are also not practical for motors with many
chemical or internal states i.
Discrete state stochastic models constitute a different approach [26–28, 28–31,

34–40]. The state space is represented by a network where the nodes are the
states and the edges correspond to the transition rates. The dynamics on the set
of discrete states is governed by a master equation (2.6). Each state represents
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an internal state of the motor and is assigned a free energy F enz
i . Transitions

between two states occur with transition rates wij where microscopic reversibility
implies wij 6= 0 ⇔ wji 6= 0. Transitions between the states i can be purely
chemical involving binding or release of nucleotides, purely conformational, purely
mechanical, or any combination thereof. Thermodynamic consistency requires the
rates to obey a LDB condition [6, 20]. If a transition involves binding or release
of nucleotides, the free-energy change appearing in the LDB condition (2.11) has
a contribution from the solvent, i.e., ∆Vij = ∆Fij = ∆F enz

ij + ∆F sol
ij .

Such network models with instantaneous transitions between states provide a
good approximation of the motor dynamics since experimental data indicate that
the individual steps indeed occur on very small timescales. If the network com-
prises a single cycle, the motor is called unicyclic. In general, motors with several
states typically contain several chemomechanical cycles and are called multicyclic.
The chemical and mechanical steps can be tightly or loosely coupled [131]. Tight
mechanochemical coupling requires that every cycle of the motor comprises the
chemical (input) as well as the mechanical (output) transitions. All unicyclic mo-
tors are automatically tightly coupled. Loose mechanochemical coupling implies
the presence of cycles that contain typically only transitions consuming chemical
energy but do not contribute to mechanical force generation. Such cycles clearly
reduce the energy-transduction efficiency of the motor and are called idle cycles
[38, 132].
In principle, ratchet models correspond to the continuum limit of a special class

of discrete state hopping models. Discretizing the the spatial coordinate of the
ratchet yields a discrete model where each state is linked to neighboring states via
chemical-conformational transitions (the original switching of the potential) and
mechanical-conformational transitions (the original diffusion process).
The contribution of external forces which in the experiments act on the motor

only via the probe are often included in the transition rates [28, 29, 34–40] or
Langevin equation for the spatial coordinate [41, 42] of the motor particle directly.
A theoretical model combining diffusive motion and a network description is

developed in [133]. Here, the states of the motor are represented by the nodes of
a network but the motor evolves diffusingly along the edges rather than jumping
instantaneously.
In contrast to these rather coarse models, molecular motors are also investi-

gated using molecular dynamics simulations based on the known structure of the
individual proteins that build up the motor complex [90, 134].

33





3. Modeling of motor and probe
dynamics

3.1. Introduction
In this chapter we will set up the models that will be used to investigate various
aspects of the coupling between a molecular motor and its attached probe particle.
In the following, we will denote models comprising motor and probe particles as
“hybrid models”. Such models consisting of one degree of freedom hopping on
a discrete state space representing the motor coupled to a continuously moving
degree of freedom representing the probe are discussed in [16, 101, 108–110, 128,
135, 136].

3.2. Motors with a single internal state

3.2.1. Single-molecule dynamics
Considering experimental realizations of motor-probe systems as mentioned in sec-
tion 2.3.2, the observed trajectories exhibit a staircase form. Thus, it is convenient
to model the transitions of the motor protein as sudden jumps that instantaneously
translocate the motor by its specific step size d in forward or backward direction.
According to the network models, a motor with only one internal state will be
modeled as a particle that jumps between discrete states n(t) separated by d.
The noisy appearance of the experimental trajectories during the plateaus be-

tween two steps can be attributed to the diffusion of the probe particle around
the actual motor position. The dynamics of the probe particle is assumed to be a
continuous diffusion and drift along a one-dimensional coordinate x(t). Since the
commonly used probe particles range from gold colloids with a diameter of 40 nm
to polystyrene beads or actin filaments almost on the order of µm, the dynamics
of the probe particle is described by an overdamped Langevin equation.
The system is characterized by the pair of variables (n,x) and is “bipartite” in

these variables since transitions do not happen in both variables at the same time.
Both constituents are coupled via some kind of elastic linker with potential energy
V (n− x) as shown in Fig. 3.1.

35



3. Modeling of motor and probe dynamics

Figure 3.1.: Schematic representation of a motor-bead model comprising a one-
state motor (blue) attached via an elastic linker to the probe particle (red) [137].
An external force fex is applied to the bead. The transition rates of the motor are
denoted by w+(n, x) and w−(n, x). The load sharing factors θ+ and θ− indicate
the position of an underlying unresolved potential barrier relative to the minimum
of the free-energy landscape of the motor. c©2015 American Physical Society.

The Langevin equation governing the dynamics of the probe reads

ẋ(t) = (−∂xV (n− x)− fex) /γ + ζ(t), (3.1)

with friction coefficient γ and thermal noise ζ(t) with correlations 〈ζ(t2)ζ(t1)〉 =
2δ(t2 − t1)/γ. The constant external force fex acting on the probe can be applied
using, e.g., optical traps or tweezers.
The transition rates of the motor fulfill a local detailed balance condition

w+(n, x)
w−(n+ d, x) = exp[∆µ− V (n+ d− x) + V (n− x)]. (3.2)

The free-energy change of the solvent ∆µ ≡ µT−µD−µP with µi = µeq
i +ln(ci/ceq

i )
and nucleotide concentrations ci is associated with ATP turnover. In the one-
state model, binding of ATP (ADP and Pi), hydrolysis (synthesis) and release
of the products all occurs within the forward (backward) jump. The free energy
of the motor does not change in the one-state model. Implementing mass action
law kinetics and the concept of a barrier in the potential of mean force for the
unresolved chemical steps, the individual rates become

w+(n, x) = w0 exp[µ+ − V (n+ dθ+ − x) + V (n− x)], (3.3)
w−(n, x) = w0 exp[µ− − V (n− dθ− − x) + V (n− x)]. (3.4)

The load-sharing factors θ+ and θ− satisfy θ++θ− = 1 and µ+ = µT, µ− = µD+µP.
We assume an exponential dependence of the transition rates on the potential

36



3.3. Motors with multiple internal states

difference of the linker according to Kramers’s theory, see also [138]. The attempt
frequency is denoted by w0.

3.2.2. Fokker-Planck equation
The transition rates, as well as the potential of the linker, depend on the instan-
taneous distance

y(t) ≡ n(t)− x(t) (3.5)
between motor and probe. The corresponding probability density p(y, t) obeys the
Fokker-Planck-type equation

∂tp(y) = ∂y
(

(∂y V (y)− fex) p(y) + ∂y p(y)
)
/γ

+ p(y − d)w+(y − d) + p(y + d)w−(y + d)
− p(y)

(
w+(y) + w−(y)

)
. (3.6)

For constant nucleotide concentrations that deviate from their equilibrium ratio,
the system reaches a nonequilibrium stationary state (NESS) with constant average
velocity

v ≡ d
∫ ∞
−∞

ps(y)(w+(y)− w−(y)) dy (3.7)

=
∫ ∞
−∞

ps(y) (∂yV (y)− fex) /γ dy = 〈ẋ〉

and stationary distribution ps(y).
Simulations of this model using a Gillespie algorithm as described in the Ap-

pendix A generates trajectories as shown in Fig. 3.2 in the top row. All parameter
sets correspond to an excess of ATP over ADP and Pi which is indicated by a
curved arrow in the sketches at the bottom. A positive ∆µ yields a positive av-
erage velocity except for the second panel where the external force is larger than
∆µ/d. The center row shows the corresponding ps(y). The stationary distribu-
tion exhibits a shoulder representing the configurations right after a jump of the
motor, when the probe has not relaxed yet. The shoulder is most pronounced for
the largest ∆µ (fourth panel) and almost absent when the probe is very small and
relaxes fast (third panel).

3.3. Motors with multiple internal states
3.3.1. Single-molecule dynamics
In this section, we will generalize the model taking into account several different
internal states of the motor labeled by i. The motor states represent the nodes
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Figure 3.2.: Top: Trajectories of a one-state model for the F1-ATPase for several
parameter sets obtained from simulations. The trajectory of the motor is shown
in blue, the one of the probe in red. Center: Stationary distributions ps(y) cor-
responding to the trajectories of the top row. Bottom: Sketches of the typical
configurations of the motor-probe complex for the corresponding parameter sets.
Parameters: κ = 40d−2, θ+ = 0.1, w0 exp[µeq

T ]/ceq
T = 3× 107 (Ms)−1, γ = 0.5 s/d2,

fex = 0, cT = cD = 2µM, cP = 1mM (far left); γ = 0.5 s/d2, fex = 40 d−1,
cT = cD = 2µM, cP = 1mM (left); γ = 0.005 s/d2, fex = 0, cT = cD = 2µM,
cP = 1mM (right); γ = 0.5 s/d2, fex = 0, cT = 1mM, cD = 2µM, cP = 1mM (far
right).

and the transitions the edges of a network. Transitions between the motor states
i and j change the free energy by

∆Fα
ij ≡ ∆F enz

ij −∆µαij (3.8)

where ∆F enz
ij = F enz

j − F enz
i is the free-energy difference of the internal states of

the motor and ∆µαij = −∆µαji is the free-energy change of the solvent. Depending
on the transition, ∆µαij is given by µT, µD, µP or any combination thereof or 0.
Transitions may also advance the motor a distance dαij = −dαji. Since we allow for
several transitions connecting two states, we assign an additional index α to the
transitions indicating which link between i and j is used.
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Figure 3.3.: Schematic representation of a motor-bead model for the F1-ATPase
with two internal states of the motor, 1 (blue) and 2 (green) [137]. Transition
between states 1 to 2 corresponding to the 90◦ (30◦) substep are labeled with
superscript 90 (30). The transition rates are chosen accordingly to Eqs. (3.10,
3.11) with φαij(y) ≡ 1. c©2015 American Physical Society.

The transition rates of the motor obey the LDB condition

wαij(y)
wαji(y + dαij)

= exp[−∆Fα
ij − V (y + dαij) + V (y)]. (3.9)

For multistate motors, Kramers-type transition rates like Eqs. (3.3, 3.4) can be
constructed yielding

wαij(y) = kαijφ
α
ij(y) exp[µα,+ij − V (y + dαijθ

α,+
ij ) + V (y)], (3.10)

wαji(y) = kαjiφ
α
ij(y) exp[µα,−ij − V (y − dαijθ

α,−
ij ) + V (y)], (3.11)

with µα,+ij − µ
α,−
ij = ∆µαij and kαij/kαji = exp[−F enz

j + F enz
i ]. The change of chem-

ical free energy ∆µαij is split into µα,+ij and µα,−ij indicating that both directions
of the transition can involve binding and release of the chemical species that ac-
count for ∆µαij. The free-energy change arising from changing the motor state,
F enz
j − F enz

i , is incorporated in the attempt frequencies kαij of the corresponding
states. The function φαij(y) accounts for a possible y-dependence of pure chemical
or conformational rates with dαij = 0. Note that φαij(y) has to be chosen such that
its contributions cancel in the local detailed balance condition.
An example for a motor with two internal states that is linked to a probe particle

is shown in Fig. 3.3. This system represents a motor-probe model of the F1-ATPase
that takes into account the 90◦ and 30◦ substep that was observed in [74].
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3.3.2. Fokker-Planck equation
The Fokker-Planck-type equation for multistate models is given by

∂tpi(y) = ∂y ((∂y V (y)− fex) pi(y) + ∂ypi(y)) /γ
+
∑
j,α

(
pj(y + dαij)wαji(y + dαij)− pi(y)wαij(y)

)
. (3.12)

Average quantities in the NESS like the velocity can be obtained by summing over
i, j, α and integrating over y,

v =
∑
i,j,α

∫ ∞
−∞

psi (y)wαij(y)dαij dy (3.13)

=
∑
i,j,α

∫ ∞
−∞

psi (y)(∂yV (y)− fex)/γ dy. (3.14)

A trajectory generated using the model in Fig. 3.3 is shown in Fig. 3.4. The
step length of the motor is divided in two substeps of length 0.75d and 0.25d.
For the parameters chosen here, the substeps are not visible in the trajectory of
the probe. The right panel shows the stationary distribution for each state. The
overall probability to be in state 1 is much larger than the probability for state 2
since for the chosen parameters, the rate-limiting process is the transition from 1 to
2 via the 0.75d step. Compared to the one-step model in the previous section, the
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Figure 3.4.: Left: Trajectory of the two-state motor from Fig. 3.3 (blue) and
the attached probe particle (red). Left: Stationary distribution for each of the
two motor states. The blue curve corresponds to motor state 1, the green one to
state 2. Parameters: γ = 0.5s/d2, κ = 40d−2, cT = 10µM, cD = 2µM, cP = 1mM,
θ+

90,30 = 0.1, k90
12 exp[µeq

T ]/ceq
T = 3 × 107(Ms)−1, k90

21 exp[µeq
D ]/ceq

D = 3667.5(Ms)−1,
k30

21 = 1000s−1, k30
12 exp[µeq

P ]/ceq
P = 40(Ms)−1.
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shoulder of ps1(y) is less pronounced since the step size is smaller and configurations
with an elongated linker right after a forward jump by 0.75d contribute to ps2(y).
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4. Efficiencies of molecular motors
with probe particles

4.1. Introduction
The operation of molecular motors constitutes a transduction from chemical to
mechanical energy. Hence, a quantity of general interest is the efficiency of such
stochastic isothermal machines [38, 132, 139–141]. For motor proteins, different
kinds of efficiencies can be defined depending on whether one focuses on the work
against an external force, i.e., thermodynamic efficiency or whether work against
viscous friction is also taken into account like in the Stokes or generalized efficiency
[142–147].
In this chapter, we apply the hybrid model with a one-state motor as intro-

duced in section 3.2 to investigate different kinds of efficiencies used previously
to describe the energetics of molecular motors. In particular, we compare our re-
sults quantitatively to recent experiments of the rotary motor protein F1–ATPase
[15, 77, 119, 148]. Therefore we assume a harmonic potential V (y) = κy2/2 for
the linker motivated also by experimental observations [138].
Previous theoretical modeling of the F1-ATPase using a discrete state model

as well as a ratchet model assuming the probe to stick directly at the motor has
especially focused on the dependence of the rotational behavior on friction, exter-
nal forces, nucleotide concentrations and temperature as well as on chemical and
thermodynamic efficiency and the fluctuation theorem [41, 76]. Experimental ob-
servations of the F1-ATPase in the hydrolysis direction include the measurements
of different kinds of efficiencies. The Stokes efficiency, a Stokes efficiency confined
to single jumping events and the thermodynamic efficiency, especially at stall con-
ditions, have been investigated [77, 149, 150]. These experiments led to values
for the Stokes efficiency and the thermodynamic efficiency of almost 1 suggesting
that the F1-ATPase can use almost the complete chemical energy either to drive
the probe through a viscous medium or to perform work against an external force.
Recently, a measure of the efficiency that takes explicitly care of fluctuations was
introduced [15]. The definition of efficiency used there also provided values close
to 1 for the examined parameters. Our analysis will show that the latter efficiency
can easily reach values larger than 1. Most of the results presented in this chapter
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have been published in [16].

4.2. Energetics and definitions of efficiency

4.2.1. First law: Single trajectory
Following the concept of stochastic thermodynamics [53, 151] one can assign a first
law on the level of a single trajectory. If the probe moves a small distance ∆x, the
first law becomes

∆qP = (−∂V
∂x
− fex)∆x = (κy − fex)∆x (4.1)

where ∆qP is the heat dissipated by the probe, fex∆x is the work against the
external force and (∂xV )∆x the change of the internal energy of the spring due to
the motion of only the probe. A jump of the motor protein gives rise to a first law
in the form of [51]

0 =∆V + ∆Esol + ∆qM

=∆V −∆µ+ ∆ssol + ∆qM (4.2)

without a contribution of the internal energy of the motor as its internal energy
does not change in the one–state model. The change of the internal energy of the
spring is given by

∆V ≡ V (n± d, x)− V (n, x) (4.3)

where the sign depends on the the direction of the jump. Due to ATP turnover,
the internal energy of the solution changes by ∆Esol = −∆µ+ ∆ssol, where ∆ssol

is the change of the entropy of the solution. The heat dissipated by the motor
protein in this transition is denoted by ∆qM.

4.2.2. First law: Ensemble average
On average, the chemical energy gained from ATP consumption that involves
changes of the entropy of the solvent will be dissipated as heatQ in the environment
and/or is delivered as work against the external force. Under NESS conditions,
which we will consider in this chapter, the internal energy of the spring is constant
on average. Taking the average rates of (4.1) and (4.2) and summing the two
contributions, this first–law condition can be expressed as

∆̇µ = Q̇P + Q̇M + Ṡsol + fexv (4.4)
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where the dot denotes a rate and

∆̇µ ≡ −〈Ḟ sol〉 = ∆µv/d (4.5)

is the rate of free-energy consumption. The rate of dissipated heat Q̇ = Q̇P + Q̇M
has two contributions. First, the heat flow through the motor protein is given by

Q̇M ≡ 〈q̇M〉 = ∆̇µ− V̇n − Ṡsol, (4.6)

representing the fact that while jumping, the motor protein uses free energy from
the hydrolysis to load the spring which corresponds to a change of the internal
energy of the spring V̇n with

V̇n ≡
∫ ∞
−∞

ps(y)[w+(y)(V (y + d)− V (y)) + w−(y)(V (y − d)− V (y))] dy
(4.7)

= κd2

2 〈w
+(y) + w−(y)〉+ κd〈y(w+(y)− w−(y))〉. (4.8)

The energy thus stored in the spring is then dissipated by the probe whose heat
flow is given by

Q̇P ≡ 〈q̇P〉 = 〈(κy − fex)ν(y)〉 (4.9)

where

ν(y) ≡ ((κy − fex) + ∂y ln ps(y))/γ. (4.10)

is the local mean velocity of the probe for a given y [152, 153] which corresponds
to the current arising from the motion of only the probe in (3.6).

4.2.3. Three different efficiencies
We will now focus on three different definitions of efficiency that have been pro-
posed for motor proteins.
In the absence of an external force (fex = 0), one can compare the energy that

the motor protein transfers to the spring, V̇n, with its available chemical energy
∆̇µ. From (4.4) and (4.6) it follows that V̇n = Q̇P. The ratio of on average
dissipated heat through the probe and available free energy

ηQ ≡
Q̇P

∆̇µ
= dκ〈yν〉

v∆µ (4.11)

was proposed as definition of efficiency [15]. We will see below that ηQ is not
bounded by 1, as it has been anticipated earlier [143, 154], and therefore we will
call it a pseudo efficiency.
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A second type of efficiency is the Stokes efficiency,

ηS ≡
γv2

∆̇µ
= dκ〈y〉

∆µ , (4.12)

that compares the mean drag force γv the probe feels with the available chemical
force. In contrast to ηQ, ηS is bounded by 1 [143]. If the motor protein exerted
a constant force on the probe, the Stokes efficiency would be equal to the pseudo
efficiency ηQ because in this case the average heat dissipated by the probe is the
mean drag force times d.
Finally, in the presence of an external force acting on the probe, the thermody-

namic efficiency of the system is the ratio between mechanical work delivered to
the external force and available free energy [132, 155]

ηT ≡
fexv

∆̇µ
= fexd

∆µ . (4.13)

For fex 6= 0, the pseudo efficiency ηQ can be defined as

ηQ = Q̇P + fexv

∆̇µ
. (4.14)

4.3. Gaussian approximation
4.3.1. Derivation
For a comparison with the simulations and in order to gain more analytical insights,
it will be convenient to have a simple approximation for the stationary distribution
ps(y). For a Gaussian probability distribution

pG(y) ≡ 1√
2πσ

exp[−(y − ȳ)2

2σ2 ] (4.15)

the free parameters ȳ for the mean and σ2 for the variance can be determined
by requiring that the time–derivative of these quantities as calculated with the
Fokker–Planck equation (3.6) vanishes in the steady state. These conditions result
in the following two equations for ȳ and σ2

(κȳ − fex)/γ = d(w̄+ − w̄−) (4.16)

and

(κσ2 + κȳ2 − fexȳ − 1)/γ =d[(ȳ − κdθ+σ2)w̄+ − (ȳ + κdθ−σ2)w̄−]
+ d2(w̄+ + w̄−)/2, (4.17)
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4.3. Gaussian approximation

where we have introduced the average jump rates

w̄+ ≡
∫ ∞
−∞

w+(y)pG(y) dy

= w0 exp[µT − κ(dθ+)2(1− κσ2)/2− κdθ+ȳ] (4.18)

w̄− ≡
∫ ∞
−∞

w−(y)pG(y) dy

= w0 exp[µD + µP − κ(dθ−)2(1− κσ2)/2 + κdθ−ȳ]. (4.19)

These equations can easily be solved numerically.

4.3.2. Limits ∆µ → 0 and ∆µ → ∞
Close to chemical equilibrium, i.e., ∆µ = 0, and for fex = 0, we expand ȳ and
κσ2 − 1 up to first order in ∆µ and find

ȳ ≈ A∆µ+ Ã(θ+ − θ−)2∆µ (4.20)

and

κσ2 − 1 ≈ B(θ+ − θ−)∆µ. (4.21)

The coefficients A, Ã and B obtained by solving the first order of (4.16) and (4.17)
are too long to be shown here.
In the limit ∆µ→∞ and fex = 0, we obtain for ȳ and κσ2 − 1

ȳ ≈ ∆µ
κd
− C∆µ exp[−∆µθ−] (4.22)

and

κσ2 − 1 ≈ D∆µ exp[−∆µθ−] (4.23)

as long as θ− > 0. The coefficients

C = 1 + κd2(θ+ − θ−)2/4
γκd3w0 exp[µD + µP] (4.24)

and

D = − θ+ − θ−

2γd2w0 exp[µD + µP] (4.25)

are obtained by solving (4.16) and (4.17) to first and second order in ∆µ.
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4. Efficiencies of molecular motors with probe particles

4.3.3. Efficiencies
Within this Gaussian approximation, the average heat flow through the probe as
given by (4.9) is calculated using the local mean velocity (4.10)

ν(y) = (κy − fex)/γ − (y − ȳ)/(γσ2). (4.26)

The average over y can now be performed leading to

Q̇P = (κ2σ2 + κ2ȳ2 − κ− 2κfexȳ + f 2
ex)/γ. (4.27)

This expression is used to determine ηQ in this approximation as

ηQ = dκ
κσ2 − 1 + κȳ2 − fexȳ

∆µ(κȳ − fex) (4.28)

with ȳ and σ2 being the solution of (4.16) and (4.17) for given nucleotide concen-
trations and w0.
For small ∆µ, using (4.20) and (4.21), ηQ takes the form

ηQ ≈
dB(θ+ − θ−)

(A+ Ã(θ+ − θ−)2)∆µ
+ κdA+ κdÃ(θ+ − θ−)2. (4.29)

If θ+ 6= θ−, ηQ diverges for vanishing ∆µ. For θ+ > θ−, ηQ can become negative
due to those jumps of the motor protein that occur when the previous diffusion
of the probe has resulted in y < −0.5d. Then, the energy stored in the spring is
dissipated by the motor protein during jumping.
In the limit of large ∆µ, we use (4.23) and (4.24) to obtain

ηQ ≈ 1− κdC exp[−∆µθ−] + dD exp[−∆µθ−]
∆µ/(κd)− C∆µ exp[−∆µθ−] (4.30)

which approaches 1.
The Stokes efficiency in the Gaussian approximation without an external force

is simply given by

ηS = dκȳ

∆µ . (4.31)

For κσ2 > 1, which is the case for θ+ < 0.5, the Stokes efficiency is always smaller
than ηQ. For vanishing ∆µ, ηS approaches a finite value, ηS ≈ dκA+dκÃ(θ+−θ−)2,
while for ∆µ→∞ it also converges to 1.
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4.4. Results
In this section, we study the three efficiencies for our hybrid model as functions
of the chemical energy ∆µ, the absolute concentrations of the nucleotides, i.e.
weq ≡ w0 exp[µeq

T ], the external force fex and the load sharing factor θ+. The data
are obtained from simulations (see Appendix A) and compared with the Gaussian
approximation.
We use model parameters as given in table 4.1 which are motivated by exper-

imental results for the F1–ATPase as described in section 4.5 below. The load
sharing factor θ+ remains as a free parameter.

Table 4.1.: Values of the model parameters used for the simulation and the Gaus-
sian approximation.

γ [s/d2] κ [d−2] weq/ceq
ATP [M−1s−1]

0.407 40 3× 107

4.4.1. Pseudo efficiency ηQ
We will first investigate the pseudo efficiency ηQ as a function of ∆µ, weq and
θ+. We extract Q̇P from the numerical data by averaging over one sufficiently
long trajectory. The results are shown in Fig. 4.1. The most striking fact of
these data is the observation that ηQ is larger than 1 for small enough ∆µ and
θ+ which shows up in the Gaussian approximation as well. This effect can be
understood as follows. In a jump, the motor protein can take heat from the
solution in order to change the internal energy of the spring by an amount larger
than ∆µ. If, subsequently, the probe dissipates this internal energy of the spring
as heat back into the environment, Q̇P can indeed become larger than ∆̇µ without
any violation of the second law. Using the obtained parameter for the spring
constant κ, the motor protein transfers 20 (kBT ) to the spring if it starts the jump
from the minimum of the harmonic potential. For small values of θ+, the forward
jump rate of the motor protein depends only weakly on the current position of
the probe as shown in Fig. 4.2. Therefore, jumps will occur even if the associated
change of internal energy of the spring, ∆V , is larger than ∆µ. For rather small
weq, backward jumps are rare and the probe relaxes to the potential minimum
between successive forward jumps. This leads to V̇n > ∆̇µ on average and hence
to ηQ > 1 for ∆µ considerably smaller than 20 as shown in Fig. 4.1. As the value
of θ+ increases, ηQ decreases because the forward jumps of the motor protein are
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Figure 4.1.: Pseudo efficiency ηQ from the simulation, top; and within the Gaus-
sian approximation, bottom. Top: ηQ as a function of ∆µ for different values of
the load sharing factor θ+ and fixed weq = 10−5s−1. Bottom: ηQ as a function of
∆µ for different values of weq with fixed θ+ = 0.1. The remaining parameters are
κ = d−2, γ = 0.407s/d2. In the simulation, the error is of the order of the symbol
size.

suppressed. On average, in this case the motor protein jumps only if the probe
has diffused forward and exerts a pulling force on the motor through the spring.
Increasing the absolute concentrations of the nucleotides, i.e., increasing weq,

results in more forward but also more backward jumps, which can be seen for the
far right panel in Fig. 3.2. For small ∆µ, the occasional backward jumps follow
especially those forward jumps for which the change of internal energy of the spring
has been larger than ∆µ, leading to a smaller ηQ.
In the limit of large ∆µ, the motor protein jumps even when the spring is

previously stretched which can result in changes of the internal energy of the
spring by an amount larger than 20. The coupling between the motor protein
and the probe induces a balancing effect between the forward motion of the motor
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Figure 4.2: Probability distribution
p(y)|jump of the distance y just before
a jump of the motor protein for sev-
eral values of θ+ at ∆µ = 13kBT and
weq = 10−5s−1. For small θ+, the for-
ward jumps of the motor protein are
almost independent of the position of
the probe resulting in a peak at y ' 0
whereas for larger θ+ the peak clearly
shifts to y < 0 implying that the
motor protein prefers to jump when
the probe has diffused ahead. The
peaks around y = 1 indicate backward
jumps which take place more often in
the case of small θ+ when the back-
ward rate is more sensitive to the po-
sition of the probe.

protein and the drag of the probe maintaining a typical V̇ that turns out to be
approximately ∆̇µ, leading to ηQ ' 1 (see also discussion in Appendix C).

4.4.2. Stokes efficiency ηS

We also obtain the Stokes efficiency (4.12) from the simulated trajectories and the
Gaussian approximation as shown in Fig. 4.3. Characteristically, starting close to
0 for small ∆µ, ηS monotonically increases with ∆µ reaching 1 for ∆µ→∞. For
small ∆µ, the trajectory of the probe shows a staircase form with small average
velocity leading to small values of the Stokes efficiency in contrast to values of the
pseudo efficiency ηQ > 1. For large ∆µ, the probe does not relax to the potential
minimum between consecutive jumps resulting in a more linear trajectory of the
probe as if it was exposed to an almost constant force. In this limit of an almost
linear motion of the probe, the pseudo efficiency becomes the Stokes efficiency. As
ηS is bounded by 1, ηQ can not reach values larger than 1 in this limit either.
Increasing the load sharing factor θ+ results in decreasing average velocities.

Therefore, the Stokes efficiency also decreases which can be seen in Figs. 4.3 left,
top and bottom. With increasing absolute concentrations of nucleotides, i.e., with
increasing weq, the average velocity and therefore also the Stokes efficiency at fixed
∆µ increases as shown in Figs. 4.3 right, top and bottom.
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Figure 4.3.: (a) Stokes efficiency ηS from the simulation, top; and within the
Gaussian approximation, bottom. The data is obtained from the same trajectories
used to obtain ηQ in Fig. 4.1 top. Left: ηS as a function of ∆µ for different values
of the load sharing factor θ+ and fixed weq = 10−5s−1. Right: ηS as a function of
∆µ for different values of weq for fixed θ+ = 0.1.

4.4.3. Thermodynamic efficiency ηT

The thermodynamic efficiency of the system can be studied only if an external
force is applied to the probe. Tight mechanochemical coupling of the one-state
motor, i.e., the average velocity equals the rate of ATP hydrolysis, implies that ηT
is given by Eq. (4.13). Hence, ηT increases linearly with fex for fixed ∆µ up to
stall conditions. For one-state motors, the stall force equals ∆µ and ηT|stall = 1
and Q̇P = 0. At stall conditions, the work corresponding to the stall force refers to
the maximum work the motor protein can convert on average. Thus, the one-state
motor is able to convert the full ∆µ into extractable work. In our model, where
the motor interacts with the external force only via the spring, this result is not as
trivial as it would have been if we had applied fex directly to the motor. A detailed
discussion about stall conditions also of multistate motors is given in section 6.3.
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4.5. Case study: F1-ATPase

In the simulation, applying fex = ∆µ/d generates a diffusive motion of the motor
protein with v ' 0 and Q̇P ' 0 for various values of θ+ and ∆µ, including the ones
with ηQ > 1 and ηQ < 1. Under these conditions, ps(y) is Gaussian with 〈y〉 =
∆µ/(dk) and the same variance as the Boltzmann-distribution in equilibrium,
σ2 = 1/κ.
Within the Gaussian approximation we can insert fex = ∆µ/d in (4.16) and

(4.17). With κσ2 = 1, ȳ = ∆µ/(dκ), i.e., v = 0 is a solution for fex = ∆µ/d with
Q̇P = 0, implying that also in the Gaussian approximation the motor protein is
able to convert the full ∆µ into extractable work for any values of the load sharing
factors given that θ+ + θ− = 1.

4.5. Case study: F1-ATPase
In this section, we apply our hybrid model to the F1–ATPase and compare the
simulations with recent experimental data [15, 77, 148].

4.5.1. Model parameters
For a quantitative comparison we have to map the rotary motion of the F1–ATPase
to our linear model and determine the model parameters. In our model, one jump
of the motor protein covering a distance d corresponds to a rotation of the γ shaft
of 120◦. Using large probe particles like polystyrene beads or actin filaments,
the substeps in one 120◦ rotation are not resolved experimentally. Therefore,
we will omit the substeps here, too. We assume that the solution is at room
temperature (T ' 24◦C) and that the probe consists of two beads of diameter
287nm [15]. The friction coefficient of the probe can be calculated using the
formula for the rotational frictional coefficient Γ from [41, 119] with the viscosity
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V Figure 4.4: Comparison of the mean
velocities observed experimentally
[15] (red squares) and in the simula-
tion for several load sharing factors
θ+ (black dots, green diamonds and
blue triangles). The labeling I, II,
III, V refers to the corresponding
parameter sets in Fig. 4.5.
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4. Efficiencies of molecular motors with probe particles

of water (η ' 0.001Ns/m2). The frictional torque N = Γϕ̇ acting on the probe
with angular velocity ϕ̇ corresponds to a frictional force

ffr = Γ
r2 ẋ = γẋ (4.32)

acting on the probe at distance r from the γ shaft. Within one 120◦ rotation, the
probe at distance r covers d = 2πr/3. For the linear model, the friction coefficient
γ can be calculated as

γ = Γ
r2 = 4π2Γ

9d2 (4.33)

leading to γ = 0.407s/d2.
Following the mass action law assumption, the equilibrium transition rate weq is

supposed to depend linearly on the concentrations of nucleotides in the solvent. For
low ATP concentrations (cATP ' 10−6M), the mean velocity of the motor protein is
dominated by the rate of ATP binding. In the one-step model this feature holds for
all concentrations. Therefore we choose weq to be the experimentally determined
rate of ATP binding weq ' 3 × 107M−1s−1ceq

ATP[74]. For known nonequilibrium
concentrations of nucleotides like in the experiments, the structure of the transition
rates (3.3) and (3.4) leaves the choice of the equilibrium concentrations arbitrary
as long as they obey

ceq
ATP

ceq
ADPc

eq
Pi

' 4.89× 10−6 1
M (4.34)

for pH 7 (and T = 23◦C) [41]. For given weq and ∆µ, one possible choice of the
nonequilibrium concentrations of nucleotides is cADP = ceq

ADP, cPi = ceq
Pi and cATP =

ceq
ATP exp[∆µ] which was used for the simulation and the Gaussian approximation.
In order to determine the spring constant κ and the load sharing factor θ+ we

use both the experimental data of the mean velocities [15] and the histogram of
the angular position of the probe at a jump [148]. While both data sets depend
on both parameters, the velocity, especially for large weq, is more sensitive to κ
whereas the peak position of the histogram mainly depends on θ+. Therefore, we
primarily use the velocity data to fit κ and determine the load sharing factor θ+

by comparing the peak position of the experimental histogram [148] with the left
peak position of the corresponding histograms obtained by our simulation as the
ones shown in Fig. 4.2.
As a result, we obtain κ = 40 ± 5 d−2 and a value of θ+ in the range 0.1 .

θ+ . 0.3. In Fig. 4.4, we show how for this value of κ changing the load sharing
factor affects the mean velocity for which we get the best overall agreement for
θ+ = 0.1. Experiments on the ATP binding and hydrolysis rates as functions of
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4.5. Case study: F1-ATPase

the rotary angle indicate that 9% of the ATP-binding step is supported by thermal
fluctuations which agrees very well with θ+ = 0.1 [138]. For later purposes, we
also include data for θ+ = 0.01.

4.5.2. Comparison of efficiencies with experimental data

Pseudo efficiency

Experimentally, the heat flow of the probe is determined using the Harada-Sasa
relation [156]. In the appendix, we show that this heat flow is equal to Q̇P as defined
in (4.9). In Fig. 4.5, we plot the average heat released through the probe per step,
QP, plus the work against the external force, W , obtained by the simulation for
κ = 40 d−2 and θ+ = 0.1 and compare it with the experimental results [15]. We
find quite good agreement between theory and experiment for the parameter sets
I-IV where either the maximum deviation is 15% (II-IV) or our theoretical value
is included in the experimental error range (I). As an aside, we note that for the
parameter sets I-III (without external force) also the simulated mean velocities
coincide well with the experimental values with a maximum deviation of 10% as
shown in Fig. 4.4. For illustrative purposes, we also plot QP plus W for θ+ = 0.01
which shows better agreement with the experimental data (but is not consistent
with the range of θ+ obtained in section 4.5.1).
Discrepancies between our theory and the experiment are visible in Figs. 4.4 and

4.5 where for parameter set V both the average velocity and the pseudo efficiency
deviate significantly from the experimental values for κ = 40 d−2 and θ+ = 0.1.
For ∆µ = 28.12(kBT ) corresponding to the data set V in Fig. 4.5, the probe just
reaches the potential minimum between consecutive jumps of the motor protein.
Therefore on average at most 20(kBT ) can be transferred to the spring leading
to ηQ ' 0.7, which is less than the experimental value. This discrepancy is most
likely caused by the simplicity of our model which does not capture the structural
complexity of the motor and the linker.
The confinement of θ+ to the range 0.1 . θ+ . 0.3 implies on the one hand

that the potential of mean force of the motor protein should be asymmetric and
on the other hand that asymmetric potentials with a barrier state close to the
initial state seem to enhance the ability of the motor protein to perform work on
the spring, in accordance with [157]. If θ+ was larger, ηQ would decrease and the
experimentally determined values of ηQ would not be reached in the simulation. If
θ+ was smaller, ηQ would approach the experimental values better, however, the
distribution of the position of the probe just before a jump as shown in Fig. 4.2
would then no longer coincide with the experimentally observed distribution (see
[148]).
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Figure 4.5.: Average heat QP released through the probe (green and cyan) and
work W ≡ fexd against the external force (blue) compared to the available free
energy per step ∆µ (red line). The dissipated heat of the probe is split into two
contributions QS and QV according to the two terms of the Harada–Sasa relation
(B.3). The contribution from the linear motion with constant mean velocity, QS
(cyan), appears in the numerator of the Stokes efficiency while QV (green) is the
contribution due to the non–uniform jumping motion of the motor protein. In each
of the five parameter sets labeled by I-V, the left and the central bar represent
results from the simulation for θ+ = 0.1 and θ+ = 0.01, respectively, while the
right bar shows the experimental results and error bars from [15]. The following
parameters were used in the five cases: (I) cT = 0.4µM, cD = 0.4µM, cP = 1mM,
i.e, weq = 5.87× 10−8 s−1 and ∆µ = 19.14; (II) cT = 2µM, cD = 2µM, cP = 1mM,
i.e, weq = 2.93 × 10−7 s−1 and ∆µ = 19.14; (III) cT = 100µM, cD = 100µM,
cP = 1mM, i.e, weq = 1.47×10−5 s−1 and ∆µ = 19.14; (IV) cT = 2µM, cD = 2µM,
cP = 1mM, fex = 9.27d−1, i.e, weq = 2.93 × 10−7 s−1 and ∆µ = 19.14; (V)
cT = 2µM, cD = 0.5µM, cP = 0.5µM, i.e, weq = 3.67× 10−11 s−1 and ∆µ = 28.12.

Thermodynamic efficiency

Information about the thermodynamic efficiency of the motor protein can be ob-
tained by applying an external force to the probe. In Fig. 4.6 we show the ex-
tracted/delivered work as well as the dissipated heat and their sum obtained from
our simulations in comparison with experimental results from [118, 158]. The data
is obtained for a fixed value of ∆µ by increasing the external force from 0 far
beyond the stall force.
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Figure 4.6.: Comparison of the simulation results (left) with experimental data
from [118] (right). The concentrations used in the simulation are the same as in
the experiment: cT = cD = 10µM, cP = 1mM, θ+ = 0.1.

The extracted work increases up to fexd = ∆µ at the stall force, which is found
to be f st

ex = ∆µ/d also in the experiment [77, 158]. Thus, the motor is able to
convert the full ∆µ into extractable work without any dissipation. Both in the
experiment and in the simulation, the dissipated heat through the probe decreases
linearly from almost ∆µ at fex = 0 to zero at the stall force.
Beyond stall conditions, the external force has to be considered as energy supply

to run the F1-ATPase in reverse to synthesize ATP. Producing one ATP molecule,
the motor uses (−)∆µ from the available (−)fexd per step. The excess energy
delivered by the external force is then dissipated through the motor and the probe
as heat. We find that the dissipated heat increases linearly with fex which implies
that the excess energy is mainly dissipated through the probe.
The sum of both contributions, extracted/delivered work and dissipated heat

through the probe, is almost equal to ±∆µ for external forces both smaller and
larger than the stall force. This corresponds to the almost dissipation-free energy
conversion in the motor. Note that even if the energy conversion in the motor
is dissipation-free, any v 6= 0 involves dissipation at the probe. The maximum
extracted work with Q̇P = 0, Q̇M = 0 can be attained only at v = 0. For the
parameters used in the experiment, we find a very good agreement between our
simulation and the experimental data also for external forces far beyond the stall
force.
One has to keep in mind that the parameters used in this illustrative example
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yield a pseudo efficiency of almost 1 in the absence of external forces. Using
parameters which yield smaller or larger pseudo efficiencies for fex = 0, one should
also expect deviations of ηQ ' 1 in the presence of external forces.
It is important to note that observing fexd=∆µ at stall conditions does not imply

that the motor does not have idle cycles. That condition just states that the full
∆µ obtained from one hydrolysis event can be converted into mechanical power.
However, as long as one does not measure the rate of ATP turnover, there can
be many additional idle cycles wasting ∆µ without any displacement (see detailed
discussion in section 6.5). Experiments controlling also the ATP concentrations
indicate that the F1-ATPase does not have idle cycles [86].

4.6. Conclusion
In summary, we have discussed three types of efficiencies within a hybrid-model
with one-state motor using both simulations and a Gaussian approximation to the
stationary distribution for the distance between motor and probe. The genuine
thermodynamic efficiency is non-zero only if an external force is applied to the
probe. The Stokes efficiency deviates from 1 due to the discrete nature of the
motor steps which become less relevant with increasing ATP concentration. A
pseudo efficiency measuring how much of the free energy of ATP hydrolysis ends
up in loading the elastic element can even become larger than 1 close to equilibrium
and for a barrier state close to the initial state. This result is not in conflict with
the second law since the pseudo efficiency involves heat dissipated by the probe
rather than work that is extracted from the system.
Applying this minimal model to recent experimental data for the F1–ATPase we

find overall good agreement concerning all three types of efficiencies. Considering
the pseudo efficiency, deviations occur for those parameters where especially the Pi
concentration is very small originating from the simplicity of our model. To over-
come these limitations, we have split the 120◦ rotation into two steps of 90◦ and
30◦ (see section 3.3 and Fig. 3.3) and also incorporated an additional hydrolysis
step. The linker potential has been replaced by a superposition of two harmonic
potentials with different spring constants weighted depending on y. Even with
these amendments, we do not obtain simulation results that match the experimen-
tal data over the complete parameter range considering average velocity, pseudo
efficiency and the shape of the velocity autocorrelation function.
Since any extension of the model comes along with additional fit parameters

and a much more complicated analysis, we show only results from the simple
one-state model and the harmonic linker here. The basic properties of motor-
bead interaction are already captured by this simple setup, which provides deeper
insight into the origin of the observed effects.
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motor dynamics

5.1. Introduction

The presence of probe particles not only constitutes a drag on the motor slowing
down its average velocity but also severely influences its dynamics. It has been
found that the presence of cargo particles can make the motor dynamics almost
deterministic and also change its dwell-time distribution from a single-exponential
distribution to a distribution with a distinct peak [135, 159].

In this chapter, we will present an additional effect that demonstrates the in-
fluence of the probe on the dynamics of the motor. Analyzing experimental data,
it is essential to be aware of these effects caused by probe particles. Attributing
all features to the motor dynamics would yield overly complex motor models with
“wrong” parameters.

First, we will focus on the velocity autocorrelation function and the response
function of the probe particle since these quantities can be investigated experi-
mentally [15]. We investigate three different simplified one-state motor models
with different motor dynamics to identify which motor characteristics causes the
structure in the correlation and response function observed in the simulation (and
also slightly in experimental data). We find that it is possible to infer properties of
the dynamics of the motor from the velocity autocorrelation of the probe particle.
As a consequence thereof, the influence of the probe on the dynamics of the motor
is also visible in the velocity autocorrelation. Second, we will briefly discuss the
dwell-time distribution between subsequent motor jumps in our one-state motor
model.

The analysis in this chapter is restricted to NESS conditions without external
forces acting on the probe. In order to obtain analytical results with the simplified
models, we will assume a harmonic linker potential.
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5.2. Velocity autocorrelation function and response
function

5.2.1. General aspects
An experimentally accessible quantity in single-molecule setups is the velocity
autocorrelation function (VACF) of the probe particle as measured in [15]. The
VACF is defined as

Cẋ(t2, t1) ≡ 〈ẋ(t2)ẋ(t1)〉. (5.1)

Inserting the Langevin equation for the dynamics of the probe particle, Eq. (3.1),
with the harmonic linker potential V (y) = κy2/2, the VACF takes the following
form

Cẋ(t2, t1) =κ2 (〈n(t2)n(t1)〉 − 〈n(t2)x(t1)〉 − 〈x(t2)n(t1)〉+ 〈x(t2)x(t1)〉) /γ2

+ κ (〈n(t2)ζ(t1)〉 − 〈x(t2)ζ(t1)〉+ 〈ζ(t2)n(t1)〉 − 〈ζ(t2)x(t1)〉) /γ
+ 〈ζ(t2)ζ(t1)〉. (5.2)

The linear response of the average velocity of the probe at time t2 to a small
external perturbation h(t) applied at t1 is defined as [44]

Rẋ(t2, t1) ≡ δ〈ẋ(t2)〉
δh(t1)

∣∣∣
h=0

. (5.3)

In the NESS, the response function can be expressed by a correlation function

Rẋ(t2, t1) = 〈ẋ(t2)B(t1)〉 (5.4)

with the conjugate variable B(t). The conjugate variable can be calculated, inter
alia, using a path weight approach [160]. The path weight of the full system with
motor and probe dynamics is given by P [n(t), x(t), h(t)] ≡ exp [−S[n(t), x(t), h(t)]]
with

S[n(t), x(t), h(t)] = Smotor[n(t)|x(t), h(t)]

+ γ

4

∫ t

0

(
(ẋ(t′)− (κy(t′)− fex + h(t′))/γ)2

+ ∂x (κy(t′)− fex + h(t′)) /(2γ)
)

dt′ (5.5)

where the explicit expression for the action Smotor[n(t)|x(t), h(t)] depends on the
actual motor model. If the small perturbation acts only on the probe (which is
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5.2. Velocity autocorrelation function and response function

the case in all of our models considered here), the conjugate variable B(t) includes
only contributions from the dynamics of the probe particle,

B(t1) =− δS[n(t), x(t), h(t)]
δh(t1)

∣∣∣
h=0

(5.6)

=− δ

δh(t1)
[γ
4

∫ t

0

(
(ẋ(t′)− (κy(t′)− fex + h(t′))/γ)2

+ ∂x(κy(t′)− fex + h(t′))/(2γ)
)

dt′
]∣∣∣
h=0

(5.7)

=1
2 (ẋ(t1)− (κy(t1)− fex)/γ) . (5.8)

The response function then follows as

Rẋ(t2, t1) = 1
2〈ẋ(t2)[ẋ(t1)− (κy(t1)− fex)/γ]〉. (5.9)

Using the Langevin equation (3.1), the response function can be simplified by
replacing (κy(t)− fex)/γ = ẋ(t)− ζ(t) [153],

Rẋ(t2, t1) =1
2〈ẋ(t2)ζ(t1)〉 (5.10)

=1
2
(
κ〈n(t2)ζ(t1)〉/γ − κ〈x(t2)ζ(t1)〉/γ + 〈ζ(t2)ζ(t1)〉

)
. (5.11)

For systems in equilibrium, a relation known as the fluctuation-dissipation the-
orem (FDT) states that the response function equals the VACF [46, 161, 162].

5.2.2. Independent motor dynamics
Velocity autocorrelation

First, we will consider a simplification of the one-state motor model introduced
in section 3.2. We assume that the motor performs a biased random walk on a
discrete state space independent of the probe position. The rates then obey a
reduced LDB condition

w+

w−
= exp[∆µ]. (5.12)

The dynamics of the probe evolves according to the Langevin equation (3.1) with
V (y) = κy2/2 whose formal solution for fex = 0 and x(0) = 0 is given by

x(t) = exp[−κt/γ]
∫ t

0
(κn(t′)/γ + ζ(t′)) exp[κt/γ] dt′. (5.13)
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5. Influence of cargo particle on motor dynamics

Using this expression, the VACF in the form (5.2) can be calculated analytically.
Since n(t) and ζ(t) are independent, we have 〈n(t)ζ(t′)〉 = 〈n(t)〉〈ζ(t′)〉 = 0.
The autocorrelation function of the motor position can be obtained using the

generating function [43] of the corresponding master equation

∂tp(i, t) = p(i− 1, t)w+ + p(i+ 1, t)w− − p(i, t)(w+ + w−) (5.14)

with n = di. For the initial condition p(i, t1) = δij, the generating function reads

F (z, t | j, t1) ≡
∑
i

zip(i, t) (5.15)

= exp
[
(w+z + w−/z − (w+ + w−))(t− t1)

]
zj. (5.16)

Using the properties of the generating function [43], the autocorrelation function
of the motor position is given by [163]

〈n(t2)n(t1)〉 =d2(w+ − w−)2t2t1 + d2(w+ + w−)t1 for t1 < t2. (5.17)

The VACF of the probe particle for independent motor jumps can now be cal-
culated and yields in the limit t2, t1 →∞,

C ind
ẋ (τ) =κ

γ

(
d2

2 (w+ + w−)− 1
γ

)
exp[−κτ/γ] + 2

γ
δ(τ)

+ d2(w+ − w−)2. (5.18)

with the average velocity d(w+ − w−) and τ = t2 − t1.
For independent motor jumps, the VACF of the probe particle decays expo-

nentially on the timescale of the relaxation of the probe just as an overdamped
harmonic oscillator would. The presence of the motor affects only the amplitude
of the VACF. Depending on whether the (bare) diffusion coefficient of the probe,
1/γ, is larger or smaller than the diffusion coefficient of the motor, d2(w+ +w−)/2,
the velocity of the probe is anticorrelated or correlated (relative to the squared
average velocity), respectively.
If the diffusion coefficient of the motor is smaller than the one of the probe,

jumps are rather rare and the probe spends most of the time fluctuating around
y = 0. If fluctuations induce velocities of the probe significantly larger (smaller)
than the average velocity, the restoring force of the stretched linker will induce a
smaller (larger) velocity of the probe shortly after. Therefore, in the anticorrelated
regime, the influence of motor jumps is barely noticeable and the correlation of
the velocity is dominated by the restoring force of the linker.
For large diffusion coefficients of the motor, frequent forward and backward

jumps of the motor occur. Suppose a jump of the motor induces a large velocity of
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5.2. Velocity autocorrelation function and response function

the probe, the velocity will typically remain larger than the average until the probe
has relaxed yielding a positive correlation of the velocity. Since motor jumps are
frequent, such events outweigh the influence of the restoring force. Furthermore,
fluctuation-induced large velocities of the probe may be even more increased by
subsequent motor jumps in the corresponding direction.

Response function

Since the contribution of the motor jumps to the action of the path weight is
independent of the perturbation, the response function in the form of Eq. (5.11)
can be used, where the first summand is zero. A simple calculation then yields

Rind
ẋ (τ) = − κ

γ2 exp[−κτ/γ] + 1
γ
δ(τ). (5.19)

This response function is equivalent to the response function of an overdamped
harmonic oscillator. Except for w+ = w− = 0, it never matches the VACF, not
even in equilibrium, which constitutes a violation of the FDT. The origin of the
violation is the missing coupling of the motor to the spring. Since the external
perturbation causing the response is applied to the probe particle, the dynamics
of the motor is not influenced by the external perturbation at all. Therefore, the
response of the velocity of the probe to such an external perturbation does not
contain any contributions of the motor dynamics either.
Obviously, omitting the coupling of the motor to the linker results in an unphys-

ical system. In any well-defined model, the FDT in equilibrium should hold. In
the case of violated FDT, also the heat flow through the probe particle obtained
using stochastic thermodynamics, Eq. (4.1), is no longer consistent with the heat
flow obtained using the Harada-Sasa relation (see Appendix B).

5.2.3. Continuous motor dynamics
Velocity autocorrelation

As mentioned above, omitting the influence of the coupling on the motor dynamics
is quite unrealistic. Therefore we want to set up a model that is able to capture
the full coupling between motor and probe while still being analytically tractable.
A possible realization comprises two coupled degrees of freedom representing mo-
tor and probe that perform a biased diffusion on a continuous state space. The
dynamics of motor and probe are then represented by two harmonically coupled
overdamped Langevin equations

ẋ(t) = κ (n(t)− x(t)) /γ + ζ(t) (5.20)
ṅ(t) = −λκ (n(t)− x(t)) /η + ∆µ/(ηd) + ξ(t), (5.21)
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5. Influence of cargo particle on motor dynamics

where η is the friction coefficient and ξ(t) with 〈ξ(t2)ξ(t1)〉 = 2δ(t2 − t1)/η the
thermal noise acting on the motor. For later purposes, we introduce a coupling
strength λ. The chemical energy obtained from ATP turnover is represented by a
chemical force or affinity ∆µ/d acting on the motor. (The chemical contribution
can also be incorporated in the thermal noise in form of a nonzero average of the
noise.) Since the two coupled Langevin equations are linear, they can be written
as a matrix equationẋ(t)

ṅ(t)


︸ ︷︷ ︸

ż(t)

=

−κ/γ κ/γ

λκ/η −λκ/η


︸ ︷︷ ︸

K

x(t)

n(t)


︸ ︷︷ ︸

z(t)

+

 ζ(t)

∆µ/(ηd) + ξ(t),


︸ ︷︷ ︸

Γ(t)

(5.22)

whose solution for x(0) = 0, n(0) = 0 is given by [44]

zi(t) =
∫ t

0
Gij(t− t′)Γj(t′) dt′ (5.23)

with Green’s function G(t) = exp[Kt]. The explicit solutions read

x(t) =
t∫

0

(
λγζ(t′) + ηξ(t′) + ∆µ/d

λγ + η

−η(ξ(t′)− ζ(t′)) + ∆µ/d
λγ + η

exp
[
−κλγ + η

γη
(t− t′)

])
dt′ (5.24)

n(t) =
t∫

0

(
λγζ(t′) + ηξ(t′) + ∆µ/d

λγ + η

+ λγ (ξ(t′)− ζ(t′) + ∆µ/(ηd))
λγ + η

exp
[
−κλγ + η

γη
(t− t′)

])
dt′.

(5.25)

Inserting these expressions in the VACF (5.2) and using the correlations of the
noise, we obtain in the limit t2, t1 →∞

Ccont
ẋ (τ) =κ

γ

(
γ + η

γ(λγ + η) − 2/γ
)

exp
[
−κλγ + η

γη
τ

]
+ 2
γ
δ(τ)

+ ∆µ2

d2(λγ + η)2 . (5.26)

If we consider λ = 1, which corresponds to symmetric coupling of motor and
probe to the linker, the VACF reduces to

Ccont
ẋ (τ) = − κ

γ2 exp
[
−κη + γ

ηγ
τ

]
+ 2
γ
δ(τ) + ∆µ2

(η + γ)2d2 . (5.27)
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5.2. Velocity autocorrelation function and response function

It has the same amplitude (relative to the squared average velocity) as a harmonic
oscillator that is obtained by fixing the motor position. For the coupled continuous
scenario, however, the VACF decays faster than the harmonic oscillator with an
effective friction coefficient ηγ/(η+γ) since the motor contributes to the relaxation
of the linker. If the linker is stretched, its restoring force acts on probe and motor
in the same fashion and induces a drift of the probe and, as the motor moves
continuously, also of the motor in the opposite direction relaxing the linker. Thus,
the relaxation time of the restoring force and therefore also the correlation time of
the VACF is smaller than in the previous scenario where the restoring force acts
only on the probe particle.
We will now consider λ = 0 which corresponds to zero coupling. This scenario

is analogous to the assumption that the jump rates introduced in the previous
section are independent of the probe position. In this limit, the VACF is given by

Ccont
ẋ (τ) = κ

γ

(
1
η
− 1
γ

)
exp[−κτ/γ] + 2

γ
δ(τ) + ∆µ2

η2d2 , (5.28)

which is consistent with Eq. (5.18) since 1/η represents the diffusion coefficient of
the motor and ∆µ/(ηd) the average velocity.

Response function

The response function is given by Eq. (5.11) and can be calculated easily yielding

Rcont
ẋ (τ) = − κ

γ2 exp
[
−κλγ + η

γη
τ

]
+ 1
γ
δ(τ). (5.29)

For the fully coupled scenario with λ = 1 we obtain

Rcont
ẋ (τ) = − κ

γ2 exp
[
−κγ + η

γη
τ

]
+ 1
γ
δ(τ), (5.30)

which is consistent with the VACF (5.27) in equilibrium, where we have ∆µ = 0
and vanishing average velocity ∆µ/((η + γ)d) = 0. The δ contribution lacks the
prefactor 2 since Rẋ(τ) is only defined for τ ≥ 0. Thus, the fully coupled model
fulfills the FDT in equilibrium. In the case λ = 0, the response function (5.29)
reduces to Eq. (5.19) which again violates the FDT.
In NESS conditions, the VACF (5.27) differs from the response function (5.30)

only by an offset given by the squared average velocity. Therefore, the heat flow
through the probe is simply given by the contribution appearing in the Stokes
efficiency, Q̇P = γ∆µ2/(d2(η + γ)2) = γv2, which can easily be seen using the
Harada-Sasa relation. Apparently, continuous motor dynamics (energetically) re-
sembles a constant external driving of the probe particle. Detailed discussions of
the efficiency of this model can be found in Appendix C.
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5. Influence of cargo particle on motor dynamics

Note that despite the coupling between the dynamics of motor and probe, the
VACF as well as the response function decay purely exponentially.

5.2.4. Fully deterministic motor jumps

Velocity autocorrelation

We will now return to the discrete modeling of the motor. In contrast to section
5.2.2, we assume that the motor jumps deterministically, i.e., after a fixed time-
interval T the motor jumps a distance d in the forward direction. Its trajectory is
then given by

n(t) = d
⌊
t

T

⌋
(5.31)

with initial condition n(0) = 0, where b.c represents the floor function. The
dynamics of the probe obeys the Langevin equation (3.1).
Using the formal solution of the Langevin equation (5.13) and the explicit tra-

jectory n(t), the VACF (5.2) can be calculated analytically. Since n(t) is a deter-
ministic process and independent of x(t), we have 〈n(t2)n(t1)〉 = d2 bt2/T c bt1/T c
and 〈n(t)ζ(t′)〉 = 0. The calculation of the VACF is lengthy but straightforward,
therefore it is not shown here. In the limit t2, t1 →∞ the VACF is given by

〈ẋ(t2)ẋ(t1)〉 = d2κ2 exp[2κT/γ]
γ2(1− exp[κT/γ])2 exp[−κT (S(t2) + S(t1))/γ]

− κ

γ2 exp[κ(t2 − t1)/γ] + 2
γ
δ(t2 − t1) for t1 < t2, (5.32)

where we have made use of the sawtooth wave S(t) = t/T − bt/T c. Note that the
average is an ensemble average or average over the noise for fixed t1, t2. Since motor
jumps are deterministic, the VACF according to Eq. (5.2) depends explicitly on
t1, t2. Choosing a specific starting point t1, the next motor jump occurs at the
same time for every trajectory that contributes to the average. Therefore, the
velocity autocorrelation as a function of the time difference t2− t1 can be obtained
by averaging Eq. (5.32) over all starting points t1 within a time interval T keeping
τ = t2 − t1 fixed,

Cdet
ẋ (τ) = 〈ẋ(t2)ẋ(t1)〉 ≡ 1

T

∫ T

0
〈ẋ(t2)ẋ(t1)〉 dt1 = 1

T

∫ T

0
〈ẋ(t1 + τ)ẋ(t1)〉 dt1

(5.33)
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5.2. Velocity autocorrelation function and response function

which yields

Cdet
ẋ (τ) = d2κ2 exp[2κT/γ]

γ2T (1− exp[κT/γ])2

∫ T

0
exp[−κT (S(t1 + τ) + S(t1))/γ] dt1

− κ

γ2 exp[−κτ/γ] + 2
γ
δ(τ). (5.34)

The last two terms of the VACF correspond to the velocity autocorrelation of
an overdamped harmonic oscillator and represent the interaction of the probe
particle with the spring. The influence of the motor jumps enters via the first
term. Since motor jumps are deterministic, the first term is a periodic function in
T and does not decay to zero for τ →∞. In contrast to the previous sections, the
VACF assuming deterministic discrete motor jumps now shows significantly more
structure than the single exponential decay obtained so far.

Response function

The response function for deterministic motor dynamics is calculated using Eq.
(5.11) which yields

Rdet
ẋ (τ) = − κ

γ2 exp[−κτ/γ] + 1
γ
δ(τ). (5.35)

This result is equivalent to the response function for independent motor dynamics
since in both scenarios the motor is not coupled to the dynamics of the probe and
is therefore not influenced by the external perturbation.

5.2.5. Simulation results and comparison with theoretical
scenarios

We apply the one-state hybrid model used in the previous chapter to perform
simulations of the full motor and probe dynamics. We then compare the outcomes
of the simplified models developed in the previous section to the results from these
simulations.
The VACF of the probe particle and the response of its velocity to an external

perturbation are shown in Figs. 5.1 and 5.2, respectively. For better comparison,
the squared average velocity v2 is subtracted from all VACFs in the following
sections. The parameters w+, w−, η and T appearing in the simplified models are
chosen such that the average velocity of the simplified models matches the average
velocity of the simulation. Specifically, we choose w+ = 〈w+(y)〉, w− = 〈w−(y)〉,
η = ∆µ/(vd)−γ, and T = d/v. Note that with this choice for the rates w+, w−, the
diffusion coefficient according to the independent motor dynamics, d2(w+ +w−)/2,
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Figure 5.1.: VACF obtained from the simulations (blue) compared to the VACF
using the simplified models (red, orange, green). Parameters: κ = 40d−2, γ =
0.407 s/d2, θ+ = 0.1, weq = 10−5s−1, ∆µ = 10, w+ = 0.219s−1, w− = 0.077s−1,
η = 7.00s/d2, T = 7.04s (top left), ∆µ = 16, w+ = 49.29s−1, w− = 30.61s−1,
η = 0.449s/d2, T = 0.054s (top right), ∆µ = 22 w+ = 7430s−1, w− = 7383s−1,
η = 0.068s/d2, T = 0.023s (bottom left) and ∆µ = 28, w+ = 1.61354 × 106s−1,
w− = 1.61348× 106s−1, η = 0.034s/d2, T = 0.016s (bottom right).

is much larger than the actual effective diffusion coefficient of the motor-probe
complex. Thus, the corresponding VACF is beyond the range shown in the bottom
panels of Fig. 5.1.
Depending on the nucleotide concentrations, the VACF and the response func-

tion obtained from simulations exhibit two regimes [163]. Starting with small
overall concentrations and small ∆µ (top left panels in Figs. 5.1, 5.2), the VACF
and the response function show an almost single exponential decay and resemble
the corresponding functions of an overdamped harmonic oscillator. The physical
interpretation is the same as for the model with independent motor dynamics: If
jumps are rare, they hardly influence the probe dynamics which is then dominated
by the restoring force of the linker. Hence, in this regime the simulation and the
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Figure 5.2.: Response function obtained from the simulation (blue) in comparison
to the response functions of the simplified models (red, orange,green). Parameters
as given in Fig. 5.1.

analytical results almost coincide.
Increasing the ATP concentration, i.e., increasing ∆µ yields more forward (but

also backward, induced by the stretched linker) jumps of the motor. We observe
an emerging peak and finally pronounced oscillatory behavior in the VACF. For
the largest ∆µ, the VACF is reminiscent of the velocity autocorrelation of an un-
derdamped harmonic oscillator although the dynamics of the probe is purely over-
damped. The oscillations result from the dynamics of the motor. If a motor jump
induces a large velocity of the probe, the velocity will still be larger than its average
shortly after due to the relaxation of the linker. Additionally, fluctuation-induced
large velocities of the probe stretch the linker which increases the probability of
a corresponding motor jump. Those induced motor jumps suddenly switch the
direction of the force acting on the probe resulting in an assisting instead of a
restoring force which maintains a velocity larger than the average [163]. Such in-
teraction effects contribute to a positive correlation in the VACF for small τ . The
following anticorrelation in the VACF is mostly attributed to the relaxation of the
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5. Influence of cargo particle on motor dynamics

linker. If the process starts off at τ = 0 with a large velocity and stretched linker,
the linker tends to relax until the velocity of the probe is smaller than its average.
With decreasing y, the probability for chemically induced (forward) motor jumps
rises, hence the motor is most likely to perform a successful forward jump that is
not immediately followed by a backward jump when the linker has (on average)
relaxed. This subsequent jump event again increases the probe velocity above its
average and yields a positive correlation with the velocity compared to τ = 0.
These “successful subsequent events” manifest in the second peak of the VACF,
which occurs at τ equal to the average time 〈t+〉 ≡ d/v between two successful
forward jumps. The same reasoning applies if the process starts off with relaxed
linker and velocity smaller than the average, then the anticorrelation is due to a
jump event that increases the velocity above the average. Compared to the ana-
lytical results, the emerging oscillations follow the structure of the deterministic
VACF with T = 〈t+〉 representing a motor dynamics that is not purely random.
The response function develops damped oscillations with increasing ∆µ as well.

In comparison to the VACF, the oscillations are less pronounced and phase-shifted
but have the same frequency. Assuming a δ-like perturbation at τ = 0 that shifts
the probe in positive x-direction, the response function represents the deviation
of the actual average velocity from the average velocity without perturbation. For
larger ATP concentrations, the perturbation of the probe induces forward motor
jumps resulting in a positive response of the velocity. The second peak then results
from subsequent successful motor jumps after relaxation of the probe. According
to the theoretical analysis in the preceding sections, a deviation from the pure
relaxation process in the response function implies a coupling of the motor to the
linker. For sufficiently large ATP concentrations, the additional structure is clearly
visible in the simulation data.
Concerning the response function, the original perturbation applied to the probe

acts on the motor only via the linker. Hence, there might be an additional “trans-
mission time” until the perturbation causes a motor jump yielding a positive re-
sponse and the onset of a subsequent relaxation process. In contrast, the occurence
of motor jumps does not depend on the starting point τ = 0 of the correlation
function. Thus, the second peak arises at 〈t+〉 in the VACF whereas the response
function is slightly phase-shifted.

5.2.6. Experimental observations and comparison to simulation
data

The VACF of the probe as well as its response function are experimentally ac-
cessible quantities. In Fig. 5.3, we show the VACF and the response functions
obtained from single-molecule experiments of the F1-ATPase motor [15].
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Figure 5.3.: VACF (left) and response function (right) obtained from experi-
ments on the F1-ATPase [15] (top) compared to simulation data (bottom). For
each nucleotide concentration, the upper left panel contains the VACFs of two
individual motors. The response functions are shown in the frequency domain.
The correlation and response functions obtained from simulations are the same as
shown in Figs. 5.1, 5.2.

Both the experimentally measured VACF and the response function show an
emerging structure with increasing ∆µ or increasing nucleotide concentrations that
qualitatively agrees very well with the structure of the corresponding simulation
results.
For large ∆µ the experimentally obtained VACF clearly shows the positive cor-

relation indicating the less random motor dynamics caused by the probe. For
technical reasons, experimental data concerning the response function is avail-
able only in the frequency domain. A single exponential decay corresponds to a
Lorentzian function in the frequency domain. The slight deviation of the Fourier
transformed response function R̃ẋ from the Lorentzian function for small f present
in the experimental data is similar to the structure observed in the simulation re-
sults. Thus, this deviation might be interpreted as sign of the coupling of the
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5. Influence of cargo particle on motor dynamics

motor to the probe.
While the structure of the experimental data agrees very well with the simulation

results, it emerges at rather different nucleotide concentrations and is, in general,
less pronounced than in the simulation. Two effects might contribute to the weaker
oscillatory behavior of the VACF and the response function in the experiments.
First, the steep decay of the VACF at ∆µ = 19.14 indicates a larger spring constant
κ than previously attained from fitting the average velocity. For large spring
constants, the VACF is dominated by the restoring force of the linker. Second,
the one-state motor with a harmonic linker is obviously not sufficient to cover the
complexity of a real motor protein as already mentioned in the previous chapter.
Since a one-step motor has a single fixed step length, its simulation results might
appear much more deterministic than for a motor with substeps of different length
whose contributions would superpose in the VACF.
In the experimental setup, the explicit linker potential is not known. The poten-

tial generated by streptavidin and biotin bonds is presumably more complex than
a harmonic potential. One has to take into account that the shape of the exper-
imentally obtained VACF and response function strongly depends on the actual
linker potential.

5.3. Dwell-time distribution
As mentioned in the introduction of this chapter, the distribution of dwell times
between consecutive (forward) motor jumps is not just a single exponential decay
when the motor is coupled to a probe particle. Typically, the dwell-time distri-
bution of a motor-probe complex exhibits a distinct peak [135, 159]. Such a dis-
tribution belongs to a non-Markovian process and is usually attributed to hidden
intermediate states of the motor [74, 87, 164, 165]. In the case of a motor-probe
complex, a peaked distribution can be obtained even for a one-state motor model
with (for fixed y) Poissonian rates, see Fig. 5.4. The non-Markovian structure
emerges since the motor rates depend on the position of the probe. Right after a
jump, the linker is elongated and hence consecutive jumps in the same direction
are suppressed. For large dwell times, when the probe has relaxed, the transition
rate of the motor w+(y) becomes nearly constant and one observes a Poissonian
process. Consequently, in the intermediate regime, the dwell-time distribution ex-
hibits a peak. Here, the usually assumed intermediate states correspond to the
relaxation process of the probe. Note that since jumps can occur for any y, the
number of “intermediate states” is not fixed for the motor-probe complex. While
the full motor-probe model is truly Markovian, the dwell-time distribution as ob-
tained in experiments and shown in Fig. 5.4, is implicitly averaged over y and
constitutes a coarse-grained view on the motor dynamics. Such coarse-graining
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Figure 5.4: Dwell-time distribution
for forward jumps of the motor ob-
tained from the simulation of the one-
state motor-probe model for the F1-
ATPase. For this histogram, 26328
forward jumps following forward or
backward jumps were evaluated. Pa-
rameters: κ = 40, γ = 0.407 s/d2,
θ+ = 0.1, ∆µ = 28.12, weq = 3.67 ×
10−11 s−1.

typically yields a non-Markovian dynamics.
A dwell-time distribution with a distinct peak represents a dynamics that is

less random than a pure random walk. Concerning the motor-probe complex,
this observation is consistent with the results from the analysis of the VACF and
response function.
Extracting information from experimentally measured dwell-time distributions

is a delicate issue. The dwell-time distribution of the motor jumps is typically re-
constructed from the trajectory of the probe which can miss many fast forward and
backward motor jumps. If one observes differently shaped dwell-time distributions
for different motor steps [74, 87, 166], one has to consider that dwells following
large steps are presumably more influenced by the probe than dwells following
short steps. For dwells following steps with similar step size, the influence of the
probe compared to intermediate motor states can be estimated from the distribu-
tion that is most similar to a single exponential decay since then the influence of
the probe on the dwell time is the same.

5.4. Conclusion
In this chapter, we have investigated the influence of the probe on the dynamics
of the motor on the basis of the VACF and the response function of the velocity
of the probe and the dwell-time distribution of the motor jumps. We find that for
small nucleotide concentrations the VACF and the response function obtained from
simulations of the hybrid model resemble the VACF and response of a harmonic
oscillator. With increasing ATP concentration, the VACF as well as the response
function develop pronounced oscillatory behavior.
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We have introduced three simplified analytically tractable hybrid models provid-
ing insights into the origin of the oscillatory structure observed in the simulations.
Regarding these simplified models, we find that any physical model that fulfills the
FDT in equilibrium must comprise symmetric coupling between motor and probe.
For a harmonic linker potential, the analytical analysis clearly shows that neither

discrete motor jumps at random times nor coupling of the (continuously moving)
motor to the probe alone are sufficient to generate velocity correlations of the
probe particle that exhibit more structure than a purely exponential decay. Only
a motor model that comprises discrete motor jumps that are not purely random
leads to a periodic structure in the VACF of the probe particle. Since the periodic
structure also emerges in the simulation data, we can conclude that coupling to
the probe causes the motor to move less randomly. The analysis of the response
function provides insight about the coupling of the motor to the linker. Additional
structure beyond the restoring force of the linker emerges only if the perturbation
originally applied to the probe is transmitted to the motor. Our simulation results
illustrate that such effects are clearly visible in the response function of the probe
particle.
The analysis has been performed using a harmonic linker potential, whereas the

actual linker potential in the experiments is presumably more complex. We do not
expect, however, that any convex potential can mimic positive correlation or even
oscillatory behavior of the VACF and the response function.
Analyzing the structure of experimentally obtained VACFs of the probe particle

therefore allows to infer properties of the underlying dynamics of the motor and
its coupling with the probe particle. We find that experimentally obtained VACFs
and response functions of the F1-ATPase qualitatively agree with the simulation
results. Quantitative discrepancies are most likely due to the complexity of the
actual motor and the linker protein as well as additional effects from the setup
that are not captured in our simple motor-probe model.
Investigation of the waiting-time distribution provides additional insight con-

cerning the origin of the deterministic characteristics of the motor dynamics. Sub-
sequent motor jumps in the same direction are suppressed by the delayed relaxation
of the probe yielding a peaked dwell-time distribution. Ignoring the influence of
the probe, the non-Markovian structure could be mistaken as signature of hidden
intermediate motor states thus leading to an overly complex motor model.
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6. Energy transduction mechanism
and stall force anomaly

6.1. Introduction

While the preceding chapters focused on the effects of the probe on the dynam-
ics of the motor, we will now address the energy transduction mechanism of the
motor. Experimentally, information about the energy transduction is obtained
from applying external forces to the probe and investigating the resulting average
velocity [77, 99]. The system reaches stall conditions when the average velocity
is zero. Hence, the stall force corresponds to the maximum work per motor step
that can be extracted from the system on average. Properties of the energy trans-
duction mechanism of the motor are then usually inferred by comparing the work
corresponding to the stall force with the available chemical energy per hydrolysis
event [77, 99].

In this chapter, we investigate to what extend the probe particle influences the
energy conversion of the motor. Specifically, we investigate the stall conditions
and compare the cases when an external force is applied to the probe or directly
to the motor in the absence of a probe particle. We find that the stall conditions
depend on the relaxation time of the probe. Since the stall force is a quantity
determined in many single-molecule measurements, it is important to be aware of
the modifications caused by the probe.

The effects of the probe particle on the energy transduction under NESS condi-
tions can be nicely presented using elements of network theory. Network theory is
a powerful tool for investigating stochastic biophysical processes. Basic informa-
tion and applications can be found in, e.g., [29, 47, 167–169]. Therefore, we will
first present the network representation of the hybrid model introduced in section
3.3. We then discuss the modification of the energy transduction mechanism on
the basis of a very simple motor-probe network. Finally, we provide numerical
results for specific hybrid models with continuous state space of the probe.
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6. Energy transduction mechanism and stall force anomaly

6.2. Network representation
For some purposes, it is instructive to discretize the state space of the probe
yielding a fully discrete model. The probe particle then moves on a set of states
separated by δ ≤ d with transition rates γ±(n, x). The transition rates of the
probe obey

γ+(y)
γ−(y − δ) = exp[−V (y − δ) + V (y)− fexδ] (6.1)

with the external force fex acting on the probe. The corresponding master equation
of such a discrete model is given by the discretized version of (3.12),

∂tpi(y) = pi(y − δ)γ−(y − δ) + pi(y + δ)γ+(y + δ)− pi(y)(γ+(y) + γ−(y))
+
∑
j,α

(
pj(y + dαij)wαji(y + dαij)− pi(y)wαij(y)

)
. (6.2)

If we keep δ finite and allow a maximal distance y between motor and probe, we
get a a finite number of states which are characterized by the motor state i and
the distance y between motor and probe. The state space of these (i, y)-states is
represented by a network where the nodes are the states and the edges correspond
to the transition rates. An example for the network of such a discretized system
comprising motor and probe particle is shown in Fig. 6.1.
In general, such motor-probe networks comprise several cycles. A cycle is a

sequence of transitions that ends in its starting state and passes each intermediate

Figure 6.1: Network representation
of a motor-bead model with four inter-
nal motor states and discretized state
space of the probe particle (left) [137].
Each row of black dots represents one
motor state while the dots themselves
represent specific distances y accessi-
ble to the probe particle (via the red
lines) within the same motor state.
Transitions between motor states ei-
ther leave y the same (green lines)
or can advance the motor by d and
change y (blue lines). The top view of
this network corresponds to the bare
motor network (right). c©2015 Amer-
ican Physical Society.
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6.2. Network representation

state only once. The cycles a of the full system on the z ≡ (i, y) state space can
comprise various combinations of motor cycles. Each cycle a is assigned a reference
orientation. Then, in the NESS, the average current passing a cycle in forward
(+) or backward (−) direction is given by [47]

J±a = σa
Σ

[∏
z∈a

k±a (z)
]
, (6.3)

where k±a (z) represents either wαij(y) or γ±(y), the explicit sequence depends on
the cycle a and the direction. The sum of all directional diagrams [47] of all states
in the network is called Σ and the sum of influx into the cycle a is denoted by σa.
The net current flowing through the cycle a is given by

Ja = J+
a − J−a . (6.4)

The directed cycle currents obey

J+
a

J−a
=
∏
z∈a

k+
a (z)

k−a (z + 1) = exp[∆Sa] = exp[∆µa − fexda], (6.5)

where ∆Sa, ∆µa and da are the entropy change or cycle affinity [168], free-energy
change of the solvent and the motor step associated with a cycle passage. Con-
tributions of the potential V (y) cancel since the cycles start and end at the same
y.
The average current that is defined along an individual edge between two neigh-

boring states is called transition current [47], see also Eq. (2.7). In the NESS, each
transition current can be expressed as a sum of cycle currents passing through the
respective edge, e.g.,

jαij(y) ≡ pi(y)wαij(y)− pj(y + dαij)wαji(y + dαij) =
∑

a3(i,j,α,y)
±Ja, (6.6)

where the sign of Ja depends on the orientation of the cycle a relative to the
transition (i, j, α, y). Hence, any current observable can be expressed in terms of
transition currents or cycle currents.
The least detailed view of the dynamics on a network is provided by operational

currents which typically correspond to the change of a (macroscopic) observable
[47]. Several transition currents can contribute to an operational current. In the
context of motor-probe networks, the operational current between motor state
i and motor state j is the sum of all y-dependent net transition currents that
contribute to the transition i→ j,

jαij ≡
∑
y

jαij(y) =
∑
y

∑
a3(i,j,α,y)

±Ja. (6.7)
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6. Energy transduction mechanism and stall force anomaly

The average velocity can then be calculated by summing over all mechanical
transitions with dαij 6= 0,

v =
∑
i,j,α,y

(
pi(y)wαij(y)− pj(y + dαij)wαji(y + dαij)

)
dαij =

∑
i,j,α

jαijd
α
ij. (6.8)

Considering the specific example in Fig. 6.1, all transition currents along the blue
edges contribute to the velocity. Thus, the velocity is simply given by v = jblue

ij d =
d
∑
y j

blue
ij (y).

6.3. Stall conditions of the motor-probe complex

6.3.1. Bare motor models
As mentioned above, the stall force corresponds to the maximum work per step
that can be extracted from a molecular motor on average and is limited by the
chemical energy input. If one considers only the motor without probe and assumes
that the force is applied directly to the motor, one can distinguish two classes of
motor networks. For networks that contain only one cycle (unicyclic motors) the
stall force equals the chemical free-energy input f st

ex = ∆µcycle/dcycle which can
be seen easily using Eq. (6.5) [38]. Hence, unicyclic motors can convert the full
∆µcycle into extractable work, however, only at vanishing average velocity.
For networks comprising several cycles (multicyclic motors), the chemical input

and the mechanical output transitions are often only loosely coupled. Hence, as
soon as there are cycles that waste chemical energy but do not contribute to a
forward step, the output power will be smaller than the input power.

6.3.2. Unicyclic motors
The network of a motor-probe system with a unicyclic motor as sketched in Fig.
6.2 typically comprises several cycles on the z state space. Each such system
cycle includes either the complete motor cycle or is a so-called zero-cycle, a cycle
that involves an even number of i, i + 1 transitions with opposite directions for
all involved motor states i and i + 1. Thus, a zero-cycle leads neither to net
displacement nor to net consumption of energy. According to Eqs. (6.4, 6.5),
every zero-cycle has zero entropy production (or affinity) and zero net current.
Due to the topology of the network, there are no system cycles that include the
motor cycle more than once.
In order to obtain the stall force, one has to determine the zeros of the opera-

tional currents corresponding to the mechanical transitions, which are the sum of

78



6.3. Stall conditions of the motor-probe complex

Figure 6.2: Network representation of a motor-probe
model with a unicyclic motor. The motor has four
internal states, three chemical/conformational transi-
tions (green) and one mechanical transition (blue). The
motor network of unicyclic motors with more than two
states has only one single link between states i, i+ 1.

all transition currents of the involved transitions (see (6.8)). Each transition cur-
rent is the sum of all cycle currents passing through the transition, see (6.6). Cycles
that include several forward and backward jumps or zero-cycles use one transition
pathway from i to i+1 in forward direction and another one in backward direction
from i + 1 to i. Therefore, their cycle currents appear in the corresponding tran-
sition currents with opposite sign. By summing all transition currents, at most
one contribution per cycle remains (the contributions from the zero-cycles cancel
out). Since every remaining cycle has to pass every i, after the summation each
operational current jαi,i+1 contains exactly one contribution from each cycle current
whose cycle includes the complete motor cycle and can be written as 1

jαi,i+1 = jβi+1,i+2 =
∑
a

±Ja ∀i. (6.9)

Using Eq. (6.5), we find that the zero of all remaining Ja occurs for fexdcycle =
∆µcycle which determines the stall force. Thus, for unicyclic motors, the stall force
corresponding to the motor-probe complex equals the stall force of the bare motor.
The fact that each cycle current Ja is zero at the stall force f st

ex = ∆µcycle/dcycle
implies that each transition current in the network is zero at stall individually. The
solution of Eq. (6.2) at stall is then given by a “shifted” Boltzmann distribution

pst
i (y) = P st

i exp[−V (y) + f st
exy]/N (6.10)

with N = ∑
y exp[−V (y) + f st

exy] and marginal distributions P st
i that are uniquely

determined by

P st
i+1
P st
i

= exp[−∆Fα
i,i+1 − f st

exd
α
i,i+1] (6.11)

with ∆Fα
i,i+1 as defined in Eq. (3.8). For unicyclic motors, the probability dis-

tribution at stall conditions is given by the shifted Boltzmann distribution (6.10)
irrespective of the specific form of the function φαij(y) (3.10, 3.11) that accounts
for a possible y-dependence of the chemical/configurational rates.

1For unicyclic motors, the index α is redundant unless the motor has only two internal states
linked via two transitions to form the cycle.
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6. Energy transduction mechanism and stall force anomaly

6.3.3. Multicyclic motors
For multicyclic motors, cycles on the state space of the full system may involve
several motor cycles. An example for such a situation is shown in Fig. 6.3. While
the motor network (right panel) consists of two separate cycles, the motor-probe
network contains cycles that include both motor cycles (center).
Since the two motor cycles are separate, the stall force of the bare motor is given

by f st
ex = ∆µ/d where the cycle current corresponding to the cycle (I II I) vanishes.

Considering the system with probe particle, one has to obtain the zero of the
operational current jI,II along the blue edge, which is equal to the transition current
j15 in this network. The system cycles (1521), (1561), (15b43b21), (15f43f21),
(15b43f21) (purple) and (15f43b21) (cyan) contribute to j15 where b and f indicate
that the pathway in the background (dark green) or in the foreground (light green)
is used. The first four cycles have the affinity ∆µ− fexd while the latter two have
affinity −fexd and 2∆µ − fexd, respectively. Thus, at fex = ∆µ/d, the current
j15 has a positive contribution from the cyan cycle in Fig. 6.3 and a negative one
from the purple cycle. Depending on the explicit values of the transition rates, the
stall force this model can be smaller, equal to or even larger than ∆µ. Numerical
investigation indicates an “optimal” probe size where the deviation of the stall
force from the stall force of the bare motor is maximal.
For such motor models with separate cycles, the stall force of the motor-probe

complex can deviate from and even exceed the stall force of the bare motor if
additional chemical energy is accessible via, e.g., an idle cycle of the motor. In
that case, the idle cycle is no longer idle but takes part in the energy transduction
since it can be accessed by system cycles. Thus, applying the external force at

Figure 6.3.: Network representation of a motor-probe complex with three motor
states and only two admissible linker configurations y, i.e., δ = d. The horizontal
(and diagonal) edges correspond to motor transitions, vertical edges indicate tran-
sitions of the probe. Left panel: motor-probe network with corresponding chemical
input and work output. Center: Two distinct system cycles spanning both motor
cycles. Right: Network of the bare motor assuming the force acts directly on the
motor.
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6.3. Stall conditions of the motor-probe complex

Figure 6.4: Network representation
of a motor-probe model with two mo-
tor states and two accessible linker
configurations, i.e., δ = d. The mo-
tor network involves three cycles. Each
cycle on the network of the full system
comprises only one of the motor cycles.

the probe can be used to increase the maximum extractable work from the motor
compared to the situation where the force is applied directly to the motor.
For the model discussed above, the modification of the stall force is caused by

system cycles that include several motor cycles. Note that for multicyclic motor
models, a variation of the stall force can also occur if system cycles contain only
one motor cycle but the transition current(s) corresponding to the velocity have
contributions from several motor cycles. Such a network in shown in Fig. 6.4.
A more detailed analysis of the two models shown in Figs. 6.3 and 6.4 reveals

that for both networks the distribution at stall conditions, pst
i (y), takes the form

of (6.10) only if there is a specific symmetry in the y-dependence of the chem-
ical/conformational rates. In particular, φfII,III(y) = φbII,III(y) for the model in
Fig. 6.3 and φfI,II(y) = φbI,II(y) for the model in Fig. 6.4. The stall force of the
motor-probe complex is then given by

f st
ex = ∆µ/d and f st

ex =
∆µ+ ln

kfI,II exp[−∆µ] + kbI,II

kfI,II exp[∆µ] + kbI,II

 /d, (6.12)

respectively. The attempt frequencies kf,bI,II of the model in Fig. 6.4 correspond to
transitions from motor state I to II using the horizontal links in the background
(b) or in the foreground (f). With this choice of φαij(y), the stall force becomes
independent of the friction coefficient γ and the linker potential V (y) and equal
to the stall force of the bare motor for both models.
The same reasoning presented above for the variation of the stall force with

probe size also applies for the rate of chemical energy consumption. The aug-
mented motor-probe network will in general also comprise cycles that contribute
to the overall hydrolysis rate and make the rate of chemical energy consumption
a function of the probe.
In general, the results obtained in this section are not restricted to the case

δ = d but apply to any discretization of the dynamics of the probe. The next
section provides two examples in the continuum limit.
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6. Energy transduction mechanism and stall force anomaly

6.4. Examples: F1-ATPase and kinesin
The general findings discussed in the previous section can be illustrated with nu-
merical results obtained from hybrid models with continuous state space of the
probe as introduced in chapter 3. The two-state model for the F1-ATPase in-
troduced in section 3.3, see Fig. 3.3, serves as an example for a unicyclic motor
model. A multicyclic motor is represented by the well-studied 6-state-model for
kinesin introduced in [28], see Fig. 6.5. Implementing the probe particle and an
elastic linker V (y), we adopt the transition rates of the motor from [28] and replace
the dependence on the external force by the dependence on the elongation of the
linker,

w+
25(y) = k25 exp[−V (y + dθ+) + V (y)], (6.13)

w−52(y) = k52 exp[−V (y − dθ−) + V (y)], (6.14)
w+
ij,chem = kijφij(y) exp[µ+

ij], (6.15)
w−ji,chem = kjiφij(y) exp[µ−ij], (6.16)

with φij(y) = 2/(1+exp[∂yV (y)χij]). The first two rates belong to the mechanical
transition, the lower two rates represent the chemical transitions which depend
on the instantaneous force exerted by the linker with a chemical load-sharing
factor χij, see [28]. The change of chemical free energy µ±ij = µT, µD, µP depends
on which transition involves binding of the corresponding nucleotide. We choose
again V (y) = κy2/2.
The average velocity as a function of the external force is shown in Fig. 6.6.

From red to blue/violet, the size of the probe decreases yielding a faster relaxation.

Figure 6.5: 6-state-model representing a
kinesin motor adapted from [28]. The
transition between states 2 and 5 is purely
mechanical and corresponds to a step of
length d whereas all other transitions are
pure chemical transitions. The motor
model includes three cycles: F , which, in
the + direction, includes ATP hydrolysis
and forward stepping; B, which includes
ATP hydrolysis and backward stepping in
its + direction; and a pure chemical cycle
(around the circle) that includes hydroly-
sis or synthesis of two ATP [137]. c©2015
American Physical Society.

82



6.4. Examples: F1-ATPase and kinesin

−0.4

−0.2

0

0.2

0.4

19 19.05 19.1 19.15 19.2 19.25 19.3
−1

−0.5

0

0.5

1

13.6 13.8 14 14.2 14.4

Figure 6.6.: Average velocity as a function of the external force applied at the
probe. Left: Data obtained from the F1-ATPase model for various friction coef-
ficients γ in the range 5s/d2 ≥ γ ≥ 5 × 10−8s/d2 (from red to blue) Parameters:
cT = cD = 2µM, cP = 1mM, θ+

90,30 = 0.1, k90
12 exp[µeq

T ]/ceq
T = 3 × 107(Ms)−1,

k90
21 exp[µeq

D ]/ceq
D = 3667.5(Ms)−1, k30

21 = 1000s−1, k30
12 exp[µeq

P ]/ceq
P = 40(Ms)−1. The

attempt frequencies are chosen on the basis of [74, 87] where very small probe
particles have been used. Right: Data obtained from the kinesin model for γ
in the range 0.077s/d2 ≥ γ ≥ 7.7 × 10−10s/d2 (from red to violet). Parame-
ters: κ = 10d−2 [99], cT = 1mM, cD = cP = 1nM (estimated), θ+ = 0.65,
χij = 0.25, 0.15, k12 exp[µeq

T ]/ceq
T = k45 exp[µeq

T ]/ceq
T = 2 × 106(Ms)−1, k21 = k23 =

k34 = k56 = k61 = 100s−1, k32 exp[µeq
D ]/ceq

D = k65 exp[µeq
D ]/ceq

D = 2 × 104(Ms)−1,
k43 exp[µeq

P ]/ceq
P = k16 exp[µeq

P ]/ceq
P = 2×104(Ms)−1, k25 = 3×105s−1, k52 = 0.24s−1,

k54 = (k52/k25)2k21 [28]. In both cases, the solid black line corresponds to the bare
motor with external force applied directly to it.

The black lines correspond to the bare motor model with force applied directly
to the motor. For the F1-ATPase, the stall force is the same for all sizes of the
probe. The nucleotide concentrations have been chosen such that ∆µ = 19.14
which is precisely the observed stall force. With decreasing probe size, the velocity
approaches the bare-motor solution.
The stall force of the kinesin model depends on the size of the probe and is much

smaller than ∆µ = 46.8. Varying the size of the probe, the relative weight of the
cycles in the full system and hence their contribution to an operational current
can change yielding a varying stall force. Thus, the experimentally obtained stall
force corresponds to the stall conditions of the motor-probe complex but does not
necessarily represent the stall conditions of the bare motor. If one is interested in
the latter one should use very small probe particles since the limit of vanishing
friction coefficient γ is equivalent to applying the force directly to the motor (see
sections 7.2.3 and 7.3.2). Note that the actual stall force of the kinesin-probe
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complex is indeed larger than the stall force of the bare kinesin motor.
Since the stall force is independent of γ for all unicyclic motors, an experimen-

tally observed variation of the stall force with probe size can be used as proof that
the motor is indeed multicyclic.

6.5. Stall force and thermodynamic efficiency
In the context of multicyclic motors, inferring properties of the energy transduction
mechanism of the motor from the stall force is a delicate issue. In the previous
section we have focused on the dependence of the stall force on the size of the
probe particle. In this section, we discuss an aspect that applies also for bare
motor models with external force applied directly to the motor.
The genuine thermodynamic efficiency is defined as [132, 155]

ηT ≡
Ẇout

∆̇µ
(6.17)

where the output power is given by fexv while the rate of chemical energy con-
sumption constitutes the input power ∆̇µ = ∑

i<j,α j
α
ij∆µαij = ∑

a Ja∆µa. Since
each cycle comprises complete hydrolysis or synthesis events, the rate of chemical
energy consumption is denoted by ∆̇µ = r∆µ with the hydrolysis rate r.
At stall conditions, the average velocity vanishes. If the hydrolysis rate equals

the velocity, which is the case for tightly coupled motors, the thermodynamic
efficiency reaches 1 at stall. However, multicyclic motors typically comprise idle
cycles yielding a non-zero r at stall and vanishing thermodynamic efficiency [132].
It is essential to always compare the rate of extracted work with the actual rate
of chemical energy consumption instead of the extracted work per step, fexd, and
the available energy per hydrolysis event, ∆µ. Considering the bare motor model
shown in Fig. 6.3, right panel, the maximum extracted work is given by f st

exd = ∆µ.
However, there is an idle cycle wasting additional ∆µ which does not contribute
to the cycle involving the mechanical transition. The thermodynamic efficiency of
this model is zero at stall instead of 1 what one would have naively expected from
f st

exd = ∆µ. Hence, measuring f st
exd = ∆µ neither implies that the full chemical

energy is converted nor that the motor has no idle cycles.
Moreover, depending on how many ATPs are used to perform a forward step (on

average), the stall force, even of the bare motor, can easily exceed ∆µ/d. Thus,
the observation of f st

exd > ∆µ is not in conflict with the second law since a single
∆µ does not necessarily represent the complete energy input.
Related to this issue is a result from [128], where idle cycles have to be present

if the discretized slope in the fluctuation theorem representation deviates from
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∆µ − fexd but not vice versa. Hence, the motor can have idle cycles that do not
show up in the fluctuation theorem for an effective displacement by d.

6.6. Conclusion
In this chapter, we have analyzed the influence of the probe particle on the energy
transduction mechanism of the motor. We have introduced the network description
of the hybrid models and have applied tools from network theory to investigate
especially the stall conditions of the motor-probe complex.
We find that for unicyclic motors, the energy conversion process is not altered

by the probe and the extracted work per step under stall conditions is always equal
to the total chemical energy input like for the bare motor. At stall conditions, the
stationary distribution of hybrid models with unicyclic motors is given by a shifted
Boltzmann distribution. In contrast, hybrid models with a multicyclic motor can
exhibit stall forces that are smaller, equal to or even larger than the stall force of
the bare motor. The modification of the stall force occurs since the motor-probe
network contains more cycles that contribute to the mechanical transitions than
the bare motor network. Varying the size of the probe, the relative weight of the
cycles in the full system and hence their contribution to an operational current
can change yielding a varying stall force.
The most striking result of our analysis is the finding that applying a probe

particle can be used to increase the maximum extractable work from the motor.
Note that typically also the energy consumption rate changes with the size of
the probe yielding a higher energy conversion rate but not necessarily a higher
efficiency.
Considering experiments, it is crucial to keep in mind that the observed stall

force corresponds to the motor-probe complex rather than to the bare motor.
Applying naively a one-particle model to such an experimental setup would not
allow us to determine the energy transduction mechanism of the motor correctly.
The stall force of the bare motor can be best approximated by using probe particles
that are as small as possible. The analysis of the stall force as a function of the
probe size provides the useful application that observing a varying stall force with
the size of the probe serves as a proof that the investigated motor is multicyclic.
Note that stall forces f st

ex = ∆µ/d neither imply that the motor can convert the
full chemical energy nor that it has no idle cycles. The total input power can be
much larger running idle cycles that are separate from the step cycle and hence
not “visible”. Thus, a stall force larger than ∆µ is not in conflict with the second
law.
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coarse-graining method

7.1. Introduction

While multiparticle models are more precise and better represent the actual ex-
perimental setup, one-particle models are widely used toy models often applied to
illustrate basic ideas.

Simplifying the description of systems consisting of many degrees of freedom
with a concomitant large state space while still maintaining important properties
is commonly known as coarse-graining. In the context of stochastic thermodynam-
ics [6], various coarse-graining methods have been applied, e.g., lumping together
states of a discrete state space among which transitions are fast [170–173], aver-
aging over states for discrete [174] or continuous processes [173, 175], eliminating
single states from a network description [176–178], or eliminating slow (invisible)
degrees of freedom [179–181]. It was found that, in general, coarse-graining has
implications on the entropy production and, in particular [182], dissipation. In
the context of biological systems and especially molecular motors, coarse-graining
procedures mostly focus on eliminating selected states of the motor [178, 183] or on
reducing continuous (ratchet) models to discrete-state models [76, 129, 184–186].

In the present chapter, we introduce a coarse-graining procedure that allows
us to reduce molecular motor-bead models to effective one-particle models with
discrete motor states with the external force acting directly on the effective motor
particle. We eliminate the explicit dynamics of the probe particle completely still
maintaining the correct local detailed balance condition for the effective motor
transition rates and preserving the average currents of the system. As a main
result, we find that the coarse-grained rates show a more complex force dependence
than the usually assumed exponential behavior and a more complex concentration
dependence than mass action law kinetics. The results presented in this chapter
have been published in [137].
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7.2. General one-state motor model

7.2.1. Coarse-graining procedure
The general model for motor proteins with a single internal state coupled to a
probe particle has been introduced in chapter 3. Starting from such a generic hy-
brid model, we will now develop a thermodynamically consistent coarse-graining
procedure. In the coarse-grained description of the model we want to map the
motor-bead system to one effective motor particle hopping between states sepa-
rated by d. We thus have to eliminate the x-coordinate from the (n,x)-description
resulting in a system characterized only by n.
For the coarse-grained model, we impose the following conditions. The coarse-

grained transition rates Ω± which advance the effective particle by d should obey
a LDB condition

Ω+

Ω− = exp[∆µ− fexd] (7.1)

as the force is now assumed to act directly on the effective motor particle. Fur-
thermore, we require that the coarse-grained particle moves with the same average
velocity in the steady state as the motor and the probe in the original model, i.e.,

v = d(Ω+ − Ω−). (7.2)

Solving the linear system of equations (7.1, 7.2) yields the coarse-grained rates

Ω+ = v exp[∆µ− fexd]/d
exp[∆µ− fexd]− 1 (7.3)

Ω− = v/d

exp[∆µ− fexd]− 1 . (7.4)

In general, the coarse-grained rates depend (via v) on all model parameters,
including the friction coefficient of the probe particle and the specific potential
of the linker. If one had chosen coarse-grained rates by just averaging over the
positions of the probe particle, i.e., by

〈w±〉 =
∫ ∞
−∞

ps(y)w±(y) dy, (7.5)

one would have obtained rates that yield the correct average velocity but do not
fulfill the LDB condition, as discussed in section 7.2.6.
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7.2.2. Interpretation in terms of cycle currents

The coarse-grained rates can be interpreted as effective transition rates that cor-
respond to a transition process after which both particles, motor and probe, have
advanced a distance ±d. Using the network description, this can easily be seen
since the coarse-grained rates can be derived from cycle currents corresponding to
such a process. The following procedure is illustrated in Fig. 7.1.
The network of a one-state motor-probe complex contains cycles that advance

both particles by d while ending in the same (y)-state on the network. The flux of
these cycles is given by Eqs. (6.3, 6.4). The directed cycle fluxes obey

J+
a

J−a
= exp[∆µ− fexd] (7.6)

and their sum constitutes the average velocity v = d
∑
α (J+

α − J−α ). As we require
exactly these conditions for the coarse-grained rates, we identify a pair of coarse-
grained rates for each cycle with the directed cycle fluxes

ω+
a ≡ J+

a , ω−a ≡ J−a . (7.7)

Each of these rates corresponds to one of the several possible displacement pro-
cesses (for any y) to advance both particles by d, including ones with l forward
and l − 1 backward motor jumps.
This description can be further simplified to result in the coarse-grained descrip-

tion introduced in the previous section. If one has two sets of states, A and B, a
possible definition of the average rate to jump from one set to the other is given
by [172]

Ω+ ≡
∑
k∈A

∑
l∈B

p(k|A)ωkl. (7.8)

Since our motor model has only one state, the above formula yields

Ω+ =
∑
a

ω+
a , Ω− =

∑
a

ω−a (7.9)

with v = d(Ω+ − Ω−) and

Ω+

Ω− =
∑
ω+
a∑
ω−a

=
∑
ω−a exp[∆µ− fexd]∑

ω−a
= exp[∆µ− fexd]. (7.10)
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Figure 7.1: Coarse-graining procedure for a
hybrid model with a one-state motor. Top:
Unfolded illustration of the original network
of the motor-probe complex with transitions
of the motor along the blue lines with rates
w±(y) and transitions of the probe along the
red lines with rates γ±(y). Center: Reduced
network after eliminating the dynamics of the
probe. The effective motor particle can jump
via several transition pathways with rates ω±a .
Bottom: Coarse-grained network with a single
transition with rates Ω± connecting adjacent
positions.

The coarse-grained rates (7.9) can also be expressed as

Ω+ =
∑
a

ω+
a =

∑
a

ω+
a

1− exp[−∆µ+ fexd]
1− exp[−∆µ+ fexd] =

∑
a(ω+

a − ω−a )
1− exp[−∆µ+ fexd]

= v exp[∆µ− fexd]/d
exp[∆µ− fexd]− 1 , (7.11)

Ω− =
∑
a

ω−a =
∑
a

ω−a
exp[∆µ− fexd]− 1
exp[∆µ− fexd]− 1 = v/d

exp[∆µ− fexd]− 1 , (7.12)

which is precisely (7.3, 7.4). Hence, the coarse-grained rate corresponds to the
rate with which one effective displacement will happen.

7.2.3. Time-scale separation
In this section, we will investigate under which conditions the coarse-grained rates
(7.3, 7.4) can be expressed using a single exponential dependence on the external
force as typically assumed for mechanical transitions within one-particle models
[26, 28].
Inserting Eqs. (3.3, 3.4) in Eq. (3.6) in the NESS shows that the contribution

due to motor jumps is weighted with a (dimensionless) prefactor

ε ≡ w0 exp[µeq
T ]d2γ. (7.13)

Here w0 exp[µeq
T ] determines the time scale of the transitions of the motor while

γd2 determines the timescale of the dynamics of the probe particle. The latter is
mainly governed by the size of the bead and the step size of the motor, whereas
w0 exp[µeq

T ] is determined by the attempt frequency and also by the absolute nu-
cleotide concentrations.
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If the dynamics of the bead is much faster than the transitions of the motor,
time-scale separation holds with ε → 0 [172, 187]. In this limit of fast bead
relaxation, denoted throughout by a caret, the stationary solution of Eq. (3.6) in
the NESS becomes

p̂s(y) = exp[−V (y) + fexy]/N (7.14)

with N ≡
∫∞
−∞ exp[−V (y) + fexy] dy. The average velocity is then given by

v̂ =d
∫ ∞
−∞

p̂s(y)(w+(y)− w−(y)) dy

=dw0
(
eµT−fexdθ+ − eµD+µP+fexdθ−

)
. (7.15)

This expression inserted into Eqs. (7.3, 7.4) yields

Ω̂+ = w0e
µT−fexdθ+

, (7.16)
Ω̂− = w0e

µD+µP+fexdθ− (7.17)

independent of any specific linker potential V (y). Since this force dependence is
purely exponential with the correct load-sharing factor, these expressions represent
exactly the rates typically used in one-particle models. We notice that within this
approximation Ω+ = 〈w+(y)〉 and Ω− = 〈w−(y)〉 holds true, which is in agreement
with other coarse-graining procedures in the time-scale separation limit, e.g., [172–
174].
Note that only transition rates of the motor whose dependence on the linker po-

tential is chosen accordingly in the Kramers form (Eqs. (3.3, 3.4)) lead generically
to consistent coarse-grained and averaged rates when using the fast-bead limit of
ps(y).

7.2.4. Example: F1-ATPase
In general, a strong time-scale separation between motor and probe is not neces-
sarily realistic. In this case, Eq. (3.6) must be solved numerically. We will use the
model introduced in section 3.2 and used in chapters 4, 5, see Fig. 3.1, with a har-
monic potential V (y) = κy2/2 as a simple example to illustrate our coarse-graining
procedure.
In Fig. 7.2, the results for Ω+ and Ω− are shown for various values of the friction

coefficient γ. With decreasing γ, the rates approach their corresponding fast-bead
limits, Ω̂+ and Ω̂−. These values are upper bounds because decreasing γ implies
smaller probe particles which exert less drag on the motor. For finite γ, the coarse-
grained rates do not show a single exponential dependence on fex over the whole
range of external forces. Such a dependence, however, is usually assumed to hold
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Figure 7.2.: Coarse-grained rates Ω+ and Ω− (top) and average velocity (bottom)
as functions of fexd for various friction coefficients γ in the range 5 s/d2 ≥ γ ≥
5×10−10 s/d2 (from bottom to top). With decreasing γ, the rates and the velocity
approach the corresponding fast-bead limit (black lines). Parameters: κ = 40 d−2,
cT = cD = 2µM, cP = 1 mM, ∆µ = 19, θ+ = 0.1, w0 exp[µeq

T ]/ceq
T = 3×107 (Ms)−1.

within one-particle models. Moreover, the coarse-grained rates depend on γ, which
is a parameter not incorporated explicitly in many one-particle models.
The experimentally accessible values of γ cover a wide range of the values chosen

in Fig. 7.2. A dimer of polystyrene beads (' 280 nm) as used in [15, 77, 119, 121]
corresponds to γ = 0.5 s/d2 (red line) while a 40 nm gold particle [74, 87, 121]
corresponds to γ = 5×10−4 s/d2 (yellow line). Especially for large external forces,
the coarse-grained rates deviate strongly from their asymptotic values even for a
probe as small as the gold particle.
The average velocity as shown in Fig. 7.2 also strongly depends on the friction

coefficient of the probe particle, especially for large external forces. In this regime,
for large γ, the velocity is dominated by the friction experienced by the probe while
for small γ the probe relaxes almost immediately and the velocity is dominated
by the time scale of the motor jumps.
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Figure 7.3.: Coarse-grained rates Ω+ and Ω− as functions of fexd for various cT,
cD in the range 2× 10−5 M ≥ cT, cD ≥ 2× 10−12 M (from top to bottom). With
decreasing cT, cD, the rates approach the fast-bead limits Ω̂+ and Ω̂− (straight
lines). Parameters: κ = 40 d−2, γ = 0.5 s/d2, cP = 1 mM, ∆µ = 19, θ+ = 0.1,
w0 exp[µeq

T ]/ceq
T = 3× 107 (Ms)−1.

Another option to reach the fast-bead limit is to use very small nucleotide con-
centrations. In Fig. 7.3, we show the coarse-grained rates for various ATP and
ADP concentrations. With decreasing nucleotide concentration (at fixed ∆µ), the
rates approach the asymptotic Ω̂+ and Ω̂−. However, it is very hard to do exper-
iments at concentrations smaller than ' 10−7M as jumps of the motor are then
very rare.

In Fig. 7.2 and in Fig. 7.3 the dependence of the coarse-grained rates on
the external force exhibits two different regimes. Up to values of the external
force of roughly 15/d, the coarse-grained rates can be well approximated by a
single exponential dependence on fex with the same slope as in the fast-bead
limit, dθ+ or dθ−, respectively. However, for large γ and large cT, even in this
regime, the absolute values of the coarse-grained rates deviate up to two orders of
magnitude from their fast-bead approximation. For such parameters, assuming a
monoexponential dependence on fex with the above slope would not be appropriate
either.

For large external forces, all coarse-grained rates deviate significantly from their
fast-bead limits. We find again a monoexponential decay for Ω+ but now with slope
−d whereas Ω− grows only linearly with increasing fex. This so far unaccounted
for behavior can be understood by considering the limit fex → ∞ as discussed
below. The crossover from one regime to the other occurs beyond the stall force
fex = ∆µ/d.
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7.2.5. Limiting case: Large applied force
In the limit of large external forces, fex → ∞, the coarse-grained rates (7.3, 7.4)
can be expressed as

Ω+ ≈ −v exp[∆µ− fexd]/d (7.18)
Ω− ≈ −v/d. (7.19)

While ∆µ is independent of the external force, the average velocity is a function
of the external force,

v = 〈∂yV (y)− fex〉/γ = κ〈y〉/γ − fex/γ. (7.20)

It becomes negative for forces larger than the stall force ∆µ/d, which ensures
that both Ω+ and Ω− are positive. If there is no time-scale separation between
the dynamics of motor and probe, 〈y〉 grows linearly in fex for fex → ∞ with a
smaller slope than 1/κ. On the other hand, with time-scale separation, we have
〈y〉 = fex/κ. Note that within time-scale separation, the average velocity has to
be calculated using the average velocity of the motor, Eq. (3.7), since the “average
velocity” of the probe 〈∂yV (y) − fex〉/γ is zero as a result of the fast-bead limit
of Eq. (3.6). Due to the linear dependence of 〈y〉 on fex, the average velocity,
and therefore also Ω−, are then proportional to the external force, whereas the
exponential factor dominates for Ω+,

Ω+ ∼ fex exp[∆µ− fexd]/(γd) (7.21)
Ω− ∼ fex/(γd). (7.22)

In the opposite limit of a large assisting force fex → −∞, the coarse-grained
rates (7.3, 7.4) become

Ω+ ≈ v/d (7.23)
Ω− ≈ v exp[−∆µ+ fexd]/d (7.24)

As above, the average y grows linearly and the velocity is proportional to fex if
there is no time-scale separation which leads to

Ω+ ∼ |fex|/(γd) (7.25)
Ω− ∼ |fex| exp[−∆µ+ fexd]/(γd). (7.26)

This simple analysis clearly shows that the coarse-grained rates do not coincide
with the often a priori assumed single exponential force dependence of one-particle
rates. Within our numerical analysis, the asymptotic behavior appears for |fex| &
500/d. The regime for large forces shown in Figs. 7.2 and 7.3 is not the asymptotics
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yet. However, since 〈y〉 is also linear in fex in this region yet with different slope,
v is still proportional to fex.
In summary, we find that for the F1-ATPase under realistic experimental condi-

tions the rates in a coarse-grained description comprising only one effective particle
that satisfy the LDB condition Eq. (7.1) and reproduce the correct average ve-
locity v cannot be written in the form of a single exponential dependence on the
external force.

7.2.6. Comparison of coarse-grained with averaged rates
Instead of defining the coarse-grained rates according to Eqs. (7.3, 7.4), one might
be tempted to use the averaged rates (7.5) as a definition for the coarse-grained
rates. In Fig. 7.4, we show the averaged rates of our F1-ATPase model as well
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Figure 7.4.: Top: Average rates 〈w+〉 and 〈w−〉 as functions of fexd for various γ
in the range 5 s/d2 ≥ γ ≥ 5 × 10−9 s/d2. With decreasing γ, the rates approach
Ω̂+, Ω̂− (black lines). Bottom: Ratio of + and − rates. In contrast to Ω+, Ω−
(red), the averaged motor rates do not fulfill the LDB condition (black line). The
parameters are the same as in Fig. 7.2.
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as their ratio corresponding to the LDB condition. We find that both 〈w+〉 and
〈w−〉 (for the latter less visible in the plot) exhibit nonmonotonic dependence on
the external force. For external forces slightly larger than the stall force, 〈w+〉
increases with increasing fex since in this region the system moves backward with
motor jumps following the probe which leads to a peak at small y in ps(y). On
the other hand, 〈w−〉 exhibits a minimum around stall conditions for large γ since
in this region, ps(y) misses a peak at large y ' 1.
A severe issue appears regarding the LDB condition. The corresponding ratio

of the averaged rates is also plotted in Fig. 7.4 where it can be clearly seen that
the LDB condition is not fulfilled (except in the fast-bead limit).

7.2.7. Without external force
Even though we have motivated this chapter by emphasizing that external forces
are typically applied to probe particles, it should be obvious that our approach
holds true for molecular motors transporting cargo subject to Stokes friction in
the absence of external forces.
For one-particle models, the friction coefficient of the probe cannot be taken

into account explicitly. One rather has to incorporate the drag effect of the bead
into the motor rates [76]. If one wants to analyze experimental data obtained from
probe particles of different sizes, one then has to use different values of the motor
rates for each data set.
For the rather dilute solutions used in experiments [15, 77, 99] one generally as-

sumes that the motor dynamics is subject to mass action law kinetics, i.e., that the
transition rates depend linearly on the corresponding concentration of nucleotides.
Obviously, this linear dependence holds for all concentrations and beads of all sizes
for one-particle models. When keeping cD and cP fixed, the average velocity of a
one-state motor will show a purely linear dependence on cT.
The experimental analysis of the average velocity of the F1-ATPase as function

of cT (for fixed cD, cP) reveals a saturation of the velocity for large ATP con-
centrations which sets in earlier for large beads [74]. While such a saturation is
usually attributed to the hydrolysis step, we find that a sublinear dependence of
the velocity can also be caused by the drag of the probe particle.
In Fig. 7.5, the coarse-grained rates as well as the velocity are shown as a

function of the ATP concentration. With decreasing γ, the coarse-grained rates
approach the fast-bead limit and the mass action law kinetics. The velocity is
then linear in cT as in a one-particle model. For large γ, eliminating the cargo by
coarse-graining yields coarse-grained rates that are not linear in the concentrations
although the motor rates are still subject to mass action law kinetics. Moreover, the
velocity then exhibits a sublinear dependence reminiscent of the typical saturation
effect for large cT.
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Figure 7.5.: Coarse-grained rates Ω+ and Ω− (top) and average velocity (bottom)
for various γ and fex = 0 as functions of cT. Since cD and cP are fixed, ∆µ also
increases with cT. The rates and the velocity approach the fast-bead approxima-
tion (black lines). Parameters: cD = 2µM, cP = 1 mM, κ = 40 d−2, θ+ = 0.1,
w0 exp[µeq

T ]/ceq
T = 3×107 (Ms)−1, γ in the range 5 s/d2 ≥ γ ≥ 5×10−9 s/d2 (from

bottom to top).

7.2.8. Comparison of full and coarse-grained trajectories
Trajectories of motor and probe generated by a simulation of the complete model
of the F1-ATPase are shown in Fig. 7.6.
Additionally, Fig. 7.6 contains a trajectory obtained from simulating the corre-

sponding coarse-grained model. The average velocity of both models is the same
(by definition, see Eq. (7.2)), whereas the coarse-grained model produces trajecto-
ries that are “more random”. This behavior occurs since the coarse-grained rates
are constant (for fixed parameters) and produce a simple biased random walk.
The motor transition rates of the complete model, however, depend on the actual
position of the probe and are therefore implicitly time dependent. Since fast suc-
cessive motor jumps are suppressed, the trajectory of the complete model is less
random [135, 159].
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Figure 7.6.: Trajectories of the one-state model for the F1-ATPase for several
parameter sets obtained from simulations. The trajectory of the detailed model
(motor: blue, probe: red) is shown together with a trajectory of its corresponding
coarse-grained model (green). Parameters: κ = 40 d−2, θ+ = 0.1, w0 exp[µeq

T ]/ceq
T =

3 × 107 (Ms)−1, γ = 0.5 s/d2, fex = 0, cT = cD = 2µM, cP = 1 mM (top left);
γ = 0.5 s/d2, fex = 40 d−1, cT = cD = 2µM, cP = 1 mM (top right); γ = 0.005 s/d2,
fex = 0, cT = cD = 2µM, cP = 1 mM (bottom left); γ = 0.5 s/d2, fex = 0,
cT = 1 mM, cD = 2µM, cP = 1 mM (bottom right).

A quantitative measure of this phenomenon is provided by the diffusion coeffi-
cient. Applying the most simple network model for a one-state motor with only two
accessible configurations of the linker (y = 0 and y = d), the diffusion coefficient
of the full model is given by [26, 188]

Dw = d2(w+γ+ + w−γ−)
2(w+ + w− + γ+ + γ−) −

v2

w+ + w− + γ+ + γ−
(7.27)

=d
2(Ω+ + Ω−)

2 − v2

w+ + w− + γ+ + γ−
(7.28)

=d
2

2 DΩ −
v2

w+ + w− + γ+ + γ−
, (7.29)
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which is obviously smaller than the diffusion coefficient of the coarse-grained
model, DΩ. Hence, trajectories of the coarse-grained description show more dif-
fusion than the original ones. For continuous y, one would have to calculate the
diffusion coefficient of the full model using a Green-Kubo-formula which yields the
effective diffusion coefficient of the probe as integral over the VACF (minus v2)
[50, 153].
The influence of parameters like the probe size or the ATP concentration on the

dynamics is visible in the bottom panels of Fig. 7.6. While the average velocity is
almost the same, the trajectories of the complete model differ significantly. Using
a small probe with a small friction coefficient, the probe relaxes to the potential
minimum of the linker before the next motor jump occurs, whereas the large probe
cannot relax [136]. Large ATP concentrations induce many forward and successive
backward motor jumps that are absent at lower ATP concentrations. These details
are not captured in the coarse-grained trajectories.

7.3. Motor models with several internal states
7.3.1. Coarse-graining procedure
Considering a generic hybrid model with a multistate motor as introduced in sec-
tion 3.3, the coarse-grained version of such a model should take into account the
different states of the motor as well as the several possible α transitions between i
and j. Thus, the motor network (including all motor cycles) should be conserved
under coarse-graining. In Fig. 6.1, the top view of the full network, which rep-
resents the bare motor network, also corresponds to the coarse-grained version of
this model. To account for the several internal states, we require that the coarse-
grained rates should obey a LDB condition and the operational current from motor
state i to motor state j via edge α, Eq. (6.7), should be conserved. Conserving
the operational currents corresponds to the condition of reproducing the correct
mean velocity for the one-state model. The above conditions read

Ωα
ij

Ωα
ji

= exp[−∆Fα
ij − fexd

α
ij] (7.30)

and

PiΩα
ij − PjΩα

ji = jαij (7.31)

with the operational current

jαij ≡
∫ ∞
−∞

(
pi(y)wαij(y)− pj(y + dαij)wαji(y + dαij)

)
dy = −jαji (7.32)
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and the marginal distribution

Pi =
∫ ∞
−∞

pi(y) dy. (7.33)

These equations can be solved for Ωα
ij and Ωα

ji using simple algebra which yields
the rates

Ωα
ij = jαij

exp[−∆Fα
ij − fexd

α
ij]

Pi exp[−∆Fα
ij − fexdαij]− Pj

(7.34)

Ωα
ji = jαij

1
Pi exp[−∆Fα

ij − fexdαij]− Pj
. (7.35)

In principle, it is sufficient to use only Eq. (7.34), since Ωα
ji takes exactly this form

with jαij = −jαji,∆Fα
ij = −∆Fα

ji and dαij = −dαji. This equivalent procedure would
be more symmetric and treat all transition rates on an equal footing but the LDB
condition is then less obvious. Note that without the LDB condition (7.30), the
stated conditions of Pi and jαij would also be compatible with coarse-grained rates
like the ones in, e.g., [172, 174].
Transitions whose rates are independent of the linker elongation y and hence

have dαij = 0 retrieve their original rate constants through this coarse-graining
procedure. For such a transition, jαij is given by

jαij = Piw
α
ij − Pjwαji (7.36)

with rates fulfilling the LDB condition wαij/wαji = exp[−∆Fα
ij ]. Inserting jαij in Eqs.

(7.34, 7.35) and using the LDB condition and dαij = 0 immediately yields

Ωα
ij = wαij, Ωα

ji = wαji. (7.37)

Transitions with rates depending on y but with dαij = 0 have coarse-grained rates
that depend on fex only implicitly via jαij and Pi,j as will be discussed below in
section 7.3.4 for the chemical transition rates of kinesin.
The rates determined from the LDB condition Eq. (7.30), the populations Pi

and the operational currents are algebraically consistent with the fact that a full
set of rates Ωα

ij will uniquely determine the populations Pi on the coarse-grained
network. Consistency can be seen by integrating the Fokker-Planck equation (3.12)
over y, yielding the coarse-grained master equation

∂tPi =
∑
j,α

jαji =
∑
j,α

PjΩα
ji − PiΩα

ij, (7.38)

whose stationary solution in the NESS can be expressed as a function of the rates
Ωα
ij [47, 167]. Thus, the expression of any current observable in terms of the

operational currents is consistent with its expression in terms of cycle currents on
the coarse-grained network.
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7.3. Motor models with several internal states

7.3.2. Time-scale separation
Similarly to the one-state model, we explore the consequences of a putative time-
scale separation between the dynamics of motor and probe for each motor transi-
tion. In the limit γ → 0 (formally equivalent to ε → 0 but here one would have
several εij within the Fokker-Planck equation and all go to 0) the solution of Eq.
(3.12) in the NESS becomes, analogously to [170, 173],

p̂si (y) = P̂i exp[−V (y) + fexy]/N . (7.39)

The marginal distribution can be obtained using Eq. (3.12) with its solution for
fast bead relaxation

∂tP̂i =
∫ ∞
−∞

∂tp̂
s
i (y) dy

=
∑
j,α

(
P̂j〈wαji〉y − P̂i〈wαij〉y

)
=
∑
j,α

ĵαji = 0. (7.40)

For Kramers-type transition rates like Eqs. (3.10, 3.11), the y-averaged rates 〈wαij〉y
and 〈wαji〉y become

〈wαij〉y = kαij exp[µα,+ij − fexd
α
ijθ

α,+
ij ] (7.41)

〈wαji〉y = kαji exp[µα,−ij + fexd
α
ijθ

α,−
ij ]. (7.42)

The change of chemical free energy ∆µαij is split into µ
α,+
ij and µα,−ij , indicating that

both directions of the transition can involve binding and release of the chemical
species that account for ∆µαij. The free-energy change arising from changing the
motor state, Fj − Fi, is incorporated in the attempt frequencies kαij of the corre-
sponding states. Inserting the operational current in the form of Eq. (7.40) with
these averaged rates, simple calculus shows that the coarse-grained rates (7.34)
and (7.35) reduce to

Ω̂α
ij = kαij exp[µα,+ij − fexd

α
ijθ

α,+
ij ] (7.43)

Ω̂α
ji = kαji exp[µα,−ij + fexd

α
ijθ

α,−
ij ] (7.44)

which is again consistent with transition rates of one-particle models that assume
a purely exponential dependence on the external force.

7.3.3. Example: F1-ATPase with intermediate step
With external force

A schematic representation of hybrid model for the F1-ATPase with two internal
states of the motor is shown in Fig. 3.3. The two different pathways for transitions
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Figure 7.7.: Coarse-grained rates for the 90◦ (top) and the 30◦ (center) substep
and average velocity (bottom) as functions of fexd for various γ in the range
5 s/d2 ≥ γ ≥ 5×10−10 s/d2 (from bottom to top). With decreasing γ, the rates and
the velocity approach their corresponding fast-bead limit. Parameters: κ = 40 d−2,
cT = cD = 2µM, cP = 1 mM, θ+

90,30 = 0.1, k90
12 exp[µeq

T ]/ceq
T = 3 × 107 (Ms)−1,

k90
21 exp[µeq

D ]/ceq
D = 3667.5 (Ms)−1, k30

21 = 1000 s−1, k30
12 exp[µeq

P ]/ceq
P = 40 (Ms)−1.

The attempt frequencies are chosen on the basis of [74, 87] where very small probe
particles have been used.
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7.3. Motor models with several internal states

between the states 1 and 2 correspond to the 90◦ and 30◦ substeps of the F1-
ATPase, respectively.
Like in section 7.2.4 for the one-state model, we examine the coarse-grained rates

for the 90◦ and 30◦ steps and the velocity which are shown in Fig. 7.7. Similarly
to the 120◦-scenario, the rates approach their fast-bead limit with decreasing γ.
As in the one-step model, the dependence of the coarse-grained rates on the

external force shows two regimes. For small external forces, the rates can be
well approximated by a single exponential dependence on fex with slope ±dαijθ

α,±
ij

in most cases. For large probe particles, however, the rates neither match the
absolute value nor show monoexponential dependence on fex with the above slope.
For large forces, the forward rates decay faster, whereas the backward rates grow
more slowly than in the fast-bead limit.
Concerning the average velocity, strong deviations from the fast-bead limit occur

only for the largest friction coefficients. Using small beads, the force-velocity
relation resulting from our coarse-graining procedure coincides well with the one
obtained from a one-particle model due to the fact that the velocity involves only
differences of the rates multiplied with the marginal distribution rather than the
rates themselves. For large external forces and small γ, the velocity is significantly
smaller than in the one-state model since the motor has to take two successive
steps to cover the full d. The force-velocity relations for the two-state as well as
for the one-state model reproduce very well the experimentally determined force-
velocity relation from [77] for the corresponding value of the friction coefficient
γ.
The limiting cases fex → ±∞ are more involved here than in the one-state

model since one has to account for the dependence of the Pi’s on the external
force. However, as long as the Pj’s do not decay faster than exp[−fexd

α
ij], it is still

possible to approximate the rates (7.34, 7.35) by

Ωα
ij ≈ −jαij exp[−∆Fα

ij − fexd
α
ij]/Pj, (7.45)

Ωα
ji ≈ −jαij/Pj (7.46)

since Pi is bounded by 1.
For the F1-ATPase model, the numerical analysis in the fex →∞ limit yields a

linear dependence of 〈y〉 and jαij on fex. We also find that P2 decays exponentially
while P1 approaches 1. Hence, Ω90

12 and Ω30
21 decay exponentially with slope −d90

12 =
−0.75 d and −d30

21 = −0.25 d, respectively, like in the one-state model but Ω90
21 now

grows exponentially with a smaller exponent while Ω30
12 still grows linearly.

Without external force

Just as for the one-state model, we examine the dependence of the coarse-grained
rates on the ATP concentration in the absence of external forces.
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Figure 7.8.: Coarse-grained rates for the 90◦ (top) and the 30◦ (center) substep
and average velocity (bottom) for various γ and fex = 0 as functions of cT. Since
cD and cP are fixed, ∆µ also increases with cT. The rates and the velocity approach
the fast-bead approximation (black lines). Parameters: cD = 2µM, cP = 1 mM,
κ = 40 d−2, θ+

90,30 = 0.1, γ in the range 5 s/d2 ≥ γ ≥ 5× 10−10 s/d2 (from bottom
to top).

Fig. 7.8 shows the coarse-grained rates for the 90◦ and the 30◦ substeps as well
as the aver age velocity. With decreasing γ, the coarse-grained rates approach the
mass action law kinetics for the corresponding one-particle rates. In contrast to
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7.3. Motor models with several internal states
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Figure 7.9.: Coarse-grained forward rates for various γ = 2.1s/d2, 0.26s/d2,
0.14s/d2, 0.017s/d2, 0.003s/d2, 0.001s/d2, 3.8 × 10−4s/d2 (from bottom to top)
for the parameter sets I: cT = 430nM, cP = 1nM; II: cT = 1mM, cP = 1nM; III:
cT = 1mM, cP = 200mM as used in [121]. Parameters that are the same for all
sets I-III: cD = 1nM, κ = 40d−2, θ+

90,30 = 0.1 and the attempt frequencies kαij as
given in Fig 7.7. The values of cD = cP = 1nM are a rough estimate because there
is no information about these concentrations in [121].

the one-state model, even in this limit, the velocity shows saturation. This is due
to the fact that the time scale of the hydrolysis reaction is independent of the ATP
concentration and represents the limiting effect for the velocity. The dependence
of the average velocity on the ATP concentration is reminiscent of a Michaelis-
Menten kinetics and coincides well with experimental results for several different
probe particles as shown in [74].
For large beads, the coarse-graining process yields rates that are no longer linear

in the corresponding concentrations. In this regime, the sublinear dependence of
the velocity on the ATP concentration appears already for smaller ATP concen-
trations. Comparing the velocity curves of the two-state model with the one-state
model, we find that for large beads the velocity curves almost coincide since in
this regime the limiting effect for the velocity is the friction experienced by the
bead. Thus, using large probe particles, it is not possible to infer the underlying
motor dynamics from the characteristics of the velocity as a function of the ATP
concentration [136].
Fig. 7.9 shows the coarse-grained forward rates for three different nucleotide

concentrations and for various γ chosen as in the experiment [121]. We find that
the 90◦ rate depends only weakly on γ for small ATP concentrations which is
reminiscent of the experimental observation that the ATP binding rate to the
motor depends only weakly on the size of the probe [121]. However, for large ATP
concentrations that were not investigated in the experiment, the 90◦ rate shows a
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7. Thermodynamically consistent coarse-graining method

strong dependence on γ. This is due to the fact that for small ATP concentrations
the relaxation times of all probe particles are in the order of, or even faster than,
the motor jump rates. The results for the 30◦ rate are consistent with experimental
results for the hydrolysis rate [121]. Increasing cP decreases the Pi release rate in
the experiment as it decreases the 30◦ rate here.

7.3.4. Example: Kinesin
As a final more complex example, we apply our coarse-graining method to a model
with a multistate motor. We choose the well-studied 6-state-model representing
a kinesin motor introduced in [28], and applied in chapter 6.6 to investigate the
stall conditions, see Fig. 6.5.
The coarse-grained rates for the mechanical transition are shown in Fig. 7.10.

With decreasing γ, the rates approach their fast-bead limit which corresponds
to the rates used in [28] while strong deviations occur for finite γ especially for
assisting external forces. The friction coefficient of a probe of size 500 nm as in
[99] can be calculated using Stokes’s law yielding γ ' 7.7× 10−5d2/s. For friction
coefficients in this range (light green line), our coarse-grained rates show a distinct
deviation from the one-particle rates (black line). However, the average velocity
(obtained from our coarse-grained rates) as function of the external force coincides
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Figure 7.10.: Coarse-grained rates for the mechanical transitions (with y-
dependence) for various γ in the range 0.077 s/d2 ≥ γ ≥ 7.7 × 10−10 s/d2 (from
bottom to top). The rates approach the one-particle rates from [28] (black lines).
Parameters: κ = 10 d−2 [99], cT = 1 mM, cD = cP = 1 nM (estimated), θ+ = 0.65,
χij = 0.25, 0.15, k12 exp[µeq

T ]/ceq
T = k45 exp[µeq

T ]/ceq
T = 2 × 106 (Ms)−1, k21 = k23 =

k34 = k56 = k61 = 100 s−1, k32 exp[µeq
D ]/ceq

D = k65 exp[µeq
D ]/ceq

D = 2 × 104 (Ms)−1,
k43 exp[µeq

P ]/ceq
P = k16 exp[µeq

P ]/ceq
P = 2 × 104 (Ms)−1, k25 = 3 × 105 s−1, k52 =

0.24 s−1, k54 = (k52/k25)2k21.
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Figure 7.11.: Left: Average velocity for the model with probe particle (colored
lines) an the one-particle model from [28] (black). Right: Coarse-grained rates for
chemical transitions (with y-dependence) for γ = 0.077 s/d2. Other parameters as
given in Fig. 7.10.

very well for almost all γ with the velocity curve obtained from the bare motor
model, see Fig. 7.11. Like for the F1-ATPase model discussed in section 7.3.3,
this agreement is due to the fact that the velocity involves only the difference
of the rates multiplied with the marginal distribution. If one investigates only
force-velocity curves, the discrepancies between the coarse-grained rates and the
one-particle rates are hardly visible.

In contrast to the coarse-grained rates of the F1-ATPase models, the coarse-
grained rates for the mechanical transition of the kinesin model show more struc-
ture especially for negative, i.e., assisting external forces. Since the kinesin model
contains several internal motor cycles, depending on the external force the dom-
inant cycle can change, leading to crossover regimes with changing weight of the
probabilities Pi.

The dependence of the coarse-grained rates for chemical transitions on the ex-
ternal force is visible in Fig. 7.11. Although there is no explicit dependence on
external forces for pure chemical rates since dαij = 0, jαij and Pi depend on fex via y.
The operational current for transitions within the F -cycle in + direction decreases
with increasing fex whereas the operational currents within the B-cycle in + direc-
tion slightly increase with fex, which can be explained intuitively since the motor
prefers “backward” cycles for large opposing forces. However, all coarse-grained
rates decrease with increasing fex similarly to the bare motor rates (6.15, 6.16)
which decrease with larger y, a situation that is more likely to appear for large
external forces.
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7. Thermodynamically consistent coarse-graining method

7.4. Experimental implementation
In order to practically apply the coarse-grained description, one has to determine
the marginal distributions Pi, the operational currents jαij, and the free-energy dif-
ferences ∆Fα

ij . For multistate motors, this is a rather challenging task since only a
few quantities can be extracted reliably from the experimentally measured trajec-
tory of the probe. Note, however, that this problem does not happen exclusively in
our approach but is inevitable whatever method is used to infer motor properties
from such trajectories.
In the following, using the 90-30 model for the F1-ATPase, we will illustrate

how these quantities can be estimated. If all motor transitions involve mechanical
transitions with different step sizes, the plateaus in the probe trajectory can be
assigned to specific corresponding motor states. Since after a large enough time
interval all possible transitions will have occurred, one is also able to reconstruct
the links connecting the states. The marginal distributions Pi are then given as
the fraction of time that the corresponding motor state is occupied. For the two-
state model of the F1-ATPase, we assign plateaus in the probe trajectory that are
followed by a fast 90◦ forward or 30◦ backward displacement to motor state i = 1
and plateaus that are followed by fast 90◦ backward or 30◦ forward displacement
to i = 2. In principle, there are several possibilities to reconstruct hidden variables
from partially visible trajectories [189–191]. Here we will use a simple algorithm
which sets i = 2 if four consecutive data points are within a specific range around
90◦ and otherwise i = 1. The marginal distributions P1, P2 are then represented
by the fraction of data points with assigned i = 1, 2.
If the motor is not very complex, the operational currents jαij can be obtained

rather easily since they are precisely the net currents between two motor states. For
unicyclic motors, all operational currents are equal to the average velocity divided
by d, the operational current of an ATP binding transition is the net disappearance
rate of ATP in the solution (given that there are no other ATP binding reactions),
and so on. If all motor transitions involve mechanical transitions with different
step sizes, the operational currents between any two states can be obtained by
counting the number of transitions of a specific step size from i → j, nαij, and
j → i, nαji. The instantaneous (operational) current between i and j using α (for
any y) is given by

jαij(t) =
∑
k

δ(t− τk)rβlkmk
(7.47)

with rβlkmk
= 1 if β = α, lk = i, mk = j and rβlkmk

= −1 if β = α, lk = j, mk = i
and jump times τk. The (time) average of this current using one long trajectory
of length ttot is then given by

jαij = (nαij − nαji)/ttot. (7.48)
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Figure 7.12: Comparison of the sim-
ulated trajectory of motor and probe
with a trajectory of the probe and the
estimated motor position that was re-
constructed using the simulated tra-
jectory of the probe. The trajectories
are shifted for better visibility. Pa-
rameters: κ = 40 d−2, γ = 0.005 s/d2,
cT = cD = 2µM, cP = 1 mM, ceq

T =
0.333µM, ceq

D = 0.0682 M, ceq
P = 1 M,

fex = 0, lower boundary to set i = 2:
x− bxc = 0.375 d, upper boundary to
set i = 2: x− bxc = 0.89 d.

In our example, in order to estimate j90
12 we have to count the number of sudden

displacements of “size” 90◦ either from the trajectory of the probe directly or from
the reconstructed trajectory of the motor using the assignment rule mentioned
above. If the time resolution of the trajectory is very coarse or if the reconstruction
method is rather inaccurate, jumps that consist of fast consecutive 90 and 30 jumps
with apparent step size 120◦ will appear which have to be included in the number
of 90◦ (and also 30◦) jumps. Fig. 7.12 shows a reconstructed motor trajectory
obtained with the algorithm mentioned above. We have used a trajectory of the
probe from our simulations as “experimental data”. Compared to the original
motor trajectory, this reconstruction captures the average dynamics quite well.
Large fluctuations of the probe can generate additional apparent motor jumps in
the reconstructed trajectory that are absent in the original one.
Finally, the estimation of the free-energy difference ∆Fα

ij = Fj − Fi − ∆µαij is
slightly more involved. In equilibrium (∆µ = 0, fex = 0), detailed balance holds,

wαij(y)
wαji(y + dαij)

=
peq
j (y + dαij)
peq
i (y) , (7.49)

with the Boltzmann distribution peq
i (y) = P eq

i exp[−V (y)]/N . Inserting this ex-
pression yields

P eq
j /P

eq
i = exp[−Fj + Fi + ∆µα,eq

ij ] ≡ exp[−∆Fαij] (7.50)

for the marginal distributions in equilibrium. Note that ∆µα,eq
ij 6= 0 if the corre-

sponding transition comprises only binding or release of nucleotides. Thus, the
equilibrium free-energy difference ∆Fαij (which explicitly depends on the equilib-
rium concentrations) can be obtained from the ratio of the marginal distributions
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7. Thermodynamically consistent coarse-graining method

Table 7.1.: Comparison of the coarse-grained rates and other relevant quantities
obtained from the simulation of the full model with the ones estimated using the
reconstructed motor trajectory. The trajectory used to obtain these values is shown
in Fig. 7.12.

simulation estimate

P1 0.944 0.952

P2 0.056 0.048

j90
12 [1/s] 52.292 52.246

∆F12 3.216 3.140

Ω90
12 [1/s] 55.325 54.899

Ω90
21 [1/s] 0.00676 0.00620

Ω30
21 [1/s] 937.1 1082.37

Ω30
12 [1/s] 0.037 0.046

under equilibrium conditions. Using µi = µeq
i + ln(ci/ceq

i ), we find that

∆Fα
ij = ∆Fαij ±

∑
k

ln ck
ceq
k

(7.51)

with k = T,D,P and the sign depending on which binding or release event corre-
sponds to the transition ij, α [51]. Hence, the free-energy difference ∆Fα

ij needed
for the coarse-grained rates can be expressed by the equilibrium free-energy dif-
ference ∆Fαij obtained from experimental data at equilibrium conditions and the
nucleotide concentrations with respect to the equilibrium concentrations corre-
sponding to the conditions used to obtain ∆Fαij. For the 90-30 model, we have
P eq

2 /P eq
1 = exp[−∆F90

12 ] = exp[−∆F30
12 ] with −∆F90

12 = −F2 + F1 + µeq
T − µ

eq
D =

−F2 + F1 + µeq
P = −∆F30

12 since ∆µ = 0 in equilibrium.
Once these quantities have been estimated, there are no additional fit param-

eters needed or left. All concentrations as well as the external force are usually
known from the experimental setup. To obtain the coarse-grained rates from the
probe trajectory of our 90-30 model, we then proceed as follows. First, we choose
equilibrium conditions and obtain ∆F12 from the ratio of marginal distributions.
Then we change to non-equilibrium concentrations and estimate P1, P2 and the
operational current j90

12 . The coarse-grained rates, according to Eqs. (7.34, 7.35),
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are then given by

Ω90
12 = j90

12
cTc

eq
D exp[−∆F12 − fexd

90
12]/(ceq

T cD)
P1cTc

eq
D exp[−∆F12 − fexd90

12]/(ceq
T cD)− P2

, (7.52)

Ω90
21 = j90

12
1

P1cTc
eq
D exp[−∆F12 − fexd90

12]/(ceq
T cD)− P2

, (7.53)

Ω30
21 = j90

12
ceq

P exp[∆F12 − fexd
30
21]/cP

P2c
eq
P exp[∆F12 − fexd30

21]/cP − P1
, (7.54)

Ω30
12 = j90

12
1

P2c
eq
P exp[∆F12 − fexd30

21]/cP − P1
. (7.55)

A comparison of the coarse-grained rates and related quantities obtained from the
full theoretical model and from the reconstructed one estimated using the probe
trajectory is shown in table 7.1. We find quite good agreement between the original
and the reconstructed quantities with a maximum error of 14% except for the Ω30

ij

rates which have a maximum error of 24%.
The 90-30 model thus provides a useful demonstration of the experimental ap-

plicability of the coarse-graining method showing that it is possible to estimate the
coarse-grained rates from experimental accessible data if the underlying motor net-
work is not too complex. Considering the simplicity of the applied reconstruction
method, the accuracy of the estimates is rather encouraging.

7.5. Invariance of entropy production and efficiency
An important question for any coarse-graining method concerns its effect on en-
tropy production. In general, a coarse-grained description without imposed time-
scale separation or detailed balance for the eliminated variables often underesti-
mates the entropy production of the system [170–173, 181]. In this section, we
show that for the type of models considered here, our coarse-graining method con-
serves the entropy production even if there is no time-scale separation between the
eliminated and remaining degree of freedom.
Since transitions can be uniquely attributed to motor or probe particle, the

total entropy production of the system [6] can be split in two parts, analogously
to bipartite or partially masked systems [192, 193],

Ṡtot =
∑
i

∫ ∞
−∞

γjxi
2(y)

pi(y) dy

+
∑
i,j,α

∞∫
−∞

pi(y)wαij(y) ln
pi(y)wαij(y)

pj(y + dαij)wαji(y + dαij)
dy

≡ Ṡtot
p + Ṡtot

m (7.56)
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where jxi (y) = ((∂yV (y)− fex)pi(y) + ∂ypi(y))/γ is the current due to the motion
of only the bead for fixed i. Obviously, both Ṡtot

p and Ṡtot
m are non-negative.

The total entropy production (7.56) can be calculated using the LDB condition
(3.9) as

Ṡtot =
∑
i

∫ ∞
−∞

(∂yV (y)− fex)jxi (y)dy

+
∑
i,j,α

∫ ∞
−∞

pi(y)wαij(y)
(
∆µαij − Fj + Fi − V (y + dαij) + V (y)

)
dy

=
∑
i<j,α

∆µαijjαij − fexv ≥ 0. (7.57)

Using partial integration, it can be easily seen that the parts involving V (y) cancel,
i.e., the energy of the linker is constant on average. The total entropy production
is then given by the chemical free-energy consumption that is not transformed into
mechanical power.
For the coarse-grained description, the total entropy production contains only

contributions from the effective jump process,

Ṡtot
cg =

∑
i,j,α

PiΩα
ij ln

PiΩα
ij

PjΩα
ji

=
∑
i,j,α

PiΩα
ij ln

Ωα
ij

Ωα
ji

. (7.58)

Using the LDB condition for the coarse-grained rates (7.30) and the condition on
the operational current (7.31) yields

Ṡtot
cg =

∑
i<j,α

∆µαijjαij − fexv (7.59)

which is precisely (7.57). For these models for which the state space of the elim-
inated degree of freedom does not contain entropy producing internal cycles, the
average total entropy production in the NESS remains invariant under our coarse-
graining procedure.
It is also instructive to apply the entropy-splitting scheme introduced in [172] to

our coarse-graining procedure. In [172], it was shown that the total entropy pro-
duction can be written as a sum of the coarse-grained entropy production (7.58)
plus a contribution of the microstates corresponding to a mesostate (which are
eliminated during coarse-graining) plus a contribution due to the fact that jumps
between mesostates can occur involving different microstates. In our framework,
the total entropy production is already recovered by the coarse-grained entropy
production. The two additional contributions which correspond to the total en-
tropy production of the probe particle and the average total entropy production
of the motor minus the coarse-grained entropy production cancel each other.
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We finally show that our coarse-graining procedure also preserves the energy
transduction, or thermodynamic, efficiency ηT defined as the ratio of the ex-
tractable power Ẇout and the rate of chemical energy input ∆̇µ [132, 155],

ηT ≡
Ẇout

∆̇µ
. (7.60)

For the systems we have studied so far, as long as the external force is smaller
than the stall force, the power output is given by Ẇout = fexv and the power input
by ∑i<j,α ∆µαijjαij which leads to the efficiency

ηT = fexv∑
i<j,α ∆µαijjαij

, (7.61)

which is the same in the coarse-grained description since v, jαij, and ∆µαij are
conserved.
For motor models with tight coupling or multistate models with a single motor

cycle, the rate of chemical energy input equals the velocity ∆̇µ = v∆µ/d and the
efficiency reduces to ηT = fex/∆µ. In general, however, any idle cycles of the
motor increases the rate of chemical input over the velocity and therefore reduces
the efficiency (see section 6.5).

7.6. Stall force and rate anomaly
In chapter 6 we have shown that for multicyclic motors, the stall force becomes
a function of the attached probe particle. The varying stall force has also impli-
cations on the coarse-grained transition rates. In Fig. 7.10, a close look around
fexd = 14 shows that these data points are missing for the following reason. For
all investigated models, we find that if, as a function of the external force, the sign
change of an operational current depends on the friction coefficient γ, the coarse-
grained rates corresponding to this transitions can become piecewise negative. This
phenomenon occurs when the affinity of the affected transitions, ln

[
PiΩα

ij/(PjΩα
ji)
]
,

has the opposite sign of jαij. An isolated sign change in the denominator of Eqs.
(7.34, 7.35) leads to a pole in the corresponding rate. Such an anomaly in Ωα

ij

necessarily implies a corresponding one in Ωα
ji since the ratio of the effective rates

obeys the local detailed balance condition which enforces the same sign for both
rates. In this range, the coarse-graining scheme introduced here fails to produce
physically acceptable rates. In practice, one should discard the results at least
when either a rate is negative or becomes larger than the rate for vanishing bead
size. In Fig. 7.13, where we zoom into the range around the stall force, this range
is shaded grey. Taken at face value, this phenomenon looks like a shortcoming of
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Figure 7.13.: Detail of the coarse-grained mechanical transition rates of the ki-
nesin model as shown in Fig. 7.10. Near the stall force at fexd ' 14 these rates
exhibit a pole. In the grey shaded range, they should not be interpreted as physical
transition rates.

our approach. It is the price to pay for requiring over the full parameter range
both the local detailed balance condition and the correct net currents from any
one motor state to any other. While the negative rates do not allow for a sen-
sible physical interpretation, they nevertheless can be used to calculate average
quantities and yield, e.g., the correct entropy production as shown in section 7.5.
This rate anomaly does not occur for one-state motor models since their coarse-

grained rates can be expressed in terms of directed cycle currents of the full net-
work, which are always positive (see section 7.2.2). Concerning multistate motor
models, we have shown in section 6.3 that for unicyclic as well as for specific mul-
ticyclic motors the probability distribution at stall conditions is given by a shifted
Boltzmann distribution (6.10). Then, in the limit of continuous y, the zero of the
operational current (7.32) implies

0 = ln
[ ∫∞

−∞ pi(y)wαij(y) dy∫∞
−∞ pj(y + dαij)wαji(y + dαij) dy

]
(7.62)

= ln
[

P st
i

∫∞
−∞w

α
ij(y) exp[−V (y) + f st

exy]
P st
j

∫∞
−∞w

α
ji(y + dαij) exp[−V (y + dαij) + f st

ex(y + dαij)]

]
(7.63)

= ln
[
P st
i

P st
j

exp[−∆Fα
ij − f st

exd
α
ij]
]

(7.64)

= ln
[
P st
i Ωα

ij

P st
j Ωα

ji

]
, (7.65)

where we have used the transition rates in the form of (3.10, 3.11). Thus, for
models that exhibit a shifted Boltzmann distribution at stall, the sign change of
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the current jαij and the affinity ln
[
PiΩα

ij/(PjΩα
ji)
]
around stall conditions occurs

for the same fex. For those models, the coarse-grained rates are well-defined and
positive around the stall force.
Note that the stall force of models showing a shifted Boltzmann distribution, as

investigated in section 6.3, is independent of the friction coefficient γ. This finding
is consistent with the observation mentioned above that negative rates occur when
the stall force depends on γ. Based on these results, one might conjecture that
if the stall force is independent of the properties of the probe, the coarse-grained
rates are positive. However, a derivation of the precise conditions under which for
multistate motor models a pair of effective rates is well-defined and positive over
the complete range of fex must be left to future work. We stress, however, that
in all examples shown in this study, this anomaly occurs only in the narrow range
shown in Fig. 7.13. From a practical point of view, it therefore may not be as
relevant as it is intriguing from a theoretical perspective.

7.7. Conclusion
In this chapter, we have introduced a systematic coarse-graining method that al-
lows us to reduce motor-bead models to effective one-particle motor models. This
coarse-graining procedure provides a compromise between a one-particle descrip-
tion that is simple to handle and a detailed model comprising the dynamics of
the full system. It yields an effective one-particle model maintaining the true mo-
tor network, where the influence of the probe is naturally incorporated without
any additional assumptions since the simplification of the description takes place
a posteriori. Any external force acting on the probe is then acting on the effec-
tive motor directly. The coarse-grained rates obey a LDB condition and yield the
correct net currents. Fixing the marginal distribution and the average currents,
there is still freedom on how to choose the rates. Only with the LDB condition
the effective rates are determined uniquely.
Applying the coarse-graining procedure to motor-bead models, we find that in

general the coarse-grained rates do not show a single exponential dependence on
the external force in contrast to what is often assumed for mechanical transition
rates in one-particle models. Only in the often unrealistic limit of fast bead relax-
ation, the coarse-grained rates reduce to the corresponding one-particle rates.
In the absence of external forces, in general the coarse-grained rates are not

proportional to the ATP concentration even if the motor rates obey mass action
law kinetics. This feature originates from the drag effect of probe (due to friction)
that is incorporated in the coarse-grained rates. For the same reason, the average
velocity shows a sublinear dependence on the ATP concentration even for a one-
state motor model. Assuming an a priori one-particle model with external force
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acting directly on the motor, one would have either to use a rather counterintuitive
complex force-dependence of the transition rates or to introduce additional motor
states in order to obtain a sublinearly growing velocity caused by the drag of the
probe.
Considering the influence of the coarse-graining procedure on the stochastic

thermodynamics of the system, we show that the total entropy production remains
invariant under coarse-graining. This is due to the fact that, on the one hand, the
state space of the eliminated degree of freedom contains no entropy producing
cycles. On the other hand the design of the coarse-graining procedure is also
important. It has to conserve the motor network as well as the net currents and
provide transition rates fulfilling a LDB condition. Likewise, the thermodynamic
efficiency remains invariant in our scheme.
Our coarse-graining method conserves average quantities like the entropy pro-

duction or operational currents although eliminating the dynamics of the probe
particle strongly affects the cycle structure of the full system. In order to pre-
serve also fluctuations of current observables in the long-time limit it was found
that coarse-graining methods should conserve the cycle structure of the full system
[177, 178].
From the experimental point of view, in order to obtain the simpler effec-

tive model, the underlying mesoscopic modeling need not to be known since all
these quantities enter the coarse-grained description via the net currents and the
marginal distributions which, in principle, can be extracted from the experimental
data as we have demonstrated using a two-step model for the F1-ATPase.
The main advantage of the coarse-graining procedure introduced here is that

once the rates have been obtained from experimentally accessible quantities, they
automatically fulfill a LDB condition and provide the correct average currents, i.e.,
velocity, entropy production, hydrolysis rate, and so on.
For multicyclic motors, the coarse-graining procedure can yield rates that can

have poles and become (piecewise) negative. If this scenario occurs, the coarse-
grained rates lack a physical interpretation as transition probabilities in this range
but they can still be used to calculate average quantities. For this class of motors
the stall force typically depends on the size of the probe particle, i.e., the friction
coefficient. For one-state motors, the coarse-grained rates are always positive.
So far, we have discussed coarse-graining only under NESS conditions. In princi-

ple, the coarse-graining procedure as introduced in sections 7.2.1 and 7.3.1 can also
be applied to non-stationary states, e.g., if the nucleotide concentrations are not
constant and ∆µ decreases with time [51, 194]. Such a scenario would yield time-
dependent Pi’s, net currents, LDB conditions, and therefore also time-dependent
coarse-grained rates.
Further generalizations might include other types of models representing the
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full system. While developed here for discrete motor models, the coarse-graining
procedure should be also applicable to continuous motors moving in a tilted peri-
odic potential where the potential minima will become the discrete states of the
coarse-grained effective motor. The introduction of the index α in principle also
accounts for more involved potentials or free-energy surfaces that depend on both
the motor and the probe state.
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8. Concluding perspective
Most single molecule experiments with molecular motors comprise some kind of
probe particle that is attached to the motor. Thus, any theoretical modeling with
parameters estimated from experimental data will explicitly or implicitly contain
characteristics of the probe particle.
In this thesis, we have studied the influence of an attached probe particle on

the dynamics and energetics of a single motor. In particular, we find that specific
features in experimental data can result from attaching probe particles and do not
necessarily represent characteristics of the motor itself.
Our analysis is based on a so-called hybrid model as introduced in chapter 3.

Within the hybrid model, the motor and the probe are modeled as two coupled
degrees of freedom. Such modeling is suitable to investigate the interaction effects
between motor and probe since it treats both constituents on an equal footing.
We have applied this hybrid model to explore three different definitions of effi-

ciency applicable to molecular motor-probe setups in chapter 4. We find that the
pseudo efficiency which represents a measure of how much chemical energy can be
transferred to the linker can indeed exceed 1. This result was later affirmed by
[17]. The pseudo efficiency is not bounded by 1 since it involves heat dissipated
by the probe rather than work that is extracted from the system. The genuine
thermodynamic efficiency ηT, which is bounded by 1 due to the second law, reaches
1 at stall conditions since our model comprises a tightly coupled one-state motor.
Experiments on the F1-ATPase indicate that this specific motor is indeed tightly
coupled and reaches ηT = 1 at stall consistent with our modeling.
Information about the influence of the probe on the dynamics of the motor can

be obtained from the velocity autocorrelation function (VACF) and the response
function of the velocity of the probe. Both quantities have also been measured
in experiments with the F1-ATPase. Simulations reveal that the VACF and the
response function of the hybrid model can show pronounced oscillatory behavior.
Analyzing three simplified versions of our hybrid model, we find that these os-
cillations emerge if the motor advances with discrete jumps that are not purely
random in time and if its dynamics is affected by the external force. The observed
regularity in the dynamics of the motor can be induced by a symmetric coupling
between motor and probe even if the motor jumps are a priori purely random.
Moreover, the linker transmits any external perturbation that was originally ap-
plied only to the probe to the motor. A structure similar to the oscillations in the
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simulation data, however less pronounced, also occurs in the experimental data.
The dwell-time distribution of the motor jumps can exhibit non-Markovian char-
acteristics due to the delayed relaxation of the probe which could be mistaken as
signature of additional motor states.
More general aspects concerning generic unicyclic and multicyclic motors are

addressed in the remaining chapters. After introducing the network representation
of the hybrid models, we show that the presence of a probe particle augments the
network of the motor such that it comprises more cycles than the bare motor
network. Due to these additional cycles, the stall force of motor-probe complexes
with multicyclic motors can depend on the size of the probe. In particular, the
stall force of the motor-probe complex can be smaller, equal to or even larger than
the stall force of the bare motor. Hence, it is possible to increase the maximum
extractable work from the motor by applying a probe particle. Since unicyclic
motors do not show a varying stall force with probe size, this feature can serve as
proof for a multicyclic motor. Concerning experiments, one has to keep in mind
that the measured stall force corresponds to the motor-probe complex and does
not necessarily represent characteristics of the energy transduction in the bare
motor.
While the previous chapters involved hybrid-models with explicit dynamics of

the probe particle, the last chapter provides a dynamically and thermodynamically
consistent coarse-graining procedure which allows to map the motor-probe complex
to an effective one-particle motor model. The so-obtained effective motor model
can then be compared to the traditionally used a priori one-particle motor models
as briefly mentioned in the chapters 1 and 2. The rates of the effective motor
model exhibit a more complex dependence on external parameters like force or
ATP concentration than the rates of the a priori one-particle models. Since the
coarse-grained network equals the bare motor network, the coarse-graining method
provides a link between the detailed hybrid models and findings that have been
obtained using one-particle models. Any net current observable can be calculated
directly on the coarse-grained network yielding the correct result of the underlying
detailed dynamics.
After summarizing our main results, we will now briefly address remaining open

issues. In the first place, it is unknown which features in the experimental data
can be attributed to the interactions between motor and probe. Thus, we started
our analysis in chapters 4 and 5 with a simple, well-defined model to identify the
implications of attaching a probe particle to the motor. Since any extension of the
model comes along with additional fit parameters and a much more complicated
analysis, we have remained with the simple one-state model and the harmonic
linker for the most part. The basic properties of motor-bead interaction are already
captured by this simple setup, which provides deeper insights into the origin of
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the observed effects. However, as we have seen in chapters 4 and 5, quantitative
comparison with experimental data requires more sophisticated models including,
e.g., additional internal motor states or a more complex linker potential. In a next
step, once the contributions of the probe have been identified, the hybrid model
can be extended to better represent the complex structure of the actual molecular
motor.
Besides adjusting or improving the hybrid model, our analysis has revealed more

general issues that could provide a starting point for further studies. One of these
issues is the regularity that the probe induces in the dynamics of the motor. Fol-
lowing [164, 165] it would be interesting to further investigate the shape of the
dwell-time distribution of the motor-probe complex. Here, the additional internal
states belong to the probe particle. One might envisage a chain of states with a
random number of intermediate states representing y that could serve as a sim-
plified test model to gain deeper insight into the suppression of subsequent motor
jumps. Since the diffusion coefficient provides a measure of the “randomness” of
the dynamics, one can expect that the randomness parameter, a quantity com-
paring the diffusion coefficient with the average velocity of the motor, will also be
affected by the presence of a probe particle.
The observed stall force variation for multicyclic motors involves several addi-

tional open questions. Our numerical investigations indicate an optimal probe size
where the deviation of the stall force from the stall force of the bare motor is max-
imal. Here, additional work is required to find out whether this is a generic effect
and whether the extracted work can be maximized as a function of the probe size.
We also found that the occurrence of negative coarse-grained rates with poles is
connected with the stall force anomaly. We have shown that for specific models,
the coarse-grained rates do not have poles at the stall force. However, we cannot
exclude additional poles in the coarse-grained rates away from the stall force. Fur-
thermore, it would be interesting to know whether a stall force that is independent
of the friction coefficient γ implies positive coarse-grained rates as suggested by
our numerical results. Additionally, we have investigated the stall force only as a
function of the probe size. Since the variation of the stall force is induced by the
delayed relaxation of the probe, it is obvious that the stall force should be also a
function of the coupling strength , i.e., the potential V (y), or, especially the spring
constant κ.
Further studies should address the efficiency at maximum power (EMP) for

hybrid models, especially those with multicyclic motors. We have already seen
that the maximum extractable work can be increased by adding a probe particle
but that does not necessarily increase the efficiency or efficiency at maximum
power. Hence, additional work is required to find out how the probe affects the
EMP and whether there is an optimal probe size to maximize the EMP.
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A. Simulation algorithm
Trajectories of the hybrid models introduced in chapter 3 are simulated using a
Gillespie algorithm [195, 196] very similar to the one used in [41]. Therefore,
we discretize the dynamics of the probe particle yielding a fully discrete two-
dimensional (n, x) or, for multistate motors three-dimensional (i, n, x), state space,
see Fig. A.1. For each state, jumps of the motor or the probe can occur changing
i, n or x, respectively. The main advantage of using a fully discretized state
space is that the transition rates for each state are independent of time or any
previous transitions of the system. Hence, on the (i, n, x)-space, the process is a
pure Markov process and can be simulated with the simple algorithm presented
below.
The transition rates of the probe can be obtained by discretizing the correspond-

ing part of the Fokker-Planck equation (3.6, 3.12) yielding

γ+(y) = ∂yV (y)− fex

2γδ + 1
γδ2 , (A.1)

γ−(y) = −∂yV (y)− fex

2γδ + 1
γδ2 (A.2)

which corresponds to the first-order expansion of the rates

γ+(y) = 1
γδ2 exp[−V (y − δ/2) + V (y)− fexδ/2], (A.3)

γ−(y) = 1
γδ2 exp[−V (y + δ/2) + V (y) + fexδ/2] (A.4)

with ∂yV (y) ≈ 2(V (y + δ/2)− V (y))/δ. The step size δ of the probe is chosen as
δ = d/1000. We use the latter definition of the transition rates since these hold
true also for larger δ and obey a LDB condition.

Figure A.1: Two-dimensional state space
(n, x) for a hybrid model with a one-state mo-
tor. The actual state of the system (dark red)
can be changed via four transitions in n or x
direction, representing jumps of the motor or
the probe, respectively.
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A. Simulation algorithm

Figure A.2.: Schematic illustration of the Gillespie algorithm applied to generate
stochastic trajectories of the hybrid models.

Fig. A.2 shows a flow chart of the simulation algorithm. We start with initializ-
ing t = 0, n = 0, x = 0 and then determine the next jump time. The jump times
are exponentially distributed p(τ |i, n, x) ∼ exp[−aτ ] since all transition rates of
the system are independent of t and depend only on the actual state (i, n, x). The
exit rate from state i to all other states linked to i reads

a(i, n, x) =
∑
ν

k(ν|i, n, x) (A.5)

where ν = 1, 2, ... indicates the specific transition or direction and k(ν|i, n, x)
represents wαij(y) or γ±(y). Sample values of the jump times are obtained by
drawing unit uniform random numbers r1 and setting τ = (1/a) ln(1/r1) [196]. In
the next step, one has to chose the direction ν of the jump. The specific transition
can be chosen by drawing another unit uniform random number r2 and setting ν
according to

ν−1∑
ν′=1

k(ν|i, n, x) ≤ ar2 <
ν∑
ν=1

k(ν|i, n, x). (A.6)

Now, the process can be updated depending on whether ν represents a jump of
the probe or of the motor and the next jump time can be picked. Depending on
the later purpose of the trajectory, the data can be recorded at various points
throughout the algorithm.
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B. Equivalence of heat flow Q̇P
with the one inferred from the
Harada-Sasa relation

Experimentally, the heat flow caused by the probe has been inferred from measur-
ing the autocorrelation function Cẋ(τ) = 〈ẋ(t+τ)ẋ(t)〉−v2 and the linear response
function

Rẋ(τ) ≡ δ〈ẋ(t+ τ)〉
δh(t)

∣∣∣
h=0

(B.1)

of the velocity of the probe to a small external perturbation h(t) of the probe
within the steady state [15]. The heat flow is then given by an equality derived by
Harada and Sasa [156]

Q̇HS = γv2 + γ
∫∞
−∞

dω
2π [C̃ẋ(ω)− 2< (R̃ẋ(ω))]

= γv2 + γ[Cẋ(0)− 2Rẋ(0)] (B.2)
≡ Q̇S + Q̇V, (B.3)

with C̃ẋ and R̃ẋ being the Fourier transforms of Cẋ and Rẋ. Using a path weight
approach described in [160] applied to our system, the response function follows
as

Rẋ(τ) = 1
2〈ẋ(t+ τ)[ẋ(t)− 1

γ
(κy(t)− fex)]〉. (B.4)

Inserting Cẋ and this Rẋ into (B.2), one immediately finds

Q̇HS = 〈ẋ(κy − fex)〉 (B.5)

which is equal to Q̇P in (4.9).
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C. Efficiency of the hybrid model
with continuous motor dynamics

For continuous motor dynamics as investigated in section 5.2.3, Eqs. (5.20, 5.21),
the heat flow through the probe is given by

Q̇P = γ∆µ2

d2(η + γ)2 = γv2 (C.1)

which is equal to the contribution appearing in the Stokes efficiency. Thus, the
pseudo efficiency and the Stokes efficiency coincide and are given by

ηQ,S = γv2d

∆µv = γ

η + γ
. (C.2)

If the diffusion coefficient of the motor is much larger than the one of the probe,

η � γ ⇒ ηQ,S → 1 (C.3)

and in the opposite case,

η � γ ⇒ ηQ,S → 0. (C.4)

Thus, the limiting cases (for the Stokes efficiency) are reached when there is a
time-scale separation between the dynamics of the motor and the probe.
One can now investigate the original model with discrete motor dynamics as used

in chapter 4 in view of a time-scale separation between the dynamics of motor and
probe. The diffusion coefficient of the bare motor which corresponds to η is given
by

Dbare
m = d2w0 exp[µT] + w0 exp[µD + µP]

2 = d2w
eq(cT/c

eq
T + cDcP/(ceq

D c
eq
P ))

2 ,

(C.5)

which increases with ∆µ for fixed weq since µD and µP are fixed in the setup of
chapter 4 and also with weq for fixed ∆µ since then the ratio of ci/ceq

i is fixed.
Thus, in the setup with fixed weq, see Figs. 4.1, 4.3, the pseudo and the Stokes
efficiency should approach 1 with increasing ∆µ and 0 with decreasing ∆µ. For
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fixed ∆µ, they should approach 1 with increasing weq and 0 with decreasing weq,
see Fig. 4.1, 4.3. While the Stokes efficiency exhibits the predicted behavior, the
pseudo-efficiency deviates for small ∆µ except for θ+ = 0.5. Obviously, the specific
characteristics for θ+ = 0.5 is related to the fact that discretizing continuous
dynamics yield precisely θ+ = θ− = 0.5.
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