
Flow and transport of colloidal suspensions
in porous media

Von der Fakultät Mathematik und Physik der Universität Stuttgart
zur Erlangung der Würde eines Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigte Abhandlung

vorgelegt von

Frank Wirner

aus Zell-Weierbach

Hauptberichter: Prof. Dr. Clemens Bechinger
Mitberichter: Prof. Dr. Wolfgang Bolse

Tag der mündlichen Prüfung: 4. Mai 2015
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Abstract

Porous media are encountered in several areas of science and technology. The list of
examples where flow and transport processes inside complex pore structures are of im-
portance is long and includes topics like groundwater flow, blood perfusion inside the
human body and oil recovery. The common and interesting feature of all porous media
is their highly complicated pore structure. As the Navier-Stokes equations in such a
complex structure are not easily solvable, it is a demanding task to predict flow and
transport properties of a porous medium.

The present thesis deals with the effect of the pore geometry on the flow and transport
properties of colloidal suspensions. The porous structures used in this work are created
by soft lithography. Therefore, the precise microscopic structure of these porous media
is known and can be varied in a controlled way. The aqueous colloidal suspensions are
used, on one hand, to visualize the flow of the fluid and, on the other hand, to directly
study the transport of individual colloids.

First, the relation between the velocity of the colloids and the fluid is investigated.
Since the particles are of finite size, they will alter the surrounding flow field and, thus,
their velocity at their center of mass is, in general, different from the velocity of the fluid
at that point. The determination of the permeability of porous structures is achieved
by calibrating the relation between mean particle and mean fluid velocity by adding an
additional reference channel with known permeability and, consequently, known mean
fluid velocity.

Second, this calibration method is used to measure the permeabilities of two series of
porous structures which are composed of randomly placed overlapping circles or ellipses
(following Boolean models). An empirical expression for the permeability which makes
use of purely structural parameters, namely the Euler Characteristic and the critical pore
diameter, is introduced. The values predicted by this expression agree very well with the
measured permeabilities. The advantage of this expression is that it does rely neither
on the conductivity nor on the percolation threshold of the structures. In order to test
whether the proposed empirical expression can be applied universally, two more series
of porous structures, where the conducting and obstacle phase have been exchanged,
are measured. It is found that for this class of structures the agreement is worse and
possible explanations for the deviations are given.

Third, the distribution of transit times of small particles in porous media with different
porosities is studied by a combination of experiment and simulation. Since the velocities
in different parts of the porous medium vary widely and particles in structures with low
porosities can also get trapped in stagnant parts from which they can only escape by
diffusion, the resulting distributions can be very wide. The longest transit times of the
distributions can be related to a mean escape time for the largest stagnant parts which
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implies that information about the extent of stagnant parts can be gathered from the
distribution. In addition, the simulations were also modified to account for particles
with self-propulsion. The motility of the particles leads to an increase of the shortest
observed transit times as well as to a decrease in the longest transit times.



Zusammenfassung

Poröse Medien findet man in vielen Bereichen von Wissenschaft und Technik. Die Liste
von Beispielen, für die Fluss- und Transportprozesse in komplizierten porösen Strukturen
von Bedeutung sind, ist lang und beinhaltet Themen wie Grundwasserfluss, Blutdurch-
strömung im menschlichen Körper oder Ölförderung. Das gemeinsame und interessante
Merkmal aller porösen Medien ist ihre hochkomplizierte Porenstruktur. Da die Navier-
Stokes-Gleichungen in solch einer komplexen Struktur nicht einfach lösbar sind, ist es
eine anspruchsvolle Aufgabe, die Fluss- und Transporteigenschaften eines porösen Medi-
ums vorherzusagen.

Die vorliegende Arbeit befasst sich mit der Auswirkung der Porengeometrie auf die
Fluss- und Transporteigenschaften kolloidaler Suspensionen. Die porösen Strukturen,
die in dieser Arbeit verwendet werden, werden mittels Soft Lithography hergestellt.
Folglich ist die genaue mikroskopische Struktur dieser porösen Medien bekannt und kann
auf kontrollierte Art variiert werden. Die wässrigen kolloidalen Suspensionen werden
einerseits verwendet, um den Fluss des Fluids sichtbar zu machen und andererseits, um
den Transport einzelner Kolloide direkt zu untersuchen.

Zuerst wird das Verhältnis zwischen der Geschwindigkeit der Kolloide und des Fluids
untersucht. Da die Partikel eine endliche Größe haben, werden sie das sie umgebende
Flussfeld beeinflussen und folglich wird sich die Geschwindigkeit ihres Schwerpunkts im
Allgemeinen von der Geschwindigkeit des Fluids an diesem Punkt unterscheiden. Die
Bestimmung der Permeabilität poröser Strukturen wird erreicht, indem das Verhältnis
von mittlerer Teilchengeschwindigkeit und mittlerer Flussgeschwindigkeit durch Hinzuf-
gen eines Referenzkanals mit bekannter Permeabilität und damit bekannter mittlerer
Flussgeschwindigkeit kalibriert wird.

Als zweites wird diese Kalibrierungsmethode eingesetzt, um die Permeabilitäten von
zwei Serien poröser Strukturen, die aus zufällig platzierten überlappenden Kreisen oder
Ellipsen (Booleschen Modellen folgend) bestehen, zu bestimmen. Ein empirischer Aus-
druck für die Permeabilität, der rein strukturelle Parameter benutzt, namentlich die
Euler-Charakteristik und den kritischen Porendurchmesser, wird eingeführt. Die Werte,
die von diesem Ausdruck vorhergesagt werden, stimmen sehr gut mit den gemessenen
Permeabilitäten überein. Der Vorteil dieses Ausdrucks liegt darin, dass er weder von
der Leitfähigkeit noch von der Perkolationsschwelle der Strukturen abhängt. Um zu
überprüfen, ob der vorgeschlagene empirische Ausdruck universell anwendbar ist, wer-
den zwei weitere Serien poröser Strukturen gemessen, bei denen die leitende und die
Hindernisphase ausgetauscht wurden. Es wird festgestellt, dass die Übereinstimmung
für diese Klasse von Strukturen schlechter ist und es werden mögliche Erklärungen für
diese Abweichungen gegeben.

Als drittes wird die Verteilung von Durchlaufzeiten kleiner Teilchen in porösen Medien
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mit unterschiedlichen Porositäten mit einer Kombination aus Experiment und Simula-
tion untersucht. Da die Geschwindigkeiten in unterschiedlichen Bereichen des porösen
Mediums stark variieren und Partikel in Strukturen mit niedrigen Porositäten auch in
stagnierenden Bereichen, aus denen sie nur durch Diffusion wieder entkommen können,
gefangen werden können, können die resultierenden Verteilungen sehr breit sein. Die
längsten Durchlaufzeiten der Verteilungen können mit der mittleren Entweichzeit der
größten stagnierenden Bereiche in Zusammenhang gebracht werden, was bedeutet, dass
Information über das Ausmaß der stagnierenden Bereiche von den Verteilungen gewon-
nen werden kann. Zusätzlich wurden die Simulationen auch angepasst, um Partikel mit
Selbstantrieb zu berücksichtigen. Die Motilität der Partikel führt zu einer Zunahme
der kürzesten beobachteten Durchlaufzeiten sowie zur Abnahme der längsten Durch-
laufzeiten.



1. Introduction and overview

A good understanding of flow and transport properties in porous media, i.e., materials
consisting of a mixture of solid and void phases that are accessible to fluids, is of practical
relevance in many different branches of science and technology. The definition of a
porous medium obviously applies to many materials that are familiar from everyday
life such as textiles, which owe their breathing properties to their pore structure. The
high porosity of polystyrene, which allows it to trap large amounts of air, results in
its outstanding insulating capabilities. Soil can store water, among other substances,
in its pore space, whereby plants are enabled to absorb nutrients through their own
capillary network. Groundwater flow and bioremediation of polluted aquifers are two
more areas of general interest where knowledge of flow processes in porous media is
essential. Blood perfusion throughout the human body is another example for flow
in a highly complex and even dynamic porous medium, and its understanding is of
huge interest for biomedical applications. Porous media are also important for technical
applications. The most prominent example probably is hydrocarbon recovery, where the
ability to predict how much oil or gas can be extracted at what expense from a reservoir is
crucial for any company in that sector. The reservoir rocks containing the hydrocarbons
are random networks of interconnected pore bodies and pore throats, which makes it very
hard to estimate how much hydrocarbons can be recovered, and especially how much
can be recovered by enhanced and costly techniques. The importance of poroelastic
properties of building materials should also not be forgotten. If its architect had not
been so unaware of the poroelastic properties of the ground underneath, the leaning
tower of Pisa never would have enjoyed its current level of popularity.

The common property of all porous media is their complicated pore structure. Simple
cylindrical pipes for example can be characterized by one length scale, whereas the pore
space in porous media is a complex network of interconnected channels of nonuniform
size and shape. This makes it very demanding to describe their structure, and in many
cases the full structure is not known in the first place, as one cannot see inside a structure.
But even if one knows the precise structure of a porous medium, there still is no easy
way of calculating its flow and transport properties, because solving the equation for
the flow of a Newtonian fluid, that is, the Navier-Stokes equation, in a large structure
with disordered boundaries is virtually impossible. Therefore, one has to know which
structural parameters are best suited to allow for a prediction of flow and transport
properties and vice versa. This relation between the morphology and the dynamical
properties of porous media is the center of interest of this thesis.

Despite the long history of research in porous media which has intensified during
the last several decades, one cannot help but be surprised by the paucity of detailed
knowledge of some general aspects of flow and transport in porous media, which is likely
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1. Introduction and overview

owed to the fact that the precise structures of the considered porous media were unknown
in many experiments and the transport therein was not observable on the microscopic
level.

The experimental strategy in this work is to use porous structures which are created
artificially by soft lithography. Thus, the microscopic details of the porous media are
known and can be varied in a controlled fashion to study the effects of structural changes
on the permeability, i.e., the ease for flow, and the transport of small particles. First,
however, a suitable probe for the fluid flow must be found. In our studies, aqueous
solutions with colloidal particles are injected into the porous media and a pressure drop
is applied. The small particles are observed as they flow through the structures by
conventional video microscopy. Particle tracking velocimetry is performed to reconstruct
their trajectories and determine particle velocity fields.

Initially, the effect of particle size on the resulting particle velocity fields is studied,
which is crucial knowledge for the study of flow properties.

Once the relation between particle and fluid velocity has been analyzed, the first
aspect investigated is the relation between purely morphological quantifiers of the pore
structure and the permeability of a porous medium. There are several attempts to recon-
struct porous media based on limited information about their morphological properties.
For sedimentary rocks this has been achieved with the help of Boolean models, which
form a structure by successively adding grains of appropriately chosen shape. It was
shown that the transport and mechanical properties of the reconstructed and original
structure agree, if certain morphological measures, namely the Minkowski functionals,
are identical. Motivated by this result an equation is introduced, which only uses purely
geometrical quantities to predict the permeability of porous structures that consist of
randomly placed overlapping circles or ellipses. We also test for universality of the equa-
tion by applying it to structures where void and solid phase have been exchanged, that
is, structures with a totally different morphology.

Next, the effect of the pore structure and particularly the effect of stagnant areas,
where the fluid is practically at rest, on the distribution of transit times of small particles
is examined, which is another important aspect considering the transport in porous
media. Since the particles are only diffusing inside stagnant areas, they can be trapped
for very long times that are not easily accessible by an experiment. To avoid this
problem, the particle velocity fields of three structures are measured experimentally and
are used in an overdamped Langevin simulation to generate a large number of particle
trajectories. These simulated trajectories show how the stagnant areas influence the
resulting transit times and how they can be related to their geometry. In addition to
these simulations of passive particles, the simulations are also modified to study the
transport of active particle, i.e., particles that can propel themselves. Interestingly,
their self-propulsion can lead to a decrease as well as to an increase of transit times,
depending on the type of structure.

The thesis is structured as follows:
Chapter 2 gives an overview of the structural quantities, like porosity, specific surface

and the Euler characteristic, that allow for a quantitative description of porous media.
The accessible pore space can be divided into two parts: the backbone part, where

2



the fluid is flowing fast, makes the largest contribution to the total flow rate, and the
stagnant parts, where the fluid is practically at rest. This distinction is important to
understand the changes in flow and transport behavior that occur in a porous medium
as the porosity is lowered. Critical path analysis and percolation theory, which are very
handy and insightful tools for the treatment of porous media, are briefly introduced and,
finally, Boolean models, which show resemblance to naturally occurring porous media
and will be used for our experiments, are discussed.
Chapter 3 summarizes how the flow and transport phenomena are affected by the

pore structure. The basic equations for flow of a Newtonian fluid inside an arbitrary
geometry, that is, the Navier-Stokes and the continuity equation, are introduced. In case
of the low flow rates in most porous media the Navier-Stokes equation can be simplified to
the Stokes equation. In the Stokes regime there is a simple linear proportionality between
applied pressure and the flow rate which is called Darcy’s law. The proportionality
constant is the permeability, which is one of the most important parameters of a porous
structure and its relation to the pore structure is addressed in this work. Among the
many laws that allow for a prediction of the permeability the main focus will lie on
the Katz-Thompson law, that is motivated by ideas used in critical path analysis, i.e.,
the dominance of flow through a pore of critical diameter. The combined effect of the
spatially varying velocity field imposed by the irregular pore structure and diffusion
lead to the phenomenon of hydrodynamic dispersion, which is the spreading apart of
initially closely localized particles as they move through the structure. The dispersion
mechanisms and their influence on transport of solutes in porous media with emphasis
on the role of stagnant parts are presented in the last section.
Chapter 4 deals with experimental details. Soft lithography is used to prepare sam-

ples with a well-defined structure. The movement of the small particles that are dispersed
in an aqueous solution is recorded via conventional video microscopy.
Chapter 5 describes particle tracking velocimetry, which is the experimental method

that is used throughout this work to capture trajectories of small tracer particles that
are dispersed in an aqueous suspension. The captured trajectories are used to calculate
particle velocity fields which can then be related to the velocity of the fluid. The problem
is that a particle of finite size will alter the fluid around it and will not exactly follow
the motion of the fluid. In other words, the particle velocity at its center of mass is not
identical to the fluid velocity. The influence of the particle size in porous media is also
debated in more detail. Two methods that solve the problem and enable the measure-
ment of permeabilities of the investigated structures are introduced: The constant-head
method uses a reference channel of theoretically known permeability to calibrate the
particle velocity, whereas the falling-head method utilizes an exponential decay and the
linear relation between applied pressure and mean particle velocity.
Chapter 6 presents the results of permeability measurements of twenty different

porous structures that cover the full range of porosities. First, two series of porous
structures which consist of randomly placed overlapping monodisperse circles (ROMC)
or ellipses (ROME) are determined experimentally and by simulations. By also measur-
ing the conductivities of the structures with the help of simulations, the applicability of
the Katz-Thompson model is tested. Motivated by the successful prediction of trans-

3



1. Introduction and overview

port and elastic properties of porous media by Minkowski functionals, a formula for the
permeability which only depends on structural parameters is introduced. The question
of the universal applicability of this formula is tested by comparing its predictions with
measured and simulated permeabilities of structures with totally different morphologies,
in our case, ROMC and ROME structures, where the two phases have been exchanged.
Chapter 7 is devoted to the study of hydrodynamic dispersion of small tracers in

ROMC structures with varying porosities. Particles that enter stagnant areas from where
they can only escape by diffusion can have experimentally inaccessible transit times.
Since these events are, however, of central importance for a correct determination of the
transport properties of a porous structure, a semi-experimental approach is followed. So,
first the velocity fields of three structures with decreasing porosities are experimentally
measured. These velocity fields are employed in an overdamped Langevin simulation
to obtain a large number of trajectories. The longest transit times are compared to
mean escape times of stagnant areas, which are related to their geometry. In addition
the simulation is modified to account for active particles, i.e., particles that can propel
themselves. It is investigated how the varying motility of the particles affects their
transit times.

Parts of this work have already been published:

1. “Measurement of permeability of microfluidic porous media with finite-sized col-
loidal tracers”
C. Scholz. F. Wirner, Y. Lie, and C. Bechinger, Experiments in fluids 53, 1327
(2012)

2. “Permeability of porous materials determined from the Euler characteristic”
C. Scholz. F. Wirner, J. Götz, U. Rüde, G. E. Schröder-Turk, K. Mecke, and
C. Bechinger, Physical review letters 109, 264504 (2012)

3. “Geometrical interpretation of long-time tails of first-passage time distributions in
porous media with stagnant parts”
F. Wirner, C. Scholz, and C. Bechinger, Physical Review E 90, 013025 (2014)
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2. Structural characterization of
porous media

Loosely speaking, a porous medium is a material with holes much like Swiss cheese.
Materials with very simple pore space geometries like a garden hose or a cube of (let’s be
generous) gold with drilled, isolated holes are commonly not classified as porous media.
Although it is hard to come up with a precise definition of porous media, all porous
media have some properties in common, that allow them to be grouped. Of course, a
fraction of the volume of the porous medium must be void space, also referred to as pore
space or simply pores, that can be filled with a fluid. The most interesting and relevant
questions in the study of porous media arise in connection with a fluid flow through a
porous medium. Thus, porous media considered in this work are stipulated to have a
large number of interconnected pores which form at least one continuous path from one
end of the structure to the other, along which fluids can flow. The basic feature that
makes porous media unique and distinguishes them from simple materials with holes
is their often highly complicated pore geometry. The majority of porous media consist
of well-connected, narrow channels of nonuniform size and shape distributed all over
the material. As a consequence of the narrow channels, the ratio of surface to volume
(specific surface) is very high.

The complex pore structure of disordered porous media determines their flow and
transport properties. Whether it is the amount of fluid or particles flowing through a
porous medium at a given pressure drop or the spreading of an initially localized drop
of dye travelling downstream, all flow and transport phenomena can be explained to
a large degree by the geometry of the porous medium. In contrast to flow in simpler
boundaries, like circular pipes or periodic porous media, a disordered porous medium
cannot be uniquely described by a small set of numbers. Even if the exact structure
on a microscopic level was known and the very demanding equations in these complex
boundaries could be solved, the solution would contain far too much information to
be of practical use. Such being the case, nonuniform porous media are described by
macroscopic pore structure and transport parameters (averages of the corresponding
microscopic parameters over a length scale much larger than individual pores), e.g.,
porosity, specific surface or permeability. These and other quantities, which cannot
simply be calculated, since the pore space morphology is often too complicated and not
known in detail, can be measured in experiments.

The following sections describe the different geometrical and topological parameters,
which are used to characterize complex porous media. Some experimental techniques for
the measurement of the most relevant parameters are also discussed, because experiments
which used these techniques first revealed the complex structure of natural porous media
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2. Structural characterization of porous media

and stimulated the development of more appropriate models for the pore space. The
penultimate section touches some aspects of percolation theory, which help to understand
porous media. The last section describes the structures, that are used in this work. The
chapter was inspired by [1, 2, 3, 4], to which one may also refer for more details.

2.1. Geometrical characterization of porous media

2.1.1. Porosity

A porous medium is composed of a solid phase and a void phase (pores), where normally
fluids can flow. As the term “porous” suggests, one basic parameter for the characteri-
zation of a porous medium is its porosity. Porosity φ is the ratio of the void volume to
the total volume of a porous medium:

φ =
Vv
Vtot

=
Vv

Vv + Vs
. (2.1)

Vtot is the total volume, which is the sum of Vv, the volume of the void phase, and Vs, the
volume of the solid phase. The different volumes are illustrated for an exemplary porous
medium consisting of overlapping circles in Figure 2.1. The cyan domains correspond
to the void volume and the black domains to the volume occupied by solid material. In
simple words, the more volume is occupied by solid the lower the porosity is.

Below a certain value of φ, which depends on the formation process of the material,
there is no continuous path of void space through the structure, i.e., fluids cannot flow
through the structure any more. The corresponding critical value φc is called percolation
threshold. It will be elaborated in section 2.3 and 2.4, where morphological details of
the structures that were used in this work will also be given.

In Figure 2.1 there is also a small enclosed, isolated volume Ve that is not connected
to the rest of the void space. It is crucial to distinguish between the part of the void
space that is isolated and the part that belongs to the sample-spanning void, or simply
open, space Vo of the porous medium. Principally, only the interconnected pore space
can make a contribution to flow of fluids through a porous medium, whereas isolated
pores can also be viewed as part of the solid phase. Therefore, it makes sense to define
an open porosity1 φo which excludes the isolated pore space:

φo =
Vv − Ve
Vtot

=
Vo
Vtot

. (2.2)

Representative volume

It should be noted that the measured porosity gives just an average value for the total
volume that is considered. If the whole porous medium is considered, the porosity is a
uniquely defined quantity, but in general the porosity, like any other quantity, depends

1In the literature, this quantity is often called effective porosity.
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2.1. Geometrical characterization of porous media
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Figure 2.1.: (a) Schematic illustration of a porous medium. The total volume Vtot of the
medium is made up of the volume of the solid parts Vs (black) and the volume of the void
parts Vv (cyan). The small enclosed volume Ve (hatched) inside the solid phase, which is also
part of the void space, is not connected to the sample-spanning void space. (b) Porosity as a
function of the considered volume Vtot. For a homogeneous medium (black line) a representative
value for φ is obtained for Vtot ≥ Vcor, while for a heterogeneous medium (blue line) φ does
not converge. (Reproduced from [2].)

on the size of the considered volume. The porous media that are studied in this work
are disordered. Disordered media can be classified in two subgroups: macroscopically
homogeneous and macroscopically heterogeneous. Evidently, if only small samples of
a macroscopically homogeneous porous medium are investigated, the microscopic ran-
domness of its pore space will manifest itself in strong fluctuations of the measured
quantities for each sample. Only if the samples are larger than a certain correlation
length ξ or a corresponding correlation volume2 Vcor, the measured properties for dif-
ferent samples will not differ and yield results which are representative for the whole
medium. For heterogeneous media, the correlation length ξ is larger than the length of
the whole medium. Thus, there will be variations as one looks at samples of different
parts of these media, which cannot be avoided by increasing the sample size. The only
representative volume in that case is the whole porous medium. A system of size L below
ξ can be self-similar and its properties might scale with a fractal dimension Df , e.g.,
the mass of the fluid in the sample-spanning void phase scales as M ∝ LDf . Although
this might sound like quite an academic problem, the question whether a sample can be
considered as representative of the whole structure, is of immense practical importance.
Take, for example, a self-similar oil reservoir, where the mass of oil in a drilled hole
scales as M ∝ L2.8, which implies that the density of recoverable oil decays as L−0.2. If
the oil content of the drilled hole is estimated by taking out a sample of size of 1 m of
a 10 km large reservoir, the oil content would be overestimated by 84 %. So, better ask

2Also called representative volume.
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2. Structural characterization of porous media

for the fractal dimension in case somebody is trying to sell you an oil field. Therefore,
whenever a measurement is carried out on a small sample, the experimenter must won-
der if the results can simply be upscaled. Scanning electron microscopy and optical data
of sandstones have indicated that several sandstones are fractal geometries over 3 to 4
orders of magnitude [5]. The fractal dimensions for these sandstones varied from 2.57
to 2.87 suggesting that the formation processes differ fundamentally. Studies of pore
surfaces of various materials have also revealed self-similarity, which was explained by
assuming an iterative formation mechanism [6].

A typical behavior of the porosity in dependence of the total considered volume
for a homogeneous (black curve) and heterogeneous medium (blue curve) is shown in
Figure 2.1 (b) to illustrate the difference between these two material subgroups and
to define Vcor. The whole domain of microscopic heterogeneities which is defined by
0 ≤ Vtot ≤ Vcor shows the same qualitative behavior for homogeneous and heteroge-
neous materials, i.e., strong fluctuations in the porosity. Starting at the very left, where
the volume is converging to a point, the porosity will be either 0 (dashed line) or 1 (solid
line), according to whether the point is in the solid matrix or in the void space. As Vtot is
increased, the fluctuations of the porosity continuously decay until a plateau is reached
at Vcor. In case of homogeneous materials (black line) the porosity will remain constant
for further increasing Vtot indicating a representative value φ. Yet, for heterogeneous
materials (blue line), which might also show a plateau in some volume range, a further
increase in Vtot will show changes in φ and reveal that Vcor cannot be defined for this ma-
terial class. In this case the result of a measurement cannot be upscaled since the whole
porous medium does not exhibit the same behavior as the small sample. Unfortunately,
heterogeneities at different length scales persist in many natural porous media making
it hard for researchers to deduce overall properties of a porous medium by just looking
at a small part of it. To make matters worse, a porous medium which might appear
homogeneous with respect to the porosity, can at the same time still show variations in
other properties, e.g., the permeability, which quantifies how easily a fluid flow through
a medium. Two media can have the same porosity but very different permeabilities.
For example, one medium might just consist of one large pathway through the struc-
ture, whereas another can be composed of many finely branched capillaries. Clearly,
fluid flow will behave completely different in these two structures. So, it is evident that
due diligence is required if one wants to make useful statements about the properties of
porous media, especially when one is dealing with heterogeneous media, which can be
found among natural formations.

Porosity measurement

The porosity of natural porous media can be measured by several methods [7]. A
straightforward but destructive method consists of measuring the total volume of the
porous medium, this step is necessary for any method, and then grinding of the material
followed by measuring the volume of the remaining solid. Employing quantitative stere-
ology (an optical method) to determine the areal porosity of a random pore structure
also gives useful results, but may not account for very small pores.
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2.1. Geometrical characterization of porous media

More modern imaging techniques like X-ray computed tomography (CT) have yielded
detailed information about the extremely complex 3D morphology of porous media with
an accuracy of only a few microns [8]. Millimeter-scale CT of Berea sandstone, which
was believed to be homogeneous and have an uncorrelated pore-size distribution, has
provided convincing evidence that correlated heterogeneities persist beyond one or two
pore lengths and challenged the assumption used in many models of porous media that
the properties of such stones are randomly distributed at the pore scale [9].

Another well-established method is mercury porosimetry [10], which has been a work-
horse for the investigation of the pore space since its invention. In this method the
material is first evacuated and subsequently immersed in mercury. Mercury does not
wet most materials and thus will not penetrate into the pore space by itself. By appli-
cation of an increasing pressure, mercury enters the pore space. The injected volume
of mercury as a function of the pressure is measured. At a characteristic maximum
pressure Pmax, which is unique for the used porous sample, the mercury can fill even the
smallest pores. By measuring the injected volume at this pressure, φ can be calculated.
The drawback, though, is that such high pressures might also change the pore structure
of the material.

Very interestingly, not all of the mercury is retracted when the pressure is lowered
again, i.e., there is hysteresis between the injection and retraction curves. An example
of a typical capillary pressure curve is shown in Figure 2.2 (a). First, the pressure P
is increased along the blue curve until, at Pmax, the whole medium is saturated with
mercury, that is, the saturation ρ of the pore space equals unity. Also note that there
is a rapid rise in the curve at the inflection point, which is believed to occur when the
mercury first forms a sample-spanning cluster [11]. At this point the sample also forms
electrical continuity across the sample, which makes it experimentally well-defined. After
the intrusion process, the pressure is lowered again and the mercury retracts. During
this extrusion ρ moves along the red curve which, in general, does not collapse onto
the intrusion curve. When the pressure reaches zero, some mercury still stays in the
pore space. Although the precise interpretation of the curves is complicated, a lot of
information about the morphology of porous media can be gathered from them.

In order to qualitatively understand the curves, one has to recall that a minimum
pressure, which is given by the Washburn equation (WE), P = 4σcos(θ)

d
, is needed to fill a

capillary tube of diameter d. Here, σ is the interfacial tension between mercury and the
pore surface and θ the contact angle between mercury and the pore surface. Before 1977
the pore space was mostly modelled as a bundle of nonintersecting capillary tubes of
varying diameters, completely ignoring its topology. This vastly oversimplified picture
of porous media probably was motivated by the similar behavior of slow fluid flow in
porous media, given by Darcy’s law, and the laminar flow through tubes described by
the Hagen-Poiseuille equation, both of which are linear in pressure gradient. With this
simple assumption and the WE, the capillary pressure curves can now be interpreted.
As the pressure is increased the pores are filled one after another, starting with the
largest pores, according to the WE. So, each pressure corresponds to a certain pore
size. Therefore, the derivative of the curve can also give information about the pore
size distribution. It was recognized that the assumption of nonintersecting tubes is
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Figure 2.2.: (a) Typical capillary pressure curves for intrusion (blue curve) and extrusion
(red curve) of mercury in a porous medium. At the inflection point (black dashed line), which
indicates the formation of a sample-spanning mercury cluster, the saturation rises steeply and
finally saturates at Pmax, when the whole medium is filled with mercury. (b) Mercury (orange)
is pushed into large capillary tube (pore) of diameter d2 via small tube of diameter d2. The
mercury can only fill the large tube, if the critical pressure of the small tube is surpassed.

problematic, since large pores that should be filled with mercury would not be filled if
they are only connected through smaller pores [12]. The consequence of this neglect
is that the contribution to the pore space of large pores is underestimated and that of
small pores overestimated. Yet, the goal of such experiments is to get reliable information
about the morphology of the medium to, e.g., judge the potential yield of hydrocarbon
reservoirs. Even though it took more than 20 years, the connection between the topology
of the pore space, described by percolation theory (covered in section 2.3), and mercury
porosimetry was finally fully appreciated [13, 14]. Once this seemingly simple idea of
pore-space interconnectivity is taken into account, the shape of the capillary pressure
curves and their hysteresis start to make more sense.

In Figure 2.2 (b) a schematic of two connected idealized pores with diameters d1 < d2

is shown. The mercury experiencing some pressure P and trying to enter the first pore
is drawn in orange. As P is increased, the minimum pressure according to the WE is
first reached for the second pore with d2, but as this pore is connected to the mercury
by the smaller pore, no mercury can enter. If P is further increased to the critical value
of the small pore, mercury will enter the small and the large pore. This will result in
a rise of the saturation in the capillary pressure curve. Now, when P is lowered again,
the mercury will first retract from the small pore due to the higher critical P , while it
can snap off and stay in the large pore. This is one explanation why there is hysteresis
in such curves. The phenomenon of mercury porosimetry can only be understood, if
both the pore geometry and the connectivity of the pores are accounted for. Therefore,
it seems reasonable that any realistic model of porous media must not only include the
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2.1. Geometrical characterization of porous media

a b c d

Figure 2.3.: Cross section of sample produced by the grain-consolidation model. White
corresponds to the solid phase occupied by spheres and black stands for the pore space. Several
stages with different porosities are shown: (a) initial configuration φ = 0.364, (b) φ = 0.200,
(c) φ = 0.100 and final stage close to the percolation threshold (d) φ = 0.030. [15].

shape and size of the pores but also their interconnectedness, i.e., the topology of the
pore space.

Diagenetic process

The geometrical properties of a porous medium and, in particular, their widely varying
porosities can be more readily understood by looking at some basic diagenetic processes
that can lead, e.g., to the formation of rocks. Accurate knowledge of the formation
history of a reservoir rock, for example, can be crucial to judge its potential for hydro-
carbon recovery. The solid phase of porous media often consists of grains of different
size and shape. The grains can either be loosely packed, like in sand, or they can be
cemented together and form a consolidated porous medium, e.g., a sandstone. A simple
geometrical model for the diagenetic formation process of such consolidated structures
is the grain-consolidation model [15]. The stages of the formation process are shown
in Figure 2.3. Initially, the porous medium is made up of identical spheres, which are
randomly distributed following a Bernal distribution [16]. The resulting initial structure
with φ = 0.364 is shown in Figure 2.3 (a). During cementation the pore space gets
filled with material and the porosity of the structure moves towards lower values. In
the grain-consolidation model, cementation is accounted for by increasing the radii of
the spheres simultaneously (Figure 2.3 (b-d)). When the spheres start to overlap, they
are gradually distorted. The low porosity φ = 0.030 of the final structure (Figure 2.3
(d)) implies that this model can explain how a high-porosity, loosely packed structure
is transformed into a porous medium whose porosity is an order of magnitude lower.
The porous media that are generated with this model also show close resemblance to
naturally occurring rocks (Figure 2.4) which usually have a porosity of less than 0.4.
The interconnectedness of the initial grain distribution, which is an essential feature of
many porous media [17], is also conserved in the grain-consolidation model.

The changes in a porous medium during cementation are time-dependent. The ini-
tially accessible pore space gets filled up with material that is transported by a fluid.
Consequently, the pore space shrinks, associated with a lower rate of fluid transport,
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2. Structural characterization of porous media

a b

Figure 2.4.: Devonian sandstone from Illinois. (a) By means of cathodoluminescence the
original loosely packed grains are uncovered. (b) Illumination with normal light shows the
morphology of the pore space after cementation. [15].

which in turn lowers the rate of cementation. Following this simplified line of argument,
it can be seen that the connectivity of the original pore space is preserved.

Looking at Figures 2.3 (a-d), it can also be understood that the porosity of uncon-
solidated materials mainly depends on the shape and size distribution of the individual
grains and their packing. The holes between large grains can be occupied by smaller
grains, whereby the porosity would be reduced. Thus, a porous medium composed of
grains with a wider size distribution will, ceteris paribus, result in a lower porosity. By
contrast, the porosity of a consolidated material is primarily determined by the degree of
cementation. In general, the porosity of the pore space is determined to a large extent
by the wide open regions which are connected by narrow pore throats. These small
throats mainly control the transport processes of the network.

Cementation is not the only process involved in the formation of reservoir rocks. In
addition, fracturing and the dissolution of rock material can lead to a substantial increase
in porosity. More than half of all the pore space can be represented by such solution
pores [18]. Another important mechanism is compaction. The deeper one goes into the
rock, the stronger the grains are compacted, and, as a result, the lower the porosity is.
Porosities of shale have been found to decrease from 0.60 to 0.06 as depth was increased
from 0 to 1800 m [19].

Given the complexity of the formation processes, it comes as little surprise that ma-
terials which practically span the whole range of possible porosity values, from down to
about 0.01 for limestones and shales up to 0.8 for peat soils, exist [20].

2.1.2. Backbone and stagnant parts

In the previous section the void space of a porous medium was split in two parts, the
open volume Vo and the isolated volume Ve. It was argued that principally only Vo can
contribute to flow through a porous medium, but things are a little more complicated.
Figure 2.5 shows another example of a porous medium that is again composed of over-
lapping circles. Here, the white and the cyan domain are part of the sample-spanning
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2.1. Geometrical characterization of porous media

Vd
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Figure 2.5.: (a) Porous medium with stagnant part (white) of volume Vd. The backbone
of the structure (cyan) carries most of the flow. (b) A simplified network skeleton of the
pore space. Nodes (orange circles) are connected by bonds (blue lines). The red line is only
connected to one node, which means that the corresponing pore space is a stagnant part.

void space and consequently fluid transport can occur in them. Obviously, not the whole
open volume of a disordered medium can contribute equally to flow, just like a bay that
is connected to a river does not. There are pores which only have a single connection
to the sample-spanning void space and may therefore be practically ineffective in terms
of flow through the structure. Accordingly, these parts are called dead-end, quiescent
or stagnant parts with a stagnant volume Vd. These parts, apart from being defined by
their connectivity, can also be identified by looking at the velocity field of the structure.
In a stagnant part the flow velocity or the velocity of dispersed particles will be prac-
tically zero, so that the stagnant parts can also be found by application of a velocity
threshold. In chapter 7 we will see that particles will only diffuse inside such parts and
not be advected in a certain direction, because there is no flow. The white domain
in Figure 2.5 (a) is one of these stagnant parts. The cyan domain, which is left when
all the stagnant parts are removed, dominates flow through the structure and is called
backbone. In analogy to the open porosity φo, we can also define a backbone porosity
φb and a stagnant porosity φd, which only factor in the backbone or stagnant part of
the open pore space, respectively.

The structure of a complicated pore space can also be studied with the help of its
deformation retract, which is obtained by shrinking the pore space until there is a
network of bonds and nodes left [21]. The bonds intersect at the nodes. Any porous
medium can principally be mapped onto such a network of bonds and nodes [22, 23, 24],
an example of which is shown in Figure 2.5 (b). The nodes are represented by orange
circles and the bonds by blue and red lines. The blue lines correspond to the backbone
part, as these are always connected to more than one node, whereas the red line is only
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2. Structural characterization of porous media

connected to one node, indicating a stagnant part.
Although the stagnant parts of porous media, by definition, contribute very little to

the fluid flow, they still cannot be neglected if one wants to understand how material is
transported through or stored in porous media. One example where stagnant parts play
a significant role is hydrodynamic dispersion, which is the spreading apart of initially
adjacent particles in a porous medium similar to a diffusion process. The fundamental
difference is that in addition to molecular diffusion the particles are also advected by a
nonuniform flow field that is caused by the morphology of the porous medium. Particles
that are travelling along the backbone can also diffuse into stagnant parts where they may
be trapped for long times. This, of course, will affect the transit times of these particles
or any other transported material. The distribution of transit times is a fingerprint of
the porous medium studied, as it is clearly related to the morphology of the pore space.
Details about hydrodynamic dispersion and the effect of stagnant parts will be discussed
in 3.3 and 7.

It is also worth noting that especially in low-porosity materials whose porosity is close
to the percolation threshold φc and, hence, are likely to have a low connectivity, most
of the accessible space can consist of stagnant parts. Many reservoir rocks have such
low porosities and trap oil in stagnant parts. Clearly, the amount of oil which can
be recovered from such reservoir rocks depends on the pore space (as well as on the
properties of the fluid). Comparisons of samples with identical porosity have shown
a strong impact of pore-to-throat size ratio, throat-to-pore coordination number and
the type of nonrandom heterogeneity on the recovery efficiencies [25]. In other words,
how much oil can be extracted depends mainly on the connectivity of the pore space.
Oil which is trapped in stagnant (poorly connected) areas cannot be recovered easily,
whereas oil in the backbone can simply be pushed out. These issues along with other
examples will also be discussed later on.

One might also think the other way round. Crude oil is believed to be formed by the
decomposition of fossilized organic material [26]. During this process oil evolves as small
bubbles in the water, that originally filled the pores. The small oil bubbles then travel,
mainly upwards by buoyancy and capillarity, to the reservoir rock, where they finally
accumulate. Of course, there has to be a barrier at some place, otherwise the oil would
just travel to the surface and spread out. So, it seems logical to assume that much of
the oil will end in some kind of stagnant area.

2.1.3. Specific surface

Flow and transport in porous media is all about the morphology of the pore space.
The resistance to flow in porous media originates at the boundaries of the pore space
where the fluid molecules exchange momentum with the molecules of the solid, which
are at rest. The result is the so-called no-slip boundary condition stating that the fluid
velocity at the fluid-solid interface equals the solid velocity, which is zero for resting
porous media.

The magnitude of the influence of the surface on the properties of the porous medium
can be quantified by the specific surface S, which is defined as the ratio of internal
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a b

Figure 2.6.: (a) Illustration of a porous medium which is composed of two phases. The
shown medium consists of four connected solid components (black) and two connected void
components (cyan), one of which is enclosed in the solid phase (hatched). The Betti numbers
of the pore space are β0 = 2 and β1 = 4. The Euler characteristic χ of the pore space equals
-2, the open Euler characteristic χo = −3 and the genus G = 4, which gives the maximum
number of cuts that leave the pore space connected. Four cuts through the pore space, which
still leave the pore space connected, are shown as red lines. (b) Nodes (orange circles) and
connecting bonds (blue lines) of the corresponding network. The enclosed volume is neglected.

surface area A to the total volume Vtot of the porous medium:

S =
A

Vtot
(2.3)

Similar to the porosity one could also define an open specific surface by replacing Vtot
by Vo. S has been used to characterize transport phenomena in porous media and to
predict their permeabilities [27]. It is also an important parameter for the efficiency of
catalysts or filters. S is determined by the size, shape and packing of the grains forming
the solid phase. Everything else being the same, S will be higher for smaller grains and
for non-spherical grains [1].

2.1.4. Betti numbers, Euler characteristic, genus

In the previous paragraphs the important role of the topology of the pore space, i.e.,
the way the pores are connected, has already been mentioned several times. Here, we
now introduce some useful topological parameters. Topological parameters of a porous
structure quantify the network skeleton of porous media and can specify the mechanisms
of fluid transport in the pore space. Topological parameters are invariant under defor-
mations of the pore space and can only change, when structures break or fuse in some
fashion. In other words, they ignore details of the pore shapes and sizes. There are
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several methods to measure topological properties of porous media like stereology [28],
which was also used to estimate the porosity, serial sectioning [22] and, most importantly,
mercury porosimetry.

The connectivity of a pore space can be characterized by the Betti numbers. According
to a central theorem of topology, two structures are topologically equivalent if and only
if their Betti numbers are all equal [29]. The Betti numbers have been used to describe
the pore space of porous rocks and predict several of their properties like permeability or
residual saturation [22, 23, 30]. Many Betti numbers can be defined for a given structure,
but for the structures investigated in this work, we will restrict ourselves to the first two
Betti numbers.

The zeroth Betti number β0 gives the number of connected components of a structure.
If the whole structure is connected and no inclusions exist, β0 = 1. The first Betti number
β1 is the number of holes in a structure. For a pore space, β1 would give the number
of connected solid parts in the structure. The topology of a pore space can again be
studied by looking at its network skeleton, consisting of b bonds and n nodes, which is
shown in Figure 2.6 (b). The nodes are represented by orange circles and the bonds by
blue lines. The first Betti number can then also be defined as β1 = b− n+ β0.

Another very useful parameter for the description of the pore space is the Euler
characteristic χ, which is also related to the connectivity of the structure. χ is simply
determined by counting the number of connected components of one phase (β0 of that
phase), which corresponds to the pore space, and subtracting the number of connected
components of the other phase (β0 of the other phase), in our case that is the solid
matrix. Figure 2.6 illustrates an exemplary porous medium. The number of connected
pore components is two (the connected accessible pore space plus one inclusion), the
number of connected solid components is four, which gives χ = 2 − 4 = −2. We also
define an open Euler characteristic χo which does not count the enclosed void components
because they do not contribute to flow. Here, χo = 1− 4 = −3. Therefore, χo − χ gives
the number of inclusions in the structure. The first two Betti numbers can be expressed
in terms of the two Euler characteristics: β0 = χ− χo + 1 and β1 = 1− χo.
χ0 is related to the genus G by G = 1 − χo. The genus, which is numerically equal

to β1, gives the largest number of pore connections that one can cut without totally
disconnecting any part of the pore space from the rest [21]. In our example G would
amount to 4, implying that we can remove 4 interpore connections without losing the
interconnectedness of the pore space, i.e., fluids would still be able to flow through the
whole structure. One possible choice of such four cuts is shown as red lines. If one more
cut is added, some part of the pore space will not be connected to the rest. So, G is
a measure of the number of independent flow paths through a structure. The higher
G or the lower χ0

3, the better connected the structure is. One has to be careful not
to automatically interpret a higher connectivity of the pore space with, say, a higher
permeability of the structure. A sample with very few wide pathways and a low connec-
tivity might have a higher permeability than one with an astronomical number of small
pores and throats, even though it has a higher connectivity. One must also keep in mind

3As χ0 is negative, higher G means lower χo.
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2.2. Critical path analysis

that G is scale-dependent, it increases with increasing sample size and becomes a linear
function for a sufficiently large sample, if the structure is homogeneous [21, 23, 31]. That
is why it makes more sense to use the specific genus GV = G/V which is normalized
by the sample volume and thus allows a comparison of different samples. For model
rocks made of grains of the same size, GV has been shown to correlate strongly with
the residual saturation of a nonwetting liquid [30]. The reason is that at a higher GV

more snap-off events are needed, until an isolated blob is left, because more alternative
routes for drainage are available. But despite its successes, the connectivity density,
measured by GV , also has to be taken with a grain of salt, because it depends on other
characteristics of the pore structure like the mean distance between the pores [31]. A
larger distance between the pores would give a lower value of GV , although the pores
might be just as well connected. Hence, GV should be used in combination with other
geometrical parameters. We will use a very similar quantity along with the critical pore
size in section 6.1 to estimate the permeability of different structures.

2.2. Critical path analysis

We have just discussed topological quantifiers, which together with purely geometrical
measures, like porosity and grain shapes and sizes, help to characterize a complicated
porous structure. It was already stated that treating all paths through a structure on an
equal footing can lead to severely flawed predictions of its properties. One insightful and
practical way of accounting for the different degrees of importance of certain pathways is
given by critical path analysis (CPA). The logic backing CPA is similar to the proverbial
“a chain is only as strong as its weakest link”.

CPA was pioneered in [32]. It was argued that the total resistance of a resistor
network, where the values of individual resistances vary over a wide range, is mainly
determined by resistances with conductivities higher than some critical value Gc. At
this critical conductance the subset of resistances with values higher than Gc for the
first time form a path which spans the entire system. Hence, transport of current
in such a network is reduced to a percolation problem with threshold Gc. The path
that results at Gc is called the critical path. The reasoning behind this assumption
is that the network can be divided into three subsets. The first subset consists of
poorly connected regions, which are formed by conductances higher than Gc. In our
lingo, this subset would correspond to dead ends or stagnant parts. Even setting the
conductivities of this subset to infinity, would not greatly change the overall conductivity
of the network, for the current would still have to pass through conductances of order
Gc to make it to the other end of the network. The second subset contains a relatively
small number of conductivities of order Gc, which form a sample-spanning network,
viz., the backbone of the structure. Combined with the isolated regions, they form the
critical subnetwork. The remaining resistors have a low conductivity and yield only
a small fraction of the total conductivity, for the simple reason that they are shorted
out by the critical subnetwork. As a consequence, the total resistance is dominated by
conductances of order Gc.
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2. Structural characterization of porous media

Figure 2.7.: A porous medium consisting of randomly placed circles. χo = χ = −7, i.e., there
are several independent paths, which lead through the structure, but if one critical connection
is cut, no fluid flow through the structure will be possible. This critical connection is indicated
by the red arrow. The orange arrow points to another important connection, where most of
the fluid will flow along. Removing this connection would only leave one path for the flow
across the small throat, indicated by the yellow arrow.

Fluid flow through a porous medium can also be mapped onto such a (resistor) net-
work. The discharge through a pore, for example, is proportional to the forth power of
its radius. Consequently, in a disordered porous medium, which is made of many pores
of a wide range of sizes, a large part of the pore space can make only a negligible con-
tribution to the overall flow and transport properties of the structure. The central idea
of CPA is to determine the weakest link and thereby determine the overall properties
of the structure [4]. Simply put, the overall flow and transport properties should be
a function of the radius of the smallest pore of sample-spanning paths which have the
largest small pore, that is, the paths with the least resistance to flow. These paths are
the critical paths for fluid flow. Since there may be more than one of these paths, one
must also determine how frequently such paths occur. This is a big advantage compared
to spatial averaging of flow properties over a large part of the sample, because all the
parts with negligible effects on the investigated property are not accounted for.

For illustration purposes, an example of a porous medium is shown in Figure 2.7.
Again, fluids can flow in the cyan domain. The colored arrows point at important con-
nections through the pore space. There are several paths leading through the structure,
but not all of them are equally important. If the connection at the red arrow is cut, no
path will span the whole structure and, as a result, no fluid can flow. So, this connec-
tion is certainly part of the critical path and the corresponding pore, logically, is called
critical pore. It is also obvious that the permeability of the structure would be greatly
reduced, if the connection at the orange arrow is removed, as all the fluid would have
to flow through the small throat at the yellow arrow. On the other hand, cutting the
connection at the yellow arrow would have a very small effect on fluid discharge through
the structure. From this we can conclude that the critical path, which determines the
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2.3. Percolation theory

flow properties of this structure, runs along the two connections indicated by the red and
orange arrows. The critical pore, thus, is the one indicated by the red arrow, because it
is the smallest pore of the path with the least resistance. Flow and transport properties
will be functions of its pore radius.

The pore space of many reservoir rocks is characterized by a broad pore-size distri-
bution (PSD) [33]. Investigations of fractured rocks, for instance, at the Fanay-Augères
site also showed that only about 0.1% of the fractures made a significant contribution
to fluid flow at large length scales, which suggests a poorly connected pore space, sim-
ilar to a percolation network close to its percolation threshold [34]. Given these facts,
it seems natural that CPA has been used to predict the permeability of porous rocks
[35, 36, 37]. The applicability of the original CPA [32] for the determination of the rela-
tionship between the electrical conductivity and the permeability of three-dimensional
pore networks was tested by comparing its results with computed actual permeability-
conductivity relationships [38]. Excellent agreement was found for networks with low
coordination numbers4, which are likely to be characteristic of sedimentary rocks and
soils. Yet, with increasing coordination number and decreasing broadness of the PSD the
agreement worsened. This makes perfect sense, because only if the PSD is very broad
and the coordination number low, the size difference between the critical pore and the
larger pores will be substantial. The larger pores will then effectively be in series with
the critical pore, but have a much lower resistance to flow, so that their resistance can
be neglected relative to the resistance of the critical pore. We will have a more in-depth
look at the Katz-Thompson law, which also uses CPA to relate the permeability of a
structure with its conductivity and a critical pore radius, in 3.2.2.

CPA has also been used to describe hydrodynamic dispersion in porous media [39].
We will cover this topic in chapter 7.

2.3. Percolation theory

So far, we have introduced geometrical and topological parameters, which allow a char-
acterization of the pore space. However, the discussion of their influence on transport
processes in porous media was mainly discussed qualitatively and no general framework,
which allows a deeper understanding on a quantitative basis, was presented. Such a
framework and, hence, a very valuable tool for understanding and quantifying the ef-
fect of connectivity and geometry of the pore space on flow and transport properties in
porous materials is percolation theory [40, 4].

Percolation theory was first used to study polymerization [41, 42], i.e., how small
monomer molecules link together to form larger polymers. This process can lead to
the formation of a gel, which is, in principle, an infinitely large molecule that spans
the whole system. The theory was used to study the effect of the connectivity of the
monomers on the properties of the resulting gel and to derive analytical expressions for

4The coordination number gives the number of throats that meet at a pore. It is also related to the
connectivity of a structure.
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these properties. Later, percolation theory in the context of fluid flow through a dis-
ordered medium was introduced [43]. Ideas from percolation theory were employed to
model flow and dispersion of dye injected into a porous medium [44]. Calculated perco-
lation properties have also been utilized to predict capillary pressure curves obtained by
mercury porosimetry [13], which once more evidenced the important role of pore space
interconnectivity. These and other results [14, 45, 46] made the usefulness of percolation
theory seem compelling and finally resulted in a deeper understanding of the structure of
porous media, which also stimulated the development of more realistic models of porous
media. Several transport phenomena in porous media, like hydrodynamic dispersion,
permeability, electrical conductivity [4] the distribution of oil and gas in reservoir rocks
[40] have also been analyzed by percolation theory. In fact, critical path analysis of the
last section, which is a result of percolation theory, provides another powerful tool.

We have already mentioned that any porous medium can be mapped onto a random
network of nodes and bonds [24], which is similar to a random percolation problem.
Since the network representation of a (natural) porous medium is still highly chaotic,
percolation theory with its simple probabilistic approach, that, nevertheless, generates
highly complicated structures, is a sensible candidate for the description of such complex
topologies. The merit of percolation theory for the investigation of flow phenomena in
porous media can best be appreciated by looking at one of the simplest (but still unsolved
and profound) fundamental percolation problems.

In Figure 2.8 a very basic site percolation problem is illustrated. We start with
an empty lattice of 100 × 100 sites. The individual sites of the lattice can be either
occupied (open to flow), with probability p, or vacant (insulating), with probability
1 − p. A group of nearest neighbor sites is called a cluster. All sites belonging to one
cluster are connected by a continuous path of occupied sites. Figure 2.8 shows randomly
generated samples5 with occupation probabilities increasing from p = 0.10 to p = 0.60.
For p = 0.10 there are only small clusters, mostly single occupied sites. The size of
the clusters increases significantly for p = 0.35 and for p = 0.60 a cluster spans the
whole sample from top to bottom and from left to right. If such a sample-spanning
cluster of occupied sites is present, the system is said to be percolating. The occupation
probability, above which the system is percolating, is called percolation threshold. For
a finite system there is a certain probability that the system percolates for any nonzero
occupation probability. For an infinitely large system of sites on a square lattice this
topological transition is sharp and the corresponding percolation threshold amounts to
pc ≈ 0.5927. Looking at the sample-spanning cluster formed for p = 0.60, many holes
(occupied sites, which do not belong to the cluster) with different sizes exist. This
occurrence of phenomena on all length scales is typical for systems close to pc. Above
pc there is exactly one cluster that extends through the whole system, whereas below pc
there are only isolated clusters, viz., there is a phase transition at pc.

Similar to other phase transitions, which may occur at, e.g., a critical temperature,
the behavior of many basic properties related to percolation phenomena obey universal

5A simple MATLAB program, which assigned a random value between 0 and 1 to each pixel, was used.
A consequent application of a threshold value p resulted in the wanted occupation probability.
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a b c

Figure 2.8.: Examples for site percolation on a 100 × 100 square lattice. The white pixels
correspond to occupied sites, the black ones to vacant sites. The occupation probability p was
varied for the three examples shown: (a) p = 0.10, (b) p = 0.35 and (c) p = 0.60. Only p = 0.60
is slightly above the percolation threshold pc ≈ 0.5927. The (largest) sample-spanning cluster,
which is shown in blue, contains several holes of varying size.

scaling laws with critical exponents that are independent of the lattice or network studied
and only depend on the dimensionality of the system. This universality even persists, if
correlations between occupied sites exist and also for widely varying values of pc. As an
example for such a scaling law we look at the formerly introduced correlation length ξ,
which gives the length scale6 beyond which the system is macroscopically homogeneous
for p > pc:

ξ(p) ∝ (p− pc)−ν . (2.4)

Here, ν is the critical exponent, which equals 4/3 in d = 2 dimensions7. Since ν is
positive, ξ diverges8 at p = pc. So, at p = pc there is no relevant physical length scale
left in the system and the percolating system becomes a self-similar object on all length
scales, which makes fractal analysis important. In everyday language, a system that
has scale invariance will (statistically) look the same, if we zoom out. In contrast, for
p 6= pc, ξ will be finite and if we zoom out, the correlation length will appear smaller,
that is, the system will seem to be further from the percolation threshold. Of course, all
our earthly issues only involve porous media of finite extent, so that self-similarity on
all length scales cannot be encountered. But that does not mean that the whole concept
should be discarded. We have stated earlier (section 2.1.1) that a system is self-similar
for length scales L smaller than ξ, even if p 6= pc. In that regime, e.g., the total number
of sites of the largest cluster scales as M ∝ LDf , with a fractal dimension Df . We
have already seen that this can lead to a severe misinterpretation of measured data of
reservoir rocks, when one is trying to simply upscale the fluid content of a small sample.

6For p < pc this length scale corresponds to the size of the largest cluster in the structure and for
p > pc it gives the size of the largest hole.

7In three dimensions ν = 0.88.
8The divergence of ξ at the percolation threshold means that the largest cluster just reaches infinite

size, i.e., there is a sample-spanning cluster and the system is percolating.
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2. Structural characterization of porous media

In addition, the fractal nature of a porous medium also has a huge effect on transport
properties, among which hydrodynamic dispersion stands out, as will be explained in
the following paragraphs.

There are analogous scaling laws, that are also functions of p−pc, for other percolation
quantities like the accessible fraction XA(p) ∝ (p−pc)βp , which gives the fraction of sites
belonging to the sample-spanning cluster. The backbone fraction XB(p) ∝ (p − pc)βB
is just the fraction of sites of the sample-spanning cluster that contribute to transport
through the structure, neglecting the dead-end parts. The conductivity and the perme-
ability follow similar power laws with different critical exponents.

In porous media terminology XA corresponds to the open porosity φo and XB to the
backbone porosity φB. The critical exponents βp and βB are not equal. In two dimen-
sions they amount to βp = 5/36 and βB = 0.48. This inequality9 has very important
consequences for transport through the structure and especially for hydrodynamic dis-
persion. Far off pc, practically the whole sample-spanning cluster forms the backbone,
i.e., there are very few isolated clusters and almost no dead ends. The closer we get to pc,
the larger the fraction of dead ends will be, because the critical exponent for XB is larger
than for XA and, thus, the ratio XB/XA ∝ (p − pc)βB−βp approaches zero in the limit
p→ pc. Topologically speaking, the percolating cluster close to pc will mainly consist of
poorly connected dead ends and the backbone part will be highly tortuous. These effects
result in a sharp increase of the dispersion coefficients close to pc [47, 48, 49, 50]. Think-
ing again about the recoverable fluid content of reservoir rocks, further complications
arise due to the presence of large dead ends. Most of the fluid can be trapped in such
dead ends, from where it might not be recovered by simple means, e.g., trying to get it
out by flushing with another fluid, because only the fluid in the backbone participates
in flow, whereas the fluid in the dead ends stays trapped.

The aforementioned fractal dimension Df of the cluster mass M can also be re-
lated to the critical exponents of the system. For L < ξ the cluster mass scales as
M ∝ XA(p)ξ(p)d ∝ ξ(p)d−βp/ν . After replacing ξ by L, since this is the relevant length
scale, we get M ∝ Ld−βp/ν , from which follows Df = d− βp/ν. Using the corresponding
values for d = 3 dimensions we get Df ≈ 2.53, which is close to the values obtained for
several sandstones [5].

Percolation theory has definitely been very useful to deepen the understanding of the
structure as well as the flow and transport phenomena in porous media. Its application,
however, is not straightforward, since the complete diagenetic process and, therefore,
the percolation threshold of real porous media is not known and cannot be calculated
unambiguously. Another problem is that far from the percolation threshold the universal
behavior is lost and statistical properties of the considered structure can become domi-
nating for the transport process. In this case, fortunately, critical path analysis, which
is also formulated in terms of percolation theory, can lend a helping hand to identify
the subset of the system, that makes the largest contribution to transport properties.
For more details about percolation theory in combination with critical path analysis and
several applications the reader is referred to [4].

9Also valid in three dimensions with βp = 0.41 and βB = 1.05.
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2.4. Boolean models

2.4. Boolean models

Percolation theory, as briefly described in the last section, can also be extended from
discrete to continuous space. Instead of just occupying sites on a lattice, objects of
arbitrary shape are placed at random positions in an empty (unoccupied) space. In
analogy to discrete percolation, the basic variable for continuum percolation theory will
be the porosity φ instead of the occupation probability p. As with discrete percolation, a
universal behavior for several quantities, i.e., functions of φ−φc, close to the percolation
threshold φc will still be observed [51].

For the studies in this work we used two types of structures, both of which were
generated by Boolean models, i.e., by randomly placed and oriented grains. The first
type consists of randomly10 placed overlapping monodisperse circles (ROMC) with con-
stant radius r. For the second type randomly placed overlapping monodisperse ellipses
(ROME) with constant aspect ratio a/b = 8, where a is the major axis and b is the
minor axis, were used as individual grains.

Two exemplary series of such structures, which were created by Boolean models,
are shown in Figure 2.9. The Boolean models were realized by a MATLAB program.
Starting with an empty array of fixed size, pixelated versions of the grains were placed
at random positions until the desired porosity φ or number of grains N was reached.
The upper row shows ROMC structures with radius r = 34 px for increasing number
of grains N or decreasing porosities down to their percolation threshold φcc ≈ 0.32.
The lower row displays ROME structures with a = 96 px and b = 8 px down to their
respective percolation threshold φce ≈ 0.66. Intuitively, it is clear that structures formed
by elongated grains overlap more frequently and, consequently, have a higher percolation
threshold, i.e., fewer grains are required to disconnect both ends of the structure.

The diagenetic process of many porous media can be described by successively adding
grains to the empty pore space, i.e., a Boolean process, that, albeit being very simple, can
result in extremely complex morphologies. That is why Boolean models have frequently
been used in the context of heterogeneous (porous) media, like wood fibre composites
[52], porous ceramics [53] or concrete material [54], to explain the relation between the
morphology of the pore space and physical properties. Samples of sedimentary rocks have
been reconstructed by Boolean models with optimized parameters, which characterize
the effective morphology of the porous structure. The resulting parameters were used to
predict their transport and mechanical properties [55]. The accuracy of the predictions
is astonishing, since the complex shape of the rock is reduced to an effective shape of the
grains. Here, again, it is crucial that the sample, which is used to derive the effective
shape, is large enough to include the properties of the whole medium.

One big advantage of such random structures with well-defined grains and precisely
known formation process, besides their similarity to natural porous media, is that the
geometrical and topological parameters can be calculated. These formerly discussed
quantities, namely, porosity, surface area and Euler characteristic form a set of morpho-

10The probability density function for the coordinates of the grain centers is uniform over the whole
sample, i.e., each position is equally likely.
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a b c d

e f g h

Figure 2.9.: Two series of ROMC (a-d) and ROME (e-h) structures of size 2000 px × 2000 px
with decreasing porosities (increasing number of grains N) down to their respective percolation
thresholds φcc ≈ 0.32 and φce ≈ 0.66. (a) φ = 0.83, (b) φ = 0.66, (c) φ = 0.49 and (d)
φ = 0.32. (e) φ = 0.92, (f) φ = 0.83, (g) φ = 0.75 and (h) φ = 0.66.

logical measures, the so-called Minkowski functionals. These quantities are functions of
the area A0 and surface S0 of the individual grains as well as the total number N of
grains that form the structure [56, 57]:
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These results only hold for truly continuous models. Pixelization errors, like in our
structures, can lead to strong deviations even if the size of the structures is increased
significantly [58]. Figs. 2.10 show results for ROMC structures with r = 34 px and
ROME structures with a = 96 px and b = 12 px of size 8000 px × 8000 px. Fig. 2.10
(a) shows the porosity as a function of the number of grains N . The size parameters
of the circles (black dots) and ellipses (red open squares) were chosen to result in an
almost equal A0

11 of circles and ellipses. The two curves practically collapse and follow
an exponential law, just as predicted by Eq. (2.5). This is easily understood, because
φ does not distinguish between volume enclosed by overlapping grains or volume that

11For the circles we get A0c = πr2 ≈ 3631, 7 px2 and for the ellipses A0e = πab ≈ 3619.1 px2. Pixeliza-
tion does not allow exact agreement.
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Figure 2.10.: Porosity φ and open porosity φo determined from ROMC (r = 34 px) and
ROME (a = 96 px, b = 12 px) structures. Red open squares correspond to ROME and black
dots to ROMC structures. (a) φ vs. N , (b) φo vs. N and (c) φo vs. φ. In (b) and (c) the
data points scatter due to the finite system size of 8000 px × 8000 px. The dashed lines in (c)
indicate the percolation thresholds found in the literature [59, 60]. Close to the percolation
thresholds the data points are scattering as a result of the finite size of the system.

spans the whole sample and, consequently, solely the area of the individual grains A0 is
of importance. Fig. 2.10 (b) displays quite a different behavior for the open porosity φo
vs. N , which demonstrates the influence of the shape of the grains. For low N the grains
do not overlap and, thus, φo depends linearly on N , just as φ does. For larger N grains
will start to overlap and enclose some volume, which reduces φo. Fig. 2.10 (c) exhibits
the same behavior for φ0 vs. φ, but the transition at the percolation threshold is sharper
because of the exponential dependence of φ(N). Both representations can be used to
deduce the percolation threshold of the models. At a certain critical Nc the overlapping
grains will disconnect the accessible volume of the structure and percolation will stop.
For the circles this occurs at Ncc ≈ 19200 corresponding to φcc ≈ 0.336 and for the
ellipses at Nce ≈ 7600 or φce ≈ 0.651, which is in good agreement with φcc ≈ 0.32 and
φce ≈ 0.66 found in the literature [59, 60]. As the correlation length of a system diverges
at the percolation threshold φc, the system size should also be increased in order to avoid
finite-size effects. However, any finite system and, therefore, any natural medium close
to φc will be affected by finite size effects. These effects lead to a scattering of our data
points close to the corresponding φc, which gives rise to a steady transition instead of
an abrupt one. An infinite structure will not be percolating below its φc and will also
always percolate if φ > φc. For a finite structure this is more difficult. There will still
be a nonzero probability for percolation below φc as well as a nonzero probability that
the structure is not percolating for φ > φc.

More details about the used structures will be provided, when the transport phenom-
ena therein are investigated.
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3. Fundamentals of flow and transport
in porous media

The last chapter dealt with the parameters that characterize the static pore structure of a
porous medium. The upcoming chapter is devoted to the flow and transport phenomena,
that occur inside a complex porous matrix, and explains how the structure affects them.
We start with the basic equations for flow of a Newtonian fluid inside an arbitrary
geometry. These are the widely used Navier-Stokes equation and the continuity equation,
which represent the flux of momentum and mass. Since the pore sizes of the structures
used in this work, and also of many natural porous media, are on the scale of at most
several micrometers, fluid flow is in the realm of microfluidics, in which the governing
equation is the viscosity-dominated Stokes equation, a simplified form of the Navier-
Stokes equation. The well-known dimensionless numbers, namely, Reynolds and Péclet
number, that distinguish the different flow and transport regimes in porous media, i.e.,
whether the flow is dominated by inertia or if transport is mainly affected by diffusion,
are also discussed at the appropriate time. For macroscopic samples one can again
define averaged parameters, like permeability or dispersion coefficients, which have been
studied intensively, both experimentally and theoretically. These quantities, which result
from the microscopic processes described by the basic equations, incorporate the overall
transport properties of porous media. There are several methods which are used for the
estimation of the permeability. We discuss the underlying general ideas briefly and focus
a little more on the afore-mentioned Katz-Thompson law that will be used in chapter
6. Diffusion, which is of importance for particle transport in porous media, especially in
low-porosity structures, where a large number of stagnant areas can be found, together
with the spatially varying velocity field, which is generated by the porous matrix, gives
rise to hydrodynamic dispersion. The last sections address this important phenomenon
and explain how it can be related to the pore space morphology.

For details and entertainment the curious reader should consult [61, 62, 3, 63].

3.1. Basic equations

The typical separation between molecules in a liquid is of the order 0.3 nm1. Thus, in
porous media with pore sizes on the order of µm liquids can be treated as if they were
continuously distributed in space. This continuity must not be taken for granted, because
a porous medium might also have very small pores. For our introductory purposes, we
nevertheless assume the requirements for a continuous treatment to be fulfilled.

1This is true for water. The separation varies for different liquids.
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To know how a fluid moves at all times, we need equations, which give the three spatial
velocity components v, the pressure P and the density ρ at every point in space and at
any time. Principally, there are also other interesting properties, such as conductivity,
but we leave all of them aside and concentrate on the parameters above. We further
reduce the complexity of our treatment by assuming that the fluid is Newtonian, i.e., it
has a constant viscosity and is incompressible (has a constant mass density).

3.1.1. Continuity equation

The first relation, which basically represents the conservation of matter, is the hydrody-
namic continuity equation:

∇ (ρv) = −∂ρ
∂t
. (3.1)

The equation states that a mass flux ρv out of a point will result in a reduced mass
density ρ at that point. We already assumed that our fluids are incompressible, which
means ρ = const. and, consequently, the equation can be reduced to:

∇v = 0. (3.2)

This even simpler equation means that the velocity field v has zero divergence, i.e., there
are no sources or sinks in v. For the practitioner (3.2) is of great use to understand
velocity fields. We look at, for example, a steady flow through a straight circular tube
with varying diameter along its length. In that case (3.2) directly gives the average
velocity across any slice of the tube. The narrower the tube, the faster the fluid must
flow, as the product of area and velocity must be the same at any point2. Certainly, this
is also true in a porous matrix, where a fluid will have to flow faster through narrow
constrictions, so that (3.2) holds.

3.1.2. Navier-Stokes equation

The next important equation can be derived by starting with Newton’s second law
d(ρv)/dt = f for a mass density ρ and a force density f . The total differential3 on the
left-hand side can be split into two terms with partial derivatives. The force density on
the right-hand side is written as the sum of three force densities. −∇P is the pressure
force, η∇2v the viscous force due to shearing for a Newtonian liquid with constant
viscosity, and fext stands for external forces, which could be gravity or an electrical
force. Putting it all together, we get the Navier-Stokes equation:

ρ

(
∂v

∂t
+ (v∇)v

)
= −∇P + η∇2v + fext. (3.3)

2Gauss’ theorem states
∫
V

(∇v) dV =
∮
∂V

vdS, where V is a given volume and ∂V its surface. According

to (3.2) both sides equal 0 and, thus, v1A1 = v2A2, with A1 and A2 being the area of a slice at two
points, and v1 and v2 the average velocities in these areas.

3The total differential of v(x(t), y(t), z(t), t) is dv = ∂v
∂xdx+ ∂v

∂y dy+ ∂v
∂z dz+ ∂v

∂t dt. Division by dt gives
dv
dt = ∂v

∂xvx + ∂v
∂y vy + ∂v

∂z vz + ∂v
∂t = (v∇)v + ∂v

∂t with vx,y,z = d(x,y,z)
dt .
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∂v/∂t is just the acceleration of a fluid particle at a fixed point in space. Since we
need the acceleration of a certain small volume of fluid during its motion, we have an
additional term (v∇)v. One could, e.g., think of a superfluid (η = 0) flowing in a circle
at a constant speed. Although ∂v/∂t = 0, as the velocity stays the same at each fixed
point in space, a fluid element would have to be accelerated by a centripetal force during
its motion, because it changes its direction at every instant.

Reynolds number

The flow of fluids is an intricate problem. To a large extent the complexity of the math-
ematical treatment of (3.3) arises from the non-linear term ρ(v∇)v, which represents
inertial forces4. On the other hand, the non-linearity also gives rise to the richness of
hydrodynamics, manifesting in, e.g., turbulent flow with chaotic vortices, whose descrip-
tion still is an unsolved problem. A simple and, unfortunately5, still popular example
of turbulent flow is rising cigarette smoke, which after an initial phase of laminar flow
quickly becomes turbulent. Due to this complexity, solutions of (3.3) are only available
for a few special cases.

The mostly small dimensions of porous media, however, can render the problem of
fluid flow, or at least the equations for its description, considerably simpler, because
flow at the micron scale is almost generally dominated by viscous forces, i.e., the non-
linear term representing inertial forces can be neglected. The relative importance of the
different terms can be quantified by dimensionless numbers.

Whether the fluidic system under consideration is in the inertial or viscous domain,
can be judged by estimating the magnitude of the two corresponding forces. To this
end, we introduce a length scale L and a velocity V , that characterize the system. The
inertial forces are of the order ρ(v∇)v ≈ ρV 2/L and the viscous forces η∇2v ≈ ηV/L2.
When the inertial forces are divided by the viscous forces, the famous Reynolds number
results:

Re =
ρV L

η
(3.4)

For Re � 1, inertial forces dominate. This high Reynolds number regime is familiar
to everyone from day-to-day life. We all know that our 130 feet motor yacht will not stop
immediately, when we stop the engines, instead it will glide through the water, while
its momentum is dissipating very slowly into the surrounding water. This is due to the
inertial term, that is dominating in this regime. On the opposite side of the Reynolds
number spectrum, that is, at Re � 1, which is the regime for bacteria and flow in
microfluidic systems, the movement or flow will stop practically instantaneously, if the
driving force vanishes. The motion of a bacterium will be entirely determined by the
forces that it feels at that moment, the momentum it has built up is of no importance.
If the propulsion stops, the bacterium stops immediately6. This behavior obviously
totally contradicts standard intuition about the motion of macroscopic objects and,

4For brevity, we will not distinguish between forces and force densities.
5“On average, cigarette smokers die about 10 years younger than non-smokers”[64].
6The inertial time scale τi can be estimated by balancing the time-dependent term ρ∂v∂t with the viscous
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3. Fundamentals of flow and transport in porous media

thus, exemplifies that one must be extra cautious when dealing with flow phenomena at
the micron scale.

The typical length and velocity scale for the systems we used are V ≈ 1mm/s and
L ≈ 5µm. In combination with the viscosity of water at room temperature η ≈ 1mPas
and its density ρ ≈ 1000 kg/m3, a Reynolds number of less than 10−2 results, which
makes certain that flow is in the predictable (non-turbulent) laminar regime.

Let us not forget to mention the huge practical implication of the Reynolds number.
Two flow phenomena at the same Re will behave alike on their respective length and
time scales. So, if we want to know how a big ship, say 130 feet long, behaves, we can
build a small model of this ship, say 1.3 feet long, and increase the velocity by a factor
of 100, which would result in the same Re. And yet, it is not that simple, because we
have neglected the compressibility of the fluid, which can become crucial, as the velocity
approaches the speed of sound.

3.1.3. Stokes equation

Judged by the estimate for the Reynolds number for our systems, we are strictly in the
regime of viscous forces, that is, laminar flow. Consequently, at such low Re, the inertial
term ρ(v∇)v can be neglected. The linear first term ρ∂v/∂t gives an inertial time scale
τi for the establishment of a steady flow. We can estimate τi by balancing the linear
inertial term with the viscous term, which yields τi ≈ ρL2/η. This time scale is on the
order of µs and, therefore, the linear term can also be left out, as long as we do not use
rapidly oscillating flows, i.e., as long as any other time scale in the system is significantly
larger than τi. Now, omitting these terms greatly simplifies (3.3) and gives the so-called
Stokes equation:

0 = −∇P + η∇2v (3.5)

This is the equation for creeping flow (Re� 1). For simplicity, the external forces were
also not included. What immediately strikes the eye is that, in contrast to (3.3), the
Stokes equation contains no time derivative. As a consequence, the solutions of (3.5) are
symmetric in time. So, if all forces and pressures are reversed, the flow of the fluid will
also be reversed. For an illustration of this time symmetry, one can use a low-Reynolds-
number system, inject a blob of dye at some position and apply a pressure for some time
to make the fluid flow. The dye will spread out following different streamlines. Now, if
the pressure is reversed for the same time interval, the dye will take the same path again,
but in the other direction. Therefore, astonishingly and totally counterintuitively, in the
end the same dye blob we started with will show up again at the same position. To be
precise, it will not be exactly the same, because diffusion is not symmetric in time, so its
boundaries will be a little blurred. We can move the fluid back and forth, fast or slow,
and still an almost identical blob will result. At high Reynolds numbers such a behavior
will not be observed due to turbulent mixing which results from the non-linearity.

term η∇2v which yields ρV
τi

= ηV
L2 , eventually giving τi = ρL2

η . For an object of size L = 1µm this
would result in τi = 1µs.
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3.1. Basic equations

In figure 3.1 (a) streamlines around a cylinder are illustrated for two widely differ-
ing Reynolds numbers. The upper cylinder shows smooth streamlines at low Reynolds
number. The streamlines do not intersect and the velocity of the fluid at any point is
constant over time. If we reverse the flow, all streamlines will just reverse their direc-
tion, i.e., the flow field is mirror symmetric. This explains the effect we have discussed
in the last paragraph. The flow around the cylinder in the lower part at very high
Reynolds number shows a very different behavior. Behind the cylinder, the streamlines
show turbulent behavior like streamline crossing and the occurrence of vortices. The use
of the word “behind” already states that the symmetry is broken. If the flow is going
into the other direction, the vortices will also occur on the other side of the cylinder.
The experiment with the dye blob would obviously not work, as the turbulence would
mix different streamlines. In between the two extreme cases shown there are an infinite
number of steps, the transition from laminar to turbulent flow proceeds in a steady way
with increasing Reynolds number.

Despite the loss of complexity due to inertial irrelevance, fluid flow at the micron
scale poses many interesting new challenges [65, 66]. In the case of porous media the
complexity of flow phenomena persists due to the disordered pore space, which does not
allow for a straightforward calculation of the flow properties, albeit the basic equations
(3.5) seem to be quite simple. It is not only the irregularity of the pores, but also the
addition of diffusion, which will be important for the transport of particles, that turns
simple creeping flow through porous media into a tough task.

Infinite parallel-plate channel

Even with the much simpler Stokes equation, solutions for flow problems inside complex
boundaries are hard to calculate. We will restrict ourselves to just one example of
steady state, pressure-driven flow, also known as Poiseuille flow, which is central for
microfluidics and also for flow in the artificially created porous structures that are used
in this work. In a microfluidic system the aspect ratios of the channels can often be so
large that a good approximation of their geometry is given by an infinite7 parallel-plate
channel. As a result of the high symmetry, this problem can be solved very easily. A
sketch of such a flat channel is shown in Figure 3.1. The two confining walls lie in the
xy-plane and are located at z = 0 and z = h, so h is the height of the channel. The black
arrow indicates a constant pressure gradient −∇P that is applied in the x direction. The
symmetry of the problem implies that only the x-component of v is nonzero and that
this component vx can only be a function of the z coordinate. Consequently, the relevant
Stokes equation for this problem reads as:

∂2vx
∂z2

=
∇P
η
. (3.6)

We assume that the no-slip boundary condition holds, i.e., the fluid at the wall is at
rest (vx(0) = vx(h) = 0). Twofold integration of vx yields:

7The only boundaries of such a channel are the plates at the top and at the bottom. The aspect ratio,
that is, the width-to-height ratio, therefore, is infinite.
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Figure 3.1.: (a) (Upper half) Flow past a cylinder at low Reynolds number. The flow
is strictly laminar. (Lower half) At a higher Reynolds number the flow becomes turbulent,
i.e., the streamlines are not mirror symmetric and the velocity at any point varies over time.
(b) Sketch of a xz-plane in an infinite parallel-plate channel of height h bounded by two walls
(darker gray), in which a flow in x-direction is generated by a constant pressure gradient −∇P .
The resulting velocity profile vx(z) (solid black line) has a parabolic shape, i.e., fluid close to
the center flows fastest. The red dashed line corresponds to the mean velocity v̄x. [63]

vx =
∇P
2η

z(z − h) (3.7)

The velocity profile is a parabola with maximum value v̂x = −∇P
8η

h2 right in the

middle of the channel, at z = h/2. The mean value equals v̄x = 1
h

∫ h
0
vx(z)dz = −∇P

12η
h2.

These values are good approximations for channels with high aspect ratios. A general
analytical solution for a rectangular channel with finite aspect ratio is not known, but a
solution can be written as a Fourier series [63]. Note also, that this result is very similar
to the well-known Hagen-Poiseuille flow through a circular pipe. For a circular pipe of
radius R, the mean flow velocity would be v̄circ = −∇P

8η
R2. A circle is the most compact

shape, that is, it has the lowest surface-to-area ratio, which also results in the greatest
ease, highest permeability, for flow. Any other shape with the same area has a larger
surface that causes resistance to flow.

3.2. Permeability

3.2.1. Darcy’s law

We have already seen in the previous chapter that the pore structure of porous media
is much more complicated than the simple straight pipes just discussed. For this reason
and the fact that the detailed pore structure of many porous media is not known in the
first place, even the relatively simple Stokes equation cannot be solved. Yet, the flow of
a Newtonian liquid inside a porous medium at steady-state conditions often still is in
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3.2. Permeability

the low Reynolds number regime, for which Darcy’s law8 is applicable:

Q = v̄A =
kA

η

∆P

L
. (3.8)

Here, v̄ is the average flow velocity, Q the volumetric flow rate, k the permeability,
A the cross-sectional area of the sample and ∆P the pressure drop across a length L
of the considered medium. Darcy’s law relates the applied pressure to the flow rate
or flow velocity by a proportionality constant, namely the permeability, that can be
measured experimentally and incorporates the overall hydrodynamic conductivity of a
porous medium. This is completely analogous to Ohm’s law, which connects current
density and applied electric field via conductivity.

Several theoretical derivations under steady-state conditions for Darcy’s law, which
use the Stokes and the continuity equation as well as the no-slip boundary condition,
have been presented [1, 68, 69]. Thus, the validity of Darcy’s law is limited by the
validity of the Stokes equation, which only holds at low Reynolds numbers (Re ≤ 10),
and the validity of the no-slip boundary condition. If the pressure gradient is increased
beyond a critical pressure, a transition from laminar to turbulent flow will occur and the
relation between pressure gradient and velocity will cease to be linear, i.e., doubling the
pressure will not suffice to double the flow rate, because more energy will be dissipated by
turbulence. The value of the critical pressure will certainly depend on some characteristic
length scale of the pore space. This phenomenon has also been studied numerically [70]
and theoretically [71, 72].

Complications also arise at the other end of the Reynolds-number spectrum. Some
researchers discuss a lower limit for the applicability of Darcy’s law, where the pressure
might first have to reach a threshold value until flow starts and from then on increases
non-linearly before reaching the Darcy regime [73]. The reason for this are strong surface
forces which might counteract some of the applied pressure in dense porous media. In
addition, the no-slip boundary condition might not hold for porous media in which the
pore sizes are comparable to the mean intermolecular distance of the fluid particles. In
that case molecules can flow on the pore surfaces9, which violates the no-slip condition.
The different possible flow regimes are illustrated (in an exaggerated way, for clarity) by
the blue line in Figure 3.2.

To avoid any confusion later on, we briefly explain the ostensibly trivial meanings of
some variables that occur in (3.8). As the average velocity in (3.8) is the value that
results from averaging over the whole sample, including isolated pores, stagnant parts
and the solid matrix, v̄ must not be mistaken for the average velocity of the fluid in the
pore space. This average fluid velocity, which must be higher due to continuity require-
ments, is obtained by dividing v̄ by the porosity φ. But this value, again, does probably

8Named after the French engineer Henry Darcy (1803-1858), who discovered the similarity between
ground-water flow and creeping flow in pipes [67]. Darcy, despite his ingenuity, was not aware of
the fact, that the flow rate also depends on the viscosity of the fluid. This should again remind us
that things which are “clear” to us now were not obvious at all.

9The importance of this effect is measured by the Knudsen number Kn = λ
L , which relates the mean

free path of the molecules λ to a characteristic length scale of the pores L.
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3. Fundamentals of flow and transport in porous media

not give the wanted information, because when talking about the velocity of the fluid,
it makes perfect sense to consider only the part that is actually flowing, and, thus, to
divide v̄ by the backbone porosity φb, because only this part is actually contributing to
flow. Intriguingly, this means that as one approaches the percolation threshold of the
structure, where the backbone will become arbitrarily small, the corresponding value for
the average backbone velocity must diverge at finite flow rates. Thus, we already see the
intricacies arising from the complex pore structure. One should also understand that the
permeability is a specific quantity of the porous medium, which does not depend on its
size, if the medium is homogeneous. Doubling the cross-sectional area of a homogeneous
medium will also double the flow rate, but the average velocity and therefore the per-
meability stays the same. We can use the flat channel as an example to illustrate these
points. The average velocity in the flat channel amounted to v̄x = 1

h

∫ h
0
vx(z)dz = −∇P

12η
h2.

We can compare this result to (3.8), where the pressure gradient ∇P = −∆P/L is just
written another way, and get a permeability of k = h2/12 for a flat channel. This is an
important result that we will encounter again, when we discuss the transport properties
of Boolean models in chapter 5. When we now just put two of these channels on top
of each other, the permeability of the resulting structure will still be the same, but the
cross-sectional area will have doubled and, accordingly, the volumetric flow rate will also
be twice as large. If, however, we double the cross-sectional area by doubling the height
of the channel, the permeability will increase fourfold and the flow rate even by a factor
of eight10. We hope that with these explanations the different meanings of the variables
are clarified.

Experimentally, the permeability can, in principle, be determined by measuring the
flow rate Q or average velocity v̄ at just one constant pressure drop ∆P . Such a pro-
cedure, however, could easily result in a substantial experimental error, so that it is
advisable to repeat the measurement at several different ∆P and plot v̄ versus ∆P . If
the measurement is in the Darcy regime, the data points should follow a straight line, like
the ones shown in Figure 3.2. Otherwise one should look for the cause of the deviation.
The regression line should also pass through the origin. The slope of this line will yield
the permeability11 k. In chapter 5 we will also discuss another practical method that
makes use of an exponentially decaying pressure drop to determine the permeability.
This method has certain advantages, if one employs tracer particles to measure the flow
velocities.

One of the main goals in the study of porous media is to predict the permeability for
a given porous medium, i.e., a given pore space morphology. With other things being
the same, a porous medium with higher porosity φ, or more precisely a larger backbone
area, will have a higher permeability. Apart from such general and trivial statements,
which often may be relatively useless, several expressions for the permeability of porous
media have been proposed in the literature [3]. Here, we will not investigate them in

10The permeability is proportional to h2, so it increases by a factor of four when h is doubled. The
flow rate increases by a factor of eight, as it is proportional to h2A and the cross-sectional area also
doubles when doubling the height.

11The slope will correspond to k
Lη , to be precise.
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Figure 3.2.: Typical measured data points (black circles) for flow velocities v̄ in a porous
medium at different applied pressure drops ∆P . The regression line (black) shows a perfectly
Darcian behavior, i.e., a linear relation between v̄ and ∆P without offset. The blue line shows
an exaggerated behavior to illustrate the different possible flow regimes. Up to a threshold
pressure drop P0 there is no flow. Next a non-linear regime follows, which ends in the linear
Darcy regime. At high P a transition to turbulent flow occurs, giving rise to additional energy
dissipation and, logically, a lower rate of velocity gain [73].

detail but only give a short overview of some general ideas.

There is, for example, a very elegant and instructive way to calculate the permeability
as a function of the porosity for a porous medium consisting of randomly placed but not
overlapping and well-separated spheres, that is, the permeability in the high-porosity
limit. Imagine that the upper half of figure 3.1 (a) showed a cross section of a fixed
sphere in a steady-state flow at low Reynolds number. We know that Stokes’ law states
that a sphere in a homogeneous flow of velocity v0 (at infinite distance from the sphere)
will feel a force Fdrag = 6πηav0, with a being the radius of the sphere. Let us suppose
that the medium consists of N spheres in a volume V . The corresponding number
density of the spheres in the medium is ρ = N/V . Adding up the forces on all spheres
and dividing by the volume leads to a pressure gradient ∇P = ρFdrag

12. The volume
fraction of the spheres is φ2 = ρ4πa3/3, which is related to the porosity of the medium by
φ = 1− φ2. If the pressure gradient is put into (3.8) and the density is written in terms
of φ2, we finally get the so-called Stokes permeability13 kS = 2a2/(9φ2) = 2a2/(9− 9φ)

12The total force is Ftot = NFdrag, just number of spheres multiplied by the force on one sphere. The
pressure drop caused by the spheres will then be ∆P = Ftot

A , where A is the cross-sectional area of
the medium perpendicular to the flow. When this pressure drop is divided by the length L of the
medium, the pressure gradient ∇P = ∆P

L = Ftot

AL =
NFdrag

V = ρFdrag results.
13Darcy’s law states that v0 = kS

η ∇P . We put in the pressure gradient ∇P = ρFdrag = ρ6πηav0 and

solve the equation for kS , which gives kS = a
6πρ . The last step is to use φ2 = ρ 4πa3

3 to replace ρ and

end up with the Stokes permeability kS = 2a2

9φ2
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3. Fundamentals of flow and transport in porous media

[3]. This result, however, is only valid in the diluted case where the individual spheres
are so far apart that they do not interact with each other. It is also apparent that the
spheres that make up the medium are freely floating in space, so this whole concept
has to be understood as a purely theoretical construct, which would not be observed in
nature.

Starting with the diluted case for which we calculated the Stokes permeability, the
assumption of non-interacting, i.e., well-separated obstacles in the structure was loosened
step by step by incorporating the effect of more and more nearby obstacles, which will
disturb the local flow field and lead to deviations from the diluted limit. The first exact
results were reported for periodic arrays of spheres on simple lattices [74]. Obviously,
such periodic structures are still a lot simpler than natural random porous media, as they
can be described by at most a few numbers and the problem is solved once a solution for
one elementary cell has been found. These results might help a little to understand the
flow behavior in real porous media or, in general, more complex morphologies, but cannot
really be used to predict their permeability in a reliable manner. The permeability of
random arrays of fixed spheres were also calculated [75, 76]. These results already came
a little closer to the problem of flow through a natural disordered structure, but the
common problem with all of these approaches is that all these arrangements of spheres
or grains of other shapes form unconsolidated materials where each individual grain is
still visible. There is no overlap between individual grains and, thus, such models do
not show resemblance to many consolidated natural rocks.

Here, a few words should be added about an empirical and often-quoted formula
for the permeability of a porous medium. The Kozeny-Carman equation expresses the
permeability k in terms of the Stokes permeability kS as a function of the porosity:

kS
k

=
10(1− φ)

φ3
. (3.9)

Quite astonishingly, this very simple formula is in good agreement with periodic as well
as random-sphere packings at low porosities (φ ≤ 0.5) [3, 77]. Yet, in general, (3.9) is
very inaccurate for heterogeneous structures [78], which is to be expected as it is derived
by assuming that the pore space consists of non-intersecting tubes, completely ignoring
the interconnectedness of the pores.

We already said that a real porous medium has a more complicated structure, which
often does not show much resemblance to packings of spheres. The features of such
natural structures, however, can also be described by other simple models, e.g., Boolean
models that were introduced at the end of the last chapter. The fundamental difference
is that the individual grains are allowed to overlap and, therefore, form a consolidated
and more complicated structure. The problem with such structures is that it is not
straightforward to derive a general equation for their flow and transport properties. In
fact, there is no exact result for the permeability of an arbitrary pore space and due to
the complexity of the morphology one cannot expect a simple expression that accounts
for all the features of a disordered porous medium.

An overview of the most common empirical and semi-empirical expressions for the
permeability of disordered porous media can be found in the literature [1, 3, 77]. We

36



3.2. Permeability

settle for just one interesting idea that also illustrates the difficulties that arise when
trying to find a general relation for the permeability and then turn to the expression
that will form the starting point for following investigations in later chapters.

For particles that diffuse in a d-dimensional porous medium, an effective diffusion
constant De can be defined via 〈r2(t)〉 = 2dDet, where 〈r2(t)〉 is the mean squared dis-
placement of the particles. Einstein’s relation states that the effective conductivity σe is
proportional to the effective diffusivity, so σe ∝ De. By simulating the motion of random
walkers inside porous matrices numerically, the diffusivity and, hence, the conductivity
can be obtained [79, 80, 81]. The results for the electrical conductivity, which were
obtained with such random-walk simulations [82], were in very good agreement with ex-
periments [83]. Our goal, however, is to find the permeability of a porous medium. The
fact of the matter is that there is no general relation between permeability and electrical
conductivity or diffusivity of a porous medium. This is not surprising since the equation
that has to be solved in case of the diffusivity or conductivity is a scalar one (Laplace
equation), whereas in the case of permeability one deals with a vector equation (Stokes
equation, for our purposes). Probably the easiest way of understanding why there is
a fundamental difference between electrical conduction and fluid flow is to think about
liquid flowing through a circular pipe of radius r. We already know that the volumetric
flow rate is proportional to r4. On the other hand, the electric current through such a
pipe is proportional to r2, which clarifies that there cannot be a simple relation between
the two phenomena for an arbitrary structure.

3.2.2. Katz-Thompson law

One widely-used and well-founded semi-empirical expression that relates the permeabil-
ity of a structure and its conductivity is the Katz-Thompson equation:

k = cl2c
σe
σ0

. (3.10)

Here, c is a constant related to the local pore geometry and lc is the size of the critical
pore. The ratio of the effective conductivity σe of the porous medium, saturated with
some fluid of conductivity σ0, and its bulk conductivity σ0 is called formation factor.
The formation factor is a measure of the connectivity of the pore space. The better
connected the pores are, the higher the formation factor is. The critical size lc has
already been mentioned in 2.2. The Katz-Thompson law is motivated by the arguments
used in critical path analysis, i.e., the idea that most of the pore space can be ignored,
because only a few paths dominate the overall flow and transport properties. Effectively,
the problem of flow through a porous structure is reduced to a percolation problem with
threshold pore size lc, i.e., the pore size below which there is no sample-spanning cluster
of connected pores. The critical pore size lc is the size of the smallest pore along the
sample-spanning paths with the least resistance to flow. Since all the other paths have
a much higher resistance to flow, especially when the pore-size distribution is broad and
the coordination number is low, this size determines the magnitude of the permeability
of the porous structure and, logically, has to appear in (3.10).
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3. Fundamentals of flow and transport in porous media

One strong point of the Katz-Thompson law is its practicality as both the effective
conductivity σe and the critical pore size lc can be measured directly and unequivocally.
After saturating the porous medium with some fluid of bulk conductivity σ0, the con-
ductivity of the porous structure can be measured, which gives the formation factor.
The critical pore size can be extracted from the capillary pressure curve, which shows
a very steep rise at the inflection point where the mercury first (see again Figure 2.2)
forms a sample-spanning cluster. This point is experimentally well-defined, because it
also coincides with the formation of electrical continuity in the sample. By making use
of the Washburn equation, a critical pore size can be calculated from the corresponding
pressure. So, the Katz-Thompson model has no adjustable parameters but only uses
measurable quantities. The calculated permeabilities for a set of 50 rocks ranging over
5 orders of magnitude were in very good agreement with measured values, which clearly
demonstrates the merit of this model [35]. Another advantage of this model is that it
does not rest on any structural information, that can only be obtained if the precise
morphology of the whole considered porous medium is known. All necessary parameters
can be measured and, thus, the permeability can be calculated without looking inside
the porous medium.

We will use the Katz-Thompson law in section 6.2 as a starting point to derive a
geometrically motivated expression for the permeability of Boolean models.

3.3. Hydrodynamic dispersion

Up to now, we have only discussed flow of one continuous fluid phase through a porous
structure and the properties of fluid transport were characterized in terms of average
quantities, such as mean flow velocities or the related permeabilities. Yet, in a natu-
ral setting, the more general situation involves at least one other fluid phase or small
particles that are transported through the structure14. From an experimentalist’s point
of view it is also understandable that one needs some kind of probe to render the local
movement of the fluid measurable, if flow inside porous media is to be investigated. This
can be accomplished by using some kind of tracer, e.g., a dye or, as in this work, small
particles that are dispersed in the fluid.

The resulting complexity of such multi-phase flows may be visualized by injecting a
small drop of dye into a fluid that is flowing through a porous medium. The initially
sharply localized dye will spread apart as it travels downstream through the structure.
This spreading apart goes by the name hydrodynamic dispersion. It is the result of
the combined actions of a nonuniform velocity field, which is a result of the disordered
morphology of the porous medium, and molecular diffusion.

Hydrodynamic dispersion plays an important role in many fields such as enhanced oil
recovery, groundwater pollution, biological processes and the in situ study of aquifers,
where one method of determining the characteristics of such fluid-bearing rocks is to

14One could also just think about following individual particles of the fluid, i.e., individual water
molecules, which would feel the varying velocity field but would also diffuse around and thereby
switch to other streamlines.
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Figure 3.3.: (a) Illustration of a porous medium in which a suspension of small particles
is flowing. All particle trajectories start in an entrance plane (black dashed line) and end in
an exit plane (red dashed line). Their respective trajectories follow paths of different lengths
and are also transported with varying velocities. Consequently, the particle front will spread
out as the particles pass through the structure. The resulting first-passage time distribution
quantifies longitudinal dispersion in the porous medium [85]. (b) Time development of an
initial particle distribution C(x, t0). Without flow (dashed lines) the particles just spread out
under the action of diffusion, but do not move on average. If a flow is present (solid lines),
the distributions will also move in the direction of the mean flow with the mean flow velocity.
Usually, the distributions also broaden faster when there is a flow.

inject tracer particles and measure their first-passage time distribution (FPTD) [84, 3],
i.e., the distribution of transit times between an entrance and exit plane. Obviously,
such a distribution will be a more sensitive measure of porous structure as, e.g., the
permeability, because it includes the effect of individual particles and not just an aver-
aged quantity. We will explain the basic transport mechanisms to get an insight into
the phenomenon of hydrodynamic dispersion and thereby deepen our understanding of
the role of pore space morphology for fluid flow through porous media.

3.3.1. Mechanisms of dispersion

An illustration of a porous medium is given in figure 3.3, where particles along with
their respective trajectories are shown. The mean direction of flow is from left to right.
As can be seen, the particles take different paths as they travel through the structure.
Let us first focus on the high-velocity case, i.e., the effect of diffusion, caused by random
molecular motions, can be neglected so that all particles stay on the same streamline.
This regime is called mechanical dispersion. The boundaries of the porous medium will
affect the transport of particles in several ways. First, the velocity on the surface of
the porous matrix is zero, which leads to a varying velocity across a pore (recall figure
3.1(b)). Second, the velocity from pore to pore is also varying, since the pores have dif-
ferent diameters and different pressure drops across them, which can result in a highly
nonuniform velocity field in the porous medium. Third, the lengths of the trajectories
between entrance and exit plane also differ strongly, as streamlines can follow tortuous
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mean flow
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b

Figure 3.4.: (a) A particle that is moving to the right is displaced to another streamline due
to steric repulsion. (b) If the flow direction is reversed, the particle will not move back to its
initial position but follow its new streamline.

paths through the porous structure. Therefore, particles that start at the same time in
an entrance plane (black dashed line) will reach the exit plane (red dashed line) after
different transit times, which will result in a broad FPTD. In other words, initially ad-
jacent particles will spread out due to the variations in velocities and trajectory lengths.
This spreading is normally split up in two parts, namely, a longitudinal component in the
direction of the mean flow, and a transverse component perpendicular to the mean flow
direction. The FPTD quantifies the longitudinal dispersion in the porous medium. We
will mainly concentrate on this aspect of dispersion and neglect transversal dispersion.

There is one more interesting aspect that concerns transport of particles through
porous structures. We look at figure 7.8 which shows a particle that is passing by an
obstacle. Due to the finite size of the spherical particle, its center of mass cannot come
closer to the obstacle than its radius. Therefore, the particle experiences an irreversible
force in the form of steric repulsion that leads to its displacement to another streamline,
as illustrated in figure 7.8 (a). If the flow is reversed, as shown in figure 7.8 (b), the
particle will stay on its new streamline, and, therefore, not move back to its initial
position. This phenomenon can break time reversibility for particles even for creeping
flow, which is described by the time reversible Stokes equation. One convincing example
of this effect is particle separation [86, 87, 88]. In porous media, the streamline crossing
of finite particles by steric repulsion can enhance but also hamper dispersion, depending
on the pore structure and the size of the particles. Large particles might also be excluded
from some parts, e.g., stagnant parts of the porous medium, by such steric effects and
be transported faster through the structure as a result [89].

3.3.2. Diffusion and advection

Mechanical dispersion, as described above, is modified by the presence of molecular
diffusion, which can move a small particle or a molecule from one streamline to another.
In the absence of diffusion15, a particle will just be advected by the surrounding fluid
along a streamline, which it will never leave. Logically, molecular diffusion is of crucial

15Certainly, this is only a hypothetical thought, since there is no way to completely avoid diffusion.
But at very high flow velocities, diffusion will become less important.
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3.3. Hydrodynamic dispersion

importance for particles that are in slowly flowing or stagnant regions of the pore space,
where diffusion is the dominant or only means of transport.

If one starts with an initial distribution of particles at a certain time C(r, t)16, the
time development of this distribution can be described by Fick’s second law of diffusion:

∂C(r, t)

∂t
= Dm∇2C(r, t). (3.11)

The diffusion coefficient Dm is given by the Stokes-Einstein equation, Dm = kBT
6πηa

[90].
When the initial distribution at t = 0 is a Dirac delta function, i.e., all particles start

at the origin, the normalized solution of this equation is a Gaussian distribution:

C(r, t) =
1

(4πDmt)3/2
exp

[
− r2

4Dmt

]
. (3.12)

This equation describes the effect of molecular diffusion, which mixes different solvents
or spreads particles out, even if there is no flow. Therefore, this kind of mixing is
independent of the flow velocity. Figure 3.3 (b) shows how an initially sharp distribution
(solid black line) broadens over time (dashed lines). If the area in which the particles
or solutes are dispersed is bounded, diffusion will finally lead to an even distribution,
given enough time. This is an important statement, it means that in the long-time limit
a particle that starts at some specific point in a bounded porous medium, will be found
with the same probability at any position in that medium. A concentration profile with
a lot of bumps in it will become smoother as time goes by, that is, areas that initially
had a low concentration will have a higher concentration and vice versa.

Just as we have discussed pure diffusion without any other effects, which is described
by (3.11), we can look at the other extreme, where there is no diffusion and the particles
or the solutes studied are only advected in a homogeneous flow field. We can write down
a transport equation for that case:

∂C(r, t)

∂t
+ v̄∇C(r, t) = 0 (3.13)

This equation just moves the initial distribution C(r, t) in the direction of v̄ without
changing its shape. This, of course, is unrealistic in a porous medium where there are
many different paths and widely varying velocities, but still the center of mass of the
distribution moves with the average flow velocity.

Péclet number

The relative importance of advection and diffusion is measured by another dimensionless
number, the Péclet number Pe. In order to calculate Pe, we need a characteristic
length scale of the porous medium L, where often the mean diameter of an individual
grain of the porous medium is used, a typical velocity V in the porous medium, and

16Instead of the letter C, which is normally chosen, if the spreading of a solute concentration is studied,
one could also think about a probability P to find a particle around a certain position in space.
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3. Fundamentals of flow and transport in porous media

a diffusion coefficient D17. Now the relative strength of the two transport mechanisms
can be quantified by calculating the ratio of the time it needs a particle to travel a
distance L by diffusion τdiff = L2/D and the time it takes the particle to travel that
same distance by advection τadv = L/V . So, we get Pe = τdiff/τadv = LV/D. At
Pe � 1 the transport is totally dominated by diffusion, whereas at Pe � 1, diffusion
is practically meaningless and advection is in control of transport. A transition from
diffusive to advective transport is expected to occur at Pe ≈ 1. Although it seems that
the distinction between the two transport regimes is a no-brainer with the Pe, it is far
from that, because, e.g., knowing what the relevant length scale of a porous medium is,
can be a tough task, if the structure contains large stagnant parts. We will come back
to this point in chapter 7.

3.3.3. Advection-diffusion equation

In the previous section we have looked at diffusion and advection separately. The hy-
drodynamic dispersion process of tracer particles or solutes inside a isotropic and ho-
mogeneous porous medium is typically described by an equation that combines both of
these aspects, namely the advection-diffusion equation (ADE):

∂C(r, t)

∂t
+ v̄∇C(r, t) = DL

∂2C(r, t)

∂x2
+DT∇2

TC(r, t). (3.14)

The only difference compared to the diffusion equation, besides the addition of the
transport term v̄∇C(r, t), is that the diffusion term has been split up into two terms
with two dispersion coefficients. The idea to model the dispersion as an anisotropic diffu-
sional spreading is motivated by experimental and theoretical results [85], which showed
that the longitudinal dispersion coefficient DL normally is larger than the transversal
dispersion coefficient DT . The average fluid velocity is v̄18 and∇T is the Laplacian in the
direction transversal to the average fluid velocity. The meaning of the equation should
be clear with the explanations that were given in the last paragraph. While particles
that are released at some point in the medium flow downstream in a porous medium, the
width of their distribution spreads longitudinally, i.e., in average fluid direction, and in
the transversal direction. The width of the distribution will increase as the square root
of time in both directions, just as it does in the case of normal molecular diffusion. Thus,
the assumption of the ADE is that all the complexities of the inhomogeneous flow field
in the porous medium together with the effect of molecular diffusion can be captured
by just three parameters, DL, DT , and v̄, which can be an appropriate assumption for
some natural media, but certainly not for all. In case of a medium of volume that is
smaller than its correlation volume, the ADE will not be applicable, as the assumption
that strong local variations in the velocity field will be averaged out during the whole

17We omitted the index, because the relevant coefficient could be molecular diffusivity, some effective
diffusivity or one of the dispersion coefficients.

18For a porous medium of length L the average fluid velocity v̄ can be defined by v̄ = L/T , where T is
the average time it takes a particle to travel through the whole structure, i.e., the first moment of
the FPTD.
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3.3. Hydrodynamic dispersion

passage of a particle is not fulfilled. We will also see later how the presence of large
stagnant areas affects hydrodynamic dispersion.

If one starts with a sharp distribution, that is, a Dirac delta function at r0 = (x0, y0, z0)
and at t0 = 0, one solution of (3.14) will again be a Gaussian distribution.

C(r, t) =
1

(8π3DLD2
T t)

3/2
exp

[
− (x− x0 − v̄t)2

4DLt
− (y − y0)2

4DT t
− (z − z0)2

4DT t

]
(3.15)

For simplicity the x axis was chosen to be in the direction of mean flow. The solution
is completely analogous to the simple solution for the diffusion equation (3.11). Figure
3.3 (b) illustrates the one-dimensional time development of such a solution (solid lines).
As time goes by, the concentration spreads out and moves with the average velocity v̄.
So, an observer moving with velocity v̄ would observe normal diffusional spreading.

From equation (3.15) a FPTD for particles that start in an entrance plane at x0 can
also be calculated. The probability density that a particle which started at x0 at t = 0
will cross x at t for the first time is given by:

p(x− x0, t) =
x− x0√
4πDLt3

exp

[
− (x− x0 − v̄t)2

4DLt

]
. (3.16)

If dispersion in the porous medium studied can be described by the ADE, equation
(3.16) can be used to determine DL and v̄.

3.3.4. Taylor dispersion

Before we move on to discuss the different dispersion regimes in porous media, we look at
an instructive example for dispersion in a simple geometry. Experimentally, dispersion
in a circular pipe was studied by injection of some tracer fluid more than a hundred
years ago [91]. The velocity profile in a circular pipe of radius R is given by:

v(r) = 2v̄(1− r

R

2

). (3.17)

The injected tracer was found to spread out symmetrically about a plane that moves
with the mean flow velocity v̄19. The phenomenon was also studied theoretically [92, 93].
The interesting result was an expression for the longitudinal dispersion coefficient DL:

DL

D0

= 1 +
R2v̄2

48D2
0

= 1 +
Pe2

48
. (3.18)

D0 is the diffusion coefficient of the tracer particles. The important point here is that
the quadratic dependence of the dispersion coefficient on the mean flow velocity or the
Péclet number. This relation has been shown to hold for arbitrary geometries, as long
as diffusion and advection are equally strong [93].

19Whether the fact that in the long-time limit a tracer moves with the mean flow velocity is obvious
or not has been debated. The straight answer is that by diffusion a tracer will spend an equal time
span at each position, so that it will obviously move with the mean flow velocity.
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a b

Figure 3.5.: Experimental data of measured longitudinal dispersion coefficients DL, mainly
of unconsolidated sands, versus the Péclet number Pe. The dispersion coefficients have been
normalized by the molecular diffusion coefficient Dm. Five different dispersion regimes are
indicated, in which DL depends on Pe in different ways according to the dominating transport
mechanisms. [85] (b) Porous medium with stagnant part (white). A particle that enters the
stagnant part will not be affected by the surrounding flow and can only escape by diffusion.

3.3.5. Dispersion regimes in porous media

Dispersion in porous media has been studied experimentally as well as theoretically for
many decades. Experimental data for dispersion coefficients have been obtained for
unconsolidated sands and consolidated sandstones with comparable results [94].

In figure 3.5 experimental data for unconsolidated sands are collected. The dispersion
coefficients have been normalized by the molecular diffusion coefficient Dm. According
to the different dependences of DL versus Pe, several dispersion regimes exist [85].

At low Péclet numbers (I), conventionally restricted to Pe < 0.3, diffusion dominates
over the much slower transport by advection. As a result, there is also no preferred di-
rection and dispersion becomes isotropic with dispersion coefficients that only depend on
the porosity of the porous medium φ and its formation factor F , DL = DT = Dm/(Fφ).
After a transition zone (II), in which DL increases with Pe in a complicated way, a
power-law regime follows (III). In the forth regime (IV), where advection dominates and
diffusion only mixes solutes at the nodes of the pore structure, DL ∝ Pe, i.e., we have
mechanical dispersion. In the next regime (V), turbulent mixing starts to occur, which
also implies that Pe is no longer the characterizing number.

There is also a sixth regime, the holdup regime, in which particles can get trapped in
stagnant parts from where they can only escape by diffusion. This can lead to compli-
cated FPTD with long-time tails, which cannot be explained by the ADE. It is always
important to know whether the ADE is a good model for the porous medium studied.
If deviations occur, e.g., formation of long-time tails, the cause must be found.

3.3.6. Deviations from the advection-diffusion equation

The hallmark of the ADE is scale-independence. In contrast, laboratory [95, 96] and
field-scale experiments [97, 98] as well as simulations [99] have shown that in many cases
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dispersion coefficients depend on the length and time scale of the measurement, leading
to so-called anomalous transport. Therefore, anomalous transport actually is the more
generic case and, thus, the ADE cannot be expected to predict dispersion in natural
porous media. The complex geometry of porous media can give rise to a mixture of
principal pathways, along which particles are transported by advection, and stagnant
parts, wherein particles can only move slowly by diffusion (see figure 3.5). As a result
one has two different time scales, one for advective and another for diffusive transport.

Due to the mentioned intricacies of porous media the ADE does not reproduce the
early breakthrough and, more importantly, the long-time tails in measured and simulated
FPTDs. To account for these features more advanced models have been developed.
These models [100, 101, 102] use a modified form of the ADE which attributes the long-
time tails to particles trapped in stagnant parts and introduces a mass transfer coefficient
describing the exchange of particles between stagnant and flowing zones. Although this
model yielded accurate fits to measured data [103, 49, 100, 104], the complex structure
of porous media cannot be described by this simple model. Moreover, no proof for the
existence of stagnant parts was given [100] and the occurence of long-time tails was
alternatively explained by finite-size effects [104] or flow field heterogeneity [49, 103].

We will discuss the influence of the nonhomogeneous flow field and diffusion in stag-
nant parts on the FPTD in detail in chapter 7.

There are many other very interesting phenomena, which would also fit well into this
chapter, but at some point we have to conclude. Yet, some aspects will be discussed
at the appropriate time. The voracious reader might find consolation studying the
established literature [61, 65, 105, 62, 106, 107].
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In the last two chapters we discussed the basic quantities which can be used to describe
a pore space and showed several examples of porous media as well as the fundamental
equations and processes that govern the flow and transport inside such media with main
focus on permeability and hydrodynamic dispersion. In this chapter the experimental
technique for the generation of the artificial porous media, which will be used throughout
this work, as well as the experimental setup will be presented. The main advantage of
these artificially generated structures is that the morphology and porosity is well-defined
and known so that their influence on flow and transport properties can be properly
investigated, which is the main objective of this work. As a probe for the flowing fluid we
will use a colloidal suspension of micron-sized particles to obtain individual trajectories
by well-established video microscopy, which will be covered in the next chapter.

4.1. Sample preparation

Several methods for the fabrication of microstructures like photolithography or emboss-
ing, which is commercially used on a large scale to produce compact disks, exist [108].
For the structures used in this work a process named soft lithography will be used to
generate structures of well-defined morphology.

4.1.1. Soft lithography

Soft lithography owes its name to the softness of the used polymer, polydimethylsiloxane
(PDMS). The procedure to generate a sample by soft lithography consists of several
simple steps [109, 108]. A short overview of the whole procedure is given in figure
4.1. First, a silicon wafer, (a), is coated with a photoresist. Next, a photomask, (b),
containing the negative of the wanted structure is placed right on top of the coated
silicon wafer and is illuminated by UV light. The UV light is transmitted through the
transparent areas of the photomask and triggers a chemical reaction in the photoresist
directly below, which makes the photoresist less soluble for the developer. The areas that
have not been exposed to UV light are now, (c), removed by a developer, so that only
the exposed areas remain. This is now the negative of the wanted structure. Finally,
a soft polymer, which can flow at room temperature and, thus, take the shape of the
remaining photoresist, (d), is poured on the wafer, and after it has cured, (e), can be
peeled of and used to generate a microfluidic sample like the one shown in (f). In the
following paragraphs more details for each step and about the used materials will be
given and possible problems and limitations of the method will be discussed.
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Figure 4.1.: Principal procedure for structure fabrication by soft lithography. (a) A Si wafer
is coated with a photoresist. (b) A photomask that has transparent and non-transparent areas
is placed on top and illuminated by UV light. (c) After developing only the exposed areas of
the photoresist remain. (d) PDMS is cast on top. (e) After curing of the PDMS the PDMS
can be peeled off and (f) can be used to build a microfluidic sample.

Coat

The preparation of a microfluidic sample starts with a clean silicon wafer1. Silicon is
used because it is chemically and thermally stable. The wafer is placed on a spin-coater
and 5ml of negative photoresist2 of a specific viscosity is spread on its surface. Next, the
wafer is rotated on the spin coater in a two-step process: In the first step it is rotated
at 500 rpm for 8 seconds with an acceleration of 100 rpm/s and in the second step it is
rotated at 900 rpm for another 30 seconds with an acceleration of 300 rpm/s. Rotating
the wafer removes excess photoresist and results in a photoresist layer of homogeneous
height. The height of the layer depends on the viscosity of the photoresist and on the
rotational speed. For the SU-8 2005 photoresist, which was used for most of our samples,
the resulting height was about 6.5µm. The height of the structure, which is the end
product of the whole fabrication process, is a crucial parameter. Its role will be discussed
in section 5.3.

After the coating is done, a soft-bake step follows during which the solvent in the
photoresist vaporizes and, thereby, the photoresist layer hardens. The coated wafer is
placed on a hotplate at room temperature. The hotplate is slowly heated to 97 ◦C over
29 minutes. After that time the heating is turned off and the wafer, still resting on the
hotplate, is allowed to cool down over half an hour to about 40 ◦C. This is a deviation

1We used silicon wafers manufactured by Si-Mat in Kaufering that have a diameter of 100mm and a
thickness of 525µm.

2In a negative photoresist the volume that is exposed to UV light becomes less soluble by a developer,
whereas it becomes more soluble for a positive photoresist. Different negative photoresists were
employed. Depending on the desired height of the structure SU-8 2002, SU-8 2005, SU-8 2007 or
SU-8 2010, all products of MicroChem, was put to use.
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from the standard procedure for the soft-bake step3, as recommended in the processing
guidelines, but it has produced good and reliable results.

Exposure

Since the objective of the fabrication process is a microfluidic sample with a well-defined
porous structure, a photomask4 made of quartz glass and chromium, which is composed
of the wanted structures is needed. As already explained in section 2.4, pictures of the
Boolean models that were used as structures were generated by a MATLAB program.
These pictures together with an AutoCAD layout of the photomask were sent to the
photomask manufacturer, which used electron-beam lithography to transfer the struc-
tures to the photomask. The masks were fabricated with an accuracy of ±0.2µm and
a minimum feature size of 2µm. The shiny parts of the mask are covered by a layer of
chromium. While quartz glass is transparent to UV light, chromium is opaque, so that
only the parts that are not covered by chromium will transmit UV light and lead to a
chemical reaction of the photoresist directly below, whereby the structure of the mask is
transferred to the photoresist. One of the several photomasks that were used to produce
the structures discussed in this work is shown in figure 4.2 (a). It contains 60 different
structures (Boolean models). Every structure has two empty reference channels next to
it. These are important for the calibration of the measured particle velocities, as we will
discuss in section 5.3.

The actual exposure process is performed by putting the photomask directly on top
of the coated silicon wafer. It is important to minimize the distance between photomask
and photoresist layer to ensure that the structure on the mask is transferred to the
photoresist as precisely as possible. Therefore, after unwanted areas of the mask have
been covered by thick black paper to block the UV light, small weights are placed
on top of the photomask. Next, a UV light source5 is used to homogeneously expose
the transparent part of the photomask with parallel light. The UV light leads to the
activation of a photoacid generator6. The exposure time depends on the thickness of the
photoresist layer. For our structures, exposure times were in the range of 20− 40 s. The
right exposure time depends on the size of the individual features of a structure. For
structures with very low porosities, i.e., a large number of obstacles and, consequently few
and thin paths for the fluid, the exposure time must not be too high, because such thin
paths might just disappear as the individual obstacles grow together, due to diffraction
effects, by exposing for too long. The same problems can also occur for structures with
the opposite polarity when the exposure time is too low. After the exposure, the afore-
described soft-baking step is repeated. During the heating the molecular chains at the
exposed areas cross-link, which solidifies the material in these areas and makes it less
soluble by the developer.

3The standard recommendation is to heat the wafer to 95 ◦C for about 2 minutes.
4The photomasks were manufactured by Compugraphics Jena GmbH.
5Dymax Blue Wave 50, 3W/cm2 around λ = 365nm.
6In the case of SU-8 this photoacid generator is a triarylsulfonium salt.
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Development

Before proceeding, care must be taken that the wafer has cooled down to about room
temperature. So, it is a good idea to leave it, e.g., in a petri dish for several minutes.
Developer7 is carefully poured on the wafer and dried with pressurized nitrogen after
about 10 s. During this first rinse most of the unexposed photoresist should be washed
away and only the exposed parts of the photoresist should remain. If there are still traces
of photoresist on the rest of the wafer, some more developer should be used and removed
again after about 10 s by pressurized nitrogen. Alternatively, the whole wafer can be put
in a developer bath for the same time. In any case, developing for too long can damage
the structure or even remove it completely from the wafer. If the structure is very fine
and individual structure features are separated, the developer should be removed more
quickly. If, on the other hand, the structure is very dense, the developer cannot easily
reach every little part of the structure and, thus, such a sample must be given more time
with the developer. These are just general recommendation. The tricky part is to find
the right combination of exposure time and development time for every sample. For most
samples, following a standard procedure that has worked for another sample will also
give satisfactory results. When development is completed, a hard bake, during which the
wafer is placed on the hotplate and heated slowly to 210 ◦C over 18 minutes, follows. This
final step anneals surface cracks in the photoresist and renders the structure mechanically
and chemically stable. We have reached figure 4.1 (c), i.e., the photolithographic part
of the sample preparation is accomplished. The resulting structure can now be used as
a master negative structure for the following replica molding. The only thing we add to
the structures on the wafer are two reservoirs made of an epoxy glue8 to allow an easier
sample preparation and injection of the colloidal suspensions. An example of structures
on a silicon wafer that were obtained by the steps described in the last paragraphs is
shown in figure 4.2 (b). The upper two structures have already been used to build a
microfluidic sample, the lower two structures are still covered by PDMS.

Replica molding

In principle, it is also possible to use the photolithographic process discussed so far to
transfer a structure from a photomask directly onto, e.g., a glass slide. This glass slide
containing the structure can then be covered and sealed with another glass slide on
top and used as a microfluidic sample. This technique is necessary if one wants to use
solvents that are not chemically compatible with the soft polymer used, but it has the
disadvantage that it is hard to seal the sample and also requires a full photolithographic
process for each sample.

In our studies we use the silicon wafer with the porous structures as a negative master
to generate a microfluidic sample by replica molding.

7mr-Dev 600 from micro resist technology GmbH
8We used a 1:1 mixture of “5 Min. Epoxy Harz” and “5 Min. Epoxy Härter” by R+G Faserverbundw-

erkstoffe GmbH
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a b
c 1 cm

Figure 4.2.: (a) Photomask containing 60 different structures with empty reference channels.
(b) Petri dish with porous structures, two of them are still covered by PDMS. Right and left
of the structures and reference channels reservoirs were added by epoxy glue, which make it
easier to prepare the samples and connect them to the tubes. (c) A microfluidic sample filled
with dyed water.

A mixture of 10 parts (by weight) of silicon oil and 1 part of a curing agent9 is put in
a small jar and is mixed by thorough stirring with a stirring rod. If the wafer is used for
the first time, the total weight of the mixture should be about 20 g10. The silicon wafer is
placed in a Petri dish (see figure 4.1 (b)) and the mixture is poured on the wafer. There
will be a large number of air bubbles in the mixture as a result of the stirring. These
can simply be removed by leaving the Petri dish alone for about half an hour. The air
bubbles will rise to the surface of the PDMS, where they will pop and disappear. It is
obviously necessary to cover the sample during this time to avoid impurification by dust
and other dirt. When the air bubbles have disappeared, the Petri dish is put in an oven
at 60 ◦C for four hours. The wafer should be level to avoid variations in the height of
the PDMS. During this time the mixture polymerizes to PDMS, i.e., the liquid mixture
becomes an elastic material that can no longer flow. Temperatures above 60 ◦C must
be avoided, because the epoxy glue is not stable above this temperature and starts to
outgas.

When the PDMS has cured, two holes are punched into the reservoirs, which have
been added to the structures on the wafer by the epoxy glue. These holes will serve as
in- and outlet for the fluid into the reservoirs. Next, a whole PDMS structure can simply
be cut out by a cutter and lifted off the wafer for further processing. Cross sections of
the PDMS channels, like the one shown in figure 4.3 (a), can also be used to determine
the height of the channels by optical microscopy. Such thin slices of the PDMS can
be fabricated by carefully chopping the PDMS with a cutter. Since the channel is not
totally flat and might also have been damaged during the preparation of the thin slices,
the heights might deviate a little at different positions along the channel, so that it is
advisable to measure the heights at different positions.

9Sylgard 184 silicone elastomer kit by Dow Corning.
10The wafer can be used many times in the same way. Once all the available samples on the wafer

have been used, the rest of the PDMS can be cut out along the rim of the wafer with a cutter and
removed. Then, one can again pour a mixture of silicon oil and curing agent on it. This time only
about 15 g should be required.

11Credits for the SEM images belong to the Institut für Plasmaforschung. Inexcusably, I forgot the
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Figure 4.3.: (a) A cross-section view of a PDMS channel captured by a light microscope,
which can be used to determine the height of the channel. (b) and (c) show scanning electron
microscope images of a tilted PDMS structure made of randomly placed and oriented ellipses
at different magnifications11.

Preparation of the microfluidic sample

To build a microfluidic sample with the PDMS structures on the wafer, we first clean a
plain microscope slide and a cover glass with two glass capillaries glued to it (see figure
4.2 (c)) with acetone and lens cleaning paper to make sure that there is no dust on the
glass. These two glass parts are now put in a plasma cleaner12. The plasma chamber
is initially evacuated and consequently filled with oxygen at a system pressure of about
0.8mbar. For oxygen plasma modification of the glass parts a RF plasma power of 40W
and a treatment time of 100 s was used. Next, the PDMS structure is cut out, peeled
off the wafer and placed (structure pointing upwards) into the plasma chamber. Again,
the chamber is evacuated and filled with oxygen until the system pressure is stable
at 0.8mbar. The RF power is lowered to 20W for about 20 s13. During the plasma
modification process, hydroxyl groups are formed on the glass surface and silanol groups
are formed on the surface of the PDMS. The oxygen plasma treatment also renders
the PDMS surface hydrophilic, which simplifies the injection of an aqueous colloidal
suspension or dyed water. When the PDMS surface is brought into contact with the
glass surface, strong covalent bonds are formed between the two surfaces. The PDMS,
with the structure pointing down, is put on the microscope slide. It might take about a
minute until the PDMS has bonded to the glass14. Next, a colloidal suspension or a dye
is injected into the in- and outlet in the PDMS15. After that the cover glass is carefully
placed on top of the PDMS to make sure that the two capillaries are connected to the
in- and outlet of the PDMS. If everything is fine, the PDMS cannot be removed from
the glass after the initial contact and the sample should be watertight. A microfluidic
sample that has been filled with dyed water is shown in figure 4.2 (c).

name of the charming lady who operated the SEM.
12Zepto by Diener electronic GmbH.
13Measurements of contact angles of water on PDMS have been performed by Wilhelm Kiefer to make

sure that the used parameters yield the best results.
14Experience with many samples indicates that the faster the bonding the better the sample, in terms

of, e.g., particle sticking, will be.
15Christian Scholz found out that it is advisable to inject the suspension into in- and outlet at the same

time to diminish the likelihood of a collapse of the channel due to capillary forces. By injecting at
the same time, an air cushion is formed which counteracts capillary forces.
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4.2. Experimental setup

Unfortunately, this last step of the sample preparation shows a huge variation in
outcomes. Samples which have been prepared, at least from the experimenter’s point
of view, under identical conditions, will sometimes work perfectly and at other times
be totally unusable. A few points should be minded to increase the sample yield or
leastwise save some time. During the whole process neither the glass surface or any of
the PDMS surfaces, with exception of the rims, should be touched. Any impurity on
the surface can lead to leakage or incomplete bonding of the surfaces which can easily
make the sample useless. It is also recommended to have a very quick look into the
structure (any microscope will suffice) after the suspension has been injected. When a
lot of particles are sticking or some part of the structure has collapsed, the sample is
also useless for most purposes. This will save time and also avoid wasting precious cover
glasses, which have to be custom-made. Caution is also needed when the suspension is
injected into the in- and outlet of the PDMS. If too much suspension is injected it will
also wet the PDMS surface which will inhibit bonding to the cover glass.

A sample which has been prepared in the way described above and is functional, i.e.,
a large enough number of particles are flowing through the structure and no structural
defects, leaks etc. are visible, can now be connected by two tubes to the fluid reservoirs
and put into the experimental setup.

4.2. Experimental setup

The experimental setup is shown in figure 4.4. It consists of a conventional inverted
microscope system with an additional UV light source to allow the use of fluorescent
particles16. Depending on the requirements of the measurements or the spatial resolu-
tion, different magnifications can be used. At the lowest magnification, which has been
used to capture the velocity fields that were used in chapter 7, the field of view has a size
of about 4 × 3mm. To enable a detailed analysis of the particle trajectories inside the
studied porous media, a high spatial as well as a sufficient temporal resolution is needed.
Therefore, a high speed recording system, which can capture videos with a frame rate of
up to 380 fps at a resolution of 2240× 1724 px, was used17. At lower resolutions higher
frame rates can be achieved, if needed.

For the measurements of chapter 7, the whole flow field of a porous structure of size
3860× 2975µm had to be determined using particles with a diameter of 1µm. Since it
is practically impossible to see such small particles at the required small magnification
under normal light, fluorescent particles were used. The big advantage of the used
fluorescent particles is that the wavelengths at which the excitation and emission spectra
have their maxima differ enough to filter out just the light that is emitted by the particles.

16The used microscope is a Nikon Eclipse Ti with UV light source Nikon Intensilight C-HGFIE. As
fluorescent particles, FluoSpheres yellow-green from Invitrogen were used.

17The high-speed recording system including the software is a product of GSVitec GmbH. The used
camera is a Vosskühler CMC-4000. In addition, we used another system from Mikrotron with an
MC 1362, which allows 500fps at 1280× 1024 px.
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4. Experimental details

Using the appropriate filter18 will allow only the light that is emitted by the small
particles to reach the camera and, thus, enable an accurate detection of the particle
position. The requirements for accurate particle tracking velocimetry will be covered in
the next chapter.

The flow rate or the pressure gradient along the sample is controlled by the water
levels in two syringes that are connected by Tygon tubes to the small capillaries on
the cover glass of the sample. The tubes and the capillaries must be carefully checked
for the presence of any air bubbles, which would disturb the water flow and result in
unpredictable deviations in the applied pressure. The larger the difference between the
water levels, the higher the pressure and, consequently, the flow rate will be. For most of
our measurements, the pressure should remain constant over extended periods of time.
So, the diameter of the syringes should be so large that the change in water level due
the fluid flow through the sample is negligible. We will discuss these issues in the next
chapter.

There is one more important thing that can help avoid a lot of potential trouble
for the experimentalist. It is a very good idea to position the syringes that serve as
pressure reservoirs below the level of the sample, because sometimes the tubes slip off
the capillaries of the cover glass or are not completely watertight. If the syringes are
below the sample, the water cannot flow into the microscope and damage it.

4.3. Determination of pore structure

One of the main objectives of this thesis is the investigation of the relation between
structural and transport parameters. Therefore, it is obviously necessary to get the
most accurate information about the pore structure of the investigated samples. The
sample production process consists of three steps: exposure, development and replica
molding. During each of these steps, inevitably, inaccuracies occur so that in the end
the PDMS structure that is used for the measurements is not identical to the structure
on the photomask which was exposed onto the silicon wafer. In order to get a precise
picture of the PDMS structure, the investigated structure has to be imaged directly. The
contrast between the solid phase and the void space of the samples was increased by
injection of dyed water19 into the sample. The dyed water flows into all of the accessible
pore space and gives microscope images that are rich in contrast. One example of such
a picture is shown in figure 4.5 (a). The bright, almost white, parts correspond to the
solid phase and the dark areas are the void space that is filled with the dyed water.
Such a picture, of course, gives a useful qualitative impression to the eye, but to get
quantitatively usable information solid and void space must be clearly distinguished.
Thus, a brightness threshold is applied, which results in a binary image of the structure,
as shown in figure 4.5 (b), where the void phase is now white and the solid phase is black.
There is some ambiguity what exactly the threshold should be, but for an homogeneously
illuminated microscope picture the brightness histogram will show two well-separated

18B-2E (FITC) filter by Nikon.
19A mixture of water and methylenblue by Alfa Aesar.
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4.3. Determination of pore structure

UV light

High-speed camera

Microfluidic sample

Fluid reservoirs

Figure 4.4.: Experimental setup: The microfluidic sample rests on the sample holder of a
commercial microscope. For pressure control, two fluid reservoirs (syringes) are connected to
the sample. Videos of flowing particles are captured by a high-speed recording system. A UV
light source allows the use of fluorescent particles.

a b

Figure 4.5.: (a) Light microscope image of a porous sample that has been saturated with
dyed water to give strong contrast between porous matrix (bright) and void space (dark). (b)
After application of a brightness threshold a binary image results. The effect of dirt in the
sample has been corrected manually to make sure that the binary image gives an accurate
description of the pore geometry.
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4. Experimental details

relatively sharp maxima. The error resulting from this ambiguity, when, e.g., calculating
the porosity, is small. More important for the topological characterization of the sample
are the connectivity measures like the Euler characteristic. These can be very sensitive
to small changes in the structure. If, for example, some small void paths that are visible
on the photomask disappear during the lithographic process, the whole connectivity
and, therefore, the transport parameters of the sample will be different from that of the
structure on the photomask. The good news is that since the dyed water will flow into
every part of the accessible pore space it can be unambiguously checked whether the
connectivity of the sample and the structure on the mask is identical. In most cases the
topological parameters of the sample and the structure on the mask are in agreement.
The structures very close to the percolation threshold are more sensitive to small changes
in the structure, because they have a lot of small features which could be lost during
the lithographic process. So, these structures should be carefully checked for deviations
from the corresponding structures on the mask.

Further details about the used materials, like colloidal suspension, will be given when
the respective measurements are discussed in the next two chapters.
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5. Measurement of flow properties in
porous structures

In this chapter particle tracking velocimetry (PTV), which enables us to visualize the
flow field with the help of small tracer particles, is explained step by step. The complex-
ities arising from the fact that the tracers are of finite size and the related problems with
the calibration of velocity measurements are discussed next. Two methods to measure
the fluid velocity in the porous samples, and hence the permeability, are introduced:
The constant-head method uses empty reference channels with known permeability in
addition to the channel that contains the structure to calibrate the measurement. The
falling-head method only uses the proportionality between mean particle velocity and
applied pressure and makes use of the exponential decay of the applied pressure that
results from the fluid flow through the structure to determine its permeability. Both
methods have advantages and disadvantages which will be explained.

5.1. Particle tracking velocimetry

When a fluid is flowing through a structure, the flow field cannot be directly seen, as
the individual fluid molecules are not visible. One can, for example, only tell that a
river is flowing, because some features that can be distinguished from the fluid, like dirt
particles, foam, air bubbles or a swimming piece of wood, are advected by the fluid.
Thus, if the water in the river was crystal clear without any of the above-mentioned
features, it would be necessary to introduce some visible objects to investigate the flow
of the river. The fluid in the microfluidic samples used in this work is “crystal clear”.
Consequently, the injection of small tracer particles that can be followed as they are
advected through the sample is obligatory.

In this work we used aqueous suspensions of small tracer particles with a diameter
between 1µm and 5.2µm to perform particle tracking velocimetry [110, 111, 112, 113].
In short, the objective of PTV is the precise quantitative measurement of a fluid velocity
field of an extended volume or area by recording videos of flowing particles with the help
of conventional video microscopy and a consequent reconstruction of individual particle
trajectories that allow for a calculation of the mean particle velocity of the whole field
of view by averaging over many particle trajectories. The resulting particle velocity field
can be used to get information about the fluid velocity field.

First of all, we have to make clear what is meant by fluid velocity at a specific point in
space, e.g., inside a porous sample. This will also automatically illustrate the challenges
that PTV poses. Certainly, the fluid velocity we are talking about is not the velocity
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Figure 5.1.: Required steps for particle tracking velocimetry: (a) A video of small particle of
different diameters travelling through a ROMC structure is recorded. (b) Image by image the
individual particle coordinates are tracked. (c) The coordinates are connected to reconstruct
the trajectories of the particles. (d) The field of view is divided into small cells and the mean
velocity of the particles therein is calculated which gives the particle velocity field that can be
related to the fluid velocity. Bright colors correspond to high velocities.
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5.1. Particle tracking velocimetry

of a single water molecule as the velocity of one particle will be strongly affected by its
Brownian motion and will fluctuate strongly. If we look at a large number of molecules
at a certain point in space and take the average of their respective velocities, we will get
a quantity that does not show any measurable variations over time, because the effect
of Brownian motion will cancel out. So, by fluid velocity at a certain position we mean
the average velocity of a large number of individual fluid molecules. This is also the
intuitive notion one has when speaking of flow velocity and it is also the quantity that
one wants to measure with the help of some tracer particles.

This task, as plain as it may sound, is far from simple, because any particle of finite
size, i.e., any real object that is advected by a fluid will alter the properties of the
surrounding flow field or even the fluid itself, e.g., by generation of a shear in a non-
Newtonian fluid, and will not exactly follow the motion of the fluid. That means that any
finite particle is a nonideal tracer. The whole concept of an ideal tracer that faithfully
follows the mean flow and does not disturb the fluid is only a theoretical construct that
is not reproducible in an experiment. It should also be clear that by using smaller and
smaller particles, their diffusion coefficients would get larger and larger which would also
make them less valuable as a probe for the flow field as one cannot measure trajectories
of a very large number of such very small particles and average their properties to end
up with very accurate data. The use of very small particles is also only a hypothetical
thought for another reason, because in an actual experiment the microscope has a limited
resolution and, thus, the used tracer particles must have a certain minimum size to be
visible. Such finite-sized particles, as stated above, cannot probe the fluid’s properties at
their center of mass, as they have to average over the flow field in a complicated and not
fully understood way, whereby they also disturb the surrounding fluid. In addition to the
effects that are exclusively caused by their finite size, sedimentation or buoyancy due to
a mass density that differs from the fluid’s mass density or interactions with the porous
matrix can also lead to complications. At high flow rates, i.e., high Reynolds numbers,
hydrodynamic effects which cause so-called lift forces can lead to the accumulation of
particles in certain regions [114, 115, 116, 61]. Whenever one is dealing with tracers, one
should keep all these complications in mind and must not mistake the movement of the
particles for the movement of the fluid.

Summing up, ideally particles should be significantly smaller than the smallest relevant
flow field length scale, but also large enough to minimize errors due to Brownian motion
for PTV to give satisfactory results with regards to information about the actual fluid
flow velocity [117]. Such a compromise cannot always be realized due to experimental
restrictions by the equipment or by the investigated structure, which can have extremely
narrow paths that would call for even smaller particles, which may not be traceable. For
the permeability measurements of the structures in this work we used particles that
were comparable in size to the height of the sample, that is, the relevant length scale of
the sample. In section 5.3 we will explain how the two methods that were employed to
measure the permeabilities work around the problem of finite-sized tracers and determine
the permeability independently of the size of the used tracers.

The principal steps for PTV are shown in figure 5.1. The first step is to acquire a
video of the colloidal suspension flowing through a structure, as shown in (a), where a
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5. Measurement of flow properties in porous structures

mixture of particle of diameter 1.2, 2.4, 3.4 and 5.2µm was used. Next, the coordinates
of individual particles are tracked (b) and their trajectories are reconstructed (c). In (b)
and (c) only a small fraction of the total coordinates and trajectories are shown. From
the trajectories the particle velocity field can be calculated by dividing the field of view
into small cells and averaging over the velocities of the particles that pass these cells.
A resulting velocity field is shown for particles with a diameter of 5.2µm in (d). In the
following we describe each step and the occurring problems.

Video microscopy

As probes for the fluid motion we used suspensions of deionized water and different
colloidal particles made of melamine or polystyrene with diameters between 1µm and
5.2µm. For the measurements in chapter 7 we used fluorescent polystyrene particles
with a diameter of 1µm. The suspensions are injected into the sample to be studied and
a pressure is applied. The flowing particles are recorded with the setup that has been
described in the last chapter. Particles appear as dark rings or dots depending on their
size, as shown in figure 5.1 (a). In the case of fluorescent particles the particles show as
bright dots on a black background. A few important remarks for the experimenter: The
used frame rate must be high enough so that even the particles that flow through the
fastest parts of the structure, normally corresponding to small bottlenecks, can still be
tracked accurately. On the other hand the frame rate should also be as low as possible
to avoid having a truckload of frames that do not contain useful information. When
the applied pressure is doubled, clearly, the frame rate must also be doubled, because
particles at the same position will on average travel twice as far during the same time.
Also make sure that the exposure time of the camera is set to a constant value (lower
than fps−1 of the scene with the highest frame rate) so that all measurements have the
same brightness and can later be tracked using the same tracking parameters.

Particle tracking

After a video of the flowing particles has been captured, the coordinates of every particle
have to be determined frame by frame. For the non-fluorescent particles, which appear
darker than the background, the background can be identified by choosing three frames
of the video and generating a new frame by picking only the brightest of the three
pixels at each point. Every frame of the video is now subtracted from this background
frame so that the particles show as bright rings or dots in a grayscale image. Next,
a brightness threshold is applied which gives a binary image for each frame in which
the particle rings or dots show up as white regions on a black background. To get
rid of the noise in the binary images, first an erosion operation is performed during
which all the small isolated white pixels are removed. After that the remaining white
parts are dilated to merge separated regions that belong to one particle. The dilation
operation can, unfortunately, also lead to the merging of areas which belong to different
particles. This can happen frequently, if the particle density is high and therefore the
mean particle distance is low. Logically, the experimenter must choose the right particle
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5.1. Particle tracking velocimetry

concentration to minimize this problem. The white regions are now classified according
to their area. Regions in a certain area range belong to particles of a certain size.
The centers of mass of the regions which fall into such a range are determined and are
used as particle coordinates. The whole particle tracking process was implemented in a
MATLAB program1.

In case of the fluorescent particles the background subtraction is not needed, as the
whole background apart from noise is dark and the particles appear as bright dots, which
can be tracked by application of a brightness threshold.

Coordinate tracing

The tracked coordinates are now combined to generate the individual particle trajectories
by a well-established tracing algorithm [118], which has been implemented in another
MATLAB program2. In the program several parameters can and have to be adjusted
for each tracked coordinate file to end up with accurate trajectories of the particles.
The most important parameters are the number of frames a fitting next coordinate for
a particle is searched, i.e., how long a particle is kept in memory, and the maximum
distance a particle can travel during this interval. Keeping “lost” particles in memory
is necessary since not every particle is tracked in every frame during particle tracking
due to noise. The restriction of the distance a particle can travel during this interval
must be conducted with caution. If the value is too small, trajectories of particles in fast
regions will be disconnected. So, this restriction sets the lower limit. On the other hand,
the value must not be too high, because this would lead to false connections between
trajectories that do not belong to the same particle. Choosing a value that is too high
will also make the tracing process very slow, as the program has to check more and
more potentially fitting coordinates. Just like for the particle tracking a relatively low
particle density will make the tracing process a lot easier, more reliable and will require
less computational effort, i.e., less main memory and time. Because, if the particle
density is too high, the tracing algorithm will not be able to decide which coordinate
belongs to which particle as they are so close that several choices fulfill the criteria that
the algorithm checks. The parameters must be optimized by trial and error. The arising
trajectories must be carefully checked each time to guarantee accurate results.

Calculation of particle velocity field

The calculation of the particle velocity field or just a mean particle velocity in a sample
seems to be more straightforward than it actually is. The problem is the weighting
of the velocities of different trajectories that pass the small cells, that the structure is
subdivided into, to calculate the velocity field. The first and simplest possibility is to
just go through each trajectory frame by frame and calculate the velocity during each
time step by subtracting the coordinate of that frame from the coordinate of the frame
before and dividing it by the time interval between the two frames. This can be done

1Kudos and thanks to Hans-Jürgen Kümmerer for writing and constantly improving the code.
2In this case Christian Scholz was responsible for the programming.

61



5. Measurement of flow properties in porous structures

mean flow

a b

Figure 5.2.: (a) Exemplary snapshots of two particles flowing through a cell in the field of
view. The slower particle (lower one) will give more data points than the fast one at constant
frame rate, because it stays in the field of view for a longer time. (b) Biased-sampling problem
illustrated by two lines of particles travelling with different velocities. The upper particle line
travels on a streamline where the flow is twice as fast as for the lower particle line. If the
particle density is homogeneous, twice as many fast particles are observed in the field of view
during the same time, which will lift the average particle velocity.

for all trajectories that pass a certain part of the structure. When all these velocities
have been calculated, their mean value can be used as mean velocity in that part.

There is principally nothing wrong about this method, but it suffers from a grave
disadvantage. The problem can be easily understood by looking at figure 5.2 (a). There,
consequent snapshots of particles travelling with different velocities are shown. Let us
assume that the upper particle travels with 2µm/s and the lower one with 1µm/s. So,
it seems clear that the average particle velocity should be 1.5µm/s. This, however, is
not the case, if the method described above is used. If the videos of the particles are
captured with the same frame rate, of course, the slower particle will show up in more
frames, in direct proportion to its velocity. Therefore, the velocity of the slower particle
will have a higher weight for the mean particle velocity. In the discussed case, the
velocity of the slower particle will be weighed twice as much as the velocity of the faster
one and, consequently, the mean value will work out to 1.3̄µm/s3. In this example,
the difference is not extreme but still important. A more extreme case would be one
particle travelling with 0.001µm/s and the other with 1µm/s. The mean value would
give 0.002µm/s, very close to the velocity of the slow particle, as it gives a thousand
times more data points, and also a huge difference to the intuitively expected value of
0.5005µm/s. This problem is quite a real one for the experiments conducted in this work,
because particle velocities can differ substantially as we will later see. Just one very slow
particle can totally dominate and, thus, distort the calculated mean particle velocity. In
an experiment it happens frequently that some particles are moving very slowly, because
they are, probably due to imperfections in their surface functionalization, just creeping
at the bottom of a microfluidic sample. Such particles would certainly result in a vast
underestimation of the mean particle velocity. Clearly, another more robust approach
to the mean particle velocity is needed.

3(1 · 2µm/s+ 2 · 1µm/s)/3 = 1.3̄µm/s
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400µm

Figure 5.3.: Microscope image of a typical PDMS structure that is used for permeability
measurements. The sample consist of an inner part which contains the actual porous structure
and two outer parts which are basically just flat empty channels, that are needed to measure
the mean fluid velocity through the sample.

The solution is very simple. Throughout this work the individual velocities of different
particles will be weighed by the length of their trajectories to determine the mean particle
velocity ū:

ū =

∑
i uiLi∑
i Li

, (5.1)

where ui is the velocity of a particle4 and Li the length of its trajectory. By length the
distance between starting coordinate and end coordinate is meant. Following this for-
mula for ū will avoid the trouble of overweighting slow particles and make the calculated
values more reliable.

5.2. Particle transport in porous structures

In this section the specific complications for the permeability measurements that are
caused by the finite size of the used tracer particles will be discussed. In the microfluidic
samples used in this work the influence of the size of the particles is substantial, since
in every case they are comparable in size to the relevant fluid field length scale, i.e.,
the diameter of the particles is never less than 10% of either the sample height or the
smallest pore throat of the sample.

A typical PDMS structure with a porous segment in the middle part surrounded by
two empty outer parts that are used to determine the mean particle velocity is shown in
figure 5.3. It will first be shown how the finite size of the particles affects their transport
in a simple empty channel and then consider their motion in a more complicated porous
structure.

5.2.1. Influence of particle size in an empty channel

Even in an empty channel where no obstacles hinder the fluid flow and where the particles
are just advected along straight lines, besides some small deviations due to Brownian
motion, the relation between particle velocity and fluid velocity is far from simple.

4It is the average velocity of the particle during the considered part of its trajectory, to be precise.

63



5. Measurement of flow properties in porous structures

Table 5.1.: Mean particle velocity ū and calculated ũ for different sized polystyrene particles
of diameter d and corresponding gravitational length λ within an empty channel of height
h = 6.5±0.3µm and length L = 8600±50µm. The theoretical value of the mean fluid velocity
for a channel of this hight at a pressure drop of ∆P = 479Pa is calculated to be 196±20µm/s.

d (µm) λ (µm) ū (µm/s) ũ (µm/s)

1.2 8.75 270.6± 1.4 240± 36
2.4 1.09 246.6± 3.3 224± 32
3.4 0.383 234.3± 4.6 194± 32
5.2 0.107 215.7± 3.6 176± 59

Assuming that the no-slip condition holds on the particle surface, it is clear that the
particle-fluid interplay must be very complicated, as the particle can be viewed as a
moving obstacle around which the fluid has to flow.

For the measurements of mean particle velocities an aqueous suspension5 of four dif-
ferent polystyrene particles of diameters d = 1.2, 2.4, 3.4, 5.2µm was injected into a
microfluidic sample that consisted of an empty channel of height h = 6.5 ± 0.3µm and
length L = 8600± 50µm. A pressure of ∆P = 479Pa was applied. A theoretical value
for the mean fluid velocity of 196±20µm/s can be calculated with Darcy’s law (3.8) and
the permeability of a flat channel k = h2/12. The mean particle velocities for different
particle diameters ū(d) were determined. The results are summarized in table 5.1. The
values for ū(d) differ significantly and show a monotonous decrease for increasing parti-
cle diameters. This already makes it clear that our particles are far from being perfect
tracers and that the average particle velocity ū is, in general, different from the mean
fluid velocity v̄.

It is the interplay of several effects that leads to this deviation: First, the particles
disturb the flow field and also interact hydrodynamically with the walls. The result is
that the velocity of the center of the particle at a certain height does not equal the
velocity of the fluid at that height. One can easily imagine a sphere in a cylindrical tube
that has about the same diameter as the tube. The sphere would move considerably
slower than the average fluid velocity, because of the proximity of its surface to the
surface of the tube. If the no-slip condition holds for both surfaces there must be strong
gradients in the space between both surfaces, i.e., high shear rates and, thus, a strong
drag against the movement of the particle. A particle that is not located in the middle of
a channel (see figure 5.4) will clearly also feel a torque and rotate as a consequence. The
flow field around the particle cannot be symmetric if the particle is not in the center
of the channel and, therefore, the velocity at the top of the particle is different from

5A suspension of 1µl of IDC 1-1200 with d = 1.2µm, 10µl of IDC 1-2400 with d = 2.4µm, 30µl of IDC
1-3500 with d = 3.4µm, 60µl of IDC 1-5000 with d = 5.2µm (all products of Life Technologies) and
400µl of deionized water was prepared. Note that one has to take larger volumes of larger particles,
because, if the content value is the same, their number density will decrease proportional to d−3.
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5.2. Particle transport in porous structures

the velocity at the bottom of the particle, which will cause a torque. The velocities of
different-sized particles at different positions in a flat channel have been calculated by a
boundary-integral algorithm [119] and have also been investigated experimentally [120].
It was found that the average particle velocity decreases monotonously with increasing
particle size, which is in agreement with our results. Second, for particles that have a
different mass density than the surrounding fluid the probability to find a particle at a
certain height is given by the barometric height distribution p(z) = exp(−mgz

kBT
), where

m is the volume of the particle multiplied by the difference of the mass density of the
particle (ρp = 1.05 g/cm3) and the fluid (ρf = 1.00 g/cm3), kB Boltzmann’s constant,
g the gravitational acceleration and T the absolute temperature [121]. A characteristic
gravitational length λ = kBT

mg
, which gives the mean height of the particles, can be

defined. Ceteris paribus, λ will be smaller for larger particles, implying that larger
particles will on average be closer to the bottom of a cell than smaller ones. This,
certainly, will have a big effect on the mean particle velocity obtained by using particles
of different sizes6. Third, the limited field of view in the experiment will lead to a biased
sampling of fast particles, because fast particles pass the field of view more frequently
than slow particles, which will shift ū to higher values. To understand this point one
can imagine (also see figure 5.2 (b)) having a homogeneous particle distribution in the
channel, that is, the spatial distance between particles at each height in the channel is
the same and, consequently, more particles in the fast parts of the flow profile will pass
by and contribute to the mean particle velocity, which will evidently lift its value. This
effect persists as long as the particles do not have enough time during their passage of
the field of view to diffuse across the whole velocity profile. So, basically the problem of
a small field of view is that the particles will stay on the same streamline so that each
particle passing through will have a different velocity. In a very large field of view all
particles (averaged over their trajectories) would have the same velocity, because they
could diffuse into slow and fast regions and sample the whole profile equally well.

Table 5.1 also shows calculated values for the mean particle velocity ũ. These values
were calculated by assuming the barometric height distribution for the particles and
using an interpolation of the numerical results given in [119]7. The obtained values for
ũ follow the same trend for increasing particle diameter and are close to the measured
values for ū. What catches the eye is that the calculated values are lower than the
measured one for every particle size. A logical explanation for this discrepancy is given
by the fact that the assumed particle distribution is definitely too simple to describe our
system. For instance, both the surface of the particles and the surface of the walls of
the cell are charged so that the particles are repelled from the walls which would push

6For very small particles the height distribution will always be homogeneous.
7The calculated values for the velocities ũ were obtained by using the numerical values from [119]

for the velocity ud(z) for particles of diameter d at height z. The barometric height distribution
p(z) = exp(−z/λ) was multiplied by the velocity ud(z) to obtain an effective particle distribution
peff (z) = ud(z)p(z) that takes biased sampling of faster particles into account as the inception rate
is proportional to the particle velocity. Combining these equations, the calculated mean particle

velocity is ũ(d) =
h−d/2∫
d/2

ud(z)peffd
(z)dz/

h−d/2∫
d/2

peffd
(z)dz.
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Figure 5.4.: Illustration of particles (red) of different sizes in a flat channel. If the particle
mass density is higher than the fluid’s, smaller particles will on average move farther away
from the bottom. Smaller particles will also average over a smaller volume of the flow field
and not affect the fluid’s flow field as much as a larger one.

them towards the center of the channel and, thus, away from the slowly flowing parts
near the channel walls.

5.2.2. Influence of particle size in a porous structure

All of the aforementioned complications, evidently, also arise in a complex porous struc-
ture, as there is still a variation in the fluid velocity from bottom to top of the cell. But
due to the random porous structure the velocity field will now also be nonhomogeneous
for particles that travel at the same height. The resulting motion of the particles be-
comes even more complex and the different particle sizes can lead to totally new effects
that vastly alter their transport characteristics. Some readily understandable differences
in the transport behavior of particles of small and large size can be seen in figure 5.5,
where a small part of the investigated structure (the one that is also shown in figure 5.1)
was magnified. (a) and (c) show trajectories of particles with a diameter of d = 1.2µm,
and (b) and (d) of particles with d = 5.2µm. The trajectories in the upper row, (a) and
(b), were captured at an applied pressure of ∆P = 479Pa, whereas for the lower ones,
(c) and (d), the pressure ∆P = 19Pa was significantly lower. At both pressures the
mean direction of flow was from right to left. The obvious difference, which is caused by
the simple restriction that the center of the particles cannot get closer to the obstacles
than their radius, is that smaller particles sample a larger region than the large ones8.
This volume exclusion can lead to a faster transport of large particles in a porous struc-
ture, because the large particles cannot come as close to the surface of the obstacles
as the small particles and will, therefore, stay on faster streamlines [122]. The phase
space for larger particles is smaller and is mainly restricted to areas of fast flow, i.e.,

8It is a little more complicated, because by sampling we mean that their center of mass, and not the
whole particle, samples a smaller region. The phase space accessible for a particle can be obtained
by eroding the pore space by a disc that has the radius of the particles.
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5.3. Permeability measurement

wide pores and throats, so that it is intuitively clear that they are transported faster on
average, even if the small particles might travel faster at the same spot than the large
ones. Although this effect has been observed experimentally, it can, obviously, not be
generally true and will depend, e.g., on the structure used as well as its height and the
particles’ gravitational length. In 3.3.1 we have already shown that steric repulsion can
also lead to crossing of streamlines and break the time-reversibility of particle trans-
port at low Reynolds numbers. This streamline crossing can also lead to “shadows”
behind an obstacle, i.e., a certain region that a large particle will not reach and which,
hence, will not be sampled in the velocity field. This shadowing becomes less and less
pronounced as the Péclet number is lowered and Brownian motion can counteract and
move particles into excluded regions. In (c) it is seen that the small particles diffuse
very strongly and can even enter a stagnant part and diffuse around until they escape
again and are advected by the fluid flow. This temporary trapping in stagnant areas
has a vast effect on the particles’ retention times, which will be discussed in chapter 7.
For the large particles (d) the difference in our example is not that pronounced, solely
the particle trajectories exhibit stronger fluctuations, since their diffusion coefficient is
significantly lower, not only due to their larger size but also because of hydrodynamic
interactions with the walls [105].

5.3. Permeability measurement

The last section made clear that it would be flawed to assume that the mean particle
velocities measured by PTV are just equal to the mean fluid velocity, since particles of
different sizes will average over different areas of the flow field and will also average in
different ways. Additionally, one also has to deal with the effect of Brownian motion,
which can be accounted for by averaging over many particles. The obvious problem for a
permeability measurement that has to be solved is the calibration of the particle velocity,
which will allow a measurement of the mean fluid velocity and, thus, the permeability
of a porous sample.

Although we have just seen that even in a very simple geometry, that is to say a flat
channel, with a parabolic velocity profile, the relation between mean particle velocity and
mean fluid velocity is non-trivial, our experiments with particles of different sizes have
revealed that there is a straightforward relationship between these two quantities. In
figure 5.6 the mean particle velocities ū for different particle sizes are plotted versus the
applied pressure ∆P for particles that are flowing in the empty segment of the channel
(circles) and inside the porous structure (squares). Fits to the data points (dashed lines)
clearly show that there is a linear relation between ū and ∆P , which was also shown
theoretically [123]. Interestingly, this proportionality also holds inside a porous medium,
but it has to be taken with more care, as this need not necessarily be the case for any
kind of structure. Volume exclusion might lead to a non-linear relation between ū and v̄.
Another point to keep in mind is that the average particle velocity does not necessarily
have to be higher inside a porous structure, although the fluid velocity due to continuity
requirements clearly has to, because, e.g., volume exclusion could also move particles
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Figure 5.5.: Particle trajectories in a porous medium consisting of randomly overlapping
circles for particles with d = 1.2µm (a,c) and d = 5.2µm (b,d) at a pressure drop of ∆P =
479Pa (upper row) and ∆P = 19Pa (lower row). Large particles are excluded from the surface
of the obstacles, as their center cannot come closer than their radius. The effect of diffusion
(c vs. d) is much stronger for small particles and allows them to sample stagnant parts, from
which the large particles are prevented by volume exclusion, more frequently.
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Figure 5.6.: Mean particle velocity ū vs. applied pressure ∆P in an empty part (circles) and
porous part (squares) for particles with diameter d = 1.2µm (blue), d = 2.4µm (white) and
d = 3.4µm (red). The dashed lines correspond to linear fits through the origin.

to slower streamlines. If we assume that Darcy’s law (3.8) holds in our system, i.e.,
v̄ ∝ ∆P , the proportionality between between ū and ∆P implies that:

ū = cd · v̄, (5.2)

where cd is a constant for a given particle diameter d. Certainly, cd will also depend
on the type of particles used, because their surface properties and their mass density
can differ and would, hence, give different values for cd. Here, we restrict ourselves to
one type of particle and avoid such discussions. The constant cd can be determined
by measuring ū in an empty reference channel, since at a certain pressure drop ∆P
the mean fluid velocity v̄ can be calculated analytically9. In our experiments ū was
always larger than v̄ for all used particle diameters, i.e., cd > 1. This, however, is not
generally valid. Just imagine a very high empty channel: all particles would, due to
their small gravitational length, travel close to the bottom and, hence, would have a
very low velocity. So, in every case the constant cd has to measured carefully to prevent
a misinterpretation of fluid velocities.

9Remember, the permeability of a flat channel is well approximated by k = h2/12. Putting this value
and the applied pressure ∆P into Darcy’s law (3.8) gives the mean fluid velocity v̄.
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5. Measurement of flow properties in porous structures

5.3.1. Constant-head method

Figure 5.7 (a) shows a schematic of the channel arrangement (see also figure 4.2 (c)) that
was used to simultaneously determine the constant cd with the help of the two empty
reference channels, and to measure the permeability of a porous structure. The two
empty channels have the same height10 as the channel that contains the porous structure
and serve as reference channels for the calibration of the velocity measurement. Such an
arrangement of channels allows to measure the mean particle velocity of the reference
channel and of the channel containing the porous structure at the same time and at the
same pressure drop.

Figure 5.7 (b) is a schematic of an equivalent circuit diagram of hydrodynamic re-
sistance, which allows a simple calculation of the permeability of the resistance of the
porous structure, which is related to its permeability by simple equations explained
below. The middle channel, which contains the porous structure, is a series of three
hydraulic resistances and the goal of our measurements is the determination of Rpor and
thereby the permeability kpor of the porous structure.

A hydraulic resistance can be defined as:

Rhyd =
∆P

Q
=
ηL

kA
, (5.3)

where Darcy’s law (3.8) has been used to derive the last equality. The definition here
is completely analogous to Ohm’s law for the electrical resistance Rel = U/I with U
the applied voltage and I the flowing current. In hydrodynamics the voltage is replaced
by the applied pressure ∆P , which is the potential difference between the two water
columns that are connected to the sample, just as the voltage is the difference between
the two electrical potentials, and the electrical current by the hydraulic current Q, i.e.,
the volumetric discharge.

Calculating with the hydraulic resistances is also analogous to their electrical coun-
terparts. For instance, the total resistance Rtot of the middle channel is a series circuit
of three resistances, namely the two empty segments with resistances Rin, Rout and the
resistance of the porous structure Rpor:

Rtot = Rin +Rpor +Rout (5.4)

This simple assumption requires that the empty segments and the porous structure are
well-connected, which is justified for structures with high porosities. At low porosities,
however, there might only be a few entrances and exits for the fluid into the porous
structure, which will also disturb the flow in the empty segments. The consequent
inaccuracies of the permeability measurement can be reduced by measuring at several
positions and averaging over the obtained velocities. The most accurate but impractical
method for the mean velocity measurement is by determining the whole velocity field

10This, certainly, is not an exact statement, but the heights of the channels will not differ by much,
since they are created during the same lithographic process. We have measured the height of each
channel and taken deviations into account.
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5.3. Permeability measurement

across a channel. In any case, due diligence is needed to avoid a false evaluation of the
data.

Now, all resistances in (5.4) are replaced by (5.3):

∆P

Qpor

=
ηLin
k0A

+
ηLpor
kporA

+
ηLout
k0A

, (5.5)

where the left-hand side shows the pressure drop ∆P across the whole channel that
contains the porous structure divided by the volumetric flow rate Qpor through that
channel. On the right-hand side the individual resistances are expressed in terms of the
lengths of the three segments and their permeabilities. Lin is the length of the inlet,
Lout the length of the outlet and Lpor the length of the porous part of the channel. The
corresponding permeability for the in- and outlet is k0, which is assumed to be the same
as for the two reference channels, and kpor is the wanted permeability of the porous
structure in the middle of the channel.

Next, (5.5) is multiplied by k0A/η followed by replacing k0 on the left-hand side with
(5.3) for a reference channel11:

kpor
k0

=
Lpor

Lref
Qref

Qpor
− (Lin + Lout)

. (5.6)

The permeability of the porous structure normalized by the permeability of the empty
channel kpor/k0 depends on the ratio of the flow rates of the reference channel Qref and
the channel with the porous structure Qpor. As elaborated before, we cannot measure
the flow rates directly, but have to use the known geometry of the reference channels to
determine cd, which is related to the flow rate:

Q = cdūA (5.7)

This can be used to replace Qref and Qpor in (5.6) by the respective mean particle
velocities ūref and ūpor:

kpor
k0

=
Lpor

Lref
ūref
ūpor
− (Lin + Lout)

(5.8)

This equation makes clear that the task of the experimenter consists in measuring
the mean particle velocities ūref in the reference channel and ūpor in the empty segment
of the channel containing the porous structure as well as the required lengths and the
height of the reference channels, which are needed to calculate k0 = h2/12.

In the deviation of (5.8) it was assumed that all three channels have the same length
and height. This is an oversimplification, as there are slight variations during the sample
preparation process, which can lead to varying lengths and heights of the individual
channels. So, in case of deviations the ratio of the mean particle velocities ūref/ūpor has

to be multiplied by
h2
porLref

h2
ref (Lin+Lpor+Lout)

.

11That is, k0 =
ηQrefLref

A∆P .
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Figure 5.7.: (a) Schematic of the channel geometry of the used microfluidic samples. The
middle channel contains the porous structure to be studied, the two empty channels serve as
references for the calibration of the velocity measurements. (b) Equivalent circuit diagram with
hydrodynamic resistances. The middle channel is split into three resistances. The objective of
the permeability measurement is the determination of Rpor.

The constant-head method yields accurate results, if the permeability kpor of the
porous structure is low compared to the permeability of the in- and outlets k0. For
porous structures with a permeability that is comparable to k0, the results are not as
reliable. This is similar to the measurement of an electrical resistance which has about
the same resistance as the leads that are used for the measurement. For example, in
some measurements ūpor can be faster than ūref due to inaccuracies. The result of such
an error would be a negative permeability for the porous structure, which does not make
any sense and, hence, structures with very high permeabilities should be avoided.

5.3.2. Falling-head method

In contrast to the constant-head method, where the fluid reservoirs were so large that
there is practically no change in the applied pressure during the time of a typical mea-
surement, the falling-head method uses smaller reservoirs and takes advantage of the
resulting decrease in the applied pressure, which is related to an excess volume in one
reservoir. When the fluid is flowing through the porous medium, the excess volume in
the reservoirs decreases until the two water levels are on equal height and the excess vol-
ume is zero. Thinking in analogies, this is comparable to a capacitor that is discharged
across a resistance. The decrease in applied pressure will be exponential (see footnote)
and since we already know that ū ∝ ∆P , the following differential equation must hold
for the mean particle velocity12:

12The flow is driven by an excess volume V = Ares∆h, which generates the pressure drop ∆P = ρg∆h
across the sample. These two equations give V = Ares∆P/(ρg). The time derivative of the excess
volume is related to the volumetric flow rate by dV/dt = 2Q. The factor of two stems from the fact
that if the water column on, say, the left sinks due to the flow through to the structure, the water
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5.3. Permeability measurement

d

dt
ū = −τ−1ū, (5.9)

where τ = ηLAres/(2Aρgk) is a characteristic decay time. The decay time can be
obtained by measuring the time development of the mean particle velocity. We cannot
measure the change of the particle velocity continuously, as we have to average over
many particle trajectories to get reliable values for ū. So, we have to measure ū at
several times to capture its decay and determine τ . Principally, two data points would
suffice, if the particle density in the sample was high enough, but taking more data
points is advisable to get accurate results and also check that there is nothing wrong
with the sample, e.g., leakage or clogging. The only restriction is that the measurements
must be short compared to the decay time, since otherwise the pressure would also
change significantly during the measurement. In addition, the cross-sectional area of
the sample A, i.e., its height multiplied by its width, and the cross-sectional area of the
water reservoirs Ares must also be measured to be able to determine the permeability.

An exemplary measurement of the decay of the mean particle velocity is shown in
figure 5.8. For this measurement a colloidal suspension13 of particles with diameters
d = 2µm and d = 3µm was injected into a sample that contained a structure of
randomly placed circles with porosity φ = 0.91. The sample was similar to the one
shown in figure 5.3. A high porosity was chosen to give a high permeability which would
result in relatively low decay times that can be measured more easily. The height of
the sample was 19 ± 0.3µm and the length 8150 ± 50µm. As we stated before (see
3.2.1), increasing the height will enhance the fluid flow tremendously and, thus, shorten
the decay time, which is proportional to h−3. The time between the first and the last
measurement was 3 h. Each data point in figure 5.8 corresponds to a measurement of
about 2min, which is a short time span relative to the decay time. This is important,
because it avoids that the pressure changes significantly during a measurement. The
individual measurements were performed at an interval of 15min. For both particle
species an exponential decay of ū with comparable decay times is observed. The white
symbols correspond to particles with d = 2µm and the red ones to d = 3µm. Fits of
exponential decays to the data points, shown as solid lines, give τ2µm = 4212± 68 s and
τ3µm = 4701±108 s. From the decay times a total permeability14 for the structure can be
calculated, which works out to ktot = 2.91·10−11m2 for τ2µm, and ktot = 2.60·10−11m2 for
τ3µm. So, the total permeability for each particle size gives accurate results. These total
permeabilities can also be used to calculate the permeability of the porous part of the
structure, which gives kpor = 2.07 ·10−11m2 for τ2µm, and kpor = 0.81 ·10−11m2 for τ3µm.

column rises on the right. Putting in the excess volume and using Darcy’s law to replace Q yields
d∆P/dt = −2Aρgk/(ηLAres)∆P ). Using ∆P ∝ ū results in (5.9)

130.25µl of CML latex particles with d = 2µm and 0.85µl of CML latex particles with d = 3µm from
Invitrogen were dispersed in 100µl deionized water.

14For the determination of the total permeability of the middle channel we first have to calculate the
permeability of the whole microfluidic sample which consists of three channels in parallel. The
two empty reference channels had lengths of 8020µm and 8428µm, and heights of 18.96µm and
19.11µm. The channel in the middle which contains the porous structure had a length of 8046µm
and a height of 18.89µm. The calculation goes along the lines shown for the constant-head method.
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Figure 5.8.: Time development of mean particle velocity ū for particles of diameter d = 2µm
(white) and d = 3µm (red). For both particle species an exponential decay of ū is observed.
From the corresponding fits the decay times τ2µm = 4212± 68 s and τ3µm = 4701± 108 s can
be determined, which allow a calculation of the permeability of the structure.

The large deviation of the two values does not indicate an inaccuracy of the method per
se, but is a consequence of the fact that the porous part is very small compared to the
total size of the whole sample.

The idea of this experiment was to show that one can obtain the same permeabilities
with particles of different sizes and no calibration of the relation between ū and v̄. Of
course, using only one particle species would be more practical to measure the perme-
ability, because this would allow for a higher particle density and, consequently, shorter
measurement times.

The falling-head method has some clear advantages over the constant-head method.
The first one is that the only needed assumption is the proportionality between applied
pressure ∆P and the mean particle velocity ū, which we have validated in many ex-
periments. This is the same assumption we use in the constant-head method, but the
big difference is that the reference channels for the calibration are not needed. So, the
additional requirement that the reference channel geometry and, therefore, the propor-
tionality between ∆P and ū is the same in both channels is not essential. It is also
not necessary to measure in the in- or outlet of the sample, because the proportionality
also holds inside the structure. In principle, this implies that any small field of view at
any position of the sample can be used. Only parts where Brownian motion and steric
repulsion of the particles play a major role should be avoided. The in- and outlet is not
needed to perform a permeability measurement which would allow to fill the whole chan-
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nel with a porous structure. Theoretically this method can be used for any sample, but
in practice a drawback of the falling-head method diminishes its applicability for perme-
ability measurements. For structures with low permeabilities, the characteristic decay
times become very large which in turn would increase the required measurement times
to impractical levels. One way to circumvent this problem would be to simply make
the structures larger and especially higher. The permeability of an empty flat channel
is k = h2/12, but in addition to the permeability the cross-sectional area A = wh is
also included in the expression for the characteristic decay time τ , which means that by
scaling the whole sample up by a factor of 2 the decay would decrease by a factor of 16.
In addition, one can also reduce Ares to reach arbitrarily low decay times.

In this work we will restrict ourselves to the constant-head method to measure per-
meabilities.
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6. Relation between permeability and
pore space structure

The upcoming chapter addresses the permeability measurements of ten porous struc-
tures (see figure 6.1) made of either randomly placed overlapping monodisperse circles
(ROMC) or randomly placed overlapping monodisperse ellipses (ROME). Furthermore,
the permeabilities of another ten structures where the two phases have been exchanged
(see figure 6.5), i.e., structures where the void phase consists of circles (EROMC) or
ellipses (EROME) were also measured1. The results for both types were compared to
permeabilities that were obtained by lattice Boltzmann simulations2.

The permeability is one of the most important and for many purposes, like the design
of a drainage ditch [73], the only relevant quantity. We have mentioned several times in
chapter 2 and 3 how complicated the prediction of the permeability of a porous structure
by simple means is, as its structure can be very complicated. It is, thus, crucial to know
which structural information is most important to predict the permeability.

The Katz-Thompson model, which was introduced in 3.2.2, is very successful in pre-
dicting the permeability of a porous structure. Its drawback is that it does not exclusively
use purely geometrical quantities, but also relies on the conductivity of a structure. We
tested the applicability of the Katz-Thompson model by performing simulations of the
electrical conductivities of the investigated porous structures that yield the formation
factor. The finding is that the Katz-Thompson law yields values that are comparable to
our measured permeabilities. It is the objective of this chapter to introduce a formula
for the permeability which only uses structural information of the sample. An additional
requirement will of course be that only quantities which can be readily determined are
used. Since the practical merit of a theory increases with decreasing number of input
parameters, we restrict ourselves to a few parameters.

First, the results of the permeability measurements of two series of ROMC and ROME
structures covering the full range of porosities, from the percolation threshold on, are
presented. A formula for the permeability is proposed, which only uses purely geometri-
cal parameters of the structure, i.e., only parameters that can be obtained by looking at
the structure. The parameters used are the Euler characteristic of the sample-spanning
fluid phase, the critical pore diameter and the number of grains that form the sample.
The main advantage of this formula is its independence of the percolation threshold,
which cannot be extracted from single samples.

1The measurements for the permeabilities of the ROMC and ROME structures were carried out by
Christian Scholz and by Daniel Hirneise in case of the EROMC and EROME structures.

2The simulations were performed by Jan Götz in the group of Ulrich Rüde.

77



6. Relation between permeability and pore space structure

The number of grains that form the structure of our samples is only known, since we
generate them artificially, that is, grain after grain is added until the desired porosity
is reached. This is a problem for naturally occurring or arbitrary porous structures,
where one does not know the precise number of grains, because they cannot be clearly
distinguished and the precise formation process is unknown. Therefore, an effective
number of grains is introduced, which can be determined from the perimeter, area and
Euler characteristic of the pore space.

When the number of grains is replaced by the effective number, we still find excel-
lent agreement with the measured permeabilities of the ROMC and ROME structures.
Naturally, the question arises, how universal and, therefore, useful such a simple expres-
sion can be. So, secondly, we performed permeability measurements on two series of
EROMC and EROME structures, which have a totally different morphology, to check if
the formula still yields useful predictions of the permeability. It turns out that predic-
tion and measured results far off the percolation threshold are still in fair agreement for
the EROME structures, but strongly disagree close to the threshold. For the EROMC
structures significant deviations exist over the whole range of porosities. We discuss
possible reasons for this discrepancy.

6.1. Permeabilities of Boolean models

In section 2.4 Boolean models were introduced. We said that they show resemblance to
naturally occurring porous media and, hence, are of interest to understand flow proper-
ties in such media. For our studies we generated ROMC or ROME structures of circles
with a radius r = 30µm and ellipses of aspect ratio of 8 with a major axis length
of a = 84µm. The size of the structures is 4000 px × 4000 px, which corresponds to
3.5 mm × 3.5 mm in the experimental realizations. The radius of the circles for the
ROMC structures was set to r = 34 px corresponding to 30µm and the major axis
length to a = 96 px for the ROME structures giving an aspect ratio3 of 8. The two
series that were used for our experiments are shown in figure 6.1. Starting at a value
of φ = 0.85 on the very left4, the porosities decrease from left to right until they are
close to the respective percolation threshold, below which there is no sample-spanning
cluster of void space and no fluid can flow through the structure. In figure 6.1 only
the open pore space, that is, the part that is accessible by the fluid is shown as white
area. Similar open porosities for the ROMC and ROME structures were chosen to make
the results comparable. As the porosity comes closer to the percolation threshold, the
individual grains start to overlap more frequently, until only a few pathways for the fluid
remain. This, of course, has a significant influence on the transport properties of these
structures.

Table 6.1 summarizes the geometrical and dynamical properties of the ROMC and

3The major and minor axes of the ellipses were chosen to result in an equal area for ellipses and circles,
so that the same number of ellipses covers, without overlapping, the same area as the circles.

4Higher values for the porosities were not studied, because the accuracy of the permeability measure-
ment decreases as the porosity goes up. This issue has been discussed in 5.3.1.
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Figure 6.1.: Boolean models generated from randomly placed overlapping monodisperse cir-
cles (ROMC) with radius r = 30µm (a-e) and ellipses with aspect ration of 8 and a major
axis length a = 84µm. On the very left the structures (a,f) have a porosity of about φ = 0.85.
From left to right the porosities decrease until the respective percolation threshold of about
φcc ≈ 0.32 for circles or φce ≈ 0.66 for ellipses with aspect ratio of 8 is reached.

ROME structures. The geometrical parameters (φ, φo, χ and χo) were determined with
the open-source software PAPAYA [124] which uses a marching squares algorithm to
minimize discretization errors. The critical pore diameters Dc were determined using
the Euclidean distance transform [125], which assigns the shortest distance to the next
obstacle to each point of the pore space. Next, starting from the largest value of this
Euclidean distance map, thresholds for the highest allowed values are lowered until
a continuous path through the structure forms. The threshold value for which the
first continuous path is obtained is the critical value Dc. The critical value Dc has
been calculated for the two-dimensional structure, but since our structures are three-
dimensional, the critical pore diameter is limited by the height of the sample, which is
set to 8 px. Therefore, if Dc > lc, the critical pore diameter is given by lc.

The experimental realizations of these structures were generated by soft lithography.
The length of the resulting sample was 10− 11 mm, the height 8− 10µm and the width
3.5 mm. The porous structures that were investigated were contained in the center of
these samples and had a size of 3.5 mm× 3.5 mm.

The permeabilities of the structures were determined by the constant-head method.
The applied pressure was in the range ∆P = 10− 50 Pa. As probe for the fluid flow, an
aqueous suspension of polystyrene particles with a diameter of 1.3µm was injected into
the samples. The permeability was calculated by measuring the mean particle velocity
in the channel containing the structures and in the empty reference channels. Possible
local variations in the mean particle velocity were accounted for by measuring at different
positions in the channels and averaging over the obtained velocities.

In addition to the experimental values, numerical values for the permeabilities were ob-
tained by the massively parallel lattice Boltzmann application network (WALBERLA).
The structures that were used in the experiment were modelled by a lattice of size
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Table 6.1.: Geometrical and dynamical quantifiers for ROMC and ROME structures shown
in figure 6.1. Dc and lc are given in units of lattice sites.

φ φo N χo Dc lc kexp/(cl
2
c) ksim/(cl

2
c) σ/σ0

ROMC
a 0.850 0.850 754 -520 100.018 8 0.641 0.6696 0.7031
b 0.701 0.700 1632 -724 51.306 8 0.385 0.3807 0.4405
c 0.551 0.549 2704 -635 21.984 8 0.137 0.1575 0.2107
d 0.418 0.401 3968 -395 11.506 8 0.047 0.0414 0.0764
e 0.365 0.298 4592 -220 2.421 2.421 0.0158 0.0273 0.0118
ROME
f 0.854 0.850 771 -352 67.429 8 0.3598 0.3333 0.3787
g 0.751 0.700 1387 -275 41.254 8 0.118 0.1193 0.1501
h 0.684 0.549 1840 -146 6.275 6.275 0.0385 0.0355 0.0392
i 0.639 0.400 2176 -80 6.245 6.245 0.02 0.0174 0.0133
j 0.651 0.266 2064 -45 5.957 5.957 0.00696 0.0112 0.00851

8× 4000× 4000. A pressure of ∆P = 50 Pa, which is comparable to the pressures used
in the experiment was assumed.

For a comparison of the obtained simulated and experimental values of different mea-
surements the correct normalization is important. Especially close to φc where lc can
become very small it is crucial to not compare the raw permeabilities directly, but to
first normalize them, that is, compare k/(cl2c) of different structures. As we also recall,
the Katz-Thompson law (3.10) stated that this value should be equal to the formation
factor, i.e., k/(cl2c) = σ/σ0.

In figure 6.2 (a) both the experimentally (blue, red large symbols) and numerical
values (small white symbols), which are in good agreement, for the ROMC (squares)
and ROME (triangles) structures are plotted versus the porosity. A lower porosity
means that there are more obstacles hampering the flow of the fluid and, hence, less
space for the fluid flow is available. One can also simply think in terms of boundaries:
More obstacles means more boundaries and since the velocity at the boundary (no-slip
condition) is zero, these will slow down the fluid flow. Thus, it is intuitively clear that the
permeability decreases with decreasing porosity for both types of structures and vanishes
around their respective percolation thresholds. Some of the ROME structures (i,j) have
porosities slightly below their percolation threshold. Remember that the percolation
threshold φc is only a sharp value in an infinite system. In a finite system, there can
be percolation at any porosity different from zero, although the probability decreases
substantially once the percolation threshold is crossed.

In figure 6.2 (b) the same permeabilities are plotted versus a rescaled porosity (φ −
φc)/(1 − φc). This rescaling is motivated by Archie’s law σ/σ0 = (φ − φc)

µ/(1 − φc),
which relates the porosity to the formation factor appearing in the Katz-Thompson law
(3.10). The exponent µ typically depends on the porosity and morphology of the pore
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6.2. Geometrical explanation of permeabilities

space. In 2D and close to the percolation threshold the exponent is expected to be
universal5, µ ≈ 1.3 [127]. The problem with Archies’s law is that it is only valid close
to the percolation threshold which makes it less applicable to natural porous media
that can also have high porosities. After rescaling the permeabilities of the ROMC and
ROME structures the data points approximately collapse on a single curve even far off
the percolation threshold φc, which shows that Archie’s law gives a good description
for these structures. The scattering close to the percolation threshold, however, also
shows some limitations of Archie’s law. The disadvantage, again, is that Archie’s law
depends on the percolation threshold, which can, if unambiguously possible at all6, only
be determined, if the diagenetic process of the material is known.

In order to check the applicability of the Katz-Thompson law for our structures we
performed numerical simulations for the conductivity with the help of COMSOL. The
program solves the Laplace equation to calculate the (electrical) current density in the
porous structures which then allows the calculation of the conductivity of the whole
structure σ. In figure 6.2 (c) the permeability is plotted versus the formation factor.
The dashed line indicates the Katz-Thompson law, i.e., it is a line through the origin
with slope one. The very good agreement makes clear that the permeabilities of our
structures can be well-approximated by the Katz-Thompson law over the full range
of porosities. Thus, by measuring the critical pore diameter and the conductivity of
a structure, its permeability can be predicted with very good precision in case of the
ROMC and ROME structures.

6.2. Geometrical explanation of permeabilities

It is the objective of this chapter to come up with a new expression for the permeability
that only depends on structural parameters of the pore space, which can be obtained from
a specific sample, and, most importantly, is independent of the percolation threshold φc
of the studied structures. We have mentioned in 2.4 that the structure of a pore space
can be quantified with the help of Minkowski functionals of the pore space, i.e., Euler
characteristic χ, surface S, and porosity φ or the area A. Here, we do not use the
normal Euler Characteristic χ of the void space but the open Euler characteristic of
the sample-spanning fluid phase χo, because inclusions of fluid inside the pore space
make no contribution to the fluid flow and, hence, to the permeability. It is known from
several stochastic processes [56, 128] that the Euler characteristic changes its sign close
to the percolation threshold. In case of the open Euler characteristic, the value for χo
converges to -1 as the percolation threshold is approached. Therefore we propose the
following expression for the permeability k:

5Some groups have also reported deviations [126].
6Let us not be too philosophical, but suffice it to say that the determination of the percolation threshold

of a specific realization of a model with fully known formation rules is still not unambiguous, because
certain assumptions have to be made.
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6. Relation between permeability and pore space structure
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Figure 6.2.: (a) Experimentally (closed symbols) and numerically (smaller open symbols)
determined permeabilities of ROMC (squares) and ROME (triangles) structures versus poros-
ity. (b) The same permeabilities versus rescaled porosity. Data points of ROMC and ROME
structures collapse approximately onto one curve. Finite-size effects lead to structures with
negative rescaled porosities, i.e., porosities below the percolation threshold.
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Figure 6.3.: (a) Experimentally determined permeabilities of ROMC (square) and ROME
(triangles) structures vs. formation factor. The dashed line, which indicates Katz-Thompson
law, is in good agreement with our data. (b) The same permeabilities vs. (1 − χo)/N . The
dashed line is a fit with α = 1.27 of (6.1), which agrees very well with the permeabilities of
the structures.
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6.2. Geometrical explanation of permeabilities

k

cl2c
=

(
1− χo
N

)α
(6.1)

In case of our flat-channel geometry, the constant will be c = 1/12, because the perme-
ability of an empty channel is k = h2/12. We already know 1 − χo from section 2.1.4
and we stated that this quantity, the genus, is a measure of the connectivity of the pore
space. Everything else being the same, the higher this number, the better connected
the pores are. Since this number is a function of the system size, i.e., it will be larger
for larger systems with more grains, we divide it by the total number of grains N7 that
compose the structure and end up with (1− χo)/N , which gives the average number of
connections that can be cut per grain. There is also another insightful way to interpret
this expression: 1 − χo gives the number of grain clusters in the sample and, thus, di-
viding this value by N corresponds to the number of clusters per grain. The number
of clusters per grain will decrease as the grain density gets larger and grains start to
overlap. So, it is a measure of the overlapping probability of the grains, which is related
to their shape. More compact objects like circles are less likely to overlap and block
the fluid flow. The choice of this expression can also be justified by looking at the two
limiting cases: In the low-density limit, that is, for φ → 1, (1 − χo) → N and finally
k = l2c/12, the result for the flat-channel geometry. For φ → φc, there will only be one
path through the structure left, which leads to (1−χo)/N → 1/N → 0, i.e., a vanishing
permeability. So, the two limiting cases are reproduced by equation (6.1).

Figure 6.3 (b) shows the permeability versus (1 − χ0)/N in a log-log plot. All data
collapse onto one curve (dashed line) with a slope of α = 1.27. This value for the
exponent is also very close to the critical exponent µ = 1.3 for Archie’s law. Based on
the motivation we gave before, this accordance of (6.1) with the measured permeabilities
indicates that it is the formation of grain clusters that results from overlapping grains
that determines the permeability of a porous material. This overlapping probability is
higher for elongated grains like ellipses. This can also be seen by looking at table 6.1,
which shows that χo at the same φo is always substantially lower for ROME structures,
i.e., there are fewer pathways for the fluid.

The effect of the overlapping probability and the consequent formation of extended
grain clusters can also be seen in the fluid velocity fields that were obtained by simula-
tions. Figure 7.2 shows velocity fields for low- (φo = 0.400) and high-porosity structures
(φo = 0.85) of the ROMC and ROME type. The high-porosity ROMC structure (a) has
a very homogeneous velocity field, as few grains overlap and can build large obstacles
for the flow, whereas the ROME structure (b) already exhibits a wide spread of veloc-
ities due to overlapping ellipses that form dead ends in which the fluid is practically
stagnant. The formation of such structures with dead ends leads to a lower fluid ve-
locity and, hence, a lower permeability. The same effect can also be seen at the lower
porosity. In (c) the pore space is still better connected relative to (d) and so there are
more pathways for the fluid and, consequently, the fluid can flow with more ease, i.e.,
the permeability is higher. In case of (d) all the fluid that flows through the structure

7At constant porosity, increasing the system size also increases N .
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6. Relation between permeability and pore space structure

a b c d

Figure 6.4.: Simulated fluid velocity fields for two ROMC (a,c) and two ROME (b,d) struc-
tures with equal open porosities φo = 0.400 (a,b) and φo = 0.85 (c,d). Clearly, the ROME
structures form larger clusters and leave fewer connections in the pore space, which leads to
more tortuous paths and larger stagnant areas in the medium, i.e., more resistance to flow.
The unit is µm/s. Note that the color bar is logarithmic.

has to take just one small throat that is indicated by the green arrow. It is clear that
this will give a large resistance to flow, because the pore space that contributes to fluid
flow shrinks significantly.

The agreement between the measured permeabilities of the ROMC and ROME struc-
tures with the prediction of (6.1) is very satisfying. However, one problem remains. We
stated at the beginning that it is the goal of this chapter to come up with an expression
that allows a prediction of the permeability from purely geometrical parameters of the
structure. One parameter in (6.1), namely N , can, unfortunately, not be determined by
looking at the structure without any knowledge of the formation process. We know the
value for N only because we generated the structure by a MATLAB program. Otherwise
there would not be an easy way to tell how many grains the structure is composed of.
Due to the overlap of individual grains at lower porosities it is generally not possible to
determine N for any structure.

We already said in chapter 2 that the transport properties of random structures are
similar, if their Minkowski functionals are comparable [55]. A structure with known
porosity φ (or area A of the pore space) surface S and Euler characteristic χ can be
reconstructed by a Boolean model with properly chosen grains, i.e., grains that have an
area A0, surface S0 that give the best agreement with the given structure.

So, any given structure can be reconstructed by such an appropriately chosen Boolean
model8. An attractive but bold idea is to use equations (2.5)-(2.7) as a way to define a
new effective number of grains N̂9:

N̂ =
S2

4πAφ
− χ

φ
(6.2)

8More details about Boolean models and Minkowski functionals can be found in the PhD thesis of
Christian Scholz [129].

9The derivation is undemanding. First, (2.5) is used to replace the exponential functions in (2.6) and

(2.7). Next, S0 in (2.7) is substituted with the help of (2.6), which finally gives N = χ
N − S2

4πL2φ2 .

Since L2 is the total area of the sample, L2φ = A and we have (6.3).
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6.2. Geometrical explanation of permeabilities

The advantage is that N̂ can be calculated unequivocally for any structure with fully
known geometry. The next logical step is to replace N by N̂ in (6.1) and end up with:

k

cl2c
=

(
1− χo
N̂

)α
(6.3)

With the effective grain number, the expression can now be used for any kind of
structure.

To judge the merit of (6.3) we calculated N̂ for the ROMC and ROME structures and
found it to be very close to the actual N10, which means that equation (6.3) is able to
predict their permeabilities just as well as equation (6.1) without full knowledge of the
formation process.

The agreement of (6.3) and our measurements is very promising. The next obvious
question one must ask is how universal this formula can be or if it is only valid for
structures that are formed by some kind of randomly placed grains. To this end one has
to use structures with a very different pore space morphology. We decided to use the
same type of structures as before, i.e., structures that were composed of randomly placed
overlapping monodisperse grains. The only difference this time is that the conducting
and obstacle phase are exchanged, which gives completely different morphologies.

6.2.1. Inverted Boolean models

The two series that were used for our experiments are shown in figure 6.5. The open
porosities are comparable to the values for the ROMC and ROME structures. The
inverted structures show resemblance to porous media made from fused metal beads,
wherein, e.g., heat conduction has been studied [130]. An immediately evident difference
is that the pore structure which was convex for the ROMC and ROME structures is now
concave. The obstacles in the inverted structures also do not have a minimum size like
in case of the ROMC and ROME structure where the minimum size is set by the size of
the individual grains.

The geometrical and dynamical properties of the EROMC and EROME structures
are summarized in Table 6.2. The N that is given in this case has a different meaning
than before, it is the number of holes (of elliptical or circular shape) that were punched
into the structure. Here the porosity increases with the number of holes. The N for
the inverted structures must not be compared with the N for the ROMC and ROME
structures. The values are only shown for the sake of completeness.

As a quick intermezzo let us make an important note on the permeability measurement
of structures with porosities close to the percolation threshold: The permeability mea-
surement at low porosities is not as simple as for higher porosities, because the formation
of only a few principal pathways for the fluid also influences the particle trajectories in
the in- and outlet part of the sample (see figure A.1 in the appendix). Yet, these tra-
jectories are used to calculate the mean flow velocity. Since all trajectories in the inlet
have to pass through one of the orifices into the structure, they cannot follow straight

10The values for N̂ can be found in table A.1 in the appendix.
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6. Relation between permeability and pore space structure

a b c d e

f g h i j

Figure 6.5.: EROMC and EROME structures generated from Boolean models of randomly
placed overlapping monodisperse circles (ROMC) with radius r = 30µm (a-e) and ellipses with
aspect ratio of 8 and a major axis length a = 84µm. In contrast to figure 6.1 the fluid phase
consists of the individual grains, which results in a very different morphology. On the very left
the structures (a,f) have a porosity of about φ = 0.85. From left to right the porosities decrease
until the respective percolation threshold of about φcce ≈ 0.68 for circles or φcee ≈ 0.34 for
ellipses with aspect ratio of 8 is reached.

Table 6.2.: Geometrical and dynamical quantifiers for EROMC and EROME structures shown
in figure 6.5. Dc and lc are given in units of lattice sites.

φ φo N χo Dc lc kexp/(cl
2
c) ksim/(cl

2
c) σ/σ0

EROMC
a 0.851 0.850 8726 -1842 47.97 8 0.304 0.425 0.478
b 0.742 0.700 6174 -1179 35.93 8 0.21 0.132 0.163
c 0.682 0.550 5273 -791 6.05 6.05 0.04 0.034 0.035
d 0.658 0.400 4835 -574 10.72 8 0.0228 0.021 0.026
e 0.668 0.278 5017 -378 5.85 5.85 0.016 0.019 0.0123
EROME
f 0.850 0.850 9095 -8657 27.66 8 0.7416 0.536 0.6388
g 0.701 0.700 5822 -6348 21.54 8 0.186 0.297 0.3779
h 0.551 0.549 3882 -3865 18.29 8 0.0964 0.131 0.1724
i 0.417 0.400 2602 -1793 12.91 8 0.044 0.049 0.0636
j 0.388 0.270 2405 -1406 13.73 8 0.0111 0.017 0.0227
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Figure 6.6.: (a) Experimentally (closed symbols) and numerically (smaller open symbols)
determined permeabilities of EROMC (squares) and EROME (triangles) structures versus
porosity. (b) The same permeabilities versus rescaled porosity. Data points of EROMC and
EROME structures deviate strongly from a universal curve. Finite-size effects again lead to
structures with porosities below the percolation threshold.

lines which means that the measured velocity will depend on the position in the inlet11.
These complications make the measurement of the permeability more complicated and
more prone to errors, as, in principle, the whole field of view must be measured. We
still used the standard approach for the permeability measurement. As a test for the
accuracy of this method we tried another method that was not described in chapter 5.
We directly measured the flow velocity at the small orifice of the EROMC structure with
φo = 0.278 by determining the local particle velocity field and calibrating it with the
help of the reference channel. By also measuring the area of the orifice and multiplying
it by the average fluid velocity across that area the permeability was obtained. With
the assumption that for a structure with very low porosity and a correspondingly low
permeability the whole pressure drops across the porous part of the sample, a value for
the permeability can again be calculated with the help of Darcy’s law. This calculated
value was in good agreement with the value previously determined with our standard
approach.

When the permeabilities of the EROMC and EROME structures are plotted versus the
porosity (figure 6.6 (a)), the same general trend as for the ROMC and ROME structures
is observed. The permeabilities decrease with decreasing porosity and vanish at the
percolation threshold. The percolation thresholds are now, of course, different. The
threshold for the EROMC structures is φcic = 1−φcc ≈ 0.68 and φcie = 1−φce ≈ 0.3412

11In case of a high-porosity structure these velocity values would be practically the same at any position
in the sample. Another problem for low-porosity structures is that equation (5.4) is only valid if the
individual resistances are well-connected, which is an unjustified assumption that certainly leads to
inaccuracies in our measurements which are hard to estimate.

12Since, e.g., the structures ROMC and EROMC are formed by the same algorithm, the EROMC
structure starts conducting just when the ROMC stops. Thus, φcic = 1−φcc. This is generally true
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Figure 6.7.: (a) Experimentally (closed symbols) and numerically (open symbols) determined
permeabilities of EROMC (square) and EROME (triangles) structures vs. formation factor.
The dashed line, which indicates Katz-Thompson law, is in good agreement with our data. (b)
The same permeabilities vs. (1−χo)/N . The dashed line is the fit of (6.1) with α = 1.27 that
was used for the ROMC and ROME structures. The agreement with the permeabilities of the
structures is bad. The green line corresponds to a fit to the data points yielding and exponent
αE = 2.05 that agrees much better with the data.

for the EROME structures. The same reasons (higher probability for overlapping) that
led to the formation of large clusters in case of the ROME structures, now leads to
an easier formation of conducting clusters where the fluid can flow. As a result, the
percolation threshold for the EROME is lower than for the EROMC structures.

Rescaling of the porosities (figure 6.6 (b)) again leads to a more universal behavior for
both structure types, but the data points show larger deviations from a single curve than
the ROMC and ROME structures. The agreement is again better far off the percolation
threshold and exhibits stronger scattering of the data points close to the percolation
threshold, which are mainly caused by finite-size effects.

Interestingly, the Katz-Thompson law is still able to predict the permeability with
astonishing accuracy, as can be seen in figure 6.7 (a). The measured permeabilities all
lie very close to the dashed line that represents the value calculated with the Katz-
Thompson law. On the other hand, this is expected, because the values for the conduc-
tivity are simulated and take into account all the complexities of the pore space13.

Figure 6.7 (b) shows the permeabilities versus (1 − χ0)/N̂ in a log-log plot. Unlike
the data for the ROMC and ROME structures, there is no clear collapse onto a master
curve and, therefore, a precise power-law behavior for the two structure types cannot
be identified. The dashed black line corresponds to the fit that was obtained for the
ROMC and ROME structures. For the EROME structures this fit still yields a somewhat

in 2D continuum percolation.
13At low porosities the simulations require finer and finer grids to give accurate results, i.e., the com-

putational effort also increases.
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a b

Figure 6.8.: Magnified views of small sections of EROMC (a) and EROME (b) structures
with φ = 0.85. As a result of the punching out of circles or ellipses both structures show small
isolated obstacles (exemplarily indicated by arrows) that will affect the calculated value for N̂ .
Such small obstacles do not occur in ROMC and ROME structures.

acceptable agreement with the measured data over a large range of permeabilities14, but
fails totally close to the percolation threshold. In case of the EROMC structure, however,
there is practically no predictive power left in the fit over the whole range of porosities.
Thus, equation (6.3) with a fixed exponent does not seem to be of universal value for any
kind of structure and, clearly, further parameters of the pore space morphology must be
considered. This is not too surprising, since the morphology of the inverted structures
is completely different. The green dashed line corresponds to a fit to the EROMC and
EROME data points which yielded an exponent of αE = 2.05, but even this curve
does not reproduce the measurements in a convincing manner. This indicates that the
motivation which gave rise to (6.3) might no longer be valid, that is, the calculation of
N̂ from the Minkowski functionals does not give a sound result.

A possible explanation for the stronger deviation as well as for the scattering of the
data points and the discrepancy of simulated and measured values is the occurrence of
small isolated obstacles in the EROMC and EROME structures (see figure 6.8) which are
nonexistent in ROMC and ROME structures. These small obstacles can certainly have
a substantial effect on the value of N̂ without significantly affecting the permeability of
the structure. Often it is also hard to tell, if these small obstacles are present in the
experimental realizations of the porous samples as they can be very small and might
also not be fully formed.

In order to give a quantitative analysis of the structural differences of the four structure
types, we determined the distributions of obstacle sizes for structures with φo ≈ 0.85 and
φo ≈ 0.28, which are shown in figure 6.9. For both porosities the distributions for the
ROMC (black bars) and ROME structures (red bars) both have their maxima around
the size of the grains, which is πr2 = 3632px2 corresponding to log(3632) ≈ 3.56 in the

14A better agreement could certainly be achieved by using another exponent, but the point here is to
show that the behavior that was observed for the ROMC and ROME structures is not universal.
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Figure 6.9.: Distribution of logarithmized obstacle sizes for the four different structure types
for φo ≈ 0.85 (a) and φo ≈ 0.28 (b). The inverted structures (EROMC, EROME) show a huge
number of very small obstacles due to the different formation algorithm, whereas the minimum
size for the normal structures is set by the grain size.

distributions. The very few smaller obstacles simply stem from grains lying at the edge
of the structure that are cut off. At the low porosity (b) the distributions extend to
larger values, for larger clusters are formed by overlapping grains.

For the EROMC (green bars) and EROME structures (blue bars) the distributions
look very distinct. For both types there are a very large number of tiny obstacles that
only cover an area of a few px2. This very large number of small obstacles might not have
a big influence on the flow properties of the structure, but it will surely be accounted
for in equation (6.3) which is a possible explanation why our formula does not work so
well for EROMC and EROME structures.

We can also rationalize the lacking agreement in another way: In section 6.2 we
motivated equation (6.1), or more precisely, the term

(
1−χo

N

)
by interpreting it as an

overlapping probability of the individual grains and this could be easily understood for
ROMC and ROME structures, where one just adds grain after grain15 until the desired
porosity is reached. When we tried to generalize equation (6.1) by the introduction of
N̂ , which was obtained with the help of the Minkowski functionals, namely the area,
surface and Euler characteristic of the pore space, we still had an excellent agreement
with the measured data, i.e., N̂ obtained from the Minkowski functionals was compa-
rable with N . Yet, for the inverted structures the generalized equation did not produce
satisfactory results. Thinking again about the motivation for equation (6.1), we see some
complications arising with the inverted structures, as now the obstacles are formed by
what is left over after punching out the circles or ellipses. Therefore, the question to be
answered is: What is the probability for the left-overs to overlap? This question seems
odd, because we cannot count something like the individual grains we had before. Even
with full knowledge of the formation process we cannot come up with a number, which

15This also means that the number of obstacles one has put into the structure can be counted easily.
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could also mean that the simple usage of the Minkowski functionals of the pore space is
not the way to go. Maybe the solution to the problem with the inverted structure is to
find a suitably chosen Boolean model that best replicates the generated structures and
then relate their Minkowski functionals to the permeability.
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7. Hydrodynamic dispersion in porous
media

In the last chapter we studied the relation between the structure of a porous medium and
its permeability, which is an integrated quantity that characterizes a porous medium,
i.e., it gives just one number for a specific porous medium that incorporates all the
complexities of the fluid transport in the respective porous medium. The tracer particles
simply served as probes to determine the mean fluid velocity. The following chapter
now investigates the actual motion of particles through the structure on an individual
trajectory level.

During the particles’ journey through the porous medium they are affected by the
spatially varying velocity field generated by the boundaries of the pore structure and
the always present Brownian motion. These two effects give rise to a spreading apart
of particles that were initially localized in a certain region. The phenomenon is called
hydrodynamic dispersion and has already been described in section 3.3. The main goal
of the studies described in this chapter is to find the first-passage time distribution of
a large number of particles in structures with varying porosities and relate them to the
geometry of the porous structure.

We start by showing that it is very hard to capture trajectories of particles of sufficient
length in a low-porosity structure by purely experimental means. The reason for this
is that some particles enter stagnant parts by diffusion, where they can be trapped
for experimentally inaccessible times (up to several days) until they escape again and
continue to flow through the structure. These events are, however, crucial as they contain
the information about the stagnant areas. As we have shown in chapter 5, it is possible
to experimentally determine a particle velocity field of a porous structure with the help
of tracer particles, which in turn allows us to solve the problem of the experimental
determination of long trajectories by employing the experimentally measured particle
velocity fields in an overdamped Langevin simulation to obtain a large number of particle
trajectories, from which reliable and meaningful first-passage time distributions can be
calculated. Employing this approach, we first study the movement of passive particles
through three structures with porosities ranging from close to 1 down to very close to
the percolation threshold, where large stagnant parts exist. The general finding is that
for low-porosity structures which have stagnant areas the longest first-passage times can
be related to the geometry of such areas, that is, their perimeter, area and the size of
the transition zone to the flowing part (opening of the stagnant part). In addition, the
motion of active particles was studied by slightly modifying the simulation algorithm
to account for the motility of the particles. These active particles show a very distinct
behavior, i.e., the maximum retention times are substantially lower, because they can
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a 1000µm b

c d

Figure 7.1.: (Color online) (a) Microscope image of a transparent porous structure made
from PDMS which is filled with dyed (blue) water. Afterwards, pure water is injected from the
left with a flow velocity of about 6µm/s and displaces the dyed water. Snapshots are shown
after (b) 5 min, (c) 10 min and (d) 33 min. Even after more than one hour, dyed water remains
trapped in the stagnant regions of the structure.

escape faster out of stagnant regions, but on the other hand they do not necessarily
follow the main, that is, fast streamlines through the structures as passive particles do,
which increases the shortest transit times. We will explain every point in detail in the
following.

7.1. Experimental challenges

The general experimental result, which also reveals the experimental challenges that
one is facing, can be illustrated by a simple experiment which is shown in figure 7.1.
A ROMC sample with an open porosity φo = 0.400 was employed. First, dyed water1

is injected from the right side into the initially empty sample until the whole porous
structure is saturated, as can be seen in (a)2. Then, pure water is injected from the
opposite side of the sample, whereby the dyed water is quickly displaced out of the

1A mixture of deionized water and Methylene Blue by Alfa Aesar was used.
2The original image, which was monochrome, has been colorized after improving the contrast to give

the blue appearance in the pictures.
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flowing parts of the structure, (b) and (c). Yet, even after a long time (33 min) some
dyed water is still trapped in the stagnant parts of the structure from where it can only
escape very slowly by diffusion (d).

This diffusion process is independent of the flow rate and leads to a measurable time
separation of the two processes involved, namely the displacement by advection and the
diffusion out of stagnant parts. This simple qualitative experiment already illustrates
that the time scales for FPTDs in porous media with stagnant parts can be very long
and, hence, experimentally hardly accessible. The diffusion coefficient of tracer particles
are, or course, much smaller than of the dye molecules, which means that the time it
takes a dye molecule to escape from a stagnant part is significantly smaller than for a
small tracer particle. This makes it obvious that it is very impractical to determine the
FPTDs by a straightforward experiment; the required time for a measurement would be
too long, because the samples are only stable for a few hours, and it would also be hard
to never lose a particle during a necessarily long tracing process for the evaluation of
its trajectory and, thus, its transit time. However, if we want to gain full information
about the transport of particles inside a porous structure, the particles, that enter a
stagnant part, which in itself is a rare event, must be accounted for, because their
transit times contain the information about the stagnant areas of the structure. An
additional problem which renders the purely experimental approach infeasible is that
our samples are only stable for a few hours, because the PDMS swells slightly, particles
start to stick and bacteria and dirt inevitably enter the sample. Thus, measuring several
FPTDs (representing a large enough number of trajectories) with the same sample at
different flow rates is not possible. Consequently, we have to follow another route.

7.2. Simulation of particle trajectories

We have just seen that an all-experimental approach is not feasible to get the information
we want. We solve the problem of measuring a sufficient number of long particle trajec-
tories to come up with meaningful FPTDs, that is, FPTDs that include particles which
enter stagnant areas from which they escape again and are advected to the end of the
structure by performing a simulation of particle trajectories with a semi-experimental
approach.

The first step, which is performed experimentally, consists of measuring the particle
velocity fields of different porous structures with open porosities φo = 0.232; 0.582; 0.900,
which again are of the ROMC type. To this end, we inject a diluted suspension of
fluorescent polystyrene particles3 with a diameter of 1µm into the samples and apply
a pressure drop of ∆P = 2 − 40 Pa. The particle velocity fields were calculated with
the procedure outlined in 5.1. The resulting particle velocity fields can then be used
as input for an overdamped Langevin simulation. Such a simulation allows us to avoid
the problems that the previously shown experiment made obvious, i.e., the trapping
of particles inside stagnant regions for experimentally inaccessibly long durations. The
particle motion during a time interval ∆t is calculated by a simple algorithm:

3FluoSpheres yellow-green by Invitrogen.
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Figure 7.2.: Experimentally measured velocity fields of three porous structures with varying
porosities. High velocities correspond to bright colors. Stagnant parts appear as dark brown
areas. The shown scale is logarithmic and given in units of µm/s. The high-porosity structure
φ0 = 0.900 (a) has a very homogeneous flow field. At lower porosities φo = 0.582 (b) stronger
velocity heterogeneities and stagnant parts occur, until at the lowest porosity φo = 0.232 (c)
only a few principal pathways, surrounded by large stagnant areas, are available.

r(t+ ∆t) = r(t) + cu(r)∆t+ ξ(∆t). (7.1)

Here, u(r) is the experimentally determined particle velocity field which represents the
deterministic part due to advection by the fluid and ξ stands for a random displacement
due to diffusion which is governed by a Gaussian distribution with zero mean and a width
of (4D0∆t)1/2 with D0 = 4.3 × 10−13 m2/s and ∆t = 40 ms. The constant c is used to
adjust the flow rate through the structure. Since the flow is in the low-Reynolds number
regime (doubling the pressure also means doubling the flow rate) we can use the particle
velocity fields that have been determined for one pressure to easily calculate the velocity
fields at a different pressure and thereby change the Péclet number. The time interval
∆t was chosen to make sure that the largest particle displacements at the largest Péclet
number, i.e., particles in the fastest flowing regions of the structure, do not exceed two
particle diameters during one time step. This is a compromise between fast simulation
and accurate results, which is providing realistic trajectories for our structures.

The mobility, i.e., the response to a force, of the particles will not be the same at any
position in the sample. Closer to the boundaries and especially in narrow constrictions
the mobility will be smaller. Since the velocity field of the particles is obtained from
experimental data, hydrodynamic interactions between the particles and the structure
are included when the trajectories are simulated according to equation (7.1). It should
also be mentioned, that due to the quasi-two-dimensional sample, hydrodynamic inter-
actions are rather dominated by the upper and lower walls than constrictions in the
porous matrix, so that variations in the mobility should be small4. Thus, we assume a
constant mobility throughout the sample.

4Another possible question might address the robustness of our method. We evaluated the effect
of initial noise on the velocity field, we added Gaussian-distributed noise with zero mean and a
standard deviation corresponding to 25% of the average particle velocity to the velocity field. When
comparing the resulting FPTD with noise-free data, no significant deviations were found.
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Some exemplary particle trajectories of the structure with φo = 0.232 are shown in
figure 7.3. In (a) the whole structure with experimentally determined trajectories is
shown, whereas (b) shows simulated trajectories. It can be seen that there are many
trajectories of diffusing particles in stagnant parts which could not escape during the
measurement. The simulated trajectories, however, all start at the left end of the struc-
ture and reach the other side, regardless of whether they were trapped for long times in
stagnant parts. (c) shows trajectories that were obtained by an experiment that lasted
30 minutes. The trajectories already demonstrate the wide range of velocities in such
a structure. Particles move along the main transport paths in a rather straight way,
because the velocities along these paths are high and, therefore, diffusion has a small
effect. In stagnant areas (see dashed blue and red circle) particles show a clear random
walk behavior, that is, the flow velocity therein is negligible. The experimental trajec-
tories again illustrate the problem with the stagnant parts: They are only sampled by
too few particles and some of them will not be able to escape during the measurement.
An example of a particle that did not escape can be seen inside the black dashed cir-
cle. If such trajectories are used to compute a FPTD, these crucial trapping events are
underestimated. Simulated trajectories shown in (d)5 can easily avoid this problem. In
the shown case the simulations cover a time interval of 20 h and, thus, include a large
number of particles that enter stagnant parts and have enough time to escape again.
The simulated trajectories, therefore, can explore stagnant regions and provide realistic
information about the structure of the sample. It should also be mentioned that the
shown example is not extreme by any means. Some of the simulated trajectories for the
FPTDs that will be shown have a length of about 107 s or about 116 days. Such time
scales are not accessible in our experiments and will, of course, be hard to obtain in any
kind of experiment. Depending on the structure, these time scales can also easily be
orders of magnitude higher.

The measured velocity fields of the used structures are shown in figure 7.2. The
porosity decreases from left to right and, as can be seen, this has a strong effect on
the heterogeneity of the velocity field. At a high porosity (a) the velocity field is very
homogeneous, which means that all particles are moving through such a structure at a
more or less constant velocity. For this kind of structure, one would also expect that the
transport can be described by the standard advection-diffusion equation (ADE), because
there are no large variations in the velocity field and the given structure is larger than
its correlation volume, so that no finite-size effects are expected. When the porosity
decreases (b) the velocity field becomes more and more heterogeneous and stagnant
parts, which are shown in dark brown, start to occur. At porosities very close to the
percolation threshold (c) only a few principal pathways for the fluid flow remain which
practically carry all of the flow. These pathways are surrounded by large stagnant
areas. Due to the velocity heterogeneities and the stagnant parts6 the transport in

5Only a very small fraction of all the simulated trajectories are shown. In typical simulations more
than 10000 trajectories were simulated.

6As we mentioned before, the distinction between velocity heterogeneities and stagnant parts is some-
what arbitrary. We could also just use the term “strong velocity heterogeneities” to imply the
presence of stagnant parts, which are merely areas where the flow velocity is so slow, that diffusion
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a b

c d

Figure 7.3.: Comparison of experimental (a), (c), and simulated trajectories (b), (d) of the
ROMC structure with φ = 0.232. (a) and (b) show the whole structure. The experimental
trajectories (a) show particles that are advected along the main paths (compare to figure 7.2
(c)) and also diffusing particles that already were in stagnant parts at the beginning of the
experiment and could not escape during the observation time. In the simulated trajectories
(b) all particles start at the left and reach the other end of the structure, even if they spend
a very long time in stagnant parts. (c) and (d) show a magnified part of the structure. (c)
Experimental trajectories captured during 30 min. Mean flow direction is from left to right.
The particles inside the dashed circles start in stagnant areas. Only the one in the red circle
is escaping during the measurement time. (d) Particle trajectories obtained by a simulation
with duration of 20 h. Particles can explore more stagnant areas and all particles that enter
them will also be allowed to escape during the simulation.
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structures with low porosities, like the ones shown in (b) and (c), is not expected to be
well-described by an ADE.

7.3. Dispersion of passive particles

As promised in section 3.3 we will now address the influence of a nonhomogeneous flow
field and the presence of stagnant parts on the FPTDs of passive particles. We mentioned
in section 3.3 that the standard description of hydrodynamic dispersion is provided by
the advection-diffusion equation (ADE), but that the transport that is often observed
is anomalous, i.e., cannot be described by the ADE. The reason for this is the complex
geometry of porous media which can give rise to a mixture of principal pathways, along
which particles are transported by advection, and stagnant parts, wherein particles can
only move slowly by diffusion. As a result one has two different time scales: τA = L/U
for advective transport, where L is the length of the porous medium and U a typical
particle velocity. The other time scale is τD = L2

eff/D0 for diffusive transport, where Leff

is an effective characteristic length of the stagnant parts and D0 the diffusion coefficient
of the particles. τA clearly depends on the flow rate, whereas τD is dictated by the
morphology of the porous medium. In the past the length scale Leff has often been
used without exactly specifying how it is related to the geometry of the stagnant parts
[49, 103, 131, 132]7, which is probably owed to the fact that the precise microscopic
structure of the studied samples was not known.

The fundamental difference or better the advantage of our method is that we see the
flowing particles inside the porous structure and can identify the stagnant regions by
determining the velocity field. In previous studies the porous media remained black boxes
and the interpretation of resulting FPTDs were more speculative8. The “characteristic”
length Leff, as anyone can tell by intuition, can obviously not just be some mean value
of the extent of a stagnant part. Imagine a stagnant part with a circular shape that is
connected to the flowing part of the structure by a small hole in its rim. The average
time a particle spends in such a stagnant confinement would evidently depend on the
size of its hole. So, if the time scale τD = L2

eff/D0, which is only a function of Leff,
shall decrease, Leff must be lower for the stagnant confinement with the bigger hole.
Yet, this immediately reveals that one length scale is not enough to give an estimate for
the mean sojourn time in a stagnant part. In section 7.4 we will resort to an equation
from statistical physics that relates the perimeter, area, and size of the hole to the mean
sojourn time of a stagnant part and, therefore, gives more insight into the transport

is dominating the transport.
7The effects of stagnant zones, i.e., “relaxation times independent of the flow rate” [49], were already

well understood. We use the term time scale separation to describe the same phenomenon. It was
also known that the role of stagnant parts increases strongly at low porosities. We do not want to
claim that we figured out these phenomena, since research in this area has been going on for many
decades.

8This is not meant to be discrediting any of the very decent works by other groups. Our approach also
has its drawbacks, for example that the simulation certainly does not use a perfect velocity field,
because of unavoidable imperfections in our measurement technique.
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process through a porous structure.

The algorithm, which was explained in section 7.2, was used to simulate the motion
for a large number (more than 10000 for each Pe) of particle trajectories. The starting
positions are distributed uniformly at the left side of the structure. For each structure
the Pe varied between 8 and 128. The resulting FPTDs for the three ROMC structures
with φo = 0.900, φo = 0.582 and φo = 0.232 are shown in figure 7.4. The Péclet numbers
were calculated according to Pe = LU/D, where L is the length of the structure, and
U the mean velocity of a typical particle9 that is advected through the pore space. In
the left column the resulting FPTDs for each structure are shown for different Pe in
a lin-lin plot. For each consecutive FPTD Pe was varied by a factor of two by also
changing the constant c in the simulations by the same factor. For the figures in the
right column the transit time of each simulated trajectory was logarithmized and the
resulting distribution plotted with a logarithmic ordinate to make the long-time tails
visible. The corresponding fits to the ADE are shown as open symbols.

The results in figure 7.4 (a) for φo = 0.900 are typical for a high-porosity structure
where the velocity field is rather homogeneous and practically no stagnant parts exist.
The particles are simply advected through the porous medium and do not undergo more
complicated processes such as traveling along tortuous flow lines with widely varying
velocities and entering stagnant areas. As the good agreement with the fits to equation
(3.15) makes clear, these distributions can be explained by the ADE. Figure 7.4 (b)
makes it even clearer since the only major change in the FPTD at lower Pe is a shift of
the whole distribution to the right, i.e., the shape of the distribution does not depend
on Pe. This is in stark contrast to the more interesting distributions of the two other
structures with lower porosities. Figures 7.4 (c), (d) and (e), (f) already show long-
tailed distributions, which cannot be well described by the fits. Even in the lin-lin
plot and especially at high Pe significant deviations between our results and the fits
exist. In particular, the tail is considerably underestimated. The disagreement is even
more obvious in the logarithmic representation where the fits and the data are orders of
magnitude apart. Clearly, the ADE principally fails to give an accurate description. It
cannot account for the short-time as well as the long-time behavior of the FPTDs and,
furthermore, fails to reproduce the shape of our results. This is no surprise since the
ADE does not include any permeability heterogeneities and the effect of stagnant areas.
Therefore, when the result of the ADE is fitted to such data, the dispersion coefficient
will be wrongly overestimated [100].

The part of the tail, which can be seen in the lin-lin plot is mainly due to permeability
heterogeneities, that is, different velocities along different paths through the porous
structure. At this point it should be emphasized the mere existence of a long-time tail
and the fact that the FPTD cannot be reproduced by the ADE does not automatically
imply that there are stagnant parts. A primitive example without stagnant parts would
be a medium consisting of parallel pipes with widely varying diameters and, thus, widely
varying flow velocities which could easily give rise to a broad distribution of first-passage

9This mean value U was determined by dividing the length of the structure L by the time of the
maximum in the FPTD, which is the typical advection time τA.
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times. Such permeability heterogeneities, as was pointed out in the past and has been
discussed and shown in section 3.3.6, can lead to broad and long-tailed distributions. But
mind that the key difference is that such tails would depend on the flow rate and could
therefore be identified by conducting measurements at different Pe. This is, of course,
what was achieved by varying the Pe in the simulations. As Pe is lowered, the part
of the FPTD which is mainly determined by advective transport is shifted to the right,
whereas the events whose transit times are dominated by diffusion in stagnant parts
are not strongly affected. Consequently, the long-time tails of the FPTDs at different
Pe become very similar at long times (above about 105 s and 106 s in 7.4 (d) and (f),
respectively), implying that the tail is only weakly flow dependent. This rather flow
independent part, which might appear only at very long and hardly attainable transit
times, incorporates the information about the stagnant parts. This also demonstrates
that it makes sense to think in term of time scale separation between advective and
diffusive processes.

7.4. Geometrical interpretation of long-time tails

The transport of particles through porous media, especially when the porosity is low and
the structure is disordered, is a highly complicated process. A particle can be advected at
varying velocities through the inhomogeneous flow field, then get trapped in a stagnant
part, where it can diffuse around for a long time, until it escapes out of the stagnant
region and is advected again. These steps can be repeated several times. Accordingly,
no simple relation is to be expected between the FPTD and structural parameters of
the structure.

7.4.1. Mean residence time in stagnant parts

The problem of the diffusive motion and the mean time it takes a particle to escape
from a confined domain is, fortunately, a very general issue that is of interest in many
disciplines. One example are biological processes, where a molecule is diffusing in a
restricted area until it, after a certain escape time, reaches a specific target site and
triggers a reaction [133]. Theoreticians have studied this mean-escape time problem in
detail [134, 135]. The mean escape time of a particle confined in a domain with a small
exit pore, in general, depends on the starting position of the particle inside the domain.
In [135] it was shown that the mean escape time is proportional to ln(r/a), where r is
the distance between the starting position and the exit pore of size a. Thus, the escape
time does depend only weakly on the starting position. In case of exit pores that are
small compared to the total boundary of the domain, the mean escape time does not
depend on the starting position except for a small boundary layer near the exit pore
[136]. A particle that does not diffuse across this boundary layer will escape relatively
quickly and will therefore only have a very small effect on the FPTD. For particles that
make it across the boundary layer the mean escape time becomes a well-defined quantity
that is given by:
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Figure 7.4.: Measured FPTDs for different Pe for three different structures (solid lines).
The insets show the same data with a logarithmic time scale. (a) corresponds to φo = 0.900,
(b) to φo = 0.582 and (c) to φo = 0.232. The open symbols correspond to fits to the ADE.
The highest Pe (black line) was 128 and each consecutive Pe decreases by a factor of two.
The FPTDs of the low-porosity structure is in agreement with the ADE and shows no flow-
independent long time tails, whereas the FPTDs for the two other structures show long-time
tails that collapse for different Pe.
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Figure 7.5.: A stagnant part with a small opening inside a porous medium. The cyan part
correspond to areas where there is a considerable flow velocity. The stagnant part can be
characterized by three quantities, namely its area A (hatched), its perimeter P (red) and the
size of the small pore (green) that connects stagnant and flowing part d. A particle that is
advected close to the stagnant part can enter by diffusion and will spend an average time τ in
the stagnant part.

τ =
A

πD0

ln

(
P

d
+ 1

)
, (7.2)

where A is the area of the domain, P its perimeter and d the length of the exit pore
at the transition from stagnant to flowing part (see figure 7.5). The stagnant parts in
our low-porosity structures were first identified by application of a velocity threshold to
the velocity field, which gives a binary image, where stagnant and flowing regions are
clearly distinguished. Of course, there is no really sharp transition from a flowing to a
stagnant region, because in a disordered porous medium the flow velocity never drops
exactly to zero, but becomes so small that diffusion totally dominates the transport
of particles in stagnant parts on our time and length scales. Since we are measuring
the particle velocities by following the trajectories of individual particles, even in a
totally stagnant part a diffusing particle will result in a non-zero velocity field. Only by
averaging over many particles or one diffusing particle over a long time, the velocity field
would approach zero everywhere. However, this is not achievable in our experiments,
because of low particle densities in stagnant parts and short measurement times. Still,
the stagnant parts can be identified by looking at the particle trajectories and at the
resulting velocity field10. As with the geometrical parameters of the porous structures
in chapter 6, A, P and d were determined after identifying the stagnant areas by a
marching squares algorithm, which generates contours for a binary image and minimizes
discretization errors.

Equation (7.2) was used to calculate the mean escape time for every stagnant part
of the structure with φo = 0.582 and φo = 0.23211. The resulting (logarithmized)

10The robustness was checked by varying the threshold by a factor of two which resulted only in very
small changes in the size of the stagnant regions.

11The values of equation (7.2) were validated by numerical simulation where we released diffusing
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Figure 7.6.: (a) Calculated mean escape time distributions of the stagnant parts for the
structure with φo = 0.582 (gray bars) and φo = 0.232 (red bars). After adding a mean
advection time τA to every mean escape time, a theoretical FPTD results for both structures.
For comparison, the measured FPTD for Pe = 128 of both structures are also shown as black
solid line for φo = 0.582 and as red dashed line in case of φo = 0.232. The agreement between
largest measured and calculated times is remarkable.

distribution of mean escape times N(τ) of colloidal particles in the stagnant areas of our
samples are shown in figure 7.6 (a). The grey bars belong to φo = 0.582 and the red
bars belong to φo = 0.232. It can clearly be seen that the stagnant parts of the structure
with φo = 0.232 have a higher mean escape time and, more importantly, the maximum
times are about an order of magnitude larger than for the structure with φo = 0.582.
Now, with this information we are already able to understand, on a quantitative basis,
the extent of the long-time tails of the two structures. The large number of stagnant
parts with low escape times is not of great importance since the time scale of the largest
stagnant parts is markedly larger and, thus, dominates in the long-time tail12. The
maximum times for the FPTD of about 105.2 s and 106.4 s of each structure are in very
good agreement with the largest mean escape times of the corresponding stagnant areas.
This already points to the relevance of trapping events for the transit time of particles
in low-porosity structures.

The raw distribution of mean escape times, of course, does not capture the full trans-
port process of the particles in the structure, because the actual advection of the particle,
i.e., the time it takes a particle to flow through the structure without being trapped, has
been neglected so far. For a very simple calculation of a FPTD including the diffusion
inside the stagnant parts and the advection along the flowing parts of the structure, we
simply added a typical advection time τA (see definition of the Pe), which is just the

particles at random positions within stagnant parts and calculated their mean escape times. For
large stagnant areas only small deviations were found. In case of smaller areas, where the equation
might not be applicable, the deviations were sometimes larger, but these small stagnant areas have
a small effect on the total retention times of the particles and are not important for our findings.

12Remember that the mean escape times were logarithmized for the shown distributions, i.e., one event
on the right end of the distribution can make up for many events on the left end.
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time a particle needs to travel through the structure13, to each mean escape time and
get new calculated distributions which are shown as gray and red bars in figure 7.6 (b).
For a comparison we also included the measured FPTD for Pe = 128 of both structures
taken from figure 7.4 (d) and (e) as solid black and dotted red lines.

Although the calculated and measured FPTD evidently do not collapse onto each
other, again, the main point to realize is that the largest values in both distributions
are almost identical. Such a good agreement is remarkable given the simplicity of our
model and the width of the retention time distributions. The good accordance also
suggests that thinking in terms of two competing processes, namely flow independent
diffusion in stagnant parts and flow dependent advection, is well justified. One should
also understand that the sharp bars of the calculated FPTD must not be understood as
sharp values, because they only represent mean escape times which cannot be expected
to agree better with measured data than their standard deviation, which equals the mean
escape time. With this in mind one can even appreciate the fact that the calculated
FPTD resembles the measured FPTD to some extent over a larger time range.

Before we close this section we would like to mention some implication for the appli-
cability of the ADE. This topic was also addressed in [131] in some detail yet without
discussing the role of the precise geometry of the stagnant parts. Certainly the sepa-
ration of both time scales, i.e., the advection time τA and the diffusion time τD that
is set by the largest mean escape time, becomes less and less important as Pe is de-
creased. This can best be understood by contemplating figure 7.4 (d) again. For the
highest Pe (black curve) the distribution is strongly asymmetric, because the time it
takes a particle to travel through the structure is much smaller than the mean escape
time of the large stagnant areas. So, τA � τD and clearly the ADE is not applicable.
Decreasing the Pe, as discussed before, leaves the long-time tail almost unaffected, but
as τA increases and, therefore, approaches τD more and more, the distribution becomes
more symmetric resembling the distributions of the low-porosity structure in figure 7.4
(b). Once τA � τD the distribution will be in agreement with the ADE. This, however,
would occur at extremely low flow rates14 for our low-porosity structures and might in
many cases of such media be of no practical importance. The fact that the effect of
stagnant parts can only be clearly seen if τA � τD also implies that the effect of smaller
and smaller stagnant areas of the studied structure will show up in the FPTD as the
flow rate is increased. In some sense this is similar to the use of particles with high
energies to gain information about finer and finer structural features of some piece of
matter, although this analogy is a little far-fetched.

13Here, we again simplified the process by just adding the same time τA, although in reality the
advection times of particles are also distributed over a wide range.

14Making the sample longer would also result in an increasing τA without affecting τD. The effect of
trapping in stagnant parts could average out in a long sample and lead to a FPTD in agreement
with the ADE. In that case the porous medium would be considered homogeneous.
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7. Hydrodynamic dispersion in porous media

7.4.2. Influence of multiple trapping

During their journey through a low-porosity structure with a large amount of stagnant
parts, particles can and often will visit several of such areas. The simple model we used
to calculate the FPTDs assumes that particles become trapped only once during their
transit and also that trapping in each stagnant part is equally likely which, certainly, is
an oversimplification.

Even with our rather simple model we had a good agreement between the calculated
and measured FPTD. Especially the longest times that were observed can be explained
by this model. For an understanding why this model, despite its seemingly unrealistic
assumptions, still gives useful results, we also extracted from the simulated trajectories
how often and for how long the particles are trapped in stagnant areas. For the low-
porosity structure (φo = 0.900) there are no stagnant areas. For the structure with the
medium porosity (φo = 0.582) multiple trapping of particles occurred relatively rarely.
For example, at the highest Péclet number the average number of visited stagnant areas
amounted to only n̄ = 0.80, albeit the structure contains more than 200 stagnant areas.
Hence, in case of this structure most of the particles only spend a very short time in
stagnant areas with the exception of the largest stagnant parts which then clearly have
a huge effect on their retention times. To clarify the role of multiple trapping, we will
only study the frequency with which the particles visit stagnant parts for the structure
with the lowest porosity (φo = 0.232).

The results are shown in figure 7.7. (a) shows the probability distribution of the
number of visited stagnant areas n for the simulated trajectories. The black histogram
represents the distribution for Pe = 128, i.e., a fast flow velocity, and the histogram
in cyan corresponds to Pe = 8. As can clearly be seen, the mean number of visited
stagnant areas and also the maximum number of visited stagnant areas is significantly
higher at the lower Pe. This makes sense, because at lower flow rates the particles have
more time to diffuse into stagnant areas. The Pe-dependence of n̄ is plotted in (b),
which displays a sharp and monotonous decrease from n̄ = 10.6 at Pe = 8 to n̄ = 4.4
at Pe = 128. As just explained, particles that travel more slowly are also enabled to
sample a larger part of the sample by diffusion and, thus, visit more stagnant areas.

We have seen that the distributions in figure 7.6 of mean residence times of stagnant
regions are not uniform. Most of the stagnant parts have very low residence times and
can only make a very small contribution to the total retention time of the particles.
Yet, a few stagnant areas have very large mean residence times and, ergo, dominate
the largest first-passage times. Therefore, it seems reasonably to neglect most of the
trapping events in small stagnant areas to calculate a transit time of a particle.

To quantify how dominant single trapping events, i.e., trappings in only one stagnant
part, are, we used the simulated trajectories and determined the amount of time the
particles spend in every stagnant part of the structure along each trajectory. The prob-
ability distribution of the fraction ε of the total time in stagnant parts that is spent
in the stagnant part with the largest escape time for Pe = 128 and first-passage times
T ≥ 105 s is shown in figure 7.7 (c). The distribution elucidates that for such events
in the long-time tail single trapping events in large stagnant areas dominate the overall
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Figure 7.7.: (a) Frequency distribution of number of visited stagnant regions for the low-
porosity structure (φ = 0.232) for Pe = 128 (black) and Pe = 8 (cyan). More stagnant parts
are visited at lower flow rates. (b) Average number of visited stagnant parts n̄ vs. Pe. At
lower Pe the particles have more time to diffuse into stagnant areas. (c) Fraction of time spent
in largest stagnant parts for Pe = 128. Obviously single trapping events dominate the total
time spent in stagnant areas.

residence time15. In other words, the transit times of the slowest trajectories, that is,
the events in the long-time tails, can be fully explained by single trapping events in large
stagnant areas. Given this information our simple model seems to be very sensible when
it comes to an interpretation of the events in the long-time tail of the FPTD.

Since the calculated values for the mean escape times of the largest stagnant areas
according to equation (7.2) are in good agreement with the largest first-passage times we
observe in the measured FPTD, information about the presence and extent of stagnant
parts can be gathered from it. Especially in combination with other methods like cap-
illary pressure measurements or adsorption-desorption experiments, FPTDs can deliver
information about the microscopic structure of porous media that can lead to useful
prediction about, e.g., the amount of trapped liquid in a porous formation.

We conclude this section with a few comments about the Péclet number, which mea-
sures the relative importance of advection and diffusion for the underlying transport
process. In the commonly used definition of the Péclet number, the one we also used,
the characteristic length is assumed to be the grain diameter [3]. In our measurements
the calculated Péclet number was substantially larger than unity, so that, solely by this
measure, we would expect the transport to be dominated by advection. This, however,
is only true for the low-porosity structure with φ = 0.900, where stagnant parts are not
present and the particle transport is determined by advection, which is revealed by the
FPTDs shifting without changing their shape, when Pe is changed. In case of the struc-
tures with lower porosities we found that a large number of particles are temporarily
trapped in stagnant parts and spend a long time diffusing in these regions until they
escape again. For these structures the FPTDs do not just shift, if the Pe is changed,

15This domination of single trapping events is also valid over the whole range of first-passage times
with the mean value of ε amounting to about 0.8.
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7. Hydrodynamic dispersion in porous media

but the long-time tails persist independently of the Pe16, which means that albeit the
Pe is high, the transport is still not dominated by advection. An idea for a definition of
the Péclet number for the first-passage processes we studied would be to use the largest
mean escape time given by equation (7.2) to give the time scale for transport by diffu-
sion and the mean advection time τadv = L/U for transport by advection. This number
would directly compare the important time scales for diffusive and advective transport
in a porous structure and indicate the dominating transport mechanism.

7.5. Dispersion of active particles

Up to this point we have only studied the transport of passive tracer particles in a porous
structure. Yet, in nature and in many technical applications the transport of active
particles, that is, particles that have some means of self-propulsion, which allows them
to move through the structure in the absence of any external force, are often encountered.
Transport of active particles, like bacteria, in porous media is of importance in many
different fields, ranging from bioremediation, groundwater contamination and enhanced
oil recovery to blood perfusion inside the body [137, 138, 139].

We study the motion of active particles in our artificially created low-porosity struc-
ture (φo = 0.232) by basically the same semi-experimental approach that we employed
for the passive particles. We will again use the experimentally determined velocity fields
to capture the effect of the fluid motion on the particles. The difference now is that we
will give each particle a certain self-propulsion velocity V and an angle that is subject
to rotational diffusion, i.e., the angle changes in a random non-correlated fashion (see
figure 7.8). The active motion of the particles has a pronounced effect on their trans-
port behavior inside porous structures, which will manifest itself in FPTDs that differ
substantially from the passive-particle case.

The motion of the active particles is modelled with basically the same equation as
before (equation (7.1)). Only an angle and the self-propulsion velocity of the particle
are added:

r(t+ ∆t) = r(t) + cu(r)∆t+ ξ(∆t) + V n̂∆t, (7.3)

φ(t+ ∆t) = φ(t) + ζ(∆t). (7.4)

In addition to the terms we had before, we now have the active velocity term V n̂, where
n̂ = (sin(φ(t)), cos(φ(t)) splits the velocity into x and y component. The orientation of
the particle is given by the angle φ. ζ(∆t) is a Gaussian distribution with zero mean
and a mean squared value of 2Dr∆t, where Dr = kBT/(8πηa

3) is the rotational diffusion
coefficient of the particle. Assuming particles with a diameter of 1µm a rotational
diffusion coefficient of Dr = 1.28 s−1 results.

On time scales that are short compared to the rotational time τr = 1/Dr of the
particle, the motion is ballistic. This is the major difference between active and passive

16At least for our Pe range. Lowering the Pe by a factor of 100 would lead to totally diffusion dominated
transport.
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φ

a b

Figure 7.8.: (a) Illustration of an active particle that is swimming in water. The direction
of the velocity vector V is subject to changes by rotational diffusion. The direction of motion
is given by the angle φ. (b) One example of a stagnant part that can lead to “active” trapping
of particles with a high motility. The particle slides along the boundary and is not be able to
escape easily out of such a geometry. The indicated particle trajectory (dotted line) neglects
diffusion and is only meant to be illustrative.

particles. In the long-time limit, the motion will show the same characteristics as normal
diffusion, i.e., a mean squared displacement that is proportional to time. Hence, a long-
time effective diffusion coefficient can be defined by [140]:

Deff = Dm +
V 2

2Dr

, (7.5)

where Dm is the diffusion coefficient of the passive particles.
Equations (7.3) and (7.4) were used to simulate the motion through the low-porosity

structure (φ0 = 0.232) for a large number of active particles. The procedure is the
same as for the passive particles. The constant c was kept constant in every run and
corresponds to Pe = 128. The only parameter that was varied is the magnitude of
the self-propulsion velocity V . This variation has a substantial effect on the resulting
FPTDs which are shown in figure 7.9 (a).

The black line corresponds to the FPTD for passive particles which was also shown in
figure 7.4 (f). The other FPTDs belong to active particles with increasing motility, i.e.,
increasing self-propulsion velocity V . As the particle motility increases the long-time
tail gets shorter, i.e., the slowest particles take less time to travel through the structure.
On the other hand, the breakthrough times and the maxima of the distributions shift
toward higher values, implying that a typical particle takes a longer time to pass through
the structure.

The reasons for the distinctive behavior of the active particles compared to the passive
ones might seem to be quite obvious, but then again some seemingly sound explanations
for their behavior can also run into difficulties. Certainly one simple fact about the active
particles is that their long-time translational diffusion coefficient Deff can be orders of
magnitude higher than for passive ones, depending on the velocity of the particle and its
rotational diffusion coefficient. This alone can in an intuitively simple manner explain
why the longest transit times in the FPTDs of active particles are considerably shorter.
We calculated the effective diffusion coefficients Deff for every V according to equation
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Figure 7.9.: (a) Measured FPTDs in the low-porosity structure (φo = 0.232) for active
particles with different self-propulsion velocities V . With increasing V the largest transit
times become shorter. The breakthrough times and the maximum of the FPTD shift toward
longer times. The arrows indicate the expectation for the largest transit times according to
the respective effective diffusion constants. Exemplary trajectories for a passive (b) and active
particle with increasing motility (c)-(e) in a stagnant area. The higher the motility the larger
region during the same time interval is sampled and the higher the probability of presence
close to the pore boundary due to sliding along the surface.

(7.5). The values that are obtained by rescaling the largest transit times of the passive
particle case (black) are indicated by dashed arrows in figure 7.9. For low motility (red,
blue, green) the rescaling describes the decrease in the maximum transit times very
well, which shows that dealing with active particles as if they were passive particles
with a higher diffusion coefficient makes sense in some regime. Yet, for high motility
(pink) this concept does not work, because, to a large extent, a stagnant part loses
its meaning, for a highly motile active particle will hardly see any difference between
stagnant and flowing areas, if its self-propulsion velocity is a lot higher than the flow
velocity. Another intuitively clear point is that active particles sample a larger region
during the same time (see figure 7.9 (e)) and can, therefore, escape out of stagnant
regions faster than their passive counterparts17. This is true for our structures, but it
does not have to hold universally, because if the boundary of the exit of a stagnant part
is bent inwards, particles with sufficient motility might not be able to leave. A possible
geometry for such an active-particle trap is shown in figure 7.8 (b). Particles with
high motility are sliding along the wall, so that their velocity vector always strives to be
perpendicular to the boundary. In the shown example they will, thus, not be able to leave
the confinement, as they are transported back to the inner part of the domain. Such a
behavior of active particles in a structured geometry, and in particular in circular pores,
has also been demonstrated experimentally [141]. Due to these complications active

17By the way, this also implies that active particles enter more stagnant areas, because they can deviate
more easily from the streamlines. This arguments explains an increase in the breakthrough time as
we will discuss.

110



7.5. Dispersion of active particles

particles do not just behave like passive particles with a higher diffusion constant, there
are more subtle differences. In contrast to passive particles, an active particle moves
ballistically on time scales smaller than the rotational time τr and travels a distance
Lp = τrV , the so-called persistence length, during which it does not change its direction
significantly, that is, it more or less moves along a straight line. This implies18 that
there are basically two regimes for active particle transport in a porous medium: If the
persistence length is a lot smaller than the size of the pores in the porous medium,
the active particles will practically behave like passive particles with a higher diffusion
coefficient, i.e., they will be found with equal probability at every position in space.
If, however, the persistence length is large compared to the pore sizes, the particles
will spend most of their time sliding along the pore surfaces, which could also lead to
trapping of particles in stagnant areas that could also increase the maximum transit
times significantly. As a consequence of this trapping, particles would start to accrue
in such stagnant regions. In principle, appropriately designed structures could then
also be used to filter out particles of a specific motility. So, simple arguments do not
hold generally for any structure. Besides the decrease in the longest transit times we
have also seen that the breakthrough time, i.e., the time it takes the fastest particles to
cross the whole sample, is higher for active particles. To explain why that is, one only
has to think about the fastest passive particles travelling through the structure. These
particles just travel along the main paths through the structure, where the flow velocity
is highest. An active particle due to its self-propulsion will be able to deviate and, thus,
leave such a main path more easily and will therefore travel in slower regions, which in
turn decreases their transit times.

In conclusion, the transport of particles in a low-porosity structure is even more com-
plicated when the particles have some means of self-propulsion. Whether the resulting
transit times increase or decrease due to the self-propulsion depends on the specific sit-
uation. We have seen that self-propulsion can lead to a reduction of the transit times if
particles can escape out of stagnant parts faster, because they sample a larger area in
the same time. On the other hand, it would also be possible that such active particles
become trapped if their motility is so high that they slide along the boundaries and the
stagnant parts are bent inwards. The shortest transit times can also be increased when
active particles leave the main paths for fluid transport and enter regions where the flow
velocity is lower. As mentioned in section 3.3.1 large particles can be excluded from
some stagnant parts due to their exclusion from the slowly flowing fluid layers close to
the pore surfaces. This effect could also be counteracted by the self-propulsion which
would lead to a higher probability of these particles to enter stagnant parts that would
also slow down their transport.

18The implications are a little complicated, because it is not only the size of the pores but also their
shape and especially their curvature.
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8. Conclusion and outlook

Finally the time has come to give the reader the elevator pitch distilling the most im-
portant findings into a few sentences. The general topic of this work can be summed up
in one sentence: This thesis is about the effect of the pore geometry of porous media
on their flow and transport properties. A good understanding of the relation between
pore geometry and these properties is indispensable for biological, technical, chemical,
agricultural and many other problems that depend on a fluid that is flowing through a
complicated environment.

Since the structure of naturally occurring porous media is neither known completely
nor easily adjustable, we use soft lithography to artificially create porous structures with
fully-known and arbitrary geometry. Aqueous colloidal suspensions are used to, on one
hand, visualize and quantitatively determine the fluid velocity field, but, on the other
hand, also to directly study the transport properties of the suspended colloidal particles.

The individual particles in our samples are advected by the surrounding flow. Indi-
vidual particles are traced by video microscopy during their journey through the porous
medium which allows a reconstruction of the particle trajectories. The resulting tra-
jectories can be used to determine quantities like local average particle velocities, from
which the velocities of the fluid can be deduced. As it turned out, the determination
of the fluid velocity field by means of such small dispersed colloids is not as straightfor-
ward as it might seem for several reasons: First, the microfluidic cells used in this work
are long and flat rectangular channels, which implies that the velocity profile therein is
parabolic, i.e., particles at the center of the channel travel faster than particles closer to
the top or bottom of it. For particles of the same size but with different densities that
are higher than the density of the surrounding fluid, heavier particles will on average
be closer to the bottom and, therefore, be advected at different velocities as the lighter
ones. Second, any particle of finite size will also act as a moving obstacle, i.e., change the
boundary conditions of the surrounding flow. The center of mass velocity, which is the
measured variable, will be the result of an averaging process across the particle surface
and, thus, will generally not be identical to the fluid velocity at that point. In short,
the values for the particle velocities one gets depend on the size and density or, more
general, on the particle height distribution of the particles which can also be influenced
by, e.g., surface charges.

The goal of one of our studies, namely the experimental determination of the perme-
ability k of porous structures, which involves a measurement of the mean flow velocity
through a porous sample, was achieved with the help of a calibration method that em-
ploys reference channels of known geometry. The mean fluid velocity in such a channel
can be calculated analytically. By also measuring the mean particle velocity in a refer-
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ence channel, a proportionality factor between particle and fluid velocity can be obtained.
This calibration circumvents the problem of the size-dependent velocity of the particles
and allows for a calculation of the mean flow velocity. The calibration factor was used
to measure the permeability of the investigated porous structures, which consisted of a
number N of randomly placed overlapping circles (ROMC) or ellipses (ROME). More-
over, we measured the permeabilities of structures where the conducting and obstacle
phase have been exchanged resulting in structures of conducting circles (EROMC) and
ellipses (EROME) that have a very different pore space geometry. The measured perme-
abilities were complemented by permeabilities obtained by lattice Boltzmann simulations
that were in good agreement with the measured data.

The measured permeabilities were in excellent agreement with the values predicted
by the well-established Katz-Thompson model (KTM) that relates the permeability to
the conductivity and a critical pore diameter lc (diameter of the largest sphere that can
pass through the structure) of the structure. The problem with the KTM is that it does
not allow a prediction of the permeability without knowledge of its conductivity. We
introduced an expression that uses the Euler characteristic χo of the sample-spanning
conducting pore space and the number of obstacles N to predict the permeabilities of
the investigated structure:

k

cl2c
=

(
1− χo
N

)α
. (8.1)

The expression, which can also be understood as an overlapping probability of individual
grains, gave very good agreement with the results of the ROMC and ROME structures.
The question of the universal applicability of this expression naturally arose.

To make the expression universally applicable, an effective number N̂ of obstacles that
can be determined from the perimeter, area and Euler characteristic of the pore space,
was introduced. After replacing N by N̂ in (8.1), the agreement between measured
and predicted values for the ROMC and ROME structures was still very good. For the
EROME structures an acceptable agreement was found for high porosities, which, how-
ever, deteriorated close to the percolation threshold. In case of the EROMC structures
the expression did not yield useful values over practically the whole range of porosities.
So, the expression does not generally hold for arbitrary structures.

A seemingly reasonable explanation for the deviation is given by the occurrence of
very small obstacles in the EROME and EROMC structures, which do not occur in the
ROMC and ROME structures. These tiny obstacles might not have a strong influence
on the flow properties of the structures, but have a strong effect on the value of N̂ .

It still remains an obvious objective for the future to find a universal expression that
can relate purely geometrical quantifiers to the permeability of an arbitrary porous struc-
ture. Possibly, a reconstruction of the considered porous structure by an appropriately
chosen Boolean model could provide more universal agreement.

In another set of experiments and simulations the transport properties of small col-
loids in porous media with varying porosities were studied on an individual particle level
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instead of looking at averaged quantities like the permeability. Particles that are trans-
ported through a porous medium are advected by the surrounding fluid and also undergo
diffusion. Since the fluid velocity field in a porous medium can be highly heterogeneous,
particles will travel at different velocities across the sample which can, therefore, give
rise to a wide first-passage time distribution (FPTD) of the particles, much wider than
would be expected by normal diffusion. The presence of stagnant parts, that is, areas
in the medium where the flow velocity is practically zero, can have a huge effect on
the resulting FPTDs, as particles can be trapped in such regions for very long times.
Our objective was to shed some light on the question how the structure of the porous
medium and the FPTDs are related.

We measured the FPTDs by a semi-experimental approach where we first experimen-
tally determined the particle velocity field of three porous structures and then used the
velocity fields to perform an overdamped Langevin simulation to get a large number of
particle trajectories which allowed us to determine FPTDs. As expected, the FPTDs for
a high-porosity structure can all be described by the well-established advection-diffusion
equation, which holds for macroscopically homogeneous structures. For low-porosity
structures, which also contain stagnant areas, the FPTDs show long-time tails that are
independent of the flow rate and can be related to the stagnant parts of the structure.
An equation from statistical physics was used to calculate the mean escape time for
every stagnant part:

τ =
A

πD0

ln

(
P

d
+ 1

)
. (8.2)

Here, A is the area of the stagnant part, P its perimeter, and d the size of the small
exit pore that connects the stagnant part to the flowing part of the structure.

The longest times that are observed in the FPTDs agree very well with the calculated
values for the mean escape times of the largest stagnant areas, which means that infor-
mation about the presence and extent of stagnant areas can be obtained by looking at
the long-time tails in FPTDs.

In addition, we also performed simulations of active particles, i.e., particles that can
propel themselves, in a low-porosity structure. The resulting FPTDs were mainly af-
fected in two ways. First, the maximum times compared to the passive particles were
lowered, which can, in a certain motility regime, be explained by a higher effective diffu-
sion coefficient for active particles since they sample a larger region during the same time
and can, consequently, escape out of stagnant regions faster. Second, for active particles
with high motility the shortest times in the FPTDs increased due to their ability to
leave the main paths where the fluid flow is fastest and travel along regions with lower
flow velocities.

In the future it would also be interesting to investigate transport of active particles
in structures with a totally different morphology which could, e.g., lead to a slowing
down of their transport by trapping in stagnant parts of a particular geometry. Also a
more in-depth study of the detailed motion of the active particles in a porous medium
and their probabilities of presence could yield useful information, since active agents, like
bacteria, are often used to facilitate bioremediation in complex environments. According
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to the given structure the agents properties, such as their motility, could be adjusted to
increase their efficiency.

Another idea would be to add an external force to the system that pulls, like grav-
itation, particles in one direction. In case of passive particles one would expect to see
a threshold effect, i.e., particles would only be able to make it through the structure,
if a certain flow rate or pressure is reached. When particles additionally have some
self-propulsion mechanism they could still cross some critical parts of the structure and
be, therefore, transported preferably.

There cannot be any doubt that both the study of the relation between the structure
of porous media and their permeability as well as the transport behavior of passive and
active particles offers will continue to offer a rich field for decades to come. The facets
addressed in this work might indeed have raised more new questions than answered
long-standing ones.
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a b

c

Figure A.1.: Particle streak images of fluorescent particles in a low-porosity EROMC struc-
ture with φo = 0.278. The images were obtained by using a long exposure time. The particle
streaks represent the trajectories of individual particles. The brighter the streaks the slower
the particles are at that point. As can be seen at the small entrance (a), the trajectories in the
inlet are not moving on parallel trajectories. The same is true on the other side of the structure
(b). Inside the porous structure (c) flowing regions and stagnant regions can be distinguished.
In stagnant regions particles only diffuse and, thus, show up as bright spots.
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anderen als die angegebenen Quellen und Hilfsmittel verwendet habe.

Stuttgart, den 8. März 2015

Frank Wirner

130


