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Abstract

Whitham’s equations and the Ginzburg-Landau equation belong to a set of famous
amplitude equations containing the KdV equation, the NLS equation, Burgers equa-
tion, and so-called phase diffusion equations. They play an important role in the
description of spatially extended dissipative or conservative physical systems. Ex-
cept of Whitham’s system for all other amplitude equations there exists a satisfying
mathematical theory showing that the original system behaves approximately as pre-
dicted by the associated amplitude equation.
In the first part of this work we therefore derive Whitham’s equations for a cou-
pled system of equations, namely a Klein-Gordon-Boussinesq model. Subsequently
we prove the validity of Whitham’s equations for this system. The combination of
our scaled ansatz adapted to Whitham’s equations with the resonance structure of
our system poses a new challenge. In order to prove the approximation results for
Whitham’s equations we will require some infinite series of normal transformations,
for which we need to prove the convergence.
In the second part we prove the attractivity of the Ginzburg-Landau manifold for a
toy problem inspired by Marangoni convection. In comparison to the previous classi-
cal situation in our case the curve of eigenvalues possesses additionally a marginally
stable mode at the origin. Therefore, we will need to modify the requirements for
the attractivity result and the method of proof.
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Zusammenfassung

Whithams Gleichungen und die Ginzburg-Landau-Gleichung gehören zu einer Grup-
pe bekannter Amplitudengleichungen, zu der auch die KdV-Gleichung, die NLS-
Gleichung, Burgers Gleichung und die sogenannte Phasendiffusionsgleichung zählen.
Diese Gleichungen spielen eine wichtige Rolle bei der Beschreibung von räumlich aus-
gedehnten dissipativen oder konservativen physikalischen Systemen. Mit Ausnahme
von Whithams Gleichungen existiert für alle andere Amplitudengleichungen bereits
eine ausreichende mathematische Theorie, welche nachweist, dass das ursprüngliche
System sich annähernd so verhält, wie es die dazugehörende Amplitudengleichung
voraussagt.
Im ersten Teil der vorliegenden Arbeit leiten wir zunächst Whithams Gleichungen für
ein gekoppeltes System von Gleichungen, nämlich für ein Klein-Gordon-Boussinesq-
Modell, her. Im Anschluss beweisen wir die Gültigkeit von Whithams Approximation
für dieses System. Die Kombination aus unserem Ansatz mit der Resonanzstruk-
tur des verwendeten Systems stellt uns vor eine neue Herausforderung. Um jenes
Aproximationsresultat für Whithams Gleichungen zu beweisen, werden wir eine un-
endliche Reihe von Normalformtransformationen benötigen, für welche die Konver-
genz nachzuweisen ist.
Im zweiten Kapitel beweisen wir die Attraktivität der Ginzburg-Landau Mannig-
faltigkeit am Beispiel eines Modellproblems, inspriert durch das Marangoni Problem.
Im Vergleich zu den bisherigen klassischen Situationen haben wir in unserem Fall
zusätzlich eine marginal stabile Mode im Ursprung vorliegen. Deswegen müssen hier
die Anforderungen und die Beweistechniken für das genannte Attraktivitätsresultat
entsprechend modifiziert werden.
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Chapter 1

Introduction

The most important objects in mathematical modeling are nonlinear partial differen-
tial equations. The description or understanding of natural or physical phenomena is
often connected with complex nonlinear PDEs for which we cannot find any explicit
solutions. Thus we need to apply other numerical or analytical methods in order to
approximate solutions.
The analytical method that we use in this work to solve such complex mathemati-
cal problems has somehow a heuristic character. We assume the solutions that we
are looking for have a certain form, which we call an “ansatz”. Through a suitable
scaling method with a small positive parameter ε, for example a slow modulation of
time and space, together with a matching of the coeficients of different powers of ε,
the original equation can be reduced to a new equation which is easy to solve and for
which there is already a satisfactory mathematical theory. In this method the ansatz
plays an important role and the results can be characterised through their ansatz
and the associated reduced equations. In fact we approximate the exact solutions by
the solutions of so called “universal” equations. In this work we will discuss several
aspects of such universal equations, namely the validity of the Whitham’s equations
and attractivity of the Ginzburg-Landau manifold. By validity, we mean that the
distance between the exact solution of the original system and the approximation
based on the formally derived equation (in our case the Whitham’s equations) is
bounded over a long time interval (O(ε−1) in our case), see e.g. Theorem 2.1.1.
In other words, we prove that the solutions of the approximating equation make a
correct prediction about the behaviour of the solutions of the original system over a
certain time scale.
In the first part of this work, Chapter 2, we begin by constructing some solutions
for a coupled system, called a Klein-Gordon-Boussinesq model, or KGB model for

7



8 CHAPTER 1. INTRODUCTION

short. This model consists of two nonlinear equations, the Klein-Gordon equation
and the Boussinesq equation:

∂2t v = ∂2xv − v + u2 + 2uv + v2 Klein-Gordon

∂2t u = ∂2xu+ ∂2t ∂
2
xu+ ∂2x(u

2 + 2uv + v2) Boussinesq

The solution of the Klein-Gordon equation represents a quantum scalar field. The
Boussinesq equation occurs in the context of the water wave problem. The question
that arises here is why the coupling of such seemingly unrelated equations should be
interesting for us. The reason is as follows: if we want to prove the validity of the
Whitham’s equations for systems with some kinds of periodicity, such as Polyatomic
FPU systems or the water wave problem with a periodic bottom, we will encounter
new difficulties. The method of proof used for the homogenous case cannot be ap-
plied in the periodic case due to the occurence of a certain type of resonance, which
up until now has not been successfully treated by such a method. The KGB model
has the same resonance structure (Figure 1.1) without sharing the periodicity of the
other equations. Hence it can serve as a toy problem, for which we can more easily
develop new technical tools and gain insights into the mathematical nature of the
resonance, which is helpful for the other problems.

k

ω1

ω−1

ω2

ω−2

Figure 1.1: Curves of eigenvalues ω±1 and ω±2

If we start with an ansatz scaled with a small perturbating parameter 0 < ε� 1
such as ε2ψu(ε(x − t), ε3t) and ψv = 0, and equate the coefficient of ε6 to zero, we
will obtain the KDV equation [CS11]. Using the Ansatz εψ(εx, ε2t) yields the Burger
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equation. The ansatz that we use in this work is of order O(1) and has the form

ψu(εx, εt) and ψv(εx, εt).

This ansatz yields Whitham’s equations in the coefficient of ε2. Mathematically,
Whitham’s equations are a universal approximate equation for large classes of non-
linear PDEs of periodic wave type (see for example [DS09]).The resonance structure
of our system (see Figure 1.1) is the same as in the situation in which one is really
interested, namely the description of slow modulations in time and space of a peri-
odic traveling wave in a dispersive wave system. By linearising around the periodic
wave in a co-moving frame, we obtain an eigenvalue problem which is periodic in
the spatial variable. Its solutions are given by Bloch modes eilx+iωn(l)tvn(lx) with
n ∈ Z \ {0}, l ∈ [−1

2L
, 1
2L

), and where the amplitude vn possesses the same periodicity
L w.r.t. x as the periodic wave. The curves l 7→ ωn(l) are ordered by ωn(l) ≤ ωn+1(l)
and by ωn(l) = −ω−n(l). In general we have ω±1(0) = 0 and ω±2(0) 6= 0 since in such
systems the periodic wave is accompanied by an at least two-dimensional family of
periodic waves. Whitham’s equations describe the dynamics of the modes associated
with the two curves ω±1 in the long time limit, i.e. in the limit for l→ 0 (see Figure
1.1).

The most part of Chapter 2 is devoted to the proof of Theorem 2.1.1, which for-
mulates the validity of Whitham’s equations for the above-mentioned KGB model.
Proving the validity of such approximations is a highly nontrivial task since the so-
lutions, which are of order O(1), have to be shown to exist on a time scale of order
O(ε−1). Our proof is based on two main analytical tools: normal form transforma-
tion, or NFT, and energy estimates. In general NFTs are of the form:

R̃ = R + δM(ψ,R)

where R symbolises the former error function, R̃ the new error function, δ a scalar
and M a suitably chosen bilinear mapping. In order to eliminate O(1) terms we
set δ = 1. The combination of such an ansatz with the resonance structure of our
model (see Figure 1.1) necessarily leads to the application of an infinite sequence of
NFTs. The convergence of the series resulting from this sequence of transformations
is an important question and needs to be proved. In Section 2.3 we show that these
series will converge like a geometrical series, and so with the help of the Neumann
theorem we obtain the existence of an inverse. In order to complete the proof of
Theorem 2.1.1, we prove the boundedness of a suitably chosen energy and then we
apply Gronwall’s Lemma.
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In Chapter 3 we discuss the attractivity of the Ginzburg-Landau manifold for a
toy problem inspired by Marangoni convection. The validity of the GL-approximation
of this problem was recently proven in [SZ13]. After rescaling and renaming the vari-
ables, the Ginzburg-Landau equation looks as follows

∂TA = (1 + ia)∂2XA+ A− (1 + ib)|A|2|A|. (1.1)

This equation arises in many branches of science as an approximating equation de-
scribing the evolution of patterns by instabilities and bifurcations. In order to derive
the Ginzburg-Landau equation for a bifurcating solution, we apply the modulation

U(x, t) = εA1(εx, ε
2t)eix + ε2A2(εx, ε

2t)e2ix +
ε2

2
A0(εx, ε

2t) + c.c.. (1.2)

Now let the GL-manifold be given by the following set:
G = {U as in (1.2) | A1 satisfies GL’s equation with initial condition in the set Bδ},
where Bδ := {u0 | ‖u0‖i ≤ δ} and ‖ · ‖i denotes a suitably chosen norm. In this
context the local attractivity can be explained as follows: if we start with an initial
perturbation p0 with ‖p0‖i ≤ δ0, then the corresponding original solution u (i.e. the
solution with initial condition U(x, 0) + p0) is well-defined, and after some transient
behaviour for 0 ≤ ε2t ≤ T0 with an arbitrarily small T0 can be approximated by (1.2)
via

‖u− U‖ ≤ Cε2 for T0 ≤ ε2t ≤ T1

with T0, T1 = O(1). Note that the norm ‖ · ‖i is not necessarily the same norm as
‖·‖. In this sense the size of the attractivity domain can be measured by δ0. If we set
‖·‖i = ‖·‖ = supt supx | · |, δ0 = O(ε3/2) and (A1, A0) ∈ C([0, T0], H

m(R)×Hm−1(R))
with m > 11 we would obtain the same approximation result as in [SZ13]. In this
work we obtain estimates in L1 for solution u for which u0 satisfies an estimate of
the form ‖u0ρ1‖L1 ≤ C, where 1/ρ1 is of the form depicted in Figure 3.5.
Such an attractivity result has been established for the GL-manifold in the case of

the Kuramoto-Shivashinsky equation in [BvHS95], where the associated eigenvalue
curves possess two instability modes at k = ±1. In our case we have to consider and
handle in addition a marginal stable mode at the origin (cf. Figure 3.1 and Figure
3.2). In order to show that the GL-manifold is an attractor for the solutions of our toy
problem, we consider a comb-like family of weight functions ρn(k) (sketched in Figure
1.2), which correspond to the bifurcating solutions of the (Fourier-transformed) GL-
approximation. The so called “clustered mode-distribution” sketched in Figure 3.3
arises typically for pattern forming systems and looks more or less similar to our
chosen weight functions. This clustered mode-distribution was introduced for the
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k|O(ε)|−1

•

•

O(ε2)

O(ε5/2)
O(ε3)

O(ε)

1
ρn(k)

Figure 1.2: Sketch of the inverse of the weights ρn

first time 1971 by W. Eckhaus and R. C. DiPrima in [dRCES71]. The boundedness
of the solution in Fourier space with respect to the L1-norm with weights ρn for
certain time will imply the above-mentioned attractivity.



12 CHAPTER 1. INTRODUCTION



Chapter 2

The validity of Whitham’s
approximation for a
Klein-Gordon-Boussinesq model

The main application of Whitham’s approximation is the description of slow modu-
lations in time and space of periodic wave trains in general dispersive wave systems.
In this chapter we prove the validity of Whitham’s equations for a Boussinesq equa-
tion coupled with a Klein-Gordon equation. The proof is based on an infinite series
of normal form transformation and an energy estimate. We expect that the steps
pursued in this paper will be a part of a general approximation theory for Whitham’s
equations.

2.1 Introduction

We start with the formulation of the result followed by a longer discussion about the
relevance of the result. We consider the system of partial differential equations

∂2t u = ∂2xu+ ∂2t ∂
2
xu+ ∂2x(u

2 + 2uv + v2), (2.1)

∂2t v = ∂2xv − v + u2 + 2uv + v2, (2.2)

with u = u(x, t), v = v(x, t), x, t ∈ R. The solutions of linearised problem are given
by u(x, t) = eikx+iω±1(k)t and v(x, t) = eikx+iω±2(k)t with

ω±1(k)2 =
k2

k2 + 1
and ω±2(k)2 = k2 + 1. (2.3)

13
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We make the ansatz

ψWhitham
u (x, t) = U(εx, εt) and ψWhitham

v (x, t) = V (εx, εt) (2.4)

with 0 < ε � 1 a small perturbation parameter. Inserting this ansatz in (2.1) and
(2.2) we find

Resu = −∂2t u+ ∂2xu+ ∂2t ∂
2
xu+ ∂2x(u

2 + 2uv + v2)

= ε2(−∂2TU + ∂2XU + ∂2X(U2 + 2UV + V 2)) + ε4∂2T∂
2
XU,

Resv = −∂2t v + ∂2xv − v + u2 + 2uv + v2

= −V + U2 + 2UV + V 2 + ε2(−∂2TV + ∂2XV ).

Hence equating the coefficients of ε0 in Resv to zero yields

−V + U2 + 2UV + V 2 = 0

and so V = H(U) = U2 +O(U3) due to the implicit function theorem for U and V
of O(1), but sufficiently small. Equating the coefficients of ε2 in Resu to zero gives

−∂2TU + ∂2XU + ∂2X(U2 + 2UV + V 2) = 0. (2.5)

By substituting V = H(U) into (2.5) we find

−∂2TU + ∂2XU + ∂2X(U2 + 2UH(U) +H(U)2) = 0. (2.6)

It is the purpose of this paper to prove the following approximation result.

Theorem 2.1.1. There exists a C1 > 0 such that the following is true. Let U ∈
C([0, T0], H

6(R,R)) be a solution of (2.6) with supT∈[0,T0] ‖U(·, T )‖H6 ≤ C1 and let
V = H(U). Then there exist ε0 > 0 and C2 > 0 such that for all ε ∈ (0, ε0) we have
solutions (u, v) of (2.1)-(2.2) such that

sup
t∈[0,T0/ε]

sup
x∈R
|(u, v)(x, t)− (U, V )(εx, εt)| ≤ C2ε

3/2.

Two questions emerge. Why should somebody be interested in such a result, and
why is the proof of the result a real challenge? The reasons are as follows.

Remark 2.1.2. The scaling used in the ansatz (2.4) is the same scaling as it is used
for the derivation of Whitham’s equations. Whitham derived his equations first in
[Whi65a, Whi65b], and they are still a subject of active research. They can be derived
in various physical contexts in the description of modulations of periodic waves in
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nonlinear systems, cf. [DS09]. Very often they are derived from the Lagrangian of
the underlying problem leading to a system of conservation laws, similar to (2.6)
which can be rewritten in conservation law form as

∂TU = ∂XW,

∂TW = ∂X(U + U2 + 2UH(U) +H(U)2).

Remark 2.1.3. There are many other amplitude equations like Whitham’s equa-
tion, e.g. the Ginzburg-Landau equation, the KdV equation and the NLS equa-
tion. There exist already a series of approximation results for the Ginzburg-Landau
approximation for instance in [CE90, vH91, Sch94a, Sch94b], for the KdV approx-
imation for instance in [Cra85, SW00, SW02], and for the NLS approximation in
[Kal87, Sch98, Sch05, BSTU06]. In all these cases the starting point of the multiple
scaling analysis is the trivial spatially homogeneous solution of the system. If the
starting point is a periodic traveling wave, the modulations of the wave in the dissi-
pative case can be described by so-called phase diffusion equations, Burgers equation
or conservation laws and in the conservative case by Whitham’s equations. Approx-
imation results in the dissipative case can be found in [MS04b, MS04a, DSSS09]. In
the conservative case, i.e. for Whitham’s equations, so far only one approximation
result has been established, namely the validity of Whitham’s equations for the NLS
equation as original system which however has a much simpler resonance structure
[DS09]. By the resonance structure we mean the situation that occurs for different
curves of eigenvalue and their interaction, e.g. intersections (cf. 1.1).

In the following remark we explain why this resonance structure combined with
the chosen scaling is a real challenge in establishing a suitable approximation result.

Remark 2.1.4. System (2.1)-(2.2) can be written as a first order system

∂tW = ΛW +B(W,W ),

with Λ a linear skew symmetric operator and B a bilinear symmetric mapping. By
adding higher order terms to the approximation (2.4) we construct an approximation
ψ which is O(ε2)-close to (2.4) and satisfies formally

Res(ψ) = −∂tψ + Λψ +B(ψ, ψ) = O(ε4).

The error function R defined by W (x, t) = ψ(x, t) + εβR(x, t) fulfills

∂tR = ΛR + 2B(ψ,R) + εβB(R,R) + ε−βRes(ψ).
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We have to prove an O(1)-bound for R on an O(ε−1)-time scale. In order to do so
we have to control the terms on the right hand side on this long time scale. The
first term is skew-symmetric and will lead to oscillations without any growth rates.
The last term can be O(ε)-bounded if β ≤ 3. If β is chosen larger than 1 the
third terms gives a bound smaller than O(ε). However, the second term 2B(ψ,R)
is only O(1)-bounded. One approach to control this term is its elimination by a
near-identity change of variables (normal form transformation abbreviated by NFT)

R = R̃ + M(ψ, R̃) with M being a suitably chosen bilinear mapping. The term
B(ψ,R) consists of a resonant and a non-resonant part, i.e.,

B(ψ,R) = Br(ψ,R) +Bnr(ψ,R).

It turns out that only one part of this term can be eliminated. Since we can handle
easily the resonant terms later with the help of a suitably chosen energy, our focus
will be on eliminating the non-resonant terms. After an NFT the non-resonant term
splits into a new resonant and non-resonant term again. Applying the transformation
the relevant part of the equation for the new error function R̃ is of the form

∂tR̃ = ΛR̃ +Br(ψ, R̃) +B(ψ,M(ψ, R̃)) +O(ε).

Hence with the transformation new terms of O(1), namely B(ψ,M(ψ, R̃)), appear.
They can be split again into resonant and non-resonant terms. Another normal form
transform is necessary to eliminate these non-resonant terms, but again terms of
O(1) are created. However, they are cubic w.r.t. ψ. This goes ad infinitum and so
the convergence of the composition of these infinitely many transformations has to
be proven. Since the n-th transformation is of order O(‖ψ‖n) the convergence finally
can be established for ‖ψ‖ = O(1), but sufficiently small w.r.t. some ‖·‖-norm. After
all these transformations the equation for the error takes the form

∂tR = ΛR + F (ψ,R) +O(ε)

where F is a function which is linear w.r.t. R and which contains infinitely many
resonant terms. Since all these terms have a long-wave character w.r.t. t (i.e. these
terms depend from εt) a suitably chosen energy E(R) satisfies

∂tE(R) = O(ε),

and so an O(1)-bound for the error R can be established on the O(ε−1)-time scale.
The normal form transformations can be found in Section 2.3 and the energy esti-
mates in Section 2.5. The improved approximation is constructed in Section 2.2.
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Remark 2.1.5. As explained above we think that our analysis is a necessary step
for the validity of Whithams equations in the general situation. However, before
applying these ideas a number of additional questions have to be answered, most
essential: how to extract the wave numbers in non S1-symmetric systems such that
these satisfy equations which are suitable for existing functional analytic tools?

Remark 2.1.6. Recently Whitham’s equations have been in the focus of investiga-
tions concerning modulations of periodic wave trains in dissipative systems contain-
ing conservation laws [JZ10]. The problems addressed in this work do not appear
in the dissipative situation. We expect that the analysis for a justification result
in the sense of Theorem 2.1.1 in the dissipative situation is very similar to the one
given in [DSSS09, Section 6] where a single conservation law has been justified as an
amplitude equation.

The rest of this chapter is dedicated to the proof of Theorem 2.1.1.

Notation. The many possible constants that are independent of 0 < ε � 1 are
denoted by C. The spaceHs(m) consists of s-times weakly differentiable functions for
which ‖u‖Hs(m) = ‖uρm(x)‖Hs = (

∑s
j=0

∫
|∂jx(uρm(x))|2dx)1/2 with ρ(x) =

√
1 + x2

is finite, where we do not distinguish between scalar and vector-valued functions or
real- and complex-valued functions. We use Hs as an abbreviation for Hs(0). From
now we write

∫
instead of

∫∞
−∞ hence the Fourier transform of a function u is denoted

by

(Fu)(k) = û(k) =
1

2π

∫
u(x)e−ikxdx

and is an isomorphism between Hs(m) and Hm(s). The pointwise multiplication
(uv)(x) = u(x)v(x) in x-space corresponds to the convolution

(û ∗ v̂)(k) =

∫
û(k − l)v̂(l)dl

in Fourier space. The pseudo-differential operator ω(i∂x) in x-space is defined in
Fourier space,

ω(i∂x)u(x) = F−1(ω(k)û(k))(x),

where ω(k) is a piecewise analytic function.
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2.2 The improved approximation and estimates

for the residual

As explained in Remark 2.1.4 we need the residual to be small. With the approxi-
mation (2.4) we formally find that

Resu = O(ε4), but Resv = O(ε2).

In order to have Resv = O(ε4) too, we improve the approximation (2.4) and make
the improved ansatz

ψu(x, t) = U(εx, εt) and ψv(x, t) = V (εx, εt) + ε2V2(εx, εt) (2.7)

and find

Resv = −V + U2 + 2UV + V 2 + ε2(−∂2TV + ∂2XV − V2 + 2UV2 + 2V V2)

+ε4(−∂2TV2 + V 2
2 + ∂2XV2).

We formally obtain Resv = O(ε4) by choosing

V2 =
∂2XV − ∂2TV
1− 2U − 2V

. (2.8)

Since U and V could be choosen small enough V2 is well-defined.

Remark 2.2.1. In the following we estimate the difference between a true solution
of (2.1)-(2.2) and the improved ansatz (2.7). The estimate for the difference between
a true solution of (2.1)-(2.2) and the original ansatz (2.4) then follows by the triangle
inequality using

sup
t∈[0,T0/ε]

sup
x∈R
|(ψu, ψv)(x, t)− (U, V )(εx, εt)| ≤ Cε2.

The difference between a true solution of (2.1)-(2.2) and the improved ansatz
(2.7) defines the error functions Ru and Rv by

εβRu = u− ψu and εβRv = v − ψv
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with a suitably chosen β. The error functions satisfy

∂2tRu = ∂2xRu + ∂2t ∂
2
xRu + ∂2x(2ψuRu + 2ψvRu + 2ψuRv + 2ψvRv) (2.9)

+εβ∂2x(R
2
u + 2RuRv +R2

v)

+ε−β
(
−∂2t ψu + ∂2xψu + ∂2t ∂

2
xψu + ∂2x(ψ

2
u + 2ψuψv + ψ2

v)
)︸ ︷︷ ︸

=Resu

∂2tRv = ∂2xRv −Rv + 2Ruψu + 2Ruψv + 2Rvψu + 2Rvψv (2.10)

+εβR2
u + 2εβRuRv + εβR2

v

+ε−β (−∂2t ψv + ∂2xψv − ψv + ψ2
u + 2ψuψv + ψ2

v)︸ ︷︷ ︸
=Resv

,

where the residual terms are formally of order O(ε4). These equations for the error
functions will be solved in some Sobolev spaces. Estimating the residual terms in
these Sobolev spaces will lose ε−1/2 due to the scaling properties of the L2−norm,
namely (∫

|U(εx)|2dx
)1/2

=

(
ε−1
∫
|U(X)|2dX

)1/2

, (2.11)

and so we have the following lemma.

Lemma 2.2.2. Fix s ≥ 1 and let U ∈ C([0, T0], H
s+4(R,R)) be a solution of (2.6)

and V = H(U). Then there exist ε0 > 0 and C > 0 such that for all ε ∈ (0, ε0) we
have

sup
t∈[0,T0/ε]

(‖Resu‖Hs + ‖Resv‖Hs) < Cε7/2.

Proof. Combining the formal calculations from above with the scaling properties
(2.11) of the L2-norm yields the required estimates. In order to avoid losing more
powers of ε in products arising in Resu,v only one factor is estimated in Hs. All
others are estimated in Cs

b . The assumption U(., T ) ∈ Hs+4(R,R) is necessary to
estimate ∂2XV2 ∈ Hs(R,R) via V2 = O(∂2XV ) due to (2.8).

2.3 The series of normal transformations

In order to establish the validity of Theorem 2.1.1 we have to prove an O(1)-bound
for Ru and Rv on an O(ε−1) time scale. Therefore we need to control the terms
on the right hand sides of (2.12) and (2.13) on this long time scale. The linear,
ψ-independent terms are skew-symmetric and will lead to oscillations without any
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growth rates. The residual term can be O(ε)-bounded if β ≤ 5/2. Writing the
error equations below as first order system decreases this number to β ≤ 3/2. If β
is chosen larger than 1 also the nonlinear terms gives a bound smaller than O(ε).
Hence we will choose β = 3/2 in the following. However, the linear, ψ-dependent
terms are only O(1)-bounded. Therefore the biggest part of this work is devoted to
the handling of these terms. The error equations are of the form

∂2tRu = ∂2xRu + ∂2t ∂
2
xRu + ∂2x(2ψuRu + 2ψvRu + 2ψuRv + 2ψvRv) + pu, (2.12)

∂2tRv = ∂2xRv −Rv + 2ψuRu + 2ψvRu + 2ψuRv + 2ψvRv + pv, (2.13)

where the terms pv and pu are defined by

pu = εβ∂2x(R
2
u + 2RuRv +R2

v) + ε−βResu,

pv = εβR2
u + 2εβRuRv + εβR2

v + ε−βResv

and they provide high enough orders w.r.t. ε such that they cause no difficulties in
arriving at the O(ε−1) time scale. Their Hs-norm can be estimated with help of
Lemma 2.2.2 by

≤ C(ε3/2(‖Ru‖Hs+2 + ‖Rv‖Hs+2)2 + ε2).

The terms that do cause difficulties are those in equations. (2.12)-(2.13) with no ε
in front.

We start by eliminating the non-resonant terms, which are underlined. In order
to do so we write (2.12)-(2.13) as a first order system, which in Fourier space has the
form,

∂tR̂u = ω1Ŵu

∂tŴu = −ω1R̂u − 2ω1(ψ̂u ∗ R̂u + ψ̂v ∗ R̂u + ψ̂u ∗ R̂v + ψ̂v ∗ R̂v) + εp̌u

∂tR̂v = ω2Ŵv

∂tŴv = −ω2R̂v + 2ω−12 (ψ̂u ∗ R̂u + ψ̂v ∗ R̂u + ψ̂u ∗ R̂v + ψ̂v ∗ R̂v) + εp̌v.

where Ŵu = ω−11 ∂tR̂u and Ŵv = ω−12 ∂tR̂v. The functions ω1(k) and ω2(k) are
defined by (2.3). The H0(s)-norm of the terms p̌u(k, t) = ε−1ω1(k)−1 1

k2+1
p̂u(k, t) and

p̌v(k, t) = ε−1ω2(k)−1p̂v(k, t), where p̂u and p̂v are the Fourier transform of pu and
pv, can be estimated by

≤ C((ε1/2(‖R̂u‖H0(s) + ‖R̂v‖H0(s))
2 + 1).

The reasons are as follows. Since the nonlinear terms in (2.9) have two spatial
derivatives in front, in Fourier space they are O(k2), and so the application of ω1(k)−1
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is well-defined for all the terms containing R̂u and R̂v and for most terms from the
residual. The terms which have to be dealt separately in the residual are time
derivatives. They can be expressed via (2.6) as terms with spatial derivatives in
front. Hence, in Fourier space all terms in p̂u(k, t) have at least a factor k and so the
application of ω1(k)−1 to these terms is well-defined. However, in the residual there
is a loss of O(ε−1) since one derivative is canceled by the application of ω1(k)−1.

Such a loss does not occur in the linear and nonlinear terms w.r.t. R̂u and R̂v since
their order w.r.t. ε purely comes from the amplitude and not from the long-wave
character of the ansatz (2.4).

We diagonalize this system with(
R̂u

Ŵu

)
=

1√
2

(
1 1
i −i

)(
R̂1

R̂−1

)
,

(
R̂v

Ŵv

)
=

1√
2

(
1 1
i −i

)(
R̂2

R̂−2

)

and find

∂tR̂1 = iω1R̂1 − iω1(ψ̂u ∗ (R̂1 + R̂−1) + ψ̂v ∗ (R̂1 + R̂−1) (2.14)

+ψ̂u ∗ (R̂2 + R̂−2) + ψ̂v ∗ (R̂2 + R̂−2)) + εp̌1,

∂tR̂−1 = −iω1R̂−1 + iω1(ψ̂u ∗ (R̂1 + R̂−1) + ψ̂v ∗ (R̂1 + R̂−1) (2.15)

+ψ̂u ∗ (R̂2 + R̂−2) + ψ̂v ∗ (R̂2 + R̂−2)) + εp̌−1,

∂tR̂2 = iω2R̂2 − iω−12 (ψ̂u ∗ (R̂1 + R̂−1) + ψ̂v ∗ (R̂1 + R̂−1) (2.16)

+ψ̂u ∗ (R̂2 + R̂−2) + ψ̂v ∗ (R̂2 + R̂−2)) + εp̌2,

∂tR̂−2 = −iω2R̂−2 + iω−12 (ψ̂u ∗ (R̂1 + R̂−1) + ψ̂v ∗ (R̂1 + R̂−1) (2.17)

+ψ̂u ∗ (R̂2 + R̂−2) + ψ̂v ∗ (R̂2 + R̂−2)) + εp̌−2.

The H0(s)-norm of the terms p̌−2, . . . , p̌2 can be estimated by

≤ C((ε1/2(‖R̂−2‖H0(s) + . . .+ ‖R̂2‖H0(s))
2 + 1).

2.3.1 The iteration process

Since we have to perform infinitely many transformations in order to control the
solutions of this system it is essential to extract its structure. Due to the symmetry
of the system it is sufficient to consider the equations for R̂1 and R̂2. We write for
the error functions
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∂tR̂1j(k, t) = iω1(k)R̂1,j(k, t) +

∫
f̂
(j)
1r (k, k −m, εt)

(
R̂1,j(m, t) + R̂−1,j(m, t)

)
dm

+

∫
f̂
(j)
1n (k, k −m, εt)

(
R̂2j(m, t) + R̂−2,j(m, t)

)
dm+ εp̌1,j(k, t),

(2.18)

∂tR̂2j(k, t) = iω2(k)R̂2,j(k, t) +

∫
f̂
(j)
2n (k, k −m, εt)

(
R̂1,j(m, t) + R̂−1,j(m, t)

)
dm

+

∫
f̂
(j)
2r (k, k −m, εt)(R̂2j(m, t) + R̂−2,j(m, t)

)
dm+ εp̌2,j(k, t).

(2.19)

Remark 2.3.1. Note f̂ (j)
.,. is proportional to the solutions Ψ̂j := (ψ̂u + ψ̂v)

j of
Whitham’s equations. And initially we have

f̂
(1)
1r (k, k −m, εt) = f̂

(1)
1n (k, k −m, εt) = −iω1(k)Ψ̂(k −m, εt)

f̂
(1)
2r (k, k −m, εt) = f̂

(1)
2n (k, k −m, εt) = −iω−12 (k)Ψ̂(k −m, εt).

There are the same equations for R̂−1,j and R̂−2,j, which are complex conjugates

of the equations from above, i.e., especially f̂
(j)
−1r = f̂

(j)
1r , f̂

(j)
−1n = f̂

(j)
1n , f̂

(j)
−2r = f̂

(j)
2r and

f̂
(j)
−2n = f̂

(j)
2n are valid.

The j-th near identity change of coordinates is given by

R̂1,j+1(k, t) = R̂1,j(k, t) +
∑

l∈{2,−2}

∫
ĝ
(j)
1l (k, k −m, εt)R̂l,j(m, t)dm, (2.20)

R̂2,j+1(k, t) = R̂2,j(k, t) +
∑

l∈{1,−1}

∫
ĝ
(j)
2l (k, k −m, εt)R̂l,j(m, t)dm. (2.21)
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We find

∂tR̂1,j+1(k, t) = ∂tR̂1,j(k, t) +
∑

l∈{2,−2}

∫
ĝ
(j)
1l (k, k −m, εt)∂tR̂l,j(m, t)dm

+ε
∑

l∈{2,−2}

∫
∂T ĝ

(j)
1l (k, k −m, εt)R̂l,j(m, t)dm

= iω1(k)R̂1,j(k, t) + Sr +
˜̃
Sn + εp̌1,j(k, t)

+ε
∑

l∈{2,−2}

∫
ĝ
(j)
1l (k, k −m, εt)p̌l,j(m, t)dm

+ε
∑

l∈{2,−2}

∫
∂T ĝ

(j)
1l (k, k −m, εt)R̂l,j(m, t)dm

where the resonant non-linearities Sr and non-resonant non-linearities
˜̃
Sn are given

by

Sr =

∫
f̂
(j)
1r (k, k −m, εt)

(
R̂1,j(m, t) + R̂−1,j(m, t)

)
dm

+
∑

l∈{2,−2}

∫ ∫
ĝ
(j)
1l (k, k −m, εt)f̂ (j)

ln (m,m− s, εt)
(
R̂1,j(s, t) + R̂−1,j(s, t)

)
dsdm

˜̃
Sn =

∫
f̂
(j)
1n (k, k −m, εt)

(
R̂2,j(m, t) + R̂−2,j(m, t)

)
dm

+
∑

l∈{2,−2}

∫
iωl(m)ĝ

(j)
1l (k, k −m, εt)R̂l,j(m, t)dm

+
∑

l∈{2,−2}

∫ ∫
ĝ
(j)
1l (k, k −m, εt)f̂ (j)

lr (m,m− s, εt)
(
R̂2,j(s, t) + R̂−2,j(s, t)

)
dsdm,

where we have set ω−2(m) := −ω2(m). Replacing R̂1,j by R̂1,j+1 in the linear part
with the help of (2.20) yields

∂tR̂1,j+1(k, t) = iω1(k)R̂1,j+1(k, t) + Sr + S̃n + εp̌1,j(k, t)

+ε
∑

l∈{2,−2}

∫
ĝ
(j)
1l (k, k −m, εt)p̌l,j(m, t)dm+O(ε)

+ε
∑

l∈{2,−2}

∫
∂T ĝ

(j)
1l (k, k −m, εt)R̂l,j(m, t)dm.



24 CHAPTER 2. WHITHAM

Hence S̃n could be written as

S̃n =
˜̃
Sn −

∑
l∈{2,−2}

∫
iω1(k)ĝ

(j)
1l (k, k −m, εt)R̂l,j(m, t)dm

In order to cancel the non-resonant terms in the non-linearities we set the first order
part of S̃n to zero as follows

0 =− iω1(k)

∫
ĝ
(j)
1l (k, k −m, εt)R̂l,j(m, t)dm

+

∫
iωl(m)ĝ

(j)
1l (k, k −m, εt)R̂l,j(m, t)dm

+

∫
f̂
(j)
1n (k, k −m, εt)R̂l,j(m, t)dm, (2.22)

so we obtain

∂tR̂1,j+1(k, t) = iω1(k)R̂1,j+1(k, t) + Sr + Sn + εp̌1,j(k, t)

+ ε
∑

l∈{2,−2}

∫
ĝ
(j)
1l (k, k −m, εt)p̌l,j(m, t)dm

+ ε
∑

l∈{2,−2}

∫
∂T ĝ

(j)
1l (k, k −m, εt)R̂l,j(m, t)dm (2.23)

and finally Sn takes the form

Sn =
∑

l∈{2,−2}

∫ ∫
ĝ
(j)
1l (k, k −m, εt)f̂ (j)

lr (m,m− s, εt)
(
R̂2,j(s, t) + R̂−2,j(s, t)

)
dsdm.

Equation (2.22) leads to

ĝ
(j)
1l (k, k −m, εt) = (iω1(k)− iωl(m))−1f̂

(j)
1n (k, k −m, εt)

for l ∈ {2,−2} and due to f̂
(j)
−1n = f̂

(j)
1n we get ĝ

(j)
−1l = ĝ

(j)
1−l. Analogous computations

for ĝ
(j)
2l yield

ĝ
(j)
2l (k, k −m, εt) = (iω2(k)− iωl(m))−1f̂

(j)
2n (k, k −m, εt)

for l ∈ {1,−1} and in the same way we have ĝ
(j)
−2l = ĝ

(j)
2−l. Due to the concentration

of the Ψ̂ at zero we make only an O(εj) error if we choose

ĝ
(j)
1l (k, k −m, εt) = (iω1(k)− iωl(k))−1f̂

(j)
1n (k, k −m, εt) +O(εj). (2.24)
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And the sum of all these errors will be of order O(ε) after infinitely many trans-
formations since the underlying geometric series converges. The same statement is
valid for the other possible indices of ĝ

(j)
·,· . We assume for the moment that the

transformation (2.20)- (2.21) is invertible and its inverse has the form

R̂i,j(k, t) = R̂i,j+1(k, t) +
∑

l∈{1,−1,2,−2}

∫
ĥ
(j)
il (k, k −m, εt)R̂l,j+1(m, t)dm (2.25)

with i ∈ {1,−1, 2,−2}. Inserting (2.25) in (2.23) leads to

∂tR̂1,j+1(k, t) =iω1(k)R̂1,j+1(k, t) +

∫ ∑
µ∈{1,−1}

f̂
(j+1)
1r (k, k −m, εt)R̂µ,j+1(m, t)dm

+

∫ ∑
µ∈{2,−2}

f̂
(j+1)
1n (k, k −m, εt)R̂µ,j+1(m, t)dm+ εp̌1,j+1(k, t)

(2.26)

where

f̂
(j+1)
1r (k, k −m, εt) =f̂

(j)
1r (k, k −m, εt) +

∑
λ∈{2,−2}

∫
ĝ
(j)
1λ (k, k − l, εt)f̂ (j)

λn (l, l −m, εt)dl

+

∫
f̂
(j)
1r (k, k − l, εt)

∑
κ∈{1,−1}

ĥ(j)κµ(l, l −m, εt)dl (2.27)

+
∑

λ∈{2,−2}

∫ ∫
ĝ
(j)
1λ (k, k − l1, εt)f̂ (j)

λn (l1, l1 − l2, εt)

×
∑

κ∈{1,−1}

ĥ(j)κµ(l2, l2 −m, εt)dl2dl1

+
∑

λ∈{2,−2}

∫ ∫
ĝ
(j)
1λ (k, k − l1, εt)f̂ (j)

λr (l1, l1 − l2, εt)

×
∑

κ∈{2,−2}

ĥ(j)κµ(l2, l2 −m, εt)dl2dl1,

(2.28)
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f̂
(j+1)
1n (k, k −m, εt) =

∑
λ∈{2,−2}

∫
ĝ
(j)
1λ (k, k − l, εt)f̂ (j)

λr (l, l −m, εt)dl

+

∫
f̂
(j)
1r (k, k − l, εt)

∑
κ∈{1,−1}

ĥ(j)κµ(l, l −m, εt)dl (2.29)

+
∑

λ∈{2,−2}

∫ ∫
ĝ
(j)
1λ (k, k − l1, εt)f̂ (j)

λn (l1, l1 − l2, εt)

×
∑

κ∈{1,−1}

ĥ(j)κµ(l2, l2 −m, εt)dl2dl1

+
∑

λ∈{2,−2}

∫ ∫
ĝ
(j)
1λ (k, k − l1, εt)f̂ (j)

λr (l1, l1 − l2, εt)

×
∑

κ∈{2,−2}

ĥ(j)κµ(l2, l2 −m, εt)dl2dl1,

and

p̌1,j+1(k, t) =
∑

λ∈{2,−2}

∫
∂T ĝ

(j)
1λ (k, k −m, εt)R̂λ,j(m, t)dm

+ p̌1,j(k, t) +
∑

λ∈{2,−2}

∫
ĝ
(j)
1λ (k, k −m, εt)p̌λ,j(m, t)dm. (2.30)

Due to the symmetry in (2.18) and (2.19) we can obtain a similar equation for R̂2

as in (2.26) but with the roles of R̂2 and R̂1 interchanged.
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2.3.2 Functional analytic set-up and properties of the in-
verse transformation

In the following we use the notation

‖f‖X :=

∫
sup
k∈R
|f(k, l)|(1 + (l/ε)2)s/2dl. (2.31)

Lemma 2.3.2. Let ‖ · ‖X be defined as in (2.31) then the following estimate holds:∥∥∥∥∫
R
f(k, k − l)g(l, l −m)dl

∥∥∥∥
X

≤ ‖f(k, l)‖X‖g(k, l)‖X .

Proof. We have∫
sup
k∈R

∣∣ ∫ f(k, k − l)g(l, l −m)dl
∣∣(1 + (m/ε)2)s/2dm

≤
∫ ∫

sup
k∈R
|f(k, l)| sup

k∈R
|g(k, l −m)|dl(1 + (m/ε)2)s/2dm.

Young’s inequality for convolutions in weighted Lp-spaces yields

≤
∫

sup
k∈R
|f(k, l)|(1 + (l/ε)2)s/2dl

∫
sup
k∈R
|g(k,m)|(1 + (m/ε)2)s/2dm

= ‖f(k, l)‖X‖g(k, l)‖X .

Lemma 2.3.3. Let R̂i,j ∈ L2(s) with s ≥ 1 be given and define R̂i,j+1 by the trans-
formation

R̂j+1(k, t) = (Id+ T (j))(R̂j(k, t)), (2.32)

where

T (j)(R̂j) =


0 0 T

(j)
12 T

(j)
1−2

0 0 T
(j)
−12 T

(j)
−1−2

T
(j)
21 T

(j)
2−1 0 0

T
(j)
−21 T

(j)
−2−1 0 0




R̂1,j

R̂−1,j
R̂2,j

R̂−2,j

 (2.33)

with (
T

(j)
il R̂l,j

)
(k, t) =

∫
ĝ
(j)
il (k, k −m, εt)R̂l,j(m, t)dm.
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Assume that there exists a q > 0 such that

‖ĝ(j)il ‖X ≤ q <
1

4
(2.34)

holds for indices i, l ∈ {1,−1, 2,−2}. Then the transformation (2.32) is bijective and
it has an inverse of the form

R̂i,j(k, t) = R̂i,j+1(k, t) +
∑

l∈{1,−1,2,−2}

∫
ĥ
(j)
il (k, k −m, εt)R̂l,j+1(m, t)dm

with

‖ĥ(j)il ‖X ≤
‖ĝ(j)‖X

1− ‖ĝ(j)‖X
, (2.35)

where we have written ‖ĝ(j)‖X = max
i,l∈{−2,−1,1,2}

{‖ĝ(j)il ‖X}.

Proof. It is clear that L2(s) is a Banach space and T (j) :
(
L2(s)

)4 → (
L2(s)

)4
is a

linear operator.
Let T

(j)
1 and T

(j)
2 be defined as follows

T
(j)
1 =

(
T

(j)
12 T

(j)
1−2

T
(j)
−12 T

(j)
−1−2

)
T

(j)
2 =

(
T

(j)
21 T

(j)
2−1

T
(j)
−21 T

(j)
−2−1

)
,

and set ‖T (j)‖ := max{‖T (j)
1 ‖, ‖T

(j)
2 ‖}, where we use the norm

‖T (j)
1 ‖2 = sup

‖(R̂2,j ,R̂−2,j)T ‖≤1

( ∑
l∈{2,−2}

‖T (j)
1l (R̂l,j)‖2L2(s) +

∑
l∈{2,−2}

‖T (j)
−1l(R̂l,j)‖2L2(s)

)
.

With the help of Young’s inequality for convolutions we have

‖T (j)
il R̂l,j‖L2(s) ≤ ‖ĝ(j)il ‖X‖R̂r,j‖L2(s).

Hence we have ‖T (j)
1 ‖ ≤ 4q < 1, for a q < 1

4
. In the same way we can show that

‖T (j)
2 ‖ ≤ 4q < 1 and hence ‖T (j)‖ ≤ 4q < 1 is valid. To justify the representation

(2.25) we argue as follows. First we show the invertibility of the transformation from
above. We use the Neumann series expansion for ‖T (j)‖ < 1

(Id− (−T (j)))−1 =
∞∑
λ=0

(
− T (j)

)λ
. (2.36)
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Secondly we prove that the series from (2.36) has the integral kernel form given

by (2.25). By (T (j)
)λ

we mean λ-times composition of T (j) or equivalently λ-times
matrix product. Thus we obtain a composition of operators presented in Lemma
2.3.3. For each pair T

(j)
il and T

(j)
st we can write

(T
(j)
il ◦ T

(j)
st )R̂1,j+1 =

∫
ĝ
(j)
il (k, k −m)

∫
ĝ
(j)
st (m,m− n)R̂1,j+1(n)dndm

=

∫ ∫
ĝ
(j)
il (k, k −m)g

(j)
st (m,m− n)dm︸ ︷︷ ︸

=ĥ(k,k−n)

R̂1,j+1(n)dn.

Hence we obtain inductively a series of integral kernels convolved with each error
function R̂i,j+1 as in (2.25). In this series we get for even λ non-resonant convolutions

and for odd λ resonant convolutions with the error fuction R̂i,j+1. The X-norm of

ĥ
(j)
ik is bounded by

‖h(j)ik ‖X ≤
∞∑
l=1

(
‖g(j)‖

)l
=
‖ĝ(j)‖X

1− ‖ĝ(j)‖X
.

This is exactly (2.35).

2.3.3 The induction

In Lemma 2.3.3, we assumed that (2.34) holds. Here we wish to show that all the

f̂
(j)
·,· , ĝ

(j)
·,· and ĥ

(j)
·,· do in fact satisfy such estimates or even sharper estimates. First

of all, using a simple application of Lemma 2.3.2 to (2.27) and (2.29) we get the
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following estimates

‖f̂ (j+1)
1r ‖X ≤ ‖f̂ (j)

1r ‖X +
∑

λ∈{2,−2}

‖ĝ(j)1λ ‖X‖f̂
(j)
λn ‖X + ‖f̂ (j)

1r ‖X
∑

κ∈{1,−1}

‖ĥ(j)κµ‖X

+
∑

λ∈{2,−2}

‖ĝ(j)1λ ‖X‖f̂
(j)
λn ‖X

∑
κ∈{1,−1}

‖ĥ(j)κµ‖X (2.37)

+
∑

λ∈{2,−2}

‖ĝ(j)1λ ‖X‖f̂
(j)
λr ‖X

∑
κ∈{2,−2}

‖ĥ(j)κµ‖X

and

‖f̂ (j+1)
1n ‖X ≤

∑
λ∈{2,−2}

‖ĝ(j)1λ ‖X‖f̂
(j)
λr ‖X + ‖f̂ (j)

1r ‖X
∑

κ∈{1,−1}

‖ĥ(j)κµ‖X

+
∑

λ∈{2,−2}

‖ĝ(j)1λ ‖X‖f̂
(j)
λn ‖X

∑
κ∈{1,−1}

‖ĥ(j)κµ‖X (2.38)

+
∑

λ∈{2,−2}

‖ĝ(j)1λ ‖X‖f̂
(j)
λr ‖X

∑
κ∈{2,−2}

‖ĥ(j)κµ‖X .

One can obtain analogous inequalities for ‖f̂ (j+1)
2r ‖X and ‖f̂ (j+1)

2n ‖X with suitably
adjusted indices. We will now give the important estimates mentioned earlier, from
which our main convergence results will follow.

Lemma 2.3.4. Let Cω = max
µ∈{1,−1} λ∈{2,−2}

sup
k∈R
|iωµ(k) − iωλ(k)|−1. There exists a

q < 1 with

‖f̂ (1)
νr ‖X + ‖f̂ (1)

νn ‖X = q, ν ∈ {1,−1, 2,−2}

such that for all j ∈ N

a) ‖f̂ (j)
κr ‖X ≤ q 1−q

j
2

1−q
1
2

b) ‖f̂ (j)
κn ‖X ≤ q

j+1
2

c) ‖ĝ(j)κλ‖X ≤ Cωq
j+1
2

d) ‖ĥ(j)κλ‖X ≤ 2Cωq
j+1
2

with κ, λ ∈ {2,−2, 1,−1}.
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Proof. Each f̂ (j)
.,. consists of powers of the solution Ψ̂ and we can choose for s ≤ 5

the norm ‖Ψ̂‖L1(s) sufficiently small in particular there exists a q > 0 with ‖f̂ (1)
ir ‖X +

‖f̂ (1)
in ‖X = q � 1. For the proof of this theorem we proceed by induction.

Inductive basis: For j = 1 the estimates a) and b) follow from our choice of q.
From (2.24) follows the assertion in c) for j = 1. From (2.35) we have

‖h(j)ik ‖X ≤
‖ĝ(j)‖X

1− ‖ĝ(j)‖X
.

Additionally let q be smaller than 1
2Cω

then due to the inductive basis for c) we
obtain the assertion in d) for j = 1.

Inductive step: We first obtain an estimate for the resonant term f̂
(j+1)
1,r . For the

ease of notation we define ‖f̂ (j)
n ‖X := max

κ∈{1,−1,2,−2}
‖f̂ (j)

κn ‖X . Using (2.24), (2.35) and

(2.37) we write

‖f̂ (j+1)
1r − f̂ (j)

1r ‖X ≤ 2Cω‖f̂ (j)
n ‖2X + 4Cω‖f̂ (j)

1r ‖X‖f̂ (j)
n ‖X

+8C2
ω‖f̂ (j)

n ‖3X + 8C2
ω‖f̂ (j)

n ‖2X‖f̂
(j)
2r ‖X

using the assumptions ‖f̂ (j)
in ‖X ≤ q

j+1
2 and ‖f̂ (j)

ir ‖X ≤ q 1−q
j
2

1−q
1
2

we write

0 < ‖f̂ (j+1)
1r − f̂ (j)

1r ‖X ≤ 2Cωq
j+1 +

4Cω

1− q 1
2

q
j+3
2 + 8C2

ωq
3(j+1)

2 +
8C2

ω

1− q 1
2

qj+2.

On the right-hand side of the inequality the power of q is greater than j
2

+ 1, since q
can be chosen sufficiently small, we can estimate the difference from above by

‖f̂ (j+1)
1r − f̂ (j)

1r ‖X ≤ qq
j
2 .

Summing over j, we obtain using the formula for a geometric series that

‖f̂ (j+1)
1r ‖X ≤ q

j∑
k=0

q
k
2 = q

1− q j+1
2

1− q 1
2

.

Using (2.38) and (2.35) we can estimate ‖f̂ (j)
in ‖X similarly to the resonant terms as

follows:

‖f̂ (j+1)
in ‖X ≤ 6Cωq

j+1
2 q

1− q j
2

1− q 1
2

+ 8Cωq
3(j+1)

2 + 8Cωq
j+21− q j

2

1− q 1
2

.
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Notice that here in each summand we have a higher power than q
j+2
2 , so that the

estimate
‖f̂ (j+1)

in ‖X ≤ q
j+2
2

is valid for small q. With the help of (2.35) we obtain the estimates from c) and d)
directly.

Remark 2.3.5. The same approximation result from Lemma 2.3.4 is also valid for
the partial derivatives of f̂

(j)
ir (k, l, εt), ĝ

(j)
ir (k, l, εt) and ĥ

(j)
ir (k, l, εt) w.r.t. the first com-

ponent and the time component, because the functions ωλ(k) with λ ∈ {2,−2, 1,−1}
are continously differentiable and the underlying series for ĥ

(j)
·,· converges uniformly.

The proof works in an absolutely analogous way.

2.3.4 Control of the O(ε) terms of the equation (2.26)

In this paragraph we show that the sum of all summands involving the factor ε in
(2.26) is bounded by a constant C throughout the whole transformation process.
Using (2.30) and Lemma 2.3.2 we find the following estimate for the H0(s)-norm of
p̌1,j+1.

‖p̌1,j+1‖H0(s) ≤
∑

λ∈{2,−2}

‖∂T ĝ(j)1,λ‖X‖R̂λ,j‖H0(s) + ‖p̌1,j‖H0(s) +
∑

λ∈{2,−2}

‖ĝ(j)1,λ‖X‖p̌λ,j‖H0(s),

where p̌1,1(k, t) was introduced in (2.18), which can be traced back to the equation

(2.10). Let ‖p̌j‖H0(s) = max
λ∈{1,2}

‖p̌λ,j‖H0(s) and ‖R̂j‖H0(s) = max
λ∈{1,2}

‖R̂λ,j‖H0(s). Apply-

ing Lemma 2.3.4 we obtain an additional estimate for the H0(s)-norm of p̌1,j+1

‖p̌1,j+1‖H0(s) ≤2Cωq
j+1
2 ‖R̂j‖H0(s) + (1 + 2Cωq

j+1
2 )‖p̌j‖H0(s).

W.l.o.g. let ‖p̌j‖H0(s) ≥ ‖R̂j‖H0(s) for some j (otherwise the bound ‖R̂j‖H0(s) already
provides the desired control of these terms due to the factor of ε in front). Then the
following inequality holds

‖p̌1,j+1‖H0(s) ≤ (1 + 4Cωq
1
2 (q

1
2 )j)‖p̌j‖H0(s).

We can choose q such that 4Cωq
1
2 ≤ 1 and q

1
2 ≤ q̃ < 1. The O(ε) terms after N

transformations can now be estimated by the product

‖p̌N‖H0(s) ≤ ΠN
j=0(1 + q̃j)‖p̌1‖H0(s).
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We can represent the latter product using the logarithm as follows:

ΠN
j=0(1 + q̃j) = e

∑N
j=0 ln(1+q̃

j).

The exponent will converge like a geometric series since ln(1+ q̃j) = O(q̃j) and q̃ < 1.

2.4 The transformed equations

After infinitely many transformations we can eliminate the non-resonant terms in
(2.26) to arrive at

∂tR̂1(k, t) =iω1(k)R̂1(k, t) +

∫ ∑
µ∈{1,−1}

f̂1r(k, k −m, εt)R̂µ(m, t)dm+ εp̌1,

∂tR̂−1(k, t) =− iω1(k)R̂−1(k, t)−
∫ ∑

µ∈{1,−1}

f̂1r(k, k −m, εt)R̂µ(m, t)dm+ εp̌1,

∂tR̂2(k, t) =iω2(k)R̂2(k, t) +

∫ ∑
µ∈{2,−2}

f̂2r(k, k −m, εt)R̂µ(m, t)dm+ εp̌2,

∂tR̂−2(k, t) =− iω2(k)R̂−2(k, t)−
∫ ∑

µ∈{2,−2}

f̂2r(k, k −m, εt)R̂µ(m, t)dm+ εp̌2,

where R̂λ and f̂λr are limits of R̂λ,j and f̂
(j)
λr for j → ∞, respectively. The H0(s)-

norm of the terms p̌1, . . . , p̌2 is bounded by a constant C.

Remark 2.4.1. The sequence
(
f̂
(j)
1r (k, k − m, εt)

)
j∈N

is a Cauchy sequence in X.

From the completeness of L2(s) and the uniform convergence it follows that the limit

f̂λr is in L2(s) as well for λ ∈ {2,−2, 1,−1}.
Undoing the diagonalisation yields

∂tR̂u(k, t) =ω2(k)Ŵu(k, t)

∂tŴu(k, t) =− ω2(k)R̂u(k, t) +

∫
f̂u(k, k −m, εt)R̂u(m, t)dm+O(ε)

∂tR̂v(k, t) =ω1(k)Ŵv(k, t)

∂tŴv(k, t) =− ω1(k)R̂v(k, t) +

∫
f̂v(k, k −m, εt)R̂v(m, t)dm+O(ε), (2.39)
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where

f̂u(k, k −m, εt) = 2if̂2r(k, k −m, εt) ∈ X,
f̂v(k, k −m, εt) = −2if̂1r(k, k −m, εt) ∈ X.

Now we want to demonstrate some useful properties in our nonlinearities.

Lemma 2.4.2. The functions f̂w(k, k −m, εt) with w ∈ {u, v} satisfy the following
properties:

(i) f̂w(k, k −m, εt) = f̂w(k,m− k, εt),

(ii) ‖f̂w(k, k −m, εt)− f̂w(m, k −m, εt)‖X = O(ε).

Proof. We know that f̂
(1)
λr (k, k−m, εt) = iωλ(k)Ψ̂(k−m, εt), where ωλ(k) and Ψ(k−

m, εt) are real valued functions. Using the property Ψ̂(k) = Ψ̂(−k), we obtain

f̂
(j)
λr (k, k −m, εt) =− f̂ (j)

λr (k,m− k, εt) (2.40)

f̂
(j)
λn (k, k −m, εt) =− f̂ (j)

λn (k,m− k, εt)

for j = 1. Using (2.24) we find that ĝ
(1)
λµ (k, k −m, εt) = ĝ

(1)
λµ (k,m− k, εt) and hence

ĥ
(1)
λµ(k, k −m, εt) = ĥ

(1)
λµ(k,m− k, εt).

With the help of (2.27) and a simple induction, it follows that (2.40) holds for all
j ∈ N. Hence, the assertion in (i) is valid.
We now prove (ii). We have

‖f̂w(k, k −m, εt)− f̂w(m, k −m, εt)‖X ≤‖ sup
ξ

∣∣∣∂1f̂w(ξ, k −m)
∣∣∣ (k −m)︸ ︷︷ ︸

=l

‖L1

=

∫
sup
ξ
∂1f̂w(ξ, l)(1 + (l/ε)2)s/2

l

(1 + (l/ε)2)s/2︸ ︷︷ ︸
=O(ε)

dl = ‖∂1f̂w‖XO(ε).

From Lemma 2.3.4 and Remark 2.3.5 the assertion in (ii) follows.

Remark 2.4.3. The reason why the second property in Lemma 2.4.2 holds is the
concentration of ψ̂n at the wave number k = 0.
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2.5 The final energy estimates

Now we use a technique from [CS11]; we will prove O(1)-boundedness of a certain
well-chosen energy, from which the desired approximation in Theorem 2.1.1 will
follow. To that end let Eu and Ev be the energies defined by

Eu(t) =

∫
ω2(k)R̂u(k, t)R̂u(k, t) + ω2(k)Ŵu(k, t)Ŵ u(k, t)dk (2.41)

Ev(t) =

∫
ω1(k)R̂v(k, t)R̂v(k, t) + ω1(k)Ŵv(k, t)Ŵ v(k, t)dk, (2.42)

respectively. Since the linear terms cancel we have

d

dt
Eu(t) =

∫
ω2(k)(∂tR̂u(k, t))R̂u(k, t) + ω2(k)R̂u(k, t)(∂tR̂u(k, t))

+ω2(k)(∂tŴu(k, t))Ŵu(k, t) + ω2(k)Ŵu(k, t)(∂tŴu(k, t))dk

=

∫ ∫
ω2(k)Ŵu(k, t)f̂u(k, k −m, εt)R̂u(m, t)dmdk

+

∫ ∫
ω2(k)Ŵu(k, t)f̂u(k, k −m, εt)R̂u(m, t)dmdk +O(ε)

=

∫ ∫
∂tR̂u(k, t)f̂u(k, k −m, εt)R̂u(m, t)dmdk

+

∫ ∫
∂tR̂u(k, t)f̂u(k, k −m, εt)R̂u(m, t)dmdk +O(ε)

=

∫ ∫
∂tR̂u(k, t)f̂u(k, k −m, εt)R̂u(m, t)dmdk

+

∫ ∫
∂tR̂u(m, t)f̂u(m,m− k, εt)R̂u(k, t)dmdk +O(ε)

=

∫ ∫
∂tR̂u(k, t)f̂u(k, k −m, εt)R̂u(m, t)dmdk

+

∫ ∫
∂tR̂u(m, t)f̂u(m, k −m, εt)R̂u(k, t)dmdk +O(ε)

=

∫ ∫
∂tR̂u(k, t)f̂u(k, k −m, εt)R̂u(m, t)dmdk

+

∫ ∫
∂tR̂u(m, t)f̂u(k, k −m, εt)R̂u(k, t)dmdk + ϑ+O(ε), (2.43)

where ϑ is given by

ϑ =

∫ ∫
∂tR̂u(m, t)

(
f̂u(k, k −m, εt)− f̂u(m, k −m, εt)

)
R̂u(k, t)dmdk.
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Applying Hölder’s inequality and Young’s inequality we arrive at

ϑ ≤ ‖∂tR̂u‖L2‖f̂u(k, k −m, εt)− f̂u(m, k −m, εt)‖L1‖R̂u‖L2 .

With the help of Lemma 2.4.2 we obtain that ϑ = O(ε) and equation (2.43) reads

d

dt
Eu(t) =

∫ ∫
∂t(R̂u(k, t)R̂u(m, t))f̂u(k, k −m, εt)dmdk +O(ε)

= ∂t

(∫ ∫
R̂u(k, t)R̂u(m, t)f̂u(k, k −m, εt)dmdk

)
+O(ε).

As a consequence we have
∂tE1 = O(ε),

where

E1(t) = Eu(t)−
∫ ∫

R̂u(k, t)R̂u(m, t)f̂u(k, k −m, εt)dmdk

+Ev(t)−
∫ ∫

R̂v(k, t)R̂v(m, t)f̂v(k, k −m, εt)dmdk.

Finally a simple application of Gronwall’s inequality yields the O(1)-boundedness
of E1 for all t ∈ [0, T0/ε] for ε > 0 sufficiently small. Taking into account (2.41)
we conclude the O(1)-boundedness also for Ru and the boundedness for Rv can be
concluded in an analogous way with the help of Ev defined in (2.42). Consequently
we have the following estimate

sup
t∈[0,T0/ε]

‖ (u, v)(·, t)− (U, V )(·, t) ‖Hs= ε3/2 sup
t∈[0,T0/ε]

‖ R(·, t) ‖Hs≤ Cε3/2.

With the help of the embedding theorem for Sobolev spaces in Hölder spaces in
[Alt06] we finally obtain the upper bound in Theorem 2.1.1. �



Chapter 3

Attractivity of the
Ginzburg-Landau mode
distribution for a pattern forming
system with marginally stable long
modes

Approximation and attractivity results are the basis of the classical Ginzburg-Landau
theory which allowed to prove global existence results and upper semicontinuity
of attractors towards the Ginzburg-Landau attractor for classical pattern forming
systems like the Taylor-Couette problem close to the first instability. Recently, first
approximation results for the Ginzburg-Landau approximation for pattern forming
systems with marginally stable long modes, like the Bénard-Marangoni system, have
been shown. It is the purpose of this chapter to prove the second fundamental
property, namely the attractivity for such systems, too.

3.1 Introduction and result

The Ginzburg-Landau equation can be derived via multiple scaling analysis in order
to describe slow modulations in time and space of the envelope of the most unstable
modes of classical pattern forming systems, like the Taylor-Couette problem or Be-
nard’s problem, close to the first instability. It was derived first in [NW69, dRCES71]
and first approximation results have been shown in [CE90, vH91, KSM92, Sch94b].
In [Eck93, Sch95, BvHS95] the attractivity of the set of solutions which can be

37
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ε2
O(ε)↔

−1 1 k

λ(k)

Figure 3.1: Curve of eigenvalues for
the new situation. There is a touching
point at wavenumber k = 0.

ε2
O(ε)
←→

−1 1 k

λ(k)

Figure 3.2: Curve of eigenvalues for
the classical situation. The modes of
the instabilities are of width O(ε).

described by the Ginzburg-Landau equation has been established. The approxi-
mation and attractivity property can be combined to establish global existence re-
sults [Sch94c, Sch99a] and the upper semicontinuity of the Ginzburg-Landau at-
tractor [MS95, Sch99b]. Recently, first approximation results [HSZ11, SZ13] for the
Ginzburg-Landau approximation for pattern forming systems with marginally stable
long modes, like the Benard-Marangoni system, were shown. This situation is called
in the following new situation. Here we will prove the second property, namely the
attractivity for such systems. In [BvHS95] the local attractivity property has been
shown in the case of the Kuramoto-Shivashinsky equation, for which the mode k = 0
is stable. The difference between the classical and the new situation can be seen in
Figure 3.1 and Figure 3.2. In the new situation we have in addition to the critical
modes a touching point at k = 0. As a consequence the quadratic interaction of the
critical modes gives rise to modes which are no longer exponentially damped.

We refrain from considering the greatest possible degree of generality and restrict
ourselves to a one-dimensional toy problem, namely

∂tu =
1

2
∂2x(1− ∂2x)2u+

1

2
ε2(∂6x − 3∂2x)u+ ∂2x(u

2), (3.1)

with x ∈ R, t ≥ 0, u(x, t) ∈ R, and 0 ≤ ε � 1. The solutions of the linearised
problem are given by eikx+λt, where

λ(k, ε) = −1

2
k2(1− k2)2 +

ε2

2
(3k2 − k6). (3.2)

The corresponding curves of eigenvalue, which are plotted in Figure 3.1, possess
positive eigenvalues for ε > 0 in the intervals |k ± 1| ≤ O(ε). The instability occurs
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at a non-zero wave number, namely here for k = ±1. With the ansatz

U(x, t) = εA1(εx, ε
2t)eix + ε2A2(εx, ε

2t)e2ix +
ε2

2
A0(εx, ε

2t) + c.c. (3.3)

we find

∂TA1 = 2∂2XA1 + A1 − 2(A0A1 + A2A−1),
∂TA0 = 1

2
∂2XA0 + 2∂2X(A1A−1),

0 = −18A2 − 4A2
1,

(3.4)

where X = εx and T = ε2t. Using the third equation of (3.4) yields the Ginzburg-
Landau like system

∂TA1 = 2∂2XA1 + A1 − 2A0A1 + 4
9
A1|A1|2

∂TA0 = 1
2
∂2XA0 + 2∂2X(A1A−1).

(3.5)

Remark 3.1.1. The solutions of the GL-system A1 and A0 are chosen in (3.3) as the
amplitude of the critical mode k = 1 and marginally stable mode k = 0 respectively.
These critical modes give rise to the Ginzburg-Landau pattern.

Remark 3.1.2. In [SZ13] it was shown that if A1 and A0 with certain regularity solve
the Ginzburg-Landau system (3.5) for 0 ≤ ε2t ≤ T , then for all initial perturbations
ε3/2u0 with supx∈R |u0| ≤ C = O(1), the corresponding U(x, t) as in (3.3) makes
correct predictions about the dynamics of our model (3.1) and satisfies following
estimate:

sup
t∈[0,T/ε2]

sup
x∈R
|u(x, t)− U(x, t)| ≤ Cε3/2.

For the classical case an attractivity property has been shown in the sense that
every small solution evolves in such a way that after a certain time it can be de-
scribed by the Ginzburg-Landau approximation. We will establish such a result
for (3.1), i.e., for the class of pattern forming systems with marginally stable long
modes. Following the classical situation, cf. [Eck93, BvHS95, Sch95], we prove that
after a time proportional to the natural scale of the Ginzburg-Landau approxima-
tion a Fourier mode distribution necessary for the derivation of the Ginzburg-Landau
equation occurs. After this time one observes for the solution of (3.1) some strongly
concentrated peaks at integer multiples of the critical wave number, which look more
or less like in Figure 3.3. These peaks correspond to the Fourier mode distribution
of the Ginzburg-Landau approximation.
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k|O(ε)|−1

•

•

•

O(ε3)

O(ε2)

O(ε)

|û(k)|

Figure 3.3: Peaks in the power spectrum corresponding to the structure of Ginzburg-
Landau solutions

We begin with the Fourier transform given by

û(k) =
1

2π

∫
R
u(x)e−ikxdx.

Writing (3.1) in Fourier space yields

∂tû = λ(k, ε)û− f(k)û ∗ û, (3.6)

where f(k) = k2 and ∗ denotes convolution. In order to describe such a pattern as
in Figure 3.3 we use a weighted L1-norm, with the family of weights defined by

1

ρn(k)
= ε(n+3)/2 max

j=±1,±2;
l=±3,··· ,±n

{
2, 1/(ε+ |k − j|)n/2−|j|+3/2,

1/(ε+ |k|)n/2−1/2, 1/(ε+ |k − l|)n/2−|l|/2+1/2
}
, n ∈ N. (3.7)
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k|O(ε)|−1

•

•

O(ε2)

O(ε5/2)
O(ε3)

O(ε)

1
ρn(k)

Figure 3.4: Sketch of the inverse of the weights ρn. In between the peaks the spectrum
is of order O(ε(n+3)/2).

We see in Figure 3.4 that the plot of k → 1/ρn(k) looks more or less similar
to Figure 3.3. Note that by construction the solution of (3.6) will feature such a
pattern shown in Figure 3.3 if we show that the L1-norm of the product û(k, t)ρn(k)
is bounded by a constant C. This is because with these weights peaks can only occur
at integer multiples of critical mode kc = ±1 and be of order O(εα) for α ≥ 1 as in
Figure 3.4. Therefore in the next step we will prove the following theorem for the
solution of (3.6):

Theorem 3.1.3. Consider the solution of (3.6) with initial condition û0(k) satisfying∫
R
|û0(k)|ρ1(k)dk ≤ C0 (3.8)

Then for all C0 > 0, n ∈ N there exist Cn, Tn and ε0 > 0 such that for all ε ∈ (0, ε0)
we have for the associated solution t 7→ û(k, t) with û(k, 0) = û0(k) that∫

R
|û(k, Tn/ε

2)|ρn(k)dk ≤ Cn.
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Remark 3.1.4. Theorem 3.1.3 asserts that, beginning with the initial condition
û0 as in (3.8), the solution of (3.6) converges to the clustered mode-distribution
corresponding to evolution of the Ginzburg Landau solution.

Remark 3.1.5. We follow the approach of [BvHS95] with a modification for the
initial condition û0. Due to the assumption (3.8) only two peaks of order O(ε)
around critical modes are allowed, elsewhere the initial condition is at least of order
O(ε2) (cf. Figure 3.5). This restriction is neccessary because of the structure of the
GL-solution at the wavenumber k = 0. In (3.3) we have ε2 in front of A0 and the
curves of eigenvalue are only marginally stable at the mode k = 0 (see Figure 3.1),
hence there, our solution should be initially O(ε2) since there is no decay at k = 0.

k−1 1

•

•

O(ε2)

O(ε)

1
ρ1(k)

Figure 3.5: Sketch of the inverse of the weight ρ1
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3.2 Preparations

In order to control the convolution (i.e. the nonlinearity in physical space) we need
to define a second family of weights ρ∗n as follows:

1

ρ∗n(k)
= ε(n+5)/2 max

m=±1;
l=±2,··· ,±n

{
2ε−1/2, 1/(ε+ |k|)n/2+1/2,

1/(ε+ |k −m|)n/2−1/2, 1/(ε+ |k − l|)n/2−|l|/2+3/2
}
.

k

O(ε5/2)

|O(ε)|−1

•

•

O(ε3)

O(ε2)

1
ρ∗n(k)

Figure 3.6: Sketch of the inverse of the weights ρ∗n. In between the peaks is the
spectrum of order O(ε(n+4)/2).

The plot of k → 1/ρ∗n(k) can be found in Figure 3.6. We note that for an
arbitrary integrable function h ∈ L1, the mode structure and ε-powers of h∗h

ρ∗n(k)
are

almost the same as those of h
ρn(k)

convoluted with itself. Since this is true for all

such h ∈ L1, we consider that, at least formally, 1 ∗ 1/ρ∗n(k) and 1/ρn(k) ∗ 1/ρn(k)
have the same mode structure and ε-powers, even though 1/ρn(k) are technically
speaking not integrable. Due to the invariance of the distribution under convolution,
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the peaks of 1
ρ∗n(k)

again appear at integer multiples of the critical wave number. Since
we have to treat the critical modes, the noncritical mode and the mode at the origin
separately, we define the so-called “mode filters” Ec, Eb and E0. These mode filters
are defined as characteristic functions on the intervals Ic = [−5/4,−3/4]∪ [3/4, 5/4],
I0 = [−1/4, 1/4] and Ib as the complement of Ic ∪ I0, respectively. In addition we
need to define ρcn, ρbn, ρ0n, ρc,∗n , ρb,∗n and ρ0,∗n . In mathematical terms they satisfy:

Ei(k) =

{
1, k ∈ Ii
0, k 6∈ Ii

, ρin = Eiρn and ρi,∗n = Eiρ
∗
n with i ∈ {c, b, 0}.

A simple calculation shows that the weights have the following properties:

ρc,∗n (k + l) ≤ Cρcn(k)ρbn(l), ρc,∗n (k + l) ≤ Cρcn(k)ρ0n(l),

ρc,∗n (k + l) ≤ Cερbn(k)ρbn(l), ρc,∗n (k + l) ≤ Cερbn(k)ρ0n(l),

ρb,∗n (k + l) ≤ Cερbn(k)ρbn(l), ρb,∗n (k + l) ≤ Cε1/2ρcn(k)ρbn(l),

ρb,∗n (k + l) ≤ Cερbn(k)ρ0n(l), ρb,∗n (k + l) ≤ Cρcn(k)ρcn(l),

ρb,∗n (k + l) ≤ Cε1/2ρcn(k)ρ0n(l), ρb,∗n (k + l) ≤ Cε3/2ρ0n(k)ρ0n(l),

ρ0,∗n (k + l) ≤ Cερ0n(k)ρ0n(l), ρ0,∗n (k + l) ≤ Cρcn(k)ρcn(l),

ρ0,∗n (k + l) ≤ Cρcn(k)ρbn(l), ρ0,∗n (k + l) ≤ Cερbn(k)ρbn(l),

ρ0,∗n (k + l) ≤ Cερ0n(k)ρbn(l)

(3.9)

The inequalities (3.9) are valid for all k and l in the indexed intervals, e.g. the
inequality ρc,∗n (k + l) ≤ Cρcn(k)ρ0n(l) holds for all k ∈ Ic, l ∈ I0 and k + l ∈ Ic. The
other index combinations do not contribute to the corresponding convolutions. The
convolution of the critical modes gives noncritical modes and this property is one of
the essential points in the proof of Theorem 3.1.3. In the following we demonstrate in
detail how the estimates in (3.9) are obtained. We do this for a few selected indices,
namely for ρ0,∗n (k + l) ≤ Cρcn(k)ρbn(l) and ρ0,∗n (k + l) ≤ Cερ0n(k)ρ0n(l), since the other
cases are similar.
Let k + l ∈ I0 then we assume k ∈ Ic and thus

l ∈ [−3/2,−5/4] ∪ [−3/4,−1/2] ∪ [1/2, 3/4] ∪ [5/4, 3/2].
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Then we have

ρ0,∗n (k + l) = ε−
n+5
2 (ε+ |k + l|)

n+1
2 = ε−2

(
1 +
|k + l|
ε

)n+1
2

≤ ε−2 max
j=±1

(
1 +
|k − j|
ε

)n+1
2
(

1 +
|l + j|
ε

)n+1
2

≤ Cρcn(k)ε−1
(

1 +
|l + j|
ε

)n+1
2

︸ ︷︷ ︸
=O(ε−

n+1
2 )

≤ Cρcn(k)ρbn(l),

where we have used the inequality (1 + a + b)p ≤ (1 + a)p(1 + b)p for all a, b, p ≥ 0.
For the second estimate we assume k, l ∈ I0 and write

ρ0,∗n (k + l) = ε−
n+5
2 (ε+ |k + l|) (ε+ |k + l|)

n−1
2

= ε−3 (ε+ |k + l|)︸ ︷︷ ︸
≤O(1)

(
1 +
|k + l|
ε

)n−1
2

≤ Cεε−2
(

1 +
|k|
ε

)n−1
2

ε−2
(

1 +
|l|
ε

)n−1
2

≤ Cερ0n(k)ρ0n(l).

This proves the two representative cases from (3.9) that we wished to show.

3.3 Proof of attractivity

The proof of Theorem 3.1.3 is based on induction. We begin directly with the
inductive step, i.e., we show that ‖û(·, Tn/ε2)ρn‖L1 < Cn implies the estimate

‖û(·, Tn+1/ε
2)ρn+1‖L1 ≤ Cn+1

for a Tn+1 > Tn. In order to do so we determine a time T̃n such that

sup
0<t<Tn+1/ε2

‖û(·, t)ρn‖L1 < Cn

with Tn+1 = Tn+ T̃n, and then we show the boundedness of the solution with the new
weight ρn+1 i.e. supTn/ε2<t<Tn+1/ε2 ‖û(·, t)ρn+1‖L1 ≤ Cn+1. We consider the following
lemma:
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Lemma 3.3.1. (Induction step) Let û(k, t) be a solution of (3.6) as in Theorem 3.1.3
and ρn(k) be defined as in (3.4). Then for all Cn there exist Cn+1, Tn+1 > Tn > 0
and ε0 > 0 such that for all ε ∈ (0, ε0) the implication

‖û(k, Tn/ε
2)ρn(k)‖L1 ≤ Cn =⇒ ‖û(k, Tn+1/ε

2)ρn+1(k)‖L1 ≤ Cn+1 (3.10)

is valid.

In Lemma 3.3.1 the constants Cn are independent of the choice of ε. The base
clause as we will see later follows in an analogous fashion using (3.8). The next
section is completely devoted to the proof of Lemma 3.3.1 and hence the proof of
Theorem 3.1.3

We will use the same letter C to denote constants which may vary from line to
line, but are always independent of ε. Here the notation ûn(·, 0) := û(·, Tn/ε2) will
be useful.

I) First, we show that there exist C̃n, T̃n and ε0 > 0 such that

sup
0<t<T̃n/ε2

‖ûn(t)ρn‖L1 ≤ C̃n

for all 0 < ε < ε0. For this purpose we split the estimate with the help
of Ec, Eb and E0 into three parts. We set Mi(t) = sup0≤s≤t ‖Eiûn(s)ρn‖L1

with i ∈ {c, b, 0} and ‖ûn(0)ρn‖L1 =: Cn/4. With the help of the variation of
constants formula we can write for the critical part

Mc(t) = sup
0≤s≤t

‖Ecûn(s)ρn‖L1

≤ eε
2t‖Ecûn(0)ρn‖L1

+

∫ t

0

sup
k∈Ic

∣∣∣∣k2eλ(k)(t−τ)ρnρ∗n
∣∣∣∣ ‖Ec(ûn ∗ ûn)(τ)ρ∗n‖L1dτ. (3.11)

We split the function ûn into ûbn, û0n and ûcn, where ûin = Eiûn, and we write
for the convolution

Ec

(
(ûcn + ûbn + û0n) ∗ (ûcn + ûbn + û0n)

)
= Ecû

c
n ∗ ûcn︸ ︷︷ ︸
=0

+2Ecû
c
n ∗ ûbn

+2Ecû
c
n ∗ û0n + Ecû

0
n ∗ û0n︸ ︷︷ ︸
=0

+2Ecû
b
n ∗ û0n + Ecû

b
n ∗ ûbn,



3.3. PROOF OF ATTRACTIVITY 47

thus we find with the help of (3.9)

sup
0≤s≤t

‖Ec(ûn ∗ ûn)(s)ρ∗n‖L1 ≤ C
(

2Mc(t)Mb(t) + 2Mc(t)M0(t)

+εM2
b (t) + εMb(t)M0(t)

)
.

For the exponential part we calculate

sup
k∈Ic

∣∣∣k2eλ(k)(t−τ)ρn
ρ∗n

∣∣∣ ≤ sup
K∈R

Cε2e−K
2T (|K|+ 1).

Here we use the substitutions K = k−1
ε

and T = ε2(t− τ). A further substitu-
tion given by S2 = K2T yields the estimate

sup
k∈Ic

∣∣∣k2eλ(k)(t−τ)ρn
ρ∗n

∣∣∣ ≤ C sup
S∈R

e−S
2

(
|S|√
T

+ 1

)
ε2.

Since e−S
2|S|α is bounded by a constant C for all S ∈ R and α ∈ N, we write

for (3.11)

Mc(t) ≤
Cn
2

+ C

∫ 0

ε2t

−
(

1√
T

+ 1

)
dT

×
(
2Mc(t)Mb(t) + 2Mc(t)M0(t) + εM2

b (t) + εMb(t)M0(t)
)
.

A simple integration gives us

Mc(t) ≤
Cn
2

+ C(2
√
ε2t+ ε2t)(2Cn(Cb + C0) + 1) (3.12)

as long as Mc(t) ≤ Cn, Mb(t) ≤ Cb, M0(t) ≤ C0 and if we choose ε and t such
that εC2

b + εCbC0 < 1 and eε
2t < 2.

For the estimate in the set Ib we write

Mb(t) ≤ ‖ûn(0)ρn‖L1 +

∫ t

0

sup
k∈Ib

∣∣∣∣k2eλ(k)(t−τ)ρnρ∗n
∣∣∣∣ ‖Eb(ûn ∗ ûn)(τ)ρ∗n‖L1dτ.

As above we obtain here for the nonlinearities

sup
0≤s≤t

‖Eb(ûn ∗ ûn)(s)ρ∗n‖L1 ≤ C
(
M2

c (t) + 2ε1/2Mc(t)Mb(t) + 2ε1/2Mc(t)M0(t)

+ε3/2M2
0 (t) + 2εMb(t)M0(t) + εM2

b (t)
)
.
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Now since the integrand in the set Ib is exponentially damped we can write

Mb(t) ≤
Cn
2

+ C(C2
n + 1), (3.13)

where we have chosen ε > 0 such that

2ε1/2CnCb + 2ε1/2CnC0 + ε3/2C2
0 + 2εCbC0 + εC2

b ≤ 1.

The estimate in the I0 works slightly differently. On the one hand, the quotient
ρn
ρ∗n

in I0 is only O(1) in I0. On the other hand, we have to control the integrand

over the time T/ε2, which leads to a potential problem. Therefore we arrange
the integral in the following way:

M0(t) ≤ ‖ûn(0)ρn‖L1 +

∫ t

0

sup
k∈I0
|keλ(k)(t−τ)|‖kE0(ûn ∗ ûn)(τ)ρn‖L1dτ.

Here, with the help of a simple substitution k2(t− τ) = s2, we can write

sup
k∈I0

∣∣keλ(k)(t−τ)∣∣ ≤ sup
s∈R

∣∣∣∣Ce−s2 s

(t− τ)1/2

∣∣∣∣ ≤ C(t− τ)−1/2.

Hence

M0(t) ≤
Cn
4

+

∫ t

0

C(t− τ)−1/2‖kE0(ûn ∗ ûn)(τ)ρn‖L1dτ.

We write

‖kE0(ûn ∗ ûn)(τ)ρn‖L1 ≤ ‖kE0(û
c
n ∗ ûcn)(τ)ρn‖L1 + 2‖kE0(û

c
n ∗ ûbn)(τ)ρn‖L1

+‖kE0(û
0
n ∗ û0n)(τ)ρn‖L1 + 2‖kE0(û

0
n ∗ ûbn)(τ)ρn‖L1

+‖kE0(û
b
n ∗ ûbn)(τ)ρn‖L1 .

In order to gain an ε we proceed as follows. Since |k| ≤ ε+ |k| we can write

kE0ρn(k) =kε−
n+3
2 (ε+ |k|)

n−1
2

≤εε−
n+5
2 (ε+ |k|)(ε+ |k|)

n−1
2

≤εE0ρ
∗
n(k).

Using the properties in (3.9) and the fact that sup
k∈I0
|k| ≤ C yields
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M0(t) ≤
Cn
4

+ Cε
√
t(C2

n + CnCb + εC2
0 + εC0Cb + εC2

b ). (3.14)

Due to the inequalities (3.13) und (3.14) we can substitute both C0 and Cb by

Cn in (3.12). Let T̃n = ε2t > 0 be arbitrary small such that

C

(√
T̃n + T̃n

)
(2Cn(Cb + C0) + 1) <

Cn
2
.

Hence the inequality (3.12) yields the boundedness for Cn and with the help of
(3.13) and (3.14) we obtain the boundedness for Cb and C0. Now the estimates

Mi(T̃n/ε
2) ≤ C̃n holds for a positive time T̃n and for all i ∈ {c, b, 0} where we

set C̃n := Cn + Cb + C0 and Tn+1 = Tn + T̃n.

II) Now we show that there exist ε0, Ĉn > 0 such that for all 0 < ε < ε0 the

estimate ‖ûn(T̃n/ε
2)ρn+1‖L1 ≤ Ĉn holds. Using the weight ρn+1 for the estimate

around critical modes yields

‖Ecûn(T̃n/ε
2)ρn+1‖L1 ≤ C sup

k∈[3/4,5/4]

∣∣∣∣e−(k−1)2T̃n/ε2 ρn+1

ρn

∣∣∣∣ ‖ûn(0)ρn‖L1

+

∫ T̃n/ε2

0

sup
k∈Ic

∣∣∣∣k2eλ(k)(T̃n/ε2−τ)ρn+1

ρ∗n

∣∣∣∣ dτ(2CCn(Cb + C0) + 1)

≤ C
Cn
4

sup
|k|<1/4

∣∣∣e−k2T̃n/ε2(1 + |k|/ε)1/2
∣∣∣

+C

∫ T̃n/ε2

0

sup
K
e−K

2ε2(T̃n/ε2−τ)ε2(εK + 1)2(1 + |K|)3/2dτ

× (2CCn(Cb + C0) + 1)

≤ C
Cn
4

(1 + T̃−1/4n ) + C(T̃n + T̃ 1/4
n )(2CCn(Cb + C0) + 1)

= O(1),

where we applied the substitution K = k−1
ε

and used the fact that λ(k) is only
positive for k with |k ± 1| ≤ O(ε). For the stable modes we calculate

‖Ebûn(T̃n/ε
2)ρn+1‖L1 ≤ Cne

−σ2T̃n/ε2
1

ε

+

∫ T̃n/ε2

0

sup
k∈Ib

∣∣∣∣k2eλ(k)(T̃n/ε2−τ)ρn+1

ρ∗n

∣∣∣∣ dτ(CC2
n +O(ε1/2))

≤ 1 + C(C2
n +O(ε1/2)) = O(1),
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where we use ρbn+1 ≤ ρb,∗n , and have chosen ε such that Cne
−σ2T̃n/ε2 1

ε
≤ 1.

For the last section I0 we write

‖E0ûn(T̃n/ε
2)ρn+1‖L1 ≤ C sup

k∈I0

∣∣∣∣e−k2T̃n/ε2 ρn+1

ρn

∣∣∣∣ ‖û(0)ρn‖L1

+

∫ T̃n/ε2

0

sup
k∈I0

∣∣∣∣keλ(k)(T̃n/ε2−τ)ρn+1

ρn

∣∣∣∣ ‖kE0(ûn ∗ ûn)(τ)ρn‖L1dτ

≤ C
Cn
4

(1 + T̃−1/4n )

+

∫ T̃n/ε2

0

sup
k∈I0

∣∣∣∣∣keλ(k)(T̃n/ε2−τ)
(

1 +
|k|
ε

)1/2
∣∣∣∣∣ dτ︸ ︷︷ ︸

≤CT̃ 3/4

(O(ε))

≤ C
Cn
4

(1 + T̃−1/4n ) + 1 = O(1).

Here we apply the same method as above.

Due to our choice of initial condition in Theorem 3.1.3, for the induction base, we
only need to show that there exist a T1 and C1 such that ‖û(., T1/ε

2)ρ1‖ ≤ C1. But

this will coincides with the first part of our inductive step for the choice T1 = T̃0 and
T0 = 0. Hence Theorem 3.1.3 and Lemma 3.3.1 is proved.
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