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1. Introduction

Granular materials are ubiquitous in nature, industrial processing and everyday life.

Examples range from small scale particles in dust, graphite powder, cement or �our over

medium-sized sand grains, plastic granulates and corn�akes to the planetary rings on

the astrophysical scale. Similarly broad are the physical phenomena controlling their

behavior in transport, storage and processing.

In the last years, granular media have attracted a lot of attention [80]. Dissipative,

many-particle systems far from equilibrium are one possible description of this fascinat-

ing granular �state of matter�. Classical kinetic theories have been extended to account

for dissipation and higher densities (see for example refs. [14, 21] and references therein).

However, most of the classical and advanced approaches for a theoretical description of

rapid granular �ow are based on the assumption of molecular chaos � the assumption

that the velocities and positions of all colliding pairs of particles in a gas are uncorre-

lated. In a gas, the errors introduced by this assumption are small. In dense granular

�ows, correlations between colliding particles may be important, leading to qualitative

changes in behavior.

Other continuum-mechanical descriptions are describing granular materials for spe-

ci�c �ows like static heaps [127], surface �ow [12] or heap formation [35]. Despite their

success in describing these �ows, they are not applicable to general �ows.

However, despite their importance, continuum or other large-scale modeling still

shows severe de�ciencies and our understanding of the mesoscopic physics in these sys-

tems, as exempli�ed by fragmentation, dissipative e�ects, sound propagation, etc. is

incomplete since many theoretical methods otherwise applicable to many-particle sys-

tems do not apply. Therefore, large-scale computation is sometimes the only way to

deepen our insight. The reason is that typical granular systems consist of millions of

particles and most phenomena are only visible on long time scales.

For many years discrete methods have been used where the granular material is

treated as an assemblage of particles. This method was introduced by Cundall to simu-

late the motion of rock masses [20]. The so called Molecular Dynamics (MD) has been

applied to a wide range of �ows and phenomena. Examples are size segregation [104],

density waves in pipe �ow [43, 103], pressure distribution in heaps [73] and shear �ow [16].

Variants of MD that incorporate static friction have been used to examine the details

of force distributions in granular assemblies [106, 107]. One problem of MD is the huge

amount of computer time that is required to simulate large systems. Many time steps

are necessary to cover long time scales when sti� particles are involved. Since in many

cases it is justi�ed to model the granular particles as in�nitely rigid spheres, fast algo-
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1. Introduction

rithms for Hard Sphere Molecular Dynamics have been proposed [62] and applied to �elds

like vibrated granular materials [70], dense pipe �ow [69] or freely evolving dissipative

particles[77]. A problem of this algorithm is the so called �inelastic collapse�[76, 78]: the

number of collisions per unit time may diverge and this makes it impossible to integrate

the further evolution of the system. So far, there is also no e�cient parallel version which

limits the method to small and moderate particle numbers. Further simpli�cations are

introduced by the lattice gas automaton (LGA) models. Here, the particles are located

at the vertices of a two dimensional triangular lattice. LGA simulations [105, 122] have

been applied to simulate pipe �ow [97], heap formation [7] and out�ow of a hopper [8, 9].

The simplicity of the model allows a simulation to follow a large number of particles. On

the other hand, since the movement of particles is �xed to the lattice the isotropy and

homogeneity of space is not maintained. Care has to be taken that the resulting artifacts

do not limit the validity of results. Since all methods have their speci�c advantages and

disadvantages there is clearly the need for methods that can e�ciently simulate large

particle numbers and can be applied to a wide range of granular �ows.

A common approach to develop a computer simulation consists of several subsequent

steps. First a model has to be developed that represents the physical system of interest.

Most of the time this model consists of di�erential equations describing the dynamic

behavior. In a second step an appropriate numerical scheme is required to solve these

equations. This scheme has to be implemented, normally in a high level programming

language like Fortran or C. A more direct approach is to use a numerical program

like matlab that o�ers implementations for most standard numerical schemes. If the

problems require large-scale computation a �nal step is the parallelization of the program

to make use of high-end massive parallel or parallel vector computers. At the end the

resulting program has of course to be veri�ed for correctness. The task of this thesis

included all of the described phases. The idea was to model the physical system from

the very beginning in a way that makes it suitable for fast parallel computation. This

approach comprises the �ve steps described above into one design process. The name

Hybrid Simulation Monte Carlo or HSMC was selected, because the resulting algorithm

combines several elements of di�erent methods. The abreviation HSMC also resembles

DSMC (Direct Simulation Monte Carlo), the method that served as a starting point in

the development of the algorithm. The name HSMC should not be confused with hybrid

Monte Carlo simulation [125], which is a general term for methods that combine Monte

Carlo elements with other approaches.

A crucial part of this work was the selection of appropriate test cases that could

�rst serve as a guideline in the development of the algorithm and later be used as

veri�cation. Homogeneous cooling was selected as �rst test case, because it treats the

most basic phenomenon: dissipation. The correct behavior of HSMC is veri�ed by

comparing with theoretical results. The next case already shows the demand for large-

scale computation. The studied clustering instabilities occurs only in systems that are

large enough. Due to the lack of su�cient theoretical knowledge the results of HSMC are

compared with results of event driven simulations. In both systems the granular particles

are freely evolving, without external forces. In the next two cases driven granular �ows

are treated. Here energy is brought into the system either by the walls or by gravity

2



acting on the particles. The next system that is considered is even more di�cult to treat

with a stochastic method like HSMC. So far, the systems have all been kept dynamic,

either freely evolving or kept alive by a continuous supply of energy. In the case of heaps

however, the system comes to rest in a well de�ned state. The heap does not only show

a well de�ned angle of repose, but also small deviations at its tail. Because a transition

from dynamics to statics is typical for granular systems the correct treatment of this

�nal test case was not only di�cult, but also very important.

Chapter 3.6 looks at one of the assumptions HSMC is based upon: the correlations

that exists between di�erent particles in a dissipative system and to what extent they

are re�ected by HSMC. The section about vibrated beds is an additional case study

where the results of the stochastic DSMC are compared with results from hard sphere

molecular dynamics. This does not only show once again the correctness of the method,

but also answers the question whether correlations between particles in a narrow two

dimensional systems are important for the correct scaling behavior.

The structure of this thesis is as follows: at the beginning there is a short intro-

duction into the theory that is the basis of the algorithm that was developed in this

thesis. Afterwards this simulation algorithm is presented. Since it is based on the Direct

Simulation Monte Carlo method (DSMC), several variations that exist in literature are

described in the next chapter. One important issue before and during the course of

developing a simulation method is to learn from other simulation methods. Chapter

2.5 shortly describes some methods that are used to simulate granular matter and were

candidates for fast parallel methods. The next chapters treat the phenomena that were

chosen to be representative for granular matter.

The last two chapters treat computational issues. Although HSMC was designed

to run e�ciently on parallel supercomputers, the ever growing demand for larger and

more precise simulations asks for coupling these supercomputers. This so called meta-

computing poses new threads to the algorithms used in this �eld. Chapter 4.1 describes

the experiences made in several testbeds and why DSMC and HSMC are well suited for

metacomputing. Finally chapter 4.2 talks about the implementation of the algorithm.

There are several reasons to talk about the implementation. First it is an important

issue for the performance of the resulting program, second it supplies another viewpoint

of the algorithm and �nally the program was implemented in C++. This is still uncom-

mon in the scienti�c community where due to performance considerations Fortran and

C are still the most used languages.
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2. Theory and Models

2.1. Statistical Mechanics

The size of granular particles range from a fraction of a millimeter in dust to kilome-

ters in planetary rings. In experiments a small setup contains thousands of particles.

Industrial systems are much larger and consist of millions of particles. Due to the size

and numbers of particles granular systems are subject to be described with classical

statistical mechanics.

All systems in this thesis consist of N identical particles. Each particle has d trans-

lational degrees of freedom and is described by its position x and momentum p = mv.

The whole system is completely speci�ed by its dN coordinates xN � fx1; :::;xNg and
dN momenta pN � fp1; :::;pNg. These values determine a point in the 2dN dimensional

phase space.

The motion of the system in the phase space is described by the Hamilton equation

_xi =
@H

@pi
(2.1)

_pi = �@H
@xi

; (2.2)

where H is the Hamiltonian of the system:

HN(x
N ;pN ) =

NX
i=1

1

2mi

jpij2 + VN(x
N): (2.3)

The solution is determined by the 2dN initial condition on the coordinates and momenta.

The aim of statistical mechanics is not to �nd a solution for a single initial condition,

but to calculate observable properties of the system as either time-average or ensemble

average. The later is called Gibbs' method. In Gibbs' formulation the distribution of

an ensemble is described by a phase-space probability density f (N)(xN ;vN). The time

evolution of f is governed by the Liouville equation

@f (N)

@t
=

NX
i=1

�
@HN

@xi

@f (N)

@pi
� @HN

@pi

@f (N)

@xi

�
: (2.4)

The full phase space probability density f (N) provides a very detailed description of

the system. For many purposes it is su�cient to describe only a subset of n particles.
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2. Theory and Models

The unnecessary information can be eliminated by integrating f (N) over the coordinates

and momentum of the remaining N � n particles, resulting in a reduced phase-space

distribution function f (n), which is de�ned as

f (n)(xn;pn; t) =
N !

(N � n)!

Z Z
f (N)(xN ;pN ; t)dx(N�n)dp(N�n): (2.5)

The factor N !
(N�n)! is the number of di�erent ways to choose n particles out of N .

If the interaction between the particles is limited to a pairwise interaction, the total

force Fi acting on a particle i can be written as sum of an external Force Fext
i and the

pair forces Fij. The Liouville equation then becomes

@f (N)

@t
+

1

m

NX
i=1

pi
@f (N)

@xi
+

NX
i=1

Fext
i

@f (N)

@pi
=

NX
i=1

NX
j=1

Fij

@f (N)

@pi
: (2.6)

We can now integrate over (N � n) positions and momenta and insert de�nition (2.5).

By exploiting the symmetry of f (N) with respect to interchange of particle labels and

the fact that f (N) vanishes when either pi !1 or xi lies outside the volume occupied

by the system, we �nd that [38]

@f (N)

@t
+

1

m

NX
i=1

pi
@f (N)

@xi
+

NX
i=1

Fext
i

@f (N)

@pi

= � N !

(N � n)!

NX
i=1

NX
j=1

Z Z
Fij

@f (N)

@pi
dx(N�n)dp(N�n)

= �
nX
i=1

nX
j=1

Fij �
N !

(N � n)!

nX
i=1

NX
j=n+1

Z Z
Fij

@f(N)

@pi
dx(N�n)dp(N�n)

= �
nX
i=1

nX
j=1

Fij �
nX
i=1

Z Z
Fi;n+1

@f (n+1)

@pi
dxn+1dpn+1:

(2.7)

Collecting the terms with f (n) on the left hand side shows, that f (n) and f (n+1) are linked

by the formula(
@

@t
+

nX
i=1

"
1

m
pi

@

@xi
+

 
Fext
i +

nX
j=1

Fij

!
@

@pi

#)
f (n)(xn;pn; t)

=�
nX
i=1

Z Z
Fi;n+1

@

@pi
f (n+1)(x(n+1);p(n+1); t)dxn+1dpn+1:

(2.8)

This set of equations is known as the BBGKY hierarchy (Bogolyubov, Born, Green,

Kirkwood, Yvon). This hierarchy cannot be treated for any realistic particle number

N , therefore at some point an approximation has to be made. An equation for the one

6



2.2. Boltzmann Equation

particle distribution function f (1) is obtained by setting n = 1 in equation (2.8):�
@

@t
+

1

m
p1

@

@x1
+ Fext

1

@

@p1

�
f (1)(x1;p1; t)

=

Z Z
F12

@

@p1
f (2)(x1;p1;x2;p2; t)dx2dp2:

(2.9)

The problem of this equation is, that you need to know the pair distribution function

f (2) to solve it. The simplest approximation is to ignore the pair correlation by writing

f (2)(x1;p1;x2;p2) = f (1)(x1;p1)f
(1)(x2;p2): (2.10)

This approximation is also called the Molecular Chaos Assumption, because it assumes

that the position and velocities of two particles are uncorrelated. Combining (2.9) and

(2.10) leads to the Vlasov equation:�
@

@t
+

1

m
p1

@

@x1
+ Fext

1

@

@p1

�
f (1)(x1;p1; t) = ��F(x; t); (2.11)

where

�F(x; t) =

Z Z
F(x;x2)f

(1)(x2;p2; t)dx2dp2 (2.12)

is the average force from other particles in the system acting on a particle at position x

at time t.

2.2. Boltzmann Equation

If the mean force �F(x; t) is caused by collisions with other particles, the Vlasov equa-

tion (2.11) results in the Boltzmann equation (2.13).

In the framework of the Boltzmann equation the system is described with the single

particle distribution function f , where f(x;v; t) describes the probability density to �nd

a particle at position x, velocity v and time t.

@f(x;v; t)

@t
= �vrrf| {z }

�ow

� F

m
rvf| {z }

external force

+

�
@f

@t

�
coll| {z }

collisions

(2.13)

with �
@f

@t

�
coll

=

Z
dx0
Z

dv0
@U(x;x0)

@x

@

@v
f2(x;v;x

0;v0) (2.14)

f2 is the two particle distribution function. Writing down equations for f2 leads

to formulas involving three particle distribution functions. In general, the equation for

7



2. Theory and Models

the n particle distribution functions contains the n+1 particle distribution function.

This results in the so called BBGKY hierarchy of equations [39]. A closure is needed

to end this in�nite recursion. The simplest approach is to replace the two particle

distribution function f2(x;v;x
0;v0) with the product of two single particle distribution

functions f1(x;v)f1(x
0;v0). This is the molecular chaos assumption, because f2 = f1f1

holds if the movement of two particles is completely uncorrelated. With this so called

Stosszahlansatz the collision term can be written as

�
@f(x;v1; t)

@t

�
coll

=
�T

2

Z
k̂v12>0

dk̂dv2(k̂v12)

0
@f(v�1)f(v�2)| {z }

gain

� f(v1)f(v2)| {z }
loss

1
A : (2.15)

In equation (2.15) �T denotes the scattering cross section, k̂ the direction of momen-

tum transfer and v�i are the post collision velocities.

@f(x;v; t)

@t
= �

�
vrr +

F

m
rv

�
f +

�
@f

@t

�
coll

= �D̂f + Ĉf

(2.16)

Equation (2.16) describes the time evolution of the single particle distribution func-

tion f . The time evolution contains the changes due to advection D̂ and collisions Ĉ

between the particles.

Two examples where the Boltzmann equation has been applied to systems of indus-

trial relevance are the �ow of air around space vehicles in the upper atmosphere [117] and

the �ow around heads of hard disks [4]. Since in the the mean free path in these cases

is of the same size than the typical length of the system, the �ow cannot be described

with the Navier-Stokes equation, instead the Boltzmann Equation is used.

2.2.1. Analytical Treatment of Boltzmanns Equation

The major problem of an analytical treatment is the nonlinear collision term in equation

(2.15):

�
@f(x;v1; t)

@t

�
coll

=
�T

2

Z
k̂v12>0

dk̂dv2(k̂v12)

0
@f(v1`)f(v2`)| {z }

gain

� f(v1)f(v2)| {z }
loss

1
A :

Several approximations are possible to get a linear equation:

1. If two di�erent kinds of particles collide, e.g. electrons and protons, the particles

are described by two di�erent probability distribution functions Fproton and felectron.

The momentum of a proton remains almost unchanged when it collides with an

8



2.2. Boltzmann Equation

electron. With the further approximations that the electrons scatter only with

protons the product ff in the integral of equation (2.15) is replaced by Ff , where

F is constant. The resulting equation is thus linear in f .

2. If a known equilibrium distribution f0 exists, the solution can be written as f0 plus

a small deviation �.

f = f0(1 + �)

f(v1)f(v2) = f0(v1)(1 + �(v1))f0(v2)(1 + �(v2))

� f0(v1)f0(v2)(1 + �(v1) + �(v2))

If the deviation � is small, �(v1)�(v2) can be neglected and the equation is linear

in the new unknown �.

3. Another possible approximation is that the momentum transfer in a particle in-

teraction is small. The post collision velocity v� is expressed as the pre collision

velocity v plus a small change �. The value of f(v�) is calculated with a Taylor

expansion of f around the pre collision velocity.�
@f

@t

�
coll

�
Z
�

Z
v2

(f(v�2)f(v
�
1)� f(v2)f(v1))

�
Z Z

(f(v1 � �)f(v2 + �)� f(v2)f(v1))

�
Z Z 1X

n=0

�n

n!

@n

@vn
f(v)jv1 f(v)jv2 � f(v1)f(v2)

�
Z Z 1X

n=1

�n

n!

@n

@vn
f(v)jv1 f(v)jv2

�
Z Z

�

1

@

@v
f(v)jv1 f(v)jv2

�2

2

@2

@v2
f(v)jv1 f(v)jv2

This equation has now the form�
@f

@t

�
coll

=
@

@v
M1f(v) +

1

2

@2

@v2
M2f(v);

with

Mi =

Z Z
�n

n!
f(v2):

If we approximate further and calculate Mi with f0 instead of f , M is constant.

This results in the Fokker-Planck-Equation

@f

@t
= A

@f

@v
+B

@2f

@v2
;

with A = M1 and B = 1
2
M2.
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2. Theory and Models

Unfortunately none of this ways is applicable to granular materials in general. First,

they normally consist of particles with about the same size and mass. Thus, the �rst

approach is not applicable. Due to the sti�ness of the particles the momentum transfer

in a single collision is of the order of the momentum itself, making the third approach

invalid. The second approach does not work in general, because frequently no known

equilibrium distribution exists. Also, the equilibrium of a undriven dissipative system

contains no energy. This makes the equilibrium distribution function inappropriate for

an expansion, because the deviation to the solution of the non-equilibrium state will be

large.

2.2.2. Enskog Theory

With all the possible approximations for the Boltzmann equation we should not forget

that already the Stosszahlansatz (2.15) contains huge simpli�cations. Besides the as-

sumption of molecular chaos it is the fact, that the particles interact at the same place.

If the size of the particles cannot be neglected this is not longer true, and the two single

particle distributions functions of the interacting particles have to be evaluated at dif-

ferent locations x and x +D, where D is the distance between the two particles. This

results in the collision term�
@f(x;v1; t)

@t

�
coll

=
�T

2

Z
D̂v12>0

dD̂dv2(D̂v12) (�(x;x�D)f(x;v�1)f(x�D;v�2)

� �(x;x +D) f(x;v1)f(x+D;v2)) :

Because the particles have a �nite volume, the number of collisions is increased compared

to the dilute gas limit. The so called Enskog factor � takes this into account. It is the

value of the pair correlation function at the point of contact. This is again a function of

the two particle positions (�(x;x+D)). If � is taken to be the value of the equilibrium

pair correlation function at contact of the density in the middle between the two particles

(�(x;x+D) = �(n(x+ 0:5D))), this is the so called Standard Enskog Theory(SET).

If �(x;x+D) is a local equilibrium pair correlation function of a nonuniform state

obtained by density functional theory, it is the so called Revised Enskog Theory (RET).

2.3. Hybrid Simulation Monte Carlo

Hybrid Simulation Monte Carlo or HSMC is the simulation method that was developed

in this thesis for the fast simulation of granular materials. It should not only be able to

simulate a wide range of phenomena as described in the chapters about the test cases,

but should also be capable to simulate millions of particles in a reasonable time frame.

Of course certain simpli�cations have to be made to obtain a method that needs to be

an order of magnitude faster than traditional methods like molecular dynamics. The

test cases were used to check whether this simpli�cations are justi�ed and HSMC gives

valid results. Direct Simulation Monte Carlo (DSMC), a particle method that was �rst

10



2.3. Hybrid Simulation Monte Carlo

used to simulate rare�ed gases [11], served as a starting point to develop the algorithm.

DSMC was not chosen, because it was the best suitable method for granular material,

but due to its computational advantages like speed and its suitability for a parallel

implementation [47].

For several reasons particle methods like DSMC or SPH (smoothed particle hydro-

dynamics [81, 85]) are becoming more and more popular. Unlike �nite element methods

that could also be used to solve the underlying equations, they are not based on a grid.

Therefore they are also called mesh-less methods and do not su�er from the anisotropy

and other artifacts introduced by the mesh. As described below, DSMC is not really

a mesh-less method, because the collisions are based on a grid, therefore there will be

visible lattice artifacts for dense systems. Another advantage of particle methods is the

treatment of boundary conditions. The straight forward treatment of free boundaries is

one reason why SPH is successfully used in the calculation of astrophysical �ows.

2.3.1. Numerical Treatment of Boltzmann Equation

For the numerical solution of Eq. (2.16) it has to be discretized in space and time. In a

�rst step the continuum equation is discretized in time

f(t+�t) = f(t) +

�
@f(t)

@t

�
�t +O(�t2)

� f(t) +

�
@f(t)

@t

�
�t

�
�
1��tD̂ +�tĈ

�
f(t):

(2.17)

This is a Taylor series expansion to �rst order. It will only give a good approximation

if �t is small enough. In general this means that the time step has to be of the order of

the mean time between collisions. Up to the order O(�t2) a �nite time step will result

in a modi�cation of the transport coe�cients. Together with the fact that there is no

numerical instability, it makes the method useful for the application of large time steps.

Because the advection and collision operator act simultaneously this equation is still

di�cult to treat with a numerical algorithm. The two processes can be decoupled with

the so called operator splitting. It consists of the following approximation:

1��tD̂ +�tĈ � (1 + �tĈ)(1��tD̂) +O(�t2): (2.18)

The time evolution operator is now split in a product. At �rst the advection 1��tD̂

acts on f and afterwards the collision operator 1 + �tĈ

f(t+�t) � (1 + �tĈ)| {z }
collisions

(1��tD̂)| {z }
advection

f: (2.19)

The advection step can be solved with any integration scheme. For the collision step a

space discretization is used by introducing cells in which the collisions take place (see

Sec. 2.4.1 and 2.3.2).

11



2. Theory and Models

2.3.2. Description of the HSMC algorithm

The major disadvantage of all DSMC variants described in chapter 2.4 is, that there is

no limitation of the particle density. This is a consequence of the fact that during the

advection step the particles move completely independently of each other. During the

interaction step only stochastic collisions take place. One example where the straight-

forward application of DSMC will result in unrealistic high particle densities is a heap of

dissipative particles. In such a heap the collisions need to be highly correlated in order

to support the particles at the top. A further problem is, that with vanishing kinetic

energy and therefore velocity the momentum transfer �p in a collision also disappears.

Because the force F = �p

�t
needs to balance gravity, the number of collisions per time

diverges. The idea of HSMC is to change the advection step of the DSMC algorithm

to achieve an excluded volume. A real excluded volume would however result in an al-

gorithm similar to Molecular Dynamics or Event Driven, because every particle and its

neighbors have to be inspected. We therefore check the constraints only on the coarse

grained level of the cells that are used by the original DSMC to choose collision partners

quickly. Whenever a particle tries to enter a di�erent cell, the move is rejected if it

would result in a physically unrealistic high density.

After the basic idea is clear we give now a detailed description of the algorithm.

Like with DSMC the system is integrated in discrete time steps � . Each time step

consists of two phases: the advection step, where the particles are moved, and the

interaction step where the particles collide with each other.

Advection step: At each time step every particle is �rst moved, according to the

equation of motion. Unlike in DSMC the particles do not move independently of each

other, but interact via the cells they belong to. The particles are sorted into spatial cells.

Every cell that contains enough particles that no additional particle can enter is marked

as �full� (see Fig. 2.2). Whenever in subsequent steps a particle tries to enter a full

cell, this move is rejected and the particle keeps its old position. In reality, the particle

will enter the cell with volume fraction � with a possibility p(�). The probability will

be zero for a density � equal to the density �dense of a close packing of disks and one

for an empty cell. In the HSMC algorithm this unknown function is approximated by a

function that is one for � < �max and zero otherwise (see Fig. 2.1), �max was choosen to

be equal to the density of a random close packing. As a possible improvement of HSMC

this simple aproximation could be replaced by a more realistic distribution, which could

be obtained from ED simulations or experiments.

So far the algorithm prevents unrealistic high densities but nevertheless yields un-

physical results. Up to this point there is no interaction across cell boundaries, i.e. a

particle trying to enter a full cell does not collide with particles inside this cell. To al-

low a momentum transfer across cell boundaries between full cells we perform collisions

between these cells �rst. For the collisions the cells are treated like particles with mass

12



2.3. Hybrid Simulation Monte Carlo

0

1

p(�)

�
�max �dense

Figure 2.1.: Probability p(�) of a particle to enter a cell with volume fraction �. The

unknown function (dashed line) is approximated with a heavyside function

(solid line).

Mc and velocity vc.

Mc :=
X
i

mi (2.20)

vc :=
1

Mc

X
i

mivi: (2.21)

The de�nition of the cell velocity is chosen so that the total momentum of the particles

is equal to the cell momentum pc:

pc = Mcvc =
Mc

Mc

X
i

mivi =
X
i

pi (2.22)

The collision partner (an adjacent cell) is not chosen randomly but the cell with the

maximum relative velocity is picked (see Fig. 2.3). A checkerboard update is used

to make the update independent of the order of execution on di�erent processors on a

parallel platform. Because every cell is either picked by the checkerboard update directly

or a neighbor of such a cell, it is possible for every cell to participate in a collision. To

avoid di�erences between �white� and �black� cells we exchange their role in the next

time step.

The dissipation in the cell collisions is also governed by the coe�cient of restitution.

The dissipated energy is distributed among the particles that constitute the cell by

increasing its �thermal energy� � the velocity relative to vc is rescaled. With the post

collision velocity v0c of the cell we can calculate the post collision velocity v0i of particle i:

�vc := v0c � vc (2.23)

~v0i := vi +�vc: (2.24)

We now rescale the relative velocities of the particles with a factor k. The tilde denotes
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2. Theory and Models

values before the rescaling takes place, but after the cell collision.

~v0i = v0c + ~vrel
0

i (2.25)

v0i = v0c + k~vrel
0

i : (2.26)

Because of

pc =
X
i

mivi (2.27)

=
X
i

mi(vc + vreli ) (2.28)

= Mcvc| {z }
=pc

+
X
i

miv
rel
i| {z }

=0

(2.29)

rescaling the relative velocity does not change the momentum.

The kinetic energy of the paritcles insides the cell is

E 0
c =

1

2

X
i

miv
02
i (2.30)

=
1

2

X
i

mi(v
0
c + vrel

0

i )2 (2.31)

=
1

2

X
i

miv
20

c| {z }
~Etrans

+
1

2

X
i

miv
0
cv

rel0

i| {z }
=0

+k2
1

2

X
i

mi~v
rel02

i| {z }
~Etherm

; (2.32)

and with E 0
c =

~Etherm + ~Etrans +�Ec

k =

s
~Etherm +�Ec

~Etherm

� 1; (2.33)

where �Ec is the energy the cell lost in collisions with other cell due to a coe�cient

of restitution < 1. The strategy of this cell collision is depicted in Fig. 2.4. Because

the energy is redistributed as thermal energy among the particles and thus increases

the granular temperature, the interaction between cells is conservative. Only successive

collisions between particles will damp the energy. An obvious question is, whether this

will result in the correct cooling behavior for dense systems (see Sec. 3.1).

Afterwards the movement and acceleration of the single particles are calculated. To

calculate the movement of the particles one can either use an analytical solution of

the equation of motion or apply a standard numerical integration scheme to solve it.

Like DSMC this method is less restricted than event driven (ED) simulations, where an

analytical solution is required for a fast calculation of the evolution of the system. If the

particle tries to enter a full cell the move is rejected: the particle keeps its old position

and no acceleration due to external forces is considered.
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2.3. Hybrid Simulation Monte Carlo

Figure 2.2.: Underlying grid of the HSMC algorithm. Moves into �full� cells (marked

grey) are rejected.

1 2 3

4 5 6

7 8 9

Figure 2.3.: In the HSMC algorithm collisions are performed between neighboring cells.

The cells with the highest relative velocities are picked for a collision. The

cells 2,4,6 and 8 are possible collision partners for cell 5.

A

B

C

D

Figure 2.4.: Collision between cells of the HSMC algorithm. From A to B the total

momentum and mass of the particles are summed up. Between B and C the

collision between the cell pseudo particles take place. The energy dissipated

in this collision is distributed among the particles and visible as random

relative velocity in D.
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2. Theory and Models

Interaction step: Next, we take the particle-particle interactions, i.e. the collisions

into account. In contrast to ED simulations, the exact times and places of these collisions

are not calculated, but a stochastic algorithm is applied as described in the following.

The particles are sorted into spatial cells of linear size L and volume Vc = Ld, where

d is the dimensionality of the system. Collisions occur only between the particles in the

same cell, which ensures that only particles which are close to each other may collide.

In every cell with more than one particle, we choose randomly

Mc = �
Nc(Nc � 1)�vmax�

2Vc
(2.34)

pairs of particles. Here, Nc is the number of particles in the cell, � the scattering

cross section (for spherical particles, �2D = 4R, �3D = 4�R2) and vmax is an upper

limit for the relative velocity between the particles. To get vmax we sample the velocity

distribution from time to time and set vmax to twice the maximum particle velocity

found. � is the Enskog factor by which the number of collisions are increased due to

the �nite extent of the particles. In order to determine the correct number of collisions,

we apply an acceptance-rejection method: For a pair of particles i and j the collision is

performed if
jvi�vj j
vmax

< Z, where Z is independent uniformly distributed in the interval

[0; 1]. This method leads to a collision probability proportional to the relative velocity

of the particles.

Since the collision takes place regardless of the particle positions in the cell, we

have to choose an impact parameter b in order to calculate the post collision velocities.

Molecular chaos is assumed here; b is drawn from a uniform distribution in the interval

[�2R; 2R] in 2D or in a circle with radius 2R in 3D. It is also possible to use a di�erent

distribution as long as it is known (see Sec. 3.6). The post collision velocities v`i and

v`j are now calculated as if the two particles collided with that impact parameter, i.e.

like in event driven simulations.

v0i = vcm +
mj

mi +mj

jvrelje (2.35)

v0j = vcm �
mi

mi +mj

jvrelje (2.36)

e is the unit vector pointing in the direction of the relative velocities after the colli-

sion. For hard spheres e is uniformly distributed over the unit sphere [93]. Finally, the

dissipation can be introduced by changing the normal component of the post collision

velocity to u(n) = �ev(n), whereas the tangential component remains unchanged.

Like in the CBA or CUBA algorithm (see Sec. 2.4.2) we apply an additional o�set

in every collision: each of the two colliding particles is moved by 2R into the direction

of its momentum change (see Fig. 2.10). This o�set is suppressed if the collisions takes

place in a full cell. The reason is, that in dense packings the particles cannot move in

reality and the arti�cial di�usion that is introduced by this o�set is unrealistical high.

To show one consequence if the o�set is also performed in full cells a simulation of a

static heap was made, where the o�set was not suppressed inside the heap. The result
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2.3. Hybrid Simulation Monte Carlo

is visible in Fig. 2.5. The heap does not show a de�nite angle of repose, but a strongly

curved surface.

Figure 2.5.: Shape of a heap with (top) and without (bottom) o�set at collisions inside

the heap. The heap at the top does not show a well de�ned angle of repose

in contrast to the heap at the bottom, where the o�set is suppressed in the

inner part.

Normally the time step is set to a value � = rs
L

vmax
, with rs < 1. Since L is choosen

to be smaller than the mean free path of the particles, this ensures that the temporal

and spatial resolution of the method is better than the mean free path or mean free

time between collisions. This time step determines the mean number of collisions in a

cell that occurs in one time step. On the other hand it is also possible to �x the desired

number of collisions in one time step and choose the time step accordingly. This has the

advantage that the time step is independent of the choosen reference frame, because a

di�erent abolute value of the velocity does not change the number of collisions between

particles.

Example To demonstrate that the HSMC algorithm provides the excluded volume we

look at a system of dissipative particles under gravitation. Fig. 2.7 shows the time

evolution of the center of mass of this system. The results of four di�erent simulation

methods are shown: Event Driven (ED), Molecular Dynamics (MD), Direct Simulation

Monte Carlo (DSMC) and Hybrid Simulation Monte Carlo (HSMC). Up to t = 0:05 all

four simulation methods agree. Already at t = 0:1 the center of mass in the DSMC

simulation is too low. Up to t = 0:3 the deviations between HSMC and ED are of the

same size as the deviations between ED and MD. At t = 0:3 the ED simulations stops

because an inelastic collapse occurs. For t > 0:3 all particles in the DSMC simulations

are on the ground, this corresponds to unrealistic high densities. See also Fig. 2.6 for a

sketch of the �nal con�guration. HSMC gives results that are comparable to the MD

simulation. The smaller value of HSMC is related to the fact, that within a cell there

is no excluded volume enforced and therefore the particles tend to overlap and to be

located at the bottom of the cells. The length of a cell in this simulation was 0:02

compared to a deviation of � 0:004.

Like the other DSMC algorithm (see chapter 2.4) HSMC treats the Boltzmann equa-

tion numerically. In addition to other improvements made in this algorithms HSMC
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2. Theory and Models

Figure 2.6.: Snapshots of a system with dissipative particles under gravity. On the left

the initial conditions is shown. In the �nal con�guration of DSMC (middle)

consists of all particles lying at the bottom. The HSMC algorithm at the

right shows a �nal state consistent with excluded volume.
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Figure 2.7.: Time evolution of the center of mass for a system of dissipative particles

under gravity. The system consists of N = 100 particles with diameter

0:001 in a system of size 0:02� 0:04.

18



2.4. Direct Simulation Monte Carlo methods

enforces the constraint that the density of the particles must not exceed a certain limit.

This is done by rejecting moves resulting in densities above this threshold. In addition

to enforcement of this constraint a pseudo dynamic is applied by introducing the col-

lisions between cells described above. This pseudo dynamic only acts in regions with

densities close to the maximum density allowed. This is true for all modi�cations of

the algorithms. For low densities the original DSMC or more precisely the CBA/CUBA

algorithm is recovered.

2.4. Direct Simulation Monte Carlo methods

Because HSMC is based on DSMC, the method is presented here together with modi�ed

versions of the original algorithm. Most of these modi�cations aimed to improve the

method for higher densities, the same target HSMC is aiming at.

2.4.1. Direct Simulation Monte Carlo (DSMC)

The DSMC method was �rst used for the simulation of rare�ed gas �ows[11], recently

it was also applied to dry granular media [14, 90, 88].

Several variants of DSMC exist. In the original algorithm of Bird[11] �rst the col-

lision partners are picked and the time is advanced accordingly. In the modi�cation of

Nanbu[93] the time step is �xed and the collision are performed according to this time

step. The two methods give equivalent results[34] for systems where DSMC is applica-

ble. Because a �xed time step o�ers advantages for a parallel implementation Nanbus

algorithm is used here.

The system is integrated in time steps � . One of the basic assumptions of DSMC is

that the movement and interaction of the particles can be decoupled (operator splitting,

see equation (2.18)). This is a good approximation if the time step is smaller than the

mean time between two collisions of one particle. At each time step every particle is

thus �rst moved, according to the equation of motion, without interaction with other

particles. External forces, such as gravitation, are taken into account here. To calculate

the movement of the particles one can either use an analytical solution of the equation

of motion or apply a standard numerical integration scheme to solve it. In this respect

this method is less restricted than event driven (ED) simulations, where an analytical

solution is required for a fast calculation of the evolution of the system.

Next, we take the particle-particle interactions, i.e. the collisions into account. In

contrast to ED simulations, the exact times and places of these collisions are not calcu-

lated, but a stochastic algorithm is applied as described in the following:

The particles are sorted into spatial cells of linear size L and volume Vc = Ld, where

d is the dimensionality of the system. Collisions occur only between the particles in the

same cell, which ensures that only particles which are close to each other may collide.

In every cell with more than one particle, we choose randomly

Mc =
Nc(Nc � 1)�vmax�

2Vc
(2.37)
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L

Vc

Figure 2.8.: Cells of the DSMC algorithm. The cells have length L and Volume Vc.

Particles in the same cell can collide with each other.

pairs of particles. Here, Nc is the number of particles in the cell, � the total scattering

cross section (for spherical particles, �2D = 4R, �3D = 4�R2) and vmax is an upper

limit for the relative velocity between the particles. To get vmax we sample the velocity

distribution from time to time and set vmax to twice the maximum particle velocity found.

In order to determine the correct number of collisions, we apply an acceptance-rejection

method: For a pair of particles i and j the collision is performed if

jvi � vjj
vmax

< Z; (2.38)

where Z is independent uniformly distributed in the interval [0; 1]. This method leads

to a collision probability proportional to the relative velocity of the particles.

b

Figure 2.9.: Description of the impact parameter b.

Since the collision takes place regardless of the particle positions in the cell, we

have to choose an impact parameter b in order to calculate the post collision velocities.

Molecular chaos is assumed here; b is drawn from a uniform distribution in the interval

[�2R; 2R] in 2D or in a circle with radius 2R in 3D. The post collision velocities v`i and

v`j are now calculated as if the two particles collided with that impact parameter, i.e.

like in event driven simulations or HSMC.
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v0i = vcm +
mj

mi +mj

jvrelje (2.39)

v0j = vcm �
mi

mi +mj

jvrelje (2.40)

e is the unit vector pointing in the direction of the relative velocities after the colli-

sion. For hard spheres e is uniformly distributed over the unit sphere[93]. Finally, the

dissipation can be introduced by changing the normal component of the post collision

velocity to u(n) = �ev(n), whereas the tangential component remains unchanged.

The algorithm can be generalized for soft sphere potentials. It is also possible to

introduce rotations[94].

Like every simulation method, DSMC is also based on certain simpli�cations and

approximations. One is that the interaction between the particles can be modeled by

binary collisions. Furthermore, neither the location nor the time of a collision is calcu-

lated exactly. To keep the error small, three conditions must be ful�lled: (i) the system

should be in the collisional regime, (ii) the mean free path should be larger than the cell

size, (iii) the mean time between two collisions should be larger than the time step. In

particular, at present these limitations restrict the validity of the method to relatively

low densities.

2.4.2. Consistent Boltzmann Algorithm (CBA)

In DSMC only ideal gas properties have been considered; the particles have a scattering

cross section but no real volume. One consequence of the excluded volume is an increase

in the number of collisions. Several approaches exist to take this into account. One

possibility is to multiply the right hand side of Eq. (2.37) with the Enskog factor �. One

can either use a Padé kind of approximation for �(�)[3] or an analytical expression [56].

F. J. Alexander et al. [2] also introduced an additional advection process after a

collision: each of the two colliding particles is moved by 2R into the direction of its

momentum change (see Fig. 2.10). The hand waving argument is that a particle with

real extension would on average travel 2R less distance between two successive collisions

than a point like particle. This advection step leads to the correct equation of state

for all densities. The reason is explained below. In a particle system the stress tensor

��� contains two contributions (see equation (2.41)). First, momentum is transferred,

because the particles are moving. Second, a collisional transfer takes place, due to the

interaction between the particles. For the original DSMC, the later contribution to

the stress tensor will be zero on average because the momentum transfer �pij� and the

separation rij� of the two colliding particles are uncorrelated. The o�set of 2R introduces

the correlation existent in a hard core gas. By adjusting this o�set it is also possible to

simulate particles with di�erent potentials, i.e. van der Waals interaction [5].
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Figure 2.10.: Additional advection process after a collision of two particles in the direc-

tion of the respective momentum transfer.

It is clear that this o�set will in�uence the transport coe�cients of the simulated

system. But as long as the mean free path is much larger than the particle diameter

the impact should be negligible. Adding a random o�set with expectation value zero

will not change the pressure tensor on average. This can be used to adjust the trans-

port properties[30]. The resulting algorithm is called Generalized Consistent Boltzmann

Algorithm or Consistent Universal Boltzmann Algorithm (CUBA).

2.4.3. Enskog Simulation Monte Carlo (ESMC)

The Enskog Simulation Monte Carlo addresses another de�ciency of DSMC. Whereas

DSMC is based on the Boltzmann Equation, ESMC[83] is based on the standard Enskog

theory (SET) or revised Enskog theory (RET). In this theories the collision term
�
@f

@t

�
is described by the expression:

D2

Z
dv1

Z
dD̂�(D̂g)(D̂g) [�(r; r�D)f(r;v0; t)f(r�D;v01; t)

��(r; r+D)f(r;v; t)f(r+D;v1; t)] :

(2.43)

Here �(x) is the Heavyside function, g = v � v1 and the primes denote post collision

values. SET and RET di�er in the way the Boltzmann factor � is calculated. In SET
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�(r; r+D) = �(n(r+1=2D)), where �(n) is the equilibrium pair correlation function at

contact corresponding to a uniform density n. In RET �(r; r+D) is identi�ed with the

local pair correlation function of the nonuniform state (see [83] and references therein).

The main di�erence to the Boltzmann equation is that the two collision partners are

drawn from di�erent single particle distribution functions f(r) and f(r+D). The fact

that the two positions di�er makes the methods computationally much more expensive.

Like in Molecular Dynamics a neighbor search has to be performed. If the spatial

resolution is �r, every particle has an interaction zone of j jjx � rjj � Dj < �r. The

time step must be small enough to detect a particle when it crosses this zone. Although

a collision may occur while a particle crosses this zone, there is nothing that guarantees

that a particle can't come closer. The method therefore cannot prevent that the density

grows above physical realistic values.

2.5. Other particle methods

For the development of an algorithm it is important to have an overview of methods

that are already applied to the problems that should be solved by the new method.

This is not only necessary to check whether an algorithm already exists that has the

required properties, but also to learn from the advantages and de�ciencies of the existing

solutions. Many di�erent methods are used to simulate granular materials[44]. Also far

from being complete the next three sections cover not only a wide range of methods,

but also the methods that are most frequently applied to granular matter.

2.5.1. Molecular Dynamics and Contact Dynamics

Molecular Dynamics is often regarded as the most precise method to simulate granular

materials, because it models the interaction between the particles with a detailed force

law.

Molecular Dynamics is an algorithm to solve Newtons equation of motion

dpi

dt
= Fi: (2.44)

The momentum pi of particle i changes due to the force Fi on that particle. The force

is composed of an external force Fext and forces between the particle and other particles

Fi = Fext +
X
i6=j

Fij: (2.45)

The calculation of equation (2.45) results in aN2 loop over all possible pairs ifN particles

are interacting with each other. For short range forces several optimization techniques

like Verlet neighbor lists or linked cell algorithm exist[6, 26], that result in an O(N)

algorithm. Short-range Molecular Dynamics has the additional advantage that it is well

suited for parallel computers[102].
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In the linked cell algorithm the system is divided into cells of length Lc, where Lc

is the so called cut-o� length. All interactions beyond this range are neglected. It is

therefore su�cient to look for interaction partners in the same cell and neighbor cells

(see Fig. 2.11).

Figure 2.11.: Linked cell algorithm of Molecular Dynamics. The search for interaction

partners is limited to cell and its neighbor cells.

The main di�culty of Molecular Dynamics applied to granular matter is the modeling

and implementation of static friction. One model is the law of Coulomb, which can be

written as

Ft =

(
� sgn(vt)�dFn if vt 6= 0

��sFn : : : �sFn if vt = 0:
(2.46)

Ft and Fn denote the tangential and normal components of the contact force, while

�d and �t are the dynamic and static coe�cients of friction. The tangential force is a

non-smooth function which results in a non-smooth mechanics.

A method widely used in literature is the so called Cundall-Strack spring[19]. They

introduced a additional tangential force Ft, with

Ft = � sgn(�t)min(ktj�tj; �Fn) (2.47)

�t =

Z t

t0

vtdt
0: (2.48)

Here �t can be regarded as the elongation of an imaginary tangential spring that is

attached to the particles at the time of contact formation t0. As soon as the contact

breaks the spring is also broken. While this method gives realistic results it does not

implement Coulombs law of friction (2.46) correctly.

The main problem with Coulomb law of friction is that it is not a single valued

function (see �gure 2.12). Instead it is a constraint, that sets the relative velocity to zero
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2.5. Other particle methods

as long as the force required to maintain the resting contact is not larger than a threshold

�sFn. Because in standard molecular dynamics the force is needed to calculate the

motion of the particles, static friction according to equation (2.46) cannot be simulated

correctly by MD. An improvement of MD that solves this problem is the so called Contact

Ft

vt

�dFn

�sFn

��dFn

��sFn

Figure 2.12.: The graph of Coulomb's law of friction representing allowed pairs of (vt; Ft).

Dynamics (CD). CD calculates the forces between the particles by analyzing the contact

network. It determines a self consistent solution for the forces by an iterative method.

Thus it calculates the motion of a system with real Coulomb friction. The drawback is,

that CD is a rather expensive method, which normally limits the system size to a few

thousand particles.

Another problem of the MD method is that the time step has to be smaller than the

time of the fastest physical process that needs to be resolved. For explicit integration

schemes additional stability criteria may further decrease the time step. In granular

systems this time is normally the contact time between two colliding particles. The fact

that the contact may be arbitrarily short leads to the so called �brake failure� problem,

i.e. no matter how small the time step is chosen, there will always be some grazing

collisions with contact times below this time step. Absolutely rigid particles can not

be handled by Molecular Dynamics, but have to be approximated by sti� but elastic

particles. For dense systems this may lead to arti�cial multiple particle contacts and

accordingly less dissipation [65, 67].

2.5.2. Event Driven or Hard Sphere Molecular Dynamics

This method is also known as hard sphere molecular dynamics. It addresses the problem

of Molecular Dynamics with sti� particles. It uses the fact that the outcome of a collision

of two perfectly rigid particles is ruled by momentum and energy conservation and known

analytically. Because the duration of a collision is zero, the time evolution of the system

is calculated from binary collision to binary collision.
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For a fast calculation of the collision times the particles should be either freely mov-

ing or under constant acceleration. An optimized serial algorithm was proposed by

Lubachevsky [62]. The e�cient parallel implementation of this algorithm is still an

unsolved issue. One problem is that the knowledge of the next collision is a global in-

formation that has to be shared among the processors. To eliminate the need for this

global knowledge a division of the domain into cells can be introduced. Every time a

particle crosses a cell boundary this is a new event. However, this leads to additional

events and synchronization points and thus additional e�ort.

Dissipation due to inelastic collisions is introduced via the restitution coe�cient r.

This coe�cient is the ratio between the normal velocities between the particle before

and after the collision. The limits r = 1 and r = 0 correspond to elastic and completely

inelastic collisions respectively. For details concerning the interaction model for granular

matted used in the ED method see refs. [63, 68]. Since the ED method readily handles

the excluded volume constraint of the particles, it is used to check the results of methods

like DSMC or HSMC.

A problem of the zero collision time is the so called �inelastic collapse�[76, 78] : the

number of collisions per unit time may diverge and this makes it impossible for the algo-

rithm to integrate the future time evolution of the system. Several work arrounds for this

de�ciency exists to make the method better suited for dissipative granular systems[71],

but they all change the physics of the interaction.

2.5.3. Lattice Gas Automata

The lattice gas automaton (LGA) was introduced as a numerical scheme to solve the

Navier-Stokes equation[27]. This method has also been applied to simulate granular

media in pipe �ow [97], heap formation [7] and others [8, 9, 105, 122].

A LGA proceeds in discrete time steps. The particles are located at the vertices of

a two dimensional triangular lattice. In addition to the �xed six directions the absolute

value of the velocity is also discretized. A particle can be either at rest or moving in

one of the six directions with �xed velocity. This seven states can be either occupied

or empty. Therefore, the state of each vertex can be represented by a seven bit state

variable.

The time evolution of a LGA consists of a collision step and a propagation step. In

the �rst step collision rules are applied to calculate the outcome of collisions between

the particles. In the advection step the particles move to the nearest neighbor sites

according to their velocity.

Because of the �xed absolute value of the velocity, dissipation can only be introduced

by transforming moving to rest particles. Momentum conservation further limits the

choice of suitable collision rules.

The limitation to discrete states and the resulting simple collision rules allow a very

e�cient implementation of the algorithm concerning memory consumption and speed.

However, due to this discrete states the information contained in one state is also limited.

Informations about the �ow �eld like velocity can only be obtained by a coarse graining

across many states of the LGA.
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+

1/2 1/2

p 1-p

p/3 p/3

p/3 1-p

Figure 2.13.: Collision rules of a Lattice Gas Automaton.

p 1-p

p  1-p
22

Figure 2.14.: Dissipative collision rules of a Lattice Gas Automaton.
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A similar algorithm that extends the information contained in one state is the Boltz-

mann Lattice Gas method. Like a LGA a Boltzmann Lattice Gas Automaton (BLGA)

discretizes space with a triangular lattice. But the seven states of each vertex cannot

only be occupied or unoccupied, but a probability is assigned to each state to be oc-

cupied. Instead of dealing with particles directly the BLGA treats probabilities that a

state is occupied by a particle.

The time evolution of an BLGA also consists of a collision step and a propagation

step. In the advection step the probabilities are transferred to the nearest neighbor sites

according to their velocities.
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3. Physical Test Cases

This chapter contains description and results of the test cases that have been selected to

verify the applicability of HSMC to granular systems. They have been chosen to cover a

wide range of phenomena. Homogeneous cooling was selected as �rst test case, because

it treats the most basic phenomenon: dissipation. By comparing with theoretical results

the correct behavior of HSMC is veri�ed. The next case already shows the demand for

large-scale computation. The studied clustering instability occurs only in systems that

are large enough. Due to the lack of su�cient theoretical knowledge the results of HSMC

are compared with results of event driven and DSMC simulations. In both systems the

granular particles are freely evolving, without external forces. In the next two cases

driven granular �ows are treated. Here energy is brought into the system either by the

walls or by gravity acting on the particles. The next system that is considered is even

more di�cult to treat with a stochastic method like HSMC. So far, the systems have all

been kept dynamic, either freely evolving or kept alive by a continuous supply of energy.

In the case of heaps however, the system comes to rest in a well de�ned state. The heap

does not only show a well de�ned angle of repose, but also small deviations at its tail.

Because a transition from dynamics to statics is typical for granular systems the correct

treatment of this �nal test case was not only a di�cult, but also a very important one.

Section 3.6 looks at one of the assumptions HSMC is based upon: the correlations

that exists between di�erent particles in a dissipative system and to what extent they

are re�ected by HSMC. The section about vibrated beds is an additional case study

where the results of the stochastic DSMC are compared with results from hard sphere

molecular dynamics. This does not only show once again the correctness of the method,

but also answers the question whether correlations between particles in a narrow two

dimensional system are important for the correct scaling behavior.

3.1. Homogeneous cooling

In the case of homogeneous cooling we look at a granular gas of dissipative particles

that is freely evolving. The total energy is dissipated through inelastic collisions. In a

collision between two inelastic hard spheres the particles looses a fraction � = 1 � r2

of their relative kinetic energy, where r is the normal coe�cient of restitution and � is

called the inelasticity.

In the homogeneous cooling state[32, 31, 77] the kinetic energy E(t) of the system
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L

L

Figure 3.1.: Setup for homogeneous cooling.

decays with time and follows Ha�'s cooling law[36]

E(t)

E0

=

�
1

1 + t=t0

�2

: (3.1)

The theoretically expected time scale

t0 =

p
�d�(�)p

2(1� r2)��v
(3.2)

is a function of the initial energy �v =
p

2E0=Nm, the particle diameter d, the restitution

coe�cient r, and the volume fraction �, with �(�) = (1 � �)2=(1 � 7�=16). Equation

(3.1) holds as long as the system stays homogeneous. In section 3.2 di�erences from this

behavior are described.

Sometimes the number of collisions per particle � o�er a more natural time scale. In

this case Ha�'s cooling law has the simple form E(�) = E0 exp(�20�). The relation

between �collision time� � and real time t is given by d� = !(E(t))dt, with the collision

frequency !(E) �
p
E.

3.1.1. Simulation results

Cooling rate

Fig. 3.2 shows the expected agreement between kinetic theory and the HSMC simulation

method. HSMC is based on this theory and should therefore reproduce its results. This

is not self evident for dense systems where the original method was modi�ed. Fig.

3.3 shows that even for area fraction up to 0:9 Eq. (3.1) is reproduced. One could

have anticipated that the dissipation would be underestimated by the HSMC algorithm

because the interaction between crowded cells is conservative ( see section 2.3). The
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3.1. Homogeneous cooling

agreement shows that the transformation of translational to �thermal� energy will lead

to the correct dissipation in subsequent time steps.
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Figure 3.2.: Homogeneous cooling of a freely evolving granular gas for di�erent resti-

tution coe�cients r. The area fraction � was 3 � 10�5, f(x) refers to Eq.

(3.1).

Non-Maxwellian velocity distribution

The initial state of the system is carefully equilibrated and the velocities of the particles

follow a Maxwellian distribution function �0. This does not hold for the dissipative

system. However, the exact form of the velocity distribution function � is not known,

even in the case of a dilute system. Approximations of the solution can be obtained by

expanding � in Hermitian or Sonine polynomials with �0 as a starting point [14].

In contrast to many analytical approaches, the validity of HSMC is not based on a

speci�c velocity distribution function.

Because the deviations from the Maxwellian distribution functions are small, we do

not compare �0 and � directly, but measure the moments of the distributions. The

moments are used to characterize a distribution function and are de�ned as follows:

�i =

Z
vi�(v)dv (3.3)

For a Gaussian distribution �(x) = 1p
2��

e�
(x��x)2

2�2 we can calculate the moments with
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Figure 3.3.: Homogeneous cooling of a freely evolving granular gas for di�erent volume

fractions � and coe�cient of restitution r = 0:99999. f(x) refers to Eq. (3.1).

the relation Z 1

0

xne�ax
2

dx =
�
�
n+1
2

�
2a

n+1
2

if a > 0; n > �1: (3.4)

In this case �x equals 0 and a is 1
2�2

, this results in the following moments:

i 0 1 2 3 4 5 6 7 8

�0
i 1 0 �2 0 3�4 0 15�4 0 105�6

For the simulation results we simulated a system of N = 1000 particles and a system

size L = 10�. To increase the accuracy the results have been averaged over 100 runs with

di�erent initial conditions. Fig. 3.4 shows the time evolution of the moments and their

deviation from the Maxwellian values. The results demonstrate that although HSMC is

based on kinetic theory there is no implicit assumption about the velocity distribution of

the particles. In contrast to many simpli�ed theoretical approaches where a Maxwellian

distribution is assumed, HSMC can also be used where the velocity distribution is un-

known. In other words, the correct distribution is an outcome of the simulation not a

prerequisite or input.

3.1.2. Suitability of other simulation methods

The energy of the homogeneous cooling systems simulated here varies over eight orders

of magnitude. Because the mean free path l stays constant, the mean time between

collisions � = l
�v
� lp

E
changes over four order of magnitudes. This is no problem for
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Figure 3.4.: Time evolution of the moments of the velocity distribution function. The

moments �i are given as ratios to the moments �0
i of a Maxwellian distri-

bution of velocities.

simulation methods like hard sphere molecular dynamics, because there is no time step,

but the simulation proceeds from collision to collision. DSMC and HSMC also contain

no intrinsic time. The time step can be adjusted to a constant fraction of the mean time

between collisions. The e�ciency of the method stays the same, regardless of the systems

energy. This is di�erent for the soft sphere molecular dynamics, where the contact time

between two particles introduces a time scale. The time step of a MD simulation has to

resolve the contact time. Thus the MD cannot follow the dynamic of the system, but

gets more and more ine�cient as the system becomes slower. The same argumentation

holds for LGA models, because a �xed time step is explicitly part of these algorithms.

In addition the velocity of a particle can only be one or zero. The slow cooling of a

system can only be reproduced by averaging over large particle numbers, which reduces

the computational e�ciency signi�cantly.
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3.2. Clustering instability

The system of interest in this chapter is almost the same as in chapter 3.1. The initial

condition consists of a periodic two dimensional system of size L � L of dissipative

particles. At t = 0 the system is in equilibrium with a homogeneous density and the

particles have a Maxwellian velocity distribution. The only di�erence is, that the systems

of this chapter are larger. Under this circumstance the so called clustering instability [32,

31, 77] may occur.

L

L

Figure 3.5.: Setup for clustering.

The mechanism for this instability can be described as follows. If due to density

�uctuation the density in a region gets higher, the number of collisions is increased. Since

in this collisions energy gets lost, this results in a decrease of the granular temperature.

More particles �ow into the region, because due to the lower temperature the pressure

is lower than in the surrounding. This tendency exists also in small systems, but is

counterbalanced by the di�usion. If the system gets too large, the di�usion mechanism

is too slow, and the system is dominated by the hydrodynamic clustering instability.

In this section we present three simulations, starting with the same initial condition,

using the same parameters, but carried out with the three di�erent methods ED, DSMC

and HSMC. The simulation involves N = 99856 = 3162 dissipative particles in 2D

with restitution coe�cient r = 0:8 in a periodic quadratic system with volume fraction

� = 0:25. In order to reach an equilibrated initial condition, the system is �rst allowed

to evolve with r = 1 for about 10 collisions per particle so that a Maxwellian velocity

distribution and a rather homogeneous density distribution is reached. Then, at t = 0s,

dissipation is set to r = 0:8 and the quantities of interest are calculated as functions of

time.
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3.2. Clustering instability

3.2.1. Simulation Results

Time Evolution of Kinetic Energy

In the homogeneous cooling state ( see section 3.1 ) we expect that the energy E(t) of

the system decays with time and follows the functional form of equation (3.1). This

holds as long as the system stays homogeneous and HSMC was able to reproduce this

result for any densities. In this section we will focus on a system which will undergo the

so called cluster instability.

In Fig. 3.6(a) we present the normalized kinetic energyK(t)=K(0) as a function of the

normalized time t=t0. At the beginning of the simulation we observe a perfect agreement
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Eq. (3.1)

Figure 3.6.: Normalized kinetic energy vs. normalized time from ED, DSMC and a

HSMC simulations in 2D with N = 99856, � = 0:25, and r = 0:8. The

dotted line represents Eq. 3.1.

between the theory for homogeneous cooling and the simulations. At t=t0 � 2 both

simulation methods show substantial deviations from the homogeneous cooling behavior,

and only at t=t0 � 10 we evidence a di�erence between ED and DSMC. After that time

the kinetic energy obtained from the DSMC simulation is systematically smaller than

K(t) from the ED simulation. We relate this to the fact that the molecular chaos

assumption of a constant probability distribution of the impact parameter b is no longer

valid [72]. Since dissipation acts only at the normal component of the relative velocity,

DSMC dissipates more energy than ED as soon as the number of central collisions is

overestimated. To verify this assumption we take a closer look at the impact parameter

and its probability distribution in section 3.2.1.
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Distribution of Impact Parameter

One basic assumption connected to molecular chaos is a uniform probability distribution

of the impact parameter. We de�ne P (b=d) to be the probability distribution of b and

normalize it such that
R 1
0
d(b=d)P (b=d) = 1. In ED the probability distribution may

deviate from the case expected for molecular chaos, whereas DSMC and HSMC always

use the function P (b=d) = 1. We �nd from ED simulations with elastic particles the

normalized probability distributions P (b=d) = 1 in 2D and P (b=d) = 2b=d in 3D, as

expected for the case of molecular chaos.

The ED simulation of Fig. 3.6 leads to P (b=d) = 1 for short times only. For larger

times we observe an increasing (decreasing) probability of grazing (central) collisions.

In Fig. 3.7 we present data of the probability distribution at di�erent times during the

simulation. As obvious from the data, more and more grazing collisions occur with

increasing simulation time. Evidently, the assumption of a homogeneous probability

distribution of the impact parameter is violated.
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Figure 3.7.: Normalized probability distribution of the impact parameter from an ED

simulation in 2D with N = 99856, � = 0:25, and r = 0:8 at di�erent times.

One can imagine at least two possible reasons for the deviation of P (b=d) from the

constant value. The �rst is, that P (b=d) might be a function of the density, and that due

to density �uctuations the form of P (b=d) changes. Thus we calculate P (b=d) in smaller

systems with N = 240, r = 1, and di�erent volume fractions, ranging from very dilute

to extremely dense systems. From Fig. 3.8(a) we learn that P (b=d) is not sensitive to

the density, as long as the system is elastic. The stronger �uctuations for low density

come only from a comparatively worse statistic. The second reason for P (b=d) to deviate

from unity might be dissipation. In Fig. 3.8(b) the restitution coe�cient is varied for

�xed � = 0:7495. For weak dissipation, i.e. r � 0:9, the distribution is homogeneous.

For stronger dissipation r = 0:80 the probability of grazing contacts increases.
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Figure 3.8.: (left) Normalized probability distribution of the impact parameter from ED

simulations in 2D with N = 240, r = 1, and di�erent Vo. (right) Normalized

probability distribution from ED simulations in 2D with N = 240, Vo =

0:7495 and di�erent r.

The assumption P (b=d) = 1 is true in elastic systems for arbitrary density. For in-

elastic systems, P (b=d) is almost constant for su�ciently weak dissipation, but this is

not valid for strong dissipation. The breakdown of molecular chaos is not due to high

density. Furthermore, dissipation alone is not the reason for an inhomogeneous probabil-

ity distribution, since the dissipation must be strong enough to cause the inhomogeneous

distribution.

The remaining question is, why we observe this increasing probability of grazing

contacts. Looking in more detail at the simulations in Fig. 3.8(right), we observe that

the inhomogeneous distribution for r = 0:8 is connected to shear motion of the particles,

whereas no visible shear motion occurs for r � 0:9. The shear motion, can be understood

as the geometrical reason for the higher probability for grazing contacts.

The structure factor

One di�erence between ED, HSMC and DSMC simulations is the handling of excluded

volume by the two methods. While the ED method models hard spheres with a well

de�ned excluded volume, the DSMC method models point particles and excluded volume

is introduced by the approximations described in subsection 2.4.1. As expected we obtain

dramatic di�erences in the particle-particle correlation function g(r): At large times ED

simulations lead to a g(r) with a rich structure for short distances, indicating a rather

close packing of mono-disperse spheres. In contrast, the DSMC simulations show no

short range correlations between particle positions throughout the whole simulation.

We would like to know if this di�erence has consequences at longer length scales.
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Figure 3.9.: Evolution of the system of Fig. 3.7. Di�erent simulation methods: ED

(left), DSMC2 (middle), HSMC (right).
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3.2. Clustering instability

At a �rst look the results of the di�erent simulation methods look very similar on the

scale of the whole system (see Fig. 3.9). The formation and growth of large clusters

[31, 32, 77] is quanti�ed by g(r) at large r, or equivalently, the structure factor S(k) at

small k. We calculate S(k) by a direct FFT of the two dimensional density. Before we

apply the FFT we map the particles onto aM�M lattice, where M is the closest power

of 2 that gives a lattice box size of about one diameter.

We plot the structure factors obtained by ED in Fig. 3.10(a) and those obtained by

DSMC in Fig. 3.10(b). Di�erent symbols correspond to di�erent times. We observe

an increase of S(k) for short wavenumbers k < 25, until the structure factor ceases to

change for t � 20.
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Figure 3.10.: (left) Structure factor obtained from the ED simulations of Fig. 3.6 as

function of the wavenumber k = L=�, with wavelength � and system size

L. (middle) Structure factor obtained from the corresponding DSMC sim-

ulation. (right) Structure factor obtained from the corresponding HSMC

simulation.

The structure factor agrees reasonably well for all three simulation methods and for

large enough time it does not change further. This proves that both HSMC and DSMC

simulations are capable to reproduce the more realistic, but computationally more ex-

pensive, ED results that account for the excluded volume by construction. Even without

short-range correlations, the information about large wavelengths is well reproduced by

the Monte Carlo simulations.

3.2.2. Suitability of other simulation methods

In this chapter the suitability of ED, DSMC and HSMC for the simulation of clustering

systems has been demonstrated.

Even with no short range correlation in the Monte Carlo Methods, both methods

agree well with respect to long range correlations quanti�ed by the structure factor.

This indicates that kinetic theories can succeed in describing the formation and growth

of clusters, even though the assumption of molecular chaos is not satis�ed. Furthermore,
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the faster DSMC and HSMC method can be used to study cluster formation in larger

or three dimensional systems.

In the clustering systems the kinetic energy and therefore the time scale changes over

several orders of magnitude. Thus, like for the homogeneous cooling systems (see chapter

3.1), neither MD nor LGA methods are e�cient for this kind of �ows. In addition the

systems contain about 1000 times more particles.

Once the system is dominated by clusters most of the kinetic energy is stored in

slowly moving clusters. In this aggregates the relative motion of the particles or granular

temperature is very low. This state of the system is very di�cult to model for LGA

methods, where the value of the velocity is limited to a few directions and one absolute

value.
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3.3. Bagnold shear �ow

3.3. Bagnold shear �ow

One of the standard experiments to gain insight into the behavior of materials is the

shear experiment. In its classic form it was used for the de�nition of viscosity �.

l

+v/2

−v/2

Figure 3.11.: Setup for Bagnold shear �ow.

The force F needed to drive two plates of Area A separated a distance l with relative

velocity v was found to follow the law

F = �A
v

l
: (3.5)

For non dissipative particles this system does not have a steady state: due to the

viscous heating the temperature of the system is increasing.

In its general form v
l
is replaced by the velocity gradient and (3.5) is divided by A,

so that the equation has the form

� = �rv; (3.6)

where � is the shear stress. The special case of a constant gradient is called uniform

shear. This special case is homogeneous in a Lagrangian frame. Recent studies have

shown that choosing the correct reference frame is crucial in shear �ows[119]. Simulation

methods that are not invariant under Galilean transformations will not yield the correct

results. In the simulations Lee Edwards boundary conditions are often applied to avoid

�nite size e�ects. However, care has to be taken when comparing this kind of simula-

tions with experiments. It is clear that the density and velocity pro�le will depend on

the boundary condition[16]. In the simulations shown in this chapter no Lee Edwards

boundary conditions were applied, but rigid moving walls have been implemented. I.e.

the system was driven by moving the walls with a constant velocity vw = �1
2
v as shown

in Fig. 3.11. An algorithm simulating perfectly rigid particles will never show perfect

agreement with the experiment, because among other reasons the velocity distribution

depends on the interaction potential between the particles[82]. However, properties like

Bagnold's law follow theoretical considerations and thus an algorithm like HSMC can

be veri�ed without direct comparison with the experiment.
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When rigid walls are used instead of Lee Edwards Boundary conditions a collision

rule with the walls has to be selected. The rule applied here for perpendicular and

parallel velocity components is

v0? = �rwv? (3.7)

v0k = 2vw � vk; (3.8)

where v? is the velocity component perpendicular to the wall, and vk the component

parallel to the wall. This corresponds to a perfectly rigid wall, where in a collision the

velocity component parallel to the wall is reversed in the reference frame of the moving

wall.

3.3.1. Simulation Results

Velocity pro�le

The special case of uniform shear discussed here is characterized by a constant velocity

gradient and thus a linear velocity pro�le. This is not necessarily true close to the

boundary. If the wall is elastic, there will be less energy dissipation close to the wall

and the higher granular temperature will decrease the density and in�uence the velocity

pro�le. In the extreme case there will be an almost rigid dense region in the center of the

system and high velocity gradients close to the wall. Even if the restitution coe�cient

of the wall is equal to the one of the particles there will be an in�uence. The reason is,

that in this case the wall will behave like a dense collection of particles. The increased

dissipation will result in a lower granular temperature with subsequent higher density.

To reduce this in�uence of the wall the coe�cient of restitution of the wall rw was chosen

to ful�ll

(1� rw) = (1� r)�l: (3.9)

Where �l is the optical density of the system, i.e. the area fraction of a line which is

covered by particles. Thus the dissipation at the wall resembles the dissipation inside

the system.

Fig. 3.12 shows that HSMC reproduces the expected linear pro�le. A result that is

also valid for DSMC, because the system is dilute enough that the di�erences between

the two methods are negligible.

Viscosity

For non dissipative particles in a system without walls this system does not have a

steady state: due to the viscous heating the temperature of the system is increasing.

For dissipative particles the temperature of the system will scale with the velocity of the

driving plate and so does �. Therefore the driving force F will follow Bagnold's law and

scale with v2:
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Figure 3.12.: Velocity pro�le of a sheared granular system.

F � v2: (3.10)

Fig. 3.13 shows the veri�cation of this scaling behavior by HSMC across three orders

of magnitude in v. Eq. 3.10 only holds if no shear induced clustering occurs[118], there-

fore the area fraction was chosen to be low enough that the system stays homogeneous.

3.3.2. Suitability of other simulation methods

The event driven hard sphere molecular dynamics is equally well suited for the simula-

tion of this �ow. Again, the soft sphere molecular dynamics is computationally more

expensive, but in this case there is no evolution of the involved time scale throughout

the simulation. This makes MD very appropriate for the Bagnold shear �ow, this is

especially true for dense �ows, where the detailed interaction between the particles and

the interaction between particles and wall get more and more important. This suitability

was demonstrated for Bagnold shear �ow and similar �ows like Couette Flow [60].

The LGA methods do have the problem, that the velocity in a shear �ow ranges

continuously over several orders of magnitude across the system. This makes this method

again inappropriate.
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Figure 3.13.: Scaling behavior of driving force F in a Bagnold shear �ow. The driving

velocity v is varied over three order of magnitudes. Results of HSMC

simulations (crosses) are compared with F � v2 (line).
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3.4. Pipe �ow

The vertical �ow of granular media through a pipe under the in�uence of gravity is one

of the standard �ows that has attracted a lot of attention [1, 84, 99]. One reason for the

importance of this �ow is its relevance for industrial processing, another is the fact that

it is a quasi one-dimensional problem. This makes it accessible for theoretical models

and also results in similarities to models of tra�c �ow [40, 42, 79, 128].

Flow measurement

Air�ow control

Figure 3.14.: Experimental setup for pipe �ow.

A typical experimental setup is shown in �gure 3.14. The granular material is poured

into the hopper at the top and �ows down the pipe. The �ow is measured at an appro-

priate distance from the hopper to allow the �ow to equilibrate.

Figure 3.15.: Sequential snapshots of the density waves in pipe �ow from [54]. The time

is increasing from left to right.
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3.4.1. Simulation Results

Spontaneous Density Waves

The �rst question is, whether HSMC will reproduce the spontaneous creation of density

waves. In order to reduce �nite size e�ects periodic boundary conditions have been

applied in the direction of gravity. The main di�erence to a semi-in�nite system with a

hopper at the top is, that the average volume fractions of particles can be set arbitrarily.

In the experiments the area fraction is indirectly determined by the �ux of particles

entering the pipe.

The roughness of the wall is modeled with a statistic approach. Whenever a particle

hits the wall, its velocity component parallel to the wall is reversed with a probability

p. A value of p = 0 corresponds to a smooth wall. This approach was successfully taken

in the case of LGA simulations [97].

For comparison with the experimental results �gure 3.16 shows snapshots from a

system that starts with a homogeneous density. It is clearly visible that density waves

are almost immediately created.

Figure 3.16.: Snapshots of the density waves in pipe �ow from a HSMC simulation.

To follow this density �uctuations over a longer time period, �gure 3.17 shows the

time evolution of the density in two di�erent systems. To measure the vertical density

pro�le, the system is cut into horizontal slices with the height of one HSMC cell. The
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3.4. Pipe �ow

average density of every slice is transformed to a gray scale (white equals to area fraction

zero, black to one). The density is plotted from top to bottom (direction of gravity) and

the time is increasing from left to right.

For the system with small dissipation (restitution coe�cient r = 0:99) no signi�cant

density waves are observable, whereas for the system with strong dissipation (r = 0:0)

spontaneous density waves occur from the initially homogeneous system. It is also visible

that the system reaches an equilibrium state after an initial acceleration. In this case

the density waves travel downwards in the direction of gravity.

g

t

g

t

Figure 3.17.: Density �uctuations in pipe �ow. The system at the top has a restitution

coe�cient r = 0:99, for the system at the bottom r is 0:0. For the system

with small dissipation the density �uctuations do not result in density

waves.

Power Spectrum of Density Fluctuations

One of the central points of various studies has been the characterization of the density

�uctuations. One possibility is to characterize them by their power spectrum P (f),

where f is the frequency of the �uctuations. If from the function �(t) an N -point
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sample is taken at equal intervals, the power spectrum P (f) is de�ned as

P (fk) =
1

N2

�
jCkj2 + jCN�kj2

�
(3.11)

with

Ck =

N�1X
j=0

cje
2�ijk=N k = 0; :::; N � 1: (3.12)

The power spectrum is only de�ned at discrete frequencies fk � 2fc
k
N
, where fc is the

Nyquist frequency. A Fast Fourier Transform can be used to calculate Ck.

LGA simulations of pipe �ow found � � �4=3 [98]. This result was also reproduced

by experiments [53] and theoretical considerations [84]. Horikawa et al.[53] measured

� � �1:5 and, in agreement with Moriyama [84] concludes, that the back �ow of air is

necessary for the observed density waves. The strong in�uence of the �uid can also be

seen when the air is replaced by silicon oil. In this case the power law has an exponent

of � = �0:81 � 0:01[92]. On the other hand, Beshadskii [10] argues that the exponent

�4=3 is universal for dissipative systems with scalar �uctuations convected by stochastic

velocity �elds. In addition, LGA does not contain a surrounding �uid and still yields

� � �4=3. However, in order to get a power law for the power spectrum of the density

�uctuations, a viscous drag force between the particles and the surrounding �uid was

added by Moriyama. This viscous drag results in the introduction of a velocity, where

the gravity acting on the particle is balanced by the viscous drag. HSMC does not only

contain no surrounding �uid, but also has no intrinsic velocity that may play a similar

role. This is in contract to LGA, which has an intrinsic velocity build in, that cannot

be exceeded by the particles. If HSMC reproduces the power law it would be a strong

indication that no surrounding �uid is neccessary.
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Figure 3.18.: Density � vs. time in a pipe �ow for systems with di�erent coe�cient of

restitution r. At the left the restitution coe�cient r is equal to 0:999, at

the right r is 0:0.

To obtain P (f), the density �(t) is measured across a horizontal slice in the system

(see Fig. 3.14) during the experiment or simulation. Fig. 3.18 shows �(t) for two di�erent
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systems. For small dissipation (r = 0:999) the density �uctuations are similar to white

noise, whereas for strong dissipation (r = 0:0) they have a more intermittent behavior.

Fig. 3.19 shows the resulting power spectrum for di�erent coe�cients of restitution.

The straight lines indicate that P (f) follows a power law P (f) � f� over one to two

orders of magnitude. There are two cut-o�s of this law. For low frequencies the behavior

is dominated by the fact, that the system is periodic. There can be no strong �uctuations

on time scales above the average time it takes a particle to cross the system length. High

frequency �uctuations are dominated by short range particle particle interaction, because

they are in the time scale of single particles entering and leaving the slice used for density

measurement.

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

1 10 100 1000

k

r=0.0
r=0.5
r=0.9

r=0.99
r=0.999

x^(-1.33)
x^(-0.7) 

Figure 3.19.: Power spectrum of density �uctuations in a pipe for di�erent restitution

coe�cients.

Fig. 3.20 shows how the coe�cient � changes for di�erent restitution coe�cients r.

Below a restitution coe�cient of 0.6 the slope remains constant at about -1.3. Above

r = 0:6 � approaches 0 with r ! 1, this corresponds to white noise �uctuations as it is

expected for elastic particles. This behavior was also observed by LGA simulations [98].

Fig. 3.21 shows the dependency of � from the wall roughness p and area fraction �.

The LGA simulations found a region of constant slope and another region where � �! 0

for p �! 0. Here, �(p) shows a more complicated behavior. The fact, that limp!0 �(p)

is equal to zero is visible in the diagram. A minimum value of � is reached for p � 0:1,

before � reaches � 0:4 for p! 1. A value of p = 1 means that whenever a particle hits

the wall, its vertical velocity component points upwards after the collision. There is no

variation in the interaction between the wall and the particles. This corresponds to a

wall that has constant roughness throughout the system. On the other hand, a value of

p 6= 1 models a wall that is rough on a fraction of p and smooth on all other parts. The
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Figure 3.20.: Slope � of power law for power spectrum of density �uctuations in pipe

�ow for di�erent restitution coe�cients r (� = 0:38, p = 0:1). Below

a restitution coe�cient of 0.6 the slope remains constant at about -1.3.

Above r = 0:6 � approaches 0 with r ! 1, and thus white noise �uctuations

as expected for elastic particles.

fact that the wall roughness has to be varied in order to see strong density �uctuations

is known from molecular dynamics simulations, where the wall roughness is modeled by

attaching particles to the wall [103]. Only if the distance between the �wall particles� is

not evenly spaced, there are strong density waves.

Fundamental diagram

One of the major questions in tra�c �ow is, how the �ow rate � changes with the density

� of tra�c. The resulting diagram �(�) is called fundamental diagram. Fig. 3.22 shows

the result of the HSMC simulation. The graph shows three di�erent regions. In the

�rst, the �ow grows proportional to the particle density (� = 0 � � �0:6). In the second

(� = 0:6 � � �0:75), the �ow grows faster than the average particle density �. For high

density (� > 0:75) the �ow rate does not grow anymore or is even reduced for increasing

density. In this region jamming occurs, which also makes the measurement di�cult,

because depending on the initial conditions the �ow may jam within the simulation

period or not.

The three regions with di�erent slope � = @�
@�

correspond to three di�erent velocities

of the propagating density waves. The di�erent velocities can be measured in the dia-

grams showing the time evolution of the density along a vertical cross section through

the system (Fig. 3.23). The diagram for � = 0:88 also shows the limitation of the HSMC

method. The velocity of the density waves is drastically reduced, but does not reach
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Figure 3.21.: Slope � of power law for power spectrum of density �uctuations in pipe

�ow for di�erent wall roughness p (� = 0:6, r = 0:0) on the left, and for

di�erent area fractions � (p = 0:1, r = 0:0) on the right.

negative values as could have been expected by looking at the fundamental diagrams

for very high values of �. For these high densities e�ects like dynamic arching or spin

organizations [69] are important, that are not modeled correctly by HSMC.
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Figure 3.22.: Fundamental diagram for pipe �ow (p=0.1, r=0.0).

3.4.2. Suitability of other simulation methods

Various publications demonstrate the suitability of LGA[43, 58, 98], ED [22, 69] and

MD[103]. For high densities, methods like ED and MD are preferable to HSMC, because

they include e�ects like arching or spin organizations, that play a dominant role in the

case of high densities.
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Figure 3.23.: Density �uctuations in pipe �ow. The area fractions of the three systems

are 0.3, 0.75 and 0.88 (from top to bottom). The triangles mark the velocity

of the density wave.
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Since DSMC cannot handle the simulation of the system in the dense regions it is

not appropriate for the simulation of pipe �ows where strong density �uctuations occur.

None of the above methods handles the simulation of the �uid between the particles,

especially the back �ow of air, that is considered to be crucial in the outcome of the

experiments.
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3.5. Heaps

A �ow where granular matter behaves like a �uid as well as a solid is the formation of

heaps. You can pour the grains out of a container (like a �uid) on a table and they form

a stable pile with a �nite slope (like a solid). Static friction is one of the reasons why

granular material behaves like a solid. HSMC however does not include static friction

and the question is to what extent the formation of heaps can be reproduced. Using

soft sphere molecular dynamics it has been shown that heap formation is possible with-

out static friction[64] due to the steric e�ects caused by the excluded volume. For the

same reason it is also possible to simulate heaps using hard sphere molecular dynamics.

Since excluded volume is built in on the coarse grained grid level into HSMC, an im-

portant question is to what extent artifacts of the induced anisotropy are visible in the

simulations.

In order to build a heap, particles were put into the system at a constant rate (one per

time unit). The freshly created particle is put a �xed length above the particle with the

highest position in the system. The disadvantage of course is that the simulation time

grows linear with the number of particles N . This algorithm however resembles more

closely the experimental way of pouring particles out of a funnel than other solutions.

To reach an equilibrium state we wait 500 time units after the last particle has been

added. Fig. 3.24 shows a typical result. On a �rst glance the major feature of a heap

like the �nite slope are reproduced well. In the following we will have a closer look at

the shape of the heap.
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Figure 3.24.: Heap of 30500 particles simulated with HSMC. The picture at the top is

a snapshot of the heap. In the middle two lines are added to guide the

eye. At the bottom the surface of the heap is drawn, this data is used for

further analysis, like �tting linear functions.

The shape of a heap is de�ned by its surface. In the case of a two dimensional heap
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�

Figure 3.25.: Basic shape of a heap. The surface has an approximately constant slope

and forms the so called angle of repose � with the horizontal bottom.

the surface can be described as a function h(x), where h is the height at position x.

To measure h(x) the system is divided into bins of width �x and h(x0) is taken as the

maximum y coordinate of all particles between x0 � 0:5�x and x0 + 0:5�x. Fig. 3.24

shows the result of this procedure compared to a picture of the same heap. Since the

basic shape remains unchanged when the heap grows it is possible to rescale the shape

at di�erent times. If h(x; t) denotes the shape at time t the following should apply:

1p
t1

h

�
xp
t1

; t1

�
=

1p
t2

h

�
xp
t2

; t2

�
(3.13)

The total mass M = t of the system is proportional to the volume of the heap if the

density is constant. Fig. 3.26 shows the growing process of a heap together with the

rescaled shapes at di�erent times. The curves collapse quite well on a single line, only

for small heaps deviations are visible.
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Figure 3.26.: Snapshots of a growing sandpile. The numbers denote the numbers of

particles. On the right the data is collapsed as described in the text. The

heap is steeper at the top, this is mainly caused by the small input velocity

(see Fig. 3.32 and explanations there).

The angle of repose depends also on the micro-mechanical properties of the grains.

The parameter of interest here is the coe�cient of restitution r. In Fig. 3.27 we plot the
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3. Physical Test Cases

slope of a heap of 30,000 particles for r ranging from 0.97 to 0. The error bars indicate

the statistical error as given by a least square �t of a straight line to the surface. Since

the tail of the heap deviates from this line (see 3.5.1), only the straight central part

is considered. If the underlying grid dominated the result we would see that the slope

would preferably be an integer ratio like 1
2
, 1
3
. Regarding the slope there are no dominant

lattice e�ects. However we observe artifacts at the point where particles are poured into

the system. If the restitution coe�cient is close to zero sometimes sharp peaks are visible

that are two grid cells wide. It almost looks like the particles are stacked on each other.

There are several reasons contributing to this behavior. First, there are no forces that

would in reality push the particles apart under load. Second, within a cell the position

of the particles are not considered for the particle interaction. Thus there is again

no reason for them to be pushed out of a cell. Third, because the average horizontal

momentum of the particles is zero there can be no horizontal movement once the kinetic

energy has vanished. Finally one should keep in mind that within the framework of

HSMC the particles have a scattering cross section but no shape. The association of the

particles with spheres is strictly speaken arbitrary. Several optimizations are possible

to reduce the lattice artifacts. First, the lattice could be rotated by 45 degrees to

achieve a better adaption to the orientation of the heap surface. This improvement was

successfully applied in LGA simulations of heaps [7]. Another possibility would be to

apply a random displacement of the lattice between the time steps.
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Figure 3.27.: Angle of repose � as a function of the coe�cient of restitution (m =

tan(�)).

3.5.1. Shape of a heap

Although the surface of a heap is close to a straight line, it is known that the tail of

the heap deviates from that line. One possible model of a pile is the idea of incomplete

layers of particles[7]. The surface is consequently not �at, but consists of kinks. If the

top of the heap is located at x = 0 and its height is h(0) = hm, an ideal right side of the
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3.5. Heaps

Figure 3.28.: Lattice artifact of HSMC. For small coe�cient of restitution ( here 0.0 )

sharp vertical peaks are visible.

heap follows the law h(x) = hm �mx. Every kink increases this value of x by a value l,

where l is typically of grain size. If � is the number of kinks per unit length in vertical

direction we get the following di�erential equation:

dh

dx
= � m

1 + lm�
: (3.14)

We can relate the density of kinks to the probability r of a particle to be stopped at a

kink. The �ux of moving particles �(x) at height h is diminished by this according to

d�=dh = r��: (3.15)

On a plate the heap grows by a horizontal shift of its surface. This is only possible if the

aggregation rate of particles is independent of the height: @�=@h = B = const: Since

�(0) = 0 we obtain � = Bh. Replacing � with Bh in Eq. (3.15) we get � = 1=rh and

thus

dh

dx
= � m

1 + lm=rh
: (3.16)

With the solution

x =
hm � h

m
+

l

r
ln(

hm

h
): (3.17)

Fig. 3.29 shows a comparison of the simulation with formula (3.17). The logarithmic tail

is reproduced very well, the HSMC method con�rms the results of LGA simulations [7,

45].

The horizontal plate is a necessary boundary condition for the formation of a heap.

In the direction perpendicular to gravity several boundaries are possible. So far the
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Figure 3.29.: Comparison of the shape of a heap on a plane with an analytical solution

according to Eq. (3.17). N = 30500, r = 0:9

system was large enough to avoid an in�uence of these boundaries on the heap. Thus

the result is the same as in a semi-in�nite system. Another possibility is a system of

�xed size like a box, and the third is a �nite table (see Fig. 3.30 for a scheme of the three

possibilities). The di�erence between a box and a table is that in the �rst all particles

are contained inside the system whereas in the second every particles that reaches the

horizontal border is removed (�falls of the table�). The di�erent boundaries in�uence

the shape of a heap. Fig. 3.31 shows the result for the discussed cases. The most striking

di�erence is visible for the table. Instead of a logarithmic tail the surface is bent in the

opposite direction. Near the boundaries the angle of repose is increased. A possible

explanation is that the plate stabilizes the particles close to it. In the case of the in�nite

plate the bottom was covered with a thick layer of particles, e�ectively decoupling the

plate from the particles at the top of this layer.

The �nal deviation from a straight line is visible at the head of the heap (see

Fig. 3.32). Close to the top there is a transient regime where the initial velocity of

the particles is still noticeable. Further down the acceleration due to the gravity and

the dissipation due to collisions are balanced. If the particles are put into the system

with a high velocity the head of the heap becomes �at, because the incoming particles

will have a high probability to kick a resting particle out of the heap. The closer the

local slope is to the maximum angle of stability the higher is the probability to release

a particle. Therefore the slope is reduced until an equilibrium is reached.

The fact that the top of the heap becomes �ater for high impact energies is known
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Figure 3.30.: Di�erent boundary conditions for heaps. Semi-in�nite table (left), box

(middle) and �nite table (right).
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Figure 3.31.: Di�erent shapes of heaps that result from di�erent boundary conditions.
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from experiments [33]. The artefact of the steeper surface for small impact energies

relates again to the fact, that there is no steric interaction between the particles. A

su�ciently high kinetic energy of the particles is necessary to force them out of a �lled

HSMC-cell.
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Figure 3.32.: Shape of the head of a heap for di�erent pouring violence. The numbers

are the vertical pouring speed in m/s.

In this section we have demonstrated that HSMC is able to simulate stable heaps

due to the e�ects of excluded volume introduced on the grid level. It turned out that

artifacts of this grid are only visible for very low coe�cient of restitution. Besides the

basic features of a heap like the constant slope of its surface more detailed structures

like the logarithmic tail are also reproduced.

3.5.2. Suitability of other simulation methods

In the area of heaps molecular dynamics is the classical method, last but not least

because it can treat several models of static friction. This is especially true for Contact

Dynamics, where the Coulomb law of friction is incorporated. With MD it is possible

to examine the e�ects of the particle shape on the properties of the heap[74].

LGA models have also been successful applied to simulate granular heaps[41], this

includes the logarithmic deviation at the tail of the heap [7]. Care has to be taken that

the inherent anisotropy of LGA models does not lead to artifacts in properties like the

angle of repose.
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3.5. Heaps

With appropriate boundary conditions, e.g. particles at the bottom that have �xed

positions, it is also possible to simulate heaps with hard sphere molecular dynamics.

In this case the inelastic collapse problem (see chapter 2.5) has to be treated with an

appropriate work around.
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3. Physical Test Cases

3.6. Correlations in dissipative gases

In this chapter we will take a closer look at the correlations existant in dissipative gases.

The motivation to have a look into this can be seen in Fig. 3.34. For low dissipation

(r = 0:98) there is perfect agreement between the predicted time evolution of the energy.

For larger dissipation (r = 0:85) however DSMC and HSMC underestimate the kinetic

energy compared to the results of an event driven simulation.

r = 0:98, � = 0:05 r = 0:98, � = 0:245

r = 0:85, � = 0:05 r = 0:85, � = 0:245

Figure 3.33.: Snapshots after � = 200 collisions per particle. The systems are character-

ized by the area fraction � and coe�cient of restitution r.

To test possible reasons for the discrepancies we have chosen four systems with

di�erent densities and dissipation. The systems with high dissipation (r = 0:85) show

the clustering instability, whereas the two systems with r = 0:98 stay homogeneous.

Fig. 3.33 shows a snapshot after every particle participated in 200 collisions. The area

fraction � = 0:05 of the dilute system was chosen to make it well suited for the Monte

Carlo Methods. The denser systems (� = 0:245 are still accessible for extensions to the

theories of dilute systems, another area where the interest for this type of correlations

stems from. All systems consist of N = 50000 particles. Throughout this chapter we

use the number of collision per particle � as natural time scale. Because one collision

involves two particles it is related to the total number of collisions C in the system

according to � = 2C=N .
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Figure 3.34.: Time evolution of the energy for the four di�erent discussed systems.
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3.6.1. Impact Parameter

The major assumption of both DSMC and HSMC is that the probability distribution

p(b) of the impact parameter b is constant. Since in the simulations only the normal

relative velocity of two particles is damped, more energy is dissipated if the number of

central collisions is overestimated. Fig. 3.35 shows the distribution measured with ED

at di�erent times. As soon as the evolution of the energy deviates (� � 80 for � = 0:05,

and � � 30 for � = 0:245) we also observe deviations from the constant probability

distributions. There are more grazing collisions than assumed by the Monte Carlo

simulations. In order to correct the distribution used in the simulations we approximate

the measured values with

p(b) =
a

1� cb2
with b 2 [�1; 1]: (3.18)

The lines in Fig. 3.35 show the result of least square �ts of expression (3.18). The limit

c ! 0 corresponds to the constant distribution p(b) = 0:5. The coe�cient c indicates

therefore the deviation from the constant distribution. Fig. 3.36 shows c versus � . In

consistency with the energy data we see that c starts to deviate from zero at � � 80 for

� = 0:05 and � � 40 for � = 0:245. With the knowledge of c(�) we can use p(b; �) in
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Figure 3.35.: Distribution of the impact parameter b for two systems showing clustering.

the Monte Carlo simulations to draw the impact parameter from the correct distribution

and achieve a higher accuracy. In Fig. 3.36 the simulations using the adjusted p(b; �) are

labeled �corrected�. For the dilute system (� = 0:05) there is a slight improvement for

medium times (� = 80 : : : 120). For the dense system the results of HSMC are closer to

the ED results for all times, but deviations are still strong. For the DSMC2 simulations

the dissipation is even increased. Because we examine E(�) and not E(t) an incorrect

number of collisions is not a possible reason. Instead the average energy loss in a single

collision must be wrong. This issue will be discussed in the following.

66



3.6. Correlations in dissipative gases

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0 20 40 60 80 100 120 140 160 180 200

nu=0.05
nu=0.245

Figure 3.36.: Time evolution of the coe�cient c from Eq. (3.18) for the systems with

coe�cient of restitution r = 0:85.

3.6.2. Density and Velocity Correlations

The outcome of a collision with �xed coe�cient of restitution depends on two parameters.

First the impact parameter and second the relative velocity. The correction of the �rst

did only slightly improve the results. We therefore conclude that the relative velocity

of particles is di�erent in the Monte Carlo Simulations. Among others we will therefore

take a more detailed look at the velocity correlation in the next section.
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Figure 3.37.: Comparison of the time evolution of the energy for simulations with and

without corrected impact parameter distribution.

The measured quantities are the spatial density correlations

Gnn(r; t) =
1

V

Z
dr0 < Æn(r+ r0; t)Æn(r0; t) > (3.19)
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and velocity correlations [120]

G��(r; t) =
1

V

Z
dr0 < u�(r+ r0; t)u�(r

0; t) > : (3.20)

The rank two tensor �eld G��(r; t) has the transverse (?) and parallel components (k)

Gk = r̂�r̂�G��(r; t) and (3.21)

G? = ^r?� ^r?�G��(r; t); (3.22)

where r̂ and r̂? are unit vectors, parallel and perpendicular to the distance vector r

between two particles [96]. Gk(r) is positive when the particles move into the same

direction and negative when they move in opposite directions. Because for G? the

velocities of the particles are projected onto a vector perpendicular to the distance

vector between the particles G? is a measure for rotation/vorticity.

First we check how the correlations look like when the results for the kinetic energy

of the systems agree. As expected there are almost no correlations in the dilute system

with small dissipation (� = 0:05, r = 0:98) as can be seen in Fig. 3.38.

The fact that the dense system with low dissipation (� = 0:245, r = 0:98) stays ho-

mogeneous in the course of the simulation is visible in the density correlation (Fig. 3.39)

and the snapshot of the �nal con�guration (Fig. 3.33). The higher density, however,

leads to visible correlations in the velocity. Particles that are close to each other have

the tendency to move into the same direction. This is a consequence of the fact that the

relative motion leads to collisions and is therefore damped. HSMC and DSMC2 show

larger values for Gk than ED but the arti�cial correlations are small enough to prevent

signi�cant consequences to the overall dissipation. For the systems with high dissipation

the situation is more complex. Not only that there are signi�cant di�erences between

the simulation methods. We also have to judge the e�ect of the corrected distribution

of the impact parameter. The results of the simulations with this distribution function

are again labeled �corrected�.

First we look at the dilute system (see Fig. 3.40). The clustering is of course clearly

visible in the density correlations. All Monte Carlo Methods tend to overestimate the

density correlation Gnn. Especially the DSMC methods results in too dense clusters.

Changing the impact parameter distribution does not improve the results for Gnn in the

case of DSMC. The limitation of the maximum density of the HSMC methods yields also

better results for Gnn. This is improved to an almost perfect agreement with ED results

if the impact parameter distribution is corrected. For HSMC this e�ect is smaller and

even reduced further with the corrected impact parameter. Looking at the plots of Gk

and G? it becomes obvious, that the unmodi�ed HSMC only improves the results for the

density correlations. However, combining the corrected impact parameter distribution

with HSMC yields results that are very close to the ED results. The results of the

two DSMC simulations show, that the corrected p(b) alone does result in only a minor

improvement of the Monte Carlo results.

The results of Gnn for the dense (� = 0:245) system with high dissipation (r = 0:85)

show the limitation of the improvements. All Monte Carlo results deviate from the ED
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Figure 3.38.: Density correlation Gnn and velocity correlations Gk, G? at � = 140 for a

system with N = 50000 particles and � = 0:05, r = 0:98. Although there

are no visible density correlations Gnn, there are weak velocity correlations

due to the dissipation.
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Figure 3.39.: Density correlation Gnn and velocity correlations Gk, G? at � = 140 for

a system with N = 50000 particles and � = 0:245, r = 0:98. DSMC and

HSMC reproduce the velocity correlations shown by ED simulations, but

there are small deviations.
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Figure 3.40.: Density correlation Gnn and velocity correlations Gk, G? at � = 140 for a

system with N = 50000 particles and � = 0:05, r = 0:85. There are strong

deviations between DSMC/HSMC and the ED results. The HSMC with

the corrected impact parameter distributions (labelled HSMC corrected)

shows very good agreement with ED.
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simulation. The deviation from ED is larger than the deviations within the various

MC methods. The �rst obvious disagreement between ED and MC is the underesti-

mation of both velocity correlations (Gk and G?). As a consequence the dissipation is

overestimated which results in higher values of Gnn, because the clustering is increased.

In the summary, HSMC together with the correction of the impact parameter distri-

bution p(b) delivered the best agreement with the results of the hard sphere molecular

dynamic. The unmodi�ed HSMC will also give better results for the density correlations

than DSMC, but the velocity correlations are not correctly reproduced as soon as the

system gets denser. Increasing the dissipation for the dense system shows, that the sim-

ple modi�cation of p(b) only results in a �rst approximation of the velocity correlations,

which is no longer correct for stronger correlations.
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Figure 3.41.: Density correlation Gnn and velocity correlations Gk, G? at � = 140 for

a system with N = 50000 particles and � = 0:245, r = 0:85. The devia-

tion between ED and the HSMC method with corrected impact parameter

distribution (labelled HSMC corrected) show the limitation of the improve-

ments.
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3.7. Vibrated beds

In this chapter we focus on granular media in vibrated containers in two and three

dimensions. If dissipation is not too strong and enough energy is fed into the system,

e.g. via vibration of the container, the surface of the material may �uidize [17, 66]

and the energy scales with the typical velocity of vibration rather than with the typical

acceleration [13, 66, 113]. Simulations in 1D [17, 66, 75] were complemented by two

dimensional simulations [63, 70] and experiments [13, 126]. In 1D and 2D the potential

(or kinetic) energy E scales with the typical velocity V , i.e. E / V �, with � = 2 in

1D and � � 1:4 in 2D. The latter is also obtained from experiments [126], consistent

with simulations, with respect to the fact that they lead also to an exponent � < 2.

Theoretical approaches usually lead to the exponent � = 2 in 1D and 2D, see Ref. [61]

and references therein.

In the following we introduce the numerical methods used and establish coincidence

in 2D and 3D. We will discuss di�erent boundary conditions and their e�ect on the

exponent � in 2D and 3D. We are interested in the in�uence of the boundary because

it always exists in the experiments and often determines the behavior.

3.7.1. Simulation Aspects

The container is made of a horizontal bottom, two in�nitely high vertical walls, and

it is open to the top. The position of the bottom is z0(t) = A sin(2�ft) as a function

of time t, with the amplitude A and the frequency f , so that its maximum velocity is

V = 2�Af . Before we start the simulations, N particles with diameter d are �lled into

the container with random initial positions and velocities. We assure that the system

reaches a steady state before performing averages.

Throughout this chapter three di�erent methods are compared. ED (event-driven)

labels the results of classical Hard Sphere Molecular Dynamics. DSMC stands for the

unmodi�ed Direct Simulation Monte Carlo Method. DSMC2 [90] contains two modi�-

cations: the number of collisions is modi�ed due to the excluded volume of the particles,

and the additional advection process of the CUBA method is applied [2, 30].

3.7.2. Results

Comparison of DSMC and ED in 2D

The height of the center of mass is used to measure the energy in the system. To evaluate

the validity of the DSMC method for this application we �rst compare ED, DSMC and

DSMC2 in two dimensional simulations. In �gure 3.42 we plot the height of the center

of mass H vs. velocity V for elastic walls and inelastic particles as well as the particle

number density as a function of height for f=100Hz and V=0.11m/s. At low excitations

of the bottom plate (V < 0:6m=s) the DSMC method is not longer valid. However, the

improved DSMC2 method still gives good agreement with ED down to V = 0:06m=s.
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In this case the density is about 84% of the density the system has at rest. The much

better agreement of DSMC2 with ED can also be seen in the density distribution.

In �gure 3.43 we plot the probability distribution for the horizontal (Ux) and vertical

(Uz) velocities. Again we see agreement of DSCM2 and ED. The mean square velocity

is larger for elastic compared to dissipative walls and the distribution of the vertical

component is asymmetric with the maximum shifted towards negative velocity. The

decay for positive velocities is slower, due to the dissipation in the system and a net

energy �ux from the bottom upwards.
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Di�erent boundary conditions in two dimensions

The scaling behavior was investigated like in Refs. [63, 70]. The results of DSMC2 are

in reasonable agreement with the previous results of ED (see �gure 3.44). This is true

for the overall scaling and for the deviation from the theoretically expected power law

H � V 2 at small V values. This proves that the reason for these phenomena is neither

long range correlation nor a likewise multiple particle memory e�ect, since both are not

explicitly included in DSMC2.
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To understand the reason for the strange dependency of H on V with dissipative

particles and walls we plot H(V )� H(0), with the height of the center of mass at rest

H(0) = 2:492�10�3m, for all possible combinations of r and rw. The agreement between

DSMC2 and ED for all boundary conditions shows that the particle particle and particle

wall interaction is represented correctly. For elastic walls and dissipative particles we

�nd � � 2 above V � 0:6m/s. For inelastic walls we observe a smaller � � 1:5 over

two decades, whereas we see two di�erent regimes in the case of elastic particles and

inelastic walls. In the latter case we �nd H � V for small V and H � V 2 for large

V . For V > 5m/s the density is low enough that many collisions with the walls occur

before the next particle collision. Therefore the horizontal velocity of a particle decays

between two particle collisions if the walls are inelastic. Thus the dissipation of energy

per unit time through the walls decreases due to decreasing collision frequency. Particle

particle collisions are necessary to trigger dissipation and the system behaves similar to

a system with dissipative particle collisions.
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error bars indicate the standard deviation.

Investigation in three dimensions

After the agreement between ED and DSMC2 is established in 2D, we can now investi-

gate the behavior in 3D. In order to obtain densities comparable to 2D we increase the

number of beads by a factor 10, because the system is 10 diameters wide and deep. We

estimate the height of the center of mass at rest to H3D(0) = 2:2� 10�3m using an ED

simulation with dissipative beads and a �xed bottom plate.

We do not �nd new qualitative aspects of the system's behavior when we make the

transition from 2D to 3D irrespective of the particular boundary condition chosen. Thus

e�ectively, we recover the physics of a 2D system, because of the equivalence of the two

horizontal dimensions.

In this chapter the DSMC method was applied to dry granular media simulations.

Reasonable quantitative agreement between the deterministic ED method and the par-

tially stochastic DSMC2 algorithm is obtained. This proves that the assumptions made
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3.7. Vibrated beds

for DSMC are correct in the parameter range discussed here and that the behavior of

the system does not depend on possible correlations between collisions.
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4.1. Metacomputing

To increase computing power beyond today's limits several supercomputers can be con-

nected to form one huge metacomputer. Not only the hardware of the participating

computers is important but also the software and the data transfer must be optimized.

A number of projects aim to couple computers in various ways in order to gain higher

performance [15, 23, 24, 25, 59, 111]. During Supercomputing '98 a standard for cou-

pling computers with an interoperable MPI (message passing interface) was proposed

[18]. PACX-MPI[111] is a library that provides this interoperability and we used it

during the last couple of years during the participation in the testbed described be-

low [89, 101, 100]. The library is called PACX-MPI, because it extends MPI to couple

parallel computers (PACX is an acronym for PArallel Computer eXtension).

In the frame of the G7 Global Information Society Initiative �Global Interoperability

of Broadband Networks� the High Performance Computing Center Stuttgart (HLRS)

and the Pittsburgh Supercomputing Center (PSC) have set up a transatlantic wide area

application testbed. A dedicated ATM link was installed between the two sites[110].

This testbed allowed to gain experiences that led to substantial improvements in the

PACX-MPI library and in the applications.

4.1.1. Description of PACX-MPI

PACX-MPI is an implementation of the message passing standard MPI which aims to

support the coupling of di�erent platforms and to bridge the gap of interoperability

between MPI libraries of di�erent vendors. Therefore PACX-MPI is optimally adapted

to the two-level communication hierarchy of metacomputing.
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Figure 4.1.: Concept of the PACX-MPI metacomputing library.
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Due to the existence of both communication levels internal and external operations

are distinguished. Internal operations are operations which remain inside a single ma-

chine. They are executed by using the vendor-implemented MPI-library, because it is

highly optimized.

External operations, e.g. point-to-point operations between two nodes on di�erent

machines, are handled using standard protocols, currently TCP/IP. In this sense PACX-

MPI can be described as a tool to provide multi-protocol MPI for metacomputing.

PACX-MPI uses two specialized daemon nodes for the external communication on

each machine. These two nodes are transparent for the application and are therefore

not part of global communicators, like e.g. MPI_COMM_WORLD. The mapping of

local MPI ranks to global ranks including the daemon nodes (nodes 0 and 1) is shown

on Fig. 4.1.

The concept of PACX-MPI includes also data-compression for the external commu-

nication to improve throughput on low bandwidth connections and data-conversion to

support heterogeneous clusters. These points together with the full concept of PACX-

MPI are discussed extensively by Gabriel et al. [28].

Point-to-point communication in PACX-MPI

A point-to-point operation in this concept is realized as in Figure 4.2. The sending

node has to check whether the receiver is on the same machine. If this is the case, it

can make use of the fast communication subsystem of the machine. This means the

library can call the MPI_Send command directly using the native MPI-library. If this

is not the case, i.e. the receiving node is on another machine, it sends the message to a

local daemon node. The daemon node transfers the message to the destination machine,

where another daemon node receives the message and hands it out to the destination

node. This way, all communication is bundled across only one connection link for each

direction.
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Collective communication in PACX-MPI

The use of the MPI API o�ers the possibility to optimize the algorithms used for col-

lective operations for metacomputing. The algorithms applied in PACX-MPI try to

minimize the use of the slow external network as much as possible [29]. On the local

machine the implementation is again build on top of the vendor MPI collective routines.

To give an example we describe the algorithm of the MPI broadcast operation which

is optimized to minimize the usage of the weak link between the machines. The algorithm

consists of the following steps:

� Determine on each machine a so called local root node, which has to perform some

additional work during the broadcast operation

� The root node of the broadcast operation sends a message to each local root node

� Each local root node distributes the data to the nodes on its machine, using the

local broadcast operation of the vendor MPI library.

4.1.2. Description of the Application

The �rst application that was used in the metacomputing experiments was the DSMC

code, that used as a starting point to develop the HSMC algorithm. Another applications

that was adapted for metacomputing was a molecular dynamic program for short range

interactions. The parallel paradigm applied here is domain decomposition (see Fig. 4.3)

and message passing with MPI. Therefore every CPU is responsible for a part of the

domain and has to exchange information about the border of its domain with its adjacent

neighbors. Instead of exchanging them directly with all 8 or 26 neighbors in two or three

dimensions respectively the Plimpton scheme [102] is applied here (see Fig. 4.4). Both

applications have been used to simulate particle numbers that have been beyond the

reach of a single computer [47].

4.1.3. Porting to a Metacomputer

In principle porting to a metacomputer is straightforward as long as one uses a library

providing a single system image. PACX-MPI does this by replacing the standard MPI

library. The only thing one has to do is to change the include path of your compiler

to make it �nd the PACX-MPI header instead of the standard MPI header and link

the PACX-MPI library in addition to the MPI library. Because PACX-MPI is still in

development the set of supported MPI calls is however restricted to a subset of functions.

If an unsupported function is used, one has to �nd a workaround by using other MPI

calls. In the applications described here the MPI call MPI_Cart_create was used. Since

PACX-MPI did not support this function, the provided functionality of generating a

Cartesian grid with the information about connections between neighbors had to be

implemented in the application itself. Other calls like MPI_Ssend were replaced by the

standard MPI_Send. Details depend of course on the application. Future versions of
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Figure 4.3.: Domain decomposition. The cells of the linked cell algorithm containing

data that has to be shared with the neighbors (shadow cells) are in gray.

Figure 4.4.: Plimpton scheme to exchange shadow cells.
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PACX-MPI will support more MPI calls, but even if all calls were implemented there

might still occur problems. The simple reason is that on a metacomputer an application

will run in a di�erent way than on a ordinary parallel computer. Messages are sent

di�erent ways, latency and bandwidth vary across several orders of magnitudes within

the metacomputer. This makes it di�erent from almost all other parallel computers.

Furthermore, most native MPI implementations are rather forgiving to the MPI user,

i.e. it might be safe to reuse request handles without calls to MPI_Wait because the

communication is always �nished at the time of reuse. On a metacomputer it is much

more likely that this does not hold. However, there should be no problem if the program

is strictly conforming with the MPI standard.

4.1.4. Drawbacks of a metacomputer

Metacomputing introduces more stringent requirements on the communication pattern

of the application, because latency and bandwidth are aggravated. An ordinary parallel

computer is designed to deliver high performance for a wide range of communication

patterns. Since this is not true for a metacomputer it is very important to know the

exact details of the communication. The Plimpton scheme used in the MD application

o�ers a very regular pattern that can also be controlled and adapted to metacomputing

needs as described in the following.

Latency

Latency is de�ned to be the time a zero byte message needs to reach its destination.

On the Cray/SGI T3E this time is around 18�s. On a metacomputer it depends on the

interconnection between the computers and the protocol used. For PACX-MPI using

TCP/IP via the external I/O interface on a T3E the latency grows to 4ms and coupling

a T3E in Pittsburgh with its counterpart in Stuttgart adds another 70ms. This is a

di�erence of more than three orders of magnitude. At a �rst glance this seems to be the

major problem of metacomputing.

Library Viewpoint There is not much the library can do about latency. A great part

(20ms) is due to the speed of light. Some more overhead is added by the routers used.

Only 4ms are spent sending the messages to and from the PACX-MPI nodes and in the

TCP/IP implementation of the hosts. This minor part could be circumvented by the

use of a di�erent protocol or other improvements in PACX-MPI.

More important than reducing the latency is to deliver support for asynchronous

communication. PACX-MPI does this in several respects. First, the basic calls like

MPI_Isend and MPI_Irecv are supported. Secondly calls to MPI_Iprobe that check for

incoming messages are implemented with native MPI calls and thus do not have a large

latency as it would be the case if a TCP/IP call had to be made. Furthermore large

TCP windows are used to allow asynchronous communication between the participating

computers.
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Application Viewpoint To be able to run at a good level of performance on a meta-

computer an application has to implement latency hiding. After initiating the commu-

nication it should compute parts of the results and afterwards wait for the completion

of all communications that hopefully are �nished at that time.

To achieve this, the communication was grouped in two sections. First the commu-

nication for the �rst dimension is initiated by calls to MPI_Isend. In a second stage this

communication is completed and the calls for all remaining dimensions are performed,

allowing a partial overlap of communication with computation. In this application the

force calculation for particles that interact only with particles of the core domain is per-

formed between the �rst and the second stage. If the calculation for one particle takes

about 100�s one needs around 750 particles to hide the latency. As soon as latency

hiding is implemented this is no major restriction anymore. If the calculation for a

single particle is considerably faster, like in the DSMC calculations [88] one needs more

particles to hide the latency. Fig. 4.5 shows a comparison of a simulation running on a

metacomputer using PACX-MPI to a simulation running on the same number of nodes

on a single machine using native MPI. For particle numbers above 15.000 per CPU there

is no runtime di�erence between the two implementations.
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Figure 4.5.: Latency hiding for a DSMC application. The e�ciency is de�ned as the

performance of the metacomputing run with n1+n2 CPUs compared to the

native MPI run with n1+n2 CPUs on a single host.

Bandwidth

Coupling two T3E means that the actually used metacomputer is cut in two large pieces.

The bandwidth between the two parts of the system will depend on the connection.

In our case the ATM connections had either 2MBit/s or 10 MBit/s bandwidth. The

corresponding bi-section bandwidth of a T3E-1024 is around 36 GByte/s (64 connections

with 2 times 300MB/s each). This is a factor of about 30,000. Using a 644 MBit

connection would still result in a factor of 450.
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Library Viewpoint The library cannot increase the bandwidth, but can use it more

e�ectively. Therefore PACX-MPI o�ers the possibility to compress data before sending

it across the network connection. This is an advantage if the PACX-MPI node can

compress more data per second than the bandwidth of the connection. At the moment

PACX-MPI uses the lzo library which compresses about 3MB/s on an T3E-900. The

compression rate for the binary data we transferred is typically 0.6. Thus if the band-

width of the connection is below 24MBit/s one can expect higher throughput by using

compression. In addition the provided bu�er space is used more e�ciently. Tab. 4.1

shows the resulting performance improvement.

time for simulation inner force

with compression 251s 46s

no compression 357s 46s

Table 4.1.: Performance results with and without compression of the transferred data.

Application Viewpoint As a �rst approach latency hiding also helps to hide the in-

creased communication duration due to a small bandwidth. Increasing the number of

particles does however not only increase computing time but also the amount of data

to be sent. For a latency of 74ms and a bandwidth of 5MBit/s in both directions even

with particles consisting of only 24 bytes data there is a break even between latency and

communication duration above 15000 particles, a value easily reached in real applica-

tions.

The ratio between communication time Tcomm and computation time Tcomp is

Tcomm

Tcomp

=

�
Tl +

4rcMpnL
d�1

B

�
| {z }

Tcomm

1�
L

P 1=3 � 4rc
�d
nTsingle| {z }

Tcomp

(4.1)

where Tl is latency of the connection, B bandwidth, P number of CPUs, Mp memory

per particle in bytes, Tsingle computation time per particle, rc cut o� length for the forces,

L is the system length, and n the particle density. This formula holds for a square cube

with periodic boundary conditions.

The particles of the MD application consisted of a scalar radius and the three vectors

position, velocity and force with double precision summing up to 80 bytes in three

dimensions. According to formula 4.1 2.5 million particles per CPU are necessary to

completely hide latency with a bandwidth of 10MBit/s and P=1024, Tsingle = 100�s,

rc = 2, and n = 0:5. One time step thus would take 250s which would limit the

number of possible time steps to almost useless values. In the following, some possible

optimizations are described to reduce the amount of data that has to be transferred.
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Using �oats Maybe the most obvious possibility to reduce the amount of commu-

nicated data is to use single instead of double precision. If the particles in the MD

application consist only of �oating point information the amount of data is reduced by

50 %. You can regard it as a form of non lossless compression in contrast to the lossless

compression PACX-MPI provides. In contrast to the library, the application has the

knowledge where loss is allowed. This approach however changes the numerics of the

program and may not be feasible in all cases.

Figure 4.8.: Di�erent domain decompositions and their e�ect on metacomputing. Circles

denote the dedicated CPUs where PACX-MPI collects the messages before

sending them across the link. For the 4x3 decomposition 3 packages have

to be send across the link.

Using di�erent domain decompositions Fig. 4.8 shows two possible domain de-

compositions for the same domain. While the amount of transferred data is almost

unchanged it is send in a few big chunks instead of many small. Thus it helps PACX-

MPI to use the TCP connection e�ectively. For the application however this means a

less ideal domain decomposition, because more particles are in the shadow region now.

Tab. 4.2 shows the execution time for di�erent domain decompositions. The resulting

additional work over-compensates the gain in this case.

decomposition time for simulation inner force

8x16 231s 47s

16x8 279s 50s

32x4 265 48s

128x1 308s 32s

Table 4.2.: Performance for di�erent number of connections across the link. 8x16 is the

best domain decomposition for the application. The 128x1 decomposition

is the optimum case for the library because it has to handle only one large

packet.
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Node distribution The distribution of nodes between the participating computers is

one of the most crucial points in metacomputing. A wrong assignment can spoil most of

the performance. When running on two computers with one providing n1 CPUs and the

second n2 PACX-MPI guarantees that the lowest n1 ranks are on the �rst computer and

the highest n2 ranks on the second. The Cartesian domain decomposition is performed

in a way to get the least communication between the two computers.

Distribution time for simulation inner force

256+240 251s 46s

248+248 353s 46s

Table 4.3.: Simulation time for a MD application with di�erent node distributions.

Figure 4.9.: Di�erent node distribution for a Cartesian domain decomposition.

Table 4.3 and Fig. 4.9 show the impact of using a wrong node distribution. The

distribution shown on the left side of Fig. 4.9 does not increase the tra�c much, but

prevents latency hiding because also the second stage of the communication is performed

across the link.

Only send the core particle As described in section 4.1.2 the particles store the forces

acting on them. Forces between real and shadow particles are also calculated. Therefore,

the force does not need to be sent to a di�erent CPU and can be set to zero when a

particle is received. This reduces the amount of data from 7 to 5 �oating point variables

in 2D and from 10 to 7 in 3D.

Distinguish between real and shadow particles There are two reasons why a particle

has to be send to a neighboring process: (i) it actually moved from one domain to

another, (ii) it resides in a shadow region and is needed for the force calculation of a
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di�erent domain. In the latter case, it depends on the kind of force law which information

of the particles is actually needed. In our case, we could drop the velocity of the shadow

particles. This reduces the data for a shadow particle from 5 to 3 �oating point numbers

in 2D and from 7 to 4 in 3D. The total gain will depend on the simulation performed

because the ratio between shadow and real particles depends on the average velocity

of the particles. In general the number of shadow particles will dominate, thus the

reduction is close to 0.6.

Simulate a di�erent problem Equation 4.1 holds for cubic domains with periodic

boundaries. The most e�ective reduction of bandwidth needs can be seen in applications

like crack propagation, where the sample is elongated mainly in one dimension and it is

non-periodic. A non-periodic system of size Lx � Ly � Lz where Lz > Lx = Ly needs

only the bandwidth of a 2� Lz
Lx

times smaller system.

4.1.5. Conclusion

Although a metacomputing library can provide a transparent usage of a metacomputer

the di�erences concerning the performance of the connections between processing ele-

ments are clearly visible to the application.

Two important measures for this performance are latency and bandwidth. It turned

out that even the huge latencies of transatlantic metacomputing in the range of 80ms

can be handled by applications that can perform latency hiding. Bandwidth is a more

restricting factor for applications like molecular dynamics. Several optimizations can

improve the situation. On the library side compression of the transferred data is one

possibility. However, additional improvements on the application side are necessary

in order to make metacomputing e�cient. The improvements presented in this work

reduce the required bandwidth to 20% of the original value. This resulted in the quali-

tative change that the application can run as fast as on one huge supercomputer. It is

important to note, that in contrast to the measures the library can perform, the appli-

cation improvements are also valuable for high bandwidth connections � a �eld where

improvements can be expected with the upcoming Gigabit networks.

4.2. Implementation

In chapter 2.3 the basic HSMC algorithm was described. This chapter contains general

design concepts and some important details of the implementation. Without an imple-

mentation an algorithm is only a theoretical construct. An implementation is not only

necessary to actually apply the algorithm to real world problems, but also to verify the

correctness and completeness of the algorithm in an experimental way.

To achieve the maximum performance a parallel program was inevitable. The paral-

lelization was also the most complex part of the implementation. Section 4.2.2 describes

how this was done.

90



4.2. Implementation

Another important decision during the implementation was the programming lan-

guage. The availability of suitable compilers on the target platforms like the Cray T3E

or other supercomputers limited the choice to the languages Fortran, C and C++. The

�nal decision was to use C++. Besides of being a �better C� it o�ers some techniques

of generic programming that are so far not available in Fortran. It will also be demon-

strated how this resulted in a code re-usability that would have not been possible to this

extend without these features. Last but not least it was a question of personal taste and

familiarity with the language. Throughout this chapter code fragments will be given in

C++.

Finally, performance is of utmost importance in the scienti�c community, where the

calculations last thousands of CPU hours. It is therefore discussed in section 4.2.3

together with a performance comparison between C and C++.

4.2.1. Basic algorithm

The HSMC-algorithm integrates the time evolution of the system in discrete time steps

dt. Every time step is split into the advection and collision step. Therefore the main

loop of the program looks like this:

while(t<t_max){

// advection step:

do_advection(system,dt);

// collision between particles:

do_collisions(system,dt);

// advance time

t += dt;

}

For an e�cient implementation the particles have to be stored in an appropriate way

and at the same time access to all informations relevant for the algorithm should be

provided. The chosen solution was to store all particles in a container, inspired by the

container-concept of the Standard Template Library [95, 57] of C++. In addition to

simple storage, the container also provides the partitioning into cells that is required by

the DSMC and HSMC Algorithm.

Advection step In the case of DSMC the advection step was just the integration of the

equation of motion. In general an analytical solution can be used, because the movement

of one particle takes place completely independently from other particles. In the case of

a constant gravitation g the new position x_new and velocity v_new at the time t+dt

is given by:

x_new = x_old + dt*v + 0.5*g*dt*dt

v_new = v_old+g*dt
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This piece of code demonstrates nicely how in C++ the algorithm can be written in a

natural and dimension independent way.

In HSMC the advection step is more complicated, because the �excluded volume�

has to be considered.

The system is coarse grained to the level of the cells In the course of coarse grain-

ing the cells of the collision step are used as a space discretization. Every cell

corresponds to a grid point of this discretization. The properties of each cell are

determined by the particles in that cell. The mass is simply the total mass of

the particles (Eq. (2.20)). Its velocity is calculated with Eq. (2.22) such that its

momentum is the total momentum of the particles. Besides mass and velocity �eld

additional �elds store the volume that is available in the cell for incoming particles

and the energy lost in the interaction between cells ( see below ).

The interaction between the cells is calculated As described in Sec. 2.3 the cells are

treated like particles here. To allow a parallel update, the post collision velocities

of the cells are stored in an auxiliary �eld. For the next step the energy loss of

this step is stored in a second auxiliary �eld.

The energy dissipated in step two is redistributed as granular temperature The ve-

locity of the cell is the velocity of the center of mass. The relative velocity to the

center of mass is now rescaled according to Eq. (2.25).

Movement of the particles The particles are moved if they stay in the same cell or

the new cell has enough unoccupied space. It should be noted that the available

space is only calculated at the beginning of the advection step and not updated if

a particle enters a cell. This allows for a parallel update of the particles position.

Otherwise the result of the algorithm would depend on the sequence in which the

particles are updated.

Collision step The implementation of the collision step is quite straightforward. After

the container has sorted the particles into the cells that decompose the domain, all

informations are available to calculate the number of collision pairs according to Eq.

(2.34) and the procedure described in Sec. 2.3.

4.2.2. Parallelization

From the very beginning, a program suited for massive parallel computers was intended.

The only suitable programming model that scales well to thousands of processors is

message passing. However, the use of message passing and the corresponding MPI

standard has its drawbacks. The message passing model di�ers signi�cantly from the

ordinary serial approach. Parallelizing the program after it has been implemented in a

serial version has the disadvantage that the two versions soon become decoupled. Every

time the serial version is changed this has to be incorporated in the parallel program.

On the other hand you also don't want to only maintain the parallel implementation.
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First, it is a major restriction if the program runs only on parallel platforms. Second,

it takes in general more e�ort to modify the program in order to test new algorithms.

The solutions to this dilemma is to hide the parallel implementation at a suitable level

of abstraction.

First of all the most appropriate parallel programming model for the selected problem

has to be chosen.

Task parallel Several tasks are distributed across the processing elements. They can

act either on di�erent data or the same. In the later case the tasks consist of

di�erent stages in a kind of pipelining process.

Data parallel Within this model the di�erent processing elements perform the same

operations for di�erent data sets. Several approaches to select these data sets

further distinguish the data parallel model.

Particle decomposition Every PE takes care of a �xed number of particles. The

set of particles does not change during a simulation. Due to the particle

interaction the required information has to be communicated between the

PEs.

Domain decomposition To every PE a part of the system or domain is assigned.

Every PE calculates the motion of the particles in its domain. For the inter-

action of the particles so called overlapping regions are established. Particles

that are within cut-o� range to a neighboring domain are not only stored a

one PE, but also on the neighbor PE. The number of particles of each PE

varies because the particles move from domain to domain. The consequence

is a certain amount of load imbalance. As long as the system is homogeneous

on the scale of PE domains this can be neglected.

For granular systems with short range interaction the domain decomposition o�ers

the best solution. For most of the systems load imbalance was no problem.

One decision that has to be taken at di�erent points throughout the implementation

is Replication vs. Communication. E.g. when a force is calculated between two particles

that belong to di�erent PEs there are two possibilities. First, the force can be calculated

on one PE and communicated to the second. Second, the force calculation is performed

or replicated on both PEs. The approach taken in this implementation was to prefer

Replication. The idea behind this decision is that communication is more expensive

than calculation. While this is not necessarily true on platforms with extremely fast

communication networks like the Cray T3E, it clearly is the preferred solution for all

other situations, like e.g. in Metacomputing.

Speed up

One of the standard tests designed to measure the overhead of a parallel algorithm or

implementation is the speed-up test. When Ts is the time to solve a given problem on
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a single PE and T (n) the time to solve the same problem on n PEs, the speed-up s is

de�ned as

s =
Ts

T (n)
: (4.2)

In this benchmark the same workload is distributed to more and more PEs. It is therefore

a sensitive test for the overhead introduced by the parallel algorithm. Fig. 4.10 shows the

result of a DSMC simulation compared to the speed-up of a molecular dynamic program.

DSMC shows a much better speed-up due to its reduced communication overhead [46].
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Figure 4.10.: Comparison of the speed-up of a DSMC program with a MD program.

4.2.3. Scienti�c Computing and C++

Advantages of Using C++

Instead of citing the standard advantages of C++, the focus of this section is on the ex-

periences made in this work. At the beginning of this work it was not at all clear whether

the use of C++ has more advantages than disadvantages. Now it is clear that C++ was

the right choice. The reasons are manifold. First of all the language was designed to

write libraries. With several colleagues it was thus possible to create a collection of

useful algorithms and tools for the problems we were interested in [51]. This is of course

possible in any language. However, what is enabled by good programming style and con-

vention in languages like C or Fortran is enforced or standardized in C++. The class as

the central concept forces the programmer to separate interface and implementation on

one hand and on the other hand enables the user to employ the class without having to

worry about the implementation and unforeseeable side-e�ects. E.g. the random number

generators (RNG) used in HSMC are part of a class hierarchy, that despite the di�erent

internal algorithms to generate the random numbers all o�er the same interface. In this

way there are completely interchangeable which can be used to verify that the results are

independent of the speci�c RNG used. Another advantage of C++ is the possible code

94



4.2. Implementation

reuse due to the generic programming enabled by the template features. One example is

the container that was developed to store the particles. The cells that are used within

the DSMC or HSMC-Algorithm can easily be used in the linked cell algorithm of short

range molecular dynamics. The container already takes care of the domain decompo-

sition on distributed memory parallel computers. It is thus straightforward to write a

parallel MD program [86]. The parallel particle container that was originally developed

for HSMC was successfully used in several other projects [49, 50, 123]. Combining the

parallel particle container with a parallel �uid algorithm, it was also possible to write a

parallel program simulating particles in liquids [52, 124]. The coupling of this two codes

was reduced to implement the interaction between the particles and the �uid. Since

this interaction is local, this did not require any modi�cation or even knowledge of the

parallel code.

Performance

Comparison between C and C++ While recent benchmarks have shown that C++

can compete with C or Fortran [121] it is not clear whether this holds for a particular

application. Since performance depends on the abstraction techniques used [37, 112] it is

a non trivial task to �nd a suitable balance between certain techniques and performance.

Unfortunately there was no comparable implementation of DSMC or HSMC available

to me. Many of the techniques were also used in a MD program that I also wrote during

my thesis. With this program a direct comparison with a similar program [116] written

in C was possible.
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Figure 4.11.: Total runtime of two di�erent Molecular Dynamics programs depending on

the number of PEs.

The basic linked cell algorithm is the same. For a simulation of a Lennard-Jones

fcc crystal with 442368 atoms the C++ version is between 3 percent slower and 20
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percent faster. There are several reasons why the speed up of the C++ program is

worse. First, latency hiding is applied and its advantage is lost rapidly with decreasing

numbers of particles. Second, Newton's third law is not applied across PE boundaries.

This increases the workload on a single PE and results in larger overall runtimes when

the cost of the additional communication for exchanging forces is negligible. For large

particle numbers the overlap of communication and computation will also overcome

performance problems due to possible congestion of the T3Es network [91].

Performance of di�erent compilers While C++ was designed to have only minimum

runtime overhead, the actual abstraction penalty does not only depend on the abstrac-

tion level used, but also on the optimization technique of the compiler. Fig. 4.12 gives

an impression of the di�erences we observed between di�erent compilers. There is a

factor of more than three between the best and worst optimizing compiler.

But using the best compiler is not enough. We observed a similar performance

penalty when upgrading from KCC 3.2 to KCC 3.3. The reason was that with KCC

3.3 exception handling was turned on by default. Using a compiler switch to disable

exception handling, we were back to the old performance. This cannot be intrinsic

to exception handling because cxx does show good performance while still providing

exception handling. Obviously some important optimizations are a�ected. This problem

is more serious on architectures that depend on high level optimizations to achieve a godd

performance [87]. Examples are vector supercomputers or the upcoming processors with

explicit parallel instructions set.

Compiler �ags

SUN CC 4.2 -fast

DEC cxx 6.x -O5 -tune host -ieee -assume noaccuracy_sensitive

IBM xlC 3.1.4 -O3

Cray CC 3.0.1.3 -O3

KAI KCC 3.2 +K3 -O3

GNU gcc 2.7.2 -O3

Table 4.4.: Optimization �ags used for the di�erent compilers.

Abstraction penalty and exception handling Exception handling (EH) is one feature

of C++ that simpli�es the aspects of programs dealing with error handling, especially

regarding runtime errors that can occur during �le I/O and similar situations. Many

compilers o�er the possibility to disable the support for exception handling. In the

application section of this paper we have already seen that, even if exceptions are not

used in the program itself, enabling EH support can in�ict severe performance penalties.

To see whether this holds for general applications we tried to reproduce this e�ect with

the well known Stepanov Benchmarks. The Stepanov Benchmark is a collection of 13

kernels written in C++, each performing the same computation. Kernel zero is written

at a low level, using no C++ data abstraction features. The other kernels use various
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Figure 4.12.: Runtime of a MD program with di�erent compilers relative to runtime

using KAI KCC. The runtime with KAI KCC 3.2x is set to one, because

it is available on all platform. The value for GNU gcc is the average from

two platforms (Digital Unix (3.4) and SUN Solaris ( 3.7)).

C++ data abstraction features, in various combinations. Tab. 4.5 shows the results

for the native CC compiler on the T3E and Origin ( Cray C++ 3.2.0.1 and MIPSpro

7.2.1.2m) and a third party compiler from Kuck & Associates on the T3E ( KCC 3.3d).

Optimization was done with -O3 or +K3 -O3 in the case of KCC.

In the case of the native T3E compiler EH does not in�uence performance. The mean

value of the abstraction penalty, 3.29 is however by a factor 2.5 slower than the best in

this comparison. Kernel 1 reveals that the inlining of the T3E compiler is poor. The

best optimizing compiler (KCC) is very sensitive to the in�uence of EH, some kernels

are almost two times faster without EH. Like the native compiler on the T3E, the CC

on the Origin shows no signi�cant di�erences, but also o�ers less overall optimization.

Conclusions

I have shown that object-oriented concepts help to design �exible, portable and easy-

to-use tools for important problem classes found frequently in science and engineering.

One example is the parallel template particle container. First it was developed for the

use in DSMC and HSMC. Since it was designed in a generic manner with the help of

the C++ template mechanisms it was also applicable to �elds like molecular dynamics

and the simulation of particles in �uids.

Via comparison between a molecular dynamics program that made use of the parallel

template particle container and a classical C program it was demonstrated that C++

does not necessarily show performance degradations compared to C.
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T3E CC KCC Origin CC

exceptions exceptions exceptions

no yes no yes no yes

0 1.00 1.00 1.00 1.00 1.00 1.00

1 2.68 2.68 0.70 0.70 1.00 1.00

2 3.31 3.31 0.70 1.24 1.04 1.15

3 1.89 1.89 0.73 0.73 1.93 1.93

4 3.03 3.03 0.70 1.27 1.89 1.93

5 2.81 2.81 0.70 0.73 1.93 1.89

6 3.15 3.15 0.74 1.24 1.89 1.93

7 3.78 3.78 2.42 1.75 1.93 1.93

8 4.72 4.72 1.75 2.89 1.96 1.93

9 3.37 3.37 2.35 2.35 1.93 1.89

10 4.72 4.72 2.45 2.75 1.89 1.93

11 5.87 5.87 2.48 3.15 1.93 1.93

12 7.03 7.03 3.15 3.82 1.89 1.96

mean 3.29 3.29 1.28 1.55 1.65 1.67

Table 4.5.: Abstraction Penalty on CRAY/SGI T3E and SGI Origin (see text).

The Stepanov benchmarks show that an optimal performance is the result of a careful

balance between necessary abstraction and desired performance.
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The goal of this work was the design, implementation and analysis of a fast simulation

method for granular materials. The starting point was the Direct Simulation Monte

Carlo Method. Not because it was the best suitable method for granular materials,

but because it is very fast. The short overview in chapter 2.5 also shows that the

methods applied so far to simulate granular matter have their speci�c advantages and

disadvantages. No single method can therefore considered to be the best.

Since DSMC was designed for the �eld of dilute gas �ow, it has of course several

limitations for dense �ows. For dense systems several improvements like CBA, CUBA

or ESMC exist (see chapter 2.4). The most serious disadvantage of DSMC for dissipative

systems is the missing �excluded volume�. In contrast to all other DSMC variations, I did

not improve the collision step, but the advection step. Chap. 2.3 contains the arguments

why it is not enough to change the advection step in the case of a dissipative system.

In order to be more e�cient than molecular dynamics, which naturally incorporates

the excluded volume, the excluded volume is only enforced on a coarse grained level.

Although there have been large modi�cations to the original DSMC algorithms, HSMC

is identical to DSMC in the limit of dilute systems.

In order to test and verify the algorithm several test cases have been selected. Every

test case covers speci�c properties of granular materials. As a whole they cover a wide

spectrum of phenomena.

Homogeneous cooling (chap. 3.1) was simulated for comparison with the kinetic gas

theory. HSMC reproduces the theoretical results for area fractions of up to 0:9. This

demonstrates that the dissipation is still modeled correctly, even if a large number of

moves of the particles is rejected and a more complex dissipation mechanism via �cell

collisions� is used instead.

In the case of the clustering instability the results of HSMC have been compared with

DSMC and ED. Since the local density increases with time, the suitability of HSMC for

dense systems translates to longer time scales that are accessible with this method. As

soon as the system is dominated by clusters, most of the energy is stored in slowly

moving clusters with low granular temperature. The correct simulation of the energy

thus also re�ects the momentum conservation that has to be ful�lled. The dissipation

in this system leads to a variation of energy across several orders of magnitude. Since

there are no intrinsic time scales built into HSMC this is no major problem and only

limited by the numerical representation of real numbers.

In a system that is sheared di�erent velocity scales are present at the same time.

In addition to the correct scaling of the viscosity with the shear rate as described by
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Bagnolds law, two results should be noted. First, it is important that the underlying �xed

cell structure of HSMC does not impose a �xed reference frame onto the system. Second,

for e�ciency reasons a novel approach to adjust the time step had to be developed,

otherwise the fast movement of particles close to the walls would limit the time step to

unreasonably small values.

Spontaneous formation of density waves in pipe �ow is another property that is

reproduced by HSMC. Experiments and theory agree that the surrounding �uid is an

important factor for the density �uctuations. On the other hand LGA does not contain

the �uid and shows a power law that is consistent with the experimental results. One

major di�erence between LGA and HSMC is that the particle velocity is limited in LGA.

This is similar to the limitation of the particle velocity due to a drag force. Since HSMC

contains no such limitation, the validation of the correct power law is another, strong

argument that the surrounding �uid is not required.

The simulation of heaps is the last test case. It was already demonstrated by ED

simulations that static friction is not necessary to build realistic heaps, but steric e�ects

are su�cient. In the same way HSMC can simulate heaps. HSMC reproduces not only

the constant angle of repose, but also the small logarithmic deviations at the tail of the

heap. Whether the heap is �at or steep at the tail depends on the boundary condition.

It is �ater than the angle of repose if the heap is on an in�nite support and steeper

if limited by an edge of a �nite plate � an e�ect also visible in HSMC simulations.

Quantitative comparisons are limited in these cases because the shape of particles has

an in�uence on the macroscopic properties, and this information is not contained in

HSMC. The missing steric e�ects on the particle scale are also the reasons for artifacts

on the head of the heap, where the angle of repose is too steep, if the impact velocity of

the particles is small.

The next chapter took a closer look at the limitations of HSMC by checking the

correlations that exist in dissipative systems between di�erent particles. The results

show that higher order correlations between particles are the main reason for deviations

between HSMC and ED simulations. It is also argued why these correlations cannot be

introduced without sacri�cing the e�ciency of the method. The section about vibrated

beds is an additional case study where the results of the stochastic DSMC are compared

with results from hard sphere molecular dynamics. This shows that correlations between

particles in a narrow two dimensional systems are not important for the correct scaling

behavior.

Another important part besides the development and veri�cation of the HSMC-

algorithm was the design and implementation in C++. An object oriented approach

that hides the di�culties of parallel programming and allows to reuse the software in

other contexts without signi�cant loss of performance was the goal. The suitability of

the program for parallel computing was not only shown on MPPs, but also on coupled

supercomputers, the so called metacomputing. Here perfect scale-up could be achieved

by latency hiding. The reuse ability of the software was demonstrated by using the deve-

loped parallel template particle container for �elds like particle in �uids and molecular

dynamics. In the second �eld a comparison of a Molecular Dynamics program with a

program written in C showed that the applied abstraction techniques did not reduce the

100



performance in comparison with classical procedural programming.

Altogether the development of HSMC resulted in an algorithm that reduces the lim-

itation of DSMC, which served as a starting point. The resulting suitability to simulate

granular matter was demonstrated in several di�erent �ows like homogeneous cooling,

clustering, pipe and shear �ow and heaps. These �ows covered di�erent aspects of granu-

lar matter and posed speci�c di�culties for the simulation method. The performance of

the parallel program was tested on MPPs and in metacomputing testbeds. The compar-

ison with a C program was not only another performance test but showed also the reuse

ability of the software. Further improvements of the methods are possible to reduce the

lattice artifacts, that occur in systems with high density and strong dissipation. Some

possibilities were additional knowledge can be incorporated into HSMC have been dis-

cussed in chapter 2.3 and 3.5. The �rst example is the probability distribution function

of the impact parameter p(b) , where the examination in chapter 3.6 have shown that a

modi�ed p(b) can result in substantial improvements. A second example is the proba-

bility p(�) of a particle to enter a cell with volume fraction �, where so far a heavy-side

function has been used (see chapter 2.3). A further possibility is to modify the lattice

itself. Like in LGA simulations the appropriate orientation of the lattice relative to

gravity or other preferred directions of the �ow will reduce the lattice artifacts. The

additional advantage of HSMC is, that the lattice is only used to enforce the excluded

volume on a coarse grained level, i.e. the movement of the particles is not restricted to

vertices of the lattice. It is therefore possible to rotate or shift [55] the lattice between

time steps. This would in the average result in an isotropy and homogeneity of space,

as long as there is no preferred position or orientation of the lattice.

Due to the high performance of the method it has huge advantages for systems where

large particle numbers or simulation times are necessary, e.g. the three dimensional

simulation of clustering. It can also be applied to examine whether correlations between

particles or steric e�ects on the particle level are necessary to reproduce certain e�ects.

Although DSMC can also be used for this, the limitation of DSMC to dilute �ows is

a large handicap for dissipative systems. Examples where the HSMC results can guide

theoreticians are the scaling behavior of vibrated beds, the shape of a heap or density

�uctuations in pipe �ow.
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A.1. Optimizations for Cartesian Domain

Decomposition

Domain Decomposition is a wide spread method to distribute the workload among a

group of processors. In the case of a rectangular or cubic domain where every processor

area has the same size it results in a Cartesian topology. The performance of exchang-

ing data between neighbors in this topology is crucial for applications that apply this

methology.

Benchmarks are widely used to measure performance. On one hand they should be

speci�c enough to serve as a guideline for improvements, on the other hand they should

re�ect the demand of real applications. Most MPI benchmarks concentrate on point to

point and global communications [108]. Some benchmarks also use kernels of applications

or even complete applications [109, 48]. These benchmark results contain information

about the performance of di�erent communication patterns or parallel algorithms. This

information gives guidance in the development of a high performance implementation

of a parallel program. However, in the course of pro�ling and improving the parallel

implementations of DSMC, HSMC and MD I encountered some problems that were not

represented in standard benchmark results. Speci�cally this a�ected the performance of

communication in a standard Cartesian topology. In the following the general problem

will be described and an optimization technique will be provided. Performance results

on a Cray T3E that demonstrate the e�ectiveness of this technique are also included.

A.1.1. PE mapping and MPI

MPI identi�es a PE with its rank. In the �rst place there is no information about a

topology associated with those ranks. On the T3E the PEs are numbered in a way that

ranks with a small di�erence are likely to be close in the communication network. It is

clear that it is impossible to provide a good solution for all situations.

MPI therefore o�ers to create special process topologies. One possibility is to create

an n-dimensional Cartesian grid with a call to MPI_Cart_create. One option allows

the ranks to be reordered, this gives the implementation the possibility to remap the

PEs to get the best performance with the speci�c hardware. The PEs of the T3E are

physically organized in a bidirectional three dimensional torus. This is well suited for

the Cartesian grids found in applications with domain decomposition.
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Figure A.1.: Di�erent mappings of Cartesian coordinates onto PEs. Left: generated with

MPI_Cart_create. Right: generated with MPI_Cart_create that performs

reordering.
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However, the MPI on the Cray does not perform any reordering of PEs. An optimized

reordering of PEs can be based on the information about the physical layout if the PEs

which is available from the sysconf call. The algorithm chosen for optimization is to sort

the physical coordinates according to x,y and z-coordinates. There are 6 permutations

of the (x,y,z) triplet. Each of them is tested with respect to average hop count and the

optimum ordering is chosen. Results for di�erent Cartesian communicators are shown

in Fig. A.1.

The result of the optimization measured in reduction of average hop counts is given

in Tab. A.1 for varying dimensions of the Cartesian communicator.

Grid without reordering with reordering

2x2x2 1.3 1.3

3x3x3 2.5 1.8

4x4x1 2 1

4x4x4 2.8 1.8

8x4x1 2.2 1

8x4x2 1.5 1

Table A.1.: Average number of hops a message has to travel.

A.1.2. Performance Measurements

Pair communication

For contention to occur several PE have to communicate simultaneously. A communi-

cation pattern where the PEs communicate pairwise with each other (see Fig. A.2) was

chosen.

Figure A.2.: Topology of the benchmark problem

It is clear that this does not re�ect any real application but the design goal was to

have completely independent communications. The messages are sent with MPI_Isend

105



A. Optimizations and Benchmarking

and received with MPI_Irecv (see Fig. A.3). Since the hardware of the T3E is capable

of bidirectional communication the messages could be sent and received at the same

time. A di�erent possible optimization would have been to use MPI_Sendrecv, but the

use of the immediate send and receive re�ects the use in real application where some

computations are done between the send/receive calls and the MPI_Waitany.

The topology is created with a call to MPI_Cart_create and MPI_Cart_shift. This

gives the underlying MPI implementation the possibility to perform an optimized map-

ping onto the hardware.

MPI_Isend(sendfield,size,MPI_DOUBLE,partner,tag,comm,&request[0]);

MPI_Irecv(recvfield,size,MPI_DOUBLE,partner,tag,comm,&request[1]);

MPI_Waitall(2,request,status);

Figure A.3.: Code segment of the benchmark code.

The bandwidth is de�ned here as the amount of data that can be sent by one PE

per second.

From the observed maximum bandwidth of about 200MB/s with 2 PEs (see Fig. A.4)

we conclude that at least to some extent bidirectional communication is performed. One

link of a T3E-900 has a bandwidth of about 300MB/s for MPI.
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Figure A.4.: Bandwidth depending of message size and number of PEs. The topology is

created with MPI_Cart_create.

The contention is obvious in Fig. A.4. The bandwidth for message sizes above

10.000 bytes drops with increasing number of PEs. For 64 PEs the bandwidth for large

messages drops to less than half of the uncongested value.

106



A.1. Optimizations for Cartesian Domain Decomposition

0

50

100

150

200

250

1 10 100 1000 10000 100000 1e+06 1e+07

ef
fe

ct
iv

e 
ba

nd
w

id
th

 in
 M

B
/s

message size in bytes

2x1x1
2x2x2
4x4x1
4x4x2
4x4x3
4x4x4

Figure A.5.: Bandwidth depending of message size and number of PEs. The topology is

created with an optimized mapping.

Using the optimized mapping the congestion was reduced dramatically. Fig. A.5

shows that nearly for all cases the optimized mapping results in higher performance.

Extension to cyclic communication:

In order to reduce �nite size e�ects, many simulation apply periodic boundary condi-

tions. The periodicity is also re�ected in the Cartesian topology of the processors. The

communication network of the Cray T3E is a three dimensional torus and thus equivalent

to a three dimensional periodic Cartesian grid.

To �nd out about the behavior of the toroidal communication network the example

was extended. Now communication is done between all neighboring nodes in the x-

direction. Each process has to talk to a left and a right neighbor. In principal all

communication can be done within one single communication step. This should also hold

for cyclic communication patterns assuming that all processes are equal with respect to

network topology.

For the test example a 8x4x1 Cartesian communicator was created. First the in-

�uence of periodicity was measured. The tests with a periodic communicator include

cyclic communication. For the non-periodic communicator no cyclic communication is

done. A �rst guess would be that the additional communication should cost more. This

would be true on machines with a standard network. However, the toroidal mesh of the

T3E should show no di�erence. All tests were done using a �xed message size of 4MB.

All measurements were done 100 times and the accumulated times are given. Without

setting MPI_BUFFER_MAX one communication should take about 2.7 seconds.

First results showed a signi�cant di�erence which was independent of the ordering

method chosen. The overhead for cyclic communication was signi�cant for both kinds
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of communicators as can be seen in Tab. A.2.

without reordering with reordering

non-periodic 8.2 sec 5.9 sec

periodic 8.7 sec 6.8 sec

Table A.2.: Time for two sided exchange communication.

The striking point here is that even for a periodic communicator we would expect

that all communication could be done within two communication cycles. This should

take 5.4 seconds. For the Cray T3E it takes more than 3 communication cycles. Even

for the optimized method there is some overhead.

To �nd out what could be done about that problem more communication patterns

have been measured. The result was that once cyclic communication is involved the

performance of the network decreases. Further investigation made us think that we

should optimize our communication pattern to make it easier for the system to cope

with a fully loaded network. So we explicitly decoupled the communication and did it

in two steps. For this, every second processor row started with the communication to

the right neighbor. Every other second row did the same for the left one. In the next

step all processors switched to the other neighbor. This way we thought that within

two communication steps all communication should be �nished. The results are given

in Tab. A.3.

without reordering with reordering

standard 8.7 sec 6.8 sec

new 9.2 sec 5.4 sec

Table A.3.: Time for two sided exchange communication using a two step communication

scheme.

Although the decoupling of communication should make the Cray MPI version faster

it actually slows it down even more. We suspect that by prescribing the communication

pattern we loose the possibility to optimize the communication for the bad mapping

of processes. For our own mapping strategy we �nd that we actually can achieve peak

bandwidth for that communication pattern.

In this chapter we have seen that completely independent messages can interfere with

each other: the communication gets slower because the network of the parallel computer

gets congested. In the next section I will discuss the communication pattern found in the

DSMC, MD and HSMC applications and show how the modi�ed mapping can provide

a solution to the contention problem.
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Application benchmark results

The topology in this case is a three dimensional Cartesian grid. This corresponds to a

standard domain decomposition that can be found in many applications. First the com-

munication between the neighbors of one dimension is performed. After it is completed

the communication for the next dimension is started. The topology is again created with

a call to MPI_Cart_create.

Again, the bandwidth is de�ned as the amount of data one PE can send. Since there

are two sends done simultaneously in di�erent directions the theoretical peak bandwidth

is 600MB/s for MPI.

The observed bandwidth is always below 200MB/s (see Fig. A.6). There seems to

be just one send active at a time.
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Figure A.6.: Bandwidth depending of message size without reordering of PEs.

Again congestion occurs. In this case the bandwidth decreased from 200MB/s to

124MB/s for 128 PEs (8x4x4). The decrease is less pronounced than in the benchmark

case because the di�erent directions are e�ected to di�erent degrees. A poor performance

of one direction is compensated by a good performance of another one. In principle there

is no reason for a congestion, the layout of the T3E is a bidirectional three dimensional

torus [114, 115]. Two neighbors in a Cartesian grid should have a direct connection.

However, the operating system does not know whether a request for 64 PEs results

in a 4x4x4 or 8x8 grid. It guarantees just a connected area in physical PE space. This

provides a �rst approach to local communication between PEs.

But even if the layout of the physical PEs corresponds to the requested grid con-

tention occurs. MPI_Cart_create does not reorder the ranks to optimize the mapping.

Instead of calling the original MPI_Cart_create I used my own version that performs

reordering as described above. The result is shown in Fig. A.7. The bandwidth drops

only to 154MB/s. I checked the quality of a mapping by looking at the average number
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of hops a message has to travel. The hop count of the grids created by the improved

mapping was between 1 and 1.8 ( see Table. A.1). Whenever the layout of the physical

PEs corresponded to the requested grid the hop count was one. The performance is

between 2 and 40 percent better than the unoptimized mapping for PE numbers larger

than 8. Contention only occurs when the topology is strongly disturbed. In the case

of 8x8x4 PEs the domain was practically separated into two partitions with 128 PEs.

Small distortions are handled well as can be seen in Fig. A.1.
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Figure A.7.: Bandwidth depending of message size with reordering of PEs.

I have shown that the mapping of communication topology onto the underlying

hardware is important for benchmarks re�ecting communication patterns found in real

applications. This opens a wide �eld of optimization. The �rst �nding was that the

application partition of a T3E should be con�gured to be undisturbed by OS or CMD

PEs in its area. This will not only provide better mapping for the standard programs

but will also enable optimized mapping algorithms to �nd the optimal solution. Fur-

thermore fragmentation does not only a�ect the jobs you start on a system, but also the

performance of the already running jobs. An optimized batch system should take this

into account.

Applications which su�er under contention and communicate in a Cartesian grid

should use a version of MPI_Cart_create with reordering. The method presented here

provides such an optimized mapping. It was easy to implement and the overhead of the

optimization process is neglectable compared to simulation times of real applications.
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A.2. Benchmarks

A.2.1. Memory usage

Measured on DEC alpha with g++:
Nr of particles vsize rsize

0 488k 488k

2 2776K 212K

100 2736K 212K

5000 3328K 786K

10000 3936K 1400K

100000 14M 12M
Memory usage: 2723k+N�0.12k vsize, 195k+N�0.12l rsize.

A.2.2. Computational speed

Computer Compiler Result

DEC alpha 255/233 g++ 16662 Coll/s

SUN ultra1/170 g++ 14121

IBM43P g++ Compiler error

DEC alpha 255/233 cxx 11166 Coll/s

SUN ultra1/170 CC 10990

IBM43P xlC 10600
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List of symbols

symbol description

A area

� angle of repose

b impact parameter

BLGA Boltzmann Lattice Gas Automaton

Ĉ collision operator

� Enskog factor

CD Contact Dynamics

d dimension

D diameter

D̂ advection operator

DSMC Direct Simulation Monte Carlo

e unit vector

� inelasticity

ED Event Driven

f frequency

f (N) N particle distribution function

F Force

Fn normal Force

Ft tangential Force

� �ow

 �ow or shear rate

Gnn spatial density correlation

G�� spatial velocity correlation

Gk parallel component of velocity correlation

G? perpendicular component of velocity correlation

h height

H Hamiltonian

HSMC Hybrid Simulation Monte Carlo

k wavenumber

K(t) kinetic energy at time t

l length

� mean free path

L system length
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symbol description

LGA Lattice Gas Automaton

n particle density

N total number of particles

� volume or area fraction

m mass

Mc total mass of particles inside a cell

MC Monte Carlo

MD Molecular Dynamics

� viscosity

�d coe�cient of dynamic friction

�s coe�cient of static friction

p momentum

p wall roughness parameter

p(b) probability distribution of impact parameter

P (f) power spectrum

r coe�cient of restitution

R Radius

� density

S(k) structure factor

� scattering cross section

� time step

� Heavyside function

v velocity

Vc Volume of a cell

VN(x
N ) potential Energy of a N-particle system

x position

Z random number
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B. Deutsche Zusammenfassung

Die Gröÿe granularer Teilchen reicht von Bruchteilen eines Millimeters in Staub bis hin

zu Kilometern in planetaren Ringen. Systeme von industrieller Gröÿenordnung enthal-

ten Millionen von Teilchen, selbst kleinere experimentelle Anordnungen bestehen aus

Tausenden von Teilchen. Aufgrund der Teilchengröÿe und ihrer Anzahl ist es prinzipiell

möglich, die Systeme mit der klassischen statistischen Mechanik zu beschreiben.

B.1. Theorie und Modelle

B.1.1. Statistische Mechanik

Das Ziel der statistischen Mechanik ist, beobachtbare Eigenschaften eines makroskopi-

schen Systems durch Berechnung von Zeit- oder Ensemblemittelwerten zu berechnen.

Den zweiten Zugang bezeichnet man als Gibbs-Formalismus. Bei diesem Zugang wird

die Verteilung eines Ensembles durch die Wahrscheinlichkeitsdichte f (N)(xN ;vN) im

Phasenraum beschrieben. Die Zeitentwicklung von f gehorcht der Liouville Gleichung:

@f (N)

@t
=

NX
i=1

�
@HN

@xi

@f (N)

@pi
� @HN

@pi

@f (N)

@xi

�
: (B.1)

Die Funktion f (N) liefert dabei eine sehr detaillierte Beschreibung des Systems. Oft reicht

es aus, nur eine Untermenge von n Teilchen zu betrachten. Die unnötige Information

kann man durch Integration über die Koordinaten und Impulse der restlichen N � n

Teilchen eliminieren. Daraus resultiert die reduzierte Wahrscheinlichkeitsdichte f (n), die

de�niert ist als:

f (n)(xn;pn; t) =
N !

(N � n)!

Z Z
f (N)(xN ;pN ; t)dx(N�n)dp(N�n): (B.2)

Wenn die Interaktion zwischen den Teilchen auf eine paarweise Wechselwirkung be-

schränkt ist, kann die resultierende Kraft Fi, die auf ein Teilchen i wirkt, geschrieben

werden als Summe einer externen Kraft Fij und den Paarkräften Fij. Die Liouville

Gleichung lautet damit

@f (N)
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+

1

m

NX
i=1

pi
@f (N)

@xi
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i=1

Fext
i

@f (N)

@pi
=

NX
i=1

NX
j=1

Fij

@f (N)

@pi
: (B.3)

135



B. Deutsche Zusammenfassung

Man integriert diese Gleichung über (N�n) Positionen und Impulse und setzt Gleichung

(2.5) ein. Zusätzlich nutzt man die Symmetrie von f (N) in Bezug auf Teilchenaustausch

und die Tatsache, daÿ f (N) verschwindet, wenn entweder der Impuls unendlich ist, oder

der Ort auÿerhalb des Systemvolumens ist. Sammelt man nun die Terme f (n) auf der

linken Seite, so ergibt sich als Zusammenhang zwischen f (n) und f (n+1)(
@

@t
+

nX
i=1

"
1

m
pi

@

@xi
+

 
Fext
i +

nX
j=1

Fij

!
@

@pi

#)
f (n)(xn;pn; t)

=�
nX
i=1

Z Z
Fi;n+1

@

@pi
f (n+1)(x(n+1);p(n+1); t)dxn+1dpn+1:

(B.4)

Dieser Satz von Gleichungen ist als BBGKY Hierarchie bekannt. Setzt man n = 1 so

erhält man eine Gleichung für die Einteilchen-Wahrscheinlichkeitsdichte. Das Problem

ist aber, daÿ man zur Berechnung von f (1) Kenntnis von f (2) benötigt. Mit Hilfe der so-

genannten Annahme des molekularen Chaos f (2)(x1;p1;x2;p2) = f (1)(x1;p1)f
(1)(x2;p2)

erhält man eine geschlossene Gleichung, die sogenannte Vlasov Gleichung:�
@

@t
+

1

m
p1

@

@x1
+ Fext

1

@

@p1

�
f (1)(x1;p1; t) = ��F(x; t); (B.5)

wobei �F(x; t) =
R R

F(x;x2)f
(1)(x2;p2; t)dx2dp2 die mittlere Kraft der restlichen Teil-

chen auf ein Teilchen an Position x zur Zeit t ist.

B.1.2. Boltzmann Gleichung

Die Boltzmann Gleichung beschreibt das System mit der Einteilchenverteilungsfunktion

f , wobei f(x;v; t) die Wahrscheinlichkeit dafür ist, ein Teilchen zur Zeit t an der Position

x mit der Geschwindigkeit v vorzu�nden.

@f(x;v; t)
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= �vrrf| {z }
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� F

m
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�
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dv0
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@v
f2(x;v;x
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Nimmt man molekulares Chaos an, d.h. daÿ die Teilchen unkorreliert sind, dann erhält

man durch Einsetzen von f2 = f1f1 eine geschlossene Gleichung.�
@f(x;v1; t)

@t

�
coll

=
�T

2

Z
k̂v12>0

dk̂dv2(k̂v12)

0
@f(v�1)f(v�2)| {z }

Gewinn

� f(v1)f(v2)| {z }
Verlust

1
A : (B.8)

Im Gegensatz zur Vlasov Gleichung (B.5) wird dabei nicht eine mittlere Kraft auf

ein Teilchen, sondern eine Wechselwirkung über Kollisionen angenommen.
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B.1.3. HSMC Algorithmus

Der HSMC basiert wie DSMC auf der numerischen Lösung der Boltzmann Gleichung:

@f(x;v; t)

@t
= �

�
vrr +

F

m
rv

�
f +

�
@f

@t

�
coll

= �D̂f + Ĉf:

(B.9)

Die Zeitentwicklung enthält dabei die Beitrage D̂ durch die Bewegung der Teilchen, und

die durch Kollisionen verursachten Änderungen Ĉ.

f(t+�t) � f(t) +

�
@f(t)

@t

�
�t

�
�
1��tD̂ +�tĈ

�
f(t)

� (1 + �tĈ)(1��tD̂)f(t):

(B.10)

In dieser Näherung ist die Zeitentwicklung aufgeteilt in einen Advektionsschritt 1��tD̂,

der auf f wirkt und einen darauf folgenden Kollisionsoperator 1 +�tĈ. Der Kollisions-

schritt wird dabei im HSMC-Algorithmus ausgeführt wie in der CBA-Methode (siehe

Kapitel 2.4.1 und 2.3.2). Der einzige Unterschied ist die Unterdrückung des zusätzlichen

O�sets in vollen Zellen, da die entsprechende Korrektur bei diesen Zellen im Advektions-

schritt vorgenommen wird. Für die Berechnung der Wechselwirkung werden die Teilchen

zuerst in Zellen der Länge L und Volumen Vc = Ld einsortiert. Kollisionen �nden dabei

nur zwischen Teilchen in derselben Zelle statt. In jeder Zelle, werden dabei

Mc = �
Nc(Nc � 1)�vmax�

2Vc
(B.11)

potentielle Kollisionspaare ausgewählt. Die Kollision zwischen den Teilchen i und j

wird dabei ausgeführt falls
jvi�vj j
vmax

< Z gilt. Z ist eine Zufallszahl aus dem gleichver-

teilten Intervall [0; 1]. Diese Methode führt zu einer Kollisionswahrscheinlichkeit, die

proportional zur Relativgeschwindigkeit der beiden Teilchen ist. Da für die Auswahl

der Kollisionspartner die Orte der beiden Teilchen unberücksichtigt bleiben, muÿ zur

Berechnung der Geschwindigkeiten nach dem Stoÿ ein Stoÿparameter zufällig gewählt

werden. An diesem Punkt wird angenommen, daÿ die Orte und Geschwindigkeiten der

Stoÿpartner unkorreliert sind, was zu einer Gleichverteilung des Stoÿparameters führt.

Der wesentliche Teil des Algorithmus ist die Berechnung der Bewegung der Teilchen.

Im Gegensatz zu allen DMSC-Varianten �ndet die Bewegung eines Einzelteilchens nicht

unabhängig von den anderen Teilchen statt, sondern die Teilchen interagieren indirekt

über die Zellen, die auch für die Kollisionen benutzt worden sind. Um die Zunahme

der Dichte über einen maximalen Wert hinaus zu verhindern, werden Zellen, die eine

festgelegte Dichte überschritten haben, als �voll� markiert. Bewegungen von Teilchen in

eine bereits volle Zelle werden dann verworfen. Dadurch wird der Volumenausschluÿ auf

Ebene der Zellen garantiert. Ein weiterer Nachteil der DSMC-Varianten ist die fehlende
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Wechselwirkung zwischen den Zellen. Ein Teilchen, das sich am Rand einer Zelle be�ndet

ist quasi blind gegenüber Teilchen in den Nachbarzellen. Vor allem in dichten Systemen

führt dies zu einer e�ektiv geringeren Wechselwirkung der Teilchen untereinander. Aus

diesem Grund wurde in HSMC eine Wechselwirkung zwischen den Zellen eingeführt. Da-

zu werden die Teilchen innerhalb einer Zelle zu einem Makroteilchen zusammengefaÿt,

dessen Impuls und Masse dem Gesamtimpuls bzw. Masse der Einzelteilchen entspre-

chen. Jedes dieser Makroteilchen hat dabei 2d potentielle Stoÿpartner, die den direkten

Nachbarzellen entsprechen. Mit dem Stoÿpartner, der die gröÿte Relativgeschwindigkeit

besitzt, wird dann eine Kollision durchgeführt. Die Kollision folgt dabei bezüglich Dis-

sipation und Stoÿparameter denselben Regeln wie der Zusammenstoÿ zweier Teilchen.

Die hier dissipierte kinetische Energie geht allerdings nicht verloren, sondern führt zu

einer Erhöhung der granularen Temperatur. Dazu werden die Relativgeschwindigkeiten

der Teilchen reskaliert. Eine genaue Beschreibung dieses Vorgangs be�ndet sich in Kapi-

tel 2.3.2. Im nächsten Abschnitt wird gezeigt, daÿ diese Vorgehensweise auch für dichte

Systeme zur korrekten Gesamtdissipation führt.

B.2. Physikalische Testfälle

Um den Algorithmus zu testen und zu veri�zieren wurden verschiedene Testfälle aus-

gewählt. Jeder Fall testet dabei spezi�sche Eigenschaften granularer Medien. In ihrer

Gesamtheit überdecken sie ein breites Spektrum verschiedener Phänomene.

B.2.1. Abkühlung homogener Systeme

Dieser erste Testfall dient zur Veri�kation, ob die Dissipation und damit eine der grundle-

gendsten Eigenschaften granularer Materialen korrekt wiedergegeben wird. Das System

besteht aus N dissipativen Teilchen, und entwickelt sich ohne Ein�uÿ äuÿerer Kräfte.

Die kinetische Anfangsenergie des Systems wird durch inelastische Stöÿe zwischen den

Teilchen dissipiert. Bei jeder Kollision geht dabei der Anteil � = 1� r2 der kinetischen

Energie im Schwerpunktssystem der Teilchen verloren, r wird als normaler Restitutions-

koe�zient bezeichnet.

Solange das System homogen bleibt[31, 32, 77], folgt die kinetische Energie E(t) dem

Abkühlgesetz von Ha�[36]:

E(t)

E0

=

�
1

1 + t=t0

�2

: (B.12)

Die Zeitskala t0 =
p
�D�(�)p

2(1�r2)��v
ist dabei eine Funktion der mittleren Teilchengeschwindig-

keit �v =
p

2E0=Nm, dem Teilchendurchmesser D, dem Restitutionskoee�zienten r, und

der Volumenfraktion �, mit �(�) = (1� �)2=(1� 7�=16).

Fig. B.1 zeigt die Übereinstimmung zwischen kinetischer Theorie und der HSMC-

Methode. Wichtig ist die Übereinstimmung vor allem im Bereich hoher Dichten, wo die

Originalmethode stark verändert worden ist. Ein möglicher Artefakt der Methode wäre
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eine zu geringe Dissipation, da die Wechselwirkung zwischen vollen Zellen energieerhal-

tend ist. Die Übereinstimmung mit den theoretischen Werten zeigt, daÿ die Umwandlung

von kinetischer Energie der Zellen in granulare Temperatur zu einer insgesamt korrekten

Dissipation führt.
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Abbildung B.1.: Abkühlung eines homogenen Systems granularen Gases für verschie-

dene Volumenfraktionen � und konstantem Restitutionskoe�zienten

r = 0:99999. f(x) bezieht sich auf Formel (B.12).

B.2.2. Cluster Instabilität

Ist ein anfänglich homogenes System granularen Gases ausreichend groÿ, kommt es zur

spontanen Ausbildung von Clustern. Aufgrund der dissipativen Kollisionen kommt es

in Gebieten, die aufgrund einer Fluktuation dichter sind, zu erhöhtem Energieverlust.

Die reduzierte Temperatur resultiert in einem niedrigeren Druck, was weitere Teilchen in

dieses Gebiet strömen läÿt. Diese Tendenz existiert auch in kleinen Systemen, wird aber

durch die Di�usion ausgeglichen. Erst wenn das System zu groÿ wird, ist die Di�usion

zu langsam und das System wird durch die hydrodynamische Dichteinstabilität domi-

niert. Abb. B.2 zeigt, daÿ das System am Anfang wie ein homogenes System abkühlt.

Mit dem Auftreten der ersten Cluster bei t=t0 � 2 folgt die kinetische Energie einem

anderen Verlauf. Erst bei t=t0 � 10 weichen die Monte Carlo Verfahren von der harten

Molekulardynamik ab. Der Grund für diese Abweichung sind die Korrelationen zwischen

den Teilchen der dichten Cluster. Die Annahme einer konstanten Wahrscheinlichkeits-

verteilung des Stoÿparameters tri�t nicht mehr zu, statt dessen �nden mehr streifende

Kollisionen statt. Dies führt zu einer stärkeren Dissipation in den Monte Carlo Me-

thoden, da bei einer zentralen Kollision mehr Energie dissipiert wird. Das Auftreten

der Instabilität und damit das qualitative Verhalten wird dadurch allerdings nur wenig

beein�uÿt, wie man an Abb. B.3 und den Strukturfaktoren dieser Systeme sehen kann.
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Abbildung B.2.: Zeitverlauf der normierten kinetischen Energie von ED, DSMC und

HSMC Simulationen in 2D mit N = 99856, � = 0:25, und r = 0:8. Die

gepunktete Linie stellt Gleichung B.12 dar.

B.2.3. Bagnold Scher�uÿ

Hierbei handelt es sich um ein klassisches Experiment zur Bestimmung der Viskosität �.

Die Kraft F , die benötigt wird, zwei Platten der Fläche A im Abstand l relativ zueinan-

der mit der Geschwindigkeit v zu bewegen, folgt dabei dem Gesetz F = �Av
l
. Da dem

System durch die bei der Scherung verrichtete Arbeit Energie zugeführt wird, gibt es nur

dann einen Gleichgewichtszustand, falls beispielsweise die Temperatur konstant gehal-

ten wird. Bei granularen Systemen ist der Gleichgewichtszustand durch die Dissipation

gewährleistet. Die Geschwindigkeit der Teilchen skaliert dabei mit der Geschwindigkeit

der Wände. Dadurch ergibt sich das Bagnoldsche Gesetz F � v2.

Mit HSMC konnte dieses Skalierungsverhalten über mehrere Gröÿenordnungen nach-

ED DSMC2 HSMC

Abbildung B.3.: Abbildung eines geclusterten Systems von verschiedenen Simulations-

methoden: ED (links), DSMC2 (mitte), HSMC (rechts).
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l

+v/2

−v/2

Abbildung B.4.: Aufbau für den Bagnold Scher�uÿ.

gewiesen werden. Aufgrund des linearen Geschwindigkeitspro�ls senkrecht zu den Wän-

den, erstrecken sich die absoluten Geschwindigkeiten eines Systems ebenfalls über meh-

rere Gröÿenordnungen. Simulationsmethoden, die nicht invariant unter Galileitransfor-

mationen sind, haben daher Schwierigkeiten diese Systeme zu simulieren. Durch das

verwendete Gitter ist HSMC streng genommen nicht invariant unter Galileitransforma-

tionen. Das korrekte Skalierungsverhalten zeigt daher, daÿ es keine schwerwiegenden

Artefakte durch das Gitter gibt.

B.2.4. Rohr�uÿ

Der vertikale Fluÿ von granularen Medien [1, 84, 99] durch ein Rohr war ein weiter

Testfall. Im Gegensatz zu den bisher betrachteten Fällen wirkt hier die Gravitation als

äuÿere Kraft auf die Teilchen. Da die Kollisionen zwischen den Teilchen und damit auch

zwischen Teilchen und Wand bei HSMC rein stochastisch sind, stellt das korrekte Zu-

sammenwirken von energiezuführender Gravitation und dissipativer Teilchenkollisionen

eine neue Herausforderung für die Methode dar.

Von zentralem Interesse beim Rohr�uÿ sind die auftretenden spontanen Dichtewel-

len. HSMC reproduziert dabei sowohl diese Dichtewellen, als auch die Tatsache, daÿ

deren spektrale Energiedichte einem Potenzgesetz P (f) � f� folgt[53, 84, 98], wobei

� � �4
3
gilt. Die qualitative Abhängigkeit dieses Potenzgesetzes von der Stärke der

Dissipation[98] wurde ebenfalls erhalten (siehe Fig. B.5). Die übereinstimmendes Resul-

tate für den Exponenten durch die HSMC-Methode zeigen, dass ein umgebendes Fluid

nicht notwendig ist, obwohl ein viskoser Reibungsterm Bestandteil der theoretischen

Herleitung ist [84].

B.2.5. Statische Sandhaufen

Schüttet man Sand auf eine ebene Unterlage, dann bildet sich ein stabiler Haufen mit

praktisch konstanter Neigung (siehe Abb. B.6). Da HSMC keine statische Reibung

modelliert, ist die Frage, ob diese Methode überhaupt in der Lage ist, diesen statischen

Endzustand korrekt zu simulieren. Bei der Verwendung von Molekulardynamik konnte

gezeigt werden, dass Haufenbildung auch ohne statische Reibung möglich ist[64]. In
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Abbildung B.5.: Spektrale Energiedichte der Dichte�uktuationen in einem Rohr�uÿ für

verschiedene Restitutionskoe�zienten. Rechts ist der Exponent � des

Potenzgesetzes in Abhängigkeit vom Restutitionskoe�zienten r aufge-

tragen. Deutlich ist zu erkennen, daÿ für r ! 1 der Exponent gegen

eins strebt (weiÿes Rauschen).

diesem Fall wird der Haufen durch sterische E�ekte aufgrund des Volumenausschlusses

stabilisiert. Da HSMC diesen Volumenausschluÿ nur auf der Ebene der Zellen realisiert,

ist zu prüfen, in welchem Maÿe Gitterartefakte auftreten.

Abbildung B.6.: Sandhaufen aus 30500 Teilchen, der mit HSMC simuliert wurde.

Abb. B.6 zeigt, daÿ HSMC prinzipiell in der Lage ist, einen statischen Sandhaufen

zu simulieren. Sichtbare Gitterartefakte gab es dabei nur bei extrem starker Dissipation

(r � 0). Ein emp�ndlicherer Test ist, zu prüfen, ob gewisse Werte beim Neigungswinkel

des Haufens bevorzugt werden, z.B. jene, bei denen die Steigung m = �y

�x
diophantischen

Brüchen entspricht und damit optimal an das Gitter angepaÿt ist. Dieser E�ekt konnte

nicht beobachtet werden (siehe Abb. B.7).

Betrachtet man die Ober�äche eines Sandhaufens genauer, so beobachtet man am

unteren Ende des Haufens eine Abweichung der Ober�äche von der konstanten Steigung.

Eine mögliches Modell zur Erklärung dieser Abweichung, ist die Vorstellung, daÿ der

Haufen aus unvollständigen Lagen von Teilchen besteht. Die Ober�äche ist daher nicht

eben, sondern besteht aus Stufen. Ist die Spitze des Haufens bei x = 0 und seine Höhe

h(0) = hm, so folgt eine ideal ebene Ober�äche dem Gesetz h(x) = hm�mx. Unter der

Annahme, daÿ die Dichte der Stufen in vertikaler Richtung konstant ist, und an jeder

Stufe eine gewisse konstante Wahrscheinlichkeit r besteht, daÿ ein herunterrollendes
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Abbildung B.7.: Böschungswinkel � als Funktion des Restitutionskoe�zienten (es gilt

m = tan(�)).

Teilchen hängenbleibt, folgt für die Ober�äche des Haufens [7]:

x =
hm � h

m
+

l

r
ln(

hm

h
): (B.13)

Abb. B.8 zeigt, daÿ HSMC die Abweichung von der konstanten Steigung korrekt wie-

dergibt und mit Gleichung (B.13) gut übereinstimmt.

B.2.6. Korrelationen in dissipativen Systemen

Hier wurden die Dichte- und Geschwindigkeitskorrelationen untersucht, die in dissipa-

tiven Systemen existieren. Ein genaueres Verständnis ist hierbei wesentlich, um die

Beschränkungen von HSMC zu verstehen. Es wurde gezeigt, wie durch den Einbau

von Informationen, die durch andere Simulationsmethoden gewonnen wurde, der An-

wendungsbereich von HSMC erweitert werden kann. Als Beispiel diente die Verteilung

des Stoÿparameters, dabei wurde die ursprünglich konstante Funktion durch Werte ei-

ner ED Simulation ersetzt. Die Methode bleibt allerdings durch die Existenz höherer

Korrelationen in ihrem Anwendungsgebiet beschränkt.

B.3. Implementierung

Ein weiterer wesentlicher Teil der Arbeit war das Design und die Implementierung in

C++. Das Ziel war, die Details und Schwierigkeiten der parallelen Implementierung

zu verstecken, und gleichzeitig zu ermöglichen, die Software für andere Anwendungsge-

biete wie z.B. der Molekulardynamik wiederverwenden zu können. Von entscheidender

Bedeutung war dabei die Verwirklichung dieser Ziele ohne wesentliche Einbuÿen in der

Performance.

Unter Verwendung der in C++ zu Verfügung stehenden Template-Mechanismen

konnte das Programm allgemein genug geschrieben werden, um es nicht nur für die
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Abbildung B.8.: Vergleich der Form eines Sandhaufens auf einer Ebene mit einer analy-

tischen Lösung nach Gleichung (B.13). N = 30500,r = 0:9

verschiedenen Varianten der Monte Carlo Simulationen (DSMC, CUBA, HSMC) zu ver-

wenden, sondern auch für Molekulardynamiksimulationen. Der entwickelte parallele

Container, der für die Speicherung und Verwaltung der Teilchen zuständig ist, versteckt

dabei die Details der Parallelisierung mittels MPI. Damit wird es dem Anwender ermög-

licht, sich auf die Modellierung der physikalischen Wechselwirkung zu konzentrieren und

gleichzeitig einen leistungsfähigen Parallelrechner zu benutzen.

Die hohe Abstraktion, die bei diesem Zugang unvermeidlich ist, birgt natürlich die

Gefahr von Performance-Einbuÿen. Aus diesem Grund wurde ein Vergleich mit einem

optimierten MD Programms [116] in der Programmiersprache C durchgeführt. Dieser

zeigte eine praktisch identische Geschwindigkeit der beiden Programme.

Inzwischen wird der entwickelte Code in mehreren Projekten erfolgreich eingesetzt[49,

50, 123].

B.4. Schluÿfolgerung und Ausblick

Das Ziel dieser Arbeit war die Entwicklung, Implementierung und Analyse einer schnel-

len Simulationsmethode für Granulare Medien. Als Ausgangspunkt diente die Direct

Simulation Monte Carlo Methode (DSMC). Der Grund war weniger deren Eignung für

granulare Medien, sondern ihre Geschwindigkeit. Da DSMC für die Simulation dünner

Gassysteme entwickelt worden ist, hat die Methode diverse Einschränkungen bei ihrer

Anwendung auf Systeme hoher Dichte. Für diese Systeme existieren daher in der Li-
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teratur verschiedene Verbesserungen wie CBA, CUBA oder ESMC (siehe Kapitel 2.4).

Der gröÿte Nachteil von DSMC und seinen Varianten ist der fehlende Volumenausschluÿ

(�excluded volume�). Im Gegensatz zu den anderen vorgestellten Variationen von DSMC

wurde hier nicht der Kollisionsmechanismus zwischen den Teilchen modi�ziert, sondern

der Fortbewegungsalgorithmus. Um die höhere Geschwindigkeit von DSMC gegenüber

Molekulardynamik zu erhalten, wird allerdings der Volumenausschluÿ nur auf einer grö-

ÿeren Längenskala garantiert. Bei HSMC ist dies die Zellstruktur, die auch für den

Kollisionsmechanismus verwendet wird. Obwohl damit weitreichende Modi�kationen

am ursprünglichen DSMC Algorithmus vorgenommen worden sind, ist die HSMC Me-

thode im Grenzfall dünner Systeme identisch zu DSMC. Die Untersuchung von HSMC

durch Studien einer breiten Auswahl von granularen Systemen zeigte, dass die Methode

ein breites Anwendungsspektrum besitzt. Im Vergleich zu anderen DSMC Varianten

wurde der Einsatzbereich wesentlich erweitert. Weitere, denkbare Verbesserungen der

Methode betre�en vor allem die Reduktion der Gitterartefakte, die bei Systemen mit

hoher Dichte und Dissipation auftreten. Einzelne Möglichkeiten wurden in den Kapiteln

2.3 und 3.5 angesprochen. Ein Beispiel an dem gezeigt wurde, wie deutliche Verbesse-

rungen erzielt werden können, ist die Wahrscheinlichkeitsverteilung des Stoÿparameters

p(b). Ein weiteres Beispiel ist die Wahrscheinlichkeit p(�) eines Teilchens in eine Zelle

mit Volumenanteil � einzudringen. Hier wurde bislang eine einfache Stufenfunktion ver-

wendet. Eine weitere Möglichkeit ist die Modi�kation des Gitters selbst. Wie in LGA

Simulationen kann die geeignete Ausrichtung des Gitters relativ zu Vorzugsrichtungen

wie der Gravitation erfolgen. Der zusätzliche Vorteil von HSMC ist, dass das Gitter nur

benutzt wird, um den Volumenausschluÿ auf einer vergöberten Skala zu erzwingen, d.h.

die Bewegung der Teilchen ist nicht auf die Eckpunkte des Gitters beschränkt. Es ist

daher möglich, das Gitter zwischen den Zeitschritten zu rotieren oder zu verschieben.

Im Mittel stellt dies die Isotropie und Homogenität des Raumes her, solange es keine

bevorzugte Richtung oder Position gibt.

Aufgrund der hohen Geschwindigkeit bietet sich die Methode vor allem dort an, wo

grosse Teilchenzahlen oder lange Simulationszeiten erforderlich sind, z.B. bei Studien

zu Clustering in drei Dimensionen. Die Methode kann auch angewandt werden, um zu

untersuchen, ob Korrelationen zwischen Teilchen oder sterische E�ekte auf Teilchenskala

notwendig sind, um gewisse E�ekte widerzugeben. DSMC kann zwar ebenfalls zu diesem

Zweck eingesetzt werden, die Beschränkung von DSMC auf dünne Systeme stellt aller-

dings für dissipative Medien eine groÿe Einschränkung dar. Beispiele, bei denen HSMC

Resultate wertvolle Einblicke für das theoretische Verständnis liefern können, sind das

Skalierungsverhalten vibrierter Betten, die Form der Ober�äche eines Sandhaufens und

Dichte�uktuationen beim Rohr�uÿ.
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