6. Wechselwirkungskriterium

Ein wesentliches Ziel ist aus den zerstörungsfrei bestimmten Anzeigen eine bruchmechanische Aussage über die Fehlstellen innerhalb des Bauteils zu treffen. Während die Bewertung von Einzelanzeigen mittels der zerstörungsfreien Prüfung und anschließender Berechnung bruchmechanischer Kenngrößen problemlos möglich ist, ergeben sich im Falle von Gruppenanzeigen Schwierigkeiten. Daher ist insbesondere die analytische Charakterisierung und Beschreibung der Wechselwirkung zwischen benachbarten Fehlstellen von besonderem Interesse. In einer Reihe von Untersuchungen wurden konservative Grenzen für den Beginn der Wechselwirkung zwischen zwei Fehlstellen angegeben, vgl. Tabelle 2.1, [41,47,50-52]. In dem Code API 579 und den Anweisungen R6 und A16 wurde angenommen, dass eine Beeinflussung zwischen zwei Fehlstellen eintritt, wenn deren Abstand kleiner als die Hälfte der Summe der großen Fehlstellenachsen a bzw. c ist. Im ASME-Code geht man davon aus, dass Wechselwirkung zwischen zwei Fehlstellen eintritt, wenn der Abstand gleich der kleinen Fehlstellenachse 2a ist. Ein bisher nicht gelöstes Problem ist aber die größenmäßige Charakterisierung und Beschreibung der Fehlstellen des Typs auflösbarer (GA) bzw. nichtauflösbarer (GN) Gruppenanzeigen.

Verschiedene Finite-Elemente-Rechnungen haben gezeigt, vgl. Kapitel 5, dass die 3D-Abstandsvariationen zu ähnlichen Ergebnissen führen, wie die 2D-Rechnungen. Die Erstellung des Wechselwirkungskriteriums basiert daher auf den Ergebnissen der 2D-Finite-Elemente-Rechnungen. Dabei werden die Abstandsvariationsrechnungen aus Kapitel 5 mit den verschiedenen Fehlstellengrößen herangezogen. Das Ziel dieser Analysen ist die Erstellung eines analytischen Kriteriums unter Berücksichtigung des Fehlerabstandes und des Fehlergrößenverhältnisses zur Ermittlung des Grads der sich gegenseitig beeinflussten Fehlstellen. Hierzu werden zunächst die Spannungsverteilungen der Fehlstellen untersucht und eine sogenannte Wechselwirkungsfunktion aufgestellt. Mittels dieser Funktion ist eine Aussage über den Grad der Wechselwirkung verschiedener Fehlstellenanordnungen möglich. Ausgehend von diesen Analysen erfolgt eine Übertragung der gewonnenen Ergebnisse auf die Bruchmechanik.

6.1 Grenzwertbestimmung des Spannungsintensitätsfaktors K₁

Zunächst werden verschiedene Grenzwertuntersuchungen für den Spannungsintensitätsfaktor K_I durchgeführt. Dabei werden analytische Näherungsrechnungen mit verschiedenen Fehleranordnungen, siehe <u>Bild 6.1</u> durchgeführt. Unter diesen Fehlerflächen verbergen sich a/2c = 0,2 Fehlergrößen.

- 115 -

Bild 6.1: verschiedene Fehleranordnungen

Die Näherungsrechnungen legen dabei Flächengleichheit der Fehlstellen mit einer Gesamtfehlerfläche von $A = 8 \text{ mm}^2$ zugrunde. Die Ellipsenfläche berechnet sich zu

A =
$$\pi \cdot a \cdot c = \pi \cdot a^2 \cdot \frac{1}{0,4} \approx 8a^2$$
, mit $c = \frac{a}{0,4}$. (6.1)

Daraus ergeben sich für die in Bild 6.1 dargestellten Fehleranordnungen in Abhängigkeit der Spannung folgende Spannungsintensitätsfaktoren, wobei der Formfaktor M aus [68] ermittelt wird. Der Formfaktor M berücksichtigt die Anrissform eines elliptischen Risses.

a) maßgebend größter Einzelfehler:

$$\begin{aligned} A &= \text{const.} = 8 \text{ mm}^2 \\ \text{mit } A_1 &= 8a_1^2 = 8 \text{ mm}^2 \implies a_1^2 = 1 \text{ mm}^2 \\ \text{und } M &= 1,07 \text{ für } \sigma/R_{p0,2} = 0,9 \\ K_{l,1} &= \sigma\sqrt{\pi \cdot a_1} \cdot 1/M = 1,66 \cdot \sigma \cdot \sqrt{\text{mm}} \end{aligned}$$
(6.2)

 b) maßgebend 2 Fehler mit jeweils halber Fehlerfläche (ohne Berücksichtigung der Wechselwirkung):

$$A_2 = \frac{A_1}{2} = 8a_2^2 = 4 \text{ mm}^2 \implies a_2^2 = \frac{1}{2} \text{ mm}^2 \implies a_2 = 0,7 \text{ mm}$$

und M = 1,07 für $\sigma/R_{p0,2} = 0,9$

$$K_{l,2} = \sigma \sqrt{\pi \cdot a_2} \cdot 1/M = 1,39 \cdot \sigma \cdot \sqrt{mm}$$
(6.3)

c) maßgebend 4 Fehler mit jeweils 1/4 Fehlerfläche (ohne Berücksichtigung der Wechselwirkung):

mit
$$A_3 = \frac{A_1}{4} = 8a_3^2 = 2 \text{ mm}^2$$
 $a_3^2 = \frac{1}{4} \text{ mm}^2$; $a_3 = 0,5 \text{ mm}$

und M = 1,07 für $\sigma\!\big/R_{p0,2}=$ 0,9

$$K_{I,3} = \sigma \sqrt{\pi \cdot a_3} \cdot 1/M = 1,17 \cdot \sigma \cdot \sqrt{mm}$$
(6.4)

Im Weiteren ist zu prüfen, ob die Beschreibung von Fehlstellen mit einer Umhüllenden sinnvoll ist, ohne dass die Abschätzung zu konservativ wird. Hierzu werden Näherungsrechnungen durchgeführt, welche die Fehlstellen mit einer Umhüllenden entsprechend <u>Bild 6.2</u> umschließen. Dabei werden vorwiegend die Grenzfälle:

- zwei benachbarte Fehlstellen mit vernachlässigbarem Abstand $d \approx 0$ und
- zwei benachbarte Fehlstellen mit d = 2a

betrachtet. Weiterhin wird neben der Flächengleichheit $A = 8 \text{ mm}^2$ zwischen den beiden Ausgangsfehlern und der Umhüllende vorausgesetzt, dass die Ausgangsfehlstellen das konservative Fehlergrößenverhältnis a/2c = 0.2 aufweisen. Die Umhüllende, d.h. die Fehlerform nach dem Zusammenwachsen der Fehlstellen muss dieses Kriterium hingegen nicht erfüllen.

Bild 6.2: Beschreibung der Umhüllenden zweier Fehler

• Rechnung: zwei benachbarte Fehlstellen mit $d \approx 0$

Die Anordnungen der untersuchten Fehlstellenkonfigurationen sind in <u>Bild 6.3</u> dargestellt. Dabei ist zu berücksichtigen, dass sich die Achsen der Fehlstellen während des Zusammenwachsens verändern können.

<u>Bild 6.3:</u> Fehleranordnungen mit d = 0, $(a_2, c_2:$ Ausgangsfehler)

Unter Einbeziehung der Flächengleichheit ergibt sich die Fehlerhalbachse a_i des umhüllenden Fehlers zu:

$$2A_{2} = A_{i} \implies 2 \cdot \pi \cdot a_{2} \cdot c_{2} = \pi \cdot a_{i} \cdot c_{i}$$
$$\implies a_{i} = \frac{2 \cdot a_{2}^{2}}{0.4 \cdot c_{i}}.$$
(6.5)

Wegen der Flächengleichheit und der Annahme einer Fehlergröße von $A_i = 8 \text{ mm}^2$ kann die kleine Halbachse a_2 berechnet werden.

$$A_2 = 4 \text{ mm}^2 = \pi \cdot a_2 \cdot c_2 \implies a_2 = \sqrt{\frac{0.4 \cdot A_2}{\pi}} = 0.714 \text{ mm}$$
 (6.6)

Für den Fall (d, siehe Bild 6.3), dass aus der c₂-Achse die a₄-Achse wird, d.h. $2c_2 \approx 2a_4$ ergibt sich für die Umhüllende der in Gl. (6.7) dargestellte Spannungsintensitätsfaktor K_{1,4}. Zur Beschreibung einer realitätsnäheren elliptischen Fehlerform wird die große Halbachse c₄ des umhüllenden Fehlers mit einem Faktor von 1,2 multipliziert. Daraus ergibt sich c₄ zu $2c_4 \approx 1,2 \cdot 4 \cdot a_2$. Der Formfaktor M wurde aus dem Verhältnis a₄ / $2c_4 = 0,434$ nach [68] zu M=1,4 ermittelt.

$$K_{l,4} = \sigma \sqrt{\pi \cdot a_4} \cdot 1/M$$

mit $a_4 = \frac{2 \cdot a_2^2}{0,4 \cdot c_4} = \frac{2 \cdot a_2^2}{0,4 \cdot 1,2 \cdot 2 \cdot a_2} = 1,487 \text{ mm}$
 $\Rightarrow K_{l,4} = \sigma \sqrt{\pi \cdot 1,487} \cdot 1/1,4 = 1,54 \cdot \sigma \cdot \sqrt{\text{mm}}$. (6.7)

Während bei dem Fehler der Fläche A_2 eine Erhöhung der Spannung um 39 % auftritt, nimmt die Spannung des umhüllenden Fehlers um etwa 54% zu. Im Vergleich zu dem Spannungsintensitätsfaktor des Einzelfehlers $K_{l,2}$ erhöht sich $K_{l,4}$ um 10,8 %.

Bleibt die Richtung der c -Achse während des Zusammenwachsens erhalten (e), d.h. $a_5 \approx 2a_2$, so kann der Spannungsintensitätsfaktor unter Verwendung der GI. (6.5) und der Beziehung $c_5 = 1,2 \cdot c_2$ wie folgt abgeschätzt werden. Der Formfaktor M ergibt sich unter Verwendung des Fehlerverhältnisses $a_5 / 2c_5 = 0,28$ zu M=1,17.

$$K_{1,5} = \sigma \sqrt{\pi \cdot a_5 \cdot 1/M}$$

mit $a_5 = \frac{2 \cdot a_2^2}{0.4 \cdot c_5} = \frac{2 \cdot a_2^2 \cdot 0.4}{0.4 \cdot 1.2 \cdot a_2} = 1,189 \text{ mm}$
 $\Rightarrow K_{1,5} = \sigma \sqrt{\pi \cdot 1,189} \cdot 1/1,17 = 1,65 \cdot \sigma \cdot \sqrt{\text{mm}}$ (6.8)

Hierbei erhöht sich der Spannungsintensitätsfaktor zwischen dem Einzelfehler $K_{l,2}$ und dem umhüllenden Fehler $K_{l,5}$ um 18,7 %.

Rechnung: zwei benachbarten Fehlstellen mit d = 2a₂

Im Folgenden werden zwei benachbarte Fehlstellen mit einem maximalen Abstand von d = $2a_2$ betrachtet. Dies entspricht nach ASME dem Beginn der Wechselwirkung zwischen zwei nebeneinanderliegenden Fehlstellen. Dabei können die in <u>Bild 6.4</u> dargestellten Fehleranordnungen auftreten. Auch bei dieser Abschätzung wird Flächengleichheit vorausgesetzt, vgl. Gl. 6.5-6.6. Für die Ausgangsfehlstellen gilt das konservative Fehlergrößenverhältnis $a_2/2c_2 = 0,2$.

<u>Bild 6.4:</u> Fehleranordnungen mit $d = 2a_2$, $(a_2, c_2$: Ausgangsfehler)

Dabei wird zunächst der Fall betrachtet, bei dem aus der c₂-Achse die a₆-Achse wird, d.h. $2c_6 \approx 1,2 \cdot (4a_2 + d)$ (f). Der Formfaktor M ergibt sich nach [68] zu M=1,05.

$$K_{l,6} = \sigma \sqrt{\pi \cdot a_6} \cdot 1/M$$

mit $a_6 = \frac{2 \cdot a_2^2}{0.4 \cdot c_6} = \frac{2 \cdot a_2^2}{0.4 \cdot 1.2 \cdot 3 \cdot a_2} = 0.991 \text{ mm}$
 $\Rightarrow K_{l,6} = \sigma \sqrt{\pi \cdot 0.991} \cdot 1/1.05 = 1.68 \cdot \sigma \cdot \sqrt{\text{mm}}$ (6.9)

Der Spannungsintensitätsfaktor des umhüllenden Fehlers $K_{l,6}$ erhöht sich im Vergleich zum Einzelfehler $K_{l,2}$ um 20,9 %.

Ist die Richtung der c -Achse gleich Fall (g), ergibt sich der Spannungsintensitätsfaktor K_{I,7} unter Berücksichtigung der Flächengleichheit mit c₇ \approx 1,2 · c₂, dem Formfaktor M=1,17 (mit a₇ / 2c₇ = 0,28) und Gl. (6.5) nach folgender Gleichung.

$$K_{I,7} = \sigma \sqrt{\pi \cdot a_7} \cdot 1/M$$

mit
$$a_7 = \frac{2 \cdot a_2^2}{0.4 \cdot c_7} = \frac{2 \cdot 0.4 \cdot a_2^2}{0.4 \cdot 1.2 \cdot a_2} = 1,189 \text{ mm}$$

 $\Rightarrow K_{1,7} = \sigma \sqrt{\pi \cdot 1,189} \cdot 1/1,17 = 1,65 \cdot \sigma \cdot \sqrt{\text{mm}}$
(6.10)

Wie bei der Näherungsrechnung mit d=0 erhöht sich der Spannungsintensitätsfaktor zwischen dem Einzelfehler $K_{l,2}$ und dem umhüllenden Fehler $K_{l,7}$ bei dieser Abschätzung um 18,7 %.

Aus diesen Näherungsrechnungen ergibt sich für den aus zwei Einzelfehlern zusammengefassten flächengleichen Gesamtfehler eine maximale Erhöhung des Spannungsintensitätsfaktors in Bezug auf den Einzelfehler von 20,9 %. Dies gilt jedoch nur für die hier betrachteten Verhältnisse.

6.2 Erstellung einer Wechselwirkungsfunktion

Zur Untersuchung der Spannungsverteilung im Umfeld der Fehlstellen wird die Spannung in Zugrichtung σ_y analysiert. Hierzu werden auf die numerischen Untersuchungen des Kapitels 5 zurückgegriffen. In <u>Bild 6.5</u> und <u>Bild 6.6</u> ist exemplarisch für die Fehlstellengrößen $2a_1 = 0,8$ mm und $2a_2 = 0,5$ mm die fiktiv linearelastische Spannung σ_y über einem Schnitt durch die Fehlstellen der Abstände d=0,2 mm und d=2,0 mm aufgetragen. Dabei sind neben den Ergebnissen mit der Nennspannung von $\sigma_{y,n} = 400$ MPa auch die Ergebnisse aus den Rechnungen mit den Nennspannungen mit $\sigma_{y,n} = 200$ MPa und $\sigma_{y,n} = 300$ MPa dargestellt.

 $2a_1 = 0.8 \text{ mm}$ und $2a_2 = 0.5 \text{ mm}$, Abstand=0.2 mm

Dabei kann infolge der Wechselwirkung eine deutliche Spannungserhöhung im Bereich zwischen dem Fehler 1 und dem Fehler 2 auftreten. Während bei dem kleineren Abstand (d=0,2 mm) sowohl die "Spitzenspannungen" am Rand der Fehlstellen als auch die mittlere Spannung σ_{Steg} in der benachbarten Zone deutlich höher sind als in den jeweiligen abgewandten Seiten, ist dieser Unterschied bei dem größeren Abstand (d=2 mm) nicht erkennbar. Dieser Einfluss ist auf die stärkere gegenseitige Wechselwirkung zwischen den Fehlstellen bei kleineren Fehlerabständen zurückzuführen.

Als besonderes Kennzeichen für den Grad der gegenseitigen Wechselwirkung ist das Spannungsverhältnis σ_{Steg} / σ_n anzusehen, welches die Spannungserhöhung durch die gegenseitige Beeinflussung beschreibt. Dabei ist σ_{Steg} die kleinste Spannung, die zwischen den benachbarten Fehlstellen im Interaktionsbereich auftritt. Sie wird als Stegspannung bezeichnet. σ_n ist diejenige Spannung, die sich in dem von den Fehlstellen unbeeinflussten Bereich einstellt. In <u>Tabelle 6.1</u> sind für alle in Kapitel 5 berechneten Fehlstellenkonfigurationen die jeweiligen Spannungsverhältnisse eingetragen. Dabei werden ausschließlich linearelastische Rechnungen herangezogen.

Abstand	2a ₁ = 1,4 mm	2a ₁ = 1,4 mm	2a ₁ = 0,8 mm	2a ₁ = 1,4 mm	2a ₁ = 1,4 mm
/ mm	2a ₂ = 0,2 mm	2a ₂ = 0,5 mm	2a ₂ = 0,5 mm	2a ₂ = 1,0 mm	2a ₂ = 1,4 mm
0,06	6,16	8,00	-	10,13	11,60
0,1	3,69	4,61	3,58	5,73	6,50
0,2	2,32	2,80	2,30	3,42	3,85
0,5	1,47	1,667	1,44	1,92	2,11
1	1,19	1,29	1,18	1,41	1,50
2	1,06	1,09	1,05	1,14	1,18
3	1,03	1,06	1,02	1,08	1,11

<u>Tabelle 6.1</u>: Spannungsverhältnis aus den FE-Rechnungen mit σ = 400 MPa

Wie bei linearelastischen Rechnungen zu erwarten ist, haben die Rechnungen mit anderen Beanspruchungen bestätigt, dass diese Spannungsverhältnisse für die entsprechenden Fehlergrößenverhältnisse gelten. Daher wird hier nur auf die Rechnungen mit der Spannung von $\sigma = 400$ MPa eingegangen. Aus Tabelle 6.1 ist ersichtlich, dass bei zwei gleich großen Fehlstellen die gegenseitige Wechselwirkung am stärksten ausgeprägt ist, während die Beeinflussung bei der Fehlstellenkonfiguration mit einem großen und einem sehr kleinen Fehler geringer ist.

Für die Entwicklung einer analytischen Beziehung zwischen dem Spannungsverhältnis $\sigma_{\text{Steg}} / \sigma_n$ in Abhängigkeit des Abstandes ist es sinnvoll, den Sachverhalt graphisch darzustellen, siehe <u>Bild 6.7</u>. Dabei wird auf der Abzisse der auf die größere Fehlerachse bezogene Abstand aufgetragen.

<u>Bild 6.7:</u> Spannungsverhältnis σ_{Steg} / σ_n als Funktion des bezogenen Abstandes

Basierend auf den aus linearelastischen FE-Rechnungen bestimmten Datenpunkten sind in Bild 6.7 Näherungsfunktionen für jede Fehlstellenkonfiguration d.h. für jedes a_1/a_2 -Verhältnis aufgestellt. Diese Funktionen wurden anhand der Methode der kleinsten Fehlerquadrate mit dem in Excel implementierten Solver-Programm approximiert. Der Vorteil dieser Funktion ist neben der Einbeziehung des Fehlstellengrößenverhältnisses a_1/a_2 auch die Erfassung des auf die größere Fehlstelle bezogenen Fehlstellenabstandes d. Dabei wird deutlich, dass die Wechselwirkung zwischen zwei gleich großen Fehlern kritischer anzusehen ist, als die gegenseitige Beeinflussung von einer großen und einer kleinen Fehlstelle. Bei einem sehr großen Unterschied, d.h. bei einem großen a_1/a_2 -Verhältnis hat die kleinere Fehlstelle kaum einen Einfluss auf die größere Fehlstelle. Dieses Ergebnis wird in [12] experimentell bestätigt.

Bei der Anwendung der Wechselwirkungsfunktion ist darauf zu achten, dass die Spannung in der Wechselwirkungszone die Streckgrenze nicht überschreitet, da sonst weitere werkstoffmechanische Vorgänge berücksichtigt werden müssen. Auch basiert die Herleitung der Wechselwirkungsfunktion auf der gegenseitigen Beeinflussung zwischen zwei Fehlstellen, die in einer Ebene liegen.

Zur Festlegung einer Grenze der Wechselwirkungsfunktion für kleine bezogene Abstände wurden in Kapitel 6.1 verschiedene analytische Näherungsrechnungen mittels der Gleichung $K_I = \sigma \sqrt{\pi \cdot a}$ für zwei bzw. vier benachbarte Fehlstellen durchgeführt. Als kritische Anordnung sind zwei benachbarte Fehlstellen mit dem nach ASME festgelegten Abstand für den Beginn der Wechselwirkung d = 2a anzusehen, bei denen sich die Fehlerhalbachsen während des Zusammenwachsens vertauschen (aus a-Halbachse wird c-Halbachse), vgl. Kap. 6.1. Aus den Rechnungen mit Flächengleichheit beträgt die maximale Erhöhung des Spannungsintensitätsfaktors im Bezug auf den Einzelfehler etwa 20,9%. Zur Ermittlung des entsprechenden bezogenen Abstandes wurde die Formfunktion für zwei nebeneinanderliegender Fehlstellen nach Murakami [41] herangezogen, siehe <u>Bild 6.8</u>.

<u>Bild 6.8:</u> Formfunktion zweier nebeneinanderliegender Fehler nach Murakami [38]

Weiterhin wurde in Bild 6.8 die analytisch berechnete Grenze von etwa 20,9% Erhöhung im Bezug auf den Einzelfehler eingetragen. Als Begrenzung der Wechselwirkungsfunktion ergibt sich hieraus ein bezogener Abstand von d/2a₁ \approx 0,5. Die Übertragung der Grenze auf die Wechselwirkungsfunktion bewirkt ein maximal auftretendes Spannungsverhältnis σ_{Steg}/σ_n von etwa 1,8. Dieses ist in Bild 6.7 eingetragen.

Eine allgemeine Darstellung der approximierten Wechselwirkungsfunktion lässt sich in der Form

$$f\left(\frac{d}{2a_{1}},\frac{a_{1}}{a_{2}}\right) = 0.94 + \frac{P(a_{1}/a_{2})}{\frac{d}{2a_{1}}}$$
(6.11)

angeben, wobei die Funktion P von dem Verhältnis a1/a2 abhängt.

Zur Ermittlung einer allgemeinen Funktion $P(a_1/a_2)$ in Abhängigkeit des Fehlergrößenverhältnisses a_1/a_2 werden für entsprechende Konfigurationen des Fehlers 1 und Fehlers 2 die in Bild 6.7 bestimmten Werte herangezogen, siehe Bild 6.9.

Bild 6.9: Allgemeine Darstellung der Funktion P

Durch die Approximation mittels der Methode der kleinsten Fehlerquadrate kann die Funktion P durch folgende Gleichung beschrieben werden.

$$P\left(\frac{a_1}{a_2}\right) = 0,16 + \frac{0,2538}{\frac{a_1}{a_2}}$$
(6.12)

Damit ist es möglich, die Wechselwirkungsfunktion für beliebige a_1/a_2 -Verhältnisse zu berechnen und damit den Grad der Wechselwirkung zwischen zwei benachbarten Fehlstellen anzugeben. Durch Einsetzen der Funktion P in die Gleichung (6.11) erhält man eine allgemeine Darstellung der Wechselwirkungsfunktion in Abhängigkeit des Fehlergrößenverhältnisses a_1/a_2 und dem auf den größeren Fehler bezogenen Abstand d.

$$0,16 + \frac{0,2538}{\frac{a_1}{a_2}}$$

$$f\left(\frac{d}{2a_1}, \frac{a_1}{a_2}\right) = 0,94 + \frac{\frac{d}{a_2}}{\frac{d}{2a_1}}$$
(6.13)

Zur Verifizierung der aus numerischen Rechnungen gewonnenen Funktion $f(d/2a_1,a_1/a_2)$ werden im Folgenden experimentelle Ergebnisse herangezogen. In <u>Bild 6.10</u> wurde die Wechselwirkungsfunktion in Abhängigkeit der jeweiligen Fehlergrößenverhältnisse für die in den rasterelektronenmikroskopischen Untersuchungen ermittelten Fehlstellen und Fehlstellenabständen der BS1-Probe, vgl. Kapitel 4 angewandt.

Außerdem sind in Bild 6.10 diejenigen Fehlstellen eingetragen, bei denen im Rasterelektronenmikroskop eine deutliche gegenseitige Wechselwirkung erkennbar ist, (WW_REM_2a). Für den Werkstoff 26NiCrMoV14-5 kann der Beginn der Wechselwirkung ab einem Spannungsverhältnis σ_{Steg} / σ_n von etwa 1,15 und unterhalb einem bezogenen Abstand von 1,7 festgelegt werden. In diesem Bereich ist mit einer Interaktion zu rechnen. Dabei fällt ein Fehlstellenpaar, welches das Kurzrisskriterium (Gl. 2.44) erfüllt, in den Interaktionsbereich.

Die Anwendung der Wechselwirkungsfunktion auf weitere Fehlstellen von Proben aus 1%Cr-Werkstoffen ist in <u>Bild 6.11</u> dargestellt. Dabei wurden geeignete Kleinproben aus den Vorhaben [1,12,59] für die Auswertung herangezogen.

<u>Bild 6.11:</u> Anwendung der Wechselwirkungsfunktion auf verschiedene in [10-12] sowie im Kapitel 3-4 experimentell untersuchte Proben

Es zeigt sich, dass die für den Werkstoff 26NiCrMoV14-5 definierten Wechselwirkungsgrenzen für die untersuchten 1%Cr-Werkstoffe erfüllt sind. In der Regel liegen alle Fehlerpaare, bei denen im Rasterelektronenmikroskop eine Wechselwirkung festgestellt wurde, innerhalb des Interaktionsbereichs. Dieses Kriterium eignet sich daher zur qualitativen Analyse von Gruppenfehlstellen hinsichtlich des Grades ihrer gegenseitigen Beeinflussung in Abhängigkeit des Fehlstellenabstandes.

Im Weiteren ist in Bild 6.11 die Grenzbedingung nach dem ASME-Code eingetragen. Dabei tritt eine gegenseitige Beeinflussung auf, wenn der Abstand zwischen den Fehlstellen gleich der größeren Fehlstellenachse ist. Nach diesem Kriterium werden jedoch nicht alle im Rasterelektronenmikroskop vorgefundenen Wechselwirkungen in den untersuchten Proben erfasst. Das Kriterium ist daher nicht konservativ.

Das Verfahren zur Bestimmung der Interaktion von Fehlstellen ist dann anwendbar, wenn mit der zerstörungsfreien Prüfung die Fehlergrößen und die Fehlerabstände abgeschätzt werden können. Dies ist insbesondere bei auflösbaren Gruppenanzeigen möglich. Für nichtauflösbare Gruppenanzeigen wurde von Heinrich in [12] ein Schallabschwächungsverfahren entwickelt, welches eine quantitative Bestimmung der Fehlergrößen und Fehlerabstände erlaubt.

6.3 Übertragung der Wechselwirkungsfunktion auf die Bruchmechanik

Für die bruchmechanische Bewertung von Fehlstellen mit Gruppenanzeigen ist die Kenntnis aus der Erhöhung des Spannungsintensitätsfaktors infolge der Wechselwirkung von besonderem Interesse. Experimentelle Untersuchungen und die Ergebnisse aus der Herleitung der Wechselwirkungsfunktion zeigen, vgl. Bild 6.7, dass für die Beeinflussung zweier Fehler die größere Fehlstelle maßgeblich ist. Daher ist es erforderlich, eine bruchmechanische Beziehung zwischen dem größeren Einzelfehler und dem Gruppenfehler herzustellen. Hierzu wird auf Ergebnisse der linearelastischen Finite-Elemente-Rechnungen zurückgegriffen, bei denen die Spannungsintensitätsfaktoren benachbarter Fehlstellen berechnet wurden, vgl. Kapitel 5.4.

Das Ziel ist es, einen die Wechselwirkung berücksichtigenden Spannungsintensitätsfaktor mit Hilfe der Wechselwirkungsfunktion herzustellen. Verschiedene Analysen haben gezeigt, dass eine gute Übereinstimmung zwischen den numerischen Ergebnissen und der Näherungsbeziehung

$$K_{I,Gruppe} = \sqrt[4]{f\left(\frac{d}{2a_1}, \frac{a_1}{a_2}\right)} \cdot K_{I,Einzel}$$
(6.14)

erreicht werden kann. Die Funktion $f(d/2a_1,a_1/a_2)$ stellt die allgemeine Form des Spannungsverhältnisses σ_{Steg}/σ_n dar, welche den Einfluss des Abstandes zwischen zwei Fehlstellen sowie deren Fehlergrößenverhältnis a_1/a_2 berücksichtigt. Dabei ist K_{I,Einzel} der Spannungsintensitätsfaktor des größeren Fehlers der wechselwirkenden Fehlstellen. K_{I,Gruppe} gibt den Spannungsintensitätsfaktor aufgrund der Erhöhung durch die Wechselwirkung mit der zweiten Fehlstelle an. Zur Verifizierung der Beziehung ist in <u>Bild 6.12</u> das Verhältnis zwischen dem aus der Wechselwirkungsfunktion berechneten Spannungsintensitätsfaktor K_{I,Gruppe} und dem Spannungsintensitätsfaktor aus der FE-Rechnung über dem auf die größere Fehlstellenachse bezogenen Abstand dargestellt.

<u>Bild 6.12:</u> Vergleich der bruchmechanischen Näherungsbeziehung mit den Ergebnisse der FE-Rechnung

Es zeigt sich, dass die mit der Wechselwirkungsfunktion $f(d/2a_1,a_1/a_2)$ berechneten Spannungsintensitätsfaktoren ab einem bezogenen Abstand $d/2a_1$ von 0,5 die numerisch berechneten Werte mit einer sehr guten Genauigkeit wiedergeben. Für sehr kleine bezogene Abstände ist die Wechselwirkungsfunktion und damit auch die Näherungsbeziehung nicht anwendbar. In der technischen Anwendung ist dieser Bereich im Allgemeinen nicht repräsentativ.

Für die Verifizierung der Näherungsbeziehung zur Berechnung der Spannungsintensitätsfaktoren von Gruppenfehlstellen sind in <u>Bild 6.13</u> die experimentellen Ergebnisse der BS1-Probe einbezogen. Dabei ist das Verhältnis aus den durch die Näherungsfunktion ermittelten Spannungsintensitätsfaktoren K_{I,Gruppe} und den in rasterelektronenmikroskopischen Untersuchungen bestimmten Spannungsintensitätsfaktoren K_{I,Einzel} über dem auf die jeweilige größere Fehlstellenachse bezogenen Abstand dargestellt. Dabei ist festzustellen, dass mittels der Näherungsfunktion eine gute Abschätzung des Spannungsintensitätsfaktors möglich ist. Ähnlich wie bei der Wechselwirkungsfunktion sind die Fehlstellenpaare markiert, bei denen das Kurzrisskriterium nach GI. 2.44 erfüllt ist.

6.4 Vergleich verschiedener Wechselwirkungscodes

Um einen Vergleich zwischen dem in Kapitel 6.2-6.3 entwickelten Wechselwirkungskriterium und den bisher verfügbaren Codes, siehe Kapitel 2.5 zu erhalten, werden diese in <u>Tabelle 6.2</u> für die benachbarten Fehlstellen des Bereichs A₁ der BS1-Probe angewandt. Dabei wird das englische Konzept R6, das französische Konzept A16, der amerikanische Code ASME XI und der japanische Code WES 2805 herangezogen.

benach- barte	NEU f(d/2a1)	R6 (B	R6 (BS7910)		onzept	ASME XI	WES	2805
Fehl-	>1,15 ?	WW c?	WW a?	WW c?	WW a?		WW a?	WW c?
stellen '								
1_2	ja	ja		ja		nein		nein
2_3	ja		ja		ja	ja	nein	
3_4	nein	nein	nein	nein	nein	nein	nein	nein
4_5 ²⁾	nein	nein	nein	nein	nein	nein	nein	nein
5_6 ²⁾	nein	nein	nein	nein	nein	nein	nein	nein
6_7	nein	nein	nein	nein	nein	nein	nein	nein
7_8	nein	nein	nein	nein	nein	nein	nein	nein
8_9	nein	nein	nein	nein	nein	nein	nein	nein
9_10	ja	nein	nein	ja	nein	nein	nein	nein
10_11 ²⁾	nein	nein	nein	nein	nein	nein	nein	nein
11_12 ¹⁾	ja	nein	nein	nein	nein	nein	nein	nein
12_13 ²⁾	nein	nein	nein	nein	nein	nein	nein	nein
13_14 ²⁾	nein	nein	nein	nein	nein	nein	nein	nein
14_15 ¹⁾	nein	nein	nein	nein	nein	nein	nein	nein
15_16 ¹⁾	nein	nein	nein	nein	nein	nein	nein	nein
16_17 ¹⁾	nein	nein	nein	nein	nein	nein	nein	nein
6_8	nein	nein	nein	nein	nein	nein	nein	nein
8_10	nein	nein	nein	nein	nein	nein	nein	nein
12_14	nein	nein	nein	nein	nein	nein	nein	nein

<u>Tabelle 6.2:</u> Vergleich verschiedener Codes unter Anwendung der Fehlstellenanordnung der Probe BS1, vgl. Kapitel 4

^{*)}: fett: im Rasterelektronenmikroskop nachgewiesenes Risswachstum zwischen zwei Fehlstellen

- ¹⁾: Betrachtung zweier Kurzrisse
- ²⁾: in Kontakt mit Kurzriss

Im Rasterelektronenmikroskop wurde eine Interaktion zwischen den Fehlstellen 1-2, 2-3 und 9-10 nachgewiesen. Während das A16-Konzept und das neu entwickelte Konzept mit der Wechselwirkungsfunktion $f(d/2a_1,a_1/a_2)$ eine gegenseitige Beeinflussung zwischen den Fehlstellen vorausberechnen, werden bei den anderen Codes nur teilweise diese Ergebnisse bestätigt. Weitere Untersuchungen an verschiedenen Proben aus den Vorhaben [1,12,59] zeigen ähnliche Ergebnisse. Die in dieser Arbeit durchgeführten Untersuchungen zeigen, dass das neu entwickelte Wechselwirkungskriterium alle im Rasterelektronenmikroskop gefundenen Wechselwirkungen identifiziert. Sowohl das R6-Verfahren als auch der ASME XI-Code erfassen nicht alle wechselwirkenden Fehlstellen. Daher kann festgestellt werden, dass dieses neu entwickelte Verfahren nach bisherigen Untersuchungen bessere Vorhersagen bezüglich der Wechselwirkung von Fehlstellen trifft. Ein weiterer signifikanter Vorteil des Wechselwirkungsfunktionskonzeptes ist die Kenntnis über den Grad der gegenseitigen Wechselwirkung. Damit ist eine Aussage möglich, ob zwei Fehlstellen sich stark beeinflussen oder nicht.

7. Schlussfolgerungen

Die ausführlichen Nachuntersuchungen und bruchmechanischen Bewertungen der Kleinproben B3, 1D3 und E7 des Vorhabens "Fehlstelleneinfluss II", [1] zeigten eindeutig die Ursachen für die während der Zugschwellversuche auftretenden Spontanbrüche auf. Die hochbelasteten Proben kamen vor allem durch die starke Querschnittsschwächung, durch die Schwingungsbrüche und durch die Vielzahl kleiner nichtmetallischer Einschlüsse in der Restbruchfläche zu Schaden. Derartige Brüche sind bei der heutigen modernen Erschmelzungstechnologie auszuschließen. Bei Schmiedestücken, die von Herstellern produziert werden, die diese Erschmelzungstechnologien nicht einsetzen, können vergleichbare Werkstoffzustände auftreten.

Die Zusatzuntersuchungen, die anhand von Großproben von drei Ausschussschmiedestücken moderner Erschmelzungstechnologie durchgeführt wurden, führten zu Ergebnissen, die sich deutlich von den obengenannten unterscheiden. Auffallend ist vor allem der größere Reinheitsgrad im Restquerschnitt der Zugschwellproben und die deutlich höhere Belastbarkeit im Zugschwellversuch gegenüber den Proben der Schmiedestücke, die in den siebziger Jahren hergestellt wurden. Die aus den durchgeführten zerstörungsfreien, metallographischen und bruchmechanischen Untersuchungen gewonnenen Erfahrungen sind von großer Bedeutung für die Bewertung der Ultraschallanzeigen von Schmiedestücken moderner Fertigungstechnologie.

Mit Hilfe der in [1,12] und der in dieser Arbeit gewonnenen Ergebnissen konnte das Verhalten von Fehlstellen beschrieben und die Versagensvorgänge der Proben ermittelt werden. Dabei wurde bestätigt, dass für das Zusammenwachsen der Fehlstellen sowohl der größere Fehler als auch die Häufigkeit und die Dichte der in den Proben befindlichen Fehlstellen maßgebend sind. Diese Ergebnisse konnten zur Verifizierung des aus numerischen Simulationen ermittelten Wechselwirkungskriteriums herangezogen werden.

Zur Anwendung des Wechselwirkungskriteriums $f(d/2a_1,a_1/a_2)$ werden besondere Anforderungen an die Ultraschallprüfung gestellt. Hierzu ist zunächst die Kenntnis über die Art der Fehlstellen notwendig, d.h. ob Einzelanzeigen oder auflösbare bzw. nichtauflösbare Anzeigentypen innerhalb des Bauteils auftreten. Im Weiteren müssen zuverlässige Ergebnisse über die Fehlergrößen und Fehlerabstände der auftretenden Fehlstellen vorliegen. Sind diese Größen bekannt, so kann mit dem Wechselwirkungskriterium der Grad der gegenseitigen Beeinflussung ermittelt und die bruchmechanische Analyse durchgeführt werden. Die numerischen Untersuchungen zeigten, dass die einachsig berechneten 3D-Simulationen in die 2D-Rechnungen überführbar sind. Aus zahlreichen Abstandsuntersuchungen konnten für verschiedene Fehlergrößen die zwischen zwei Fehlstellen auftretenden Wechselwirkungen analysiert werden. Insbesondere bei sehr kleinen Abständen zeigten sich erwartungsgemäß sowohl eine starke Interaktion zwischen den Fehlstellen als auch eine deutliche Spannungserhöhung in deren Umfeld. Hieraus konnte eine Grenze für den Beginn der gegenseitigen Beeinflussung zwischen zwei nebeneinanderliegenden Fehlstellen definiert werden.

Während die Ergebnisse zwischen ein- und mehrachsiger Beanspruchung bei Raumtemperatur in guter Näherung übereinstimmten, traten bei Rechnungen mit hoher Temperatur Unterschiede auf. Für die Untersuchung der Mehrachsigkeit wurde der Mehrachsigkeitsquotient q herangezogen. Dabei zeigte sich zwischen den benachbarten Fehlstellen bei den Analysen mit dem Kriechgesetz von Norton-Bailey eine stärkere Zunahme der Mehrachsigkeit im Vergleich zu den Ergebnissen der linearelastischen Rechnungen. Diese Zunahme der Mehrachsigkeit ist mit einer verstärkten Wechselwirkung verbunden. Damit besteht die Gefahr einer größeren Sprödbruchgefährdung. Zur Charakterisierung der Wechselwirkung zwischen Fehlstellen wurde eine analytische Wechselwirkungsfunktion entwickelt. Mit Hilfe dieser Funktion ist es möglich, eine Aussage über den Grad der Wechselwirkung zu treffen.

Literatur:

- [1] Foth J., W. Oberparleiter: Fehlstelleneinfluss II, Untersuchung des rissauslösenden Einflusses natürlicher makroskopischer Fehlstellen und Fehlergruppen in größeren Schmiedestücken bei betriebsähnlichen Spannungen und Temperaturen, Vorhaben Nr. 302, Abschlussbericht Teil 1 und 2, 1987
- [2] Roos E., K. Maile, G. Schellenberg, Berger C., A. Scholz und F. Müller: Einfluss inerter Atmosphäre auf das Rissverhalten warmfester Stähle im Kriech- und Kriechermüdungsbereich, Schlussbericht zum AiF-Forschungsvorhaben Nr. 11722 N, 2002
- [3] Ewald J., E. E. Mühle: Versagenssichere Bemessung von Bauteilen im Dampfturbinenbau, veröffentlicht in "Werkstoffverhalten und Bauteilbemessung", Vortrag einer Fachkonferenz der Deutschen Gesellschaft für Metallkunde e. V. 1986, DGM Informationsgesellschaft Verlag, 1987
- [4] Mayer K.H., C. Berger, C. Gerdes, T. Kern, K. Maile: Einfluss von Fehlstellen auf die Gebrauchseigenschaften von Wellen und Gehäusen, VGB Kraftwerkstechnik, 77. Jahrgang, Heft 10, S. 848-857, 1997
- [5] Clausmeyer H., K. Kußmaul und E. Roos: Der Einfluss des Spannungszustandes auf den Versagensablauf angerissener Bauteile aus Stahl, Mat.wiss. u. Werkstofftechnik 20, S. 101-117, 1989
- [6] VGB-Richtlinie, VGB-512M: Prüfungen betriebsbeanspruchter Läufer und Gehäuse von Dampf- und Gasturbosätzen, 1990
- [7] Engelke W., J. S. Joyce, D. Lambrecht, E. E. Muehle: Rotor forgings for KWU-designed turbine-generators, Kraftwerk Union AG, Mühlheim / Ruhr, Germany, utility power corporation brookfield, Wisconsin, EPRI Conf. Polo Alto, 1979
- [8] Bareiß J.: Verhalten von Fehlstellen im warmfesten Stahlguss bei betriebsähnlichen Belastungen, Abschlussbericht, Vorhaben AiF-Nr. 8338, MPA Stuttgart, 1995
- [9] Maidorn C.: Erstarrungsablauf und Seigerung in schweren Schmiedeblöcken unter besonderer Berücksichtigung des Stahls 20MnMoNi5-5, Dr.-Ing. Dissertation, Staatliche Materialprüfungsanstalt Universität Stuttgart, 1983

- [10] Schütz R.: Erarbeitung und Beurteilung von Methoden zur bruchmechanischen Berechnung der Zulässigkeit von Ultraschall-Gruppenanzeigen in großen Schmiedestücken, Bericht B-TA-3746 zum AviF-Forschungsvorhaben Nr. A95, IABG, Ottobrunn, März 1999
- [11] Murakami Y. and S. Nemat-Nasser: Interacting dissimilar semi-elliptical surface flaws under tension and bending, Engineering Fracture Mechanics vol. 16, No. 3, pp. 373-386, 1982
- [12] Oberparleiter W.: Fehlstelleneinfluss I, Untersuchung des rissauslösenden Einflusses natürlicher makroskopischer Fehlstellen in größeren Schmiedestücken unter Zugschwellbeanspruchung und bei niedrigen Lastspielzahlen N<25000, Vorhaben Nr. 238, Abschlussbericht, 1983</p>
- [13] Maile K., H. Theofel, K.H. Mayer, C. Berger, J.Ewald, G.Gnirß: Verhalten natürlicher Fehlstellen in schweren Schmiedestücken unter Kriechbeanspruchung, 17. MPA-Seminar, 1991
- [14] BS 5500, british standard, section 5, inspection and testing, 1997
- [15] Mayer K.H., W. Prestel: Ultrasonic examination and evaluation of natural defects in large turbomachinery forgings, prepared for the 5th COST 501 Conference "Material for Advanced Power Engineering 1994, Liège, Belgium, October 3-6, 1994
- [16] Mayer K.H., K. Maile and C. Gerdes: Characterisation and quantification of defects in rotors and castings of steam turbines, Material at high temperatures, creep and fatigue crack growth in high temperature plant, international HIDA conference, Saclay/Paris, 15.-17. April 1998
- [17] Krautkrämer J., H. Krautkrämer: Werkstoffprüfung mit Ultraschall, Springer-Verlag, 4. Auflage, 1980
- [18] Maile K., H. Theofel: Description of the German flat bottom hole approach.
 Task 1: Analysis of existing procedures, CEC-Projekt HIDA BRPR-CT95-0128, 1996
- [19] VGB-Richtlinie, VGB-R 504 M: Prüfung von großen Schmiede- und Gussstücken für Dampf- und Gasturosätze, vierte Ausgabe, 2002

- [20] Kern T.-U., J. Ewald and K. Maile: Evaluation of NDT-signals for use in the fracture mechanics safety analysis, Material at high temperatures, creep and fatigue crack growth in high temperature plant, international HIDA conference, Saclay/Paris, 15.-17. April 1998
- [21] FKM-Richtlinie: Rechnerischer Festigkeitsnachweis für Maschinenbauteile, VDMA-Verlag, 3. Auflage, 1998
- [22] Gross D. und Th. Seelig: Bruchmechanik mit einer Einführung in die Mikromechanik, Springer-Verlag, 3. Auflage, 2001
- [23] Maile K., A. Klenk: Bruchmechanische Ansätze zur Beurteilung des Anriss- und Rissfortschrittsverhaltens, VDI-Seminar, Kurs-Nr. 913105
- [24] Motz, J.: Einfluss oberflächennaher Fehlstellen im Stahlguss auf die Risseinleitung bei Schwingbeanspruchung, Gießerei 78, Nr. 12, 1991
- [25] Neuber H.: Kerbspannungslehre, 3. Auflage, Springer-Verlag, 1985
- [26] Seliger P. und S. Sähn: Rissbildung und –ausbreitung an Kerben bei zyklischer Beanspruchung, 17. MPA-Seminar, 1991
- [27] Theofel H.: Fehlstellen unter Kriechbeanspruchung II, Untersuchung des rissauslösendes Einflusses natürlicher makroskopischer Fehlstellen in größeren Schmiedestücken unter Kriechbeanspruchung an bauteilähnlichen Proben, Abschlussbericht, AiF-Vorhaben-Nr. 8089, MPA Stuttgart, 1991
- [28] Kloos E., D. Blind, J. Granacher, K. Maile, R. Tscheuschner, J. Bareiß: Rissverhalten warmfester Kraftwerksbaustähle im Kriech- und Kriechermüdungsbereich, Schlussbericht, AiF-Nr. 7251, 1992
- [29] Roos E. und K. Maile: Werkstoffkunde für Ingenieure, Grundlagen, Anwendung, Prüfung, Springer-Verlag, 2002
- [30] Irwin: Analysis of stresses and strains near the end of a crack transversing a plate, J. Appl. Mech. 24, pp. 361-374, 1957
- [31] Blumenauer H., G. Pusch: Technische Bruchmechanik, Deutscher Verlag für Grundstoffindustrie, Leipzig-Stuttgart, 1993
- [32] Hahn H. G.: Bruchmechanik, Einführung in die theoretischen Grundlagen, Teubner-Verlag, 1976

- [33] Will P. and B. Michel: A model for JT_J-controlled fatigue crack growth, journal of fatigue vol. 11, no. 2, pp.125-128, 1989
- [34] Blackburn W.S.: Numerical results for volume, surface and contour integrals around crack tips, fatigue fract. Mater. Struct. Vol. 14, No. 6, pp. 651-662, 1991
- [35] Riedel H. and J.R. Rice: Tensile cracks in creeping solids, ASTM STP 700, 1980
- [36] Riedel H.: Fracture at high temperatures, material research engineering, Springer-Verlag, 1987
- [37] Roos E., K. Maile, W. Stadtmüller, C. Berger, A. Scholz und F. Müller: Hochtemperaturrissverhalten der neuen 600 °C-Stähle für Wellen und Gehäuse von Dampfturbinen, Abschlussbericht, AviF-Nr. A127, Juni 2002
- [38] Kumar V., M. D. German und C. F. Shih: An engineering approach für elastic-plastic fracture analysis, EPRI, NP-1931, Projekt 1247-1 (July 1981)
- [39] Roos E., Berger C., Granacher J., Maile K., Tramer M. und G. Schellenberg: Rissverhalten typischer warmfester Kraftwerksbaustähle im Kriechermüdungsbereich, MPA-Stuttgart, Schlussbericht, AiF-Nr. 10395 I/II, Juni 1999
- [40] Maile K., Klenk A. und H. Theofel: Einfluss von Fehlstellen im warmfesten Stahlguss bei betriebsähnlichen Belastungen im Ermüdungs-, Kriech- und Kriechermüdungsbereich, MPA-Stuttgart, Abschlussbericht, AiF-Nr. 1968, Mai 2000
- [41] Murakami Y. et all: Stress intensity factors handbook, Volume 1 und 2, pergamon press, Oxford, 1987
- [42] Bronstein N. und K.A. Semendjajew: Teubner-Taschenbuch Mathematik,B. G. Teubner Stuttgart Verlag, 1996
- [43] Kishimoto K., W.O. Soboyejo, R.A. Smith und J.F. Knott: A numerical investigation of the interaction and coalescence of twin coplanar semi-elliptical fatigue cracks, journal of fatigue vol. 11, no. 2, pp.91-96, 1989
- [44] McFadyen N.B., R. Bell and O. Vosikovsky: Fatigue crack growth of semiellipical surface cracks, journal of fatigue vol. 12, no. 1, pp.43-50, 1990

- [45] Soboyejo W.O., J.F. Knott, M.J. Walsh and K.R. Cropper: Fatigue crack propagation of coplanar semi-elliptical cracks in pure bending, engineering fracture mechanics vol. 37, no. 2, pp. 323-340, 1990
 [46] Soboyejo W.O. and J.F. Knott: The propagation of non-coplanar semi-elliptical fatigue cracks, fatigue fracture engng. Mater. Struct. Vol 14, no. 1 pp. 37-49, 1991
 [47] Matake T. and Y. Imai: Pop.in behaviour induced by interaction of cracks
- [47] Matake T. and Y. Imai: Pop-in behaviour induced by interaction of cracks, pergamon press, engineering fracture mechanics, vol. 9, no. 1, pp. 17-24, 1977
- [48] Skallerud B.: Fatigue life assessment of aluminium alloys with casting defects, engineering fracture mechanics vol. 44, no. 6, pp. 857-874, 1993
- [49] Chang R.: On crack-crack interaction and coalescense in fatigue, engineering fracture mechanics, vol. 16, no. 5, pp. 683-6934, 1982
- [50] ASME Boiler and Pressure Vessel Code section XI, Article IWA-3000, standards for examination evaluation
- [51] R5/R6 Newsletter: A user advice sheet issued by the R5 and R6 panels, number 24, December 2001
- [52] A16: Guide for defect assessment and leak before brak analysis, rapport DMT 96.096, département de méchanique et de technologie, third draft – 31/12/95
- [53] Kitagawa, H. and T. Tanaka: Environmental contributions to fatigue crack growth in a 9%Cr 1%Mo steel, proceedings of the fourth international conference on fatigue and fatigue thresholds held 15.-20. July, 1990, Tagungsband Vol. II, S.1863
- [54] Hollstein, T.: Untersuchungen zum Ermüdungsrisswachstum und zum Schwellwert in 26CrMoV6-11 bei Raumtemperatur und 550 °C in Laborluft und Vakuum, IWM-Bericht V51/89, Oktober 1989
- [55] Roos E., Berger C., Maile K., Scholz A., Weichert C. und Müller F.: Anwendbarkeit von Bruchmechanikkonzepten auf Kriechrisseinleitung und Kriechwachstum von niedriglegiertem Stahlguss im praxisrelevanten Beanspruchungsbereich, AiF-Forschungsvorhaben Nr. 12687, Schlussbericht vor. 3/2004

- [56] Taylor D.: Fatigue of short cracks, the limitations of fracture mechanics, article in "the behaviour of short cracks, EGF publication 1, fatigue of engineering materials limited, 1986
- [57] Sähn S. und Th. Pyttel: Berechnung der Kerbwirkungszahlen und Kurzrissverhalten bei zyklischer Belastung, 17. MPA-Seminar, 1991
- [58] Munz D.: Ermüdungsverhalten metallischer Werkstoffe, DGM Informationsgesellschaft Verlag, 1985
- [59] Maile K. und H. Theofel: Bruchmechanische Untersuchungen und Analysen an inneren Fehlstellen in schweren Schmiedestücken, Abschlussbericht, MPA-Stuttgart, 1994
- [60] Nowack H., J. Foth, P. Heuler und T. Seeger: Darstellung und Bewertung von Modellen f
 ür die Ausbreitung kurzer Risse bei Schwingbeanspruchungen, Z. Werkstofftechn. 15, S. 24-34, 1984
- [61] M. H. El Haddad, K. N. Smith und T. H. Topper: Fatigue crack propagation of short cracks, J. of Eng. Mat. And Technology 101, pp. 42-46, 1997
- [62] Ewald J., C. Berger: Materials for Failure safe, high reliable steam turbine components. 3rd International Parsons Turbine Conference, 25-27. April 1995, Newcastle upon Tyne, UK, page 265-276
- [63] Maile K., Xu H., Gerdes C., Kasik N., Brändle und K.H. Mayer: Verified approaches to life assessment and improved design of elevated temperature turbine equipment, final report no. 524/MPA10/PR08, June 1996
- [64] Clausmeyer H.: Über die Beanspruchung von Stahl bei mehrachsigen Spannungszuständen, Konstruktion 20, Heft 10, S. 395-401, 1968
- [65] Kußmaul K. und E. Roos: Mehrachsigkeitszahlen und deren Nutzbarkeit in der Festigkeitsberechnung, mat.-wiss. u. Werkstofftechnik 22, S. 245-251, 1991
- [66] Ziebarth H. A.: Calculation of turbine rotors in secondary creep range, pergamon press, computers and structures vol. 17, no. 5-6, pp. 809-818, 1983
- [67] Xu H. and K. Maile: A new approach for life assessment of components under multiaxial creep load on the basis of uniaxial creep data, interner Bericht MPA-Stuttgart, 1997

[68] Kunz A. und K. Wellinger: Untersuchungen über die Versprödungsneigung von Kesselbau- und Druckbehälterbau, technisch-wissenschaftlicher Bericht der MPA Stuttgart, 1974

Anhang

Bilder und Tabellen

Werkstoff	ASTM	d _{Korn} / mm	l ₂ / mm	a / mm
30CrMoNiV5-11	5-6	0,05758	0,5758	0,2879
26NiCrMoV14-5	6	0,04987	0,4987	0,2494
21CrMoV5-11	7	0,01763	0,1763	0,0882

Anhang 2.1: Kritische Risslängen verschiedener 1%Cr-Stähle

-	1	4	1	-
---	---	---	---	---

Feh-	Art	a _i	c _i	$\Delta K_{\text{li,brutto}}$	$\Delta K_{\text{li,netto}}$	$\Delta K_{Ii,netto-Summe}$	Feh-	Art	a _i	c _i	$\Delta K_{\text{li,brutto}}$	$\Delta K_{\text{li,netto}}$	$\Delta K_{Ii,netto-Summe}$
ler		/m/10 ³	/m/10 ³	$/MPA\sqrt{m}$	/MPa√m	/MPa√m	ler		/m/10 ³	/m/10 ³	$/MPA\sqrt{m}$	/MPa√m	/MPa√m
1	Ι	0,331	0,662	18,46	18,47	19,31	15	Ι	0,162	0,162	9,96	9,96	10,42
2	Ι	0,773	0,773	21,76	21,82	22,77	16	—	0,275	0,275	12,98	12,98	13,58
3	Ι	0,418	0,418	16,00	16,01	16,74	17	Ι	0,249	0,499	16,01	16,02	16,76
4	Ι	0,244	0,489	15,85	15,86	16,59	18	—	0,163	0,326	12,95	12,95	13,55
5	Ι	0,643	0,643	19,85	19,88	20,76	19	—	0,237	0,237	12,05	12,05	12,60
6a	Ι	0,084	0,084	7,17	7,17	7,50	20		0,410	0,820	22,29	22,31	23,32
6b	Ι	0,299	0,299	13,59	13,54	14,16	21	Ι	0,257	0,515	16,27	16,28	17,02
6c1	Ι	0,075	0,075	6,78	6,78	7,09	22	—	0,376	0,376	15,18	15,19	15,87
6c2	Ι	0,080	0,160	9,07	9,07	9,49	23	Ι	0,390	0,390	15,45	15,47	16,17
6c3	Ι	0,135	0,265	11,73	11,73	12,27	24	—	0,233	0,233	11,94	11,95	12,50
6d	Ι	0,137	0,137	9,16	9,16	11,02	25	—	0,340	0,340	14,43	14,44	15,10
7a	Ш	0,089	0,1605	10,04	10,04	10,51	26	—	0,407	0,814	20,47	20,50	21,41
7b	Ι	0,245	0,6818	17,06	17,06	17,85	27	—	0,382	0,382	15,30	15,31	16,00
8	Ι	0,489	0,977	22,43	22,48	23,46	28	—	0,213	0,426	14,81	14,81	15,49
9	III	0,837	1,674	31,86	31,97	33,34	29	—	0,529	1,059	23,34	23,40	24,42
10	Ι	0,605	1,210	24,96	25,04	26,11	30	—	0,492	0,984	22,50	22,55	23,54
11	Ι	1,017	1,017	24,96	25,09	26,12	31	Ι	0,408	0,408	15,81	15,82	16,54
12	Ι	0,543	0,543	18,24	18,26	19,08	32	Ι	0,246	0,493	15,82	15,93	16,66
13	Ι	0,740	1,480	27,60	27,75	28,88	33	Ι	0,088	0,177	9,53	9,53	9,97
14	Ι	0,264	0,264	12,72	12,72	13,30							

<u>Anhang 3.1:</u> Ausgangsabmessungen der Fehlstellen der Probe 1D3, Versagen nach 10380 LW, Werkstoff: 28NiCrMoV14-5 I: Innenfehler; III: Oberflächenfehler

-	142	-
---	-----	---

Feh-	Art	a _e	c _e	$\Delta K_{le,brutto}$	$\Delta K_{le,netto}$	$\Delta K_{Ie,netto-Summe}$	Feh-	Art	a _e	c _e	$\Delta K_{le,brutto}$	$\Delta K_{le,netto}$	$\Delta K_{Ie,netto-Summe}$
ler		/m/10 ³	/m/10 ³	/ MPa√m	/ MPa√m	/ MPa√m	ler		/m/10 ³	/m/10 ³	/ MPa√m	/ MPa√m	/ MPa√m
1	Ι	0,611	1,222	25,08	25,17	30,17	16	Ι	0,354	0,354	14,72	14,73	17,72
2	I	1,338	1,338	28,64	28,88	34,46	17	Ι	0,295	0,590	17,42	17,44	20,96
3	Ι	0,778	0,778	21,83	21,89	26,27	18	Ι	0,189	0,378	13,95	13,95	16,78
4	Ι	0,455	0,910	21,64	21,68	26,04	19	Ι	0,288	0,288	13,28	13,28	15,98
5	Ι	1,114	1,114	24,70	24,78	29,72	20		0,714	1,427	29,42	29,49	35,39
6a	Ι	0,203	0,203	11,15	11,15	13,41	21	Ι	0,337	0,674	18,62	18,64	22,40
6b	Ι	0,407	0,407	15,79	15,80	19,00	22	Ι	0,537	0,537	18,14	18,16	21,82
6c	Ι	0,367	0,367	14,99	15,00	18,04	23	Ι	0,500	0,500	17,50	17,52	21,05
6d	Ι	0,309	0,309	13,76	13,76	16,55	24	Ι	0,339	0,339	14,41	14,42	17,34
7		2,793	5,585	58,62	60,88	70,53	25	Ι	0,414	0,414	15,92	15,93	19,16
8	Ι	0,851	1,702	29,61	29,81	35,62	26	Ι	0,494	0,987	22,54	22,59	27,12
9		2,221	4,442	52,13	53,38	62,72	27	Ι	0,474	0,474	17,04	17,06	20,50
10	Ι	1,193	2,387	35,07	35,55	42,20	28	Ι	0,295	0,590	17,42	17,44	20,96
11	Ι	2,003	2,003	35,07	35,75	42,19	29	Ι	0,653	1,306	25,93	26,04	31,20
12	Ι	1,029	1,029	25,11	25,24	30,21	30	Ι	0,691	1,382	26,67	26,79	32,09
13	Ι	1,255	2,509	35,97	36,51	43,28	31	Ι	0,595	0,595	19,09	19,12	22,97
14	Ι	0,343	0,343	14,49	14,50	17,44	32	Ι	0,316	0,633	18,04	18,06	21,71
15	Ι	0,211	0,211	11,37	11,37	13,68	33	Ι	0,240	0,481	15,72	15,73	18,92

Anhang 3.2: Endabmessungen der Fehlstellen der Probe 1D3, Versagen nach 10380 LW, Werkstoff: 28NiCrMoV14-5 I: Innenfehler; III: Oberflächenfehler

Lfd Nr.: BS1			
Werkstoffklasse	3,5%NiCrMoV-Stahl		
Werkstoffbezeichnung (vorzugsweise Kurzname nach Norm ogf. Handelsname)	26NiCrMoV14-5		
Schmelzennummer	16131		
Primärerschmelzungsverfahren	Elektroofen		
Desoxidationsverfahren	Vakuumbehandelt		
Gewicht der Schmelze	140.000 kg		
Erzeugnisform	Generator- Wellenende		
Erzeugnisabmessungen	Ø 1170 / Ø 455		
Formgebungsverfahren	geschmiedet		
Datum der Herstellung des Erzeugnisses	1996		

Chemische Zusammensetzung in Massenanteile in % (H $_2$ in ppm)

Element	С	Si	Mn	Р	S	AI tot	Ν	Cr	Cu
G1	0,26	0,09	0,23	0,004	0,001	0,009	-	1,75	0,11
Element	Мо	Nb	Ni	Ti	V	Sb	Sn	As	H_2
G1	0,43	-	3,64	-	0,12	-	0,01	0,009	-

Wärmebehandlung

Art der Wärme	behandlung			Vergütung			
Behandlungs-	Aufheizen	Т	Dauer	Abkühlung	Demenlaria		
stufe	°C / h	/ °C	/ h	Medium	°C / h	Bemerkung	
1		870	20	Wasser		Austenitisierung	
2		620	25	Ofen (gesteuert)		Anlassen	

Mechanische Eigenschaften

Kennwerte aus Zug- und Kerbschlagversuchen (Randerprobung):

Position	T /°C	R _{p0,2} /MPa	R _m /MPa	A ₅ /%	Z /%	K- Form	K _{v1} /J	K _{v2} /J	K _{v3} /J
T1	20	782	881	19,7	70	V	167	179	188
T2	20	822	916	19,1	71	V	176	177	177

Anhang 4.1: Vorprüfungszeugnis des Versuchsstücks BS1

Lfd Nr.: G1			
Werkstoffklasse	1%CrMoNiV-Stahl		
Werkstoffbezeichnung (vorzugsweise Kurzname nach Norm, ggf. Handelsname)	30CrMoNiV5-11		
Schmelzennummer	41377		
Primärerschmelzungsverfahren	Elektroofen		
Desoxidationsverfahren	Vakuumbehandelt		
Gewicht der Schmelze	33.200 kg		
Erzeugnisform	Tu- Wellenende		
Erzeugnisabmessungen	Ø 1080 / Ø 480		
Formgebungsverfahren	geschmiedet		
Datum der Herstellung des Erzeugnisses	Juni 1998		

Chemische Zusammensetzung in Massenanteile in % (H $_2$ in ppm)

Element	С	Si	Mn	Р	S	AI tot	Ν	Cr	Cu
G1	0,29	0,09	0,68	0,007	0,002	0,005	0,0062	1,30	0,16
Element	Мо	Nb	Ni	Ti	V	Sb	Sn	As	H_2
G1	1,02	0,001	0,68	0,0001	0,282	0,0033	0,009	0,0177	0,9

Wärmebehandlung

Art der Wärme	behandlung		Vergütung				
Behandlungs-	Aufheizen	neizen T Dauer Abkühlung				Danada	
stufe	°C / h	/ °C	/ h	Medium °C		Bemerkung	
1	60	940	16	Wasser-Luft, Öl		Austenitisierung	
2	60	700	23	Ofen	8	Anlassen	

Mechanische Eigenschaften

Kennwerte aus Zug- und Kerbschlagversuchen (Randerprobung):

Position	Т /°С	R _{p0,2} /MPa	R _m /MPa	A ₅ /%	Z /%	K- Form	K _{v1} /J	K _{v2} /J	K _{v3} /J
Kopf	20	580	726	20	66	KV 2	167	132	150
Fuß	20	579	727	21	69	KV 2	175	171	180

Anhang 4.2: Vorprüfungszeugnis des Versuchsstücks G1

Lfd Nr.: G2			
Werkstoffklasse	1%CrMoNiV-Stahl		
Werkstoffbezeichnung (vorzugsweise Kurzname nach	30CrMoNiV5-11		
Norm, ggf. Handelsname)			
Schmelzennummer	48992		
Primärerschmelzungsverfahren	Elektroofen		
Desoxidationsverfahren	Vakuumbehandelt		
Gewicht der Schmelze	33.200 kg		
Erzeugnisform	Tu- Wellenende		
Erzeugnisabmessungen	Ø 1050 / Ø 370		
Formgebungsverfahren	geschmiedet		
Datum der Herstellung des Erzeugnisses	Dez. 2000		

Chemische Zusammensetzung in Massenanteile in % (H₂ in ppm)

Element	С	Si	Mn	Р	S	AI tot	Ν	Cr	Cu
G1	0,29	0,09	0,74	0,007	0,002	0,005	0,004 1	1,30	0,14
Element	Мо	Nb	Ni	Ti	V	Sb	Sn	As	H_2
G1	1,02	0,001	0,66	0,0002	0,292	0,0023	0,008	0,0116	1,1

Wärmebehandlung

Art der Wä	armebehan	dlung		Vergütung			
Behand-	Aufhei-	Tem-	Dauer	Abkühlu	ng		
lungs- stufe	zen °C / h	peratur / °C	/ h	Medium	°C / h	Bemerkung	
1	60	940	16	Öl		Austenitisierung	
2	60	700	23	Ofen	8	Anlassen	

Mechanische Eigenschaften

Kennwerte aus Zug- und Kerbschlagversuchen (Randerprobung):

Position	T /°C	R _{p0,2} /MPa	R _m /MPa	A ₅ /%	Z /%	K- Form	K _{v1} /J	K _{v2} /J	K _{v3} /J
Kopf	20	602	737	20	68	KV 2	180	169	168
Fuß	20	606	734	21	71	KV 2	173	167	172

Kennwerte aus Härteprüfung:

	Brinellhärte	226	222	223	
--	--------------	-----	-----	-----	--

Anhang 4.3: Vorprüfungszeugnis des Versuchsstücks G2

Anhang 4.4: Ergebnisse der Ultraschallprüfung an der Probe BS1 nach 10000 Lastwechseln

Anhang 4.5: Ergebnisse der Ultraschallprüfung an der Probe BS1 nach 25000 Lastwechseln

Anhang 4.7: Ergebnisse der Magnetpulverprüfung an der Probe BS1 nach 25000 Lastwechseln

Feh-	Λ mt	a./mm	c./mm	ΔK_{II}	Feh-	۸t	a./mm	c./mm	ΔK _{li}
ler	An	aj/IIIII	C ₁ /IIII	/MPa √m	ler	An	aj/IIIII	C _i /IIIII	/MPa √m
	Bereich A _l								
1		0,2800	0,6820	17,68	10	Ι	0,2264	0,4245	13,34
2		0,4530	0,4530	16,95	11	Ι	0,1245	0,1415	8,25
3	I	0,1698	0,2545	10,76	12	Ι	0,1132	0,1981	9,24
4		0,2265	0,3679	12,77	13	I	0,0565	0,2545	7,75
5		0,0565	0,0565	5,23	14	I	0,0565	0,2264	7,67
6	1	0,2264	0,3963	13,07	15	Ι	0,1130	0,1130	7,40
7	I	0,2545	0,2545	11,10	16	Ι	0,0565	0,1698	7,38
8	1	0,2264	0,3679	12,77	17	Ι	0,0565	0,113	6,78
9		0,1698	0,3396	11,76	18		0,0283	0,7358	5,79
				Berei	ch A _{ll}				
1		0,2830	0,6225	15,54	4	I	0,2264	0,4245	13,34
2	1	0,3490	0,4528	14,61	5	Ι	0,0283	1,8679	5,81
3		0,3113	0,6225	15,92	6		0,3113	0,9623	19,39
Bereich A _{III}									
1	1	0,1132	0,2547	9,88	9	Ι	0,1887	0,3774	12,39
2	I	0,1132	0,2264	9,60	10	Ι	0,0944	0,2642	9,43
3	I	0,0566	0,1585	7,30	11	Ι	0,0566	0,1132	6,79
4	I	0,0849	0,4528	9,63	12		0,0566	1,6981	9,03
5	I	0,1132	0,5661	11,07	13		0,1132	0,2264	9,60
6	I	0,1132	0,2264	9,60	14	Ι	0,0566	0,3396	7,92
7	I	0,0189	0,1509	4,64	15		0,0566	0,1698	7,38
8		0,0472	0,3396	7,30	16		0,0566	0,0566	5,24
	1	-	-	Berei	ch A _{IV}				
1		0,1264	0,1686	8,89	2		0,3370	0,5000	15,10
				Berei	ch A _V				
1	1	0,4214	0,5280	15,82	5	Ι	0,0102	0,0159	2,67
2	I	0,1685	0,3650	11,95	6	Ι	0,0136	0,0249	3,25
3	1	0,1965	0,3933	12,65	7	Ι	0,017	0,017	2,87
4		0,0091	0,0113	2,31	8		0,0079	0,0045	1,84
				Berei	ch A _{VI}				
1		0,1528	0,215	9,97					
				Bereid	ch A _{VII}				
1		0,2264	0,5377	14,14	3	Ι	0,1698	0,3113	11,48
2		0,1132	0,1981	9,24					

Anhang 4.8: Spannungsintensitätsfaktoren der Ausgangsfehlstellen der BS1-Probe für die Bereiche A_I-A_{VII}

I: Innenfehler; III: Oberflächenfehler

<u>Anhang 4.9:</u> Entnahme der G1-Zugschwellprobe, Werkstoff: 30CrMoNiV5-11, (Angaben in mm)

Prüfkopf	US-Ergebr	nisse		MP-Ergebnisse
	Prüfgerät:	KK USLT 20	000	Prüfmittel: NRF 101
Ø70 ► 0	Prüfkopf: E	32S-E		
	Anzeigen-	Anzeigen-	Fehlergröße	
120	typ	lage / mm		
Ausgangsprü-	GA/GN	ca. 450	KSR=2,5 mm	-
fung				
nach 10000	GA/GN	ca. 450	KSR=2,5 mm	vereinzelt kleine Anzeigen
Lastwechseln				<0,2 mm (bei I=350 mm)
nach 26600	GA/GN	ca. 450	KSR=2,5 mm	vereinzelt kleine Anzeigen
Lastwechseln				<0,2 mm (bei I=350 mm), nur
				geringe Veränderung
nach 50000	GA/GN	ca. 450	KSR=2,5 mm	vereinzelt kleine Anzeigen
Lastwechseln				<0,2 mm (bei I=350 mm), nur
				geringe Veränderung
nach 69200	GA/GN	ca. 450	KSR=2,5 mm	Veränderung der Anzeigen,
Lastwechseln				siehe Dokumentation
			!	Anhang 5.11

Anhang 4.10: Ergebnisse der zerstörungsfreien Werkstoffprüfung der Zugschwellprobe G1, Werkstoff: 30CrMoNiV5-11

<u>Anhang 4.11:</u> Magnetpulveranzeigen nach 69200 Lastwechseln entlang des Umfangs der G1-Probe, Werkstoff: 30CrMoNiV5-11

<u>Anhang 4.12:</u> Probenentnahme der G2 Zugschwellprobe und der Schleuderprobe, Werkstoff: 30CrMoNiV5-11, (Angaben in mm)

Prüfkopf	US-Ergebni	MP-Ergebnisse		
	Prüfgerät: K	K USLT 20	00	Prüfmittel: NRT 101
ø70 ► 00	Prüfkopf: B2S-E			
	Anzeigen-	Anzeigen-	Fehlergröße	
120	typ	lage / mm		
Ausgangsprüfung	GA/GN	ca. 300	KSR=2,2 mm	-
nach 10080	GA/GN	ca. 300	KSR=2,6 mm	vereinzelt Anzeigen: 0,5-
Lastwechseln				1 mm lang
nach 25008	GA/GN	ca. 300	KSR=2,8 mm	über gesamte Schaftlänge
Lastwechseln				und Umfang: Anhäufungen
				von Anzeigen 05-1 mm,
				vereinzelt bis 2 mm Länge

<u>Anhang 4.13:</u> Ergebnisse der zerstörungsfreien Werkstoffprüfung, Zugschwellprobe G2, Werkstoff: 30CrMoNiV5-11

<u>Anhang 4.14:</u> Bruchlage des spontanen Bruchs der Zugschwellprobe G2, Werkstoff: 30CrNiMoV5-11, (Angaben in mm)

Anhang 4.15: Materialkontrastbild des Oberflächenfehlers 2

<u>Anhang 4.16:</u> Oberflächenfehler 1 und entsprechendes Materialkontrastbild des Fehlers 1 (Bereich B des Bildes 4.22)

Anhang 4.17: Innenfehler 3 und 4 auf verschiedenen Ebenen (Bereich A_{II} des Bildes 4.23a)

<u>Anhang 4.18:</u> Darstellung des Risswachstums des Fehlers 5, Ausschnitt aus Bild 4.25a

<u>Anhang 4.19:</u> Ergebnisse der zerstörungsfreien Werkstoffprüfung (Tauchtechnik Ultraschallprüfung), Schleuderprobe: G2, Werkstoff: 30CrMoNiV5-11

<u>Anhang 4.20:</u> Ergebnisse der zerstörungsfreien Werkstoffprüfung (Tauchtechnik Ultraschallprüfung), Schleuderprobe: G2, Werkstoff: 30CrMoNiV5-11

Anhang 4.21: Ergebnisse der zerstörungsfreien Werkstoffprüfung (Tauchtechnik Ultraschallprüfung), Schleuderprobe: G2, Werkstoff: 30CrMoNiV5-11

<u>Anhang 4.22:</u> Ergebnisse der zerstörungsfreien Werkstoffprüfung (Tauchtechnik Ultraschallprüfung), Schleuderprobe: G2, Werkstoff: 30CrMoNiV5-11

<u>Anhang 4.23:</u> Ergebnisse der zerstörungsfreien Werkstoffprüfung (Tauchtechnik Ultraschallprüfung), Schleuderprobe: G2, Werkstoff: 30CrMoNiV5-11

standsberechnung	Ringversuch Code G2
Abst	Rin

			Anzeigenabstand L	2,36 mm	2,58 mm	2,63 mm
ch)			Anzeigendichte N	76,15	58,43	55,24
rversu			V2	316,4	421,13	421,13
chleude			VI	27,49	27,49	59,04
or dem So			B undel S1	1,85	1,85	2,38
ahren (vo			Bündel S2	4,16	4,58	4,58
verfa			S2	70	77	77
mik			$\mathbf{S1}$	31	31	40
chteck			Anzahl	22	23	20
urch Tau			ERG max.	0,5	0,7	0,8
radial du	Frequenz	5 MHz	ERG durch.	0.4	0,4	0,4
Irichtung	DIV.W.	1,7 Grad	Umfang	$^{00\circ}$	220°	220°
Einschal	Prüfkopf	IAP 5.12.6	Abstand	50 mm	156 mm	184 mm

nach dem Schleuderversuch)	
rch Tauchtechnikverfahren (
Einschallrichtung radial du	

)		
Prüfkopf	DIV.W.	Frequenz	
IAP 5.12.6	1,7 Grad	z MHz	
Abstand	Umfang	ERG durch.	
50 mm	$^{\circ}06$	0.4	

	rändert)	h unve	rversuc	Schleuder	ch dem S	g(na	lung	nkopp	Direkta	axial mit	lrichtung	Einschal
2,55 mm	60,82	253,33	39,55	2,08	3,86	65	35	13	0,8	0,4	220°	184 mm
2,94 mm	39,48	695,13	11,23	1,37	5,41	91	23	27	0,7	0,4	220°	156 mm
2,44 mm	69,07	253,33	108,53	2,91	3,86	65	49	10	0,5	0.4	00	50 mm

unverändert)	
euderversuch	
chlo	
em S	
ı de	
nacł	
kopplung(
Direktanl	
mit 1	
g axial 1	Frequenz
richtung	JIV.W.
nschal	konf 1
÷	Prüt

ERG durch. 4 MHz 4,5 Grad MB4 SE

<u>Anhang 4.24:</u>	Ergebnisse	der	Abstandsberechnung	für	die	Fehlstellen	der
	Schleuderpro	be: G	2, Werkstoff: 30CrMoNi	V5-1 ⁻	1		

Anzeigenabstand L

Anzeigendichte N

2

Būndel S1

S

Bündel

 \mathbf{S}

S

Anzahl

ERG max.

Anzeigenabstand L 11,86 mm

Anzeigendichte N

22

5

Bündel S1

Bündel S2

S2

SI 30 30

Anzahl

ERG max.

211

36 36

2,5 3,5

2,02,0

Absatz Mitte

0,60,93

60931,8 39103,1

175,14 175,14

4,73 4,73

33,22 28,65

182

10,25 mm

<u>Anhang 5.1:</u> Spannungsverteilungen in der Schleuderprobe bei einer Beanspruchung von $\sigma_t(r=0) = 464$ MPa, inelastische Rechnung für T=550 °C, t=100 h

<u>Anhang 5.2:</u> Dehnungsverteilung der Kriechrechnung nach Norton-Bailey in t-Richtung, $\sigma_t(r=0) = 464$ MPa nach t=1 h, t=10 h und t=100°h

Anhang 5.5: Mehrachsigkeitsquotient q entlang der gesamten Probe nach 100 h ($\sigma_t(r=0) = 464$ MPa)

Lebenslauf

Persönliche Daten		
Name:	Christina Weichert	
Geburtsdatum:	29. September 1975 in	Stuttgart
Schulbildung		
1982-1986:	Grundschule Sillenbuch	l
1986-1995:	Heidehofgymnasium, S	tuttgart
	Abitur: Juni1995	
Studium		
1995-2000:	Maschinenwesen, University	ersität Stuttgart
	Studienschwerpunkte:	Materialprüfung, Werkstoffkunde und
		Festigkeitslehre
		Laser in der Materialbearbeitung
	Diplomprüfung: 25.04.2	000

Praktika

10.07.95-31.08.95:	Firma Behr (Grundpraktikum)
17.03.97-11.04.97:	Firma Robert Bosch (Montage)
16.09.97-07.10.97:	Firma Mahle (Messen und Prüfen)
01.04.98-24.04.98:	Firma Robert Bosch (Arbeiten an umformenden Werkzeugmaschinen)
14.12.98-16.01.99:	Firma Siempelkamp, Krefeld (Gießereitechnik)
19.07.99-27.08.99:	Firma Stihl (Fachpraktikum)

Berufstätigkeit

2000-2003:	wissenschaftliche Mitarbeiterin an der Materialprüfungsanstalt Universität
	Stuttgart (MPA)
	Mitarbeit am Lehrstuhl sowie Bearbeitung von Forschungsvorhaben auf
	dem Gebiet der Warmfestigkeit (Abteilung Stoffgesetze)
seit November 2003:	Diplom-Ingenieurin bei der Robert Bosch GmbH im Zentralbereich
	Forschung und Vorausentwicklung

Unterriexingen, Februar 2004

Christina Weichert