Suchov, Vladimir Grigor'evič

BERECHNUNG VON ERDÖLBEHÄLTERN

Deutsche Vollübersetzung aus:
Suchov, V.G.: Izbrannyje trudy. Stroitelnaja mechanika. Pod
abdruck in: Neftjanoe chozjajstvo. 1925, Nr 10)¹)
Russ.: Расчёт нефтяных резервуаров
Rasčet neftjaných rezervuarov

45 Jahre Praxis beim Bau von Erdölbehältern in Rußland, ge-
stützt auf theoretische Bestimmungen der günstigsten Verhält-
nisse von Durchmesser und Höhe des jeweiligen Volumens,
gaben uns die Möglichkeit, den geringsten Werkstoffverbrauch,
der beim Bau eines Behälters von solchem Volumen aufgewendet
werden muß, genau zu ermitteln. In dieser Hinsicht kann uns
die Praxis in den Vereinigten Staaten überhaupt nichts Neues
bieten.

Zur Planung eines Behälters mit bestimmtem Volumen muß man
die folgenden Angaben vom Auftraggeber haben.

1. Eisendicke des Bodens (in Abhängigkeit von den Bodenver-
hältnissen und dgl.). Bei uns schwankt diese Dicke zwischen

¹) Nach Anmerkung der Redaktion von Suchovs "Gesammelten Werken"
(1977) stellt der erste Teil des Erstabdrucks eine Wieder-
holung von Suchovs Schrift "Mechanische Anlagen der Erdöl-
industrie" (1893) in leicht gekürzter Form dar. Siehe hierzu
Übersetzung Nr Ü/243 der Übersetzungsstelle der Universitäts-
bibliothek Stuttgart. (Anm.d.Übers.)
5/32" bis 1/4". Beim Bau des letzten Behälters in Groznyj²) wählten wir die Dicke 1/4". In Amerika werden 3/16" bei kleinen bis 3/8" bei großen Behältern genommen.

3. Dachbelastung (Schnee, Wind) und Dicke des Eisens für die Abdeckung. Bei Erdöl mit hohem Benzingehalt benötigt man bisweilen flache Dächer, um 2" Wasser darauf zu gießen (Majkop und Moskau). Die Wasserschicht verhindert ein Entweichen der Benzindämpfe und dient als Feuerschutz.

4. Maximal zulässiger Druck auf das Fundament in Anbringungshöhe des unteren Winkeleisens, da bei großem Druck Verformungen des unteren Winkeleisens und der äußeren Bodenführung möglich sind, was wiederum zum Auslaufen der eingefüllten Flüssigkeit führen würde.

Behälter mit 80 000 Barrel (nach amerikanischen Angaben aus Bells Buch). Behälterdurchmesser 117'2", Höhe 41'10", rechnerische Höhe bis zur Oberkante des unteren Winkeleisens 41'6". Der Behälter hat 7 Bänder, Höhe eines jeden Bandes 41,5/7 = 5,93'. Die Werkstoffspannung in jedem Band beim Füllen des Behälters mit Wasser wird bestimmt durch die Formel \[K = D \cdot 12 \cdot H \cdot 0,012/28 = D \cdot 0,072 \cdot H/8. \] Diese Spannung gilt für ein ganzes Blech, das nicht durch eine Schweißnaht geschwächt wird. D ist der Durchmesser in Fuß, H die Höhe in Fuß von der Spitze bis zur Unterkante des jeweiligen Bandes und \(\delta \) die Blechdicke in Zoll.

1. Band (von unten) \(\delta = 5/8" \) \(K = 560 \text{ Pud}^3)/\text{Qu.Zoll.} = 1420 \text{ kg/cm}^2 \)
2. Band (von unten) \(\delta = 17/32" \) \(K = 565 \text{ Pud/Qu.Zoll} = 1435 \text{ kg/cm}^2 \)
3. Band (von unten) \(\delta = 1/2" \) \(K = 500 \text{ Pud/Qu.Zoll} = 1270 \text{ kg/cm}^2 \)
4. Band (von unten) \(\delta = 7/16" \) \(K = 457 \text{ Pud/Qu.Zoll} = 1160 \text{ kg/cm}^2 \)

³) Ehemaliges russisches Gewichtsmaß 1 Pud = 16,38 kg. (Anm. d.Übers.)
5. Band (von unten) = 5/16" K = 480 Pud/Qu.Zoll = 1218 kg/cm²
6. Band (von unten) = 1/4" K = 398 Pud/Qu.Zoll = 1010 kg/cm²
7. Band (von unten) = 13/64" K = 246 Pud/Qu.Zoll = 624 kg/cm²

Auf der Linie der senkrechten Schweißnähte nimmt die Spannung der Bleche umgekehrt proportional zur Nutzwirkung der Verschweißung zu. Andererseits nimmt der Spannungszustand in Abhängigkeit vom spezifischen Gewicht der eingefüllten Flüssigkeit proportional zum spezifischen Gewicht ab. Hat das Erdöl das spezifische Gewicht 0,87 und die Verschweißung die Nutzwirkung 0,75, so ist die Arbeitswirkung der Bleche beim Einfüllen des Erdöls in den Verschweißungen \(K \cdot 0,87/0,75 = 1,16 \) K. Der Behälterboden ist aus 13/64" Eisen mit einem an das Winkeleisen anliegenden Saum von 1/4".

Behälter für 55 000 Barrel. Durchmesser 117", Höhe 29'1"., bestehend aus 5 Bändern mit den Dicken 1/2", 7/16", 5/16", 1/4" und 13/64", Werkstoffspannung \(K = 480 - 460 - 400 \) Pud/Qu.Zoll, d.h. wesentlich niedriger als bei Behältern für 80 000 Barrel. Mit anderen Worten: Die Zuverlässigkeit eines Behälters von 55 000 Barrel ist um 565/480 = 1,177 mal größer als bei Behältern für 80 000 Barrel.

Das Gesamtgewicht auf 1 Barrel ist bei 80 000 Barrel = 15 300/80 000 = 0,1875, und bei einem Behälter für 55 000 Barrel = 11 270/55 000 = 0,205 Pud. Die Relation ist somit 0,205 : 0,1875 = 1,1. Folglich führt die Verringerung des Gesamtgewichts um 10% beim Übergang von 55 000 Barrel auf 80 000 Barrel zu einer Minderung der Zuverlässigkeit von 15%. In amerikanischen Behältern für 25 000 Barrel und weniger beträgt die Spannung K etwa 400 Pud/Qu.Zoll.

4) Nach den Angaben aus dem Buch von Baun hat ein Behälter mit einem Volumen von 55 000 Barrel folgende Bänderdicken: 9/16", 1/2", 13/32", 5/16", 1/4" und 3/16", d.h. Behälter für 55 000 Barrel zeichnen sich durch einen noch größeren Zuverlässigkeitsgrad aus als Behälter für 55 000 Barrel in Bells Buch und als Behälter für 80 000 Barrel, wobei die Spannung des Eisens (8/9)480 = 426 Pud je 1 Qu.m ist, was den in der UdSSR geltenden Normen entspricht.
Zum Vergleich mit den Behältern unserer Abmessungen betrachten wir die letztgebauten Behälter in der Stadt Groznyj.

Behälter in Groznyj. Durchmesser 78'3/4", Höhe 36'6 3/8", 8 Bänder je 4,53' hoch, Fassungsvermögen anhärternd 31 000 Barrel, unteres Winkeleisen 4" x 4" x 1/2".

1. Band (von unten) $\delta = 1/2"$ $K = 407 \text{ Pud/Qu.Zoll} = 1030 \text{ kg/cm}^2$
2. Band (von unten) $\delta = 7/16"$ $K = 407 \text{ Pud/Qu.Zoll} = 1030 \text{ kg/cm}^2$
3. Band (von unten) $\delta = 3/8"$ $K = 407 \text{ Pud/Qu.Zoll} = 1030 \text{ kg/cm}^2$
4. Band (von unten) $\delta = 5/16"$ $K = 407 \text{ Pud/Qu.Zoll} = 1030 \text{ kg/cm}^2$
5. Band (von unten) $\delta = 1/4"$ $K = 407 \text{ Pud/Qu.Zoll} = 1030 \text{ kg/cm}^2$
6. Band (von unten) $\delta = 3/16"$ $K = 407 \text{ Pud/Qu.Zoll} = 1030 \text{ kg/cm}^2$
7. Band (von unten) $\delta = 5/32"$ $K = 326 \text{ Pud/Qu.Zoll} = 828 \text{ kg/cm}^2$
8. Band (von unten) $\delta = 5/32"$ $K = 103 \text{ Pud/Qu.Zoll} = 414 \text{ kg/cm}^2$

Bodendicke 1/4". Aus der Tabelle ist ersichtlich, daß die Spannung in den Bändern der Behälter von Groznyj bei allen gespannten Bändern gleich ist, was eine gleichmäßige Dehnung aller Bänder zur Folge hat. Dies ist in den amerikanischen Behältern für 80 000 Barrel nicht der Fall. Ein Vergleich der Spannungswerte zeigt, daß die Spannung in den unteren Bändern bei Behältern für 80 000 Barrel um 40 % größer ist als bei denen in Groznyj. Bei einer Nutzleistung der Schweifverbindungen von 75 % und dem spezifischen Gewicht des Erdöls 0,87 beträgt die Spannung in den Verschweißungen $407 \times 1,16 = 473 \text{ Pud/Qu.Zoll} = 1,202 \text{ kg/cm}^2$, was beim niedrigsten Widerstand von Gußeisen 37 kg/cm die Zuverlässigkeitszahl 3 ergibt. Die amerikanischen Stärken ergeben die Zuverlässigkeitszahl 2.

Alle bislang in der Sowjetunion existierenden Behälter mit großem Fassungsvermögen bis 38 000 Barrel wurden bei der Werkstoffspannung $K = 400 \text{ Pud/Qu.Zoll}$ gebaut. Hält man sich an diese Norm, dann müßten Behälter amerikanischen Typs für 80 000 Barrel folgende Dicken haben:

<table>
<thead>
<tr>
<th>Dicke</th>
<th>7/8"</th>
<th>3/4"</th>
<th>5/8"</th>
<th>1/2"</th>
<th>3/8"</th>
<th>1/4"</th>
<th>3/16"</th>
</tr>
</thead>
<tbody>
<tr>
<td>Band</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
</tbody>
</table>
Dies führt zu einer Gewichtszunahme der Behälter um 1 600 Pud.

Die Erfahrungen beim Bau von großen Behältern zeigten, daß unter dem Winkeleisen eine ungleichmäßige Setzung stattfindet, die Verformungen der Wände hervorruft. Angesichts dessen muß man beim Bau von Behältern unbedingt kennen: 1) die zulässige Werkstoffspannung, 2) die Belastung des Daches und 3) ob die Aufstellung von Innensäulen für den Dachverband zulässig ist.

Übersetzt von

Ottmar Pertschi
Dipl.-Übersetzer

Übersetungsstelle der Universitätsbibliothek Stuttgart