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Chapter 1

Introduction

Unlike one century ago, when quantum mechanics and statistical mechanics were devel-
oped, nowadays materials science has nothing to do with finding laws of nature. Laws of
nature in materials science are known and accepted. At the beginning of the 21st century
materials science is devoted to understanding, predicting and engineering the consequences
of the laws found one hundred years ago. The advent of powerful computer systems in the
past years allowed first-principles theories to be developed. First-principles theories that
can be built on the laws of nature aiming to describe real materials as opposed to model
systems. In order to implement first-principles theories, it is crucial to find transforma-
tions, enumerations and coarse graining algorithms that allow to systematically deal with
the “most relevant states” from the vast amount of possibilities that result if only few par-
ticles are brought together without having to handle all possibilities explicitly. This purely
numerical difficulty requires a “physical understanding” of the system investigated. In
this context “physical understanding” means that the general behavior of a system can be
understood by simple quantities. Hence, phenomenological models and their terminology
are also necessary.

In this work the (110) surface of Ni90%-Al is approached using a first-principles the-
ory. Chapters 3 to 8 introduce the building blocks of the theory for the examination of
the Ni90%-Al surface. Only few surface calculations are necessary to show that simple
phenomenological “broken bond” models completely fail to describe experimental facts.
The (110) surface indeed behaves differently from the bulk. Although the energetics of
the surface turns out to be not completely different from the bulk, surface modifications
together with frustration effects present in the bulk but not in the surface, provide the
understanding of ordering and segregation at the surface. A deeper insight to the surface
energetics from further calculations then raises the question whether the (110) surface of
Ni90%-Al behaves more like a 1, 2 or 3-dimensional system.
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FIT1st PRINCIPLES

Model

Experiment ObservationSystem

Laws of
Nature

Figure 1.1: “Material scientists in Platos Cave”. An experiment is looked at as a pro-
jection. The experimental observations are compared to a shadow on the wall. Hitherto
materials scientists had to explain and understand the results of their experiments within
self-contained models, parameters had to be fitted to the experimental result so that the
model reproduced the experimental result. First-principles theories directly relate the pa-
rameters required in a model to the laws of nature.

Figure 1.2: Segregation of Al to the (110) surface of Ni (chapter 9).

The fact that the surface behaves different from the bulk is of interest also from a
materials science and engineering point of view: The surface behavior is of great importance
because any bulk material makes contact to the surroundings via its surface, such as
chemical reactions, adsorption phenomena, heat transfer, etc. Thus a first-principles theory
provides valuable information for the understanding and engineering of materials and their
surface properties.



Chapter 2

Experimental findings

This work was initiated by experiments carried out by Dr. H. Reichert from the depart-
ment of Prof. Dosch at the Max-Planck-Institut for Metals Research in Stuttgart. In the
experiments for the (110) surface of Ni90%-Al segregation of Al to the surface and order
in the surface was observed. A short introduction to x-ray diffraction will be given before
the experiments are explained.

2.1 Introduction to x-ray diffraction

We follow [1,2,3] for a brief introduction to the mechanisms and principles of x-ray diffrac-
tion.

We assume that when a x-ray plane wave with wave vector kkki is scattered at a single
electron that is located at rrr, the amplitude of the outgoing spherical wave A1 with wave
vector kkkf is proportional to the amplitude A0 of the ingoing wave (Thompson formula [4,
5]),

A1 (kkkf) exp (−ikkkfrrr) = A0
e2

mc2
1

R0
exp (−ikkkirrr) , (2.1)

where e is the electron charge, m its mass, R0 is the distance to the observer, and the factor
1

R0
takes into account that a spherical wave results from the scattering process. The value

of the constant e2

mc2
is very small (3 × 10−15m). Thus, the total scattering cross section

is small even for a crystal possessing many electrons. Therefore it is assumed that the
kinematical approximation, where the total scattered amplitude is calculated as the sum
of contributions of single electrons, is valid.

For elastic scattering the energy and thus the wavelength λ of the ingoing and the
outgoing wave is the same,

‖kkki‖ = ‖kkkf‖ = ‖kkk‖ =
2π

λ
. (2.2)

The variable of interest is the momentum transfer,

qqq = kkkf − kkki . (2.3)

3
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Figure 2.1: Definition of the momentum transfer qqq = kkkf − kkki.

The result of a scattering experiment can be interpreted as a map in momentum space,

A1 (qqq) = A0
e2

mc2
1

R0
exp (iqqqrrr) . (2.4)

In order to calculate the total scattered amplitude A of a crystal it is necessary to sum up
the contributions from all electrons. In quantum mechanics the electron density ρ (rrr) is a
continuous variable, the summation becomes an integration,

A = A0
e2

mc2
1

R0

∫

dV ρ (rrr) exp (iqqqrrr) . (2.5)

This shows that an x-ray scattering experiment is a mere Fourier transformation of the
charge density.

In x-ray experiments the largest portion of photons is scattered at core electrons that
do not change when the chemical surroundings of the atoms change. Hence, it is assumed
that the charge density can be modeled as superposition of atomic charge densities in order
to calculate the scattering amplitude,

ρ (rrr) =
∑

n

ρn (rrr − rrrn) , (2.6)

where the position of atom n is specified by the vector rrrn . We find

A = A0
e2

mc2
1

R0

∑

n

∫

dV ρn (rrr − rrrn) exp (iqqqrrr)

= A0
e2

mc2
1

R0

∑

n

∫

dV ρn (rrr) exp (iqqq (rrr + rrrn))

= A0
e2

mc2
1

R0

∑

n

fn (qqq) exp (iqqqrrrn) , (2.7)

with the atomic form factors,

fn (qqq) =

∫

dV ρn (rrr) exp (iqqqrrr) . (2.8)
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The assumptions made in Eq. (2.7) confine the information available from a single x-ray
experiment to pair-correlations (Section 8.5.1).

If the atomic positions rrrn form the array of a crystal, e.g., rrrn = n1aaa1 +n2aaa2 +n3aaa3 +rrrn0 ,
where rrrn0 is the position of atom n in the unit cell at the origin, the equations can further
be simplified,

A = A0
e2

mc2
1

R0

∑

n0

fn0 (qqq) exp (iqqqrrrn0)
∑

n1n2n3

exp (iqqq (n1aaa1 + n2aaa2 + n3aaa3))

= A0
e2

mc2
1

R0
F (qqq)

∑

n1n2n3

exp (iqqq (n1aaa1 + n2aaa2 + n3aaa3))

= A0
e2

mc2
1

R0
F (qqq)SN1 (qqqa1a1a1)SN2 (qqqa2a2a2)SN3 (qqqa3a3a3) , (2.9)

whereby the structure factor of the unit cell,

F (qqq) =
∑

n0

fn0 (qqq) exp (iqqqrrrn0) , (2.10)

and the function,

SN (x) =
N−1∑

n=0

exp (ixn) =
1 − exp (ixN)

1 − exp (ix)
, (2.11)

are introduced. The diffracted intensity I = ‖A‖2 is proportional to the so-called slit
function,

‖SN (x) ‖2 =
sin2 (Nx/2)

sin2 (x/2)
, (2.12)

which is sharply peaked at x = 2πm (m is an integer number) for large N . In the limit
N → ∞ scattering intensity is only found for qqq vectors that meet the Laue conditions
(with h, k, l integer numbers),

qqq aaa1 = 2πh , qqq aaa2 = 2πk , qqq aaa3 = 2πl . (2.13)

These three equations are solved simultaneously if the momentum transfer qqq can be gen-
erated as,

qqq = hbbb1 + kbbb2 + lbbb3 , (2.14)

with the reciprocal space unit cell vectors,

bbb1 = 2π
aaa2 × aaa3

aaa1 (aaa2 × aaa3)
, bbb2 = 2π

aaa3 × aaa1

aaa1 (aaa2 × aaa3)
, bbb3 = 2π

aaa1 × aaa2

aaa1 (aaa2 × aaa3)
. (2.15)
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Figure 2.2: Scattered intensity from bulk material gives rise to Bragg peaks in momentum
transfer space.

2.2 Surface x-ray diffraction

2.2.1 Geometrical considerations

As was shown in the previous section, scattering from an infinite 3d crystal results in a
regular mesh in reciprocal space, Fig. 2.2. For an infinite 2d monolayer exhibiting basis
vectors aaa1 and aaa2, the scattering amplitude from Eq. (2.9) becomes,

A = A0
e2

mc2
1

R0
F (qqq)

∑

n1n2

exp (iqqq (n1aaa1 + n2aaa2)) . (2.16)

Thus only the first two Laue conditions have to be met. The momentum transfer qqq = qqq‖+qqq⊥
can then be split in two orthogonal parts, qqq‖ qqq⊥ = 0. qqq⊥ is orthogonal to aaa1 and aaa2,

aaa1qqq⊥ = aaa2qqq⊥ = 0 , (2.17)

whereas qqq‖ is constructed to fulfill the two Laue conditions,

qqq‖ aaa1 = 2πh , qqq‖ aaa2 = 2πk . (2.18)

The Laue conditions are met for all vectors qqq⊥, but only for certain vectors qqq‖. Therefore
the scattered intensity from a 2d monolayer appears as sketched in Fig. 2.3. The continuous
intensity for a given value qqq‖ for scans along qqq⊥ are called Bragg or crystal truncation rods.

The scattering intensity that is expected from a semi-infinity surface can be constructed
as a superposition of bulk scattering, giving rise to Bragg peaks, and monolayer scattering
from the topmost surface layers, giving rise to intensity along rods, see Fig. 2.4. The
detailed scattering intensity must be calculated from Eq. (2.5). Generally for surface
experiments one is mostly interested in intensity scattered from electrons close to the
surface. Photons from real x-ray sources exhibit a finite coherence length, the x-ray beam
has a finite diameter and the penetration depth of the x-ray beam in the material is also



7

PSfrag replacements

kkki
kkkf
qqq

qqq⊥

qqq‖

FT

Figure 2.3: Sketch of the scattered intensity from a monolayer.

finite. These effects were not taken into account in the derivation of Eq. (2.5). In order
to increase the portion of photons coherently scattered at surface electrons, surface x-ray
experiments are usually carried out with a grazing beam that has a small angle between
surface layer and x-ray beam.

PSfrag replacements

kkki
kkkf
qqq

qqq⊥

qqq‖

FT

Figure 2.4: Sketch of the scattered intensity from a surface.

Sometimes the size or shape of the unit cell of the surface is different from the bulk unit
cell, e.g., because the atoms reconstruct at the surface, Fig. 2.5, or the surface is ordered
while the bulk material beneath is disordered, Fig. 2.6. For simplicity, it is assumed that
the unit cell vectors within the surface are elongated by factors of n1, n2 with respect to
the unreconstructed/disordered surface, AAA1 = n1a1a1a1 , AAA2 = n2a2a2a2. Hence the new Laue
conditions for qqq‖ are,

qqq‖ aaa1 =
2πh

n1
, qqq‖ aaa2 =

2πk

n2
. (2.19)

For scans where qqq‖ aaa2 is kept constant therefore n1 − 1 new rods appear between two rods
from the unreconstructed/disordered surface. These new rods are referred to as super-
structure rods while the scattering intensities from the unreconstructed/disordered surface
are called fundamental rods.
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Figure 2.5: Additional rods appear within the surface scattered intensity if the surface
layer reconstructs.
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Figure 2.6: Additional rods from an ordered surface are superimposed with fundamental
rods.

2.2.2 Information on the rods

The expected intensity along the rods can be calculated from detailed models for the charge
density ρ (rrr) at the surface, using Eq. (2.5) (The simple assumptions made in the derivation
of Eq. (2.5) are not always justified, and for a detailed quantitative analysis the theory
needs to be extended to take into account the finite coherence length of the x-ray, the
finite diameter of the x-ray beam and the finite penetration depth into the material. To a
certain extent, also the scattering cross section depends on the energy of the x-rays). The
calculated intensity then can be compared with the measured intensity in order to verify
or falsify surface models.

From model calculations, some general behavior can be extracted, see Fig. 2.7.

a. Relaxations of the interlayer distances at the surface or roughness of the surface
generally give rise to an asymmetric intensity along the rods between two bulk Bragg
peaks.

b. Characteristic modulations of the intensity along rods can reveal whether a surface
is ordered or disordered and how many layers of the surface are ordered.
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c. The line width of the rods, e.g., the intensity distribution orthogonal to the rods,
carries information about the “quality” of the surface, such as the degree of order
within the surface or the surface morphology.
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Figure 2.7: Information coded on the rods as described in the text. Shown are typical
intensity changes for scans along the portion of the rods depicted. The dashed red curve
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2.3 Results for Ni-10%Al(110)

2.3.1 Bulk phase diagram

Al and Ni exhibit fcc structure, whereby their lattice constants at room temperature deviate
considerably from each other,

aAl = 7.65a.u., aNi = 6.65a.u.. (2.20)

At stoichiometric composition NiAl crystallizes in Cesium Chloride CsCl structure (B2).
The B2 structure consists of two interpenetrating simple cubic lattices, occupied with
Al and Ni atoms, respectively. The underlying lattice (the lattice of atomic positions
irrespective of the occupation of the lattice sites with Al or Ni) is thus bcc.

At a composition of ca. 75% Ni the alloy forms in a relatively small range of con-
centrations a fcc-based Cu3Au (L12) structure, the so-called γ ′ structure, see Fig. 2.8.
Interestingly, the γ ′ structure remains ordered up to the melting temperature of 1385◦ C
of the Ni3Al alloy. At higher concentrations a rather broad two-phase region of the L12-
ordered γ′ phase and the disordered γ phase exists. Further information on the NiAl phase
diagram can be found in [6,7,8,9].
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Figure 2.8: Nickel-rich part of the NiAl phase diagram.

2.3.2 Behavior of surfaces of the Ni-rich NiAl-alloy

Literature survey

• Schulthess et al. [10] examined the (111) surface of Ni-10%Al using low-energy ion
scattering spectroscopy with 1000 eV He ions. At 700◦ C the authors find a concen-
tration of cAl = 21(±1)% in the surface layer, at 800◦ C the concentration of Al is
cAl = 25(±1)%. The Al concentration of cAl = 25(±1)% does not change when the
sample is cooled down to 400◦ C.
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Furthermore, the authors also performed first-principles calculations on the surface
behavior of Ni-10%Al(111) using the coherent potential approximation implemented
within the layer Korringa-Kohn-Rostocker multiple scattering formalism using a mod-
ified single-site implementation [11,12,13]. Neglecting the effect of local relaxations,
the authors find a concentration of cAl = 25%. They conclude that this Al concen-
tration corresponds to an ordered L12 structure within the surface.

• Polak et al. [14,15] examined the behavior of the (110) surface of Ni-9%Al using low-
energy Auger electron spectroscopy. They find that Al segregates to the surface and
that the absolute value for the concentration of Al in the top surface layer depends on
temperature. The Al concentration in the first layer increases with temperature from
ca. 500◦ C to 750◦ C. The authors conclude from the time scale for the segregation of
Al into the surface upon heating (measured at annealed samples) that the enrichment
of Al in the surface is reversible. Thus the Al concentration in the top layer should
decrease when the sample is cooled again (In this context of measuring time scales at
annealed surface samples the equilibration studies at the surface of Fe-Al by Hammer
et al. might be interesting [16]).

This behavior is explained by the free energy concentration expansion method [17]
as a competition between short-range order tendencies in the bulk material and the
tendency of Al to segregate into the surface.

Results from experiments by H. Reichert

The (110) surface of a Ni90Al10 single crystal was prepared in a standard UHV procedure.
Numerous cycles of sputtering and high-temperature annealing were applied to remove
carbon and sulfur impurities from the bulk material. For the measurements the sample was
mounted in an in-situ UHV chamber. The temperature dependent gracing angle surface
x-ray studies were carried out at the National Synchrotron Light Source (NSLS) using
beamline X16A equipped with a (2 + 2) surface diffractometer allowing surface-sensitive
in-plane and out-of-plane scans [18].

Fig. 2.9a depicts the structure of a L12(110) layer and of a D022(110) layer. In reciprocal
space, Fig. 2.9b , the presence of such an ordered layer gives rise to additional rods, dashed
lines in Fig. 2.9b, which emerge at characteristic in-plane positions. This superlattice
intensity is constant normal to the surface, if the order is restricted to one monolayer only,
and develops characteristic modulations, if more than one ordered layer is involved [1].
Thus surface sensitive observations of an in-plane superlattice intensity and measurements
of its intensity distribution normal to the surface gives evidence for the presence of surface
order and for the number of layers involved.

After in-situ sputtering of the sample surface no such in-plane superlattice intensity
corresponding to an L12-ordered surface could be detected. However, upon heating to
1050 K the (01L) superlattice rod indeed emerged. The inset of Fig. 2.10 shows the in-plane
Bragg profile recorded at L = 0.5. The width of the peak corresponds to a coherent domain
size of 50 nm. The distribution of the in-plane integrated (and background corrected)
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Figure 2.9: The structure of the simplest possible decorations of the fcc (110) surface with
50% Al in the first layer and no like atoms on nearest-neighbor sites correspond to cuts
through the L12 (left) and the D022 (right) structure. The corresponding surface rods are
also shown.

intensity along the rod (01L) is depicted in Fig. 2.10 together with model calculations. Note
that the intensity at L = 1 is due to the (011) bulk reflection, the associated fundamental
fcc-rod is shown as black line. In contrast to the calculated intensity for the disordered
surface, the experimental intensity levels off at an intensity level which is virtually constant
as a function of L, thereby giving evidence for additional surface scattering which originated
from a monolayer only. This qualitative argument was confirmed by model calculations by
Reichert also shown in Fig. 2.10.

The x-ray studies of H. Reichert thus showed that an L12 ordered monolayer emerged
on top of disordered fcc bulk (see Fig. 2.11 for a model of the L12 ordered surface). Since
the surface intensity shows no temperature dependence and remains constant in particular
upon cooling, it must be concluded that the ground state configuration of the Ni90Al10(110)
system consists of a phase separated (γ − γ ′) bulk structure which coexists with a γ ′

monolayer at the (110) surface.
A similar behavior as for Ni90Al10(110), namely segregation of Al into the surface and

surface ordering, was also observed for the (111) surface [19]. However, upon heating to
1050 K, sulfur diffusion into the surface seemed to have destroyed the surface order, hence
the crystal could not be used for further experiments.
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Chapter 3

Electron theory

The Hamilton operator Ĥ of a non-relativistic many-body system containing nuclei and
electrons is given by,

Ĥ = T̂e + T̂Z + V̂ee + V̂eZ + V̂ZZ (3.1)

= Ĥe + T̂Z + V̂ZZ , (3.2)

where the kinetic energy of the electrons is given as,

T̂e =
∑

i

ppp2
i

2me

, (3.3)

with the momentum operator pppi and the mass me of the electrons. For the nuclei with
momentum operator PPP n and masses Mn the kinetic is written as,

T̂Z =
∑

n

PPP 2
n

2Mn

. (3.4)

The Coulomb interaction between the electrons, V̂ee, the nuclei with charge Zn and the
electrons, V̂eZ , and the nuclei themselves, V̂ZZ are:

V̂ee =
1

2

∑

ij

e2

|rrri − rrrj|
, (3.5)

V̂eZ = −1

2

∑

in

Zne
2

|rrri −RRRn|
, (3.6)

V̂ZZ =
1

2

∑

nm

ZnZme
2

|RRRm −RRRn|
. (3.7)

3.1 Adiabatic approximation for the nuclei

The masses of the nuclei Mn are 3 to 5 orders of magnitude larger than the electron
mass me. If the ratio Mn/me is further increased by increasing all masses of the nuclei to

15
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infinity, Mn → ∞, the positions of the nuclei are fixed at RRRn and the kinetic energy of the
nuclei drops out. Taking Mn → ∞ is equivalent to setting ~ → 0 and thus the quantum
mechanical character of the nuclei is simply neglected.

For a given set of fixed nuclei positions {RRRn}, the eigenvalues Eα of the electron eigen-
states |φα〉 are calculated as,

Ĥe |φα〉 = Eα |φα〉 , (3.8)

and depend parametrically on the positions of the nuclei,

Eα = Eα ({RRRn}) . (3.9)

From the ground state energy of the electrons E0 = E0 ({RRRn}), we define an effective
potential for the nuclei,

VZ,eff ({RRRn}) = V̂ZZ ({RRRn}) + E0 ({RRRn}) , (3.10)

that allows to calculate, e.g., forces on the nuclei,

FFFm = −∇mVZ,eff ({RRRn}) . (3.11)

We can thus relax a certain set of nuclei positions into the configuration with the minimum
energy, e.g., to calculate bond lengths and angles in molecules or lattice constants and
tetragonal distortions in crystals.

3.1.1 Born-Oppenheimer approximation

If we now assume that the real nuclei move so slowly that the electrons at any time are
fully relaxed in their ground state E0 ({RRRn}), we can write down an approximate Hamilton
operator for the movement of the nuclei [20],

ĤZ = T̂Z + VZ,eff . (3.12)

Temperature induced deviations of the nuclei positions from their ideal minimum energy
lattice sites in a crystal are generally small. Thus often an harmonic expansion of VZ,eff is
a good approximation, and we are left with a relatively easy to handle harmonic oscillator.
In phonon calculations this is the standard procedure [21,22,23,24,25].

For “ab-initio” molecular dynamics one usually looks at the nuclei as classical point
masses and integrates classical equations of motions of point masses in the effective poten-
tial VZ,eff .

3.2 Density functional theory

Assume for the moment that we are interested in finding the electronic wavefunction for a
given set of fixed nuclei positions. For Ne electrons this means 3Ne variables. For numerical
implementations we need to sample each variable on a grid of k points [26], resulting in at
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least k3Ne numbers that need to be stored in a computer. If we sample with k = 100, a
nowadays high-end computer with 10 Gigabytes of memory and double precision numbers
of 64 bit size can handle a three-electron problem (This consideration is not completely
realistic, as the many-body wavefunctions need to be antisymmetric. One may be able to
take this into account for numerical purposes).

In other words, for crystals or medium sized molecules, where we often have to deal
with hundreds of electrons, we need to simplify the many-electron problem before we can
even think of starting a real calculation.

Two theorems of Hohenberg and Kohn [27,28] will turn out to be enormously helpful.

1. From the external potential vext (rrr) applied to a many-electron system one can cal-
culate the ground state density n0 (rrr) with the help of Schrödinger’s equation. Also,
from the ground state density n0 (rrr) one can (apart from a constant) determine the
external potential vext (rrr) acting on the many-electron system. This means that all
ground state properties of a system, such as the ground state energy, can be calcu-
lated from the knowledge of the ground state density n0 (rrr) alone. Thus there exists
a functional E [n0] that allows us to calculate,

E0 ({RRRm}) = E[n0] . (3.13)

2. For a given external potential vext (rrr), the functional E[n] is minimum only for the
ground state density,

E[n] ≥ E[n0] . (3.14)

The benefits of the two theorems are obvious. They tell us that in principle we can
calculate the ground state energy of a many-electron system from the knowledge of the
density n0 alone, and n0 is a function of just three variables irrespective of the number of
electrons in the system compared to the 3Ne variables of the wavefunction.

All observables of excited states are, via the Schrödinger equation, given as a functional
of the external potential applied to the system, e.g., Eα ({RRRm}) = Eα[vext]. From theorem
1. we conclude that observables of all excited states are a functional of the ground state
density alone,

Eα ({RRRm}) = Eα[n0] . (3.15)

At first glance this means that we should forget about the wavefunction concept in quantum
mechanics! But we simply do not know how to calculate, e.g., excited states via Eα[n0], and
nobody knows how to define an excited state from a density alone without the concept of a
wavefunction. In order to benefit from the theorems 1. and 2. one needs an instruction on
how to calculate E0 ({RRRm}) = E[n0]. As we will see in the next section, the only known way
so far to calculate E0 ({RRRm}) = E[n0] uses one-electron wave functions. This means that
for practical implementations one did not manage to get rid of the wavefunction concept
yet (A one-particle wavefunction still is much better than a many-particle wavefunction
from a computational point of view, as it is, like the density, a function of 3 variables).
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3.3 Kohn-Sham equations

For the calculation of F [n] = Te[n] + Vee[n] we neither know the kinetic energy of the
electrons as a functional of the density,

Te[n] = 〈φ|Te |φ〉 , (3.16)

nor the expectation value for the interaction of the electrons,

Vee[n] = 〈φ|Vee |φ〉 . (3.17)

Kohn and Sham replaced these quantities by their known one-electron expression,

TKS[n] =

Ne∑

α

〈ψα| T̂e |ψα〉 =

Ne∑

α

〈ψα| −
~

2

2me

4|ψα〉 , (3.18)

EH [n] =

Ne∑

α

〈ψα| V̂ee |ψα〉 =

Ne∑

α

〈ψα|
e2

2

∫

dV ′ n (rrr′)

|rrr − rrr′| |ψα〉 , (3.19)

where ψα are one-particle wavefunctions that are solutions of a one-particle Schrödinger
equation with an effective, yet undetermined, potential veff . In this way the many-electron
system is mapped on a system of non-interacting electrons in an effective potential. The
difference to the many-electron wavefunction observables is hidden in the expression Exc[n]
that is called, in accordance with historic considerations like, e.g., the Hartree and the
Hartree-Fock equations, exchange-correlation functional,

F [n] = Te[n] + Vee[n] = TKS[n] + EH [n] + Exc[n] . (3.20)

For the moment we assume Exc[n] to be known, but it should be noted that the difficulties
of finding an explicit expression for F [n] have just been called Exc[n].

Clearly the wave function φ has to be antisymmetric, which will result in very compli-
cated constraints for the ground state density n0. Implicitly we already obeyed the Pauli-
Principle for the one-electron wave functions of non-interacting electrons in Eq. (3.18) and
Eq. (3.19) by assuming that each one-particle state may be occupied by only one electron.
We thus made an implicit Ansatz for possible allowed ground state densities,

n (rrr) =

Ne∑

α

|ψα (rrr) |2 . (3.21)

The variational principle for the ground state density n (rrr) from theorem 2 of the
previous section,

δn(rrr)

(

E[n] − µ

∫

dV n (rrr)

)

= 0 , (3.22)
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(where we coupled the constraint of having Ne =
∫
dV n (rrr) electrons in the system with

a Lagrange parameter µ) results with the help of Eq. (3.21) in the form of an effective
one-electron Schrödinger equation,

(

− ~2

2me

4 + veff

)

ψα = εαψα . (3.23)

When we take into account that the ground state density of the real many-electron system
and the hypothetical system of non-interacting electrons must be the same, the effective
potential veff is given by,

veff =
δ

δn

(

EH [n] + Exc[n] +

∫

dV n (rrr) vext (rrr)

)

= vH [n] + vxc[n] + vext , (3.24)

where the nuclei-electron interaction is contained in vext.
Obviously the effective potential veff depends on the density n. Thus each electron

moves in an effective potential generated by the density of all electrons. Therefore, in
order to calculate the ground state density of a many-electron system we need to solve
Eqs. (3.21, 3.23, 3.24), the Kohn-Sham equations [29], simultaneously, e.g., in an iterative
fashion.

3.4 Local density approximation

All considerations of the previous sections will be of practical use only if a good approxima-
tion for the exchange-correlation energy Exc can be found. To date, no approximation that
seems to give accurate energies for all external potentials vext was found, and the search
for Exc as well as the search for a relativistic formulation of density functional theory is in
fact a challenging problem [30].

We will restrict ourselves to the simplest and oldest approximation of Exc, the local
density approximation [29] that was used for the remainder of this work. The functional
Exc is approximated as,

Exc ≈ ELDA
xc [n] =

∫

dV n (rrr) εxc (n (rrr)) , (3.25)

where εxc (n) is the exchange correlation energy density of a homogenous electron gas of
density n [31,32,33,34,35,24].

3.5 Implementation of the Kohn-Sham equations

All ab-initio calculations for this work were carried out using the mixed-basis pseudopoten-
tial package [36,24]. For numerical efficiency, the one-electron Kohn-Sham wavefunctions
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of the core electrons were kept fixed to their atomic values in all calculations. The valence
electrons thus interact with an effective potential generated by the frozen core electrons
and the nuclei. The one-electron wavefunctions of the valence electrons are represented in
a mixed-basis consisting of plane waves and some localized atomic-like orbitals. In order
to allow a numerically feasible representation of the valence wavefunctions, the effective
potential generated by the frozen core and the nuclei is replaced by a much softer, norm-
conserving pseudopotential. The pseudopotential exhibits the same valence wavefunctions
outside the pseudopotential radius, where bonds to other atoms are formed, but no knots
and no fast oscillations inside the pseudopotential radius. This means that the represen-
tation of the valence wavefunctions for the pseudopotential requires fewer plane waves but
the chemical behavior, e.g., the bond formation, is the same as for the effective frozen core
potential. We list a selection of puclications [37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,
52,53,54,55,56] dealing with the mixed-basis representation and with pseudopotentials.



Chapter 4

Many-body potentials

4.1 Energetics in an alloy

Coupling an alloy to a heat bath induces different possible excitations, which we separate
in two coupled parts (Sec. 3.1.1): Excitations of the electronic system and movements of
the nuclei.

Excitations of the electrons cannot fully be taken into account by the conventional
density functional theory as described in chapter 3, however, several authors assumed that
Exc is independent of temperature which allows to couple a heat bath by a simple Fermi
smearing function to the electrons [57,58] (Also more general approaches exist that take into
account the temperature dependence of Exc explicitly). We will neglect excitations of the
electrons as we believe that these excitations will only slightly modify the phase diagram
at the experimental temperatures that we are interested in, however, if necessary we can
always test this approximation by applying a Fermi smearing directly in our calculations.

Neglecting electronic excitations, the model alloy we are now dealing with can be fully
specified by the movement and the positions of the nuclei. Phonon calculations show that
a treatment of the nuclei as classical point masses is an excellent approximation down to
relatively low temperatures, e.g., the experimental measuring temperatures, and rather
heavy nuclei, where Al and Ni are heavy elements compared to hydrogen. The nuclei in
the alloy thus move in an “effective” classical potential mediated via the electrons and
direct nucleus-nucleus Coulomb interaction. A number m is attached to every nucleus, rrrm

specifies its position, and an integer σm defines the type of atom at the position rrrm.

In this chapter we show that the energy of an alloy can be uniquely expanded in many-
body potentials. We will first introduce the necessary definitions and then proceed with the
proof. An example for the expansion of effective pair interactions in many-body potentials
will also be given. In chapter 5 we then will link the many-body potentials derived in
this chapter to the expansion coefficients of the well-known cluster expansion [59]. To
approach the cluster expansion from the many-body potentials will allow us to determine
the dependence of the expansion coefficients on the position of the atoms.

21
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4.2 Many-body potential expansion

Let E (M) be the total energy of a M particle system,

E (M) = E (X1, X2, X3, . . . , XM) , (4.1)

where the position rrrn and the species σn of atom n is denoted with Xn = {rrrn, σn}. As the
order ofX1, X2, . . . , XM in E (M) may not be relevant for the energy, E (M) is a symmetric
(even) function of the {Xn} with respect to the exchange of two arguments, see Fig. 4.1.
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Figure 4.1: There is no unique order for labeling the atoms of a system. In this example,
the energy of the four particle system thus may not depend on the order of the arguments
and we therefore have to demand E (X1, X2, X3, X4) = E (X4, X1, X2, X3).

We define the summation operator S
(N)
M that sums over all pairwise different arguments

of a function f (Xm1 , . . . , XmN
) with N arguments in a M particle system,

S
(N)
M =

1

N !

M∑

m1 6=

M∑

m2 6=
. . .

M∑

6=mN

. (4.2)

As E (M) is an even function,

E (M) = S
(M)
M E (M) . (4.3)

4.2.1 Definition of W (N)

In order to expand the energy E(M) in many-body potentials, we introduce intermediate
quantities W (N). The N particle functions W (N) that are generated from E (M) do depend
only on N ≤M of the M particles. We define the set of all points,

αM = {X1, X2, X3, . . . , XM} , (4.4)

and the subset,
αN = {X1, X2, X3, . . . , XN} , (4.5)

with N ≤ M . The operator,

lim
αM\αN→∞

E (X1, X2, X3, . . . , XM) , (4.6)
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leaves the positions of the set αN = {X1, X2, X3, . . . , XN} located at finite distances from
the origin and takes the positions of the set αM \αN = {XN+1, . . . , XM} to infinite distances
from the origin in such a way that also the distances between the positions from set
{XN+1, . . . , XM} are infinite.

We define functions W (N),

W (N) (X1, X2, . . . , XN) = lim
αM\αN→∞

E (M) , (4.7)

that are invariant when the order of the arguments is changed Xi ↔ Xj and thus are even
functions,

W (N) = S
(N)
N W (N) . (4.8)

For N ≤ M particles, W (N) (X1, X2, . . . , XN) just corresponds to the energy of the N -
particle system,

E (N) = W (N) (X1, X2, . . . , XN) . (4.9)

Other definitions of W (N)

Depending on the physical context, we can derive functions of fewer than M variables
from E(M) in other ways than with the operator lim

αM\αN→∞
E (X1, X2, X3, . . . , XM). For

example, let us think of an even probability distribution ρ(M) of M particles. Then an
operator that performs an integration over all coordinates contained in the set αM \ αN

results in functions W (N),

W (N) (X1, X2, . . . , XN) =

∞∫

−∞

dV(αM\αN ) ρ (X1, X2, X3, . . . , XM) , (4.10)

that can be interpreted in a physical picture. For instance, if ρ(M) is the probability
distribution of M particles, then W (1) (X1) would be the probability density to find a
particle at rrr1.

4.2.2 Expansion of W (N) in many-body potentials V (N)

Before we expand the energy E (M), we start with the expansion of the energy of a N
particle subset of the M particle system. We expand E (N) in many-body potentials V (L)

(and thereby implicitly define the many-body potentials),

W (N) (X1, X2, . . . , XN) = V (0) +
N∑

m1

V (1)(Xm1) +
1

2

N∑

m1 6=

N∑

m2

V (2)(Xm1 , Xm2) + . . .

. . .+
1

N !

N∑

m1 6=

N∑

m2 6=
. . .

N∑

6=mN

V (N)(Xm1 , Xm2, . . . , XmN
) . (4.11)
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In short form Eq. (4.11) looks like,

W (N) =
N∑

L=0

S
(L)
N V (L) . (4.12)

In order to calculate the many-body potentials V (L), we will invert Eq. (4.12). As we will

see, the inversion of Eq. (4.12) requires the evaluation of S
(N)
M W (N), N ≤ M . In a next

step we therefore extend the summation on the right hand side of Eq. (4.12) formally from
particle L to N and rewrite Eq. (4.12),

W (N) (X1, X2, . . . , XN) =

N∑

L=0

1

L!

N∑

m1 6=
. . .

N∑

6=mL

V (L)(Xm1 , Xm2 , . . . , XmL
)

=
N∑

m1 6=
. . .

N∑

6=mN

(
N∑

L=0

1

L!

1

(N − L)!
V (L)(Xm1 , Xm2, . . . , XmL

)

)

.

(4.13)

To be able to calculate the sum of W (N) over all N particle subsets of the M particles, we
rewrite Eq. (4.13) with new labels,

W (N) (Xm1 , Xm2 , . . . , XmN
) =

N∑

l1 6=
. . .

N∑

6=lN

(
N∑

L=0

1

L!

1

(N − L)!
V (L)(Xml1

, Xml2
, . . . , XmlL

)

)

.

(4.14)
The index m now labels the particles, while the index l labels the order of the arguments
in W (N). The manipulations allow us to calculate the sum over all contributions W (N)

contained in the M particle system in terms of the many-body potentials V (L) with (M ≥
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N),

1

N !

M∑

m1 6=
. . .

M∑

6=mN

W (N) (Xm1 , Xm2 , . . . , XmN
)

=
1

N !

M∑

m1 6=
. . .

M∑

6=mN

(
N∑

l1 6=
. . .

N∑

6=lN

(
N∑

L=0

1

L!

1

(N − L)!
V (L)(Xml1

, Xml2
, . . . , XmlL

)

))

=
1

N !

M∑

m1 6=
. . .

M∑

6=mN

(
N∑

L=0

1

L!

1

(N − L)!
V (L)(Xm1 , Xm2 , . . . , XmL

)

)

+
1

N !

M∑

m1 6=
. . .

M∑

6=mN

(
N∑

L=0

1

L!

1

(N − L)!
V (L)(Xm2 , Xm1, . . . , XmL

)

)

+ . . .

+
1

N !

M∑

m1 6=
. . .

M∑

6=mN

(
N∑

L=0

1

L!

1

(N − L)!
V (L)(XmN

, XmN−1
, . . . , XmN−L+1

)

)

=
N !

N !

M∑

m1 6=
. . .

M∑

6=mN

(
N∑

L=0

1

L!

1

(N − L)!
V (L)(Xm1 , Xm2 , . . . , XmL

)

)

=
N∑

L=0

1

L!

1

(N − L)!

(M − L)!

(M −N)!

M∑

m1 6=
. . .

M∑

6=mL

V (L)(Xm1 , Xm2 , . . . , XmL
)

=

N∑

L=0

1

L!

(
M − L

N − L

) M∑

m1 6=
. . .

M∑

6=mL

V (L)(Xm1 , Xm2 , . . . , XmL
) . (4.15)

The short form of Eq. (4.15) reads,

S
(N)
M W (N) =

N∑

L=0

(
M − L

N − L

)

S
(L)
M V (L) . (4.16)

For the determination of the many-body potentials V (L) from the contributions W (N) we
need to invert Eq. (4.16). The inversion of Eq. (4.16) can be achieved by:

S
(N)
M V (N) =

N∑

L=0

a
(L)
MNS

(L)
M W (L) . (4.17)
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To calculate the coefficients a
(L)
MN we insert Eq. (4.16),

S
(N)
M V (N) =

N∑

L=0

a
(L)
MNS

(L)
M W (L)

=

N∑

L=0

a
(L)
MN

L∑

K=0

(
M −K

L−K

)

S
(K)
M V (K)

Eq. (A.1)
=

N∑

K=0

N∑

L=K

a
(L)
MN

(
M −K

L−K

)

S
(K)
M V (K) . (4.18)

Eq. (4.18) is solved by:

δNK =
N∑

L=K

a
(L)
MN

(
M −K

L−K

)

. (4.19)

Eq. (4.19) will be used for the determination of the coefficients a
(L)
MN in the following

sections.
We note that Eq. (4.17) allows only the calculation of E(N) = S

(N)
M V (N). However, we

are interested in the potential V (N) itself. In the next section we will see that symmetry
requirements for the many-body potentials will help us to determine V (N) from E(N).

4.2.3 Symmetry of the many-body potentials V (N)

For the determination of the many-body potential V (N) we note that,

E(N) (X1, . . . , XN) =
1

N !

N∑

m1 6=
. . .

N∑

6=mN

V (N) (Xm1 , . . . , XmN
) , (4.20)

is invariant when the order of two coordinates in E(N) is changed, Xi ↔ Xj, and thus
E(N) is an even function. Let us assume for the moment that the potential V (N) itself is
in general not an even function,

V (N) (X1, . . . , Xi, . . . , Xj, . . . , XN) 6= V (N) (X1, . . . , Xj, . . . , Xi, . . . , XN) . (4.21)

We define the symmetric (even) potential,

V
(N)
S = S

(N)
N V (N) , (4.22)

that fulfills,

V
(N)
S (X1, . . . , Xi, . . . , Xj, . . . , XN) = V

(N)
S (X1, . . . , Xj, . . . , Xi, . . . , XN) . (4.23)

We rewrite the symmetric potential V
(N)
S in analogy to Eq. (4.13) to be able to sum over

all M particles in the system,

V
(N)
S (Xm1 , Xm2 , . . . , XmN

) =
1

N !

N∑

l1 6=
. . .

N∑

6=lN

V (N)(Xml1
, Xml2

, . . . , XmlN
) . (4.24)
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With the help of the symmetric potential V
(N)
S we define,

E
(N)
S =

1

N !

M∑

m1 6=
. . .

M∑

6=mN

V
(N)
S (Xm1 , . . . , XmN

)

Eq. (4.22)
=

1

N !

M∑

m1 6=
. . .

M∑

6=mN

(

1

N !

N∑

l1

. . .
N∑

lN

V (N)
(

Xml1
, . . . , XmlN

)
)

=
1

N !

1

N !

( M∑

m1 6=

M∑

m2 6=
. . .

M∑

6=mN

V (N) (Xm1 , Xm2 , . . . , XmN
)

+
M∑

m1 6=

M∑

m2 6=
. . .

M∑

6=mN

V (N) (Xm2 , Xm1 , . . . , XmN
) + . . .

+

M∑

m1 6=

M∑

m2 6=
. . .

M∑

6=mN

V (N)
(
XmN

, XmN−1
, . . . , Xm1

)
)

=
1

N !

1

N !
N !
(

M∑

m1 6=

M∑

m2 6=
. . .

M∑

6=mN

V (N) (Xm1 , Xm2 , . . . , XmN
)
)

= E(N) . (4.25)

This means that the symmetrization operation of Eq. (4.22) leaves E(N) invariant. In other
words this means that we can always choose an even potential for the calculation of E (N).
In case that a given potential is not even, we can use the symmetrization operation of
Eq. (4.22) to define an even potential.

4.2.4 Determination of the coefficients a
(L)
NN

For the following it is assumed that all potentials are even,

V (N) = V
(N)
S = S

(N)
N V (N) . (4.26)

As we will see in the following, Eq. (4.26) uniquely lays down the many-body potentials.
Now Eq. (4.17) allows us to calculate V (N),

V (N) = S
(N)
N V (N) =

N∑

L=0

a
(L)
NNS

(L)
N W (L) . (4.27)

Thus for the determination of the many-body potentials we need Eq. (4.19) for the case
M = N , which reads,

δNK =
N∑

L=K

a
(L)
NN

(
N −K

L−K

)

. (4.28)
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In order to solve Eq. (4.28) we introduce J = N − L and make use of
(

N−K

L−K

)
=
(

N−K

N−L

)
,

δNK =

N−K∑

J=0

a
(N−J)
NN

(
N −K

J

)

. (4.29)

Eventually Q = N −K is replaced,

δ0,Q =

Q
∑

J=0

a
(N−J)
NN

(
Q

J

)

, (4.30)

which shows that a
(N−J)
NN does not depend on N but solely on J .

The solution of Eq. (4.30) is,

a
(N−J)
NN = (−1)J , N ≥ J . (4.31)

Proof.

We verify the base case for Eq. (4.31) for Q = 0 and Q = 1. For Q = 0 one finds

a
(N)
NN = 1. From Q = 1 one finds a

(N−1)
NN = −1. We assume that Eq. (4.31) is true for

Q ≥ 1. By manipulating Eq. (4.30) for Q+ 1 we show that Eq. (4.31) is true:

0 =

Q+1
∑

J=0

a
(N−J)
NN

(
Q+ 1

J

)

=

Q
∑

J=0

a
(N−J)
NN

(
Q+ 1

J

)

+ a
(N−(Q+1))
NN

= 1 +

Q
∑

J=1

a
(N−J)
NN

((
Q

J

)

+

(
Q

J − 1

))

+ a
(N−(Q+1))
NN

Eq. (4.30)
=

Q
∑

J=1

a
(N−J)
NN

(
Q

J − 1

)

+ a
(N−(Q+1))
NN

=

Q−1
∑

J=0

a
(N−(J+1))
NN

(
Q

J

)

+ a
(N−(Q+1))
NN

Eq. (4.31)
=

Q−1
∑

J=0

−a(N−J)
NN

(
Q

J

)

+ a
(N−(Q+1))
NN

Eq. (4.30)
= a

(N−Q)
NN + a

(N−(Q+1))
NN

⇒ a
(N−(Q+1))
NN = −a(N−Q)

NN

� (4.32)
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Thus, the many-body potential V (N) is uniquely determined from Eq. (4.27) and
Eq. (4.31):

V (N) =

N∑

L=0

a
(L)
NN S

(L)
N W (L) =

N∑

L=0

(−1)(N−L)
S

(L)
N W (L) , (4.33)

and we can rewrite the energy of the M particle system,

E (M) =
M∑

N=0

E(N) =
M∑

N=0

S
(N)
M V (N) . (4.34)

Eq. (4.33) allows to calculate the many-body potential expansion for any given energy
E (M). The even many-body potentials are thereby uniquely determined and the expansion
of E (M) is exact. In the following chapters the many-body potential expansion will be
linked to the cluster expansion.

4.3 Limitations for the form of the many-body poten-

tial

In the definition of the contributions W (N) in Eq. (4.7) we assumed that W (N) (X1, . . . , XN)
is indeed independent of {XN+1, . . . , XM}. In this section we show that this assumption
is not only reasonable as it is fulfilled for all commonly used energy parametrizations, but
that it needs to be fulfilled for any energy of a physical system.

In the limit M → ∞ we demand that the total energy E (M) is an extensive function,

lim
M→∞

E (λM)

E (M)
= λ , (4.35)

where λM is a positive integer number and we assume that the distribution of the particles
in space is “isotropic enough”. We now demand that the condition Eq. (4.35) is met not
only by the energy E (M) but also by each energy contribution E (N), N ≤M ,

lim
M→∞

E(N) (λM)

E(N) (M)
= λ . (4.36)

Let us define two sets of particles, αM1 and αM2 with αM1 ∩ αM2 = ∅ , that are seperated
by a plane and contain M1 and M2 particles, respectively. From Eq. (4.36) then follows,

lim
M1,M2→∞

1
N !

αM1
∪αM2∑

m1

αM1
∪αM2∑

m2

. . .
αM1

∪αM2∑

mN

V (N)

lim
M1→∞

1
N !

αM1∑

m1

αM1∑

m2

. . .
αM1∑

mN

V (N) + lim
M2→∞

1
N !

αM2∑

m1

αM2∑

m2

. . .
αM2∑

mN

V (N)

= 1 . (4.37)
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With the help of Eq. (A.5) we conclude,

N−1∑

K=1

(
N

K

)
lim

M1,M2→∞
1

N !

αM1∑

m1

. . .
αM1∑

mK

αM2∑

mK+1

. . .
αM2∑

mN

V (N)

lim
M1→∞

1
N !

αM1∑

m1

αM1∑

m2

. . .
αM1∑

mN

V (N) + lim
M2→∞

1
N !

αM2∑

m1

αM2∑

m2

. . .
αM2∑

mN

V (N)

= 0 . (4.38)

Eq. (4.38) states that the contribution of terms of the potential V (N) that include atoms
from both sets αM1 and αM2 is vanishing compared to the contribution of terms of the
potential V (N) that include only atoms from set αM1 or αM2 . If we assume that the
potential V (N) was constant,

V (N) = const. , (4.39)

then the left hand side of Eq. (4.38) clearly would not be zero. Thus the potential V (N)

has to vanish when one of the coordinates it contains is taken to infinite distances from
the rest of the 3N − 1 coordinates,

lim
rni→∞

V (N) (X1, . . . , Xn, . . . , XN) = 0 , (4.40)

with Xn = {rn1, rn2, rn3, σn} in three dimensional space.

4.4 Expansion of effective pair potentials

As many-body potentials V (N) are uniquely defined and the many-body potential expansion
is able to exactly describe any form of energy E(M) of a M particle system (where M may
be arbitrary large), the many-body potentials form a natural base to compare different
potentials that are commonly used in literature, such as, e.g., effective pair potentials.

In the context of effective pair potentials one takes into account that the bondstrength
between two atoms {X1, X2} is influenced by other atoms that are close to the bond
between atoms {X1, X2} giving rise to environment dependent effective pair interactions
between atoms {X1, X2}. The results derived in Sec. 4.2 allow us to uniquely expand an
effective pair potential in terms of many-body potentials V (N). In this section we derive
the many-body potentials V (N) corresponding to a class of effective pair potentials that
also contains the well-known Tersoff potential [60].

The energy of M particles is calculated as,

E (X1, . . . , XM) =
1

2

M∑

m1

M∑

m2

f(
M∑

m3

g (Xm1 , Xm2 , Xm3))A (Xm1 , Xm2) . (4.41)

The summation is carried out with m1 6= m2, m1 6= m3 and m2 6= m3. The pair potential,

A (Xm1 , Xm2) = A (Xm2 , Xm1) , (4.42)
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is multiplied with the screening function,

f(
M∑

m3

g (Xm1 , Xm2, Xm3)) = f(
M∑

m3

g (Xm2 , Xm1 , Xm3)) . (4.43)

When the position of atom Xi is taken to infinity, we demand,

lim
Xi→∞

g (Xm1 , Xm2 , Xi) = 0 , (4.44)

and,
lim

Xi→∞
A (Xm1 , Xi) = 0 . (4.45)

For the bond between only two particles to be unscreened, we require,

f (0) = 1 . (4.46)

For this potential, the N particle energies W (N) are calculated according to Eq. (4.7),

W (N) =
1

2

N∑

m1

N∑

m2

f(

N∑

m3

g (Xm1 , Xm2 , Xm3))A (Xm1 , Xm2) . (4.47)

We give the first four terms explicitly,

W (0) = 0 , (4.48)

W (1) = 0 , (4.49)

W (2) = A(X1, X2) , (4.50)

W (3) = f(g(X1, X2, X3))A(X1, X2)

+ f(g(X2, X3, X1))A(X2, X3)

+ f(g(X3, X1, X2))A(X3, X1) , (4.51)

W (4) = f(g(X1, X2, X3) + g(X1, X2, X4))A(X1, X2)

+ f(g(X2, X3, X1) + g(X2, X3, X4))A(X2, X3)

+ f(g(X3, X1, X2) + g(X3, X1, X4))A(X3, X1)

+ f(g(X1, X4, X2) + g(X1, X4, X3))A(X1, X4)

+ f(g(X2, X4, X1) + g(X2, X4, X3))A(X2, X4)

+ f(g(X3, X4, X1) + g(X3, X4, X2))A(X3, X4) . (4.52)

The many-body potentials V (N) can be derived from W (N) according to Eq. (4.33),

V (N) =
N∑

L=0

(−1)(N−L)
S

(L)
N W (L)

=
N∑

L=0

(−1)(N−L)

L!

N∑

m1 6=
. . .

N∑

6=mL

(

1

2

L∑

l1

L∑

l2

f(
L∑

l3

g(Xml1
, Xml2

, Xml3
))A(Xml1

, Xml2
)

)

.

(4.53)
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We give the first four terms explicitly,

V (0) = 0 , (4.54)

V (1) = 0 , (4.55)

V (2) = A(X1, X2) , (4.56)

V (3) = (f(g(X1, X2, X3)) − 1)A(X1, X2)

+ (f(g(X2, X3, X1)) − 1)A(X2, X3)

+ (f(g(X3, X1, X2)) − 1)A(X3, X1) , (4.57)

V (4) = (f(g(X1, X2, X3) + g(X1, X2, X4)) − f(g(X1, X2, X3)) − f(g(X1, X2, X4)) + 1)A(X1, X2)

+ (f(g(X2, X3, X1) + g(X2, X3, X4)) − f(g(X2, X3, X1)) − f(g(X2, X3, X4)) + 1)A(X2, X3)

+ (f(g(X3, X1, X2) + g(X3, X1, X4)) − f(g(X3, X1, X2)) − f(g(X3, X1, X4)) + 1)A(X3, X1)

+ (f(g(X1, X4, X2) + g(X1, X4, X3)) − f(g(X1, X4, X2)) − f(g(X1, X4, X3)) + 1)A(X1, X4)

+ (f(g(X2, X4, X1) + g(X2, X4, X3)) − f(g(X2, X4, X1)) − f(g(X2, X4, X3)) + 1)A(X2, X4)

+ (f(g(X3, X4, X1) + g(X3, X4, X2)) − f(g(X3, X4, X1)) − f(g(X3, X4, X2)) + 1)A(X3, X4) .

(4.58)



Chapter 5

Cluster Expansion

In this chapter we separate configurational degrees of freedom from spatial variables for
a binary alloy with the help of the many-body potential expansion that was developed in
chapter 4. For a binary alloy the site occupation σm takes the value σm = 1, if we have
an atom A (the atom A itself is denoted with i = 1) at position rrrm, while it takes the
value σm = −1, if we have an atom B (the atom B is denoted with i = −1) at position
rrrm (The labels for the occupation of the lattice sites and the atomic species correspond to
the one used by Sanchez et al. [61]). The considerations for a binary alloy are extended to
multicomponent systems in Sec. 5.5.

As is shown in chapter 4, the total energy of a set of A and B atoms can be expanded
in contributions from different many-body potentials V (N) (The V (N) are independent of
configuration and their surroundings. We use a slightly different notation for the many-
body potentials than in chapter 4),

E = E(0) + E(1) + E(2) + E(3) + E(4) + . . .+ E(N) + . . .

= V (0) +
∑

m

V (1)
σm

(rrrm) +
1

2

∑

mn

V (2)
σmσn

(rrrm, rrrn)

+
1

6

∑

mnl

V (3)
σmσnσl

(rrrm, rrrn, rrrl) +
1

24

∑

mnlk

V (4)
σmσnσlσk

(rrrm, rrrn, rrrl, rrrk) + . . .

+
1

N !

∑

m1...mN

V (N)
σm1 ...σmN

(rrrm1 , . . . , rrrmN
) + . . . . (5.1)

We demand from the potentials to have the following, physically reasonable characteristics:

1. Center of mass and rotations
Each many-body potential V

(N)
σm1 ...σmN

(rrrm1 , . . . , rrrmN
) is invariant if the origin of the

coordinate system is shifted by rrrS. Furthermore each part of V
(N)
σm1 ...σmN

(rrrm1 , . . . , rrrmN
)

of the potential is invariant under simultaneous rotations R (group operation of O(3))
of all N coordinates.

V (N)
σm1 ...σmN

(rrrm1 , . . . , rrrmN
) = R−1 : V (N)

σm1 ...σmN
(rrrm1 − rrrS, . . . , rrrmN

− rrrS) (5.2)

= V (N)
σm1 ...σmN

(R : {rrrm1 − rrrS}, . . . , R : {rrrmN
− rrrS}) .

33
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2. Invariance with respect to pairwise exchange
Simultaneous exchange of the type and the positions of two atoms leaves the poten-
tials invariant:

V (N)
σm1 ...σmi

...σmj
...σmN

(rrrm1 , . . . , rrrmi
, . . . , rrrmj

, . . . , rrrmN
) =

V (N)
σm1 ...σmj

...σmi
...σmN

(rrrm1 , . . . , rrrmj
, . . . , rrrmi

, . . . , rrrmN
) (5.3)

PSfrag replacements

kkki
kkkf
qqq
qqq⊥
qqq‖
FT

Intensity
Scanning direction

a.
b.
c.

exchange
type

exchange
positions

In chapter 4 it was shown that the potentials V
(N)
σm1 ...σmN

(rrrm1 , . . . , rrrmN
) become uniquely

defined if they are invariant with respect to pairwise exchange of the type and the
positions of two atoms. We refer to functions that are invariant with respect to
pairwise exchange of the type and the positions of two atoms, e.g., with respect to
exchange of two arguments, as even functions.

3. Double occupation
Two atoms at the same position are not allowed. Therefore we formally demand:

V (N)
σm1 ...σmi

...σmi
...σmN

(rrrm1 , . . . , rrrmi
, . . . , rrrmi

, . . . , rrrmN
) = 0 , (5.4)

lim
‖rrrmi

−rrrmj
‖→0

V (N)
σm1 ...σmi

...σmj
...σmN

(rrrm1 , . . . , rrrmi
, . . . , rrrmj

, . . . , rrrmN
) → ∞ . (5.5)

Examples

• We want that the energy of a system containing zero particles vanishes, hence V (0) =
0.

• From 1. we see that V
(1)
σm (rrrm) = const. as V

(1)
σm (rrrm) must be invariant with respect to

translations.

• From 1. we conclude that V
(2)
σmσn = V

(2)
σnσm . Thus V

(2)
σnσm must be a function of rnm =

‖rrrn − rrrm‖.

• For any many-body potential V (N) all distances rnm are constant under the trans-
formations described in 1. From the knowledge of all distances, all angles can be
constructed. Therefore a many-body potential V (N) can be written as an even func-
tion of the N(N−1)

2
distances it contains.

• From bullets one to four we see that a three-body potential can be written as a
symmetric function of rnm, rnk and rmk. However, contributions to a potential V
that fulfill ∂

∂rnm

∂
∂rmk

V = 0 are two-body interactions of V (2).
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5.1 Separation of configurational and spatial variables

The state of the system at hand is fully specified if all atomic positions (“spatial” variables)
and the type of atoms occupying these positions (“configurational” variables) are known.
It will turn out that a separation of the spatial and configurational variables will be helpful
in order to calculate, e.g., the partition function of a system. For example, one could
imagine to confine all atomic positions to lattice sites. The only degree of freedom allowed
in this alloy are changes in the occupation, the atoms can be distributed in different ways
over the lattice sites. The calculation of the partition sum for such a lattice gas model will
turn out to still be a formidable task, which will keep us busy for the most of the remaining
pages of this work.

In a first step we will separate the configurational from the spatial variables in the
expression for the energy E. Thereby the expression we will obtain for the energy E
contains the well known cluster expansion for a binary alloy (see Sec. 5.5), however, in
contrast to the known results we will explicitly relate the expansion coefficients of the
cluster expansion to the spatial variables (positions of the atoms) and thus establish an
explicit link between the cluster expansion method [59] and many-body potentials.

We introduce an operator Γi(n) = 1
2
[1 + iσn] constructed to yield Γi(n) = δi,σn that

allows us to separate configurational from spatial degrees of freedom (This operator was
first used by Sanchez et al. in the context of the cluster algebra (Sec. 8.2.3) of the clus-
ter variation method [61]). Furthermore, in the following summations and products are
assumed to behave well,

0∑

l=1

ml = 0 ,

0∏

l=1

ml = 1 . (5.6)

We start by rewriting the energy E with the help of Γi(n) = 1
2
[1 + iσn],

E(N) =
1

N !

∑

m1...mN

V (N)
σm1 ...σmN

(rrrm1 , . . . , rrrmN
)

=
1

N !

−1,1
∑

i1...iN

∑

m1...mN

V
(N)
i1...iN

(rrrm1 , . . . , rrrmN
)

N∏

l=1

Γil(ml) (5.7)

=
1

N !

−1,1
∑

i1...iN

∑

m1...mN

V
(N)
i1...iN

(rrrm1 , . . . , rrrmN
)

N∏

l=1

1

2
[1 + ilσml

]. (5.8)

Using Eq. (5.3) we can now rewrite E(N). We first explicitly illustrate the necessary



36

manipulations for N = 2,

E(2) =
1

2

∑

m1

∑

m2

V (2)
σm1σm2

(rrrm1 , rrrm2)

=
1

22

1

2

−1,1
∑

i1

−1,1
∑

i2

∑

m1

∑

m2

V
(2)
i1i2

(rrrm1 , rrrm2)

2∏

l=1

[1 + ilσml
]

=
1

22

1

2

( −1,1
∑

i1

−1,1
∑

i2

∑

m1

∑

m2

V
(2)
i1i2

(rrrm1 , rrrm2)

+

−1,1
∑

i1

−1,1
∑

i2

∑

m1

∑

m2

V
(2)
i1i2

(rrrm1 , rrrm2)i1σm1

+

−1,1
∑

i1

−1,1
∑

i2

∑

m1

∑

m2

V
(2)
i1i2

(rrrm1 , rrrm2)i2σm2

+

−1,1
∑

i1

−1,1
∑

i2

∑

m1

∑

m2

V
(2)
i1i2

(rrrm1 , rrrm2)i1i2σm1σm2

)

Eq. (5.3)
=

1

22

1

2

( −1,1
∑

i1

−1,1
∑

i2

∑

m1

∑

m2

V
(2)
i1i2

(rrrm1 , rrrm2)

+ 2

−1,1
∑

i1

−1,1
∑

i2

∑

m1

∑

m2

V
(2)
i1i2

(rrrm1 , rrrm2)i1σm1

+

−1,1
∑

i1

−1,1
∑

i2

∑

m1

∑

m2

V
(2)
i1i2

(rrrm1 , rrrm2)i1i2σm1σm2

)

+
1

22

1

2

−1,1
∑

i1

−1,1
∑

i2

∑

m1

∑

m2

V
(2)
i1i2

(rrrm1 , rrrm2)[1 + 2i1σm1 + i1i2σm1σm2 ] . (5.9)

In general, the factor
N∏

l=1

Γil(ml) = (1
2
)N

N∏

l=1

[1 + ilσml
] contains

(
N

K

)
= N !

K!(N−K)!
products of
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the type σm1σm2 . . . σmK
of order K. For E(N) we therefore get,

E(N) =
1

2N

1

N !

−1,1
∑

i1...iN

∑

m1...mN

V
(N)
i1...iN

(rrrm1 , . . . , rrrmN
)

(

1 +
N∑

K=1

N !

K!(N −K)!

K∏

l=1

ilσml

)

=
1

2N

1

N !

−1,1
∑

i1...iN

∑

m1...mN

V
(N)
i1...iN

(rrrm1 , . . . , rrrmN
)

︸ ︷︷ ︸

V
( 0

N)

+
1

2N

−1,1
∑

i1...iN

∑

m1...mN

V (N)
σm1 ...σmN

(rrrm1 , . . . , rrrmN
)

(
N∑

K=1

1

K!(N −K)!

K∏

l=1

ilσml

)

= V ( 0
N)

+
1

2N

N∑

K=1

1

K!

∑

m1...mK

−1,1
∑

i1...iK

(
K∏

l=1

il

)

×

×




1

(N −K)!

∑

mK+1...mN

−1,1
∑

iK+1...iN

V
(N)
i1...iN

(rrrm1 , . . . , rrrmN
)





(
K∏

l=1

σml

)

. (5.10)

We define a “reduced” potential,

V
(K

N)
i1...iK

(rrrm1 , . . . , rrrmK
) = (5.11)

1

2N

1

(N −K)!

∑

mK+1...mN

−1,1
∑

iK+1...iN

V
(N)
i1...iN

(rrrm1 , . . . , rrrmN
) ,

to find that E(N) reads,

E(N) = V ( 0
N) (5.12)

+
N∑

K=1

1

K!

∑

m1...mK

( −1,1
∑

i1...iK

(
K∏

l=1

il

)

V
(K

N)
i1...iK

(rrrm1 , . . . , rrrmK
)

) (
K∏

l=1

σml

)

.

With the help of,

J(K
N)(rrrm1 , . . . , rrrmK

) =

−1,1
∑

i1...iK

(
K∏

l=1

il

)

V
(K

N)
i1...iK

(rrrm1 , . . . , rrrmK
) , (5.13)

J( 0
N) = V ( 0

N) , (5.14)

the contribution E(N) factorizes into the desired only configuration and only coordinate
dependent parts,

E(N) = J( 0
N) +

N∑

K=1

1

K!

∑

m1...mK

J(K
N)(rrrm1 , . . . , rrrmK

)
︸ ︷︷ ︸

coordinate dependent

×
(

K∏

l=1

σml

)

︸ ︷︷ ︸

configuration dependent

. (5.15)
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5.2 Introduction of clusters

The atomic positions are grouped together into clusters αK,

αK = {m1, m2, . . . , mK} , (5.16)

where K denotes the number of points contained within cluster αK , and the order of the
positions included in the cluster is not important,

αK = {m1, m2, . . . , mK} = {m2, m1, . . . , mK} = . . . . (5.17)

Furthermore, all elements of αK are pairwise different. We define the cluster function,

ΦαK
=

K∏

l=1

σml
, (5.18)

l just labels all positions contained in the cluster αK, and E(N) reads:

E(N) = J( 0
N) +

N∑

K=1

∑

αK

J
(K

N)
αK ΦαK

, (5.19)

with the summation,
∑

αK

=
1

K!

∑

m1m2...mK

. (5.20)

The factor 1
K!

from Eq. (5.15) drops out as we sum over every cluster αK only once and

J
(K

N)
αK = J(K

N)(rrrm1 , . . . , rrrmK
). The total energy containing contributions of potentials with

up to M points is given by (E(0) = V (0) = 0):

E =
M∑

N=1

E(N) =
M∑

N=1

J( 0
N) +

M∑

N=1

N∑

K=1

∑

αK

J
(K

N)
αK ΦαK

(5.21)

We would like to see the total coupling coefficient JαK
of cluster αK to the energy. We

therefore regroup the above equation using the identity Eq. (A.1),

M∑

N=1

N∑

K=1

AKNbK =
M∑

N=1

M∑

K=N

ANKbN . (5.22)

Thus we get,

E =
M∑

N=1

E(N) =
M∑

N=1

J( 0
N) +

M∑

N=1

M∑

K=N

∑

αN

J
(N

K)
αN ΦαN

, (5.23)
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and by defining,

JαN
=

M∑

K=N

J
(N

K)
αN , (5.24)

J0 =

M∑

K=1

J( 0
K) , (5.25)

we finally arrive at the desired formula:

E =

M∑

N=1

E(N) = J0 +

M∑

N=1

∑

αN

JαN
ΦαN

. (5.26)

Usually one is interested in the limit M → ∞, then M drops out and we write:

E =
∑

N=1

E(N) = J0 +
∑

N=1

∑

αN

JαN
ΦαN

. (5.27)

If we sum over coordinates explicitly, we need to replace the summation according to
Eq. (5.20) and the formula becomes,

E = J0 +
∑

N=1

1

N !

∑

m1...mN

J(rrrm1 , . . . , rrrmN
)

(
N∏

l=1

σml

)

. (5.28)

5.3 From many-body potentials to expansion coeffi-

cients

To summarize, the expansion coefficients JαN
that couple the cluster function ΦαN

of
cluster αN = {m1, m2, . . . , mN} to the energy can be derived from a many-body potential
expansion as:

JαN
=
∑

K=N

J
(N

K)
αN (5.29)

=
∑

K=N

1

2K

1

(K −N)!

∑

mN+1...mK

−1,1
∑

i1...iK

(
N∏

l=1

il

)

V
(K)
i1...iK

(rrrm1 , . . . , rrrmN
, rrrmN+1

, . . . , rrrmK
) ,

J0 =
∑

K=1

J( 0
K) =

∑

K=1

1

2K

1

K!

∑

m1...mK

−1,1
∑

i1...iK

V
(K)
i1...iK

(rrrm1 , . . . , rrrmK
) . (5.30)

We note that only potentials V (K) with K ≥ N contribute to the expansion coefficient JαN
.

By contributions K > N the cluster αN is embedded into its “gray”, averaged surroundings
as the sum in Eq.(5.29) runs over all possible occupations of sites not contained in αN .
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5.3.1 Example: Expansion coefficients from pair potentials

A pair potential V
(2)
σ1σ2 containing the pair-cluster {rrr1, rrr2} contributes to the following ex-

pansion coefficients:

J(2
2)(rrr1, rrr2) =

1

4

(

V
(2)
1,1 (rrr1, rrr2) − V

(2)
−1,1(rrr1, rrr2) − V

(2)
1,−1(rrr1, rrr2) + V

(2)
−1,−1(rrr1, rrr2)

)

,

J(1
2)(rrr1) =

1

4

∑

m

(

V
(2)
1,1 (rrr1, rrrm) − V

(2)
−1,−1(rrr1, rrrm)

)

,

J(0
2) =

1

8

∑

nm

(

V
(2)
1,1 (rrrn, rrrm) + V

(2)
−1,1(rrrn, rrrm) + V

(2)
1,−1(rrrn, rrrm) + V

(2)
−1,−1(rrrn, rrrm)

)

.

(5.31)

If the only interaction in the system is the pair potential, then

J(2
2)(rrr1, rrr2) = J(rrr1, rrr2) , J(1

2)(rrr1) = J(rrr1) , J(0
2) = J0 . (5.32)

Note that if the potentials fulfill V
(2)
1,1 +V

(2)
−1,−1 ≈ 2V

(2)
1,−1 we expect J(2

2) to decay faster with

distance r12 than any component of the potential V
(2)
σ1σ2 alone.

5.3.2 Example: Screening of the pair potentials in NiAl -
importance of higher order interactions

The above defined contribution of pair-cluster expansion coefficients can be accessed ab-
initio by calculating the interaction potentials, here V

(2)
NiNi, V

(2)
NiAl and V

(2)
AlAl. The contribution

of pair potentials to cluster expansion coefficients is shown in Fig. 5.1.
As we will see in chapter 9.1, the total nearest-neighbor pair-cluster expansion coeffi-

cient in fcc-NiAl exhibits an energy of approximately J12 ≈ 90meV. For the L12 structure
in Ni3Al the nearest-neighbor distance (calculated using LDA) takes a value of 4.67 a.u..
From Fig. 5.1 we see that the pair potentials alone contribute around 350 meV to J12 .
Therefore the pair potentials in NiAl are screened by ca. 75% due to higher order poten-
tials V (N) with N > 2.

Note that LDA works so astonishingly well due to the screening effects seen above: The
existence of electrons of surrounding atoms that screen a direct bond (and interaction)
between two atoms justifies the assumption of a slowly varying charge density made in
LDA. Therefore we face the seemingly paradox situation that we can calculate the total
pair-cluster expansion coefficient for nearest-neighbors J12 relatively accurate, but not the

contribution J(2
2) of the pair potentials alone.

5.3.3 Independence of cluster expansion coefficients

After having established the connection between potentials and expansion coefficients,
Eq. (5.29), one may wonder whether we can also establish a direct connection between
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Figure 5.1: Pair cluster expansion coefficients for NiAl. The calculations (marked by
symbols) were carried out using local density approximation without spin-polarization
for two atoms in a cube of 21 a.u. length. No corrections were made for interactions
induced by the periodic boundary conditions, the total energies were shifted to zero at the
maximum distance of the atoms (binding energies of dimers calculated within LDA can
differ considerably from the real binding energies).
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Figure 5.2: The cluster expansion coefficients of cluster αN−1 and αN are in general inde-
pendent.

different cluster expansion coefficients, e.g., J
(N

K)
αN and J

(N−1
K )

αN−1 . We rewrite the coefficient

J
(N

K)
αN ,

J
(N

K)
αN =

1

2K

1

(K −N)!

∑

mN+1...mK

−1,1
∑

i1...iK

(
N∏

l=1

il

)

V
(K)
i1...iK

(rrrm1 , . . . , rrrmK
)

=
1

2K

1

(K −N)!




∑

mN+1...mK

−1,1
∑

i1...iN−1 ,iN+1...iK

(
N−1∏

l=1

il

)

V
(K)
i1...,iN−1,1,iN+1,...,iK

(rrrm1 , . . . , rrrmK
)





︸ ︷︷ ︸

V
(K)
+

− 1

2K

1

(K −N)!




∑

mN+1...mK

−1,1
∑

i1...iN−1 ,iN+1...iK

(
N−1∏

l=1

il

)

V
(K)
i1...,iN−1,−1,iN+1,...,iK

(rrrm1 , . . . , rrrmK
)





︸ ︷︷ ︸

V
(K)
−

=
1

2K

1

(K −N)!

(

V
(K)
+ − V

(K)
−

)

. (5.33)

Regrouping J
(N−1

K )
αN−1 in a similar way reveals:

J
(N−1

K )
αN−1 =

1

2K

1

(K −N + 1)!

∑

mN

(

V
(K)
+ + V

(K)
−

)

, (5.34)

and therefore in general different cluster expansion coefficients cannot be related.

5.3.4 Local quantities

Eq. (5.27) and Eq. (5.28) allow to calculate global quantities, e.g., the energy from the
coordinates and the configuration of the system. Sometimes one might also be interested
in local quantities, for example, the local energy of an atom close to a surface compared
to the energy of an atom in the bulk or the magnetization across an interface. Therefore
we split the contribution of each cluster figure αN contributing to the total energy E in a
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symmetric way over all Ntot atoms present in the system. If we then sum up all resulting
local contributions we obtain the total energy,

E =
Ntot∑

m=1

εm(rrrm) . (5.35)

The quantities εm(rrrm) can be viewed as local energies, or, if we look, e.g., at the magne-
tization instead of the energy, as local magnetic moments. εm(rrrm) can be derived directly
from Eqs. (5.28, 5.27),

εm(rrrm) =
J0

Ntot

+
∑

N=1

1

N

∑

αN∩{m}6=∅
JαN

ΦαN
, (5.36)

where the sum runs over all clusters αN that contain the site m, αN ∩ {m} 6= ∅.
When we change the occupation σm of site rrrm from A to B or vice versa, all cluster

functions ΦαN
contained in the summation in Eq. (5.36) will also change their sign. We

define the spin-flip energy,

∆εm(rrrm) =
2

σm

∑

N=1

∑

αN∩{m}6=∅
JαN

ΦαN
. (5.37)

The spin-flip energy is the energy required to replace atom A by atom B on site rrrm for,
e.g., Monte Carlo simulations, see also Sec. 8.3.

5.4 Introduction of a crystal

We now confine the positions rrrn to crystal lattice sites xxxn and introduce periodic boundary
conditions to the system. The so-defined crystal {xxxn} with N0 unit cells, for instance,
a cubic crystal with periodic boundary conditions, is assumed to be invariant under the
operations {R0|ttt0} of space group G0:

{R0|ttt0} : {xxxn} = {xxxn} . (5.38)

Again αK denotes a set of lattice points (a cluster) that we can apply a space group
operation to:

{R0|ttt0} : αk = α′
k . (5.39)

From the construction of Jαk
we see that,

JαK
= Jα′

K
, (5.40)

and therefore all clusters in a crystal that can be mapped onto each other have the same
cluster expansion coefficient JαK

.
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As all atomic positions are confined to lattice sites, the positions {rrrm1 , rrrm2 , . . . , rrrmK
}

of the cluster αK are given by αK = {m1, m2, . . . , mK}. The expansion coefficient Jαk
in a

crystal is therefore fully specified by αK = {m1, m2, . . . , mK}.
The number of clusters αK that can be mapped onto each other within the whole crystal

are assumed to be DαK
N0, where the multiplicity DαK

tells us how many different pictures
of a cluster we can find in one unit cell.

We define ξαK
as the average of the DαK

N0 cluster functions Φα′

K
,Φα′′

K
, . . . ,Φα′′′

K
corre-

sponding to clusters α′
K, α

′′
K, . . . , α

′′′
K linked by space group operations,

ξαK
=

1

DαK
N0

∑

{R0|ttt0}
Φ({R0 |ttt0}:αK) . (5.41)

The energy can now be written as a sum over clusters βK that cannot be linked by space
group operations ({R0|ttt0} : βK 6= β ′

K for all {R0|ttt0}, βK, β
′
K),

〈
E(σσσ)

〉

U
=
E(σσσ)

N0
=
∑

K

∑

βK

DβK
JβK

ξβK
. (5.42)

In the following
〈
F
〉

U
= F

N0
will be used to denote the unit cell average.

5.5 Generalization for multicomponent systems, or-

thogonality and completeness

The considerations so far were generalized for multicomponent systems on a lattice by
Sanchez et al. [59]. Sanchez et al. denoted the occupation of the lattice site rrrm by σm,
where σm takes values ±p,±(p− 1), . . . ,±1, (0) for the P = 2p (or 2p+ 1) components.

Orthogonality is defined with respect to the scalar product,

(f, g) = ρ0
NTr(N)f · g , (5.43)

where f(σσσ), g(σσσ) are functions of σσσ, the trace operator is defined as,

Tr(N) =
∑

σ1

∑

σ2

. . .
∑

σN

, (5.44)

and,

ρ0
N = P−N , (5.45)

is a normalization constant. In general, f, g will also depend on the positions rrrm of the
atoms. A complete orthogonal basis for a multicomponent system can be constructed by
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attaching Chebyshev polynomials to every position rrrm. For each atom position rrrm the P
orthogonal polynomials Θv(σm) are defined,

Θ2u(σm) =
u∑

l=0

c
(u)
l σ2l

m , u = 0, 1, . . . , p− 1, (p) ,

Θ2u+1(σm) =

u∑

l=0

d
(u)
l σ2l+1

m , u = 0, 1, . . . , p− 1 , (5.46)

with the coefficients c
(u)
l and d

(u)
l defined by the orthogonality relation,

(Θv1 ,Θv2) =
1

P

p
∑

σm=−p

Θv1(σm)Θv2(σm) = δv1v2 . (5.47)

For the case of binary alloys the basis reads:

Θ0(σm) = 1 , Θ1(σm) = σm . (5.48)

The Θv(σm) obey the following completeness relation,

P−1∑

v=0

Θv(i1)Θv(i2) = Pδi1i2 , i1, i2 ∈ {±p,±(p− 1), . . . ,±1, (0)} . (5.49)

Using the many-body potential expansion derived in chapter 4, we extend the cluster
expansion of the energy for a multicomponent system with arbitrary positions in analogy
to the binary alloy. We begin by rewriting the energy,

E = E(0) + E(1) + E(2) + E(3) + E(4) + . . .+ E(N) + . . .

= V (0) +
∑

m

V (1)
σm

(rrrm) +
1

2

∑

mn

V (2)
σmσn

(rrrm, rrrn)

+
1

6

∑

mnl

V (3)
σmσnσl

(rrrm, rrrn, rrrl) +
1

24

∑

mnlk

V (4)
σmσnσlσk

(rrrm, rrrn, rrrl, rrrk) + . . .

+
1

N !

∑

m1...mN

V (N)
σm1 ...σmN

(rrrm1 , . . . , rrrmN
) + . . . . (5.50)

The expression for the energy is formally identical to Eq. (5.1), however, the occupations
σm now take values ±p,±(p − 1), . . . ,±1, (0). With the help of the completeness relation
Eq. (5.49) the contribution E(N) is rewritten,

E(N) =
1

N !

∑

m1...mN

V (N)
σm1 ...σmN

(rrrm1 , . . . , rrrmN
)

=
1

N !

∑

m1...mN

∑

i1...iN

V
(N)
i1...iN

(rrrm1 , . . . , rrrmN
)

N∏

l=1

δil,σml

=
1

N !

∑

m1...mN

∑

i1...iN

V
(N)
i1...iN

(rrrm1 , . . . , rrrmN
)

N∏

l=1

(

1

P

P−1∑

v=0

Θv(il)Θv(σml
)

)

, (5.51)
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where il takes values ±p,±(p− 1), . . . ,±1, (0). The first Chebyshev polynomial Θ0 = 1 is
occupation independent. We define,

∆ (il, σml
) =

P−1∑

v=1

Θv(il)Θv(σml
) , (5.52)

and rewrite Eq. (5.51),

E(N) =
1

N !

1

PN

∑

m1...mN

∑

i1...iN

V
(N)
i1...iN

(rrrm1 , . . . , rrrmN
)

N∏

l=1

(1 + ∆ (il, σml
)) . (5.53)

Since the many-body potentials are invariant with respect to arbitrary permutations SN

of the arguments, we can sort the product in Eq. (5.53),

E(N) =
1

N !

1

PN

∑

m1...mN

∑

i1...iN

V
(N)
i(SN :1)...i(SN :N)

(rrrm(SN :1)
, . . . , rrrm(SN :N)

)
N∏

l=1

(

1 + ∆
(

i(SN :l), σm(SN :l)

))

=
1

N !

1

PN

∑

m1...mN

∑

i1...iN

V
(N)
i1...iN

(rrrm1 , . . . , rrrmN
)

N∏

l=1

(

1 + ∆
(

i(SN :l), σm(SN :l)

))

=
1

N !

1

PN

∑

m1...mN

∑

i1...iN

V
(N)
i1...iN

(rrrm1 , . . . , rrrmN
)

(

1 +
N∑

K=1

(
N

K

) K∏

l=1

∆ (il, σml
)

)

. (5.54)

In analogy to Eq. (5.12) we define a reduced potential,

V
(K

N)
i1...iK

(rrrm1 , . . . , rrrmK
) =

1

PN

1

(N −K)!

∑

mK+1...mN

∑

iK+1...iN

V
(N)
i1...iN

(rrrm1 , . . . , rrrmN
) , (5.55)

to find that E(N) reads,

E(N) = V ( 0
N) (5.56)

+

N∑

K=1

1

K!

∑

m1...mK

(
∑

i1...iK

V
(K

N)
i1...iK

(rrrm1 , . . . , rrrmK
)

) (
K∏

l=1

∆ (il, σml
)

)

.

We rewrite
∏K

l=1 ∆ (il, σml
),

K∏

l=1

∆ (il, σml
) =

K∏

l=1

(
P−1∑

vl=1

Θvl
(il)Θvl

(σml
)

)

=

P−1∑

v1...vK=1

(
K∏

l=1

Θvl
(il)

)(
K∏

l=1

Θvl
(σml

)

)

. (5.57)
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Thus E(N) becomes,

E(N) = V ( 0
N) (5.58)

+

N∑

K=1

1

K!

∑

m1...mK

P−1∑

v1...vK=1

(
∑

i1...iK

(
K∏

l=1

Θvl
(il)

)

V
(K

N)
i1...iK

(rrrm1 , . . . , rrrmK
)

) (
K∏

l=1

Θvl
(σml

)

)

.

By defining,

J
(K

N)
v1...vK (rrrm1 , . . . , rrrmK

) =
∑

i1...iK

(
K∏

l=1

Θvl
(il)

)

V
(K

N)
i1...iK

(rrrm1 , . . . , rrrmK
) , (5.59)

J( 0
N) = V ( 0

N) , (5.60)

the product factorizes into only configuration and only coordinate dependent parts,

E(N) = J( 0
N) +

N∑

K=1

1

K!

∑

m1...mK

P−1∑

v1...vK=1

J
(K

N)
v1...vK (rrrm1 , . . . , rrrmK

)
︸ ︷︷ ︸

coordinate dependent

×
(

K∏

l=1

Θvl
(σml

)

)

︸ ︷︷ ︸

configuration dependent

.(5.61)

As J
(K

N)
v1...vK (rrrm1 , . . . , rrrmK

) is invariant with respect to permutations of arguments,

J
(K

N)
v1...vN (rrrm1 , . . . , rrrmK

) = J
(K

N)
v(SK :1)...v(SK :K)

(rrrm(SK :1)
, . . . , rrrm(SK :K)

) , (5.62)

we can introduce a cluster in analogy to Eq. (5.17),

αK = {m1, m2, . . . , mK} , (5.63)

that only contains pairwise different elements. Furthermore the order of the elements in
the cluster αK is not important, in other words m1 < m2 < . . . < mK . We also group the
indices v1, v2, . . . , vK together,

νK = {v1, v2, . . . , vK} , vl ∈ {±P − 1, . . . , 1} . (5.64)

However, in contrast to the elements of cluster αK the elements in νK do not need to be
pairwise different. Furthermore, also the order of the elements is important. Each element
vl can adopt all values P, . . . , 1 irrespective of the values of the other elements of νK .
Eventually we define the cluster function Φ(α,ν)K

,

Φ(α,ν)K
=

K∏

l=1

Θvl
(σml

) , (5.65)

and rewrite E(N) in cluster form,

E(N) = J( 0
N) +

N∑

K=1

′∑

αK

∑

νK

J
(K

N)
(α,ν)K

Φ(α,ν)K
, (5.66)
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where we marked the sum over αK as a reminder that the sum has to be taken over all
possible pairwise different elements of αK with m1 < m2 < . . . < mK . The total energy
containing contributions of potentials with up to M points is given as (E (0) = V (0) = 0):

E =

M∑

N=1

E(N) =

M∑

N=1

J( 0
N) +

M∑

N=1

N∑

K=1

′∑

αK

∑

νK

J
(K

N)
(α,ν)K

Φ(α,ν)K
. (5.67)

We rearrange this equation using the identity Eq. (A.1),

E =
M∑

N=1

E(N) =
M∑

N=1

J( 0
N) +

M∑

N=1

M∑

K=N

′∑

αN

∑

νN

J
(N

K)
(α,ν)N

Φ(α,ν)N
, (5.68)

and define the cluster expansion coefficients,

J(α,ν)N
=

M∑

K=N

J
(N

K)
(α,ν)N

, (5.69)

J0 =
M∑

K=1

J( 0
K) . (5.70)

This eventually leads us to the desired formula for a multicomponent system:

E =

M∑

N=1

E(N) = J0 +

M∑

N=1

′∑

αN

∑

νN

J(α,ν)N
Φ(α,ν)N

. (5.71)

5.6 Energy of formation

For the calculation of a binary alloy phase diagram we need the cluster expansion of the
energy of formation,

〈
Ef (σσσ)

〉

U
=
〈
E(σσσ)

〉

U
− x
〈
E(A)

〉

U
− (1 − x)

〈
E(B)

〉

U
. (5.72)

The cluster expansion of E(A) and E(B) is given by,

〈
E(A)

〉

U
=
∑

K

∑

βK

DβK
JβK

, (5.73)

〈
E(B)

〉

U
=
∑

K

∑

βK

DβK
JβK

(−1)K . (5.74)

Assume a cluster expansion for a crystal that has only one lattice site in the primitive
unit cell of the underlying lattice. From the symmetry considerations above we know that
the expansion coefficient J0 coupled to the empty cluster ξ0 = 1 is constant in the whole
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system. Also the expansion coefficient J1 coupled to the point-cluster ξ1 = 1
N0

∑N0

m=1 σm is
the same for all lattice sites.

Inserting Eq. (5.73), Eq. (5.74) in Eq. (5.72) and making use of x = cA = 1+ξ1
2

, we find:

〈
Ef (σσσ)

〉

U
=
∑

K

∑

βK

DβK
JβK

[ ξβK
− 1 + (−1)K

2
ξ0 −

1 − (−1)K

2
ξ1 ] . (5.75)

The contribution of the clusters β0 and β1 to Ef (σσσ) vanishes identically. This means
that Ef (σσσ) is independent of the empty- and the point-cluster, and thus the empty- and
the point-cluster cannot appear in a cluster expansion of Ef (σσσ).

If we deal with a crystal lattice that has M =
∑

β1
Dβ1 lattice sites in each of the N0

unit cells, the summation over point-clusters in Eq. (5.75) becomes,

∑

β1

Dβ1Jβ1 (ξβ1 − ξ1) , (5.76)

with ξ1 = 1
M

∑

β1
Dβ1ξβ1.

A transformation,

Jβ1 → Jβ1 + J1 , (5.77)

leaves,

∑

β1

Dβ1 (Jβ1 + J1) (ξβ1 − ξ1) =
∑

β1

Dβ1Jβ1 (ξβ1 − ξ1) + J1

∑

β1

Dβ1 (ξβ1 − ξ1)

=
∑

β1

Dβ1Jβ1 (ξβ1 − ξ1) + J1(Mξ1 −Mξ1) , (5.78)

invariant and therefore does not change
〈
Ef (σσσ)

〉

U
.

Note that J0 and J1 can be calculated from the total energy of the elements with
〈
Ef (A)

〉

U
=
〈
Ef (B)

〉

U
= 0,

〈
E(A)

〉

U
=
〈
Ef(A)

〉

U
+MJ1 + J0 , (5.79)

〈
E(B)

〉

U
=
〈
Ef(B)

〉

U
−MJ1 + J0 , (5.80)

and therefore,

J1 =
1

2M

(〈
E(A)

〉

U
−
〈
E(B)

〉

U

)

, (5.81)

J0 =
1

2

(〈
E(A)

〉

U
+
〈
E(B)

〉

U

)

. (5.82)



50

5.7 Taylor expansion of the cluster expansion coeffi-

cients

Let the vectors {uuum} be displacements of the atomic positions {rrrm} from their ideal lattice
positions {xxxm}, rrrm = uuum +xxxm. For a given cluster βK = {m1, m2, . . . , mK} we can Taylor-
expand the coefficient JβK

from Eq. (5.29) around the lattice sites {xxxm1 ,xxxm2 , . . . ,xxxmK
} in

the deviations {uuum1 ,uuum2 , . . . ,uuumK
}.

For example, J(1
2) is a function of rnm = ‖(uuun − uuum) + (xxxn − xxxm)‖ = ‖uuunm + xxxnm‖. Its

Taylor expansion can hence be written as,

J(1
2)(uuunm + xxxnm) = J(1

2)(xxxnm) +
3∑

i=1

(

∂J(1
2)(xxxnm)

∂ui,nm

)

ui,nm

+
1

2

3∑

i,j=1

(
∂

∂ui,nm

∂

∂uj,nm

J(1
2))(xxxnm)

)

ui,nmuj,nm + . . .

= J
(1
2)

0,nm +

3∑

i=1

J
(1
2)

1,i,nmui,nm +
1

2

3∑

i,j=1

J
(1
2)

2,ij,nmui,nmuj,nm + . . . . (5.83)

The coefficient
∑

m J
(1
2)

0,nm represents the contribution of J(1
2) to the point-cluster in a rigid

lattice cluster expansion as described above. J
(1
2)

1,i,nm couples the displacement uuunm to the

occupation σn of lattice site n,
∑

mn

∑3
i=1 J

(1
2)

1,i,nmui,nmσn . The coupling between occupation
and displacement in lowest order is often called Kanzaki force [62,63].

5.8 Elastic interactions

For long-ranged elastic interactions we can make some physically motivated approximations
in order to simplify their incorporation in the cluster expansion formalism. We assume that
the range of interaction of the elastic interactions is large compared to the lattice constant
of the alloy and that the lattice site occupations of the alloy are homogenous on the length
scale we are interested in (The occupation of the lattice sites in the alloy is homogenous
if ξ1 =

〈
σ
〉

U
u
〈
σ
〉

∆V
is fulfilled for arbitrary, small subvolumes ∆V of V ). Then we can

write down a pair potential,

V (2)
σnσm

= V (2)
σnσm

(xxxnm,uuunm) , (5.84)

which depends on the distance vector between the two lattice sites xxxn,xxxm, rrrnm = xxxnm+uuunm

and on their occupation σn, σm. Small displacements uuunm of the atoms from their lattice



51

positions xxxnm allow a harmonic expansion of the potential. Using Eq. (5.31) we get,

Eelast =
1

2

∑

nm

V (2)
σnσm

≈
∑

nm

(

J
(0
2)

0,nm + J
(1
2)

0,nmσm +
1

2
J
(2
2)

0,nmσnσm

)

+
∑

i

∑

nm

(

J
(0
2)

1,i,nm + J
(1
2)

1,i,nmσm +
1

2
J
(2
2)

1,i,nmσnσm

)

ui,nm

+
1

2

∑

ij

∑

nm

(

J
(0
2)

2,ij,nm + J
(1
2)

2,ij,nmσm +
1

2
J
(1
2)

2,ij,nmσnσm

)

ui,nmuj,nm .

(5.85)

So far literature suggests that the expansion coefficients in Eq. (5.85) possess a simple
configuration dependence, e.g., they are either constant or depend only on the average
concentration c. In the picture of a cluster expansion, Eq. (5.29), a Taylor expansion
could also be carried out for many-body potentials, a generalization of Eq. (5.85) is thus
straightforward.

For every configuration σσσ of the crystal we can now calculate the elastic relaxation
energy Erel

elast based on the condition of mechanical equilibrium,

∂Eelast

∂ui,nm

= 0 , (5.86)

or we could think of incorporating the effect of phonons in phase diagram calculations.
Using Eq. (5.85) the condition for mechanical equilibrium becomes a linear equation, which
is commonly solved or approximated in reciprocal space [63,64,65,66,67,68,69]. Obviously
Erel

elast depends purely on the configuration σσσ and can thus be cluster expanded on a rigid
lattice, see Sec. 5.4. However, as is pointed out in the citations given above, the solution
to Eq. (5.86) shows a singularity in reciprocal space for kkk → 0.

5.9 The Russian school

Often in Russian literature the site occupations are labeled as,

cn =

{
1 if species A occupies site n ,
0 if species B occupies site n .

(5.87)

In terms of the scalar product defined in Sec. 5.5, this represents a non-orthogonal basis
that can be mapped on the common, orthogonal basis by,

cn =
1

2
(1 + σn) . (5.88)
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For example, the N -body expansion coefficients W (rrrm1 , . . . , rrrmN
) in the Russian notation

are expanded in clusters as,

E =
∑

N

1

N !

∑

m1...mN

W (rrrm1 , . . . , rrrmN
) cm1 . . . cmN

=
∑

N

1

N !

∑

m1...mN

W (rrrm1 , . . . , rrrmN
)

1

2
(1 + σm1) . . .

1

2
(1 + σmN

)

=
∑

N

1

2N

1

N !

∑

m1...mN

W (rrrm1 , . . . , rrrmN
)

(

1 +

N∑

K=1

N !

K! (N −K)!

K∏

l=1

σml

)

(5.28)
= J0 +

∑

K=1

1

K!

∑

m1...mK

J (rrrm1 , . . . , rrrmK
)

(
K∏

l=1

σml

)

. (5.89)

We can identify the expansion coefficients of the cluster expansion,

J0 =
∑

N

1

2N

1

N !

∑

m1...mN

W (rrrm1 , . . . , rrrmN
) , (5.90)

and for 1 ≤ K ≤ N ,

J (rrrm1 , . . . , rrrmK
) =

1

2N

1

(N −K)!

∑

mK+1 ...mN

W
(
rrrm1 , . . . , rrrmK

, rrrmK+1
, . . . , rrrmN

)
. (5.91)



Chapter 6

Cluster Expansion in confined
geometry

In chapter 5 we were dealing with the most general expressions for the cluster expansion
of a two component system. We will now use these results for restricted geometries, e.g.,
for the description of surfaces and alloys in contact with a substrate.

6.1 Breaking the symmetry at a surface

We start with a situation where we confine all atomic positions rrrn to lattice sites xxxn. The
lattice is invariant under space group operations G0. A surface is introduced into the above
defined crystal by cutting it along a plane without modifying the relative positions of the
lattice sites on each side of the cut.

The surface disrupts the symmetry of the bulk system, we do not have translational
invariance orthogonal to the surface anymore and we also have another point group symme-
try. Altogether we are left with a space group of a two-dimensional system only. However,
the considerations from section 5.4 are perfectly valid for the space group of the surface
GS, where GS is a subgroup of the bulk space group G0 and the symmetry operations of
GS are given by {RS|tttS}.

We label all clusters with a vector (L, αK), where L denotes the number of successive
layers L from the surface to the cluster (L, αK) (the number of successive layers L is defined
by, e.g., the lattice site contained in cluster (L, αK) closest to the surface) and αK labels
the clusters in each layer L as described in section 5.4. Furthermore, we denote the number
of 2d unit cells of the undecorated, empty lattice in each layer parallel to the surface with
NS and the number of clusters linked by symmetry operations of GS with D(L,αK)NS, see
Eq. (5.39). Since there exist no group operations that link clusters (L, αK) and (L′, α′

K′)
located in different layers, L 6= L′, the multiplicities are independent of L, DαK

= D(L,αK).

We know that the influence of the surface on the interaction energies decays with the
distance from the surface. Hence, when we look at clusters located far away from the
surface, the cluster expansion coefficients of clusters connected by operations of G0 not

53
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Figure 6.1: Illustration for the definition of the layer L, the 2d unit cell of the surface and
a cluster (2, α3).

contained in GS are the same.

6.1.1 Broken bond model

We denote all clusters in the system with a surface (space group GS) that could be linked
by a symmetry operation of the bulk space group G0 (the space groups of the system before
it was cut into two parts) with {(L, γK), (L′, γ′K), . . .}, as in section 5.4. Let us also assume
that we know the cluster interactions JBB

γK
= JL,γK

in the system without surface, e.g.,
the interactions deeply beneath the surface, L→ ∞. The subset of {(L, γK), (L′, γ′K), . . .}
that consists of clusters which can also be linked by group operations of GS is denoted as
{(L, αK(γK)), (L, α′

K(γK)), . . .}. γK is a prototype cluster of the set {(L, γK), (L′, γ′K), . . .}
that can be used to generate the clusters in set {(L, αK(γK)), (L, α′

K(γK)), . . .} by space
group operations from GS (only clusters in the same layer L can be linked by a group
operation of GS).

In the broken bond model we assume that the bulk cluster interactions are not modified
in the surface (JBB

γK
= JBB

αK(γK) independent of αK and L) and the energy of the system
with a surface is calculated as,

〈
EBB(σσσ)

〉

U
=
EBB(σσσ)

NS

=
∑

L

∑

K

∑

αK

DαK
JBB

αK(γK)ξ(L,αK) , (6.1)

with,

ξ(L,αK) =
1

DαK
NS

∑

{RS |tttS}
Φ({RS |tttS}:(L,αK)) . (6.2)

The summation is carried out over clusters αK that cannot be connected by symmetry
operations of GS. The average

〈
EBB(σσσ)

〉

U
depicts the in-plane average of the 2d surface

unit cell.
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6.1.2 Surface modifications

In general, the cluster expansion for a surface can be written as,

〈
E(S)(σσσ)

〉

U
=
E(S)(σσσ)

NS

=
∑

L

∑

K

∑

αK

DαK
J(L,αK)ξ(L,αK)

=
∑

L

∑

K

∑

αK

DαK

(
JBB

αK(γK ) + ∆J(L,αK)

)
ξ(L,αK)

=
〈
EBB(σσσ)

〉

U
+
∑

L

∑

K

∑

αK

DαK
∆J(L,αK)ξ(L,αK)

︸ ︷︷ ︸

surface modifications
�
∆E(S)(σσσ) �

U

=
〈
EBB(σσσ)

〉

U
+
〈
∆E(S)(σσσ)

〉

U
. (6.3)

Deep in the material surface modifications to the interactions will vanish,

lim
L→∞

∆J(L,αK ) = 0 , (6.4)

therefore the surface modification energy
〈
∆E(S)(σσσ)

〉

U
is located at the surface.

6.1.3 Surface energy of the elements

When we cut bulk material into two parts, we first break bonds and second allow a redistri-
bution of the electrons at the surface that induce modifications of the surface interactions.
We define the span ∆LαK

of a cluster. The span ∆LαK
tells us how many layers parallel

to the surface are connected by the cluster αK (i.e. a pair-cluster fully contained within
one layer parallel to the surface has ∆Lα2 = 0). When the bulk material is cut into parts
two surfaces are generated and ∆LαK

clusters of type αK are cut. In the case of pure A,
all correlations are ξαK

= 1, for the case of pure B, all correlations are ξαK
= (−1)K. Thus

the contribution of the broken bonds to the surface energy of the elements is given as,

〈
EBB

sf (A)
〉

U
=

1

2

∑

K

∑

αK

∆LαK
DαK

JBB
αK(γK ) , (6.5)

〈
EBB

sf (B)
〉

U
=

1

2

∑

K

∑

αK

∆LαK
DαK

JBB
αK(γK )(−1)K . (6.6)

In addition, there are contributions to the surface energies due to surface modifications of
the cluster expansion coefficients,

〈
∆E(S)(A)

〉

U
=
∑

L

∑

K

∑

αK

DαK
∆J(L,αK) , (6.7)

〈
∆E(S)(B)

〉

U
=
∑

L

∑

K

∑

αK

DαK
∆J(L,αK)(−1)K . (6.8)
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The total surface energy finally is equal to the sum of broken bond contributions and
surface modifications,

〈
Esf(A)

〉

U
=

1

2

∑

K

∑

αK

∆LαK
DαK

JBB
αK(γK ) +

∑

L

∑

K

∑

αK

DαK
∆J(L,αK ) , (6.9)

〈
Esf(B)

〉

U
=

1

2

∑

K

∑

αK

∆LαK
DαK

JBB
αK(γK )(−1)K +

∑

L

∑

K

∑

αK

DαK
∆J(L,αK)(−1)K .

(6.10)

6.1.4 Energy of formation for a surface

We split the energy of formation of a surface into two parts, the broken bond part and the
energy of formation due to surface modifications:

〈
E

(S)
f (σσσ)

〉

U
=

〈
E(S)(σσσ)

〉

U
− x
〈
E(S)(A)

〉

U
− (1 − x)

〈
E(S)(B)

〉

U

=
〈
E

(BB)
f (σσσ)

〉

U
+
〈
∆E

(S)
f (σσσ)

〉

U
, (6.11)

with,

〈
E

(BB)
f (σσσ)

〉

U
=

〈
E(BB)(σσσ)

〉

U
− x
〈
E(BB)(A)

〉

U
− (1 − x)

〈
E(BB)(B)

〉

U
, (6.12)

〈
∆E

(S)
f (σσσ)

〉

U
=

〈
∆E(S)(σσσ)

〉

U
− x
〈
∆E(S)(A)

〉

U
− (1 − x)

〈
∆E(S)(B)

〉

U
, (6.13)

and,

〈
E(BB)(A)

〉

U
=

∑

L

∑

K

∑

αK

DαK
JBB

αK(γK) , (6.14)

〈
E(BB)(B)

〉

U
=

∑

L

∑

K

∑

αK

DαK
JBB

αK(γK)(−1)K , (6.15)

〈
∆E(S)(A)

〉

U
=

∑

L

∑

K

∑

αK

DαK
∆J(L,αK) , (6.16)

〈
∆E(S)(B)

〉

U
=

∑

L

∑

K

∑

αK

DαK
∆J(L,αK)(−1)K . (6.17)

In order to calculate the layer averaged concentration x we assume that our system contains
NL layers and that the undecorated 2d unit cell in each layer contains M lattice sites,

x =
1

NL

∑

L

xL =
1

2

(

1 +
1

NL

∑

L

(

1

M

∑

α1

Dα1ξ(L,α1)

))

. (6.18)

For the broken bond contribution
〈
E

(BB)
f (σσσ)

〉

U
the interactions are independent of the

layer, JBB
(L,αK) = JBB

αK
. Therefore we again obtain the same result as for the bulk case in

section 5.6: JBB
0 and ∆JBB

1 do not contribute to
〈
E

(BB)
f (σσσ)

〉

U
.
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For
〈
∆E

(S)
f (σσσ)

〉

U
we can also adopt the bulk considerations. By labeling not only

different positions in the unit cell but also different layers with M , the same considerations
valid for the bulk also hold for a surface: A layer independent shift of the energy of the
point-clusters,

∆J(L,α1) → ∆J(L,α1) + ∆J1 , (6.19)

as well as the energy of the empty cluster ∆J0 does not change
〈
∆E

(S)
f (σσσ)

〉

U
. We thus can

specify the energies of point-clusters ∆J(L,α1) only up to an arbitrary constant. For the
cluster expansion of a surface this problem can be resolved by demanding,

lim
L→∞

∆J(L,1) = 0 , (6.20)

however, for the cluster expansion of a system with a finite number of layers, e.g., a slab,
no such prescription can be given.

6.1.5 The case of a thin film

For the extraction of cluster coefficients from ab-initio calculations, one often has to sim-
ulate the behavior of a surface by a slab containing a finite number of layers. This free
standing thin film has two “surfaces”, and often also a point group operation that inverts
the direction normal to the surface (the z-axis eeez):

{RS|tttS}eeez = −eeez . (6.21)

This group operation thus matches clusters on different sides of the slab. This has to be
taken into account for the multiplicities DαK

of the degenerate cluster expansion coeffi-
cients J(L,αK). Apart from this geometric considerations, the considerations for the cluster
expansion of a surface also hold for a film.

6.1.6 A potentials point of view

Up to now we discussed the surface modified interactions based only on symmetry consid-
erations. However, the potential defined in Eq. (5.1) does not depend on whether we look
at a surface or at bulk material. We therefore can derive the surface modified interactions
from Eq. (5.1) directly.

We look at a situation where we confine all atomic positions {rrrm} to lattice sites {xxxm}.
The positions that were erased by cutting the surface (the atomic positions above the
surface) are denoted as “erased bulk sites” E (see Fig. 6.2). The remaining positions,
occupied by atoms, are the “alloy” positions and form the set A where each position either
belongs to set A or E, A ∩ E = ∅. In order to obtain the cluster expansion coefficients of
the bulk alloy for the broken bond description of the surface, we extend the summation
over the alloy lattice sites contained in E above the surface. Now the summation over mi

runs over lattice sites beneath and in the surface (set A) as well as over lattice sites above
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Figure 6.2: Set E of erased sites above the surface and set A of occupied alloy sites.

the surface (set E), A ∪ E. The positions of cluster αK are completely within or beneath
the surface, αN ⊆ A. The summation over the set A ∪ E is simply a summation over
all lattice sites of a bulk crystal, and we thus get the bulk cluster expansion coefficients
(broken bond interactions) from,

JBB
αN

=
∑

K=N

1

2K

1

(K −N)!

A∪E∑

mN+1...mK

−1,1
∑

i1...iK

(
N∏

l=1

il

)

V
(K)
i1...iK

(rrrm1 , . . . , rrrmN
, rrrmN+1

, . . . , rrrmK
) ,

with,

αN = {m1, . . . , mN} ⊆ A . (6.22)

For the actual cluster expansion coefficients at the surface, only positions occupied
by atoms (set A) contribute to the many-body potentials. The total surface modified
expansion coefficients J(L,αN ) thus have to be calculated as,

J(L,αN ) =
∑

K=N

1

2K

1

(K −N)!

A∑

mN+1...mK

−1,1
∑

i1...iK

(
N∏

l=1

il

)

V
(K)
i1...iK

(rrrm1 , . . . , rrrmN
, rrrmN+1

, . . . , rrrmK
) ,

and,

αN = {m1, . . . , mN} ⊆ A . (6.23)

Using Eq. (A.5) we can also write an explicit formula for the modifications of the expansion
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coefficients induced by the surface:

∆J(L,αN ) = J(L,αN ) − JBB
αN

= −
∑

K=N

1

2K

1

(K −N)!

K−N∑

M=1

(
K −N

M

)

×

A∑

mN+1 ...mK−M

E∑

mK−M+1 ...mK

−1,1
∑

i1...iK

(
N∏

l=1

il

)

V
(K)
i1...iK

(rrrm1 , . . . , rrrmN
, rrrmN+1

, . . . , rrrmK
) .

(6.24)

We see that surface modifications ∆J(L,αN ) of a N point-cluster are due to potentials V (K)

with K > N .

6.1.7 Surface description using pair potentials

Assume that we model an alloy with a surface solely with pair potentials, as it is often
done in classical molecular dynamics simulations. From the previous section we know that
for such a situation the pair-cluster expansion coefficients are not modified in the surface,
∆J(L,α2) = 0. The modification of a point-cluster in layer L located at rrr1 can be calculated
from Eq. (6.24),

∆J(L,{rrr1}) = −1

4

E∑

m

−1,1
∑

i1i2

(i1)V
(2)
i1i2

(rrr1, rrrm)

=
1

4

E∑

m

[

V
(2)
−1−1(rrr1, rrrm) − V

(2)
11 (rrr1, rrrm)

]

, (6.25)

where we took into account that V
(2)
−1,1(rrr1, rrrm) = V

(2)
1,−1(rrr1, rrrm). When we cut the pure bulk

A or B into parts, we introduce two surfaces. The surface energies can be calculated by
counting the broken bonds,

Esf(A) =
1

2

A∑

m1

E∑

m2

V
(2)
11 (rrrm1 , rrrm2) , (6.26)

Esf(B) =
1

2

A∑

m1

E∑

m2

V
(2)
−1−1(rrrm1 , rrrm2) , (6.27)

and therefore,

A∑

(L,β1)

∆J(L,β1) =
1

2
[Esf (B) − Esf (A)] . (6.28)



60

Hence the total surface modifications can be attributed to the difference of the surface
energies alone.

When we embed a single atom B (A) into pure bulk A (B), the change in energy is
calculated by means of Eq. (5.31) as,

∆EA→B = −2J(1
2)(rrr1) − 2

A∑

m

J(2
2)(rrr1, rrrm)

=

A∑

m

[

V
(2)
−11(rrr1, rrrm) − V

(2)
11 (rrr1, rrrm)

]

, (6.29)

∆EB→A =
A∑

m

[

V
(2)
−11(rrr1, rrrm) − V

(2)
−1−1(rrr1, rrrm)

]

. (6.30)

In order to get the bulk limit, the sum runs over the set A ∪ E,

∆EA→B
bulk =

A∪E∑

m

[

V
(2)
−11(rrr1, rrrm) − V

(2)
11 (rrr1, rrrm)

]

, (6.31)

∆EB→A
bulk =

A∪E∑

m

[

V
(2)
−11(rrr1, rrrm) − V

(2)
−1−1(rrr1, rrrm)

]

, (6.32)

and we thus can write the surface modifications as,

∆EA→B = ∆EA→B
bulk +

E∑

m

[

V
(2)
11 (rrr1, rrrm) − V

(2)
−11(rrr1, rrrm)

]

︸ ︷︷ ︸

∆EA→B
sf

, (6.33)

∆EB→A = ∆EB→A
bulk +

E∑

m

[

V
(2)
−1−1(rrr1, rrrm) − V

(2)
−11(rrr1, rrrm)

]

︸ ︷︷ ︸

∆EB→A
sf

. (6.34)

When ∆EA→B
sf < 0, a single atom B embedded into a pure crystal A will segregate sponta-

neously to the surface. Atoms B will also segregate spontaneously to the surface in the case
of a dilute alloy where the concentration of atoms B is small enough so that interactions
between the B atoms are small compared to ∆EB→A).

We see that segregation tendencies cannot be derived from ∆J(L,β1) alone. We also must

take into account terms directly related to the energy of formation, such as V
(2)
−11. This

reflects Miedema’s empirical rules for surface segregation [70,71]. According to Miedema
surface segregation depends on the heat of formation of the alloy (in a pair potential

description presented through V
(2)
−11), the surface energy of the elements (here ∆J(L,β1)) and

relaxation effects for size mismatched components at the surface.
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Are Pair Potentials sufficient for NiAl ?

Fig. 6.3 shows the difference of pair potentials from dimer calculations in NiAl. We see

that
[

V
(2)
AlAl(rrr1, rrr2) − V

(2)
NiAl(rrr1, rrr2)

]

is strictly positive, therefore ∆EAl→Ni
sf > 0 and we thus

expect no segregation of Ni to any, e.g., (100), (110), . . ., surface of Al. The situation is
more difficult for ∆ENi→Al

sf : If we take into account that the bond length between Ni and

Al is at least ≈ 4.5 a.u., it seems that the integral of
[

V
(2)
NiNi(rrr1, rrrm) − V

(2)
NiAl(rrr1, rrrm)

]

over rrrm

is positive (approximating the sum over m in Eq. (6.33)) and therefore from pair potentials
one would expect no segregation of Al. However, as we will see in the following chapter of
this thesis, Al segregates into the Ni surface.
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Figure 6.3: Difference of pair potentials calculated for dimers in LDA. See also caption of
Fig. 5.1.

6.2 Alloying on top of a substrate

Let us look at a ternary system consisting of the alloy components A and B which we will
again denote with the occupation σm = 1 and σm = −1, respectively, and a component
that forms the substrate, see Fig. (6.4), denoted with σm = 0.

The total energy can be formally calculated as in Eq. (5.1),

E = E(0) + E(1) + E(2) + E(3) + E(4) + . . .+ E(N) + . . .

=
∑

N

1

N !

A∪S∑

m1...mN

V (N)
σm1 ...σmN

(rrrm1 , . . . , rrrmN
) , (6.35)
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alloy atoms and pair interactions between alloy atoms by three-body interactions between
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with atomic positions rrrm that may now be occupied by three different species, 1,−1, 0.
We know that the alloy forms on top of the substrate, in other words, the set of substrate

positions S is occupied by substrate atoms, while the set of alloy positions A is occupied
by atoms A and B, with A ∩ S ∈ ∅. We use Eq. (A.5) to rewrite Eq. (6.35),

E(N) =
1

N !

A∪S∑

m1

A∪S∑

m2

. . .
A∪S∑

mN

V (N)
σm1 ...σmN

(rrrm1 , . . . , rrrmN
)

=
1

N !

N∑

K=0

(
N

K

) A∑

m1,...,mN−K

S∑

mN−K+1,...,mN

V (N)
σm1 ...σmN

(rrrm1 , . . . , rrrmN
) (6.36)

=

N∑

K=0

1

(N −K)!

A∑

m1,...,mN−K

1

K!

S∑

mN−K+1 ,...,mN

V (N)
σm1 ...σmN

(rrrm1 , . . . , rrrmN
) (6.37)

=
N∑

K=0

1

(N −K)!

A∑

m1,...,mN−K

W
(N−K

N )
σm1 ...σmN−K

(rrrm1 , . . . , rrrmN−K
) (6.38)

=
N∑

K=0

1

K!

A∑

m1,...,mK

W
(K

N)
σm1 ...σmK

(rrrm1 , . . . , rrrmK
) , (6.39)

where the effective alloy interaction W
(K

N)
σm1 ...σmK

is given as,

W
(K

N)
σm1 ...σmK

(rrrm1 , . . . , rrrmK
) =

1

(N −K)!

S∑

mK+1 ,...,mN

V (N)
σm1 ...σmK

,0...0
(rrrm1 , . . . , rrrmN

) , (6.40)

and we took into account that all substrate positions are always occupied by substrate

atoms, while the alloy positions present in W
(K

N)
σm1 ...σmK

can be occupied only by A or B
atoms. Using Eq. (A.1) we rewrite the total energy Eq. (6.35) in pseudo binary form,

E = ε(0) + ε(1) + ε(2) + ε(3) + ε(4) + . . .+ ε(N) + . . . , (6.41)
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with,

ε(N) =
1

N !

∑

K=N

A∑

m1,...,mN

W
(N

K)
σm1 ...σmN

(rrrm1 , . . . , rrrmN
) (6.42)

=
1

N !

A∑

m1,...,mN

W (N)
σm1 ...σmN

(rrrm1 , . . . , rrrmN
) , (6.43)

and σm1 . . . σmN
takes only values +1 and −1 as the summations are carried out only over

the set of alloy positions.
The effective pseudo binary potential,

W (N)
σm1 ...σmN

(rrrm1 , . . . , rrrmN
) =

∑

K=N

W
(N

K)
σm1 ...σmN

(rrrm1 , . . . , rrrmN
) , (6.44)

can now be used to get the effective cluster expansion coefficients for the case of an alloy
on a substrate by making use of Eq. (5.29), Eq. (6.40) and Eq. (6.44),

JαN
=
∑

K=N

J
(N

K)
αN (6.45)

=
∑

K=N

1

2K

1

(K −N)!

A∑

mN+1...mK

−1,1
∑

i1...iK

(
N∏

l=1

il

)

W
(K)
i1...iK

(rrrm1 , . . . , rrrmN
, rrrmN+1

, . . . , rrrmK
)

=
∑

K=N

1

2K

1

(K −N)!

A∑

mN+1...mK

−1,1
∑

i1...iK

(
N∏

l=1

il

)
∑

L=K

W
(K

L)
i1...iK

(rrrm1 , . . . , rrrmK
)

=
∑

K=N

∑

L=K

1

2K

1

(K −N)!

1

(L−K)!
×

−1,1
∑

i1...iK

(
N∏

l=1

il

)
A∑

mN+1...mK

S∑

mK+1,...,mL

V
(L)
i1...iK ,0...0(rrrm1 , . . . , rrrmL

) , (6.46)

where the cluster αN contains only alloy atoms,

αN = {m1, . . . , mN} ⊆ A . (6.47)

As for the case of a surface, also in the case of an alloy on a substrate, only potentials V (L)

with L > N contribute to substrate modifications of the cluster coefficient JαN
.

The occupation independent interaction coefficient of the empty cluster J0 can also be
derived with Eq. (5.29),

J0 =
∑

K=0

∑

L=K

1

2K

1

K!

1

(L−K)!

−1,1
∑

i1...iK

A∑

m1...mK

S∑

mK+1,...,mL

V
(L)
i1...iK ,0...0(rrrm1 , . . . , rrrmL

) , (6.48)
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and we formally obtain Eq. (5.27) for the cluster expansion of a binary alloy,

E =
∑

N

ε(N) = J0 +
∑

N=1

∑

αN

JαN
ΦαN

, (6.49)

where, as pointed out above, only clusters αN fully contained in set A contribute to the
energy E.

6.2.1 Substrate induced interactions

An effective pair potentialW
(2)
σ1σ2 containing the pair-cluster {rrr1, rrr2} contributes to J(2

2)(rrr1, rrr2),

J(2
2)(rrr1, rrr2) =

1

4

(

W
(2)
1,1 (rrr1, rrr2) −W

(2)
−1,1(rrr1, rrr2) −W

(2)
1,−1(rrr1, rrr2) +W

(2)
−1,−1(rrr1, rrr2)

)

(6.50)

=
1

4

(

V
(2)
1,1 (rrr1, rrr2) − V

(2)
−1,1(rrr1, rrr2) − V

(2)
1,−1(rrr1, rrr2) + V

(2)
−1,−1(rrr1, rrr2)

)

+
1

4

S∑

m

(

V
(3)
1,1,0(rrr1, rrr2, rrrm) − V

(3)
−1,1,0(rrr1, rrr2, rrrm)

)

+
1

4

S∑

m

(

−V (3)
1,−1,0(rrr1, rrr2, rrrm) + V

(3)
−1,−1,0(rrr1, rrr2, rrrm)

)

+
1

8

S∑

m,n

(

V
(4)
1,1,0,0(rrr1, rrr2, rrrm, rrrn) − V

(4)
−1,1,0,0(rrr1, rrr2, rrrm, rrrn)

)

+
1

8

S∑

m,n

(

−V (4)
1,−1,0,0(rrr1, rrr2, rrrm, rrrn) + V

(4)
−1,−1,0,0(rrr1, rrr2, rrrm, rrrn)

)

+ . . . . (6.51)

Now we see how the contribution J(2
2) to the effective interaction coefficient can be split

into two parts: purely alloy interactions from pair potentials and substrate mediated in-
teractions from three-body, four-body, and higher order potentials.

Thus any description of an alloy on top of a substrate based on pair potentials will not
allow substrate modifications of the pair coefficient J2.

6.2.2 Crystal lattice sites

Let us again confine all atomic positions, the ones of the substrate as well as the ones of
the alloy, to crystal lattice sites. Then the cluster expansion coefficients can be labeled
by the cluster αN alone, any explicit dependence on coordinates rrrm vanishes, and all
considerations of section 5.4 are valid.

In the case of a monolayer of an alloy on top of a substrate we see from Eq. (6.46) that
only two-dimensional clusters must be taken into account to characterize the energy of the
system. Thus the system is effectively a two-dimensional system.
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6.3 Partial coverage of a substrate by a single atomic

species

We now look at a substrate partially covered by atoms A as a an alloy on top of a substrate
consisting of atoms A and vacancies (“atomic” species B). Eq. (6.46) is thus valid for
the description of a partially covered substrate. By noting that the vacancies may not
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contribute in the multi-body potentials,

−1,1
∑

i1...iK

(
N∏

l=1

il

)

V
(L)
i1...iK ,0...0(rrrm1 , . . . , rrrmL

) = V
(L)
1...1,0...0(rrrm1 , . . . , rrrmL

) , (6.52)

for example, all many-body potentials that contain at least one component of species B
vanish, we can further simplify the expression for the energetics of the system:

JαN
=
∑

K=N

J
(N

K)
αN (6.53)

=
∑

K=N

1

2K

1

(K −N)!

A∑

mN+1 ...mK

W
(K)
1...1(rrrm1 , . . . , rrrmN

, rrrmN+1
, . . . , rrrmK

)

=
∑

K=N

1

2K

1

(K −N)!

A∑

mN+1 ...mK

∑

L=K

W
(K

L)
1...1 (rrrm1 , . . . , rrrmK

)

=
∑

K=N

∑

L=K

1

2K

1

(K −N)!

1

(L−K)!

A∑

mN+1...mK

S∑

mK+1,...,mL

V
(L)
1...1,0...0(rrrm1 , . . . , rrrmL

) , (6.54)

where the cluster αN contains only alloy positions,

αN = {m1, . . . , mN} ⊆ A . (6.55)
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The occupation independent interaction coefficient of the empty cluster J0 can also be
derived using Eq. (5.29),

J0 =
∑

K=0

∑

L=K

1

2K

1

K!

1

(L−K)!

A∑

m1...mK

S∑

mK+1,...,mL

V
(L)
1...1,0...0(rrrm1 , . . . , rrrmL

) . (6.56)

The benefits of a two component description (atoms A and vacancies B) of a real one
component system (atoms A) will only show up when we can, for physical reasons, restrict
the positions of the atoms (and thus the positions of the vacancies) to periodic “lattice
sites” on top of the substrate.

6.3.1 Substrate induced interactions

An effective pair potentialW
(2)
σ1σ2 containing the pair-cluster {rrr1, rrr2} contributes to J(2

2)(rrr1, rrr2),

J(2
2)(rrr1, rrr2) =

1

4
W

(2)
1,1 (rrr1, rrr2)

=
1

4
V

(2)
1,1 (rrr1, rrr2) +

1

4

S∑

m

V
(3)
1,1,0(rrr1, rrr2, rrrm) +

1

8

S∑

m,n

V
(4)
1,1,0,0(rrr1, rrr2, rrrm, rrrn) + . . .

(6.57)

In the case of partial substrate coverage, the expansion coefficients are obtained as the sum
of interatomic potentials.

6.3.2 Relation between expansion coefficients

Different from our findings in section 5.3.3, it is possible to find a relation between the
expansion coefficients if the B “atoms” are vacancies. Using Eq. (6.54) we see,

J
(N−1

K )
αN−1 (m1, m2, . . . , mN−1) =

1

K −N + 1

A∑

mN

J
(N

K)
αN (m1, m2, . . . , mN−1, mN ) . (6.58)

This relation can be employed for the practical cluster expansion of the energetics of a
partially covered substrate in order to reduce the number of ab-initio calculations required
to extract converged expansion coefficients JαN

.



Chapter 7

Practical Cluster Expansion
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Due to enormous efforts required for ab-initio calculations, neither the many-body
potentials V (N) can be calculated directly nor does anybody know how to parameterize
them in a sufficiently accurate way. The amount of information at hand for phase diagram
calculations is thus limited.

Generally one therefore only calculates the energies of relaxed configurations σσσ that
correspond to periodic decorations of an underlying lattice with atoms A and B. A relaxed
configuration is a configuration where all forces acting on the atoms as well as the shape of
the unit cell are optimized into the mechanical equilibrium in the sense of Eqs. (3.11, 5.86),

−∇m E (σσσ) = 0 , (7.1)

where E (σσσ) is the total energy of configuration σσσ. Eq. (7.1) defines the “fully relaxed”
energy of configuration σσσ. This “fully relaxed” state is in general not uniquely defined,
as we only require a necessary condition for a minimum to be fulfilled. One hence has to
constrain the search for “fully relaxed” configurations:

• We start from a configuration σσσ where all positions rrrm form an ideal underlying
lattice, e.g., fcc or bcc.

• According to Eq. (7.1) we then search for the “closest” local minimum by optimizing
the volume of the unit cell, then the shape of the unit cell and eventually relaxing
the forces on the atoms. This procedure (volume optimization, shape optimization,
force minimization) is repeated until the energy does not change anymore. In most
cases the resulting relaxed positions do not depend on the procedure used for the
relaxation, however, sometimes, e.g., minimizing forces before optimizing the volume
of the unit cell may lead to different local minima.

• When the positions of the atoms rrrm in the relaxed state deviate too much from the
initial ideal lattice positions so that in a topological sense the initial ideal lattice
positions and the relaxed positions form a different lattice, then this structure will
not be used for the cluster expansion.

For example, the fcc- based L11 structure in NiAl spontaneously relaxes into the bcc-
based B2 structure when its c/a ratio is optimized, via a so-called bain deformation.
Thus we will not use the L11 structure for the cluster expansion of NiAl on an
underlying fcc lattice.

• It is then assumed that the fully relaxed energies Efr (σσσ) can be mapped onto the
configuration σσσ alone via cluster expansion, see Sec. 5.4,

〈
Efr(σσσ)

〉

U
=
∑

βK

DβK
Jfr

βK
ξβK

, (7.2)

where the multiplicities DβK
are calculated from the symmetry of the ideal undis-

torted underlying lattice. The different procedures that exist to obtain the expansion
coefficients Jfr

βK
from a set of energies {Efr (σσσ)} will be summarized in the next sec-

tion.
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• Some authors also obtained cluster expansion coefficients JβK
from “unrelaxed” con-

figurations, i.e., all energies Eun (σσσ) were calculated with all atoms at ideal lattice
sites at a given lattice constant. The term “volume relaxed” refers to expansion
coefficients JβK

that were obtained from configurations that were calculated with all
atoms at ideal lattice sites of the underlying lattice at the volume that yielded the
lowest energy Evr (σσσ) for each configuration. The energy of the “unrelaxed” or the
“volume relaxed” configurations are sometimes also termed chemical energy.

• Since the cluster expansion is linear in the expansion coefficients JβK
we can split

the expansion coefficients into three different contributions,

Jfr
βK

= Jun
βK

+ ∆Jvr
βK

+ ∆Jfr
βK
, (7.3)

where Jun
βK

originates from the cluster expansion of unrelaxed configurations Eun (σσσ),
∆Jvr

βK
is due to a cluster expansion of the volume relaxation energy Evr (σσσ)−Eun (σσσ)

and ∆Jfr
βK

is due to the cluster expansion of the remaining relaxation energy, Efr (σσσ)−
Evr (σσσ).

• The ab-initio calculations for fully relaxed configurations are time consuming, there-
fore sometimes “volume relaxed” or “unrelaxed” input configurations for the con-
struction of the expansion coefficients are used. However, if one looks at a system
that has various structures close in energy to the ground state structure, not fully
calculating the mechanical equilibrium might result in the wrong ground state for a
given concentration and thus the calculation of the phase diagram is not possible.

• Some systems have different underlying lattices at different compositions, such as
NiAl, where the B2 structure at stoichiometric composition is formed on an under-
lying bcc lattice while the L12 structure at 75% Ni is formed on an fcc lattice. The
recipe of fully relaxing the structures will for some configurations result in fcc based
structures, for others in bcc based structures and for some in underlying structures
that are neither fcc nor bcc.

However, in order to calculate, for example, the fcc based part of the phase diagram
along the lines of the above reasoning, we need to construct J fr

βK
on an underlying fcc

lattice. Since in principle we cannot calculate Efr(σσσ) for every configuration based
on a fcc lattice (as some configurations, such as the L11 structure will relax into, for
example, bcc based configurations) the energies of the configurations available do not
form a complete set. Hence we cannot uniquely construct the coefficients J fr

βK
because

the completeness relation, Eq. (5.49), that the cluster expansion is based on is not
fulfilled. In other words, we have a certain degree of freedom when we construct the
interaction coefficients Jfr

βK
for fcc based NiAl. Interestingly, to the best knowledge

of the author, this has not been noticed or mentioned in literature so far.
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7.1 Extracting expansion coefficients from ab-initio

data

Let us assume that we have a set of Nin ab-initio calculated energies Ei =
〈
E (σσσi)

〉

U
for

different configurations σσσi at hand. For the moment, the energies can correspond to fully
relaxed, volume relaxed or unrelaxed configurations. All configurations are assumed to
have the same underlying lattice.

We now need to find the expansion coefficients JβK
that reproduce the energies Ei,

Ei ≈
∑

βK

DβK
JβK

ξi βK
, (7.4)

sufficiently well, whereby we wrote ξi βK
for the correlation matrix ξi βK

= ξβK
(σσσi). Obvi-

ously, we only need to solve a simple system of linear equations. However, the sum over
clusters βK is yet unrestricted. Thus we need to first select a finite set of clusters that we
use for the construction of the interaction coefficients JβK

.
The following sections deal with the selection of clusters that best approximate the

finite set of energies {Ei} whereas Eq. (5.29) in general requires an infinite set of input
energies in order to extract the in general also infinitely many cluster expansion coefficients.

7.1.1 Selection of clusters

There is no universal rule which cluster one should take into account for the fit and which
not. Usually one starts with some pairs and a few compact three- and four-body clusters,
then adds more and more pairs and many-body clusters. Clusters that turn out, according
to the inversion procedure described below, to have a smaller absolute energy than a certain
energy cut-off ε are not taken into account for the fit. The cut-off energy ε is linked to the
numerical accuracy one expects from the cluster expansion, where the numerical accuracy,
for example, may be characterized by the average error,

e =

√
∑Nin

i (Ei − ECE
i )

2

Nin
, (7.5)

where ECE
i =

∑

βK
DβK

JβK
ξi βK

corresponds to the energies of the various configurations
calculated with a finite set of cluster coefficients. The lower limit for the numerical error
e is given by the accuracy of the energy Ei of the input configurations.

One way to guess the importance of a cluster is to define a purely empirical measure
M for every cluster. One measure could, e.g., be the sum of all bond lengths included in a
cluster, or the square of all bond lengths included in a cluster. One then sorts the clusters
according to their measure M in order to judge whether a cluster is important or not.

Many authors provide information on how to find the best possible choice of clusters for
a given system. See the citations in the following section. In general, the cluster expansion
of fully relaxed structures requires far more interaction coefficients (around 20 to 50 for
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bulk material) than the cluster expansion of unrelaxed or volume relaxed input structures
(approximately 10 to 20 for bulk material) for fits with comparable accuracy.

7.1.2 Inversion procedure

If we simply fit the same number of clusters NCE to the number of calculated input struc-
tures, NCE = Nin, we only need to invert Eq. (7.4),

JβK
=

1

DβK

∑

i

Ei

(
ξξξ−1
)

i βK
, (7.6)

where we require ‖ξξξ‖ 6= 0. Historically, the first ab-initio cluster expansion [72] was carried
out accordingly.

Nowadays it is common sense to use, where possible, more input structures than clusters
in order to fit in the inversion procedure. There are various approaches how to extract
converged interaction coefficients from ab-initio calculations. Actually there seem to be as
many recipes for the extraction of interaction coefficients as there are authors working in
this field and rarely someone dares to compare two recipes. We will try to quickly outline
the general ideas behind most inversion procedures. We define a function,

W (JβK
) =

∑

i

ωi

(

Ei − E0 (σσσi) −
∑

βK

DβK
JβK

ξi βK

)2

+
∑

βK

fβK
(JβK

) . (7.7)

The function W is minimized with respect to the interaction coefficients JβK
, where often

the minimization of W is carried out with implicit constraints on the interaction coefficients
JβK

.

• The prefactors ωi in Eq. (7.7) allow to weigh different structures according to their
importance, e.g., one can assign to ground state structures a higher weight in or-
der to make sure that the ground states are correctly reproduced in phase diagram
calculations [73,74,75].

• The energies E0 (σσσi) are approximations to the energies Ei that, e.g., contain the
correct long-ranged elastic behavior of structure σσσi, such as the “constituent strain”
in [73,64,76,77] or the broken-bond approximation for surface energies. In practice,
a good empirical approximation E0 (σσσi) to the energies Ei can drastically reduce
the numbers (and magnitude) of cluster expansion coefficients JβK

required for an
accurate fit, which makes the cluster expansion more reliable.

• The factors fβK
(JβK

) allow to weight the interaction coefficients themselves, e.g., one
assigns to long-ranged pair-cluster coefficients a high weight such as,

f
(1)
β2

= Dβ2J
2
β2
rλ
β2
, (7.8)
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(rβ2 is the length of cluster β2 and λ an empirical decay constant) to enforce a quick
decay of the pair expansion coefficients with respect to their lengths. Zunger et al.

[73,64,78,77], e.g., define a smoothness criterion in order to ensure a smooth behavior
of the pair interactions in reciprocal space. The factors fβK

(JβK
) also make it possible

to fit more cluster expansion coefficients JβK
than input energies Ei are available.

• Ceder et al. [74] confine the search for the minimum of W to values of JβK
that

reproduce all energies Ei and the difference energies ‖Ei − Ej‖ within certain error
bars, see next section.

• Recently Ceder et al. [79] proposed a more elaborate fitting algorithm in the context
of automatic phase diagram calculations that starts from a minimal set of clusters and
structures and that automatically picks new clusters and structures to yield the best
cluster expansion possible. Thereby the best possible cluster expansion minimizes
the cross-validation score. The cross-validation score is identical to the predictive
error epred that is defined in Eq. (7.23).

7.2 Procedures used in this work

Two stages of cluster expansion procedures were used in this work. First, physically moti-
vated weights and limits when optimizing W which are described in the next subsection.
Second, statistical averaging was used to extract more reliable expansion coefficients, as
will be described in section 7.2.3.

7.2.1 Cluster expansion coefficients for bulk material

Following Ceder et al. [74] two sets of inequalities were implemented in the fitting proce-
dure.

1. The fitted energy ECE
i of any structure may not deviate more than δ

(1)
i from the

ab-initio calculated input energy Ei,

Ei − δ
(1)
i ≤ ECE

i ≤ Ei + δ
(1)
i . (7.9)

To make sure that the possible ground state structures are well reproduced, an em-
pirical temperature kT is introduced. δ

(1)
i for the input structure i is then calculated

from a Boltzmann factor,

δ
(1)
i = δ

(1)
0 exp

(
Ei − E0

kT

)

, (7.10)

where δ
(1)
0 and kT are parameters that can be used to control the fit and E0 corre-

sponds to the input structure with the lowest energy at the composition of structure
i.
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2. The correct energetic order of structures that exhibit identical compositions is en-
forced. Let Ei, Ei+1 be the energies of two (energetically) successive structures from
the subset of input structures that are of the same composition. We require,

|Ei − Ei+1| − δ
(2)
i ≤ |ECE

i − ECE
i+1| ≤ |Ei − Ei+1| + δ

(2)
i . (7.11)

δ
(2)
i for input structure i is calculated also from a Boltzmann factor,

δ
(2)
i = δ

(2)
0 exp

(
Ei − E0

kT

)

, (7.12)

where δ
(2)
0 is a free parameter to control the fit.

The smoothness criterion of the mixed-space cluster expansion of Zunger et al. is
equivalent to weighing the square of the absolute values of the pair expansion coeffi-
cients dependent on their length rβK

[73]. We have used this real-space formulation of
the reciprocal-space cluster expansion by applying weights in the form of,

f
(1)
β2

= c1Dβ2J
2
β2
rλ1
β2
, (7.13)

to the pair-cluster expansion coefficients. The parameters c1 and λ1 are parameters used
to stabilize the fit.

Above weights f
(1)
β2

are limited to pairs only. Suppression of the pair-cluster expansion
coefficients by weighing them may result in an overestimation of the expansion coefficients
of many-body clusters. Therefore, and to enforce short-ranged expansion coefficients for
all clusters, another empirical weight is introduced. Let dl be the distance between two
neighboring layers orthogonal to the l = (110), l = (100) or l = (111) direction. Let
∆Lnl

βK
be the number of layers orthogonal to, e.g., the l = (110) direction that a picture

of a cluster spans, where the cluster has n = 1 . . .DβK
pictures in each unit cell (the

multiplicity of the cluster is DβK
). We define the new weight,

f
(2)
βK

= c2

DβK∑

n=1

∑

l

(dl ∆L
nl
βK

)λ2J2
βK
, (7.14)

where the sum runs over l = (110), l = (100) and l = (111). This new weight is,

• similar to the weight f
(2)
βK

for pairs as is shown in Fig. 7.2 and seems to work equiva-
lently for pairs,

• defines a weight for many-body clusters that seems to work well,

• and gives smooth broken bond surface energetics from bulk cluster expansions.
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weight f (1) is calculated as f (1) = c14(
√

2)λ1J2
22

and f (2) = c22(2
√

2
2

)λ2J2
22

. For the second
nearest-neighbor pair the weights thus are the same if 2c1 = c2.

For cluster expansions carried out in this work we mainly used weights f
(2)
βK

, however, we

checked the expansion coefficients also with weights f
(1)
βK

and a mixture of weights f
(1)
βK

and

f
(2)
βK

.

The total function,

W =
∑

i

ωi

(

Ei −
∑

βK

DβK
JβK

ξi βK

)2

+ c1
∑

β2

Dβ2J
2
β2
rλ1
β2

+ c2
∑

βK

DβK∑

n=1

∑

l

(dl ∆L
nl
βK

)λ2J2
βK
,

(7.15)
is minimized subject to the constraints of Eqs. (7.9, 7.11) using a quadratic programming

method. The parameters {ωi}, δ(1)
0 , δ

(2)
0 , kT, c1, λ1, c2 and λ2 are used to stabilize the fit.

According to Eq. (5.75) we can simply replace,

ξβK
→ ξβK

− 1 + (−1)K

2
ξ0 −

1 − (−1)K

2
ξ1 , (7.16)

for every input structure to fit the energies of formation instead of the total energies Ei.
Thereby we automatically fulfill Ef (A) = Ef(B) = 0, and as was explained in Sec. 5.6 we
do not need to take J0 and J1 into account for the fit.

7.2.2 Cluster expansion coefficients for surface material

The principles for cluster expanding the energetics of a surface are the same as for bulk
material, see Sec. 6.1. At a surface one faces simply a problem of numbers. Due to
the broken translational symmetry orthogonal to the surface and the fewer point group
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operations of the empty surface lattice compared to the bulk we expect that much more
cluster expansion coefficients are required for a cluster expansion of the surface.

For the cluster expansion of the surface we define a function similar to W from Eq. (7.7).
We identify,

E0 (σσσi) =
〈
EBB (σσσi)

〉

U
, (7.17)

with the broken bond energy from Eq. (6.1). The remaining task is thus to calculate the
surface modifications ∆J(L,βK) of the expansion coefficients.

In order to stabilize the expansion we define, in complete analogy to the bulk, limits
for the allowed errors of the fit controlled by parameters δ

(1)
0 , δ

(2)
0 , kT .

The surface modifications will vanish deeply within the material. We assume that the
surface modifications decay smoothly by weighing them according to their distance from
the surface,

f(L,βK) = cDβK
exp (λL) ∆J2

(L,βK) , (7.18)

where c, λ are parameters to control the fit.
With the same reasoning as for the bulk case we fit the energy of formation of the

surface energies instead of the input energies directly.

7.2.3 Statistical averaging

The cluster expansion coefficients which we numerically extract from our ab-initio calcu-
lations, J

(num)
α , consist of different parts,

J (num)
α = Jα + ∆J (incomp)

α + ∆J (input)
α + ∆J (noise)

α . (7.19)

Thereby Jα are the true cluster expansion coefficients of a fully converged cluster expansion,
the remaining terms are perturbations due to different factors.

• ∆J
(incomp)
α

The finite set of clusters which we use to construct the cluster expansion is in general
incomplete. This means that we set some expansion coefficients to zero which in
reality have a finite value. This finite value may show up in the other expansion
coefficients as an error ∆J

(incomp)
α .

• ∆J
(input)
α

If the set of input structures and corresponding ab-initio energies is not large enough,
no accurate expansion coefficients J

(num)
α can be extracted from this set of structures.

Also, if the structures are chosen in such a way that the correlation matrix ξiβK
is

ill-defined, it cannot be inverted properly. If, for example, the determinant of the
correlation matrix ‖ξiβK

‖ = 0, the minimum of Eq. (7.15) (and thus the expansion
coefficients) is determined by the empirical weights f (1) and f (2). Also, if ‖ξiβK

‖ ≈
0, small numerical errors of the input energies Ei may induce large errors of the
expansion coefficients.
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• ∆J
(noise)
α

Noise on the input ab-initio data will directly show up in the expansion coefficients.
This can be handled relatively easily if a large enough set of input structures is
available to allow for simple averaging.

The errors ∆J
(incomp)
α and ∆J

(input)
α are directly related. For example, let us assume that

all input energies Ei were calculated using a unit cell with basis vectors AAA1,AAA2,AAA3. Then
all pair-correlation functions ξ∆xxx between two lattice sites i, j separated by a vector ∆xxx =
∆xxx0 +

∑3
i=1miAAAi (with mi integer numbers) are the same,

ξ∆xxx = ξ∆xxx0 = ξ(∆xxx0+ � 3
i=1 miAAAi)

. (7.20)

A correlation matrix ξiβK
that contains the pair-correlation functions of two such pairs thus

contains two identical rows and has determinant zero. The minimum of W, Eq. (7.15), is
then defined only by the empirical weights f (1) and f (2). The resulting cluster expansion
coefficients are not a result of a fit to ab-initio calculations but are determined by empirical
parameters.

Obviously the detailed choice of the calculated input energies Ei as well as the choice of
clusters is important to guarantee reliable cluster expansion coefficients that can be used
not only to describe the energies of the input structures Ei but even more important that
predict accurate energies for structures not included in the set of ab-initio calculated input
structures. Here we present some procedures that can be used to check for an accurate
predictive power of a cluster expansion. First we discuss different measures to quantify
the quality of the cluster expansion, subsequently we discuss the practical implementation
used for the cluster expansions performed in this work.

• Not enough clusters or a choice of clusters that are not relevant simply leads to a
large error in the fitted structures,

efit =

√
∑Nin

i (Ei − ECE
i )

2

Nin

, (7.21)

and therefore also to large errors in J
(num)
α .

• If one tries to fit too many clusters to few structures (often hidden) linear depen-
dencies between the correlations of the clusters in the different structures lead to
unreliable results for J

(num)
α . The validity of the expansion coefficients can be checked

by calculating the energies of some structures not used to construct the interaction
coefficients, thus by calculating,

echeck =

√
∑Ncheck

i (Ei − ECE
i )

2

Ncheck

, (7.22)

where none of the structures used to calculate echeck is used to construct J
(num)
α .
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• Not enough or the “wrong” input structures will also lead to large errors echeck.

In order to quantify the quality of a cluster expansion we should calculate efit and echeck.
However, to calculate values for echeck we need to ab-initio calculate a number Ncheck of
energies that are not used in the construction of the cluster expansion but only for checking
the quality of it. To not loose the information contained in the Ncheck structures for the
cluster expansion fit, we used a fitting procedure that is able to include all the structures
available in the cluster expansion fit but still provides a measure similar to echeck.

7.2.4 Flowchart of the cluster expansion procedure

For a given set of a total of N ab-initio calculated energies, we proceeded as follows to
extract converged J

(num)
α .

1. Chose a set of clusters
A given set of clusters used in the cluster expansion procedure is compared to another
set of clusters by comparing the measures efit and epred (epred is defined below) for
both sets of clusters. In this way the best possible set of clusters for a given system
is determined.

2. Construct N cluster expansion fits to all combinations of N − 1 input
structures
For the set of clusters chosen in 1., the function W is minimized N times for all
possible combinations ofN−1 input energies from the set of theN ab-initio calculated
input energies available. From each of the N fits the energy of the one structure not
used to construct the cluster expansion is predicted. We define the average prediction
error from the N fits for each of their missing structure,

epred =

√
∑N

i (Ei − ECE
i )

2

N
. (7.23)

Clearly epred is smaller when the N cluster expansions on average are better con-
verged. Thus the weights defined in the two above sections for the bulk and the
surface fit are optimized to yield a minimum for epred. epred and echeck are related,
both help to quantify the predictive power of the cluster expansion. Also experience
shows,

epred ≈ echeck > efit , (7.24)

and thus we automatically optimize echeck and efit when we optimize epred.

To uncover hidden dependencies between the cluster expansion coefficients, we in-
vestigate correlations between cluster expansion coefficients from the N different fits
by calculating,

χαKβM
= DαK

DβM

(
N∑

l

J
(l)
αKJ

(l)
βM

N
− JαK

JβM

)

, (7.25)
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where the index l = 1, . . . , N labels the different fits and JαK
=
∑N

l

J
(l)
αK

N
are the

average expansion coefficients from the fits. Again, the set of clusters and weights for
the fitting procedure is chosen to minimize the average squared correlations χ2

αKβM
.

The averaged expansion coefficients JαK
are found to give stable fits with small errors

efit and epred. Numbers for JαK
provided in the following chapters correspond to JαK

.

3. Interaction space fit
The expansion coefficients J

(l)
αK of the N fits define a subspace that would collapse

into one vector JαK
if all N fits were converged. We pick the optimum vector from

the interaction space spanned by the N sets J
(l)
αK , l = 1 . . . N by defining,

JαK
=

N∑

l=1

alJ
(l)
αK
, (7.26)

and optimizing,

epred =

√
∑N

i (Ei − ECE
i )

2

N
, (7.27)

with respect to al, where we demand (in order to stay in a physically reasonable
interaction subspace),

al > 0 . (7.28)

4. Checks
The predictive power of the expansion is then again checked with few energies not
from the set of the N structures used in the procedure above by calculating echeck.

Altogether, with this procedure we calculate three sets of cluster expansion coefficients:

• direct
The set of expansion coefficients obtained from minimizing W with all N input
structures directly.

• average
The average expansion coefficients JαK

from N fits to N − 1 input structures.

• interaction space
The optimized expansion coefficients according to 3.

These three sets of expansion coefficients are the same for a converged cluster expansion.
Thus, in case they deviate from each other this is another hint that the cluster expansion
is not well converged. All numbers for expansion coefficients given in this work are average
expansion coefficients. They compared well with expanison coefficients obtained from the
two other procedures but produced more stable expansion coefficients when the number of
input structures was varied.



Chapter 8

Temperature effects

When we are able to describe the energetics in an alloy, we know immediately how to
calculate, in principle, the temperature dependence of the expectation values of all observ-
ables with the help of the partition sum of the system. Again, as for the solution of the
many-particle Schrödinger equation in chapter 3, the direct calculation of the partition
sum is simply not feasible for systems containing more than a few lattice sites. We present
two methods, the Cluster Variation Method (CVM) based on the work of Kikuchi [80] and
the Monte Carlo (MC) Method, for the calculation of phase diagrams and temperature
dependent observables that avoid the direct calculation of the partition sum.

In the following the ensemble average of observable X will be denoted with
〈
X
〉

T
,

whereas the unit cell average will be denoted with
〈
X
〉

U
according to previous chapters.

8.1 Characterizing the state of order

First, let us quickly think of the information we are interested in and the information we can
extract from experiments, see also the following section 8.5.1. We need to find appropriate
expressions to define and measure the changes that occur, for example, when we heat up
a system or change the concentration of one atomic species. Substitutional alloys are fully
described when we know which site is occupied by what type of atom, namely, when we
know the configuration σσσ. However, neither the detailed configuration can be accessed by
experiment nor some 1023 numbers can be handled in theory. Therefore we define averages
that can, at least partly, be accessed by experiments and that still can answer questions,
for example, whether the system is “ordered” or not. We define two types of parameters,

• Long-range order:
This is the more intuitive definition of order, taking into account that many ground
state structures of alloys need to be described by unit cells that contain different
sublattices that are preferentially occupied by a certain atomic species. One example
would be the Ni3Al-L12 structure: The simple cubic positions are occupied by Al
atoms while the face centers are occupied by Ni atoms. Thus, if we label the four
atomic positions in the L12 unit cell from one to four, their Ni concentrations would
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be c1 = 0 and c2 = c3 = c4 = 1. If we heat up the system, some of the Ni atoms
exchange sites with some Al atoms until the probability of finding a Ni atom is the
same on all lattice sites, e.g., c1 = c2 = c3 = c4 = 3

4
. We define a long-range order

parameter as a weighed sum over sublattice concentrations cl of a given structure,

Θ = w0 +
∑

l

wlcl , (8.1)

that fulfills,

Θ =

{
1 perfectly ordered system at T = 0,
0 completely disordered system at high temperature T .

(8.2)

For the L12 structure an appropriate definition of a long-range order parameter would
thus be,

ΘL12 =
1

3
(c2 + c3 + c4 − 3c1) =

1

3
(3 − 4c1) . (8.3)

The long-range order parameters can also be expressed by the point correlation of
the respective sublattice l by using,

cl =
1

2
(〈σl〉

T
+ 1) . (8.4)

Note that the calculation of cl or 〈σl〉
T

involves averaging over the whole sample.
Hence, from the long-range order parameters we cannot learn about local order, for
example, whether in the system there are ordered domains or not.

• Short-range order:
Let us assume that we have an atom A on site m1. We then want to know the
probability to find an atom A on site m2 located at distance vector rrr12 from site
m1. Questions like this cannot be answered from the knowledge of the long-range
order as the long-range order averages over all distances between atoms. Hence,
the term short range order comprises pair- and many-body probabilities. The pair-
and many-body probabilities are equivalent (see Sec. 8.2.3) to pair- and many-body
cluster correlation functions (see Sec. 5.4 for definitions),

ξαK
=

1

DαK
N0

∑

{R0|ttt0}
Φ({R0 |ttt0}:αK) .

In x-ray scattering experiments one usually measures the Warren-Cowley short-range
order parameters which are equivalent to pair-correlations, see Sec. 8.5.1.

8.2 The Cluster Variation method

We start from a model crystal where all atomic positions are ideally confined to lattice
sites xxxm. The only allowed excitations are thus the occupations of the lattice sites with
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either A or B atoms. The state of the crystal can be fully specified by the configuration σσσ
alone, see section 5.4, and the energy is given by E(σσσ).

Once we have calculated the partition sum,

Z =
∑

σσσ

exp

(

−E (σσσ)

kT

)
(5.44)

= Tr exp

(

−E (σσσ)

kT

)

, (8.5)

we are able to calculate the probability of finding the system in a certain configuration,

ρ(σσσ) =
exp

(

−E(σσσ)
kT

)

Z
. (8.6)

Note that the summation over all configurations in Z implicitly includes the sum over
all possible concentrations. The free energy F can be derived from the knowledge of the
partition function,

F = −kT lnZ . (8.7)

Following references [81,82,83] we define a functional for the free energy,

F = −kTTr

(

ρ ln
exp(−E(ρ)

kT
)

ρ

)

= TrρE (ρ) − kTTrρ ln ρ

= U [ρ] − TS[ρ] . (8.8)

As the logarithm fulfills,
1

2
(ln x+ ln y) ≤ ln

(
x + y

2

)

, (8.9)

the logarithm of an expectation value of an observable X, with Trρ = 1, is greater or equal
to the expectation value of the logarithm lnX,

Tr (ρ lnX) ≤ ln Tr (ρX) . (8.10)

Therefore,
F [ρ] ≥ F , (8.11)

where F [ρ] = F is fulfilled in thermal equilibrium for ρ =
exp(−E(ρ)

kT )
Z

and we thus have a
recipe to calculate ρ in thermal equilibrium without calculating Z,

F = Min!
ρ

F [ρ] . (8.12)

8.2.1 The internal energy

We rewrite the functional for the internal energy of an ensemble by using the cluster
expansion of section 5.4,

U [ρ] = TrρE (ρ) = N0

∑

K

∑

βK

DβK
JβK

〈
ξβK

〉

T
. (8.13)
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8.2.2 The configurational entropy

In the cluster variation method, the entropy functional,

S = −kTr (ρ (σ) ln ρ (σ)) , (8.14)

can be expressed as [84,59]:

S = −kTr (ρ (σ) ln ρ (σ)) =
∑

K

∑

βK

ΩβK
, (8.15)

where the ΩβK
are defined by,

−kTr(αL) (ραL
ln ραL

) =
∑

K,βK⊂L,αL

ΩβK
. (8.16)

A hierarchy for CVM approximations can hence be defined by neglecting the terms ΩβK

for clusters larger than given basic clusters {αmax} (The basic clusters are also sometimes
called maximum clusters). The entropy is then approximated by

S =

{αmax}∑

K,βK

ΩβK
. (8.17)

Combining Eq. (8.16) and Eq. (8.17) we can write the entropy as,

S = −k
{αmax}∑

L,αL

aαL
Tr(αL) (ραL

ln ραL
) , (8.18)

where the aαL
are geometric coefficients defined by,

{αmax}∑

KβK⊃LαL

aαL
= 1 . (8.19)

8.2.3 Cluster algebra

The free energy is minimized with respect to the correlations
〈
ξαN

〉

T
. We therefore write

the cluster probabilites ραL
as a function of the correlations

〈
ξαN

〉

T
[61].

1. As in chapter 5, we introduce the occupation variable σn:

σn =

{
+1 if species i = +1 is at site n ,
−1 if species i = −1 is at site n .

(8.20)

2. Define Γi(n):

Γi(n) =
1

2
(1 + iσn) . (8.21)
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3. The probability to find a cluster αL with occupation σσσL = {i1, i2, . . . .iL} in the
occupation σσσ of the whole crystal with N0 unit cells can be written as:

ραL
(σσσL,σσσ) = ραL

(i1, i2, . . . , iL) =
〈 1

N0

∑

αL

Γi1(m1)Γi2(m2) . . .ΓiL(mL)
〉

T
, (8.22)

where the sum runs over all clusters αL = {m1, m2, . . . , mL} related by a space group
operations in the system with N0 unit cells.

4. Define theK-body correlations ξαK
, Eq. (5.18), for the cluster αK = {m1, m2, . . . , mK}:

ξαK
=

1

DαK
N0

∑

{R0|ttt0}
Φ({R0 |ttt0}:αK) . (8.23)

5. Using Eq. (8.21) the probabilities are then expanded into the correlations,

ραL
(σσσL, ξξξ) =

1

2L

(

1 +
∑

βK

V (σσσL)αLβK

〈
ξβK

〉

T

)

. (8.24)

Note that the matrix V (σσσL)αLβK
needs to be calculated only once for a given set

σσσL, αL and βK .

We can now rewrite the free energy functional,

F = N0




∑

βK

DβK
JβK

〈
ξβK

〉

T
+ kT

{αmax}∑

βK

bβK
Tr(βK)ρβK

ln ρβK



 , (8.25)

(the sum over βK runs only over one unit cell) as a function of the correlations F =

F
(

{
〈
ξαK

〉

T
}
)

and therefore,

F = Min!
ρ

F [ρ] = Min!
{
〈

ξβK

〉

T
}
F
(

{
〈
ξβK

〉

T
}
)

. (8.26)

The minimization must be carried out with the constraint,

0 ≤ ρ (σσσK, ξξξ)βK
≤ 1 . (8.27)

8.2.4 The Bragg-Williams approximation (BW)

The basic cluster (the set of basic clusters) defines the range of correlations that are taken
into account for the system in question. Within a given cluster variation approximation,
correlations of pair-clusters that are too large to be contained in the basic cluster therefore
fulfill:

ξBW
α2

=
〈
σnσm

〉

T
=
〈
σn

〉

T

〈
σm

〉

T
=
〈
ξn1

〉

T

〈
ξm1

〉

T
, (8.28)
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where BW indicates that the pair α2 = {n,m} is not contained in the basic cluster and
ξn1, ξm1 refer to correlations of point-clusters at lattice sites n,m.

The contribution of the BW pairs to the free energy functional can be written as,

EBW =

BW∑

α2

Dα2Jα2

〈
ξBW
α2

〉

T
=

1

2

BW∑

n,m

DnmJnm

〈
ξn1

〉

T

〈
ξm1

〉

T
, (8.29)

with Jnm = Jα2 for α2 = {n,m}.
Originally, the BW approximation [85] was introduced with the point-cluster that con-

tains only one atomic site as basic cluster. Then all pair energies are written as in Eq. (8.29).

8.2.5 Minimization of the free energy

In the following the index BW means pair-clusters that are not contained in the the max-
imum or basic cluster. If not indexed, the clusters are assumed to be contained in the
basic cluster, summations are to be taken over all clusters contained in the basic cluster,
including the point-clusters.

The 1. derivative

For clusters αK that are not point-clusters, we have:

gαK
=
∂(F/N0)

∂
〈
ξαK

〉

T

= DαK
JαK

− kT
∑

βL

aβL

2L

∑

σσσβL

V (σσσβL
)
αKβL

ln ρβL
(σσσβL

, ξξξ) , (8.30)

where we took into account, that
∑

σσσβL

V (σσσβL
)
αKβL

= 0 [61]. The derivatives for the

point-clusters (labeled with their lattice sites n1, m1) are modified:

gn1 =
∂(F/N0)

∂
〈
ξn1

〉

T

=Dn1Jn1 +
∑

m1

Dn1m1Jn1m1

〈
ξm1

〉

T

− kT
∑

βL

aβL

2L

∑

σσσβL

V (σσσβL
)
n1βL

ln ρβL
(σσσβL

, ξξξ) , (8.31)

where we took into account that Dn1m1Jn1m1 = Dm1n1Jm1n1 .

The 2. derivative

Starting with clusters that contain more than one site, we find:

HαKβL
=

∂2(F/N0)

∂
〈
ξαK

〉

T
∂
〈
ξβL

〉

T

= −kT
∑

κM

aκM

22M

∑

σσσκM

VκMαK
(σσσκM

)VκMβL
(σσσκM

)
1

ρκM
(σσσκM

, ξξξ)
.

(8.32)
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This relation also holds for mixed derivatives Hn1βL
between point- and non-point-clusters.

For Hn1m1 we find:

Hn1m1 =
∂2(F/N0)

∂
〈
ξn1

〉

T
∂
〈
ξm1

〉

T

=Dn1m1Jn1m1

− kT
∑

κM

aκM

22M

∑

σσσκM

VκMn1 (σσσκM
)VκMm1 (σσσκM

)
1

ρκM
(σσσκM

, ξξξ)
.

(8.33)

Minimization technique

The (local) minimization condition for the free energy is (subscripts omitted):

ggg(
〈
ξξξ
〉

T
) = 0 . (8.34)

A Taylor expansion to first order around the ith input
〈
ξξξ(i)
〉

T
in an iteration cycle:

ggg(
〈
ξξξ
〉

T
) = ggg(

〈
ξξξ(i)
〉

T
) +HHH(

〈
ξξξ
〉

T
−
〈
ξξξ(i)
〉

T
) = ggg(i) +HHH(

〈
ξξξ
〉

T
−
〈
ξξξ(i)
〉

T
) (8.35)

is used to construct the next input vector
〈
ξξξ(i+1)

〉

T
(The HessianHHH is calculated at

〈
ξξξ(i)
〉

T
):

〈
ξξξ(i+1)

〉

T
=
〈
ξξξ(i)
〉

T
−HHH−1ggg(i) . (8.36)

This is the Newton-Raphson scheme. Due to the factor 1
ρκM

in Eq. (8.32) the inversion

of HHH becomes a problem at low temperatures, when some probabilities approach zero,
lim

kT→0
ρκM

= 0.

The natural iteration method

Another minimization procedure, the so-called natural iteration method [86,87], is also
often used to calculate the equilibrium free energy. The natural iteration method is tedious
to implement and converge for the relatively large maximum clusters used for the surface
calculations. Although it was not used in this work, we will quickly sketch how it works.
The central quantity in the natural iteration method are the probabilities of the various
possible occupations of the maximum cluster. From these probabilities all probabilities for
the occupation of smaller clusters can be obtained. The constraint that the sum over all
probabilities that the maximum cluster can have must be equal to one, is coupled to the
free energy with the help of a Lagrange multiplier. Starting from an initial guess for the
probabilities of the maximum cluster, the iteration then consists of an inner and an outer
loop (called minor and major iteration). The inner loop finds the Lagrange multipliers for
given probabilities, the outer loop finds the minimum of the free energy with respect to
the probabilities.
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8.2.6 Calculation of phase diagrams

The free energy F is coupled to particle reservoirs of particles A and B. The Legendre
transformation of F with respect to N1 and N2 is the grand potential G,

G = F − µANA − µBNB = F − ∆µ(NA −NB) − µ(NA +NB) , (8.37)

with,

∆µ =
1

2
(µA − µB) , µ =

1

2
(µA + µB) . (8.38)

Let there be M lattice sites in each of the N0 unit cells of the underlying lattice. The total
number of particles in the system is constant, MN0 = N1 +N2,

G = F − ∆µ(N1 −N2) − µMN0 . (8.39)

After minimization of G with respect to the correlations
〈
ξαK

〉

T
, the thermodynamic equi-

librium values of the correlations are functions of T,∆µ, µ. However, as,

∂(G + µMN0)

∂
〈
ξαK

〉

T

=
∂G

∂
〈
ξαK

〉

T

, (8.40)

the thermodynamic equilibrium values of the correlations depend only on T and ∆µ,

〈
ξαK

〉

T
=
〈
ξαK

(T,∆µ)
〉

T
. (8.41)

Thus the chemical potential µ just induces a constant energy change that does not depend
on the thermodynamic state of the system. In what follows we will thus assume µ = 0
and,

G = F − ∆µ(N1 −N2) . (8.42)

For the calculation of a phase diagram, we calculate the minimum value G with a given
(set of) long-range order parameter(s) Θi that characterizes phase i,

G = G (Θi) . (8.43)

Practically the long-range order parameter of a given phase can be imposed only for a
certain range of T and ∆µ as G can only be minimized if it has at least a local minimum
compatible with the order parameter Θi.

In the phase diagram the phase i with the lowest possible value of G (Θi) is realized. A
phase transition can occur if two different long-range order parameters yield the same G,

G (Θi) = G (Θj) . (8.44)

The classification of phase transitions in first and second order is carried out according to
textbook thermodynamics [88].
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Surface phase diagrams

In this work the calculation of surface phase diagrams within the cluster variation approach
was realized with slabs that contain a finite number of layers parallel to the surface layer.
In principle each layer can have different long-range order parameters as well as differ-
ent cluster expansion coefficients. However, once the long-range order parameters in the
slab are specified, the calculation of the phase diagram works exactly as described in the
previous section for the bulk case.

8.2.7 Extensions for phonons

The CVM equations can be extended so that the entropy and energy contributions due
to oscillations of the atoms around their ideal lattice sites are taken into account. Two
different approaches exist:

• Kikuchi [89,90,91,92,93] extends the phase space of the CVM by introducing proba-
bilities for the displacement of the atoms from their ideal lattice sites. Higher order
probabilities (corresponding to higher order clusters) are also required, e.g., ρ (rrr1, rrr2)
is the probability to find one atom displaced at rrr1 when the other is at rrr2.

The now continuous CVM equations must be solved on a discrete mesh and the
numerical effort required is dramatic.

• Finel [94] assumed that the potential for displacements of the atoms from their ideal
lattice site is purely harmonic, leading to a Gaussian distribution of the displacement
probabilities in a cluster. This Gaussian distribution can be integrated analytically,
and the resulting equations are only slightly more complicated than the traditional
CVM equations.

However, to the best knowledge of the author, no such extension to the CVM was used in
the ab-initio modeling of phase diagrams.

8.3 The Monte Carlo method

In the CVM method one models the free energy in a restricted phase space given by the
basic cluster αmax. In contrast, with the Monte Carlo method one tries not to model the
free energy at all, but one takes into account that in thermal equilibrium the minimum of
the free energy is characterized by the Boltzmann distribution,

ρ(σσσ) =
exp

(

−E(σσσ)
kT

)

Z
. (8.45)

Thus the probabilities for two states are given by,

ρ(σσσ1)

ρ(σσσ2)
=

exp
(

−E(σσσ1)
kT

)

exp
(

−E(σσσ2)
kT

) , (8.46)
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and the energies of the configurations can be calculated from a cluster expansion, see
section 5.4.

In the traditional Monte Carlo approach one randomly generates a configuration σσσ2

by slightly modifying configuration σσσ1, e.g., by exchanging the occupations at two lattice
sites. This change is accepted if E (σσσ1) > E (σσσ2) or it is accepted with probability ρ(σσσ1)

ρ(σσσ2)
if

E (σσσ1) < E (σσσ2). The procedure is repeated until all correlations do not change anymore.
One then assumes that the correlations approached their equilibrium value. See [95,96,97]
for a detailed introduction.

8.4 Excitations not included in the lattice gas model

Various authors modeled the influence of phonons and electronic excitations on the phase
diagram. Due to the complexity of the problem, a wealth of approximations is used and
a variety of assumptions are made, leading to sometimes contradicting conclusions. We
restrict ourselves to cite some typical approaches [57,58,98,99,100,101,102,103,104,105].

8.5 Inversion of the CVM equations

The free energy functional of the CVM explicitly depends on the correlations
〈
ξβK

〉

T
and

the expansion coefficients JβK
. Consider that we know all correlations at a given temper-

ature from experiment. Then we use Eq. (8.30),

0 =
∂(F/N0)

∂
〈
ξαK

〉

T

= DαK
JαK

− kT
∑

βL

aβL

2L

∑

σσσβL

V (σσσβL
)
αKβL

ln ρβL
(σσσβL

, ξξξ) ,

in order to derive the expansion coefficients [106,107,108]. The minimum condition can
be used to extract expansion coefficients from all methods with an explicit free energy
functional, e.g., the random phase approximation [109] and its extensions, such as the ring
approximation [110]. Inversion of the Monte Carlo method is possible by a trial and error
method similar to the Monte Carlo method itself: Values for the expansion coefficients are
guessed and optimized until they reproduce in a Monte Carlo simulation the experimentally
observed correlations [111,7,95,108].

In general, the main problem consists in determining a complete set of accurate correla-
tions from experiment. For example, from x-ray experiments only pair-correlations can be
extracted, and expansion coefficients extracted from information on only pair-correlations
are not unique [112].
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8.5.1 Information from x-ray experiments

We show that from x-ray experiments only pair-correlations can be extracted (in kinematic
approximation) with the help of Eq. (2.7) for the scattered intensity,

I = |A|2 = |A0|2
(
e2

mc2
1

R0

)2∑

nm

fn (qqq) f ∗
m (qqq) exp (iqqq (rrrn − rrrm))

= |A0|2
(
e2

mc2
1

R0

)2 ∑

nm

(f0 (qqq) + f1 (qqq) σn) (f ∗
0 (qqq) + f ∗

1 (qqq)σm) exp (iqqq (rrrn − rrrm))

= |A0|2
(
e2

mc2
1

R0

)2 ∑

nm

(
|f0|2 + 2R (f0f1) σn + |f1|2σnσm

)
cos (qqq (rrrn − rrrm)) ,

(8.47)

where we took into account that the atomic form factors fn (qqq) are purely atomic quantities
that depend only on the occupation of lattice site n and on the momentum transfer qqq. A
cluster expansion of fn (qqq) thus contains only terms up to first order, fn (qqq) = f0 (qqq) +
f1 (qqq)σn.

For a periodic crystal with N lattice sites we can further simplify the above expression,

I = |A0|2
(
e2

mc2
1

R0

)2

N

(

|f0|2
∑

n

cos (qqq (rrrn − rrr0))

+ 2R (f0f1)
( 1

N

∑

m

σm

)∑

n

cos (qqq (rrrn − rrr0))

+ |f1|2
1

N

∑

nm

σnσm cos (qqq (rrrn − rrrm))

)

= |A0|2
(
e2

mc2
1

R0

)2

N

(
(
|f0|2 + 2R (f0f1)

〈
σ
〉)∑

n

cos (qqq (rrrn − rrr0))

+ |f1|2
∑

n

〈
σσ (rrrn − rrr0)

〉
cos (qqq (rrrn − rrr0))

)

,

(8.48)

with the pair-correlations,

〈
σσ (rrrn − rrr0)

〉
=

1

N

∑

m

σn+mσm . (8.49)

The pair-correlation in a completely disordered alloy is given by,

〈
σσ (rrrn − rrr0)

〉
=
〈
σ
〉〈
σ
〉
. (8.50)
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We see that the intensity of the fundamental rods of the disordered alloy changes quadrat-
ically with

〈
σ
〉
,

I = |A0|2
(
e2

mc2
1

R0

)2

N

(

|f0|2 + 2R (f0f1)
〈
σ
〉

+ |f1|2
〈
σ
〉〈
σ
〉
)
∑

n

cos (qqq (rrrn − rrr0)) .

(8.51)
The intensity difference between an ordered structure, giving rise to superstructure rods,
and the disordered alloy reads,

∆I = |A0|2
(
e2

mc2
1

R0

)2

N |f1|2
∑

n

(〈
σσ (rrrn − rrr0)

〉
−
〈
σ
〉〈
σ
〉)

cos (qqq (rrrn − rrr0))

= |A0|2
(
e2

mc2
1

R0

)2

N |f1|2
(
1 −

〈
σ
〉〈
σ
〉)∑

n

αn cos (qqq (rrrn − rrr0)) , (8.52)

with the Warren-Cowley short-range order parameters (see, e.g., [78] and citations therein),

αn =

〈
σσ (rrrn − rrr0)

〉
−
〈
σ
〉〈
σ
〉

1 −
〈
σ
〉〈
σ
〉 . (8.53)

To extract from experimentally obtained short-range order parameters effective pair in-
teractions a mean-field (point as maximum cluster, see also Sec. 8.2.4) treatment of the
CVM equations, the Krivoglaz-Clapp-Moss formula, was commonly used [113,114]. The
effective pair interactions obtained in this way are from measurements at one concentra-
tion and thus are usually concentration (and also temperature) dependent. Due to higher
experimental resolution nowadays an inversion of theories including short-range order as
described in Sec. 8.5 is used. As was noted by Sanchez [115,108], measuring the short-
range order parameters αn for a set of different concentrations and temperatures allows
to indirectly extract the contribution of many-body correlations. Also, multiple scattered
photons (not included in the scattering theory developed in this section) carry information
about many-body correlations that could be used to extract information about many-body
correlations from experiment.



Chapter 9

The (110) surface of Ni90%-Al

We know from the x-ray experiments performed by H. Reichert (Sec. 2.3.2) that Al segre-
gates into the surface of Ni90Al10, forming an ordered monolayer in the surface. We want
to understand why Al segregates into the surface and what are the reasons that an ordered
monolayer is formed on top of a disordered material.

As we will see, a simple size effect due to the mismatch of the lattice constants of Al
and Ni (experiment: aAl = 7.65 a.u., aNi = 6.65 a.u.) is not responsible for the segregation
of Al into the surface. The segregation seems to be driven by general modifications of the
electronic structure at the surface. By means of the bond charge density and the covalent
bond energy Ecov we try to characterize these electronic modifications.

However, since by definition the surface is just the end of bulk material, surface proper-
ties always depend on the underlying bulk. Therefore, and in order to see if the surface of
NiAl can be described by a simple extrapolation of the bulk properties, we look at fcc-based
NiAl bulk material first.

A glance at the band structures

Ni and Al are metals that simply display different behavior. While Al is often approximated
as free electron gas which is reflected in the parabolas of the band structure in Fig. 9.1, Ni
shows localized atomic d-states that form narrow bands in Fig. 9.1 which allow a description
of parts of its behavior in terms of atomic orbitals, their overlaps and matrix elements.
When Al and Ni atoms are mixed, we do not expect that the free electron gas limit nor
the atomic orbitals description can fully capture the relevant physics. Before even getting
started we already see that a detailed physical interpretation in terms of known “historic”
expressions such as tight-binding matrix elements or properties of the free electron gas will
not be possible.
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Figure 9.1: Band structure of Al and Ni.

9.1 NiAl bulk material

In order to characterize the fcc-based part of the NiAl phase diagram, 75 structures were
fully relaxed (See chapter 7 for a definition of the term fully relaxed, and appendix B for
computational details). The structures were chosen according to the following criteria:

• ground state structures and structures that appear in the fcc-based part of the phase
diagram of NiAl [8]

• ground state structures that appear in other binary fcc-based compounds than NiAl,
see [116,117]

• other artifical structures that might, from an intuitive point of view, be relevant in
NiAl

• structures based on large unit cell that allow to check the convergence of long-ranged
pair interactions, where long-ranged means 10 to 30 nearest-neighbor

• artifical structures especially designed to lift accidental degeneracies for certain clus-
ter figures in the other structures considered so far.

Among the 75 originally considered structures were 58 that turned out to be stable with
atomic positions relatively close to ideal fcc positions when they were fully relaxed. These
58 structures were used to construct the cluster expansion.

As one does not know apriori which clusters are relevant for a certain system, we
started from a minimum set of clusters (three pairs, the nearest-neighbor triangle, the
nearest-neighbor tetrahedron) that we extended in a systematic trial-and-error fashion
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until the convergence of the cluster expansion was satisfying (average errors per atom
for the fully relaxed CE: efit = 13 meV, epred = 35 meV. The prediction error is much
larger than the mean average error from the fit as some structures among the 58 structures
seem to be necessary to achieve a good cluster expansion, these structures cannot be
predicted satisfactorily). For the pair-clusters the trial-and-error scheme is simple: Just
add longer and longer pairs until their expansion coefficients do only slightly improve efit

and make epred worse. To generate the three- and four-body clusters we started from the
smallest cluster that contains N−1 sites, e.g., the nearest-neighbor pair for the three-body
clusters and the nearest-neighbor triangle for the four-body interactions. We then added
one additional site that was a nearest-neighbor site to at least one of the sites already
contained in the N − 1 body cluster. Each of these clusters was then evaluated for its
relevance in the cluster expansion. We also tested the most compact five, six and seven
sites clusters. For NiAl, the contribution of five point- and higher clusters seems to be
irrelevant.

Note that we used much more structures than it is commonly assumed in literature to be
sufficient for an accurate cluster expansion. The reason is that we needed to have a very well
converged cluster expansion for an accurate broken bond model of the surface energetics.
This is the basis to extract well converged surface modified expansion coefficients according
to the scheme used in Sec. 7.2.2.

Fig. 9.2 shows the clusters used for the cluster expansion in NiAl and depicts the re-
spective energies that we calculated from the fully relaxed structures. The general features
of the CE in NiAl are clearly the strong, positive and thus ordering, nearest-neighbor inter-
action and the relatively quickly decaying remaining cluster expansion coefficients. Other
results published on fcc-based NiAl cluster expansion coefficients (cluster expansions from
unrelaxed and volume relaxed energies from “LMTO-ASA” calculations [116,118], from
“KKR-CPA-GPM” calculations [119,11] and from mixed-basis pseudopotential calcula-
tions [9], inverse Cluster Variation and inverse Monte-Carlo calculations based on diffuse
x-ray scattering [6] and inverse Monte-Carlo calculations from diffuse neutron scattering
experiments [7]) also show the strong ordering nearest-neighbor pair coefficient. However,
the absolute values of the expansion coefficients deviate from the ones presented here. For
the theoretical considerations this is due to the fewer and unrelaxed or volume relaxed
input structures that were used, on the other hand, the extraction of accurate interaction
coefficients from experiment is difficult [112].

9.1.1 Relaxation: No simple atomic size effect

The relaxation behavior which we found in the Ni-rich part with more than 75% Ni in
NiAl can be characterized by three examples.

• If we look at a single Al atom dissolved in Ni bulk, we find that the relaxations
of the Ni atoms surrounding the Al atom are small. Also the relaxation energy of
∆E = 13 meV for each single Al atom embedded into Ni is small. The distance
between the Al atom and the surrounding Ni atoms is d = 4.63 a.u. (from a fully
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Figure 9.2: Figures used in the cluster expansion and respective interaction coefficients.
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Name c/a

NiAl5 - 0.96 fcc
NiAl3 Z3 0.97 fcc
NiAl2 β2 0.56 bcc

NiAl L10 1/
√

2 bcc
Ni2Al2 Z2 0.77 bcc

Ni2Al β1 1/
√

2 bcc

Ni3Al Z1 ≈ 1/
√

2 bcc
Ni5Al - 0.88 -
(NiAl)1Al3 - 0.99 fcc
(NiAl)1Ni3 - 1.00 fcc

Figure 9.3: A single layer of Al atoms drives five layers of Ni atoms nearly into a bcc based
lattice, while the elements Ni as well as Al are both fcc based. The last two lines give the
c/a ratios for structures that contain instead of one layer of pure Al or Ni, one layer that
contains 50% Al and 50%Ni. The c/a ratios of these structures are very close to an ideal
fcc lattice.

relaxed Ni107Al calculation). The difference to the nearest-neigbor distance in Ni
(d = 4.61 a.u.) is merely 0.5%, compared to the difference of 15.3% relative to the
ideal Al lattice. Thus the larger Al atom does not strongly deform the Ni lattice. If
we look at Al as an ideal electron gas, this means that the gas is compressed relative
to its optimum state in pure Al. If we would assume that the “atomic size” is a
quantity that is maintained when elements form compounds, we would expect larger
relaxations. Therefore, for the moment it appears that we do not deal with a size
effect, but Al can, without much relaxation, be dissolved in a matrix of Ni atoms.

• When we place two Al atoms on nearest-neighbor sites in otherwise pure Ni, we find
that the fully relaxed energy of this configuration is high as well as the relaxations and
the relaxation energy are large. This means that Al atoms on nearest-neighbor sites
strongly repell each other. Let us try to give some very simple arguments to explain
this behavior in the context of an ideal electron gas: Two Al atoms on nearest-neigbor
sites in Ni are closer at each other than in pure Al. Thus their electron densities add
up to a higher electron density, the energy increases.

• Finally we look at layered structures built from periodic layers of Al and Ni. Ta-
ble 9.3 provides some examples for the calculated lowest energy c/a ratios for layered
structures along the (100) direction. The bain deformation along the (100) direction
transforms the perfect fcc lattice for c/a = 1 into a bcc lattice for c/a = 1/

√
2 ≈ 0.71.

We also classfied whether a structure is more or less still a fcc-based structure or al-
ready a bcc-based structure.
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To summarize, while isolated Al atoms in Ni do not cause large relaxation effects, Al
atoms on nearest-neighbor sites or even Al atoms in layers introduce large structural relax-
ations that are accompanied by considerable energy relief when the system is relaxed from
ideal fcc positions into the force and stress free mechanical equilibrium. However, Al atoms
on nearest-neighbor positions are energetically very unfavorable and their contribution to
the partition sum at relevant temperatures is very small. Fig. 9.4 summarizes the relax-
ation behavior for the 58 fcc-stable structures used for the cluster expansion. In Fig. 9.5 we
compare the energies of formation in the Ni-rich part to a heterogeneous mixture of pure
Ni and the L12 structure at the same composition. When we plot the difference between
the respective energy of formation Ef (σσσ, x) of structure σσσ (structure σσσ has composition x)
and the heterogeneous mixture 1,

∆Ef (σσσ, x) = Ef (σσσ, x) −
(

1 − x

1 − xL12

)

Ef (L12, xL12) , (9.2)

some structures are found with ∆Ef (σσσ, x) < 0. These structures are more stable than the
heterogeneous mixture. Some of them should appear in the experimental phase diagram
Fig. 2.8. The fact that none of the structures with ∆Ef (σσσ, x) < 0 is observed experimen-
tally is probably due to the slow kinetics at the low temperatures where the ground state
structure should exist.

1The energy of a heterogeneous mixture of the L12 structure and pure Ni is given by,

E (x) = aE (L12, xL12
) + bE (Ni) . (9.1)

The coefficients a and b are linear functions of the average composition x that are determined from
x = axL12

+ bxNi and E (x = xL12
) = E (L12, xL12

) and E (x = 1) = E (Ni). If we take into account
Ef (Ni) = 0 we arrive at Eq. (9.2).
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Figure 9.4: Fully relaxed (◦) and volume relaxed (�) energies of formation per atom for
58 structures used in the cluster expansion. The straight lines are a convex hull to the
lowest lying energies of the fully relaxed (black) and volume relaxed (gray) structures.
The dashed lines correspond to the energy of the random alloy where one assumes that all
correlations fully separate into point-correlations, ξαK

= ξK
1 , and the energy is calculated

as E(ξ1) =
∑

K

∑

αK
DαK

JαK
ξK
1 . Since there are energies of 58 structures shown, fully

relaxed and volume relaxed, one cannot connect each fully relaxed structure with its volume
relaxed counterpart from the graph alone. However, note that the relaxation energy for
energetically relevant structures below the energy of the random alloy is in general small in
the part of the phase diagram we are interested in, namely Ni > 75%. At a concentration
of Ni ≈ 90% relaxations seem to be negligible.
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Figure 9.5: Fully relaxed (◦) and volume relaxed (�) energies of formation for structures
with a concentration of cNi ≥ 0.75 compared to a mixture of the L12 structure and pure

Ni, ∆Ef (σσσ, x) = Ef (σσσ, x) −
(

1−x
1−xL12

)

Ef (L12, xL12
). See caption of Fig. 9.4 for further

details. One sees how small the relaxation energies of relevant structures for a concentration
cNi ≥ 0.75 really are. A ground state structure Ni8Al is observed with an energy of around 8
meV (≈ 100 K) less than the homogeneous mixture (This structure might be destabilized
when magnetism is taken into account. It has the same structure as the NbNi8 alloy,
see [116]. The D7-Ni7Al structure [120] at x = 7/8 = 0.875 is unstable compared to
a heterogeneous mixture of the NbNi8 structure and the L12 structure and thus not a
ground state structure according to our calculations).
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9.2 The (110) surface

Let us, to begin with, just guess whether a single Al atom will segregate to the surface
of Ni. So far we looked at an Al atom in Ni as a compressed electron gas. An Al atom
in the surface has more space for its electrons as some of the electrons may slightly leak
out into the vacuum. Hence, according to this oversimplified reasoning an Al atom in the
surface would have a lower energy and from this argument Al would segregate into the
surface. The same conclusion, namely that we expect the segregation of Al, also can be
drawn from the surface energy of the elements. We calculated the surface energy of the
(110) surface of Ni to be 1.50 eV, whereas the surface energy of Al is just 0.80 eV, this
intuitively being in favor of the segregation of Al (The limited power of this argument is
discussed in Sec. 6.1.7).

On the other hand, we know from the bulk cluster expansion that the nearest-neighbor
pair-interaction coefficient dominates fcc-based NiAl. This means that it is energetically
favorable for a single Al atom to be completely surrounded by Ni atoms on nearest-neighbor
sites. If we bring such a single Al atom from the bulk to the surface, some of the Ni-Al bonds
must be broken, leading to a higher energy. Thus Al would not segregate according to this
simple broken bond picture (See again Sec. 6.1.7 for the limited power of the argument
given here).

9.2.1 Characterization from ab-initio calculations

In oder to see which of the above considerations is correct, we will first discuss the be-
havior of the NiAl (110) surface with Ni> 75% from direct ab-initio calculations. For all
calculations we used slabs with 9 (110) layers, see Fig. 9.6. The lateral lattice constant of
the slab unit cells was kept fixed at 6.60 a.u. (corresponding to the ab-initio interpolated
lattice constant of Ni90Al10) in order to mimic the underlying bulk material. The extension
of the slab unit cell orthogonal to the (110) layers was 50 a.u. in all calculations. All slab
calculations were carried out with configurations that had an inversion center or a mirror
plane in the central layer of the slab. The k-point mesh was chosen to be close to the
k-point mesh used in the bulk calculations. A grid of two k-points was used orthogonal
to the layers (Basically one k-point is enough as one assumes that the distance between
the periodically arranged slabs is large enough that they do not interact and no dispersion
is present). All other parameters were kept the same as in the bulk calculations, see ap-
pendix B. The atoms of the various configurations of the slabs were all moved along the
forces acting on them until the forces were so small that the energy change corresponding
to completely vanishing forces was smaller than the assumed accuracy of the calculations
of ≈ 1mRy for the complete unit cell of the slab. This was achieved for smaller maximum
forces than 2mRy/(a.u.).
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Figure 9.6: A periodic arrangement of 9-layered slabs was used to simulate the surface
behavior.

Segregation of Aluminum

In Fig. 9.7 we sketched the changes when we bring a single Al atom into the (110) surface
of Ni. From the corresponding ab-initio data we see that according to the ab-initio calcula-
tions Al segregates spontaneously into the surface. It is also clear that from a broken bond
model due to the strong ordering nearest-neighbor pair-interaction coefficient segregation
of Al is energetically unfavorable. The broken bond model thus cannot be used even for a
qualitative description of the surface energetics of NiAl.
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Figure 9.7: Models showing the segregation of a single Al atom into the (110) surface of
Ni. Also shown are the broken nearest-neighbor bonds of the Al atom. Given are the
energy differences between the shown configurations as calculated from ab-initio data and
from broken bond configurations. The simulation of a “single” Al atom within the surface
was modeled by calculations for a (2× 6/

√
2) surface unit cell where the Al-Al interaction

is already very small. As mentioned before, also the configuration of the 9-layered slabs
where symmetric with respect to their center plane.
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Surface concentration of Aluminum

Let us assume for the moment that the strong nearest-neighbor interaction is qualitatively
preserved in the surface; we will justify this assumption later. We then can guess the
Al surface concentration with the lowest energy from a glance at the (110) surface of a
fcc crystal (see Fig. 9.8). In the (110) surface each atom has two nearest-neighbor bonds
and two second nearest-neighbor bonds to other surface atoms. If we assume that the
energy related to the second nearest-neighbor interaction coefficient is small compared
to the dominating nearest-neighbor interaction coefficient, the energetics in the surface
is determined by the occupation of chains along the nearest-neighbor bonds within the
surface. The lowest energy configuration of one such chain is the one with the most nearest-
neighbor bonds between Ni and Al atoms, or in other words, the Al surface concentration
with the lowest energy is expected to be 50%. Fig. 9.8 illustrates a situation where we
bring an additional Al atom into a surface that already contains 50% Al. The extra Al
atom is strongly repelled by the repulsive nearest-neighbor interaction coefficients between
two Al atoms. Note that this also holds for the second layer and some sites in the third
layer, as nearest-neighbor bonds in the fcc (110) surface stretch down into the third layer.
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Figure 9.8: Models showing the segregation of a single Al atom into a fcc (110) surface
covered by an L12-ordered monolayer of NiAl. Also shown are the broken nearest-neighbor
bonds of the Al atom. Given are the energy differences between the shown configurations
as calculated from ab-initio data and from broken bond configurations. The calculations
were carried out for (2 × 6/

√
2) surface unit cells.
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Ordering in the surface

If the above said is true, the ordering mechanisms in the surface are simple.

• Al segregates into the surface until a concentration of 50% Al is reached.

• Due to the strong nearest-neighbor interaction further Al atoms are stopped in the
third layer.

• The Al atoms order in chains on every second site along the nearest-neighbor bonds.

⇒ The surface is ordered.

but: Is it really that simple?

If we look at one isolated chain with antiferromagnetic nearest-neighbor interactions, we
note that this is nothing else but a 1d Ising model. We know from textbook physics that
long-range ordering cannot be established for the 1d Ising chain for finite temperatures.
Therefore the weak interaction between the chains formed by nearest-neighbor bonds in
the surface might be decisive for the order formed in the surface. We take a closer look at
different possible ordered surface monolayers.

L12 versus D022 ordering in the surface There are in principle only two different
ways to arrange the Ni-Al nearest-neighbor chains in the surface, corresponding to a cut
through the L12 or the D022 structure, see Fig. 9.9. In other words, if one takes one step
along the second-nearest-neighbor bond in the surface one may either find the same atomic
species or the other atomic species than the one that was on the site one started from.
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Figure 9.9: Surface ordering without nearest-neighbor sites occupied by atoms of the same
type. The model on the left hand side illustrates the L12 surface coverage, on the right
hand side the surface ordering corresponding to a cut through a D022 structure is shown.
The calculated energy difference per surface site is EL12 − ED022 = 13 meV for a non-
spin-polarized calculation with 9 layers and EL12 − ED022 = 9 meV in the spin polarized
calculation. We also calculated the energy difference for a 19 layer slab with one monolayer
of ordered NiAl on top. We find EL12 − ED022 = 23 meV for the 19 layer slab. All sites
inside the slab from the 2nd to the 8th layer (and from the 2nd to the 18thlayer for the 19
layer slab) were occupied by Ni atoms.
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Going from L12 to D022 ordering Fig. 9.10 shows the energies which we calculated
for various structures when going from the D022 to L12 surface ordering. Obviously the
energy is increasing with the number of Al atoms that occupy second-nearest-neighbor
sites in the surface.
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The importance of the bulk concentration Depending on the chemical potential
in the bulk and thus on the bulk Ni concentration, we expect that the concentration of Al
atoms in the first, second and third subsurface layer changes. We calculated the energies
for possible subsurface concentrations with either a L12 or a D022 ordering in the surface.
We find that the energetically favored type of order of the surface monolayer, L12 or D022,
depends on the subsurface concentration, see Fig. 9.11. Hence, according to the ab-initio
calculations, the type of surface order should depend on the bulk Ni concentration.
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Figure 9.11: Difference energy of various L12 (◦) and D022 (♦) ordered surfaces compared to
a mixture of a pure Ni and a L12-ordered slab with 9 layers (and two surfaces), ∆E (σσσ, x) =

Ef (σσσ, x)−
(

1−x
1−xL12

)

Ef (L12, xL12
). Shown are the Al concentrations in the first five layers

for each L12- and D022-ordered slab. The fact that ∆E (σσσ, x) < 0 means that the mixture
of a pure Ni and a L12-ordered slab is energetically less favorable than a slab configuration
with 50% Al segregated into the first layer.

Relaxation effects at the surface The relaxation behavior at the surface is similar
to the bulk, namely Al atoms on nearest-neighbor sites strongly repel each other and
thus introduce large geometrical relaxations and relaxation energies. Moreover, since the
strong nearest-neighbor interaction of the bulk is qualitatively preserved at the surface,
configurations with Al atoms on nearest-neighbor sites are energetically unfavorable and
the contribution of configurations with Al atoms on nearest-neighbor sites to the partition
sum is small. Most surface decorations without Al atoms on nearest-neighbor sites dis-
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play relatively moderate geometrical relaxations and relaxation energies, as shown by the
example in Tab. 9.1. Although the relaxation energies for the surface are not negligible,
their contribution to the total energy was found to be small so that the basic findings,
such as segregation of Al into the surface and the strong nearest-neighbor interaction in
the surface, were qualitatively also present in data from unrelaxed structural energies.

layer relaxation (%)

1-1 2.4
1-2 -10.2

2-2 0.0
2-3 5.2

3-3 0.3
3-4 -1.2

Table 9.1: Calculated interlayer and intralayer relaxations compared to the ideal lattice
constant of the L12 structure in a 9-layer slab ordered in L12 structure. The larger Al
atoms stick out of the surface. The relaxation energy per surface site is Erel = 0.05 eV
which is ≈ 10% of the energy of formation per atom for the L12 structure. The calculated
relaxations compare well with experimental data [121].

9.2.2 Note on finite size effects, limited accuracy and possible

conclusions

The ab-initio surface (slab) calculations are a compromise between available CPU time,
limited accuracy of the density functional calculations (performed in local density approx-
imation without spin polarization) and the accuracy required for the description of the
surface energetics. Current implementations of the Kohn-Sham equations, LDA or GGA,
still require relatively slow varying charge densities which might limit the accuracy avail-
able from surface energy calculations. Furthermore, numerical details such as the k-space
integration and the quality of the basis functions used (here: the number of plane waves)
needs to be chosen in order to guarantee fast and accurate calculations.

Note that the extraction of energies from 9-layered slabs in principle limits conclusions
for the surface modifications of the expansion coefficients ∆J(L,αK ) to clusters that are
located not more than 5 layers away from the surface. For a metal the surface modifications
of the interactions should be effectively screened and approach their bulk values within such
a small number of layers. Also, configurations that induce large relaxations at the surface
and that might alter interactions deeper beneath the surface seem to be not relevant for
the investigated surface. By comparing the energies of a few calculations for thicker slabs
with the 9-layered slabs we showed that indeed 9 layers seem to be enough. Furthermore,
the surface energy of Ni and Al was systematically converged with the number of layers
involved for slabs with up to 40 layers thickness, and 9-layered Ni and Al slabs were found
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to have a reasonably accurate surface energy. Fig. 9.12 shows the energy of formation for
all slab configurations that were later used for the cluster expansion of the surface.
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Figure 9.12: Energy of formation for a single column of atoms in the slab (9 atoms) of
all ab-initio calculated relaxed slab configurations (◦). The black line connects the ground
states found from the ab-initio calculations. The dashed line corresponds to the random
alloy. Compared to the bulk calculations, see Fig. 9.4, the random alloy is a worse approx-
imation for the surface, reflecting the tendency of Ni90%-Al to form an inhomogeneous,
e.g., segregated and ordered surface. In Fig. 9.13 the ground states are discussed.

Fig. 9.13 shows the energy difference to a phase separated mixture of the L12 structure
and pure Ni, namely,

∆E (σσσ, x) = Ef (σσσ, x) −
(

1 − x

1 − xL12

)

Ef (L12, xL12
) , (9.3)

where the perfect L12-ordered 9-layered slab has a concentration of xL12 = 13
18

.
We see that the D022 surface ordered slab has an energy lower than the mixture of a

pure Ni slab and a completely L12-ordered slab. Besides the completely L12-ordered slab
and the D022-ordered surface layer on pure underlying Ni, three more ground states were
found from the ab-initio calculations. They are depicted as GS3, GS4 and GS5.
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Figure 9.13: Shown are the same quantities as in Fig. 9.12, however the y-axis is calculated
as ∆E (σσσ, x), Eq. (9.3). Further explanations see text.

• GS3 corresponds to a D022-ordered surface with 50% Al in the fifth layer (ordered in
D022 structure) of an otherwise pure Ni slab.

• GS4 corresponds to a surface coverage of 1/4 Al and otherwise pure Ni ((2 × 4/
√

2)
surface unit cell), whereas GS5 corresponds to a surface coverage of 1/6 Al and
otherwise pure Ni ((2 × 6/

√
2) surface unit cell).

The ground states GS4 and GS5 are ground states only in the 9-layered system but not in
a semi-infinite system: Slabs with Ni-concentrations higher than x = 8

9
cannot exhibit a

surface concentration of 50% Al or more (with a mirror plane in the center of the slab) in
the 9-layered slabs. In order to check whether the ground states GS4 and GS5 are ground
states of a semi-infinite system, the slab was coupled to a dilute NiAl bulk material with
few, approximately 1% Al atoms dissolved in the bulk. We then calculated the energy
gained if we bring an Al atom from the bulk reservoir into the surface in such a way that
the ground states GS4 and GS5 are transformed into a D022-ordered surface layer. Table 9.2
shows that indeed the energy is lowered and therefore in the case of a semi-infinite system
even in the limit cAl → 0 we predict the first surface layer to be ordered in D022 structure
with an Al-concentration of 50% for T → 0.

Last but not least, we see that the energy of the L12 and the D022 surface coverage
are close together. The preferred lower energy structure thereby depends on the details
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energy gain

GS4 243 meV
GS5 252 meV

pure Ni 273 meV

Table 9.2: Energy gained per atom if isolated Al atoms are brought from the Ni-bulk
material into the surface in order to transform different surface ordered states into a D022-
ordered surface state. The energy of an isolated Al atom in Ni was obtained from a Ni107Al
calculation.

of the Al concentration profile beneath the surface. In contrast, the repulsive interaction
between Al atoms on nearest-neighbor sites in the bulk and at the surface as well as the
segregation tendency of the Al atoms are displayed in all calculations. The significance
of the results obtained so far thus seems to be different: From the ab-initio calculations
we conclude that the surface concentration is 50% and that the Ni and Al atoms order on
nearest-neighbor sites in the surface. However, in order to judge whether we expect an
L12- or a D022-ordered surface seems to be at the limits of the accuracy of our calculations.

9.3 Cluster Expansion of the surface energetics

For the cluster expansion of the surface the same clusters as for the bulk were used, see
Fig. 9.2. The (110) surface of a fcc crystal is invariant under point group operations of
D2h. Furthermore in a slab with 9 layers that is not translationally invariant orthogonal
to the surface, the interaction coefficients can be different in the first 5 layers. Altogether,
from the bulk cluster expansion with 23 different cluster figures (point-cluster with zero
energy included) 374 energetically different clusters in the 9-layered slab are derived.

The fact that the interaction coefficients are not the same at each lattice site but
different in each layer in contrast to the bulk material, makes the construction of the
surface modified interaction coefficients from ab-initio calculated total energy data even
more complicated: From total energy calculations the interaction coefficients need to be
extracted and located in different layers. Therefore, in order to extract converged surface
modified interactions from the slab energies directly, we believe that we would need far
more than 374 ab-initio calculated energies of slab configurations.

For the cluster expansion of the surface we thus assumed that the modifications of the
interaction coefficients are located in the first three layers and that the cluster coefficients
from the fourth surface layer onwards take their bulk values. The 154 slab calculations
used for the cluster expansion thus focused on correlations in the first three layers. From
the 112 clusters in the first three layers in a trial and error procedure the ones that did not
improve efit and epred were sorted out. Finally we used 69 clusters to describe the surface
modifications. The mean average error per atom was efit = 6.2 meV and the average
prediction error epred = 9.5 meV. In comparison, the slab energies calculated from the bulk



111

expansion coefficients (“broken bond” model) deviated on average eBB = 84.5 meV per
atom from the ab-initio energies, with large scatters from this average error from 0.1 meV
to 220 meV depending on the surface configuration. Fig. 9.14 shows the ab-initio calculated
energies in comparison to the cluster expanded energies.
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Figure 9.14: Comparison of the ab-initio calculated energies (◦) with the cluster expanded
energies (♦). The dashed line corresponds to the energy of the random alloy, the straight
lines connect the ground states found among the ab-initio and the cluster expanded en-
ergies. The ground state structures found from the ab-initio and the cluster expanded
energies are the same. The y-axis shows energies per atom given in comparison to a
mixture of the L12-ordered slab and the pure fcc-Ni slab, see Eq. (9.3).

The energies of structures with energy ∆E (σσσ, x) ≈ 0 are very well described by the
cluster expansion, even the complicated competition between L12 and D022 surface ordering
which is due to modifications of three- and four-body cluster expansion coefficients can be
accurately reproduced.

Fig. 9.15 summarizes the modifications of the expansion coefficients for the nearest-
neighbor pairs and for the point-cluster found from the cluster expansion. The large point-
cluster (4.4 times larger than the bulk nearest-neighbor interaction coefficient) together
with the strong nearest-neighbor interaction coefficient in the surface (40% higher than in
the bulk) drives the segregation of Al into the surface. At the same time, the strong nearest-
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neighbor interaction in the surface prevents nearest-neighbor sites to be occupied with the
same type of atoms, and the segregation into the surface is stopped at 50%, quantitatively
confirming the picture that we already derived from the analysis of the ab-initio data in
the previous sections.
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Figure 9.15: Modification of the expansion coefficients of the nearest-neighbor pair-cluster
relative to its bulk value of 88 meV. The modification of the point-cluster was 0.38 eV in
the first, −0.04 eV in the second and 0.004 eV in the third layer.

Absolute values of the expansion coefficients

The absolute values of the modified surface cluster expansion coefficients depend on the
bulk cluster coefficients and on the choice of surface clusters that are allowed to be modified
in the surface.

From the bulk calculations it had been possible to extract more expansion coefficients in
order to achieve better convergence of the bulk expansion coefficients. This would require
to use at least 10-20 more pair interaction coefficients and also more three- and four-body
clusters. This increase of the total number of expansion coefficients used in the bulk leads
to an enormous increase of the total number of different expansion coefficients in the slabs.
As the number of ab-initio calculations and the CPU time required for the slabs was already
at the limit of “what could be done”, the bulk cluster expansion was cut at a reasonable
number of clusters, Fig. 9.2, where the total number of the expansion coefficients were
already quite well converged, especially to yield a good quantitative description of the
bulk material.

The choice of clusters that are allowed to be modified in the surface is a non-trivial
task, as many cluster expansion coefficients, e.g., in the third or fourth layer, will change
only by a quite small amount, and one must judge whether one allows them to slightly
change or not to change at all. Given the finite accuracy of the bulk cluster expansion used
for the broken bond guess, even clusters in the center of the slab will look like they need
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to be slightly modified, just to correct for the finite accuracy of the bulk cluster expansion
(Even if the surface modifications to the expansion coefficients vanished completely in the
center of the slabs, the description of the energetics of the center of the slabs within the
broken bond model is not perfect as the bulk cluster expansion has only finite accuracy.
This finite accuracy induces noise in the broken bond approximations of the slab structures
which the fitting procedure for the cluster expansion surface modifications tries to fit. This
noise then may show up in the surface modified expansion coefficients). At the same time,
the number of calculated slab configuration energies is not enough to carry out a direct
inversion for the slab expansion coefficients. Each cluster that is modified in the surface
thus requires to be checked carefully with respect to the prediction error epred of the cluster
expansion. If a cluster lowers the predictive error, it is allowed to be modified in the
surface, if it increases or does not change the average prediction error, it is not taken into
account.

The numbers for the expansion coefficients obtained in [122] were obtained with a
version of the cluster expansion code that calculated only the mean square error efit but
not the prediction error epred. It turned out that the cluster expansion presented in Fig. 9.15
has a lower prediction error epred by approximately 30% but a higher error efit compared
to the numbers provided in [122]. However, it is important to note here that the absolute
representation of the energies of the ab-initio calculated structures as well as the energies
of many predicted structures seems to be very similar and identical when it comes to the
description of the segregation and ordering tendencies in the surface. Also the qualitative
modifications of the surface interactions in both cluster expansions are the same.
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Figure 9.16: Modification of the expansion coefficients of the nearest-neighbor pair-cluster
relative to its bulk value of 90 meV according to [122]. The modification of the point-cluster
was 0.53 eV in the first, 0.17 eV in the second and 0.03 eV in the third layer.
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9.4 Can we understand what is happening at

the surface?

The segregation of Al into the surface is driven by the electronic structure in contrast to
the segregation induced by atomic relaxation effects, as the effect induced by relaxing the
surface atoms does not change the segregation tendencies. In order to understand why Al
segregates we need to understand what the modifications of the electronic structure at the
surface are.

In the following we discuss different ways in order to quantify the electronic modifica-
tions at the surface. However, as we also will see, the system is complicated enough to not
let us draw simple conclusions.

9.4.1 Charge density modifications at the surface

Fig. 9.17 and Fig. 9.18 show contour plots of the bond charge density

∆ρ = ρslab − ρatomic , (9.4)

where ρslab is the full charge density of the slab and ρatomic is the superimposed charge
density of free atoms located at the positions of the respective slab atoms. Plotted is a
cut perpendicular to the (110) surface through the atoms that form a (100) layer of the
bulk L12 structure. Blue areas represent ∆ρ < 0, which means that the atoms located
there donate some of their charge (we do not deal with an ionic crystal, indeed the atoms
donate only the fraction of an electron charge, redistribution of the electrons has the largest
effects), and red areas represent ∆ρ > 0. The distribution of the colors was chosen in such
way in order to display important features of the bonding behavior.

Fig. 9.17 shows ∆ρ for a few Al atoms (large blue areas) located within the surface
of an otherwise pure Ni crystal. The Ni atoms form flower like bonds to nearest-neighbor
sites. In Fig. 9.18 the surface of a L12 structure is shown. From Fig. 9.17 and Fig. 9.18 it
appears that the Al atoms in the first layer are only slightly influenced by the Al atoms in
the third and fifth layer which can be seen in Fig. 9.18. The shape of the Al atoms in the
third and the fifth layer deviates considerably from the shape of the Al atoms in the first
layer. This different shape might be linked to the segregation tendency of Al. Compared
to Fig. 9.17 all Ni atoms redistribute their charge as they now form bonds to Al atoms on
nearest-neighbor sites. The fourfold symmetry of the L12 structure can be seen from the
charge density of the Ni atoms only in the fifth layer whereas in Fig. 9.17 the Ni atoms
seem to have fourfold symmetry in the third layer already.
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Figure 9.17: Charge density difference plot for a few Al atoms within the (110) surface of
a pure Ni crystal. The right side shows the surface and the atoms contained in the plot
plane. The larger yellow balls correspond to Al atoms, the smaller red ones to Ni atoms.
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Figure 9.18: Charge density difference plot for the (110) surface of a L12 structure.
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9.4.2 The covalent bond energy at the surface

A more quantitative picture of the surface can be obtained from the covalent bond energy.
The covalent bond energy, Ecov

iα jβ, see appendix C, is calculated as an energy-offset-corrected
band energy, projected on localized atomic-like orbitals to allow a local interpretation and
thus to be able to see surface modifications. We used atomic-like s, p and d functions
that were optimized for Al and Ni, respectively, in order to reproduce the L12 bulk band
structure [123,124]. As the band structure at the surface changes, these localized functions
are not the optimum localized functions to reproduce the surface band structure. However,
in order to keep the matrix elements between different localized functions comparable for
the bulk and the surface, we kept the bulk optimized functions also for the surface.
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Figure 9.19: Modifications of the total covalent bond energy
∑

αβ E
cov
iα jβ between atoms

on nearest-neighbor ij sites in an L12-ordered surface relative to their bulk values. The
smaller red circles denote Ni atoms, the larger yellow circles Al atoms. The atoms of layers
two and four are located half of a lattice constant above the atoms of layer one and three.

Fig. 9.19 summarizes the modifications of the total covalent bond energy at the surface.
Obviously, the electronic structure at the surface undergoes strong changes.

In a tight-binding picture the covalent bond energy can in principle be related to many-
body potentials via the bond-order potentials, see appendix C and chapter 4. The many-
body potentials then are related to cluster expansion coefficients as described in chapter 5.
In order to be able to describe the band structure efficiently with only few localized atomic-
like functions, these functions were chosen to be non-orthogonal. It turns out that the
practical concept of bond-order potentials established so far is based on orthogonal basis
functions, and that the task to establish a direct and quantitative link between surface
modifications of the covalent bond energy and surface modifications of the cluster expansion
coefficients is, if possible at all, well beyond the task of this thesis.



Chapter 10

Finite temperature considerations for
the surface

From the previous chapter we learned that Al spontaneously segregates into the surface
until a concentration of 50% is reached. At a concentration of 50% Al in the surface we
expect the Al and Ni atoms in the first surface layer to form -Ni-Al-Ni-Al- chains along the
nearest-neighbor bonds in the surface. From a delicate competition between the energy
of a L12-ordered and a D022-ordered surface we concluded that the actual surface order
depends sensitively on the bulk concentration.

In order to compare our results with the experimental findings described in Sec. 2.3.2,
we need to understand the behavior of the surface at finite temperatures. We start with
some model calculations where we simplified the interactions in order to guarantee that
the energies of the L12-ordered and the D022-ordered surface monolayer are degenerate.
For these model interactions we calculate the surface phase diagram for a L12-ordered
surface competing with the disordered A1 surface phase. The detailed competition between
L12-ordered and D022-ordered surface is then approached in the limit of vanishing Al
bulk concentration using the 2d Ising model. Given the uncertainties of the ab-initio
calculations, these considerations will enable us to sketch a surface phase diagram. The
surface induced order in the surface found in the model calculations is stabilized with the
modifications of the surface expansion coefficients found in Sec. 9.3 due to,

• the surface field (the surface point-cluster) that drives the segregation of Al and
thereby changes the surface composition and surface phase [125],

• the increased nearest-neighbor pair expansion coefficient in the surface (together with
frustration effects of the fcc bulk-lattice that are not present in the surface [126,127]).

Finally CVM calculations for the disordered surface show that the segregation of Al is, as
we expected from the surface energetics, indeed limited to the first surface layer also at
finite temperatures.

117
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10.1 Model calculations 1: nearest-neighbor interac-

tions

To describe and understand the finite temperature behavior of the surface we start with
model calculations.

• The bulk material is modeled with nearest-neighbor interactions only, J12 = 1.

• Only the point and the nearest-neighbor pair-clusters are used to model the surface.
The modifications of the interactions are shown in Fig. 9.16.
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and two is due to the finite number of layers used in the calculation and vanishes for a
semi-infinite system. In appendix F we explain in detail how the diagram was derived. We
show the part of the phase diagram that we could calculate directly with 128 bit numbers
in Tetrahedron approximation (see appendix D).
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In Fig. 10.1 we show how the phase diagram is modified due to the surface modified
interactions. The transition between the ordered L12 and the disordered phase remains
a first order phase transition. However, the ordered phase completely disorders in the
bulk and only the surface layer remains ordered at the transition temperature. Fig. 10.2
shows a snapshot of how the order vanishes from the bulk to the surface. The first order
transition is located in the surface layer, only the surface concentration changes when we go
from the ordered to the disordered phase, the bulk concentration stays the same (The bulk
concentration stays the same only for a semi-infinite system, in the model calculations with
101 layers the bulk concentration stays only nearly the same). Thus in the phase diagram
of Fig. 10.1 the bulk concentrations for the transition L12 ↔ L12+ A1 and L12+ A1 ↔
A1 are identical, although we are dealing with a first order transition.
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gion in the bulk (phase 3) where the order parameter is not directly accessible with CVM
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Fig. 10.3 shows the surface modified phase diagram calculated with different approxima-
tions for the entropy. The transition temperature depends sensitively on the approximation
used for the calculation of the entropy. However, all approximations for the entropy dis-
play the same general features, namely, an ordered surface layer up to a concentration of
cNi = 1.
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approximations the step width for not loosing the ordered phase was 500 times denser than
the points that are shown. See text for possible problems of a mean-field modeling of this
surface.

The (110) surface of an fcc crystal, as shown in Fig. 2.11 and Fig. 9.10, consists of chains
of atoms linked by nearest-neighbor bonds. The distance between two of these chains
is equivalent to the second-nearest-neighbor bond length in a fcc crystal. In the above
calculations only nearest-neighbor interactions were used, there is no direct interaction
between the chains. Thus from this point of view, we deal with isolated 1d Ising chains in
the surface. Imagine a system with a finite number of layers but an infinite surface area at a
concentration that allows a surface with perfectly ordered 1d Ising chains without Al atoms
dissolved in the bulk. In complete analogy to the 1d Ising model, any finite temperature
will destroy the long-range surface order as, e.g., an Al atom will diffuse into a subsurface
layer. Fig. 10.4 illustrates the elemental excitations that destroy the long-range order in
the surface.

Thus, the long-range ordered surface found in the above calculations must be stabilized
by Al atoms in subsurface layers. In order that the subsurface layers can indeed stabilize
the long-range ordered surface, at least the correlations in the subsurface layers must have
the periodicity of the ordered surface in thermal average, and not the periodicity of the
disordered surface in thermal average. The L12 order therefore must decay gradually in
the bulk, as can be seen in Fig. 10.2. The order-disorder transition temperature therefore
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Figure 10.4: Illustration of elemental excitations that destroy the long-range order in the
1d surface chains. Shown are 1d surface chains with periodic boundary conditions that are
coupled to a bulk reservoir, a) shows how one atom from the bulk reservoir that is brought
in the chain destroys the long-range order of the chain, b) shows a canonical excitation
in the chain that also destroys the long-range order. If we think of the red atoms as spin
up, the yellow atoms as spin down and the bulk reservoir coupled with an external field
(chemical potential or magnetic field) to the 1d surface chains the complete analogy of the
1d surface chains and the 1d Ising model becomes clear.

depends on the details of the subsurface correlations and how they are described in the
different CVM approximations. This explains the differences for the transition tempera-
tures found for the various CVM approximations in Fig. 10.3. Also, as we will see in the
next section, the Bragg-Williams approximation is not adequate for the description of the
1d Ising chain and thus for the description of the surface phase diagram of NiAl that we
are interested in.

10.2 Model calculations 2: the 2d Ising model

In the previous section CVM calculations for the fcc (110) surface with nearest-neighbor
interactions showed that an ordered surface phase can be stabilized on a disordered volume
material in a nearest-neighbor description. However, we also found that the order param-
eter of the surface ordered phase must not only be different from zero in the very first
surface layer, the order must be extended into the bulk material. In this section we show
how an ordered surface state can exist solely in the very first layer: The surface ordered
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state in the very first layer is stabilized if we take into account the weak coupling between
the 1d Ising chains in the surface. With the help of the 2d plane square Ising model we will
derive an upper limit for the order-disorder surface transition temperature in the region
of cNi ≈ 0.9 − 1.0 for the ordered surface monolayer phase. An ordered surface state that
extends only over the very first surface layer is of interest as the experiment at Ni90%-Al,
Sec. 2.3.2, claims to have found an ordered monolayer only and not an order parameter
that continously decays into the bulk material.

In the case of a vanishing Al bulk concentration, the ab-initio calculations predict
an ordered D022 monolayer with 50% Al as surface ground state. Let us assume that
we look at such a situation, a semi-infinite system with an ordered D022 monolayer on
top and pure Ni in all other layers. If temperature is increased, some of the Al atoms
within the surface either exchange sites with Ni atoms within the surface or occupy sites
in the underlying bulk material. To simplify the problem, it is assumed that the Al atoms
dissolved in the bulk material occupy each site of the semi-infinite bulk lattice with the same
probability. The bulk thus just behaves like a particle reservoir for the surface monolayer.
Furthermore, according to the ab-initio calculations, the dominating interaction in the
surface is the nearest-neighbor pair expansion coefficient. The second-nearest-neighbor
pair expansion coefficient is already relatively weak. Its magnitude determines the energy
difference between L12 and D022 surface ordering, see Fig. 9.9. For the following model
calculation all other expansion coefficients in the surface plane are neglected. Coefficients
of cluster figures that reach from the surface layer into layers beneath the surface need
not to be taken into account for this consideration, as we assume a bulk concentration of
cAl → 0 and the situation formally corresponds to an alloy monolayer on top of a substrate,
Sec. 6.2. Thus in order to model the phase transition in the ordered surface monolayer two
expansion coefficients, J12 and J22 , are used. This corresponds to the 2d Ising model on a
square lattice, see Fig. 10.5.
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A Bragg-Williams treatment of the 2d Ising model with external field H = 0 yields a
transition temperature of,

2J12

kTc

+
2J22

kTc

= 1 . (10.1)
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For the limit J22 → 0, the Bragg-Williams approximation predicts a finite transition tem-
perature of kTc = 2J12 and thus fails to describe the vanishing transition temperature of
the 1d Ising model.

Onsager’s solution for the 2d Ising model [128],

sinh

(
2J12

kTc

)

sinh

(
2J22

kTc

)

= 1 , (10.2)

remains correct in the limit J22 → 0, see Fig. 10.6.
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In finite field H the energy of the Ising model becomes,

U =
∑

<ij>

J12σiσj +
∑

<ij>

J22σiσj +
∑

i

Hσi , (10.3)

where the sum < ij > runs over all vertical and horizontal nearest-neighbor pairs, respec-
tively. The solution od Onsager was extended for this case [129,130],

sinh

(
2J1

kTc

)

sinh

(
2J2

kTc

)

= cosh

(
H

kTc

)

. (10.4)

The required parameters H, J12 and J22 are now extracted from ab-initio calculations
that were performed for configurations that had Al atoms solely in the first layer. To
calculate the field H and the nearest-neighbor interaction J12 the energy of a dilute Al
atom (calculated as a Ni107Al1 crystal) was compared with the energy of four surface
structures, one was the perfectly ordered D022 monolayer, one the L12 monolayer, one
had Al atoms on nearest-neighbor sites and one Ni atoms on nearest-neighbor sites, see
appendix E. The second-nearest-neighbor interaction corresponding to J22 was calculated
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from the energy difference of the L12 and the D022 structure. Depending on the detailed
structures chosen to extract H and J12 , H and J12 were found to take values,

J12 = 100 . . . 125meV , H = −100 . . .− 155meV , (10.5)

whereas the value of J22 = 13/2meV was fixed from the energy difference of the L12 and
the D022 surface monolayer. Although the values for J12 and H depend on the details of
the structures chosen for the fit, see Fig. 10.7, the transition temperature was found to be
stable,

Tc = (60 ± 10)meV = (700 ± 120)K . (10.6)

Obviously the energy difference between the L12-ordered and the D022-ordered surface is
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Figure 10.7: Phase transition temperature for the 2d Ising model in non-zero field H. The
red circle aproximates the region of parameters allowed by the non-spin-polarized ab-initio
calculations for slabs with 9 layers.

crucial as this energy difference determines the weak coupling J22 and thus has a strong
influence on the transition temperature. Therefore the energy difference between the L12-
ordered and the D022-ordered surface from calculations with thicker (19 layer) slabs was
considered, see Fig. 9.9,

J22 = 23/2meV, 19 layer calculation ⇒ Tc = (78 ± 10)meV ≈ (900 ± 120)K . (10.7)

In the 2d Ising model, the calculated phase transition temperature represents an upper
limit for the phase transition temperature of the surface: If the concentration of Al in
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the disordered A1 phase is increased compared to the assumed concentration cAl → 0,
according to the ab-initio calculations the energy difference between the L12-ordered and
the D022-ordered surface is lowered, see Fig. 9.11. This effectively lowers J22 and this lowers
the critical temperature Tc of the ordered surface phase.

Also the stability of the result that the L12-ordered surface is higher in energy than the
D022-ordered surface,

Esf (L12) − Esf (D022) < 0 , (10.8)

has been extensively tested, the calculated energy difference is so small that Eq. (10.8)
might be due to the local density approximation or other approximations made in the
implementation of the pseudopotential code, such as, for example, the frozen core approx-
imation or approximations made during the calculations (number of plane waves used,
k-point sampling,. . .).

However, even if Eq. (10.8) does not hold, the LDA results should enable us to estimate
the energy difference to be smaller than,

|Esf (L12) − Esf (D022) | / 40 meV . (10.9)

Furthermore, even if the energy of the L12-ordered surface should be lower than the energy
of the D022-ordered surface, all considerations for cAl → 0 in the 2d Ising model from above
remain valid as only the absolute value |J22 | enters Eq. (10.4).

To summarize, the transition temperature depends sensitively on J22 and therefore
on the energy difference between L12-ordered and D022-ordered surface, which cannot be
calculated better than few 10 meV. Therefore it does not make sense to calculate a detailed
phase diagram from the ab-initio data. However, a look at the extreme case J22 = 0,
namely the 1d Ising model, shows that although there exists no long-range order at finite
temperature, this does not mean that the correlations, e.g., the short-range order, along
the 1d Ising chain also vanishes [131]. We look at the correlations within the surface in the
next section.

10.3 The NiAl surface at finite temperature

10.3.1 What could we learn?

We summarize what we know about the surface phase diagram from the ab-initio calcula-
tions, the cluster expansion and the CVM model calculations so far.

• On the left hand side of the two-phase region the bulk system is ordered in L12

structure. Ab-initio calculations showed that for the ground state T = 0 K this is
also the case for the surface, Sec. 9.2.1.

• For a semi-infinite system the ab-initio calculations predict a D022-ordered surface
ground state for a Ni bulk concentration of cNi = 1, Sec. 9.2.1. The experiment for
the Ni90%-Al surface found an ordered L12 surface structure.
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• According to the ab-initio calculations, upon decreasing the Ni bulk concentration, a
L12-ordered surface ground state becomes more stable than the D022-ordered surface
ground state, Sec. 9.2.1.

• According to the ab-initio calculations, at an Al bulk concentration of around 10%
to 15% the energies of the L12-ordered and the D022-ordered surface are the same.

• The transition from L12- to D022-ordered surface ground state might take place in
the region of the homogeneously disordered bulk phase or in the two-phase region
where the layer dependent order parameter is not accessible by CVM calculations.

• From the strong nearest-neighbor interaction in the surface together with the point
interaction that drives the segregation of Al into the surface, we expect that in the
surface nearest-neighbor chains that are occupied with Ni and Al on nearest-neighbor
sites are formed. For a Ni bulk concentration cNi = 1 this corresponds to a 1d Ising
antiferromagnet, Sec. 9.3.

• Since the energy difference for a surface ordered in L12 or D022 structure is small,
the 1d nearest-neighbor chains can be only weakly coupled to each other, Sec. 9.2.1.
The NiAl surface in the A1 bulk phase diagram region can be thought of as 1d Ising
antiferromagnetic chains (strong nearest-neighbor interaction in the surface) which
are weakly coupled to each other (weak second-nearest-neighbor interaction) to form
a 2d surface that is linked to a 3d bulk reservoir, Sec. 10.2.

• The weak coupling between the 1d Ising chains in the surface allows an ordered
monolayer on top of the surface, Sec. 10.2. If one neglects the weak coupling between
the 1d Ising antiferromagnetic chains, the order parameter has to decay continously
into the bulk material in order that an ordered surface phase can be formed, Sec. 10.1.
The experiment for the Ni90%-Al surface claims to have found an ordered monolayer
only.

• The energy difference between the D022-ordered and the L12-ordered surface is cru-
cial for the transition temperature of the ordered surface monolayer. The ab-initio
calculations allow the calculation of this energy difference not as accurate as required.

Therefore we expect a very detailed dependence of the surface long-range parameters and
thus on the surface phase diagram on the strength of the coupling between the 1d Ising
chains. At the same time we cannot expect from the ab-initio calculations to provide the
coupling between the 1d Ising chains better than ≈ 10 meV. However, the short-range
order along the 1d Ising chains is basically determined from the strong nearest-neighbor
interaction between atoms on nearest-neighbor sites in the surface. Detailed changes of
the second-nearest-neighbor interaction (the coupling between the 1d Ising chains) do not
play an important role for the surface short-range order. In the following we thus focus on
the short-range order and segregation at the surface.
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We also tried hard to calculate a phase diagram from the ab-initio data. However, as
the energy differences between the L12-ordered and the D022-ordered surfaces are small,
the calculation of the boundary between ordered and disordered surface requires a very
well converged cluster expansion and a large basic cluster in the CVM calculations to
properly take into account the frustration of the fcc lattice as well as the unfrustrated
surface. On the one hand, the complicated details of the surface modifications together
with large basic clusters induce many local minima in the free energy functional, on the
other hand the many degrees of freedom induced by the large clusters require the inversion
of large matrices in the Newton-Raphson scheme which means an exponentially strong
increase in CPU time with cluster size and a loss of accuracy during the iterations of the
Newton-Raphson scheme. Knowing that the required accuracy for the determination of
the coupling between the 1d Ising chains is beyond the capabilites of the local density
approximation, the calculated phase diagram would be a mere model phase diagram, and
we eventually decided not to proceed with the calculation of the surface phase diagram.

10.3.2 Correlations and segregation at the disordered surface

Fig. 10.8 shows the temperature and concentration dependent surface concentration and
nearest-neighbor probability for the first five layers from the surface. The calculations were
carried out in Double-Tetrahedron-Octahedron approximation of the CVM equations, the
energetics was modeled according to Sec. 9.3 (Pairs larger than the Double-Tetrahedron
or the Octahedron were taken into account in Bragg Williams approximation, Sec. 8.2.4).
None of the layers was allowed to display long-range order even at low temperatures by
prescribing that the Ni concentration in each layer c

(l)
Ni is the same for all sublattices in

this layer. In this way it is pointed to the common features of a surface that might have a
L12-ordered or a D022-ordered ground state.

It is obvious that the surface layer displays a behavior completely different from the
remaining layers: The Al concentration is considerably higher than in the other layers even
at high temperatures. Also the pair-correlation function is much higher in the surface. As
expected from the ab-initio calculations the strong nearest-neighbor interactions between
the first and the second layer and the high Al concentration in the first layer lead to a low
Al concentration in the second layer. Even for relatively moderate and low temperatures,
the layers from the third layer on behave already like bulk material. At low temperatures
the surface concentration approaches cAl = 1/2 in the first layer. However, one must be
careful with the segregation behavior at low temperatures as the first layer was not allowed
to display order in Fig. 10.8.
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and comparison to the bulk con-

centration,
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−
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for nearest-neighbor pairs in the first five layers of the

(110) surface. One sees that from the third layer the left and the right column look very
similar, which means that they show bulk behavior. The CVM calculations were carried
out in Double-Tetrahedron-Octahedron approximation.
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Chapter 11

Summary and conclusions

Ab-initio statistical mechanics for surfaces

In chapters 3 to 8 the concepts of ab-initio statistical mechanics were presented and de-
veloped. A hierarchy of approximations and assumptions was introduced in order to deal
with the complex behavior found at all levels of the description of a many-body system:

• The complex quantum mechanical many-particle equation was mapped on a system
of one-particle equations in density functional theory. For the calculations local
density approximation was employed for the one-particle equations since the exact
exchange-correlation functional is unknown.

• By taking into account only alloy configurations in mechanical equilibrium, the phase
space of the surface was drastically reduced, the surface was looked at as a lattice
gas. Excitations such as phonons and excitations of the electronic structure were
neglected. The energy of the surface configurations then was mapped on the cluster
expansion that in principle contains contributions of infinitely many clusters but that
was terminated after a finite number of clusters.

• The calculation of the entropy was simplified by introducing basic maximum clusters
in the cluster variation method, in order to circumvent the problem of counting all
possible configurations of the surface alloy.

All these approximations and assumptions can, at least in principle, be tested and the the-
ory can be extended in order to include, for example, phonons, excitations of the electronic
system or correlations of arbitrary length. Furthermore, although approximations were
made, no free parameters were introduced, rules were established to calculate all quanti-
ties. Hence the theory is based on first-principles and exhibits ab-initio character. The
hierarchy of approximations on different levels is summarized in Fig. 11.1.

Segregation and ordering at Ni90%-Al(110)

Based on ab-initio considerations and finite temperature modeling, chapters 9 and 10, it
was found that Al spontaneously segregates into the surface. The segregation is driven by
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Figure 11.1: Hierarchy in the ab-initio statistical mechanics for the calculation of phase
diagrams.

general modifications of the electronic structure in the surface and not by simple relax-
ation or size effects. The strong nearest-neighbor interaction in the surface stops Al from
segregation at a concentration of 50% in the surface monolayer, and subsequently induces
ordered Ni-Al-Ni-Al-Ni- chains on nearest-neighbor sites in the surface. The small energy
difference that was found among various arrangements of the ordered chains led to the
conclusion that in the limit of cNi → 1 the surface must be described as weakly coupled
1d antiferromagnetic chains in contact with a particle reservoir. In addition, the energy
differences between various arrangements of the chains were small yet important for the
order-disorder temperature in the surface so that, due to the limited accuracy of the local-
density approximation, a phase diagram expected for the surface can only be sketched.
Due to the strong nearest-neighbor interaction in the surface it was found that correlations
exist in the disordered surface well above the approximated transition temperature. From
the ab-initio calculations it was concluded that the surface modifications of the energetics
decay rapidly into the bulk, which was also found for the segregation and correlations in
the finite temperature considerations. It is important to point out that the segregation
and ordering of Al is essentially limited to the first surface layer.

Comparison of theory and experiment

An increased surface concentration for Al was experimentally observed for various surfaces
of Ni90%-Al and confirmed by calculations for the (110) surface. In this context, the
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50% Al concentration found by Reichert, see Sec. 2.3.2, for the (110) surface can also be
explained. In agreement with the experimental data obtained by Reichert the decrease of
the Al concentration in the surface with decreasing temperature, as it was observed by
Polak et al. [14,15], could not be reproduced.

Due to the limited accuracy of the LDA calculations it can only be speculated about the
experimentally observed L12 surface order. From our calculations we are not able to decide
whether the surface at the experimental conditions of 1050 K and a Ni bulk concentration
of 90% is ordered in L12 structure, in D022 structure or whether it is disordered, see
chapter 10. However, we expect that at these conditions in the surface chains occupied
with Ni and Al atoms on nearest-neighbor sites are formed that lead at least to locally
ordered domains.

For a better characterization of the finite temperature surface order the problem needs
to be approached from two sides.

• Additional experiments at different temperatures and concentrations could supply
vital information on the decay of the order parameter in the bulk material and thus
decide whether the surface order is indeed restricted to the first monolayer or if the
surface order is a precursor of the L12-A1 two-phase region that extends deeper and
deeper into the bulk at lower and lower Ni concentrations. Further experiments
could also exclude or confirm the possibility of a D022-ordered surface at Ni bulk
concentrations close to cNi = 1.

• Additional calculations of higher accuracy for the energy difference between the D022

and the L12 surface monolayer would supply crucial information in order to support
the above scenarios. However, more accurate methods for systems of the size required
to model a surface are well beyond reach today.
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Appendix A

Ordering the summation in
many-body potentials

A.1 Regrouping for different limits

Summation over different limits can be exchanged as,

M∑

N=0

N∑

K=0

AKN =

0≤K≤N≤M∑

K,N

AKN =

0≤N≤K≤M∑

N,K

ANK =

M∑

N=0

M∑

K=N

ANK . (A.1)

A.2 Summation over distinct sets

Consider a function f of N variables,

f(xm1 , xm2 , . . . , xmN
) , (A.2)

which is symmetric,

f(xm1 , . . . , xmi
, . . . , xmj

, . . . , xmN
) = f(xm1 , . . . , xmj

, . . . , xmi
, . . . , xmN

) . (A.3)

Summations over the indices mi are carried out over two subsets, A and S, where A∩S = ∅,
A∪S∑

m1

A∪S∑

m2

. . .
A∪S∑

mN

f(xm1 , xm2 , . . . , xmN
) . (A.4)

The summation above can be rewritten as:

A∪S∑

m1

A∪S∑

m2

. . .

A∪S∑

mN

f(xm1 , xm2 , . . . , xmN
)

=

N∑

K=0

(
N

K

) A∑

m1,...,mN−K

S∑

mN−K+1 ,...,mN

f(xm1 , xm2 , . . . , xmN
) , (A.5)
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where the sum over all mi must be carried out for every value of K.

Proof.

For the case of two variables Eq. (A.5) can be verified easily:

A∪S∑

m1

A∪S∑

m2

f(xm1 , xm2) =
A∑

m1

A∑

m2

f(xm1 , xm2) +
A∑

m1

S∑

m2

f(xm1 , xm2)

+
S∑

m1

A∑

m2

f(xm1 , xm2) +
S∑

m1

S∑

m2

f(xm1 , xm2)

Eq. (A.3)
=

A∑

m1

A∑

m2

f(xm1 , xm2) + 2

A∑

m1

S∑

m2

f(xm1 , xm2) +

S∑

m1

S∑

m2

f(xm1 , xm2)

=

(
A∑

m1

A∑

m2

+2

A∑

m1

S∑

m2

+

S∑

m1

S∑

m2

)

f(xm1 , xm2)

=

2∑

K=0

(
2

K

) A∑

m1,...,m2−K

S∑

m2−K+1 ,...,m2

f(xm1 , xm2) . (A.6)

We thus assume that Eq. (A.5) holds for N variables.

For N+1 variables we find (the function f(xm1 , xm2 , . . . , xmN+1
) behind the summation



137

is not explicitly written):

A∪S∑

m1

A∪S∑

m2

. . .
A∪S∑

mN+1

=
N∑

K=0

(
N

K

) A∑

m1

. . .
A∑

mN−K

S∑

mN−K+1

. . .
S∑

mN

A∪S∑

mN+1

=

N∑

K=0

(
N

K

) A∑

m1

. . .

A∑

mN−K

S∑

mN−K+1

. . .

S∑

mN

A∑

mN+1

+
N∑

K=0

(
N

K

) A∑

m1

. . .
A∑

mN−K

S∑

mN−K+1

. . .
S∑

mN

S∑

mN+1

Eq. (A.3)
=

N∑

K=0

(
N

K

) A∑

m1

. . .
A∑

mN+1−K

S∑

mN+1−K+1

. . .
S∑

mN+1

+

N∑

K=0

(
N

K

) A∑

m1

. . .

A∑

mN−K

S∑

mN−K+1

. . .

S∑

mN+1

=

(
(N + 1) − 1

0

) A∑

m1

. . .

A∑

mN+1

+

(
(N + 1) − 1

(N + 1) − 1

) S∑

m1

. . .
S∑

mN+1

+

(N+1)−1
∑

K=1

((
(N + 1) − 1

K

)

+

(
(N + 1) − 1

K − 1

)) A∑

m1

. . .
A∑

m(N+1)−K

S∑

m(N+1)−K+1

. . .
S∑

m(N+1)

.

(A.7)

We note that,

(
(N + 1) − 1

0

)

=

(
N + 1

0

)

= 1 , (A.8)

(
(N + 1) − 1

(N + 1) − 1

)

=

(
N + 1

N + 1

)

= 1 , (A.9)

(
(N + 1) − 1

K

)

+

(
(N + 1) − 1

K − 1

)

=

(
N + 1

K

)

, (A.10)
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and therefore

(
(N + 1) − 1

0

) A∑

m1

. . .
A∑

mN+1

+

(
(N + 1) − 1

(N + 1) − 1

) S∑

m1

. . .

S∑

mN+1

+

(N+1)−1
∑

K=1

((
(N + 1) − 1

K

)

+

(
(N + 1) − 1

K − 1

)) A∑

m1

. . .

A∑

m(N+1)−K

S∑

m(N+1)−K+1

. . .

S∑

m(N+1)

=
N+1∑

K=0

(
N + 1

K

) A∑

m1

. . .
A∑

m(N+1)−K

S∑

m(N+1)−K+1

. . .
S∑

m(N+1)

.

� (A.11)



Appendix B

Computational details

All ab-initio calculations were performed using the mixed-basis pseudopotential package
by Meyer, Elsässer and Fähnle [36]. The calculations were run on all machines available,
including Intel Pentium and AMD Athlon Linux PCs, Compaq Alpha Unix Workstations,
IBM RS6000 AIX Workstations, and also on a Cray SV1, a NEC SX4 and a NEC SX5.
The total CPU time required for all calculations presented in this work sums up to more
than 2 CPU years on a Cray SV1.

In the mixed-basis representation of the one-electron valence wavefunctions a cut-off
for the plane wave energy of emax=16 Ry was used. One atomic-like localized d-function
was attached to every Ni atom. These parameters were the same in all calculations.
Furthermore, a simple cubic k-point mesh was chosen using the Moreno-Soler scheme [132]
with nk=12 for the reciprocal space of the simple cubic unit cell. The mesh was kept exactly
the same for all calculations that had reciprocal space unit cells that could be sampled with
a simple cubic nk=12 mesh. Unit cells that, for example, had a length of five simple cubic
unit cells were calculated with nk=15. The energy was then corrected according to the
energy difference of the elements between a run with nk=12 and nk=15.

The elements were represented by norm-conserving pseudopotentials with 10 valence
electrons for Ni and 3 valence electrons for Al. All calculations were carried out using LDA
in the parameterization of Ceperly and Alder [34].

Below some sample input files are given. With the MBPP package [36] one should be
able to reproduce all numbers printed in this work.

Sample input file for bulk calculations:

struk75

#define VERSION1.0

#define MB_SMALL_TOL

10

natomax=12 ntype=2 struc=Ni4Al12 source=file coord=c

vol=1420.0

2.0 0.0 0.0

0.0 2.0 0.0

139
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0.0 0.0 1.0

symop=gen

20

emax=16.000 gmax=20.000 corr=ca

nloc=1

itype=1 l=2 fctyp=11 gamma=0.98 rcut=2.2

ngauss=300

atom=Ni s=lo 1000 0.02 p=nl 160 0.05 d=nl 160 0.05 znuc=28.0

atom=Al s=lo 1000 0.02 p=nl 160 0.05 d=nl 160 0.05 znuc=13.0

30

kpmeth=ms

nband=53 ifmax=40 nkxyz=12 12 12 shift= 0.5 0.5 0.5

1.0 0.0 0.0

0.0 1.0 0.0

0.0 0.0 1.0

40

niter=100 scr=at ifmet=yes intmeth=gauss width=0.1

broy=yes spec=ad nitdp=5 nitup=0 ekmix=60.0 alph=0.1

00

Input file for the generation of the Al pseudopotential (pe.dat):

pe

kerker=van

n=Al c=ca

0.000 0.000 0.000 0.000 0.000 0.000

3 3

3 0 2.000 0.000

3 1 0.700 0.000

3 2 0.300 0.000

1.05000 1.20000 1.40000 0.00000 2.00000

stop

Input file for the generation of the Ni pseudopotential (pe.dat):

pe

kerker=van

n=Ni c=car

0.000 0.000 0.000 0.000 0.000 0.000

5 3

3 2 8.6000 0.000

4 0 0.6000 0.000

4 1 0.8000 0.000

-0.20000 -0.20000 -0.80000 0.00000 -0.520

stop

The pt.dat file also required looks like the pe.dat file, just replace pt by pe, car by ca and
cut the line before stop from pe.dat.



Appendix C

The covalent bond energy

In chapter 7 it was shown how cluster expansion coefficients are commonly obtained from
ab-initio calculations: One calculates the energies of some reference structures. These
energies are mapped on cluster expansion coefficients of a lattice model. The advantage of
this procedure is the accuracy of the cluster expansion with respect to the reproducibility
and prediction of energies of structures. The drawbacks of the method are:

1. The type and range of clusters required for the cluster expansion must be found from
a trial-and-error procedure.

2. No information other than few cluster expansion coefficients from the fit is available.
In this context, an approximated behavior of the cluster coefficients with type and
range of the clusters would often be helpful.

3. The expansion coefficients of clusters of the same system (the same atoms) cannot be
related for different geometries, e.g., bulk and surface cluster expansion coefficients
can not be related, expansion coefficients of bcc-based NiAl cannot be related to
expansion coefficients of fcc-based Ni3Al.

Fig. C.1 shows a second path that can be used for the determination of the cluster expansion
coefficients and that can help to solve problems 1.-3. The idea behind the second path is
to directly relate the electronic structure of the material to the expansion coefficients. In
this approach one tries to obtain the cluster expansion coefficients from a parameterization
of the electronic structure.

We sketch the steps and approximations required along the second path:

• From density functional theory to semi-empirical tight-binding:
In Sec. C.1 we sketch how the bulk of the physical properties of a system can be cast
in few orbitals and an effective repulsive pair-potential. To obtain accurate parame-
terizations one usually takes non-orthogonal functions for the parameterization of the
tight-binding equations. The relative simplicity of the tight-binding equations allows
a physical interpretation and understanding of the electronic structure in terms of
the covalent bond energy Ecov.
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Figure C.1: Two different approaches to obtain cluster expansion coefficients from density
functional theory.

• From semi-empirical tight-binding to many-body potentials:
The parameterized Hamilton matrix of the tight-binding approximation can be, in
principle, related to many-body potentials via bond-order potentials [133,134,135,
136,137,138,139,140]. The bond-order potentials thereby can be expanded in many-
body potentials as described in chapter 4. However, up to now, only few explicit
bond-order potentials for non-orthogonal parameterizations were found.

• From many-body potentials to cluster expansion coefficients:
This step was described in chapters 5 and 6.

Approximations involved in the first two steps will make the cluster expansion along the
second path less accurate than the traditional cluster expansion approach (and thus this
approach will not replace the traditional approach), however, valuable information can be
gained on problems 1.-3. and for a general physical understanding of the system.

In the following we introduce the first of the above steps, from density functional
theory to semi-empirical tight-binding. The covalent bond energy is discussed as a tool for
the quantitative description of the electronic structure of a system. We also address the
behavior of the covalent bond energy with respect to basis transformations.

C.1 From ab-initio DFT to semi-empirical tight-binding

The total energy in density functional theory is given as a sum over the occupied one-
electron eigenvalues Eν plus a rest term D[n] that accounts for double counting of the
energy due to the effective potential veff , and that contains EH [n], Exc[n] and the coupling
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to the external potential vext, see Sec. 3.3,

E =
∑

ν

fνEν

︸ ︷︷ ︸

Eband

+D[n] , (C.1)

where fν is two for every occupied band and zero otherwise when the spin degree of freedom
is not explicitly taken into account.

To derive a tight-binding model from the density functional energy as systematically
as possible, it is commonly assumed [141] that D[n] can be approximated by an empirical,
repulsive pair-potential,

D[n] ⇒ Erep . (C.2)

By expanding the one-electron eigenstates in localized atomic-like functions,

|ψν〉 =
∑

iα

c
(ν)
iα

∣
∣ϕiα

〉
, (C.3)

(i indexes the site of the atom that |ϕiα〉 is attached to, α specifies the orbital, e.g.,
s, p, d, . . . and m), the band energy is rewritten as,

Eband =
∑

ν

fνEν =
∑

ν

fν

∑

jβ iα

(

c
(ν)
jβ

)∗
c
(ν)
iα

〈
ϕjβ
∣
∣ Ĥ
∣
∣ϕiα

〉
. (C.4)

We define the density matrix,

ρiα jβ =
∑

ν

fν

(

c
(ν)
jβ

)∗
c
(ν)
iα , (C.5)

and the Hamilton matrix,
H iα jβ =

〈
ϕiα
∣
∣ Ĥ
∣
∣ϕjβ

〉
. (C.6)

Eband is partitioned in physically motivated parts,

Eband =
∑

i6=j,αβ

ρiα jβH
jβ iα

︸ ︷︷ ︸

Ebond

+
∑

iα

ρiα iαH
iα iα

︸ ︷︷ ︸

Eprom

+
∑

i,α 6=β

ρiα iβH
iβ iα

︸ ︷︷ ︸

Ecrystal

, (C.7)

where the bond energy Ebond contains only matrix elements that correspond to bonds
between different atoms. The energy of promotion Eprom contains only diagonal elements
that measure the energy change due to a shift of the matrix elements. Ecrystal corresponds
to the part of the energy induced by modifying the matrix elements on one atom by the
surrounding atoms (Note that commonly one assumes that H iβ iα = 0 for the free atom as
one uses atomic like basis functions that are orthogonal to each other on the same atom).

Altogether, the total energy in tight-binding approximation is now given by,

ETB = Eband + Erep

= Ebond + Eprom + Ecrystal + Erep . (C.8)
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C.1.1 No gauge invariance of Eband

We can add an arbitrary constant potential ∆V to the Hamilton Operator Ĥ without
changing the physics described by Ĥ. Moreover, in calculations with periodic boundary
conditions there is no way to find out whether there is a constant shift ∆V added to Ĥ
or not, as no recipes such as “expectation values of Ĥ have to vanish in infinite distance”
can be provided. Although all observables are independent of ∆V (which means that the
physics of the system does not change), the band energy changes as all eigenvalues Eν of
the system are shifted,

Ĥ → Ĥ + ∆V ,

Eν → Eν + ∆V , (C.9)

and thus the band energy changes,

Eband → Eband + ∆V

(
∑

ν

fν

)

= Eband + ∆V Ne , (C.10)

where Ne is the number of electrons contained in the system. As the one-electron wave
functions do not change when a constant potential is added, the changes of matrix elements
in the localized basis are simply given as,

H iα jβ → H iα jβ + ∆V
〈
ϕiα|ϕjβ

〉
. (C.11)

In an orthogonal basis,
〈
ϕiα|ϕjβ

〉
= δiα,jβ , (C.12)

only the energy of promotion changes,

Eprom → Eprom + ∆V Ne . (C.13)

The energy of promotion is an on-site quantity and has nothing to do with bond formation.
Thus the fact that Eprom is not uniquely defined is not a problem when we analyze bonds
and their behavior in two-center approximation.

However, in a non-orthogonal basis generally off-diagonal matrix elements also change,
and Ebond and Ecrystal are not well defined anymore.

C.2 Algebra in a non-orthogonal basis

Following [142] we summarize how to deal with a non-orthogonal basis. Summations have
to be carried out over pairwise indices.

We define the overlap matrix,

Siα jβ =
〈
ϕiα|ϕjβ

〉
=
(
Sjβ iα

)∗
. (C.14)
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For an atomic-like basis, usually the basis is chosen to be orthogonal on each atom (no
sum over i here),

Siα iβ = δαβ . (C.15)

We establish a dual, orthogonal basis,

|ϕiα〉 =
∣
∣ϕjβ

〉 (
S−1

)

jβ iα
,

〈
ϕiα|ϕjβ

〉
=
(
S−1

)

iα kγ
Skγ jβ = δjβ

iα . (C.16)

When the basis fulfills,

1̂̂1̂1 = |ϕiα〉
〈
ϕiα
∣
∣ =

∣
∣ϕjβ

〉 (
S−1

)

jβ iα

〈
ϕiα
∣
∣ , (C.17)

it is complete and a vector |u〉 can be expanded,

|u〉 = uiα

∣
∣ϕiα

〉
= uiα |ϕiα〉 (C.18)

⇒ uiα = Siα jβujβ . (C.19)

We define a scalar product between two vectors,

〈v|u〉 = (viα)∗ Siα jβujβ = (viα)∗ uiα =
(
viα
)∗
uiα . (C.20)

The matrix elements of an operator are given by,

H iα jβ =
〈
ϕiα
∣
∣ Ĥ
∣
∣ϕjβ

〉
. (C.21)

Using Eq. (C.17) we can write down a spectral representation of an operator,

Ĥ =
∣
∣ϕiα

〉
Hiα jβ

〈
ϕjβ
∣
∣ . (C.22)

Note that the overlap matrix S behaves similar to a metric I in non-euclidian space,

I iα jβ = Siα jβ , Iiα jβ =
(
S−1

)

iα jβ
, I iα

jβ = δiα
jβ . (C.23)

C.3 The reformulated covalent bond energy

As noted in Sec. C.1.1, the band energy is not invariant when a constant potential ∆V is
added to Ĥ. Thus, the values of Ebond, Eprom, Ecrystal and Erep obtained for a tight-binding
parameterization from density functional calculations with periodic boundary conditions
can be shifted by an arbitrary constant. Hence, it is useless to compare their numerical
values with other data.

We follow [143,144,124] in order to avoid the ambiguity of the conventional definitions
of Ebond, Eprom, Ecrystal and Erep. These authors had the following idea: If there is no way
to find ∆V , let us define expressions similar to the ones commonly used in tight-binding
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parameterizations but invariant under changes of ∆V . This led to the definition of the
reformulated covalent bond energy,

Ecov, iα jβ = ρiα jβ

[

H iα jβ − 1

2
Siα jβ

(
Hjβ jβ +H iα iα

)
]

, (C.24)

which is invariant under shifts ∆V .
With the help of Ecov, iα jβ we can again subdivide the total energy of the system into

physically motivated parts,

Ecohesive = Etot − Efreeatoms

= Eprom + Ecrystal + Epolar + Ecov + Erep
︸︷︷︸

D[n]

. (C.25)

The energy of promotion is modified,

Eprom =
∑

iα

(

qiα − qfree atoms
iα

)

H iαiα (freeatoms) , (C.26)

with the orbital charge that is defined by,

qiα =
∑

jβ

ρiα jβS
jβiα . (C.27)

The crystal field energy becomes,

Ecrystal =
∑

iα

qiα
(
H iαiα −H iαiα (free atoms)

)
. (C.28)

Note that, although Ecov, iα jβ and Eprom are now invariant under shifts ∆V , Ecrystal is still
not. The total polar energy is defined as,

Epolar =
∑

iαβ

Ecov, iα iβ , (C.29)

and the total covalent bond energy is given by,

Ecov =
∑

i6=j,αβ

Ecov, iα jβ . (C.30)

C.3.1 Ecov and basis transformations

In order to be able to compare the covalent bond energy calculated in different basis sets we
need to find the transformation properties for Ecov. First we note that none of the elements
Ecov, iα jβ is an observable. Thus, if we calculate the matrix element Ecov, iα jβ we are not
able to compare it with a matrix element E ′

cov, iα jβ that was calculated, e.g., in a rotated
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coordinate system. Hence, the elements Ecov, iα jβ calculated in different coordinate systems
cannot be compared, but maybe the total covalent bond energy Ecov can be compared in
different coordinate systems. Before we examine the covalent bond energy Ecov under basis
transformations, we need to define some quantities. We assume to have two complete basis
sets, {|ϕα〉} and {|φα〉}, where α now labels site and orbital,

|φα〉 = 1̂̂1̂1 |φα〉
=
∣
∣ϕβ
〉
〈ϕβ|φα〉

= (A∗)α

β

∣
∣ϕβ
〉
,

|φα〉 = (A∗) β

α |ϕβ〉 , 〈φα| = Aα
β

〈
ϕβ
∣
∣ , 〈φα| = A β

α 〈ϕβ| , (C.31)

with
A β

α =
〈
φα|ϕβ

〉
. (C.32)

Also,

δβ
α =

〈
φα|φβ

〉
= A γ

α 〈ϕγ | (A∗)β

δ

∣
∣ϕδ
〉

= A γ
α

(
A+
) β

γ
, (C.33)

which helps us to show that the trace of the Hamilton matrix is invariant under basis
transformation,

〈φα| Ĥ |φα〉 = A γ
α (A∗)α

δ 〈ϕγ| Ĥ
∣
∣ϕδ
〉

= 〈ϕα| Ĥ |ϕα〉 . (C.34)

The expansion of the eigenfunctions is given by,

|ψν〉 = c(ν)
α |ϕα〉 = b(ν)

α |φα〉 . (C.35)

The fact that the eigenvalues and occupation of the eigenvalues are invariant under a basis
transformation means that the band energy is also invariant under a basis transformation,

Eband =
∑

ν

fνEν =
∑

ν

fν

∑

βα

(

c
(ν)
β

)∗
c(ν)
α

〈
ϕβ
∣
∣ Ĥ |ϕα〉

=
∑

ν

fν

∑

βα

(

b
(ν)
β

)∗
b(ν)
α

〈
φβ
∣
∣ Ĥ |φα〉 . (C.36)

Now let us look at,

Ecov + Epolar =
∑

αβ

ραβ

[

Hαβ − 1

2
Sαβ

(
Hββ +Hαα

)
]

= Eband −
1

2

∑

αβ

ραβS
αβ
(
Hββ +Hαα

)
. (C.37)

The term 1
2

∑

αβ ραβS
αβ
(
Hββ +Hαα

)
does not allow proper pairwise contraction of indices,

thus in general it will not be invariant under a basis transformation. This means that the
covalent bond energy Ecov is invariant under a constant shift of the potential, which is an
improvement over the band energy Eband. However, while Eband is invariant under general
basis transformations, Ecov is not.



148

C.4 A new covalent bond energy

We need to define a new covalent bond energy that is invariant under constant shifts ∆V
of the potential as well as under general basis transformations. We present two possible
formulations.

Note that usually the orbitals used for the parameterization of the Hamilton matrix do
not form a complete set. For the following we differentiate two cases:

1. The basis transformation maps the incomplete basis set with a one-to-one correspon-
dence on another incomplete basis set that contains the same “kind” of basis functions
(Usually a rotation of the coordinate system would be such a basis transformation).

2. The basis transformation maps the incomplete basis set on functions that are not fully
contained in the basis set we want to compare the covalent bond energy with. Then
either the two basis sets can be extended until a one-to-one correspondence according
to 1. can be established. Or the covalent bond energies in the two different basis sets
can be compared only approximately.

C.4.1 A modified band energy

We can simply rewrite the total band energy as

Eband =
∑

jβ iα

ρiα jβ

〈
ϕjβ
∣
∣ Ĥ
∣
∣ϕiα

〉

=
∑

jβ iα

ρ jβ
iα 〈ϕjβ| Ĥ

∣
∣ϕiα

〉
. (C.38)

If we add a constant potential ∆V to Ĥ, the band energy becomes,

Eband =
∑

jβ iα

ρ jβ
iα

(

〈ϕjβ| Ĥ
∣
∣ϕiα

〉
+ ∆V δiα

jβ

)

. (C.39)

Only diagonal elements of H iα
jβ are modified. Thus we can define a bond energy that is

invariant,

Eband =
∑

i6=j,α β

ρ jβ
iα Hjβ

iα

︸ ︷︷ ︸

Ebond

+
∑

iα

ρ iα
iα H iα

iα

︸ ︷︷ ︸

Eprom

+
∑

i,α 6=β

ρ iβ
iα H iβ

iα

︸ ︷︷ ︸

Ecrystal

. (C.40)

In complete analogy to the case of an orthogonal basis, only the energy of promotion Eprom

changes upon a shift Ĥ → Ĥ + ∆V .

C.4.2 A modified covalent bond energy

Using the invariant H iα
iα from Eq. (C.34) it is possible to define an invariant similar to the

covalent bond energy. If,
Ĥ → Ĥ + ∆V ,
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H iα
iα changes to,

H iα
iα → H iα

iα +N∆V ,

where N is the total number of orbitals in the system. If we take into account that the
number Ne of electrons in the system is given by,

Ne =
∑

ν

fν =
∑

iα jβ

ρiα jβS
iα jβ , (C.41)

we can write down a modified covalent bond energy that is invariant under transformations
Ĥ → Ĥ + ∆V and displays proper transformation behavior under basis transformations,

Emod
cov, iα jβ = ρiα jβ

(

H iα jβ − 1

N
Siα jβHkγ

kγ

)

(C.42)

= ρiα jβ

(

H iα jβ − 1

N
Siα jβHkγ lδ

(
S−1

)

lδ kγ

)

. (C.43)
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Appendix D

CVM approximations used

In a binary system the number of states a cluster with N sites can be in, namely 2N ,
is exponentially growing with N . For the case of a surface that was modeled as a slab
with ≈ 50 − 100 layers, the exponential barrier 2N and problems when inverting the Hes-
sian, Eq. (8.32), limited the size of feasible maximum clusters to the Double-Tetrahedron-
Octahedron approximation, see Fig. (D.1). Smaller maximum clusters were also possible,
and calculations were carried out with the octahedron and the tetrahedron as maximum
clusters (Tetrahedron-Octahedron approximation) as well as with the tetrahedron as max-
imum cluster (Tetrahedron approximation) and with a single site or the point as maximum
cluster (Bragg-Williams approximation). From bulk calculations [61,145,146,147,148] it is
known that the Double-Tetrahedron-Octahedron and the Tetrahedron-Octahedron approx-
imation can handle frustration effects present in the fcc-lattice and yield accurate transition
temperatures, see Tab. D.1 .

The calculations were carried out with a CVM code written by Sanchez [149] that
was modified to include long-ranged pair-clusters in Bragg-Williams approximation, see
Sec. 8.2.4. The code was also modified for low temperature calculations as will be described
in the following sections.

Approximation kT/12J12

Tetrahedron 0.83544
Double-Tetrahedron 0.84045

Octahedron-Tetrahedron 0.83394
Double-Octahedron-Tetrahedron 0.82981

High-T expansion 0.81627

Table D.1: Critical temperature for the fcc Ising ferromagnet [61].
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Figure D.1: Maximum clusters used in the CVM calculations were the point as largest
cluster for the Bragg-Williams approximation and the tetrahedron for the Tetrahedron ap-
proximation. Two maximum clusters, the tetrahedron and the octahedron were used in the
Tetrahedron-Octahedron approximation and the double-tetrahedron and the octahedron
for the Double-Tetrahedron-Octahedron approximation.

D.1 Low temperature behavior

As has been noted in Sec. 8.2.5, the inversion of the Hessian for the Newton-Raphson
scheme becomes a problem at low temperature kT , when the probability for a certain
occupation of some cluster κM approaches zero,

lim
kT→0

ρκM
= 0 . (D.1)

First we shown how this problem arises, then a numerical approximation in order to deal
with it will be given. More elaborate solutions than the one presented here were developed
by other authors [150,151,152].

D.1.1 Statement of the problem

The model for a floating point number in a computer is given as,

x = ± a 10n , (D.2)

where ± is stored in one bit, a is a fractional with approximately I = 15 digits and the
exponent n takes integer values from −308 < n < 307 for common 64 bit double preci-
sion numbers real(8). Some computer systems also provide 128 bit quadruple precision
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real(16) numbers where a then is a number with approximately I = 33 digits and the
exponent n can take values from −4932 < n < 4931.

When two numbers are added (or subtracted),

z = x+ y , (D.3)

the result z can only be different from x if,

| log
(y

x

)

| / I . (D.4)

Or in other words, the result of a summation of two numbers has an accuracy of only I
digits. Thus addition operations in a computer require that the orders of magnitude of the
numbers to be added are not too different. This problem is not present in a multiplication.

Termination criterion

In Cluster Variation calculations we numerically minimize the free energy which is done
by searching for zeros of the first derivative. The termination criterion for the minimum
search will be that the first derivative of the free energy gαK

(ξξξ) of Sec. 8.2.5 fulfills,

ε′ > |gαK
(ξξξ) | = |DαK

JαK
− kT

∑

βL

aβL

2L

∑

σσσβL

V (σσσβL
)
αKβL

ln ρβL
(σσσβL

, ξξξ) | , (D.5)

for all clusters αK. The probabilities ρβL
(σσσβL

) are, according to Sec. 8.2.3, linear functions
of the correlations ξξξ. Thus small perturbations of order δδδσ of the correlations also induce
small perturbations δρ of the probabilities,

ρβL
(σσσβL

, ξξξ + δδδσ) = ρβL
(σσσβL

, ξξξ) + δρ , (D.6)

with,
δσ ≈ δρ . (D.7)

If δρ is small compared to ρβL
(σσσβL

, ξξξ), the logarithm in Eq. (D.5) can be expanded,

ln ρβL
(σσσβL

, ξξξ + δδδσ) ≈ ln ρβL
(σσσβL

, ξξξ) +
δρ

ρβL
(σσσβL

, ξξξ)
, (D.8)

A crude approximation thus yields an allowed error of the correlations in Eq. (D.5) of,

δσ ≈ ε′ ρβL
(σσσβL

, ξξξ) . (D.9)

We see that the lower a probability is, the more accurate the correlations ξξξ have to be
determined before the iteration cycle will terminate. In the next section we will see that
the convergence of the free energy itself behaves different from the convergence of its first
derivate.
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Inversion of the Hessian

In general, in order to invert a matrix we need to multiply and add its elements. According
to Sec. 8.2.5, the elements of the Hessian,

HαKβL
= −kT

∑

κM

aκM

22M

∑

σσσκM

VκMαK
(σσσκM

)VκMβL
(σσσκM

)
1

ρκM
(σσσκM

)
,

are linear combinations of 1
ρκM

(ξξξ)
. Thus, when at low temperatures some probabilities

tend to zero while others, e.g., the probability for the ordered ground state configuration,
approach one, the summations required to calculate the Hessian and to invert it can,
according to Eq. (D.4), only be calculated with the precision I of the floating point numbers.
Let us look at an extreme case to see what this means. When one probability ραL

is smaller
by a factor of 10−I than all other probabilities {ρκM

},

ραL
< ρκM

10−I , (D.10)

the numerically calculated Hessian would contain only numbers related to ραL
because

1/ραL
enters the Hessian. It then cannot be used to predict a new search vector ξξξ for the

next step of the Newton-Raphson scheme or, in other words, the Newton-Raphson scheme
will fail to converge to the solution.

D.1.2 The free energy at low temperatures

The free energy in the Cluster Variation approximation, Eq. (8.25),

F =
∑

βK

DβK
JβK

ξβK
+ kT

αmax∑

βK

bβK
TrρβK

ln ρβK
,

approaches a constant finite value F0 for kT → 0. If the system investigated has an ordered
ground state, the system is in this ground state at kT → 0 with probability one whereas
the probabilities for all other states of the system are zero.

Now let us look at a slight variation δ of a probability that is zero or at least close
to zero. The probabilities are linear functions of the correlation vector ξ, thus a slight
variation δ of a probability requires a slight variation of ξ that induces a linear error δU
into the energy U ,

δU ∝ δ . (D.11)

We can rewrite the expression for the entropy as,

(ραL
+ δ) ln (ραL

+ δ) = ραL
ln (ραL

)+ραL
ln

(

1 +
δ

ραL

)

+δ ln
(

1 +
ραL

δ

)

+δ ln (δ) . (D.12)

For the inversion of the Hessian HαKβL
we are interested in a variation δ that is much

larger than a small probability ραL
but that is still small in a numerical sense,

ραL
/δ � 1 and δ � 1 , (D.13)
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The by far largest term is now given by δ ln (δ). We give an example, let ραL
= 10−16 and

δ = 10−8. We find

ραL
ln (ραL

) ≈ −3.7 × 10−15

ραL
ln

(

1 +
δ

ραL

)

≈ −1.8 × 10−15

δ ln
(

1 +
ραL

δ

)

≈ 1.0 × 10−16

δ ln (δ) ≈ −1.8 × 10−7 . (D.14)

In practice, for phase diagram calculations one is interested in a finite convergence criteria
ε for the numerical minimization of the free energy F for terminating the Newton-Raphson
iteration scheme (and not a convergence criterion for the first derivative of F). For typical
applications this may be ε ≈ 10−6. Thus from the above example we see that small
variations δ of very small probabilities ραL

would yield, in a numerical sense, the same
free energy, F ± ε. Or in other words, probabilities that are very small compared to the
convergence criterion ε need, if we are interested in the free energy, not be converged better
than δ.

This gives us the possibility to avoid the inversion and calculation problem for the
Hessian HαKβL

that was stated in the previous section: Do not allow any of the probabilities
{ρκM

} to be smaller than δ, where δ is large enough that the inversion and calculation of
HαKβL

can be carried out numerically accurate. At the same time the allowed δ must be
small enough to only induce errors of the order ε of the termination criterion into the free
energy.

Note that, as was pointed out in the previous section, usually one minimizes the free
energy by searching zero in the first derivative of the free energy, Eq. (D.5). Due to the
logarithm ln (ραL

) variations ραL
/δ � 1 spoil the solution,

ln (ραL
+ δ) = ln (ραL

) + ln

(

1 +
δ

ραL

)

6= ln (ραL
) + ε′ . (D.15)

Therefore, although the free energy does not change in a numerical sense if we add δ to
very small probabilities, due to the divergence of the logarithm at zero, the first derivative
is far away from being zero, which would normally tell us that we are not converged. The
next section will show how we can still use the zero of the derivative of a (slightly modified)
free energy as stopping criteria in a Newton-Raphson scheme.

D.1.3 Adding a hard core potential to the free energy

We simply add a Yukawa term to the free energy,

FY = F + Y , (D.16)

with,

Y = c δ2
ρ

αmax∑

βK

bβK
Tr

(
δρ
ρβK

)

exp

(

−ρβK

δρ

)

, (D.17)
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where δρ is the cut-off probability of the order of δ from the previous section and c is a
coupling constant of O(1). In order to still have a numerically accurate description of the
free energy, Y must be as small as possible in the inversion of the Hessian, thus δρ must
be chosen as a numerically very small value.

We give limits for the errors introduced into the free energy by adding the Yukawa
term (see Fig. D.2). The Yukawa potential is a strictly positive function Y , with a strictly
negative derivative with respect to the probabilities {ραL

}. We denote the probability
distribution that minimizes F with ρρρ0 and the one that minimizes FY with ρρρ1. We define
a function,

ω (λ) = Min!
ξξξ

[F + λY ] , λ ≤ 0 ≤ 1 . (D.18)

With the above minimization condition we note that,

dω

dλ
= Y (ξξξ (λ)) , (D.19)

and thus,

ω (1) = ω (0) +

∫ 1

0

Y dλ . (D.20)

With the help of ∂Y
∂λ

≤ 0 we find an upper limit for the free energy,

F (ρρρ0) = ω (0) < ω (1) − Y (1) = F (ρρρ1) . (D.21)

If we furthermore assume that along the way defined by λ the curvature of the free energy
function is positive (which simply means that we are “close” to the minimum of F which
is guaranteed by choosing δρ � 1), we can give a lower limit for F (ρρρ0),

F (ρρρ1) ≤ F (ρρρ0) +
∑

L

∑

αL

∂F
∂ξαL

∣
∣
∣
∣
∣
ξαL

(λ=1)

(ξαL
(λ = 1) − ξαL

(λ = 0))

= F (ρρρ0) −
∑

K

∑

βK

∑

σβK

∂Y

∂ρβK

∑

L

∑

αL

∂ρβK

∂ξαL

∣
∣
∣
∣
∣
ξαL

(λ=1)

(ξαL
(λ = 1) − ξαL

(λ = 0))

= F (ρρρ0) −
∑

K

∑

βK

∑

σβK

∂Y

∂ρβK

(ρβK
(λ = 1) − ρβK

(λ = 0)) (D.22)

We do not know ρρρ0. However, with
∑

K

∑

βK

∑

σβK

∂Y
∂ρβK

∣
∣
∣
∣
∣
ρρρ1

ρβK
(λ = 0) < 0 we have

F (ρρρ1) ≤ F (ρρρ0) −
∑

K

∑

βK

∑

σβK

∂Y

∂ρβK

∣
∣
∣
∣
∣
ρρρ1

ρβK
(λ = 1) . (D.23)

which defines an estimate for a lower bound of F .
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Figure D.2: Schematic representation of the error estimates found for the free energy.

In practice we chose the parameter c = 1 and δρ so large that a numerically accurate
inversion of the Hessian was possible for the range of temperature that we were interested
in but at the same time δρ was chosen as small as possible. For 64 bit double precision
numbers we chose δρ ≈ 10−7. Depending on the temperature and the approximation for the
entropy, the relative error of the free energy defined be the difference of the error bounds
Eq. (D.21) and Eq. (D.23), was

ε ≤ 10−5 . (D.24)
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Appendix E

Determination of the parameters for
the 2d Ising model
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Figure E.1: Surface structures used for the determination of the parameters of the 2d Ising
model. All layers but the first layer consist of pure Ni.

The parameters J12 , J22 and H were determined from a few ab-initio calculated surface
structures shown in Fig. E.1. The energy that is gained when a single Al atom is brought
into pure Ni material was calculated from a fully relaxed Ni107Al fcc-based supercell cal-
culation. Let Eb (Ni107Al) be the total energy of the super-cell and let Eb (Ni) be the total
energy of a single Ni atom in a Ni fcc-crystal.

Determination of J22

Let E (D022) be the total energy of a surface unit cell of the D022 surface structure that
contains two lattice sites in each layer, Fig. E.1, where only the first surface monolayer
contains a Ni and an Al atom in each unit cell and all other layers contain only Ni atoms.
Let E (L12) be the total energy of a surface unit cell of the L12 surface structure that
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contains two lattice sites in each layer, Fig. E.1, where only the first surface monolayer
contains a Ni and an Al atom in each unit cell and all other layers contain only Ni atoms.
The energy difference between these two structures determines J22 ,

J22 =
1

4
(E (L12) − E (D022)) . (E.1)

Determination of J12 and H

Let E (Ni/Al) be the total energy of a surface unit cell that contains 2N atoms in each
layer. In the unit cell one Al atom of the otherwise perfect L12 surface structure has been
replaced by a Ni atom. All atoms but the atoms in the first layer that are shown in Fig. E.1
are assumed to be Ni atoms. Let E (Al/Ni) be the total energy of a surface unit cell that
contains 2N atoms in each layer. In the unit cell one Ni atom of the otherwise perfect L12

surface structure has been replaced by an Al atom. All atoms but the atoms in the first
layer that are shown in Fig. E.1 are assumed to be Ni atoms.

The energy of the surface structures E (Ni/Al) and E (Al/Ni) is now compared to the
perfect L12 ordered surface.

• When one Al atom is replaced by a Ni atom in the surface, two bonds J12 and
two bonds J22 change their sign. In addition, the energy required to replace an Al
atom from the surface with a Ni atom from the bulk material is given by 2H (site
occupation changes from minus to plus). The total energy change for replacing an
Ni atom in an otherwise perfectly ordered L12 surface is thus given by:

∆E (Ni/Al) = 2(2J12−2J22+H) = E (Ni/Al)−NE (L12)+Eb (Ni107Al)−108Eb (Ni) .
(E.2)

• When one Ni atom is exchanged with an Al atom in the surface, two bonds J12 and
two bondsJ22 change their sign. In addition, the energy required to replace a Ni
atom from the surface with an Al atom from the bulk material is given by −2H (site
occupation changes from minus to plus). The total energy change for replacing an
Al atom in an otherwise perfectly ordered L12 surface is thus given by:

∆E (Al/Ni) = 2(2J12−2J22−H) = E (Al/Ni)−NE (L12)+108Eb (Ni)−Eb (Ni107Al) .
(E.3)

This determines J12 and H:

J12 =
1

8
(∆E (Ni/Al) + ∆E (Al/Ni)) + J22 , (E.4)

H =
1

4
(∆E (Ni/Al) − ∆E (Al/Ni)) . (E.5)

In the language of the cluster expansion the field H that is applied to the 2d Ising model
contains the energy of the bonds that are broken in the bulk material and that are formed
in the surface if a Ni atom in the bulk is replaced by an Al atom in the surface.



Appendix F

More on surface CVM calculations

F.1 Note on the calculation of surface phase diagrams

with the CVM

The surface phase diagram shown in Fig. 10.1 was put together from two independent
calculations. First, a phase diagram for a slab that contained L = 101 layers with no
surface modified interactions was calculated, see Fig. F.1a. This slab does not have a
surface phase that can be different from the volume phase (The volume phase is the phase
in the center of the slab). In the limit L → ∞ the influence of the surface vanishes and
the phase diagram calculated with the slab as described in Sec. 8.2.6 is the same as the
bulk phase diagram. For L = 101 layers the phase diagram is already close to the phase
diagram calculated in the bulk. Second, the surface modified interactions where taken
into account in the CVM calculations. The surface (modeled by a 101 layers slab) then
displays a surface phase that can can be different from the bulk phase. For example, the
surface ordered phase is located in the surface while the bulk material is disordered. The
surface order-disorder transition that takes place in the surface was found to be a first
order transition. However, as only the few first layers change their concentration when
going through the surface order-disorder transition, the overall concentration of the 101
layers slabs stays nearly constant. Therefore the phase boundary lines shown in Fig. F.1b
fall together when the underlying bulk is disordered for cbulk > 0.8.
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Figure F.1: Phase diagram calculated with no surface modified interactions (a) and phase
diagram calculated with surface modified interactions (b) for a 101 layers slab of a fcc (110)
surface with nearest-neighbor interactions only.

F.2 Different CVM approximations for the disordered

surface

We performed CVM calculations for the disordered surface of NiAl in different approxima-
tions for the entropy. For each of the entropy approximations a separate cluster expansion
of the surface and the bulk energetics was carried out. The many-body clusters taken into
account in the cluster expansion must be contained in the basic clusters of the CVM calcu-
lations, hence for this cluster expansions we used three- and four-body clusters contained in
the maximum cluster of the entropy. Pair clusters that were not contained in the maximum
cluster were modeled within the Bragg-Williams approximation. The cluster expansion for
the Tetrahedron approximation reproduces the surface energetics only qualitatively, the
cluster expansion for the Octahedron-Tetrahedron approximation gives already a better
picture of the energetics. All cluster expansions, for Tetrahedron, Octahedron-Tetrahedron
and Double-Tetrahedron-Octahedron approximation display a strong nearest-neighbor in-
teraction and a surface point-cluster that drives the segregation of Al. All calculations
also display a similar behavior: Segregation of Al into the first layer and an enhanced
pair-correlation in the first layer. The second layer contains less Al than the bulk material.
The third layer already displays a behavior more similar to the bulk than to the behavior
of the first layer. Figs. F.2 to F.5 summarize the behavior found for the NixAl1−x surface
with various CVM approximations.
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Figure F.2: Al concentration and the probability to find a pair of Ni-Al atoms on nearest-
neighbor sites in the first five layers. CVM calculations carried out in Tetrahedron approx-
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Figure F.3: Al concentration and the probability to find a pair of Ni-Al atoms on nearest-
neighbor sites in the first five layers. CVM calculations carried out in Octahedron-
Tetrahedron approximation with the cluster expansion of the Tetrahedron approximation.
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Figure F.4: Al concentration and the probability to find a pair of Ni-Al atoms on nearest-
neighbor sites in the first five layers. CVM calculations carried out in Octahedron-
Tetrahedron approximation.
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(110) surface. The CVM calculations were carried out in Tetrahedron-Octahedron approx-
imation.



Anhang G

Zusammenfassung

Anders als vor einem Jahrhundert, als die Gesetze der Quantenmechanik und der statisti-
schen Physik gefunden wurden, hat Materialwissenschaft heute nichts mit der Suche nach
Naturgesetzen zu tun. Naturgesetze, welche für die Materialwissenschaften von Bedeutung
sind, sind bekannt und allgemein akzeptiert. Zu Beginn des 21. Jahrhunderts arbeiten
Materialwissenschaftler an einem verbesserten Verständnis der Naturgesetze, um daraus
Vorhersagen für Materialeigenschaften zu machen oder das Verhalten von Materialien auf
Basis der Naturgesetze zu verstehen und so schlussendlich den Baukasten der Ingenieure
um neue Material- und Eigenschaftsklassen zu erweitern.

Die Leistungssteigerung der Computer in den vergangenen Jahren erlaubte die Ent-
wicklung und Umsetzung von Theorien, welche auf “ersten Prinzipien”, d.h. direkt auf den
Naturgesetzen, beruhen. Diese ab-initio Theorien erlauben die Modellierung makroskopi-
scher Systeme auf der Basis der Naturgesetze. Für die praktische Umsetzung einer ab-
initio Theorie ist es von entscheidender Wichtigkeit, geeignete Transformationen, Abzähl-
verfahren und Abschätzungen zu finden, um die physikalisch wichtigsten Zustände eines
makroskopischen Systems in der riesigen Anzahl möglicher Systemzustände zu finden, oh-
ne alle möglichen Systemzustände explizit abzuzählen. Die Unmöglichkeit, alle Zustände
eines makroskopischen Systems abzuzählen, erfordert aber wiederum die Entwicklung ei-
nes “physikalischen Verständnisses” des untersuchten Systems (In diesem Zusammenhang
heißt physikalisches Verständnis, dass das generelle Verhalten des Systems mit wenigen
Größen beschrieben werden kann). Dies bedeutet, dass eine ab-initio Theorie kompatibel
mit phänomenologischen Modellen und deren Terminologie sein muss.

In dieser Arbeit wird die (110) Oberfläche von Ni90%-Al mit einer ab-initio Theo-
rie modelliert. Schon wenige Oberflächenrechnungen zeigen, dass eine phänomenologische
Modellierung der Oberfläche mit gebrochenen Bindungen das experimentell beobachtete
Verhalten nicht beschreiben kann und sich die Oberfläche in ihrem Verhalten vom Volu-
menmaterial unterscheidet. Die Tatsache, dass sich das Oberflächenmaterial, gegeben durch
einige wenige Atomlagen an der Oberfläche, im Verhalten vom Volumenmaterial unterschei-
det und phänomenologische Modelle nicht in der Lage sind das Oberflächenverhalten zu
beschreiben, unterstreicht die Wichtigkeit einer ab-initio basierten Theorie für das Ver-
halten von Oberflächen: Jeder feste Körper wechselwirkt z.B. bei chemischen Reaktionen,
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Absorption von Atomen, Wärmeübertrag usw. über seine Oberfläche mit der Umgebung.
Eine ab-initio Beschreibung der Oberfläche kann daher wichtige Hinweise und Erkennt-
nisse bei der Entwicklung und Synthese neuartiger Materialien und Materialeigenschaften
liefern.

G.1 Zusammenfassung der einzelnen Kapitel

G.1.1 Kapitel 2

Diese Arbeit wurde initiiert durch Experimente von Dr. H. Reichert aus der Abteilung von
Prof. Dosch am Max-Planck-Institut für Metallforschung in Stuttgart. In den Experimen-
ten an der (110) Oberfläche von Ni90%-Al wurde beobachtet, dass Al in die Oberfläche
segregiert und sich auf dem ungeordneten Volumenmaterial eine dünne, geordnete Schicht
einstellt.

Einführung in die Röntgenstreuung

Soweit es für das Verständnis der Experimente von Bedeutung ist, werden in Kapitel 2 die
Grundlagen der Synchrotronstreuung an Oberflächen vorgestellt.

Besprechung verschiedener Arbeiten zu Ni90%-Al(110)

Verschiedene experimentelle und theoretische Arbeiten zur (110) Oberfläche von Ni90%-Al
werden kurz besprochen. Weiterhin wird das Experiment von Dr. H. Reichert vorgestellt.
Die wichtigsten Ergebnisse und Vermutungen dieses Experiments sind: In der Oberflächen-
Monolage von Ni90%-Al(110) liegt Al in einer Konzentration von 50% vor, weiterhin ist
die Oberflächen-Monolage in L12 Struktur geordnet, siehe Fig. 2.11.

G.1.2 Kapitel 3: Dichtefunktionaltheorie

In diesem Kapitel werden die Grundlagen der Dichtefunktionaltheorie und ihre Umsetzung
als Kohn-Sham-Gleichungen kurz besprochen. Weiterhin wird sehr kurz auf die verwen-
deten Näherungen (Lokale Dichte Näherung) und die Implementierung der Kohn-Sham-
Gleichungen mit Hilfe von Pseudopotentialen eingegangen. Numerische Details zur verwen-
deten Methode [36] werden in Anhang B zusammengefasst.

Die Dichtefunktionaltheorie ist der erste Baustein der ab-initio statistischen Mechanik:
Mit Hilfe der Dichtefunktionaltheorie ist es möglich, Potentiale zwischen den Atomkernen
(als Funktion der Atompositionen) parameterfrei zu bestimmen.

G.1.3 Kapitel 4: Mehrkörper-Potentiale

In diesem Kapitel zeigen wir, dass es möglich ist, jede physikalisch sinnvolle Energie ei-
nes Vielteilchensystems, welche gegeben ist als Funktion von Positionen und Typen von
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Atomen, eindeutig und exakt in Mehrkörper-Potentiale zu entwickeln. Die Mehrkörper-
Potentiale sind dabei unabhängig von Umgebung und Konfiguration der Atome. Wir ge-
ben explizite Entwicklungsvorschriften und ein Beispiel für die Entwicklung der Energie in
Mehrkörper-Potentiale an.

Dieses Kapitel dient als Grundlage der Clusterentwicklung, welche im nächsten Kapitel
abgeleitet wird und welche den nächsten Baustein der ab-initio statistischen Mechanik
bildet.

G.1.4 Kapitel 5: Clusterentwicklung

In diesem Kapitel erweitern wir die bekannte Methode der Clusterentwicklung [59]. Die
Clusterentwicklung ermöglicht die systematische und im Prinzip exakte Abbildung der
konfigurationsabhängigen Systemvariablen eines beliebigen Gittermodells auf ein verallge-
meinertes Ising Modell.

In dieser Arbeit heben wir mit Hilfe der Ergebnisse aus Kapitel 4 die Einschränkung
der Anwendung der Clusterentwicklung auf Gittermodelle auf. Hierfür leiten wir die Clus-
terentwicklung aus den Mehrkörper-Potentialen ab und gelangen so zu einer expliziten
und allgemeinen Verknüpfung der Entwicklungskoeffizienten der Clusterentwicklung mit
den Mehrkörper-Potentialen.

Beispiele für einfache Schlussfolgerungen aus der verallgemeinerten Clusterentwicklung
werden vorgestellt, z.B. die Abschirmung der Paarwechselwirkung in NiAl, Einschränkun-
gen bei der Berechnung der Bildungsenergie und die Ankopplung an phänomenologische
Modelle (harmonische Entwicklung der Clusterentwicklungskoeffizienten, elastische Wech-
selwirkungen, Wechselwirkung zwischen Konfiguration und Auslenkung der Atompositio-
nen).

G.1.5 Kapitel 6: Clusterentwicklung in eingeschränkter Geome-
trie

Die allgemeinen Ergebnisse aus Kapitel 5 erlauben im Gegensatz zur bisher bekannten
Clusterentwicklung von Gittermodellen eine direkte Anwendung der Clusterentwicklung
auf spezielle Geometrien. Insbesondere wird die Clusterentwicklung an Oberflächen, wie
sie für die ab-initio statistische Mechanik von Oberflächen benötigt wird, abgeleitet. Ande-
re mögliche Anwendungen der Clusterentwicklung werden besprochen, z.B. der Fall einer
Monolage einer binären Legierung auf einem Substrat oder die Wechselwirkung einzelner
Adatome auf einem Substrat. Weiterhin wird abgeschätzt, ob eine reine Paarwechselwir-
kung in NiAl das experimentell beobachtete Segregationsverhalten von Al erklären kann.

G.1.6 Kapitel 7: Praktische Clusterentwicklung

Die Komplexität und der Aufwand, welche mit ab-initio Rechnungen für Oberflächen ein-
hergehen, zwingen uns, den möglichen Phasenraum der Oberfläche einzuschränken. Dies
wird erreicht, indem wir nur Oberflächenkonfigurationen im mechanischen Gleichgewicht
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betrachten. Die ab-initio berechneten Energien verschiedener Oberflächenkonfigurationen
werden dann wiederum auf ein Gittergasmodell abgebildet. In Kapitel 7 wird beschrieben,
mit Hilfe welcher Methoden diese Abbildung durchgeführt wird.

Die durch die Komplexität der ab-initio Rechnungen auferlegte Einschränkung des Pha-
senraums auf ein effektives Gittergasmodell macht es nun möglich, Betrachtungen zu Se-
gregation und Ordnung in der Oberfläche mit Gittergasmethoden der statistischen Physik
durchzuführen. Die von uns verwendete Methode, die Cluster-Variations-Methode, wird im
nächsten Kapitel vorgestellt.

G.1.7 Kapitel 8: Modellierung des Einflußes der Temperatur

In diesem Kapitel wird das Konzept von langreichender und kurzreichender Ordnung vorge-
stellt. Ausführlich wird auf die Gleichungen der Cluster-Variations-Methode eingegangen.
Die Monte-Carlo Methode wird, da sie in der weiteren Arbeit nicht verwendet wird, nur
kurz vorgestellt. Weiterhin wird die Verknüpfung des Röntgenstreusignals mit der kurzrei-
chenden Ordnung hergeleitet.

Mit Kapitel 8 steht uns eine ab-initio statistische Mechanik für Oberflächen zur Verfügung,
welche es uns erlaubt, Segregation und Ordnung an der Oberfläche von Ni90%-Al parame-
terfrei zu untersuchen.

G.1.8 Kapitel 9: Die (110) Oberfläche von Ni90%-Al

In diesem Kapitel untersuchen wir, basierend auf einer Vielzahl von ab-initio Rechnungen
für die Oberfläche als auch für das Volumenmaterial, die Energetik der Oberfläche von
Ni-Al im Bereich von 3/4 ≤ cNi ≤ 1. Wir finden zunächst, dass die Segregation von Al mit
einem einfachen Modell gebrochener Bindungen an der Oberfläche nicht beschrieben wer-
den kann. Weiterhin finden wir, dass die Segregation von Al auch nicht durch Relaxation
oder einen einfachen Größeneffekt verursacht wird, sondern durch kompliziertere, allgemei-
ne Modifikationen der elektronischen Struktur an der Oberfläche. Die Modifikationen der
elektronischen Struktur an der Oberfläche versuchen wir in den beiden letzten Abschnitten
von Kapitel 9 zu erfassen.

Basierend auf den ab-initio Rechnungen finden wir:

• Al segregiert spontan in die Oberfläche.

• Die Segregation von Al stoppt bei einer Konzentration von 50% in der ersten Lage.
Dies rührt von der stark abstoßenden nächsten-Nachbar Wechselwirkung zwischen Al
Atomen her, welche eine Besetzung von nächsten-Nachbar Plätzen mit Al Atomen
energetisch ungünstig macht.

⇒ Aufgrund der Struktur der fcc (110) Oberfläche ergeben sich in der Oberfläche ge-
ordnete nächste-Nachbar Ketten, welche alternierend mit Ni und Al besetzt sind. Die
Oberfläche ist also geordnet.
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• Die Wechselwirkung zwischen den geordneten NiAl Ketten im Abstand von zweit-
nächsten-Nachbarn ist schwach.

• Für eine Konzentration von cNi → 1 erwarten wir eine D022 geordnete Oberflächen-
Monolage.

• Erhöhung der Volumen Al Konzentration führt zu einer Destabilisierung der D022

Monolage zugunsten einer L12 geordneten Monolage ab cNi ≈ 0.1. Die Energieun-
terschiede zwischen der D022 Monolage und der L12 Monolage sind aber so klein,
dass aufgrund der gemachten Näherungen (Lokale Dichte Näherung,...) die Größe
des Energieunterschieds als ungefähr null angenommen werden muß.

• Al Atome in der zweiten Lage werden von Al Atomen in der ersten Lage stark abge-
stoßen.

Mit ab-initio Rechnungen können wir somit die experimentell gefundene Oberflächenkon-
zentration von 50% Al und die Ordnung in der Oberfläche verstehen.

Eine Clusterentwicklung der Energetik der Oberfläche ist in der Lage die Energien der
ab-initio berechneten Oberflächenkonfigurationen zu reproduzieren und zeigt, dass die Ent-
wicklungskoeffizienten innerhalb von drei Lagen von der Oberfläche in sehr guter Näherung
ihren Volumenwert annehmen.

G.1.9 Kapitel 10: Die (110) Oberfläche von Ni90%-Al bei endli-
cher Temperatur

In diesem Kapitel führen wir zunächst Modellrechnungen zum besseren Verständnis der
(110) Oberfläche von Ni90%-Al durch. Aufgrund der dominanten nächsten-Nachbar Wech-
selwirkung im Ni-Al System beginnen wir mit einem Modell, welches nur nächste-Nachbar
Kopplungen in Betracht zieht. Durch Vergleich mit dem 1d Ising Modell finden wir, dass
eine geordnete Oberflächenphase nur stabil sein kann, wenn ihr Ordnungsparameter nur
allmählich in das Volumen zerfällt.

Durch Hinzunahme der schwachen zweit-nächsten-Nachbar Wechselwirkung und Ver-
gleich mit dem 2d Ising Modell stellen wir fest, dass die schwache zweit-nächste-Nachbar
Wechselwirkung eine geordnete Phase, welche ausschließlich auf die erste Lage beschränkt
ist, ermöglicht. Da die Größe der zweit-nächsten-Nachbar Wechselwirkung direkt von der
Energiedifferenz zwischen D022 und L12 geordneter Oberflächen-Monolage bestimmt wird,
welche ihrerseits zu klein ist, als dass wir mit der lokalen Dichte Näherung zuverlässige
Werte angeben könnten, können wir kein Phasendiagramm berechnen.

Aufgrund der starken nächsten-Nachbar Wechselwirkung bleibt die Ordnung entlang
der nächsten-Nachbar Ketten als starke, kurzreichende Ordnung auch in der nicht langrei-
chend geordneten Oberflächenphase erhalten. Für die nicht langreichend geordnete Ober-
fläche führen wir Cluster-Variations Rechnungen für Ni-Al(110) durch. Wir finden, dass sich
das System ab der dritten Lage von der Oberfläche nahezu wie Volumenmaterial verhält.
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G.2 Ab-initio statistische Mechanik für Ni90%-Al(110)

In den Kapiteln 3 bis 8 wurden die Grundlagen einer ab-initio statistischen Mechanik
vorgestellt. Das komplexe Verhalten von Vielteilchensystemen erfordert eine Hierarchie
von Näherungen und Annahmen auf verschiedenen Ebenen:

• Das quantenmechanische Vielteilchenproblem wird in der Dichtefunktionaltheorie
auf effektive Einteilchengleichungen abgebildet. In den Rechnungen wurde die lo-
kale Dichte Näherung verwendet, da das exakte Austausch-Korrelations-Funktional
unbekannt ist.

• Der Phasenraum der Oberfläche wurde drastisch eingeschränkt, indem nur Atom-
positionen im mechanischen Gleichgewicht betrachtet wurden. Anregungen wie z.B.
Phononen oder Anregungen der elektronischen Struktur wurden vernachlässigt. Die
Energie verschiedener Konfigurationen der Oberfläche, d.h. verschiedener Besetzun-
gen der Atompositionen mit Ni und Al Atomen, wurde auf eine Clusterentwicklung
der Oberfläche abgebildet.

• Die Berechnung der Entropie wurde durch die Einführungen eines maximalen Clus-
ters in der Cluster-Variations-Methode vereinfacht. Durch diese Näherung umgeht
man das Problem, alle möglichen Systemzustände explizit berechnen zu müssen.

Alle diese Näherungen und Annahmen können, zumindest im Prinzip, überprüft werden.
Weiterhin kann die Theorie erweitert werden, um die Auswirkungen von Phononen, Anre-
gungen der elektronischen Struktur oder Korrelationen beliebiger Reichweite zu erfassen.
Bei der Ableitung der ab-initio Theorie wurden keine freien Parameter eingeführt, jeder
Parameter kann systematisch aus den Naturgesetzen abgeleitet oder genähert werden.

Segregation und Ordnung an Ni90%-Al(110)

Basierend auf ab-initio Rechnungen und einer Modellierung der Oberfläche bei endlichen
Temperaturen in den Kapiteln 9 und 10 wurde gefunden, dass Al spontan in die Oberfläche
segregiert. Die Segregation von Al wird dabei verursacht von allgemeinen Modifikatio-
nen der elektronischen Struktur der Oberfläche und nicht von einfachen Relaxations- oder
Größeneffekten. Die starke nächste-Nachbar Wechselwirkung in der Oberfläche stoppt die
Segregation von Al bei einer Konzentration von 50% in der Oberflächen-Monolage. Weiter-
hin erzeugt die starke nächste-Nachbar Wechselwirkung geordnete Ni-Al-Ni-Al-Ni- Ketten
auf nächsten-Nachbar Plätzen in der Oberfläche. Die kleine Energiedifferenz die für ver-
schiedene Anordnungen der geordneten Ni-Al Ketten in der Oberfläche berechnet wurde,
führte zur Schlussfolgerung, dass im Grenzfall cNi → 1 die Oberfläche als schwach gekoppel-
te 1d anitferromagnetische Ising Ketten in Kontakt mit einen Teilchenreservoir beschrieben
werden kann. Obwohl die Energiedifferenzen zwischen den verschiedenen Anordnungen der
geordneten 1d Ni-Al Ketten in der Oberläche klein sind, sind diese Energiedifferenzen ent-
scheidend für die Entordnungstemperatur der Oberfläche. Aufgrund der in den ab-initio
Rechnungen gemachten lokalen Dichte Näherung, können diese kleinen Energiedifferenzen
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nicht exakt bestimmt werden und das Phasendiagramm der Oberfläche kann nur skizziert
werden. Aufgrund der starken nächsten-Nachbar Wechselwirkung in der Oberfläche exis-
tieren jedoch starke Korrelationen entlang der nächsten-Nachbar Bindungen weit über der
abgeschätzten Entordnungstemperatur.

Anhand der ab-initio Rechnungen wurde weiterhin festgestellt, dass die Oberflächen-
modifikationen der Energetik innerhalb weniger Lagen von der Oberfläche in das Volumen-
material zerfallen. Ebenso verhält es sich mit der Al Segregation in die Oberfläche: Die
Segregation von Al in die Oberfläche und die Ordnung der Oberfläche beschränken sich im
wesentlichen auf die Oberflächenlage.

Vergleich zwischen Theorie und Experiment

Eine erhöhte Oberflächenkonzentration von Al wurde experimentell für verschiedene Ober-
flächen von Ni90%-Al gefunden. Für die (110) Oberfläche wurde dieses Verhalten durch
Rechnungen bestätigt. Weiterhin konnte die Konzentration von 50% Al in der Oberfläche,
wie sie von Reichert gefunden wurde (Sec. 2.3.2), verstanden werden. In Übereinstimmung
mit den Experimenten von Reichert konnte die Abnahme der Al Konzentration mit ab-
nehmender Temperatur, wie sie von Polak et al. [14,15] beobachtet wurde, nicht bestätigt
werden.

Aufgrund der endlichen Genauigkeit der ab-initio Rechnungen in lokaler Dichte Nähe-
rung kann über die experimentell gefundene L12 geordnete Oberfläche nur spekuliert wer-
den. Anhand unserer Rechnungen können wir nicht entscheiden, ob die Oberfläche bei den
experimentellen Bedingungen von 1050 K und einer Ni Volumenkonzentration von 90% in
L12 Struktur ordnet, oder in D022 Struktur, oder ob die Oberfläche keine langreichende
Ordnung aufweist sondern nur starke Korrelationen entlang der nächsten-Nachbar Bindun-
gen.

Für ein besseres Verständnis des temperaturabhängigen Verhaltens der Oberfläche sollte
das System von experimenteller als auch theoretischer Seite angegangen werden:

• Weitere Experimente bei verschiedenen Temperaturen und Konzentrationen würden
wichtige Informationen über den Zerfall des Ordnungsparameters in das Volumen-
material hinein liefern und damit klären helfen, ob die Ordnung in der Oberfläche
grundsätzlich auf die erste Lage beschränkt ist oder ob die geordnete Oberfläche ein
Precursor des L12-A1 zwei-Phasengebietes ist und damit tiefer in das Volumen ein-
dringt wenn die Ni-Volumenkonzentration erniedrigt wird. Auch könnte die Existenz
der in dieser Arbeit theoretisch gefundenen geordneten Oberfläche mit D022 Termi-
nierung bei einer Ni-Volumenkonzentration nahe cNi = 1 überprüft werden.

• Weitere Rechnungen mit höherer Genauigkeit für die Energiedifferenz zwischen der
D022 und der L12 Oberflächen Monolage würden wichtige Informationen für das Ober-
flächenphasendiagramm liefern. Methoden mit höherer Genauigkeit zur quantenme-
chanischen Simulation von Oberflächen werden aufgrund ihres Aufwands jedoch in
den nächsten Jahren noch nicht zur Verfügung stehen.
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• Prof. Dr. J.L. Morán-López danke ich für seine Gastfreundschaft während meines
Aufenthaltes am IPICYT in San Luis Potosi, Mexiko, von Oktober bis Dezember
2001.

• Prof. Dr. A. Dı́az-Ort́ız danke ich für seine Freundschaft während meines Aufenthaltes
am IPICYT in San Luis Potosi, Mexiko, von Oktober bis Dezember 2001, und für
die gute Zusammenarbeit im Anschluß an diesen Aufenthalt.

• Prof. Dr. G. Wunner danke ich für die Übernahme des Mitberichts zu meiner Disser-
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