Herstellung und Charakterisierung neuer ternärer Silbermetallate durch Festkörpersynthese unter Sauerstoffhochdruck

Von der Fakultät Chemie der Universität Stuttgart zum Erlangen der Würde eines Doktors der Naturwissenschaften (Dr. rer. nat.) genehmigte Abhandlung

vorgelegt von

Sascha Ahlert

aus Düsseldorf

Hauptberichter: Mitberichter: Prof. Dr. M. Jansen Prof. Dr. Th. Schleid

Tag der Einreichung:10. März 2004Tag der mündlichen Prüfung:30. April 2004

Max-Planck-Institut für Festkörperforschung, Stuttgart 2004

Inhaltsverzeichnis

1 Einleitung	7
2 Allgemeiner Teil	11
2.1 Synthesen mit Sauerstoffhochdruck im Autoklaven	11
2.1.1 Thermodynamische Betrachtung und Druckbestimmung der	
Festkörpersynthesen unter Sauerstoffhochdruck	11
2.1.2 Aufbau der Sauerstoffhochdruckautoklaven	14
2.1.3 Versuchsdurchführungen	15
2.2 Physikalische Untersuchungsmethoden	16
2.2.1 Röntgenbeugungsmethoden	16
2.2.1.1 Röntgenpulverdiffraktometrie	16
2.2.1.2 Einkristalldiffraktometrie	
2.2.2 Photoelektronenspektroskopie, XPS	19
2.2.3 Elektronenmikroskopische Untersuchungsmethoden	20
2.2.3.1 Rasterelektronenmikroskopie und Energiedispersive	
Mikroanalyse	20
2.2.3.2 Transmissionselektronenmikroskopie, TEM	20
2.2.4 Rasterkraftmikroskopie, AFM	21
2.2.5 Thermische Analysemethoden, DTA / TG / MS, DSC	22
2.2.6 Messung der magnetischen Suszeptibilität	22
2.2.7 Leitfähigkeitsuntersuchungen	23
2.3 Dichtefunktional-Bandstruktur-Rechnungen	24
2.3.1 TB-LMTO-ASA Methode	24
2.3.2 Bandstrukturen und Zustandsdichten	25
2.4 Periodische Potentialflächen (PEPS, POPS) und Periodische Knotenflächen	
(PNS)	27
3 Spezieller Teil	28
3.1 Untersuchungen im System Silber-Mangan-Sauerstoff	28

3.1.1 Kenntnisstand im System Silber-Mangan-Sauerstoff	
3.1.2 Tetrasilbertrimanganat(IV), Ag ₄ Mn ₃ O ₈	
3.1.2.1 Darstellung von Ag ₄ Mn ₃ O ₈	
3.1.2.2 Rasterelektronenmikroskopie und Energiedispersive	
Mikroanalyse	
3.1.2.3 Röntgenographische Untersuchungen	
3.1.2.4 Beschreibung und Diskussion der Kristallstruktur	40
3.1.2.5 Strukturhierarchie in Ag ₄ Mn ₃ O ₈	
3.1.2.6 Messung der magnetischen Suszeptibilität	51
3.1.2.7 Leitfähigkeitsmessungen	53
3.1.2.8 Untersuchung des thermischen Verhaltens	54
3.1.2.9 Hochtemperaturmodifikationen von Ag ₄ Mn ₃ O ₈	
3.1.2.10 Die β -Phase von Ag ₄ Mn ₃ O ₈ zwischen 477 K und 689 K	63
3.1.2.11 Die γ -Phase von Ag ₄ Mn ₃ O ₈ oberhalb 689 K	68
3.1.2.12 Strukturvergleich von α -, β - und γ -Ag ₄ Mn ₃ O ₈	72
3.1.3 Disilbermanganat(III), Ag ₂ MnO ₂	77
3.1.3.1 Darstellung von Ag ₂ MnO ₂	77
3.1.3.2 Rasterelektronenmikroskopie und Energiedispersive	
Mikroanalyse	
3.1.3.3 Transmissionselektronenmikroskopie, TEM	79
3.1.3.4 Röntgenographische Untersuchungen	
3.1.3.5 Messung der Magnetischen Suszeptibilität	
3.1.3.6 Leitfähigkeitsmessungen	
3.1.3.7 Untersuchung des thermischen Verhaltens	
3.1.3.8 Photoelektronenspektroskopie an Ag ₂ MnO ₂	
3.2 Untersuchungen im System Silber-Osmium-Sauerstoff	
3.2.1 Vorbemerkungen zum System Silber-Osmium-Sauerstoff	
3.2.2 Tridecasilberosmat(VIII), Ag ₁₃ OsO ₆	91
3.2.2.1 Darstellung von Ag ₁₃ OsO ₆	91
3.2.2.2 Rasterelektronenmikroskopie und Energiedispersive	
Mikroanalyse	92
3.2.2.3 Röntgenographische Pulveruntersuchungen	94
3.2.2.4 Einkristalluntersuchungen mit Filmmethoden	95

3.2.2.5 Einkristallstrukturanalyse	96
3.2.2.6 Beschreibung und Diskussion der Kristallstruktur	98
3.2.2.7 Messung der magnetischen Suszeptibilität	101
3.2.2.8 Leitfähigkeitsmessungen	103
3.2.2.9 Untersuchung des thermischen Verhaltens	104
3.2.2.10 Photoelektronenspektroskopie an Ag ₁₃ OsO ₆	107
3.2.2.11 Zustandsdichteberechnungen und Bandstrukturen von Ag ₁₃ OsO ₆	
mittels der TB-LMTO-ASA-Methode	108
3.2.2.12 Untersuchung der Oberflächenstruktur (Rasterkraftmikroskopie,	
AFM)	116
3.2.2.13 Bestimmung von Raumteilern (Periodische Knotenflächen,	
PNS)	121
1 Tursenmenterson pictures and Auchlick	100
4 Zusammenrassung, Diskussion und Ausblick	122
5 Abstract	126
6 Literaturverzeichnis	129
7 Anhang	138
7.1 Ag ₄ Mn ₃ O ₈	138
7.1.1 Magnetische Messung	138
7.1.2 Leitfähigkeitsmessung	139
7.1.3 DTA / TG / MS - Messung	140
7.1.4 Gitterkonstanten der Hochtemperaturphasen	145
7.1.5 Beobachtete und berechnete Strukturfaktoren bei β -Ag ₄ Mn ₃ O ₈	146
7.1.6 Beobachtete und berechnete Strukturfaktoren von γ -Ag ₄ Mn ₃ O ₈	152
7.2 Ag ₂ MnO ₂	154
7.2.1 Verfeinerung der Gitterkonstante	154
7.2.2 Magnetische Messung	154
7.2.3 Leitfähigkeitsmessung	159
7.2.4 DTA / TG / MS - Messung	159
7.2.5 XPS-Messung	162
7.3 Ag ₁₃ OsO ₆	164

7.3.1 Verfeinerung der Gitterkonstante	164
7.3.2 Beobachtete und berechnete Strukturfaktoren	165
7.3.3 Magnetische Messung	167
7.3.4 Leitfähigkeitsmessung	169
7.3.5 DTA / TG / MS - Messung	170
7.3.6 XPS-Messung	173
7.4 Disilberosmat(VI), Ag ₂ OsO ₄	174
7.4.1 Darstellung	174
7.4.2 Rasterelektronenmikroskopie und Energiedispersive Mikroanalyse	175
7.4.3 Röntgenographische Pulveruntersuchungen	176
7.4.4 Einkristallstrukturuntersuchungen mit Filmmethoden	178
7.4.5 Einkristallstrukturanalyse	
7.4.6 Beschreibung und Diskussion der Kristallstruktur von Ag ₂ OsO ₄	
7.4.7 Verfeinerung der Gitterkonstanten	
7.5 Abbildungsverzeichnis	
7.6 Tabellenverzeichnis	
7.7 Danksagung	196
7.8 Liste der aus dieser Arbeit hervorgegangenen Publikationen	197

Die physikalischen und chemischen Eigenschaften der Münzmetalle Kupfer, Silber und Gold werden wesentlich durch deren d¹⁰-Elektronenschale geprägt. Das Verhalten dieser der ersten müsste. wenn Elemente Nebengruppe man nur die Valenzelektronenkonfiguration (s^1) betrachtet, mit den Alkalimetallen entsprechender Periode vergleichbar sein. Der zusätzliche Einbau von d-Elektronen bei Kupfer und Silber bzw. d- und f-Elektronen bei Gold und deren geringerer Abschirmung der Kernladung bewirkt jedoch einen Anstieg der effektiven Kernladung,^[1] wodurch die s-Elektronen stärker als bei den Alkalimetallen gebunden werden. Dies verursacht einen geringeren Energieunterschied zwischen erster und zweiter Ionisierungsenergie und begründet, verbunden mit den höheren Sublimationsenthalpien, den wesentlich edleren Charakter der Münzmetalle. Als zusätzlicher Effekt kommt, besonders bei Gold, eine relativistische Orbitalkontraktion des 6s-Orbitales hinzu, die zu einer weiteren Volumenkontraktion des Metalls von ca. 20 % führt.^[2]

In kristallchemischer Hinsicht treten, trotz ähnlicher Ionenradien, ebenfalls große Unterschiede zwischen den Alkali- und den Münzmetallen auf. Im Gegensatz zu den edelgaskonfigurierten Alkalimetallkationen mit kugelsymmetrischer Elektronenschale, welche eine tetraedrische oder oktaedrische Anordnung um das Zentralatom begünstigt, treten bei den d¹⁰-konfigurierten einwertigen Kationen der Elemente der ersten Nebengruppe kleinere Koordinationszahlen mit einer Tendenz zur Bildung einer linearen Zweierkoordination auf.^[3] Dies deutet auf eine Verletzung der Kugelsymmetrie^[4] infolge der Beteiligung des dz²-Orbitales an der Bindung hin und korreliert mit dem geringen energetischen Unterschied bei Cu⁺, Ag⁺, Au⁺ und Hg²⁺ zwischen dem d¹⁰s⁰-Grundzustand und dem ersten angeregten Zustand mit d⁹s¹-Konfiguration.^[5]

Weitere signifikante Unterschiede sind in den Kristallstrukturen erkennbar. Während Alkalimetallkationen in Verbindungen maximale Abstände zueinander anstreben und es zu charakteristischen Kation-Anion-Kontakten kommt, weisen einige Silberverbindungen bezüglich der Anordnung ihrer Silberteilchen unübliche Strukturmerkmale auf. Speziell die ternären Silberoxide wurden auf dieses Verhalten hin untersucht.^[6] Die positiv geladenen Silberteilstrukturen weisen eine Tendenz zur Ausbildung von clusterähnlichen Anhäufungen auf, in denen Silberabstände vergleichbar dem in elementarem Silber (289 pm) auftreten und damit deutlich kürzer als der van-der-Waals-Radius von 340 pm^[7] sind.

Diese ungewöhnlich kurzen Bindungslängen wurden erstmals von Byström und Evers in den Verbindungen Ag₂PbO₂ und Ag₅Pb₂O₆ beobachtet. Sie berichteten 1950 über kurze Ag⁺-Ag⁺-Abstände von 304 pm und interpretieren diese als eine Form von "kovalenter Bindung".^[8] Die richtigen Sauerstofflagen beider Kristallstrukturen wurden später gefunden und an Stelle einer "kovalenten Bindung" wurde Ag5Pb2O6 schließlich subvalent als Ag₅Pb₂O₆(e⁻) formuliert.^[9, 10] Barclay und Hoskins beschrieben 10 Jahre später in der Silberionenteilstruktur von KAgCO₃ Silberabstände (300 pm), die vergleichbar mit den Abständen in metallischen Silber sind, und vermuteten bindende Wechselwirkungen zwischen den d¹⁰-konfigurierten Ag⁺-Ionen.^[11] Ausgeprägte "metallische Bereiche" mit Abständen, die mit denen von metallischem Silber korrelieren, wurden 1972 und 1973 von Keller und Müller-Buschbaum für die isotypen Verbindungen $BaAg_6O_4$ (284 pm)^[12] und $SrAg_6O_4$ (281 pm)^[13] beschrieben. Eine Vielzahl weiterer ternärer Silberoxide mit Silberabständen kürzer als 300 pm konnte inzwischen unter anderem mit Hilfe der Autoklaventechnik und Verwendung von Sauerstoffhochdruck dargestellt werden. Diese Syntheseroute ermöglicht eine Stabilisierung der zersetzlichen Edelmetalloxid-Edukte bei höheren Temperaturen, wodurch eine hinreichende Reaktionsgeschwindigkeit der Festkörperreaktionen erreicht wird. Auf diesem Wege wurden z. B. die isotypen Verbindungen LiAg₃O₂,^[14] NaAg₃O₂^[15] sowie zwei Phasen der Verbindung Ag₆SiO₇^[16] dargestellt. Intensiv und sehr erfolgreich wurde unter anderem das ternäre System Ag-Bi-O mit der Sauerstoffhochdruckroute untersucht.^[17, 18] Mit diesem Herstellungsverfahren wurden die Silberbismutate Ag₂₅Bi₃O₁₈,^[19, 20] Ag₃BiO₃,^[21] Ag_5BiO_4 ,^[21] $Ag_4Bi_2O_5$,^[22] Ag_2BiO_3 ^[23] und $Ag_{7+x}BiO_6$ ^[17] synthetisiert.

Dieses für Kationen ungewöhnliche strukturchemische Verhalten der kurzen Silberionenabstände wurde 1978 erstmalig von Jansen auf bindende Wechselwirkungen zwischen den d¹⁰-Unterschalen der Kationen zurückgeführt.^[16] In einem systematischen Vergleich von Experimentalbefunden wurde 1980 ein Zusammenhang mit den clusterähnlichen Silberansammlungen, gestützt auf Silberionenabstände und damit zusammenhängender Stoffeigenschaften, beschrieben. So weisen z. B. ternäre Silberoxide mit clusterähnlichen Silberansammlungen eine Absorptionskante im sichtbaren Spektralbereich auf. Mit höherem Silbergehalt und zunehmender Ausdehnung der clusterähnlichen Silberansammlungen kommt es zu einer stärkeren Absorption und damit verbunden zu einer Verschiebung dieser Absorptionskante zu niedrigeren Wellenzahlen. Dieses Verhalten demonstriert einen Zusammenhang von Bindungszustand und

elektronischer Struktur von Ag⁺. Das Auftreten dieser Wechselwirkungen ist für ein Kationen-Sauerstoff-Verhältnis von mindestens 4 : 5 beobachtet worden.^[24]

Bei alleiniger Betrachtung der Silberlagen einer Kristallstruktur kann man als Grundbaueinheit annähernd gleichseitige Dreiecke aus Silberatomen ausmachen. Diese Dreiecke formen Ketten (Na₃AgO₂),^[25] Bänder (Ag₂CO₃),^[26] Schichten (KAgCO₃),^[11] oder Gerüste (Ag₂PbO₂)^[8] und bilden dadurch die Silberteilstruktur einer Verbindung. Sowohl Strukturmotiv als auch Abstände der clusterähnlichen Silberanordnungen entsprechen Ausschnitten aus der kubisch-flächenzentrierten Struktur elementaren Silbers. Diese Tendenz der Clusterbildung wird allerdings erst beobachtet, sobald die erste Koordinationssphäre mit Sauerstoff (z. B. lineare O-Ag-O-Gruppierung) abgesättigt ist.

Bei Betrachtung sämtlicher Kationen treten vielfach dichte oder kubisch innenzentrierte Packungen oder Atomanordnungen isotyp zu intermetallischen Phasen auf. Die Kationen in $Ag_8Ge_3O_{10}^{[27]}$ besetzen z. B. die Lagen einer kubisch innenzentrierten Packung, und die Kationenanordnung in Ag_5MO_4 (M = Ge, Si)^[28-30] entspricht dem einer verzerrten Variante einer AlB₂-Struktur.

Die Neigung zur Ausbildung clusterähnlicher kationischer Agglomerate übt wiederum einen starken strukturchemischen Einfluss auf die Sekundärstruktur komplexer Anionen aus und führt zur Ausbildung von bisher unbekannten oder ungewöhnlichen Anionen. Das Tetrasilication in $Ag_{10}Si_4O_{13}$,^[31] das polymere $[TiO_3]^{2-}$ -Anion in $Ag_2TiO_3^{[32]}$ oder das Polyanion in $AgBO_2^{[33]}$ mit trigonal-planarem und tetraedrisch koordiniertem Bor sind hierfür typische Beispiele.

Erste theoretische Untersuchungen der Wechselwirkungen zwischen den d¹⁰-Unterschalen wurden 1958 von L. E. Orgel unternommen. Die energetisch vergleichbaren (n – 1) d_z^2 - und ns-Zustände hybridisieren, und durch Besetzung des so gebildeten bindenden Ψ_1 -Orbitales ($\Psi_1 = \Psi$ (n – 1) $d_z^2 + \Psi$ ns) kommt es zu einer partiellen Entleerung des d-Orbitales des Silbers, was eine bindende Überlappung ermöglicht.^[4] Während sich im Ψ_1 -Orbital mit Elektronendichtemaximum in der xy-Ebene zwei Elektronen aufhalten, kann das antibindende leere Ψ_2 -Orbital ($\Psi_2 = \Psi$ (n – 1) $d_z^2 - \Psi$ ns) mit maximaler Elektronendichte entlang der z-Achse mit Liganden wechselwirken und so die lineare Koordination stabilisieren. ESCA-Messungen an ternären Silberoxiden^[34] wie auch *ab-initio*-Rechnungen an oxidischen Silberverbindungen^[35] bestätigen diese qualitativen Gedankengänge.

Eine physikalische Interpretation dieser Bindungskräfte haben Pyykkö *et al.* in jüngster Zeit anhand ausführlicher theoretischer Studien für Gold(I)-Verbindungen gezeigt. Bei den beschriebenen Wechselwirkungen zwischen Metallzentren mit abgeschlossenen Schalen handelt es sich demnach um einen Korrelationseffekt, der im Falle großer intermetallischer Abstände hauptsächlich als eine klassische Dispersionskraft aufgefasst werden kann.^[36-39] Eine Verstärkung dieses Effektes tritt häufig durch elektrostatische Beiträge und "Charge-Transfer-artige" Dispersionswechselwirkungen auf.^[40]

Zwischen der Tendenz von Silber(I)-Verbindungen zu homoatomaren Wechselwirkungen und der Existenz von Silbersubverbindungen besteht ein Zusammenhang. Die Silberteilstrukturen haben auf Grund der Anziehungskräfte freie s- und p-Leitungsbänder, die bei einer Reduktion leicht Elektronen aufnehmen können.^[6] Dies ist durch die Existenz von Verbindungen mit subvalentem Silber bestätigt worden. Diese Extremfälle "argentophiler" Wechselwirkung sind Silberverbindungen, in denen Agglomerate wie $[Ag_6]^{4+}$ -Cluster $(Ag_6O_2,^{[41]}Ag_5GeO_4^{[28, 29]}$ und $Ag_5SiO_4^{[30]})$ oder Silberdoppelschichten mit $[Ag_2]^+$ -Ionen $(Ag_2F,^{[42]}Ag_2NiO_2^{[43]})$ mit extrem kurzen Silberabständen von bis zu 270 pm (bei $Ag_5SiO_4)^{[30]}$ auftreten.

Ziel dieser Arbeit ist es, subvalente Verbindungen mit attraktiven Wechselwirkungen zwischen den d¹⁰-konfigurierten Ag⁺-Ionen zu synthetisieren, strukturanalytisch zu charakterisieren und die physikalischen Eigenschaften der gefundenen Substanzen zu bestimmen. Zu diesem Zweck soll im System Silber-Mangan-Sauerstoff^[44] die bisher unzureichend charakterisierte Verbindung Ag₂MnO₂^[45, 46] auf eine mögliche Subvalenz untersucht werden, wie sie erst kürzlich in einer Verbindung mit gleicher Stöchiometrie, Ag₂NiO₂,^[43] nachgewiesen wurde. Des weiteren sollen Verbindungen in diesem und dem bisher nicht untersuchten ternären System Silber-Osmium-Sauerstoff auf dem Weg der Sauerstoffhochdruckroute synthetisiert und anschließend mittels Verfahren wie z. B. XRD möglichst vollständig charakterisiert werden. Die Experimentalbefunde sollen dazu dienen, ein besseres Verständnis für das Auftreten und die Auswirkungen bindender d¹⁰-d¹⁰-Wechselwirkungen zwischen gefüllten Schalen zu erhalten.

2 Allgemeiner Teil

2.1 Synthesen mit Sauerstoffhochdruck im Autoklaven

Festkörperreaktionen mit temperaturempfindlichen Oxiden erfordern in der Regel hohe Temperaturen, damit sie in befriedigender Geschwindigkeit ablaufen können. Bei Verwendung von thermisch zersetzlichen Substanzen ist es deshalb notwendig, den über den oxidischen Komponenten herrschenden Sauerstoffpartialdruck durch Verwendung eines ausreichend hohen Sauerstoffdruckes zu kompensieren.

2.1.1 Thermodynamische Betrachtung und Druckbestimmung der Festkörpersynthesen unter Sauerstoffhochdruck

Zur Vereinfachung der thermodynamischen Überlegungen wird die Aktivität mit der Konzentration des Sauerstoffs gleichgesetzt. Die thermische Zersetzung eines Oxids verläuft nach folgender Reaktionsgleichung:

$$M_xO_y \rightarrow x M + y/2 O_2$$

Die Gleichgewichtskonstante K dieser Zersetzungsreaktion berechnet sich aus dem Massenwirkungsgesetz unter Verwendung der Konzentration c_i der Komponente j:

$$\mathbf{K} = \frac{c (\mathbf{M})^{x} \cdot c (\mathbf{O}_{2})^{y/2}}{c (\mathbf{M}_{x} \mathbf{O}_{y})}$$

Die Lage des heterogenen Gleichgewichtes hängt ausschließlich vom Sauerstoffpartialdruck über dem thermisch zersetzten Oxid ab, und deshalb folgt:

$$K = p (O_2)^{y/2}$$

Die Temperaturabhängigkeit der Gleichgewichtskonstanten der Zersetzungsreaktion beschreibt die van't Hoffsche Reaktionsisochore. Die Änderung der inneren Energie wird mit ΔU bezeichnet:

$$\left(\frac{\delta \ln K}{\delta T}\right) = \frac{\Delta U}{RT^2}$$

Die innere Energie U ist über einen relativ großen Temperaturbereich annähernd konstant, daher folgt, durch Integration mit c als Integrationskonstante ein linearer Zusammenhang zwischen ln K und 1/T:

$$\ln \mathbf{K} = \left(\frac{\Delta \mathbf{U}}{\mathbf{R}}\right) \cdot \frac{1}{\mathbf{T}} + \mathbf{c}$$

Da ln K gleichbedeutend mit $y/2 \ln p (O_2)$ ist folgt für einen linearen Temperaturanstieg eine exponentielle Steigerung des Sauerstoffpartialdrucks über einem Oxid. Dieser Zusammenhang ist am Beispiel des Silber(I)-Oxids Ag₂O in Abbildung 1 dargestellt.^[47]

Abbildung 1: Temperaturabhängigkeit des Sauerstoffdrucks über Silber(I)-Oxid.

In erster Näherung kann der im Autoklaven herrschende Druck durch die van-der-Waals-Gleichung bestimmt werden:

$$p = \frac{nRT}{V_{eff} - nb} - \frac{n^2a}{V_{eff}^2}$$

- p Druck in atm V_{eff} effektives Autoklavenvolumen (0,021)
- n Teilchenanzahl in mol R Gaskonstante $(0,08206 \ l \ atm \ K^{-1} \ mol^{-1})$

a, b van-der-Waals-Konstanten für $O_2^{[48]}$: $a = 1,36 \text{ atm } l^2 \text{ mol}^{-2}$, $b = 0,03183 \text{ l mol}^{-1}$

Die molare Menge an einkondensiertem Sauerstoff errechnet sich aus dem Volumen an flüssigem Sauerstoff nach folgender Gleichung:

$$n=\frac{\rho V}{M}$$

- ρ Dichte von O₂ bei 77 K (1,201 g cm⁻³)^[48]
- V einkondensiertes Volumen an Sauerstoff in cm³
- M molare Masse von O_2 (31,9988 g mol⁻¹)

Eine Grafik, welche die Abhängigkeit des Autoklaveninnendruckes von Temperatur und einkondensierten Volumen an Sauerstoff veranschaulicht, ist in Abbildung 2 gezeigt:

Abbildung 2: Autoklaveninnendruck bei Sauerstoffhochdrucksynthesen mit einem effektiven Autoklavenvolumen von 0,02 l.

2.1.2 Aufbau der Sauerstoffhochdruckautoklaven

Eine schematische Darstellung der verwendeten Sauerstoffhochdruckautoklaven ist in Abbildung 3 und ein Photo der Einzelteile des Verschlusses in Abbildung 4 gezeigt:

Abbildung 3: Schematische Darstellung des Aufbaus der Sauerstoffhochdruckautoklaven.
1) Dichtstopfen 2) Kupplung 3) Druckspindel 4) Vorspannmutter
5) Druckplatte 6) Verschlussmutter 7) modifizierte Bridgmandichtung
8) Reaktionsraum (0,02 1) 9) Druckmantel

Abbildung 4: Zerlegter Verschluss des Sauerstoffhochdruckautoklaven.

Die verwendeten Autoklaven bestehen aus hochwarmfesten, zunderfreien Cr-Ni-Edelstahl ATS 351 der Firma THYSSEN. Sie sind selbstdichtend nach dem Prinzip von Bridgman aufgebaut, wobei eine Konusdichtung aus Kupfer verwendet wird. Die maximalen Betriebsbedingungen liegen bei einer Temperatur von 873 K und einem gleichzeitigen Sauerstoffdruck von 6 kbar.

2.1.3 Versuchsdurchführungen

Die innigst vermengte Reaktionsmischung wird in einem Silber- oder Goldtiegel mit lose aufsitzendem Deckel im Reaktionsraum des Autoklaven platziert. Die Einwegdichtung aus Kupfer wird ausgeglüht, in Ethanol abgeschreckt, und anschließend wird der Autoklav bis auf die Kupplung mit Dichtstopfen zusammengeschraubt. Zum besseren Öffnen nach der Reaktion wird die Verschlussmutter mit einem hochtemperaturbeständigen Schmiermittel (COPASLIP, Fa. Tribo-Technik GmbH, Rodgau) behandelt. Der Autoklav (6) wird nun mit der Druckspindel an die Befüllungsapparatur (Abbildung 5) angeschlossen und mit flüssigem Stickstoff auf 77 K abgekühlt. Anschließend wird die benötigte Sauerstoffmenge aus der Vorratsflasche (2) bei geöffneten Ventilen (3 und 4) in einen ebenfalls mit flüssigem Stickstoff gekühlten, graduierten Messfinger (1) mit ca. 1 bar Überdruck einkondensiert. Nach Verschließen des Ventils (3) wird das Ventil (5) zum Autoklaven geöffnet, die Kühlung des Messfingers entfernt und der Sauerstoff in den Autoklaven überkondensiert. Schließlich wird der zugeschraubte Autoklav in einen auf 473 K vorgeheizten Röhrenofen gestellt und das vorgesehene Temperaturprogramm gestartet.

Abbildung 5: Schematische Darstellung der Befüllungsapparatur zum Beschicken der Autoklaven mit Sauerstoff. 1) Messfinger 2) Sauerstoffflasche 3,4,5) Ventile 6) Autoklav Zur Beheizung der Autoklaven werden elektrische Widerstandsöfen (Fa. Reetz) verwendet. Die Temperaturkontrolle erfolgt durch PID-Regler (Fa. Hartmann & Braun, Modell Digitric P, Fa. Eurotherm, Modell 902) mit Ni/Cr-Ni Thermoelementen.

2.2 Physikalische Untersuchungsmethoden

2.2.1 Röntgenbeugungsmethoden

Bei der Analyse von kristallinen Substanzen stellen Röntgenbeugungsexperimente^[49-52] eine unverzichtbare, zerstörungsfreie Untersuchungsmethode dar. Einkristalle wie auch mikrokristalline Pulverproben können mit diesem Verfahren sowohl identifiziert als auch strukturell untersucht werden. Während Messungen an Einkristallen primär der Aufklärung des atomaren Aufbaus einer Substanz dienen, sind zusätzliche Anwendungsgebiete der Röntgenpulverdiffraktometrie die Reinheitsprüfung, die rasche Substanzidentifizierung, die Untersuchung von Phasenumwandlungen sowie die Präzisionsbestimmung der Kristallmetrik einer Verbindung.

Die Visualisierung der mittels Röntgenbeugung berechneten Strukturmodelle der Pulver- oder Einkristallproben erfolgt mit Hilfe des Programmes DIAMOND.^[53]

2.2.1.1 Röntgenpulverdiffraktom etrie

Für die Substanzidentifizierung und Reinheitsprüfung von polykristallinen Proben wurde ein Pulverdiffraktometer Stadi P (Fa. Stoe & Cie, Darmstadt) verwendet. Hierfür wurde die gemörserte kristalline Probensubstanz entweder auf einen Flächenträger zwischen zwei röntgenamorphe Polyethylenfolien aufgebracht oder in eine Glaskapillare gefüllt und jeweils im Strahlengang in Rotation versetzt. Die verwendete Röntgenstrahlung wird in einer Feinfokusröhre mit Cu-Anode erzeugt und durch einen gebogenen Ge(111)-Einkristall monochromatisiert (Cu-K_{α 1}-Strahlung: $\lambda = 154,060$ pm). Als ortsempfindliche Detektoren stehen ein Proportionalzähler (PSD, Position Sensitive **D**etector) mit einem Öffnungswinkel 2 θ von 6° (linearer PSD, Auflösung $\Delta 2\theta = 0.06^\circ$, Präzisionsmessungen) und ein Image-Plate-Detector mit einem Öffnungswinkel 2θ von 140° (IP-PSD, Fa. Stoe & Cie, Darmstadt, Auflösung $\Delta 2\theta = 0.12^{\circ}$, Routineuntersuchungen) zur Verfügung. Eine Korrektur der Messwerte wurde mit elementarem Si als

externen Standard durchgeführt. Eine Identifizierung der Substanz wird mittels Datenbankenvergleich (z. B. ICSD^[54] oder ICDD-JCPDS^[55]) von Pulverdiffraktogrammen bekannter Substanzen durchgeführt. Die Auswertung der Diffraktogramme erfolgte mit dem WinXPow Programmpaket.^[56]

Zur Anfertigung von Guinieraufnahmen bei erhöhter Temperatur (Guinier-Simon-Technik) wird die Probe in einem rotierenden Quarzmarkröhrchen während der Messung nach einem definierten Temperaturprogramm aufgeheizt. Das Regelprogramm ist mit dem Vorschub der Bildplatte gekoppelt, welche man anschließend rechnergestützt mit der Software Aida $2.0^{[57]}$ auswertet. Für diesen Zweck wurde eine Guinier-Simon-Kamera (FR 553, Fa. Enraf-Nonius, Delft, Niederlande) mit CuK_{α 1}-Strahlung (Johansson-Monochromator: Quarz-Zylinder, parallel zu (1011) geschliffen) verwendet.

Röntgenbeugungsexperimente mit Synchrotronstrahlung sind im Brookhaven National Lab, Upton, NY, USA (<u>National Synchrotron Light Source</u>, NSLS) an der Beamline X7B^[58] (temperaturaufgelöste Messung) und in Grenoble, Frankreich (<u>E</u>uropean <u>Synchrotron R</u>adiation <u>F</u>acility, ESRF) an der Beamline BM16/ID31^[59] (hochaufgelöste Messung) durchgeführt worden.

Vorteile dieser Strahlungsart gegenüber herkömmlicher Röntgenstrahlung sind beispielsweise der große zu Verfügung stehende Wellenlängenbereich und die hohe Leuchtdichte bei geringer Divergenz. Dies resultiert in einer höheren Winkelauflösung und einem besseren Signal-Rausch-Verhältnis der gemessenen Pulverdiffraktogramme.

Bei den zeit- bzw. temperaturaufgelösten Messungen an der NSLS erfolgte Fokussierung und Monochromatisierung der Röntgenstrahlung durch zwei Spiegel (sphärischer, rhodiumbeschichteter SiC-Spiegel und zylindrischer, rhodiumbeschichteter Al-Spiegel) und einen Doppelmonochromator (Si(111)- und Si(311)-Kristall). Die Kalibrierung von Wellenlänge, Nullpunktsverschiebung, Abstand zwischen Probe und Detektor sowie die Ausrichtung des Mar345 Image-Plate-Systems wurde durch Messung eines LaB₆-Standards durchgeführt. Die Erfassung und Verarbeitung der Daten erfolgte mit Hilfe des Fit2d-Software-Paketes.^[60, 61]

Die Fokussierung und Monochromatisierung des Röntgenstrahls für die hochaufgelöste Messung erfolgt durch einen rhodiumbeschichteten Siliciumspiegel mit anschließendem Si(111)-Doppelmonochromator.^[62] Die Detektion des gebeugten Strahls erfolgt gleichzeitig durch neun Ge(111)-Analysatorkristalle, welche im Abstand von 2° zueinander angeordnet und mit neun Szintillationszählern gekoppelt sind. Datenreduktion und Untergrundkorrektur der aufgenommenen Pulverdiffraktogramme erfolgte mit dem Programm GUFI.^[63] Eine Indizierung der Reflexlagen wurde mit ITO^[64] durchgeführt. Genaue Gitterparameter und Reflexprofile wurden mittels eines LeBail-Fits^[65] unter Berücksichtigung der Programme GSAS^[66] und FULLPROF^[67, 68] bestimmt. Die Reflexprofile wurden durch Kombination einer Pseudo-Voigt-Funktion und einer Funktion, welche die durch axiale Divergenz entstandene Asymmetrie der Reflexe beschreibt, verfeinert.^[69, 70] Eine durch Gitterspannung ("Strain") verursachte Anisotropie der Reflexbreiten wurde mit einem phänomenologischen Modell^[71] des Programmes GSAS berücksichtigt.

Die Aufklärung und anschließende Optimierung der Struktur der Pulverprobe erfolgte mit Hilfe des Programmpaketes DASH^[72] und einer Rietveld-Verfeinerung^[73] mittels GSAS. Hierfür wurde mit den gemessenen Pulverdiffraktogrammen eine Pawley-Verfeinerung^[74] durchgeführt, welche korrelierte integrierte Intensitäten erzeugt.

2.2.1.2 Einkristalldiffraktometrie

Zur Anfertigung der Einkristallaufnahmen wird der an einer Kapillare aus Lindemannglas aufgeklebte Kristall auf einem Goniometerkopf befestigt und, falls ausgebildete Kristallflächen vorhanden sind, optisch vorjustiert.

Beugungsexperimente an Einkristallen erfassen Reflexe im dreidimensionalen Raum einzeln und ermöglichen im Gegensatz zur Pulverdiffraktometrie einen einfacheren Zugang zur Strukturlösung. Mittels Filmmethoden werden gleichzeitig alle Reflexe einer Schichtebene erfasst und somit Elementarzelle, Lauegruppe und Auslöschungsbedingungen zugänglich. Zur Bestimmung integraler Reflexintensitäten werden zusätzlich Einkristalldiffraktometer verwendet. Die Messungen der Einkristalle erfolgten an einem Zweikreis Flächendetektor Diffraktometer IPDS II (Fa. Stoe & Cie, Darmstadt) und einem Dreikreisdiffraktometer AXS Smart mit CCD 1000-Detektor (Fa. Bruker, Karlsruhe), welche beide mit einer Feinfokusröhre mit Mo-Anode (Mo-K_{α 1}-Strahlung: $\lambda = 71,073$ pm) als Röntgenquelle und einem Graphit-Einkristall als Monochromator ausgestattet sind.

Aus den experimentell gemessenen Reflexlagen und Intensitäten (Computerprogramme zur Datenerfassung: X-AREA^[75] bzw. SMART32^[76]) erfolgt nach Datenreduktion mit den Programmen X-RED^[77] bzw. SAINT32^[78] und Absorptionskorrektur mit den Programmen X-SHAPE^[79] bzw. SADABS^[80] die Strukturlösung mit Hilfe Direkter Methoden

(SHELXS97,^[81] Programmpaket SHELXTL^[82] bzw. Programm Sir 97^[83]) oder der Schweratom-Methode nach Patterson. Die Verfeinerung des ermittelten Strukturmodells erfolgt nach dem Least-Squares-Verfahren mit dem Programmpaket SHELXTL^[82] oder dem Programm JANA2000.^[84] Die Grundlage der Strukturverfeinerung stellt jeweils eine Minimalisierung der Differenz der Quadrate der Beträge der Strukturamplituden dar.

Eine Analyse möglicherweise vorhandener Pseudosymmetrie einer Substanz zur Erkennung von eventuell vorhandenen Strukturhierarchien wird mit dem Programm PSEUDO^[85] durchgeführt.

2.2.2 Photoelektronenspektroskopie, XPS

Die Photoelektronenspektroskopie^[86] (<u>X</u>-ray <u>P</u>hotoelectron <u>S</u>pectroscopy, XPS) ist eine oberflächenempfindliche (20 - 50 Å Eindringtiefe), zerstörungsfreie Methode zur Untersuchung der Elemente und der chemischen Bindungen von Substanzen.

Ein Röntgenstrahl bekannter, diskreter Energie trifft auf die Festkörperoberfläche und wechselwirkt mit den Probenatomen. Ein Teil der Röntgenquanten verursacht eine Ionisation der Probenatome, und die dabei erzeugten Photo-Elektronen weisen eine kinetische Energie auf, die der Differenz zwischen Anregungs- und Bindungsenergie des Elektrons entspricht. Die Bindungsenergien der Elektronen sind elementspezifisch. Daher können aus dem Energiespektrum der Photoelektronen die vorhandenen chemischen Elemente identifiziert werden. Befinden sich die angeregten Atome in einer chemischen Bindung, kommt es zu geringen Änderungen der Bindungsenergien, und somit erhält man neben Informationen über vorhandene Elemente auch noch Aussagen über die chemischen Bindungsverhältnisse. Eine erhöhte Oxidationsstufe kann z. B. eine Verschiebung der kernnahen Niveaus zu höheren Bindungsenergien bewirken, da die Kernladung mit steigender Oxidationsstufe weniger gut abgeschirmt wird. Diese sogenannten chemischen Verschiebungen sind für viele Verbindungen tabelliert.^[87, 88]

Für die XPS-Messungen wurde ein VG ESCA MK II Spektrometer mit Magnesium-Anode (Mg-K_{α}-Strahlung: h v = 1253,3 eV, unmonochromatisiert, Energieauflösung 0,8 eV) verwendet. Eine Korrektur der energetischen Lage der aufgenommenen Spektren erfolgte durch die Bindungsenergie der Kohlenstoff-1s-Bande als externen Standard.

2.2.3 Elektronenmikrosko pische Untersuchungsmethoden

2.2.3.1 Rasterelektronenmikros kopie und Energiedispersive Mikroanalyse

Rasterelektronenmikroskopische Untersuchungen (REM) wurden mit einem XL 30 TMP (Fa. Philips, Eindhoven, NL), das mit einer energiedispersiven Einheit zur Mikroanalyse (<u>E</u>nergy <u>D</u>ispersive <u>X</u>-ray Spectroscopy, EDX) ausgestattet ist, durchgeführt (Modell Phoenix, Fa. EDAX, Mahwah, NJ, USA). Die von der Probenoberfläche emittierte Röntgenstrahlung wird mit einem Si(Li)-Detektor (Typ S-UTW) gemessen und dient sowohl der Identifizierung der Elemente (Ordnungszahl Z > 6) wie auch der Bestimmung der quantitativen Zusammensetzung.

Für die Probenpräparation wird die zu untersuchende Substanz mit einer beidseitig klebenden Graphitfolie auf einem Aluminium-Träger fixiert. Nichtleitende Proben werden zur Vermeidung elektrostatischer Aufladung mit Gold oder Kohlenstoff bedampft.

2.2.3.2 Transmissionselektronen mikroskopie, TEM

Bei der Transmissionselektronenmikroskopie^[89] konzentriert die als Kondensor wirkende magnetische oder elektrische Linse den von einer Elektronenquelle kommenden Elektronenstrahl auf das Objekt. System Das optische eines Transmissionselektronenmikroskops ermöglicht zwei Funktionsweisen: Wird die bildseitige Brennebene der Objektivlinse auf dem Schirm abgebildet (Beugungsmodus), verhält sich das Gerät wie ein Diffraktometer und liefert Beugungsdiagramme. Wird auf die Bildebene fokussiert (Abbildungsmodus), kann man hochaufgelöste Abbildungen des Objektes erhalten. Das Umschalten zwischen den Modi erfolgt, indem die Brennweite der ersten Linse des Projektorsystems (Zwischenlinse) variiert wird. Für die TEM-Untersuchungen wurde ein Philips CM30ST Elektronenmikroskop (Beschleunigungsspannung: 300 kV, LaB₆-Kathode, Punktauflösung 2 Å) verwendet. Die mikrokristallinen Proben werden für die Präparation unter Aceton zerkleinert, anschließend wird die Suspension auf einer löcherigen, amorphen Kohlenstoff-Folie, die sich auf einem Kupfer-Netzchen befindet, aufgebracht.

2.2.4 Rasterkraftmikroskopie, AFM

Das Funktionsprinzip eines Rasterkraftmikroskops (Abbildung 6, links) ist mit dem eines Tonabnehmers in einem Plattenspieler verwandt. Eine winzige Spitze mit einem Krümmungsradius bis ca. 10 nm ist an einem Hebelarm (Cantilever) mit definierter Federkonstante angebracht (Abbildung 6, rechts) und wird über eine Oberfläche gerastert. Dies geschieht z. B. über einen Scanner bestehend aus einem Piezokristall, der in x-, y-(horizontal) und z-(vertikal) Richtung ausgedehnt und komprimiert werden kann und gleichzeitig als Probenträger dient. Der Cantilever bleibt dabei auf konstanter Höhe. Je nachdem, wie stark die Probe gegen die Spitze gedrückt wird, ändert sich die Auslenkung des Cantilevers. Die Auslenkung kann durch die Reflektion eines Laserstrahls vom Cantilever mit einem ortssensitiven Photo-Detektor gemessen werden.

Abbildung 6: Funktionsweise eines Rasterkraftmikroskops (links) und Rasterelektronenmikroskopische Aufnahme eines Cantilevers mit Spitze (rechts).^[90]

Prinzipiell gibt es zwei mögliche Messmodi, die Topographie der Probenoberfläche zu detektieren. Im Constant-Force-Mode bleibt die Auslenkung des Cantilevers, das heißt der auf den Cantilever ausgeübte Druck, konstant. Um dies während des Abrasterns der Probe zu gewährleisten, muss die Probenhöhe entsprechend der Oberfläche kontinuierlich nachjustiert werden. Dies geschieht über einen Rückkopplungsmechanismus. Im Constant-Height-Mode wird die Probenhöhe während des Abrasterns konstant gehalten. Dieser Modus eignet sich eher für schnelle Rastergeschwindigkeiten, verlangt jedoch ebenere Probenoberflächen. In der Regel wird eine beliebige Mischung aus beiden Modi

verwendet. Eine Software berechnet aus Cantilever- und Piezoauslenkung einen Topographiekontrast.

Die AFM-Untersuchungen (<u>A</u>tomic <u>F</u>orce <u>M</u>icroscopy, AFM) wurden mit einem NANOSCOPE IIIa (Fa. Digital Instruments) im "tapping mode" durchgeführt. Hierbei schwingt der Cantilever über der zu untersuchenden Probe, wobei die Spitze die Oberfläche nur im Maximum der Schwingungsamplitude berührt.

2.2.5 Thermische Analysem ethoden, DTA / TG / MS, DSC

Die simultane <u>D</u>ifferenz-<u>T</u>hermo<u>a</u>nalyse (DTA) und <u>T</u>hermo<u>g</u>ravimetrie (TG) bis zu einer Temperatur von 1673 K wurde mit einem Simultan-Thermoanalyser STA 409 C (Fa. Netzsch, Selb) durchgeführt. Die freiwerdenden Zersetzungsprodukte werden mit einem gekoppelten Quadrupol-Massenspektrometer QMS 421 (Fa. Balzers, Hudson, NH, USA) detektiert. Für diese Untersuchungsmethoden wird die Substanz in einen Korundtiegel eingewogen und mit der Messung einer Blindprobe verglichen.

Zur Bestimmung von Phasenumwandlungstemperaturen und der Untersuchung des Umwandlungsverhaltens mittels DSC ($\underline{\mathbf{D}}$ ifferential $\underline{\mathbf{S}}$ canning $\underline{\mathbf{C}}$ alorimetry) wurde ein Kalorimeter Pyris 1 (Fa. Perkin Elmer) verwendet. Die zu untersuchende Probe wird in Pulverform in ein Aluminiumpfännchen gegeben und mit einer Verschlusspresse versiegelt.

2.2.6 Messung der magnetischen Suszeptibilität

Durch Messung der magnetischen Suszeptibilität ist es möglich Aussagen über das Vorliegen ungepaarter Elektronen in einer Verbindung zu machen. Je nach Art des magnetischen Moments unterscheidet man dia-, para-, ferro-, antiferro- und ferrimagnetische Substanzen. Die Bestimmung der magnetischen Suszeptibilität wurde mit einem SQUID-Magnetometer (Superconducting Quantum Interference Device) MPMS 5.5 (Fa. Quantum Design, San Diego, CA, USA) durchgeführt. Zur Probenpräparation wird die zu untersuchende Substanz in einer Gelatinekapsel (Pulver) oder als Pille gepresst in eine Quarzkapillare eingeführt.

Die diamagnetische Suszeptibilität χ_0 setzt sich aus der Summe der in der Literatur^[91] aufgeführten diamagnetischen Korrekturinkremente χ_{dia} sowie der Pauli-Suszeptibilität χ_{Pauli} zusammen, welche nach folgender Gleichung berechnet werden kann:

$$\chi_0 = \chi_{dia} + \chi_{Pauli}$$
 $\chi_{Pauli} = \mu_B^2 \cdot N_A \cdot \mu_0 \cdot DOS_{ges,Fermi}$

 μ_B^2 : Bohrsches Magneton (9,274·10⁻²⁴ A m²)

 N_A : Avogadro-Konstante (6,022 $\cdot 10^{23} \text{ mol}^{-1}$)

 μ_0 : Permeabilitätskonstante (4,063 \cdot 10⁻¹⁰ m³ eV mol⁻¹)

DOS_{ges,Fermi}: Gesamtzustandsdichte an der Fermikante (z. B. aus LMTO-Rechnungen)

2.2.7 Leitfähigkeitsuntersuchungen

Die Leitfähigkeit σ (S m⁻¹, bzw. Ω^{-1} m⁻¹) von Materialien unterscheidet sich je nach verwendeter Substanz um mehrere Größenordnungen und liegt für Metalle bei $10^6 - 10^4$ S m⁻¹ (Ag: $62,5\cdot10^6$ S m⁻¹)^[92], für Halbleiter bei $10^0 - 10^{-6}$ S m⁻¹ (Si: $4,3\cdot10^{-4}$ S m⁻¹)^[92] und für Isolatoren unterhalb von 10^{-10} S m⁻¹.^[93] Ein weiteres Unterscheidungsmerkmal ist die Temperaturabhängigkeit der Leitfähigkeit. Für Metalle nimmt die Leitfähigkeit bei Temperaturerhöhung ab, und für Halbleiter nimmt sie zu (positiver bzw. negativer Temperaturkoeffizient α). Die Messung der Substanz erfolgt an Pulverpresslingen, welche mit Goldfolie an den Auflagestellen der Messelektroden (Platin) kontaktiert werden. Die Leitfähigkeit wird anschließend nach der Vier-Punkt-Methode mit einer selbstgebauten Messanlage bestimmt.

Die ionische Leitfähigkeit^[94] einer Substanz lässt sich durch Subtraktion der elektronischen Leitfähigkeit von der Gesamtleitfähigkeit errechnen und kann durch Widerstandsmessungen unter Verwendung von Wechselstrom erfasst werden. Dieser Widerstand (Impedanz) kann mit Hilfe der Impedanzspektroskopie bestimmt werden wobei sich die Messung im Vergleich zur vorher beschriebenen hauptsächlich durch die Verwendung von Wechselspannung (AC) statt Gleichspannung (DC) unterscheidet.

Eine weitere Leitfähigkeitsmessanlage^[95] erlaubt deshalb die abwechselnde Erfassung von Gleichstrom- und Wechselstrommessdaten bei Temperaturen von Raumtemperatur bis 973 K. Im Inneren der Messzelle^[96] befindet sich der mit Platinelektroden kontaktierte Pulverpressling. Die Steuerung und Analyse der Untersuchungen erfolgt mit den Programmen Sigma Messung,^[97] Sigma Auswertung^[98] und Equivalent Circuit.^[99] Der Ohmsche Gesamtwiderstand R_P setzt sich aus der Summe von Kornwiderstand R_K und Korngrenzenwiderstand R_{KG} zusammen. Mit Kenntnis der Probenlänge ℓ und -fläche F lässt sich die Gesamtleitfähigkeit σ berechnen. Nach Subtraktion des elektronischen Anteils erhält man die ionische Leitfähigkeit. Die Aktivierungsenergie E_a des Ionenleitungsprozesses gewinnt man schließlich aus der linearen Steigung (m = -0,4343 E_a R⁻¹) einer Auftragung log (σ T) gegen T⁻¹. Hierfür werden ionische Leitfähigkeiten bei unterschiedlichen Temperaturen gemessen.

$$R_{P} = R_{K} + R_{KG} \implies \sigma = \frac{1}{R_{P}} \cdot \frac{\ell}{F} \implies \sigma = \frac{A}{T} e^{-\frac{E_{a}}{KT}} \implies \log(\sigma T) = -0.4343 \frac{E_{a}}{RT} + \log \sigma_{0}$$

2.3 Dichtefunktional-Bandstruktur-Rechnungen

2.3.1 TB-LMTO-ASA Methode

Die LMTO-Methode (<u>L</u>inear <u>M</u>uffin <u>T</u>in <u>O</u>rbitals, LMTO) beruht auf der Dichtefunktionaltheorie^[100] und verwendet so genannte orts- und energieabhängige Muffin-Tin-Sphären als Basisfunktionen. Die Abhängigkeit vom Muffin-Tin-Nullpotential und vom Coulombpotential innerhalb dieser Sphären kann durch eine Taylorentwicklung bis zum linearen Term berechnet werden.^[101-104] Mit Hilfe der so erzeugten energieunabhängigen Muffin-Tin-Sphären kann die zur Kohn-Sham-Gleichung^[105] umformulierte Schrödinger-Gleichung bzw., im Falle schwerer Atome, die relativistische Dirac-Gleichung iterativ gelöst werden. Da die Relativistik nur im Rahmen der LMTOs berücksichtigt wird, können lediglich skalarrelativistische Effekte beachtet werden.

Mit Hilfe des LMTO-Programmes und auf Grund einer Reihe weiterer Näherungen wie z. B. dem <u>T</u>ight <u>B</u>inding Ansatz (TB)^[106-109] und der <u>A</u>tomic <u>S</u>phere <u>A</u>pproximation (ASA)^[110] lassen sich besonders gut "große System" mit mehr als 100 Atomen pro Elementarzelle berechnen. Letztere Vereinfachung ermöglicht den Verzicht auf Basisfunktionen wie z. B. ebene Wellen im interstitiellen Bereich zwischen den Leerkugeln. Dies geschieht durch ein vollständiges Ausfüllen des Raumes mit überlappenden Muffin-Tin-Kugeln. Da die ASA-Korrekturen nur für ein bestimmtes Maß an Überlappung einzusetzen sind, müssen gegebenenfalls Lücken in der Struktur durch Leerkugeln ausgefüllt werden, welche Atomen mit der Kernladung Null entsprechen.

2.3.2 Bandstrukturen und Zustandsdichten

Das Ergebnis einer quantenmechanischen Rechnung an einem Feststoff ist seine Bandstruktur, ein angenähertes Modell seiner elektronischen Struktur. Ein Band stellt den Verlauf des Energieeigenwertes $\varepsilon(k)$ einer Lösung der Schrödingergleichung in der reziproken Elementarzelle, der ersten Brillouinzone, dar. Hierbei wird auf der y-Achse die Energie und auf der x-Achse (k-Achse genannt) der Verlauf zwischen ausgewählten Punkten hoher Symmetrie aufgetragen, welche durch lateinische oder griechische Großbuchstaben gekennzeichnet sind. Die offizielle Nomenklatur wurde 1988 von Ramirez und Böhme vorgeschlagen.^[111] Am Beispiel eines quadratisch planaren Atomgitters mit einem s- und drei p-Orbitalen^[112] ist dies in Abbildung 7 veranschaulicht.

Abbildung 7: Schematische Bandstruktur eines quadratischen zweidimensionalen Atomgitters mit entsprechender MO-Darstellung im Realraum.

Vom Ursprungspunkt der Brillouinzone Γ (0 0) geht man zum Punkt X (0 1) und anschließend weiter zum Punkt M (1 1). Schließlich wandert man über die Flächendiagonale zurück zum Γ -Punkt (0 0), in dem alle benachbarten Atomorbitale gleiche Vorzeichen aufweisen. Für dreidimensionale Körper wäre die jeweilige Raumgruppensymmetrie zu berücksichtigen, und zusätzliche spezielle Lagen müssten in der Darstellung der Bandstruktur berücksichtigt werden. Für die s- und p_z-Orbitale ergeben sich am Γ-Punkt bindende Linearkombinationen minimaler Energie. Am Punkt X ergeben sich für die in y-Richtung benachbarten s- und pz-Orbitale bindende Wechselwirkung und für die in x-Richtung benachbarten Orbitale antibindende Wechselwirkungen, was zu höheren Energiebeträgen führt. Bezüglich des s und pz-Orbitals energetisch betrachtet am höchsten liegt der M-Punkt, in dem nur antibindende Wechselwirkungen zu beobachten sind. Da die s-Orbitale, durch das größere Überlappungsintegral, vergleichsweise stärker miteinander wechselwirken (σ) als die p_z-Orbitale mit Überlappung vertikal zur xy-Ebene (π) , erstreckt sich das Energieband über einen größeren Energiebereich. Vergleichbares wird auch für die bindenden und antibindenden σ - und π -Bindungen der Kombination von p_x- mit dem p_y-Orbital beobachtet.

Bei der Darstellung der Zustandsdichten (**D**ensity of **S**tates, DOS) trägt man die Anzahl der elektronischen Zustände pro Energieintervall gegen die Energie auf. Mit Hilfe der Bandstruktur lassen sich dann die Energiebänder mit bestimmten Kristallorbitalen in Verbindung bringen. In Abbildung 8 ist die Zustandsdichte des vorherigen Beispieles dargestellt. Bei den niedrigsten Energien liegt das s-Band gefolgt vom p-Band, welches einen breiten Anteil in folge der guten Überlappung von p_x - und p_y -Orbitalen und einen schmalen Anteil durch die schlechtere Überlappung der p_z -Orbitale (π -Bindung) aufweist. Eine Besetzung von s^2p^4 wird an der Fermikante (E_F) pro Atom angenommen.

Abbildung 8: Über den gesamten reziproken Raum integrierte Zustandsdichte für ein quadratisch planares Atomgitter.

2.4 Periodische Potentialflächen (PEPS, POPS) und Periodische Knotenflächen (PNS)

Im Raum berechnete Äquipotentialflächen (<u>P</u>eriodic <u>E</u>qui <u>P</u>otential <u>S</u>urfaces, PEPS) und Nullpotentialflächen (<u>P</u>eriodic Zer<u>o</u> <u>P</u>otential <u>S</u>urfaces, POPS) können zur Beschreibung von Kristallstrukturen verwendet werden.^[113-119] Hierzu werden für ein engmaschiges 3D-Rasternetz die Gitterpotentiale einer virtuellen translationsperiodisch geordneten Punktladungsverteilung gegebener Symmetrie berechnet. Die Berechnung des elektrostatischen Potentials P_(x,y,z) erfolgt nach Ewald:^[120, 121]

$$P_{(x,y,z)} = \sum_{i} \frac{q_i}{r_i}$$
 q_i = gegebene Punktladungen r_i = deren Abstand zu einem Punkt (x,y,z)

Wird das elektrostatische Potential für ausreichend viele Punkte im Raum berechnet, gelingt durch Verbindung der Punkte die Darstellung von Isoflächen, den Periodischen Äquipotentialflächen (PEPS). Unter ihnen zeichnen sich die Periodischen Nullpotentialflächen (POPS) als Ort der sich aufhebenden Wechselwirkungen zweier unterschiedlicher physikalischer Bereiche aus.

In dieser Arbeit dient diese Methode dem Auffinden von Raumteilern als Regionen des Übergangs vom Raum positiver in den Raum negativer virtueller Ladung.

Periodische Knotenflächen PNS (<u>P</u>eriodic <u>N</u>odal <u>S</u>urfaces) sind die Nullstellen einer speziellen Fourierreihe^[122-125] und stellen diese symmetriebestimmten Raumteiler dar.

3 Spezieller Teil

3.1 Untersuchungen im System Silber-Mangan-Sauerstoff

3.1.1 Kenntnisstand im System Silber-Mangan-Sauerstoff

Obwohl Silbermanganoxide vor allem im Hinblick auf ihre Eignung als Katalysatoren für Oxidationsvorgänge in der Vergangenheit wiederholt untersucht wurden,^[126] sind wenig Literaturdaten vorhanden, welche die Existenz der beschriebenen Phasen zuverlässig belegen. Ausnahmen bilden lediglich die Verbindungen AgMnO₄,^[127-130] Ag₂MnO₄^[131] und Ag_{1.8}Mn₈O₁₆,^[132] deren struktureller Aufbau anhand von Einkristalldaten aufgeklärt werden konnte. Für die Verbindungen Ag₂MnO₂ und $AgMn_2O_4$ sind Darstellungsvorschriften bekannt, sie sind jedoch weder umfassend charakterisiert noch ist die Struktur aufgeklärt worden.^[45, 46] Neben diesen Verbindungen gibt es eine Vielzahl von in der Literatur beschriebenen, jedoch unvollständig charakterisierten Silbermanganoxiden, welche in einer chronologischen Übersicht am Ende des Kapitels aufgelistet sind (siehe Tabelle 1).

Das erste beschriebene Silbermanganoxid ist AgMnO₄, dessen Strukturdaten mehrfach korrigiert und verfeinert wurden.^[127-130] Schwarzviolette Kristalle der Verbindung wurden durch Lösen von AgNO₃ in einer heißen Lösung von KMnO₄ im Molverhältnis 1:1 und anschließendes Abkühlen dargestellt. Die Struktur setzt sich aus annähernd regelmäßigen MnO₄-Tetraedern und näherungsweise pentagonalen Bipyramiden aus Sauerstoff als Koordinationssphäre um Silber zusammen. Die axialen Sauerstoffnachbarn weisen dabei kürzere Bindungsabstände auf und erinnern somit an die für Silber charakteristische Zweierkoordination.

Aufbauend auf Versuche von Hein *et al.*^[133] konnten durch Reduktion einer gesättigten AgMnO₄-Lösung mit Silberspänen schwarze Einkristalle der Zusammensetzung Ag₂MnO₄ erhalten werden.^[131] Neben einem tetraedrischen Manganat(VI)-Ion liegen unregelmäßig von Sauerstoff umgebene Ag⁺-Ionen vor. Die Koordinationszahlen von Silber gegen Sauerstoff betragen 4 + 2 bzw. 3 + 1. Trotz ähnlicher Gitterkonstanten und gleicher Raumgruppe unterscheidet sich Ag₂MnO₄ grundlegend von K₂MnO₄. Vielmehr liegt Isotypie mit Ag₂CrO₄ vor, das gewöhnlich der Strukturfamilie des Olivins (Al₂BeO₄)

zugeordnet wird. Die in Olivin in guter Näherung vorhandene hexagonal dichte Anordnung von Sauerstoffatomen ist allerdings im Ag₂MnO₄ nicht mehr existent.

Neben Reaktionen im wässrigen Medium und Feststoffumsetzungen erwies sich die Abbaureaktion von $Ag_2O/AgMnO_4$ -Gemengen unter hohem Sauerstoffdruck im Autoklaven als ein weiterer möglicher Syntheseweg für die Darstellung von Silbermanganoxiden. Die auf diesem Wege synthetisierte Verbindung $Ag_{1,8}Mn_8O_{16}$ kristallisiert in der Hollanditstruktur ($Ba_{1-x}Mn_8O_{16}$) und weist ein Mn_8O_{16} -Gerüst aus ecken- und kantenverknüpften MnO_6 -Oktaedern auf. Die kanalartigen Hohlräume (entlang [001]) dieses Gerüstes bestehen aus Würfeln, die jeweils über eine gegenüberliegende Fläche verknüpft sind. Die Silberatome besetzen gemeinsamen Flächen dieser Würfel, wodurch sich eine ungewöhnliche quadratisch-planare Koordination für Ag^+ ergibt.^[132, 134] Dieses Beispiel belegt erneut die große Anpassungsfähigkeit von Ag^+ -Ionen, deren charakteristische Koordination die lineare Hantel ist, an eine vorgegebene Matrix. Die kürzesten Abstände der Silberatome untereinander sind mit 288,5(2) pm vergleichbar denen des metallischen Silbers.

Die beiden Verbindungen Ag₂MnO₂ und AgMn₂O₄ entstehen als einphasige Pulver durch mehrstündiges Erhitzen eines innig verriebenen Gemisches von Ag-Pulver und MnO oder Mn₃O₄ im stöchiometrischen Ag-Mn-Molverhältnis im O₂-Strom. Die einzigen röntgenographische Untersuchungen die an den Substanzen durchgeführt wurden sind Debye-Scherrer-Diagramme. Während von Ag₂MnO₂ lediglich angenommen wird, dass keine kubische Struktur und Mangan in der Oxidationsstufe +II vorliegt, wird vermutet, dass AgMn₂O₄ in einem kubischen System (a = 8,65 Å) kristallisiert, eine Spinellstruktur hat. Es soll in Manganoxid-Silberoxid-Mischkatalysatoren (Oxidation von CO) vom Typ der Hopcalite enthalten sein.^[45, 46]

Im Rahmen seiner Dissertation synthetisierte Chang im Sauerstoffhochdruckautoklaven bei 873 K oktaederförmige Kristalle, denen er nach Bestimmung des Ag-Mn-Verhältnisses mittels EDX die Summenformel Ag₂MnO₃ zuordnete. Eine Röntgenstrukturanalyse ergab ein kubisches Kristallsystem (a = 24,76(4) Å) mit einer Subzelle a = a/3.^[44]

Wie die Literaturübersicht in Tabelle 1 verdeutlicht, bestehen beim thermischen Abbau von Ag MnO_4 große Unklarheiten über Anzahl und Zusammensetzung der entstandenen Zersetzungsprodukte. Darüber hinaus ist es fraglich, ob die jeweils angenommene Zusammensetzung der beschriebenen Phasen zutrifft, da die Autoren keine Kristallstrukturdaten mitteilten und zur Charakterisierung der Phasen lediglich DebyeScherrer-Diagramme verwendet worden sind. Ähnliches wie für die Zersetzungsprodukte gilt auch für die Reduktionsprodukte von AgMnO₄ mit H₂, H₂O₂ oder CO.

Verbindung	Strukturdaten	Jahr	Synthese
AgMnO ₄	a = 5,623(4), b = 8,349(5)	1933 ^[127]	KMnO ₄ + AgNO ₃ bei 293 K
	$c = 7,140(5) \text{ A}, \beta = 92,44(5)^{\circ}$ P2./n monoklin ^[130]	1938 ^[128]	
		1968 ^[129]	
		1984 ^[130]	
"AgMnO ₂ "	Keine Angaben	1937 ^[135]	Red. von AgMnO ₄ mit H ₂ in H ₂ O
"Ag ₂ Mn ₂ O ₅ "	Keine Angaben	1937 ^[135]	Red. von AgMnO ₄ mit H ₂ in H ₂ O
"AgMnO _{2,63} "	Keine Angaben	1938 ^[136]	Zersetzung von AgMnO ₄ bei 373 K
"AgMnO _{2,33} "	Keine Angaben	1938 ^[136]	AgMnO ₄ + H ₂ O ₂ bei 293 K
"Ag ₂ Mn ₂ O ₄ "	Keine Angaben	1942 ^[137]	Ag + MnO im O ₂ -Strom bei 773 K
"AgMnO ₃ "	Keine Angaben	1951 ^[138]	Ox. von CO mit AgMnO ₄ bei 293 K
"AgMnO ₃ "	Keine Angaben	1954 ^[139]	Zersetzung von AgMnO ₄ bei 373 K
"AgMnO _{2,58} "	Keine Angaben	1957	Spontane Zersetzung von AgMnO4 bei
		[140, 141]	ca. 373 K
"AgMnO _x "	Keine Angaben	1957	Isotherme Zersetzung von AgMnO ₄ bei
$2,60 \le X \le 2,76$		[140, 141]	verschiedenen Temperaturen
"AgMnO ₂ "	Keine Angaben	1957	Zersetzung von AgMnO ₄ bei 773 K
		[140, 141]	
"Ag _x MnO ₄ "	Keine Angaben	1958 ^[155]	AgMnO ₄ + Ag bei 293 K
$1,9 \le X \le 4,8$			
Ag ₂ MnO ₂	Nicht kubisch	1960 ^[45]	Ag + MnO/Mn ₃ O ₄ im O ₂ -Strom
		1963 ^[46]	bei 883 K
AgMn ₂ O ₄	<i>a</i> = 8,65 Å	1960 ^[45]	Ag + MnO/Mn ₃ O ₄ im O ₂ -Strom
	kubisch	1963 ^[46]	bei 723 - 773 K
AgMnO _x	Keine Angaben	1965	Zersetzung von AgMnO4 bei 388 K
2,5 < X < 3,0		[142, 143]	
Ag ₂ MnO ₄	a = 9,998(2), b = 6,989(1),	1983 ^[131]	AgMnO ₄ + Ag bei 293 K
	c = 5,4/4(2) A		
$Ag_{1,8}Mn_{8}O_{16}$	a = 9,725(7), c = 2,885(2) Å	1984 ^[132]	$AgMnO_4 + Ag_2O$ im Autoklaven bei
01,00 - 10	I4/m, tetragonal ^[101]	1986 ^[134]	p (O ₂) 5 kbar und 1243 K
"Ag ₂ MnO ₃ "	a = 8,92 Å kubisch	1985 ^[44]	$Ag_2O + MnO_2$ im Autoklaven bei 873 K

Tabelle 1: Chronologische Literaturübersicht über definierte Silberoxomanganate.

3.1.2 Tetrasilbertrimangan at(IV), Ag₄Mn₃O₈

3.1.2.1 Darstellung von Ag₄Mn₃O₈

 $Ag_4Mn_3O_8$ erhält man aus frisch präpariertem Ag_2O und "aktiviertem" MnO_2 (MnO_2^*) in einer stöchiometrischen Festkörperreaktion im Stahlautoklaven unter Sauerstoffhochdruck-Bedingungen. Alternativ zu "aktiviertem" MnO_2 kann, mit vergleichbarem Erfolg, kommerziell erhältliches MnO_2 -aktiviert (Fluka ≥ 90 %) verwendet werden.

$$2 \operatorname{Ag_2O} + 3 \operatorname{MnO_2}^* \to \operatorname{Ag_4Mn_3O_8}$$

Frisches Ag₂O erhält man durch Fällung aus warmer, schwach salpetersaurer Lösung von AgNO₃ (Merck, p. a.) mit einem Überschuss von KOH-Lösung 2M (Merck, p. a.). Dazu werden zunächst 10 g (58,8675 mmol) AgNO₃ in 250 ml bidestilliertem Wasser gelöst und mit 1 ml konzentrierter HNO₃ (PROLABO, 68,5 Gew.-%) angesäuert. Zu dieser Lösung werden 100 ml KOH-Lösung 2M gegeben, wobei sich ein bräunlicher, voluminöser Niederschlag von Ag₂O bildet. Dieser wird filtriert, mit bidestilliertem, CO₂-freiem Wasser gewaschen, bei 353 K getrocknet und anschließend für die Synthese eingesetzt.^[144]

Eine Lösung von 84,1 g (0,5 mol) MnSO₄·H₂O (Fluka, p.a. \geq 99,0 %) in 150 ml bidestilliertem Wasser und 117 ml einer NaOH-Lösung 40 % (Merck, p. a.) werden über den Zeitraum von einer Stunde zeitgleich einer heißen Lösung von 96 g (0,6 mol) KMnO₄ (Merck, p. a.) in 600 ml bidestilliertem Wasser zugetropft. Hierbei fällt sofort ein schokoladen-brauner Niederschlag von MnO₂ aus, der abzentrifugiert, mit bidestilliertem Wasser bis zur Farblosigkeit der Lösung gewaschen und im Ofen bei 373 - 393 K getrocknet wird.^[145]

Die fein gemörserte Mischung der binären Oxide wird in einem, auf 473 K vorgeheizten, Stahlautoklaven im Goldtiegel (4 cm Höhe, 9 mm Durchmesser) innerhalb von 2 Stunden auf 873 K geheizt und nach einer Haltezeit von 100 Stunden innerhalb von 2 Tagen auf Raumtemperatur abgekühlt. Ein typischer Ansatz besteht aus 232 mg (1 mmol) Ag₂O, 130 mg (1,5 mmol) MnO₂^{*}, 0,2 ml 3M KOH-Lösung als Mineralisator und einem Sauerstoff-Druck von 140 MPa. Das so erhaltene Produkt wird filtriert, mit CO₂-freiem Wasser gewaschen und bei 353 K getrocknet.

Eine lichtmikroskopische Aufnahme der dunkelgrau, matt glänzenden $Ag_4Mn_3O_8$ -Kristalle ist in Abbildung 9 gezeigt.

Abbildung 9: Lichtmikroskopische Aufnahme von Ag₄Mn₃O₈-Kristallen bei 60-facher Vergrößerung.

3.1.2.2 Rasterelektronenmikroskopie und Energiedispersive Mikroanalyse

Die Abbildung 10 zeigt eine rasterelektronenmikroskopische Aufnahme eines typischen Kristalls von Ag₄Mn₃O₈. Er weist minimale Aufwachsungen und einen oktaedrischen Habitus mit einer ungefähren Kantenlänge von 50 μ m auf.

Bei einer Beschleunigungsspannung von 25 kV wurden die AgL- und MnK-Röntgenemissionen mehrerer Proben untersucht. Das durch EDX-Analyse bestimmte Silber-Mangan-Verhältnis für Ag₄Mn₃O₈ schwankte zwischen 1,3 - 1,5 : 1.

In Abbildung 11 ist ein typisches Spektrum gezeigt, dessen Emissionen einem Silber-Mangan-Verhältnis von 1,37 : 1 entsprechen und die Summenformel der Substanz bestätigt.

Abbildung 10: Rasterelektronenmikroskopische Aufnahme eines Ag₄Mn₃O₈-Kristalls bei 620-facher Vergrößerung.

Abbildung 11: Röntgenemissionsspektrum einer Probe von Ag₄Mn₃O₈-Kristallen.

3.1.2.3 Röntgenographische Untersuchungen

Sämtliche Reflexe des gemessenen Diffraktogramms von Ag₄Mn₃O₈ lassen sich durch eine große kubische Zelle mit $a_{cub} \approx 26$ Å indizieren. Reflexe mit h, k, l = 3n haben jedoch eine wesentlich größere Intensität als die restlichen auf und deuten auf eine Subzelle mit $A_{cub} \approx 8,9$ Å hin, welche dem Strukturvorschlag für unter ähnlichen Bedingungen synthetisiertes "Ag₂MnO₃"^[44] entsprechen würde.

Eine Integration der gemessenen Intensität unter Annahme der großen kubischen Zelle erfasst lediglich 27 % der beobachteten Reflexe ($F_{obs} \ge 3\sigma(F_{obs})$). Eine sorgfältige Untersuchung des reziproken Raumes offenbart systematische Auslöschungen, die sich nicht mit den bekannten Auswahlregeln erklären lassen.

Diese Anzeichen deuten auf eine systematische Verzwillingung hin, und tatsächlich lässt sich der weitaus größte Teil der Reflexe mit einem trigonalen Gitter und den Gitterkonstanten $a_{\text{tri}} = 12,5919(1)$ Å $(A_{\text{cub}}\sqrt{2})$ und $c_{\text{tri}} = 15,4978(1)$ Å $(A_{\text{cub}}\sqrt{3})$ in Kombination mit einer vierzähligen Achse als Zwillingselement indizieren.

Die Transformationsmatrizen, mit denen die vier verschiedenen trigonalen Zellen aus der großen kubischen Zelle erhalten werden, lauten wie folgt:

$$(abc)_{tri}^{I} = \begin{pmatrix} 1/3 & -1/3 & 0 \\ 0 & 1/3 & -1/3 \\ 1/3 & 1/3 & 1/3 \end{pmatrix} \begin{pmatrix} a \\ b \\ c \end{pmatrix}_{cub}$$

$$(abc)_{tri}^{II} = \begin{pmatrix} -1/3 & -1/3 & 0 \\ 0 & 1/3 & 1/3 \\ -1/3 & 1/3 & -1/3 \end{pmatrix} \begin{pmatrix} a \\ b \\ c \end{pmatrix}_{cub}$$
$$(abc)_{tri}^{III} = \begin{pmatrix} 1/3 & 1/3 & 0 \\ 0 & -1/3 & -1/3 \end{pmatrix} \begin{pmatrix} a \\ b \\ c \end{pmatrix}_{cub}$$
$$(abc)_{tri}^{IV} = \begin{pmatrix} -1/3 & 1/3 & 0 \\ 0 & -1/3 & -1/3 \\ -1/3 & -1/3 & 1/3 \\ -1/3 & -1/3 & 1/3 \end{pmatrix} \begin{pmatrix} a \\ b \\ c \end{pmatrix}_{cub}$$

Die Integration über die Reflexe wurde mit der großen kubischen Zell durchgeführt. Von den 244587 gemessenen Reflexen wurden nur 66110 mit $F_{obs} \ge 3\sigma(F_{obs})$ berücksichtigt. Anschließend wurden die Indices der Reflexe mit den oben angegeben Matrizen transformiert. Lediglich 1,7 % der berücksichtigten Reflexe konnte nicht mit einem der vier Mehrlingsindividuen in Einklang gebracht werden. Eine Untersuchung dieser Reflexe auf den Bildplatten ergab $\lambda/2$ -Verunreinigung als Ursache. Auf der anderen Seite gehören 163682 nicht signifikant beobachtbare Reflexe keinem der vier Individuen an, was die Richtigkeit des Modells unterstreicht. Es ist wichtig anzumerken, dass die vier Individuen

8963 gemeinsame Reflexe aufweisen, welche sich in der hk0-Schicht (Abbildung 12, links) überlagern.

Für die trigonale Zelle werden nur Reflexe, die der Auswahlregel 001: 1 = 3n gehorchen, berücksichtigt, was folgende Raumgruppen ermöglicht: $P3_1$, $P3_2$, $P3_121$, $P3_221$, $P3_112$ und $P3_221$. Von diesen Möglichkeiten kann nach Analyse der Reflexe die Laue-Symmetrie $\overline{3}1m$ ausgeschlossen werden. Eine klare Unterscheidung zwischen den Laue-Symmetrien $\overline{3}$ und $\overline{3}m1$ ist schwierig, daher verbleiben folgende vier Möglichkeiten für die Raumgruppe: $P3_1$, $P3_2$, $P3_121$ und $P3_221$. Darüber hinaus ist zu beachten, dass auf Grund der (Pseudo-) Auswahlregeln für ein reverses und obverses R-Gitter Reflexe mit h + k + 1 = 3n und -h + k + 1 = 3n besonders intensiv sind, wie auch die aus IPDS-Daten abgeleiteten hk0und hk1-Schichten in Abbildung 12 zeigen.

Abbildung 12: Aus IPDS-Daten abgeleitete Netzebenen (bezogen auf $a_{cub} \sim 26$ Å). hk0-Schicht links, hk1-Schicht, rechts

Um die Strukturvorschläge der Einkristallstrukturanalyse zu bekräftigen, wurde ein Pulverdiffraktogramm mit einer langen Belichtungszeit (48 h) aufgenommen (Abbildung 13, oben). Ein LeBail-Fit dieses Diagramm bestätigte das trigonale P-Gitter mit den bereits angegebenen Gitterkonstanten. Eine Rücktransformation der erhaltenen Werte auf die kubische Zelle ergab eine unerhebliche Abweichung von der idealen Metrik (a = b = 8,9038 Å, c = 8,9478 Å).

Tetrasilbertrimanganat(IV), Ag₄Mn₃O₈

Die sehr gute Übereinstimmung von gemessenem und aus der späteren Strukturlösung berechnetem Pulverdiffraktogramm (Abbildung 13, unten) bestätigt die Wahl des Strukturmodells. Die anhand der Reflexlagen des Pulverdiffraktogramms ermittelten Gitterkonstanten und Winkel der Elementarzelle sowie das Zellvolumen sind:

$$a = 12,5919(1)$$
 Å $c = 15,4978(1)$ Å $\alpha = 90^{\circ}$ $\gamma = 120^{\circ}$ $V = 2128,05(1)$ Å³

Abbildung 13: Gemessenes (oben) und aus der Vierlingsverfeinerung berechnetes Pulverdiffraktogramm (unten) einer Probe von Ag₄Mn₃O₈. CuK_α-Strahlung, Silicium als externer Standard, absolute Intensitäten.

Der Datensatz für die Strukturlösung und -verfeinerung bestand aus 8963 gemeinsamen Reflexe und den Reflexen der vier Individuen ($\approx 4 \ge 18170$) die jeweils skaliert, gemittelt und in das Programm Jana 2000^[84] eingegeben wurden.

Anschließend wurde versucht, die vierfach verzwillingte Struktur in den Raumgruppen $P3_1$ und $P3_2$ zu lösen. Weder Patterson-Methoden noch Direkte Methoden mit den Programmen SHELXS97^[81] und SIR97^[83] führten zu einem vernünftigen Startmodell. Nur eine Berücksichtigung der Semiinvarianten bei der Lösung des Phasenproblems ergab mit dem Programm SIR 97^[83] die Positionen der Schweratome, welche als Startwerte für die Verfeinerung mit dem Programm Jana 2000^[84] darstellten.
Nach der richtigen Zuordnung der Mangan- und Silberatome wurden im weiteren Verlauf der Verfeinerung die Lagen der Sauerstoffatome mittels Differenzfouriersynthese bestimmt. Eine anschließende anisotrope Verfeinerung der Silberatome führte zu einem gesamten R(F)-Wert von ungefähr 22 %. Die Berücksichtigung der Zwillingsgesetze sowie eine Verfeinerung der Volumenanteile der vier Individuen senkte den R(F)-Wert um weitere 10 %. Die verwendeten Zwillingsmatrizen sind wie folgt:

$$Z^{\text{II}} = \begin{pmatrix} 1/3 & -1/3 & -4/3 \\ 2/3 & 1/3 & -2/3 \\ 2/3 & -2/3 & 1/3 \end{pmatrix} \qquad Z^{\text{III}} = \begin{pmatrix} -1 & 2/3 & -2/3 \\ 0 & 1/3 & -4/3 \\ 0 & -2/3 & -1/3 \end{pmatrix} \qquad Z^{\text{IV}} = \begin{pmatrix} -1/3 & 1 & 2/3 \\ -2/3 & 1 & -2/3 \\ -2/3 & 0 & 1/3 \end{pmatrix}$$

Schließlich wurden die Auslenkungsparameter der Mangan- und Sauerstoffatome anisotrop verfeinert. Zur Vermeidung nicht notwendiger Wechselwirkungen und auf Grund der erhöhten Pseudo-Symmetrie des Mn-O-Strukturteils von *R*32, wurden die Auslenkungsparameter der Sauerstoffatome auf gleiche Werte verfeinert.

Während die isotropen Auslenkungsparameter der Sauerstoffatome sinnvoll sind, ergaben sich für die anisotrope Verfeinerung mancher Atome sehr kleine und teilweise sogar negative Werte. Eine genauere Untersuchung der Daten ergab einen systematischen Intensitätsfehler bei 90 Reflexen, der auf Extinktion oder $\lambda/2$ -Verunreinigung zurückzuführen ist. Nach Ausschluss dieser Reflexe wurden sämtliche anisotropen Auslenkungsparameter der Sauerstoffatome positiv, jedoch nicht ideal.

Eine Verfeinerung der Struktur wurde in den Raumgruppen $P3_1$ und $P3_2$ durchgeführt, wobei erstere eindeutig bessere R-Werte ergab. Die Einführung einer zusätzlichen Spiegelebene als Zwillingselement, wodurch sich die Anzahl der Individuen auf 8 erhöhte und die gleichzeitige Existenz zweier Enantiomere in einer Struktur bedeutete, erbrachte keine besseren R-Werte, weshalb dieses Modell verworfen wurde. Auch die Berücksichtigung eines zusätzliches Inversionszentrums als Zwillingselement erbrachte keine Verbesserung der Werte.

Die aus der Verfeinerung erhaltenen Atomparameter zeigten für alle Atome eine höhere Symmetrie, nämlich die Raumgruppe $P3_121$. Da die R-Werte für $P3_1$ und $P3_121$ vergleichbar sind, die Anzahl der zu verfeinernden Parameter in der höher symmetrischen Raumgruppe aber kleiner ist, wurde auf $P3_121$ als zutreffende Raumgruppe für Ag₄Mn₃O₈ geschlossen.

Eine Zusammenfassung der experimentellen Bedingungen der Datenerfassung sowie die Ergebnisse der Einkristalluntersuchung und -verfeinerung sind in Tabelle 2 aufgelistet.

Raumgruppe	<i>P</i> 3 ₁ 21 (152)
Molare Masse M	$724,22 \text{ g mol}^{-1}$
Gitterkonstanten a, c (trigonal)	12,5919(1) Å, 15,4978(1) Å (Pulverdaten)
Zellvolumen V	2128,05(1) Å ³
Formeleinheiten Z	12
Absorptionskoeffizient μ	15,96 mm ⁻¹
Röntgenographische Dichte ρ_{calcd}	$6,782 \text{ g cm}^{-3}$
Diffraktometer	Stoe IPDS II
Strahlung, Monochromator	Mo K_{α} Graphit-Einkristall
Zelle für Datensammlung (kubisch)	26,7728(7) Å
Messbereich θ	$2,1-32,2^{\circ}$
Messtemperatur T	293(2) K
gemessene Reflexe ^{kubisch}	244587 (193973)
gemessene Reflexe ^{kubisch} I > $3\sigma(I)$	66110
Anzahl der Reflexe ^{gemeinsam}	8963
Anzahl der Reflexe ^{Ind1}	18160
Anzahl der Reflexe ^{Ind2}	18174
Anzahl der Reflexe ^{Ind3}	18178
Anzahl der Reflexe ^{Ind4}	18153
Anzahl der Reflexe ^{trigonal}	28793
Anzahl der Reflexe ^{Strukturverfeinerung}	28705
Anzahl der Reflexe ^{Strukturverfeinerung} $I > 3\sigma(I)$	25890
Korrekturen	Absorptions-, Lorentz-/Polarisationskorrektur
hkl-Bereiche	-40 < h < 40, -39 < k < 39, -39 < l < 39
R(F) _{int} (beobachtet)	0,0529
R(F) _{int} (gesamt)	0,0549
FIZ-Karlsruhe, Nr.	CSD - 412570

Tabelle 2: Kristallographische Daten von Ag₄Mn₃O₈ und Messparameter der Datensammlung. Die aus der Strukturverfeinerung von $Ag_4Mn_3O_8$ resultierenden isotropen Auslenkungsparameter und Koordinaten der Silber-, Mangan- und Sauerstoffatome sind in Tabelle 3 aufgeführt.

Atom	Wyckoff-Lage	Х	у	Z	U _{iso}
A (1)	ſ	0.0005(1)	0.7506(1)	0.25140(7)	0.01(0(4))
Ag(1)	6 C	0,2025(1)	0,7586(1)	0,35149(7)	0,0169(4)
Ag(2)	6 c	0,34440(9)	0,5712(1)	0,90981(7)	0,0169(4)
Ag(3)	6 c	0,8945(1)	0,0407(1)	0,01246(7)	0,0191(4)
Ag(4)	6 c	0,0822(1)	0,3980(1)	0,07202(7)	0,0208(4)
Ag(5)	6 c	0,6189(1)	0,3209(1)	0,90792(7)	0,0180(4)
Ag(6)	6 c	0,8344(1)	0,3697(1)	0,08436(8)	0,0231(4)
Ag(7)	3 a	0,7709(1)	0,7709(1)	0	0,0194(5)
Ag(8)	3 b	0	0,1701(1)	1/6	0,0248(5)
Ag(9)	3 a	0,4721(1)	0	1/3	0,0286(6)
Ag(10)	3 b	0,0675(1)	0,0675(1)	1/2	0,0286(7)
$\mathbf{M}_{\mathbf{n}}(1)$	6.0	0.7627(2)	0 < 102(2)	0 1049(2)	0.0077(7)
Mn(1)	00	0,7037(3) 0.5126(3)	0,0103(2)	0,1940(2) 0.1070(2)	0,0077(7)
Mn(2)	60	0,3130(3)	0,3082(3)	0,1970(2)	0,0080(8)
Mn(3)	6 C	0,7201(2)	0,8201(3)	0,1964(1)	0,0080(8)
Mn(4)	6 c	0,7076(2)	0,0432(2)	0,166/(1)	0,0075(8)
Mn(5)	6 C	0,8804(2)	0,5481(2)	0,3334(1)	0,0081(8)
Mn(6)	3 b	0	0,6278(3)	1/6	0,007(1)
Mn(7)	3 a	0,7894(3)	0	1/3	0,008(1)
O (1)	6 c	0,4334(9)	0,2785(9)	0,4476(7)	0.006(2)
O(2)	6 c	0,5122(9)	0,9014(9)	0,4464(7)	0,006(2)
O(3)	6 c	0.0553(9)	0.8173(9)	0.4465(7)	0.006(2)
O(4)	6 c	0.241(1)	0.049(1)	0.4680(7)	0.013(2)
O(5)	6 c	0,477(1)	0,091(1)	0,4684(7)	0,013(2)
O(6)	6 c	0,282(1)	0,849(1)	0,4738(7)	0,013(2)
O(7)	6 c	0,520(1)	0,247(1)	0,6077(8)	0,011(2)
O(8)	6 c	0,396(1)	0,816(1)	0,6096(8)	0,011(2)
O(9)	6 c	0,085(1)	0,938(1)	0,6055(8)	0,011(2)
O(10)	6 c	0,756(1)	0,074(1)	0,9176(9)	0,007(2)
O(11)	6 c	0,9856(8)	0,578(1)	0,9165(9)	0,007(2)
O(12)	6 c	0,261(1)	0,3472(8)	0,9195(9)	0,007(2)
O(13)	6 c	0,172(1)	0,788(1)	0,9101(8)	0,009(2)
O(14)	6 c	0,2773(9)	0,158(1)	0,9091(8)	0,009(2)
O(15)	6 c	0,548(1)	0,0506(9)	0,9109(8)	0,009(2)
O(16)	6 c	0,6671(8)	0,6671(8)	0,266(1)	0,010(4)

Tabelle 3: Atomkoordinaten und isotrope Auslenkungsparameter für Ag₄Mn₃O₈.

3.1.2.4 Beschreibung und Diskussion der Kristallstruktur

Alle sieben symmetrieunabhängigen Mangan-Atome sind von sechs Sauerstoff-Atomen in Form stark verzerrter Oktaeder vergleichbarer Größe (siehe Tabelle 4 für Mn-O-Abstände und Tabelle 5 für O-O-Abstände) umgeben. Über jeweils eine gemeinsame Kante ist jedes Oktaeder mit vier weiteren Oktaedern verknüpft, wodurch es zur Ausbildung eines Netzwerkes kommt, in dem sämtliche Mangan-Atome vier Mangan-Nachbarn in einer Entfernung von 2,89 - 2,95 Å (Tabelle 6) haben. Mn-O-Abstände zu verbrückenden O-Atomen sind im Durchschnitt erwartungsgemäß länger (1,96 Å) als andere (1,89 Å).

Tabelle 4: Ausgewählte Mn-O-Abstände in $Ag_4Mn_3O_8$ in Å. Bindungen zu Sauerstoff-Atomen, welche drei MnO₆-Oktaedern angehören, sind fett gedruckt.

Mn	0	Abstand	Mn	0	Abstand	Mn	0	Abstand
Mn(1)	O(1)	1,86(2)	Mn(2)	O(6)	1,87(1)	Mn(3)	O(3)	1,87(1)
	O(5)	1,88(2)		O(2)	1,89(1)		O(4)	1,89(2)
	O(4)	1,91(2)		O(5)	1,89(2)		O(9)	1,90(1)
	O(7)	1,92(1)		O(8)	1,90(2)		O(6)	1,91(1)
	O(10)	1,98(1)		O(11)	1,94(1)		O(12)	1,97(2)
	O(16)	2,02(1)		O(16)	2,00(1)		O(16)	2,01(1)
Mn(4)	O(13)	1,85(1)	Mn(5)	O(8)	1,89(1)	Mn(6)	O(15)	1,87(1) 2x
	O(2)	1,87(2)		O(7)	1,90(2)		O(1)	1,89(1) 2x
	O(14)	1,88(1)		O(15)	1,91(2)		O(10)	1,92(2) 2x
	O(3)	1,89(2)		O(13)	1,92(2)			
	0(11)	1,91(1)		O (11)	1,97(1)			
	O(12)	1,95(2)		O(10)	1,97(2)			
Mn(7)	O(9)	1,88(1) 2x						
	O(14)	1,92(1) 2x						
	O(12)	1,96(2) 2x						

0	0	Abstand	0	0	Abstand	0	0	Abstand
O (1)	O(4)	2,70(1)	O(2)	O(5)	2,66(2)	O(3)	O(4)	2,69(1)
	O(5)	2,69(2)		O(6)	2,66(2)		O(6)	2,67(2)
	O(7)	2,82(2)		O(8)	2,85(2)		O(9)	2,82(2)
	O(10)	2,49(2)		O (11)	2,47(2)		O(12)	2,47(2)
O(4)	O(5)	2,74(2)	O(5)	O(6)	2,80(1)	O(6)	O(4)	2,82(2)
	O(10)	2,79(2)		O(11)	2,77(2)		O(12)	2,76(2)
	O(16)	2,56(2)		O(16)	2,57(2)		O(16)	2,56(2)
O(5)	O(7)	2,78(2)	O(6)	O(8)	2,69(2)	O(4)	O(9)	2,76(2)
	O(16)	2,57(2)		O(16)	2,56(2)		O(16)	2,56(2)
O (7)	O(10)	2,56(2)	O(8)	O (11)	2,52(1)	O(9)	O(12)	2,53(2)
	O(16)	2,82(1)		O(16)	2,80(2)		O(16)	2,82(2)
O(10)	O(16)	3,18(1)	O(11)	O(16)	3,20(2)	O(12)	O(16)	3,21(2)
O(3)	O(12)	2,47(2)	O(7)	O(8)	2,61(2)	O (1)	O(10)	2,49(2)
	O(11)	2,63(2)		O(10)	2,56(2)		O(10)	2,71(2)
	O(14)	2,79(2)		O(15)	2,74(2)		O(15)	2,77(2)
	O(13)	2,76(1)		O(13)	2,78(2)		O(15)	2,74(2)
O(2)	O(12)	2,68(1)	O(8)	O (11)	2,52(1)	O (1)	O(10)	2,71(2)
	O(11)	2,47(2)		O(15)	2,73(2)		O(10)	2,49(2)
	O(14)	2,81(2)		O(13)	2,75(2)		O(15)	2,74(2)
	O(13)	2,80(2)	O(10)	O(11)	3,21(2)		O(15)	2,77(2)
O(12)	O(11)	3,07(2)		O (15)	2,49(2)	O(10)	O(10)	3,07(2)
	O(14)	2,49(2)		O(13)	2,89(2)		O(15)	2,49(2)
O(13)	O(11)	2,51(1)	O(11)	O(15)	2,73(3)	O(15)	O(15)	2,65(2)
	O(14)	2,64(2)		O(13)	2,51(1)		O(10)	2,49(2)
O(9)	O(9)	2,65(2)	O(9)	O(12)	2,53(2)		O(14)	2,49(2)
	O(12)	2,53(2)		O(14)	2,78(2)		O(14)	2,89(2)
	O(14)	2,68(1)		O(14)	2,68(1)	O(12)	O(14)	2,89(2)
	O(14)	2,78(2)	O(12)	O(12)	3,12(2)		O(14)	2,49(2)

Tabelle 5: Ausgewählte O-O-Abstände in Ag₄Mn₃O₈ in Å. Bindungen zu Sauerstoffatomen, welche gemeinsame Oktaederkanten darstellen, sind fett gedruckt.

Tetrasilbertrimanganat(IV), Ag₄Mn₃O₈

Mn	Mn	Abstand	Mn	Mn	Abstand	Mn	Mn	Abstand
Mn(1)	Mn(2)	2,921(6)	Mn(2)	Mn(1)	2,921(6)	Mn(3)	Mn (1)	2,955(5)
	Mn(3)	2,955(5)		Mn(3)	2,928(4)		Mn(2)	2,928(4)
	Mn(5)	2,92(1)		Mn(4)	2,898(3)		Mn(4)	2,928(5)
	Mn(6)	2,905(4)		Mn(5)	2,91(1)		Mn(7)	2,902(3)
Mn(4)	Mn(2)	2,898(5)	Mn(5)	Mn(1)	2,92(1)	Mn(6)	Mn(1)	2,905(4) 2x
	Mn(3)	2,928(5)		Mn(2)	2,91(1)		Mn(5)	2,91(1) 2x
	Mn(5)	2,89(1)		Mn(4)	2,89(1)			
	Mn(7)	2,930(3)		Mn(6)	2,91(1)			
Mn(7)	Mn(3)	2,902(3) 2x						
	Mn(4)	2,930(3) 2x						

Tabelle 6: Abstände der Mn-Oktaederzentren in Ag₄Mn₃O₈ in Å.

Ein guter Ansatz, das komplexe Netzwerk der kantenverknüpften Oktaeder zu verstehen, ist das Herausgreifen einer charakteristischen Gruppe, bestehend aus drei Oktaedern, wie es durch die grauen Flächen in Abbildung 14 und ausführlicher in Abbildung 15 dargestellt ist. Im Zentrum dieser Gruppe bilden vier Sauerstoff-Atome eine Tetraederlücke aus. Jedes Mangan-Atom ist an zweien dieser Gruppen beteiligt, wie die grau eingefärbten gemeinsamen Kanten in Abbildung 15 zeigen. Die Mn-O-Abstände zu Sauerstoffatomen die auf gemeinsamen Kanten liegen sind im Vergleich zu anderen Mn-O-Abständen (siehe Tabelle 4) deutlich verlängert und die O-O-Abstände, welche gemeinsame Kanten eine starke Verzerrung auf, und entsprechend deutlich weichen die Winkel von den Werten eines perfekten Oktaeders ab.

Repräsentiert man die MnO_6 -Oktaeder durch eine Kugel, so wird wie in Abbildung 14 gezeigt, die erhöhte Pseudosymmetrie (*R*32) des Mn-Gerüstes erkennbar.

Abbildung 14: Schematische Darstellung der im Vergleich zur Ag-Teilstruktur höher symmetrischen Mn-Teilstruktur (Blick entlang [001]).

Abbildung 15: Gruppe von drei MnO₆-Oktaedern. Verknüpfende Kanten sind grau, O-Atome welche zu drei Mn-Atomen gezählt werden schwarz gekennzeichnet. Abbildung 16: Schematische Darstellung des Gerüstes der MnO₆-Teilstruktur als Mapping auf ein {10,3} Netz. Jeder Punkt stellt den Schwerpunkt dreier MnO₆-Lagen dar. Die meisten der 16 kristallographisch verschiedenen Sauerstoff-Atome (O(1) - O(9) und O(13) - O(15)) sind mit zwei Manganatomen verbunden. Sauerstoff-Atome (O(10) - O(12) und O(16)), welche die Spitzen der vorher beschriebenen Tetraederlücken bilden, sind allerdings von drei Manganatomen benachbart. Schließlich ist die erste Gruppe von Sauerstoffatomen von zwei bis vier Silberatomen umgeben, während die zuletzt genannten Sauerstoff-Atome nur von einem Silber-Atom benachbart sind.

Aus der in Abbildung 15 dargestellten Einheiten wird ein dreidimensionales Netzwerk ausgebildet, welches auf Grund seiner Komplexität schwer zu beschreiben ist. Eine Vereinfachung der graphischen Darstellung erlaubt jedoch eine vernünftige Beschreibung und Visualisierung (Abbildung 16). Indem man drei Mn-Zentralatome durch den Schwerpunkt ihrer Koordinaten darstellt, erhält man ein verzerrtes Raumnetz ($P4_332$), das eng mit dem kubischen {10,3}-Raumnetz verwandt ist ($I4_132$), welches eine besondere Stellung unter den dreidimensionalen, dreifach verknüpften Netzen einnimmt^[146, 147] und in Abbildung 17 dargestellt ist. Sämtliche Lagen und Verknüpfungen im kubischen Raumnetz sind äquivalent und alle Zehneckflächen sind kongruent. In dieser kubischen Konfiguration haben alle Verknüpfungen gleiche Länge und sämtliche Verknüpfungswinkel sind 120°.

Abbildung 17: Schematische Darstellung eines kubischen {10,3} Netzes entlang [001].

Die Silber-Atome befinden sich in den Hohlräumen des Gerüstes und sind auf vier verschiedene Arten mit Sauerstoffatomen verbunden (siehe Tabelle 7 und Abbildung 18).

Ag	0	Abstand	Ag	0	Abstand	Ag	0	Abstand
Ag(1)	O(1)	2,12(1)	Ag(2)	O(8)	2,14(2)	Ag(3)	O(9)	2,18(1)
	O(6)	2,18(1)		O(12)	2,475(9)		O(3)	2,19(1)
	O(11)	2,46(1)		O(5)	2,15(1)		O(10)	2,47(2)
	O(3)	2,71(1)		O(6)	2,69(1)		O(13)	2,86(1)
Ag(4)	O(15)	2,13(1)	Ag(5)	O(7)	2,12(2)	Ag(6)	O(13)	2,26(1)
	O(14)	2,18(1)		O(2)	2,23(2)		O(1)	2,46(1)
	O(16)	2,36(2)		O(8)	2,78(1)		O(7)	2,49(1)
	O(8)	2,82(1)		O(6)	2,80(2)		O(15)	2,52(8)
							O(8)	2,91(1)
							O(15)	2,91(1)
Ag(7)	O(4)	2,16(1) 2x	Ag(8)	O(14)	2,12(1) 2x	Ag(9)	O(2)	2,34(1) 2x
	O(3)	2,84(1) 2x		O(13)	2,93(1) 2x		O(5)	2,37(1) 2x
Ag(10)	O(4)	2,36(2) 2x						
	O(9)	2,40(1) 2x						

Tabelle 7: Ausgewählte Ag-O-Abstände in Å von Ag₄Mn₃O₈.

Die Umgebung von Ag(1) - Ag(4) hat zwei kurze Ag-O-Abstände (2,13 - 2,19 Å), ein Sauerstoff-Atom in einer Entfernung von 2,36 - 2,48 Å und ein viertes Sauerstoff-Atom in einer Entfernung zwischen 2,69 und 2,86 Å. Ag(5), Ag(7) und Ag(8) sind in einer Distanz von 2,12 - 2,23 Å und in einer Entfernung von 2,78 - 2,93 Å von jeweils zwei Sauerstoffatomen umgeben. Die dritte Art der Verknüpfung liegt bei Ag(6) vor. Ein Sauerstoff-Atom befindet sich im Abstand von 2,26 Å, drei Sauerstoffatome im Abstand von 2,46 - 2,52 Å und zwei weitere Sauerstoffatome in einer Entfernung von 2,91 Å. Die Silber-Atome Ag(9) und Ag(10) sind von vier Sauerstoffatomen im Abstand von 2,33 - 2,40 Å umgeben.

Abbildung 18: Darstellung der Ag-O-Koordinations-Sphären bis zu einem Abstand von 2,93 Å. Die Dicke der Balken ist proportional zu der Kürze der Ag-O-Bindungslängen.

Die Ag-Ag-Koordination ist auf Grund der nahtlosen Folge an Ag-Ag-Abständen weniger eindeutig definiert. Oberhalb von 3,1 Å nimmt die Häufigkeit der Ag-Ag-Abstände zunächst ab, daher sollen hier nur Abstände unterhalb 3,1 Å betrachtet werden. Mit diesem Grenzwert können die Silber-Atome in zwei Gruppen eingeteilt werden. Die erste (Ag(1) - Ag(4), Ag(6), Ag(9) und Ag(10)) hat drei Ag-Nachbarn in einem Abstand von 2,82 - 3,06 Å, während die zweite Gruppe (Ag(5), Ag(7) und Ag(8)) fünf Ag-Nachbarn im gleichen Abstandsbereich haben.

Des weiteren können die Silberatome in von Silber planar bzw. nicht planar (mit einem von der Planarität abweichenden Winkel δ) umgebene Ag-Atome unterteilt werden. Atome mit einer trigonal-planaren Ag-Umgebung sind Ag(1) und Ag(2), die Atome Ag(5) und Ag(7) weisen eine pentagonal-planare Umgebung auf. Das Ag(8)-Atom hat fünf Ag-Nachbarn und zwei Winkel die von der Planarität abweichen.

Eine graphische Darstellung der Ag-Nachbarn der Ag-Atome ist in Abbildung 19, eine tabellarische Übersicht über die Planarität der Koordinations-Sphären in Tabelle 8 und eine Übersicht über Bindungslängen in Tabelle 9 gezeigt.

Abbildung 19: Darstellung der Ag-Ag-Koordinationssphären der 10 kristallographisch unterschiedlichen Ag-Atome bis zu einem Abstand von 3,1 Å.

Tabelle 8: Übersicht der planar und nicht-planar von Ag umgebenen Ag-Atome mit
Angabe der Abweichung δ vom Idealwert (360°). Bei Ag(8) ist die Summe angegeben.

Ag	δ	Ag	δ	Ag	δ	Ag	δ	Ag	δ
Ag(1)	0	Ag(3)	13,0(1)	Ag(5)	0	Ag(7)	0	Ag(9)	14,3(1)
Ag(2)	0	Ag(4)	15,1(1)	Ag(6)	9,6(1)	Ag(8)	29,5(1)	Ag(10)	11,3(2)

Tabelle 9: Sämtliche Ag-Ag-Abstände kürzer als 3,44 Å von Ag $_4$ Mn $_3$ O $_8$.

Bindungen	mit einer	Länge	oberhalb	von 3.1	Å	sind	fett	gedruckt.	
0		\mathcal{O}		,				0	

Ag	Ag	Abstand	Ag	Ag	Abstand	Ag	Ag	Abstand
							-	
Ag(1)	Ag(7)	2,901(2)	Ag(2)	Ag(5)	2,909(2)	Ag(3)	Ag(8)	2,823(1)
	Ag(5)	2,912(2)		Ag(5)	2,934(2)		Ag(10)	2,906(1)
	Ag(6)	3,056(2)		Ag(9)	2,948(2)		Ag(7)	2,952(2)
	Ag(2)	3,233(2)		Ag(6)	3,168(2)		Ag(3)	3,212(2)
	Ag(9)	3,244(1)		Ag(1)	3,233(2)		Ag(10)	3,338(2)
Ag(4)	Ag(8)	2,913(2)	Ag(5)	Ag(2)	2,909(2)	Ag(6)	Ag(4)	2,964(2)
	Ag(5)	2,917(1)		Ag(1)	2,912(2)		Ag(5)	2,964(2)
	Ag(6)	2,964(2)		Ag(6)	2,916(2)		Ag(1)	3,056(2)
	Ag(6)	3,130(2)		Ag(4)	2,917(1)		Ag(4)	3,130(2)
	Ag(4)	3,438(2)		Ag(2)	2,934(2)		Ag(2)	3,168(2)
Ag(7)	Ag(1)	2,901(2) 2x	Ag(8)	Ag(3)	2,823(1) 2x	Ag(9)	Ag(2)	2,975(2) 2x
	Ag(3)	2,952(2) 2x		Ag(4)	2,913(2) 2x		Ag(7)	3,060(2)
	Ag(9)	3,060(2)		Ag(10)	2,992(2)		Ag(1)	3,244(2) 2x
Ag(10)	Ag(3)	2,906(1) 2x						
	Ag(8)	2,992(1)						
	Ag(3)	3,338(2) 2x						

Wenn Silber-Silber-Abstände bis zu einer Grenze von 3,44 Å zur Koordinations-Sphäre gerechnet werden, dann weist jedes Ag-Atom fünf Nachbarn auf, und lediglich ein Abstand (Ag(4)-Ag(4): 3,438(2) Å) ist nicht kürzer als die für elementares Silber angegebene van-der-Waals-Entfernung von 3,4 Å. Die gesamte Silber-Teilstruktur ist in Abbildung 20 dargestellt.

Abbildung 20: Schematische Darstellung der Ag-Teilstruktur, entlang [001], von Ag₄Mn₃O₈. Ag-Ag-Bindungen kürzer 3,1 Å sind mit dicken Balken und Bindungen mit einer Länge zwischen 3,1 und 3,44 Å mit dünneren Balken dargestellt.

Die nach Brese und O'Keeffe^[148] berechneten Summen der Bindungsvalenzen (siehe Tabelle 10) liegen im Bereich der idealen Werte, obwohl für manche Atome (z. B. Ag(5) - Ag(7), Ag(9), Ag(10) und O(16)) eine Tendenz zu geringfügig kleineren Werten zu beobachten ist.

Ag-Atom		Mn-Atom		O-Atom		O-Atom	
Ag(1)	1,05	Mn(1)	3,79	O(1)	2,03	O(11)	1,97
Ag(2)	1,05	Mn(2)	3,88	O(2)	1,94	O(12)	1,90
Ag(3)	0,95	Mn(3)	3,81	O(3)	1,93	O(13)	1,82
Ag(4)	1,06	Mn(4)	4,14	O(4)	1,94	O(14)	2,03
Ag(5)	0,88	Mn(5)	3,77	O(5)	2,00	O(15)	2,00
Ag(6)	0,87	Mn(6)	4,13	O(6)	1,89	O(16)	1,73
Ag(7)	0,89	Mn(7)	3,86	O(7)	1,88		
Ag(8)	0,96			O(8)	1,95		
Ag(9)	0,89			O(9)	1,96		
Ag(10)	0,84			O(10)	1,91		

Tabelle 10: Berechnete Summe der Bindungsvalenzen pro Atom fürAg₄Mn₃O₈.

3.1.2.5 Strukturhierarchie in Ag₄Mn₃O₈

Wie bereits im vorigen Kapitel erwähnt, zeigt die Struktur eine erhöhte Pseudo-Symmetrie, welche mit der beobachteten vierfachen Verzwillingung zusammenhängt und die mit Hilfe des Computer-Programms PSEUDO^[85] genauer untersucht wurde. Für diese Untersuchung wurde eine maximale Abweichung von 0,75 Å im Vergleich zu den Positionen der höher symmetrischen Raumgruppe erlaubt. In Abbildung 21 ist die Beziehung der verschiedenen Raumgruppen, welche in Teilstrukturen realisiert sind, zueinander dargestellt. Diese Darstellung dient außerdem einem besseren Verständnis für die komplizierte Verzwillingung in Ag₄Mn₃O₈.

Abbildung 21: Gruppe-Untergruppe-Beziehung für $Ag_4Mn_3O_8$; t = translationengleich, k = klassengleich.^[149]

Der Ag-Teilstruktur zeigt, im Gegensatz zur Mn-O-Teilstruktur, keine erhöhte Pseudosymmetrie. Die Mangan- und Sauerstoff-Teilstruktur weist, mit einer Abweichung kleiner 0,1 Å von den höher symmetrischen Positionen, eine erhöhte Pseudo-Symmetrie auf, welche sich mit der kubischen Raumgruppe $P4_332$ beschreiben lässt. In dieser Raumgruppe (mit $A_{cub} \approx 8,9$ Å) reduziert sich die Anzahl der symmetrieunabhängigen Sauerstoff-Atome auf zwei (Wyckoff Positionen 24e und 8c) und die der Mangan-Atome auf eins (Wyckoff-Position 12d). In diesem Zusammenhang ist es erwähnenswert, dass sich β-Mangan ebenfalls mit der Raumgruppe $P4_132$ beschreiben lässt und dass die beiden symmetrieunabhängigen Mangan-Atome innerhalb dieser Struktur auch die Wyckoff-Positionen 12d und 8c besetzen. Die Pseudosymmetrie des oben beschriebenen Netzes beträgt ebenfalls $P4_332$. Die für die Knoten auf Grundlage der Ag₄Mn₃O₈-Struktur berechneten Koordinaten sind (0,929, 0,929, 0,929) auf der Wyckoff-Position 8c. Die Abweichung vom idealen kubischen Netz (Raumgruppe $I4_132$ mit einem Knoten auf der Wyckoff-Position 8a: $\frac{1}{8}$, $\frac{1}{8}$, $\frac{1}{8}$, oder $\frac{7}{8}$, $\frac{7}{8}$, $\frac{7}{8}$ ist hingegen beträchtlich.

3.1.2.6 Messung der magnetisch en Suszeptibilität

Die magnetische Suszeptibilität von $Ag_4Mn_3O_8$ wurde bei verschiedenen Temperaturen und Feldstärken an pulverförmigen Proben gemessen. Hierzu wurde mit einem SQUID-Magnetometer 27,8 mg Probe in einer Gelatinekapsel untersucht. Die Abbildung 22 zeigt in einem Temperaturbereich zwischen 2 und 330 K die kapselkorrigierten molaren Suszeptibilitäten bei Feldstärken von 0,1 bis 5 T. Für 0,1 und 3 T wurden Aufheiz- für 1 und 5 T Abkühlkurven aufgenommen.

Unterhalb einer Néel Temperatur von 8 K kann bei niedrigen Feldstärken eine anti-ferromagnetische Ordnung beobachtet werden. Ag₄Mn₃O₈ zeigt, unabhängig von der angelegten Feldstärke, oberhalb 8 K paramagnetisches Verhalten.

Aus der Auftragung der reziproken Suszeptibilität bei verschiedenen Temperaturen (Abbildung 23) erkennt man, dass $Ag_4Mn_3O_8$ eine nach dem Curie-Weiss-Gesetz extrapolierte positive Curie-Temperatur Θ von 44 K aufweist, was auf vorherrschend ferromagnetische Austauschwechselwirkungen deutet. Das aus der Steigung der Messung von 5 T (Bereich 250 - 330 K) berechnete effektive magnetische Moment beträgt 3,8 μ_B und entspricht dem Zustand +IV für Mangan ($\mu_{B,theo} = 3,87$).

Tetrasilbertrimanganat(IV), Ag₄Mn₃O₈

Abbildung 22: Messung der magnetischen Suszeptibilität von Ag₄Mn₃O₈ bei verschiedenen Feldstärken und Temperaturen.

Abbildung 23: Diagramm der reziproken Suszeptibilität von Ag₄Mn₃O₈ bei verschiedenen Feldstärken und Temperaturen.

3.1.2.7 Leitfähigkeitsmessungen

Der Gesamtwiderstand eines Pulverpresslings von $Ag_4Mn_3O_8$ (5 mm Durchmesser, 0,7 mm Stärke) wurde nach der Standard Vier-Punkt-Methode über einen Temperaturbereich von 5 - 300 K gemessen und ist in Abbildung 24 graphisch dargestellt.

Abbildung 24: Gleichstrommessung des mittleren Gesamtwiderstandes an einem Pulverpressling (5 mm Durchmesser, 0,7 mm Stärke) von Ag₄Mn₃O₈ mit Pt-Elektroden.

Der gemessene Widerstand von Ag₄Mn₃O₈ ist im untersuchten Temperaturbereich relativ konstant und liegt im Bereich eines Isolators. Auf Grund der Messwerterfassungsgrenze der verwendeten Apparatur kann der Gesamtwiderstand nicht genau bestimmt werden. Die elektronischen Leitfähigkeit kann somit nahezu vernachlässigt werden.

Die mit Wechselstrom bestimmte Temperaturabhängigkeit der Silberionenleitfähigkeit von $Ag_4Mn_3O_8$ ist in Abbildung 25 als Arrhenius-Darstellung wiedergegeben. Der lineare Verlauf der Graphensteigung ist in einem Bereich von 458 - 473 K unterbrochen. Oberwie auch unterhalb dieses Temperaturbereiches beträgt die Aktivierungsenergie sowohl beim Aufheizen als auch beim Abkühlen 41 kJ mol⁻¹. Die Silberionenleitfähigkeit liegt in einem Bereich von $3,2\cdot10^{-7}$ S cm⁻¹ bei 324 K bis $2,8\cdot10^{-4}$ S cm⁻¹ bei 574 K und entspricht damit nach Chandra^[94] einer "normalen" Ionenleitfähigkeit.

Tetrasilbertrimanganat(IV), Ag₄Mn₃O₈

Abbildung 25: Auftragung der Temperaturabhängigkeit des dekadischen Logarithmus der Silberionenleitfähigkeit σ von Ag₄Mn₃O₈ gegen 1000 / T und T.

3.1.2.8 Untersuchung des thermischen Verhaltens

20,8 mg einer Probe von $Ag_4Mn_3O_8$ wurden in einem Korundtiegel im Argonstrom mit einer Heizrate von 10 K min⁻¹ auf 743 K erhitzt und anschließend wurde diese Temperatur 2 h gehalten. Die Abbildung 26 zeigt die gemessene DTA- und TG-Kurve dieser Probe. Der in der TG zwischen 310 und 743 K (Onset-Temperatur einer Messung ohne Haltephase: 673 K) beobachtbare Gewichtsverlust beträgt 4,4 % und stimmt sehr gut mit dem theoretischen Gewichtsverlust nach folgender Reaktionsgleichung überein.

 $Ag_4Mn_3O_8 \rightarrow 4Ag + 3MnO_2 + O_2 \uparrow$ (theoretischer Gewichtsverlust: 4,4 %)

Durch das zweistündige Erhitzen bei 743 K zersetzt sich die Substanz vollständig, ohne dass es zu einer weiteren Umsetzung des entstehenden Manganoxides (12 MnO₂ \rightarrow 6 Mn₂O₃ + 3 O₂ \rightarrow 4 Mn₃O₄ + O₂ \rightarrow 12 MnO + 2 O₂) kommt. An der Konstanz der TG-Kurve sowie an der mittels MS durchgeführten Untersuchung der Zersetzungsprodukte während der DTA / TG-Messung ist die Vollständigkeit der Zersetzung erkennbar.

Anhand der DTA-Kurve ist der Übergang von Aufheiz- zur Haltephase gut erkennbar. Des weiteren wird ein Überschwinger der Kurve beobachtet welcher durch das kurzfristige Überhitzen der Substanz auf eine Maximaltemperatur von 755 K zustande kommt.

Abbildung 26: Differentialthermoanalyse und Thermogravimetrie an Ag₄Mn₃O₈.

Eine massenspektroskopische Untersuchung der Zersetzungsprodukte während der DTA / TG-Messung ist in Abbildung 27 graphisch dargestellt.

Ab ca. 600 K werden auf Grund beginnender Zersetzung von $Ag_4Mn_3O_8$ die MS-Signale der Massen 32 und 16, was auf eine Sauerstoffabgabe deutet, nachgewiesen. Vor dem Beginn der Haltephase ist ein zweistufiger Abbau der Substanz beobachtbar. Ungefähr 60 Minuten nach dem Erreichen der Haltetemperatur von 743 K bleiben die Signale konstant und die Probe wurde komplett zersetzt. Eine röntgenographische Untersuchung der Probensubstanz nach der DTA / TG-Messung identifizierte das

Zersetzungsprodukt der Thermolyse als ein Gemisch von Silber und MnO₂ und bestätigt die Interpretationen der DTA-, TG- und MS-Messung.

Abbildung 27: Massenspektrometrischer Nachweis der Zersetzungsprodukte während der Thermolyse von Ag₄Mn₃O₈.

Um den Wärmefluss beim Erhitzen von $Ag_4Mn_3O_8$ auf mögliche endo- oder exotherme Effekte zu untersuchen, wurden kalorimetrische Messungen mittels DSC durchgeführt. Für die DSC-Untersuchung wurden 26,5 mg Substanz, eingeschweißt in ein Aluminiumpfännchen, gegen eine Blindprobe gemessen. Es wurde das unterschiedliche Aufheiz- und anschließende Abkühlverhalten des Wärmeflusses der beiden Proben in einem Temperaturbereich von 303 bis 773 K, jeweils mit einer Temperaturrate von 10 K min⁻¹, gemessen.

Abbildung 28: Änderung des Wärmeflusses beim Erhitzen bzw. Abkühlen von Ag₄Mn₃O₈.

Mit Hilfe des DSC-Diagrammes wurden bei Ag₄Mn₃O₈ zwei reversible und endotherm verlaufende Phasenübergänge nachgewiesen. Der erste Phasenübergang findet bei 477 K statt und benötigt eine Energie von 4,2 kJ mol⁻¹. Die Daten für die zweite Phasenumwandlung sind, auf Grund der sehr kleinen Werte für die Änderung des Wärmeflusses, stark fehlerbehaftet. Beobachtet wird dieser Übergang bei ≈ 689 K und damit oberhalb des Zersetzungspunktes der Substanz von 673 K. Auf Grund der Kinetik der Zersetzung lässt sich allerdings auch der zweite Phasenübergang ($\approx 0,4$ kJ mol⁻¹) reversibel beobachten. In Tabelle 11 sind die Ergebnisse der Messung zusammengefasst.

	Phasenumwar	ndlung $\alpha \leftrightarrow \beta$	Phasenumwandlung $\beta \leftrightarrow \gamma$		
	Aufheizkurve	Abkühlkurve	Aufheizkurve	Abkühlkurve	
Temperatur in K	482	472	695	683	
Energie in mJ	417	-436	39	-38	
ΔH in kJ mol ⁻¹	4,1	-4,3	0,4	-0,4	

Tabelle 11: Phasenumwandlungstemperaturen und -energien von Ag₄Mn₃O₈.

In Abbildung 29 ist der Ausschnitt eines mit Synchrotronstrahlung (NSLS, Brookhaven) aufgenommenen temperaturabhängigen *in-situ*-Pulverdiffraktogrammes von $Ag_4Mn_3O_8$ dargestellt. Die zwei durch DSC-Messungen und Impedanzspektroskopie nachgewiesenen Phasenübergänge bei 477 und 689 K sowie ein Reflex des Zersetzungsproduktes (Silber) sind deutlich erkennbar.

Abbildung 29: Temperaturabhängiges *in-situ*-Röntgenpulverdiffraktogramm von Ag₄Mn₃O₈ über den Bereich von 298 - 773 K. ($\lambda = 0.90371$ Å, Aufheizrate 3.2 K min⁻¹).

Zum Aufheizen wird die mit gemörsertem Ag₄Mn₃O₈-Pulver gefüllte Kapillare in eine Saphirkapillare (Durchmesser 0,8 mm) gesteckt, welche mit einer Heizeinheit^[150, 151] verbunden ist. Eine Indizierung der Reflexe (siehe Anhang Kapitel 7.1.5 und 7.1.6), gruppentheoretische Überlegungen und die in den Pulverdiffraktogrammen beobachteten Auslöschungen deuten auf die Raumgruppen *R*32 und *P*4₃32 als wahrscheinlichste Raumgruppen der Hochtemperaturphasen hin.

Eine zweidimensionale Darstellung von Abbildung 29 sowie die Temperaturabhängigkeit der Gitterkonstanten und des Zellvolumens sind in Abbildung 30 gezeigt. Die Messparameter der *in-situ* Röntgenstrukturuntersuchung sind in Tabelle 12 aufgelistet.

Abbildung 30: Röntgenpulverdiffraktogramme, Gitterkonstanten und Zellvolumen von α , β - und γ -Ag₄Mn₃O₈ über den Bereich von 298 - 911 K; Wellenlänge: $\lambda = 0.90371$ Å, Aufheizrate: 3,2 K min⁻¹.

Wellenlänge λ	0,90371 Å
Messbereich 20	5 - 49°
Schrittweite 20	0,02174°
Kapillardrehung pro Scan	60°
Kapillardurchmesser	0,3 mm
Temperaturbereich	$298 \rightarrow 911 \text{ K}$
Messzeit pro Scan	120 s + 80 s (Lesen der Daten)
Anzahl der Scans	57
Heizrate	$3,2 \text{ K min}^{-1}$

Tabelle 12: Messparameter der temperaturabhängigen *in-situ*-Röntgenstrukturuntersuchungen (NSLS) an Ag₄Mn₃O₈.

Die Zellvolumina wachsen beim Erhitzen um 0,074 (α -Phase), 0,086 (β -Phase) und 0,087 Å³ K⁻¹ (γ -Phase). Beim Phasenübergang von der α - zur β -Phase wird eine Volumenkontraktion um 13,9 Å³ und beim Übergang der β - zur γ -Phase eine Volumenzunahme um 10,5 Å³ beobachtet. Vor der zweiten Phasenumwandlung bleibt innerhalb eines Temperaturbereiches von 650 - 700 K das Zellvolumen relativ konstant. Mögliche Ursachen, die diese Änderungen der Gitterkonstanten erklären können, werden in Kapitel 3.1.2.12 diskutiert.

Da die geringe Auflösung der an der NSLS gemessenen Diffraktogramme keine präzise Strukturbestimmung der beiden Hochtemperaturphasen erlaubt, wurden weitere Messungen an einer hochauflösenden Beamline (ESRF) durchgeführt. Die Parameter dieser Messungen sind in Tabelle 13 angegeben.

Tabelle 13: Messparameter der an der ESRF aufgenommenen Röntgenpulverdiffraktogramme von β - und γ -Ag₄Mn₃O₈.

Wellenlänge λ	0,32696(1) Å
Messbereich 20	1 - 43°
Schrittweite 20	0,002°
Kapillardurchmesser	0,3 mm
Messtemperaturen	573(1) und 773(1) K
Messzeit pro Scan	80 min

Ein Heißluftgebläse^[152] (Fa. Cyberstar) mit einer Temperaturschwankung von unter 1 K wurde zum Erhitzen der Probe verwendet. Sowohl die Indizierungen wie auch die angenommenen Raumgruppen von β - und γ -Ag₄Mn₃O₈ konnten mit Hilfe der hochaufgelösten Messungen bei 573 und 773 K bestätigt werden. Die Anzahl der Formeleinheiten pro Elementarzelle (Z) wurde durch Volumenvergleiche bestimmt.

Die Kristallstrukturen der Hochtemperaturphasen von Ag₄Mn₃O₈ wurden unter der Annahme gelöst, dass sich das Mn₃O₈-Netzwerk im Gegensatz zu den Positionen der Silberatome unwesentlich verändert. Deshalb wurden die Atomkoordinaten/Ortsparameter der Raumtemperaturmodifikation von Ag₄Mn₃O₈ (Raumgruppe P3₁21) mit Hilfe des Programmes KPLOT^[153] in die der Hochtemperaturphasen (*R*32 und *P*4₃32) transformiert. Eine erste Rietveld-Verfeinerung der Hochtemperaturphase bei 573 K mit den umgerechneten Koordinaten konvergierte jedoch nicht mit dem gemessenen Pulverdiffraktogramm. Wurden jedoch die Atompositionen des Mn₃O₈-Netzwerkes fixiert, konnten zusätzlich zur Verfeinerung des Skalierungsfaktors und eines isotropen Temperaturfaktors für alle Silberatome auch die Lagen sämtlicher Silberatome gleichzeitig freigegeben werden. Bei diesen Randbedingungen konvergierte die Verfeinerung rasch. Eine Analyse der erhaltenen Kristallstruktur zeigte, dass sich einige Silberatome einander stark angenähert hatten, was ein Indiz entweder für Fehlordnung oder für auf eine Lage konvergierende Atompositionen ist. Im nächsten Schritt wurden unter Verwendung eines starken Dämpfungsfaktors die Besetzungsfaktoren der Silberatome freigegeben. Dabei waren drei Fälle unterscheidbar: Zum einen wurden die Besetzungsfaktoren einiger Silberatome so klein, dass diese Atomposition eliminiert werden konnte, zum anderen näherten sich einige Atompositionen mit der Summe Ihrer Besetzungsfaktoren nahe eins einander so an, dass sie zu einer einzelnen voll besetzten Lage kombiniert werden konnten. Die restlichen Silberatome blieben entweder auf einer allgemeinen Lage oder wanderten zu einer voll besetzten speziellen Lage. Auf diese Weise ergab sich eine Strukturlösung ohne Fehlordnung in der Silberteilstruktur. Schließlich wurden die Atompositionen und Auslenkungsparameter, jeweils mit der richtigen Lagesymmetrie freigegeben.

Im Fall der Kristallstruktur der kubischen Hochtemperaturphase (γ -Ag₄Mn₃O₈) bei 773 K liegt starke Fehlordnung vor, und der bei β -Ag₄Mn₃O₈ erfolgreiche Lösungsansatz griff nicht. Deshalb wurde mit Hilfe des Programmes DASH^[72] ein Aufheizen der Struktur simuliert. Mit dem gemessenen Pulverdiffraktogramm wurde eine Pawley-Verfeinerung^[74] in der Raumgruppe *P*4₃32 durchgeführt, um korrelierte integrierte Intensitäten des

Diffraktogrammes zu erkennen. Auf dieser Basis wurde eine gute Profilanpassung gefunden.

Bei der Strukturlösung wurde das Mn₃O₈-Netzwerk auf den transformierten Koordinaten der Raumtemperaturphase fixiert, während für die Silberatome eine unterschiedliche Anzahl (1 - 4) von willkürlichen Startpositionen eingeführt wurde. Dieser Ansatz zur Strukturlösung wurde global optimiert,^[154, 155] wobei die Lagen der Silberatome die einzigen Freiheitsgrade darstellten. Die Struktur, welche am besten mit den Daten nach übereinstimmte, dem simulierten Aufheizen enthielt zwei kristallographisch unterschiedliche fehlgeordnete Silberatome, welche durch Rietveld-Verfeinerung bestätigt wurden. Zum Abschluss der Verfeinerung von y-Ag₄Mn₃O₈ wurden sämtliche Atompositionen freigegeben, ohne Beschränkungen blieb die Strukturverfeinerung stabil. Eine Zusammenfassung der Ergebnisse der Strukturlösungen von α -, β - und γ -Ag₄Mn₃O₈ und Details der Rietveld-Verfeinerung wie z. B. R-Werte sind in Tabelle 14 zusammengestellt.

Tabelle 14: Daten zur Strukturlösung und -verfeinerung von β- und γ-Ag₄Mn₃O₈. Die verschiedenen R-Werte sind nach Langford und Louër definiert.^[156] Die Daten der Strukturlösung von α-Ag₄Mn₃O₈ (Einkristalldaten) sind ergänzend aufgeführt.

	α -Ag ₄ Mn ₃ O ₈	β-Ag ₄ Mn ₃ O ₈	γ-Ag ₄ Mn ₃ O ₈
Raumgruppe Gitterkonstante <i>a</i> Gitterkonstante <i>c</i>	<i>P</i> 3 ₁ 21 (152) 12,5919(1) Å 15,4978(1) Å	<i>R</i> 32 (155) 12,68145(4) Å 15,34087(8) Å	$P4_{3}32 (212)$ 8,95996(4) Å = a
Zellvolumen V	2128,05(1) Å ³	2136,58(2) Å ³	719,313(6) Å ³
Formeleinheiten Z Röntgenographische Dichte ρ_{calc}	$6,782 \text{ g cm}^{-3}$	$6,755 \text{ g cm}^{-3}$	4 6,688 g cm ⁻³
Messtemperatur	293(2) K	573(1) K	773(1) K
$f R_p \ R_{wp}$	Die Daten der	5,13 % 6,58 %	5,46 % 7,94 %
$\frac{{R_F}^2}{\chi^2}$	Strukturverfeinerung sind in Tabelle 2 im	10,02 % 0,93	24,6 % 1,6
Anzahl der Reflexe Anzahl der Variablen	angegeben.	732 52	234 20

3.1.2.10 Die β -Phase von Ag₄Mn₃O₈ zwischen 477 K und 689 K

Die Strukturlösung in der Raumgruppe *R*32 erfolgte wie in Kapitel 3.1.2.9 beschrieben aus Pulverdaten und anschließender Rietveld-Verfeinerung. Die Abbildung 31 enthält das bei 573 K gemessene Pulverdiffraktogramm, die beste Profilanpassung sowie den Differenzplot der Verfeinerung.

Die Atomparameter sowie die isotropen (Mangan-, Silber- und Sauerstoffatome) und anisotropen (Silberatome) Auslenkungsparameter von β -Ag₄Mn₃O₈ sind in Tabelle 15 und Tabelle 16 zusammengefasst.

Abbildung 31: Graphische Darstellung der Ergebnisse der Rietveld-Verfeinerung für β -Ag₄Mn₃O₈ bei 573 K. Aufgetragen ist das beobachtete Profil und die beste Rietveld-Verfeinerung in der Raumgruppe *R*32 (a), die Reflexlagen von β -Ag₄Mn₃O₈ sowie die Differenzkurve (b) zwischen beobachtetem und berechnetem Profil. Im Bereich oberhalb $2\theta = 12^{\circ}$ sind die Intensitäten um den Faktor 5 vergrößert.

Atom	Wyckoff-Lage	Х	у	Z	U _{iso}
Ag(1)	9 d	0,3300(3)	1/3	1/3	0,071(2)
Ag(2)	18 f	0,7247(3)	0,8728(2)	0,4747(1)	0,071(2)
Ag(3)	18 f	0,8841(2)	0,0404(2)	0,9019(2)	0,085(1)
Ag(4)	3 b	0	0	1/2	0,089(1)
Mn(1)	18 f	0,0565(4)	0,1526(3)	0,6931(2)	0,0077(6)
Mn(2)	9 d	0,9600(4)	1/3	1/3	0,0077(6)
Mn(3)	9 e	0,4617(4)	0	1/2	0,0077(6)
O (1)	18 f	0,721(1)	0,830(1)	0,6140(7)	0,017(1)
O(2)	18 f	0,592(1)	0,684(1)	0,423(1)	0,017(1)
O(3)	18 f	0,881(1)	0,378(1)	0,4129(9)	0,017(1)
O(4)	6 c	0	0	0,759(1)	0,017(1)
O(5)	18 f	0,946(1)	0,858(1)	0,6356(6)	0,017(1)
O(6)	18 f	0,761(1)	0,934(1)	0,7719(8)	0,017(1)

Tabelle 15: Koordinaten und isotrope Auslenkungsparameter in β -Ag₄Mn₃O₈ bei 573 K.

Tabelle 16: Anisotrope Auslenkungsparameter der Silberatome in β -Ag₄Mn₃O₈ bei 573 K.

Atom	U ₁₁	U ₂₂	U ₃₃	U ₁₂	U ₁₃	U ₂₃
Ag(1)	0,086(3)	0,016(3)	0,112(4)	0,008(1)	-0,015(1)	-0,029(2)
Ag(2)	0,120(3)	0,022(2)	0,041(2)	-0,014(2)	0,027(2)	-0,014(2)
Ag(3)	0,068(3)	0,033(2)	0,104(2)	-0,020(2)	0,011(2)	-0,037(2)
Ag(4)	0,126(5)	0,126(5)	0,013(4)	0,063(3)	0	0

Eine Übersicht über die Abstände innerhalb des Mn_3O_8 -Netzwerkes von β -Ag₄Mn₃O₈ geben Tabelle 17 (Mn-Mn-Abstände) und Tabelle 18 (Mn-O-Abstände).

Mn	Mn	Abstand	Mn	Mn	Abstand	Mn	Mn	Abstand
Mn (1)	Mn (1)	2,934(7)	Mn(2)	Mn(3)	2,936(2) (2x)	Mn(3)	Mn(2)	2,936(4) (2x)
	Mn(1)	2,934(4)		Mn(1)	2,937(3) (2x)		Mn(1)	2,937(4) (2x)
	Mn(3)	2,937(4)						
	Mn(2)	2,937(8)						

Tabelle 17: Abstände der MnO₆-Oktaederzentren voneinander bei β-Ag₄Mn₃O₈ in Å.

Tabelle 18: Mn-O-Abstände innerhalb der drei kristallographisch unterschiedlichen MnO₆-Oktaeder von β-Ag₄Mn₃O₈ in Å. Bindungen zu Sauerstoffatomen, welche drei MnO₆-Oktaedern angehören, sind fett markiert.

Mn	0	Abstand	Mn	0	Abstand	Mn	0	Abstand
Mn(1)	O(6)	1,79(1)	Mn(2)	O(3)	1,86(2) (2x)	Mn(3)	O(6)	1,83(2) (2x)
	O(5)	1,846(7)		O (1)	1,97(1) (2x)		O(3)	1,90(2) (2x)
	O(1)	1,85(1)		O(2)	2,00(2) (2x)		O(2)	2,00(1) (2x)
	O(5)	1,87(2)						
	O(4)	1,97(1)						
	O(2)	2,03(1)						

Die vier kristallographisch unabhängigen Silberatome sind, wie Abbildung 32 zeigt, auf sehr unterschiedliche Weise von den Sauerstoffatomen des Mn_3O_8 -Gerüstes koordiniert.

Abbildung 32: Darstellung der Ag-O-Koordinationssphären der vier kristallographisch unabhängigen Silberatome in β-Ag₄Mn₃O₈ bis zu einem O-Abstand von 3,0 Å.

Ag	0	Abstand	Ag	0	Abstand	Ag	0	Abstand
Ag(1)	O(6)	2,386(8) (2x)	Ag(2)	O(1)	2,21(1)	Ag(3)	O(3)	2,13(1)
	O (1)	2,704(6) (2x)		O(5)	2,24(1)		O(3)	2,318(5)
	O(5)	2,845(6) (2x)		O(2)	2,28(1)		O(6)	2,48(1)
							O(1)	2,77(1)
							O(4)	2,83(2)
Ag(4)	O(5)	2,61(1) (6x)						

Tabelle 19: Ag-O-Abstände unter 3 Å in β -Ag₄Mn₃O₈.

Während drei Silberatome (Ag(1) - Ag (3)) von jeweils zwei oder drei Sauerstoffatomen in relativ kurzer Entfernung (< 2,5 Å) umgeben sind und damit übliche, oft in ternären Silberoxiden anzutreffende Koordinationssphären aufweisen, hat das Ag(4)-Atom sechs O-Nachbarn im gleichen, recht langen Abstand von 2,61 Å, die in Form eines verzerrten Oktaeders angeordnet sind. Eine Zusammenfassung der Abstände zeigt Tabelle 19.

Die Unterschiede der Abstände der Ag-Ag-Koordination bei β -Ag₄Mn₃O₈ sind im Vergleich zur Ag-O-Koordination deutlich geringer. Bis auf einen Abstand (Ag(2)-Ag(2) = 3,345(5) Å) liegen sie in einem Bereich von 2,901(3) - 3,139(3) Å, wobei alle Silberatome von vier bis sechs Silbernachbarn umgeben sind. Die Umgebung von Ag(4) mit sechs Ag(2)-Atomen im identischen Abstand ist wie auch im Fall der Sauerstoffkoordination Ausdruck der hohen Lagesymmetrie dieses Atoms. Eine Darstellung der Ag-Ag-Koordination ist in Abbildung 33, eine Übersicht über Abstände in Tabelle 20 gezeigt.

Abbildung 33: Darstellung der Ag-Ag-Koordinationssphären der vier kristallographisch unterschiedlichen Silberatome in β-Ag₄Mn₃O₈ bis zu einem Ag-Abstand von 3,5 Å.

Ag	Ag	Abstand	Ag	Ag	Abstand	Ag	Ag	Abstand
Ag(1)	Ag(2)	2,978(3) (2x)	Ag(2)	Ag(2)	2,901(3)	Ag(3)	Ag(2)	2,973(4)
	Ag(3)	2,989(4) (2x)		Ag(3)	2,973(3)		Ag(1)	2,989(4)
				Ag(1)	2,978(3)		Ag(3)	3,089(4) (2x)
				Ag(4)	3,052(3)		Ag(3)	3,139(3)
				Ag(2)	3,345(5)			
Ag(4)	Ag(2)	3,052(3) (6x)						

Tabelle 20: Ag-Ag-Abstände unterhalb von 3,5 Å in β-Ag₄Mn₃O₈. Bindungen mit einer Länge größer als 3,2 Å sind fett gedruckt.

Eine graphische Darstellung der Kristallstruktur von β -Ag₄Mn₃O₈ in [001]-Blickrichtung bei 573 K ist in Abbildung 34 gezeigt. Während sich die Silberatome Ag(2) und Ag(3) an den Wänden der Kanäle befinden, ist das Ag(1)-Atom im Zentrum eines großen und das Ag(4)-Atom im Zentrum eines kleinen Kanals. Durch den räumlichen Aufbau weisen sämtliche Silberatome, wie in Tabelle 19 gezeigt, vergleichbare Abstände zum Mn₃O₈-Netztwerk auf.

Abbildung 34: Schematische Darstellung von β-Ag₄Mn₃O₈ bei 573 K
(Blick entlang [001]), Manganatome sind blau, Silberatome grau gezeichnet. Die Sauerstoffatome sind zur besseren Übersichtlichkeit weggelassen.

3.1.2.11 Die γ-Phase von Ag₄Mn₃O₈ oberhalb 689 K

Die Strukturlösung von γ -Ag₄Mn₃O₈ in der Raumgruppe *P*4₃32 erfolgte wie in Kapitel 3.1.2.9 beschrieben aus Pulverdaten und anschließender Rietveld-Verfeinerung. Die Abbildung 35 zeigt das bei 773 K gemessene Pulverdiffraktogramm, die beste Profilanpassung und den Differenzplot der Strukturverfeinerung.

Die Atomparameter sowie die isotropen Auslenkungsparameter der Silber-, Mangan- und Sauerstoffatome von γ -Ag₄Mn₃O₈ sind in Tabelle 21 zusammengefasst.

Abbildung 35: Graphische Darstellung der Ergebnisse der Rietveld-Verfeinerung für γ -Ag₄Mn₃O₈ bei 773 K. Aufgetragen ist das beobachtete Profil und die beste Rietveld-Verfeinerung in der Raumgruppe *P*4₃32 (a), die Reflexlagen von γ -Ag₄Mn₃O₈ sowie die Differenzkurve (b) zwischen beobachtetem und berechnetem Profil. Im Bereich oberhalb $2\theta = 13^{\circ}$ sind die Intensitäten um den Faktor 5 vergrößert.

Wyckoff-Lage	Besetzung	Х	У	Z	U _{iso}
24 e	0,390(1)	0,2543(5)	0,8770(3)	0,2232(6)	0,148(2)
24 e	0,277(1)	0,014(1)	0,095(1)	0,2109(9)	0,148(2)
12 d		3/8	0,4145(2)	0,1645(2)	0,0201(6)
24 e		0,9558(8)	0,3427(8)	0,4358(6)	0,038(1)
8 c		0,6338(6)	0,1338(6)	0,3662(6)	0,038(1)
	Wyckoff-Lage 24 e 24 e 12 d 24 e 8 c	Wyckoff-Lage Besetzung 24 e 0,390(1) 24 e 0,277(1) 12 d	Wyckoff-Lage Besetzung x 24 e 0,390(1) 0,2543(5) 24 e 0,277(1) 0,014(1) 12 d 3/8 24 e 0,9558(8) 8 c 0,6338(6)	Wyckoff-Lage Besetzung x y 24 e 0,390(1) 0,2543(5) 0,8770(3) 24 e 0,277(1) 0,014(1) 0,095(1) 12 d 3/8 0,4145(2) 24 e 0,9558(8) 0,3427(8) 8 c 0,6338(6) 0,1338(6)	Wyckoff-Lage Besetzung x y z 24 e 0,390(1) 0,2543(5) 0,8770(3) 0,2232(6) 24 e 0,277(1) 0,014(1) 0,095(1) 0,2109(9) 12 d 3/8 0,4145(2) 0,1645(2) 24 e 0,9558(8) 0,3427(8) 0,4358(6) 8 c 0,6338(6) 0,1338(6) 0,3662(6)

Tabelle 21: Koordinaten, Besetzungsfaktoren und isotrope Auslenkungsparameter der Silber-, Mangan- und Sauerstoffatome in γ-Ag₄Mn₃O₈ bei 773 K.

Das nur aus einer Art von verzerrtem MnO_6 -Oktaeder (Abstand der Mn-Oktaederzentren voneinander 2,950(2) Å) aufgebaute Mn_3O_8 -Netzwerk in γ -Ag₄Mn₃O₈ weist Mn-O-Abstände von 1,736(5) - 1,986(8) Å auf, wobei Abstände zu verbrückenden Sauerstoffatomen naturgemäß die längsten sind. Eine Auflistung der Abstände innerhalb des Gerüstes ist in Tabelle 22 gezeigt.

Tabelle 22: Abstände der vier Mn-Oktaederzentren voneinander sowie Mn-O-Abstände innerhalb des MnO₆-Oktaeders bei γ-Ag₄Mn₃O₈ in Å. Bindungen zu Sauerstoffatomen, welche drei MnO₆-Oktaedern angehören, sind fett markiert.

Mn	Mn	Abstand	Mn	0	Abstand
Mn(1)	Mn (1)	2,950(2) (4x)	Mn(1)	O(1) O(1) O(2)	1,736(5) (2x) 1,902(7) (2x) 1,986(6) (2x)

Auf Grund der nahtlosen Folge an Ag-O-Abständen kann in γ -Ag₄Mn₃O₈ keine eindeutige Ag-O-Umgebung bestimmt werden. Wenn man unter Annahme des willkürlichen Kriteriums Abstände von bis zu 3 Å um die Silberatome zur Koordinationssphäre zählt, ist sowohl das Ag(1)- wie auch das Ag(2)-Atom von vier Sauerstoffatomen in Abständen von 2,071(8) - 2,908(9) Å benachbart. Eine graphische Darstellung der Koordinationssphären ist in Abbildung 36, eine Auflistung der Abstände in Tabelle 23 gezeigt.

Abbildung 36: Ag-O-Koordinationssphäre in γ-Ag₄Mn₃O₈ bei 773 K bis zu einem Abstand von 3 Å um das zentrale Silberatom.

Ag	0	Abstand	Ag	0	Abstand
Ag(1)	O(1)	2,071(8)	Ag(2)	O(1)	2,16(1)
	O(1)	2,381(8)		O(1)	2,57(1)
	O(2)	2,529(6)		O(1)	2,59(1)
	O(1)	2,908(9)		O(1)	2,63(1)

Tabelle 23: Ag-O-Abstände unterhalb von 3 Å in der Kristallstruktutr von γ -Ag₄Mn₃O_{8.}

Die Ag-Ag-Koordination ist auf Grund der in γ -Ag₄Mn₃O₈ vorliegenden Fehlordnung der zwei unterschiedlichen Silberlagen weniger eindeutig definiert. Eine graphische Darstellung der Ag-Ag-Koordinationssphäre sowie die dazu gehörenden Abstände sind in Abbildung 37 bzw. Tabelle 24 gezeigt.

Abbildung 37: Ag-Ag-Koordinationssphäre bis zu einem Abstand von 3,5 Å um das Zentralatom welches schwarz markiert ist. Ag-Atome mit einem Abstand kürzer 2,5 Å vom Zentralatom, sind hellgrau andere dunkelgrau gekennzeichnet. Unterbrochene bzw. durchgezogene Bindungen symbolisieren Abstände zu Ag-Atomen von 2,9 bis 3,5 Å, welche selber Ag-Nachbarn in einer Entfernung unterhalb 2,5 Å haben bzw. nicht haben.

Tabelle 24: Ag-Ag-Abstände in γ -Ag ₄ Mn ₃ O ₈ bis 3,5 Å bei 773 K. Abstände unterhalb 2,5
Å zum Zentralatom sind kursiv und Abstände oberhalb 2,5 Å zu Atomen, welche selber
keine Ag-Nachbarn unterhalb 2,5 Å haben, sind fett gedruckt.

0

Ag	Ag	Abstand	Ag	Ag	Abstand	Ag	Ag	Abstand
Ag(l)	Ag(2)	1,583(9)	Ag(1)	Ag(2)	2,90(1)	Ag(1)	Ag(2)	3,31(1)
	Ag(2)	1,71(1)		Ag(1)	2,995(6)		Ag(2)	3,48(1)
	Ag(l)	1,823(6) (2x)		Ag(2)	3,04(1)			
	Ag(l)	2,315(7)		Ag(2)	3,11(1)			
				Ag(2)	3,16(1)			
				Ag(1)	3,163(7)			
Ag(2)	Ag(2)	0,63(1)	Ag(2)	Ag(1)	2,90(1)	Ag(2)	Ag(1)	3,04(1)
	Ag(l)	1,583(9)		Ag(1)	3,11(1)		Ag(1)	3,16(1)
	Ag(l)	1,71(1)		Ag(1)	3,31(1)			
	Ag(2)	2,10(1)		Ag(1)	3,48(1)			
	Ag(2)	2,17(1) (2x)						
	Ag(2)	2,36(1)						

Zwei Darstellungen der Kristallstruktur von γ -Ag₄Mn₃O₈ sind in Abbildung 38 gezeigt. In den Hohlräumen des Mn₃O₈-Netzwerkes befinden sich die fehlgeordneten Silberatome und füllen dieses nahezu vollständig aus.

Abbildung 38: Schematische Darstellungen der Kristallstruktur von γ -Ag₄Mn₃O₈ bei 773 K. (Blick entlang [¹/₂¹/₂] links bzw. [001] rechts). Manganatome sind blau, Silberatome grau gezeichnet. Die Sauerstoffatome sind zur besseren Übersichtlichkeit weggelassen.

3.1.2.12 Strukturvergleich von α -, β - und $\gamma\text{-}Ag_4Mn_3O_8$

Eine Übersicht der wichtigsten Abstände in den Kristallstrukturen von α -, β - und γ -Ag₄Mn₃O₈ ist in Tabelle 25 gezeigt.

Tabelle 25: Zusammenfassung von minimalem und maximalem Mn-Mn- und Mn-O-Abstand sowie minimalem Ag-Ag- und Ag-O-Abstand in α -, β - und γ -Ag₄Mn₃O₈ in Å.

	α -Ag ₄ Mn ₃ O ₈	β -Ag ₄ Mn ₃ O ₈	γ -Ag ₄ Mn ₃ O ₈
Mn-Mn-Abstände	2,89(1) - 2,955(5)	2,934(7) - 2,937(8)	2,950(2)
Mn-O-Abstände	1,85(1) - 2,02(1)	1,79(1) - 2,03(1)	1,736(5) - 1,902(7)
Ag-Ag-Abstand	2,823(1)	2,973(4)	2,90(1)
Ag-O-Abstand	2,12(1)	2,13(1)	2,071(8)
	1	1	
Die durchschnittliche Oktaederverzerrung (größter Mn-O-Abstand – kleinster Mn-O-Abstand) und der durchschnittliche Abstand zweier Oktaederzentren (Mn-Mn-Abstand) nehmen mit steigender Temperatur zu. Bei der α -Phase sind die Oktaeder um 0,1 Å, bei der β -Phase um 0,18 Å und in der γ -Phase um 0,25 Å "verzerrt". Der durchschnittliche Abstand zweier Oktaederzentren wächst von 2,916 (α -Phase) über 2,936 (β -Phase) zu 2,950 Å (γ -Phase). Es kommt erwartungsgemäß infolge Temperaturerhöhung zu einer Expansion des Netzwerkes. Diese Volumenzunahme steht in Zusammenhang mit der erhöhten Mobilität der Silberatome (0,022 (α -Phase), 0,079 (β -Phase) und 0,148 (γ -Phase)) dokumentiert wird. Schlussendlich weisen die Silberatome in der Kristallstruktur von γ -Ag₄Mn₃O₈ ausnahmslos Fehlordnung auf.

Beim Übergang der α - zur β -Phase wird die a-Achse um 0,03 Å verkürzt, die c-Achse um 0,12 Å verlängert. Bei der zweiten Phasenumwandlung ($\beta \rightarrow \gamma$) nimmt die Länge der c-Achse um 0,08 Å zu, die der a-Achse um 0,02 Å ab. Eine Interpretation dieser Daten wäre wegen der komplexen räumlichen Anordnung, der großen Anzahl kristallographisch unterschiedlicher Lagen, der Fehlordnung in γ -Ag₄Mn₃O₈ sowie Gitterkonstantenänderungen unter 1 % reine Spekulation. Beeinflussende Faktoren sind unter anderem die oben erwähnte Änderung der Oktaederverzerrung sowie die Anpassung der durchschnittlichen Mn-Mn-Abstände zu einem einheitlichen Wert.

Die Grundbaueinheiten der drei Phasen sind in Abbildung 39 dargestellt. Während das Mn_3O_8 -Gerüst bereits in der α -Phase eine erhöhte Pseudosymmetrie von $P4_332$ (siehe Kapitel 3.1.2.5) aufweist und beim Erhitzen nahezu unverändert bleibt erhöht sich die Symmetrie der Silberlagen über R32 (β -Phase) zu $P4_332$ (γ -Phase). Eine Graphik welche auf Grundlage der Ag-Ag-Abstände die Positionsänderungen der Silberatome beim Übergang der α - zur β -Phase veranschaulicht ist in Abbildung 40 gezeigt. Auf eine entsprechende Darstellung für den Übergang der β - zur γ -Phase wird wegen der Fehlordnung der Silberatome in γ -Ag₄Mn₃O₈ verzichtet. Die beiden Grundbaueinheiten in α -Ag₄Mn₃O₈ unterscheiden sich was die Länge der Positionsänderung der Silberatome zur β -Phase betrifft. Während in Abbildung 40 rechts bis auf eine Ausnahme durchweg mindestens Entfernungen größer 1,2 Å auftreten gibt es in der linken Grundbaueinheit auch Entfernungen kürzer 0,7 Å.

Abbildung 39: Darstellung der zwei Grundbaueinheiten von α -Ag₄Mn₃O₈ (oben, links und rechts) bei 293 K, der Grundbaueinheit von β -Ag₄Mn₃O₈ (mitte) bei 573 K sowie der Grundbaueinheit von γ -Ag₄Mn₃O₈ bei 773K.

Abbildung 40: Darstellung der Positionsänderung der Silberionen in den beiden Grundbaueinheiten von α-Ag₄Mn₃O₈ beim Phasenübergang von der α- zur β-Phase. Die Positionen in β-Ag₄Mn₃O₈ sind schwarz, die der α-Phase hellgrau und MnO₆-Oktaeder blau markiert. Grüne Pfeile symbolisieren Positionsänderungen um 0,4 - 0,5, blaue Pfeile um 0,6 - 0,7, rote Pfeile um 0,75 - 0,9, schwarze Pfeile um 1,2 - 1,4 und orangfarbene Pfeile um 1,55 - 2 Å. Gepunktete Pfeile deuten auf mehrere äquivalente Möglichkeiten hin.

Energetisch unterscheiden sich die beiden reversiblen, endothermen Phasenumwandlungen um eine Größenordnung. Der mittels DSC (Kapitel 3.1.2.8, Abbildung 28) deutlich beobachtbare Übergang von α - zur β -Phase benötigt 4,2 kJ mol⁻¹, der Übergang β - zur γ -Phase 0,4 kJ mol⁻¹. Dieser Unterschied wird unter anderem durch die Fehlordnung erklärt, wonach geringere Positionsänderungen der Silberatome beim zweiten Phasenübergang auftreten. Graphisch verdeutlicht dies die große Ähnlichkeit der Grundbaueinheiten von β - und γ -Phase (mittig und unten, Abbildung 39) im Vergleich zu α - und β -Phase (oben und mittig, Abbildung 39).

Mittels temperaturabhängiger Röntgenpulverdiffraktogramme (siehe Kapitel 3.1.2.9, Abbildung 30, Aufheizrate: 3,2 K⁻¹) können die Geschwindigkeiten der beiden Phasenumwandlungen verglichen werden. Während die erste Phasenumwandlung ($\alpha \leftrightarrow \beta$) zwischen zwei Messungen verläuft (t < 3 min) benötigt die, trotz geringerem Energieunterschied, langsamere zweite Umwandlung ($\beta \leftrightarrow \gamma$) fünf Messungen und damit einen Zeitraum von 12 bis 15 min. Erwähnenswert ist trotz abweichender Summenformel die enge Strukturverwandtschaft der drei Ag₄Mn₃O₈- zu den drei RbAg₄I₅-Phasen.^[157, 158] Die Raumtemperaturphase dieser Verbindung stellt mit einer spezifischen Leitfähigkeit von 0,27 Ω^{-1} cm^{-1[159, 160]} den bisher besten bekannten Ionenleiter dar. Hauptunterschied der Kristallstruktur liegt in der unterschiedlichen Verknüpfung der MnO₆- und RbI₆-Oktaeder. Während in Ag₄Mn₃O₈ vierfach kantenverknüpfte MnO₆-Oktaeder auftreten liegen in den RbAg₄I₅-Phasen sechsfach eckenverknüpfte RbI₆-Oktaeder vor. Die große Ähnlichkeit veranschaulichen sowohl Abbildung 41 als auch Tabelle 26.

Abbildung 41: Strukturvergleich der Grundbaueinheiten von γ -Ag₄Mn₃O₈ und α -RbAg₄I₅. Die Sauerstoff- bzw. Iodatome sind aufgrund besserer Übersicht nicht gezeichnet.

	α-Phase	γ-Phase	β-Phase	β-Phase	γ-Phase	α-Phase
	$Ag_4Mn_3O_8$	RbAg ₄ I ₅	Ag ₄ Mn ₃ O ₈	$RbAg_4I_5$	Ag ₄ Mn ₃ O ₈	RbAg ₄ I ₅
Raumgruppe	<i>P</i> 3 ₁ 21	P321	<i>R</i> 32	<i>R</i> 32	P4 ₃ 32	P4132
<i>a</i> in Å	12,5919(1)	15,776(5)	12,68145(4)	15,80(1)	8,95996(4)	11,24(1)
<i>c</i> in Å	15,4978(1)	19,320(5)	15,34087(8)	19,35(2)	=a	=a
Messtemperatur	293 K	90 K	500 K	130 K	700 K	293 K

3.1.3 Disilbermanganat(III), Ag₂MnO₂

3.1.3.1 Darstellung von Ag₂MnO₂

Die Existenz des von Rienäcker und Werner^[45, 46] beschriebenen rotvioletten Ag₂MnO₂ wurde, wie auch Abbildung 42 zeigt, bestätigt. Die Substanz hat metallisches Aussehen und weist eine geringe Härte auf. Sie wurde einphasig durch Erhitzen (23 h) innig verriebener Gemenge aus Silber (Aldrich, 99,99 %) und Mn₃O₄ (Alfa Aesar 97+ %) im stöchiometrischen Molverhältnis im O₂-Strom bei 873 K als mikrokristallines Pulver dargestellt. Versuche mit frisch präpariertem Mn₃O₄, welches durch Oxidation einer Mn(OH)₂-Suspension^[161] dargestellt wurde, brachten vergleichbare Ergebnisse. Obwohl die Synthese durch Verwendung anderer Edukte und diverse Temperaturprogramme variiert wurde, konnten keine für die Einkristalluntersuchung geeigneten Kristalle synthetisiert werden.

$$6 \text{ Ag} + \text{Mn}_3\text{O}_4 + x \text{ O}_2 \rightarrow 3 \text{ Ag}_2\text{MnO}_2 + (x - 1) \text{ O}_2$$

Abbildung 42: Lichtmikroskopische Aufnahme einer Pulverprobe von Ag₂MnO₂ bei 64-facher Vergrößerung.

3.1.3.2 Rasterelektronenmikros kopie und Energiedispersive Mikroanalyse

Proben von Ag₂MnO₂ wurden bei einer Beschleunigungsspannung von 25 kV im Rasterelektronenmikroskop untersucht. Die Abbildung 43 zeigt eine Aufnahme bei 12800-facher Vergrößerung von Kristallen, die eine Kantenlänge von 1 µm aufweisen und bestätigen, dass die Substanz nicht amorph, sondern als mikrokristallines Pulver anfällt. Das durch EDX-Analyse bestimmte Silber-Mangan-Sauerstoff-Verhältnis, gemittelt über mehrere Messpunkte, beträgt 1,96 : 1 : 1,96 für Ag₂MnO₂. Es wurden die AgL-, MnK- und OK-Röntgenemissionen zur Bestimmung des Gehaltes vom jeweiligen Element genutzt. In Abbildung 44 sind die zugehörigen Röntgenemissionen dargestellt. Die MnL-Emissionen bei ≈ 6 keV wurden für diese Auswertungen nicht berücksichtigt.

Abbildung 43: Rasterelektronenmikroskopische Aufnahme von Ag₂MnO₂-Kristallen bei 12800-facher Vergrößerung.

Abbildung 44: Röntgenemissionsspektrum einer mikrokristallinen Probe von Ag₂MnO₂. Gekennzeichnet sind die AgL-, MnK-, Mn-L und OK-Emissionen.

3.1.3.3 Transmissionselektronen mikroskopie, TEM

Zur weiteren Charakterisierung der Substanz wurden TEM-Aufnahmen sowie Bilder der Elektronen-Beugung von Ag₂MnO₂-Kristallen angefertigt. Anhand der Aufnahmen konnte zwischen kleineren plättchenförmigen (Abbildung 45, links), mit einem Durchmesser von 1 μ m, und nadelförmigen (Abbildung 46, links) Kristallen mit Kantenlängen von bis zu 3 μ m unterschieden werden. Nicht nur im Habitus, sondern auch in der Elektronen-Beugung unterscheiden sich die Kristalle.

Die Reflexe der plättchenförmigen Modifikation (Abbildung 45, rechts) weisen hexagonale Symmetrie mit horizontalen Abständen von 1,5 Å auf. In vertikaler Richtung zeichnen sich die Reflexe durch Streaks aus, was eine Fehlordnung vermuten lässt.

Die Beugungs-Symmetrie der nadelförmigen Kristalle (Abbildung 46, rechts) weist unterschiedliche horizontale (2,7 Å) und vertikale (11,5 Å) Abstände zwischen den Netzebenen auf.

Abbildung 45: TEM-Aufnahme (links) und Elektronen-Beugung (rechts) eines plättchenförmigen Ag₂MnO₂-Kristalls im reziproken Raum.

Abbildung 46: TEM-Aufnahme (links) und Elektronen-Beugung (rechts) eines nadelförmigen Ag₂MnO₂-Kristalls im reziproken Raum.

Abbildung 47: HR-TEM-Aufnahme (links) und Elektronen-Beugung (rechts) eines nadelförmigen Ag₂MnO₂-Kristalls im reziproken Raum.

Das hochaufgelöste TEM-Bild eines nadelförmigen Kristalls ist mit seinen Beugungsreflexen in Abbildung 47 abgebildet. Der Kristall besteht, wie in der Aufnahme zu erkennen ist, aus einer großen Domäne, welche aus unterschiedlichen, parallel zueinander angeordneten Atomschichten aufgebaut ist. Eine Anti-Phasengrenze wurden innerhalb des untersuchten Bereiches nicht festgestellt. Die Beugungsreflexe der Netzebenen weisen Abstände von 11,9 Å in horizontaler und 2,8 Å in vertikaler Richtung zueinander auf.

3.1.3.4 Röntgenographische Untersuchungen

Die Reflexlagen des dargestellten Ag_2MnO_2 stimmen mit dem von Rienäcker aufgenommenen Debye-Scherrer-Diagramm überein und bestätigen die Identität der Probe. Als geringe Verunreinigung wurde Silber identifiziert. Das gemessene Pulverdiffraktogramm sowie die in der JCPDS-Datenbank gespeicherten Reflexlagen für Silber und Ag_2MnO_2 sind in Abbildung 48 (oben) gezeigt.

Das gemessene Pulverdiffraktogramm besteht aus sechs scharfen Reflexen (eine Auflistung ist im Anhang unter Kapitel 7.2.1 gegeben) und mehreren Bereichen (33 - 44°, 47 - 52°, 60 - 65° und 70 - 80° für 2 θ) diffuser Reflexlagen. Die gut aufgelösten Reflexe lassen sich, im Gegensatz zu den diffusen Reflexbereichen, mit einer kubisch primitiven Zelle (*a* = 8,691 Å), wie sie bereits von Chang (*a* = 8,68 Å)^[44] gefunden wurde, indizieren. Einen Vergleich von kubischer Zelle und Pulverdiffraktogramm ist in Abbildung 48 (unten) dargestellt.

 Abbildung 48: Gemessenes Pulverdiffraktogramm (CuK_α-Strahlung, Silicium als externer Standard) und Daten f
ür Silber und Ag₂MnO₂ aus der JCPDS-Datei (oben).
 Vergleich der Substanz mit den Reflexlagen eines kubischen Gitters (unten).

Das Pulverdiffraktogramm deutet auf eine Schichtstruktur mit einer Fehlordnung, wie sie z. B. im Graphit vorliegt, hin. Diese Annahme steht im Einklang mit der geringen Härte, der metallischen Leitfähigkeit und dem Habitus der Kristalle. Die Serie von Reflexen mit scharfem Profil (001-Reflexe: 1 = 1 - 6) könnte einer Translationsperiode von t = 8,691 Å entsprechen, während die diffusen Bereichen auf eine mögliche Fehlordnung innerhalb der Schichten der Struktur hindeuten.

3.1.3.5 Messung der Magnetisch en Suszeptibilität

Die im Temperaturbereich von 5 - 350 K bei Magnetfeldern von 0,0077 - 5 T an einem Pressling (6 mm Durchmesser, 77,2 mg) ermittelten Suszeptibilitätswerte zeigt Abbildung 49. Für Feldstärken kleiner 1 T wurden Aufheiz- und Abkühlkurve gemessen. Bei größeren Feldstärken wurde nur das Aufheiz- (B = 1 T) bzw. das Abkühlverhalten (B = 5 T) untersucht. Der in Abbildung 49 beobachtete Anstieg der Suszeptibilität unterhalb einer Curie Temperatur von $T_C = 42$ K ist auf einen magnetischen Phasenübergang, verursacht durch ferromagnetische Komponenten, zurückzuführen. Diese sind auch für die Abhängigkeit der Messung von der angelegten Feldstärke verantwortlich. Oberhalb von T_C zeigt die untersuchte Probe temperaturabhängiges paramagnetisches Verhalten mit einer extrapolierten negativen Curie-Temperatur Θ von -307 K, was auf vorwiegend anti-ferromagnetische Austauschwechselwirkungen deutet. Das aus der Steigung (im Bereich von 200 - 350 K) der Messung bei 5 T ermittelte effektive magnetische Moment beträgt 4,6 µ_B, was Mn in der Oxydationsstufe +III $(\mu_{B,\text{theo}} = 4,6 - 4,8)^{[162]}$ entsprechen würde. Als Konsequenz daraus müssten sich die Silberatome in Ag₂MnO₂ eine Ladung von +1 teilen so dass diese Verbindung bei stöchiometrisch definierter Zusammensetzung subvalent wie z. B. Ag₂NiO₂ sein dürfte.

Abbildung 49: Messung der magnetischen Suszeptibilität an Ag₂MnO₂ bei verschiedenen Temperaturen und Feldstärken. Das Verhalten der reziproken magnetische Suszeptibilität bei verschiedenen Feldstärken und Temperaturen ist in der kleinen Darstellung abgebildet.

3.1.3.6 Leitfähigkeitsmessungen

Die temperaturabhängige Messung der Leitfähigkeit von Ag₂MnO₂ ist in Abbildung 50 dargestellt. Oberhalb 20 K ist metallisches Leitfähigkeitsverhalten erkennbar. Unterhalb dieser Temperatur gibt es eine minimale Verkleinerung des spezifischen Widerstandes, was auf Verunreinigungen der Probe zurückzuführen ist. Diese bewirken auch die zwischen 125 K und 200 K beobachtete Abweichung vom linearen Verlauf des Temperaturkoeffizienten. Der spezifische Widerstand ρ (295 K) beträgt 6,16·10⁻⁶ Ω m (Ag₂NiO₂: 2,18·10⁻⁶ Ω m) und die Leitfähigkeit 0,16·10⁶ S m⁻¹, welche mit der von Bismut (0,86·10⁶ S m⁻¹)^[92] vergleichbar ist. Der zwischen 220 K und 300 K ermittelte Temperaturkoeffizient α beträgt 0,33 $\mu\Omega$ cm K⁻¹ (Ag₂NiO₂: 0,71 $\mu\Omega$ cm K⁻¹). Ein supraleitendes Verhalten konnte bei Ag₂MnO₂ bis zu einer Temperatur von 5 K nicht nachgewiesen werden.

Abbildung 50: Messung des spezifischen Widerstandes von Ag₂MnO₂ über einen Bereich von 5 - 300 K. Der Pfeil symbolisiert der Bereich über den α bestimmt wurde.

3.1.3.7 Untersuchung des therm ischen Verhaltens

21,8 mg einer Probe von Ag_2MnO_2 wurden in einem Korundtiegel im Argonstrom mit einer Heizrate von 10 K min⁻¹ auf 1273 K erhitzt. Die Abbildung 51 zeigt die gemessene DTA- und TG-Kurve der thermischen Zersetzung.

Der oberhalb von 900 K (Onset-Temperatur: 915 K) einsetzende und in der TG deutlich beobachtbare Gewichtsverlust beträgt 3,7 % und stimmt gut mit dem theoretischen Gewichtsverlust nach folgender Reaktionsgleichung überein.

 $3 \text{ Ag}_2\text{MnO}_2 \rightarrow 6 \text{ Ag} + \text{Mn}_3\text{O}_4 + \text{O}_2 \uparrow \text{(theoretischer Massenverlust: 3,5 \%)}$

Der in der DTA bei 1228 K auftretende endotherme Effekt wird durch das Aufschmelzen, des durch die Zersetzung von Ag_2MnO_2 gebildeten, elementaren Silbers verursacht (Literaturwert: 1235 K^[92]).

Die massenspektrometrische Untersuchung der Zersetzungsprodukte von Ag₂MnO₂ während der DTA / TG-Messung ist in Abbildung 52 graphisch dargestellt.

Abbildung 51: Differenz-Thermoanalyse und Thermogravimetrie an Ag₂MnO₂. 21,8 mg Einwaage, 10 K min⁻¹ Aufheizrate von 298 K bis 1273 K.

Es wird von 850 bis 1050 K eine O₂-Abgabe (O als Fragment nachgewiesen), auf Grund der Zersetzung von Ag₂MnO₂, beobachtet. Die Probe gibt, wie das Massenspektrum zeigt, kein H₂O ab. Das Zersetzungsprodukt der Thermolyse von Ag₂MnO₂ besteht, wie eine röntgenographische Untersuchung der Probensubstanz nach der DTA/TG-Messung zeigt, aus einem Gemisch von Silber und γ -Mn₃O₄ und bestätigt die Interpretationen der DTA-, TG- und MS-Messung. Eine anschließende Zersetzung des γ -Mn₃O₄ zu MnO konnte bei dieser Endtemperatur nicht beobachtet werden.

3.1.3.8 Photoelektronenspektroskopie an Ag₂MnO₂

Eine Erkenntnis über den Bindungszustand von Silber kann man aus dem Vergleich der 3d-Spektren von Ag₂MnO₂, Ag₂NiO₂ und einkristallinem Silber gewinnen (Abbildung 53).

Abbildung 53: Intensitätsverschobene XPS-Spektren der Silber-3d-Banden von Ag₂MnO₂, Ag₂NiO₂ und einem Ag-Einkristall. Mg-K_{α}-Strahlung, C 1s-Bande als externen Standard.

In den Spektren lassen sich die jeweiligen Spin-Bahn-Kopplungs-Banden $(3d_{5/2} \text{ und } 3d_{3/2})$ erkennen. Die Lage der $3d_{5/2}$ -Bande von Ag₂MnO₂ bzw. Ag₂NiO₂ ist, im Vergleich zu elementarem Silber (368,0 eV), um 0,4 bzw. 0,6 eV zu kleineren Bindungsenergien verschoben. Somit wird ein geändertes Bindungsverhalten mit dem bereits in der Literatur^[163] beschriebenen inversen Trend beobachtet, da eine Erhöhung der Oxidationsstufe normalerweise eine Verschiebung zu größeren Bindungsenergien zu Folge hat. Die Bindungssituation von Silber in Ag₂MnO₂^[164] scheint vergleichbar der in Ag₂NiO₂ zu sein.

3.2 Untersuchungen im System Silber-Osmium-Sauerstoff

3.2.1 Vorbemerkungen zum System Silber-Osmium-Sauerstoff

Osmium ist eines der seltensten in der Erdkruste natürlich vorkommenden Elemente, es erscheint in der Tabelle der Häufigkeiten an 73. Stelle (10^{-6} Gewichts-%). Der sich daraus ergebende hohe Preis (Osmium-Metall ca. 50 EUR pro g) verbunden mit der schon bei schwachem Erhitzen an Luft auftretenden Bildung von stark giftigen und oxidierenden OsO₄-Dämpfen (MAK-Wert: 0,2 ppb) dürfte das Element für die Grundlagenforschung wenig attraktiv gemacht haben. Aus den gleichen Gründen sind industrielle Prozesse, an denen das Platingruppenmetall beteiligt ist, auf dem Rückzug, so findet z. B. die NH₃-Synthese, deren erster Katalysator es war, sowie die Herstellung von Glühfäden unter anderem bei <u>Os</u>ram ohne Beteiligung von Osmium statt. Die Hauptanwendungsgebiete für die ca. 60 kg Osmium, die jährlich gewonnen werden, stellen zur Zeit die selektive Oxidation mit OsO₄ (Olefin \rightarrow cis-Diol)^[165] in der organischen Chemie und die Verwendung als Bestandteil von Metallegierungen, deren Härte durch Osmium merklich erhöht wird, dar.^[166]

Ternäre Verbindungen aus dem System Ag-Os-O sind bisher nicht in der Literatur beschrieben worden. Die wenigen bekannten ternären Verbindungen mit Osmium in den Oxidationsstufen +V bzw. +IV und Silber sind die Halogeno-Osmate Ag[OsF₆],^[167-169] Ag₂[OsCl₆],^[170-172] und Ag₂[OsBr₆].^[173, 174] Quaternäre Verbindungen mit Silber, Osmium in der Oxidationsstufe +VIII und Sauerstoff sind das Silberfluoro-Osmat Ag[OsO₃F₃]^[175] und das Silbernitridotrioxo-Osmat Ag[OsO₃N]^[176, 177] (gemittelte Os-O- und Os-N-Bindungslänge in K[OsO₃N] von 1,721 Å)^[178].

Aus kristallchemischer Sicht betrachtet könnten auf Grund der Ähnlichkeit der Ionenradien von Osmium und dem leichteren Homologen Ruthenium Silberruthenate mit potentiellen Verbindungen im System Ag-Os-O vergleichbar sein. Bisher sind zwei Verbindungen, Ag₂RuO₄ und Ag₃RuO₄, mit sechs- bzw. fünfwertigem Ruthenium bekannt. Dabei bildet das erst kürzlich auf der 9. ECSSC in Stuttgart vorgestellte Ag₂RuO₄^[179] anionische Ketten aus eckenverknüpften trigonalen RuO₅-Bipyramiden, die von fünffach von Sauerstoff koordiniertem Silber, verbunden werden aus. Die Verbindung wurde bei der Zugabe eines Silber(I)-Salzes zu einer K₂RuO₄^[180] wurden unter Sauerstoffhochdruckbedingungen aus Ag₂O

und Ruthenium-Pulver erhalten, die Substanz kristallisiert in einer NaCl-Variante mit Ruthenium und Silber in den Oktaederlücken.

Eine weitere sinnvolle Vergleichsmöglichkeit mit potentiell isotypen oder strukturverwandten Silber-Verbindungen bieten Natrium- oder Kalium-Oxoosmate.

Die ersten genauer untersuchten Verbindungen dieser Substanzklasse wurden 1963 von Scholder im Sauerstoffstrom aus M_2O/Os -Gemischen (M = Na oder K) bei Temperaturen ab 550 K dargestellt.^[181, 182] Die so erhaltenen Verbindungen M₃[OsO₅] und Na₅[OsO₆] sind isotyp zu M₃[ReO₅] bzw., wie von Hoppe mittels Einkristalluntersuchungen bestätigt wurde, Na₅[ReO₆].^[183] Weitere Alkaliosmate mit Osmium in der Oxidationsstufe VII sind die aus OsO4 und MI in Aceton synthetisierten Verbindungen M[OsO4]^[184] (M = Na, K, Rb oder Cs). Die Natrium- und Kalium-Verbindung kristallisieren jeweils im Scheelit-Typ. Aus einem Gemenge von KO₂, OsO₂ und Ag₂O, welches eine oxidierende Atmosphäre beim Zerfall bildet, wurde jüngst die gemischtvalente Verbindung $KOs_2O_6^{[185]}$ dargestellt. Sie kristallisiert in einer Defekt-Pyrochlor-Struktur mit Kaliumatomen in dem von OsO₆-Oktaedern ausgebildetem Pyrochlor-Gitter. Eine Besonderheit dieser Verbindung ist die verhältnismäßig hohe Sprungtemperatur von 9,6 K, unterhalb welcher die Substanz supraleitendes Verhalten aufweist. Die Anwendung der Sauerstoffhochdrucktechnik eröffnet generell einen breiten Zugang zu ternären Silberoxiden und mit Hilfe dieser Synthesemethode und einem KO2/Os-Gemisch wurde K₂OsO₅^[186] dargestellt. Die Verbindung besteht unter anderem aus nahezu idealen trigonalen Bipyramiden von OsO₅-Einheiten.

Im Rahmen dieser Arbeit soll versucht werden, den Kenntnisstand über ternäre Silberoxide auf das System Ag-Os-O auszuweiten. Mit Hilfe der Autoklaventechnik unter Verwendung von Sauerstoffhochdruck ist nicht nur ein relativ gefahrloser Umgang mit entstehenden OsO₄-Dämpfen gewährleistet, sondern es steht auch eine vielversprechende Syntheseroute zur Verfügung.

3.2.2 Tridecasilberosmat(VIII), Ag₁₃OsO₆

3.2.2.1 Darstellung von Ag₁₃OsO₆

 $Ag_{13}OsO_6$ erhält man in einer Festkörperreaktion unter Sauerstoffhochdruckbedingungen aus innigst vermengten und gemörserten Reaktionsmischungen von Silber-(Aldrich, 99,99 %) und Osmium-Pulver (Chempur, 99,9 %). Wegen der hohen Flüchtigkeit des sich leicht bildenden OsO₄ ist es notwendig, mit einem Überschuss an Osmium zu arbeiten. Die Synthese läuft somit nach folgender Reaktionsgleichung ab:

13 Ag + (1 + x) Os + (3 + 2x) O₂
$$\rightarrow$$
 Ag₁₃OsO₆ + x OsO₄

In der Praxis wurden erfolgreiche Versuche mit Silber : Osmium-Verhältnissen von 1 : 1 bis 5 : 1 unternommen. In einem typischen Ansatz werden 107,9 mg Silber und 47,5 mg Osmium in einem Goldtiegel vermengt und bei 15 MPa Sauerstoffdruck 2 Tage auf 573 K geheizt. Der Autoklav wurde in einen auf 473 K vorgeheizten Ofen gestellt und innerhalb von 2 Stunden auf 573 K erhitzt. Nach der Haltezeit wird mit einer Abkühlrate von 6 K h⁻¹ abgekühlt. Um eine Exposition mit giftigem OsO_4 zu vermeiden, empfiehlt es sich, den Autoklav vor dem Öffnen auf 77 K abzukühlen und das weißgelbliche OsO_4 kontrolliert im Abzug über Nacht abdampfen zu lassen. Als Produkt erhält man ohne Zusatz eines Mineralisators ein homogenes, oliv-grünes, schwach glänzendes mikrokristallines Pulver. Unter Zusatz von 1 ml H₂O bilden sich silbern glänzende würfelförmige Kristalle wie sie in Abbildung 54 gezeigt sind und welche mittels Einkristallstrukturanalyse untersucht werden können.

Die Verbindung bildet sich unter einer Vielzahl von Bedingungen. Erfolgreiche Versuche wurden sowohl mit H₂O als auch mit HClO₄ (0,01 M) als Mineralisator durchgeführt. Weitere mögliche Edukte sind $OsO_2 \cdot 2$ H₂O (Alfa Aesar, 99,99 %) sowie frisch hergestelltes Ag₂O (siehe Kapitel 3.1.2.1). Ein zusätzlicher, wenn auch geringer, Sauerstoffdruck ist für die Synthese essentiell. So wurde die Bildung der Substanz bereits bei Drücken größer 8 MPa nachgewiesen. Des Weiteren bildete sich Ag₁₃OsO₆ bei Reaktionstemperaturen von mindestens 523 und höchstens 673 K.

Abbildung 54: Lichtmikroskopische Aufnahme von Ag₁₃OsO₆-Kristallen bei 64-facher Vergrößerung.

3.2.2.2 Rasterelektronenmikroskopie und Energiedispersive Mikroanalyse

Die Abbildung 55 zeigt bei 300-facher Vergrößerung die rasterelektronenmikroskopische Aufnahme eines typischen Einkristalls von Ag₁₃OsO₆. Der Kristall weist einen annähernd kubischen Habitus mit kleineren Aufwachsungen sowie relativ glatte Würfelflächen mit einer Kantenlänge von 200 µm auf. Im Rahmen weiterer REM-Untersuchungen an Ag₁₃OsO₆-Proben wurden maximale Kantenlängen von 500 µm nachgewiesen An Kristallen von Ag₁₃OsO₆ wurde, bei einer Beschleunigungsspannung von 25 kV, an mehreren Punkten eine EDX-Analyse durchgeführt. Durch Integration der Flächen unter dem AgL- und dem OsL-Graphen wurde ein gemitteltes Elementverhältnis von 13,1 : 1 für das Silber-Osmium-Verhältnis festgestellt. Das Röntgenemissionsspektrum von dem in Abbildung 55 abgebildeten Kristall ist in Abbildung 56 gezeigt. Das gemessene Silber-Osmium-Verhältnis beträgt 13,04 : 1 und bestätigt die Summenformel der Substanz. Die OsK-Emissionen bei \approx 9 keV wurden für diese Auswertungen nicht berücksichtigt.

Abbildung 55: Rasterelektronenmikroskopische Aufnahme eines Ag₁₃OsO₆-Kristalls bei 300-facher Vergrößerung.

Abbildung 56: Gemessenes Röntgenemissionsspektrum einer Probe von Ag₁₃OsO₆. Gekennzeichnet sind die AgL- , OK-, OsK- und OsL-Emissionen.

3.2.2.3 Röntgenographische Pulveruntersuchungen

Das Pulverdiffraktogramm einer homogenen Probe von Ag₁₃OsO₆ wird in Abbildung 57 mit einem aus Einkristalldaten berechneten Pulverdiffraktogramm verglichen.

Abbildung 57: Gemessenes (oben) und berechnetes Pulverdiffraktogramm (unten) von $Ag_{13}OsO_6$. CuK_{α}-Strahlung, Silicium als externer Standard, absolute Intensitäten.

Die sehr gute Übereinstimmung der beiden Pulverdiffraktogramme belegt die Identität von Einkristalldaten und gemessenem Pulverpräparat. Im Spektrum der gemessenen Probe sind keinerlei Fremdreflexe vorhanden, so dass man das Produkt als phasenrein bezeichnen kann.

Die verfeinerte Gitterkonstante wurde mit Hilfe des Programmes WinXPow^[56] aus den ermittelten Reflexlagen eines gemessenen Pulverdiffraktogramms erhalten. Eine Indizierung der Reflexe ergab eine kubisch flächenzentrierte Symmetrie und Metrik sowie folgende Werte für Gitterkonstante und Zellvolumen:

$$a = 13,1712(5) \text{ Å}$$
 $\alpha = 90^{\circ}$ $V = 2284,95(15) \text{ Å}^3$

Eine vollständige Tabelle über die verwendeten Reflexe der Gitterkonstantenverfeinerung ist dem Anhang unter Kapitel 7.3.1 beigefügt.

3.2.2.4 Einkristalluntersuchungen mit Filmmethoden

Aus einem Produktgemenge wurde ein würfelförmiger Kristall mit einer Kantenlänge von 0,1 mm ausgewählt und auf eine Kapillare aus Lindemannglas geklebt. Der so präparierte Kristall wurde auf einem Goniometerkopf fixiert und im Röntgenstrahl einer Präzessions-Kamera zentriert. Die danach erhaltenen Aufnahmen einer nullten, ersten und zweiten Schicht mit jeweils 20 h Belichtungszeit zeigt Abbildung 58. Um 90° gedrehte Kristalle ergaben identische Reflexe auf den Filmaufnahmen, was auf eine kubische Elementarzelle schließen lässt.

Abbildung 58: Aufnahmen einer hk0- (links), hk1- (mitte) und hk2-Netzebene (rechts) mit einer Präzessions-Kamera. MoK_α-Strahlung.

Aus den Netzebenenabständen und beobachteten Reflexen der Präzessions-Aufnahmen ergibt sich eine Gitterkonstante von $\approx 13,2$ Å sowie folgende Reflexionsbedingungen:

hkl: h + k, h + l, k + l = 2n Okl: k, l = 2n hhl: h, l = 2n OOl: l = 2n

Aus den Reflexionsbedingungen kann das Beugungssymbol *F*--*c* abgeleitet werden. Zusammen mit der Laueklasse m3m kommen damit $F\overline{4}3c$ (219) und $Fm\overline{3}c$ (226) als für die Strukturlösung mögliche Raumgruppen in Betracht.

3.2.2.5 Einkristallstrukturanalyse

Die Messung integraler Reflexintensitäten wurde mit Hilfe eines Dreikreisdiffraktometers mit Flächendetektor durchgeführt. Die Messparameter der Datensammlung und die sich aus der Einkristallstrukturanalyse ergebenen Kristalldaten sind in Tabelle 27 aufgeführt.

Tabelle 27: Kristallographische Daten von Ag₁₃OsO₆, Messparameter der Datensammlung sowie Ergebnisse der Strukturlösung.

Raumgruppe	$Fm\bar{3}c$ (226)
Kristallmaße	0,1 x 0,1 x 0,1 mm
Molare Masse M	$1688,51 \text{ g mol}^{-1}$
Gitterkonstante a (kubisch)	13,1712(5) Å (Pulverdaten)
Zellvolumen V	2284,95(15) Å ³
Formeleinheiten Z	8
Absorptionskoeffizient µ	$32,797 \text{ mm}^{-1}$
Röntgenographische Dichte ρ_{calcd}	$9,817 \text{ g cm}^{-3}$
Diffraktometer	Bruker AXS Smart CCD 1000
Strahlung, Monochromator	Mo K_{α} , Graphit-Einkristall
Messbereich θ	3,09 - 34,96°
Messtemperatur T	293(2) K
gemessene Reflexe I > $2\sigma(I)$	7622
symmetrieunabhängige Reflexe	2367
Zahl der Parameter	12
Korrekturen	Semiempirische Absorptionskorrektur mit
	SADABS, ^[80] Lorentz-/Polarisationskorrektur
hkl-Bereiche	-21 < h < 20, -20 < k < 20, -20 < l < 21
Strukturlösung	Direkte Methoden, SHELXTL ^[82]
max. / min. Restelektronendichte	1,60 / -4,84 e Å ⁻³
Goodness-of-fit	1,360
R ₁ -Wert	0,0319
wR ₂ -Wert	0,0650
FIZ-Karlsruhe, Nr.	CSD - 413193

Die Strukturlösung in der Raumgruppe $Fm\bar{3}c$ gelang mit Hilfe direkter Methoden sowie dem Programmpaket SHELXTL^[82] und bestätigt die aus den Filmaufnahmen abgeleitete

Vermutung über die zu verwendende Raumgruppe. Zur Verfeinerung der Struktur wurden die Temperaturfaktoren sämtlicher Atome zunächst isotrop und dann anisotrop verfeinert. Mittels Differenzfouriersynthese konnte die Lage der Sauerstoffatome bestimmt werden. Anschließend wurden die anisotropen Temperaturfaktoren der Sauerstoffatome verfeinert und eine Absorptionskorrektur mit dem Programm SADABS^[80] durchgeführt. Auf Grund zusätzlicher vorhandener Reflexe mit geringer Intensität erfolgte eine Verletzung der Reflexionsbedingungen der c-Gleitspiegelebene. Unter Berücksichtigung dieser Reflexe müsste die Kristallstruktur in der Raumgruppe F432 (209), einer maximalen Untergruppe von $Fm\bar{3}c$, beschrieben werden. Der Versuch der Strukturlösung in F432 resultierte in vergleichbaren R-Werten (R₁: 3,24, wR₂: 6,17). Da allerdings keine allgemeinen Lagen besetzt sind, kann die Beschreibung der Struktur auch in der höher symmetrischen Raumgruppe $Fm\bar{3}c$ (226) erfolgen. Der Hauptgrund für die Bevorzugung der Beschreibung von Ag₁₃OsO₆ mit der Raumgruppe $Fm\bar{3}c$ liegt allerdings darin, dass bei der Lösung in F432 zwei kristallographisch unterschiedliche Osmium-Atome (Wyckoff-Lage 8 a \rightarrow 4 a, 4 b) entstehen, von denen eines im Rahmen der Verfeinerung einen wenig sinnvollen kleinen Temperaturfaktor aufweist.

Die unter Anwendung der full-matrix-least squares Methode bei Verwendung anisotroper Temperaturfaktoren erhaltenen Strukturparameter sind in Tabelle 28 aufgeführt.

Atom	X	У	Z	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
Ag(1)	0	0	0	0,0072(4)	$= U_{11}$	$= U_{11}$	0	0	0
Ag(2)	0	0,1784(1)	0,1141(1)	0,0139(3)	$= U_{11}$	= U ₁₁	-0,0010(2)	0	0
Os(1)	1/4	1/4	1/4	0.0066(2)	$= U_{11}$	$= U_{11}$	0	0	0
0.5(1)	-, -	2, 1	-, -	0,0000(_)	011	011	Ũ	Ū	U
O(1)	0.1056(0)	1 / /	1 / /	0.012(5)	0.000(2)	TT	0	0	0
O(1)	0,1056(9)	1/4	1/4	0,012(5)	0,022(3)	$= U_{22}$	0	U	U

Tabelle 28: Koordinaten und anisotrope Auslenkungsparameter für Ag₁₃OsO₆.

3.2.2.6 Beschreibung und Diskussion der Kristallstruktur

 $Ag_{13}OsO_6$ besteht, wie man in Abbildung 59 erkennen kann, aus OsO_6 -Oktaedern und Ag_{13} -Ikosaedern, welche analog zu Cäsium und Chlor in CsCl angeordnet sind. Auf Grund der 90°-Drehung der Ikosaeder muss die Gitterkonstante allerdings verdoppelt werden und es ergibt sich ein flächenzentriertes Gitter.

Abbildung 59: Darstellung der Kristallstruktur von Ag₁₃OsO₆. Dreiecksflächen von Sauerstoffatomen sind rot und von Silberatomen blau gekennzeichnet.

Alle Oktaeder sind parallel und entlang der Achsen des kubischen Kristallsystems angeordnet. Die kürzesten Atom-Abstände innerhalb der Struktur sind die zwischen Osmium und Sauerstoff. Ihre Länge von 190 pm erlaubt keine eindeutige Aussage über die Oxidationszahl des Osmiums, da sich die effektiven Osmiumradien für die Zustände +VI, +VII und +VIII lediglich um 3 pm^[187] unterscheiden. Die Os-O-Bindungslängen der Os^{+VII}-Verbindungen Na₅OsO₆^[183] und Ba₂NaOsO₆^[188] betragen z. B. 190 bzw. 187 pm.

Mit einem Abstand von nur 279 pm zwischen den apikalen Sauerstoffatomen kommen sich die Oktaeder relativ nahe. Kürzer als die Summe der Ionenradien von Ag^+ und O^{2-} (266 pm) und doch länger als normalerweise beobachtete kovalente Ag-O-Abstände (200 - 230 pm) ist der Abstand (246 pm) zu den nächsten Silberatomen. Die Strecke zwischen zwei apikalen Sauerstoffatomen benachbarter Oktaeder, welche zu vier verschiedenen Ikosaedern gehören, wird, wie in Abbildung 70 zu sehen ist, von einem Viereck aus Silberatomen geteilt. Obwohl die OsO₆-Oktaeder perfekt symmetrisch sind, ist die Lagesymmetrie der Zentren auf Grund der Ag-Umgebung nicht O_h, sondern lediglich O. Während es nur eine kristallographisch unabhängige Lage von Osmiumatomen und Sauerstoffatomen gibt, existieren zwei verschiedene Sorten von Silberatomen: Ag(1) im Zentrum der Ikosaeder und Ag(2) auf den Ecken.

Abbildung 60: Silberteilstruktur von $Ag_{13}OsO_6$ und Darstellung der verschiedenen Silber-Silber-Wechselwirkungen: zentrale intracluster (rot), kurze intracluster (dunkelblau), lange intracluster (hellblau), kurze intercluster (grün) und lange intercluster (pink).

Wie man in Abbildung 60 erkennen kann, hat Ag(1), in einer Entfernung von 279 pm, welche kürzer als in elementarem kubisch flächenzentriertem (<u>face-centered cubic</u> (fcc)) Silber ist, 12 Ag(2)-Nachbarn. Wenn man von der geometrischen Überlegung ausgeht, dass die Länge entlang der 30 Kanten eines idealen Ikosaeders dem 1,051-fachen des

Abstands zum Zentrum entspricht, dann ergibt sich für den Ag_{13} -Cluster eine durchschnittliche Länge der 42 Ag-Ag-Bindungen von: 279 pm \cdot (12 + 30 \cdot 1,051) / 42 = 289 pm. Dieses wiederum entspricht dem Abstand zum nächsten Nachbarn in elementarem Silber. Tatsächlich sind die Ikosaeder mit 24 kurzen (292 pm) und 6 langen (301 pm) Kanten, leicht verzerrt. Die durchschnittliche Kantenlänge beträgt 1,051 \cdot 279 pm, und deshalb kann die Behauptung, dass der durchschnittliche Abstand zweier Silberatome innerhalb eines Ikosaeders dem von elementarem Silber entspricht, bestehen bleiben. Die Symmetrie um das Zentrum des verzerrten Ikosaeders ist T_h, eine maximale Untergruppe von I_h. Von den 20 Ikosaederflächen sind 8 gleichseitig mit kurzen Kantenlängen, die restlichen 12 gleichschenklig mit einer langen und zwei kurzen Kanten. Die langen Kanten sind in Richtung der kubischen Achse angeordnet.

Die Abweichungen von der idealen Ikosaedersymmetrie sind Auswirkungen der starken Bindungskräfte zwischen den Ikosaedern und keine Vorgabe der Raumgruppengeometrie. Jedes Ag(2)-Atom weist neben sechs Intracluster-Bindungen (1 \cdot 279 pm, 4 \cdot 292 pm, 1 \cdot 301 pm) auch vier Bindungen mit vergleichbarer Länge zu benachbarten Ikosaedern auf. Die Entfernung zu den zwei umgebenden Sauerstoffatomen beträgt 246 pm und zu den nächsten Silberatomen (in Abbildung 60 pink gekennzeichnet) entlang einer kubischen Achse 286 pm. Der Abstand zu den restlichen zwei Silberatomen ist lediglich 284 pm und stellt den kürzesten Ag(2)-Ag(2)-Abstand in der Struktur (grün) dar. Wenn man bedenkt, dass jedes Ag(2)-Atom einer langen Kante (301 pm) eines Ikosaeders angehört, kann davon ausgegangen werden, dass dieses Ag(2)-Atom über die beiden kurzen Intercluster-Bindungen mit den Enden einer langen Kante senkrecht zu ihrer eigenen langen Kante verknüpft ist. Folglich besteht die Verknüpfung zweier Ikosaeder aus einem senkrecht zueinander stehenden Paar von langen Kanten (hellblau), welche an ihren Enden über vier kurze (284 pm) Bindungen (grün) miteinander verknüpft sind.

Man könnte deshalb $Ag_{13}OsO_6$ auch als ein nanoporöses Metall auffassen, dessen Poren mit oktaedrisch koordinierten Oxoosmat-Anionen gefüllt sind. Der Aufbau ist analog dem von intermetallischen Phasen des Typs NaZn₁₃.^[189-191]

Eine Zusammenfassung über Anzahl und Länge der Bindungen innerhalb von Ag₁₃OsO₆ ist in Tabelle 29 gezeigt.

Art der Bindung	Länge und Häufigkeit	Darstellung der Bindung	
Ag(1) - Ag(2)	279 pm 12x	Abbildung 60, rote Bindung	
Ag(2) - Ag(2) kurze Intercluster	284 pm 2x	Abbildung 60, grüne Bindung	
Ag(2) - Ag(2) lange Intercluster	286 pm 2x	Abbildung 60, pinkene Bindung	
Ag(2) - Ag(2) kurze Intracluster	292 pm 4x	Abbildung 60, dunkelblaue	
Ag(2) - Ag(2) lange Intracluster	301 pm 1x	Abbildung 60, hellblaue Bindung	
Ag(2) - O(1)	246 pm 2x	Abbildung 70, violette Bindung	
Os(1) - O(1)	190 рт бх		
O(1) - O(1) Intracluster	269 pm 4x		
O(1) _{apikal} - O(1) _{apikal} Intercluster	278 pm 1x		

Tabelle 29: Häufigkeit und Länge der Abstände von Ag₁₃OsO₆.

3.2.2.7 Messung der magnetisch en Suszeptibilität

Zur Bestimmung der Temperatur- und Feldstärkenabhängigkeit der Suszeptibilität wurden Untersuchungen des magnetischen Verhaltens von $Ag_{13}OsO_6$ durchgeführt. Hierzu wurde eine Pille mit 42,6 mg Gewicht und einem Durchmesser von 6 mm gepresst. Die Abbildung 61 zeigt die in einem Temperaturbereich von 2 - 330 K gemessenen molaren Suszeptibilitäten bei Feldstärken von 0,1 - 5 T. Im Rahmen der Messung wurde jeweils eine Aufheiz- und Abkühlkurve aufgenommen.

Die untersuchte Probe zeigt ein diamagnetisches Verhalten mit nahezu konstanten Suszeptibilitäten. Unterhalb von 50 K ist ein geringer Anstieg der Messwerte, verursacht durch maximal 0,5 % (für s = $\frac{1}{2}$ Teilchen) paramagnetische Verunreinigung, sichtbar. Spuren von ferromagnetischer Kontamination, womöglich aus dem verwendeten Autoklaven, bewirken die schwache Feldstärkenabhängigkeit der Messwerte. Die aus den diamagnetischen Korrekturinkrementen berechnete Suszeptibilität beträgt $-3,95\cdot10^{-4}$ cm³ mol⁻¹ (Ag⁺ : $-2,4\cdot10^{-5}$ cm³ mol⁻¹, Os⁸⁺ : $-1,1\cdot10^{-5}$ cm³ mol⁻¹, O²⁻ : $-1,2\cdot10^{-5}$ cm³ mol⁻¹)^[91] und unterscheidet sich somit deutlich von der in Abbildung 62 ermittelten Suszeptibilität von ($-2,62(5)\cdot10^{-4}$ cm³ mol⁻¹) für unendliche Temperatur bei unendlicher Feldstärke. Da keine Korrekturinkremente für subvalentes Silber in der Literatur beschrieben sind, wurden für diese Rechnung, alle 13 Silberatome näherungsweise als Ag⁺ gerechnet.

Abbildung 61: Temperaturabhängige Messung der magnetischen Suszeptibilität von Ag₁₃OsO₆ bei verschiedenen Feldstärken.

Durch Bestimmung der Gesamtzustandsdichte (vgl. 3.2.2.8) an der Fermikante (4,19 Zustände pro eV und pro $Ag_{13}OsO_6$) konnte die Pauli-Suszeptibilität zu $1,35\cdot10^{-4}$ cm³ mol⁻¹ bestimmt werden. Die Summe aus diamagnetischen Korrekturinkrementen und Pauli-Suszeptibilität beträgt $-2,60\cdot10^{-4}$ cm³ mol⁻¹ und stimmt mit der extrapolierten Molsuszeptibilität ($-2,62(5)\cdot10^{-4}$ cm³ mol⁻¹) in sehr guter Näherung überein.

3.2.2.8 Leitfähigkeitsmessungen

Die Leitfähigkeit eines Pulverpresslings von $Ag_{13}OsO_6$ (5 mm Durchmesser, 0,4 mm Stärke) wurde nach der Standard Vier-Punkt-Methode über einen Temperaturbereich von 5 K bis 300 K bestimmt und ist in Abbildung 63 dargestellt.

Abbildung 63: Temperaturcharakteristik des spezifischen Widerstandes von Ag₁₃OsO₆.

Die gemessene Probe verhält sich über den untersuchten Temperaturbereich wie ein metallischer Leiter. Bei 293 K beträgt der spezifische Widerstand $\rho = 2,19 \cdot 10^{-6} \Omega$ m und nimmt mit fallender Temperatur streng monoton ab. Die Leitfähigkeit von Ag₁₃OsO₆

beträgt $0,46 \cdot 10^6$ S m⁻¹ und ist mit derjenigen von Bismut $(0,86 \cdot 10^6$ S m⁻¹)^[92] vergleichbar. Ein supraleitendes Verhalten der Probe konnte oberhalb einer Temperatur von 5 K nicht beobachtet werden. Der aus der Steigung der Kurve zwischen 150 K und 298 K ermittelte Wert für den Temperaturkoeffizienten α beträgt 0,77 $\mu\Omega$ cm K⁻¹.

3.2.2.9 Untersuchung des thermischen Verhaltens

22,6 mg einer Probe von $Ag_{13}OsO_6$ wurden mit 10 K min⁻¹ bis zu einer Endtemperatur von 773 K aufgeheizt. Die Abbildung 64 zeigt die dabei erhaltenen DTA- und TG-Daten.

Abbildung 64: DTA und TG von Ag₁₃OsO₆. 22,6 mg Einwaage, Korundtiegel, Korund als Referenz, 10 K min⁻¹ Aufheizrate von 293 K bis 773 K.

Die merkliche Zersetzung der Substanz beginnt bei einer Temperatur von 573 K (Onset-Temperatur: 610 K) und entspricht folgender Reaktionsgleichung:

 $Ag_{13}OsO_6 \rightarrow 13 Ag + OsO_4 \uparrow + O_2 \uparrow (theoretischer Massenverlust: 17,0 \%)$

Der bei der thermogravimetrischen Messung zwischen 373 und 723 K ermittelte Massenverlust von 16,5 % stimmt mit dem theoretischen Wert in guter Näherung überein. In der aufgenommenen DTA-Kurve sind weder endo- noch exotherme Effekte zu

beobachten.

Als flüchtiges Zersetzungsprodukt wurde mittels Massenspektrometrie lediglich Sauerstoff (Massen 16 und 32) erfasst (Abbildung 65). Eine Osmiumkomponente wurde weder bei den flüchtigen Bestandteilen noch im Rückstand nachgewiesen. Höchstwahrscheinlich hat sich flüchtiges OsO₄ gebildet, welches durch das Massenspektrometer nicht detektiert wurde.

Abbildung 65: Massenspektrometrische Untersuchung der flüchtigen Zerfallsprodukte von Ag₁₃OsO₆. 22,6 mg Einwaage, 10 K min⁻¹ Aufheizrate von 293 K bis 773 K.

Der nach einem Aufheizen auf 773 K (10 K min⁻¹) erhaltene hellgraue Rückstand im Korundtiegel besteht, wie die Übereinstimmung des Pulverdiffraktogrammes in Abbildung 66 mit den Daten aus der JCPDS-Datei zeigt, aus Silber.

Abbildung 66: Pulverdiffraktogramm des Rückstandes der DTA / TG-Messung und einem Erhitzen auf 773 K . Cu K_{α} -Strahlung, Silicium als externer Standard.

Abbildung 67: Guinier-Aufnahme von 5 (links) - 80° (rechts) für 2 θ bei 293 (unten) bis 673 K (oben). Die unterste Spur zeigt den Siliciumstandard. CuK_a-Strahlung.

Eine von Raumtemperatur bis 673 K, mit einem Filmvorschub von 0,2 mm h^{-1} , aufgenommene Guinier-Aufnahme zeigt Abbildung 67. Es sind keine Reflexe zu

beobachten welche auf eine intermediär auftretende Phase hindeuten. Oberhalb einer Temperatur von ≈ 523 K beginnen, auf Grund der Zersetzung, die Ag₁₃OsO₆-Reflexe schwächer zu werden und es werden die Reflexe elementaren Silbers erkennbar.

3.2.2.10 Photoelektronenspektroskopie an Ag₁₃OsO₆

Weitere Erkenntnisse über den Bindungszustand von Silber kann man aus dem Vergleich der 3d-Spektren von Ag₁₃OsO₆ und einkristallinem Silber gewinnen (Abbildung 68).

Abbildung 68: Photoelektronenspektrum der Ag 3d-Banden von $Ag_{13}OsO_6$, Mg-K $_{\alpha}$ -Strahlung, C 1s-Bande als externen Standard.

In beiden Spektren lassen sich die zwei Spin-Bahn-Kopplungs-Banden $(3d_{5/2} \text{ bzw. } 3d_{3/2})$ erkennen. Die energetischen Positionen der Ag₁₃OsO₆-Banden sind, im Vergleich zu elementarem Silber, um 0,9 eV zu höheren Bindungsenergien verschoben, was auf eine stärkere Anziehung der Rumpfelektronen und eine Erhöhung der Oxidationsstufe deutet.

3.2.2.11 Zustandsdichteberechnungen und Bandstrukturen von Ag₁₃OsO₆ mittels der TB-LMTO-ASA-Methode

Weder Strukturdaten noch physikalische Eigenschaften erlauben eine zweifelsfreie Bestimmung der Oxidationszahl des Osmiums. Das diamagnetische Verhalten lässt sich zwar mit dem Zustand +VIII für Osmium vereinbaren, aber durch starke Spin-Bahn Kopplung und Ligandenfeldeffekte sind auch für sechs- und siebenwertiges Osmium Grundzustände mit reduzierter Suszeptibilität möglich. Zusätzlich sind verlässliche Strukturdaten über Os-O Bindungslängen in der Literatur selten und nicht in allen Fällen miteinander vergleichbar. Aus diesen Gründen wurden Dichtefunktionalberechnungen nach der TB-LMTO-ASA-Methode (Tight Binding-Linear Muffin Tin Orbital-Atomic Sphere Approximation) durchgeführt. Die Ergebnisse der Berechnungen sollen zu einem besseren Verständnis über die bindenden und elektronischen Eigenschaften von Ag₁₃OsO₆ zu dienen. Die Parameter des verwendeten Rechenprogramms (Stuttgart TB-LMTO-ASA-Code^[194]) sind in Tabelle 30 aufgeführt. Die Berücksichtigung von Austausch- und Korrelationswechselwirkung fand mit dem gradientenkorrigierten Perdew-Wang-Dichtefunktional statt. Eine Einbeziehung der Spin-Bahn-Kopplung in die Rechnung ist mit diesem Ansatz nicht möglich. Ihre Beachtung würde die Aufspaltung $((3/2) \zeta_d \sim 0.3 \text{ eV})$ eines t_{2g} Bandes in ein energetisch niedrigeres vierfach entartetes und ein energetisch höher liegendes zweifach entartetes Band bedeuten.

Atom	Wyckoff-Lage	Muffin-Tin-Radius	LMTOs	downfolded ^[195]
Os(1)	8 a (1/4,1/4,1/4)	127 pm	s, p, d	
O(1)	48 f (x,¼,¼)	110 pm	р	s, d
	x = 0,10560			
Ag(1)	8 b (0,0,0)	160 pm	s, p, d	
Ag(2)	96 i (0,y,z)	157 pm	s, p, d	
	y = 0,17842			
	z = 0,11406			
Ε	64 g (x,x,x)	99 pm	s, p	
(Leerkugel)	x = 0,1633			

Tabelle 30: Parameter der Zustandsdichte- und Bandstruktur-Rechnungen anAg₁₃OsO₆.
Die Ergebnisse der Berechnungen sind anhand der Bandstrukturen und der Zustandsdichten dargestellt. So zeigt die zweigeteilte Abbildung 69 in der oberen Grafik die energetischen Zustände oberhalb und in der unteren Grafik die energetischen Zustände unterhalb der Fermikante, welche bei 0 eV definiert wird. Für eine verbesserte Darstellung der Ag-4d-Zustände zwischen –6,4 und –3,0 eV wurde, im Vergleich zur oberen Grafik, eine veränderte vertikale Skala verwendet.

Abbildung 69: Elektronische Zustandsdichten von $Ag_{13}OsO_6$ projiziert auf die Summe der an Os (grün), O (rot), Ag(1) (gelb) und Ag(2) (blau) zentrierten orthonormalen LMTO's.

Die stärksten kovalenten Wechselwirkungen der Verbindung sind im OsO₆-Oktaeder aufzufinden. Das starke Hopping-Integral zwischen dem Os-6s-Orbital und dem O-2p-Orbital, mit a_g -Symmetrie, bedingt ein bindendes O-2p ähnliches Band weit unterhalb und ein antibindendes Os-6s-Band deutlich oberhalb der Fermikante. Obwohl das besetzte bindende O-2p ähnliche Band etwas Os-6s-Charakter aufweist, kann näherungsweise davon ausgegangen werden, dass es keine überzähligen Os-6s-Elektronen gibt. Die Zustandsdichten der bindenden und antibindenden Bänder mit e_g -Symmetrie erstrecken sich von -7,4 bis -6,9 eV bzw. von 5,2 bis 6,0 eV. Die bindenden und antibindenden Bänder mit t_{2g} -Symmetrie befinden sich in Bereichen von -7,0 bis -6,0 eV bzw. von -0,2 bis 1,0 eV. Für die Os-O-Zustände hat dies zur Konsequenz, dass man besetzte bindende und unbesetzte antibindende Os-O-Zustände hat. Es verbleiben somit 12 (6 · 3 - 1 - 2 - 3) O-2p-Orbitale, welche nicht mit Osmium verknüpft sind und in der unteren Grafik die erhöhten Zustandsdichten von -3 bis -1 eV verursachen. Zusammengefasst kann man für die OsO₆-Bänder die Aussage machen, dass alle bindenden und nichtbindenden O-2p-ähnlichen Bänder besetzt und alle antibindenden Os-ähnlichen Bänder unbesetzt sind. Auf diesen Grundlagen beruhend kann der Ladungszustand des Oktaeders mit $[OsO_6]^4$ – und der des Ikosaeders mit $[Ag_{13}]^{4+}$ angegeben werden. Durch den starken Os-Charakter der besetzten Bänder sollte man allerdings die Schreibweise Os⁸⁺ $[O_6]^{12-}$ vermeiden. Die aus den Besetzungen der orthonormalen LMTOs berechneten Ladungen sind: Os^{+2,62}, O^{-0,86} = $(O_6^{-0,26} + E_8^{-0,45}) / 6$, $Ag(1)^{-0,32}$ und $Ag(2)^{+0,24}$.

Die Füllung des antibindenden t2g Bandes bei 0,2 eV ist möglicherweise ein Artefakt der Rechenmethode und eine geometrische Optimierung würde die Fermikante eventuell in diese Pseudo-Lücke verschieben. Die Gesamtzustandsdichte beträgt 2,3 Elektronen pro eV und pro 2 (Ag₁₃OsO₆). Pro Atom sind dies 0,09 was im Vergleich zu elementarem Silber $(0,25 \text{ e} (\text{eV} \cdot \text{Ag})^{-1})$ einen beträchtlich kleineren Wert darstellt und möglicherweise den gemessenen Diamagnetismus erklären könnte. Die durchschnittliche Zustandsdichte im Bereich um 5 eV oberhalb der Fermikante entspricht ungefähr den Werten des fcc Silbers. Positionen und Eigenschaften der bindenden und antibindenden Bänder mit eg- und t2g-Symmetrie weichen deutlich von dem ab, was man für isolierte OsO₆-Oktaeder erwarten würde. Die beiden Bänder mit eg-Symmetrie weisen zum Beispiel mehr O- als Os-Charakter auf. Den Grund hierfür ist der, einschließlich der eg- und t2g-Zustände, dominierende Ag(2)-Charakter des Spektrums. Da Silber die Symmetrie von Oh zu O reduziert, mischt die Hybridisierung mit den Ag(2)-4d-, -5s- und -5p-Orbitalen einen ungeraden nichtbindenden O-2p-Charakter den Bändern mit eg- und t2g-Symmetrie bei. Das Silber 4d-Band erstreckt sich in von -6,4 bis -3,0 eV wobei der Bereich von -6,4 bis -5,9 eV dem Ag(1)-hg (Ih)-Zustand entspricht. Dieses 4d-Band ist, verglichen mit dem von elementarem fcc Silber, welches in einem Bereich von -6,6 bis -2,7 eV (lokaler Dichtefunktional Ansatz (LDA)) vorkommt, schmaler und zu tieferen Energien verschoben. Der Unterschied ist Ergebnis der Ag(2)-4d-Orbitale welche mit den O-2p-Orbitalen, die nicht mit Osmiumatomen verknüpft sind, bindende und antibindende Bänder ausbilden. Die entsprechenden Zustandsdichten sind zwischen -3,0 und -0,5 eV, zwischen 1,6 und 4,5 eV und zwischen 6,9 und 7,8 eV erkennbar. Die Ag(2)-5s- und -5p-Anteile an der Zustandsdichte (in Abbildung 69 nicht gezeigt) entsprechen denen elementaren Silbers, in dem sie sd- und pd-Hybridisierungslücken darstellen und ziemlich konstant um die Fermikante liegen. Das unterscheidet sich stark von den Os-6s- und den Ag-5s- und -5p-Anteilen an der Zustandsdichte von Silberoxiden. Aus diesem Grund sind hauptsächlich die Ag(2)-4d-Orbitale von Ag₁₃OsO₆ für die Wechselwirkungen mit den O-2p-Orbitalen verantwortlich, während die Ag-5s- und -5p-Orbitale primär mit anderen Silberorbitalen kombinieren.

Abbildung 70: Detailliertere Darstellung eines Teils der Struktur von Abbildung 59 mit berechneten kovalenten Bindungsstärken in eV. Die zentralen Os-O- (3,4 eV) und Ag(1)-Ag(2)-Bindungen (0,65 eV) werden nicht gezeigt.

Quantitativ kann die Bindungssituation am besten durch die aus LMTO Energien und Eigenvektoren berechneten kovalenten Bindungsstärken (<u>C</u>rystal <u>O</u>rbital <u>H</u>amiltonian

Populations (COHPs) bis zur Fermikante integriert)^[196] veranschaulicht werden. Die Dicke der Balken, zwischen den Atomen in Abbildung 70, ist proportional zu den Bindungsstärken. Mit einer Stärke von 3,4 eV ist die 190 pm kurze Bindung zwischen Osmium und Sauerstoff die stärkste der Struktur. Zu einer Bindung zwischen den Sauerstoffatomen untereinander kommt es bei einer berechneten Bindungsstärke < 0,05 eV nicht. Die zweitstärkste Bindung ist mit 246 pm Länge die Ag(2)-O-Bindung (0,76 eV) gefolgt von der zentralen Ag(1)-Ag(2)-Bindung (279 pm) mit einer Stärke von 0,65 eV. Die kurzen (292 pm) und langen (301 pm) Ag(2)-Ag(2)-Bindungen entlang den Kanten des Ikosaeders sind erheblich schwächer und mit 0,52 bzw. 0,53 eV annähernd gleich. Mit einer Stärke von 0,60 eV sind die kurzen (284 pm) Bindungen zwischen den Clustern, welche die senkrecht zueinander stehenden Ecken verknüpfen, die stärksten Ag(2)-Ag(2)-Bindungen. Relativ schwach (0,41 eV) sind mit einer Länge von 286 pm die Ag(2)-Ag(2)-Bindungen zwischen den Clustern entlang eines Vierecks. Während der durchschnittliche Ag-Ag-Abstand eines Clusters dem elementaren Silber entspricht wird die Bindungsstärke des Elementes (0,64 eV) nur von zentralen Ag(1)-Ag(2)-Bindungen erreicht. Kompensiert wird dieses Defizit durch Wechselwirkungen mit umliegenden Sauerstoffatomen der OsO₆-Oktaeder.

Die Bandstrukturen der Os-d-Orbitale (Abbildung 71 bis Abbildung 74), des Ag(1)-s-(Abbildung 75) und Ag(2)-s-Orbitals (Abbildung 76) und der O-2p-Orbitale (Abbildung 77) von –2 bis 2 eV entlang der Fermikante und der Symmetrielinien der fcc Brillouinzone sind in den folgenden Abbildungen dargestellt. Die Dicke der Bänder in Abbildung 71 ist proportional zu deren Os- t_{2g} -Charakter. Man erkennt, dass die sechs antibindenden t_{2g} -Bänder zwischen 0 und 1 eV verteilt sind und dass eine beträchtliche Mischung mit den umgebenden O-2p-/Ag(2)-Bändern erkennbar ist. Die drei Os-d-Bänder welche die t_{2g} -Bänder bilden sind in Abbildung 72 (xy), Abbildung 73 (xz) und Abbildung 74 (yz) gezeigt. Um zwei Elektronen energetisch betrachtet auf das gleiche OsO₆-Oktaeder zu bringen benötigt es schätzungsweise mehr als 1 eV. Aus diesem Grund würde man interessante Korrelationseffekte in elektronen-dotierten Systemen erwarten, in denen das t_{2g} -Band teilweise besetzt ist. Ein möglicher Kandidat, der diese Bedingung erfüllen würde, wäre z. B. ZnAg₁₂OsO₆.

Abbildung 71: Bandstrukturen der Os- t_{2g} -Orbitale von Ag₁₃OsO₆.

Abbildung 72: Bandstruktur des Os- d_{xy} -Orbitales von Ag₁₃OsO₆.

Abbildung 74: Bandstruktur des Os-d_{yz}-Orbitales von Ag₁₃OsO₆.

Abbildung 75: Bandstruktur des Ag(1)-s-Orbitales von $Ag_{13}OsO_6$.

Abbildung 76: Bandstruktur des Ag(2)-s-Orbitales von $Ag_{13}OsO_6$.

Abbildung 77: Bandstrukturen der O-p-Orbitale von Ag₁₃OsO₆.

3.2.2.12 Untersuchung der Oberflächenstruktur (Rasterkraftmikroskopie, AFM)

Im Kapitel 3.2.2.6 wurde eine Strukturbeschreibung von $Ag_{13}OsO_6$ mit Hilfe von Ag_{13} -Clustern und OsO_6 -Oktaedern durchgeführt. Da die kürzesten Bindungen innerhalb der Struktur Intracluster-Bindungen zum Zentralatom des Ikosaeders sind, scheint diese Annahme gerechtfertigt. Die zweitkürzesten Bindungen stellen allerdings nicht die Ikosaeder-Kanten, sondern die Verknüpfungen zu den sechs benachbarten Ag_{13} -Clustern dar. Wenn man nur diese Bindungen betrachtet, würde man die Substanz als nicht durch isolierte Cluster aufgebaut, sondern als ein poröses Metall ansehen.

Mit Hilfe von AFM wurde die Oberflächenmorphologie und der Wachstumsmechanismus von Ag₁₃OsO₆-Kristallen untersucht. Aus diesem Grund wurde die in Kapitel 3.2.2.1 beschriebene Synthese durch das zusätzliche Einbringen einer Silberscheibe (1 cm Durchmesser, 1 mm Stärke) geringfügig modifiziert. Sowohl im Goldtiegel wie auch auf der Silberscheibe kam es hierbei zum Wachstum von Ag₁₃OsO₆-Kristallen, wobei die Kristalle auf der Scheibe (siehe Abbildung 78) mit einer ungefähren Kantenlänge von 10 µm deutlich kleiner als die im Tiegel synthetisierten (100 µm, vergleiche Abbildung 55) sind. Dies ist auf die höhere Dichte an Kristallkeimen und damit verbunden einer größeren Konkurrenz beim Kristallwachstum zurückzuführen. Beide Arten von Ag₁₃OsO₆-Kristalle zeigten im weitern Verlauf der Untersuchung gleiche Oberflächenstrukturen. Eine Reinigung der Kristalle vor der Mikroskopie wurde nicht vorgenommen.

Abbildung 78: Rasterelektronenmikroskopische Aufnahme von, auf der Oberfläche einer Silberscheibe, in Vorzugsrichtung gewachsenen Ag₁₃OsO₆-Kristallen.

Die AFM-Untersuchungen wurden unter Standardbedingungen im "tapping-mode" durchgeführt wobei die Höhenmessung mit Hilfe von geätztem Glimmer, welcher eine definierte Stufenhöhe von 1 nm^[197] aufweist, kalibriert wurde. In Abbildung 79 (links) ist das typische AFM-Bild einer $Ag_{13}OsO_6$ -Oberfläche gezeigt. Das senkrecht verlaufende spiralförmige Wachstum der Kristalle sowie Terrassen und Stufen sind eindeutig erkennbar. Die seitliche Ausdehnung der Terrassen variiert etwas von Kristall zu Kristall und es wurden Flächen von 0,1 bis 1 µm in der einen und von bis zu 10 µm in der anderen Richtung gemessen. Die Stufen sind sehr lang und gerade und weisen keinerlei Kinken oder andere Defekte auf. Deren Bildung sollte aus Entropiegründen zwar bevorzugt sein findet hier aber aus energetischen Gründen nicht statt. Die durchschnittlich 120 nm weiten

Tridecasilberosmat(VIII), Ag13OsO6

Terrassen ergeben eine makroskopische Kristall-Oberfläche, welche um lediglich 0,3° von einer perfekten flachen Oberfläche abweicht. Dies ist mit der Flachheit von metallischen Einkristall-Oberflächen, mit kleinem Miller-Index, höchster Qualität vergleichbar. Die Wachstumsstufen orientieren sich entlang der makroskopischen Richtungen des Kristalls und das mikrokristalline Wachstum spiegelt sich in der kubischen Form der Kristalle wieder. Einen genaueren Blick auf die Oberfläche zeigt Abbildung 79 (rechts). Die Rauhigkeit der Terrassen besteht hauptsächlich aus adsorbierten Verunreinigungen welche auf die Standardbedingungen beim Experiment zurückzuführen sind. Der Höhenunterschied zwischen benachbarten Terrassen ist sehr gut aufgelöst und beträgt, bei sämtlichen untersuchten Proben 6,7(5) Å was verglichen mit den monoatomaren Stufen von Metall-Einkristallen ein ziemlich großer Wert ist.

Abbildung 79: Mittels Rasterkraftmikroskopie visualisierte Oberfläche von Ag₁₃OsO₆. Das linke Bild zeigt einen Ausschnitt von (6,6 μm)². Auf dem rechten Bild ist eine Ausschnittsvergrößerung (1,0 μm)² des linken Bildes dargestellt. Der Balken symbolisiert die in Abbildung 80 vorgenommenen Untersuchung der Wachstumsstufen.

In Abbildung 80 ist eine dreidimensionale Darstellung der Wachstumsstufen, wie sie in Abbildung 79 rechts abgebildet ist, gezeigt. Eine graphische Darstellung, der über den weißen Balken in Abbildung 79 rechts durchgeführten Untersuchung, der Höhe der Wachstumsstufen ist in Abbildung 81 gezeigt. Die leichte Schräglage der Stufen wurde zur Vereinfachung der Darstellung aus dem Diagramm entfernt. Tridecasilberosmat(VIII), Ag₁₃OsO₆

Abbildung 80: Dreidimensionale Darstellung von Abbildung 79 rechts.

Abbildung 81: Graphische Darstellung des Ergebnisses der Untersuchung der Wachstumsstufen einer Ag₁₃OsO₆-Oberfläche aus Abbildung 79 (rechts).

Die gemessene Stufenhöhe stimmt, wie Abbildung 82 demonstriert, perfekt mit der halben Gitterkonstante für $Ag_{13}OsO_6$, welche 13,1712(5) Å beträgt, überein. Auf Grund der 90°-Drehung der Ikosaeder entspricht die Stufenhöhe auch dem Durchmesser eines Ag_{13} -Clusters und identifiziert somit das Ikosaeder, neben dem OsO₆-Oktaeder, als Grundbaueinheit der Kristallstruktur.

Im Vergleich zu reinem einkristallinem Silber, in dem nur monoatomare Stufen vorhanden sind, zeigen die Daten für Ag₁₃OsO₆, dass die Intracluster-Bindungen im Ikosaeder zwischen zwei Silberatomen stärker sind als die Intercluster-Bindungen. Dieses bestätigen Ergebnisse von LMTO-Rechnungen, die für die 12 Intracluster-Bindungen vom zentralen Silberatom eine Stärke von 0,65 eV und für die Intercluster-Bindungen Bindungsstärken von 0,41 und 0,60 eV ergeben. Aus diesen Überlegungen heraus, wird der Aufbau der Wachstumsstufen vermutlich wie der in Abbildung 82 dargestellten Situation entsprechen.

Abbildung 82: Zusammenhang zwischen gemessener Höhe bzw. Weite der Wachstumsstufen und der Kristallstruktur von Ag₁₃OsO₆. Die gepunktete Linie symbolisiert eine Terrassenweite von ~ 120 nm, die durchgezogene vertikale Linie repräsentiert die Stufenhöhe.

3.2.2.13 Bestimmung von Raumt eilern (Periodische Knotenflächen, PNS)

welche die Region der Wechselwirkungen zwischen den Polyedern zeigt.

Die auf Grundlage der Obergruppe $Im\bar{3}m$ berechnete Periodische Knotenfläche für Ag₁₃OsO₆ ist in Abbildung 83 gezeigt. In der vereinfachten Darstellung des Raumteilers wurde die alternierende 90°-Drehung der Ag₁₃-Cluster nicht berücksichtigt, wodurch man die Struktur in der Raumgruppe $Pm\bar{3}m$ beschreiben könnte. Als zusätzliche Näherung wurden OsO₆-Oktaeder und Ag₁₃-Ikosaeder als identische Kugeln angenommen. Auf Grund dieser Vereinfachungen weist die PNS die Topologie einer so genannten P^{*}-Fläche und eine erhöhte Symmetrie ($Im\bar{3}m$), welche z. B. in Alkalimetallen realisiert ist, auf. Die so konstruierte angenäherte Fläche besteht aus zwei kongruenten Labyrinthen die mittels Translation um $\frac{1}{2}$ $\frac{1}{2}$ ineinander überführt werden können. Die Ag₁₃-Ikosaeder und OsO₆-Oktaeder werden durch die gelb dargestellte Knotenfläche voneinander getrennt,

Abbildung 83: Graphische Darstellung eines Raumteilers (PNS) mit der Topologie einer P^{*}-Fläche in der Kristallstruktur von Ag₁₃OsO₆.
Die Ag₁₃-Ikosaeder sind blau, die OsO₆-Oktaeder rot dargestellt.

4 Zusammenfassung, Diskussion und Ausblick

Im Verlaufe dieser Arbeit wurden im System Silber-Mangan-Sauerstoff die Verbindungen Ag₂MnO₂ und α -Ag₄Mn₃O₈ näher charakterisiert sowie die Kristallstrukturen von α -Ag₄Mn₃O₈ und den Hochtemperaturphasen β - und γ -Ag₄Mn₃O₈ aufgeklärt. Eine erstmalige Untersuchung des ternären Systems Silber-Osmium-Sauerstoff erbrachte die Verbindung Ag₁₃OsO₆, deren physikalische Eigenschaften untersucht und die Kristallstruktur bestimmt wurde, sowie einzelne Kristalle der Verbindung Ag₂OsO₄ (siehe Anhang Kapitel 7.4).

α -Ag₄Mn₃O₈^[198]

Vorher als "Ag₂MnO₃" beschriebenes wurde im Autoklaven aus frisch hergestelltem Ag₂O und MnO₂ unter Sauerstoffhochdruckbedingungen (Goldtiegel, T = 873 K, t = 100 h, $p(O_2) = 140$ MPa) erneut dargestellt. Die Züchtung von Kristallen in einer für die Röntgenstrukturanalyse ausreichenden Größe gelingt, wenn 0.2 ml 3M-KOH-Lösung als Mineralisator zugesetzt werden. Eine vollständige Charakterisierung der Phase u. a. mittels EDX und Röntgenstrukturanalyse erbrachte eine abweichende Summenformel, Ag₄Mn₃O₈. Die Verbindung ist beständig gegen atmosphärische Einflüsse und Licht. Auf Grund von systematischer Vierlingsbildung wird eine große kubische Zelle mit $a \approx 26$ Å vorgetäuscht. Umfangreiche Einkristalluntersuchungen unter Berücksichtigung der vier Individuen erbrachten für Ag₄Mn₃O₈ ein trigonales Kristallsystem (Raumgruppe $P_{3_1}21$, Z = 12) mit den Gitterkonstanten a = 12,5959(1) und c = 15,4978(1) Å (R(F)_{int} (beobachtet): 0,0529, R(F)_{int} (gesamt): 0,0549). In der Kristallstruktur liegen 16 kristallographisch unabhängige Sauerstoffatome und sieben Manganatome vor, die verzerrte MnO₆-Oktaeder ausbilden und über gemeinsame Kanten zu einer komplexen Gerüststruktur verknüpft sind. Die Topologie dieses Gerüstes ist eng verwandt mit dem kubischen {10,3} Raumnetz. In den Hohlräumen des Gerüstes sind die 10 kristallographisch unterschiedlichen Silberatome mit minimalen Ag-Ag-Abständen von 2,823(1) Å eingelagert. Ag₄Mn₃O₈ zeigt oberhalb einer Néel-Temperatur von 8 K paramagnetisches Verhalten, hat eine nach dem Curie-Weiss-Gesetz extrapolierte Temperatur Θ von 44 K und weist ein effektives magnetisches Moment von 3,8 μ_B auf, was dem Zustand +IV für Mangan entspricht. Die Substanz ist ein Isolator und zersetzt sich bei 673 K in MnO₂ und Silber. Die Ag-Teilstruktur von Ag₄Mn₃O₈ zeigt im Gegensatz zur Mn-O-Teilstruktur, welche sich mit der kubischen Raumgruppe $P4_332$ beschreiben lässt (Abweichung von den höher symmetrischen Positionen < 0,1 Å), keine erhöhte Pseudosymmetrie.

β, γ-Ag₄Mn₃O₈^[199]

Mittels DSC-Messungen wurden beim Erhitzen von Ag₄Mn₃O₈ zwei reversible, endotherm verlaufende Phasenübergänge bei 477 K (Δ H = 4,2 kJ mol⁻¹) und 689 K (Δ H = 0,4 kJ mol⁻¹) festgestellt. Im Gegensatz zu den Positionen der Silberatome verändert sich bei den Hochtemperaturphasen das Mn₃O₈-Netzwerk nur unwesentlich gegenüber den Koordinaten der Raumtemperaturmodifikation. Unter dieser Annahme konnten mittels Rietveld-Verfeinerung die Kristallstrukturen von β-Ag₄Mn₃O₈ (*R*32, *a* = 12,68145(4), *c* = 15,34087(8) Å, Z = 12) und γ-Ag₄Mn₃O₈ (*P*4₃32, *a* = 8,95996(4) Å, Z = 4) aufgeklärt werden. In Ag₄Mn₃O₈ liegt eine ungewöhnliche Vielfalt an struktureller Hierarchie^[200] vor, die eng mit den drei RbAg₄I₅-Phasen^[157, 158] verwandt ist.

Ag₂MnO₂

Das von Rienäcker und Werner^[45, 46] erstmals beschriebene rotviolette Ag₂MnO₂ wurde im Sauerstoffstrom aus Silber und Mn₃O₄ bei 873 K erneut dargestellt. TEM-Aufnahmen und Röntgenpulverdiffraktogramm weisen auf die bereits von Chang^[44] vermutete Schichtstruktur mit einer Translationsperiode von t = 8,691 Å sowie einer möglichen Fehlordnung innerhalb der Schichten hin. Die Substanz zersetzt sich oberhalb 900 K in die Edukte, weist metallische Leitfähigkeit (spezifischer Widerstand ρ (295 K) = 6,16·10⁻⁶ Ω m) und oberhalb 42 K paramagnetisches Verhalten mit einer Curie-Temperatur von -307 K auf. Das gemessene magnetische Moment beträgt 4,6 µB, was Mangan in der Oxidationsstufe +III entsprechen würde und dem von Rienäcker und Werner vermuteten Zustand von +II widerspricht. Dies hätte zur Folge, dass sich zwei Silberatome eine Ladung von +1 teilen und man einen bzgl. des Silbers subvalenten Zustand erwartet. Diese Vermutung wird durch Photoelektronenspektroskopie an der Silber-3d-Bande bestätigt, da eine dem subvalenten Ag₂NiO₂ ähnliche Verschiebung der Banden beobachtet wird. Eine Züchtung von genügend großen Kristallen für eine Einkristallstrukturanalyse bzw. eine Strukturlösung mittels HR-TEM-Untersuchungen sind für eine weitere Charakterisierung dieser Verbindung und die Deutung der experimentellen Befunde zwingend erforderlich.

Ag₁₃OsO₆^[201, 202]

Silberschwarze, goldglänzende Ag₁₃OsO₆-Kristalle mit kubischem Habitus wurden unter Sauerstoffhochdruckbedingungen (Goldtiegel, T = 573 K, t = 2 d, $p(O_2) = 15$ MPa, 1 ml H₂O als Mineralisator) aus Silber- und Osmiumpulver im Autoklaven erstmals dargestellt. Die kubische Kristallstruktur ($Fm\bar{3}c$, a = 13,1771(6) Å, Z = 8) ist aus leicht verzerrten Ag₁₃-Ikosaedern und perfekten OsO₆-Oktaedern, welche analog zu Zn₁₃ und Na in der intermetallischen Phase NaZn13 angeordnet sind, aufgebaut. Innerhalb der Ikosaeder befindet sich ein ausschließlich von Silberatomen koordiniertes zentrales Silberatom. Die Entfernung zwischen dem Silberatom im Ikosaederzentrum und den Ag-Nachbarn auf den Ikosaederecken ist mit 279 pm der kürzeste Ag-Ag-Abstand in der Kristallstruktur und ist damit um ca. 10 pm kürzer als im elementaren Silber. Dies ist ein Indiz für attraktive d¹⁰-d¹⁰-Wechselwirkungen zwischen den Silberatomen. Die durchschnittliche Kantenlänge der Ikosaeder wiederum entspricht mit 289 pm dem Ag-Ag-Abstand in fcc-Silber. Die Substanz zerfällt ab 573 K in Silber und flüchtiges OsO4, weist eine mit Bismut vergleichbare metallische Leitfähigkeit (0,46·10⁶ S m⁻¹, 298 K) auf und zeigt diamagnetisches Verhalten. Der Magnetismus bestätigt zusammen mit Dichtefunktionalberechnungen die Ladungsverteilung in $[Ag_{13}]^{4+}$ und $[OsO_6]^{4-}$. $Ag_{13}OsO_6$ weist somit die geringste Ladung pro Silberatom bzw. den stärksten subvalenten Charakter bislang bekannter ternärer Silberoxide auf, wie eine vergleichende Übersicht in Tabelle 31 zeigt.

Am Beispiel von Untersuchungen an Ag₁₃OsO₆-Einkristallen ist gezeigt worden, dass Abbildungen von Kristalloberflächen mittels Rasterkraftmikroskopie ein nützliches Werkzeug bei der Identifizierung von Clustern als Strukturmotiv sein können. Es wurden Wachstumsspiralen mit sehr breiten, flachen Terrassen festgestellt, die von Stufen mit gleicher Höhe getrennt sind. Die gemessene Stufenhöhe von \approx 6,7 Å entspricht dem Durchmesser eines Ag₁₃-Ikosaeders und identifiziert diesen Cluster als Grundbaustein der Kristallstruktur. Welche Atomsorte die Kristalloberfläche bildet könnte mittels einer elementspezifischen und oberflächensensitiven Spektroskopiemethode wie z. B. Sekundärionen-Massenspektroskopie oder Augerelektronenspektroskopie bestimmt werden. Hochauflösende Rastertunnelmikroskopie hingegen wäre ein geeignetes Hilfsmittel um die Anordnung der Atome auf der Oberfläche festzustellen.

Tabelle 31: Chronologische Übersicht der Verbindungen mit Silber im subvalenten
Zustand und des minimalen Ag-Ag-Abstandes innerhalb der jeweiligen Kristallstruktur.
Die im Rahmen dieser Arbeit untersuchten Verbindungen sind fett markiert.

Verbindung	Jahr	Ladung	Bauprinzip	Ag-Ag-	Ag-Teilgitter		
, eremenne	<i>v</i> uni	pro Ag	Duaphilip	Abstand			
$A \sigma_{c} P h_{2} O_{c}$	1950 ^[8]	4/~		296 6 nm	$\left[\mathrm{Ag}_{5}\right]^{4+}$		
11951 0200	1990 ^[10]	/5		270,0 pm	Ketten + Schichten		
Ag MnO	1960 ^[45]	1/ (9)	A a NiO	analaga Sahi	- 1 4 1 (
Ag2MIIO2	1963 ^[46]	$7_{2}(1)$	$Ag_2 NO_2$	analoge Sch	icniverbindung (:)		
Ag_2F	1966 ^[42]	$^{1}/_{2}$	anti-CdI ₂	273,1 pm	[Ag ₂] ⁺ -Doppelschichten		
$Ag_6Ge_{10}P_{12}$	1976 ^[203]	² / ₃	$Rh_6(CO)_{16}$	285,2 pm	[Ag ₆] ⁴⁺ -Oktaeder		
Ag_6O_2	1981 ^[41]	² / ₃	anti-BiI ₃	275,1 pm	[Ag ₆] ⁴⁺ -Oktaeder		
Ag ₅ GeO ₄	1992 ^[28]	² / ₃	verzerrte AlB ₂	273,9 pm	$[Ag_6]^{4+}$ -Oktaeder + 4 Ag ⁺		
Ag ₅ SiO ₄	1994 ^[30]	² / ₃	verzerrte AlB ₂	270,1 pm	$[Ag_6]^{4+}$ -Oktaeder + 4 Ag ⁺		
Ag ₂ NiO ₂	2002 ^[43]	¹ / ₂		283,6 pm	[Ag ₂] ⁺ -Doppelschichten		
Ag ₁₃ OsO ₆	2003 ^[201]	⁴ / ₁₃	NaZn ₁₃	279,3 pm	[Ag ₁₃] ⁴⁺ -Ikosaeder		

Ag₂OsO₄

Als Nebenprodukt bei der Ag₁₃OsO₆-Synthese wurden in drei Versuchen vorher unbekannte nadelförmige Kristalle von Ag₂OsO₄ erhalten. Die röntgenographische Untersuchung ergab eine orthorhombische Elementarzelle (a = 5,997(4), b = 9,738(9) und c = 3,151(2) Å). Die systematische Verzwillingung aller bisher untersuchten Kristalle sowie die unzureichende Reproduzierbarkeit verhinderten bisher die vollständige Charakterisierung der Verbindung, weswegen sie im Anhang unter Kapitel 7.4 behandelt wird. Eine Einkristallstrukturanalyse ergab die Raumgruppe $P2_12_12$ sowie Baueinheiten gestauchten OsO₆-Oktaedern sowie eine von stark verzerrt tetraedrische Silberatome. Sauerstoffkoordination um die weist Ag_2OsO_4 eine enge Strukturverwandtschaft zu Verbindungen des Sr_2PbO_4 -Typs^[204] auf.

5 Abstract

In the system silver-manganese-oxygen the compounds Ag_2MnO_2 and α - $Ag_4Mn_3O_8$ were in the course of a systematic exploration comprehensively characterized and the crystal structures of β - and γ - $Ag_4Mn_3O_8$ were determined.

Preparative exploration of the system silver-osmium-oxygen under an elevated oxygen pressure yielded so far unknown $Ag_{13}OsO_6$ and several crystals of Ag_2OsO_4 (described in the supplement, chapter 7.4). The physical properties of the Ag_{13} -compound were characterised and the crystal structure resolved.

α -Ag₄Mn₃O₈^[198]

The compound Ag₂MnO₃ which was discovered by Chang^[44] was synthesized from freshly prepared Ag₂O and MnO₂ under oxygen high pressure conditions (gold crucible, T = 873K, t = 100 h, $p(O_2) = 140$ MPa) in an steel autoclave. Growth of single crystals big enough for X-ray analysis is successful when adding 0.2 ml 3M KOH solution as a mineraliser. A closer investigation of the substance for example via EDX and X-ray structure analysis, yielded a different formula Ag₄Mn₃O₈. The substance is resistant to atmospheric conditions and light. Single crystal X-ray investigations have revealed a trigonal crystal system, space group $P3_121$ with lattice parameters a = 12.5919(1) and c = 15.4978(1) Å, (R(F)_{int} (observed): 0.0529, R(F)_{int} (all): 0.0549). Due to systematic twinning a large cubic unit cell with $a \approx 26$ Å is simulated. The structure, which was refined as a fourfold twin, is composed of seven crystallographically independent manganese atoms which are coordinated in the form of strongly distorted MnO₆ octahedra. Each octahedron shares four common edges with four other octahedra, forming a three-dimensional framework which is closely related to the archetype cubic {10,3} net. In the cavities of this framework, the 10 different silver atoms are incorporated with a minimum Ag-Ag distance of 2.823(1) Å. Above a temperature of 8 K, $Ag_4Mn_3O_8$ exhibits paramagnetic behaviour with $\mu_{eff} = 3.8$ μ_B , which corresponds to the oxidation state + IV for manganese, and a Curie temperature Θ of 44 K. The substance decomposes slowly at 673 K into silver and MnO₂, and behaves like an insulator. The silver part of the structure has, in contrast to the Mn₃O₈ framework, no further pseudosymmetry. Yet, for the Mn-O part, the pseudosymmetry is as high as

 $P4_332$ and the maximal displacements from the higher symmetrical positions are smaller than 0.1 Å.

β, γ-Ag₄Mn₃O₈^[199]

Two reversible phase transitions were discovered via DSC measurements at 477 K ($\Delta H = 4.2 \text{ kJ mol}^{-1}$) and 689 K ($\Delta H = 0.4 \text{ kJ mol}^{-1}$) during the annealing of Ag₄Mn₃O₈. It was assumed, that in contrast to the Mn₃O₈ framework, only a displacement of the silver positions occurs. On the strength of this hypothesis a Rietveld refinement of β -Ag₄Mn₃O₈ (*R*32, *a* = 12.68145(4), *c* = 15.34087(8) Å, Z = 12) und γ -Ag₄Mn₃O₈ (*P*4₃32, *a* = 8.95996(4) Å, Z = 4) succeeded. The result was, that for Ag₄Mn₃O₈ a rather unique variety of structural hierarchy^[200] was encountered.

Ag_2MnO_2

The purple-coloured Ag₂MnO₂ previously described by Rienäcker and Werner,^[45, 46] was synthesized under oxygen flow at 873 K. TEM images and X-ray powder pattern indicate a layer type structure predicted by Chang^[44] with a translation period t of 8.691 Å, and possible disorder within the layers. The substance decomposes at 900 K into the starting materials, shows metallic conductivity (specific resistance ρ (295 K) = 6.16·10⁻⁶ Ω m), and exhibits paramagnetism above 42 K, with Θ = -307 K and a magnetic moment of 4.6 μ _B which corresponds in contrast to the prediction of Werner and Rienäcker who assumed a state of +II to the oxidation state +III for manganese. This would result in a possible subvalent state of the two silver atoms which have to share a charge of +1. This assumption is strengthened by XPS measurements of the Ag 3d peaks which show a shift similar to subvalent Ag₂NiO₂. A preparation of larger crystals suitable for single crystal investigations or advanced HR-TEM experiments would be a key to determine the structure of Ag₂MnO₂ which is necessary to interpret the experimental results.

Ag₁₃OsO₆^[201, 202]

As the first compound in the ternary system silver-osmium-oxygen a new subvalent ternary silver oxide, $Ag_{13}OsO_6$ has been found. A lustrous, homogeneous, olive-green, microcrystalline sample was obtained by the solid state reaction of ground mixtures of

silver or silver oxide and elemental osmium at an oxygen pressure of 15 MPa. Due to the high volatility of the easily formed OsO₄, an excess of osmium is necessary. Successful preparations have been run with Ag/Os molar ratios of 1:1 up to 5:1 in a gold crucible at 573 K for 2 days. To prepare silvery single crystals suitable for X-ray diffraction analysis, 1 ml of water was added as a mineraliser. The crystal structure ($Fm\bar{3}c$, a = 13.1771(6) Å, V = 2288.0(2) Å³, Z = 8) is built from distorted icosahedral silver clusters and perfect OsO₆ octahedra arranged like caesium and chlorine in CsCl. Due to 90° rotation of the icosahedra the lattice constant has to be doubled resulting in a face centered lattice. The silver icosahedra contain another central silver atom which is exclusively coordinated to silver, showing with 279 pm the shortest Ag-Ag distance in this compound. This value is 10 pm smaller than the next neighbour distance in elementary fcc silver and is evidence for attractive d^{10} - d^{10} interactions between the centers. These Ag₁₃ clusters are connected to neighboured clusters with a little longer spacings adopting the building principle of intermetallic phases of type NaZn₁₃ with OsO₆ units in place of sodium. The suggested charge distribution of $[Ag_{13}]^{4+}$ and $[OsO_6]^{4-}$ is supported by density-functional calculations and by the diamagnetism of the compound. Due to the uncommon charge of the silver cluster Ag₁₃OsOs₆ can be considered a member of the small family of compounds with subvalent silver. Ag₁₃OsO₆ is a metallic conductor with a specific resistance of ρ (295 K) = 6.16·10⁻⁶ Ω and a positive temperature coefficient α of 0.77 $\mu\Omega$ cm K⁻¹.

The surface of single crystal $Ag_{13}OsO_6$ has been investigated using atomic force microscopy. Growth spirals with very large flat terraces, separated by steps of equal height, have been observed. The measured step height of ~ 6.7 Å corresponds to the diameter of one Ag_{13} icosahedron and identifies the cluster as the key structural building block.

Ag₂OsO₄

In three experiments of the synthesis of $Ag_{13}OsO_6$, needle shaped crystals of Ag_2OsO_4 were discovered as a by-product. X-ray investigations yielded an orthorhombic cell with lattice parameters a = 5.997(4), b = 9.738(9) and c = 3.151(2) Å. Systematic twinning of all examined crystals and no selective way of synthesis prevented a full characterization of the substance and therefore the few results are documented in the supplement, in chapter 7.4.

6 Literaturverzeichn is

- [1] E. Riedel, Anorganische Chemie, 2. Auflage, de Gruyter, Berlin, 1990.
- [2] A. F. Hollemann, E. Wiberg, N. Wiberg, *Lehrbuch der Anorganischen Chemie*, 101 ed., de Gruyter, Berlin, 1995.
- [3] A. R. West, *Solid State Chemistry and its Applications*, John Wiley & Sons, Chichester, **1984**.
- [4] L. E. Orgel, J. Chem. Soc. 1958, 4186.
- [5] C. K. Jørgensen, *Dissertation*, Kopenhagen, 1957.
- [6] M. Jansen, Angew. Chem. Int. Ed. 1987, 99, 1136.
- [7] A. Bondi, J. Phys. Chem. 1964, 68.
- [8] A. Byström, L. Evers, *Acta Chem. Scan.* **1950**, *4*, 613.
- [9] M. Jansen, M. Bortz, K. Heidebrecht, Z. Kristallogr. 1989, 186, 147.
- [10] M. Jansen, M. Bortz, K. Heidebrecht, J. Less-Common Met. 1990, 161, 17.
- [11] G. A. Barclay, B. F. Hoskins, J. Chem. Soc. 1963, 2807.
- [12] H. L. Keller, H. Müller-Buschbaum, Z. Naturforsch. 1973, B28, 263.
- [13] H. L. Keller, H. Müller-Buschbaum, Z. Anorg. Allg. Chem. 1972, 393, 266.
- [14] M. Jansen, Z. Naturforsch. 1975, 30b, 854.
- [15] M. Jansen, Z. Naturforsch. 1976, 31b, 1544.
- [16] M. Jansen, *Habilitationsschrift*, Gießen, **1978**.
- [17] S. Deibele, M. Jansen, *Dissertation S. Deibele*, Bonn, 1998.
- [18] M. Bortz, M. Jansen, *Dissertation M. Bortz*, Bonn, 1993.
- [19] M. Bortz, M. Jansen, Angew. Chem. Int. Ed. 1991, 30, 883.
- [20] M. Bortz, M. Jansen, Z. Anorg. Allg. Chem. 1992, 612, 113.
- [21] M. Bortz, M. Jansen, Z. Anorg. Allg. Chem. 1993, 619, 1446.
- [22] M. Jansen, S. Deibele, Z. Anorg. Allg. Chem. 1996, 622, 539.
- [23] S. Deibele, M. Jansen, J. Solid State Chem. 1999, 147, 117.
- [24] M. Jansen, J. Less-Common Met. 1980, 76, 285.
- [25] F. Schenck, R. Hoppe, Naturwissenschaften 1969, 56, 414.
- [26] R. Masse, J. C. Guitel, A. Durif, Acta Crystallogr., Sect. B 1979, 35, 1428.
- [27] M. Jansen, C. Linke, Z. Naturforsch. 1996, 51b, 1591.
- [28] M. Jansen, C. Linke, Angew. Chem. Int. Ed. 1992, 31, 653.
- [29] M. Jansen, C. Linke, Z. Anorg. Allg. Chem. 1992, 616, 95.

Literaturverzeichnis

- [30] M. Jansen, C. Linke, *Inorg. Chem.* **1994**, *33*, 2614.
- [31] M. Jansen, H. L. Keller, Angew. Chem. Int. Ed. 1979, 18, 464.
- [32] C. Linke, M. Jansen, J. Solid State Chem. 1997, 134, 17.
- [33] M. Jansen, G. Brachtel, Z. Anorg. Allg. Chem. 1981, 478, 13.
- [34] K. Heidebrecht, M. Jansen, S. Krause, A. M. Bradshaw, J. Solid State Chem. 1990, 89, 60.
- [35] M. T. Czyzyk, R. A. de Groot, G. Dalba, P. Fornasini, A. Kisiel, F. Rocca, Burattini, *Phys. Rev.* 1989, *B39*, 9831.
- [36] P. Pyykkö, F. Mendizabal, *Chem. Eur. J.* **1997**, *3*, 1458.
- [37] P. Pyykkö, N. Runeberg, F. Mendizabal, Chem. Eur. J. 1997, 3, 1451.
- [38] P. Pyykkö, F. Mendizabal, *Inorg. Chem.* **1998**, *37*, 3018.
- [39] P. Pyykkö, T. Tamm, Organometallics 1998, 17, 4842.
- [40] N. Runeberg, M. Schütz, H. J. Werner, J. Chem. Phys. 1999, 110, 7210.
- [41] W. Beesk, P. G. Jones, H. Rumpel, E. Schwarzmann, G. M. Sheldrick, J. Chem. Soc. Chem. Commun. 1981, 664.
- [42] G. Argray, F. Naray-Szabo, Acta. Chim. Acad. Sci. Hung. 1966, 329.
- [43] M. Schreyer, M. Jansen, Angew. Chem. Int. Ed. 2002, 41, 643.
- [44] F. M. Chang, M. Jansen, *Dissertation F. M. Chang*, Gießen, 1985.
- [45] G. Rienäcker, K. Werner, Monatsber. Deut. Akad. Wiss. Berlin 1960, 2, 499.
- [46] G. Rienäcker, K. Werner, Z. Anorg. Allg. Chem. 1963, 320, 141.
- [47] E. M. Otto, J. Electrochem. Soc. 1966, 113, 643.
- [48] R. C. Weast, *Handbook of Chemistry and Physics*, 64 ed., CRC-Press Inc., 1983-84.
- [49] E. R. Wölfel, *Theorie und Praxis der Röntgenstrukturanalyse*, 3 ed., Vieweg, Braunschweig, **1987**.
- [50] H. Krischner, B. Koppelhuber-Bitschnau, *Röntgenstrukturanalyse und Rietveldmethode*, 5 ed., Vieweg, Braunschweig, **1994**.
- [51] W. Massa, *Kristallstrukturbestimmung*, 2 ed., Teubner, Stuttgart, 1996.
- [52] G. H. Stout, L. H. Jensen, X-Ray Structure Determination, 2 ed., Wiley & Sons, New York, 1989.
- [53] K. Brandenburger, Crystal-Impact, *Diamond V 2.1, Program for Displaying Crystal Structures*, Bonn, **1998**.
- [54] ICSD, Inorganic Crystal Structure Database, FIZ Karlsruhe.

- [55] ICDD-JCPDS, Joint Commitee on Powder Diffraction Standards, Swartmore, USA.
- [56] Stoe&Cie, *WinXPOW V 1.2*, Darmstadt, 2001.
- [57] Raytest-Isotopenmeßgeräte-GmbH, Software: Aida 2.0, 1998.
- [58] *http://www.nsls.bnl.gov/beamlines/beamline.asp?blid=X7B*.
- [59] http://www.esrf.fr/exp_facilities/ID31/ID31.html.
- [60] A. P. Hammersley, FIT2D: An Introduction and Overview; ESRF Internal Report, ESRF97HA02T, European Synchrotron Radiation Facility: Grenoble Cedex, France, 1997.
- [61] A. P. Hammersley, *FIT2D V9.129 Reference Manual V3.1; ESRF Internal Report, ESRF98HA01T*, European Synchrotron Radiation Facility: Grenoble Cedex France, 1998.
- [62] A. F. Fitch, European Powder Diffraction: Epdic Iv, Pts 1 and 2 1996, 228, 219.
- [63] R. E. Dinnebier, L. Z. Finger, Z. Kristallogr. 1998, Suppl. Issue 15, 148.
- [64] J. W. Visser, J. Appl. Cristallogr. 1969, 2, 89.
- [65] A. LeBail, H. Duroy, J. L. Fourquet, Mater. Res. Bull. 1988, 23, 447.
- [66] A. C. Larson, R. B. von Dreele, GSAS, Los Alamos National Laboratory Report LAUR 86-748, Los Alamos, USA, 2002.
- [67] J. Rodriguez-Carvajal, *Abstracts of the Satellite Meeting on Powder Diffraction of the XV. Congress of the IUCr, S. 127*, Toulouse, Frankreich, **1990**.
- [68] J. Rodriguez-Carvajal, FULLPROF.2k, Version 1.9c, Laboratoire Leon Brillouin, Gif-sur-Yvette, Frankreich, 2001.
- [69] P. Thompson, D. E. Cox, J. B. Hastings, J. Appl. Cristallogr. 1987, 20, 79.
- [70] L. W. Finger, D. E. Cox, A. P. Jephcoat, J. Appl. Cristallogr. 1994, 27, 892.
- [71] P. W. Stephens, J. Appl. Cristallogr. 1999, 32, 281.
- [72] W. I. F. David, K. Shankland, N. Shankland, *Chem. Commun.* 1998, 931.
- [73] H. M. Rietveld, J. Appl. Cristallogr. 1969, 2, 65.
- [74] G. S. Pawley, J. Appl. Cristallogr. 1981, 14, 357.
- [75] Stoe&Cie, X-AREA: Software for IPDS V 1.16, Darmstadt, 2002.
- [76] Siemens-Analytical-X-ray-Instruments, *SMART32 V 5.618: Program for data collection*, Madison, WI, USA, **1997**.
- [77] Stoe&Cie, X-RED: Data reduction for STADI4 and IPDS V 1.22, Darmstadt, 2001.
- [78] Siemens-Analytical-X-ray-Instruments, *SAINT32 V 6.02: Program for data reduction*, Madison, WI, USA, **1999**.

- [79] Stoe&Cie, X-SHAPE: Crystal Optimisation for Numerical Absorption Correction V
 1.06, Darmstadt, 1999.
- [80] G. M. Sheldrick, Bruker-AXS, SADABS V 2.0: Area Detector Absorption Correction, Inc. Madison, WI, USA, 2001.
- [81] G. M. Sheldrick, *SHELXS97, a program for the solution of crystal structures, computer program*, Universität Göttingen, Germany, **1997**.
- [82] G. M. Sheldrick, Bruker-AXS, SHELXTL V 6.12: Program for the Solution of Structures, Inc. Madison, WI, USA, 2001.
- [83] A. Altomare, G. Cascarano, C. Giacovazzo, G. Guagliardi, A. G. G. Moliterni, M. C. Burla, G. Polidori, M. Camili, R. Spagna, SIR97 a package for crystal structure solution by direct methods and refinement, Computer program, Dip. Geomineralogico, University of Bari, Italy, 1997.
- [84] V. Petricek, M. Dušek, *JANA2000 crystallographic computing system*, Institute of Physics, Academy of the Czech Republic, Praha, 2000.
- [85] E. Kroumova, J. M. Igartua, S. Ivantchev, M. I. Aroyo, J. M. Pérez-Mato, *PSEUDO a program for a pseudosymmetry search, Computer program*, University of the Basque Country, Bilbao, Spain, 2001.
- [86] S. Hüfner, *Photoelectron Spectroscopy*, Springer Verlag, Berlin, 1995.
- [87] C. D. Wagner et al., *Handbook of X-Ray Photoelectron Spectroscopy*, Perkin Elmer.
- [88] D. Briggs, M. P. Seah, *Practical Surface Analysis I*, Wiley, **1990**.
- [89] R. Gruehn, R. Roß, *Chemie in unserer Zeit* **1987**, *6*, 194.
- [90] http://www.tu-darmstadt.de/surface/methoden/AFM/afm theorie.htm.
- [91] P. E. Selwood, *Magnetochemistry*, 2nd ed., Interscience, New York, 1956.
- [92] C. J. Smithells, *Metals Reference Book*, Butterworth & Co, London, 1967.
- [93] A. Wert, R. M. Thomson, *Physics of Solids*, McGraw-Hill, New York, 1964.
- [94] S. Chandra, "Superionic Solids Principles and Applications", Amsterdam, 1981.
- [95] M. Pompetzki, M. Jansen, *Dissertation M. Pompetzki*, Universität Bonn, 2003.
- [96] U. Köhler, M. Jansen, *Dissertation U. Köhler*, Universität Hannover, 1987.
- [97] U. Henseler, M. Jansen, Sigma-Messung: Ein Programm zur Auswertung von elektrischen Messungen an Festkörpern, Bonn, **1996**.
- [98] U. Henseler, M. Jansen, Sigma-Auswertung: Ein Programm zur Auswertung von elektrischen Messungen an Festkörpern, Bonn, **1996**.

- [99] B. A. Boukamp, Equivalent Circuit (EQUIVCRT.PAS) V4.55: The Computer Assisted Electrochemical AC-Immitance Data Analysis System, University of Twente, Niederlande, 1997.
- [100] R. O. Jones, O. Gunnarsson, Rev. Mod. Phys. 1989, 61, 689.
- [101] O. K. Andersen, Phys. Rev. B 1975, 12, 3060.
- [102] O. K. Andersen, *The Electronic Structure of Complex Systems*, Plenum Publishing Corporation, **1984**.
- [103] O. K. Andersen, O. Jepsen, M. Sob, *Electronic Band Structure and its Applications*, Springer-Verlag, Berlin, **1986**.
- [104] H. L. Skriver, *The LMTO Method*, Springer-Verlag, Berlin, 1984.
- [105] W. Kohn, L. J. Sham, *Phys. Rev.* **1965**, *140*, A1133.
- [106] O. K. Andersen, O. Jepsen, Phys. Rev. Lett. 1984, 53, 2571.
- [107] O. K. Andersen, O. Jepsen, D. Glötzel, in Highlights of Condensed-Matter Theory, North-Holland, New York, 1985.
- [108] O. K. Andersen, Z. Pawlowska, O. Jepsen, Phys. Rev. B 1986, 34, 5253.
- [109] H. J. Nowak, O. K. Andersen, T. Fujiwara, O. Jepsen, P. Vargas, *Phys. Rev. B* 1991, 44, 3577.
- [110] O. K. Andersen, A. V. Postnikov, S. Y. Savrasov, *Mat. Res. Symp. Proc.* 1992, 253, 37.
- [111] R. Ramirez, M. C. Böhme, Int. J. Quant. Chem. 1988, XXXIV, 571.
- [112] R. Hoffmann, Solids and Surfaces: A Chemist's View on Bonding in Extended Structures, VCH, Weinheim, 1988.
- [113] H. G. von Schnering, R. Nesper, Z. Kristallogr. 1985, 170, 138.
- [114] M. Oehme, *Diplomarbeit*, Universität Stuttgart, 1986.
- [115] H. G. von Schnering, R. Nesper, Angew. Chem. 1986, 98, 111.
- [116] H. G. von Schnering, R. Nesper, Angew. Chem. Int. Ed. 1986, 26, 110.
- [117] H. G. von Schnering, R. Nesper, Angew. Chem. 1987, 99, 1097.
- [118] H. G. von Schnering, R. Nesper, Angew. Chem. Int. Ed. 1987, 26, 1059.
- [119] M. Oehme, Nullpotentialflächen und ihre Anwendung in der Kristallchemie, Dissertation, Universität Stuttgart, **1989**.
- [120] G. Roch, H. G. von Schnering, B. Neukäter, *Programm MADKUG zur Berechnung von Gitterpotentialen und Madelung-konstanten*, Universität Münster, **1962**.
- [121] P. P. Ewald, Ann. d. Phys. 1920, 64, 253.
- [122] H. G. von Schnering, R. Nesper, J. Physique, Colloq. C7 1990, suppl. no 23, 383.

- [123] H. G. von Schnering, R. Nesper, Z. Phys. B Condens. Matter 1991, 83, 407.
- [124] H. G. von Schnering, M. Oehme, G. Rudolf, Acta Chem. Scan. 1991, 45, 873.
- [125] Y. Grin, A. Zürn, L. Schröder, H. G. von Schnering, "Beziehungen zwischen Periodischen Knotenflächen und Graphen", Tagung "Graphentheoretische Methoden in der Kristallogrphie", Theoretische Kristallographie, 1996.
- [126] R. J. Meyer, E. H. E. Pietsch, A. Kotowski, M. Becke-Goehring, K.-C. Buschbeck, *Gmelin Handbuch der anorganischen Chemie, Vol. Ag B 4, 8. Auflage*, Springer-Verlag, Berlin, Heidelberg, New York, 1974.
- [127] R. Winzer, F.P. 750280; C. 1933, II 3329.
- [128] K. Sasvari, Z. Kristallogr. 1938, 99, 9.
- [129] E. G. Boonstra, Acta Crystallogr. 1968, B24, 1053.
- [130] F. M. Chang, M. Jansen, Z. Kristallogr. 1984, 169, 295.
- [131] F. M. Chang, M. Jansen, Z. Anorg. Allg. Chem. 1983, 507, 59.
- [132] F. M. Chang, M. Jansen, Angew. Chem. Int. Ed. 1984, 23, 906.
- [133] F. Hein, W. Daniel, G. Bähr, Z. Anorg. Allg. Chem. 1958, 296, 73.
- [134] F. M. Chang, M. Jansen, Rev. Chim. Miner: 1986, 23, 48.
- [135] F. Hein, W. Daniel, H. Schwedler, Z. Anorg. Allg. Chem. 1937, 233, 11.
- [136] F. Hein, Z. Anorg. Allg. Chem. 1938, 235, 25.
- [137] R. Schenck, A. Bathe, H. Keuth, S. Süss, Z. Anorg. Allg. Chem. 1942, 249, 88.
- [138] K. Katz, L. G. Wilson, R. Riberdy, Can. J. Chem. 1951, 29, 1059.
- [139] G. A. Grant, K. Katz, Can. J. Chem. 1954, 32, 1068.
- [140] V. Šatava, J. Körbl, Chem. Listy 1957, 51, 27.
- [141] V. Šatava, J. Körbl, Collection Czech. Chem. Commun. 1957, 22, 1380.
- [142] W. A. Oates, D. D. Todd, Proc. 1st Australian Conf. Electrochem. 1965, 88.
- [143] W. A. Oates, D. D. Todd, C. A. **1965**, 63, 6600.
- [144] E. H. Madsen, Z. Anorg. Allg. Chem. 1912, 79, 195.
- [145] J. Attenburrow, A. F. B. Cameron, J. H. Chapman, R. M. Evans, A. B. Hems, A. B. A. Jansen, T. J. Walker, *J. Chem. Soc.* 1952, 1094.
- [146] A. F. Wells, Acta Crystallogr. 1954, 7, 535.
- [147] A. F. Wells, *Three-dimensional Nets and Polyhedra*, John Wiley & Sons, New York, 1977.
- [148] N. E. Brese, M. O'Keeffe, Acta Crystallogr. 1991, B47, 192.
- [149] C. Hermann, Z. Kristallogr. 1929, 69, 533.
- [150] J. B. Parise, C. L. Cahill, Y. J. Lee, Canadian Mineralogist 2000, V 38, N4, 777.

- [151] P. J. Chupas, M. F. Ciralo, J. C. Hanson, C. P. Grey, J. Am. Chem. Soc. 2001, 123, 1694.
- [152] R. Argoud, J. J. Capponi, J. Appl. Cryst. 1984, 17, 420.
- [153] R. Hundt, KPLOT: A Program for Plotting and Investigation of Crystal Structures, University of Bonn, 1979.
- [154] J. M. Newsam, M. W. Deem, C. M. Freeman, Accuracy in Powder Diffraction II, NIST Spec. Publ. No. 846 1992, 80.
- [155] W. I. F. David, K. Shankland, N. Shankland, Chem. Commun. 1998, 931.
- [156] I. Langford, D. Louër, Rep. Prog. Physics 1996, 59, 131.
- [157] S. Geller, Science 1967, 157, 310.
- [158] S. Geller, Phys. Rev. B 1976, 14, 4345.
- [159] B. B. Owens, G. R. Argue, *Science* **1967**, *157*, 310.
- [160] J. N. Bradley, P. D. Greene, Trans. Faraday Soc. 1967, 63, 424.
- [161] W. Feitknecht, W. Marti, Helv. Chim. Acta 1945, 28, 129.
- [162] H. Lueken, *Magnetochemie*, Teubner, Stuttgart, Leipzig, 1999.
- [163] J.-S. Kang, J. H. Kwak, Y. J. Shin, S. W. Han, K. H. Kim, B. H. Min, *Phys. Rev. B* 2000, *61*, 10682.
- [164] M. Schreyer, M. Jansen, P. Adler, H. Modrow, U. Wedig, in Vorbereitung.
- [165] M. Schröder, Chem. Rev. 1980, 80, 187.
- [166] *http://www.uniterra.de/rutherford/ele076.htm.*
- [167] M. A. Hempworth, P. L. Robinson, G. J. Westland, J. Chem. Soc. 1954, 4269.
- [168] R. D. W. Kemmitt, D. R. Russell, D. W. A. Sharp, J. Chem. Soc. 1963, 4408.
- [169] R. D. Peacock, Rec. Trav. Chim. 1956, 75, 576.
- [170] C. Claus, Jacoby, Bl. Acad. Petersb. 1863, 6, 165.
- [171] C. Claus, Jacoby, J. pr. Ch. 1863, 90, 86.
- [172] S. A. Gromilov, Y. Y. Shubin, S. V. Korenev, A. I. Gubanov, K. V. Yusenko, *Russ. Chem. Bull.* 2000, 49 (7), 1310.
- [173] E. A. Sasserath, *Dissertation*, Berlin, 1901.
- [174] A. Rosenheim, E. A. Sasserath, Z. Anorg. Ch. 1899, 21, 135.
- [175] M. A. Hepworth, P. L. Robinson, J. Inorg & Nuclear Chem. 1957, 4, 24.
- [176] J. Fritzsche, H. Struve, J. pr. Ch. 1847, 41, 112.
- [177] A. Müller, F. Bollmann, E. J. Baran, Z. Anorg. Allg. Chem. 1969, 370, 238.
- [178] Y. Laurent, R. Pastuszak, P. L'Haridon, R. Marchand, *Acta Crystallogr.* 1982, *B38*, 914.

- [179] T. Hansen, Tagungsband, 9th European Conference on Solid State Chemistry P247, Stuttgart, 2003.
- [180] F. W. Klein, persönliche Mitteilung 2003.
- [181] R. Scholder, G. Schatz, Angew. Chem. 1963, 75, 417.
- [182] R. Scholder, G. Schatz, Angew. Chem. Int. Ed. 1963, 2, 264.
- [183] T. Betz, R. Hoppe, Z. Anorg. Allg. Chem. 1985, 524, 17.
- [184] W. Levason, M. Tajik, M. Webster, J. Chem. Soc. Dalton Trans. 1985, 1735.
- [185] S. Yonezawa, Y. Muraoka, Y. Matsushita, Z. Hiroi, J. Phys.: Condens. Matter. 2004, 16, L9.
- [186] K. Mogare, F. W. Klein, M. Jansen, in Vorbereitung 2004.
- [187] R. D. Shannon, Acta Crystallogr. 1976, A32, 751.
- [188] K. E. Stitzer, M. D. Smith, H.-C. zur Loye, Solid State Sci. 2002, 4, 311.
- [189] J. A. A. Ketelaar, J. Chem. Phys. 1937, 5, 668.
- [190] E. Zintl, W. Hauke, *Nature* **1937**, *139*, 717.
- [191] D. P. Shoemaker, R. E. March, F. J. Ewing, L. Pauling, Acta Crystallogr. 1952, 5, 637.
- [192] K. Honda, Ann. d. Phys. 1910, 32, 1027.
- [193] M. Owen, Ann. d. Phys. 1910, 37, 657.
- [194] R. W. Tanu, O. Jepsen, A. Burkhardt, O. K. Andersen, *TB-LMTO-ASA Programm V 4.7*, MPI für Festkörperforschung, Stuttgart, **1998**.
- [195] W. R. L. Lambrecht, O. K. Andersen, Phys. Rev. B 1986, 34, 2439.
- [196] R. Dronskowski, P. E. Blöchl, J. Phys. Chem. 1993, 97, 8617.
- [197] J. Colchero, Procedures in Scanning Probe Microscopies, John Wiley & Sons, 1998.
- [198] S. Ahlert, K. Friese, M. Jansen, Z. Anorg. Allg. Chem. 2002, 628, 1525.
- [199] S. Ahlert, R. E. Dinnebier, M. Jansen, Z. Anorg. Allg. Chem. in Vorbereitung 2004.
- [200] H. G. von Schnering, Jahrbuch Heidelberger Akademie der Wissenschaften, 1995.
- [201] S. Ahlert, W. Klein, O. Jepsen, O. Gunnarsson, O. K. Andersen, M. Jansen, Angew. Chem. Int. Ed. 2003, 42, 4322.
- [202] S. Ahlert, L. Diekhöner, R. Sordan, K. Kern, M. Jansen, Chem. Commun. 2004, 4, 462.
- [203] H. G. von Schnering, K.-G. Häusler, Rev. Chim. Miner: 1976, 13, 71.
- [204] M. Troemel, Z. Anorg. Allg. Chem. 1969, 371, 237.

[205] L. O. Avtomyan, V. G. Andrianov, M. A. Porai-Koshits, *Zh. Strukt. Khim.* 1962, *3*, 685.

7 Anhang

7.1 Ag₄Mn₃O₈

7.1.1 Magnetische Messung

	0,1 Tesla			1 Tesla			3 Tesla		5 Tesla		
Temp.	χ in 10^{-4}	χ^{-1} in	Temp.	χ in 10^{-4}	χ^{-1} in	Temp.	χ in 10^{-4}	χ^{-1} in	Temp.	χ in 10^{-4}	χ^{-1} in
in K	cm ³ / mol	mol / cm ³	in K	cm ³ /mol	mol / cm ³	in K	cm ³ /mol	mol / cm ³	in K	cm ³ /mol	mol / cm ³
4,9989	2582,37	3,87241	329,73	60,7515	164,605	4,9978	2832,37	3,53062	329,85	59,9308	166,859
5,5621	2591,15	3,85928	324,55	61,9395	161,448	5,5012	2825,69	3,53896	324,5	61,2161	163,356
6,0516	2599,76	3,84651	319,43	63,3607	157,8271	6,0009	2816	3,55113	319,47	62,6382	159,647
6,5499	2607,76	3,83471	314,45	64,7247	154,5	6,5065	2804,86	3,56524	314,47	63,9726	156,317
7,0564	2615,49	3,82337	309,6	65,9482	151,634	7,0039	2792,86	3,58056	309,58	65,1953	153,385
7,5553	2622,01	3,81386	304,68	67,005	149,243	7,5132	2779,81	3,59737	304,69	66,285	150,864
8,0402	2627,23	3,80629	299,58	68,2551	146,509	8,0088	2765,78	3,61562	299,67	67,4865	148,178
8,5569	2630,28	3,80188	294,55	69,6909	143,491	8,5066	2749,77	3,63666	294,62	68,944	145,045
9,0603	2630,54	3,8015	289,6	71,154	140,54	9,002	2729,17	3,66412	289,61	70,3967	142,052
9,5546	2628,03	3,80514	284,54	72,6309	137,682	9,5014	2702,31	3,70054	284,55	71,904	139,074
10,049	2621,69	3,81433	279,65	74,1766	134,813	10,001	2672,7	3,74154	279,53	73,4636	136,122
10,547	2604,58	3,83938	274,6	75,791	131,942	10,506	2639,58	3,78848	274,57	75,0693	133,21
11,043	2581,31	3,874	269,57	77,4836	129,06	11,017	2604,47	3,83955	269,65	76,748	130,297
11,542	2554,74	3,91429	264,57	79,2597	126,167	11,506	2569,79	3,89136	264,56	78,5528	127,303
12,093	2521,22	3,96633	259,55	81,1539	123,223	12,062	2526,43	3,95815	259,53	80,4339	124,326
12,545	2492,39	4,01221	254,55	83,058	120,398	12,504	2492,68	4,01174	254,57	82,3493	121,434
13,06	2461,91	4,06188	249,59	85,0626	117,56	13,015	2456,1	4,0715	249,56	84,3653	118,532
13,552	2431,52	4,11265	244,53	87,2156	114,658	13,501	2420,98	4,13055	244,58	86,5078	115,596
14,045	2400,96	4,16501	239,63	89,4075	111,847	14,02	2384,31	4,19409	239,61	88,7197	112,715
14,544	2368,65	4,22181	234,56	91,7863	108,949	14,504	2347,98	4,25898	234,38	91,1835	109,669
15,051	2334,87	4,28289	229,54	94,2778	106,07	15,015	2309,71	4,32954	229,58	93,5813	106,859
15,548	2301,35	4,34527	224,55	96,8653	103,236	15,501	2273,04	4,3994	224,57	96,1514	104,003
16,054	2267,75	4,40967	219,67	99,5481	100,454	16,007	2235,76	4,47276	219,55	98,9037	101,108
16,553	2233,79	4,4767	214,55	102,5	97,5606	16,515	2198,71	4,54813	214,56	101,806	98,2264
17,056	2200,01	4,54543	209,57	105,548	94,7435	17,002	2162,84	4,62355	209,57	104,855	95,3697
17,546	2166,75	4,61521	204,58	108,787	91,9227	17,509	2126,43	4,70273	204,55	108,122	92,4883
18,052	2137,05	4,67934	199,58	112,208	89,1201	18,011	2090,21	4,7842	199,64	111,472	89,7088
18,546	2099,45	4,76316	194,6	115,881	86,2953	18,501	2055,56	4,86485	194,64	115,136	86,8538
19,051	2065,84	4,84064	189,61	119,719	83,5289	19,011	2020,31	4,94975	189,54	119,073	83,9822
19,557	2032,15	4,92091	184,57	123,878	80,7245	19,517	1985,4	5,03678	184,64	123,156	81,1981
20,045	1999,76	5,00061	179,63	128,28	77,9544	20,006	1952,13	5,1226	179,57	127,662	78,3319
25,305	1676,62	5,96439	174,63	133,021	75,176	25,041	1610,24	6,21026	174,63	132,335	75,5658
30,334	1410,1	7,0917	169,61	138,161	72,3791	30,059	1355,94	7,37498	169,65	137,395	72,7826
35,955	1164,68	8,58603	164,59	143,649	69,614	35,053	1148,35	8,70811	164,63	142,876	69,9906
40,334	1012,27	9,87875	159,57	149,589	66,85	40,006	980,199	10,202	159,63	148,847	67,183
45,376	869,045	11,5069	154,65	155,832	64,1715	45,055	842,236	11,8732	154,59	155,223	64,4235
50,312	761,412	13,1335	149,64	162,779	61,4329	50,122	735,97	13,5875	149,59	162,168	61,6645
55,38	670,114	14,9228	144,66	170,239	58,741	55,109	649,126	15,4053	144,59	169,603	58,9612
61,051	580,058	17,2397	138,91	177,82	56,2367	60,044	574,008	17,4214	138,9	177,108	56,4628
65,375	526,397	18,9971	134,68	187,425	53,3548	65,052	512,233	19,5224	134,66	186,73	53,5533
70,365	473,214	21,1321	129,59	197,463	50,6423	70,045	460,88	21,6976	129,57	196,734	50,8301
75,373	428,134	23,3572	124,64	208,249	48,0194	76,65	407,79	24,5225	124,63	207,52	48,1882
80,355	390,496	25,6084	119,66	220,225	45,4082	80,359	381,794	26,1921	119,57	219,573	45,5429
85,334	358,278	27,9113	114,62	233,668	42,7958	85,389	349,692	28,5966	114,53	233,034	42,9122
90,377	330,227	30,2822	109,56	248,83	40,188	90,339	322,191	31,0375	109,6	247,814	40,3528
95,299	306,276	32,6503	104,61	265,608	37,6494	95,302	298,483	33,5027	104,64	264,28	37,8387
100,37	284,783	35,1144	99,583	284,704	35,1241	100,37	277,303	36,0616	99,667	283,107	35,3224
105,32	266,251	37,5585	94,546	306,502	32,6262	105,34	258,846	38,633	94,546	305,026	32,7841
111,03	247,25	40,4449	89,586	331,096	30,2027	110,3	242,665	41,2091	89,568	329,446	30,354
115,38	235,031	42,5475	84,563	359,276	27,8337	115,35	228,058	43,8485	84,12	358,937	27,86
120,41	221,788	45,0881	79,58	392,329	25,4888	121,07	212,866	46,9779	79,935	389,333	25,685
125,38	210,134	47,5887	73,771	431,087	23,1972	125,38	203,183	49,2166	74,948	427,057	23,4161

Anhang,	Ag ₄ Mn ₃ O ₈
---------	--

	0,1 Tesla		1 Tesla				3 Tesla		5 Tesla		
Temp.	χ in 10^{-4}	χ^{-1} in	Temp.	χ in 10^{-4}	χ^{-1} in	Temp.	χ in 10^{-4}	χ^{-1} in	Temp.	χ in 10^{-4}	χ^{-1} in
in K	cm ³ /mol	mol / cm ³	in K	cm ³ / mol	mol / cm ³	in K	cm ³ / mol	mol / cm ³	in K	cm ³ / mol	mol / cm ³
130,39	199,409	50,1482	69,66	475,273	21,0406	130,32	192,762	51,8773	69,901	472,129	21,1807
135,37	189.83	52,6786	64,653	529,237	18,8951	135,41	183,03	54,6357	64,903	525,242	19,0388
140,32	181,146	55,204	59,524	594,682	16,8157	140,39	174,306	57,3705	59,857	588,498	16,9924
145,32	173,061	57,783	54,613	670,904	14,9053	145,3	166,455	60,0762	54,93	662,298	15,0989
150,33	165,62	60,3793	49,611	765,51	13,0632	150,39	158,959	62,9095	49,885	755,549	13,2354
155,37	158,837	62,9575	42,048	947,055	10,559	155,32	152,298	65,6608	44,997	863,078	11,5864
160,3	152,689	65,4925	39,622	1024,17	9,76399	160,3	146,078	68,4568	39,897	1001,5	9,98497
165,31	146,828	68,1069	34,545	1206,54	8,28816	165,37	140,265	71,2934	34,967	1165,32	8,5813
170,35	141,47	70,6862	29,607	1424,43	7,02037	170,31	135,021	74,0627	29,94	1365,63	7,32261
175,34	136,512	73,2534	24,518	1695,55	5,8978	175,32	130,057	76,8894	24,908	1629,89	6,13537
181,05	131,12	76,2658	19,658	2010,78	4,97319	180,39	125,374	79,7613	19,783	1886,34	5,30128
185,35	127,517	78,4209	18,898	2056,55	4,86252	185,27	121,131	82,5552	18,156	1973,52	5,06708
190,33	123,48	80,985	18,703	2067,58	4,83658	190,33	117,053	85,4313	18,065	1970,57	5,07467
195,37	119,624	83,5951	18,712	2066,62	4,83881	195,4	113,201	88,3387	17,635	1984,64	5,0387
200,3	116,125	86,1141	18,442	2084,77	4,79669	200,33	109,71	91,1493	17,409	2001,48	4,99629
205,35	112,721	88,7145	17,943	2118,29	4,72078	205,31	106,39	93,9936	17,152	2016,6	4,95885
210,29	109,578	91,2593	17,44	2152,25	4,64631	210,38	103,154	96,9422	16,889	2031,53	4,9224
215,36	106,547	93,8549	16,946	2185,51	4,5756	215,32	100,216	99,784	16,632	2046,64	4,88605
220,4	103,743	96,3921	16,452	2218,77	4,50701	220,27	97,438	102,629	16,368	2061,58	4,85065
225,33	101,095	98,9172	15,945	2252,81	4,43891	225,32	94,7232	105,571	15,989	2085,02	4,79611
230,33	98,5855	101,435	15,456	2285,63	4,37516	231,02	91,7857	108,949	15,49	2113,33	4,73186
235,36	96,1633	103,99	14,945	2319,41	4,31144	235,31	89,7976	111,362	14,995	2140,95	4,67083
240,29	93,9063	106,489	14,447	2351,98	4,25174	240,32	87,4798	114,312	14,486	2168,91	4,61061
245,36	91,6491	109,112	13,942	2384,37	4,19399	245,31	85,324	117,2	13,992	2195,31	4,55517
250,31	89,5831	111,628	13,441	2415,63	4,13971	250,33	83,2377	120,138	13,487	2221,18	4,5021
255,34	87,5548	114,214	12,946	2445,33	4,08943	255,37	81,258	123,065	12,995	2246,02	4,45232
260,38	85,6238	116,79	12,449	2474,76	4,04079	260,27	79,4173	125,917	12,499	2270,68	4,40397
265,32	83,8373	119,279	11,942	2503,59	3,99426	265,29	77,605	128,858	11,986	2295,69	4,35599
270,33	82,0844	121,826	11,444	2530,6	3,95163	270,34	75,8563	131,828	11,493	2318,96	4,31228
275,38	80,4223	124,344	10,943	2555,87	3,91257	275,38	74,1851	134,798	10,995	2341,71	4,27038
280,29	78,8484	126,826	10,448	2578,36	3,87844	280,3	72,644	137,658	10,492	2364,63	4,22898
285,34	77,3081	129,353	9,9456	2596,85	3,85082	285,28	71,1257	140,596	9,9978	2385,82	4,19143
290,31	75,8864	131,776	9,445	2607,62	3,83492	290,31	69,6851	143,503	9,4981	2407,18	4,15424
295,31	74,4922	134,242	8,9515	2612,56	3,82766	295,32	68,2994	146,414	8,9895	2428,37	4,11799
300,35	73,1661	136,675	8,4493	2615,51	3,82335	300,33	66,9623	149,338	8,499	2447,47	4,08586
305,35	71,9027	139,077	7,9543	2615,24	3,82373	305,36	65,6803	152,253	7,9993	2466,05	4,05507
311,02	70,4363	141,972	7,4445	2612,29	3,82807	310,32	64,4811	155,084	7,4953	2483,76	4,02616
315,35	69,6987	143,475	6,942	2608,89	3,83305	315,31	63,3122	157,947	6,9868	2499,73	4,00043
320,33	68,5405	145,899	6,4629	2605,5	3,83804	320,28	62,2293	160,696	6,4957	2512,92	3,97943
325,26	67,5887	147,954	5,9286	2601,67	3,84369	325,35	61,1842	163,441	5,9862	2522,99	3,96356
330,32	66,3877	150,63	5,46	2598,01	3,8491	330,35	60,1971	166,121	5,4948	2528,02	3,95567
			4,9553	2593,75	3,85543				4,9975	2530,96	3,95107

7.1.2 Leitfähigkeitsmessung

Temp.	Wieder.										
in K	in $10^7 \Omega$										
7,08807	6,84418	52,5038	6,93	101,166	7,1939	150,696	6,23481	200,39	7,97261	250,152	7,36487
8,67803	8,22915	57,5823	8,25952	106,086	8,41043	155,69	6,98923	205,358	6,48962	255,146	6,93457
12,5147	9,10927	62,5593	6,83038	111,002	6,76714	160,643	6,81518	210,295	6,04773	260,155	6,71899
16,9838	6,16749	67,5158	7,98241	115,961	8,4534	165,628	8,59094	215,284	8,36985	265,147	5,8839
21,8931	7,45752	72,3255	6,74569	120,932	6,09782	170,558	8,31034	220,248	8,18713	270,11	6,42912
27,3118	7,27568	77,429	7,28546	125,897	8,35847	175,579	6,88008	225,221	8,23134	275,083	6,73095
31,9567	6,32292	82,2309	5,93382	130,853	5,73247	180,519	6,73643	230,197	8,14813	280,051	7,45404
37,2626	8,2561	86,4911	7,28376	135,797	6,87673	185,478	7,99932	235,151	8,32363	285,028	3,81648
42,4724	8,04861	91,4344	6,1888	140,77	7,73182	190,452	6,403	240,117	6,01489	289,849	14,4367
47,4745	7,33383	96,2861	5,64587	145,744	8,70868	195,421	6,38438	245,12	8,84018	294,25	4,57619
										299,025	6,0995

7.1.3 DTA / TG / MS - Messung

DTA / TG.	DTA	TG	Zeit	MS	MS	(MS 16)	(MS 18)	(MS 32)
Temp.	in uV / mg	Δm	DTA / TG	Zeit	Temp.	Ionenstrom	Ionenstrom	Ionenstrom
in K	mμvγmg	in %	in min	in min	in K	in 10 ⁻⁹ A	in 10 ⁻⁹ A	in 10 ⁻⁹ A
0,0015	3,7968	1,1289	307,15	0,45097	303,482	0	100	0,00903
0,5015	3,5876	1,1049	307,15	0,39206	303,29422	0,5	99,94525	0,00799
1,0015	3,5164	1,0974	307,09697	0,38022	303,08477	1	99,8018	0,00835
1,5015	3,4717	1,0826	306,14895	0,3768	302,94655	1,5	99,93456	0,00856
2,0015	3,4465	1,0777	306,48897	0,37109	302,851	2	99,90679	0,01229
2,5015	3,4015	1,0629	307,15	0,36782	302,99499	2,5	99,8631	0,0185
3,0015	3,3612	1,0544	307,87921	0,36562	303,61232	3	99,964	0,02446
3,5015	3,3656	1,0386	309,6187	0,366	304,98221	3,5	100,16076	0,02656
4,0015	3,4122	1,0285	312,21854	0,37088	307,23354	4	100,21046	0,02641
4,5015	3,438	1,0142	315,77158	0,37174	310,39443	4,5	100,44093	0,02091
5,0015	3,499	0,99719	320,31651	0,37387	314,62388	5	99,97951	0,01062
5,5015	3,5532	0,99289	325,75432	0,37311	319,77332	5,5	99,98281	-0,00365
6,0015	3,6202	0,98315	331,96249	0,37773	325,80343	6	99,85397	-0,02187
6,5015	3,6696	0,96352	338,95772	0,37656	332,57999	6,5	99,82398	-0,0421
7,0015	3,7238	0,95473	346,58195	0,38084	340,02788	/	99,96532	-0,0661
/,5015	3,7689	0,93425	354,47794	0,37883	347,89855	/,5	99,72746	-0,08916
8,0015	3,8148	0,91557	362,62468	0,37696	356,07032	8	99,86851	-0,11248
8,5015	3,8391	0,89589	3/1,1194/	0,38114	304,42299	8,5	99,46124	-0,13752
9,0015	3,8009	0,88704	379,39013	0,37172	372,83303	9	99,04038	-0,16254
9,3013	3,8700	0.8554	305 10827	0,37311	380.02523	9,3	99,46076	-0,1802
10,0015	3,9179	0.84327	402 57061	0,37311	396 66664	10.5	99,03877	-0,19989
11,0015	3,933	0.82221	402,37001	0.36944	403 96996	10,5	99,39147	-0.22388
11,0015	3 9847	0.80454	416 48344	0,36593	410 85062	11.5	99 5116	-0,22586
12 0015	4 0405	0 79791	422 88424	0,3682	417 31328	12	99 47031	-0.23028
12,5015	4.0645	0.78629	428,75353	0.36681	423 44486	12.5	99.65691	-0.22666
13,0015	4.0869	0.77147	434,29382	0.36607	429,17818	13	99.65817	-0.2267
13,5015	4.1187	0.76608	439.43425	0.36362	434.55141	13.5	99,44639	-0.22558
14.0015	4.1421	0.75407	444.25128	0.3641	439,50849	14	99,43107	-0.22489
14,5015	4,1888	0,74918	448,89772	0,36164	444,21271	14,5	99,62903	-0,22519
15,0015	4,2122	0,73627	453,45386	0,36341	448,75504	15	99,59363	-0,22677
15,5015	4,2487	0,72383	457,76369	0,36017	453,19962	15,5	99,54369	-0,23094
16,0015	4,2563	0,72022	462,03924	0,35614	457,48606	16	99,65805	-0,23666
16,5015	4,298	0,71899	466,28512	0,35921	461,76636	16,5	99,35204	-0,24263
17,0015	4,3313	0,71628	470,61635	0,36037	466,03593	17	99,49579	-0,25053
17,5015	4,374	0,7143	474,91047	0,35814	470,36869	17,5	99,3982	-0,25906
18,0015	4,3606	0,70992	479,31473	0,36101	474,73801	18	99,70661	-0,27354
18,5015	4,4148	0,71123	483,84024	0,36032	479,12214	18,5	99,54579	-0,29084
19,0015	4,4225	0,7158	488,27049	0,3608	483,59659	19	99,39189	-0,31061
19,5015	4,4878	0,71625	492,95013	0,36379	488,2167	19,5	99,50613	-0,33036
20,0015	4,5331	0,72048	497,73134	0,3587	492,93445	20	99,59603	-0,34891
20,5015	4,5332	0,7191	502,48514	0,36203	497,80399	20,5	99,57957	-0,36878
21,0015	4,5507	0,71994	507,52253	0,36377	502,67379	21	99,30559	-0,38633
21,5015	4,5813	0,73357	512,35978	0,36527	507,64246	21,5	99,61346	-0,40341
22,0015	4,6127	0,73184	517,20761	0,36809	512,67748	22	99,50529	-0,42118
22,5015	4,0291	0,73427	522,20575	0,30947	517,79502	22,5	99,45156	-0,441/4
23,0015	4,0389	0,73840	527,40201	0,37001	522,94071	23	99,52506	-0,4588
23,3015	4,0311	0,7438	537,67706	0,30794	523,05172	23,5	99,40855	-0,4748
24,0015	4,0824	0,7522	542 84148	0,37324	538 20026	24	99,03840	-0,4902
24,5015	4,7085	0.7623	547 80576	0,3722	543 42744	24,5	99,45288	0.51861
25,0015	4,7429	0.76614	552 99048	0,37983	548 54685	25 5	99,40088	-0,51301
26,0015	4,7892	0.7718	558 02794	0.37946	553,55637	25,5	99,28089	-0.54942
26,5015	4,7877	0.77454	563 08842	0.38279	558,55961	26.5	99,28161	-0.56601
27.0015	4,8108	0,78702	568.02577	0,38585	563.59623	27	99,27242	-0.58281
27,5015	4.8382	0.79864	573.07482	0.39068	568,6099	27.5	99.53642	-0.60101
28,0015	4.8645	0.80893	578.07727	0.39312	573,61802	28	99.11839	-0.61945
28,5015	4,9088	0,81845	582,99168	0,39744	578,54178	28.5	99,56514	-0,64001
29,0015	4,9454	0.8451	588,01014	0,40843	583,47758	29	99.372	-0,66336
29,5015	4,9605	0,86095	592,91515	0,41553	588,44935	29,5	99,41364	-0,68539
30,0015	5,0116	0,88984	597,96385	0,42294	593,39289	30	99,42554	-0,70464
30,5015	5,0047	0,91812	602,91678	0,43304	598,33784	30,5	99,51797	-0,73094

DTA / TG .	DTA	TG	Zeit	MS	MS	(MS 16)	(MS 18)	(MS 32)
Temp.	in uV / mg	Δm	DTA / TG	Zeit	Temp.	Ionenstrom	Ionenstrom	Ionenstrom
in K	in μ v / ing	in %	in min	in min	in K	in 10 ⁻⁹ A	in 10 ⁻⁹ A	in 10 ⁻⁹ A
31,0015	5,0708	0,95555	607,98308	0,44309	603,33103	31	99,39699	-0,76035
31,5015	5,0781	0,98967	612,88214	0,45357	608,30964	31,5	99,21767	-0,78544
32,0015	5,136	1,0507	617,79721	0,46687	613,3252	32	99,30643	-0,81545
33,0015	5,1472	1,1693	627,75607	0.49583	623,34092	33	99,13323	-0.8762
33,5015	5,1759	1,2499	632,73235	0,51341	628,28138	33,5	99,32776	-0,91246
34,0015	5,1988	1,3151	637,70474	0,53092	633,23896	34	99,25433	-0,95016
34,5015	5,2184	1,3991	642,7643	0,54425	638,18491	34,5	99,35156	-0,98732
35,0015	5,2201	1,4749	647,7444	0,55894	643,13477	35	99,14195	-1,02638
35,5015	5,2099	1,5441	652,74385	0,57/62	648,11106	35,5	99,328	-1,06/28
36 5015	5,2105	1,0003	662 68997	0,58976	658.077	36.5	99,3107	-1,10408
37,0015	5,197	1,6239	667,57708	0,59622	663,07761	37	99,22187	-1,1724
37,5015	5,2106	1,6202	672,60179	0,59928	668,08097	37,5	99,19393	-1,16464
38,0015	5,1902	1,6258	677,55877	0,60008	673,09104	38	99,30974	-1,18869
38,5015	5,1939	1,6344	682,5103	0,60267	678,03306	38,5	99,12127	-1,21037
39,0015	5,2159	1,6547	687,54142	0,60395	682,95078	39	99,18119	-1,23069
39,5015	5,2027	1,6/43	692,53803	0,61026	687,93937	39,5	99,14844	-1,2507
40,0015	5,1781	1,7004	702 44809	0,62567	697,88509	40	99,10228	-1,27258
41,0015	5,203	1,7538	702,4430)	0.64053	702.84385	41	99.12434	-1,31418
41,5015	5,2219	1,893	712,30453	0,65305	707,83143	41,5	98,98876	-1,33443
42,0015	5,2184	1,9928	717,3461	0,66758	712,79951	42	98,91376	-1,35471
42,5015	5,1993	2,1059	722,28844	0,69715	717,85724	42,5	98,87536	-1,3736
43,0015	5,2002	2,2393	727,32447	0,71864	722,82932	43	98,91274	-1,39641
43,5015	5,1946	2,4314	732,31424	0,75906	727,76157	43,5	98,74117	-1,4212
44,0015	5,1978	2,6979	737,2494	0,81794	732,6934	44	98,70655	-1,44504
44,5015	5,2249	3,0515	742,14079	0,89746	742 58741	44,5	99,0003	-1,40555
45 5015	5,2329	3,4927	750 48398	1 0747	743 49059	45	99,71580	-1,4003
46,0015	5,2384	4,2216	752,9233	1,1454	743,26004	46	99,00645	-1,4971
46,5015	5,2392	4,4708	754,33081	1,2015	745,00234	46,5	98,71204	-1,43341
47,0015	5,2359	4,6445	755,15028	1,235	748,22705	47	98,62574	-1,29968
47,5015	5,2138	4,7278	754,6053	1,2487	749,36898	47,5	98,56356	-1,17017
48,0015	5,2401	4,7313	753,87807	1,2529	749,72417	48	98,44095	-0,9967
48,5015	5,2055	4,691	752,79313	1,2433	749,51033	48,5	98,41929	-0,89548
49,0015	5,2011	4,0193	750 50879	1,2208	749,03894	49	98,41881	-0,78964
50.0015	5,1987	4.431	749.36368	1,202	747.9613	50	98.27986	-0.69273
50,5015	5,1674	4,367	748,27872	1,1541	747,54059	50,5	98,26353	-0,67788
51,0015	5,151	4,2696	747,36094	1,1301	747,03971	51	98,23295	-0,67205
51,5015	5,1536	4,1752	746,81218	1,1119	746,72599	51,5	98,13642	-0,67671
52,0015	5,1168	4,0974	746,15024	1,0922	746,35969	52	97,99767	-0,68932
52,5015	5,1132	4,0315	745,81879	1,0731	746,13692	52,5	97,96445	-0,70297
53,0015	5,0921	3,9555	745,15024	1,0527	745,80330	53 5	97,96280	-0,72309
54.0015	5.0821	3.8762	745,15024	1.031	745,47335	54	97.92516	-0,75533
54,5015	5,0699	3,8245	745,15024	1,0242	745,44683	54,5	97,87867	-0,76651
55,0015	5,072	3,7751	745,15024	1,017	745,42347	55	97,82639	-0,77954
55,5015	5,0677	3,7839	745,15024	1,0076	745,29713	55,5	97,82692	-0,78743
56,0015	5,03	3,736	745,15024	0,99079	745,03517	56	97,83495	-0,79611
56,5015	5,033	3,7168	745,15024	0,99296	744,79284	56,5	97,80957	-0,80059
57,0015	5,019	3,094	745,15024	0,984	744,45068	575	97,7503	-0,80512
58.0015	5.0102	3.6359	745,15024	0,98057	743.87751	58	97.62068	-0.81018
58,5015	5,0088	3,6071	745,15024	0,97144	743,66676	58,5	97,56664	-0,81152
59,0015	4,9671	3,5852	745,15024	0,95946	743,41676	59	97,51828	-0,81301
59,5015	5,0028	3,5599	745,15024	0,95772	743,26537	59,5	97,52512	-0,81407
60,0015	4,9755	3,5472	745,15024	0,9487	743,09463	60	97,54637	-0,81526
60,5015	4,989	3,5307	745,15024	0,94423	742,99694	60,5	97,53862	-0,81571
61,0015	4,9656	3,5122	745,15024	0,9374	742,89174	61	97,50769	-0,81618
62 0015	4,9031	3,4700	745,15024	0,93421	142,03312	62	97 40657	-0,010/5
62,5015	4,9347	3,4414	745,15024	0.9287	742,74956	62.5	97,33033	-0.8176
63,0015	4,9635	3,4264	745,15024	0,92767	742,72132	63	97,24902	-0,81754
63,5015	4,9358	3,4206	745,15024	0,91688	742,70821	63,5	97,253	-0,81751

DTA / TG .	DTA	TG	Zeit	MS	MS	(MS 16)	(MS 18)	(MS 32)
Temp.	in uV / mg	Δm	DTA / TG	Zeit	Temp.	Ionenstrom	Ionenstrom	Ionenstrom
in K	mμv/mg	in %	in min	in min	in K	in 10 ⁻⁹ A	in 10 ⁻⁹ A	in 10 ⁻⁹ A
64,0015	4,924	3,3799	745,15024	0,91379	742,69661	64	97,26079	-0.81769
64,5015	4,9394	3,3702	745,15024	0,90673	742,69223	64,5	97,20255	-0,81818
65,0015	4,935	3,3371	745,15024	0,90269	742,68901	65	97,11794	-0,81923
65,5015	4,9372	3,325	745,15024	0,89744	742,68783	65,5	97,11447	-0,82036
66,0015	4,9271	3,3068	745,15024	0,89822	742,68699	66	97,10358	-0,82187
66,5015	4,9024	3,2836	745,15024	0,89224	742,68683	66,5	97,01614	-0,82261
67,0015	4,8923	3,251	744,94317	0,88742	742,68686	67	96,90446	-0,82321
67,5015	4,8784	3,25	744,61821	0,88146	742,6869	67,5	96,92479	-0,82337
68,0015	4,8745	3,2259	744,44455	0,87161	742,68688	68	96,99223	-0,82367
68,5015	4,8631	3,1828	744,48597	0,87008	742,68676	68,5	96,9948	-0,82431
69,0015	4,8588	3,167	744,54074	0,86721	742,68665	69	96,95387	-0,82544
69,5015	4,8744	3,1412	744,17484	0,85616	742,68675	69,5	96,90515	-0,8263
70,0015	4,8476	3,12/6	744,15024	0,85481	742,68665	70	96,84129	-0,82743
70,5015	4,8392	3,1	744,15024	0,84705	742,08388	70,5	90,80099	-0,82819
71,0015	4,8357	3,072	744,13024	0,84383	742,084	71 5	90,70882	-0,82898
72 0015	4,8209	3,0302	744,13023	0,83373	742,08170	71,5	96,74338	-0,8292
72,5015	4 81	3.026	744,25771	0.82582	742,67599	72 5	96 7444	-0.83004
73,0015	4 8215	2 9927	744,15027	0.81451	742,67331	73	96 74555	-0.83107
73,5015	4.7984	2,9749	744.15027	0.81522	742.67218	73.5	96.68062	-0.83192
74,0015	4.8199	2,9405	744.15027	0.81324	742.67136	74	96,59961	-0.83298
74,5015	4,7999	2,9395	744,15027	0,80275	742,67114	74,5	96,62166	-0,83351
75,0015	4,7984	2,9161	744,15027	0,80417	742,67063	75	96,66876	-0,8339
75,5015	4,7902	2,8918	744,15027	0,79534	742,66954	75,5	96,64029	-0,83391
76,0015	4,7664	2,8692	744,15027	0,78972	742,66823	76	96,56587	-0,83426
76,5015	4,7692	2,8417	744,15027	0,78599	742,66817	76,5	96,52273	-0,83542
77,0015	4,7733	2,8374	744,15027	0,78145	742,66759	77	96,48945	-0,8373
77,5015	4,7685	2,7987	744,15027	0,77124	742,66522	77,5	96,48695	-0,83827
78,0015	4,7518	2,7853	744,15027	0,76322	742,66174	78	96,48265	-0,8388
78,5015	4,7633	2,7543	744,15027	0,75886	742,66083	78,5	96,45862	-0,83835
79,0015	4,7611	2,7175	744,15027	0,75029	742,66072	79	96,42316	-0,83776
79,5015	4,7534	2,6851	744,15027	0,74752	742,66072	79,5	96,4138	-0,83816
80,0015	4,7432	2,664	744,15027	0,74426	742,6604	80	96,40506	-0,83922
80,5015	4,727	2,6399	744,15027	0,73698	742,65971	80,5	96,38507	-0,84002
81,0013	4,7353	2,3965	744,13027	0,7275	742,03843	01 81.5	90,55509	-0,84082
82 0015	4,7301	2,5741	744,15027	0,72343	742,03718	81,5	96,33924	-0.8411
82,0015	4 7081	2 5239	744,15027	0,709	742,65309	82.5	96 32339	-0.84284
83,0015	4,7287	2,3239	744,15027	0.70104	742.65025	83	96,28494	-0.84445
83,5015	4,7178	2,4682	744.15027	0.69306	742.64831	83.5	96,19987	-0.84497
84,0015	4,7165	2,4327	744,15027	0,69105	742,64545	84	96,08244	-0,84522
84,5015	4,7169	2,4023	744,15027	0,68633	742,64261	84,5	96,05242	-0,84532
85,0015	4,6995	2,3717	744,15027	0,67569	742,63882	85	96,06792	-0,84533
85,5015	4,7033	2,3375	744,15027	0,66632	742,63675	85,5	96,11278	-0,84508
86,0015	4,6784	2,2995	744,15027	0,65306	742,63416	86	96,14302	-0,8449
86,5015	4,7033	2,2673	744,15027	0,65011	742,63173	86,5	96,08286	-0,84531
87,0015	4,6977	2,2364	744,15027	0,64721	742,62875	87	95,97892	-0,84615
87,5015	4,686	2,2059	744,15027	0,63309	742,62773	87,5	95,94809	-0,84669
88,0015	4,6939	2,1559	744,15027	0,62893	742,62692	88	95,93759	-0,8472
88,5015	4,6739	2,1283	744,15027	0,61739	742,6261	88,5	95,93032	-0,84736
89,0015	4,674	2,0808	744,15027	0,61232	742,62546	89	95,92849	-0,84765
89,5015	4,0548	2,0412	744,15027	0,59664	742,02018	89,5	95,94821	-0,84817
90,0013	4,0035	2,0172	744,13027	0,59488	742,02727	90	95,97582	-0,84875
91 0015	4 6492	1 9737	744 15027	0,56554	742,02009	90,5	95 95164	-0,04039
91,5015	4,6526	1,9252	744.15027	0.56504	742,62321	91.5	95,95373	-0.84906
92,0015	4.6396	1.8434	744,15027	0.55246	742,62043	92	95,94945	-0.85032
92,5015	4.6184	1.8172	744,15027	0.54415	742,61891	92.5	95,91463	-0.85117
93,0015	4,6397	1,7705	744,15027	0,54182	742,61722	93	95,85656	-0,852
93,5015	4,6414	1,7236	744,15027	0,52967	742,6161	93,5	95,83042	-0,85224
94,0015	4,6237	1,6816	744,15027	0,51578	742,61527	94	95,82375	-0,85231
94,5015	4,6226	1,6417	744,15027	0,51	742,61577	94,5	95,84715	-0,85227
95,0015	4,6317	1,6014	744,15027	0,49956	742,6162	95	95,86477	-0,85226
95,5015	4,624	1,5624	744,15027	0,49001	742,61485	95,5	95,82948	-0,85242
96,0015	4,6143	1,5351	744,15027	0,48742	742,61203	96	95,79897	-0,85286
96,5015	4,6203	1,5014	744,15027	0,4764	742,60998	96,5	95,85659	-0,85336

DTA / TG .	DTA	TG	Zeit	MS	MS	(MS 16)	(MS 18)	(MS 32)
Temp.	in uV / mg	Δm	DTA / TG	Zeit	Temp.	Ionenstrom	Ionenstrom	Ionenstrom
in K	in μ v / ing	in %	in min	in min	in K	in 10 ⁻⁹ A	in 10 ⁻⁹ A	in 10 ⁻⁹ A
97,0015	4,5944	1,4744	744,15027	0,47304	742,60794	97	95,9247	-0,85371
97,5015	4,6097	1,444	744,15027	0,46764	742,60746	97,5	95,86793	-0,85326
98,0015	4,5926	1,4226	744,15027	0,45672	742,60708	98	95,757	-0,85248
98,5015	4,5850	1,4025	744,15027	0,45049	742,60628	98,5 99	95,73522	-0,85235
99,5015	4,5939	1,3649	744,15027	0.44462	742,60491	99.5	95,76482	-0,8524
100,0015	4,5906	1,3517	744,15027	0,44633	742,60469	100	95,76293	-0,85248
100,5015	4,6004	1,3275	744,15027	0,44116	742,60424	100,5	95,73082	-0,85289
101,0015	4,5761	1,3224	744,15027	0,43602	742,60435	101	95,6856	-0,85334
101,5015	4,5763	1,3091	744,15027	0,43502	742,60612	101,5	95,67988	-0,85307
102,0015	4,5577	1,3024	744,15027	0,42984	742,60883	102	95,69801	-0,85229
102,0015	4,5738	1,2905	744,15027	0.42613	742,61006	102,5	95,75059	-0.85106
103,5015	4,5501	1,2839	744,15027	0,42296	742,61072	103,5	95,73531	-0,85127
104,0015	4,5643	1,2806	744,15027	0,42144	742,61126	104	95,70587	-0,85149
104,5015	4,5498	1,265	744,15027	0,42219	742,61044	104,5	95,70368	-0,85094
105,0015	4,5692	1,2537	744,15027	0,4196	742,60838	105	95,71136	-0,85007
105,5015	4,5416	1,255	744,15027	0,41628	742,60639	105,5	95,71077	-0,85001
106,0015	4,3624	1,2517	744,15027	0,41916	742,60344	106.5	95,69528	-0,85052
107,0015	4,5025	1,23	744,15027	0,42056	742,00097	100,5	95,63856	-0,85055
107,5015	4,5404	1,2392	744,15027	0,41078	742,59481	107,5	95,64723	-0,85049
108,0015	4,5301	1,2336	744,15027	0,41241	742,59204	108	95,66545	-0,85005
108,5015	4,5249	1,2319	744,15027	0,41682	742,59152	108,5	95,65796	-0,8497
109,0015	4,5338	1,2119	744,15027	0,41221	742,59166	109	95,6388	-0,84966
109,5015	4,5309	1,2265	744,15027	0,41325	742,59171	109,5	95,63343	-0,85039
110,0015	4,5352	1,21/6	744,15027	0,4092	742,59138	110	95,63083	-0,85155
111,0015	4,5117	1,2210	744,15027	0,40879	742,39038	110,5	95,62370	-0,85166
111,5015	4,5305	1,2200	744,15027	0.41178	742,58795	111.5	95.58051	-0.85102
112,0015	4,5072	1,2143	744,15027	0,4081	742,58661	112	95,57238	-0,85027
112,5015	4,519	1,2027	744,15027	0,40391	742,58616	112,5	95,61608	-0,85032
113,0015	4,5177	1,2024	744,15027	0,40852	742,58583	113	95,6721	-0,85053
113,5015	4,5173	1,2019	744,15027	0,40701	742,58548	113,5	95,6544	-0,85024
114,0015	4,4957	1,1994	744,15027	0,40467	742,58473	114	95,59846	-0,8497
115,0015	4,3043	1,1985	744,15027	0.39979	742,58263	114,5	95,5082	-0.84954
115,5015	4,4944	1,1948	744,15027	0,40158	742,58215	115,5	95,60277	-0,84956
116,0015	4,5002	1,1922	744,15027	0,40485	742,58242	116	95,66044	-0,84961
116,5015	4,4896	1,1894	744,15027	0,40319	742,58392	116,5	95,6669	-0,84969
117,0015	4,4913	1,1853	744,15027	0,40283	742,58682	117	95,65992	-0,84979
117,5015	4,4719	1,1872	744,15027	0,39805	742,58928	117,5	95,66805	-0,84978
118,0015	4,476	1,1958	744,15027	0,40212	742,59198	118	95,68556	-0,84959
119,0015	4,4783	1,1921	744,15027	0.40129	742,59273	110,5	95,69035	-0,84891
119,5015	4,4838	1,1845	744.15027	0.39691	742,59361	119.5	95.68465	-0.84918
120,0015	4,479	1,1819	744,15027	0,39624	742,5943	120	95,67568	-0,8497
120,5015	4,4657	1,1788	744,15027	0,39603	742,59454	120,5	95,6706	-0,8498
121,0015	4,4676	1,1806	744,15027	0,39451	742,59507	121	95,6664	-0,8496
121,5015	4,4611	1,1805	744,15027	0,39129	742,59627	121,5	95,66582	-0,84914
122,0015	4,4521	1,1755	744,15027	0,39655	742,59882	122	95,00180	-0,84834
122,0015	4,4422	1,1766	744,15027	0.39455	742,60528	122,3	95,63527	-0.84698
123,5015	4,4454	1,1776	744,15027	0,39623	742,60734	123,5	95,63274	-0,8469
124,0015	4,4525	1,1794	744,15027	0,39586	742,61008	124	95,64145	-0,84692
124,5015	4,443	1,1844	744,15027	0,39152	742,61286	124,5	95,65886	-0,84676
125,0015	4,4506	1,1841	744,15027	0,39434	742,61654	125	95,67425	-0,84676
125,5015	4,4378	1,1776	744,15027	0,39578	742,61829	125,5	95,66026	-0,84741
126,0015	4,4343 4 434	1,181/	744,15027	0,39201	742,02002	126	95,03100	-0,84842
127,0015	4,4331	1,1795	744.15027	0.39711	742.62252	120,5	95,59719	-0.84853
127,5015	4,4233	1,1781	744,15027	0,39354	742,6226	127,5	95,57225	-0,84817
128,0015	4,4265	1,1797	744,15027	0,38654	742,62207	128	95,54862	-0,84795
128,5015	4,4342	1,1743	744,15027	0,39444	742,62133	128,5	95,56192	-0,84851
129,0015	4,4227	1,1676	744,15027	0,38953	742,61979	129	95,58951	-0,84934
129,5015	4,4127	1,1773	744,15027	0,3905	742,61791	129,5	95,59458	-0,84929

DTA / TG .	DTA	TG	Zeit	MS	MS	(MS 16)	(MS 18)	(MS 32)
Temp.	in uV/mg	Δm	DTA / TG	Zeit	Temp.	Ionenstrom	Ionenstrom	Ionenstrom
in K	µ. (,g	in %	in min	in min	in K	in 10 ⁻⁹ A	in 10 ⁻⁹ A	in 10 ⁻⁹ A
130,0015	4,4188	1,1722	744,15027	0,39422	742,6157	130	95,59666	-0,84845
130,5015	4,4101	1,1677	744,15027	0,39343	742,61538	130,5	95,60599	-0,84721
131,0015	4,4075	1,1696	744,15027	0,38625	742,61552	131 5	95,59473	-0,8459
132 0015	4,412	1,1092	744,15027	0,38994	742,01320	131,5	95,3342	-0,84613
132,5015	4.3959	1,168	744,15027	0.38977	742,61557	132.5	95.48358	-0.84732
133,0015	4,3896	1,1669	744,15027	0,38709	742,61574	133	95,52275	-0,84739
133,5015	4,4025	1,1697	744,15027	0,38839	742,61404	133,5	95,49085	-0,8472
134,0015	4,4014	1,1774	744,15027	0,39217	742,61124	134	95,43	-0,84669
134,5015	4,3867	1,1749	744,15027	0,38786	742,61022	134,5	95,42724	-0,84591
135,0015	4,3799	1,176	744,15027	0,38847	742,6094	135	95,45849	-0,84416
135,5015	4,3695	1,1752	744,15027	0,38465	742,60849	135,5	95,49325	-0,842
136,0015	4,4088	1,1732	744,15027	0,38731	742,0073	136.5	95,5599	-0,83835
137,0015	4,3683	1,1673	744,15027	0.38727	742,60745	130,5	95,57002	-0.83835
137,5015	4,3895	1,169	744,15027	0,38965	742,6084	137,5	95,52459	-0,83923
138,0015	4,3982	1,1669	744,15027	0,38521	742,60919	138	95,46588	-0,84043
138,5015	4,367	1,1725	744,15027	0,38547	742,60824	138,5	95,4774	-0,8406
139,0015	4,3826	1,172	744,15027	0,38635	742,60594	139	95,52125	-0,84049
139,5015	4,3571	1,1686	744,15027	0,38835	742,604	139,5	95,5422	-0,84059
140,0015	4,3643	1,1614	744,15027	0,38/44	742,60163	140	95,54997	-0,84087
140,3013	4,3942	1,1000	744,13027	0,38102	742,00032	140,5	95,55758	-0,84104
141,5015	4.35	1,1708	744,15027	0.38592	742,59736	141.5	95.50947	-0,84129
142,0015	4,3346	1,1687	744,15027	0,38639	742,59537	142	95,49804	-0,84148
142,5015	4,3619	1,1677	744,15027	0,38313	742,59386	142,5	95,47775	-0,84183
143,0015	4,3477	1,1666	744,15027	0,38482	742,59199	143	95,44859	-0,84265
143,5015	4,3461	1,171	744,15027	0,38003	742,59096	143,5	95,43805	-0,84362
144,0015	4,3586	1,1673	744,15027	0,38517	742,58988	144	95,43781	-0,84465
144,5015	4,3533	1,1641	744,15027	0,38075	742,58942	144,5	95,45011	-0,84452
145,0015	4,3440	1,1588	744,15027	0 38479	742,38979	145 5	95,4070	-0,84399
146.0015	4.3529	1,1656	744,15027	0.38144	742,59135	146	95.47657	-0.84411
146,5015	4,3445	1,1665	744,15027	0,381	742,59569	146,5	95,48894	-0,8444
147,0015	4,3186	1,1677	744,15027	0,38004	742,59584	147	95,49673	-0,84478
147,5015	4,3199	1,1558	744,15027	0,38233	742,59417	147,5	95,47754	-0,84493
148,0015	4,3438	1,1624	744,15027	0,38098	742,59112	148	95,45815	-0,84505
148,5015	4,3348	1,1621	744,15027	0,37837	742,58905	148,5	95,4832	-0,8451
149,0015	4,3420	1,1607	744,15027	0,3827	742,58030	149	95,52989	-0,84505
150.0015	4,3192	1,1542	744,15027	0.37869	742,58126	149,9	95,5396	-0,84474
150,5015	4,3156	1,1588	744,15027	0,38033	742,57945	150,5	95,52656	-0,84533
151,0015	4,3013	1,1602	744,15027	0,37992	742,57713	151	95,51462	-0,84635
151,5015	4,3289	1,1521	744,15027	0,38211	742,57524	151,5	95,523	-0,84685
152,0015	4,3114	1,1433	744,15027	0,37947	742,57299	152	95,53666	-0,84719
152,5015	4,3145	1,1603	744,15027	0,37696	742,57205	152,5	95,5321	-0,84716
153,0015	4,328	1,1603	744,15027	0,37643	742,57086	153	95,51402	-0,84697
154,0015	4,3054	1,1543	744,15027	0.38222	742,56762	154	95 48572	-0.8463
154,5015	4,3011	1,1492	744,15027	0,37606	742,56742	154,5	95,49933	-0,8456
155,0015	4,2938	1,1538	744,15027	0,37657	742,56705	155	95,51926	-0,84456
155,5015	4,2872	1,1618	744,15027	0,37859	742,56578	155,5	95,51399	-0,84401
156,0015	4,2874	1,1552	744,15027	0,37768	742,56731	156	95,49794	-0,84359
156,5015	4,2993	1,1547	744,15027	0,37431	742,57396	156,5	95,49292	-0,84358
157,0015	4,291	1,1585	744,15027	0,37417	742,57116	157	95,49091	-0,84356
157,5015	4,2820	1,1521	744,15027	0,37708	742,34291	157,5	95 48265	-0,04529
158,5015	4.2903	1,1614	744,15027	0.37533	742,52633	158.5	95,47868	-0.84323
159,0015	4,28	1,1523	744,15027	0,38119	742,56087	159	95,47423	-0,84391
159,5015	4,2773	1,1567	744,15027	0,37837	742,56756	159,5	95,47342	-0,8446
160,0015	4,2948	1,1492	744,15027	0,37481	742,56364	160	95,48448	-0,84556
160,5015	4,2815	1,1515	744,15027	0,3732	742,56205	160,5	95,51105	-0,84621
161,0015	4,2615	1,162	744,15027	0,37395	742,56407	161	95,53686	-0,84671
101,3015	4,2039	1,1042	744,15027	0,3/1/4	142,3081	101,5	95,51837	-0,84642
162,5015	4,2678	1,1469	744,15027	0,37519	742,58571	162.5	95,46684	-0,84494
DTA / TG .	DTA	TG	Zeit	MS	MS	(MS 16)	(MS 18)	(MS 32)
------------	------------	--------	-----------	---------	-----------	-----------------------	-----------------------	-----------------------
Temp.	in µV / mg	Δm	DTA / TG	Zeit	Temp.	Ionenstrom	Ionenstrom	Ionenstrom
in K		in %	in min	in min	in K	in 10 ⁻⁹ A	in 10 ⁻⁹ A	in 10 ⁻⁹ A
163,0015	4,2814	1,157	744,15027	0,37643	742,59651	163	95,46776	-0,8443
163,5015	4,2456	1,1592	744,15027	0,37162	742,60128	163,5	95,47918	-0,84436
164,0015	4,2613	1,1495	744,15027	0,37314	742,60455	164	95,4917	-0,84466
164,5015	4,2473	1,1613	744,15028	0,36931	742,60455	164,5	95,48754	-0,84475
					742,60224	165	95,47767	-0,84473
					742,59837	165,5	95,47714	-0,84469
					742,59287	166	95,48108	-0,84464

7.1.4 Gitterkonstanten der Hochtemperaturphasen

Messung	Temperatur	Konstante	Konstante	Konstante	Konstante	Konstante	Konstante	Volumen	Volumen
	in K	а	a(Fehler)	a(normiert)	С	c(Fehler)	c(normiert)	V	V(Fehler)
1	298,15	12,59202	0,00004	8,9039	15,493375	0,0001	8,9451	2127,49	0,02
6	309,10238	12,59208	0,00005	8,90394	15,494752	0,00011	8,9459	2127,7	0,02
11	320,05476	12,59269	0,00005	8,90437	15,496567	0,00011	8,94695	2128,153	0,02
16	331,00714	12,59352	0,00006	8,90497	15,498418	0,00013	8,94802	2128,69	0,023
21	341,95952	12,59649	0,00005	8,90706	15,500329	0,00011	8,94912	2129,956	0,019
26	352,9119	12,5991	0,00005	8,90891	15,501427	0,00001	8,94975	2130,991	0,018
31	363,86429	12,6006	0,00004	8,90997	15,504036	0,0001	8,95126	2131,854	0,017
36	374,81667	12,60221	0,00007	8,91111	15,506362	0,00011	8,9526	2132,72	0,019
41	385,76905	12,60375	0,00008	8,9122	15,507988	0,00012	8,95354	2133,467	0,02
46	396,72143	12,60537	0,00005	8,91334	15,508348	0,00011	8,95375	2134,063	0,02
51	407,67381	12,60688	0,00005	8,91441	15,51187	0,00011	8,95578	2135,061	0,019
56	418,62619	12,60872	0,00005	8,91571	15,513381	0,00012	8,95665	2135,892	0,02
61	429,57857	12,611	0,00005	8,91733	15,513788	0,00011	8,95689	2136,721	0,019
66	440,53095	12,61257	0,00005	8,91843	15,516973	0,00013	8,95873	2137,69	0,021
71	451,48333	12,61429	0,00005	8,91965	15,517385	0,00012	8,95897	2138,328	0,021
76	462,43571	12,6159	0,00009	8,92079	15,522094	0,00024	8,96169	2139,524	0,039
81	473,3881	12,66219	0,00005	8,95352	15,308878	0,00014	8,83858	2125,648	0,023
86	484,34048	12,66342	0,00005	8,95439	15,311599	0,00013	8,84016	2126,439	0,021
91	495,29286	12,66537	0,00005	8,95577	15,314034	0,00014	8,84156	2127,434	0,023
96	506,24524	12,66797	0,00005	8,95761	15,316998	0,00014	8,84327	2128,719	0,022
101	517,19762	12,66881	0,00005	8,9582	15,319248	0,00014	8,84457	2129,315	0,023
106	528,15	12,67083	0,00005	8,95963	15,323445	0,00014	8,847	2130,577	0,023
111	539,10238	12,67277	0,00005	8,961	15,326498	0,00013	8,84876	2131,653	0,022
116	550,05476	12,67317	0,00005	8,96128	15,328053	0,00013	8,84966	2132,003	0,022
121	561,00714	12,67471	0,00005	8,96237	15,330423	0,00014	8,85102	2132,851	0,024
126	571,95952	12,67704	0,00005	8,96402	15,335157	0,00014	8,85376	2134,294	0,022
131	582,91191	12,67819	0,00005	8,96483	15,337051	0,00015	8,85485	2134,945	0,024
136	593,86429	12,68013	0,00006	8,96621	15,341513	0,00016	8,85743	2136,221	0,026
141	604,81667	12,68175	0,00005	8,96735	15,344485	0,00015	8,85914	2137,18	0,024
146	615,76905	12,68232	0,00006	8,96775	15,346035	0,00015	8,86004	2137,589	0,025
151	626,72143	12,68388	0,00006	8,96885	15,349436	0,00016	8,862	2138,587	0,026
156	637,67381	12,68389	0,00006	8,96886	15,349407	0,00018	8,86198	2138,588	0,029
161	648,62619	12,68689	0,00007	8,97099	15,354602	0,00019	8,86498	2140,325	0,031
166	659,57857	12,68699	0,00008	8,97106	15,357203	0,00022	8,86649	2140,721	0,036
171	670,53095	12,68825	0,00009	8,97194	15,349953	0,00029	8,8623	2140,133	0,045
176	681,48333	12,67827	0,00009	8,96489	15,373122	0,00017	8,87568	2139,996	0,059
181	692,43572	12,67524	0,00013	8,96275	15,385324	0,00070	8,88272	2140,669	0,103
186	703,3881	12,67207	0,00012	8,96051	15,427147	0,0006	8,90687	2145,415	0,093
191	714,34048			8,95062			8,95062	2151,198	0,024
196	725,29286			8,95227			8,95227	2152,392	0,024
201	736,24524			8,95388			8,95388	2153,553	0,018
206	747,19762			8,9545			8,9545	2153,997	0,021
211	758,15			8,95603			8,95603	2155,104	0,021
216	769,10238			8,95752			8,95752	2156,181	0,021
221	780,05476			8,95855			8,95855	2156,925	0,021
226	791,00714			8,9594			8,9594	2157,534	0,024
	801,95953								

Messung	Temperatur	Konstante	Konstante	Konstante	Konstante	Konstante	Konstante	Volumen	Volumen
	in K	а	a(Fehler)	a(normiert)	С	c(Fehler)	c(normiert)	V	V(Fehler)
236	812,91191			8,96298			8,96298	2160,123	0,024
241	823,86429			8,96339			8,96339	2160,423	0,03
246	834,81667			8,96476			8,96476	2161,413	0,03
251	845,76905			8,96639			8,96639	2162,592	0,02
256	856,72143			8,96752			8,96752	2163,405	0,048
261	867,67381			8,96842			8,96842	2164,056	0,054
266	878,62619			8,96966			8,96966	2164,959	0,054
271	889,57857			8,97066			8,97066	2165,682	0,045
276	900,53095			8,97225			8,97225	2166,831	0,045
281	911,48334			8,97331			8,97331	2167,598	0,054

β-Phase: ab Messung 81 Zersetzung: ab Messung 151

γ-Phase: ab Messung 191

7.1.5 Beobachtete und berechnete Strukturfaktoren bei β -Ag₄Mn₃O₈

h	k	1	d	F	F	Fnorm	Fnorm	Phase	h	k	1	d	F	F	Fnorm	Fnorm	Phase
			[calc]	[obs] ²	[calc] ²	[obs] ²	[calc] ²	in °				[calc]	[obs] ²	[calc] ²	[obs] ²	[calc] ²	in °
1	0	1	8,93	0	3,944	3,73E-6	112,7	0	6	2	13	0,9328	336,4	214,6	9615	6135	-126,8
1	1	0	6,3407	930,5	835,4	26600	23880	-72,6	10	3	1	0,9298	822,6	678,8	23510	19400	-4,5
1	0	-2	6,2885	1782	1614	50950	46140	0	7	6	-5	0,9288	1990	1611	56870	46050	-30,8
2	0	-1	5,17	17,89	68,33	511,4	1953	0	7	3	-11	0,9248	111,8	103,6	3195	2960	-21
0	0	3	5,1136	863,1	1160	24670	33150	180	10	3	-2	0,9247	1657	1518	47350	43380	-21,1
2	0	2	4,465	228,8	138,7	6541	3964	-180	11	1	4	0,9242	35,57	31,09	1017	888,7	137,9
2	1	1	4,0069	61,39	28,46	1755	813,4	103,8	9	4	-4	0,9242	759,3	663,7	21700	18970	-163,8
1	1	3	3,9805	397	259,1	11350	7405	-120,1	7	5	8	0,9223	6,343	4,381	181,3	125,2	-112,1
3	0	0	3,6608	0,6265	1,479	17,91	42,28	0	9	1	-10	0,9208	1104	926,9	31550	26490	129,6
2	1	-2	3,6507	188,3	279,7	5383	7996	-95,5	6	5	10	0,9208	88,42	74,26	2527	2123	-63,3
1	0	4	3,6208	32,21	4,488	920,8	128,3	0	3	3	15	0,9206	932,4	792,1	26650	22640	-57,8
2	2	0	3,1704	236,9	230,7	6770	6595	-54,8	3	3	1	0,9432	74,03	74,03	2116	2116	0
2	0	-4	3,1443	3723	3860	106400	110300	-180	6	1	14	0,917	1,505	0,9486	43,02	27,11	-119,8
3	1	-1	2,9877	8608	8652	246000	247300	-113,7	12	0	0	0,9152	273,2	190,7	7808	5452	180
3	0	-3	2,9767	38350	38060	1,096E6	1,088E6	0	3	1	-16	0,9146	69,97	50,71	2000	1449	139,7
3	0	3	2,9767	149,3	148,1	4267	4234	0	8	4	-8	0,9127	342,2	250	9781	7146	-90,2
1	0	-5	2,955	19840	19990	567000	571500	-180	9	4	5	0,9095	511,2	327,1	14610	9350	155,9
3	1	2	2,8309	979	948,3	27980	27110	-168,9	11	1	-5	0,9095	572	366	16350	10460	-70
2	1	4	2,8169	1307	1306	37350	37330	42,6	11	0	-7	0,9086	20,66	15,51	590,4	443,2	0
4	0	1	2,7027	385,6	365,9	11020	10460	0	7	7	0	0,9058	726,8	623,1	20770	17810	135,2
2	2	3	2,6945	24700	24730	706000	706700	158,7	11	2	0	0,9058	1164	997,8	33270	28520	34,8
2	0	5	2,6784	15470	15350	442200	438800	-180	10	3	4	0,9052	1597	1398	45660	39960	-54
4	0	-2	2,585	7752	8051	221600	230100	0	4	0	16	0,9052	420,4	368	12020	10520	0
0	0	6	2,5568	8875	9225	253700	263700	0	8	5	6	0,9044	1137	1002	32500	28630	137,1
3	2	1	2,4862	14520	14750	415100	421700	-158	8	5	-6	0,9044	1872	1650	53520	47150	108,7
2	1	-5	2,4673	2847	2941	81390	84060	32,4	5	4	13	0,9039	555,6	495,8	15880	14170	67,3
4	1	0	2,3966	7360	7374	210400	210800	-145,8	8	3	-10	0,902	852,6	868,8	24370	24830	-55,7
3	2	-2	2,3937	11330	11340	323900	324100	-25,7	8	6	-1	0,9012	133	131,3	3801	3753	-111,7
3	1	-4	2,3852	3962	3808	113300	108800	43,8	12	0	-3	0,9009	1785	1741	51020	49750	0
1	1	6	2,3713	2543	2524	72690	72140	-172,9	12	0	3	0,9009	455,7	444,4	13030	12700	0
1	1	1	2,3737	349,8	349,8	10000	10000	0	5	5	12	0,9003	1622	1582	46350	45210	125,8
4	0	4	2,2325	4553	5035	130200	143900	0	10	2	-7	0,8994	1061	1029	30330	29400	-176,1
5	0	-1	2,1743	1782	1686	50940	48200	0	1	0	-17	0,8994	141,1	136,8	4032	3909	0
4	1	3	2,1701	11510	11580	329000	331000	161,7	7	0	-14	0,8984	257,9	254,9	7372	7285	0
4	1	-3	2,1701	4228	4253	120800	121600	-92,1	5	3	14	0,8984	366	361,7	10460	10340	101,4
3	1	5	2,1616	3793	3723	108400	106400	-11,8	6	6	9	0,8982	86,37	84,78	2469	2423	-101,3
1	0	7	2,1492	5196	5170	148500	147800	-180	8	6	2	0,8966	937,5	777,5	26800	22220	-63,8
3	3	0	2,1136	9878	9456	282300	270300	-26,5	3	2	16	0,8961	568,8	468,6	16260	13400	172,9
5	0	2	2,1116	8098	7911	231500	226100	-180	4	2	0	0,9193	71,16	71,16	2034	2034	0
3	2	4	2,1058	6955	6723	198800	192200	17,9	8	0	-13	0,8949	21,29	16,89	608,6	482,9	0
3	0	6	2,0962	12080	12020	345400	343500	0	10	0	10	0,893	59,48	53,2	1700	1521	0
3	0	-6	2,0962	0,5899	0,5867	16,86	16,77	0	6	0	-15	0,8928	8,996	8,132	257,2	232,5	0

h	k	1	d	F	F	Fnorm	Fnorm	Phase	h	k	1	d	F	F	Fnorm	Fnorm	Phase
			[calc]	[obs] ²	[calc] ²	[obs] ²	[calc] ²	in $^{\circ}$				[calc]	[obs] ²	[calc] ²	[obs] ²	[calc] ²	in $^{\circ}$
4	2	-1	2,0568	2897	2733	82820	78130	-130,7	6	0	15	0,8928	113,8	102,9	3253	2940	0
4	0	-5	2,046	829,5	725,3	23710	20730	0	9	5	1	0,8922	589,3	542,7	16850	15510	-21,6
2	0	-7	2,0354	597,4	525,6	17080	15020	0	7	7	3	0,8919	82,56	76,3	2360	2181	-123,1
4	2	2	2,0034	21,62	34,02	618,1	972,5	93,1	11	2	3	0,8919	1832	1693	52370	48400	172
2	0	0	2,0556	253,3	253,3	7242	7242	0	11	2	-3	0,8919	185,3	171,3	5297	4896	-172,6
2	2	6	1,9902	5061	5279	144700	150900	51,8	10	3	-5	0,8913	152,1	141,2	4347	4036	139,8
2	1	2	1,9564	522,7	594,9	14940	1/000	21.0	2	0	/	0,8905	542,4	494,6	13300	14140	107,8
3	$\frac{3}{2}$	-5	1,9555	927	821.8	26500	23490	149	6	2	-14	0,8905	1394	1379	39860	37970	-101
2	1	7	1,938	1605	1495	45890	42740	111.9	10	1	-9	0.8893	321.8	308.6	9199	8821	-114.9
5	1	-2	1,9104	199,8	110,7	5711	3165	-62,1	10	1	9	0,8893	129,5	124,2	3701	3549	84,9
5	0	-4	1,906	1036	547,5	29610	15650	0	6	5	-11	0,8878	739,9	724	21150	20700	-115,1
1	0	-8	1,889	28,55	8,742	816	249,9	180	9	1	11	0,8878	73,27	71,7	2094	2049	102,2
6	0	0	1,8304	4107	4486	117400	128200	0	9	5	-2	0,8877	433,7	426,5	12400	12190	148
4	2	-4	1,8253	56,8	71	1624	2029	43,2	7	2	-13	0,8861	783,7	774,5	22400	22140	-153,4
2	0	8	1,8104	6251	6974	178700	199300	0	11	0	8	0,8856	1614	1521	46140	43480	0
4	3	1	1,7931	1458	1347	41680	38510	43,9	9	2	10	0,8843	1253	1127	35810	32210	-97,6
2	0	5	1,786	3494	3530	99880	71150	0	5	2	15	0,8841	2268	2034	64820	2252	-1/3,/
5	2	-/	1,779	1337	1266	38210	36180	-130,0	9	2	-13	0,8827	01,07	0 1742	5 329	1 98	109,1
4	2	-2	1,7575	3813	3670	109000	104900	-105 5	9	0	12	0,8827	2411	2254	68930	64410	0
5	1	4	1,7541	15410	15370	440600	439200	100.3	2	1	-17	0.8818	146.1	126.1	4175	3605	149.1
4	1	-6	1,7485	873,6	882,9	24970	25240	56,3	10	4	0	0,8793	808,8	869,6	23120	24860	-78,1
4	1	6	1,7485	7927	8011	226600	229000	-166,5	8	6	-4	0,8787	84,83	93,3	2425	2667	77,1
2	1	-8	1,7408	3245	3100	92740	88600	-178,7	5	0	-16	0,8787	631,7	695,4	18060	19880	0
6	0	3	1,7233	19,64	15,91	561,4	454,7	0	10	2	8	0,8771	34,46	81,49	985	2329	124,3
6	0	-3	1,7233	800,8	648,6	22890	18540	0	12	1	-1	0,8751	251,3	385,4	7184	11020	153,4
4	2	5	1,7191	2856	2759	81640	78870	156,9	8	2	12	0,8743	24,4	33,52	697,6	958	24,5
4	0	/	1,/128	1752	1746	50000	205100	0	8	2	-12	0,8743	253,9	348,/	7258	9968	60,3
6	1	-1	1,7043	267.8	286.7	7654	49910 8196	-107.3	9	4	-/	0,8734	190	278,4	5590	7938	-30.9
5	2	-3	1,0047	167.4	189.9	4786	5429	-107,5	9	3	-9	0,8723	391.9	524.4	11200	14990	-16.5
5	2	3	1,663	3424	3884	97870	111000	126,6	9	3	9	0,8723	146,8	196,5	4197	5616	-87,3
5	1	-5	1,6592	102,3	138,1	2923	3949	67,4	8	3	11	0,8709	175	205	5001	5859	24,2
3	2	7	1,6535	890	1115	25440	31880	122,9	12	1	2	0,8708	1347	1578	38500	45100	141,5
1	1	9	1,6461	724,2	815,5	20700	23310	-126,1	9	5	4	0,8704	4,058	4,773	116	136,4	-146,4
6	1	2	1,6363	848,5	816,9	24250	23350	4,9	4	2	-16	0,8704	196,7	231,4	5622	6613	39,9
4	3	4	1,6335	894,4	904,1	25570	25840	-8,1	8	1	13	0,8693	125,4	150,2	3586	4292	151,1
3	3	6	1,629	7029	1322	200900	209300	36,5	7	6	-8	0,8688	816,2	977,8	23330	27950	-39,3
3	1	8	1,6228	4205	4623	54620	132200	-20,7	/	3	-10	0,8676	54.41	1544	33280	44140	148,7
4	4	-8	1,3652	1911	2625	54020	75040	-40,2	10	4	-5	0,8000	168.1	271.7	1333	7767	3,7
5	3	-1	1,5608	7503	7507	214500	214600	-79.1	8	6	5	0.866	505.9	909	14460	25980	-16.7
7	0	1	1,5608	674,6	674,9	19280	19290	-180	3	1	17	0,8652	158,6	350,3	4534	10010	-30,8
4	3	-5	1,5561	1002	1018	28650	29090	44,2	5	4	-14	0,8643	121,7	233,6	3478	6679	-177,7
5	0	-7	1,5514	14370	13200	410900	377400	180	10	0	-11	0,8628	1041	1589	29750	45420	0
3	0	9	1,5452	1365	1272	39030	36360	-180	5	1	16	0,8623	284,6	476,2	8134	13610	138,4
3	0	-9	1,5452	10640	9912	304100	283300	0	12	0	-6	0,8617	120,7	255,8	3451	7311	0
7	0	-2	1,53/1	7042	/15/	201300	204600	0	12	0	0	0,8617	52,33	110,9	1496	3169	180
5	3	2	1,53/1	2200 5560	2303	158000	161000	133,2	8	4	-13	0,8612	133.0	107.7	2020	4480	20,4
3	2	-4	1,5259	1678	1601	47970	45750	-50.6	0 4	4	15	0,8590	561.4	804.7	16050	23000	173
1	0	10	1,5193	7462	6714	213300	191900	0	11	3	-1	0.8589	797.1	1043	22780	29820	47.2
6	2	1	1,5155	4075	4044	116500	115600	96,8	9	5	-5	0,8581	88,33	117	2525	3344	-85,4
4	4	3	1,5141	96,24	96,54	2751	2760	-42,4	10	3	7	0,8573	541	803,4	15460	22970	-46,6
4	2	-7	1,507	4918	4590	140600	131200	119,4	4	0	-17	0,8573	800,4	1189	22880	33980	180
2	2	9	1,5013	5968	5357	170600	153100	-163,2	8	0	14	0,8564	110,7	151	3165	4315	180
6	2	-2	1,4938	3391	3081	96940	88060	-139,9	9	2	-11	0,8549	558,8	636,8	15970	18200	151,7
6	0	6	1,4883	78,15	79,33	2234	2268	0	11	3	2	0,8549	149	169,9	4259	4855	61,7
6	0	-6	1,4883	4812	4885	157600	139600	0	12	1	-4	0,8545	1/3,9	199,4	49/2	5698	101,5
2	1	-10	1,477	3/5 0	1,5//	221,2	210,0 0/01	180	11	2	0	0,8538	094,0 455.0	119,9 511 0	19800	1/620	-10.0
6	1	5	1,4547	384.6	459	7000 10990	13120	-40	7	2 7	-0 6	0.8538	350.6	393.6	10020	11250	-19,9 64 3
5	3	-4	1,4521	1396	1364	39900	38980	-155.6	, 7	3	13	0.8534	1182	1332	33780	38060	-26.3
7	0	4	1,4521	2464	2407	70420	68800	0	11	1	-8	0,8529	977.3	1141	27940	32620	125,9
5	1	7	1,4661	1245	1224	35580	35000	-19,2	9	4	8	0,8529	490,4	572,7	14020	16370	5
5	2	-6	1,449	3215	3190	91890	91190	135,3	0	0	18	0,8523	249,6	320,7	7135	9168	180

h	k	1	d	F	F	Fnorm	Fnorm	Phase	h	k	1	d	F	F	Fnorm	Fnorm	Phase
			[calc]	[obs] ²	[calc] ²	[obs] ²	[calc] ²	in $^{\circ}$				[calc]	[obs] ²	[calc] ²	[obs] ²	[calc] ²	in $^{\circ}$
5	2	6	1,449	257,3	255,4	7355	7299	-68	7	4	-12	0,8504	98,62	167,1	2819	4776	-59,1
5	0	8	1,4446	0,0020	0,0018	0,05576	0,05268	180	7	4	12	0,8504	252,6	427,9	7219	12230	-3,2
2	1	10	1,439	486,6	509,3	13910	14560	-12,3	3	2	-17	0,8496	7,386	12,27	211,1	350,8	167,8
6	2	4	1,4155	344,4	277,9	9845	7944	126,7	7	2	14	0,8487	319	472	9118	13490	90 7.0
2	2	8	1,4536	190,4	190,4	5443 122500	5443	12.1	4	5	10	0,8468	880,9	1285	25180	36/30	7,9
5	4	1	1,4003	6282	5737	179600	164000	149.5	13	0	10	0,8435	0.195	0.2346	5.574	6.706	0
7	1	3	1,3992	907,1	843,6	25930	24110	-113,6	8	7	1	0,8435	339,8	408,8	9713	11690	146,5
7	1	-3	1,3992	3565	3316	101900	94770	-136,3	12	1	5	0,8428	2,977	3,395	85,09	97,05	-16,5
5	3	5	1,3969	1870	1777	53450	50790	-153,5	8	5	-9	0,841	234,1	256,6	6691	7334	7,2
7	0	-5	1,3969	672,6	639,1	19230	18270	-180	8	5	9	0,841	1180	1294	33740	36980	146,7
4	5	/	1,3935	284,5	272,1	8132	27650	07,8	9	5	11	0,8398	330.5	373	3030	3427	-9,1 114.6
4	1	9	1,389	467.8	451.6	13370	12910	179.5	13	0	-2	0,8398	65.83	73.78	1882	2109	0
6	3	0	1,3837	3692	3509	105500	100300	-6,7	8	7	-2	0,8397	3,245	3,637	92,76	104	146,8
1	0	-11	1,3835	129,5	123,7	3702	3535	0	11	3	-4	0,8394	21,43	23,11	612,5	660,5	80,9
5	4	-2	1,3831	1971	1912	56330	54650	123,3	10	3	-8	0,8379	510,9	477,9	14600	13660	23,6
5	1	-8	1,375	2291	2104	65490	60150	138,5	11	0	-10	0,8368	1,073	0,9445	30,66	27	180
3	1	-10	1,3701	2269	2198	64850	62840	155,3	7	1	15	0,8366	3/7,7	330	10800	9433	-46
8	2	-1	1,36/3	48,77	48,75	10640	8721	-180	12	$\frac{1}{2}$	-15	0,8360	320,2	279,8	9153	9/30	-105,2
2	2	11	1,3517	6689	6411	191200	183200	-101,5	8	6	-7	0,8302	167.9	156.5	4798	4475	42.9
8	0	2	1,3513	3683	3537	105300	101100	0	5	0	17	0,8347	66,45	61,96	1899	1771	0
4	4	6	1,3473	309,5	256	8848	7318	-45,6	8	1	-14	0,8339	88,7	75,96	2535	2171	16,7
4	0	10	1,3392	7,302	6,332	208,7	181	180	8	4	-11	0,8325	765,1	661,3	21870	18900	78,6
7	2	-1	1,3366	83,46	82,3	2386	2352	72,6	12	2	-2	0,8325	316,9	276,2	9057	7894	-138,8
6	3	-3	1,3356	2501	2498	71480	71410	-62,4	6	1	-16	0,8321	53,86	48,33	1539	1381	-125,8
6	3	3	1,3356	5320	5315 800 7	152100	151900	2,7	10	4	6	0,8315	597,9	558,7	17090	15970	-125,6
3	1	-/	1,3307	955,5	699,7 1525	47270	43600	-55.2	3	4	-0	0,8313	1671	1305	21830 47770	20410	-92,8
2	1	-11	1,320	292.9	268.9	8372	7686	-26.4	3	0	-18	0.8301	468.9	391.4	13400	11190	0
7	2	2	1,3217	643,5	602	18390	17210	81,6	10	2	-10	0,8296	154,7	129,4	4423	3697	141,5
5	4	4	1,3202	633,3	626	18100	17890	63,2	10	5	-1	0,829	132,5	117,6	3787	3362	-76
4	3	-8	1,3145	50,35	76,54	1439	2188	128,2	9	6	-3	0,8287	219,5	204	6273	5830	-166,8
3	2	10	1,3103	735,1	737,6	21010	21080	-100,2	9	6	3	0,8287	649,9	604,1	18580	17270	-86,2
8	0	-4	1,2925	5650	5586	161500	159700	0	11	3	5	0,8283	278	294,2	1428	8409	115,8
8	1	12	1,2809	2269	2257	6/860	64530	107,4	9	2	17	0,8276	49,97	337.3	7533	9641	-25
5	4	-5	1,2783	2835	2826	81030	80770	-176.2	6	4	14	0.8268	76.9	81.92	2198	2342	72.5
7	0	7	1,2757	568,7	609,9	16250	17430	180	10	5	2	0,8254	364,6	287,5	10420	8218	-179,2
5	3	-7	1,2757	3871	4151	110600	118700	-23,4	8	7	4	0,825	492	404,5	14060	11560	30
5	5	0	1,2681	1686	1650	48190	47150	65,3	13	0	4	0,825	906,5	745,4	25910	21310	0
3	1	11	1,268	193,2	189,1	5523	5404	-82	9	1	-13	0,8241	1113	1004	31810	28680	-82,7
8	1	-2	1,2677	587,6	576	16790	16460	-159	6	5	13	0,8241	105	94,63	3000	2705	164,1
7	2	-4	1,2003	717.4	827.1	20510	23640	-03,0	2 4	2	2	0,825	35.62	35.62	1018	9911 1018	-62,5
7	1	6	1,2644	781.8	901.3	22350	25760	-95.6	7	6	10	0.8226	160.3	155.2	4583	4437	106.5
6	1	8	1,2614	200,5	229,6	5730	6564	-33,3	6	3	-15	0,8224	594,2	585,2	16980	16730	130,6
5	0	-10	1,2577	35,03	43,04	1001	1230	0	6	3	15	0,8224	114,5	112,8	3273	3223	166,6
6	4	-1	1,2555	912	1031	26070	29480	-128,5	5	1	-17	0,8206	849,3	716,4	24280	20480	166,3
1	1	12	1,2532	546,5	570	15620	16290	101,7	7	3	-14	0,8198	1082	705,7	30930	20170	-15,2
8	0	5	1,2531	20,08	21,02	57040	600,7	180	12	2	4	0,8181	8/9,/	609,4	25140	1/420	-8/,1
6	2	-9	1,2307	25 58	2138	731.2	731.3	-140,0	7	0	-10	0,8181	195,5	87.66	3616	2506	70,8
6	0	9	1,2474	204.4	204.4	5842	5843	0	8	6	8	0,8168	891.7	934.8	25490	26720	-99.3
4	0	-11	1,2434	1480	1415	42300	40440	-180	11	4	1	0,8152	21,57	28,61	616,7	817,7	-133,2
6	4	2	1,2431	1129	1092	32260	31210	-25	6	6	12	0,8145	433,4	481,3	12390	13760	-73,9
4	2	-10	1,2337	222,5	232,4	6359	6642	113,6	8	7	-5	0,8145	273,4	301,7	7815	8625	-113,9
7	3	1	1,2316	2541	2870	72620	82040	14	13	0	-5	0,8145	147,4	162,7	4214	4651	0
5	5	3	1,2309	520,8	600,3	14890	17160	122,7	12	1	-7	0,8138	12,93	12,31	369,5	352	147,6
/	2	_0	1,2293	3800	19,54	1/33	120300	90,9 71.5	15	1	11	0,8118	40,33	33,88 94.06	1.524	2680	-134,9
5	$\frac{2}{2}$	-9	1,224	1730	1871	49450	53490	-168.1	11	4	-2	0.8117	40.95	31.25	1171	893 3	-100
9	0	0	1,2203	325.1	352.4	9293	10070	0	10	5	-4	0,8114	611.9	443.3	17490	12670	150,5
3	2	-11	1,2202	1848	2004	52810	57270	-118,5	6	2	16	0,8114	1679	1215	47980	34740	-67,1
7	3	-2	1,2199	2111	2301	60350	65770	112,2	8	3	-13	0,8105	113	81,75	3229	2337	-155,3
8	1	4	1,2188	527,1	595,9	15070	17030	-148,5	9	5	-8	0,8101	6,876	5,767	196,5	164,8	87,7

h	k	1	d	F	F	Fnorm	Fnorm	Phase	h	k	1	d	F	F	Fnorm	Fnorm	Phase
			[calc]	[obs] ²	[calc] ²	[obs] ²	[calc] ²	in °				[calc]	[obs] ²	[calc] ²	[obs] ²	[calc] ²	in $^\circ$
6	3	6	1,2169	2344	2484	67000	70990	-76	11	1	10	0,8091	30,05	29,29	859	837,3	-152,3
6	3	-6	1,2169	1053	1116	30110	31910	25,8	9	4	-10	0,8091	91,54	89,22	2617	2550	-38,5
7	0	-8	1,2143	4768	4946	136300	141400	0	10	1	-12	0,8079	29,11	19,07	832	545,1	161,6
5	3	8	1,2143	200,6	208,1	5735	5949	-109,1	10	1	12	0,8079	173,4	113,6	4957	3247	-90,5
5	1	10	1,211	421,9	576	12060	16460	104,9	12	2	-5	0,8079	211,8	138	6055	3945	-175,5
3	1	1	1,2396	126,2	126,2	3607	3607	0	4	3	-17	0,8072	223,4	139,9	6387	3999	-27
3	0	-12	1,2069	2699	3117	24400	89100	0	12	0	-9	0,8063	21,46	14,23	613,3 726.2	406,6	0
8	2	0	1,2009	584.9	1104	16720	31550	139.9	12	2	9	0,8003	81 37	55 38	2326	1583	34.3
6	4	-4	1,1969	197.4	421.1	5644	12040	-42.8	1	0	19	0.8052	266.4	181.3	7614	5181	0
6	2	-8	1,1926	398.3	647.5	11380	18510	128.7	10	0	13	0.8039	237.4	119.3	6786	3411	-180
9	0	-3	1,1869	44,85	61,15	1282	1748	180	4	1	18	0,803	236,5	149,4	6759	4272	-48,4
9	0	3	1,1869	161,2	219,8	4608	6283	-180	4	1	-18	0,803	319,2	201,8	9125	5767	-38,5
2	2	12	1,1856	69,48	85,4	1986	2441	-111,5	13	1	-3	0,8018	80,26	56,11	2294	1604	-73,9
8	1	-5	1,1856	967	1194	27640	34120	109,4	13	1	3	0,8018	799,3	558,8	22850	15970	-41,5
5	4	7	1,1835	257,1	496,3	7348	14190	138	10	5	5	0,8014	176,2	127,2	5036	3635	-144,9
5	0	11	1,1774	263,4	839	7530	23980	0	11	3	-7	0,8007	102	80,63	2915	2305	-9,8
/	3	4	1,1722	457,9	966,2	13090	27620	100,6	11	2	9	0,7999	1041	8/5,3	29760	25020	131,3
1	3	10	1,1755	2054	2534	58720	72450	3.1	7	2	-9	0,7999	1/2,4	144,9	4927 5217	4142	73.8
4	2	3	1,1091	2034	439.1	8316	12550	73.4	8	8	0	0,7999	498.8	403.6	14260	11540	152.5
8	2	-3	1,1667	419.2	632.6	11980	18080	175.4	2	1	19	0.7926	179.8	146	5140	4174	168.5
6	4	5	1,1654	1,503	3,715	42,95	106,2	-162	12	3	0	0,7989	418,3	368,7	11960	10540	-2,6
8	0	-7	1,1634	0	41,19	6,01E-5	1177	-180	7	6	-11	0,7988	789,9	696,7	22580	19920	-74,8
4	4	9	1,1608	34,12	213,4	975,3	6101	-101,1	2	0	-19	0,7988	588,3	519	16820	14830	180
2	2	2	1,1868	118,2	118,2	3378	3378	0	5	4	16	0,7922	232	199,6	6631	5706	-9,4
4	2	11	1,1576	435,3	963,1	12440	27530	-177,4	11	4	4	0,7984	14,26	12,77	407,7	365	-123
2	0	-13	1,1537	0	5,156	4,65E-6	147,4	-180	9	6	6	0,7979	124,4	115,3	3556	3296	-118,3
9	1	-1	1,148	202.0	892,3	15690	25510	-12,6	9	6	-0	0,7979	441,2	409	12610	11690	-8,2
0	3	5	1,148	392,9	038,5	10100	18250	-1//,1	9	2	15	0,7970	3/3 2	322.8	0811	0228	-128,1
7	2	-7	1,1402	113.6	191.3	3246	5468	163.3	3	3	18	0 7904	174.9	172.9	5000	4942	71.2
7	4	0	1,1388	465.7	442.3	13310	12640	-43.4	10	3	10	0.7962	440.6	446.7	12600	12770	-22.6
5	1	-11	1,1387	697,6	661,7	19940	18920	-159,5	5	5	15	0,7961	127,7	133,3	3651	3811	-111,7
9	1	2	1,1385	119,1	113,1	3405	3232	158	9	7	-1	0,7895	140	147,7	4002	4222	-137,7
6	5	-2	1,1385	1607	1525	45930	43600	-96	12	3	3	0,7893	27,23	28,41	778,4	812	10
5	5	6	1,1361	1350	1321	38580	37760	62,7	12	3	-3	0,7893	872,8	910,5	24950	26030	-30,5
2	1	13	1,1351	2063	1895	58960	54160	151,3	11	4	-5	0,7889	994,2	986,7	28420	28210	166
5	4	-8	1,134	335,8	311,2	9599	8896	105,6	9	3	-12	0,7951	224,8	253,6	6425	7250	-14,7
0	1	-10	1,1312	2150	2074	61440	59290	-95,8	9	3	12	0,7951	331,8	374,4	9484	10/00	129,3
4	1	-12	1,120	3335	3595	95320	102800	-134,0	0	0	7	0,7883	/8 23	13.2	1378	1235	145,1
8	0	8	1,120	65.87	145.3	1883	4152	0	6	1	17	0,7944	448	430.8	12810	12320	86.2
8	3	-1	1,1122	147,1	173,3	4203	4954	6	9	1	14	0,7937	156,3	133,1	4467	3805	111,2
7	4	-3	1,1116	1078	1278	30820	36530	-160,9	6	5	-14	0,7937	19,32	16,46	552,4	470,5	-101,8
7	4	3	1,1116	248,1	294,1	7092	8408	-70,2	11	1	-11	0,7864	392,9	512,3	11230	14640	147,6
8	1	7	1,1088	1349	1768	38570	50540	142,2	9	4	11	0,7864	0,3748	0,4887	10,71	13,97	24,6
7	1	-9	1,1065	840,9	1027	24040	29360	148,6	9	7	2	0,7864	111,2	150,9	3178	4313	-38,2
1	1	9	1,1065	1409	1721	40280	49210	-/6,4	8	0	-16	0,7851	88,91	147,2	2542	4207	180
4	3	-11	1,1037	411,9	4/3,/	11//0	13540	-72,9	/	3	-13	0,7852	87,74	241,5	2508	3331	111,7
6	5	4	1,1035	808.7	936.8	23120	26780	5.8	9	0	-15	0,7838	2 947	5 432	84 23	155.3	42,5
9	1	-4	1,1027	178.9	207.2	5113	5923	-80.6	9	0	15	0,7838	4.628	8.532	132.3	243.9	0
9	0	6	1,1013	2688	3330	76820	95180	0	14	0	-1	0,7834	111,6	182,4	3190	5215	0
9	0	-6	1,1013	25,14	31,15	718,6	890,3	-180	10	6	1	0,7834	85,84	140,3	2454	4011	41,4
3	1	-13	1,1004	111,9	152	3197	4344	-42,1	8	8	3	0,7832	665	1005	19010	28730	93,5
7	2	8	1,0993	358,2	517,4	10240	14790	170,6	12	2	7	0,7822	224,8	295,2	6425	8438	-94,7
7	0	10	1,0969	313,6	495	8965	14150	0	7	0	-17	0,7822	307,1	403,3	8779	11530	0
5	3	-10	1,0969	227,8	359,5	6511	10280	131,1	5	3	17	0,7822	140,8	184,9	4026	5287	-134,3
10	0	1	1,0954	14,9	21,04	426	601,4 5057	180	8	3	14	0,7816	4,434	5,717	126,7	163,4	11,2
5	5	12	1,0939	51.82	1/0,9	3234	3030	-81.1	10	4	-9	0,7815	130,5	9/1,1 106.9	20880 2204	2//00	-19,/
1	4	-14	1,0922	31,05	402.3	8977	11500	-01,1	3	4	-19	0,7815	44 02	87.22	1258	2493	-20.6
10	0	-2	1,0972	1200	1756	34300	50200	0	10	6	-2	0.7804	75.02	148.8	2144	42.53	171 5
8	2	-6	1,085	673.4	947.9	19250	27100	177.7	14	0	2	0,7804	111.3	220.8	3182	6312	0
8	2	6	1,085	648,7	913,2	18540	26100	-143,6	7	2	-16	0,7801	126,6	259,1	3618	7407	28,6
4	0	13	1,0842	355,6	516,4	10170	14760	180	8	4	13	0,7793	41,44	89,32	1185	2553	126,3

h	k	1	d	F	F	Fnorm	Fnorm	Phase	h	k	1	d	F	F	Fnorm	Fnorm	Phase
			[calc]	[obs] ²	[calc] ²	[obs] ²	[calc] ²	in $^{\circ}$				[calc]	[obs] ²	[calc] ²	[obs] ²	[calc] ²	in °
6	2	10	1,0808	405,9	544,7	11600	15570	-24	8	6	-10	0,778	69,09	116,6	1975	3332	173,2
9	2	1	1,0795	80,36	112,5	2297	3217	155,2	8	2	15	0,7779	75,23	127,4	2150	3640	66,4
6	5	-5	1,0779	349,4	451,3	9988	12900	104,8	8	2	-15	0,7779	306	517,9	8746	14800	157,5
9	1	7	1,0779	888.9	1/5,2	25410	29760	-61.4	10	2	-1	0,7764	19.92	35.09	9394 569 5	1/180	-149.8
2	0	14	1,0746	4881	4939	139500	141200	0	6	2	-17	0,7764	116,7	205	3335	5860	-95,6
6	3	-9	1,0743	351,2	350,4	10040	10020	43,7	10	0	-14	0,7757	215,2	260,1	6150	7435	0
6	3	9	1,0743	501,2	500,1	14330	14290	-6,6	11	5	0	0,7746	172,9	181,7	4941	5194	50,2
6	1	11	1,0717	243,7	248	6966	7089	22,6	10	3	-11	0,7746	572,4	599,7	16360	17140	56,6
9	2	-2	1,0715	943,3	963,6	26960	27540	23,7	4	$\frac{0}{2}$	19	0,7746	1652	1730	47210	49440	180
3	2	-4	1,0708	91.21	1208	2607	3555	-69,5	9	2	-4	0,7743	24,84	122.3	3425	3496	-46.5
8	1	-8	1,0607	609.2	909.8	17410	26010	88.4	13	1	6	0,7738	86.09	89.52	2461	2559	63.6
2	1	-14	1,0595	54,69	306	1563	8746	167	13	1	-6	0,7738	1002	1042	28650	29800	-77,3
6	0	-12	1,0481	3241	3650	92640	104300	0	13	0	-8	0,7731	679,1	775	19410	22150	0
6	0	12	1,0481	8,169	9,199	233,5	263	0	8	7	-8	0,7731	112,7	128,6	3221	3676	-56
8	3	5	1,048	219,5	248,8	6275	7113	-34,8	6	0	-18	0,7726	400,7	464,1	11450	13270	0
0	0	4	1,0508	59 52	254.1	1701	7263	-147,4	0	5	18	0,7720	90,62	23.17	2590	5000 662 3	157.5
6	4		1,0529	101.3	311.8	2896	8913	-113	8	5	-12	0,7712	87.04	171.6	2488	4905	121.8
10	1	0	1,0424	600,7	711,6	17170	20340	-155,2	8	5	12	0,7712	0,9374	1,848	26,79	52,83	-14,2
7	0	-11	1,0423	288,4	339,5	8243	9704	0	5	1	1	0,7912	42,11	42,11	1204	1204	0
5	3	11	1,0423	562,6	662,3	16080	18930	158,9	3	3	3	0,7912	42,08	42,08	1203	1203	0
7	5	2	1,0422	37,56	43,6	1074	1246	-127,6	9	2	-14	0,77	44,24	97,85	1265	2797	-53,8
9	2	4	1,0415	348,3	395,4	9956	11300	-95,2	3	2	19	0,7689	34,82	69,71	995,2	1992	-158,3
7	4	6	1,0403	90,1	100,5	2575	2873	-//	10	6	4	0,7685	26,55	51,79	758,9	1480	124,4
5	4	-0	1,0405	2023	185,5	4095	5238	-55,8	14	1	-4	0,7685	7 030	1231	18040	35180	175.8
7	5	-1	1,0395	360.6	418.5	10310	11960	-133.5	12	2	-8	0,7674	307.2	782.6	8780	22370	178.3
7	3	-8	1,0387	1825	2078	52180	59390	28,7	5	2	18	0,767	22,94	89,14	655,8	2548	-61,4
5	4	10	1,0366	213	256,1	6088	7319	12,5	5	2	-18	0,767	2,284	8,873	65,28	253,6	-72,2
8	4	1	1,0354	354	415,5	10120	11880	34,8	11	5	3	0,7659	0	15,17	-1E-5	433,6	40,9
6	6	3	1,0349	1091	1253	31200	35810	65,3	11	5	-3	0,7659	0	117,7	2E-5	3363	151,3
5	2	-12	1,0341	502,1	565,7	14350	16170	-151,4	9	7	5	0,7655	0	69,28	-4E-5	1980	-73,9
5 10	2	-5	1,0341	247,9	279,3 6673	169100	190700	-0,3	1	4	-20	0,7652	0	90,00	3E-3	2740	125.1
3	1	14	1,034	559.9	644.1	16000	190700	13.3	13	4	-4	0,763	3.611	34.15	103.2	976.1	119.7
6	2	-11	1,0285	176,2	200,1	5036	5719	-119,8	6	4	-16	0,763	12,46	116,7	356,2	3335	-28,1
8	4	-2	1,0284	563,2	617,7	16100	17660	-170,3	12	3	-6	0,7625	80,73	248,8	2308	7112	-150,7
4	2	-13	1,0258	524,3	463,9	14990	13260	144,3	12	3	6	0,7625	4,048	12,48	115,7	356,6	-88,3
8	0	-10	1,023	139,8	133	3996	3802	0	11	0	-13	0,7622	38,33	82,23	1096	2350	0
0	0	15	1,0227	795,4	759,9	22740	21720	180	10	5	8	0,7619	110,4	206,3	3156	5896	150,2
10	1	-3	1,0214	2680	2531	/6590	12330	-/5,6	12	1	-10	0,761	103,3	250,9	2953	208.5	-16/,1
9	1	-5	1,0214	1371	434,4	39190	38590	-159,5	7	4	-15	0,7609	4,307	10,79	124,8	4319	-117,5
9	1	-7	1.0192	1457	1475	41660	42170	-84.4	12	4	-1	0,7606	48.91	117.9	1398	3370	-2.8
6	5	7	1,0192	161,6	163,6	4620	4677	179,6	10	6	-5	0,76	295	528,5	8432	15110	77,6
4	0	-14	1,0177	942,7	952,5	26950	27230	0	14	0	5	0,76	209,2	374,8	5981	10710	0
5	5	9	1,0174	348,6	352,5	9964	10080	-151,7	2	0	20	0,7597	432,8	638	12370	18240	0
9	3	0	1,0153	743,1	830,9	21240	23750	-12	5	4	-17	0,7595	56,62	76,25	1618	2180	29,1
/	5	-4	1,0145	1/85	2111	51030	60350	141,8	/	5	14	0,7589	97,79	120,8	2795	3452	52,5
3 7	1	-10	1,0127	796.1	217,9 748	22760	21380	151,0	8	0	_10	0,7578	01,70	281.9	1705	2989	47,0
1	1	15	1,0097	1583	1496	45260	42760	-179	12	4	2	0,7578	259.4	445	7416	12720	179
3	2	-14	1,0049	325,9	445,9	9315	12750	-152,2	7	3	16	0,7575	81,89	147,6	2341	4220	-72,5
8	4	4	1,0017	134,9	258,3	3857	7383	41,6	8	8	6	0,7571	59,07	116,9	1689	3340	-147,6
4	0	0	1,0278	85,29	85,29	2438	2438	0	10	2	-13	0,7568	99,21	216,7	2836	6194	-103,3
11	0	-1	0,9963	32,5	37,41	928,9	1069	0	14	1	1	0,7551	130,1	326,7	3718	9337	-148,8
9	3	3	0,9959	995,4	1104	28450	31550	-102,3	13	2	5	0,7546	207,1	496,4	5920	14190	-162,3
9	3	-3	0,9959	548	60/,6	15660	1/3/0	-102,7	2	1	-20	0,7543	16,19	39,12	462,7	2180	35,7
4	4	12	0,9951	212,37	226.6	559,4 6070	504 6477	-170,9	0 8	4	-1/	0,7541	31,37	823.1	9630	2109	-170 /
8	3	-7	0,9938	30.87	34.5	882.5	986.2	-15.2	9	+ 6	9	0,7534	48.61	118.7	1390	3394	-114.8
9	0	-9	0,9922	239,9	242,7	6856	6938	180	9	6	-9	0,7534	61,33	149,8	1753	4281	-124,6
9	0	9	0,9922	28,76	29,1	822,1	831,9	180	9	5	-11	0,7525	141	342,9	4029	9803	-112
5	4	-11	0,9902	510,4	590,6	14590	16880	173,6	4	2	-19	0,7525	155,1	377,5	4435	10790	112,7
11	0	2	0,9901	5,036	5,822	143,9	166,4	-180	14	1	-2	0,7524	150,6	366,4	4303	10470	-141,8

h	k	1	d	F	F	Fnorm	Fnorm	Phase	h	k	1	d	F	F	Fnorm	Fnorm	Phase
			[calc]	[obs] ²	[calc] ²	[obs] ²	[calc] ²	in °				[calc]	[obs] ²	[calc] ²	[obs] ²	[calc] ²	in $^{\circ}$
4	3	13	0,9878	88,56	81,18	2531	2320	165	7	6	13	0,7514	184,9	449	5286	12830	127,2
9	1	8	0,987	490,8	480,3	14030	13730	63,5	11	4	-8	0,7511	53,38	129,6	1526	3704	107,6
6	5	-8	0,987	509,4	498,6	14560	14250	-73,8	4	4	18	0,7507	62,13	151,4	1776	4329	168,7
8	1	10	0,9853	876,7	849,8	25060	24290	167,3	11	3	-10	0,7503	125	304,5	3573	8704	26,5
3	0	15	0,985	252,8	243,8	7227	6967	-180	7	2	17	0,7488	170,9	414,5	4884	11850	157
3	0	-15	0,985	1320	1273	37740	36380	0	5	1	19	0,7472	91,45	232,1	2614	6633	-176,3
10	2	-1	0,9842	1229	1168	35130	33390	135,4	12	4	-4	0,7469	13,03	33,61	372,5	960,8	176,1
8	4	-5	0,983	415,7	403,4	11880	11530	87,7	13	3	1	0,7447	45,5	129,2	1301	3693	-43,1
10	0	/	0,9819	222	215,7	0340	0105	0	9	8	12	0,7447	88,33	250,8	2525	/1/0	10/,1
0	0	14	0,9805	8,870	7,754	255,7	57210	126.4	12	0	12	0,7442	02,25	1/4,/	1//9	2221	180
8	$\frac{2}{2}$	-9	0,9803	473.5	2003 409.4	13540	11700	20.5	3	1	-12	0,7442	41,4	144.8	1407	A130	54.9
8	0	11	0,9783	408.6	413.6	11680	11820	180	9	1	-7	0,7436	62.82	179.5	1796	5131	-62.3
10	2	2	0.9782	538.7	548.7	15400	15680	116.5	10	7	0	0.7421	79.44	232.5	2271	6647	-50.2
6	6	6	0.9767	216.3	183.6	6182	5249	-37.9	12	1	11	0.7421	7.06	20.67	201.8	590.9	151.2
6	4	-10	0,9736	803,7	666,1	22970	19040	-24,2	13	3	-2	0,742	40,7	119,6	1163	3417	-65,1
2	2	15	0,9733	27,61	23,46	789,2	670,7	-65,5	9	8	-2	0,742	149,4	439	4272	12550	122,9
7	6	1	0,9726	510,5	454,7	14590	13000	-71,3	14	1	4	0,7418	52,27	157,6	1494	4504	-160,5
9	2	7	0,9703	1059	955,6	30270	27320	-129,5	11	5	-6	0,7414	376,7	1188	10770	33970	107,6
4	2	14	0,969	855	693	24440	19810	23,4	11	5	6	0,7414	63,71	201	1821	5745	124,6
8	5	0	0,967	1591	1281	45490	36610	134	11	1	13	0,7411	0,3982	1,258	11,38	35,97	-31,2
7	2	11	0,9669	1883	1515	53830	43290	118,8	9	4	-13	0,7411	74,93	236,8	2142	6769	-174,7
7	6	-2	0,9668	205,2	164,5	5864	4701	-50,3	13	0	10	0,74	38,03	132,4	1087	3785	0
11	0	-4	0,9662	1520	1187	43460	33920	0	8	7	10	0,74	142,2	495,2	4065	14150	111,7
10	1	6	0,9653	698,6	533,5	19970	15250	-92,2	11	2	-12	0,7391	59,34	177	1696	5060	3,8
10	1	-6	0,9653	916,8	700,1	26210	20010	-116,3	11	2	12	0,7391	107,2	319,8	3064	9141	97,9
6	1	-13	0,9647	180,6	141,3	5163	4040	30,5	/	/	12	0,7391	24,36	/2,6/	696,3	2077	-/,8
8	3	8	0,964	381	310,2	2124	8808	105,3	12	4	20	0,7391	73,08	218,1	2089	6233	108,8
7	3	10	0,9623	109,7	92,09	3134	2032	149,5	4	0	-20	0,7388	20,8	51,82	594,7 7212	1481	0
7	1	12	0,9003	245.0	170	7028	4860	J0,0 130.3	14	6	-/	0,7386	233,8 18.80	112.0	1308	3226	76.0
5	1	-12	0,9003	37 11	10 35	1028	553.2	-81.5	8	1	-17	0,7386	6 678	112,9	100.0	440.6	-75.3
10	2	-14	0,9552	112	61.89	3202	1769	100	11	0	14	0,738	105.4	254.2	3013	7265	0
1	0	16	0.9552	611.5	337.7	17480	9654	0	4	3	19	0.7371	16.82	32.53	480.9	929.7	-61.3
10	0	-8	0.953	386.5	261.7	11050	7479	-180	9	1	-16	0.7368	136.7	268	3909	7659	154.8
11	1	1	0,9505	367,3	294,4	10500	8415	-110,5	6	5	16	0,7368	23,88	46,8	682,7	1338	32,6
9	4	-1	0,9505	522,6	418,9	14940	11970	135,5	7	1	18	0,7354	95,6	182,1	2733	5206	100
8	5	3	0,9501	1378	1126	39400	32180	109,3	7	1	-18	0,7354	379,8	723,6	10860	20680	114,2
8	5	-3	0,9501	1860	1519	53150	43410	130,3	12	2	10	0,735	47,65	91,69	1362	2621	-62,7
11	0	5	0,9494	36,16	29,72	1034	849,6	0	6	6	15	0,7349	124,2	226,4	3551	6471	-75,4
7	5	-7	0,9483	251,4	196,3	7187	5610	9,4	11	6	-1	0,7346	117,8	221	3368	6316	-89
7	4	-9	0,9469	334,7	250	9566	7146	44,2	10	7	-3	0,7344	32,14	59,68	918,7	1706	13
7	4	9	0,9469	786,5	587,5	22480	16790	-133,6	10	7	3	0,7344	600,5	1115	17170	31880	-57,1
8	1	-11	0,9452	150,5	128,6	4301	3675	65,2	14	1	-5	0,7341	55,76	97,69	1594	2793	-76,4
9	4	2	0,945	589,7	509	16860	14550	7,5	3	2	-20	0,7338	349	593,1	9976	16950	-158,5
11	1	-2	0,945	1094	944,3	31270	26990	11/,4	13	2	-/	0,7336	114,3	194,7	3267	556/	120,6
2	6	4	0,9445	118/	10/9	33930	30850	5,/	0	4	1/	0,7336	79.22	128,9	2163	3686	67,8
2	3	-10	0,9443	257.1	2483	73/0	7096	155.3	10	2	14	0,7331	10,52	20.47	423.9	4050 842.3	-112,4
9	3	-6	0,9430	5/6	527.3	15610	15070	-84.5	13	1	-9	0,733	14,01	29,47	423,3	820.7	-144,5
5	3	-13	0.9431	1877	1838	53650	52530	-49 7	15	0	0	0.7322	64.4	174.8	1841	4997	-0,4
7	0	13	0.9431	201.5	197.3	5760	5640	0	11	3	11	0,7321	37.81	102.6	1041	2934	-557
9	2	-8	0,9424	1387	1399	39640	39990	62,3	11	6	2	0,7321	164.4	417.1	4698	11920	-10,4
4	1	15	0,9407	208.8	202.9	5968	5800	112,4	9	8	4	0,7318	20,76	54,88	593,3	1569	-21.3
4	1	-15	0,9407	463,3	450,3	13240	12870	88	13	3	4	0,7318	54,4	143,8	1555	4111	-121,6
6	3	-12	0,939	181,3	154,6	5183	4420	160	10	3	13	0,7312	60,38	192,6	1726	5506	-62,8
6	3	12	0,939	1104	941,5	31560	26910	-60	9	7	8	0,7309	47,15	172,5	1348	4929	115,1
10	2	5	0,9389	423	359,8	12090	10280	114,5	0	0	21	0,7305	11,14	38,87	318,4	1111	180
8	4	7	0,9379	1081	844,1	30890	24130	144	10	5	-10	0,7301	4,885	122,1	139,6	3490	-42,1
4	3	-14	0,9368	302,2	201,1	8639	5747	-72	10	1	-15	0,73	0	394,8	2E-4	11290	-18,7
6	4	11	0,9348	1240	743,8	35440	21260	74	10	1	15	0,73	0	122,7	6E-5	3506	59,6

Die Daten der 2. Phase (Ag-Reflexe) sind fett gekennzeichnet.

7.1.6 Beobachtete und berechnete Strukturfaktoren von γ -Ag₄Mn₃O₈

h	k	1	d	F	F	Fnorm	Fnorm	Phase	h	k	1	d	F	F	Fnorm	Fnorm	Phase
			[calc]	[obs] ²	[calc] ²	[obs] ²	[calc] ²	in °				[calc]	[obs] ²	[calc] ²	[obs] ²	[calc] ²	in $^{\circ}$
1	1	0	6,3356	566,9	5,471	2815	2,716E	90	9	3	0	0,9445	345,2	236,3	1714	1173	90
1	1	1	5,1730	72,35	1,495	359,3	7,421E	-45	7	5	4	0,9445	114,2	78,18	567,2	388,2	136,7
2	1	0	4,0070	7,326	9,351	36,38	4,643E	-180	8	5	1	0,9445	127,5	87,25	633	433,2	-151,3
2	1	1	3,6579	0	1,698	-7E-07	8,430E	180	9	3	1	0,9393	132,8	104	659,2	516,4	-44,8
2	2	1	3,16/8	199,6	17,57	990,9 31720	87,26	0	8	5	2	0,9291	272,5	184,9	1353	918,2	/3,6
2	2	0	2,9807	410.9	463.1	2040	2300	-155	9	3	2	0,9241	19,38	9 525	97,24 63,73	47.3	165.5
3	1	1	2,0004	4264	4612	21180	22900	-135	3	3	1	0,9471	70.74	70.74	351.3	351.3	0
2	2	2	2,5865	3095	2103	15370	10440	-90	8	4	4	0,9145	4,746	2,954	23,56	14,67	0
3	2	0	2,485	60,63	47,4	301,1	235,4	90	9	4	0	0,9097	60,43	31,77	300,1	157,7	90
3	2	1	2,3946	629,2	663,4	3124	3294	39,9	6	6	5	0,9097	94,58	49,72	469,6	246,9	-135
1	1	1	2,3835	415,8	415,8	2065	2065	0	8	5	3	0,9051	162,5	92,24	806,9	458	-167,2
4	0	0	2,24	2366	2108	11750	10470	180	7	7	0	0,9051	276	156,7	1371	778,1	-90
4	1	0	2,1731	3272	3223	16250	16000	0	9	4	1	0,9051	464,5	263,7	2306	1309	49,9
3	2	2	2,1751	526.4	784,9 587 3	2614	2916	-43	7	5	5	0,9005	33.87	13.26	168.2	65.86	45
4	1	1	2,1119	135.8	151.5	674.1	752.1	90	9	3	3	0,9005	3,489	1.366	17.32	6.784	-45
3	3	1	2,0556	227,1	431,7	1128	2144	-45	4	2	0	0,9231	66,84	66,84	331,9	331,9	0
4	2	0	2,0035	207,8	262,8	1032	1305	0	8	6	0	0,896	408,4	229,4	2028	1139	-180
2	0	0	2,0642	329,4	329,4	1636	1636	0	10	1	0	0,8915	24,11	12,7	119,7	63,05	0
4	2	1	1,9552	191,4	381	950,5	1892	-160,9	8	6	1	0,8915	33,78	17,79	167,7	88,33	-88,7
3	3	2	1,9103	156,8	93,4	778,7	463,8	-180	9	4	2	0,8915	225,3	118,7	1119	589,3	-30,5
4	2	2	1,8289	478,1	159,5	2374	792,2	-180	7	6	4	0,8915	29,55	15,56	146,7	77,27	-16,4
4	3	1	1,792	10,87	0,8888	53,99	4,413	67.2	10	1	1	0,8872	3 005	314,5	2505	12.27	-180
4	1	0	1,7572	5746	4636	28530	23020	90	10	2	2	0,8786	25 / 9	2,491	19,04	12,37	-180
3	3	3	1,7243	1178	582.8	5848	23020	45	8	6	2	0,8786	51.72	53.34	256.8	264.9	59.8
5	1	1	1,7243	270,4	133,8	1343	664,4	135	10	2	1	0,8744	60,97	55,03	302,7	273,3	-179,7
5	2	0	1,6638	0	33,13	6E-6	164,5	-90	8	5	4	0,8744	182,4	164,7	906	817,8	-163,3
4	3	2	1,6638	0	125,3	2E-7	622,2	-84,9	9	5	0	0,8703	0,5709	0,3872	2,835	1,923	90
5	2	1	1,6359	392,4	1030	1948	5116	34,6	9	4	3	0,8703	401,6	272,4	1994	1352	132,1
4	4	0	1,5839	475,7	419,7	2362	2084	0	9	5	1	0,8662	162,1	104,4	804,7	518,6	-73,7
4	4	1	1,5597	3995	3053	19840	15160	-135	7	7	3	0,8662	190,2	122,6	944,5	608,6	45
5	2	2	1,5397	2367	1569	412,5	315,5 7790	-135	0	0	2	0,8622	10,10	10,17 52 72	80,25	261.8	-90
4	3	3	1,5366	886.9	587.8	4404	2919	-90	8	2 6	3	0,8022	82.5	66.22	409.7	328.8	59.6
5	3	1	1,5145	1142	954	5668	4737	51,5	10	3	0	0,8582	344,1	276,2	1709	1372	0
4	4	2	1,4933	555,8	292,3	2760	1451	90	7	6	5	0,8543	295,8	206,4	1469	1025	-112,4
6	1	0	1,473	430,2	1020	2136	5066	-180	9	5	2	0,8543	179,4	125,1	890,6	621,2	-1,4
6	1	1	1,4535	196,2	166,2	974,1	825,5	0	10	3	1	0,8543	151,9	106	754,2	526,1	13,5
5	3	2	1,4535	127,7	108,2	633,9	537,2	-178,1	8	7	1	0,8392	3,863	2,454	19,18	12,18	-106,5
2	2	0	1,4596	210,1	210,1	1043	1043	0	8	5	5	0,8392	57,8	36,72	287	182,3	90
5	2	0	1,4107	468	383,4	2324	1904	0	/	/	4	0,8392	118,8	/5,45	589,8	3/4,6	90
4	4	3	1,3993	56.25	76.8	2911	3973	-90	9	4	4	0,8333	35.92	29.69	178.4	432,0	-40,5
6	2	1	1,3993	391.6	534.7	1945	2655	44.2	8	7	0	0.8429	3.416	2.823	16.96	14.02	0
5	4	1	1,3826	1017	1180	5048	5857	-134,3	10	3	2	0,8429	136,8	113	679,2	561,3	108,7
5	3	3	1,3664	43,52	13,84	216,1	68,74	135	8	6	4	0,8319	180,1	165,2	894,3	820,5	41,8
6	2	2	1,3508	227	218,3	1127	1084	90	10	4	0	0,8319	12,89	11,83	64,02	58,73	0
5	4	2	1,3357	212,5	171,8	1055	852,9	45,1	8	7	2	0,8283	61,71	40,18	306,4	199,5	46,6
6	3	0	1,3357	665,9	538,3	3306	2673	-180	9	6	0	0,8283	228,9	149	1137	740,1	-90
6	3	1	1,3211	79,18	55,33	393,2	274,7	-54	10	4	1	0,8283	43,94	28,61	218,2	142,1	-15
4	4	4	1,2933	2399	1981	12900	9837	-180	9	0	1	0,8248	57,41 138.0	55,/4 132.7	185,8	650	00,0
5	4	2	1,20	340.4	439.4	1690	2182	-73,0	10	5 4	2	0,8170	226.5	215.7	1125	1071	-78
7	1	0	1,2671	71.42	92.2	354.6	457.8	-90	4	2	2	0,8427	39.06	39.06	194	194	0
5	5	0	1,2671	483,3	624	2400	3098	-90	9	6	2	0,8145	35,26	43,57	175,1	216,3	-144,2
5	5	1	1,2546	51,71	50,93	256,8	252,9	135	7	6	6	0,8145	42,77	52,85	212,4	262,4	-45
7	1	1	1,2546	5,491	5,408	27,26	26,85	45	8	7	3	0,8112	2,51	7,659	12,46	38,03	79,5
6	4	0	1,2425	158,5	143,8	786,9	714,1	-180	11	1	0	0,8112	1,245	3,798	6,181	18,86	-90
6	4	1	1,2307	370,2	246,5	1838	1224	-163,8	9	5	4	0,8112	8,043	24,54	39,94	121,9	-0,4
/	2	0	1,2307	262,1	1/4,5	1301	806,3	90	/	/	Э	0,8079	51,45	19,95	156,1	99,09	135

h	k	1	d	F	F	Fnorm	Fnorm	Phase	h	k	1	d	F	F	Fnorm	Fnorm	Phase
			[calc]	[obs] ²	[calc] ²	[obs] ²	[calc] ²	in °				[calc]	[obs] ²	[calc] ²	[obs] ²	[calc] ²	in $^{\circ}$
5	5	2	1,2193	851,5	785,4	4228	3900	-180	11	1	1	0,8079	1,685	1,07	8,369	5,313	45
6	3	3	1,2193	1,256	1,159	6,239	5,755	-180	8	6	5	0,8014	27,49	32,88	136,5	163,2	54
7	2	1	1,2193	329,6	304	1636	1510	-140,3	10	5	0	0,8014	28,64	34,25	142,2	170,1	0
5	1	2	1,2447	142,8	142,8	708,9	708,9	0 130.5	10	4	3	0,8014	/4,/6	89,4	3/1,2	443,9	-59,5
7	2	2	1,1973	153.8	222	763.5	1102	-45	10	2 5	1	0,8014	204,2 59.83	66 31	297.1	329.3	-90
5	4	4	1,1868	637,1	919,6	3163	4566	45	9	6	3	0,7982	4,431	4,911	22	24,39	179,3
7	3	0	1,1765	290,8	178,5	1444	886,6	90	11	2	1	0,7982	86,94	96,37	431,7	478,5	43,2
5	5	3	1,1665	70,15	88,57	348,3	439,8	-135	8	8	0	0,792	6,892	4,04	34,22	20,06	-180
7	3	1	1,1665	20,94	26,44	104	131,3	129,8	11	2	2	0,7889	24,18	15,47	120	76,84	135
2	2	2	1,1918	119,2	119,2	591,9	591,9	0	8	7	4	0,7889	91,58	58,61	454,7	291	-71,2
6	5	0	1,1472	172,8	166,5	857,9	826,7	-180	8	8	1	0,7889	/2,12	46,16	358,1	229,2	-135
7	4	2	1,1472	311.1	276.6	802,8	831,4 1374	8 2	10	3	2	0,7859	40,75	20,08	202,3	31 29	-90
6	5	1	1,1379	483.5	429.9	2401	2134	-174.6	9	7	0	0,7858	0.0156	0.0085	0.0774	0.042	90
8	1	0	1,1113	622,6	490,8	3091	2437	-180	11	3	1	0,7828	62,56	47,01	310,6	233,4	-147,6
6	5	2	1,1113	47,09	37,12	233,8	184,3	-47,9	9	5	5	0,7828	204,4	153,6	1015	762,7	135
7	4	0	1,1113	0,0900	0,0709	0,447	0,3524	90	9	7	1	0,7828	134,9	101,4	669,7	503,3	130,6
8	0	0	1,12	55,73	55,78	276,7	277	0	10	4	4	0,7799	16,79	30,84	83,39	153,2	90
8	1	1	1,1029	129,5	120,6	643,1	598,7	90	8	8	2	0,7799	35,8	65,74	177,7	326,5	90
5	5	4	1,1029	59,95	55,81	297,7	277,1	90	9	6	4	0,7769	39,31	56,23	195,2	279,2	136,6
7	4	2	1,1029	3,4/1	3,231	17,23	16,04	132,4	/	7	0	0,774	59,32	55,0	294,5	100,8	180
8	2	0	1,0940	212	4,793	1052	23,8 547.4	-135	9	3	2	0,774	34.16	19 35	169.6	96.08	-30,9
6	4	4	1,0866	602.4	313.3	2991	1556	-90	10	5	3	0,774	33.81	19,15	167.9	95.09	-47.4
8	2	1	1,0787	125,1	75,13	621,4	373,1	1,2	5	1	1	0,7945	25,94	25,94	128,8	128.8	0
7	4	2	1,0787	92,28	55,41	458,2	275,1	-175,6	3	3	3	0,7945	25,94	25,94	128,8	128,8	0
6	5	3	1,0709	373	198,6	1852	986,2	104,9	8	6	6	0,7683	121,9	43,03	605,2	213,7	-180
6	6	0	1,0559	963,7	284	4785	1410	180	10	6	0	0,7683	59,97	21,18	297,8	105,1	0
8	2	2	1,0559	0,6685	0,197	3,319	0,9781	0	8	8	3	0,7655	0,0334	0,0092	0,1662	0,046	135
8	3	0	1,0487	190,7	86,34	946,9	428,7	-180	10	6	1	0,7655	4,31	1,193	21,4	5,926	-48,5
6	6	1	1,048/	156,5	/0,86	///,1	351,9	-135	0 0	4	5	0,7655	1,107	0,3064	5,495	1,522	90
8	3	1	1,0410	138.3	14,01	95,45 686.9	533.1	-90	0	/ 4	1	0,7627	14.85	20,10	73 73	70.74	-37,1
7	4	3	1,0416	130,3	111.7	714.9	554.8	-68.2	9	7	3	0,76	55.77	60.55	276.9	300.7	58.4
7	5	1	1,0346	346,7	215,2	1722	1069	165,3	11	3	3	0,76	33,39	36,26	165,8	180,1	45
5	5	5	1,0346	1047	649,7	5197	3226	-45	10	6	2	0,7573	105	57,82	521,5	287,1	-84,9
6	6	2	1,0278	13,35	4,965	66,29	24,65	90	10	5	4	0,7546	42,63	31,62	211,7	157	169,3
6	5	4	1,0211	427,9	103	2125	511,4	-55,7	11	4	2	0,7546	121,8	90,38	605	448,8	9,9
8	3	2	1,0211	63,17	15,2	313,7	75,5	-167,5	9	6	5	0,7519	26,46	17,32	131,4	85,98	-97,4
1	5	2	1,0145	265,9	149,3	1320	741,5	146	8	8	4	0,7467	0,0998	0,0597	0,4956	0,296	0
4	4	0	1,0321	128,4	128,4	0.2199	0.1299	0	12 9	8	0	0,7467	58 79	33,08	279,5	169.8	-90
6	6	3	0.9956	442.2	491.3	2196	2440	135	10	6	3	0,7441	55,73	32.42	276.7	161	-38.3
7	4	4	0,9956	45,83	50,92	227,6	252,8	135	12	1	0	0,7441	9,49	5,521	47,12	27,41	0
8	4	1	0,9956	168,1	186,8	834,8	927,4	77,1	9	8	1	0,7415	93,63	52,31	464,9	259,8	-159,8
8	3	3	0,9895	61,45	74,29	305,2	368,9	-90	9	7	4	0,7415	118,6	66,23	588,7	328,9	20,5
9	1	0	0,9895	236,9	286,3	1176	1422	-90	11	5	0	0,7415	3,739	2,089E	0,0018	0,001	-90
7	5	3	0,9835	148,1	127,8	735,4	634,5	7,3	11	4	3	0,7415	91,3	51,01	453,3	253,3	176,9
9	1	1	0,9835	136,7	118	679	585,9	135	12	1	1	0,7415	124,4	69,49	617,6	345	-90
8	4	2	0,9776	164,2	89,22	815,3	443	-48,8	7	2	1	0,739	56,55 71.06	50,28	280,8	249,7	-00,/
9	2	0	0,9718	626.9	461.3	3113	2291	90	12	2	0	0,739	46.28	35.04	229.8	174	-135
9	2	1	0,9662	29.64	25.07	147.2	124.5	-168.5	10	7	0	0,734	260.4	177.6	1293	881.9	-180
7	6	1	0,9662	258,1	218,3	1282	1084	55,9	9	8	2	0,734	54,22	36,98	269,2	183,6	30,8
6	5	5	0,9662	130,1	110	645,9	546,3	0	8	7	6	0,734	51,87	35,38	257,6	175,7	-160,3
6	6	4	0,9551	96,95	92,12	481,4	457,4	0	12	2	1	0,734	58,07	39,61	288,3	196,7	179,8
7	6	2	0,9498	195,2	193	969	958,5	165,1	11	5	2	0,7316	36,67	23,32	182,1	115,8	-64,7
8	5	0	0,9498	391,8	387,6	1946	1925	0	10	7	1	0,7316	50,33	32,01	249,9	159	-80,9
8	4	3	0,9498	42,58	42,12	211,4	209,1	-107,4	10	5	5	0,7316	8,042	5,114	39,93	25,4	180
9	2	2	0,9498	10,6	10,48	52,62	52,05	43	4	4	U	0,/298	U	2089	25/4	20/3	U

Die Daten der 2. Phase (Ag-Reflexe) sind fett gekennzeichnet.

$7.2 Ag_2MnO_2$

7.2.1 Verfeinerung der Gitterkonstante

Verfeinerte Gitterkonstante: a = 8,691(2) Å

Ν	2Th[obs]	h	k	1	2Th[calc]	obs-calc	Intensität	d[obs]	d[calc]
1	10,135	1	0	0	10,170	-0,0347	100,0	8,7209	8,6912
2	20,389	2	0	0	20,420	-0,0314	23,8	4,3522	4,3456
3	30,823	3	0	0	30,840	-0,0163	80,4	2,8986	2,8971
4	41,520	4	0	0	41,528	-0,0083	41,4	2,1732	2,1728
5	52,608	5	0	0	52,610	-0,0022	17,6	1,7383	1,7382
6	90,331	6	0	0	90,314	0,0174	12,4	1,0862	1,0864

Durchschnittliche Abweichung in 2θ: 0,018°

Maximale Abweichung in 20: $0,035^{\circ}$ (Reflex 1) = 1,9-facher Durchschnitt

Figure of Merit $F(6) = 5.9 = (N_{obs} / N_{poss}) / (Durchschnittliche Abweichung in 20)$

7.2.2 Magnetische Messung

	0,0077 Tesla					0,01 Tesla					
Temp.	χ in 10^{-4}	χ^{-1} in	Temp.	χ in 10^{-4}	χ^{-1} in	Temp.	χ in 10^{-4}	χ^{-1} in	Temp.	χ in 10^{-4}	χ^{-1} in
in K	cm ³ / mol	mol / cm ³	in K	cm ³ /mol	mol / cm ³	in K	cm ³ /mol	mol / cm ³	in K	cm ³ /mol	mol / cm ³
4,9988	349,553	28,608	347,08	54,0946	184,861	4,9996	336,473	29,7201	347,17	52,2778	191,286
6,1011	350,418	28,5373	344,36	55,337	180,711	6,1045	335,528	29,8038	344,41	52,7169	189,692
7,1286	349,446	28,6167	341,78	55,1588	181,295	7,1219	334,881	29,8613	341,86	52,8306	189,284
8,1099	349,66	28,5992	339,41	55,8716	178,982	8,1238	333,874	29,9514	339,35	52,9051	189,018
9,1121	350,026	28,5693	336,94	55,617	179,801	9,1187	332,784	30,0495	336,89	53,3638	187,393
10,114	350,536	28,5278	334,49	55,281	180,894	10,094	330,447	30,262	334,37	53,5638	186,693
11,115	350,016	28,5701	332,03	56,6252	176,600	11,11	317,164	31,5294	332,03	53,5755	186,652
12,206	349,965	28,5743	329,57	55,4337	180,396	12,179	286,556	34,8973	329,68	53,7676	185,986
13,092	349,37	28,623	327,28	56,8594	175,872	13,095	267,78	37,3441	327,29	53,995	185,202
14,095	350,037	28,5684	324,71	58,0203	172,353	14,121	256,414	38,9995	324,76	53,9676	185,296
15,173	350,464	28,5336	322,21	56,8442	175,92	15,12	250,47	39,9249	322,19	54,3008	184,159
16,127	349,349	28,6247	319,61	57,7301	173,22	16,107	247,024	40,4819	319,63	54,2969	184,173
17,11	351,177	28,4757	317,14	57,5977	173,618	17,09	245,177	40,7868	317,12	54,6066	183,128
18,099	350,643	28,5191	314,53	57,1904	174,855	18,111	244,217	40,9473	314,58	54,7909	182,512
19,087	352,847	28,3409	312,16	58,0662	172,217	19,101	243,828	41,0125	312,06	55,081	181,551
20,118	353,519	28,287	309,6	58,2087	171,795	20,099	243,754	41,025	309,64	55,4496	180,344
22,849	356,534	28,0478	307,13	59,0132	169,454	22,829	243,668	41,0395	307,09	55,43	180,408
25,331	358,367	27,9044	304,64	59,2933	168,653	25,309	242,891	41,1707	304,69	55,5594	179,988
28,434	358,188	27,9183	302,17	59,4868	168,105	27,806	240,492	41,5814	302,12	55,7985	179,216
30,312	354,237	28,2297	299,65	59,1914	168,943	30,259	236,034	42,3667	299,64	56,12	178,19
32,802	344,787	29,0034	297,2	59,9858	166,706	32,824	228,107	43,8391	297,13	56,2376	177,817
35,358	325,968	30,6779	294,62	59,4715	168,148	35,332	214,212	46,6827	294,73	56,5748	176,757
37,837	291,869	34,262	292,11	60,0621	166,494	37,811	189,947	52,6462	292,15	56,6767	176,439
40,317	229,77	43,5218	289,65	61,1569	163,514	40,385	149,525	66,8783	289,69	56,7473	176,22
42,809	143,786	69,548	287,11	61,4318	162,782	42,829	105,677	94,6281	287,1	57,1668	174,927
45,285	80,3374	124,475	284,6	60,8921	164,225	45,282	83,3488	119,978	284,64	57,206	174,807
47,843	77,425	129,157	282,18	61,0805	163,718	47,863	81,3376	122,944	282,18	57,6216	173,546
50,323	76,5746	130,592	279,61	61,5947	162,351	50,319	80,1888	124,706	279,57	57,6765	173,381
52,826	75,6581	132,174	277,16	61,1569	163,514	52,796	79,2949	126,112	277,17	57,9078	172,688

0,0077 Tesla						0,01 Tesla					
Temp.	χ in 10 ⁻⁴	χ^{-1} in	Temp.	χ in 10 ⁻⁴	χ^{-1} in	Temp.	χ in 10 ⁻⁴	χ^{-1} in	Temp.	χ in 10 ⁻⁴	χ^{-1} in
in K	cm^3/mol	mol/cm^3	in K	cm^3/mol	mol/cm^3	in K	cm ³ /mol	mol/cm^3	in K	cm ³ /mol	mol/cm^3
55,306	74,3852	134,435	274,64	62,6844	159,529	55,281	78,4833	127,416	274,67	58,3077	171,504
57,846	73,9473	135,231	272,13	62,8117	159,206	57,82	77,6639	128,76	272,11	58,543	170,815
60,282	73,2345	136,548	269,62	62,2872	160,547	60,314	76,9464	129,961	269,63	58,7978	170,074
62,794	73,0053	136,976	267,14	63,3819	157,774	62,771	76,3152	131,035	267,12	58,939	169,667
65,293	71,4473	139,963	264,59	63,4991	157,483	65,35	75,6409	132,204	264,66	59,1115	169,172
67,839	71,7528	139,367	262,08	63,275	158,04	67,843	75,139	133,087	262,16	59,3506	168,49
72,815	70,3831	142,08	257.00	64 2110	155,734	70,329	74,3743	134,094	257.06	59,7970	167.483
75,347	70,5004	141,496	254.61	65.0164	153,807	75.33	73.6374	135,801	254.66	59,8564	167.067
77,858	71,1214	140,605	252,17	64,4156	155,242	77,832	73,2414	136,535	252,15	60,123	166,326
80,311	69,0898	144,739	249,64	64,5785	154,85	80,314	72,8572	137,255	249,66	60,2484	165,979
82,864	68,9829	144,964	247,15	64,6142	154,765	82,79	72,4573	138,012	247,19	60,6523	164,874
85,345	69,8281	143,209	244,68	65,2608	153,231	85,349	72,0143	138,861	244,67	60,8522	164,333
87,781	68,3158	146,379	242,08	66,4574	150,472	87,837	71,8182	139,24	242,18	60,9855	163,973
90,289	68,3668	146,270	239,63	65,1437	153,507	90,343	71,3125	140,228	239,64	61,3227	163,072
92,843	67.2466	147,878	237,13	66 8596	130,340	92,780	70,9714	140,902	237,15	61 7775	161.871
97,798	66,7985	149,700	234,02	67.3586	148,459	97,797	70,3284	142.19	234,04	62,1186	160.982
100,29	67,2262	148,752	229,74	67,7354	147,633	100,27	70,003	142,851	229,7	62,3421	160,405
102,88	67,1091	149,011	227,12	67,8169	147,456	102,86	69,6972	143,478	227,1	62,6675	159,572
105,32	65,9278	151,681	224,69	67,323	148,538	105,26	69,3835	144,126	224,64	62,7969	159,244
107,83	66,162	151,144	222,19	68,2955	146,423	107,82	69,0699	144,781	222,17	63,1419	158,374
110,31	66,6865	149,955	219,67	68,7792	145,393	110,29	68,7641	145,425	219,61	63,2203	158,177
112,79	65,9838	151,552	217,2	68,3413	146,324	112,77	68,4347	146,125	217,18	63,5692	157,309
115,37	64,9095 64,9604	154,061	214,59	69,2985 68,8963	144,303	115,35	68,1485	146,738	214,69	63,6594	157,086
120.26	64 7567	154 424	209.63	68 3871	146 226	120.31	67 5604	147,179	212,12	64 1887	155 791
120,20	63,9573	156,354	207,03	69.8994	143,063	120,31	67.3566	148,464	207,00	64.4161	155.241
125,31	63,6773	157,042	204,62	69,4666	143,954	125,32	67,0664	149,106	204,69	64,5729	154,864
127,79	63,5754	157,293	202,12	70,2558	142,337	127,81	66,839	149,613	202,19	65,0434	153,744
130,28	63,2801	158,028	199,62	71,213	140,424	130,31	66,5803	150,195	199,68	65,1924	153,392
132,77	63,3667	157,812	197,07	71,3709	140,113	132,8	66,3215	150,781	197,09	64,6709	154,629
135,26	63,4227	157,672	194,64	71,0246	140,796	135,33	66,0706	151,353	194,59	66,3254	150,772
137,79	65,1/42	153,435	192,12	71,9004	139,081	137,85	65,8314	151,903	192,12	66,051	151,398
140,29	62 4094	160 232	189,09	72 8118	139,804	140,38	65 4198	152,402	189,08	66 6587	150,018
145.36	62,4553	160,115	184.69	72,2518	138,405	145.33	65,1492	153,494	184.68	66,6861	149,956
147,85	62,3432	160,402	182,18	72,9086	137,158	147,81	64,9885	153,873	182,11	67,1135	149,001
150,3	62,1752	160,836	179,64	73,7538	135,586	150,33	64,7689	154,395	179,66	67,4585	148,239
152,8	60,6375	164,914	177,19	73,4025	136,235	153,54	64,4396	155,184	177,12	67,3409	148,498
155,35	61,7526	161,937	174,66	74,4972	134,233	155,28	64,3141	155,487	174,67	67,5957	147,938
157,83	61,6304	162,258	172,1	74,8333	133,63	157,83	64,0436	156,144	172,17	68,1799	146,671
160,34	61,1569	163,514	169,62	74,3394	134,518	160,3	63,8476	156,623	169,6	68,2975	146,418
165.35	61.0856	163,037	16/,12	71,6398	132,802	165.36	63,0808	157,018	16/,17	68,9248 68,7484	145,080
167.81	61.0958	163 677	162.22	75 1184	133,123	167.84	63 2713	157,501	162 17	69 2934	144 314
170,28	60,001	166,664	159,65	74,319	134,555	170,31	63,0595	158,58	159,68	69,2541	144,396
172,78	60,5815	165,067	157,14	75,9025	131,748	172,81	62,8831	159,025	157,16	69,8658	143,132
175,37	59,9196	166,89	154,62	76,0706	131,457	175,35	62,6871	159,523	154,62	69,8618	143,14
177,85	59,8025	167,217	152,21	78,0869	128,062	177,83	62,4558	160,113	152,1	70,2186	142,412
180,32	60,3218	165,778	149,61	76,9412	129,969	180,33	62,2911	160,537	149,69	70,8655	141,112
182,81	59,4/15	168,148	147,09	76,7172	130,349	182,82	62,0911	161,054	147,24	71 2066	141,269
187.8	59,7512	167 889	144,71	78,0207	128,171	187.78	61 6873	162 108	144,05	71,2000	140,450
190.3	59.5122	168.033	139.64	77.5319	127,002	190.33	61.4678	162.687	139.61	71.7751	139.324
192,79	59,3391	168,523	137,13	78,8354	126,847	192,84	61,3266	163,061	137,16	72,1476	138,605
195,34	58,9572	169,614	134,57	78,8354	126,847	195,31	61,1659	163,49	134,7	72,3828	138,154
197,82	59,0642	169,307	132,11	79,4667	125,839	197,81	60,8601	164,311	132,17	72,6769	137,595
200,29	58,9878	169,527	129,65	78,6673	127,118	200,3	60,8013	164,47	129,69	73,0885	136,82
202,88	57,6079	173,587	127,17	80,4036	124,372	202,79	60,6405	164,906	127,15	73,508	136,04
205,26	58,2546	1/1,66	124,6	19,2274	126,219	205,28	60,37	165,645	124,61	/3,806	135,49
210.3	57 7607	173 128	122,17	02,2310 82,4658	121,008	207,85	60 1073	103,818	122,13	74,1333	134,888
210,5	57,8981	172,717	117.15	81,7224	122,365	210,33	59,9152	166.903	117.12	74.8215	133.652
215,32	57,7709	173,098	114,7	82,4047	121,352	215,36	59,778	167,286	114,67	75,2802	132,837
217,8	58,2648	171,63	112,16	82,4352	121,307	217,87	59,629	167,704	112,2	75,6056	132,265
220,29	58,2648	171,63	109,6	82,6847	120,941	220,33	59,3937	168,368	109,63	76,1545	131,312

0,0077 Tesla						0,01 Tesla					
Temp.	χ in 10 ⁻⁴	χ^{-1} in	Temp.	χ in 10^{-4}	χ^{-1} in	Temp.	χ in 10 ⁻⁴	χ^{-1} in	Temp.	χ in 10^{-4}	χ^{-1} in
in K	cm ³ / mol	mol / cm ³	in K	cm ³ /mol	mol / cm ³	in K	cm ³ / mol	mol / cm ³	in K	cm ³ /mol	mol / cm ³
222,84	56,4572	177,125	107,12	83,6165	119,594	222,78	59,2212	168,858	107,15	76,4838	130,747
225,33	57,002	175,432	104,67	85,2866	117,252	225,33	59,0526	169,34	104,61	76,9112	130,02
227,84	57,4093	174,188	102,19	84,197	118,769	227,82	58,8919	169,803	102,12	77,3581	129,269
230,3	56,5285	176,902	99,636	85,9485	116,349	230,35	58,7429	170,233	99,613	77,8403	128,468
232,88	56,615	176,632	97,074	86,1216	116,115	232,81	58,6018	170,643	97,182	78,303	127,709
235,36	56,9715	175,527	94,693	87,7714	113,932	235,33	58,3979	171,239	94,692	78,7656	126,959
237,79	56,4063	177,285	92,1	87,0433	114,885	237,81	58,1587	171,943	92,129	79,189	126,28
240,38	56,3401	177,494	89,635	88,7133	112,723	240,36	58,0686	172,21	89,623	79,7183	125,442
242,85	55,9633	178,689	87,117	89,136	112,188	242,8	57,9706	172,501	87,108	80,2947	124,541
245,31	56,2943	177,638	84,621	87,9292	113,728	245,35	57,7471	173,169	84,703	80,7926	123,774
247,81	55,9938	178,591	82,112	89,6044	111,602	247,88	57,4766	173,984	82,164	81,3728	122,891
250,29	55,6476	179,702	79,641	90,6991	110,255	250,34	57,6843	173,357	79,672	81,9805	121,98
252,84	55,0926	181,513	77,191	90,969	109,928	252,85	57,5001	173,913	77,143	82,5412	121,152
255,35	56,0397	178,445	74,692	89,8183	111,336	255,37	57,0963	175,143	74,637	83,0548	120,402
257,79	55,8818	178,949	72,141	90,3121	110,727	257,82	56,6846	176,415	72,151	83,7958	119,338
260,38	54,9704	181,916	69,601	93,5963	106,842	260,31	56,6532	176,512	69,67	84,3878	118,501
262,83	55,0213	181,748	67,121	92,8937	107,65	262,76	56,6179	176,622	67,146	85,0896	117,523
265,38	55,8564	179,031	64,613	93,6421	106,79	265,29	56,3945	177,322	64,649	85,7836	116,572
267,79	55,0366	181,697	62,108	95,241	104,997	267,81	56,0886	178,289	62,147	86,5402	115,553
270,28	53,6109	186,529	59,6	95,8723	104,305	270,35	56,1279	178,165	59,584	87,3949	114,423
272,83	54,4765	183,565	57,058	96,1269	104,029	272,79	55,9122	178,852	57,184	88,1908	113,39
275.31	53.6415	186.423	54.605	98.3571	101.67	275.32	56.0965	178.264	54.652	89.1475	112.174
277.87	54.2983	184.168	52.084	99,4824	100.52	277.81	55.6613	179.658	52.117	90.1864	110.881
280.34	54.1252	184,757	49.655	100.715	99.2905	280.32	55.7476	179.38	49,574	91.3313	109,492
282.86	54.3848	183.875	47.138	101.825	98.2081	282.84	55.3202	180,766	47.121	92.6721	107.907
285.32	53.6924	186.246	44.627	132.049	75,7294	285.32	55.2026	181.151	44.549	98.5021	101.521
287.82	53,4785	186.991	42.081	478.282	20.9082	287.81	55.2222	181.087	42.06	136.771	73.1147
290.32	53,5294	186.813	38.737	1047.93	9,54262	290.36	54.9556	181,965	38.064	219,109	45.6394
292.82	53.6873	186.264	37.128	1267.23	7.89122	292.81	54,9007	182,147	37.007	237.446	42,1149
295.31	53,2341	187.849	34.566	1464.69	6.82739	295.29	54,5753	183.233	34,569	265.894	37.609
297.87	53.2698	187.724	32.134	1567.39	6.38003	297.85	54.3753	183,907	32.119	282.823	35.3578
300.31	53.4632	187.044	29.67	1623.65	6,15895	300.26	54.3048	184,146	29.671	292.617	34,1744
302.83	52,6689	189.865	27.136	1645.09	6.0787	302.83	54.2185	184.439	27.134	297.435	33.6208
305.35	52,9948	188.698	24.28	1640.3	6.09643	305.33	54,1558	184.653	24.334	298.321	33.5209
307.8	52.893	189.061	22.235	1627.93	6,14277	307.87	53.897	185,539	22,167	297.796	33.58
310.3	53.2698	187,724	19.885	1613.42	6.19802	310.26	53.9833	185,243	19.87	296.49	33.7279
312.78	52,5722	190.215	18.897	1608.84	6.21567	312.83	53.8068	185.85	18.881	296.094	33,773
315.31	52,4602	190,621	17.875	1603.69	6.2356	315.28	53.6618	186.352	17.878	295.777	33.8093
317.87	52,8981	189.043	16.888	1601.76	6.24314	317.87	53,4657	187.036	16.864	295,491	33.842
320.37	52,4245	190.75	15.868	1597.53	6.25965	320.3	53,403	187.255	15.89	295.593	33.8303
322.89	52,5824	190,178	14.885	1599.93	6,25029	322.87	53.3756	187.352	14.879	295.843	33.8017
325.34	52.6027	190.104	13.898	1599.57	6.25168	325.29	53,109	188.292	13.882	296.314	33,748
327,87	52,6384	189,975	12,882	1602,42	6,24056	327,79	52,7443	189,594	12,88	296,918	33,6794
330.34	52,7199	189.682	11.898	1605.53	6.22849	330.28	52.611	190.074	11.895	297.608	33.6013
332.75	52,7657	189,517	10,863	1608,73	6,21607	332.82	52,6542	189,918	10,895	298,462	33,505
335.3	53,5753	186.653	9.8737	1612.71	6.20076	335.29	52,6895	189,791	9,9088	299.27	33.4146
337.83	52,8268	189.298	8,8784	1617.49	6,18241	337.81	52,3954	190.856	8,8828	300.203	33,3108
340.37	53,7484	186,052	7,8742	1619.99	6,17289	340,34	52,1994	191,573	7,8755	301,132	33,208
342.78	53,1476	188.155	6,9039	1623.04	6,16127	342.84	51,8896	192.717	6,8945	301.881	33,1256
345.32	53,7891	185.911	5,9001	1625.08	6,15355	345.3	51,9916	192.339	5,8843	302.579	33,0492
347,76	53,4531	187,08	4,909	1626,15	6,1495	347,8	52,0974	191,948	4,9182	303,089	32,9936
350,53	53,448	187,098				350,53	51,8504	192,862	347,17	52,2778	191,286

0,1 Tesla

0,1 1031a											
Temp.	χ in 10 ⁻⁴	χ^{-1} in	Temp.	χ in 10 ⁻⁴	χ^{-1} in	Temp.	χ in 10 ⁻⁴	χ^{-1} in	Temp.	χ in 10 ⁻⁴	χ^{-1} in
in K	cm ³ / mol	mol / cm ³	in K	cm ³ / mol	mol / cm ³	in K	cm ³ / mol	mol / cm ³	in K	cm ³ /mol	mol / cm ³
5,0053	115,874	86,3003	167,8	58,8841	169,825	347,18	44,2366	226,057	162,19	59,9426	166,826
6,1117	115,482	86,5933	170,3	58,5979	170,655	344,39	44,4757	224,842	159,62	60,221	166,055
7,1163	115,314	86,7199	172,8	58,3744	171,308	341,93	44,8247	223,092	157,13	60,4915	165,312
8,1149	115,459	86,6109	175,3	58,1195	172,059	339,29	44,9227	222,605	154,63	60,7307	164,661
9,098	115,718	86,4173	177,8	57,8686	172,805	336,84	45,0873	221,792	152,16	61,0208	163,879
10,094	115,894	86,2857	180,3	57,6373	173,499	334,41	45,303	220,736	149,69	61,2874	163,166
11,117	115,122	86,8646	182,8	57,3825	174,269	332,07	45,4324	220,107	147,19	61,5775	162,397
12,175	112,581	88,8248	185,3	57,1355	175,023	329,6	45,6362	219,124	144,62	61,8755	161,615

					0,1 '	Fesla					
Temp.	χ in 10^{-4}	χ^{-1} in	Temp.	χ in 10 ⁻⁴	χ^{-1} in	Temp.	χ in 10^{-4}	χ^{-1} in	Temp.	χ in 10^{-4}	χ^{-1} in
in K	cm ³ / mol	mol / cm ³	in K	cm ³ / mol	mol / cm ³	in K	cm ³ / mol	mol/cm^3	in K	cm ³ / mol	mol / cm^3
13,096	110,825	90,2326	187,8	56,8924	175,77	327,29	45,7342	218,655	142,14	62,1303	160,952
14,103	109,762	91,1061	190,3	56,6532	176,512	324,74	45,8871	217,926	139,62	62,4166	160,214
16,115	109,237	91,5442	192,8	56,4025	177,298	319.6	46,0030	217,091	137,11	62,7067	159,475
17.092	108,927	91,8045	197.8	55.9201	178,827	317.06	46.436	215,35	132.14	63.334	157,893
18,122	108,99	91,7517	200,3	55,7123	179,494	314,57	46,6164	214,517	129,67	63,5967	157,241
19,102	109,119	91,6429	202,8	55,4613	180,306	312,13	46,8242	213,565	127,23	63,926	156,431
20,093	109,233	91,5475	205,3	55,2732	180,92	309,55	46,9888	212,816	124,65	64,2318	155,686
22,832	109,072	91,6824	207,7	55,0301	181,719	307,06	47,177	211,968	122,14	64,5533	154,911
25,38	108,704	91,9933	210,3	54,7948	182,499	304,58	47,3456	211,213	119,61	64,9062	154,069
30 341	107,818	92,7495	212,8	54,3735	183,255	299.63	47,3377	210,559	117,10	65 604	152.43
32.807	100,557	95,4282	217.8	54.1283	184.746	297.18	47.8984	209,010	112.12	65.9687	151.587
35,291	102,035	98,006	220,3	53,8735	185,62	294,58	48,0866	207,958	109,59	66,3686	150,674
37,841	97,667	102,389	222,7	53,6853	186,271	292,11	48,267	207,181	107,17	66,7567	149,798
40,346	91,6214	109,145	225,3	53,4814	186,981	289,65	48,4748	206,293	104,59	67,1723	148,871
42,815	85,3366	117,183	227,8	53,254	187,779	287,22	48,6669	205,479	102,17	67,5644	148,007
45,289	81,1415	123,241	230,3	53,0423	188,529	284,66	48,8/86	204,589	99,687	68,0035	147,051
50 351	79,4321	123,894	232,7	52,7992	109,397	202,10	49,0389	203,830	97,074	68 8935	140,091
52,827	77,264	129,426	237,8	52,3993	190,842	277,14	49,4628	202,001	92,143	69,3757	144,143
55,36	76,3623	130,955	240,3	52,1719	191,674	274,56	49,6666	201,342	89,649	69,8305	143,204
57,779	75,5899	132,293	242,7	51,9837	192,368	272,08	49,8666	200,535	87,131	70,3441	142,158
60,351	74,8136	133,666	245,2	51,772	193,155	269,67	50,0469	199,812	84,664	70,8028	141,237
62,833	74,1236	134,91	247,8	51,5642	193,933	267,17	50,2469	199,017	82,185	71,3242	140,205
65,384	73,4649	136,119	250,3	51,38	194,628	264,65	50,4429	198,244	79,608	/1,8/31	139,134
70 339	72,8570	137,292	252,8	50 9801	195,404	262,14	50,835	197,440	74 604	72,4103	138,102
72,824	71,7477	139,377	257,8	50,7879	196,897	257,05	51,0545	195,869	72,171	73,5825	135,902
75,307	71,2458	140,359	260,3	50,5841	197,691	254,6	51,2741	195,03	69,565	74,2216	134,732
77,812	70,7518	141,339	262,8	50,3802	198,491	252,16	51,4545	194,347	67,155	74,8646	133,575
80,296	70,301	142,246	265,3	50,1881	199,25	249,6	51,674	193,521	64,664	75,5625	132,341
82,754	69,8658	143,132	267,7	49,9764	200,095	247,14	51,8857	192,731	62,13	76,2799	131,096
85,284	69,4267	144,037	270,3	49,7764	200,898	244,66	52,0974	191,948	59,566	77,0993	129,703
87,77	68 5759	144,913	272,7	49,5725	201,725	242,17	52,5151	191,157	57,067	77,9402	128,294
92.81	68,1838	146.662	277.8	49,1962	202,507	237,15	52,3520	189,566	52.071	79.8242	125,275
95,294	67,7996	147,494	280,3	49,0354	203,934	234,66	52,9639	188,808	49,496	80,9808	123,486
97,805	67,4075	148,351	282,7	48,8041	204,901	232,21	53,1795	188,042	47,084	82,2785	121,538
100,34	67,0233	149,202	285,2	48,6159	205,694	229,61	53,4109	187,228	44,655	84,6034	118,198
102,82	66,6508	150,036	287,7	48,412	206,56	227,12	53,6265	186,475	42,086	90,1041	110,983
105,35	65,0560	150,852	290,3	48,2631	207,198	224,61	53,846	185,/15	39,573	96,6084	103,511
110 32	65 5962	152 448	292,8	40,0278	208,213	219 59	54 2734	184,947	34 573	102,274	93,6002
112,83	65,2394	153,282	297,8	47,6514	209,857	217,16	54,489	183,523	32,18	109,888	91,002
115,32	64,8944	154,097	300,3	47,4554	210,724	214,68	54,7282	182,721	29,703	112,236	89,0979
117,81	64,5572	154,901	302,9	47,3182	211,335	212,17	54,936	182,03	27,169	114,212	87,5564
120,29	64,2514	155,639	305,2	47,1378	212,144	209,57	55,183	181,215	24,241	116,016	86,1953
122,77	63,9338	156,412	307,7	46,93	213,083	207,19	55,4025	180,497	22,133	117,133	85,3731
125,36	63,6202	157,183	310,3	46,8085	213,636	204,66	55 873	179,709	19,885	118,066	84,6983
127,85	63 0203	158 679	315.3	46,3929	214,023	199.58	56.12	178,977	17,883	118,407	84 2117
132,8	62,7302	159,413	317,8	46,2871	216,043	197,15	56,3631	177,421	16,888	119,207	83,8877
135,28	62,393	160,274	320,2	46,1773	216,557	194,65	56,6101	176,647	15,859	119,603	83,61
137,83	62,1303	160,952	322,8	45,8911	217,907	192,14	56,8571	175,88	14,875	119,975	83,3504
140,32	61,8363	161,717	325,2	45,8127	218,28	189,7	57,0884	175,167	13,886	120,422	83,041
142,75	61,5775	162,397	327,8	45,5774	219,407	187,19	57,3315	174,424	12,884	120,889	82,7205
145,33	60.0916	163,207	330,3 322.9	45,452	220,013	184,63	57.8410	1/3,652	11,889	121,336	82,4158
147,79	60 7072	103,984	335 3	45,1018	221,420	162,12	58 1078	172,00/	9 8673	121,85	02,0084 81 7318
152.81	60.4523	165.42	337.8	44,8325	223.052	177.11	58,3626	171.343	8,8706	122,351	81.3694
156	60,0759	166,456	340,3	44,7541	223,443	174,67	58,6253	170,575	7,8854	123,406	81,0333
157,82	59,923	166,881	342,8	44,4992	224,723	172,11	58,9037	169,769	6,8736	123,967	80,6669
160,33	59,6682	167,593	345,3	44,4012	225,219	169,64	59,1585	169,037	5,8922	124,421	80,372
162,85	59,3702	168,435	347,8	44,2366	226,057	167,12	59,4251	168,279	4,9028	124,876	80,0793
165,34	59,1271	169,127	350,5	44,0484	227,023	164,61	59,6839	167,549			

1 Tesla						5 Tesla					
Temp.	χ in 10 ⁻⁴	χ^{-1} in	Temp.	χ in 10 ⁻⁴	χ^{-1} in	Temp.	χ in 10 ⁻⁴	χ^{-1} in	Temp.	χ in 10 ⁻⁴	χ^{-1} in
in K	cm ³ /mol	mol/cm^3	in K	cm ³ /mol	mol/cm^3	in K	cm ³ /mol	mol/cm^3	in K	cm ³ / mol	mol/cm^3
5,0021	85,5522	116,888	167,83	53,748	186,053	350,02	38,9531	256,719	164,68	53,6484	186,399
6,1071	85,3327	117,188	170,33	53,4893	186,953	347,14	39,1703	255,295	162,12	53,9221	185,453
7,1044	85,5718	116,861	173,12	53,1874	188,015	344,41	39,3938	253,847	159,69	54,1981	184,508
8,1132	86,0345	116,232	175,37	52,9874	188,724	340,5	39,6204	252,395	157,19	54,4467	183,666
9,0932	86,3756	115,773	177,85	52,7365	189,622	338,92	39,7655	251,475	154,68	54,6749	182,899
10,097	86,6539	115,402	180,34	52,4895	190,514	336,87	39,9364	250,398	152,14	54,9626	181,942
11,087	86,7284	115,302	182,79	52,2503	191,386	334,29	40,1348	249,16	149,63	55,2277	181,069
12,181	86,5716	115,511	185,31	52,0033	192,295	332,03	40,2799	248,263	147,12	55,4904	180,211
13,104	86,4657	115,653	18/,8	51,7759	193,14	329,64	40,4233	247,382	144,69	55,775	179,292
14,107	80,4187	115,/10	190,39	51,5155	194,125	327,29	40,5245	240,704	142,15	56 2064	177 621
16.1	86 2697	115,010	192,77	51,2937	194,930	324,01	40,0133	240,212	139,00	56 5756	176 755
17.1	86,2097	116,063	193,20	50 8272	195,899	319.61	40,8003	243,093	137,15	56 8485	175,906
18,106	86.0815	116,005	200.29	50,5919	197.66	317.03	41,1573	242.97	132.15	57,1276	175,047
19,118	85.9678	116,323	202.79	50.3449	198.63	314.63	41.3306	241.952	129.64	57.3989	174.219
20,093	85,8071	116,54	205,3	50,1254	199,5	312,16	41,4976	240,978	127,16	57,6836	173,36
22,845	85,2111	117,356	207,82	49,898	200,409	309,64	41,6701	239,98	124,66	57,9909	172,441
25,326	84,6466	118,138	210,33	49,6706	201,326	307,04	41,8442	238,982	122,22	58,2615	171,64
27,869	83,9448	119,126	212,85	49,451	202,22	304,59	42,0089	238,045	119,67	58,5445	170,81
30,353	83,2273	120,153	215,35	49,2275	203,138	302,11	42,1774	237,094	117,15	58,8543	169,911
32,796	82,4549	121,278	217,78	49,0197	203,999	299,68	42,3358	236,207	114,65	59,1569	169,042
35,374	81,3846	122,873	220,25	48,8041	204,901	297,21	42,495	235,322	112,09	59,48	168,124
37,853	80,0477	124,926	222,76	48,5845	205,827	294,65	42,6793	234,306	109,64	59,7952	167,237
40,333	78,5892	127,244	225,32	48,3532	206,811	292,18	42,8494	233,375	107,11	60,1551	166,237
42,848	77,0758	129,742	227,84	48,1611	207,636	289,64	43,04	232,342	104,63	60,4907	165,315
45,301	75,6213	132,238	230,35	47,9455	208,57	287,16	43,2156	231,398	102,05	60,8554	164,324
47,79	74,3392	134,519	232,81	47,7455	209,444	284,68	43,3968	230,432	99,679	61,1949	163,412
52 841	73,2218	130,371	255,29	47,3417	210,342	282,00	43,3637	229,433	97,145	61 0227	161.465
55 32	71 3948	136,402	237,0	47,5559	211,203	279,07	43,7373	228,332	94,073	62 3307	160 411
57 859	70 5715	140,000	240,34	46 934	212,175	274.62	44 1354	227,521	89.615	62,3377	159,415
60.357	69.8187	143.228	245.34	46,7379	213,005	272.16	44,3197	225,633	87,145	63,1536	158,344
62,872	69,1287	144,658	247,83	46,5419	214,86	269,69	44,4945	224,747	84,662	63,57	157,307
65,364	68,4387	146,116	250,36	46,3459	215,769	267,1	44,6812	223,808	82,101	63,995	156,262
67,78	67,8466	147,391	252,83	46,1577	216,649	264,61	44,8615	222,908	79,664	64,4271	155,214
70,292	67,2742	148,645	255,31	45,9773	217,499	262,2	45,0458	221,996	77,13	64,9218	154,031
72,834	66,7214	149,877	257,81	45,7852	218,411	259,59	45,2324	221,08	74,635	65,4104	152,881
75,293	66,2157	151,022	260,29	45,597	219,313	257,16	45,4229	220,153	72,086	65,9075	151,728
77,824	65,706	152,193	262,91	45,4049	220,241	254,71	45,6221	219,192	69,602	66,4627	150,46
80,305	65,2237	153,318	265,37	45,2167	221,157	252,2	45,8127	218,28	67,07	66,9849	149,287
82,79	64,7885	154,348	267,81	45,0324	222,062	249,63	46,0134	217,328	64,702	67,5502	148,038
85,292	64,3612	155,373	270,3	44,8443	222,994	247,14	46,2126	216,391	62,113	68,1579	146,718
8/,//6	63,9064	156,479	272,79	44,6561	223,934	244,64	46,418	215,434	59,61	68,7899	145,37
90,555	63 0831	157,474	273,28	44,4718	224,802	242,2	40,0219	214,492	54 663	70 1677	145,959
92,827	62 6832	150,521	280.29	44,2914	225,111	239,00	40,825	213,501	52 137	70,1077	142,510
97 767	62,0832	160 526	280,29	43 9307	220,7	234.63	47,0328	212,018	49 501	71,7469	139 379
100.28	61.9265	161,482	285.33	43,7465	228.59	232.12	47.4397	210,794	47.081	72.502	137,927
102.89	61.5423	162.49	287.77	43.5661	229,536	229.64	47.6569	209.833	44.676	73.2995	136.427
105,29	61,1737	163,469	290,4	43,3819	230,511	227,14	47,8608	208,939	42,111	74,1777	134,811
107,78	60,8326	164,385	292,76	43,2133	231,41	224,68	48,0631	208,06	38,76	75,2143	132,953
110,35	60,4602	165,398	295,33	43,0251	232,423	222,07	48,2764	207,141	37,109	75,8134	131,903
112,83	60,123	166,326	297,76	42,8604	233,316	219,68	48,474	206,296	34,636	76,4815	130,751
115,31	59,7819	167,275	300,32	42,6801	234,301	217,15	48,6833	205,409	32,133	76,8853	130,064
117,81	59,4447	168,224	302,83	42,5076	235,252	214,7	48,8927	204,529	29,585	77,1981	129,537
120,33	59,1389	169,093	305,3	42,3272	236,255	212,19	49,1138	203,609	27,158	77,5839	128,893
122,78	58,8292	169,984	307,82	42,1665	237,155	209,58	49,3295	202,719	24,418	78,045	128,131
125,31	58,5038	170,929	310,28	42,0018	238,085	207,16	49,549	201,82	22,199	78,5382	127,327
127,79	58,2254	1/1,/46	312,79	41,841	239	204,69	49,7639	200,949	19,86	79,0165	126,556
130,5	57,5901	172 620	315,52	41,0085	239,989	202,23	49,9975	200,01	18,885	19,2015	120,100
132,82	57 33542	173,029	320.20	41,3078	240,919	199,00	50,2281	199,092	16 862	79,3027	123,782
137.81	57 0492	175 287	320,29	41 1874	241,033	197,17	50,4704	190,130	15 871	79 9737	125,411
101,01	51,0774	110,401	522,07	11,104-	,022	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	50,0700	1/1,477	10,071	17,7154	120,072

	1 Tesla						5 Tesla					
Temp.	χ in 10 ⁻⁴	χ^{-1} in	Temp.	χ in 10 ⁻⁴	χ^{-1} in	Temp.	χ in 10 ⁻⁴	χ^{-1} in	Temp.	χ in 10 ⁻⁴	χ^{-1} in	
in K	cm ³ / mol	mol / cm ³	in K	cm ³ /mol	mol / cm^3	in K	cm ³ /mol	mol / cm ³	in K	cm ³ /mol	mol / cm^3	
140,36	56,7395	176,244	325,32	41,0216	243,774	192,16	50,9542	196,255	14,859	80,2006	124,687	
142,87	56,4689	177,088	327,83	40,853	244,78	189,67	51,1604	195,464	13,877	80,4201	124,347	
145,34	56,1788	178,003	330,28	40,7041	245,676	187,2	51,4121	194,507	12,861	80,6632	123,972	
147,85	55,9201	178,827	332,85	40,5472	246,626	184,67	51,6473	193,621	11,898	80,9063	123,6	
150,33	55,6417	179,721	335,31	40,3943	247,559	182,16	51,9038	192,664	10,862	81,1337	123,253	
152,87	55,3594	180,638	337,81	40,2257	248,597	179,7	52,1304	191,827	9,8639	81,3532	122,921	
155,37	55,0732	181,577	340,3	40,0728	249,546	177,17	52,3774	190,922	8,8751	81,565	122,602	
157,78	54,8184	182,421	342,84	39,916	250,526	174,64	52,6275	190,015	7,9036	81,7688	122,296	
160,29	54,5518	183,312	345,33	39,771	251,44	172,18	52,8918	189,065	6,8827	81,9727	121,992	
162,9	54,2303	184,399	347,8	39,622	252,385	169,6	53,1591	188,114	5,9074	82,1295	121,759	
166,6	53,8852	185,58	350,53	39,4142	253,716	167,15	53,4257	187,176	4,9194	82,302	121,504	

7.2.3 Leitfähigkeitsmessung

Temp.	ρ in $10^{-\!4}$	Temp.	ρ in 10^{-4}	Temp.	ρ in 10 ⁻⁴	Temp.	ρ in 10^{-4}	Temp.	ρ in 10 ⁻⁴	Temp.	ρ in $10^{-\!4}$
in K	$\Omega \mathrm{cm}$	in K	Ωcm								
8,97332	5,31751	57,5753	5,37151	106,869	5,52991	156,509	5,74413	206,182	5,86414	255,887	6,02174
13,1267	5,31056	62,6288	5,38446	111,809	5,54972	161,492	5,75878	211,121	5,87894	260,872	6,03925
17,0471	5,30925	67,5293	5,40023	116,792	5,569	166,468	5,77322	216,103	5,89721	265,846	6,05566
21,9495	5,3103	72,5659	5,4191	121,761	5,58967	171,421	5,78848	221,074	5,9086	270,811	6,07254
27,3565	5,3135	77,4485	5,42974	126,705	5,61301	176,407	5,799	226,047	5,92607	275,781	6,09093
31,9943	5,31632	82,3088	5,44775	131,661	5,63925	181,368	5,80651	231,006	5,94175	280,745	6,10519
37,2442	5,32485	87,1933	5,45948	136,584	5,66624	186,276	5,81626	235,967	5,95971	285,693	6,12312
42,501	5,33334	92,0835	5,48023	141,566	5,68937	191,282	5,83029	240,891	5,97607	290,535	6,14037
47,4822	5,34281	96,9791	5,49432	146,562	5,71246	196,285	5,8403	245,903	5,99322	295,075	6,15621
52,5604	5,35628	101,903	5,51121	151,538	5,73191	201,224	5,85265	250,908	6,00706	299,662	6,17371

7.2.4 DTA / TG / MS - Messung

DTA/TG	TG	DTA	MS	(MS 16)	(MS 18)	(MS 32)
Temp.	Δm	in µV / mg	Temp.	Ionenstrom	Ionenstrom	Ionenstrom
in K	in %		in K	in 10 ⁻⁹ A	in 10 ⁻⁹ A	in 10 ⁻⁹ A
307,15	100	0,00149	307,15	0,66503	3,3293	2,2269
312,15	98,68311	0,38901	312,15	0,66503	3,3293	2,2269
317,15	99,10082	0,6109	317,15	0,5626	2,5531	2,1948
322,15	99,40025	0,79518	322,15	0,56192	2,5738	2,1803
327,15	99,6368	0,96044	327,15	0,56054	2,5891	2,1567
332,15	99,82212	1,10221	332,15	0,55695	2,6354	2,148
337,15	99,97383	1,23462	337,15	0,55421	2,6422	2,116
342,15	100,09456	1,35428	342,15	0,54771	2,6709	2,0938
347,15	100,19092	1,46332	347,15	0,54619	2,6793	2,0565
352,15	100,26747	1,56064	352,15	0,53656	2,699	2,0237
357,15	100,32959	1,64999	357,15	0,53176	2,7145	1,9992
362,15	100,37994	1,73188	362,15	0,52809	2,7172	1,953
367,15	100,42048	1,80403	367,15	0,51442	2,7249	1,9192
372,15	100,45297	1,8674	372,15	0,51289	2,7354	1,8855
377,15	100,4783	1,92459	377,15	0,50264	2,7418	1,8407
382,15	100,49679	1,9737	382,15	0,49411	2,7576	1,804
387,15	100,50925	2,01306	387,15	0,4864	2,7501	1,7474
392,15	100,51566	2,04363	392,15	0,48071	2,7555	1,7162
397,15	100,51632	2,06793	397,15	0,46479	2,7469	1,6569
402,15	100,51147	2,0855	402,15	0,45851	2,7459	1,6036

DTA/TG	TG	DTA	MS	(MS 16)	(MS 18)	(MS 32)
Temp.	Δm	in uV / mg	Temp.	Ionenstrom	Ionenstrom	Ionenstrom
in K	in %	mμv/mg	in K	in 10 ⁻⁹ A	in 10 ⁻⁹ A	in 10 ⁻⁹ A
407,15	100,50146	2,09315	407,15	0,44715	2,7487	1,5502
412,15	100,48705	2,09308	412,15	0,43444	2,7481	1,5025
417,15	100,46877	2,08684	417,15	0,42702	2,7469	1,4418
422,15	100,44782	2,07137	422,15	0,41452	2,7464	1,3878
427,15	100,42453	2,04746	427,15	0,40556	2,7423	1,3311
432,15	100,39889	2,01544	432,15	0,39122	2,742	1,2759
437,15	100,3704	1,97689	437,15	0,38406	2,7062	1,2112
442,15	100,33820	1,93117	442,13	0,30743	2,7032	1,1389
452.15	100,30205	1,87584	452.15	0,3433	2,6882	1,0335
457,15	100,22708	1,75046	457,15	0,32982	2,6795	0,9638
462,15	100,18986	1,68277	462,15	0,31497	2,666	0,90526
467,15	100,15694	1,61658	467,15	0,30325	2,6481	0,84206
472,15	100,13086	1,56562	472,15	0,29227	2,6444	0,78774
477,15	100,11304	1,53021	477,15	0,27993	2,6317	0,74864
482,15	100,1067	1,51671	482,15	0,27363	2,6235	0,7038
487,15	100,10418	1,52/36	487,15	0,26822	2,6268	0,6716
492,15	100,09955	1,50138	492,15	0,20309	2,0185	0,63
502.15	100,09988	1,0119	502.15	0,25782	2,0179	0,0309
507.15	100,10013	1,7347	507.15	0.24999	2,6141	0.61408
512,15	100,13542	1,79924	512,15	0,25279	2,6163	0,60566
517,15	100,15455	1,86351	517,15	0,25048	2,6185	0,59564
522,15	100,17639	1,91959	522,15	0,25067	2,6298	0,58896
527,15	100,19704	1,97312	527,15	0,24995	2,6408	0,5874
532,15	100,21428	2,02169	532,15	0,25152	2,6399	0,58203
537,15	100,22729	2,06478	537,15	0,25203	2,627	0,57921
542,15	100,23397	2,10267	542,15	0,25074	2,6398	0,57568
547,15	100,23378	2,136/4	547,15	0,25054	2,6448	0,57458
557.15	100,22921	2,10928	557.15	0,25029	2,0332	0,57341
562.15	100,22520	2.22193	562.15	0.24874	2,6667	0.58018
567,15	100,21056	2,24544	567,15	0,24944	2,6674	0,57612
572,15	100,2092	2,26749	572,15	0,25157	2,6667	0,57775
577,15	100,21339	2,28665	577,15	0,2525	2,6702	0,58071
582,15	100,2187	2,30547	582,15	0,25271	2,6826	0,58223
587,15	100,22232	2,32321	587,15	0,25257	2,6662	0,59326
592,15	100,22604	2,34007	592,15	0,25425	2,6807	0,5974
597,15	100,23175	2,35692	597,15	0,25769	2,6742	0,60653
602,15	100,23857	2,3/432	602,15	0,26179	2,6745	0,61586
612.15	100,24483	2,39291	612.15	0,20304	2,0731	0,62901
617.15	100,24900	2,42925	617,15	0.27634	2,6726	0,66965
622,15	100,24782	2,44719	622,15	0,28121	2,6659	0,69442
627,15	100,24025	2,46425	627,15	0,28707	2,6701	0,71412
632,15	100,22795	2,48208	632,15	0,29687	2,6528	0,7457
637,15	100,21511	2,50085	637,15	0,30291	2,6576	0,77945
642,15	100,20659	2,52094	642,15	0,30921	2,6571	0,82102
647,15	100,20238	2,5396	647,15	0,31578	2,6469	0,84546
652,15	100,19804	2,55881	652,15	0,3237	2,6434	0,88024
662.15	100,19012	2,57607	657,15	0,32445	2,0384	0,8947
667.15	100,1310	2,57357	667.15	0,3272	2,0403	0,90322
672.15	100,1621	2,6286	672.15	0.32419	2,6255	0.87946
677,15	100,14194	2,64649	677,15	0,3166	2,648	0,86044
682,15	100,12279	2,66417	682,15	0,31011	2,6369	0,82025
687,15	100,11514	2,68271	687,15	0,30672	2,6544	0,79046
692,15	100,11782	2,70181	692,15	0,29639	2,6431	0,7543
697,15	100,12039	2,71903	697,15	0,29383	2,6506	0,73698
702,15	100,11957	2,7365	702,15	0,29022	2,6566	0,71828
/0/,15	100,12142	2,15521	/0/,15	0,28488	2,6477	0,71497
712,15	100,12787	2,//3	/12,15	0.28349	2,04/1	0,71592
722.15	100,13209	2,79107	722.15	0.28137	2,0435	0,71074
727.15	100,13105	2,80702	727.15	0.27934	2,6354	0.73844
732,15	100,11773	2,84771	732,15	0,28514	2,6279	0,74553

DTA/TG	TG	DTA	MS	(MS 16)	(MS 18)	(MS 32)
Temp.	Δm	in uV / mg	Temp.	Ionenstrom	Ionenstrom	Ionenstrom
in K	in %	in μ v / ing	in K	in 10 ⁻⁹ A	in 10 ⁻⁹ A	in 10 ⁻⁹ A
737,15	100,10645	2,86594	737,15	0,28631	2,6235	0,76308
742,15	100,09873	2,88468	742,15	0,29151	2,6218	0,78316
747,15	100,09804	2,90296	747,15	0,29159	2,6221	0,81002
752,15	100,09967	2,92184	752,15	0,30062	2,6114	0,82588
757,15	100,09824	2,94098	757,15	0,30321	2,6116	0,85265
762,15	100,09167	2,95832	762,15	0,30922	2,6077	0,88
767,15	100,08169	2,97459	767,15	0,31452	2,6105	0,90703
772,15	100,07239	2,99168	772,15	0,32094	2,6055	0,93341
777,15	100,06776	3,00909	777,15	0,32347	2,5897	0,95928
782,15	100,07045	3,02611	782,15	0,33233	2,5937	0,9888
787,15	100,07937	3,04434	787,15	0,3334	2,6024	0,99194
792,15	100,08907	3,06185	792,15	0,33274	2,6003	1,0119
797,15	100,09378	3,07967	797,15	0,33481	2,5909	1,0143
802,15	100,0917	3,09776	802,15	0,33237	2,5984	1,0045
807,15	100,08652	3,11815	807,15	0,33	2,5919	1,0064
812,15	100,08351	3,14315	812,15	0,33164	2,5988	1,0024
817,15	100,08405	3,10311	817,15	0,33299	2,6092	1.005
822,13	100,08445	3,18893	822,13	0,33329	2,399	1,003
827,15	100,08	3,21107	827,15	0,33721	2,3939	1,0142
832,13	100,07030	3,23401	832,13	0,34314	2,0071	1,0221
842.15	100,03741	3,23877	842.15	0,35048	2,3910	1,0502
842,15	100,03004	3,20347	847.15	0,30207	2,0145	1,055
852.15	99 97909	3,30835	852.15	0,37703	2,019	1,0885
857.15	99 95981	3,35923	857.15	0.40513	2,024	1,1100
862.15	99 94536	3 38225	862 15	0.42565	2,0105	1,1373
867.15	99,93221	3,40129	867.15	0.44489	2,6295	1,2003
872.15	99,91992	3.41766	872.15	0.47334	2,6443	1,3448
877.15	99,90614	3,43053	877.15	0.50556	2,6457	1.462
882,15	99,88617	3,44038	882,15	0,54179	2,6546	1,5908
887,15	99,85833	3,44482	887,15	0,58423	2,6444	1,7582
892,15	99,82594	3,44564	892,15	0,63226	2,6491	1,9555
897,15	99,78857	3,44249	897,15	0,68107	2,6567	2,2089
902,15	99,74409	3,43723	902,15	0,72835	2,6376	2,494
907,15	99,69235	3,4311	907,15	0,78114	2,656	2,8181
912,15	99,6365	3,42453	912,15	0,84424	2,6677	3,1995
917,15	99,57412	3,41706	917,15	0,92787	2,6714	3,6305
922,15	99,50248	3,41064	922,15	1,0218	2,6805	4,1427
927,15	99,41997	3,40513	927,15	1,1213	2,6879	4,7102
932,15	99,33279	3,40047	932,15	1,2321	2,7048	5,2849
937,15	99,23892	3,39615	937,15	1,3728	2,7029	5,9756
942,15	99,13386	3,39189	942,15	1,5103	2,7164	6,/1/2
947,15	99,00927	3,38619	947,15	1,6/5	2,7254	7,445
952,15	98,86734	3,3/88/	952,15	1,827	2,/315	8,1948
957,15	96,70065	3,37080	937,13	2,0001	2,7203	9,0309
902,15	96,5265	3,30142	902,15	2,1733	2,7522	9,049
972 15	98 12874	3 33073	972.15	2,5505	2,7037	11,710
977.15	97 90537	3,33773	977.15	2,5277	2,7770	12 232
982.15	97,67087	3,30794	982.15	2,7963	2,808	12,797
987.15	97,43204	3,28942	987.15	2,8603	2,7989	13.044
992.15	97.20331	3.27572	992.15	2,7456	2.8177	12,455
997.15	97.00072	3.26427	997.15	2,3231	2.818	10.428
1002,15	96,8387	3,26052	1002,15	1,7887	2,8123	7,8999
1007,15	96,72679	3,27216	1007,15	1,4635	2,8059	6,3628
1012,15	96,65856	3,27602	1012,15	1,2211	2,7994	5,2801
1017,15	96,61851	3,27075	1017,15	1,0569	2,7956	4,4532
1022,15	96,59221	3,25884	1022,15	0,91941	2,8009	3,8091
1027,15	96,56909	3,24379	1027,15	0,80081	2,7927	3,245
1032,15	96,54479	3,22928	1032,15	0,69883	2,792	2,783
1037,15	96,52226	3,21447	1037,15	0,6283	2,8002	2,4695
1042,15	96,50513	3,20109	1042,15	0,58612	2,8011	2,2412
1047,15	96,49294	3,18772	1047,15	0,54657	2,7999	2,0624
1052,15	96,48425	3,17509	1052,15	0,52036	2,807	1,9406
1057,15	96,47935	3,1623	1057,15	0,50245	2,813	1,85
1062,15	96,4776	3,151	1062,15	0,48857	2,8393	1,/841

DTA/TG	TG	DTA	MS	(MS 16)	(MS 18)	(MS 32)
Temp.	Δm	in $\mu V / mg$	Temp.	Ionenstrom	Ionenstrom	Ionenstrom
in K	in %		in K	in 10 ⁻⁹ A	in 10 ⁻⁹ A	in 10 ⁻⁹ A
1067,15	96,47633	3,13532	1067,15	0,47608	2,8166	1,7337
1072,15	96,47476	3,12144	1072,15	0,46942	2,8133	1,696
1077,15	96,47505	3,10591	1077,15	0,46447	2,826	1,6824
1082,15	96,47848	3,09275	1082,15	0,46025	2,8436	1,6698
1087,15	96,48192	3,07808	1087,15	0,46323	2,8415	1,672
1092,15	96,48049	3,0654	1092,15	0,4641	2,8635	1,6704
1097,15	96,47456	3,0532	1097,15	0,46728	2,8669	1,674
1102,15	96,46871	3,04316	1102,15	0,46616	2,864	1,683
1107,15	96,4679	3,02863	1107,15	0,46989	2,8753	1,6853
1112,15	96,47562	3,01619	1112,15	0,47438	2,8742	1,7015
1117,15	96,49013	3,00357	1117,15	0,47795	2,8873	1,7185
1122,15	96,50307	2,99239	1122,15	0,47871	2,8916	1,7283
1127,15	96,50776	2,97969	1127,15	0,48409	2,9101	1,751
1132.15	96.50493	2,96481	1132.15	0.484	2.9104	1.7583
1137.15	96.49576	2.95077	1137.15	0.49195	2,9328	1.7825
1142.15	96,48081	2,93833	1142.15	0.49545	2,9335	1.804
1147.15	96.46517	2,92603	1147.15	0.4996	2,9279	1.8188
1152.15	96,45406	2,91262	1152.15	0.50667	2,9481	1,8496
1157.15	96,44625	2,89983	1152,15	0.5104	2,9551	1,8556
1162.15	96,43687	2.8887	1162,15	0.51353	2,9542	1,8767
1167.15	96 42466	2,8765	1167.15	0 5214	2,9869	1 8988
1172.15	96 41294	2,8765	1172 15	0 51811	2 987	1,9292
1177.15	96 40375	2,8572	1172,15	0.52811	2,907	1,9362
1182 15	96 39447	2 83805	1182 15	0 53301	3,0116	1,9502
1187.15	96 37601	2,83003	1187.15	0 54674	3 0201	1,9859
1192.15	96 3361	2,82272	1107,15	0,54607	3 0388	2 0181
1197.15	96 27634	2,01105	1192,15	0 55354	3 0481	2,0101
1202.15	96 2245	2,79744	1202.15	0 553	3,0401	2,0535
1202,15	96 20008	2,76275	1202,15	0 55977	3,0502	2,0304
1212.15	96 19701	2,76145	1212.15	0,57106	3,0302	2,0050
1212,15	96 19979	2,73134	1212,15	0,57213	3,0872	2,000
1217,15	96 20009	2,7555	1217,15	0,57215	3,112	2,1175
1222,15	96 10705	2,07104	1222,15	0,58377	3,112	2,1201
1227,15	96 1935/	2,02031	1227,15	0,58379	3 1330	2,1334
1232,15	96 19208	2,57274	1232,15	0,50577	3 1377	2,1005
1237,15	96 10150	2,07034	1237,15	0,55574	3,1577	2,2140
1242,15	96,19139	2,09113	1242,15	0,60818	3,1097	2,2414
1252.15	96 18050	2,00003	1257.15	0.61908	3 1881	2,2070
1252,15	96,10039	2,0377	1252,15	0,01900	3 10/	2,309
1257,15	90,17000	2,03471	1257,15	0,02421	3,174	2,3471
1202,15	06 15641	2,00093	1202,15	0,02905	3,2009	2,3003
1207,15	90,13041	2,38083	1207,15	0,04494	2,2498	2,4083
12/2,15	90,13723	2,33447	12/2,13	0,041/4	3,2383	2,4201

7.2.5 XPS-Messung

Bindung		Bindung		Bindung		Bindung		Bindung		Bindung	
Dilidung	Intensität	Dindung	Intensität	Dilidung	Intensität	Dilidulig	Intensität	Dilidulig	Intensität	Dindung	Intensität
in eV		in eV		in eV		in eV		in eV		in eV	
379,9	10,16215	377,1	62,24704	374,3	2610,331	371,5	308,4168	368,7	2262,143	365,9	487,4485
379,8	112,4509	377	158,5357	374,2	3166,620	371,4	235,0255	368,6	2446,790	365,8	507,0813
379,7	0,73964	376,9	252,8245	374,1	3938,909	371,3	384,7543	368,5	2778,221	365,7	337,7120
379,6	-162,972	376,8	231,1132	374	4537,198	371,2	350,6430	368,4	3424,239	365,6	272,3808
379,5	-26,6829	376,7	325,4020	373,9	5651,486	371,1	162,5317	368,3	3833,866	365,5	249,2555
379,4	-56,3941	376,6	349,6907	373,8	6607,775	371	231,7005	368,2	4694,533	365,4	202,3003
379,3	117,8946	376,5	335,9795	373,7	7146,064	370,9	270,5492	368,1	5730,440	365,3	231,8610
379,2	-45,8166	376,4	274,2682	373,6	7650,353	370,8	392,4380	368	7027,266	365,2	-5,1122
379,1	-25,5279	376,3	346,557	373,5	7338,641	370,7	409,6067	367,9	8122,767	365,1	64,17055
379	-67,2391	376,2	266,8457	373,4	7330,930	370,6	389,7355	367,8	9293,030	365	-146,029
378,9	31,04961	376,1	427,1345	373,3	6617,219	370,5	202,6642	367,7	10694,95	364,9	17,66404
378,8	-0,66164	376	449,4232	373,2	5769,508	370,4	341,9930	367,6	10859,68	364,8	118,6967

Bindung	Intensität										
in eV											
378,7	-96,3729	375,9	513,7119	373,1	4903,796	370,3	468,4417	367,5	10727,36	364,7	46,77753
378,6	19,91585	375,8	380,0007	373	4228,085	370,2	541,9305	367,4	10137,72	364,6	65,47628
378,5	-31,7954	375,7	600,2894	372,9	3462,374	370,1	616,8592	367,3	9352,136	364,5	114,0270
378,4	76,49334	375,6	490,5782	372,8	2732,663	370	526,988	367,2	8131,722	364,4	126,1617
378,3	-15,2179	375,5	744,8669	372,7	2340,951	369,9	621,1167	367,1	6954,695	364,3	72,66451
378,2	13,07083	375,4	493,1557	372,6	1815,240	369,8	695,6454	367	5889,296	364,2	-112,973
378,1	7,35958	375,3	705,4444	372,5	1489,529	369,7	806,8942	366,9	4792,303	364,1	72,49601
378	279,6483	375,2	799,7332	372,4	1327,818	369,6	741,9669	366,8	4195,861	364	37,67475
377,9	91,93707	375,1	762,0219	372,3	816,1068	369,5	788,6137	366,7	3288,062	363,9	97,9975
377,8	56,22582	375	904,3107	372,2	890,3955	369,4	951,2324	366,6	2624,619	363,8	-5,42576
377,7	110,5145	374,9	958,5994	372,1	696,6843	369,3	1164,351	366,5	2187,460	363,7	67,43499
377,6	46,80331	374,8	1114,888	372	482,9730	369,2	1269,715	366,4	1599,010	363,6	64,37373
377,5	169,0920	374,7	1499,176	371,9	371,2618	369,1	1351,836	366,3	1229,879	363,5	-99,7095
377,4	77,3808	374,6	1579,465	371,8	327,5505	369	1422,935	366,2	983,0363		
377,3	119,6695	374,5	1771,754	371,7	311,8393	368,9	1789,770	366,1	963,7390		
377,2	133,9582	374,4	2424,043	371,6	490,1280	368,8	1821,386	366	537,8738		

7.3 Ag₁₃OsO₆

7.3.1 Verfeinerung der Gitterkonstante

Verfeinerte Gitterkonstante: a = 13,1712(5) Å

N	2Th[obs]	h	k	1	2Th[calc]	obs-calc	Intensität	d[obs]	d[calc]
1	13,458	2	0	0	13,434	0,0241	7,6	6,5739	6,5856
2	19,072	2	2	0	19,043	0,0291	1,2	4,6497	4,6567
3	23,402	2	2	2	23,377	0,0251	4,6	3,7982	3,8022
4	27,086	4	0	0	27,058	0,0279	7,9	3,2895	3,2928
5	30,35	4	2	0	30,324	0,0266	32	2,9426	2,9452
6	33,324	4	2	2	33,298	0,0255	49,6	2,6866	2,6886
7	38,664	4	4	0	38,639	0,0252	2,4	2,3269	2,3284
8	40,508	5	3	1	40,485	0,0234	100	2,2251	2,2263
9	41,109	6	0	0	41,085	0,0235	25,5	2,194	2,1952
10	43,44	6	2	0	43,417	0,0232	21,1	2,0815	2,0825
11	45,664	6	2	2	45,652	0,0118	0,3	1,9851	1,9856
12	47,825	4	4	4	47,806	0,0192	6	1,9004	1,9011
13	49,907	6	4	0	49,888	0,0191	11,8	1,8259	1,8265
14	51,924	6	4	2	51,908	0,0161	10,7	1,7596	1,7601
15	55,809	8	0	0	55,792	0,0171	8,3	1,6459	1,6464
16	57,682	8	2	0	57,667	0,0142	8,8	1,5969	1,5972
17	59,517	6	6	0	59,504	0,0129	3,2	1,5519	1,5522
18	60,87	7	5	1	60,86	0,0103	2,1	1,5206	1,5209
19	61,316	6	6	2	61,308	0,0087	0,3	1,5106	1,5108
20	63,09	8	4	0	63,08	0,01	1,1	1,4724	1,4726
21	64,397	9	1	1	64,391	0,0061	7,2	1,4456	1,4457
22	64,833	8	4	2	64,825	0,0077	0,2	1,4369	1,4371
23	66,553	6	6	4	66,546	0,0071	0,7	1,4039	1,4041
24	67,825	9	3	1	67,821	0,0042	7,5	1,3806	1,3807
25	69,925	8	4	4	69,922	0,0025	7,1	1,3442	1,3443
26	71,585	10	0	0	71,583	0,0018	3,2	1,3171	1,3171
27	73,227	10	2	0	73,228	-0,0004	8,7	1,2916	1,2915
28	74,449	9	5	1	74,452	-0,0026	4,7	1,2733	1,2733
29	74,853	10	2	2	74,858	-0,005	2,1	1,2675	1,2674
30	77,677	9	5	3	77,683	-0,0055	7,5	1,2283	1,2282
31	78,07	10	4	0	78,084	-0,0142	1	1,2231	1,2229
32	79,676	10	4	2	79,682	-0,0051	1	1,2024	1,2024
33	84,028	11	3	1	84,038	-0,0096	3,1	1,1509	1,1508
34	84,42	8	8	2	84,432	-0,0122	4	1,1465	1,1464
35	85,992	10	6	0	86,005	-0,0136	7,2	1,1296	1,1294
36	87,164	11	3	3	87,183	-0,0187	1,1	1,1174	1,1172
37	89,128	12	0	0	89,144	-0,0158	1,5	1,0978	1,0976
38	90,299	11	5	1	90,32	-0,0207	0,3	1,0865	1,0863
39	92,258	12	2	2	92,28	-0,0218	1,7	1,0685	1,0683
40	93,434	11	5	3	93,457	-0,0237	1,3	1,0581	1,0579

Durchschnittliche Abweichung in 20: $0,015^{\circ}$ $N_{poss} / N_{obs} = 52 / 40 = 1,3$ Maximale Abweichung in 20: $0,029^{\circ}$ (Reflex 2) = 2,0-facher DurchschnittFigure of Merit F(40) = 52,0 = $(N_{obs} / N_{poss}) / (Durchschnittliche Abweichung in 20)$

7.3.2 Beobachtete und berechnete Strukturfaktoren

						a.					
h	k	1	$F[calc]^2$	F[obs] ²	σ [Fobs] ²	h	k	1	F[calc] ²	$F[obs]^2$	σ [Fobs] ²
0	0	2	84497 46	118908 87	2167.64	0	2	14	5466 27	6529.03	689.92
0	2	2	25020 75	22022.2	562.19	2	2	14	1612.92	4228.0	575 47
0	2	2	55626,75	52925,5	302,18	2	2	14	1015,62	4228,9	575,47
2	2	2	228041,13	232036,97	2/12,78	0	4	14	422795,09	403170,03	4162,18
0	0	4	498880,69	515885,28	5735,5	2	4	14	992003	948977,63	5220,98
0	2	4	756210.75	765097	3810.62	4	4	14	366117.78	354640.34	3777.15
2	2	4	1 58035E6	1 5295E6	7093 56	0	6	14	1447 24	3534.89	536.22
2	4		1,000001	172692.02	1752.57	2	6	14	5029.12	9404.27	509.01
0	4	4	145500,81	1/3083,03	1/52,57	2	0	14	5028,12	8404,57	508,01
2	4	4	665211,88	734152,44	3665,61	4	6	14	196470,17	192094,16	2027,27
4	4	4	1,44243E6	1,41357E6	11848,98	6	6	14	232664,78	229669,75	3340,73
1	3	5	2 35017E6	2 2635E6	7259.67	0	8	14	429515.25	420117 72	4642 03
0	0	6	1 51125E6	1 57252E6	17465 41	Š	°.	14	106708 15	110100.04	1544.52
0	0	0	1,31135E0	1,57255E0	17403,41	2	0	14	100708,15	110100,04	1344,32
0	2	6	1,12159E6	1,11126E6	5598,45	4	8	14	65345,72	68325,33	1275,24
2	2	6	10430,25	18202,42	447,32	6	8	14	285106,56	285174,22	3026,96
0	4	6	938173,06	943016,31	4734,57	8	8	14	241866,86	241705,22	4190,81
2	4	6	534437.25	538018.06	2187.48	0	10	14	2966.97	7128.35	711.03
4	4	6	421551.06	110776.28	2606 79	2	10	14	910263	91574.45	1464 78
-	6	6	700001	902691 62	5052.9	4	10	14	111055.7	111740 77	1709.07
0	0	0	/ 880.84	802081,05	3933,6	4	10	14	111955,7	111/40,//	1708,07
2	6	6	55626,23	54112,18	777,26	6	10	14	74636,21	77469,48	1565,44
4	6	6	104076,42	119006,78	1227,64	8	10	14	5783,96	10635,41	672,87
6	6	6	1,14407E6	1,17035E6	10358,01	10	10	14	114537,47	116324,73	2997,65
1	3	7	1196 39	3285 84	210 21	0	12	14	211455 55	215018 95	3630 41
1	5	7	142921 61	150606.05	060.25	, in the second	12	14	200040.66	202567.56	2107.74
1	5		142621,01	130090,93	909,25	2	12	14	500040,00	292307,30	5197,74
3	5	/	58/966,/5	61/289,38	2535,54	4	12	14	5686,48	8980,55	548,69
0	0	8	2,77853E6	2,68407E6	25650	6	12	14	24304,62	32321,51	1220,96
0	2	8	637660,81	642532,69	3777,53	8	12	14	10597,75	12612,92	739,16
2	2	8	2035.8	5652.32	496.75	10	12	14	47995.32	56839.6	2366.06
0	4	8	185089.06	181120 33	1610.36	0	14	14	1651.65	5932 42	8/3 78
2	4	0	0606.07	16616 65	257.10	2	14	14	100168 20	102041 75	2740.22
2	4	0	9090,07	10040,05	557,12	2	14	14	109108,29	102041,75	2/40,52
4	4	8	1,57218E6	1,5547E6	7604,7	4	14	14	1,01305E6	984020,63	11988,23
0	6	8	136050,56	147029,59	1556,69	6	14	14	5919,1	7276,3	1188,48
2	6	8	909619,56	909151,69	3595,14	1	3	15	2287,92	4473,28	407,66
4	6	8	43800.86	52374 99	650.92	1	5	15	190646 94	183478 95	2030 24
6	6	0	1 26008E6	1 2591E6	7044 72	2	5	15	20772.21	25062.81	2030,24
0	0	0	1,20098E0	1,236120	7044,72	3	5	15	20772,21	23002,81	004,99
0	8	8	1/24,5/	3558,22	578,48	1	/	15	190,38	26/6,02	3/1,13
2	8	8	1,40274E6	1,38553E6	7786,26	3	7	15	173,5	3222,96	391,38
4	8	8	197241,28	192640,61	2129,85	5	7	15	49767,66	53563,19	1275,88
6	8	8	1990 78	4806.06	444 59	1	9	15	86300.46	88685 55	1520.58
e e	e e	8	670366.81	682215.88	8812.27	3	ó	15	17755 75	23266.0	022.06
1	2	0	640760.89	(79452.00	2969.79	5		15	71(24.7	23200,7	1505.00
1	3	9	649/69,88	6/8452,06	2868,78	5	9	15	/1624,/	/4/60,/9	1505,69
1	5	9	542234,94	558851,38	2605,28	7	9	15	18194,04	24255,46	1063,59
3	5	9	1,02806E6	1,05083E6	4215,92	1	11	15	61273,82	63796,7	1489,47
1	7	9	49808.69	53506.35	725.46	3	11	15	2218.55	5591.66	462.2
3	7	9	215365.17	219253 59	1541.1	5	11	15	43824 55	52170.62	1560.14
5	7	ó	10504.94	217255,57	560.64	7	11	15	10002 07	21029.71	1054.62
5		9	16394,04	22000,0	300,04		11	15	19003,27	21936,71	1034,03
0	0	10	1,500/1E6	1,53401E6	15//1	9	11	15	91806,79	99178,15	2415,32
0	2	10	329928,09	327566,84	2791,43	1	13	15	14355,12	18272,55	836,15
2	2	10	211197,92	210954,03	1985,69	3	13	15	4622,06	8369,63	574,97
0	4	10	138115.06	136758.89	1579.91	5	13	15	20849.3	26237.28	1164.45
2	1	10	171206.44	160093 59	1478.4	7	13	15	1365.14	8814 32	1749 77
2	4	10	20500.07	20572.12	1470,4	<i>'</i>	15	15	4505,14	1.0710256	1/49,//
4	4	10	29509,07	30572,12	857,51	0	0	10	1,90313E0	1,8/192E0	49125,75
0	6	10	1,36101E6	1,36282E6	7986,76	0	2	16	1415,2	4238,65	569,51
2	6	10	2093,25	5429,46	358,24	2	2	16	59511,47	59505,95	1707,48
4	6	10	69968,77	67267,36	872,05	0	4	16	44866,5	49632,15	1608,86
6	6	10	7871.95	10455.81	630.26	2	4	16	38579.13	40334.86	1060.23
ň	8	10	3700.01	5235 40	/01.05	1		16	0852.68	11807 /3	874.6
2	0	10	2256 51	4506 52	207.92	4	+	10	65040.01	67052 (1	1020.04
2	ð	10	2256,51	4596,53	397,82	U	0	16	05049,01	07052,61	1929,96
4	8	10	22339,79	23763,95	648,87	2	6	16	186308,64	180542,58	2205,28
6	8	10	607211,06	604146,44	3471,88	4	6	16	146632,92	136541,19	1969,45
8	8	10	545105.44	535770.75	4881.66	6	6	16	80489.89	86626.86	2317.1
n	10	10	950463 5	911450 04	9816.06	0	8	16	369724 5	358873 63	4871 /3
2	10	10	41000.07	12727 24	1002 12	2	0	16	60967 42	61726 77	1//5 50
2	10	10	41900,07	43/32,34	1223,10	4	0	10	11022 (12	04/30,//	1443,30
4	10	10	/6362,67	/1026,87	1569,19	4	8	16	110234,13	108863,13	1825,7
6	10	10	46045,25	53537,61	1439,44	6	8	16	22825,12	26229,85	1096,95
8	10	10	61741,18	62048,22	1784,41	8	8	16	11626,5	15532,72	1169,88

h	k	1	F[calc] ²	F[obs] ²	σ [Fobs] ²	h	k	1	F[calc] ²	F[obs] ²	σ [Fobs] ²
10	10	10	17710,63	24292,63	2445,27	0	10	16	133913,61	131981,56	2900,71
1	3	11	404309	402527,94	2445,48	2	10	16	91866,85	90249,89	1711,02
1	5	11	56175,15	57734,8	854,11	4	10	16	30684,91	33149	1221,14
3	5	11	255635,27	257182,52	1800,13	6	10	16	245291,08	246356,64	3267,62
1	7	11	29584,69	33304	745,3	8	10	16	2687,93	6244,28	640,47
3	7	11	119261,91	119082,12	1272,62	0	12	16	222750,88	223107,2	4420,43
5	7	11	75738,41	75552,34	1030,19	2	12	16	3678,85	8001,15	568,18
1	9	11	46436,6	50108,03	938,03	4	12	16	6090,31	10919,55	662,97
3	9	11	613055,63	612081,56	3658,88	6	12	16	45281,97	56069,39	2560,85
5	9	11	212583,34	212286,09	1958,71	1	3	17	9269,76	13510,17	632,91
7	9	11	9454,14	14074,54	648,98	1	5	17	63755,2	67316,2	1368,2
0	0	12	1,36586E6	1,31231E6	17473,91	3	5	17	456502,22	439828,84	3709,99
0	2	12	29882,12	30546,41	1123,57	1	7	17	1165,87	4728,76	428,1
2	2	12	584142,75	570841,38	4776,74	3	7	17	1508,71	5061,24	440,07
0	4	12	2407,72	5257,88	511,34	5	7	17	114403,72	113168,88	1930,48
2	4	12	5653.02	9018.78	463.39	1	9	17	10804.93	15717.13	779.75
4	4	12	73346.16	72091.84	1408.17	3	9	17	256434.84	242552.58	2967.65
0	6	12	101287,79	101163,41	1685,55	5	9	17	375726,59	360679,78	4037,68
2	6	12	212852.98	209208.47	1765.45	7	9	17	47568.52	52779.34	1837.67
4	6	12	533898.06	522077.94	3101.14	1	11	17	13603.91	17516.88	875.99
6	6	12	43600.96	48273.11	1272.96	3	11	17	102855,49	105353,45	1998.55
0	8	12	594713.19	585054.38	5172.54	5	11	17	794.23	7231.36	1100.45
2	8	12	24133.45	30017.53	832.6	0	0	18	590910.81	556010.38	11416.21
4	8	12	600351.56	592305.06	3621.4	Õ	2	18	148410.02	150694.7	2681.31
6	8	12	43138.4	46762	965.06	2	2	18	131315.75	128936.33	2461.61
8	8	12	357925 5	352624 59	4154 91	0	4	18	23458 99	27312.93	1379 79
0	10	12	20435.79	25191.39	1174.66	2	4	18	38479.51	39749.55	1169.18
2	10	12	230623.02	224153.7	2170.63	4	4	18	32971.09	35728.25	1662.81
4	10	12	46748.5	51091.97	1094.47	0	6	18	657137.88	636350.25	6992.33
6	10	12	114850.27	114856.27	1571.28	2	6	18	1393.59	4650.89	426.87
8	10	12	14804.47	19602.44	843.76	4	6	18	55767.41	61157.35	1550.02
10	10	12	222320.38	219146.36	3675.71	6	6	18	7169.95	9211.81	871.2
0	12	12	23226.38	28900.47	2032.67	Ő	8	18	1156.69	4171.9	594.4
2	12	12	11951 55	16090 44	1021.92	2	8	18	2251 29	5717 97	490 77
4	12	12	4389 58	6454 24	638.68	4	8	18	31236.1	35980	1274 57
6	12	12	434716.06	434640 59	5198.25	6	8	18	236753.03	239901 34	3838.47
8	12	12	353110.97	354953 5	5206.42	0	10	18	452316.44	447427 25	6624.89
10	12	12	25186.25	29413.12	1685.81	2	10	18	25883 12	34043.9	1729.17
12	12	12	28596.17	32598.24	3990.2	4	10	18	37007.7	40936 53	2324.76
1	3	13	159948 83	158649.45	1659.62	1	3	19	68604.3	70807 24	1486 14
1	5	13	329766 28	325627.63	2427 34	1	5	19	139760.36	138589.23	2037.16
3	5	13	40930.43	46102.92	917 29	3	5	19	98726.3	97123.3	1787 75
1	7	13	7946 2	11470 75	555.82	1	7	19	8214 62	11830.21	633 53
3	7	13	56968.63	59916.05	1074.12	3	7	19	24040 29	29363 73	1117.67
5	7	13	142479 69	141493 28	1652.2	5	7	19	15453 33	18858.03	1725.87
1	9	13	331953.06	325864.69	2675.09	1	o o	10	6887 58	12512.92	1256.27
3	9	13	37833.6	42412 13	1055.95	3	9	10	54636	2712.19	1868 3
5	0	13	320436.56	316813.81	2830.8	0	0	20	42708 42	52587.3	3724.02
7	9	13	91600 21	80064 42	1525 32	0	2	20	160303 23	161256.69	3054 59
1	11	13	131382 75	137437 77	1810 42	2	2	20	75711 93	80306 73	2227 10
2	11	12	68227 76	70750.66	135/ 22		1	20	11038 04	17021 24	10/18 50
5	11	13	13079 11	10130,00	1004,00	2	4	20	28582.02	31800.00	1040,39
7	11	12	43770,44	81380.03	1243,44	1	-+	20	469160 56	1/8086 01	1702,39
0	11	12	236407.07	224502.24	3700 22	-	+	20	409100,30	440700,71	3/69 /
9	0	13	580380 60	567226.25	10300 62	2	6	20	43336,03 14287777	4//11,3/	5400,4
U	U	14	200209,09	307230,23	10590,02	2	0	20	1420//,/2	140333,10	5475,01

7.3.3 Magnetische Messung

	0,1 Tesla			1 Tesla			3 Tesla			5 Tesla	
Temp.	γ in 10 ⁻⁴	χ^{-1} in 10 ³	Temp.	χ in 10 ⁻⁴	χ^{-1} in 10 ³	Temp.	γ in 10 ⁻⁴	χ^{-1} in 10 ³	Temp.	χ in 10 ⁻⁴	χ^{-1} in 10 ³
in V	³ /1	···· -1 / ····· ³	in V	···· ³ /··· • 1		in V	³ (1	···· -1 / ····· ³	in V	···· ³ / ···· • 1	
1 991		0.50024	1 9902		1 00816	1 201	4 09164	2 00727	1 2022	2 62047	2 78964
2 5 4 2	15 1451	0,59034	2,6178	9,91902	1,00810	2,649	2 85/12	2,00737	1,0920	2,03947	3,76604
2,342	12 0477	0,00028	2,0176	6 09077	1,32004	2,040	2,65900	2,39403	2,0334	2,30165	4,34433
3,042	13,9477	0,71090	2,0393	5,96077	1,45251	2,550	3,00809	2,72021	3,0352	2,20309	4,57666
3,545	13,1692	0,75935	3,0380	5,80005	1,7003	3,550	3,40622	2,93581	3,3543	2,15495	4,04048
4,004	12,3317	0,7907	4,0508	3,01000	1,77972	4,055	3,13003	3,10792	4,004	2,04132	4,89851
4,534	12,3495	0,80975	4,55/5	4,44959	2,2474	4,539	2,90363	3,44396	4,5452	1,08098	5,94891
5,057	11,7907	0,84813	5,0308	4,85905	2,05802	5,035	2,91103	3,43521	5,0304	1,83382	5,4551
6,070	11,0241	0,9071	6,0808	4,02191	2,48638	6,108	2,50199	3,99682	6,0927	1,60694	6,22301
7,099	10,6685	0,93734	7,0902	3,62923	2,75541	7,216	1,74506	5,73046	7,0931	1,39623	7,16214
8,112	10,273	0,97343	8,3918	3,12/55	3,19739	8,065	1,79963	5,556/	8,0///	1,20978	8,26597
9,111	9,91585	1,00849	9,0816	2,94055	3,40072	9,070	1,5/159	6,36298	9,0868	1,05132	9,51185
10,10	9,73313	1,02/42	10,12	2,66246	3,75592	10,09	1,34658	7,42622	10,141	0,93146	10,73587
12,69	9,14373	1,09365	12,72	2,08218	4,80266	13,16	0,73277	13,64681	13,235	0,50175	19,93024
15,27	8,61657	1,16055	15,353	1,79149	5,58195	15,47	0,58835	16,99669	15,248	0,31853	31,39382
17,69	8,39659	1,19096	17,709	1,54606	6,46805	17,73	0,43132	23,18443	17,695	0,07787	128,4261
20,18	8,01845	1,24712	20,264	1,29552	7,71891	20,20	0,27653	36,16244	20,217	- 0,00247	- 4052,50
25,29	7,70533	1,2978	25,42	1,11422	8,97489	25,37	- 0,0041	- 2459,80	25,354	- 0,32555	- 30,717
30,37	7,44571	1,34306	30,435	0,78246	12,78016	30,46	- 0,2235	- 44,7433	30,457	- 0,48537	- 20,603
35,39	7,37476	1,35598	35,323	0,67842	14,74017	35,35	- 0,3568	- 28,0274	35,488	- 0,60311	- 16,581
40,33	7,261	1,37722	40,385	0,48567	20,59032	40,38	- 0,5146	- 19,4316	40,45	- 0,73209	- 13,660
45,61	7,50714	1,33207	45,47	0,42585	23,48223	45,44	- 0,6739	- 14,8390	46,165	- 0,84751	- 11,799
50,45	7,92372	1,26203	51,288	0,29695	33,67548	50,56	- 0,7846	- 12,7455	50,329	- 0,9053	- 11,050
55,48	7,7628	1,28819	55,433	0,23822	41,97818	55,38	- 0,8452	- 11,8316	55,419	- 0,97878	- 10,2168
60,43	7,77667	1,2859	60,374	- 0,1542	- 64,8567	60,37	- 0,8842	- 11,3100	60,53	- 1,04712	- 9,55
65,42	7,40647	1,35017	65,304	- 0,0422	- 236,984	65,41	- 0,8290	- 12,0634	65,415	- 1,05631	- 9,46692
70,49	7,05569	1,4173	70,431	- 0,2658	- 37,6265	70,31	- 0,9787	- 10,2175	70,435	- 1,20558	- 8,29476
75,45	6,90546	1,44813	75,364	- 0,4298	- 23,2678	75,43	- 1,0728	- 9,32175	75,393	- 1,1906	- 8,39913
80,32	7,0648	1,41547	80,359	- 0,3617	- 27,6479	80,47	- 1,0088	- 9,91277	80,426	- 1,28089	- 7,80707
85,33	7,12346	1,40381	85,449	- 0,3948	- 25,3309	85,45	- 1,1611	- 8,61282	87,018	- 1,3436	- 7,44269
90,36	6,80479	1,46955	90,485	- 0,5182	- 19,2988	90,61	- 1,0515	- 9,51059	90,405	- 1,34653	- 7,4265
95,50	6,79091	1,47256	95,475	- 0,4369	- 22,8879	95,48	- 1,2870	- 7,77025	95,46	- 1,32933	- 7,52259
101,2	6,77625	1,47574	100,56	- 0,4443	- 22,5101	100,5	- 1,1842	- 8,44431	100,57	- 1,32528	- 7,54558
105,3	6,44727	1,55104	105,38	- 0,4478	- 22,3308	105,4	- 1,0693	- 9,35156	105,51	- 1,37776	- 7,25816
110,4	6,51227	1,53556	111,98	- 0,6104	- 16,3827	112	- 1,3631	- 7,33622	110,6	- 1,3799	- 7,2469
115,3	6,53288	1,53072	115,47	- 0,2710	- 36,9049	115,4	- 1,2410	- 8,05828	115,43	- 1,33496	- 7,49086
120,6	6,66051	1,50139	120,44	- 0,4064	-24,6044	120,4	- 1,2866	- 7,77236	120,33	- 1,35168	- 7,3982
125,5	6,46193	1,54753	125,46	- 0,5530	-18,0842	125,3	- 1,2113	- 8,25593	128,04	- 1,49295	- 6,69815
130,4	6,37354	1,56899	130,45	- 0,6098	- 16,3986	130,3	- 1,3408	- 7,4584	130,5	- 1,39354	- 7,17597
135,5	6,34897	1,57506	135,44	-0,4404	- 22,7046	135,4	- 1,2671	- 7,89204	135,59	- 1,44007	- 6,94411
140,4	6,42348	1,55679	140,4	- 0,5359	- 18,6607	141,2	- 1,5051	- 6,64394	140,44	- 1,51158	- 6,61559
145,3	6,21936	1,60788	145,51	-0,5885	- 16,9917	145,4	- 1,2789	- 7,81934	145,48	- 1,50103	- 6,66209
151,9	6,16307	1,62257	150,42	- 0,5945	- 16,8218	150,4	- 1,2844	- 7,78586	150,6	- 1,57896	- 6,33328
155,4	6,25146	1,59963	157,1	-0,7024	- 14,2369	155,3	- 1,2837	-7,78992	155,42	- 1,50579	- 6,64103
160,4	6,18408	1,61706	160,36	-0,5364	- 18,6442	160,4	- 1,3472	-7,42258	160,41	- 1,48771	- 6,72174
165,4	6,10243	1,63869	165,54	- 0,6214	- 16,0922	165,4	- 1,2609	- 7,93084	165,49	- 1,47511	- 6,77916
170,4	6,1706	1,62059	170,43	- 0,7265	- 13,7639	170,3	- 1,4167	- 7,05846	170,48	- 1,55763	- 6,42001
175,4	6,03306	1,65753	175,41	- 0,5980	- 16,7236	175,6	- 1,3613	- 7,34619	175,42	- 1,53409	- 6,51852
180,5	6,05209	1,65232	180,45	- 0,6838	- 14,6240	180,7	- 1,4527	- 6,88383	180,42	- 1,4564	- 6,86625
185,4	5,82775	1,71593	185,52	- 0,7621	- 13,1225	185,6	- 1,3561	- 7,37409	185,48	- 1,54384	- 6,47736
190,3	5,96489	1,67648	190,3	- 0,6647	- 15,0443	190,4	- 1,3996	- 7,1451	190,4	- 1,63548	- 6,11441
195,3	6,04733	1,65362	195,41	- 0,6985	- 14,3161	195,4	- 1,4327	- 6,97968	195,45	- 1,53774	- 6,50305
200,3	5,72509	1,7467	200,49	- 0,6612	- 15,1237	200,3	- 1,3439	- 7,44081	200,32	- 1,63207	- 6,12719
205,3	5,85193	1,70884	205,33	- 0,7453	- 13,4177	205,4	- 1,3558	- 7,37556	205,39	- 1,57927	- 6,33204
210,3	5,85906	1,70676	210,51	- 0,7779	- 12,8557	210,3	- 1,4237	- 7,02375	210,39	- 1,5742	- 6,35243
215,4	5,72549	1,74658	215,4	-0,8004	- 12,4941	215,4	- 1,5186	- 6,58501	215,37	- 1,45799	- 6,85876
220,4	5,7243	1,74694	220,37	-0,7121	- 14,0436	220,6	- 1,5144	- 6,60336	220,51	- 1,596	- 6,26566
225,7	5,2772	1,89494	225,88	- 0,8226	- 12,1570	225,5	- 1,4483	- 6,90455	225,61	- 1,63596	- 6,11262
230,4	5,75561	1,73744	230,35	- 0,8028	- 12,4565	230,4	- 1,5194	- 6,58155	230,49	- 1,66727	- 5,99783
235,4	5,82458	1,71686	235,41	- 0,8056	- 12,4129	235,3	- 1,4371	- 6,95851	235,5	- 1,59386	- 6,27408
240,4	5,68307	1,75961	240,46	-0,7849	- 12,7408	240,4	- 1,5127	- 6,61087	240,52	- 1,51491	- 6,60105
245,4	5,65414	1,76862	245,37	- 0,7938	- 12,5977	245,4	- 1,5740	- 6,3534	245,52	- 1,60726	- 6,22177

Anhang, Ag₁₃OsO₆

	0,1 Tesla			1 Tesla			3 Tesla			5 Tesla	
Temp.	χ in 10 ⁻⁴	χ^{-1} in 10 ³	Temp.	χ in 10 ⁻⁴	χ^{-1} in 10 ³	Temp.	χ in 10 ⁻⁴	χ^{-1} in 10^3	Temp.	χ in 10 ⁻⁴	χ^{-1} in 10 ³
in K	cm^3/mol	mol / cm ³	in K	cm ³ /mol	mol / cm ³	in K	cm^3/mol	mol / cm ³	in K	cm ³ / mol	mol / cm ³
250,3	5,89909	1,69518	250,31	- 0,8564	- 11,6775	250,3	- 1,5327	- 6,52426	250,41	- 1,68994	- 5,91737
256,2	6,40803	1,56054	255,53	- 0,8897	- 11,24	255,4	- 1,5445	- 6,47459	255,43	- 1,73822	- 5,75301
260,5	7,40052	1,35126	260,46	- 0,9844	- 10,1588	260,4	- 1,6873	- 5,92656	260,44	- 1,63802	- 6,10493
265,4	6,69063	1,49463	265,4	- 0,8645	- 11,5672	265,4	- 1,6752	- 5,96954	265,31	- 1,80156	- 5,55074
270,4	2,9964	3,33734	272,56	- 0,8477	- 11,7966	270,4	- 1,6276	- 6,14402	270,35	- 1,67401	- 5,97368
2/5,4	8,13023	1,22998	275,33	- 1,0084	- 9,9164	275,4	- 1,5889	- 6,2937	2/5,41	- 1,81004	- 5,52474
280,5	6/389/	1,55305	285.46	-0,9438 -0.9916	-10,3733 -10,0849	285 5	-1,0414 -1,6377	- 6,09233	280,40	-1,73362 -1,78959	- 5 58787
290.3	7.92372	1,35303	200,40	-0.9569	-10,0049 -10.4504	290.3	-1.6709	-5.98466	290.43	-1.78856	-5.59109
295,5	5,48093	1,82451	295,42	- 1,0125	- 9,87645	295,3	-1,7004	- 5,88097	295,42	- 1,88368	- 5,30876
300,9	-0,16812	- 59,4806	300,49	- 0,9572	- 10,4473	300,4	- 1,6634	- 6,01175	300,47	- 1,8645	- 5,36337
305,6	6,10164	1,6389	307,45	- 0,9621	- 10,3940	305,5	- 1,5716	- 6,36298	305,41	- 1,83002	- 5,46442
310,4	8,63123	1,15858	310,43	- 0,9231	- 10,8336	310,4	- 1,8393	- 5,43697	310,49	- 1,79347	- 5,57578
315,6	6,37711	1,56811	315,61	- 1,0343	- 9,66866	315,4	- 1,7681	- 5,65595	315,64	- 1,70468	- 5,8662
320,4	7,74417	1,29129	320,41	- 1,2143	- 8,23547	320,3	- 1,6906	- 5,91495	320,42	- 1,90588	- 5,24692
325,3	2 10776	1,42362	325,41	- 1,0369	- 9,6446	325,4	- 1,6082	- 0,21821	325,5	- 1,88622	- 5,30161
324.1	5 31802	1 8804	324 39	-1,2440 -1,1045	- 0,05464	324.2	-1,7437 -1,7292	- 5,7348	324 44	- 1,80449	-5,34175 -5,28628
319.2	8.24399	1,0004	319.24	-1.0298	-9.71072	319.0	-1,7292 -1.7148	-5.83155	318.43	-1.85507	-5,20020 -5,39063
307.2	4.77104	2.09598	314.26	- 1.0028	- 9.97248	313.9	- 1.6552	- 6.04149	314.17	- 1.89502	- 5.27699
305,5	4,5788	2,18398	309,06	- 1,0110	- 9,8911	308,9	- 1,6953	- 5,89883	309,15	- 1,79173	- 5,5812
303,9	5,56417	1,79721	304,14	- 0,9840	- 10,1629	304,3	- 1,6786	- 5,95735	304,22	- 1,83636	- 5,44556
299,4	5,68149	1,7601	299,45	- 0,9713	- 10,2960	299,2	- 1,6822	- 5,9447	299,33	- 1,81963	- 5,49562
294,6	5,78256	1,72934	294,56	- 0,9483	- 10,5447	294,5	- 1,6609	- 6,02083	294,57	- 1,80592	- 5,53734
289,7	5,86501	1,70503	289,7	- 0,9119	- 10,9659	289,8	- 1,6250	- 6,154	289,76	- 1,7708	- 5,64717
284,5	5,8329	1,71441	284,69	-0,8904	- 11,2315	284,4	- 1,6136	- 6,19/32	284,57	- 1,75645	- 5,6933
279,4	5,88205	1,70009	279,41	-0,801/ 0.8517	- 11,6050	279,4	- 1,5944	- 6,2/1/9	279,53	-1,74234 171832	- 5,73941
269.5	5 95062	1,91902	269 51	-0.8259	-12,1079	274,3	- 1,5950	-6,20712	269 47	-1,71832	-5,81904 -5,81642
264.3	5.89037	1,69769	264.35	- 0.7938	- 12.5983	264.2	- 1.5176	- 6.58957	264.4	- 1.68669	- 5.92877
258,3	5,91931	1,68939	258,38	-0,8214	- 12,1751	259,5	- 1,5331	- 6,52256	259,48	- 1,68011	- 5,95199
254,5	6,00532	1,66519	254,42	- 0,7757	- 12,8925	254,5	- 1,4988	- 6,67205	254,45	- 1,65879	- 6,02849
249,4	6,0723	1,64682	249,55	- 0,7395	- 13,5227	249,5	- 1,4636	- 6,83228	249,63	- 1,64071	- 6,09492
244,5	6,03782	1,65623	244,49	-0,7352	- 13,6014	244,5	- 1,4851	- 6,73378	244,5	- 1,64396	- 6,08287
239,6	6,13414	1,63022	239,61	- 0,7415	- 13,4866	239,6	- 1,4475	- 6,90837	239,59	- 1,64055	- 6,09552
234,5	6,106	1,63//3	234,57	-0,7034	- 14,2161	234,5	- 1,41/8	- /,05318	234,56	- 1,60385	- 6,235
229,3	6 20311	1,00942	229,49	-0.6317	-15,1133	229,0	-1,4339 -1,4182	-0,97394 -7.05124	229,30	-1,58126	-6.32407
219.5	6,22966	1,60522	219.58	-0.6598	- 15,1555	219.5	-1.3428	-7.4474	219.47	-1.58118	-6.32439
214,5	6,21381	1,60932	214,54	- 0,6638	- 15,0659	214,5	-1,4284	- 7,00099	214,47	- 1,59204	- 6,28125
209,5	6,18923	1,61571	209,56	- 0,6009	- 16,6409	209,5	- 1,5135	- 6,60742	209,52	- 1,53567	- 6,51182
204,6	6,23799	1,60308	204,61	-0,6160	- 16,2351	204,4	- 1,3947	- 7,17015	204,63	- 1,54202	- 6,485
199,5	6,2911	1,58955	199,65	- 0,6350	- 15,7486	199,5	- 1,4059	- 7,11283	199,47	- 1,51927	- 6,58211
194,5	6,36958	1,56996	192,83	- 0,6923	- 14,4456	194,5	- 1,3652	- 7,32488	194,5	- 1,46893	- 6,80768
189,5	6,53684	1,52979	189,47	- 0,6546	- 15,2766	189,5	- 1,3264	- 7,53937	189,6	-1,28343	-7,79162
184,5	6,5959	1,51609	184,45	- 0,5977	-16,/303	184,6	- 1,4415	- 6,93/46	184,4	- 1,55097	- 6,44/58
179,0	6 5091	1,54695	179,39	-0,3007	- 17,0433	179,4	-1,3439 -13488	-7,44081 -7,41383	179,58	-1,30793	-6.94179
169.5	6.59154	1,55051	169.58	- 0.5938	- 16.8409	169.5	- 1.3102	- 7.63242	169.6	- 1.52822	- 6.54356
164,4	6,61057	1,51273	164,44	- 0,3843	- 26,0249	164,4	- 1,305	- 7,66049	164,6	- 1,44396	- 6,9254
159,6	6,6288	1,50857	159,56	- 0,4893	- 20,4369	159,5	- 1,1988	- 8,34181	159,59	- 1,36698	- 7,3154
154,5	6,79646	1,47135	154,45	-0,5851	- 17,0919	154,6	- 1,2981	- 7,70351	154,65	- 1,51649	- 6,59417
149,6	6,54834	1,5271	149,61	- 0,4927	- 20,2955	149,6	- 1,2877	- 7,76603	149,61	- 1,35985	-7,35375
144,4	6,80994	1,46844	144,4	- 0,4436	- 22,5423	144,4	- 1,2978	- 7,70559	144,65	- 1,35684	-7,37007
139,4	6,80796	1,46887	139,55	-0,4842	- 20,6527	139,6	- 1,2160	- 8,22348	139,54	- 1,36556	- 7,323
134,5	6,86305	1,45708	134,58	-0,4618	-21,6560	134,5	- 1,46/2	- 6,81566	134,48	- 1,383	-7,23066
129,4	6 955/1	1,42000	129,44	- 0,4009	- 24,9423	129,5	- 1,2390	- 8 3366	129,50	-1,39/82 -13/312	- 1,154
119.5	7.05727	1,41698	117.77	- 0.5395	- 18.5360	119 5	-1.2648	- 7.90645	119.56	-1.33924	- 7.46692
114,5	7,21978	1,38508	114,63	- 0,3368	- 29,6902	114.6	- 1,1733	- 8,52282	114.6	- 1.35557	-7.37697
109,4	7,1524	1,39813	109,49	- 0,3267	- 30,6095	109,6	- 1,0819	- 9,243	109,54	- 1,27558	- 7,83957
104,4	7,17856	1,39304	104,6	-0,3636	- 27,5009	104,5	- 1,1716	- 8,53541	104,51	- 1,34154	- 7,45412
99,49	7,23326	1,3825	99,613	- 0,2908	- 34,385	99,52	- 1,108	- 9,02886	99,603	- 1,25838	- 7,94673
94,57	7,37833	1,35532	94,556	-0,3246	- 30,8088	94,46	- 1,015	- 9,85251	94,583	- 1,35573	- 7,3761
89,62	7,44967	1,34234	89,377	- 0,2906	- 34,4080	89,64	- 0,9906	- 10,0946	89,502	- 1,13495	- 8,81096
84,53	7,40528	1,35039	84,52	- 0,2668	- 37,4755	84,43	- 0,9877	-10,1250	84,48	- 1,23705	- 8,08375
19,51	7,51309	1,55101	19,483	- 0,0405	- 240,934	19,62	- 0,9414	- 10,6221	19,366	- 1,08001	– 9,2391/

Anhang,	Ag ₁₃ OsO ₆
---------	-----------------------------------

	0,1 Tesla			1 Tesla		3 Tesla 5 Tesla					
Temp.	χ in 10 ⁻⁴	χ^{-1} in 10 ³	Temp.	χ in 10^{-4}	χ^{-1} in 10 ³	Temp.	χ in 10 ⁻⁴	χ^{-1} in 10 ³	Temp.	χ in 10 ⁻⁴	χ^{-1} in 10 ³
in K	cm ³ / mol	mol / cm ³	in K	cm ³ /mol	mol / cm^3	in K	cm ³ / mol	mol / cm ³	in K	cm ³ /mol	mol / cm ³
74,33	7,55352	1,32389	74,392	- 0,1578	- 63,3553	74,38	-1,0188	- 9,81557	74,329	- 1,11418	- 8,97521
69,53	7,68155	1,30182	69,388	- 0,1837	- 54,4416	69,53	- 0,802	- 12,4687	69,58	- 1,02016	- 9,80238
64,42	7,70057	1,29861	64,426	0,08509	117,5259	64,56	- 0,8903	- 11,2325	64,643	- 0,98362	- 10,1666
59,56	7,82503	1,27795	59,441	0,31875	31,37235	59,52	-0,7832	- 12,7689	59,53	- 0,97086	- 10,3002
54,46	7,94711	1,25832	54,419	0,32313	30,94749	54,48	- 0,7289	- 13,7185	54,399	- 0,90213	- 11,0849
49,28	8,05809	1,24099	49,504	0,33245	30,07998	49,51	- 0,6521	- 15,3357	49,321	- 0,79146	- 12,6349
41,92	8,03907	1,24392	44,467	0,39712	25,18143	44,38	- 0,5632	- 17,7550	44,265	- 0,72847	- 13,7274
39,30	8,28996	1,20628	39,492	0,47948	20,85584	39,43	- 0,4825	- 20,7244	39,474	- 0,65278	- 15,3191
34,41	8,55196	1,16932	34,448	0,62087	16,10656	34,36	- 0,3439	- 29,0772	34,439	- 0,5527	- 18,0930
28,30	8,65739	1,15508	29,529	0,78873	12,67867	29,52	- 0,229	- 43,7250	29,366	- 0,41652	- 24,0087
24,23	9,18218	1,08907	24,48	1,05623	9,46763	24,32	0,0332	301,1612	24,323	- 0,25284	- 39,5506
19,78	9,49769	1,05289	19,796	1,15818	8,63424	19,74	0,34527	28,96259	19,741	0,17456	57,28722
16,74	9,62056	1,03944	17,232	1,54701	6,46408	17,20	0,34465	29,01477	17,272	0,18338	54,53098
14,79	10,1763	0,98268	14,728	1,75352	5,70281	14,71	0,70154	14,25438	14,784	0,41959	23,83268
12,33	10,422	0,95951	12,275	2,01314	4,96736	12,04	1,00205	9,97954	12,271	0,59442	16,82312
9,559	10,9979	0,90926	9,9323	2,56983	3,89131	9,907	1,24432	8,03652	9,9058	0,92591	10,80021
8,928	11,5302	0,86729	8,8891	2,64514	3,78052	8,428	1,49614	6,68387	8,9	1,00621	9,93828
7,921	11,7471	0,85127	7,9003	3,00579	3,32691	7,896	1,72458	5,79851	7,9114	1,24332	8,04298
6,859	12,1716	0,82158	6,9075	3,42574	2,91908	6,921	2,04802	4,88276	6,9256	1,42192	7,03274
5,923	12,8069	0,78083	5,9157	3,95734	2,52695	5,719	2,18674	4,57302	5,8883	1,64721	6,07087
4,946	13,4605	0,74291	4,97	4,37666	2,28485	4,965	2,80401	3,56632	4,9552	1,74329	5,73628
4,420	14,111	0,70867	4,4223	4,79324	2,08627	4,461	2,98106	3,35451	4,4633	1,9693	5,07795
3,943	14,5937	0,68523	3,7348	5,39928	1,8521	3,954	3,20857	3,11665	3,9569	1,98935	5,02677
3,459	15,2196	0,65705	3,4403	5,92406	1,68803	3,447	3,47995	2,8736	3,4401	2,17374	4,60037
2,959	16,2375	0,61586	2,9393	6,57926	1,51993	2,977	3,77075	2,65199	2,9238	2,23336	4,47756
2,453	17,3465	0,57649	2,4618	7,31213	1,36759	2,443	3,99562	2,50274	2,4513	2,455	4,07332
1,980	19,3216	0,51756	1,9817	8,41204	1,18877	1,980	4,23357	2,36207	1,982	2,53221	3,94912

7.3.4 Leitfähigkeitsmessung

Temp.	ρ in 10^{-5}	Temp.	ρ in 10^{-5}	Temp.	ρ in 10 ⁻⁵	Temp.	ρ in 10^{-5}	Temp.	ρ in 10 ⁻⁵	Temp.	ρ in 10 ⁻⁵
in K	Ωcm	in K	Ωcm	in K	Ωcm	in K	Ωcm	in K	$\Omega \mathrm{cm}$	in K	Ω cm
9,61127	0,29803	35,0961	0,37065	59,2258	0,48725	90,9922	0,67551	138,214	1,00458	225,279	1,67598
14,7842	0,30429	37,3546	0,3799	62,0632	0,50255	95,5783	0,70481	145,027	1,0556	236,46	1,76213
18,7974	0,31283	39,7063	0,38783	64,9119	0,51866	98,6393	0,72566	152,388	1,11132	248,163	1,85415
22,5548	0,31973	41,5259	0,39749	67,9934	0,53483	101,83	0,74773	160,422	1,17087	259,629	1,94123
26,2544	0,33065	43,6885	0,40779	71,0819	0,55436	105,038	0,76808	168,536	1,23579	271,458	2,03224
28,1614	0,33716	45,8976	0,41812	73,8655	0,57117	109,755	0,80048	176,651	1,2973	282,934	2,12048
28,8214	0,34013	48,5422	0,4313	76,6919	0,58812	114,715	0,83394	184,981	1,36182	287,874	2,1559
29,9704	0,34512	51,1765	0,44353	79,5854	0,60551	119,855	0,87077	193,929	1,43114	292,49	2,19379
31,5037	0,3522	53,3901	0,45693	81,6167	0,61743	126,05	0,91425	203,699	1,5085	297,634	2,2311
33,2949	0,36276	56,2616	0,47129	87,4371	0,65311	131,387	0,95252	214,476	1,59109	300,037	2,25043

7.3.5 DTA / TG / MS - Messung

DTA / TG	DTA	TG	MS	Ionenstrom in	Ionenstrom in	Ionenstrom in
Temp. in K	in µV / mg	∆m in %	Temp. in K	10 ⁻⁹ A (MS 16)	10 ⁻⁹ A (MS 18)	10 ⁻⁹ A (MS 32)
23,283	0,00915	100	27	2,1076	10,545	4,0979
25,783	-0,02081	99,57743	29,5	2,1742	11,784	4,5875
28,283	-0,04286	99,60238	32	2,1378	11,459	4,4436
30,783	-0,06376	99,57371	34,5	2,0838	11,246	4,3578
33,283	-0,08156	99,57702	37	2,06	11,22	4,4156
35,783	-0,09786	99,57177	39,5	2,0768	11,247	4,4385
38,283	-0,11382	99,54569	42	2,0541	11,188	4,4845
40,783	-0,12797	99,59884	44,5	2,0738	11,324	4,5038
43,283	-0,14213	99,58274	47	2,0514	11,292	4,5188
45,783	-0,15705	99,55648	49,5	2,0802	11,266	4,5533
48,283	-0,17028	99,55631	52	2,0617	11,29	4,5306
50,783	-0,18476	99,54543	54,5	2,0694	11,29	4,4921
53,283	-0,19772	99,53418	57	2,0734	11,328	4,555
55,783	-0,21188	99,53031	59,5	2,0825	11,499	4,6366
58,283	-0,2282	99,56162	62	2,0442	11,477	4,6817
60,783	-0,2405	99,5188	64,5	2,0938	11,509	4,6775
63,283	-0,25326	99,5187	67	2,0509	11,489	4,6664
65,783	-0,26619	99,53825	69,5	2,0837	11,548	4,725
68,283	-0,27957	99,52041	72	2,051	11,559	4,7239
70,783	-0,29348	99,4998	74,5	2,0663	11,521	4,6945
73,283	-0,3053	99,49921	77	2,0745	11,543	4,7532
75,783	-0,31683	99,54088	79,5	2,0899	11,693	4,776
78,283	-0,32824	99,49286	82	2,1018	11,703	4,8218
80,783	-0,34073	99,44024	84,5	2,0792	11,784	4,8527
83,283	-0,3519	99,52103	87	2,0833	11,722	4,8403
85,783	-0,36254	99,5068	89,5	2,0626	11,638	4,8534
88,283	-0,37355	99,5121	92	2,0785	11,811	4,9051
90,783	-0,38341	99,49344	94,5	2,0866	11,962	4,917
93,283	-0,39382	99,52838	97	2,0945	11,966	4,9885
95,783	-0,40407	99,58963	99,5	2,0964	11,999	4,9531
98,283	-0,41351	99,55334	102	2,0738	11,891	4,9055
100,783	-0,42219	99,5404	104,5	2,0709	11,89	4,9233
103,283	-0,43076	99,51918	107	2,1039	11,99	4,9736
105,783	-0,43965	99,51904	109,5	2,0996	12,143	5,0311
108,283	-0,4488	99,53425	112	2,1282	12,108	5,0302
110,783	-0,45892	99,53901	114,5	2,0687	12,043	5,0109
113,283	-0,46911	99,54264	117	2,0649	12,175	5,0532
115,783	-0,47694	99,55206	119,5	2,1006	12,274	5,0457
118,283	-0,48527	99,5255	122	2,0888	12,405	5,1178
120,783	-0,49311	99,54918	124,5	2,0993	12,384	5,0965
123,283	-0,50034	99,55635	127	2,105	12,347	5,1078
125,783	-0,506	99,51389	129,5	2,1307	12,324	5,0636
128,283	-0,5132	99,53921	132	2,1222	12,481	5,1523
130,783	-0,51986	99,49578	134,5	2,1354	12,572	5,1106
133,283	-0,52597	99,50833	137	2,1245	12,481	5,0895
135,783	-0,5311	99,49502	139,5	2,1133	12,566	5,1295
138,283	-0,535	99,48934	142	2,0906	12,614	5,1432
140,783	-0,53778	99,47682	144,5	2,1	12,725	5,1867
143,283	-0,54071	99,4514	147	2,1311	12,709	5,1538
145,783	-0,54251	99,48787	149,5	2,1165	12,761	5,2037
148,283	-0,54351	99,47794	152	2,1102	12,747	5,1292
150,783	-0,54397	99,48244	154,5	2,15	12,872	5,1975
153,283	-0,54277	99,44971	157	2,1618	12,96	5,2137
155,783	-0,54118	99,43229	159,5	2,1544	12,946	5,2215
158,283	-0,54044	99,43996	162	2,124	12,956	5,2521
160,783	-0,53905	99,44683	164,5	2,1231	12,885	5,206
163,283	-0,53617	99,43655	167	2,1286	12,887	5,2541
165,783	-0,53397	99,44026	169,5	2,1249	12,957	5,1761
168,283	-0,53105	99,40053	172	2,132	12,988	5,2444
170,783	-0,5283	99,4197	174,5	2,1348	12,979	5,2039
173,283	-0,52576	99,38838	177	2,1474	12,947	5,2982
175,783	-0,5275	99,41001	179,5	2,1314	12,876	5,2841

Anhang, Ag₁₃OsO₆

DTA / TG	DTA	TG	MS	Ionenstrom in	Ionenstrom in	Ionenstrom in
Temp. in K	in $\mu V / mg$	∆m in %	Temp. in K	10 ⁻⁹ A (MS 16)	10 ⁻⁹ A (MS 18)	10 ⁻⁹ A (MS 32)
178,283	-0,52993	99,37059	182	2,1464	13,052	5,2932
180,783	-0,53305	99,3662	184,5	2,1454	13,08	5,3805
183,283	-0,53581	99,36216	187	2,1509	12,972	5,2922
185,783	-0,54043	99,3664	189,5	2,1348	12,942	5,378
188,283	-0,54331	99,3597	192	2,1581	13,023	5,3594
190,783	-0,54726	99,34298	194,5	2,1636	13,126	5,4468
193,283	-0,55178	99,37228	197	2,144	13,017	5,4745
195,783	-0,56195	99,36619	199,5	2,1704	13,045	5,4781
198,283	-0,57155	99,36946	202	2,1323	12,881	5,5089
200,783	-0,57886	99,3457	204,5	2,163	12,937	5,5236
203,283	-0,58738	99,34297	207	2,1637	13,075	5,5868
205,783	-0,59655	99,33343	209,5	2,1842	12,981	5,6217
208,283	-0,6068	99,33888	212	2,1583	12,871	5,6353
210,783	-0,61766	99,3382	214,5	2,161	12,907	5,6964
213,283	-0,62779	99,31956	217	2,1499	12,931	5,7241
215,783	-0,64018	99,34012	219,5	2,1591	12,882	5,6988
218,283	-0,65306	99,33557	222	2,1834	12,884	5,7599
220,783	-0,6663	99,34693	224,5	2,1775	12,851	5,8176
223,283	-0,67924	99,35682	227	2,177	12,847	5,7515
225,783	-0,69373	99,29489	229,5	2,1916	12,701	5,859
228,283	-0,70771	99,3022	232	2,1936	12,775	5,9384
230,783	-0,73231	99,33151	234,5	2,199	12,806	5,9591
233,283	-0,74737	99,30955	237	2,2181	12,875	6,068
235,783	-0,76275	99,31158	239,5	2,2347	12,943	6,1148
238,283	-0,77948	99,30008	242	2,2479	12,964	6,1597
240,783	-0,79613	99,29648	244,5	2,2522	12,913	6,1643
243,283	-0,81158	99,30468	247	2,2543	12,73	6,1737
245,783	-0,82697	99,29653	249,5	2,257	12,781	6,2448
248,283	-0,84397	99,26184	252	2,2672	12,779	6,2622
250,783	-0,8621	99,27443	254,5	2,2603	12,786	6,2669
253,283	-0.88018	99,28755	257	2,2851	12,731	6,3304
255,783	-0,89499	99,27192	259,5	2,3244	12,883	6,4322
258,283	-0.91392	99.27884	262	2.3155	12,929	6.5318
260,783	-0.93207	99.23422	264.5	2.325	12.89	6,5352
263,283	-0.94996	99.24182	267	2.3257	12.884	6,5767
265,783	-0.96902	99.24759	269.5	2.3426	12.787	6,5471
268,283	-0,98851	99,21988	272	2,3473	12,852	6,6632
270.783	-1.00775	99.20886	274.5	2.3811	12.853	6.6342
273.283	-1.02797	99,17432	277	2.4207	12.86	6.755
275.783	-1.0495	99,17444	279.5	2.4311	12.898	6.8466
278.283	-1.07178	99,13974	282	2,4242	12,818	6.9024
280.783	-1.0928	99,11618	284.5	2.48	12,904	6.9795
283.283	-1.1147	99.07391	287	2.4422	12,929	6.9553
285.783	-1.13948	99.03069	289.5	2,4969	12.98	7,1161
288,283	-1.16226	98,98991	292	2,5598	12,986	7,2265
290.783	-1,18567	98,98114	294.5	2.5511	12,918	7,2946
293,283	-1.20689	98,90307	297	2,5645	12,969	7,3909
295.783	-1.22891	98.85333	299.5	2.6519	12.941	7.4934
298.283	-1.24957	98.8167	302	2.6734	13.013	7.6858
300.783	-1.26827	98.76974	304.5	2.7052	13.113	7.7314
303,283	-1,2871	98,70771	307	2,7397	13,032	7,7962
305,783	-1,30201	98,64996	309.5	2,8173	13,201	8,11
308.283	-1.31808	98,54881	312	2.9114	13.351	8.3537
310,783	-1.33197	98.47032	314.5	2.97	13.442	8.585
313.283	-1.34584	98,38949	317	3.0004	13,498	8.852
315,783	-1.36031	98.25878	319.5	3.0575	13.471	8,9785
318,283	-1.37315	98,15892	322	3,1225	13,499	9,2926
320.783	-1.38361	98.02756	324.5	3.2387	13.654	9.6182
323,283	-1,39389	97,87037	327	3,3884	13,627	10,006
325,783	-1,40283	97,72421	329,5	3,4469	13,778	10.289
328.283	-1,41121	97,55518	332	3,5736	13,782	10,734
330.783	-1.41785	97.38382	334.5	3.7795	13.971	11.415
333.283	-1.42378	97,16883	337	3.9019	14,143	11,941
335.783	-1.42881	96.96278	339.5	4.1033	14.135	12.645
338.283	-1.43156	96.68078	342	4.3095	14.218	13.321
340.783	-1.43178	96.4101	344.5	4.5081	14.12	14.172
343,283	-1.44957	96,13931	347	4,7974	14.36	15.16
345.783	-1.44452	95.79233	349.5	5.0609	14.458	16.263
	,	, ====		- ,	,	.,===

Anhang, Ag₁₃OsO₆

DTA / TG	DTA	TG	MS	Ionenstrom in	Ionenstrom in	Ionenstrom in
Temp. in K	in µV / mg	∆m in %	Temp. in K	10 ⁻⁹ A (MS 16)	10 ⁻⁹ A (MS 18)	10 ⁻⁹ A (MS 32)
348,283	-1,43708	95,41248	352	5,4127	14,324	17,429
350,783	-1,42446	94,97166	354,5	5,8797	14,582	19,066
353,283	-1,40665	94,4676	357	6,3487	14,804	20,853
355,783	-1,38404	93,91763	359,5	6,9058	14,908	22,753
358,283	-1,3545	93,21568	362	7,4861	14,822	24,877
360,783	-1,31873	92,43695	364,5	8,2456	15,029	27,243
363,283	-1,27354	91,51646	367	9,0372	15,293	29,921
365,783	-1,22146	90,48318	369,5	9,8988	15,434	32,373
368,283	-1,16014	89,37576	372	10,635	15,688	34,519
370,783	-1,09478	88,16776	374,5	11,254	15,813	36,691
373,283	-1,02395	86,91336	377	11,688	15,849	38,005
375,783	-0,95969	85,68108	379,5	11,844	15,852	38,461
378,283	-0,90937	84,59937	382	11,406	15,934	36,855
380,783	-0,87437	83,8164	384,5	10,509	15,901	34,067
383,283	-0,85233	83,40624	387	9,5041	15,753	30,832
385,783	-0,83537	83,19815	389,5	8,6258	15,719	27,993
388,283	-0,81381	83,10653	392	7,9754	15,644	25,906
390,783	-0,79964	83,07249	394,5	7,35	15,501	24,191
393,283	-0,78836	83,07886	397	6,9711	15,386	23,133
395,783	-0,77827	83,06842	399,5	6,6645	15,366	22,046
398,283	-0,7/058	83,08215	402	6,3592	15,43	21,206
400,783	-0,76345	83,08395	404,5	6,1/8	15,273	20,321
403,283	-0,/561/	83,08161	407	5,9274	15,245	19,449
405,783	-0,/5136	83,07603	409,5	5,6/34	15,106	18,/58
408,283	-0,74818	83,07296	412	5,4686	15,026	17,916
410,783	-0,74563	83,07893	414,5	5,3240	15,034	17,005
413,283	-0,74376	83,08027	41/	5,221	14,953	17,120
415,785	-0,74271	83,07964	419,5	3,0002	14,885	16,747
410,203	-0,74151	83,08247	422	4,041	14,825	15.876
420,783	-0,74134	82,06558	424,5	4,7411	14,04	15,870
425,285	-0.74109	83,09558	427	4,0822	14,790	15,525
425,785	-0,74155	83,08779	432	4,5381	14,000	14 984
430 783	-0,74095	83,00775	434.5	4,3122	14,703	14 613
433,283	-0 74094	83 09436	437	4 3025	14 591	14 393
435,783	-0.74156	83,08711	439.5	4 2079	14.68	14,211
438.283	-0.74215	83.08876	442	4,1786	14.637	13.908
440,783	-0.74228	83.06074	444.5	4.1372	14.603	13.806
443,283	-0,74412	83,10407	447	4,0509	14,55	13,548
445,783	-0,74373	83,07643	449,5	3,9646	14,484	13,495
448,283	-0,74148	83,08978	452	3,9521	14,523	13,46
450,783	-0,73863	83,09989	454,5	3,9197	14,472	13,361
453,283	-0,73575	83,09625	457	3,8744	14,523	13,257
455,783	-0,733	83,09084	459,5	3,8523	14,467	13,205
458,283	-0,72964	83,08052	462	3,7871	14,364	12,987
460,783	-0,72526	83,09839	464,5	3,7466	14,331	13,03
463,283	-0,71148	83,06737	467	3,7677	14,376	13,045
465,783	-0,70593	83,09001	469,5	3,7756	14,412	13,037
468,283	-0,70053	83,09369	472	3,7301	14,265	12,91
470,783	-0,69491	83,0916	474,5	3,7013	14,305	12,939
473,283	-0,69017	83,07267	477	3,7385	14,265	13,088
475,783	-0,68401	83,08501	479,5	3,7167	14,418	13,073
478,283	-0,67871	83,05614	482	3,7178	14,374	13,105
480,783	-0,67244	83,05442	484,5	3,7173	14,404	13,106
483,283	-0,66694	83,07746	487	3,7425	14,281	12,946
485,783	-0,66077	83,0665	489,5	3,7418	14,291	13,176
488,283	-0,6562	83,07066	492	3,7814	14,277	13,18
490,783	-0,64966	83,07844	494,5	3,7272	14,099	13,091
493,283	-0,64307	83,0302	497	3,693	14,008	13,117
495,783	-0,63645	83,05909	499,5	3,7158	14,132	13,263
498,283	-0,62976	83,06123	502	3,7552	14,249	13,377

7.3.6 XPS-Messung

Bindung	Intensität										
in eV											
384	-8,7994	380,5	-1,62105	377	13,19108	373,5	120,3554	370	43,81815	366,5	18,1051
383,5	-7,45684	380	-0,8779	376,5	20,38697	373	47,2507	369,5	74,70076	366	7,08573
383	-6,08287	379,5	0,52621	376	33,28575	372,5	22,60652	369	135,7583	365,5	1,00556
382,5	-4,6915	379	2,51728	375,5	55,11447	372	17,55797	368,5	231,6827	365	-1,1253
382	-3,90173	378,5	5,1337	375	97,66072	371,5	15,91365	368	264,8444	364,5	-0,84143
381,5	-3,14797	378	7,89243	374,5	166,6575	371	17,70884	367,5	164,3820	364	0,86547
381	-2,46901	377,5	9,85952	374	190,7540	370,5	26,23006	367	57,86678	363,5	2,52559

7.4 Disilberosmat(VI), Ag₂OsO₄

7.4.1 Darstellung

Im Rahmen der Synthesen von $Ag_{13}OsO_6$ entstanden als Nebenprodukt in geringen Mengen nadelförmige Kristalle (Abbildung 84), welche nach genaueren Untersuchungen als zweite Phase im ternären System Ag-Os-O identifiziert wurden. Die Bedingungen der Darstellung von Ag_2OsO_4 aus Silber- (Aldrich, 99,99 %) und Osmiumpulver (Alfa Division) sind in Tabelle 32 angegeben. Ein zuverlässig reproduzierbarer Syntheseweg ist bisher nicht gefunden worden.

Tabelle 32: Bedingungen erfolgreicher Ag₂OsO₄-Synthesen.

Temperatur	Zeit	O ₂ -Druck	Tiegel	Mineralisator	Edukte und (^{Ag} / _{Os})-Verhältnis
573 K	100 h	8,9 MPa	Gold	$H_2O 0,5 ml$	Ag: 53,9 mg, Os: 95,1 mg; $(^{1}/_{1})$
523 K	50 h	12,2 MPa	Silber	$H_2O \ 1 \ ml$	Ag: 269,6 mg, Os: 95,1 mg; (⁵ / ₁)
548 K	100 h	8,5 MPa	Silber	$H_2O \ 1 \ ml$	Ag: 215,7 mg, Os: 190,2 mg; (² / ₁)

Abbildung 84: Lichtmikroskopische Aufnahme bei 120-facher Vergrößerung von nadelförmigen Ag₂OsO₄-Kristallen und Agglomeraten von Ag₁₃OsO₆-Würfeln.

7.4.2 Rasterelektronenmik roskopie und Energiedispersive Mikroanalyse

Kristallnadeln von Ag₂OsO₄ wurden bei einer Beschleunigungsspannung von 25 kV mit einem REM untersucht. Eine Aufnahme der Probensubstanz bei 500-facher Vergrößerung ist in Abbildung 85 gezeigt. Die abgebildete Ag₂OsO₄-Nadel weist Kanten von \approx 200 µm in der Länge und \approx 10 µm in der Breite auf. Deutlich sind Abweichungen vom idealen Einkristall wie z. B. Aufwachsungen und Verzwillingung erkennbar.

Abbildung 85: Rasterelektronische Aufnahme bei 500-facher Vergrößerung eines nadelförmigen Ag₂OsO₄-Kristalles.

Bei einer Beschleunigungsspannung von 25 kV wurden die AgL- und OsK-Röntgenemissionen mehrerer Proben untersucht. Das durch EDX-Analyse bestimmte Silber-Osmium-Verhältnis für Ag₂OsO₄ schwankte dabei zwischen 1,8 - 2,1 : 1.

In Abbildung 86 ist ein typisches Spektrum gezeigt, dessen Emissionen einem Silber-Osmium-Verhältnis von 2,08 : 1 entsprechen und die angenommene Summenformel bestätigten. Während die Kohlenstoff-Emission bei 0,25 eV auf den Probenträger zurückzuführen ist, konnte keine nennenswerte Menge an Stickstoff nachgewiesen werden.

Abbildung 86: Röntgenemissionsspektrum (AgL-, OK- und OsK-Emissionen) einer Probe von Ag₂OsO₄. Schwarz ist das gemessene Spektrum, blau das simulierte abgebildet.

7.4.3 Röntgenographische Pulveruntersuchungen

Mit Hilfe des Programmes WinXPow^[56] wurden die Reflexlagen eines gemessenen Pulverdiffraktogramms ermittelt und indiziert. Eine Verfeinerung der Gitterkonstanten anhand von 21 Reflexen ergab eine primitive orthorhombische Zelle mit folgenden Werten für Gitterkonstanten und Zellvolumen:

$$a = 5,997(4)$$
 Å $b = 9,738(9)$ Å $c = 3,151(2)$ Å $\alpha = 90^{\circ}$ $V = 184,0(2)$ Å³

Eine vollständige Tabelle über die bei der Gitterkonstantenverfeinerung verwendeten Reflexe ist dem Anhang unter Kapitel 7.4.7 beigefügt.

Eine Indizierung der Reflexe mit Hilfe einer identischen Zelle mit C-Zentrierung führt bis auf einen Reflex ebenfalls zu einer sinnvollen Lösung. Da dieser (101)-Reflex ($2\theta = 32,2^{\circ}$) allerdings eine relative Intensität von immerhin 18 % der Ag₂OsO₄-Reflexe hat, müsste der Reflex zum Pulverdiffraktogramm von Ag₂OsO₄ gehören. Gegen die Berücksichtigung dieses Reflexes spricht allerdings die Tatsache, dass seine beobachtete Lage zur berechneten eine Differenz von 0,1693° aufweist, was dem 5,5-fachen der durchschnittlichen Abweichung entspricht. Die zweitgrößte Differenz innerhalb der Reflexliste beträgt lediglich 0,0562°. Mit Hilfe des Pulverdiffraktogrammes kann somit nicht endgültig zwischen primitiver und zentrierter Zelle unterschieden werden.

Das gemessene Pulverdiffraktogramm ist in Abbildung 87 dargestellt. Als Fremdphasen konnten, wie in der oberen Darstellung gezeigt, Silber und Ag₁₃OsO₆ ausgemacht werden. Einen Vergleich der Reflexlagen von primitiver und C-zentrierter orthorhombischer Zelle mit dem Pulverdiffraktogramm der Probensubstanz ist Abbildung 87 (unten) dargestellt. Zur besseren Übersicht wurde nur ein Ausschnitt der Reflex-Intensitäten bis 1000 Einheiten abgebildet.

 Abbildung 87: Gemessenes Pulverdiffraktogramm (CuK_α-Strahlung, Silber als interner Standard) und Daten für Silber aus der JCPDS-Datei und Ag₁₃OsO₆ (oben).
Vergleich der Substanz mit den Reflexlagen von orthorhombischen Gittern (unten).

7.4.4 Einkristallstrukturun tersuchungen mit Filmmethoden

Aus einem Produktgemenge wurde ein nadelförmiger Kristall mit einer Kantenlänge von ≈ 0.01 mm ausgewählt. Der Kristall wurde auf eine Kapillare aus Lindemann-Glas geklebt, auf einem Goniometerkopf fixiert und im Röntgenstrahl einer Präzessions-Kamera zentriert. Anschließend wurden Aufnahmen mit jeweils 24 h Belichtungszeit von nullten und ersten Netzebenen mittels Polaroid-Filmen angefertigt. Die resultierenden Aufnahmen sind in Abbildung 88 dargestellt.

Aus den Abständen der Netzebenen und den beobachteten Reflexen ergibt sich eine orthorhombische Elementarzelle mit den Gitterkonstanten: a = 5,7, b = 9,8 und c = 3,2 Å, sowie den Reflexionsbedingungen:

$$h00: h = 2n \qquad 0k0: k = 2n$$

Mit den gefundenen Reflexionsbedingungen kann das Beugungssymbol $P2_12_1$ - abgeleitet werden. Zusammen mit der Laueklasse *mmm* kommt $P2_12_12$ (18) als mögliche Raumgruppe für die Kristallstruktur von Ag₂OsO₄ in Betracht.

Der im Pulverdiffraktogramm nicht zweifelsfrei zum Gitter zugeordnete, (101)-Reflex (rot umrandet) wird in der h0l-Netzebene (Abbildung 88, links unten) nicht beobachtet. Dies ist ein weiteres Indiz für die Verwendung einer Zelle mit C-Zentrierung bei der er systematisch ausgelöscht ist.

Da die untersuchten Kristalle durchweg Mehrlinge waren sind die aus den Präzessions-Aufnahmen abgeleiteten Reflexionsbedingungen lediglich als Indizien zu werten.

Abbildung 88: Mit einer Präzessions-Kamera (MoK_α) aufgenommene 0kl- und 1kl-Netzebene eines Ag₂OsO₄-Kristalls. Die um 90° gedrehten Aufnahmen der zugehörigen Netzebene (h0l und h1l) sind darunter abgebildet.

7.4.5 Einkristallstrukturan alyse

Mit Hilfe eines Dreikreisdiffraktometers mit Flächendetektor wurden die integralen Reflexintensitäten eines Ag_2OsO_4 -Kristalles gemessen. Die Messparameter und die durch direkte Methoden sich aus der Einkristallstrukturanalyse ergebenen Daten sind in Tabelle 33 aufgeführt.

Raumgruppe	$P2_{1}2_{1}2$ (18)
Molare Masse M	469.9 g mol^{-1}
Gitterkonstante <i>a</i>	5,989(1) Å
Gitterkonstante b	9,734(2) Å
Gitterkonstante c	3,1477(7) Å
Zellvolumen V	183,50(6) $Å^3$
Formeleinheiten Z	2
Absorptionskoeffizient μ	$44,96 \text{ mm}^{-1}$
Röntgenographische Dichte ρ	$8,506 \text{ g cm}^{-3}$
Diffraktometer	Bruker AXS Smart CCD 1000
Strahlung, Monochromator	Mo K $_{\alpha}$, Graphit Einkristall
maximaler Messwert in 20	64,99°
Messtemperatur T	293(2) K
gemessene Reflexe $I > 2\sigma(I)$	575
symmetrieunabhängige Reflexe	658
Zahl der Parameter	33
hkl-Bereiche	$-9 \le h \le 8, -14 \le k \le 14, -4 \le l \le 4,$
Strukturlösung	Direkte Methoden, SHELXTL ^[82]
max. / min. Restelektronendichte	17,51 (0,75 Å von Os) / –4,23 e Å ⁻³ (1,12 Å von Os)
Goodness-of-fit	1,267
R ₁ -Wert	0,1125
wR ₂ -Wert	0,294

Messparameter der Datensammlung sowie Ergebnisse der Strukturlösung.

Tabelle 33: Kristallographische Daten von Ag₂OsO₄,
Ag₂OsO₄ kristallisiert mit orthorhombischer Metrik und lässt sich in der Raumgruppe $P2_12_12$ beschreiben. Da die vermessenen Kristalle verzwillingt waren, ergaben sich große Probleme bei der Strukturverfeinerung, in deren Folge die Symmetrie reduziert wurde, die besten R-Werte resultierten in der Raumgruppe A2/m (R₁ = 0,0786, wR₂ = 0,0633). Aufgrund der orthorhombischen Metrik, den Präzessions-Aufnahmen, der offensichtlich höher symmetrischen Kristallstruktur selbst sowie großen Ähnlichkeiten zu Verbindungen gleichen Formeltyps (siehe unten) wurde hier, trotz deutlich schlechterer R-Werte, die Raumgruppe $P2_12_12$ zur Beschreibung gewählt. Zur endgültigen Klarstellung sind Zucht und Messung weiterer Einkristalle unbedingt erforderlich.

Die unter Anwendung der full-matrix-least squares Methode bei Verwendung isotroper Auslenkungsparameter erhaltenen Atomkoordinaten sind in Tabelle 34, die anisotropen Auslenkungsparameter in Tabelle 35 gezeigt.

Atom	Wyckoff-Lage	Х	у	Z	U _{iso}
Ag(1)	4c	0,5215(4)	0,1636(3)	0,502(1)	0,0364(7)
Os(1)	2a	0	0	0,0023(6)	0,0237(6)
O(1) O(2)	4c 4c	0,120(4) 0,239(4)	0,897(2) 0,107(2)	0,507(8) 0,99(1)	0,030(4) 0,036(5)

Tabelle 34: Atomkoordinaten und isotrope Auslenkungsparameter für Ag₂OsO₄.

Tabelle 35: Zusammenfassung der anisotropen Auslenkungsparameter für Ag₂OsO₄.

Atom	U ₁₁	U ₂₂	U ₃₃	U ₁₂	U ₁₃	U ₂₃
Ag(1)	0,028(1)	0,040(1)	0,041(1)	0,0024(8)	-0,018(1)	0,004(2)
Os(1)	0,0251(8)	0,277(8)	0,0183(8)	0,007(4)	0	0
O(1) O(2)	0,04(1) 0,05(1)	0,028(9) 0,03(1)	0,026(9) 0,024(9)	0,0001(73) -0,016(9)	-0,004(11) 0,009(13)	0,02(1) 0,004(12)

7.4.6 Beschreibung und Diskussion der Kristallstruktur von Ag₂OsO₄

In der Kristallstruktur liegen Stränge von OsO₆-Oktaedern, die durch gegenüberliegende Kanten verknüpft sind, entlang [001] vor. Diese Oktaederketten werden durch Silberatome so verbrückt, dass sich für diese eine verzerrt tetraedrische Sauerstoffkoordination ergibt. Die Osmiumatome werden durch ein stark gestauchtes Oktaeder von Sauerstoffatomen umgeben (2x Os-O-Abstand = 1,77 Å, 4x Os-O-Abstand = 1,99 - 2,01 Å). Diese Koordination von Osmium in der Oxydationsstufe +VI ist bereits bei $K_2[OsO_2(OH)_4]^{[205]}$ beobachtet worden (2x Os-O-Abstand = 1,756 Å, 4x Os-O-Abstand 2,021 Å). Eine weitere Verzerrungskomponente des OsO6-Oktaeders, resultiert aus der Verknüpfung transständiger Kanten (siehe Abbildung 89 und Tabelle 36). Die Kristallstruktur lässt sich durch einen schichtweisen Aufbau aus Osmiumund Silberlagen beschreiben (siehe Abbildung 90), die OsO₆-Oktaeder sind dabei in Richtung der b-Achse durch AgO₄-Tetraeder über Ecken verknüpft. Ag₂OsO₄ weist eine enge Strukturverwandtschaft zu Verbindungen des Sr₂PbO₄-Typs^[204] auf. Unterschiede bestehen in der Koordination der A-Kationen. So ist Strontium durch sieben Sauerstoffatome in Form eines einfach Übersicht überkappten trigonalen Prismas umgeben. Eine graphische der Bindungsverhältnisse der OsO₆-Oktaederkette ist in Abbildung 89 eine Darstellung der alternierenden Oktaeder- und Tetraederschichten in Abbildung 90 und ein Vergleich der Kristallstrukturen von Ag₂OsO₄ und Sr₂PbO₄ in Abbildung 91 gezeigt. Eine Zusammenfassung der Atomabstände in Ag₂OsO₄ gibt Tabelle 36 wieder.

Abbildung 89: Darstellung der OsO₆-Teilstruktur in Ag₂OsO₄ mit farbig hervorgehobenen Os-O- und O-O-Bindungen wie in Tabelle 36 beschrieben.

Anhang, Ag₂OsO₄

Abbildung 90: Polyederdarstellung der Kristallstruktur von Ag₂OsO₄. OsO₆-Oktaeder sind grau, AgO₄-Tetraeder gelb gezeichnet.

Abbildung 91: Graphischer Vergleich der Einheitszellen der Kristallstrukturen von Ag₂OsO₄ und Sr₂PbO₄ in der Raumgruppe *P*2₁2₁2; Blick entlang [001].

Atom 1	Atom 2	Entfernung	Farbe in	Atom 1	Atom 2	Entfernung
Atom 1	Atom 2	in Å	Abbildung 91	Atom I	Atom 2	in Å
Os	Os	3,148(3) 2x		Ag	Ag	3,148(5) 2x
					Ag	3,195
Os	O(2)	1,77(2) 2x	orange		Ag	3,435(4) 2x
	O(1)	1,99(3) 2x	grün			
	O(1)	2,01(2) 2x	gelb	Ag	O(1)	2,23(2)
					O(2)	2,35(3)
O (1)	O(1)	2,47(3)	rot		O(2)	2,40(3)
	O(2)	2,63(4)	magenta		O(1)	2,43(2)
	O(2)	2,65(3)	magenta			
	O(2)	2,70(4)	magenta			
	O(2)	2,71(3)	magenta			
	O (1)	3,15(4)	blau			

Tabelle 36: Zusammenfassungen der Atomabstände der Kristallstruktur von Ag₂OsO₄.

7.4.7 Verfeinerung der Gitterkonstanten

Verfeinerte Gitterkonstanten: a = 5,997(4) Å b = 9,738(9) Å c = 3,151(2) Å

Ν	2Th[obs]	h	k	1	2Th[calc]	obs-calc	Intensität	d[obs]	d[calc]
1	17,305	1	1	0	17,352	-0,0476	41,9	5,1203	5,1064
2	18,149	0	2	0	18,206	-0,0562	32,8	4,8839	4,8689
3	29,745	2	0	0	29,772	-0,0263	51,3	3,0011	2,9985
		0	1	1	29,774	-0,0288			2,9983
4	31,299	2	1	0	31,185	0,1137	91,1	2,8556	2,8657
		1	3	0	31,310	-0,0106			2,8546
5	32,228	1	0	1	32,058	0,1693	18,0	2,7754	2,7897
6	33,348	1	1	1	33,385	-0,0364	100,0	2,6846	2,6818
7	33,835	0	2	1	33,855	-0,0205	52,0	2,6471	2,6456
8	37,067	1	2	1	37,113	-0,0454	16,5	2,4234	2,4205
9	45,676	2	2	1	45,697	-0,0207	33,5	1,9847	1,9838
10	46,300	3	1	0	46,329	-0,0297	9,4	1,9594	1,9582
11	47,129	0	4	1	47,135	-0,0060	21,8	1,9268	1,9266
12	53,825	3	3	0	53,815	0,0099	18,5	1,7018	1,7021
13	55,179	3	1	1	55,179	0,0001	19,8	1,6632	1,6632
14	56,748	0	6	0	56,669	0,0786	21,5	1,6209	1,6230
		2	4	1	56,751	-0,0030			1,6208
15	57,653	1	5	1	57,680	-0,0275	16,4	1,5976	1,5969
		3	2	1	57,760	-0,1067			1,5949
16	58,508	0	0	2	58,532	-0,0242	33,0	1,5763	1,5757
17	61,797	4	0	0	61,833	-0,0386	8,1	1,5000	1,4993
		0	2	2	61,838	-0,0417			1,4991
		3	3	1	61,907	-0,1108			1,4976
18	65,363	2	6	0	65,324	0,0386	12,2	1,4266	1,4273
19	67,022	3	5	0	67,036	-0,0134	13,6	1,3952	1,3950
		2	0	2	67,044	-0,0213			1,3948
20	67,877	2	1	2	67,820	0,0565	19,5	1,3797	1,3807
		1	3	2	67,890	-0,0131			1,3795
21	72,404	4	2	1	72,393	0,0113	8,9	1,3042	1,3044

Durchschnittliche Abweichung in 2 θ : 0,031°

Maximale Abweichung in 2 θ : 0,169° (Reflex 5) = 5,5-facher Durchschnitt

Figure of Merit $F(21) = 9.6 = (N_{obs} / N_{poss}) / (Durchschnittliche Abweichung in 2\theta)$

Der fett markierte Reflex 5 wird als einziger mit einer C-zentrierten Zelle nicht indiziert.

Abbildung 1: Temperaturabhängigkeit des Sauerstoffdrucks über Silber(I)-Oxid 12
Abbildung 2: Autoklaveninnendruck bei Sauerstoffhochdrucksynthesen mit einem effektiven Autoklavenvolumen von 0,02 1
 Abbildung 3: Schematische Darstellung des Aufbaus der Sauerstoffhochdruckautoklaven. 1) Dichtstopfen 2) Kupplung 3) Druckspindel 4) Vorspannmutter 5) Druckplatte 6) Verschlussmutter 7) modifizierte Bridgmandichtung 8) Reaktionsraum (0,02 l) 9) Druckmantel
Abbildung 4: Zerlegter Verschluss des Sauerstoffhochdruckautoklaven
Abbildung 5: Schematische Darstellung der Befüllungsapparatur zum Beschicken der Autoklaven mit Sauerstoff. 1) Messfinger 2) Sauerstoffflasche 3,4,5) Ventile 6) Autoklav
Abbildung 6: Funktionsweise eines Rasterkraftmikroskops (links) und Rasterelektronenmikroskopische Aufnahme eines Cantilevers mit Spitze (rechts). ^[90]
Abbildung 7: Schematische Bandstruktur eines quadratischen zweidimensionalen Atomgitters mit entsprechender MO-Darstellung im Realraum25
Abbildung 8: Über den gesamten reziproken Raum integrierte Zustandsdichte für ein quadratisch planares Atomgitter
Abbildung 9: Lichtmikroskopische Aufnahme von Ag ₄ Mn ₃ O ₈ -Kristallen bei 60- facher Vergrößerung
Abbildung 10: Rasterelektronenmikroskopische Aufnahme eines Ag ₄ Mn ₃ O ₈ - Kristalls bei 620-facher Vergrößerung
Abbildung 11: Röntgenemissionsspektrum einer Probe von Ag ₄ Mn ₃ O ₈ -Kristallen
Abbildung 12: Aus IPDS-Daten abgeleitete Netzebenen (bezogen auf a _{cub} ~ 26 Å). hk0-Schicht links, hk1-Schicht, rechts
Abbildung 13: Gemessenes (oben) und aus der Vierlingsverfeinerung berechnetes Pulverdiffraktogramm (unten) einer Probe von Ag ₄ Mn ₃ O ₈ . CuK _α -Strahlung, Silicium als externer Standard, absolute Intensitäten
Abbildung 14: Schematische Darstellung der im Vergleich zur Ag-Teilstruktur höher symmetrischen Mn-Teilstruktur (Blick entlang [001])
Abbildung 15: Gruppe von drei MnO ₆ -Oktaedern. Verknüpfende Kanten sind grau, O-Atome welche zu drei Mn-Atomen gezählt werden schwarz gekennzeichnet

Abbildung 16: Schematische Darstellung des Gerüstes der MnO ₆ -Teilstruktur als Mapping auf ein {10,3} Netz. Jeder Punkt stellt den Schwerpunkt dreier MnO ₆ -Lagen dar
Abbildung 17: Schematische Darstellung eines kubischen {10,3} Netzes entlang [001]
Abbildung 18: Darstellung der Ag-O-Koordinations-Sphären bis zu einem Abstand von 2,93 Å. Die Dicke der Balken ist proportional zu der Kürze der Ag-O- Bindungslängen
Abbildung 19: Darstellung der Ag-Ag-Koordinationssphären der 10 kristallographisch unterschiedlichen Ag-Atome bis zu einem Abstand von 3,1 Å
Abbildung 20: Schematische Darstellung der Ag-Teilstruktur, entlang [001], von Ag ₄ Mn ₃ O ₈ . Ag-Ag-Bindungen kürzer 3,1 Å sind mit dicken Balken und Bindungen mit einer Länge zwischen 3,1 und 3,44 Å mit dünneren Balken dargestellt
Abbildung 21: Gruppe-Untergruppe-Beziehung für $Ag_4Mn_3O_8$; t = translationengleich, k = klassengleich. ^[149]
Abbildung 22: Messung der magnetischen Suszeptibilität von Ag ₄ Mn ₃ O ₈ bei verschiedenen Feldstärken und Temperaturen
Abbildung 23: Diagramm der reziproken Suszeptibilität von Ag ₄ Mn ₃ O ₈ bei verschiedenen Feldstärken und Temperaturen
Abbildung 24: Gleichstrommessung des mittleren Gesamtwiderstandes an einem Pulverpressling (5 mm Durchmesser, 0,7 mm Stärke) von Ag ₄ Mn ₃ O ₈ mit Pt- Elektroden
Abbildung 25: Auftragung der Temperaturabhängigkeit des dekadischen Logarithmus der Silberionenleitfähigkeit σ von Ag ₄ Mn ₃ O ₈ gegen 1000 / T und T
Abbildung 26: Differential thermoanalyse und Thermogravimetrie an $Ag_4Mn_3O_8$ 55
Abbildung 27: Massenspektrometrischer Nachweis der Zersetzungsprodukte während der Thermolyse von Ag ₄ Mn ₃ O ₈
Abbildung 28: Änderung des Wärmeflusses beim Erhitzen bzw. Abkühlen von Ag ₄ Mn ₃ O ₈
Abbildung 29: Temperaturabhängiges in-situ-Röntgenpulverdiffraktogramm von $Ag_4Mn_3O_8$ über den Bereich von 298 - 773 K. ($\lambda = 0.90371$ Å, Aufheizrate 3,2 K min ⁻¹)
Abbildung 30: Röntgenpulverdiffraktogramme, Gitterkonstanten und Zellvolumen von α , β - und γ -Ag ₄ Mn ₃ O ₈ über den Bereich von 298 - 911 K; Wellenlänge: λ = 0,90371 Å, Aufheizrate: 3,2 K min ⁻¹

Abbildung 31: Graphische Darstellung der Ergebnisse der Rietveld-Verfeinerung für β -Ag ₄ Mn ₃ O ₈ bei 573 K. Aufgetragen ist das beobachtete Profil und die beste Rietveld-Verfeinerung in der Raumgruppe R32 (a), die Reflexlagen von β - Ag ₄ Mn ₃ O ₈ sowie die Differenzkurve (b) zwischen beobachtetem und berechnetem Profil. Im Bereich oberhalb $2\theta = 12^{\circ}$ sind die Intensitäten um den Faktor 5 vergrößert. 63
Abbildung 32: Darstellung der Ag-O-Koordinationssphären der vier kristallographisch unabhängigen Silberatome in β-Ag ₄ Mn ₃ O ₈ bis zu einem O- Abstand von 3,0 Å
Abbildung 33: Darstellung der Ag-Ag-Koordinationssphären der vier kristallographisch unterschiedlichen Silberatome in β-Ag ₄ Mn ₃ O ₈ bis zu einem Ag-Abstand von 3,5 Å
 Abbildung 34: Schematische Darstellung von β-Ag₄Mn₃O₈ bei 573 K (Blick entlang [001]), Manganatome sind blau, Silberatome grau gezeichnet. Die Sauerstoffatome sind zur besseren Übersichtlichkeit weggelassen
Abbildung 35: Graphische Darstellung der Ergebnisse der Rietveld-Verfeinerung für γ -Ag ₄ Mn ₃ O ₈ bei 773 K. Aufgetragen ist das beobachtete Profil und die beste Rietveld-Verfeinerung in der Raumgruppe P4 ₃ 32 (a), die Reflexlagen von γ - Ag ₄ Mn ₃ O ₈ sowie die Differenzkurve (b) zwischen beobachtetem und berechnetem Profil. Im Bereich oberhalb $2\theta = 13^{\circ}$ sind die Intensitäten um den Faktor 5 vergrößert
Abbildung 36: Ag-O-Koordinationssphäre in γ-Ag ₄ Mn ₃ O ₈ bei 773 K bis zu einem Abstand von 3 Å um das zentrale Silberatom70
Abbildung 37: Ag-Ag-Koordinationssphäre bis zu einem Abstand von 3,5 Å um das Zentralatom welches schwarz markiert ist. Ag-Atome mit einem Abstand kürzer 2,5 Å vom Zentralatom, sind hellgrau andere dunkelgrau gekennzeichnet. Unterbrochene bzw. durchgezogene Bindungen symbolisieren Abstände zu Ag-Atomen von 2,9 bis 3,5 Å, welche selber Ag- Nachbarn in einer Entfernung unterhalb 2,5 Å haben bzw. nicht haben
Abbildung 38: Schematische Darstellungen der Kristallstruktur von γ -Ag ₄ Mn ₃ O ₈ bei 773 K. (Blick entlang $[^{1}/_{2}^{1}/_{2}^{1}/_{2}]$ links bzw. [001] rechts). Manganatome sind blau, Silberatome grau gezeichnet. Die Sauerstoffatome sind zur besseren Übersichtlichkeit weggelassen
Abbildung 39: Darstellung der zwei Grundbaueinheiten von α-Ag ₄ Mn ₃ O ₈ (oben, links und rechts) bei 293 K, der Grundbaueinheit von β-Ag ₄ Mn ₃ O ₈ (mitte) bei 573 K sowie der Grundbaueinheit von γ-Ag ₄ Mn ₃ O ₈ bei 773K74
Abbildung 40: Darstellung der Positionsänderung der Silberionen in den beiden Grundbaueinheiten von α -Ag ₄ Mn ₃ O ₈ beim Phasenübergang von der α - zur β - Phase. Die Positionen in β -Ag ₄ Mn ₃ O ₈ sind schwarz, die der α -Phase hellgrau und MnO ₆ -Oktaeder blau markiert. Grüne Pfeile symbolisieren Positionsänderungen um 0,4 - 0,5, blaue Pfeile um 0,6 - 0,7, rote Pfeile um

0,75 - 0,9, schwarze Pfeile um 1,2 - 1,4 und orangfarbene Pfeile um 1,55 - 2 Å. Gepunktete Pfeile deuten auf mehrere äquivalente Möglichkeiten hin75
Abbildung 41: Strukturvergleich der Grundbaueinheiten von γ-Ag ₄ Mn ₃ O ₈ und α- RbAg ₄ I ₅ . Die Sauerstoff- bzw. Iodatome sind aufgrund besserer Übersicht nicht gezeichnet
Abbildung 42: Lichtmikroskopische Aufnahme einer Pulverprobe von Ag ₂ MnO ₂ bei 64-facher Vergrößerung
Abbildung 43: Rasterelektronenmikroskopische Aufnahme von Ag ₂ MnO ₂ -Kristallen bei 12800-facher Vergrößerung
Abbildung 44: Röntgenemissionsspektrum einer mikrokristallinen Probe von Ag ₂ MnO ₂ . Gekennzeichnet sind die AgL-, MnK-, Mn-L und OK-Emissionen79
Abbildung 45: TEM-Aufnahme (links) und Elektronen-Beugung (rechts) eines plättchenförmigen Ag ₂ MnO ₂ -Kristalls im reziproken Raum
Abbildung 46: TEM-Aufnahme (links) und Elektronen-Beugung (rechts) eines nadelförmigen Ag ₂ MnO ₂ -Kristalls im reziproken Raum80
Abbildung 47: HR-TEM-Aufnahme (links) und Elektronen-Beugung (rechts) eines nadelförmigen Ag ₂ MnO ₂ -Kristalls im reziproken Raum
Abbildung 48: Gemessenes Pulverdiffraktogramm (CuK $_{\alpha}$ -Strahlung, Silicium als externer Standard) und Daten für Silber und Ag ₂ MnO ₂ aus der JCPDS-Datei (oben). Vergleich der Substanz mit den Reflexlagen eines kubischen Gitters (unten)
Abbildung 49: Messung der magnetischen Suszeptibilität an Ag ₂ MnO ₂ bei verschiedenen Temperaturen und Feldstärken. Das Verhalten der reziproken magnetische Suszeptibilität bei verschiedenen Feldstärken und Temperaturen ist in der kleinen Darstellung abgebildet
Abbildung 50: Messung des spezifischen Widerstandes von Ag ₂ MnO ₂ über einen Bereich von 5 - 300 K. Der Pfeil symbolisiert der Bereich über den α bestimmt wurde
Abbildung 51: Differenz-Thermoanalyse und Thermogravimetrie an Ag ₂ MnO ₂ . 21,8 mg Einwaage, 10 K min ⁻¹ Aufheizrate von 298 K bis 1273 K
Abbildung 52: Massenspektrometrische Untersuchung der flüchtigen Zerfallsprodukte von Ag ₂ MnO ₂ . 21,8 mg Einwaage, 10 K min ⁻¹ Aufheizrate von 298 K bis 1273 K
Abbildung 53: Intensitätsverschobene XPS-Spektren der Silber-3d-Banden von Ag ₂ MnO ₂ , Ag ₂ NiO ₂ und einem Ag-Einkristall. Mg-K _α -Strahlung, C 1s-Bande als externen Standard
Abbildung 54: Lichtmikroskopische Aufnahme von Ag ₁₃ OsO ₆ -Kristallen bei 64- facher Vergrößerung

Abbildung 55: Rasterelektronenmikroskopische Aufnahme eines Ag ₁₃ OsO ₆ -Kristalls bei 300-facher Vergrößerung.	93
Abbildung 56: Gemessenes Röntgenemissionsspektrum einer Probe von Ag ₁₃ OsO ₆ . Gekennzeichnet sind die AgL- , OK-, OsK- und OsL-Emissionen.	93
Abbildung 57: Gemessenes (oben) und berechnetes Pulverdiffraktogramm (unten) von $Ag_{13}OsO_6$. CuK _a -Strahlung, Silicium als externer Standard, absolute Intensitäten.	94
Abbildung 58: Aufnahmen einer hk0- (links), hk1- (mitte) und hk2-Netzebene (rechts) mit einer Präzessions-Kamera. MoK _α -Strahlung	95
Abbildung 59: Darstellung der Kristallstruktur von Ag ₁₃ OsO ₆ . Dreiecksflächen von Sauerstoffatomen sind rot und von Silberatomen blau gekennzeichnet	98
Abbildung 60: Silberteilstruktur von Ag ₁₃ OsO ₆ und Darstellung der verschiedenen Silber-Silber-Wechselwirkungen: zentrale intracluster (rot), kurze intracluster (dunkelblau), lange intracluster (hellblau), kurze intercluster (grün) und lange intercluster (pink).	99
Abbildung 61: Temperaturabhängige Messung der magnetischen Suszeptibilität von Ag ₁₃ OsO ₆ bei verschiedenen Feldstärken	02
Abbildung 62: Honda-Owen-Plot ^[192, 193] zur Bestimmung der Molsuszeptibilität von $Ag_{13}OsO_6$ für unendliche Temperatur bei unendlicher Feldstärke	02
Abbildung 63: Temperaturcharakteristik des spezifischen Widerstandes von Ag ₁₃ OsO ₆	03
Abbildung 64: DTA und TG von Ag ₁₃ OsO ₆ . 22,6 mg Einwaage, Korundtiegel, Korund als Referenz, 10 K min ⁻¹ Aufheizrate von 293 K bis 773 K	04
Abbildung 65: Massenspektrometrische Untersuchung der flüchtigen Zerfallsprodukte von Ag ₁₃ OsO ₆ . 22,6 mg Einwaage, 10 K min ⁻¹ Aufheizrate von 293 K bis 773 K	05
Abbildung 66: Pulverdiffraktogramm des Rückstandes der DTA / TG-Messung und einem Erhitzen auf 773 K . CuK $_{\alpha}$ -Strahlung, Silicium als externer Standard 1	06
Abbildung 67: Guinier-Aufnahme von 5 (links) - 80° (rechts) für 2θ bei 293 (unten) bis 673 K (oben). Die unterste Spur zeigt den Siliciumstandard. CuK _α - Strahlung	06
Abbildung 68: Photoelektronenspektrum der Ag 3d-Banden von $Ag_{13}OsO_6$, $Mg-K_{\alpha}$ -Strahlung, C 1s-Bande als externen Standard	07
Abbildung 69: Elektronische Zustandsdichten von Ag ₁₃ OsO ₆ projiziert auf die Summe der an Os (grün), O (rot), Ag(1) (gelb) und Ag(2) (blau) zentrierten orthonormalen LMTO's	09

Abbildung 70: Detailliertere Darstellung eines Teils der Struktur von Abbildung 59 mit berechneten kovalenten Bindungsstärken in eV. Die zentralen Os-O- (3,4 eV) und Ag(1)-Ag(2)-Bindungen (0,65 eV) werden nicht gezeigt	111
Abbildung 71: Bandstrukturen der Os-t _{2g} -Orbitale von Ag ₁₃ OsO ₆ .	113
Abbildung 72: Bandstruktur des Os-d _{xy} -Orbitales von Ag ₁₃ OsO ₆	113
Abbildung 73: Bandstruktur des Os-d _{xz} -Orbitales von Ag ₁₃ OsO ₆ .	114
Abbildung 74: Bandstruktur des Os-d _{yz} -Orbitales von Ag ₁₃ OsO ₆ .	114
Abbildung 75: Bandstruktur des Ag(1)-s-Orbitales von Ag ₁₃ OsO ₆ .	115
Abbildung 76: Bandstruktur des Ag(2)-s-Orbitales von Ag ₁₃ OsO ₆ .	115
Abbildung 77: Bandstrukturen der O-p-Orbitale von Ag ₁₃ OsO ₆	116
Abbildung 78: Rasterelektronenmikroskopische Aufnahme von, auf der Oberfläche einer Silberscheibe, in Vorzugsrichtung gewachsenen Ag ₁₃ OsO ₆ -Kristallen	117
Abbildung 79: Mittels Rasterkraftmikroskopie visualisierte Oberfläche von $Ag_{13}OsO_6$. Das linke Bild zeigt einen Ausschnitt von $(6,6 \ \mu m)^2$. Auf dem rechten Bild ist eine Ausschnittsvergrößerung $(1,0 \ \mu m)^2$ des linken Bildes dargestellt. Der Balken symbolisiert die in Abbildung 80 vorgenommenen Untersuchung der Wachstumsstufen.	118
Abbildung 80: Dreidimensionale Darstellung von Abbildung 79 rechts	119
Abbildung 81: Graphische Darstellung des Ergebnisses der Untersuchung der Wachstumsstufen einer Ag ₁₃ OsO ₆ -Oberfläche aus Abbildung 79 (rechts)	119
Abbildung 82: Zusammenhang zwischen gemessener Höhe bzw. Weite der Wachstumsstufen und der Kristallstruktur von Ag ₁₃ OsO ₆ . Die gepunktete Linie symbolisiert eine Terrassenweite von ~ 120 nm, die durchgezogene vertikale Linie repräsentiert die Stufenhöhe	120
Abbildung 83: Graphische Darstellung eines Raumteilers (PNS) mit der Topologie einer P [*] -Fläche in der Kristallstruktur von Ag ₁₃ OsO ₆ . Die Ag ₁₃ -Ikosaeder sind blau, die OsO ₆ -Oktaeder rot dargestellt.	121
Abbildung 84: Lichtmikroskopische Aufnahme bei 120-facher Vergrößerung von nadelförmigen Ag ₂ OsO ₄ -Kristallen und Agglomeraten von Ag ₁₃ OsO ₆ -Würfeln.	174
Abbildung 85: Rasterelektronische Aufnahme bei 500-facher Vergrößerung eines nadelförmigen Ag ₂ OsO ₄ -Kristalles.	175
Abbildung 86: Röntgenemissionsspektrum (AgL-, OK- und OsK-Emissionen) einer Probe von Ag ₂ OsO ₄ . Schwarz ist das gemessene Spektrum, blau das simulierte abgebildet	176

Abbildung 87: Gemessenes Pulverdiffraktogramm (CuK $_{\alpha}$ -Strahlung, Silber als interner Standard) und Daten für Silber aus der JCPDS-Datei und Ag ₁₃ OsO ₆ (oben). Vergleich der Substanz mit den Reflexlagen von orthorhombischen Gittern (unten).	177
Abbildung 88: Mit einer Präzessions-Kamera (MoK_{α}) aufgenommene 0kl- und 1kl- Netzebene eines Ag_2OsO_4 -Kristalls. Die um 90° gedrehten Aufnahmen der zugehörigen Netzebene (h0l und h1l) sind darunter abgebildet	179
Abbildung 89: Darstellung der OsO ₆ -Teilstruktur in Ag ₂ OsO ₄ mit farbig hervorgehobenen Os-O- und O-O-Bindungen wie in Tabelle 36 beschrieben	182
Abbildung 90: Polyederdarstellung der Kristallstruktur von Ag ₂ OsO ₄ . OsO ₆ - Oktaeder sind grau, AgO ₄ -Tetraeder gelb gezeichnet	183
Abbildung 91: Graphischer Vergleich der Einheitszellen der Kristallstrukturen von Ag ₂ OsO ₄ und Sr ₂ PbO ₄ in der Raumgruppe P2 ₁ 2 ₁ 2; Blick entlang [001]	183

7.6 Tabellenverzeichnis

Tabelle 1: Chronologische Literaturübersicht über definierte Silberoxomanganate30
Tabelle 2: Kristallographische Daten von Ag ₄ Mn ₃ O ₈ und Messparameter der Datensammlung
Tabelle 3: Atomkoordinaten und isotrope Auslenkungsparameter für Ag ₄ Mn ₃ O ₈ 39
Tabelle 4: Ausgewählte Mn-O-Abstände in Ag ₄ Mn ₃ O ₈ in Å. Bindungen zu Sauerstoff-Atomen, welche drei MnO ₆ -Oktaedern angehören, sind fett gedruckt
Tabelle 5: Ausgewählte O-O-Abstände in Ag ₄ Mn ₃ O ₈ in Å. Bindungen zu Sauerstoffatomen, welche gemeinsame Oktaederkanten darstellen, sind fett gedruckt
Tabelle 6: Abstände der Mn-Oktaederzentren in Ag ₄ Mn ₃ O ₈ in Å42
Tabelle 7: Ausgewählte Ag-O-Abstände in Å von Ag ₄ Mn ₃ O ₈ 45
Tabelle 8: Übersicht der planar und nicht-planar von Ag umgebenen Ag-Atome mit Angabe der Abweichung δ vom Idealwert (360°). Bei Ag(8) ist die Summe angegeben
Tabelle 9: Sämtliche Ag-Ag-Abstände kürzer als 3,44 Å von Ag ₄ Mn ₃ O ₈ . Bindungen mit einer Länge oberhalb von 3,1 Å sind fett gedruckt48
Tabelle 10: Berechnete Summe der Bindungsvalenzen pro Atom fürAg ₄ Mn ₃ O ₈ 49
Tabelle 11: Phasenumwandlungstemperaturen und -energien von Ag ₄ Mn ₃ O ₈ 57
Tabelle 12: Messparameter der temperaturabhängigen in-situ- Röntgenstrukturuntersuchungen (NSLS) an Ag4Mn3O8.60
Tabelle 13: Messparameter der an der ESRF aufgenommenen Röntgenpulverdiffraktogramme von β - und γ -Ag ₄ Mn ₃ O ₈ 60
Tabelle 14: Daten zur Strukturlösung und -verfeinerung von β- und γ-Ag ₄ Mn ₃ O ₈ . Die verschiedenen R-Werte sind nach Langford und Louër definiert. ^[156] Die Daten der Strukturlösung von α-Ag ₄ Mn ₃ O ₈ (Einkristalldaten) sind ergänzend aufgeführt
Tabelle 15: Koordinaten und isotrope Auslenkungsparameter in β-Ag ₄ Mn ₃ O ₈ bei 573 K64
Tabelle 16: Anisotrope Auslenkungsparameter der Silberatome in β-Ag ₄ Mn ₃ O ₈ bei 573 K
Tabelle 17: Abstände der MnO ₆ -Oktaederzentren voneinander bei β -Ag ₄ Mn ₃ O ₈ in Å65

Tabellenverzeichnis

Tabelle 18: Mn-O-Abstände innerhalb der drei kristallographisch unterschiedlichen MnO ₆ -Oktaeder von β-Ag ₄ Mn ₃ O ₈ in Å. Bindungen zu Sauerstoffatomen, welche drei MnO ₆ -Oktaedern angehören, sind fett markiert
Tabelle 19: Ag-O-Abstände unter 3 Å in β-Ag ₄ Mn ₃ O ₈ 66
Tabelle 20: Ag-Ag-Abstände unterhalb von 3,5 Å in β-Ag ₄ Mn ₃ O ₈ . Bindungen mit einer Länge größer als 3,2 Å sind fett gedruckt67
Tabelle 21: Koordinaten, Besetzungsfaktoren und isotrope Auslenkungsparameter der Silber-, Mangan- und Sauerstoffatome in γ-Ag ₄ Mn ₃ O ₈ bei 773 K69
Tabelle 22: Abstände der vier Mn-Oktaederzentren voneinander sowie Mn-O- Abstände innerhalb des MnO ₆ -Oktaeders bei γ-Ag ₄ Mn ₃ O ₈ in Å. Bindungen zu Sauerstoffatomen, welche drei MnO ₆ -Oktaedern angehören, sind fett markiert
Tabelle 23: Ag-O-Abstände unterhalb von 3 Å in der Kristallstruktutr von γ- Ag ₄ Mn ₃ O ₈
Tabelle 24: Ag-Ag-Abstände in γ-Ag ₄ Mn ₃ O ₈ bis 3,5 Å bei 773 K. Abstände unterhalb 2,5 Å zum Zentralatom sind kursiv und Abstände oberhalb 2,5 Å zu Atomen, welche selber keine Ag-Nachbarn unterhalb 2,5 Å haben, sind fett gedruckt
Tabelle 25: Zusammenfassung von minimalem und maximalem Mn-Mn- und Mn-O- Abstand sowie minimalem Ag-Ag- und Ag-O-Abstand in α-, β- und γ- Ag ₄ Mn ₃ O ₈ in Å
Tabelle 26: Vergleich der Strukturlösungen der Ag ₄ Mn ₃ O ₈ - und RbAg ₄ I ₅ -Phasen76
Tabelle 27: Kristallographische Daten von Ag ₁₃ OsO ₆ , Messparameter der Datensammlung sowie Ergebnisse der Strukturlösung96
Tabelle 28: Koordinaten und anisotrope Auslenkungsparameter für Ag ₁₃ OsO ₆ 97
Tabelle 29: Häufigkeit und Länge der Abstände von Ag ₁₃ OsO ₆ 101
Tabelle 30: Parameter der Zustandsdichte- und Bandstruktur-Rechnungen anAg13OsO6
Tabelle 31: Chronologische Übersicht der Verbindungen mit Silber im subvalenten Zustand und des minimalen Ag-Ag-Abstandes innerhalb der jeweiligen Kristallstruktur. Die im Rahmen dieser Arbeit untersuchten Verbindungen sind fett markiert
Tabelle 32: Bedingungen erfolgreicher Ag ₂ OsO ₄ -Synthesen. 174
Tabelle 33: Kristallographische Daten von Ag ₂ OsO ₄ , Messparameter der Datensammlung sowie Ergebnisse der Strukturlösung
Tabelle 34: Atomkoordinaten und isotrope Auslenkungsparameter für Ag ₂ OsO ₄

Tabellenverzeichnis

Tabelle 35: Zusammenfassung der anisotropen Auslenkungsparameter für Ag ₂ OsO ₄	.181
Tabelle 36: Zusammenfassungen der Atomabstände der Kristallstruktur von	
Ag_2OsO_4	.184

7.7 Danksagung

Meinem geschätzten Doktorvater, Herrn Prof. Dr. Martin Jansen, möchte ich aufrichtig für die interessante Themenstellung und die stete Unterstützung bei der Anfertigung dieser Arbeit danken. Seine Diskussionsbereitschaft und wertvollen Anregungen haben sehr zum Gelingen dieser Arbeit beigetragen.

Mein Dank gilt weiterhin:

Herrn Prof. Dr. Thomas Schleid für die Anfertigung des Mitberichtes. Herrn Dr. Wilhelm Klein für seine hervorragende Leitung der Hochdruck-Gruppe sowie die Strukturlösung von $Ag_{13}OsO_6$.

Herrn Dipl.-Chem. Sascha Vensky für die stete Diskussionsbereitschaft.

Herrn Dr. Frank Krumeich für die TEM-Messungen. Herrn Dr. Remo de Masi für die Messung der XPS-Spektren. Herrn Dr. Christian Oberndorfer für die Durchführung der DTA / TG / MS-Messungen Herrn Dr. Ove Jepsen für die Dichtefunktional-Bandstruktur-Rechnungen. Herrn Dr. Ulrich Wedig für die Berechnung der Periodischen Knotenfläche. Herrn Dr. Lars Diekhöner für die Kooperation bei der AFM-Untersuchung. Frau Dr. Karen Friese für die Strukturlösung von Ag₄Mn₃O₈. Herrn Dr. Robert Dinnebier für die Strukturlösungen von β - und γ -Ag₄Mn₃O₈. Herrn Dipl.-Chem. Lars Hildebrandt für die Messung des Impedanzspektrums. Herrn Ewald Schmidt für die Durchführung der DSC-Messung. Herrn Werner Giering für Kristallpräparationen und Präzessions-Aufnahmen. Herrn Dipl.-Ing. Stephan Blöss für die Durchführung der REM-Experimente. Herrn Dr. Reinhard Kremer, Frau Eva Brücher und Frau Gisela Siegle danke ich für die Durchführung der magnetometrischen und konduktometrischen Messungen. Meinen Labor- und Bürokollegen Herrn Dipl.-Chem. Jan Curda, Herrn Dipl.-Chem. Kailash Mogare und Herrn Dipl.-Chem. Timo Sörgel für die gute Atmosphäre und viele anregenden Gespräche.

sowie allen Institutsmitgliedern, die zum Gelingen dieser Arbeit beigetragen haben.

7.8 Liste der aus dieser Arbeit hervorgegangenen Publikationen

S. Ahlert, L. Diekhöner, R. Sordan, K. Kern, M. Jansen, *Chem. Commun.* **2004**, *4*, 462. "Surface step structure of Ag₁₃OsO₆, experimental evidence for Ag₁₃ cluster building blocks"

<u>T. Sörgel</u>, S. Ahlert, M. Schreyer, C. Linke, W. Klein, M. Jansen "*Subvalency in Silver Oxides*"
Posterbeitrag zur Gordon Research Conference on Solid State Chemistry II (GRC)
14. - 19. September 2003, Oxford

<u>S. Ahlert</u>, W. Klein, O. Jepsen, O. Gunnarsson, O. K. Andersen, M. Jansen, *Angew. Chem. Int. Ed.* **2003**, *42*, 4322. *"Ag₁₃OsO₆: A Silver Oxide with Interconnected Icosahedral Ag₁₃⁴⁺ Clusters and Dispersed* [OsO₆]⁴⁻ Octahedra" Posterbeitrag zur 9. European Conference on Solid State Chemistry (ECSSC) 3. - 6. September 2003, Stuttgart Vortrag beim 1. Joint Workshop on Materials Chemistry 8. - 10. September 2003, Münster

<u>S. Ahlert</u>, K. Friese, M. Jansen, Z. Krist. Suppl. 2002, 19, 99.
"Viellingsbildung in Ag₄Mn₃O₈"
Posterbeitrag zur 10. Jahrestagung der Deutschen Gesellschaft für Kristallographie (DGK)
4. - 7. März 2002, Kiel

S. Ahlert, <u>K. Friese</u>, M. Jansen, Z. Anorg. Allg. Chem. 2002, 628, 1525.
"The Structure of Twinned Ag₄Mn₃O₈, a Novel Octahedral Framework with a Topology Related to the Archetype Cubic {10,3} Net"
Posterbeitrag zum 19. Kongress der International Union of Crystallography (IUCr)
6. - 15. August 2002, Genf

S. Ahlert, R. E. Dinnebier, M. Jansen, Z. Anorg. Allg. Chem. in Vorbereitung ,, High temperature phases of $Ag_4Mn_3O_8$ "