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Symbols, Constants, and Abbreviations

Symbols

a Chern-Simons vector potential.
A vector potential.
A contact area.
A area enclosed by electron paths.
AAD antidot area.
b Chern-Simons magnetic field.
∆b fluctuations of Chern-Simons magnetic field.
B,B magnetic field.
∆B Aharonov-Bohm oscillation period.
Beff effective magnetic field for Composite Fermions.
Bν magnetic field at filling factorν.
C capacitance.
d wire diameter.
d length of QPC constriction.
D internal Luttinger liquid interaction parameter.
D̄ interaction parameter between neighboring Luttinger liquids.
D0 constant 2-dimensional density of states atB = 0.
D(E) density of states.
Di width of regions withν loc

N = i.
∆e/∆h activation energy for electron/hole bubble phase.
e∗ quasi-particle charge.
E,E electric field.
E energy.
∆E energy spread.
Ecorr correlated phase (pseudo-)gap energy.
EF Fermi energy.
En energy eigenvalues of harmonic oscillator.
EZ Zeeman energy.
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ε total electron energy.
ε0
z lowest subband energy of 2DES.

δε energy level spacing from size quantization.
f frequency.
FL Lorentz force.
ϕ phase of electron wavefunction.
∆ϕ phase shift.
Φ magnetic flux.
Φ(x, y) energy eigenfunctions of electrons in a quantizing magnetic field.
g̃ smooth part of conductance.
δg oscillatory part of conductance.
G two-point conductance.
G̃ = G/(e2/h) normalized two-point conductance.
Hn Hermite polynomial of order n.
IAC AC probe current.
Iinj current through injector QPC.
Ip current flowing through terminalp.
j, j current density.
k, kx, ky electron wavevector.
kF Fermi wavevector.
l transport mean free path.
lB magnetic length.
lϕ inelastic mean free path.
L sample length.
L orbit length.
L distance between QPCs.
Lth thermal length.
λF Fermi wavelength.
λCDW CDW modulation period.
λLutt. charge-density fluctuation period of Luttinger liquid.
m∗

CF effective Composite Fermion mass.
µ mobility.
µCF Composite Fermion mobility.
µch. chemical potential.
n electron density.
∆n electron density variation.
nbulk bulk electron density.
ngate electron density underneath gate.
nCF Composite Fermion density.
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nF Fermi-distribution function.
N Landau level index.
N number of transverse modes.
Ne number of electrons.
NL Landau level degeneracy.
ν filling factor.
νbulk bulk filling factor.
νeff effective filling factor of Composite Fermions.
νgate filling factor underneath gate.
νN filling factor of highest occupied Landau level.
ν loc

N localνN.
νtheo

N theoretically predictedνN.
νQPC filling factor in QPC constriction.
ωc cyclotron frequency.
p̂ canonical momentum operator.
Pel−diff cooling power by electron diffusion.
Pel−ph cooling power by electron-phonon scattering.
ΨCF Composite Fermion wavefunction.
Ψel electron wavefunction.
ΨMR Moore-Read wavefunction.
Q̇ heat flux.
ri, rj, rk, particle coordinates.
R reflection coefficient.
Rt transfer resistance.
∆R0 ballistic peak resistance atT = 0.
∆Rpeak ballistic peak resistance.
Rc cyclotron radius.
RCF

c Composite Fermion cyclotron radius.
RK Kapitza resistance.
Rxx, Rxy longitudinal and Hall resistance.
ρ resistivity tensor.
ρCS Chern-Simons contribution to resistivity atν = 1/2.
ρxx, ρyy, ρxy, ρyx resistivity tensor components.
σxx, σyy, σxy, σyx conductivity tensor components.
T temperature.
∆T temperature difference.
T0 characteristic decay temperature.
Tbase base temperature of dilution refrigerator.
Tc critical temperature.
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Td total transmission through device.
Te, T2DES temperature of 2DES.
TGaAs temperature of GaAs crystal lattice.
Tleads temperature of electrons in the metal leads.
Tn transmission of nth edge channel.
Tpq transmission probability from terminalq to terminalp.
τ transport scattering time.
τCF Composite Fermion transport scattering time.
τCFCF Composite Fermion-Composite Fermion scattering rate.
τee electron-electron scattering rate.
τi scattering time across regions withν loc

N = i.
∆θ phase fluctuation parameter.
V Coulomb interaction potential.
VAC AC probe voltage.
VAD antidot gate voltage.
Vcoll voltage across collector QPC.
Vp voltage at terminalp.
VQPC QPC gates voltage.
Vsg side gate voltage.
v electron velocity.
vd drift velocity.
vF Fermi velocity.
W sample width.
Wc width of QPC constriction.
χν electron wavefunction at filling factorν.
∆Y shape fluctuation parameter.
ẑ unit vector in z-direction.
zi, zj coordinates in complex notation.
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Constants

e = −1.6021917 · 10−19 C electron charge.
e2/h = 1/RK = 0.3874045 · 10−6 Ω−1 conductance quantum.
Φ0 = h/e = 2.41797 Tm2 magnetic flux quantum.
gS = 1, 2 spin degeneracy.
g∗ = −0.44 effective Land́e-factor of electrons in bulk GaAs.
h = 6.626196 · 10−34 Js Planck constant.
h̄ = h/2π reduced Planck constant.
m0 = 9.109558 · 10−31 kg electron mass.
m∗ = 0.067m0 effective electron mass in bulk GaAs.
µB = 9.274096 JT−1 Bohr magneton.
RK = 25812.807 Ω v. Klitzing constant.

Abbreviations

2DES two-dimensional electron system.
AD antidot.
a.u. arbitrary units.
CDW Charge Density Wave
CF Composite Fermion.
ELC Electron Liquid Crystal.
FQHE Fractional Quantum Hall Effect.
IQHE Integer Quantum Hall Effect.
QPC Quantum Point Contact.
RIQHE Reentrant Integer Quantum Hall Effect.
MBE Molecular Beam Epitaxy.
sg side gate.
vdP van der Pauw.



Chapter 1

Introduction

Ever since the discovery of the Integer Quantum Hall Effect (IQHE) by K. von Klitzinget al.

in 1980 [1], semiconductor electron systems confined to two dimensions (2DES) have been an
extremely fascinating playground for experimental and theoretical condensed matter physics
alike.

Experimentally, progress has been achieved mainly through a continuous improvement of
the sample quality. In state of the art samples, electrons travel approximately200 µm in the
2DES plane without suffering any scattering. This amounts to an increase of about three orders
of magnitude as compared to samples used in early experiments. The progress in sample quality
in conjunction with the ability to carry out sensitive electronic measurements in high magnetic
fields (B ≈ 10 T) at ever lower temperatures (T ≈ 10 mK) have led to a panoply of exciting
discoveries in the 2DES during the last 24 years.

These discoveries have triggered intense theoretical efforts to unravel the fundamental pro-
cesses and principles involved. In the early years of research on 2DES, non-interacting, single
particle models were mostly sufficient to describe the observed phenomena. The discovery of
the Fractional Quantum Hall Effect (FQHE) in 1982 by Tsuiet al. [2] and its explanation by
Laughlin [3] brought the importance of electron-electron correlation effects into focus. Corre-
lations turn out to often dominate the physics of clean 2DES subjected to a strong perpendicular
magnetic field, because the kinetic degrees of freedom are effectively frozen out. Soon, it also
became clear that deep insights into the subtleties of quantum field theory have to be invoked to
improve our understanding of the rich physics in this field. For example, the precise resistance
quantization within the IQHE has been accounted for by Laughlin based on a gauge invariance
argument [4].

Up to this day, the complicated collective phenomena that arise from electron correlations re-
main a challenging subject of research throughout physics. This thesis mainly deals with two
prominent examples of correlation phenomena in 2DES, namely Composite Fermions and Elec-
tron Liquid Crystal phases. We briefly introduce both in the next paragraphs.
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In 1989, in an attempt to account in an intuitive fashion for the FQH-states observed in ex-
periments, J. Jain introduced the concept of Composite Fermions [5]. These are quasi-particles
each assembled from one electron and two elementary magnetic flux quanta. Within this frame-
work, the FQHE of electrons is naturally understood as the IQHE of Composite Fermions. It
was shown by Halperin, Lee, and Read in 1993 that Composite Fermions exist independently
of the IQHE and behave as weakly interacting particles subjected to an effective magnetic field
which is substantially reduced from the external magnetic field [6].

Guided by the analogy with electron systems at low magnetic fields, one can devise meso-
scopic transport experiments for Composite Fermions. The outcome of such experiments would
have never been predictable without resorting to Composite Fermions.

The Composite Fermion concept is fascinating also from a general field theoretical view-
point. By means of a well defined mathematical transformation, a strongly interacting system
is recast into a weakly interacting one. The transformed system is much easier to deal with
quantitatively and also makes the problem intuitively accessible. Hence, it seems to depend on
our viewpoint how complicated an interacting system looks like. An important question comes
to our mind in this context: Is it just a lucky coincidence that such a simplifying transformation
exists in the case of 2-dimensional electrons in high magnetic fields? Or does such a transfor-
mation exist for any strongly interacting system? We will briefly comment on this question in
our conclusions.

In our thesis, we mainly study the particle-like behavior of Composite Fermions in trans-
port through well defined and tunable geometries. These experiments were motivated by the
question of how far the limits of the Composite Fermion picture can be pushed. Ultimately,
the fascinating question poses whether it is also possible to observe wave-like properties of
Composite Fermions. As an important first step towards this goal, we study special device ge-
ometries which show pronounced interference signatures for electrons at low magnetic fields.
In the concluding chapter, we briefly discuss the remaining difficulties for the observation of
Composite Fermion interference effects.

At intermediate magnetic fields, outside the realm of the FQHE observed at high fields, elec-
tron correlations lead to qualitatively new experimental signatures, namely strongly anisotropic
transport and a reentrant IQHE (RIQHE). Only as recently as 1999, with the advent of extremely
high quality samples, these phenomena were independently revealed by Lillyet al. and Duet

al. [7,8].
Qualitatively, the effects can be explained within a scheme that was put forward by Koulakov

et al. and also Moessner and Chalker in 1996, prior to the experimental observations [9, 10].
These groups had independently predicted an instability of the 2DES towards the formation of
long range ordered electron density modulations. The modulation is triggered by a competition
between repulsive and attractive interaction components, and it bears a strong similarity to the
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charge modulation in conventional Charge Density Wave (CDW) conductors [11]. Depending
on the morphology of the charge density modulation of the 2DES, one distinguishes between
anisotropic stripe phases and isotropic bubble phases. Transitions between the different types of
phases are induced by simply tuning the applied magnetic field. The bubble phase in the CDW
picture is the many-electron analogue of the well known Wigner crystal [12]. There single
electrons form a triangular lattice because of their mutual Coulomb repulsion, whereas in the
bubble phase, the lattice sites are occupied by a collection of two or more electrons instead.

A more sophisticated model was introduced by Fradkin and Kivelson [13] who noted the
importance of quantum fluctuations for a realistic description of the correlated phases. The
resulting phase diagram is very similar to that of classical molecular liquid crystals [14]. There-
fore, the model is known as the Electron Liquid Crystal (ELC) picture. Similar long range
ordered phases are common in a variety of physical and chemical systems, like for example
thin magnetic films and ferrofluids [15]. In all cases, the phases can be traced back to com-
peting repulsive and attractive interaction forces. In the case of the Coulomb interaction in an
electronic system, the ELC picture is also discussed in the context of high-Tc superconductors
where correlated phases are thought to be responsible for the onset of superconductivity [16].

In our own study of the ELC phases in high quality 2DES, we use offset currents to induce
a non-equilibrium situation within the sample and destabilize the correlated phases in a very
controlled way. This provides us with an additional parameter which we use to investigate the
ELC phases in more detail. In the concluding chapter, we will point out new insights into ELC
phases gained from our observations and the interesting new questions they pose.

The remainder of this thesis is organized into the following chapters:

• Chapter 2 Fundamental concepts are discussed which are necessary to understand our
own experimental results presented in later chapters. We first introduce the Integer- and
the Fractional Quantum Hall Effects, and the Aharonov-Bohm interference effect. A
second section covers Composite Fermions, their particle-like behavior and their role in
understanding the FQHE. Finally, we turn our attention to the correlated phases which
appear at intermediate magnetic fields and discuss the CDW as well as the ELC picture.

• Chapter 3 After introducing experiments that probe ballistic transport of electrons at low
magnetic fields, we repeat similar experiments for Composite Fermions. The particle-like
behavior of Composite Fermions is investigated and emphasized. Differences to electrons
are pointed out.

• Chapter 4 Electron transport in tunable antidot geometries is studied. After describing
experiments which rely on the classical, particle-like behavior of electrons, we turn our
attention to interference effects which emerge at low temperatures in these geometries.

• Chapter 5 Experiments investigating the transport properties in the CDW/ELC phase
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regime are presented. First, resistance measurements in two different geometries are
covered. The remainder of the chapter discusses differential resistance measurements in
the same geometries in great detail.

• Chapter 6 We draw conclusions from our experimental results and show their relevance
for understanding Composite Fermion transport at high magnetic fields as well as the
Electron Liquid Crystal phases at intermediate fields. We finish this chapter with an
outlook on further work.

• Appendix A Sample fabrication steps for the various devices, studied throughout this
document, are discussed.

• Appendix B General considerations for cooling a 2DES are addressed. The design of the
ultra-low temperature probe, which has been crucial for our experimental results, is then
discussed in detail.

We believe that an improved understanding of the properties of Composite Fermions and
Electron Liquid Crystal phases will not only contribute to the field of electron correlations in
semiconductor 2DES. Likely, it will also have an impact on related areas of physics like high-Tc

superconductivity, the physics of ultra-cold atoms in optical lattices, quantum phase transitions,
and quantum field theory in general.



Chapter 2

Fundamentals

2.1 Two-dimensional electron systems

In a two-dimensional electron system (2DES), the electron motion is restricted to a plane with
the help of a suitable confinement potential [17]. In this work, we will exclusively discuss 2DES
formed at the interface of modulation-doped Gallium-Arsenide/Aluminium-Gallium-Arsenide
heterostructures and grown with Molecular Beam Epitaxy (MBE) [18,19]. The semiconductors
GaAs andAlxGa1−xAs have almost identical lattice constants and can be grown on top of
each other with relatively little strain at the interfaces. This results in mono-crystalline layered
systems. A simplified sketch of a typical heterostructure used in our experiments together with
the corresponding band-structure is shown in Figure 2.1. The Si-doping is adjusted such that
at low temperatures electrons only occupy the lowest energy state of the triangular potential
well. Therefore the electron motion is quenched in the z-direction and the total energy of each
electron is given by

ε(kx, ky) =
h̄2

2m∗ (k
2
x + k2

y) + ε0
z , (2.1)

whereki is the electron wavevector ini-direction,ε0
z is the energy of the lowest subband, and

m∗ is the effective mass of conduction band electrons. InGaAs/AlxGa1−xAs heterostructures
m∗ is essentially the effective mass of bulk GaAs (m∗

GaAs ≈ 0.066 m0) since the electron wave-
function is mainly localized within the GaAs layer. Because of the two-dimensional parabolic
energy dispersionε(kx, ky), one obtains a constant density of states

D0 =
dn

dE
=

gsm
∗

2πh̄2 , (2.2)

with gs = {1, 2} indicating the spin degeneracy. This also relates the Fermi-energyEF to the
electron densityn in a straightforward way

EF =
πh̄2

m∗ n , (2.3)
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Figure 2.1: (a) Typical heterostructure. A semi-insulating GaAs layer is first

overgrown by a buffer layer to provide an atomically smooth surface for the fol-

lowing layers. The 2DES forms at the interface between the lowest GaAs layer

and the spacer AlGaAs layer (circle). The spacer separates the Si dopants from the

2DES to minimize residual scattering. The heterostructure is capped by a GaAs

layer to prevent the AlGaAs from oxidizing. (b) Schematic view of the energy

band structure at the interface between the undoped GaAs and AlGaAs layers.

Electrons fill up a narrow triangular potential well near the interface, so that their

motion is restricted to the plane near the interface.

and defines the Fermi-wavevector

kF =
2π

λF

=
√

2πn , (2.4)

whereλF is the Fermi-wavelength, typically of the order of60 nm for our samples.

2.1.1 Low-field magnetoresistance

Resistivity measurements in weak magnetic fields are used to characterize the transport proper-
ties of semiconductor 2DESs. The components of the resistivity tensor

ρ =

 ρxx ρxy

ρyx ρyy

 , (2.5)

which connect the local electric fieldE to the current densityj, are typically determined in a
Hall-bar measurement setup (Fig. 2.2). At low magnetic fields, i.e. when the quantization of the
energy spectrum can be neglected, the Drude-model [20] accounts well for the transport prop-
erties of a 2DES. In this simple model, electrons with an effective massm∗ receive momentum
from an external electric fieldE and a magnetic fieldB and loose momentum through elastic
scattering events with the static disorder potential resulting in the steady state condition[

dp

dt

]
scattering

=

[
dp

dt

]
field

⇐⇒ m∗vd

τ
= e [E + vd ×B] , (2.6)



2.1. TWO-DIMENSIONAL ELECTRON SYSTEMS 17

Figure 2.2: Hall-bar measurement setup. The longitudinal voltageVxx and Hall

voltageVxy are measured when a currentIx is driven through the sample. The

components of the resistivity tensor 2.5 follow fromρxy = Vxy/Ix andρxx =
(W/L) · Vxx/Ix, whereW/L is the geometry factor. The magnetic fieldB is

applied perpendicular to the 2DES.

wherevd is the drift velocity andτ the transport scattering time. Together with the definition of
the current densityj = envd and Ohm’s lawE = ρj, this yields

ρxx =
m∗

ne2τ
=

1

n|e|µ
, (2.7)

ρxy =
B

|e|n
. (2.8)

Within the Drude-model the diagonal resistivityρxx is independent of the external magnetic
field and is related to the electron mobilityµ. The mobility is the ratio between the drift velocity
and the external electric field

µ =
|vd|
|E|

=
|e|τ
m∗ . (2.9)

The electron mobility is generally used as a measure of the sample quality, since it is related
to the transport mean free path, i.e. the distance an electron at the Fermi edge travels between
successive backscattering events. The transport mean free path follows froml = vFτ , with
vF =

√
2EF/m∗ the Fermi velocity. The classical Hall-resistivityρxy does not depend on

the scattering time and increases linearly with magnetic field. It offers a convenient way to
determine the carrier concentrationn of the electron system.
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2.1.2 Energy spectrum in a quantizing magnetic field

The Drude-model fails when the magnetic field becomes so strong that it quantizes the energy
spectrum. In a fully quantum mechanical treatment, which neglects scattering processes and
also the electron spin, a 2DES subjected to an external magnetic fieldB = ∇ × A can be
described by a time-independent Schrödinger equation. In the Landau gaugeA = (−By, 0, 0),
it takes on the form

1

2m∗

[
(p̂x − eBy)2 + p̂2

y

]
Φ(x, y) = EnΦ(x, y) , (2.10)

with the canonical momentum operatorsp̂i. The eigenfunctionsΦ(x, y) consist of a plane wave
in x-direction with wave vectorkx and a bound harmonic oscillator state iny-direction

Φ(x, y) = eikxx ·Hn

(
y − y0

lB

)
exp

[
−(y − y0)

2

2l2B

]
, (2.11)

whereHn is thenth Hermite polynomial. The bound state wavefunctions are centered around
y0 = −l2Bkx and have an extentRn

c = lB
√

2n + 1 in y-direction. The magnetic lengthlB =√
h̄/|e|B is a new scale introduced by the magnetic field. The energy eigenvaluesEn are those

of an harmonic oscillator

En = (n + 1/2)h̄ωc , n = 0, 1, 2, ... (2.12)

with the cyclotron frequency

ωc =
eB

m∗ . (2.13)

The extendRn
c of the wavefunction is identical with the radius of the classical circular motion

of an electron with energyEn revolving with the cyclotron frequencyωc. The discrete energy
levels are referred to as Landau levels. Since the Landau level energyEn does not depend on
the center position of the wavefunction parameterized byky, each Landau level consists of the
same numberNL of energetically degenerate states

NL =
Ly

∆y0

=
LxLy

2πl2B
=

BLxLy

h/|e|
=

Φ

Φ0

. (2.14)

Here∆y0 is the distance between neighboring states iny-direction andLi is the characteris-
tic size of the sample ini-direction. The last identity clarifies thatNL is also the number of
magnetic flux quanta penetrating the sample. In summary, in the presence of a magnetic field,
electrons fill up a discrete set of Landau levels with energyEn separated by the cyclotron gap
h̄ωc. Each Landau level may host exactlyNL electrons. The ratio between the number of elec-
tronsNe and the number of states available in each Landau levelNL is referred to as the filling
factor

ν =
Ne

NL

=
hn

|e|B
. (2.15)
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When ν takes on integer valuesn it means thatn Landau levels are completely filled with
electrons and the others are empty. The chemical potentialµch. , i.e. the energy required to add
an additional electron to the system, experiences a jump of sizeh̄ωc at integer filling factors (Fig.
2.3 (a)). In a more realistic model, scattering processes broaden the Landau levels and disorder
in the sample gives rise to localized states that do not contribute to electronic transport (Fig. 2.3
(b)) [21]. In this situation, when the magnetic field is varied, the chemical potential gradually
moves through the localized states between the Landau levels instead of directly jumping from
one Landau level to the next as in the ideal case.

In our treatment, we have neglected the electron spin because it does not play an important
role in our later considerations. We will shortly mention it at this point, mainly to avoid confu-
sion with the nomenclature in the literature. Electrons with spin subjected to a magnetic field
acquire an additional Zeeman energy shift

EZ = ±1

2
g∗µBB , (2.16)

whereµB = 57.884 µeV/T is the Bohr magneton andg∗ = −0.44 is the Landé g-factor of
electrons in bulk GaAs. The g-factor for electrons in a 2DES can be considerably enhanced
[22] but we will neglect this complication here. The sign of the energy shift depends on the
orientation of the electron spin. Each Landau level therefore splits into two levels, one for
each spin orientation. In the definition of the filling factor (eq. 2.15), we assumed one electron

Figure 2.3: (a) Chemical potentialµ and Landau level energyEn (eq. 2.12) as a

function of the magnetic field (The spin degeneracy is ignored for simplicity). (b)

Density of states at high magnetic field. Landau levels are broadened by scattering

processes. Only extended states in the center of each Landau level (dark orange)

contribute to electronic transport whereas localized states (light orange) do not.
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Landau level filling factor range electron correlation effect section

N = 0,↑ and↓ 0≤ ν ≤ 2 FQHE, CFs 2.1.5, 2.2

N = 1,↑ and↓ 2≤ ν ≤ 4 CF pairing, FQHE 2.1.5, 2.1.6, 2.2.6

N ≥ 2 4≤ ν ≤ ∞ CDW states 2.3

Table 2.1: Landau level index N, the corresponding filling factor ranges and

the observed electron correlation effects. Each effect is discussed in the listed

sections.

for each state within a Landau level. This counting argument and therefore equation 2.15 still
hold true when we include spin. When referring to the N = 0 Landau level we mean the two
lowest spin split energy levels, i.e. N = (0,↑) and N = (0,↓). To avoid confusion, we have listed
the relationship between Landau level index N and the corresponding filling factor range in
table 2.1. The index N determines which electron correlation phenomena govern the transport
properties of the 2DES.

2.1.3 Integer Quantum Hall Effect (IQHE)

In a self-consistent Born approximation (SCBA), the longitudinal resistivity is connected with
the density of states at the Fermi energy according toρxx ∼ D(EF)2 [17]. At low magnetic
fields, the density of states and thus the longitudinal resistance are constant. This is the regime
where the Drude picture holds (cf. section 2.1.1). At intermediate fields, when the cyclotron
gap exceeds the Landau level broadening, the density of states starts to oscillate as a function of
the energy. Accordingly, the longitudinal resistivity displays the so called Shubnikov-deHaas
oscillations (Fig. 2.4) when the magnetic field is varied [23]. The resistivity takes on a minimum
at integer filling factorsν = 1, 2, 3, .... The minima become true zeros (i.e.ρxx → 0) at still
higher magnetic fields. This indicates that scattering processes disappear at these points, and
hence, electronic transport becomes dissipationless. Transport stays dissipationless for a finite
range of magnetic fields as long as the chemical potential moves through the localized states.
It turns out that in the same magnetic field range the Hall-resistivity stays quantized with very
high accuracy to the value of the nearest integer filling factori

ρxy =
h

ie2
, i = 1, 2, 3, ... . (2.17)

The dissipationless transport together with the quantization of the Hall-resistivity over a range
of magnetic fields constitutes the famous Integer Quantum Hall Effect (IQHE) [1,24]. The ex-
istence of a mobility gap at the Fermi level together with topological arguments give a beautiful
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Figure 2.4: Resistivity tensor componentsρxx andρxy of a 2DES in a perpendi-

cular magnetic field. In the low magnetic field regime (yellow), the classical

Drude picture holds. At intermediate fields (light orange), Shubnikov-deHaas

oscillations reflect the modification of the density of states by the magnetic field.

Finally, in the high field regime (dark orange) dissipationless longitudinal trans-

port and exactly quantized Hall-resistivity are the fingerprints of the IQHE.

explanation for the astonishing accuracy1 and sturdiness of the IQHE in finite size samples [4].
Still, a complete and rigorous microscopic derivation of the effect using only local quantities
(i.e. valid for an infinite sample) has yet to be found.

2.1.4 Landauer-Büttiker formalism

In many cases, the experimentally relevant resistances of a multi-terminal conductor (like a
Hall-bar) can be determined by an approach originally put forward by Landauer and Büt-
tiker [26]. It treats voltage and current terminals on an equal footing and describes electronic
transport in terms of transmission probabilities between different terminals [27]. A currentIp

flowing through terminalp is expressed as a function of the voltage differenceVp − Vq with
respect to all other terminals q of the sample

Ip =
2e2

h

∑
q

Tqp [Vp − Vq] . (2.18)

1Since 1990, a fixed value ofRK−90 = 25812.807 Ω for the v. Klitzing constantRK = h/e2 defines the

resistance standard [25].
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The transmission coefficientsTqp describe the probability of scattering an electron from terminal
p to terminalq and take on values between0 and1. Each fully transmitting channel (T = 1)
contributes a quantum2e2/h to the conductance. The Landauer-Büttiker formalism has been
especially useful in the framework of the IQHE because of vanishing backscattering and the
importance of the sample edges in this regime. The confinement potential bents upward the
Landau levels towards the edges of the sample. Hence, Landau levels which lie below the
Fermi energy in the bulk will cross the Fermi energy near the edges and form one dimensional
edge channels with low energy excitations of the electronic system which is in equilibrium with
the contact reservoirs. The current carrying channels ideally run parallel to the sample boundary
(Fig. 2.5). The gradient of the confinement potential at the edges determines the direction of the
electron velocity. Electrons in edge channels on opposite sides of the sample move in reversed
directions. Each channel contributes exactly2e2/h to the total conductance because of a special
relation between the electron velocityv and its density of states in a one dimensional channel

dn/dE = 1/hv . (2.19)

Dissipationless transport and the quantization of the Hall resistance then follow very intuitively.
Dissipation only occurs when electrons loose energy via backscattering processes. Because of
the chiral nature of the edge channels and the large distance between edge channels of opposite
current direction, backscattering and therefore dissipation are strongly suppressed. Hence, edge
channels form equipotential lines and the voltage between two terminals connected to the same
edge channels will always be zero. At the same time, each edge channels contributes exactly

Figure 2.5: Landauer-Büttiker edge channel picture for bulk filling factorν = 2.

(a) Landau level energies increase towards the edges of the sample because of the

confinement potential. Partially occupied Landau levels (blue/white) exist wher-

ever a filled level (blue) crosses the Fermi energy. (b) One-dimensional current

carrying edge-channels exist at the positions of the partially filled Landau levels

(circle).
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one conductance quantum to the total conductance. Therefore, the Hall resistance is precisely
quantized because it effectively measures the electrochemical potential difference between edge
channels on opposite sides of the sample.

2.1.5 Fractional Quantum Hall Effect (FQHE)

The hallmarks of the Quantum Hall Effect, namely quantized Hall resistance and vanishing
longitudinal resistance, are not restricted to integer filling factors (Fig. 2.6). In high mobility
samples, they also appear at fractional filling factorsν = p/q, wherep, q are integers andq
is odd [2, 28, 29]. This originally came as a big surprise because in the single particle picture
explaining the IQHE no excitation gap is expected when Landau levels are only partially filled.
In the Fractional Quantum Hall Effect (FQHE), electron-electron correlations mediated by the
Coulomb interaction are responsible for the existence of the gap at the Fermi energy. In partially
filled Landau levels, the number of electronic states exceeds the number of electrons to fill them
and the ground state is therefore highly degenerate. Ample numerical and analytical evidence
suggests that the Coulomb repulsion lifts this degeneracy and opens up an excitation gap [30].
Laughlin proposed a fermionic many-body ground state wavefunction for the most pronounced

Figure 2.6: Longitudinal and Hall resistivity components for a high mobility

2DES sample atT = 50 mK. The FQHE appears mainly in the lowest Landau

level N = (0,↑) and N = (0,↓) (yellow and light orange) at filling factors which

converge towards half filling (ν = 1/2 and3/2).
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FQHE state atν = 1/q of the form [3]

χ(1/q) =
∏
i<j

(
zi − zj

lB

)q

exp

[
−1

4

∑
i

|zi|2

l2B

]
, (2.20)

wherezi = xi + ıyi are the electron positions in complex notation. The wavefunction describes
a homogeneous incompressible state in the lowest Landau level in which electrons optimally
avoid each other to reduce the overall energy of the system. The lowest energy excitations
are quasiparticles with chargee∗ = e/q and the excitation gap scales with the strength of the
electron-electron interaction energy. The Laughlin wavefunction has an almost complete over-
lap with exact numerical wavefunctions obtained for systems with a small number of electrons.
It can be shown to be the true ground state for the fractionsν = 1/q. The explanation of
the exact quantization and the finite extend of the Hall-plateaus and resistance minima in the
FQHE is analogous to that for the IQHE (section 2.1.3) if electrons are replaced by Laughlin
quasiparticles.

The Laughlin wavefunction also explains the FQHE at filling factorsν = 1− 1/q by using
electron-hole symmetry arguments [31]. The FQHE at other fractions such asν = 3/5 has
originally been interpreted using a hierarchical scheme that involves Laughlin states recursively
built from Laughlin quasiparticles instead of electrons [32]. This scheme produces very com-
plicated wavefunctions and can not explain the relative strength of the FQHE states born out
in experiment. More recently, the FQHE has been very elegantly rephrased in terms of new
particles called Composite Fermions. These fascinating quasi-particles will be introduced in
detail in section 2.2.

Since the FQHE appears at high magnetic fields, the early treatments always assumed the
2DES to be spin polarized. Meanwhile, it has become evident that many nontrivial effects in
the regime of the FQHE originate from the electron spin (i.e. spin polarized-unpolarized phase
transitions). We do not wish to enter this vastly growing field at this point, because it is not
relevant to our work.

2.1.6 Higher Landau levels

Does the picture of the QHE survive as one moves to higher Landau levels (N≥ 1)? Naively,
one would expect a repetition of the physics taking place in the lowest Landau level. This is
indeed the case for the IQHE. It develops even when ten or more Landau levels are occupied. At
still higher filling factors, the effect breaks down because disorder and temperature broadening
of the levels become comparable to the cyclotron splitting, and the relevant gaps at the Fermi
energy close. The situation is different for the FQHE. Already in the second Landau level (N
= 1), unusual fractions appear at half filling that are in conflict with the orthodox theory of the
FQHE. In the third or higher Landau levels (N≥ 2), the FQHE has never been observed.
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Figure 2.7: FQHE states in the first excited Landau level (N = (1,↑)) around

filling factor 5/2. The fractions7/3 = 2 + 1/3 and8/3 = 2 + 2/3 are expected

from the orthodox theory of the FQHE. The Quantum Hall state at the even de-

nominator fraction5/2 is unexpected and can be explained by proposing a pairing

mechanism for Composite Fermions (sec. 2.2.6).

FQHE states at 5/2 and 7/2

The apparent rule that the FQHE occurs only at fractions with odd denominator is deeply linked
to the Fermi statistics of the constituent particles, namely electrons [33]. It therefore came as
a great surprise that in the second lowest Landau level (N = (1,↑ and ↓)) a FQHE state at
ν = 5/2 (Fig. 2.7) andν = 7/2 occurs [34, 35]. The apparent contradiction can be resolved
if one postulates bosonic quasiparticles for these fractions. Initially, these quasiparticles were
thought to consist of spin-singlet pairs of electrons [36]. This notion seemed to be corroborated
by experiments where the FQHE state is destroyed in tilted magnetic fields [37]. The currently
most favored explanation for this state is p-wave pairing of Composite Fermions (see sec. 2.2.6).

The Quantum Hall state atν = 5/2 is extremely fragile, with an activation energy gap of
only ∆5/2 ≈ 100 mK for an electron density ofn = 2.3 · 1015 m−2 [35]. The proof of an exact
quantization of this state has only been possible with the advent of very high mobility samples
(µ ≥ 1000 m2/Vs) and very low electron temperatures (Te < 20 mK) in recent years [35].
Our own results in figure 2.7 demonstrate that we are able to meet these requirements with the
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ultra-low temperature probe (see Appendix B) that has been designed in the course of this PhD
work.

Stripe and bubble phases

In higher Landau levels (N ≥ 2) the FQHE has never been observed. Instead, the competition
between repulsive and attractive Coulomb interaction components gives rise to completely new
ground states with fragile long range ordered electronic phases. These so called stripe and
bubble phases will be introduced in depth in section 2.3.

2.1.7 Aharonov-Bohm effect

A charged particle subjected to a magnetic vector-potential experiences a phase shift of its
wavefunction that depends on the path along which the particle moves [38]. The wavefunction
transforms according to

Ψ′ = Ψe−iϕ = Ψ exp
[
−ie

h̄

∫
C

A · dx
]

, (2.21)

whereC parameterizes the particle’s path. Nontrivial phase shifts arise when the space of
possible paths is not simply connected. e.g. in a ring (Fig. 2.8). Then, the total phase shift
acquired is simply

∆ϕ =
e

h̄
Φ = 2π

Φ

φ0

, (2.22)

Figure 2.8: Aharonov-Bohm effect. Charged particles (blue) passing a magnetic

flux line of strengthΦ (red) on different sides acquire phase shiftsϕL andϕR

such that∆ϕ = ϕL − ϕR = 2πΦ/φ0.
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whereΦ is the magnetic flux enclosed by the trajectories in the ring. Since the phase of the
wavefunction is only defined modulo2π, every physical quantity will be periodic in the external
flux with a period ofφ0 = h/e. By altering the phase of the wave-function, the enclosed flux has
a measurable impact on the particle even though the flux is not actually "seen"by the particle,
i.e. no classical electromagnetic forces act on it. The Aharonov-Bohm effect is truly quantum
mechanical since it relies on the wavelike properties of each particle. It is also a topological
effect since it depends on the particle’s path and the structure of space, and it is especially
important in low dimensional systems that are penetrated by a magnetic field.

2.2 Composite Fermions

In section 2.1.5 we have shortly introduced the FQHE. It shows the same hallmarks as the
IQHE, i.e. vanishing longitudinal resistance and quantization of the Hall resistance. Still, the
IQHE is understood in a picture of non-interacting electrons whereas the FQHE arises purely
from many-body Coulomb interaction effects. In 1989, J. Jain introduced fascinating new quasi-
particles called Composite Fermions which allow us to understand the FQHE in terms of the
IQHE of these quasiparticles. It turns out that the concept of Composite Fermions is relevant
beyond the FQHE, especially around filling factorν = 1/2. It is deeply rooted to particles
statistics and two-dimensional quantum field theory.

For topological reasons, in two-dimensional systems the familiar concepts of Bose and
Fermi statistics can be generalized to that of anyons obeying fractional statistics [39,40]. More-
over, using the idea of statistical transmutability, particle statistics can be changed at will with-
out influencing the physical properties of the underlying system. Transmutation of statistics is
implemented at the level of local quantum field theory by a universal construction, the so called
Chern-Simons transformation [39]. Here, singular gauge fields are artificially introduced and
interact with the constituent particles. Equivalently, this can be seen as attaching statistical flux
tubes to the particles resulting in transformed composite particles [41]. At first glance, it seems
that introducing additional fields or flux tubes into the problem will not lead to any simplifica-
tions. However, certain approximations propose themselves naturally in the composite particle
representation that are not at all evident in the original one.

If an even number of flux tubes (each of unit strengthφ0) is attached to every electron in
a 2DES, the resulting composite particles again obey Fermi statistics, i.e. they are Composite
Fermions. Specifically, we will discuss the case where two statistical flux tubes are attached to
each electron and the system is at filling factorν = 1/2. Then, the average of the statistical
flux exactly cancels the external magnetic flux [6]. Thus, if fluctuations of the gauge field are
ignored, the original situation of electrons in high magnetic field is greatly simplified to one of
Composite Fermions at zero magnetic field.
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2.2.1 Chern-Simons transformation

We start with a two dimensional interacting electron system in a uniform external magnetic field
B = ∇×A. Additionally, we assume that the field is high enough such that the system is fully
spin polarized and hence the spin degree of freedom can be neglected. The composite particle
wavefunctionΨCF arises from a unitary transformation of the electron wavefunctionΨel

ΨCF(ri) =
∏
i<j

(
zi − zj

|zi − zj|

)φ̃

Ψel(ri) , (2.23)

whereφ̃ = 2m is an even number. Then,ΨCF also obeys Fermi statistics and thus we are
dealing with Composite Fermions. In general,φ̃ could be any number resulting also in bosons
or anyons but we will not consider those cases here. From now on, we will only consider the
casem ≡ 1. As a result of this singular gauge transformation, we have to adjust the Hamiltonian
accordingly

H =
∑
j

1

2m∗ [pj − eA(rj)− a(rj)]
2 + V . (2.24)

whereV is the Coulomb interaction potential anda(r) is the Chern-Simons vector potential of
the form

a(r) =
−2φ0

2π

∑
k 6=j

ẑ× (rj − rk)

|rj − rk|2
. (2.25)

This results in a fictitious, singular magnetic field

b = ∇× a = −2φ0ẑ
∑
j 6=k

δ(rj − rk) , (2.26)

that is only nonzero at the positions of the electrons.

2.2.2 Mean field approximation

The merits of the Chern-Simons transformation become obvious when the Composite Fermion
system is analyzed on a mean-field level, i.e. when the fictitious, singular magnetic flux tubes
(eq. 2.26) are smeared out into a homogenous magnetic field

〈b〉 = b− δb = −2φ0n , (2.27)

and the Coulomb interaction is neglected.2 The Chern-Simons flux has been chosen to be in
the opposite direction of the external magnetic field so that the residual effective magnetic field
Beff seen by the Composite Fermions is given by

Beff = B − 2φ0n . (2.28)

2With hindsight, this is justified because most of the electronic correlations induced by the Coulomb interaction

are accounted for by the introduction of statistical flux tubes [6].



2.2. COMPOSITE FERMIONS 29

Figure 2.9: Composite Fermion picture. (a) The external magnetic field creates

one electronic state (squares) for each flux quantum (red arrow) through the sam-

ple. At ν = 1/2, half of the states are occupied by electrons (blue). (b) The

Chern-Simons transformation attaches two statistical flux tubes (black arrows) to

each electron. (c) In the mean field approximation, the external flux and the sta-

tistical flux cancel. The system then consists of weakly interacting Composite

Fermions without an effective magnetic field (Beff = 0).

Taken literally, this result has astonishing implications. A system of electrons in an external
magnetic field can be transformed into a system of Composite Fermions that is subjected to a
reduced effective magnetic field.

Strikingly, when the external magnetic field is adjusted to the filling factorν = 1/2 the
effective magnetic field experienced by the Composite Fermions vanishes. The ground state of
this Fermi system atBeff = 0 will be a metallic Fermi sea filled up to the Fermi-wavevector

k
(1/2)
F =

√
4πn . (2.29)
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The additional factor of
√

2 over the electron case (eq. 2.4) arises from a simple counting ar-
gument because the system is assumed to be spin polarized. Accordingly, at finite but small
effective magnetic fields Composite Fermions should follow semi-classical cyclotron trajecto-
ries with a radius

RCF
c =

h̄k
(1/2)
F

|e|Beff

. (2.30)

These two predictions, the existence of a Fermi surface for the Composite Fermion liquid and
the relevance of the effective cyclotron radius, have been verified by experiments forν = 1/2

[42,43,44] and will be discussed further in chapter 3.

2.2.3 Beyond mean field - the RPA approximation

Very profound predictions concerning the behavior of 2DES aroundν = 1/2 are already ob-
tained at the mean field level of the Composite Fermion picture (eqs. 2.28 - 2.30). However,
many questions remain unsolved at this level of approximation. For example, why is the Hall
resistivityρxy = h/2e2 at this filling factor and not zero as it should be for a metallic system at
zero magnetic field. To solve these issues, it is important to take fluctuations of the gauge field
δb into account (see eq. 2.27). This is done in the framework of the RPA or time-dependent
Hartree approximation [6]. Since the derivations are rather cumbersome and not very illuminat-
ing for our discussion, we will just state the most important results and fit them into an intuitive
picture of Composite Fermion transport.

The resistivity tensor for electrons directly atν = 1/2 can be written as a sum of two
components that result from Composite Fermion theory at the RPA level [6]

ρ = ρCS + ρCF . (2.31)

The first contribution originates from the Chern-Simons gauge field term in the Hamiltonian
(eq. 2.24)

ρCS =
4πh̄

e2

 0 −1

1 0

 , (2.32)

and is responsible for the value of the Hall resistance atBeff = 0. This term can be motivated
by a hand-waving argument. For each electron, two flux tubes connected to it have to be moved
through the sample. According to Faraday’s lawV = −dΦ/dt, this leads to a transverse
resistance

Rxy =
dΦ

dQ
=

2Φ0

e
=

2h

e2
, (2.33)

whereQ is the total charge. Therefore, although we are dealing with a metallic system of
Composite Fermions at vanishingBeff , the Hall resistivity is finite because Composite Fermions
by definition carry magnetic flux tubes around with them. The second term in equation 2.31

ρCF = ρCF
0

 1 0

0 1

 , (2.34)
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is the resistivity of a Fermi system with contributions from impurity scattering as well as scat-
tering induced by gauge field fluctuations. The latter are a qualitatively new ingredient when
dealing with Composite Fermion transport. Small density fluctuations∆n translate via equa-
tion 2.28 into substantial effective magnetic fields∆Beff . These magnetic fluctuations provide
strong scattering centers. Assuming that gauge field contributions can be absorbed into a mod-
ified transport scattering timeτCF, one may cast the longitudinal resistivity in the Drude form
similar to equation 2.7

ρCF
0 =

m∗
CF

ne2τCF
=

1

n|e|µCF
. (2.35)

From an experimental point of view, it is most convenient to use the last term of the equation
since it does not include the effective massm∗

CF of Composite Fermions. There is still con-
siderable debate about the value of this effective mass exactly atν = 1/2, although recent
experiments indicate that it is roughly an order of magnitude higher than the effective electron
mass at zero magnetic field, i.e.m∗

CF ≈ 10m∗ [45]. Using eq. 2.35, one can experimentally de-
termine the mobility of Composite Fermions by measuring the longitudinal resistivity directly
at ν = 1/2, i.e. atBeff = 0. This mobility turns out to be about two orders of magnitude
lower when compared to that of electrons atB = 0. Taking into account the increased effective
Composite Fermion mass, the scattering timeτCF is at least one order of magnitude smaller
than the one for electrons at zero field. Evidently then, scattering by gauge field fluctuations is
an effective mechanism and must be taken into account when quantifying Composite Fermion
transport.

2.2.4 The FQHE revisited - The IQHE of Composite Fermions

In analogy to the electronic case, the energy spectrum of a Composite Fermion system subjected
to a non-zero effective magnetic field should consist of discrete Landau levels. Accordingly, it
should display the IQHE effect near integer effective filling factors

νeff =
nφ0

Beff

= ±1, 2, 3, ... . (2.36)

These are related to the electronic filling factor (eq. 2.15 ) via

ν =
|νeff |

2νeff ± 1
. (2.37)

Strikingly, the IQHE of Composite Fermions occurs at exactly those positions where the FQHE
for electrons occur. Indeed, the FQHE effect of electrons, which is purely driven by electron-
electron interactions is a manifestation of single-particle physics on the level of Composite
Fermions [46]. The close connection between the FQHE of electrons and IQHE of Composite
Fermions can be seen also from a closer look at the wavefunctions. For example, the electronic
wavefunction for the IQHE state atν = 1 reads [47]

χ1 =
∏
i<j

(
zj − zk

lB

)
exp

[
−1

4

∑
i

|zi|2

l2B

]
. (2.38)
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Performing a Chern-Simons transformation (eq. 2.23) with indexφ̃ = q− 1 yields the equation

χ(1/q) =
∏
i<j

(
zj − zk

|zj − zk|

)q

exp

[
−1

4

∑
i

|zi|2

l2B

]
. (2.39)

This resembles Laughlin’s famous wavefunction for the FQHE state atν = 1/q (eq. 2.20). The
difference in the prefactor is eliminated if one includes higher order terms that appear in the
RPA approximation [48].

We have learned in section 2.1.5 that Laughlin quasi-particles atν = 1/q possess a fractional
chargee∗ = e(1 − 2ν) = e/q.3 On the other hand, Composite Fermions are quasi-particles
with chargee subjected to an effective magnetic fieldBeff = B − 2nΦ0 = B(1 − 2ν). No
contradiction arises here because the expressioneBeff = eB(1− 2ν) = e∗B remains the same in
both pictures.

To summarize, the FQHE can be very elegantly rephrased as the IQHE of Composite
Fermions. This notion not only explains most of the observed fractions and their relative
strength, it also shows how a strongly interacting system can be recast into a weakly interacting
one.

2.2.5 Composite Fermions at filling fractionν = 3/2

At filling factor ν = 3/2, the spin up branch of the lowest Landau level (N = (0,↑)) is completely
filled with electrons, whereas the spin down branch (N = (0,↓)) is only half filled. All electrons
in the partly filled branch can be converted into Composite Fermions whereas the other electrons
remain normal, i.e. they are not dressed with flux tubes (Fig. 2.10). Therefore, the situation is
largely equivalent to the one atν = 1/2 with a few differences that are related to the reduced
Composite Fermion density which now also depends on the external magnetic field [6,50]. The
effective magnetic field is

B
(3/2)
eff = B − 2Φ0nCF , (2.40)

where the total carrier densityn in eq. 2.28 has been replaced by the Composite Fermion density
nCF. Using the constraintn = ne + nCF, with ne being the density of normal electrons, the last
equation can be expressed in terms of the magnetic fieldBν = nΦ0/ν exactly atν = 3/2

B
(3/2)
eff = 3(B −B3/2) , (2.41)

where we have also usedne = B/Φ0 because of the completely filled lowest Landau level.
The effective magnetic field is zero atν = 3/2 and its scale is stretched by a factor of3 as
compared to the case atν = 1/2. Since the Composite Fermion density changes with the
external magnetic field, the Fermi wave vector depends on the filling factor

k
(3/2)
F =

√
4πnCF =

√
ν − 1

ν
k

(1/2)
F . (2.42)

3This was originally shown forq = 3, 5, . . .. However, the picture has been extended to that of dipolar quasi-

particles where q can be any number, e.g. q = 2 [49].
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The conductivity tensor exactly at filling factorν = 3/2 is the sum of the tensor for a full
Landau level and a half filled one

σ(3/2) =

 0 1

−1 0

 e2

h
+

 σ(1/2)
xx e2/2h

−e2/2h σ(1/2)
xx

 =

 σ(1/2)
xx 3e2/2h

−3e2/2h σ(1/2)
xx

 , (2.43)

whereσ(1/2)
xx is the electronicσxx at ν = 1/2 which is related to the resistivities at the same

filling factor by

σ(1/2)
xx =

ρ(1/2)
xx

(ρ
(1/2)
xx )2 + (ρ

(1/2)
xy )2

≈ ρ(1/2)
xx

(2h/e2)2
. (2.44)

Here we usedρ(1/2)
xx � ρ(1/2)

xy = 2h/e2. The longitudinal resistivityρ(3/2)
xx at ν = 3/2 follows

from inversion of the above conductivity tensor

ρ(3/2)
xx =

σ(1/2)
xx

(σ
(1/2)
xx )2 + (3e2/2h)2

≈ ρ(1/2)
xx

9
. (2.45)

Then the mobility of Composite Fermions in the upper half filled Landau level is

µCF =
1

ρ
(1/2)
xx nCFe

=
1

3ρ
(3/2)
xx ne

. (2.46)

If we assume that the mobility of Composite Fermions atν = 1/2 andν = 3/2 is the same,
then the longitudinal resistivity atν = 3/2 should be reduced by a factor of three compared to
that atν = 1/2. This is indeed true to a very good approximation in high quality samples (Fig.
2.6).

Figure 2.10: Electron system at filling factorν = 3/2. The spin up branch of the

lowest Landau level (N = (0,↑)) is fully occupied with normal electrons, whereas

the spin down branch (N = (0,↓)) is half filled with Composite Fermions. The

statistical flux (black arrows) of the Composite Fermions completely cancels the

external magnetic field (red arrow - only one is depicted for clarity - see Fig. 2.9)

on the mean field level.
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2.2.6 Composite Fermions in higher Landau levels

The powerfulness of the CF picture in the lowest Landau level is based on the observation that
CFs can be treated as non-interacting particles to a very good approximation. This means that
electron-electron correlations induced by the Coulomb interaction are well incorporated into
the CF wavefunction (eq. 2.23). In a sense, the Coulomb interaction is replaced by the effect of
statistical flux tubes that induce very similar correlations.

In higher Landau levels, the short range repulsive part of the Coulomb interaction is weak-
ened by virtual excitations involving the completely filled lower levels [51].4 The flux attach-
ment procedure is the same as in the lowest Landau level, and therefore one expects that the
Coulomb interaction will not be completely cancelled by it. Instead, the Coulomb interaction
will be overscreened and a residual attractive interaction between Composite Fermions results.
In theN = 1 Landau level, the weak attractive interaction allows Composite Fermions to form
pairs that behave as bosons and then condense into their ground state at low temperatures.5

This is the reason why a Quantum Hall state is possible at half filled Landau levelν = 5/2

andν = 7/2. The rule that only odd denominators are allowed just holds for fermions. It is

4Equivalently speaking, the electron wavefunctions - compared at the same magnetic field values - are more

spread out towards higher Landau levels (compare section 2.3.1).
5The situation in superconductors where phonon mediated effective electron-electron attraction leads to boson

(Cooper pair) condensation is very analogous.

Figure 2.11: Because the Coulomb interaction becomes weaker in higher Landau

levels, the flux tube attachment overscreens the Coulomb interaction and leads to

an effective attractive interaction between CFs. Whereas in the lowest Landau

level, CF fill up a Fermi sea, they form pairs in the next Landau level and thus

condense into a ground state like bosons. In theN = 2 Landau level, the attraction

is so strong that the CF picture presumably looses its meaning.
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currently believed that the ground state at the half filled N = 1 Landau level is the Moore-Read
state

ΨMR = Pf
1

zi − zj

χ(1/2) , (2.47)

with χ(1/2) being the Laughlin wavefunction (eq. 2.39) forq = 2 and the PfaffianPf is a special
antisymmetrisation operator [51]. The wavefunction describes p-wave pairing of Composite
Fermions [51]. The state has a very peculiar nature and is under strong investigation since it
is thought to have quasiparticles with nonabelian statistics. The experimental implications of
this peculiar statistics of the quasiparticles have not been resolved. In theN = 2 Landau level,
the residual attractive interaction between Composite Fermions is so strong that the validity
of the Composite Fermions picture itself is questionable. Instead, correlation effects in this
Landau Level are usually described in the CDW-picture of electrons (sec. 2.3.1). Whether
the competition of long range Coulomb repulsion and short range attraction that leads to the
formation of CDW-like states can be also formulated in the framework of Composite Fermions
is still an open question.

2.3 Correlated phases in higher Landau levels

Electron correlations in the two lowest Landau levels (N = 0, 1) give rise to the FQHE. How-
ever, they manifest themselves in a qualitatively different way in higher Landau levels (N ≥ 2).
There, the existence of completely filled lower Landau levels modifies the balance between the
long range, repulsive part and the short ranged, attractive part of the Coulomb interaction. As
a consequence, it is energetically favorable for the electron system to break up into regions of
integer filling factors. Within these regions, the topmost Landau level is either completely filled
with electrons or completely empty. Regions of the same filling factor arrange themselves into
long range ordered patterns with a symmetry which depends on the average filling factor. Simi-
lar examples of self-organization arising from the competition of attractive and repulsive forces
on different length scales are known from other areas of physics like magnetic thin films and
ferrofluids [15]. The separation of the system into regions of distinct filling factors within the
bulk of the sample also brings about a modulation of the electron density. This has led to the for-
mulation of the Charge Density Wave (CDW) picture of electron correlations in higher Landau
levels. In early years, self consistent Hartree-Fock calculations suggested that charge-density-
wave (CDW)-like states would be the ground states of a 2DES in strong magnetic fields [52].
With the discovery of the FQHE, this notion was discarded because it turned out that Laughlin
states (eq. 2.20) have the lowest energy. However, in the third and higher Landau levels (N
≥ 2) no FQHE states have ever been observed. Numerical calculations show that slight dif-
ferences in the electron-electron interaction in these Landau levels favor the CDW-like states
and lead to qualitatively different magnetotransport behavior [10,9,53]. Because the formation
energies for the CDW-like states are extremely small, they only exist at very low temperatures
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(T < 150 mK) and in very high mobility samples (µ ≥ 1 · 107 cm2/Vs).
Recently the CDW-picture has been extended. When quantum fluctuations are properly

taken into account, a more sophisticated picture arises, referred to as the Electron Liquid Crystal
(ELC) picture [13]. It bears a strong similarity to the description of ordinary, classical liquid
crystal systems [14].

Within the framework of the very intuitive CDW picture, we discuss the different correlated
phases together with their experimental signatures. Afterwards, we present the more realistic
ELC picture.

2.3.1 Charge Density Wave (CDW) picture

In order to understand the effect of the competition between the repulsive and the attractive part
of the Coulomb interaction on an intuitive level, we should consider the shape of the wave-
function for electrons in higher Landau levels. In the symmetric gauge, they resemble rings
with a size determined by the cyclotron radiusRc and a width given by the magnetic lengthlB
(Fig. 2.12(b)) [10]. This picture of extended rings becomes more exact forN � 1 because
Rc =

√
2N + 1 lB, however, it is already a good approximation atN = 2. The direct part of

the Coulomb interaction between two electrons depends on the overlap of the electron density
distributions (i.e. of the rings), whereas the exchange part depends on the distance between the
center coordinates of the wavefunctions. For this reason, it is energetically favorable for the
wavefunction centers to arrange into clusters, with a distance between neighboring clusters on
the order of the cyclotron radius. This maximizes the attractive exchange interaction, while at
the same time, the repulsive direct interaction increases only slightly, since rings in adjacent
clusters overlap almost as much as rings within the same cluster (Fig. 2.12(c)). Since the po-
sition of the wavefunction centers determines the local filling factorν loc

N , one can think of the
electron system as breaking up into clusters with either a completely filled (ν loc

N = 1) or a com-
pletely empty (ν loc

N = 0) topmost Landau level (Fig. 2.12(a)). The relative abundance of each
type of cluster depends on the average filling factor of the topmost Landau levelνN = ν − [ν]

where[ν] is the greatest integer less thanν. Although the local filling factor is strongly mod-
ulated, the extended shape of a wavefunction produces only a weak modulation of the average
electron density (Fig. 2.12(a)). The states are referred to as Charge Density Wave (CDW)
phases in analogy to similar density modulations in other materials [10, 9]. Depending on the
average filling factorνN of the topmost Landau level, the CDW states have different long range
spatial symmetries induced by the repulsive part of the interaction forces (Fig. 2.12(d)). One
distinguishes between anisotropic stripe phases and isotropic bubble or Wigner crystal phases.
In each phase, the characteristic length scale, i.e. the distance between adjacent bubbles or
stripes, is [10]

λCDW ≈ 2πRc

2.4
. (2.48)
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Figure 2.12: (a) Modulation of the local filling factorνloc
N (top) and the elec-

tron densityn (bottom) of the topmost Landau level within the CDW phases. (b)

Ringlike shape of the electron wavefunction in higher Landau levels (N ≥ 2).

(c) Electrons cluster into long range ordered patterns (e.g. stripes). Still, electron

density variations are small because of the extended nature of the electron wave-

functions. (d) Approximate phase diagram for the N = 2 Landau level according

to the CDW picture. Phases consist of domains with integer local filling factors.

Light areas correspond toνloc
N = 0 and dark ones toνloc

N = 1. The ordered CDW

phases break down into an isotropic liquid phase above a critical temperatureTc.

For a typical sample density, n =2 · 1015 m−2, around filling factorν = 9/2, this amounts to
λCDW ≈ 100 nm.

Near half filling,νN ≈ 0.5, the ground state is an anisotropic stripe phase. Towards lower
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fillings, first an isotropic 2-electron bubble phase6 appears, followed by a Wigner crystal phase,
both with a triangular symmetry. Above a critical transition temperatureTc, the correlated
CDW phases cease to exist and give way to an ordinary, isotropic electron liquid. So far, the
best prediction for the position of the phase boundaries atT = 0 comes from the density matrix
renormalization group (DMRG) method [53]. We discuss each phase separately in the next
three sections.

Stripe phase

The anisotropic stripe phase is predicted to be stable near the half filled Landau level, i.e. in
the filling factor range0.4 < νtheo

N < 0.6 [53, 10]. In this phase, electrons cluster into parallel
stripes of alternating integer filling factor which have a distance ofλCDW to each other. In the
simplest picture, perfectly parallel stripes extend throughout the sample. The stripes consist of
regions of alternating filling factors (e.g.ν = 4 andν = 5) and the width of the stripes is on the

6Hartree-Fock calculations also predict a 3-electron bubble phase in the N = 2 Landau level. There is no sign

of this phase, though, in more sophisticated approximations [53] as well as experiments.

Figure 2.13: Anisotropic transport in higher Landau levels (N≥ 2). When the

current is directed perpendicular to the stripes (red - ’hard-axis’ configuration

(c)), a huge resistance peak occurs around half filled Landau levels (e.g.ν =

9/2). In the perpendicular current direction (blue - ’easy-axis’ configuration (c)),

a pronounced minimum is observed instead. No anisotropy is visible in the N = 1

Landau level. Data from [7].
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order of100 nm for typical sample densities [10].7

The most striking experimental signature of the stripe phase is the large anisotropy which
shows up in the longitudinal resistance [54, 35]. If the current is directed along the stripes, the
resistance is very low, whereas for current directed in the perpendicular direction, a huge resis-
tance maximum occurs (Fig. 2.13). Because of current channeling [55], resistance anisotropies
in square samples can be as high asRxx/Ryy ≈ 3500, whereas they are substantially smaller
(≈ 10) for conventional Hall-bars [56]. The resistance anisotropy increases with decreas-
ing temperature. Nevertheless, the maximum resistance seems to saturate at a value close to
Rxx ≈ 1300 Ω at the lowest temperatures. The mechanism that aligns the stripes with a certain
crystal direction is still unclear [57].8 It has been shown that the stripe direction can be influ-
enced with a magnetic field component pointing parallel to the 2DES [59, 56]. For the usual
samples, the stripes orient themselves perpendicular to the field direction at sufficiently high
in-plane magnetic fields. This has been confirmed theoretically [60].

Bubble phase

Further away from half filling, the ground state is the 2-electron bubble phase which is believed
to be isotropic [10]. The bubble phase is theoretically predicted to be stabilized in the filling
factor regime0.25 < νtheo

N < 0.36 [53]. It is thought to consist of islands (bubbles) of one filling
factorν = m immersed in a background of a neighboring filling factorν = m±1. The bubbles
form a long range ordered triangular crystal with a lattice constantλCDW. Therefore, the bubble
phase is the many particle analogue of the famous Wigner crystal [12] (see next section). Weak
long range disorder is sufficient to localize the bubble crystal at low temperatures giving rise
to an insulating phase in which the longitudinal resistance vanishes and the Hall resistance is
quantized. Unlike for the FQHE though, the Hall resistance is quantized to the value of the
nearest integer filling factor (Fig.2.14). The bubble phase can only be distinguished from the
neighboring IQHE because both regimes are separated by a narrow range of magnetic fields
in which the longitudinal resistance is non-zero. For this reason, the quantization effect in the
bubble phase is dubbed the Reentrant Integer Quantum Hall Effect (RIQHE). In analogy to the
ordinary IQHE, where single electrons are localized by a short range disorder potential, the
RIQHE is explained as collective pinning of a bubble crystal by weak long range disorder.

Non-equilibrium transport measurements have further supported the existence of a bubble
phase. When a high DC current bias is applied to the sample in the bubble phase regime, the
RIQHE suddenly breaks down in a hysteretic way [54]. This is thought to be an indication
of a first order depinning transition of the bubble crystal. At sufficiently high bias, the bubble

7The charge for each electron is smeared out over a similar scale and therefore the overall charge modulation in

the stripe state is only of the order of15%. To be precise one should therefore speak of a filling-factor-wave state

instead of a CDW state.
8At the usual 2DES densities (n ≈ 1 − 2 · 1015 m−2), the stripes are always aligned along the [110] crystal

axis. Aboven ≈ 2.9 · 1015 m−2, the stripes may rotate into the [110] direction [58].
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Figure 2.14: Schematic behavior of the longitudinal and Hall resistance around

filling factor ν = 9/2. The anisotropic stripe phase is located close to the half

filled Landau level. On each side of the stripe phase, the isotropic bubble phase

is stabilized. Pinning of the bubbles leads to the RIQHE (see text) where the Hall

resistance is quantized to the adjacent IQHE value.

crystal is free to slide over the disorder potential, thereby inducing dissipation. At the same
time, narrow band, high frequency noise is observed [61]. It is identified with the washboard
noise known from other CDW systems [11].9 Although the non-equilibrium breakdown mea-
surements strongly support the bubble phase picture, they have to be treated with caution. The
applied currents are high enough to induce Joule heating and other unwanted nonlinear effects.
We will return to this question when we discuss our own experimental results in chapter 5.

The bubble phase in the N = 2 Landau level has also been identified by microwave measure-
ments [62]. In these experiments, the bubble phase is observed over a range of filling factors
(0.20 < νN < 0.38) and it is found to be most stable aroundνN ≈ 0.25.

Wigner crystal phase

The Wigner crystal phase is predicted to appear at low electron densities of the partially filled
Landau level, i.e.νtheo

N < 0.25 [53]. In this isotropic phase, a triangular crystal lattice with

9An unresolved issue here is the observed frequency which is much too low to be explained by conventional

models.
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long range order forms with one electron per lattice site. The Wigner crystal phase in higher
Landau levels is believed to be identical to the one found in the N = (0,↑) Landau level at filling
factorsν < 0.2 [63]. The lowest energy modes are collective excitations of the electrons around
their equilibrium positions. These magnetophonon modes are the analogue to phonons in real
crystals. They are pinned, i.e. localized, even by weak long range disorder in the sample. Here,
’weak’ refers to a disorder strength that is not strong enough to disrupt the crystalline order
at small length scales.10 The localized modes are referred to as pinning modes, observable
in microwave experiments. For small excitations, electrons in a pinned Wigner crystal are
immobile and thus the phase will be an insulator. Theory predicts the Wigner crystal to be
stable all the way down to the empty Landau level, i.e.νN = 0. However, calculations so
far neglect the effects of disorder. In realistic samples, disorder disrupts the Wigner crystal
and therefore destroys the electron correlations. This becomes most significant at the lowest
densities within the Landau level where one therefore expects the IQHE to be the ground state
instead of the correlated Wigner crystal. In this scenario, the boundary between the IQHE and
the Wigner crystal phase move towards zero filling as the disorder potential is turned off.

The experimental evidence for a Wigner crystal phase in the lowest, i.e. N = (0,↑), Landau
level is substantial. There, photoluminescence, microwave as well as transport measurements
have confirmed its existence [63, 64]. Very recently, Wigner crystallization has also been ob-
served by microwave excitation of its pinning mode in the N = 1 Landau level aroundν = 3 [65]
and in the N = 2 Landau level aroundν = 4 [66]. To our knowledge, Wigner crystal formation
in the N = 2 Landau level has not been observed in any transport measurements.

2.3.2 Electron Liquid Crystal (ELC) picture

In a more sophisticated theoretical description of the N = 2 Landau level, quantum fluctuations
are taken into account. This leads to the Electron Liquid Crystal (ELC) picture for electron
correlations in higher Landau levels [13]. ELC phases are the quantum mechanical analogue
of classical liquid crystals. They are predicted to be a generic feature of strongly correlated
fermionic systems with Coulomb-like interactions. For instance, the theory of ELC phases
in high Landau levels has a strong similarity to that of fluctuating, metallic stripes in doped
Mott insulators [16]. We introduce the concept of ELC phases closely following Fradkin and
Kivelson [13].

We start with a configuration that resembles the CDW stripe phase introduced in the previous
section and then discuss the modifications arising from quantum fluctuations. Stripe-shaped
regions of alternating integer local filling factorν loc

N = 1 andν loc
N = 0 are directed along the

x-axis (Fig. 2.15(a)). Within these regions, the Hall conductance is quantized to the values
2Ne2/h and2(N + 1)e2/h, respectively. Initially, we assume that this configuration is stable

10However, it may disrupt the long range order. In that case, the phase rather resembles a polycrystal with

independent regions of crystalline order.
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Figure 2.15: (a) Self consistent, chiral edge states (blue) form at the boundaries

between regions withνloc
N = 1 andνloc

N = 0. The regions have respective widths

of D1 andD0 which depend on the average filling factor (eq. 2.49). Tunneling be-

tween the edge states is parameterized by scattering timesτ0 andτ1, respectively.

(b) Quantum fluctuations of paired edge states: (i) Transverse shape modulations

with amplitude∆Y . (ii) Phase shift∆θ between charge modulation of adjacent

edge pairs (Luttinger liquids). (c) ELC phase diagram atT = 0 as a function of

the quantum fluctuation strength∆Y and the average filling factorνN. The red

horizontal line indicates the region of the phase diagram relevant in the N = 2

Landau level. The diagram is based on [13].

within the whole filling factor range of the topmost Landau level (νN = 0 . . . 1). Only the widths
of the regions are variable and depend on the filling factor according to

νN =
D1

D0 + D1

, (2.49)

whereDi is the width of regions with local filling factorν loc
N = i. The sum of the widths

D0 + D1 = λCDW is given by the period of the local filling factor modulation which follows
from equation 2.48. Hence, at fillingνN = 1/2 both kinds of regions have the same width
(D0 = D1), whereas away from half filling, the width of one type of region increases at the
expense of the other type.

In the Büttiker picture of the QHE (section 2.1.4), gapless, i.e. conducting, edge states
occur at the boundaries of any two regions with differently quantized Hall resistance. Therefore,
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one also expects such metallic-like edge states between the incompressible regions in the ELC
phases (Fig. 2.15 (a)).11 Equivalent to the case of the IQHE, edge state electrons on opposite
sides of a quantized region have opposite velocities, i.e. they constitute a chiral electron liquid.

However, there are important differences between the edge states at the boundaries of a
Quantum Hall-device and the internal edge states of the ELC phases. In the case of the IQHE,
the edge states are generated by the confinement potential at the boundaries of the sample,
whereas the ELC edge states form self-consistently driven by the Coulomb interaction. This
gives rise to a new class of low-energy excitations, related to fluctuations of the edge shape.
The deformations are parameterized by a length∆Y which specifies how much a conducting
edge curls up into the y-direction (Fig. 2.15 (b)). Without fluctuations,∆Y = 0, and the edges
run perfectly straight along the x-direction. In this limit, the ELC picture corresponds to the
CDW picture of the last section.

Another difference is that in the IQHE, the edges of opposite chirality are usually far apart
from each other, and thus their mutual interaction can be neglected. This is not the case for
the ELC edge states which have a distance of the order of the cyclotron radius only. Close
to the half filled Landau level, the interactions between the edge states can be parameterized
by two scattering timesτ0 andτ1 across empty and filled regions, respectively (Fig. 2.15(a)).
For general filling factors, the complex problem of edge interactions is greatly simplified in an
elegant, field-theoretical description. Everywhere, except exactly at half filling, each edge state
has a nearest neighbor of opposite chirality at a distanceD and another neighbor further away
at a distanceD (see Fig. 2.15(a) for the caseνN < 1/2, i.e. D = D1 < D0 = D). It is
advantageous to pair up nearest neighbor edge states and represent each pair as a single non-
chiral Luttinger liquid.12 The internal interaction parameter of the Luttinger liquid is derived
from the distanceD between the edge state pair that forms this liquid.

In summary, we are left with conducting Luttinger liquids (with internal interaction param-
eterD) which interact with neighboring Luttinger liquids (parameterized byD). The Luttinger
liquids display charge-density fluctuations along their extended axis (the x-axis in our case)
with a characteristic period given by their internal interaction parameter (and thusD) according
to

λLutt. =
4πl2B
D

. (2.50)

Therefore, using equation 2.49, the period of the charge density fluctuationsλLutt. depends di-
rectly on the average filling factor. The interaction between adjacent Luttinger liquids locks
their respective charge-density fluctuations to each other such that the whole system of interact-
ing Luttinger liquids becomes unstable, leading to crystallization.

The ELC phase diagram at T = 0 is shown in Figure 2.15(c). The symmetry of the phases

11Similar to the CDW case, this picture becomes exact forlB � λCDW ≈ 2.6Rc, i.e. N � 1. Still, it should

be a reasonable approximation already atN = 2.
12Luttinger liquids are one-dimensional, strongly correlated electron liquids which are described by an internal

interaction parameter.
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is symbolized by blue lines which represent the interacting, conducting Luttinger liquids. The
phase diagram is shown as a function of the filling factorνN and of the shape fluctuation strength
∆Y . The magnitude of the shape fluctuations increases along the y-axis. Generally, it is ex-
pected that shape fluctuations are strong in the lowest Landau level and weaken towards higher
Landau levels. In a sense, the electron system behaves more classically in higher Landau lev-
els, and the y-axis can be symbolically labelled by the Landau level index like1/N. Along
the x-axis, the filling factor of the topmost Landau levelνN is plotted. As mentioned above,
an increasing filling factor leads to a decreasing periodλLutt. of the charge density fluctuations
within the Luttinger liquids.

In the following, we will discuss the different ELC phases separately including their phase
boundaries, the effect of finite temperature, and also the implications for transport experiments
within the different phases.

smectic phase

The smectic phase strongly resembles the CDW stripe phase from Hartree-Fock theory de-
scribed in section 2.3.1. It breaks the translational symmetry in the y-direction and also the
rotational symmetry. However, there are small, but important differences. In the smectic phase,
the perfectly oriented stripes of the CDW stripe phase are slightly disturbed by small shape
fluctuations. Small in this context means∆Y << λCDW. The shape fluctuations actually sta-
bilize the smectic phase against crystal formation away from exactly half filling of the Landau
level, because they induce a phase difference∆θ between the charge fluctuations on adjacent
Luttinger liquid stripes (see below). The smectic phase is compressible, and therefore the Hall
conductance is not quantized and varies continuously with the filling factor.

Within the smectic phase , the theory of coupled Luttinger liquids [67] provides predictions
for the conductivities

σxx =
e2

h

λCDW

vF(τ0 + τ1)
,

σyy =
e2

h

vFτ0τ1

λCDW(τ0 + τ1)
, (2.51)

σxy =
e2

h
([ν] +

τ1

τ0 + τ1

) ,

wherevF is the Fermi velocity,λCDW the CDW period (eq. 2.48), andτi are the scattering
times introduced above (see Fig. 2.15(a)). From particle-hole symmetry, one expectsτ0 = τ1 at
exactly half filling of the Landau level (νN = 0.5). Here, equations 2.52 reduce to the important
parameter free prediction

σxxσyy = (e2/2h)2 ,

σxy =
e2

h
([ν] + 1/2) . (2.52)
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Therefore, the Hall resistivity at half filling is reduced from the classical valueρxy = (h/e2)/([ν]+

1/2) to

ρxy =
σxy

σxxσyy + σ2
xy

=
h

e2

2[ν] + 1

([ν] + 1)2 + [ν2]
. (2.53)

Although the above prediction is valid only forνN = 0.5, we can infer from this that the transi-
tion between the Hall plateaus (and probably also the maximum in the longitudinal resistance)
should be shifted from half filling to slightly higher magnetic fields (i.e. toνN < 0.5).

nematic phase

The nematic phase evolves from the smectic one when the size of the transverse fluctuations
becomes large enough so that neighboring conducting stripes start to touch, i.e. when∆Y ≈
λCDW. From this point on, dislocations of the perfect stripe pattern may occur where two stripes
merge or a single one terminates. Thus, in the nematic phase long range stripe order is destroyed
and only short range order survives. For this reason, the nematic phase is translationally invari-
ant in both crystal directions but the rotational symmetry is still broken. A generalization of
the theory for the smectic phase shows that equations 2.52 and 2.53 are also valid in the ne-
matic phase [68]. Recently, tilted magnetic field studies have supported the notion that it is
indeed the nematic phase and not the smectic phase which is stabilized around filling factor
νN = 0.5 [69,70].

stripe crystal phase

Charge-density fluctuations of adjacent Luttinger liquids are locked in phase because of their
mutual interactions. This triggers an enhancement of the fluctuations until the Luttinger liquids
break up into disconnected smaller pieces along their extended axis. An insulating stripe crystal
forms, since current cannot longer flow between the stripe pieces. At the lowest temperatures,
this crystal phase is a true insulator. Since only the topmost Landau level is insulating, one ex-
pectsσxx = σyy = 0 butσxy = ie2/h, wherei is the number of the nearest integer filling factor.
This is the same behavior as expected from the CDW bubble phase, and it also explains the
RIQHE at intermediate filling factors0.2 < νN < 0.4. Unlike the isotropic CDW bubble phase,
the ELC stripe crystal phase is anisotropic. This difference is difficult to address by transport
experiments since both phases are insulating. So far, the only indication for an isotropic insu-
lating state comes from microwave experiments [65]. They seem to indicate, that excitation of
pinning modes in this regime does not depend on the polarization of the microwave radiation.
In our opinion, however, the question whether an isotropic or anisotropic crystal forms has not
been convincingly answered up to date.

The stripe crystal phase is stable over the whole range of filling factors as long as the shape
fluctuations are negligible (∆Y ≈ 0, bottom part of Fig. 2.15(c)). As the shape fluctuations
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increase, a phase difference∆θ is induced between the charge density fluctuations on neigh-
boring Luttinger liquids (Fig. 2.15(b)). When this phase difference reaches a critical value,
adjacent Luttinger liquids are effectively independent and hence remain conducting. In this
case, the smectic or nematic phase is stabilized. Obviously, shape fluctuations produce larger
phase shifts when the period of the charge density modulationsλLutt. is small. Therefore, sta-
bilization of the conducting phases takes place close to the half filled Landau level for small
shape fluctuation strengths, and it moves towards lower filling factors for increasing strength.

isotropic liquid

All phases discussed above will turn into a isotropic liquid phase as soon as the shape fluctu-
ations become sufficiently strong. Here, the stripes have no preferred direction anymore, and
translational as well as rotational symmetries are restored. Therefore, all transport coefficients
should be isotropic. Some local stripe correlations might still exist in the isotropic liquid phase
for some range of fluctuation strengths, but they will vanish if the strength increases beyond a
certain point.

Wigner crystal phase

The Wigner crystal phase develops from the stripe crystal phase at low filling factorsνN. In this
regime, the periodλLutt. of the charge fluctuations along the stripes becomes so small that the
stripe pieces left over after crystallization are only composed of a single electron. This phase is
identical to the CDW Wigner crystal.



Chapter 3

Ballistic Transport

In this chapter, we investigate ballistic transport of electrons and of Composite Fermions. We
show that Composite Fermions behave as ordinary particles and can be studied in well defined
and tunable geometries. After we introduce Quantum Point Contacts (QPCs) at low and high
magnetic fields, we look at straight ballistic electron transport in a two QPC geometry. The
remainder of the chapter discusses straight ballistic transport of Composite Fermions.

3.1 Quantum Point Contacts (QPCs)

One of the most important building blocks of mesoscopic transport experiments is the Quantum
Point Contact (QPC) [71]. QPCs are short and narrow constrictions in a 2DES with a width
Wc of the order of the Fermi wavelengthλF (Fig. 3.1 (b)). Because of the resulting size
quantization, electrons occupy only a finite number of transverse modes in the constriction.
The conductance through a QPC is quantized to

G =
2e2

h
N , (3.1)

whereN is the number of transverse modes which can be estimated fromN = Int[kFWc/π].
Experimentally, QPCs are realized by means of metallic lateral surface gates (Fig. 3.1(b)).
When a negative voltageVQPC is applied to the gates, a constriction in the underlying 2DES is
formed since electrons are repelled from underneath the gates. The width of the constriction
decreases as the QPC voltage is made more negative, and fewer and fewer transverse modes are
occupied in the constriction. This results in a stepwise decrease of the conductance according
to equation 3.1.

As a specific example, we now discuss a lithographically defined QPC-device (for fabrica-
tion details see Appendix A). Its 2-point conductance is shown in Figure 3.1(a) as a func-
tion of the voltageVQPC applied simultaneously to both gates. At small negative voltages
(VQPC > −0.45 V), the QPC is not well defined because the 2DES underneath the gates is
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Figure 3.1: (a) ConductanceG of a Quantum Point Contact as a function of

the voltageVQPC applied to the gates. (b) Electron-microscopic image of the

metallic surface gates (light gray) used to define a QPC of lithographic widthWc.

(c) Measurement configuration for the 2-terminal conductanceG. The triangle

labelled withI/V symbolizes a current amplifier.

not fully depleted. AtVQPC ≈ −0.45 V, the number of occupied transverse modes isN = 15,
and it decreases down toN = 2 at the biggest negative voltageVQPC = −2 V. The QPC con-
ductance can not be reduced to zero because leakage currents start to appear between the gates
and the 2DES at still higher gate voltages (VQPC < −2 V). From equation 3.1, we can estimate
that the width of the constriction decreases fromWc ≈ 490 nm to Wc ≈ 65 nm for the voltage
range shown in figure 3.1. The largest width corresponds nicely to the lithographically defined
gate opening ofWc = 500 nm.

At non-zero magnetic fields, when the cyclotron radius becomes smaller than the width of
the constriction, i.e.2Rc ≤ Wc, the number of conducting modes in the QPC is not related
to its dimensions anymore. Instead, it is given by the number of occupied Landau levels in
the constriction [72]. The quantization of the QPC conductance is then a manifestation of the
Quantum Hall Effect in the constriction. In the Büttiker picture of the Quantum Hall Effect
(sec. 2.1.4), the 2-terminal conductance through the QPC is determined by the number of edge
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Figure 3.2: QPC conductance at high magnetic field (ν ≈ 1/2 in the bulk 2DES).

Conductance plateaus occur whenever the density in the QPC is reduced, so that

a fractional filling factorνQPC occurs within the constriction. In the Büttiker

picture, the conductance is determined via eq. 3.2 by the type of edge channels

traversing the QPC (e.g., inset for̃G = 2/5).

channels that traverse it

G̃ ≡ G/(e2/h) =
∑
n

Tn(νn − νn−1) = νQPC , (3.2)

whereG̃ is conductance in units ofe2/h, Tn is the transmission coefficient for the nth edge
channel, and the sum runs over all filling factors smaller or equal to the filling factorνQPC in
the QPC. For the last identity we have assumedTn = 1, i.e. perfect transmission, for all edge
channels which traverse the QPC. The identity is obvious for the IQHE regime, whereνn −
νn−1 ≡ 1, but it is equally valid for the FQHE regime [73]. Figure 3.2 shows the conductance
through a QPC at a magnetic field of12 T. The bulk filling factor, far away from the QPC
gates, is slightly belowν ≈ 1/2. Hence, the 2-terminal conductance without any voltage
applied to the QPC is close tõG ≈ 0.5, because it is just the inverse of the 2-terminal Hall
resistance in this case. Since the filling factorνQPC in the QPC can only be smaller than the
one in the bulk, we do not expect to observe any signs of the IQHE. Instead, conductance
plateaus occur whenever the density in the QPC is reduced such that a FQHE state develops
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in the QPC. For example, this means thatG̃ = 2/5 when the region within the constriction
is at filling factorνQPC = 2/5 (inset Fig. 3.2), i.e. at a gate voltage ofVQPC ≈ −0.4 V.
Conductance plateaus occur atG̃ = 1/3, 2/5, and 3/7, as expected from the Büttiker picture
according to equation 3.2. Strikingly, the first conductance plateau atG̃ = 3/7 already occurs
at a voltageVQPC ≈ −0.15 V. This voltage is only33% of the one required to deplete the 2DES
underneath the gates at zero magnetic field (compare Fig. 3.1). Hence, in a strong magnetic
field a slight reduction of the density underneath the gates is already sufficient to define the QPC.
This behavior can be explained, if we look at the relative density change∆n/nbulk necessary to
reduce the filling factor underneath the gates from the bulk valueνbulk to the valueνgate

nbulk − ngate

nbulk

=
∆n

nbulk

= 1− νgate

νbulk

. (3.3)

If a filling factor of νgate = 1/3 is reached, transport underneath the gates will be definitely sup-
pressed because a QH state forms in this region. This situation arises exactly when∆n/nbulk =

33%, and therefore, the gate voltageVQPC at which the QPC is defined should be reduced by
the same factor.

We can also infer from Figure 3.2 that resonance-like features are observed in the conduc-
tance at large negative gate voltagesVQPC < −1.1 V. This phenomenon is present at a very
low density inside the QPC constriction, shortly before the QPC closes and the conductance
vanishes. In this regime, transport takes place via tunneling through localized states in the
constriction [74].

3.2 Ballistic electron transport

An experimental setup which measures the nonlocal transfer resistance (for the setup, see Fig.
3.4(b)) between two opposing QPCs (inset Fig. 3.3) is sensitive to straight ballistic transport of
electrons [75]. A well defined currentIinj is applied across the injector QPC, and the voltage
Vcoll is detected across the collector QPC. Both quantities determine the transfer resistanceRt =

Vcoll/Iinj. At zero magnetic field and for sufficiently high mobility, electrons travel ballistically
on straight paths between the QPCs thereby raising the potential at the collector and contributing
to Rt around zero magnetic field. In the presence of a magnetic field, electrons are deflected
from straight trajectories like classical point charges as a result of the Lorentz force

FL = −evF ×B . (3.4)

This quickly reduces the transfer resistance, so that it tends to zero at a sufficiently high mag-
netic field (≈ 0.2 T in Fig. 3.3). A peak in the transfer resistance aroundB = 0 is therefore
an unequivocal sign of ballistic electron transport between the QPCs. In our device, ballistic
transport is detected over distances ofL = 1 µm. This is not surprising since the electron mean
free path in our 2DES (µ ≈ 10 · 106 cm2/Vs) should be aroundl ≈ 75 µm (eq. 2.9). In
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Figure 3.3: Ballistic transfer resistance peak around zero magnetic field. It arises

from electrons travelling ballistically between the QPCs. The peak is enhanced

when the QPC constrictions are made smaller by applying higher negative volt-

ages to the gates. The inset shows an SEM image of the device along with its

dimensions.

principle, one could even determine the opening angle of the electron beam that is emitted from
the injector QPC by analyzing the maximum value and the shape of the transfer resistance peak
around zero magnetic field [75]. For reasons which will become clear only in the next section,
the experiment shown in figure 3.3 deploys rather wide QPCs (Wc = 700 nm). Therefore, there
are many transverse modes in each constriction for the gate voltages shown. The 2-point con-
ductance (compare Fig. 3.1) would not show any plateaus in this voltage regime. The ballistic
resistance peak increases asVQPC is made more negative, mostly because the voltage dropVcoll

is inversely proportional to the conductance of the collector QPC.
Figure 3.4 shows that, at higher magnetic fields (B > 0.2 T), the transfer resistanceRt re-

sembles the usual longitudinal resistanceRxx trace, and Shubnikov-deHaas as well as Quantum
Hall features develop. In our experiments, we have used two different measurement configura-
tions (Fig. 3.4(b) and (c)). The green curve in Figure 3.4(a) was taken using the configuration
in Fig. 3.4(b). Here, the transfer resistance of the ballistic peak aroundB = 0 has the same
sign as the magneto-resistance features at higher magnetic fields. On the other hand, in the
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Figure 3.4: (a) Ballistic transfer resistance peak and magneto-resistance for two

different measurement configurations. For configuration (b), the ballistic resis-

tance peak has the same sign as the other magneto-resistance features (green curve

in (a)), whereas for configuration (b), it has the opposite one (red curve). For com-

parison, a resistance trace is shown (blue) when the QPCs are not defined.

configuration used to obtain the red curve and illustrated in Fig. 3.4(c), the ballistic peak has
flipped its sign while the other features have not. The sign of the ballistic peak depends on the
polarity of the voltage probe which is connected to the collector QPC, whereas the sign of the
other magneto-resistance features depends on the orientation of the voltage probes with respect
to the current direction. This configuration dependence is very useful if one wants to distinguish
ballistic transport from other magneto-resistance effects. We will return to this point when we
discuss ballistic transport of Composite Fermions atν = 3/2 in section 3.3.3.

3.3 Ballistic Composite Fermion transport

The double-QPC geometry, introduced in the last section, is sensitive to straight ballistic motion
of charge carriers between the QPCs. This type of transport takes place for electronsonlyaround
B = 0. At higher magnetic fields, the Lorentz force deflects electrons away from the collector,
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and no ballistic transfer occurs.
The Composite Fermion picture which was introduced in section 2.2 implies that Composite

Fermions behave like ordinary charged particles subjected to an effective magnetic fieldBeff =

B − 2Φ0n (eq. 2.28). Accordingly, also the Lorentz force for Composite Fermions depends
on the effective field, and hence, Composite Fermions are predicted to move along straight
trajectories atBeff = 0, i.e. ν = 1/2.

3.3.1 QPC voltage dependence

This prediction is indeed verified in Figure 3.5 where we measure the transfer resistance up
to high magnetic fields (B ≈ 17 T) in the device we introduced in the previous section.
For slightly positive voltages (red trace), the usual shallow minimum occurs at filling factor
ν = 1/2. When the gate voltageVQPC is made more negative, the ballistic transport peak for

Figure 3.5: Transfer resistance in the two-QPC geometry (Fig. 3.4(b)) up to

high magnetic fields. When the QPCs are defined (blue trace), a distinct peak at

ν = 1/2 indicates ballistic transport of Composite Fermions. The inset shows the

gradual evolution of the ballistic peak with the applied QPC voltage.
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Composite Fermions gradually appears at this filling (green and blue trace). It is truly remark-
able that straight ballistic motion of charge carriers is observed over a distance of1 µm at a
magnetic field ofB = 16 T. At this field, the cyclotron radius of electrons is less than5 nm.
This shows the predictive power of the Composite Fermion picture. To our knowledge, it is
impossible to explain the transfer resistance peak at fillingν = 1/2 if one relies solely on the
non-interacting electron picture. In section 2.35, we stated that the Composite Fermion mo-
bility µCF is typically about two orders of magnitude lower than the electron mobilityµ, and
hence, the mean free path of Composite Fermions should be reduced by the same factor. We
expect ballistic transport of Composite Fermions over distances of aboutlCF ≈ 750 nm and
have chosen the distance between the QPCs accordingly.

In most cooldowns of the device, the position of the Composite Fermion ballistic resistance
peak on the magnetic field scale turns out to shift with the applied QPC gate voltage. This
effect does not happen with electrons atB = 0. It is a manifestation of the intimate relationship

Figure 3.6: Composite Fermion ballistic transfer resistance peak atT =
240 mK. For increasingly negative gate voltagesVQPC, the ballistic peak shifts

towards lower magnetic fields. This indicates a reduced charge carrier density

inside the QPC constriction.
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Figure 3.7: Change of the maximum electron density in the QPCnQPC with

the gate voltageVQPC extracted from the data of Figure 3.6. The inset shows

how Composite Fermions are deflected by a reduced density in the constrictions

whenνbulk = 1/2 (blue) and how this can be compensated for by choosing an

appropriate, smaller external magnetic fieldνbulk > 1/2 > νQPC (green).

between external magnetic field and charge carrier density for Composite Fermions reflected in
equation 2.28. Figure 3.6 shows the change in the position of the ballistic transfer resistance
peak as the voltage on the QPCs is made more negative. At the same time, the features aris-
ing from the Quantum Hall Effect remain fixed in position. This originates from the fact that
Quantum Hall features are sensitive mainly to the unaltered bulk electron density, whereas the
ballistic peak strongly depends on the density Composite Fermions encounter on their path be-
tween the QPCs. To illustrate this point, we assume that the density within a QPC drops below
the bulk value. When the external magnetic field is set toν = 1/2, Composite Fermions will
experience a vanishing fieldBeff = 0 and move on a straight line everywhere except inside the
QPCs (blue line, inset Fig. 3.7). There, they will be deflected to the side, because the reduced
density produces a non-zero effective magnetic field. Consequently, the Composite Fermions
miss the collector. To compensate for the deflection inside the QPC, the external magnetic field
has to be slightly decreased, so that the effective field is negative in the bulk, but still remains
positive in the QPCs. Under these circumstances, Composite Fermions in the bulk and in the
QPCs will be deflected in opposite directions. When the external magnetic field is tuned to
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the right value, these deflections will compensate each other and Composite Fermions succeed
to travel ballistically from injector to collector (green line, inset Fig. 3.7). Simple geometric
considerations yield the identity

L/2

d
=

Rbulk

RQPC

, (3.5)

whered is the length of the constrictions,L is the distance between the QPCs, andRbulk, RQPC

are the cyclotron radii of Composite Fermions in the bulk and inside the constrictions, respec-
tively. From the position of the ballistic Composite Fermion peak and the device dimensions,
the quantityRQPC can be determined and in turn the density change in the QPCs (Fig. 3.7).

The last paragraph illustrates that, in order to observe the Composite Fermion ballistic peak,
it is necessary to keep the density reduction in the constrictions below∆nQPC ≈ 20%. Oth-
erwise, the shift of the ballistic peak towards lower magnetic fields would be so large that it
would overlap with FQHE features. It turns out, that the density reduction inside the constric-
tion is quite substantial aroundν = 1/2. To alleviate this effect, we chose rather wide QPCs
(Wc = 500 − 700 nm) for our experiments. Also, it turned out that it is necessary to illumi-
nate our samples with a red LED in order to observe the ballistic transfer resistance peak for
Composite Fermions. Under illumination AlGaAs based heterostructures exhibit the persistent
photo-conductance effect. It increases the carrier density, as well as the mobility in such het-
erostructures. A higher mobility improves the Composite Fermion mean free path, and thus
facilitates the observation of ballistic effects. Even more importantly, the sample illumination
leads to a sharper confinement potential, and hence, the density reduction within the constriction
is kept small. It has previously been reported that the persistent photo-conductance effect sharp-
ens the confinement potential near the mesa edges [76], but it remains unclear why it should
have a similar effect on QPC constrictions which are defined by lateral surface gates. One plau-
sible reason may be that the persistent photoconductance-effect induces a weakly conducting
parallel layer of electrons in the dopant region of the AlGaAs barrier close to the 2DES, which
partially screens the electrostatic potential of the metallic surface gates. Effectively, the surface
gates are moved closer to the 2DES and the confinement potential is sharpened. The idea of
screening by a parallel conducting layer is supported by the observation that it is necessary to
apply a higher negative voltage to define the QPCs after illumination than prior to it.

3.3.2 Temperature dependence

The temperature dependence of the Composite Fermion ballistic transfer resistance peak atν =

1/2 additionally confirms that this peak arises from a ballistic effect (Fig. 3.8). The resistance
peak is considerably less sensitive to temperature than the surrounding resistance oscillations
that arise from the Composite Fermion IQHE (i.e. the electron FQHE). The visibility of these
oscillations depends on the size of the gap between quantized Composite Fermion Landau levels
as compared to thermal broadening. Conversely, the appearance of the ballistic peak depends
only on a well defined Composite Fermion Fermi surface and a sufficiently long mean free
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Figure 3.8: (a) Temperature dependence of the ballistic transfer resistance peak

nearν = 1/2. The ballistic peak is shifted towards lower magnetic field because

the density within the QPC is reduced (see last section).(b) The suppression of

the ballistic peak∆Rpeak can be explained by assuming a temperature dependent

Composite Fermion - Composite Fermion scattering rateτcfcf (eq. 3.6).

path. In this sense, the Composite Fermion IQHE is a manifestation of a quantum mechanical
effect, and the ballistic peak is a ‘classical‘ effect at the level of Composite Fermions. This
is analogous to the behavior of electrons atB = 0, where the classical, ballistic peak is more
robust against a temperature increase than the Quantum Hall states at higher filling factors [77].
The temperature dependence of the ballistic peak resistance∆Rpeak (Fig. 3.8) can be well
parameterized by

∆Rpeak = R0e
−(T/T0)2 , (3.6)

whereR0 is the peak resistance atT = 0, andT0 is a characteristic decay temperature. This
functional dependence follows if one assumes a temperature dependent Composite Fermion
- Composite Fermion scattering rate of the form1/τCFCF ∝ T 2 as well as an exponential
dependence of the peak resistance on the inverse scattering time∆Rpeak ∝ exp(−1/τCFCF)
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[77]. In the case of electrons aroundB = 0, a similar temperature dependence for the electron-
electron scattering rate is predicted,1/τee ∝ T 2 ln(T ) [78].1 From the fit of equation 3.6 to our
data shown in Figure 3.8 we obtainT0 = 1.08 K.

3.3.3 Filling factor ν = 3/2

The Composite Fermion picture can also be invoked to understand experimental observations in
the magnetic field regime around filling factorν = 3/2 (compare section 2.2.5). At this filling,
the lowestN = (0, ↑) spin resolved Landau level is completely filled with electrons whereas the
upperN = (0, ↓) spin branch is only half filled. Only the electrons in the partially filledN =

(0, ↓) level are transformed into Composite Fermions. Since the degeneracy of each Landau
level is modified upon changingν, the Composite Fermion density depends on the external

1This equation also fits the data very well. Since it requires an additional parameter, we have used the simpler

dependence (eq. 3.6).

Figure 3.9: Ballistic Composite Fermion transport aroundν = 3/2 at T =
240 mK. The measurement configurations for the differently colored traces are

the same as in Figure 3.4. The weak resistance feature atν = 3/2 changes its sign

in the same way as the electron peak atB = 0. This confirms its ballistic origin.
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Figure 3.10: (a) Temperature dependence of the ballistic transport peak at

ν = 3/2 (compare Fig. 3.8).(b) The suppression of the resistance peak height

is compared with the result of eq. 3.6 (red lines), using the same parameter

T0 = 1.08 K that was obtained from the fit shown in Fig. 3.8 atν = 1/2.

magnetic field. For this reason, the effective magnetic fieldB
(3/2)
eff = 3(B − B3/2) increases

three times faster than the external magnetic field away fromν = 3/2 (eq. 2.41). Thus, all
magneto-resistance features related to Composite Fermions are closer together on the external
magnetic field axis. It is therefore more difficult to distinguish the ballistic transfer resistance
peak from features that originate from the FQHE. We circumvent interpretation difficulties by
exploiting the dependence of the relative sign between the ballistic peak and the QHE features
on the measurement configuration as explained in Figure 3.4. We show in Figure 3.9 that the
resistance feature observed atν = 3/2 changes its sign in the same way as the ballistic electron
peak atB = 0. This clearly verifies that the resistance feature arises from ballistic transport of
Composite Fermions atν = 3/2. The same figure also shows that the ballistic peak vanishes
when no voltage is applied to the QPC gates (blue trace). In fact, the peak atν = 3/2 gradually
develops as the gate voltage is made more negative (data not shown).

The ballistic transport peak atν = 3/2 survives up to temperatures higher than1400 mK

(Fig. 3.10(a)). Similar to the situation atν = 1/2, the surrounding FQHE features already
disappear at considerably lower temperatures, emphasizing the ‘classical‘ character of the bal-
listic transfer resistance feature. Atν = 3/2, the extraction of the resistance peak height as a
function of temperature (Fig. 3.10(b)) is difficult since the peak is rather small and not very
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Figure 3.11: Ballistic transport peak atν = 3/2 as a function of the voltage

applied to the QPCs. With increasingly negativeVQPC the ballistic peak shifts

towards negative magnetic fields as a result of the duality between the Composite

Fermion density and the external magnetic field. The temperature isT = 240 mK.

well separated from the QHE features at lower temperatures. Still, we fit the resistance peak
height with equation 3.6, where we chooseT0 = 1.08 K, identical to the value obtained from
the temperature dependence atν = 1/2 (Fig. 3.8). Although the fit is not very accurate, the
same temperature scale appears relevant for the suppression of the resistance peak atν = 3/2

andν = 1/2. This observation suggests similar scattering mechanisms for Composite Fermions
at these two filling factors.

As for ν = 1/2, the ballistic peak atν = 3/2 shifts to lower magnetic fields whenever the
voltage on the QPCs is made more negative (Fig. 3.11). In order to compensate for the de-
flection of Composite Fermions within the QPCs, the external magnetic field has to be reduced
(compare Fig. 3.7).



Chapter 4

Phase coherent Transport

This chapter is devoted to transport in mesoscopic devices that contain a tunable antidot: an area
that is depleted from electrons but surrounded by the 2DES from all sides. After introducing the
specifics of this device geometry, we first look at classical orbits of electrons around the antidot.
The main section then discusses phase coherent transport in the devices and its explanation in
the framework of the Aharonov-Bohm effect. The temperature dependence of the interference
effect is treated extensively, and the section is concluded with a short introduction to interesting
topological defects in the interference pattern referred to as phase dislocations.

4.1 Antidot geometry

The devices used for the experiments in the following sections have been fabricated using a
2DES with a mobility ofµ = 1×106 cm2/Vs and a density of aboutn = 2.1×1015 m−2. Cen-
tral to the geometry is a gated antidot (Fig. 4.1) with a lithographic area ofAAD ≈ 0.32 µm2.
Electrons are electrostatically repelled from underneath the antidot by applying a negative volt-
ageVAD. Hence, a tunable potential hill is created within the 2DES. It extends above the Fermi
energy for sufficiently large negative gate voltages and effectively forms a hole in the 2DES.
This is a necessary condition to observe the Aharonov-Bohm effect. The antidot is located in a
constriction of the 2DES that is formed by a negative voltageVsg on the side gates (Fig. 4.1).
The device can be regarded as two parallel Quantum Point Contacts (QPCs - see section 3.1)
that are independently tunable. The antidot is electrically contacted using an air-bridge gate
technique [79].1 Although technologically challenging, the electrical connection of the antidot
is necessary to adjust the electric potential of the antidot gate and thus make the device fully
tunable.

1The devices have been fabricated by Y. Feng, National Research Council, Ottawa, Canada. In the later stage

of this work, we employed a similar air-bridge gating technique that we describe in Appendix A.3.2.
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Figure 4.1: (a) Electron micrograph of the antidot device geometry. The light

regions are the metallic gates that are used to deplete the 2DES underneath. (b)

The central antidot is electrically connected via a metallic air-bridge [79]. (c)

Schematic drawing of the device geometry and the measurement setup. The cir-

cular (red) and peanut shaped (green) orbits around the antidot (AD) are shown.

The side gates (SG) define a narrow channel when a negative voltageVsg is ap-

plied to them.

4.2 Trapped classical orbits

Applying a negative voltage to the side gates as well as the antidot defines two parallel QPCs
that are individually tunable. We have confirmed the existence of each QPC by recording its
conductance quantization in multiples of2e2/h (compare section 3.1). A measurement of the
low field four-terminal resistance atT = 1.2 K is shown in Figure 4.2. Both QPCs have
been adjusted so that only one transverse mode is occupied in each of them resulting in a total
resistance close toR = 1/(2e2/h + 2e2/h) ≈ 6.5kΩ at zero magnetic field. The negative
magneto-resistance in the regime betweenB = 0 T andB = 0.1 T results from the mismatch
between the number of transverse magnetic modes in the constrictions and in the wide part of
the 2DES far away from the constrictions [80].

At slightly higher magnetic fields, resonance-like structures appear in the resistance. They
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Figure 4.2: Magneto-resistance atT = 1.2 K. The resistance maxima, labelled

with arrows, arise from trapping orbits of electrons around the elliptical antidot

(shown in the inset with correct scale). The most simple orbits are circular- (red)

and peanut-shaped (green). The peanut-shaped orbit includes a specular reflection

from the antidot. From the magnetic field positionB1 andB2 of the maxima, it is

possible to extract the curvature of the specific orbits.

occur whenever electrons are trapped into orbits around the antidot by the magnetic field-
induced Lorentz force [81]. Trapped electrons do not contribute to the transport since they
effectively do not traverse the device. This leads to an increase in the resistance at the magnetic
field values that support stable orbits around the antidot. The radius of the most simple, circular
trapping orbit (inset Fig. 4.2) can be extracted from the magnetic field position of the first res-
onance viaRc(B1) = h̄kF/eB1. FromB1 = 0.132 T, we obtainRc(B1) = 575 nm which is in
good agreement with the device dimensions. It has been shown by simulations that an elliptical
antidot, akin to the one used in the experiment, favors well-defined trapping resonances of the
resistance as a function of the magnetic field [82]. The resistance peak at roughly twice the field
of the primary trapping peak, i.e. atB2 = 0.286 T ≈ 2B1, is ascribed to an orbit that includes
an additional specular reflection off the antidot boundary (inset Fig. 4.2). At even higher fields
and in certain regimes of gate voltage, the resonance pattern is more complicated. It would
require detailed simulations to identify each structure with a particular orbit of electrons around
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the antidot.

4.3 Aharonov-Bohm oscillations

At low temperatures (T = 50 mK), one observes quasiperiodic oscillations of the magneto-
resistance, superposed on the general features that arise from magnetic trapping (Figure 4.3).
Quantum mechanics prescribes that electrons pick up an additional phase when they encircle
the antidot. The phase is proportional to the magnetic flux penetrating the area enclosed by
the electrons’ path (see section 2.1.7). Constructive or destructive interference occurs between
those electrons encircling the antidot and those simply passing by. This causes oscillations
in the resistance as a function of the external magnetic field - the well known Aharonov-Bohm

Figure 4.3: Magneto-resistance atT = 50 mK. The QPC gate voltage settings

are very similar but not identical to the ones in Figure 4.2. Aharonov-Bohm os-

cillations start to appear around a magnetic fieldB1 corresponding to the circular

trapping orbit (small inset). A closeup (top inset) shows the quasi-periodicity of

the oscillations. From the local period∆B, one can infer the area enclosed by the

orbit.
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effect.2 The areaA enclosed by the electrons’ path can be determined from the period∆B of the
Aharonov-Bohm oscillations:A = Φ0/∆B. A period of∆B1 = 3.6 mT and∆B2 = 4.3 mT

has been extracted in the magnetic field regime of the circular and peanut-shaped trapping orbits,
respectively. The corresponding circular areas have radii ofR(∆B1) =

√
A1/π = 600 nm and

R(∆B2) = 550 nm. These values agree well with the device dimensions and also with the
dimensions extracted from the magnetic field position of the respective trapping peaks (Fig.
4.2).

For a detailed analysis of the Aharonov-Bohm interference effect in our device, it is useful
to separate the quasi-periodic oscillations from the smoothly varying background. The conduc-
tance3 G = 1/R can be written as

G = g̃ + δg (4.1)

whereg̃ is the smoothly varying part andδg the oscillatory part of the conductance. We ex-
tract g̃ from our data by means of a Savitzky-Golay smoothing technique [83]. This technique
has an advantage over other smoothing techniques because it preserves the amplitude of the
extracted oscillatory part of the data if the parameters are chosen carefully. The resultingg̃ for
the measurement of Figure 4.3 is shown in Figure 4.4(b). The oscillatory partδg is obtained
by subtracting the smooth partg̃ from the total conductance (Fig. 4.4(a)). The quality of the
separation can be judged by noticing that the extracted oscillatory part of the conductance has
a baseline of zero, and the smoothed part shows no remnants of the oscillations.

From the oscillatory partδg of the conductance, we can now extract the periodicity∆B of
the Aharonov-Bohm oscillations as a function of the magnetic field (Fig. 4.4(c)). The period-
icity monotonically increases from low to high magnetic fields. This general trend reflects the
fact that the trapped orbits shrink as the magnetic field is increased. AtB ≈ 0.2 T, where the
orbit type changes from circular to peanut-shaped, the periodicity behavior shows a kink. The
area of the peanut-shaped orbit depends more strongly on the cyclotron radius than the circular
orbit since it essentially consists of two adjacent circles. Therefore, the periodicity will increase
faster in the regime of the peanut-shaped orbit which is indeed observed. BeyondB ≈ 0.4 T,
the periodicity starts to level of, and it saturates at a value of∆B = 4.9 mT. The saturation of
the periodicity is expected since the area enclosed by the electron orbit can not decrease below
the size of the antidot. The area extracted from the saturation value,∆B (Amin ≈ 0.84 µm2),
is substantially larger than the lithographic antidot gate area (see above). The electrostatic po-
tential of the antidot gate will be blurred out at the position of the 2DES because of its distance
from the surface. Hence, the area in which the 2DES is depleted will certainly be bigger than

2To be precise, the effect that we describe here differs from the historic Aharonov-Bohm effect [38]. The elec-

trons are not only subjected to a magnetic vector potential but they directly feel the magnetic field. Additionally,

the electron orbits are only stable in a suitable magnetic field interval, unlike in the historic case. However, the

terminology is often used in a wider sense.
3The four-terminal measurement is effectively a two-terminal measurement as far as the device is concerned.

Then, the conductance is just the reciprocal of the resistance.
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Figure 4.4: (a) Aharonov-Bohm contributionδg of the conductance through the

device at a fixed gate voltage setting extracted from a measurement atT = 50 mK
by a digital filtering technique (see text). (b) Smoothly varying partg̃ of the

conductance from the same measurement. (c) Aharonov-Bohm period extracted

from (a) as a function of the magnetic field.

the antidot gate size.

4.3.1 Temperature dependence

The Aharonov-Bohm oscillations in the antidot device depend very sensitively on the tem-
perature, and they completely vanish aboveT ≈ 700 mK (Fig. 4.6). This reduction of the
interference effect can be understood as a thermally induced phase averaging effect [84]. Since
electrons have energies within a window of the order of∆E = kBT around the Fermi en-
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Figure 4.5: Measured conductanceG (left) at different temperatures in the

regime of the peanut shaped orbit (see Fig. 4.2). The simulation (right) shows

the conductance oscillationsδg, obtained from the model described in the text,

for the parametersT0 = 85 mK andR = 0.82 at the same temperatures.

ergy, they will experience a spread in their respective dynamical phases over time according to
∆ϕ ≈ ∆E · t/h̄. If the temperature is high enough, so that∆ϕ > π/2 within the time the
electrons spend in the device, destructive interference occurs between electrons with different
energies, and the oscillations vanish. The condition given above can rephrased in terms of the
thermal length [85]

Lth =
h̄vF

kBT
. (4.2)

In this terminology, the interference effect becomes suppressed when the thermal length be-
comes shorter than the typical orbit length.

Here, we will address the effect of phase averaging from an essentially equivalent view-
point. To simulate the interference effect, we assume a simple model for the transmission of
electrons through the antidot device (Fig. 4.6(b),(c)). Electrons, moving through the constric-
tions of the device, have a certain, small probabilityR � 1 to tunnel on and off the closed
orbit that encircles the antidot. For simplicity, we have chosen this probability to be the same in
each constriction. The resulting energy dependent transmission coefficient for electrons passing
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Figure 4.6: (a) Temperature dependence of the Aharonov-Bohm oscillation am-

plitude (circles) extracted from the data shown in Fig. 4.5. The solid line repre-

sents the theoretical prediction from the model described in the text. The given

values forT0 andR result in the best fit. In two limiting cases, the electrons or-

biting the antidot are either weakly (b) or strongly (c) coupled to the electrons

passing by.

through the device is [85]

Td(ε) = 1− R2

1 + (1−R)2 − 2(1−R) cos 2π(ε/∆ε + Φ/Φ0)
. (4.3)

Here,Φ is the magnetic flux through the area of the closed orbit, and∆ε is the level spacing
arising from the size quantization of this orbit.4 In the low magnetic field regime, the circular
orbit around the antidot is completely determined by the applied magnetic field. Similar to the
case of Shubnikov-deHaas oscillations, the energy spectrum of the antidot orbit is quantized
with a level spacing

∆ε = h̄ωc . (4.4)

4The same values for∆ε are valid for all tunnel couplingsR, although strictly speaking, there is no closed orbit

around the antidot forR ≈ 1 [85]. See insets in Figure 4.6 for the two limiting casesR � 1 and(1−R) � 1.
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Usingωc = vF/Rc = 2πh̄kF/m∗L, the energy spacing can be written as a function of the length
of the cyclotron orbitL

∆ε =
2πh̄2kF

m∗L
. (4.5)

This expression is advantageous when dealing with non-circular orbits, since they are not com-
pletely described by the magnetic field value where they occur but rather by the orbit lengthL.
The exact same expression can be obtained if one uses the Bohr-Sommerfeld quantization rule
for non-interacting electrons with linear dispersion in a ring of lengthL. The quantization con-
dition L = 2π/∆k, together with the linear dispersion relation∆ε/∆k = h̄vF, directly gives
the desired result. The temperature dependent conductance follows from the Landauer-Büttiker
formalism

G(µ
ch) = −e2

h

∫
dε

∂nF

∂ε
Td(µ

ch + ε), (4.6)

whereµch is the (mean) electrochemical potential andnF denotes the Fermi-distribution func-
tion [86]. Using

∂nF

∂ε
=

1

4kT cosh2(ε/2kT )
, (4.7)

the conductance can be numerically evaluated. An analytical expression is obtained in the strong
coupling limit (R ≈ 1) [85,87]

G = g̃ + δg cos 2π(
µch

∆ε
+

Φ

Φ0

). (4.8)

Here

g̃ = 2(1−R)
e2

h
, (4.9)

is the constant part of the conductance, and the oscillating part has a prefactor

δg = −2(1−R)
e2

h

T/T0

sinh T/T0

, (4.10)

wherekBT0 = ∆ε/2π2 is the temperature scale set by the level spacing. Note that the linewidth
is temperature-independent and that the temperature scale is reduced by a factor2π2 over a
naive estimate of separated, Fermi-Dirac broadened levels. This can be traced back to the
cosine dependence of the transmission on the electron energy.

From the period of the Aharonov-Bohm oscillations on the second focusing resistance peak,
where the temperature dependence has been recorded, one can directly extract the area enclosed
by the orbit producing this peak by means ofA = φ0/∆B. If the orbit were circular, its length
would beL = 2π × 550 nm. The real orbit length is somewhat longer because of the specular
reflection off the antidot. As an upper bound, we take the limit of an infinitely thin antidot.
Then, the orbit corresponding to the second focusing peak consists of two circles and the orbit
length is a factor

√
2 larger than the one given above. Using equation 4.5, the level spacing is

calculated to be
∆ε(kF) ≈ 240 µeV ≈ kB · 2.8 K . (4.11)
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The characteristic temperature scale for the decay of the Aharonov-Bohm oscillations is there-
fore

kBT0 = ∆ε/2π2 ≈ 140 mK . (4.12)

Experimentally, the temperature scale can be extracted from the measured temperature depen-
dence of the Aharonov-Bohm oscillations. We plot the oscillation amplitudes for different
temperatures against the numerically computed temperature dependency as a function of the
normalized TemperatureT/T0 in Figure 4.6. From this fit we can extract the characteristic tem-
peratureT0 ≈ 85 mK. This is about40% lower than the above theoretical estimate from the
simple edge state model.

4.3.2 Phase dislocations

The separation of the conductance into a smooth and oscillatory contribution according to equa-
tion 4.1 allows us to follow the Aharonov-Bohm phase as a function of the side gate voltage
Vsg and the magnetic fieldB in an illuminating way. One finds that at certain points in the
(Vsg, B)-plane oscillations suddenly vanish. In Figure 4.7(a), obtained using similar but not
identical gate voltages as in Figure 4.4, forklike dislocations in the interference signal occur at
B = 0.41 T, Vsg = −0.83 V andB = 0.375 T, Vsg = −0.81 V. These dislocations in the inter-
ference signal arise from abrupt phase changes. The phase dislocations have been interpreted
as a sign of orbit bifurcations that arise from the interference between different electron orbits
around the antidot. The effect has been reproduced by semiclassical [89] as well as quantum
simulations [82]. Phase singularities arise in a variety of cases throughout physics, and they
are usually connected with interesting topological aspects of the system [90]. The topological
character is illustrated in the schematic drawing of Figure 4.7(b). One can move through the
(α, β)-parameter space from positionA to B following two paths (red and blue) on the left
and right side of the phase singularity, respectively. The two paths have a phase difference of
∆ϕ = 2π because one path (red) sees an additional oscillation. The same behavior occurs
when a vortex with ‘charge‘m = 1 is superimposed with a plane wave. Here, the ‘charge‘ of
the vortex is defined asm = ∆ϕ/2π. A particular nice example of this effect has been recently
reported for Bose-Einstein Condensates (BECs) [88, 91]. In this case the parameters space is
just the real space, i.e.(α, β) = (x, y). If one of the condensates is in the ground state and
the other one in a vortex state, the interference of the two condensates leads to the same kind
of phase dislocation as observed in our system. Figure 4.7(b) and (c) show a simulation of the
effect for the case of the BECs .5

5The interference period∆x in real space for the superposition of two BECs is given by∆x = h/mv, where

v is the relative velocity between the two condensates, andm is the mass of the constituent particles [91].
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Figure 4.7: (a) Side gate voltageVsg and magnetic field dependence of

Aharonov-Bohm oscillations (peaks are light and minima dark colored). (b)

Schematic drawing of a phase dislocation around a "vortex"(black circle). (c)

Simulated density plot of two Bose-Einstein condensates (BECs) moving towards

each other. One condensate (top) is in am = 1 vortex state, the other one (bot-

tom) is in the ground state [88]. (d) Simulated interference between the two BECs

from (c) showing an interference dislocation [88].





Chapter 5

Correlated phases in the N = 2 Landau

level

In this chapter, we present our experimental results on electronic transport in the regime of
the correlated phases in the second excited Landau level (N = 2). Driven by the competition
between repulsive and attractive components of the Coulomb interaction, long range ordered
electron patterns form spontaneously within these phases. The Charge Density Wave (CDW)
and the Electron Liquid Crystal (ELC) pictures, which describe the correlated phases, have al-
ready been introduced in sections 2.3.1 and 2.3.2, respectively. In the relevant Landau level, one
distinguishes between the anisotropic stripe phase and the isotropic bubble and Wigner crystal
phases.1 In section 5.1, we briefly discuss resistance measurements which show features similar
to those observed by other groups. Since the effects of anisotropic transport are more dramatic
in the van-der-Pauw geometry, we employ it to obtain most of our results. Furthermore, we
present data from a ’L’-shaped Hall-bar geometry. It allows us to measure both longitudinal
resistivity components,ρxx andρyy, simultaneously and offers a better defined current distribu-
tion within the sample. The main emphasis of this chapter will be on the differential resistance
measurements presented in section 5.2. The data confirm the picture of the correlated phases in
more detail and additionally reveal some completely unanticipated features.

5.1 Resistance aroundν = 9/2

The resistance measurements have been obtained with a conventional lock-in technique. An
AC-current in the rangeIAC = 3 nA . . . 10 nA with a frequency of13.31 Hz is injected into
the sample at one ohmic contact and drained at a second one. The AC-voltage components
are measured with a lock-in voltage amplifier that is in phase with the AC-current signal. The

1To avoid confusion, we exclusively use the CDW terminology in this chapter. Still, we mention the importance

of quantum fluctuations at the appropriate places.
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magnitude of the excitation current has been chosen such that an optimal signal-to-noise ratio is
obtained without inducing Joule heating effects by excessive currents.2 Before a measurement
is performed, the samples are illuminated at low temperatures with a red LED. The illumination
procedure increases the density and the mobility of our samples. Even more important, it also
enhances the transport effects inside the correlated phases substantially, probably because the
illumination improves the overall homogeneity of the sample.

We would like to emphasize at this point that there can be quite large quantitative variations
between results obtained on different samples, cooldowns or states of illumination. However,
all our experimental results are confirmed to be generic features of electronic transport within
the correlated phases of the N = 2 Landau level.

5.1.1 van-der-Pauw geometry

Most of the measurements have been obtained in a square van-der-Pauw (vdP) geometry. Our
samples have lateral dimensions which are smaller by a factor of about 10-50 compared to sam-
ples from other groups. Additionally, we use lithographically defined ohmic contacts, instead
of Indium contacts positioned by hand, to provide a well defined geometry. We mainly discuss
square vdP samples fabricated from wafer VU4-97 with a size ofW = 90 µm. The exact
geometry and the fabrication process is described in appendix A. The mobility of the sample is
aroundµ = 10 · 106 cm2/Vs and the density aroundn ≈ 2.1 · 1015 m−2.3 In Figure 5.1(a), we
show a measurement of the longitudinal resistance around filling factorν = 9/2, i.e. between
ν = 4 andν = 5. The blue curve depictsRxx, i.e. the longitudinal resistance for the current
flowing along the [110] crystal axis (’easy-axis’ configuration in Fig. 5.1(b)). The red trace
is the longitudinal resistanceRyy for the current flowing in the perpendicular direction, that is
along the [110] axis (’hard-axis’ configuration Fig. 5.1(c)). Following the literature, we use the
expressions ’hard-axis’ and ’easy-axis’ throughout this chapter as synonyms for the crystal axis
[110] and[110], respectively. Although used in the whole magnetic field range, the expressions
are derived from the natural orientation of the stripes relative to the crystal axis in the stripe
phase.

Stripe phase

The most striking difference between the two longitudinal resistance components is observed
around the half filled topmost Landau level in the regime0.38 < νN < 0.62 (highlighted
with a yellow shade). Here, the resistance shows a huge anisotropy most pronounced exactly
at νN = 1/2, whereRyy/Rxx ≈ 40. The anisotropy is consistent with the existence of a

2Since Joule heating effects depend on the current densities in the sample rather than the current itself, our

samples are much more prone to heating than the much larger ones used by other groups. Therefore, we use

comparatively smaller excitation currents.
3These quantities vary for different cool-downs and for different amounts of illumination.
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Figure 5.1: (a) Longitudinal resistance measurement in the van-der-Pauw geom-

etry atT = 40 mK with the current directed along the natural stripe direction

(blue curve) or perpendicular to it (red curve). On the right side, the two measure-

ment configurations together with the resulting current distributions are shown

schematically. In the ’easy-axis’ configuration (b),Rxx is measured along the

[110] crystal axis, whereas in the ’hard-axis’ configuration (c)Ryy is measured

along the [110] crystal axis. The yellow lines show the natural stripe direction,

and the red and blues ones the current distribution within the sample in the stripe

phase.

stripe phase in this regime. The current flow is ’easy’ along the stripes whereas it is ’hard’
across the stripes (yellow lines in Fig.5.1(b) and (c) indicate the natural stripe direction). The
resistance anisotropy is strongly enhanced in square vdP geometries, since an anisotropy in
the underlying resistivities (ρxx < ρyy) causes an inhomogeneous current density distribution
in the sample [55]. When the current is directed along the stripes, it flows mainly near an
imaginary line which directly connects the two current contacts. Hence, the current density near
the voltage contacts will be low, further reducing the measured signal by Ohm’s lawVx ∼ ρxxjx

(Fig.5.1(b)). On the other hand, the current will be distributed more evenly across the device
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Figure 5.2: (a) Negative Differential Resistance (NDR) in a non-linear V-I mea-

surement. (b) DC setup to directly measure the V(I) dependence in the ’hard’-axis

configuration. (c) Non-linear V-I characteristics for several filling factors ranging

from the stripe phase (bottom trace) via the bubble phase to the IQHE (top trace).

For clarity, the traces are vertically offset from each other by2µV. The color

coding for the phases is the same as in Fig. 5.1.

for the perpendicular flow direction since the stripes tend to spread out the current in the [110]
crystal direction (Fig.5.1(c)). Within the stripe regime, the Hall-resistance is not quantized (see
Fig. 5.9) confirming the compressible nature of this phase.

Bubble phase

Around filling factorνN = 0.29 (and its particle-hole conjugateνN = 0.71), the longitudinal
resistance in both crystal directions completely vanishes at low enough temperatures. At the
same time, the Hall-resistance is quantized to the value of the adjacent IQHE state (see Fig. 5.9).
Vanishing longitudinal resistance and quantized Hall resistance are signs of an incompressible
ground state in this regime. Since the quantized regime around filling factorνN = 0.29 is
isolated from the adjacent IQH-state by a non-zero resistance peak atνN = 0.19, it is referred
to as the Reentrant Integer Quantum Hall (RIQHE) state. This state is identified with the bubble
phase and stabilized in the regime0.20 < νN < 0.38 (as well as its particle hole conjugate
0.62 < νN < 0.80). This range of filling factors compares well with the theoretical predictions
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for the 2-electron bubble phase (0.25 < νtheo
N < 0.36) [53].

Non-linear V-I characteristics

Resistance measurements, such as the ones described above, probe the linear response of the
correlated phases for small excitation currents. However, complex electronic systems typically
do not exhibit linear transport behavior, and it is therefore necessary to measure the full DC
response. In Figure 5.2(c), we sweep the DC current betweenIDC = −200 nA . . . 200 nA by
varying the voltage across a large resistor and measure the resulting DC voltage response4 in
the ’hard-axis’ configuration (see Fig. 5.1(b)). Clearly, the V-I response is highly non-linear
in the regime of the correlated phases. Most striking is the observation of negative differential
resistance (NDR) - schematically shown in Fig. 5.1(a) - seen in the center of the stripe (blue
trace) and of the bubble phase (magenta trace). Especially in the bubble phase, the non-linear
response is reminiscent of that of a resonant tunnel diode. We come back to this point in section
5.2 where we investigate the non-linearities within the correlated phases in detail.

5.1.2 Hall-bar geometry

Complementary to the measurements in the vdP geometry just presented, we employ a ’L’-
shaped Hall-bar device (Fig. 5.3(b)) to measure the longitudinal resistivity components in both
main crystal axis directions simultaneously and also provide a better defined current distribu-
tion. The Hall-bars have a width of200 µm and are processed from wafer VU4-127. The
mobility of the samples is aroundµ = 12 · 106 cm2/Vs, the density isn = 3.1 · 1015 m−2.

Figure 5.3(a) shows a resistivity measurement on the ’L’-shaped Hall-bar with the current
directed simultaneously along the[110] (ρyy) and the[110] (ρxx) crystal direction. Theρxx data
is scaled down by a factor of 2 to match theρyy data at magnetic fields belowB < 0.2 T

(Figure 5.3(c)).5 This way, we obtain very comparable resistances for the two directions also
in theN = 1 Landau level, i.e. betweenν = 2 andν = 4. The scaling procedure accounts
for an inherent, filling factor independent anisotropy in the resistances. Such an anisotropy is
observed in many high mobility materials but its origin is unknown. It is not enhanced in vdP
geometries, and therefore it is probably not related to a real anisotropy in the resistivities. So
far, no connection has been established between this filling factor independent anisotropy and
the preferred orientation within the correlated stripe phase.

At magnetic fields belowB = 1 T, the Shubnikov-deHaas oscillations show a pronounced
even-odd filling factor asymmetry (Fig. 5.3(c)). Forρyy, the peaks on the high field side of an
even filling factor are smaller than the ones on the low field side; forρxx, the situation is just
reversed. The origin of this even-odd asymmetry is probably related to the electron spin and the

4We use a ’Keithley 182 Sensitive Digital Voltmeter’ with an input resistance> 10 GΩ for the measurement

of small DC voltages.
5Our choice to scale theρxx data and not theρyy data is arbitrary.
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Figure 5.3: (a) Longitudinal resistance componentsρxx (blue) andρyy (red)

measured simultaneously in the "L"-shaped Hall-bar shown schematically in (b).

The curves have been normalized to each other at the lowest fields (see text). (c)

An anisotropic even-odd behavior is observed in the low magnetic field regime.

reduced gap for odd filling factors. However, it is not clear why the asymmetry depends on the
current direction and whether it is related to the origin of the preferred orientation of the stripes.
We have not yet studied this effect systematically, but it deserves further attention because it
might provide an additional clue to the question of the natural stripe orientation.

Around half filling of the higher Landau levels (ν = 9/2, 11/2, 13/2, . . .), a pronounced
anisotropy is seen induced by stripe formation along the[110] crystal axis. The anisotropy is
not as strong as in the vdP geometry and reaches factors ofρyy/ρxx ≈ 6. The anisotropy persists
up to high filling factors but its magnitude decreases in that direction. This agrees qualitatively
with the behavior expected from the nematic stripe phase where the peak resistance should
decrease asρyy ∼ 1/ν2.

Temperature dependence

Figure 5.4 shows the detailed temperature dependence of the longitudinal resistances in the
Hall-bar belowT = 120 mK. The measurements are shown for current flowing simultaneously
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Figure 5.4: Temperature dependence in the "L"-bar geometry between fill-

ing factorsν = 4 and ν = 6. (a) Current in the[110] ’hard-axis’ direc-

tion. (b) Current in the[110] ’easy-axis’ direction. (c) Arrhenius plot of the

Rxx temperature dependence in the electron- and hole-bubble phases (blue near

νN = 0.29,∆e ≈ 100 µeV; red nearνN = 0.71, ∆h ≈ 60 µeV). The evaluation

of Ryy gives very similar values and is therefore not shown.

along the[110] (5.4(a)) and the[110] direction (5.4(b)). Special care was taken in these experi-
ments to keep the temperature stable to within∆T = 1 mK over the magnetic field range. The
electron-bubble phase near the empty Landau level shows a less pronounced temperature de-
pendence than the hole-bubble phase near the filled Landau level. This can be quantified when
we analyze the activation energies∆e, ∆h in the center of both phases (inset Fig. 5.4). The
relation between longitudinal resistance and activation energies should be of the Arrhenius type

ρxx ∝ exp (− ∆

2kT
) . (5.1)

For the hole-bubble phase nearνN = 0.71, we obtain∆h ≈ 60 µeV, whereas for the electron-
bubble phase nearνN = 0.29 we obtain∆e ≈ 100 µeV. The large difference in the activation
energies is not consistent with particle-hole symmetry within the N = 2 Landau level. The effect
has been observed by other groups but so far no explanation has been put forward. We return to
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this point when we discuss our differential resistance results in the next section.

5.2 Differential resistance aroundν = 9/2

Virtually all resistance measurements on 2DES are performed in the linear regime, i.e. when
the measured voltages scale linearly with the excitation currents. If signs of non-linearity are
observed, they are usually attributed to Joule heating effects induced by too high excitation
currents. We will show that, in the regime of the correlated phases in the N = 2 Landau level,
the voltage-current (V-I) characteristics are inherently highly non-linear. The non-linear V-I

Figure 5.5: (a) Differential resistance measurement setup. A DC bias current

IDC is added to a small AC componentIAC. The voltage signalVAC in phase

with the AC current is detected via a standard lock-in technique. (b) From the in-

phase voltageVAC, induced by a current modulationIAC around the working point

IDC, one obtains an approximation to the differential resistancedV/dI(IDC). (c)

Simple model for the effect of a combined AC and DC measurement. A DC Hall

voltageV Hall
DC drops over the widthW of the sample and is modulated by a small

AC Hall voltageV Hall
AC .
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curves can be measured directly (see Fig. 5.2), but in general, it is advantageous to measure
the differential resistance (dV/dI). This way, one can take advantage of a lock-in technique to
substantially increase the signal-to-noise ratio of the measurement. For this purpose, a DC bias
currentIDC and a small AC excitation currentIAC are added (Fig. 5.5(a)). Only the voltage
response in phase with the AC excitation is recorded. For sufficiently small AC current ampli-
tudes, this results in an approximation to the local derivative of the V-I curve at the working
point IDC (Fig. 5.5(b))

dV/dI(IDC) = lim
IAC→0

V (IDC + IAC)− V (IDC − IAC)

2IAC

≈ VAC

IAC

(IDC) . (5.2)

Adding a DC bias current produces a non-equilibrium situation inside the Hall-bar, and it is
a priori not clear how this affects the transport properties. In the simplest picture, the DC
bias current produces an additional Hall voltage, i.e. Hall electric field, perpendicular to the DC
current across the sample. For a rough estimate of the Hall voltage, we neglect the modifications
from the Quantum Hall Effect. Then, the DC Hall voltage is proportional to the DC current and
the external magnetic field (Fig. 5.5(c))

V Hall
DC =

h

e2ν
· IDC . (5.3)

5.2.1 ’easy-axis’ configuration - AC/DC currents along[110]-axis

In the following, we discuss a differential resistance measurement between filling factorν = 4

andν = 5. The AC/DC currents are directed along the[110] crystal axis, i.e. the ’easy-axis’
as far as the stripe phase is concerned. To obtain the results shown in Figure 5.6, the AC
current is fixed toIAC = 3 nA, and the DC current is increased stepwise in the rangeIDC =

−180 nA . . . 180 nA. For each particular value of the DC current, the magnetic field is swept
betweenB = 1.7 T . . . 2.3 T. High differential resistance values are colored in red whereas
low ones are shown in blue. For clarity, regions of negative differential resistance (NDR) are
surrounded by a white contour. The resistance measurements presented in the previous section
(see Fig. 5.1) correspond to measurements along the black horizontal line atIDC = 0. For
this particular cooldown and temperature (T < 20 mK), the results at vanishing DC current
are not particularly illuminating. In most of the magnetic field range, the resistance vanishes
completely. Only in the rangeB = 1.9 T . . . 2.0 T, one observes a small, non-zero resistance
of a few Ohms. Much more information can be extracted by looking at the complete differential
resistance scan. Around integer filling factorsνN = 0 andνN = 1, i.e. within the IQHE phase,
the resistance remains zero up to the highest DC currents shown. On the other hand, the zero
resistance regime in the bubble phases and the low resistance regime in the stripe phase break
down when the DC current reaches critical values. The critical DC currents increase roughly
linearly from the boundary to the center of each phase. This gives rise to three diamond-shaped
regions of low resistance, one for each phase, which are virtually symmetric aroundIDC = 0.
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Figure 5.6: (a) Differential longitudinal resistance of a vdP sample in the ’easy-

axis’ configuration shown in inset (b) betweenν = 4 andν = 5, i.e. νN = 0
andνN = 1, at T < 20 mK. The AC/DC currents are directed along the [110]

crystal axis. Three distinct regions are discernible. The stripe phase is centered

directly aroundνN = 0.5. In this regime, stripe formation along the [110] axis, i.e.

parallel to the current direction, results in a resistance minimum. The stripe phase

is bounded by bubble phase regions on either side, centered aroundνN = 0.29
andνN = 0.81. The phase boundaries (vertical black lines) above and below

νN = 0.5 are related to each other by particle-hole symmetry. The white contour

surrounds areas of negative differential resistance (NDR).

Stripe phase

The stripe phase is centered aroundνN = 0.5. In this regime, stripe formation along the [110]
axis, i.e. parallel to the current direction, results in a resistance minimum. This minimum
breaks down in a smooth way. In the center of the phase, the differential resistance starts to
increase from its initial low value as the DC current reachesIDC ≈ 50 nA. After a maximum is
reached in the range between80 nA and140 nA, it saturates to an intermediate value. Since this
saturation value is quite similar to the one for the orthogonal current direction (see Fig. 5.7), we
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believe that all remnants of an anisotropic stripe phase have disappeared at these high currents.

Bubble phase

At low currents, the electron-bubble phase aroundνN = 0.29 is insulating, and accordingly, the
longitudinal resistance vanishes inside this regime. Above a magnetic field dependent critical
DC current, the bubble phase breaks down in a remarkable way. The breakdown current is
highest in the middle of the phase whereνN = 0.29. At this point, the differential resistance
abruptly increases followed by a strong decrease at only slightly higher currents. Strikingly,
regions of negative differential resistance (NDR) occur (white contour in Fig. 5.6). Although
not well resolved in Fig. 5.6, the breakdown of the hole-bubble phase nearνN = 0.71 is
qualitatively similar to that of the electron-bubble phase. However, the breakdown currents are
smaller and all features tend to be more smeared out indicating that this phase is more fragile.
In similar measurements (not shown), we have observed NDR also in the hole-bubble phase.

Since positive and negative differential resistance features are sharp up to relatively high
bias currents, the effects of an applied DC current can not be simply explained by an effective
increase of the electron temperature (see section 5.2.4).

5.2.2 ’hard-axis’ configuration - AC/DC currents along [110]-axis

We turn to the differential resistance data for the ’hard-axis’ configuration in which the current
is directed along the[110] crystal axis (Fig. 5.7). The stripe and bubble phases are discussed
separately. Then, we point out how these phases are reflected in the Hall resistance, and finally,
we take a look on how the distance between current path and voltage contacts affects the results.

Stripe phase

As explained in section 5.1.1, a striking signature of the stripe phase is the huge resistance
maximum close toνN = 0.5 which appears when the current is directed orthogonal to the stripe
direction (see also Fig. 5.1). This maximum shows up in Figure 5.7 as red colored region close
to IDC = 0. To allow for a better distinction, the highest values of the differential resistance
(dV/dI > 600 Ω) are surrounded by a cyan contour. In the stripe phase, a DC current of about
IDC ≈ 20 nA is sufficient to completely eliminate the resistance maximum. Then, for a range of
higher DC currents, a region of negative differential resistance (NDR) follows (surrounded by
a white contour in Fig. 5.7). One finds the maximum of the differential resistance in the stripe
phase forIDC = 0 to occur not directly atνN = 0.5 (vertical red line) but instead at slightly
lower magnetic fields. AsνN = 0.5 is reached, the maximum splits into two maxima located at
non-zero DC currentsIDC ≈ ±10 nA. Therefore, as far as the maximum is concerned, a slight
change in the filling factor can be compensated for by applying a small DC bias current.
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Figure 5.7: (a) Differential longitudinal resistance of a vdP sample in the ’hard-

axis’ configuration shown in inset (b) atT < 20 mK. AC/DC currents are directed

along the[110] crystal axis. The white contour surround areas of negative differ-

ential resistance. The cyan contour highlights areas with the highest differential

resistance (dV/dI > 600 Ω). The phase boundaries (vertical black lines) are

drawn at the same positions as in Figure 5.6.

Bubble phase

The breakdown of the bubble phase for the ’hard-axis’ (Fig. 5.7) seems to be different from the
one in the ’easy-axis’ configuration (Fig. 5.6).6 Still there are similar features in Figures 5.7 and
5.6. The maximum of the differential resistance reaches similar values at the breakdown of the
bubble phase and around zero DC current in the stripe phase. Together with the observations of
NDR in both cases, this is a first indication of a closer, yet unknown connection between bubble
and stripe phase. We return to this important finding in section 5.2.5 at the end of this chapter.

6However, we used different contact geometries for both measurements (see figures for details). The results for

measurements along the two main crystal axis agree quite well in the bubble phase when the same geometry (only

rotated) is used (compare Fig. 5.12 (a) and (d)). This is expected for an isotropic phase.
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In the bubble phase, we observe additional differential resistance peaks at high DC currents
(IDC ≈ 100 nA at νN = 0.29). We are not sure whether these peaks are a generic feature
because they only show up in a few measurements. Since they appear at a similar position as
the pronounced features seen in Figure 5.6, they might indicate that the current is not flowing
exactly in the[110] direction but instead has components along both crystal axes.

Hysteresis

Another interesting result appears when one compares the differential resistance at fixed mag-
netic field for different sweep directions of the DC current (Fig. 5.8). One finds clear hysteretic
behavior near the breakdown of the bubble phase (upper two traces), whereas no hysteresis is
found in the stripe phase (lower three traces). From this, one might infer that the bubble phase
most likely breaks down via a first order phase transition whereas the stripe phase does so via
a second order one. Apparently, our differential resistance measurements may open up the in-
triguing possibility to study the interplay between second and first order phase transitions in

Figure 5.8: Differential resistance for several magnetic field values in the ’hard-

axis’ configuration (see Fig. 5.7) atT < 20 mK. The solid color lines correspond

to the up-sweep and the dashed colored ones to the down-sweep of the DC current.

The top trace (blue) is taken at the center of the bubble phase and the lowest one

(magenta) in the stripe phase exactly atνN = 0.5. The curves are vertically offset

for clarity.
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correlated quantum systems.

Hall resistance

Figure 5.9 shows the differential Hall resistance together with the differential longitudinal re-
sistance in the ’hard-axis’ configuration over a range of filling factors (ν = 4 to ν = 6) and
DC currents7. For zero DC current (blue trace in (a)), the plateaus at the quantized resistance
valuesh/ie2 are broad, and the transition region near the half filled Landau level is relatively
narrow. From the Hall resistance atIDC = 0, it is not possible to determine whether the resis-
tance quantization is caused by single particle localization (near integer filling factors) or rather
by pinning of a correlated bubble phase (towards half filling). This issue is resolved at inter-
mediate DC currents, where a small magnetic field region in which the Hall resistance is not
quantized separates the IQHE (single particle) regime from the RIQHE (many-body) regime.
This takes place aroundIDC = 16 nA for the hole-bubble phase and aroundIDC = 40 nA for
the electron-bubble phase. AboveIDC > 200 nA (cyan trace), the quantized plateaus narrow
down considerably. In this high current regime, the remaining width of a plateau presumably
reflects localized single electron states only. The transition region between plateaus is broad
and the Hall resistance almost follows the classical result. Since this resembles the behavior at
sufficiently high temperatures (T > 150 mK), it probably indicates that electron correlations
are destroyed at these high currents.

One of the few quantitative predictions for striped ELC phases concerns the Hall resistivity
at νN = 0.5 (see discussion of the smectic phase in sec. 2.3.2). Equation 2.53 predicts a value
of ρxy = 9/41 · h/e2 exactly atν = 9/2, i.e. for the case[ν] = 4 (included in Figure 5.9 as
a black dashed horizontal line labelled McD.et al.). Experimentally, the Hall resistance takes
on the theoretical value only at somewhat lower magnetic fields, exactly where the longitudinal
resistance reaches its maximum (vertical black arrows in the figure). Instead, atνN = 0.5 the
Hall resistance is still very close to the valueρxy = 1/4 · h/e2 of the empty N = 2 Landau level.

An additional feature at intermediate DC bias currents deserves attention. For example, at
IDC = 16 nA and40 nA, as one moves from the RIQHE regime (vertical red arrow) towards
the stripe phase, the Hall resistance drops from its initial value of0.25 h/e2 down below the
line of the classical Hall resistance (white arrow). If the RIQHE would break down in a simple
way, the Hall resistance should smoothly drop towards the classical value but not below it. It
seems that for a narrow region of magnetic fields the Hall resistance starts to drop already to
the value of0.2 h/e2 which it normally reaches only in the stripe phase regime at substantially
lower magnetic fields.
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Figure 5.9: (a) Differential Hall resistance for a few selected DC currents. The

reentrant quantization (RIQHE) in the center of the bubble phase is marked by

colored arrows. The dashed black horizontal line shows the theoretical prediction

for the Hall resistance in the center of the smectic phase (MacDonaldet. al [67]).

(b) Differential longitudinal resistance. AtIDC = 0, the maximum resistance

occurs at a filling factorνN > 0.5 (see text). The color coding, temperature and

configuration are the same as in Fig. 5.7.
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Figure 5.10: Differential resistance for (a)IDC = 0 and (b)IDC = 54 nA
measured for two different ’hard-axis’ contact configurations. The red trace is

obtained in the ’center’ configuration (c) and the blue trace in the ’near’ configu-

ration (d). The data for the red traces are scaled by a factor of 2.8 (see text).

Changing the distance between AC/DC current path and voltage contacts

In Figure 5.10, we compare data for two different contact configurations. In the ’center’ con-
figuration (c), the DC current path is further away from the voltage contacts than in the ’near’
configuration (d). For an isotropic conductor, i.e. whenρxx = ρyy, the measured resistances
fall off in a well defined way as the distance between current path and voltage contacts is in-
creased [55]. The fall-off is determined solely by a geometry factor and is independent of the
magnetic field. Therefore, the resistances obtained in the ’center’ - configuration should be

7The corrections to the Hall resistivity by the longitudinal conductances can be neglected, since from eq. 2.53,

σxxσyy/σ2
xy ≈ 1/81.
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scalable to the resistances from the ’near’ - configuration with a field independent factor. Any
deviation from this overall scaling factor in a range of magnetic fields is a clear indication for
anisotropic transport (ρxx 6= ρyy) in this field range.8 Indeed atIDC = 0, the ’center’- resis-
tances, scaled by a factor of 2.8, resemble the ’near’-resistances to a good approximation except
in the stripe phase regime (Fig 5.10(a)).9 After scaling, the ’center’-resistance in the stripe phase
regime is larger than the ’near’-resistance by a factor of approximately 2. Thus, the measured
resistance falls off much more slowly with the distance between voltage contacts and current
path in the stripe phase than at all other magnetic fields. The intuitive picture for this obser-
vation is simple. Within the stripe phase, the current flows more easily along the stripes, i.e.
in the [110]-direction, than perpendicular to them. Therefore, for the configurations in Figure
5.10, the current in the stripe phase is channeled towards the voltage contacts and a larger sig-
nal is measured there than without channeling. This effect is a strong evidence for anisotropic
transport in the stripe phase. An equivalent argument is presented in reference [92].

Interestingly, a similar effect takes place in the bubble phase regime at nonzero DC cur-
rents. Figure 5.10(b) shows the resistances for the two configurations atIDC = 54 nA, i.e.
at the ’breakdown’ of the bubble phase where the differential resistance is high. The ’center’-
resistances are scaled with the same factor 2.8 as in (a). After scaling, an enhancement of the
’center’-resistance over the ’near’-resistance is now observed only in the bubble phase regime
nearB = 2.15 T. The enhancement is of the same magnitude as the enhancement in the stripe
phase atIDC = 0. In analogy to the situation in the stripe phase, we view this result as evidence
for anisotropic transport in the bubble phase regime at sufficiently high DC currents. We return
to this important point in the last section of this chapter.

At IDC = 54 nA, in the stripe phase regime, the scaled ’center’ resistances are suppressed
below the ’near’ resistances (Fig. 5.10 (b)). This is opposite to the behavior atIDC = 0 and
again indicates anisotropic transport behavior. One possible explanation would be that the DC
current reorients the stripes parallel to it. However, this is in conflict with results of section
5.2.3 and therefore we favor another explanation. When an increasing amount of DC current is
forced perpendicular to the stripes, it is reasonable to assume that the stripe order breaks down
first along the shortest path between the two current contacts. The current density is highest
between the two contacts and drops off quickly away from there. This spatial inhomogeneity in
the [110] direction would produce just the behavior we observe.
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Figure 5.11: Generalized ’differential resistance’ measurement setup. The DC

bias current (blue) is independent from the AC probe current and AC voltage

measurement (red). The setup has to be grounded at only a single point, and

therefore the DC current loop is kept floating.

5.2.3 ’mixed-axis’ configuration - AC/DC currents along different axes

So far, we have applied AC and DC currents always at the same contacts. As described in
the context of Figure 5.5, this corresponds to a measurement of the differential resistance. In
general, one can apply the DC current at different contacts than the AC current (Fig. 5.11).
This way, the AC and DC current directions may be chosen independently from each other. For
simplicity, we still call the measured quantities ’differential resistances’ keeping in mind that
different directions are involved and the simple picture of Figure 5.5 does not hold anymore.
For a better understanding, it is helpful to take on the following viewpoint: The AC current and
corresponding AC voltage measurement are used to probe the system. Since the AC current is
comparatively small, it does not disturb the system itself. The DC current on the other hand is
used as a means to disturb the system and induce breakdown of the correlated phases or even
phase transitions between them. From this viewpoint, it makes perfect sense, for example, to
keep the DC current direction fixed and probe the resulting non-equilibrium system with an AC
current applied in different directions.

In Figure 5.12 we show generalized ’differential resistance’ scans for all different combina-
tions of AC and DC current directions with respect to the [110] crystal axis, i.e. the ’easy-axis’
as far as the stripe phase is concerned. The DC current direction is fixed for each row and the
resulting system is probed by the two possible AC current directions in the respective columns.

8The QHE also produces inhomogeneous current distributions. However, this effect should be negligible in the

partially filled Landau level which hosts the correlated phases.
9We find approximately the same scaling factor for different samples and wafers of similar mobility, provided

the geometry is unchanged. However, when the current is directed along the [110]-axis, we find a different scaling

factor. This points to an underlying, filling factor independent, anisotropy in the 2DES which is different from the

stripe phase anisotropy discussed here (compare also section 5.1.2).
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Figure 5.12: Generalized ’differential resistance’ scans for all possible combina-

tions of DC and AC current directions relative to the [110] crystal axis. In (a) and

(d), DC and AC currents are parallel to each other, whereas they are perpendicular

in (b) and (c). The green and red vertical lines highlight the center of the stripe

and bubble phase, respectively. The measurements were taken at a temperature of

T < 20 mK.

Therefore, in scans (a) and (d), the AC and DC currents are parallel. These are the ’hard-axis’
and ’easy-axis’ configurations, respectively, which we have extensively discussed in sections
5.2.2 and 5.2.1. The new results are depicted in (b) and (c) where AC and DC currents are per-
pendicular to each other. We evaluate the results for the two DC current directions separately.

top row - DC current along ’hard-axis’ (perpendicular to [110]-axis)

The results in the stripe phase aroundB = 2.2 T (green vertical line) are consistent with the
picture of an anisotropic phase with stripe formation along the [110]-axis. In (a), the AC current
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probes the direction perpendicular to the stripes resulting in a resistance maximum whereas in
(b) the AC current flows along the stripes resulting in a minimum. These extrema vanish at a
DC current of aboutIDC ≈ 20 nA. The anisotropic stripe order breaks down at these currents.
While NDR appears in (a), no equivalent feature is observed in (b), and thus, NDR seems to be
connected with a nearby region of high differential resistance.

Now, for the bubble phase (around the red vertical line atB = 2.3 T) the results should be
independent of the AC current direction reflecting the expected isotropy of this phase. However,
this is only observed for small currents (IDC < 40 nA), where the phase is an insulator and the
longitudinal resistance therefore vanishes. Near breakdown of the bubble phase aroundIDC =

50 nA, one observes intriguing anisotropic behavior. A huge resistance maximum and NDR
occur in (a) whereas a minimum occurs in (b). This is very similar to the behavior of the stripe
phase. The results suggest that the bubble phase breaks down via an intermediate anisotropic
phase which has its ’easy’-axis directed parallel to the [110]-axis in this configuration. However,
we will show below that, unlike for the stripe phase, the ’easy’-axis direction depends on the
DC current direction.

bottom row - DC current along ’easy-axis’ (parallel to [110]-axis)

The stripe phase data are qualitatively similar to those of the perpendicular DC current direction
presented above. A resistance maximum appears in (c) and a minimum in (d). This is expected
since the direction of the stripes is fixed to be parallel to the [110]-axis. However, the extrema
are observable up to considerably higher DC currents (IDC ≤ 75 nA) in this configuration. We
conclude from this that the DC current stabilizes the stripe phase when it is directed along the
stripes. In the introductory chapter 2.3.2, we noted that, in the realistic ELC scenario, the stripe
phase consists of conducting stripes with shape fluctuations perpendicular to the stripe direction
(see Fig. 2.15). Now, flowing current along the stripes seems to reduce the fluctuations and
thereby stabilizes this particular correlated phase. In the context of conducting domain walls
in high-Tc superconductors, an intuitive picture for a similar effect has been proposed [93]. If
water (current) is pushed through an initially wavy garden hose (conducting stripe with shape
fluctuations), it tends to straighten out the hose as the flow is increased. So far this scenario has
not been addressed in the framework of the ELC phase picture. Nevertheless, it indicates the
importance of considering fluctuations to fully describe the experimental observations.

The response near breakdown of the bubble phase is clearly anisotropic, similar to the case
described above where the DC current is directed perpendicular to the [110]-axis. A maximum
and NDR occur near breakdown of the phase in (d), and a minimum is observed in (c). However,
the respective extrema occur in the opposite AC current configuration than before. Hence, for
this DC current direction, the anisotropic intermediate phase is now directed along the [110]-
axis. We return to this intriguing observation in the discussion part of this chapter.
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5.2.4 Temperature dependence

In the next two subsections, we discuss how the differential resistance measurements are af-
fected by changes in the electron temperature. First, we present data for the Hall-bar and then
for the van-der-Pauw (vdP) geometry.

Hall-bar geometry

Figure 5.13 shows the differential longitudinal resistance at different temperatures for the ’L’-
shaped Hall-bar geometry introduced in section 5.1.2. The scans look qualitatively very similar
to the results obtained at the lowest temperatures in the vdP geometry. Hence, the differential
resistance effects discussed in the previous sections are not artifacts of the particular geometry
chosen.

The breakdown currents in the Hall-bar geometry are considerably higher than in the vdP
geometry. For example, the electron-bubble phase nearνN = 0.29 breaks down aroundIDC ≈
600 nA instead ofIDC ≈ 100 nA in the vdP geometry. The width of the Hall-bar is a factor of
two larger than the size of the vdP square and the electron density is higher by50%. Although
we have not done a systematic study with samples of different densities, we believe that the
breakdown currents are mostly affected by the sample size and not the electron density within
the sample. This assumption also agrees with the high breakdown currents observed in much
larger samples studied by other groups. The high differential resistance features are mainly
weakened in intensity when the temperature is increased fromT < 20 mK to T = 75 mK.
Hence, applying a DC current bias is obviously not identical to increasing the temperature.
Otherwise sharp features occurring at high DC currents can not be explained. This is an im-
portant point because it shows that differential resistance measurements are a powerful and
independent tool to obtain information about the correlated phases. The dissipative regions at
the boundary between the bubble phase and the IQHE phase (see red arrows in Fig.5.13) move
towards lower DC currents when the temperature is increased. This behavior agrees with the
picture that correlated states, which are pinned by disorder at low temperatures, whereas they
delocalize and contribute to dissipative transport at higher temperatures.

van-der-Pauw geometry

The temperature dependence of the longitudinal differential resistance in the vdP geometry
is depicted in Figure 5.14. The data has been obtained with a small in-plane magnetic field
perpendicular to the [110] crystal direction.10 We focus on the behavior inside the bubble phase
regime. The traces in (a) are taken in the center of the electron-bubble phase (see vertical red
line nearB = 2.3 T in (b)) for temperatures in the rangeT = 40 mK . . . 130 mK. Above

10This field stabilizes the correlated phases up to slightly higher temperatures and DC currents. We have checked

that we get qualitatively the same behavior without in-plane magnetic field.
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Figure 5.13: Temperature dependence of the differential resistance in the "L"-bar

geometry (see Fig. 5.3) for the ’hard-axis’ (left column) and ’easy-axis’ current

(right column) directions. The red vertical arrows indicate the position of the

IQHE/bubble phase boundary. The white contour surrounds areas of NDR. The

blue contour is plotted at10 Ω to highlight the breakdown of vanishing resistance.

The sample density has slightly changed between the different measurements.

approximatelyT = 180 mK (not shown), the transport properties do not show any signature
of the correlated phases. BelowT = 60 mK (blue and green trace), the differential resistance
vanishes for low DC currents and shows a huge peak nearIDC ≈ 40 nA followed by NDR
aroundIDC ≈ 60 nA. At T = 80 mK, the differential resistance still exhibits a minimum for
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Figure 5.14: (a) Temperature dependence of the differential resistance in the vdP

geometry at the center of the electron-bubble phase. (b) Differential resistance

scan atT < 20 mK and (c)T = 100 mK. The red vertical line atB = 2.33 T
indicates the center of the bubble phase. The data have been taken at a tilt angle

of α = 20.

low DC currents but it does not vanish anymore. Also, for intermediate currents, no NDR is
observed above this temperature. We have verified (not shown) that both effects (NDR and zero
resistance11) vanish at about the same temperature.

As the temperature is increased, the differential resistance peaks which are initially centered
around|IDC| ≈ 40 nA decrease in magnitude and approach each other until they merge into
a single peak located atIDC = 0. This happens at a temperature ofT ≈ 110 mK. The peak
quickly fades away when the temperature is further increased. The overview in Figure 5.14(c)
reveals that indeed, for a small temperature window aroundT ≈ 100 mK, a resistance peak
occurs at the center of the bubble phase similar to the one at the center of the stripe phase.

11We define the resistance to be zero when the measured absolute resistance value is smaller than the resistance

variation from the measurement noise.
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Unlike the latter, however, the bubble phase peak is isotropic, i.e. it appears for both DC current
directions (data not shown). Although the resistance peak in the bubble phase shows up in data
published by other groups, it seems to have gone unnoticed so far. The temperature dependence
in the stripe phase is not shown in detail. Here, the huge resistance peak atIDC = 0 quickly
reduces in magnitude as the temperature is increased and the NDR region becomes smaller
and eventually vanishes. When comparing the stripe and the bubble phase, two observations
should be noticed. The region of NDR in the stripe and bubble phase vanish at about the same
temperature. Also, the differential resistance maxima in the bubble phase and in the stripe phase
are very similar in magnitude at any temperature (data not shown).

5.2.5 Discussion

The presentation of our differential resistance data has revealed many interesting features. In
this section, we want to summarize the main results of our experiments which help to understand
the correlated phases in the N = 2 Landau level in greater detail.

Phase boundaries

The differential resistance measurements allow to determine the boundaries of the correlated
phases on the magnetic field axis with good precision. The boundaries extracted from Figure
5.6 describe all our data from different samples, wafers and cool-downs very well. The filling
factor range between0.37 < νN < 0.63 is identified with the stripe phase. The stripe phase
boundaryνN = 0.37 ± 0.01 agrees well with numerical estimates (νtheo

N = 0.36 . . . 0.4 [53]).
Next to the stripe phase, in the range0.19 < νN < 0.37, we find the regime of the insulating
electron-bubble phase. The phase boundaries agree roughly with the predictions for the 2-
electron-bubble phase, although the boundary atνN = 0.19 ± 0.01 is significantly lower than
predicted (νtheo

N = 0.22 . . . 0.25 [53]). At filling factors belowνN = 0.19, first the Wigner
Crystal phase (see below) and then the IQHE phase are stabilized. The phase boundary at
νN = 0.19 is especially interesting, since it separates two insulating phases from each other. At
the lowest temperatures (or DC currents), the longitudinal resistance vanishes not only within
the insulating phases but also at their mutual boundary. Only at higher temperatures (or DC
currents), a region of non-zero resistance between them allows for the clear identification of
each phase. The highest critical breakdown current of the bubble phase usually is found at
νN < 0.29. However, some data (see Fig. 5.7) show a shift of this position towards lower filling
factors.

In general, the positions of the phase boundaries obey very nicely the particle-hole symme-
try which is expected around the half filled Landau level. This means that the electron-bubble
phase0.19 < νe

N < 0.37 has its particle-hole conjugate, the hole-bubble phase, at precisely
0.63 < νh

N = 1− νe
N < 0.81.
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Particle-hole asymmetry

Because the Coulomb interaction treats positive and negative charges on an equal footing, each
electron configuration forνe

N < 1/2 should be transformable into an equivalent hole configura-
tion with νh

N = 1− νe
N > 1/2 by simply replacing electrons by holes and vice versa. Therefore,

in the simplest picture, all transport properties within a given Landau level should be particle-
hole symmetric around half filling. We just mentioned in the previous paragraph that the phase
boundaries indeed obey this symmetry relation very well.

However, a clear particle-hole asymmetry reveals itself when we compare the breakdown
currents of the electron- and the hole-bubble phases (see Fig. 5.6). The hole-bubble phase
breaks down at considerably lower DC currents than the electron-bubble phase. From this
behavior, we can infer that the former is much more fragile than latter. Earlier, we arrived at
the same conclusion from activation energy measurements in both phases (see Fig. 5.4). The
apparent particle-hole asymmetry is most likely related to differences in the coupling between
the correlated phases in the bulk and edge states from lower Landau levels at the boundary of
the sample. This coupling increases as one moves from the empty to the filled Landau level.
The enhanced coupling tends to destabilize the bubble phase which appears closer to the filled
Landau level, i.e. the hole-bubble phase (see the paragraph on breakdown below).

We now turn to the stripe phase (or smectic phase in the ELC picture to be precise). Particle-
hole symmetry is incorporated into the ELC picture of the stripe phases by assuming that the
scattering timesτ0, τ1 across the empty (ν loc

N = 0) and filled (ν loc
N = 1) regions, respectively,

depend only on the width of these regions (see sec. 2.3.2). Therefore,τ0 = τ1 has to hold exactly
at νN = 1/2 where empty and filled regions have equal widths. This leads to conductivities
σxx, σyy, σxy which are symmetric around the half filled Landau level. According to equation
2.53, one then expects the drop ofρxy and the maximum ofρyy to be shifted away fromνN = 0.5

towards slightly higher magnetic fields. However, the opposite is observed (see Figs. 5.7 and
5.9). The shift towards higher filling factors is a strong indication that particle-hole symmetry
is also broken within the stripe phase itself. The observed particle-hole asymmetry can be
reconciliated with the ELC picture if one assumes that scattering across a filled region is more
likely than scattering across an empty one. Hence,τ1 < τ0 at νN = 0.5. In order to obtain the
theoretical predicted Hall resistance and the maximum in the longitudinal resistance, one has to
move to lower magnetic fields where the width of the empty regions reduces at the expense of
the filled regions. This will compensate for the inequality in the scattering times.

It is important to note that this shift of the resistance maximum is observed only at the lowest
temperatures. Once the temperature exceedsT = 40 mK, the maximum is located exactly at
νN = 0.5 (see Fig. 5.1). Hence, it is unlikely that the symmetry is broken by spin effects,
Landau level mixing or coupling between edge states and the bulk. Instead, probably subtle and
yet unknown interaction effects play a role.
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Negative differential resistance (NDR)

The V-I characteristics within the stripe and the bubble phases show regions of negative differ-
ential resistance above certain values of the DC current (see Figs. 5.2 and 5.7).12 These NDR
regions always appear in the vicinity of very high differential resistances. In the stripe phase,
the high resistances appear only for transport along the ’hard-axis’ and DC currents close to
zero. On the other hand, in the bubble phase, strong dissipation appears for any DC current di-
rection but only after critical DC currents are applied. Nevertheless, for both correlated phases,
NDR indicates that a highly dissipative transport mechanism is strongly suppressed by a slight
increase of the DC current.

We find NDR to occur only at the lowest temperaturesT < 60 mK in both phases. Temper-
ature dependent measurements in the bubble phase regime (see Fig. 5.14) indicate that NDR at
high DC currents appears only as long as a RIQHE state develops at low currents in this phase,
i.e. when a true resistance zero is observed nearIDC = 0. We speculate that the existence of
incompressible regions is a requirement for NDR to develop. Maybe then, NDR in the stripe
phase indicates tunneling between adjacent conducting stripes across incompressible regions.
Once the temperature exceeds a critical value or tunneling becomes too large, the incompress-
ible regions vanish and NDR is not observed anymore. In general, we propose that NDR is
a signature of tunneling processes across incompressible regions which form within the corre-
lated phases at the lowest temperatures. This might also explain why the magnitude of the NDR
is much bigger in the bubble phase where the incompressible regions are much wider than in
the stripe phase.

Wigner crystal

We mentioned in section 2.3.1 of the introductory chapter, that so far, there has been no evidence
for Wigner crystal formation within the N = 2 Landau level in transport experiments. Here,
we suggest that differential resistance measurements open up a new possibility to identify this
phase.

Although the IQHE minima remain visible up to the highest DC currents we apply, their
width on the magnetic field scale decreases with increasing DC currents. Strikingly, this de-
crease is much faster at low DC currents than at higher ones. This can be seen throughout our
differential resistance data, especially around filling factorν = 4. We propose that the for-
mation of a pinned Wigner crystal in the wings of the IQHE minima produces the additional
broadening. Similar to the bubble phase, the Wigner crystal is stabilized only at low DC cur-
rents. With increasing currents, the long range order of the Wigner crystal is destroyed and the
remaining width of the resistance minimum only reflects localization of single-electron IQHE-

12Especially within the bubble phase, the V-I curves are strongly reminiscent of the I-V curves of resonant

tunneling diodes.
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Figure 5.15: Schematic Wigner crystal phase diagram. The Wigner crystal can

be identified in the wings of the IQHE resistance minima by an enhancement of

the width of the minimum for small DC currents or temperatures. The Wigner

crystal phase and the bubble phase are expected to break down at comparable DC

currents.

states.13 Whereas the Wigner crystal regime is bounded by the bubble phase atνN = 0.19, the
position of the boundary towards the IQHE regime should depend on the sample quality. For
a sample free of disorder, the Wigner crystal presumably is stable down to the empty Landau
level, i.e. νN = 0. Disorder breaks up the long range crystalline order starting at the lowest
electron densities. Thus as the disorder increases, the boundary between Wigner crystal and
IQHE will move fromνN = 0 towardsνN = 0.19.

Still, the important question remains why the IQHE phase smoothly transforms into a
Wigner crystal, whereas Wigner crystal and bubble phase are separated by a region of non-
zero resistance (at least in the highest mobility samples or at non-zero DC currents). Possibly,
the Wigner crystal melts at the transition to the bubble phase, allowing electrons to rearrange

13Preliminary data aroundν = 1, 2, 3 show the same effect. This agrees with microwave resonance experiments,

which find indications for Wigner crystallization in the wings of the IQHE minima in the lowest three Landau levels

(N ≤ 2) [62,65,66].
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into clusters. At the melting point, long range crystalline order is destroyed and dissipative
transport takes place. Instead, at the transition point between Wigner crystal and IQHE phase,
the long range correlations between electrons give way to single electron localization without
an intermediate dissipative regime.

Breakdown of correlated phases

What causes the correlated phases to break down when a DC current is applied? We already
noted before that our data is inconsistent with a simple increase of the electron temperature
within the sample induced by the DC current. Otherwise, one would mainly expect a broad-
ening and a reduction of the differential resistance features at higher DC currents which is not
observed. Also, the similarity of our differential resistance data for different samples, wafers
and cooldowns makes it unlikely that the breakdown relies on sample inhomogeneities, impu-
rities or other random effects. Instead, a generic mechanism must be responsible for it.

We propose that the phase breakdown is not directly triggered by the DC current or its
density but rather by the induced DC Hall voltage which drops across the correlated phases

Figure 5.16: (a) The bulk correlated phase is separated from the conducting

edge channels (blue) by an incompressible strip (gray). (b) Energy diagram in the

correlated phase regime. In the topmost, partially filled Landau level, a (pseudo-

)gap opens up in the bulk due to electron correlations. (c) DC Hall voltage across

the sample. A considerable portion of it drops across the correlated phase in the

bulk. Breakdown starts when the Hall voltage drop in the bulk is larger than the

correlated phase (pseudo-)gapEcorr.



5.2. DIFFERENTIAL RESISTANCE AROUND ν = 9/2 101

(Fig. 5.16(c)). In order to understand our argument, it is necessary to distinguish between two
contributions of the DC current (Fig. 5.16(a)). One part of the current (probably the larger
one) flows in the completely filled lower Landau levels. In the Büttiker picture, this portion of
the current is distributed among conducting channels near the edges of the sample (sec. 2.1.4).
The remaining part of the DC current flows through the correlated phase which forms within
the bulk of the sample. As the magnetic field is changed, we expect only a smooth change of
the edge current distribution. On the other hand, the bulk current distribution should strongly
depend on the nature of the correlated phase that stabilizes at a particular magnetic field.

The breakdown current for a given correlated phase increases in accordance with the sample
size.14 Hence, it would be reasonable to argue that a critical current density in the bulk triggers
the breakdown. Implicitly one assumes here, however, that the current is equally distributed
within the different bulk correlated phases. This is definitely not the case because, after all,
the bubble phase is a true Quantum Hall state, i.e. incompressible, whereas the stripe phase
is compressible. Consequently, one expects a large difference between the breakdown currents
for these two types of phases.15 Such a difference is not observed. Instead, the maximum
breakdown current decreases smoothly from the electron-bubble phase to the hole-bubble phase,
i.e. from the empty to the filled Landau level, and it takes on very comparable values for the
stripe phase (Fig. 5.6). Therefore, the bulk current density can not be responsible for the
breakdown effect. On the other hand, the breakdown also can not be triggered by the edge
currents in the lower Landau levels themselves, because this would contradict the strong sample
size dependence of the breakdown currents. All observations can only be reconciled if we
assume that the breakdown is triggered by the DC Hall electric field which is induced by the
edge currents. This part of the Hall field is independent of the bulk current distribution and
its magnitude depends on the sample size. Once the Hall electric field which drops across the
correlated phase becomes larger than the (pseudo-)gap energyEcorr of this phase, the phase
breaks down. The picture also explains the smooth decrease of the breakdown current from the
electron-bubble to the hole-bubble phase. The width of the incompressible strip which separates
the bulk from the innermost conducting edge channel decreases as one moves from the empty to
the filled Landau level and the coupling between the edge channels and the bulk states smoothly
increases accordingly. The ensuing hybridization between the innermost edge channel and the
correlated phase in the bulk effectively destabilizes the phase and leads to a lower breakdown
current for higher filling factorsνN.

14Although we have not carried out a systematic study, we have confirmed this fact using larger samples as well

as by comparing our data with those for large samples published by other groups.
15Additionally, in the stripe phase, the breakdown currents for the two main crystal axis directions should differ

by a large amount because of current channeling (Fig. 5.1(b),(c)).
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Similarities between stripe and bubble phase - anisotropy in the bubble phase regime

The incompressible bubble phase and the compressible stripe phase are always discussed sepa-
rately throughout the literature. However, the differential resistance within those phases shows
many striking similarities. These become most obvious in Figure 5.7. The differential resis-
tance maxima in the two phases are of almost identical magnitude16 and they are both followed
by a region of NDR towards higher DC currents. A closer look (see Fig. 5.8) reveals that
the differential resistance maxima, signaling the breakdown of the bubble phase, smoothly ap-
proach each other as one moves towards the stripe phase regime. At the same time, the DC
current range, in which a true resistance zero occurs in the bubble phase, decreases in size and
gradually develops into a simple minimum inside the stripe phase. Our observations indicate a
close connection between the bubble phase at intermediate DC currents and the stripe phase at
low currents with a smooth transition between the two phases.

Even more strikingly, we find evidence for anisotropic behavior in the bubble phase regime
at intermediate DC currents, i.e. near the breakdown of this phase. Figure 5.10 shows that
the differential resistance maxima in the stripe and bubble phase depend in the same way on
the distance between the current path and the voltage contacts. Current channeling which is a
sign of anisotropic transport is observed in both cases. The strongest evidence for anisotropic
transport, however, comes from our measurements using independent AC and DC current di-
rections (Fig. 5.12). For a fixed DC current orientation, we find that the AC current direction
determines whether a maximum or a minimum is observed in the differential resistance. This is
clearly anisotropic behavior in the magnetic field regime of the bubble phase. However, unlike
for the stripe phase, the preferred anisotropy axis in the bubble phase regime is independent
of the underlying crystal axis orientation. Rather it is determined by the direction of the DC
current itself. The low resistance direction is always perpendicular to the DC current, i.e. par-
allel to the DC Hall electric field. This is somewhat reminiscent of the preferred orientation of
conventional liquid crystals parallel to an applied outside electric field [14]. Although in the
stripe phase, the DC current direction does not determine the stripe orientation, we showed in
section 5.2.3 that it stabilizes the stripes when it flows parallel to their preferred direction. This
is opposite to the behavior we just described for the bubble phase regime. We believe that this
discrepancy is noteworthy but not necessarily contradictory, because after all, the bubble phase
is incompressible whereas the stripe phase is compressible. As we mentioned in the last para-
graph, this has strong consequences for the DC current distribution within these phases, and it
is likely to alter the impact of the DC current on each of these correlated phases.

The reason why transport anisotropies in the regime of the bubble phase have not been
observed before is now obvious. If the AC current is directed parallel to the DC current, one
will always probe the high-resistance direction of this anisotropic phase. Only our independent
choice of the AC and DC current directions reveals the anisotropy. It is still an open question

16We find this statement to be true for any temperature at which the correlated phases exist.
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whether the bubble phase itself is anisotropic (i.e. a stripe crystal - see section 2.3.2), or rather
a new anisotropic phase is stabilized at intermediate DC currents.





Chapter 6

Conclusions

We now review the most important results of our experiments for each chapter separately. Sub-
sequently, we give an outlook on possible future work based on our findings. The last section
comments on the general relevance of our work.

Composite Fermion ballistic transport

At the beginning of chapter 3, we present conductance measurements through a Quantum Point
Contact (QPC) constriction defined by metallic lateral surface gates. The quality of the QPC is
reflected by the large number of conductance quantization steps at zero magnetic field as well
as the observation of fractional edge state transport through the QPC around bulk filling factor
ν = 1/2. This gives us confidence in assembling two opposing QPCs into a device which is
sensitive to straight ballistic transport of charge carriers. One QPC is used as the current injector
and the second one as the voltage detector. In this way, we observe a clean signature of ballistic
transport for electrons around zero magnetic field.

Using the same setup, we unequivocally demonstrate straight ballistic transport of Compos-
ite Fermions (CFs) at filling factorν = 1/2 as well asν = 3/2 over a distance of1 µm. Our
results nicely verify particle-like motion of CFs around half filling of the lowest (N = 0) Lan-
dau level and indirectly the existence of an effective magnetic field for CFs (eq. 2.28). These
central predictions of the Composite Fermion picture have been previously confirmed by other
groups [43, 44].1 However, our experiments are the first to address straight ballistic transport,
i.e. transport in zero effective magnetic field. Furthermore, the clean signal and the tunabil-
ity of the device allow us to perform several independent checks of the ballistic nature of CF
transport. In particular, the (i) temperature dependence (sec. 3.3.2), (ii) gate voltage depen-

1Because of the large width of the CF ballistic transport peak in our case, we find it unlikely that the narrow

resistance features of reference [94] - often used as a textbook example - are a sign of ballistic CF transport. This

speculation is supported by the strikingly different temperature dependence of the ballistic signal in both cases.

We have observed similar features to those of [94] in very narrow constrictions which we relate to an interference

effect.
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dence (sec. 3.3.1), and (iii) configuration dependence (sec. 3.3.3) of the resistance feature near
ν = 1/2 or ν = 3/2 all agree with the notion of straight ballistic transport of CFs. To our
knowledge, there is no explanation for our experimental results outside the Composite Fermion
framework.2

Apart from qualitative similarities between electron and CF ballistic transport, we have ob-
served important differences which are, however, all in agreement with the CF picture. In some
measurements, the CF ballistic resistance peak shifts towards lower external magnetic fields as
the QPC constrictions are narrowed. We explain this by a reduced charge density within the
constriction. The lower density deflects the CFs because it corresponds to a non-zero effective
magnetic field. Along the same line of reasoning, we interpret the large width of the CF re-
sistance peak as compared to the electronic resistance peak at zero external field. The smooth
confinement potential of the QPCs leads to density variations within the constrictions. There-
fore, CFs traversing the QPC experience slightly different effective magnetic fields depending
on the local density they probe within the constriction. Accordingly, CFs will leave the QPC
at slightly different angles producing the broad resistance peak. It would be interesting to test
whether the line shape of the ballistic resistance peak can be described by simulations when
a realistic confinement potential within the QPCs is assumed. The above observations further
underline the duality between carrier density and external magnetic field for CFs according to
equation 2.28.

The evidence of particle-like CF behavior shows the significance of the Composite Fermion
picture beyond the explanation of the FQHE for which it had been originally proposed. In fact,
it seems that CFs exist independently of the Quantum Hall Effect. For certain experiments, the
notion of Composite Fermions is not just a dual way of understanding the observations, rather
it seems that CF transport is the only way to interpret the results. Our experiments exemplify
that one can devise sophisticated transport experiments for CFs by exploiting the analogy to
electrons at low magnetic fields.

Another result from this chapter is somewhat hidden between the lines. It is possible
to deposit metal gates defined by means of electron-beam lithography on the surface of a
GaAs/AlGaAs heterostructure with negligible effects on the 2DES quality. This can be most
clearly deduced from the low resistance at filling factorν = 1/2 and the many FQH oscillations
nearby on these processed samples.

Interference effects in tunable antidot geometries

The results of chapter 4 have been obtained in a device in which a tunable antidot is located
in the center of a constriction. In our case, the antidot is an elliptical surface gate which is
contacted by means of a metallic air-bridge. This allows us to effectively create a hole inside

2After all, the classical cyclotron radius for electrons is below10 nm at the high magnetic fields necessary to

reachν = 1/2. Therefore, straight ballistic motion of electrons over distances of1 µm is impossible.
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the 2DES underneath the gate without disturbing the 2DES outside the contact area of the gate.
We observe resonances in the resistance whenever the magnetic field stabilizes a trapped

classical orbit around the antidot. The dimensions of these orbits can be extracted from the
positions of the resistance maxima on the magnetic field axis.

At low temperatures, quasi-periodic resistance oscillations with a high visibility (δg ≈
0.5 e2/h) are a sign of electron Aharonov-Bohm like interference in this geometry. Electrons
revolving around the antidot interfere with those that simply pass by. From the period of the
oscillations, we extract the area enclosed by the electrons’ path and find it to agree well with
the dimensions obtained from the analysis of the classical orbits. By following the Aharonov-
Bohm period with magnetic field, we observe a transition from cyclotron motion (orbit area
determined by the external field) to edge state motion (area determined by antidot dimensions
including depletion). We also analyze the temperature dependence of the interference oscilla-
tions and compare it with the predictions of a simple model. The experimentally determined
characteristic temperature for the decay of the oscillations agrees well with the theoretical ex-
pectation. The results can be nicely explained by a strong coupling (R = 0.81) between the
trapped orbits around the antidot and the traversing paths.

A special digital filtering technique allows us to separate the quasi-periodic oscillations from
the more slowly varying background signal. The procedure enables us to study the influence
of small changes in the gate voltages on the interference pattern. This way, we have observed
phase dislocations where certain oscillations suddenly vanish as the parameters are changed.
This has been interpreted as a sign of the influence of competing orbits. The phenomenon is
quite general for complex interference patterns, and as another example, we show results from
interfering Bose-Einstein condensates found in the literature.

The experimental results of this chapter show that the air-bridge gating technique for the
electrical connection of the antidot minimizes the detrimental effects on the underlying 2DES.
Although technologically challenging, such a technique has been demonstrated to be of great
advantage for a variety of interference experiments. In Appendix A, we describe the lithography
process for the reliable and reproducible fabrication of metallic air-bridges with footprints down
to a size of100 × 200 nm and bridging distances of about1 µm. This is an important tool for
further interference experiments.

Transport in Electron Liquid Crystal phases

In chapter 5, we present transport measurements on the Electron Liquid Crystal (ELC) phases
in the N = 2 Landau level. Most of our results are obtained on a small, lithographically defined
van-der-Pauw geometry (90 × 90 µm) where resistance anisotropies are most pronounced. In
some cases, however, we employ a ’L’-shaped Hall-bar geometry for a simultaneous resistance
measurement in both main crystal directions and a better defined current distribution.
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Resistance measurementsWe find the anisotropic stripe phase in the filling factor range
4.37 < ν < 4.63 and the electron-bubble phase at4.19 < ν < 4.37. The phase boundaries
are independent of the sample details and nicely obey the expected particle-hole symmetry. In
agreement with the literature, we find the stripes to be always oriented along the[110] crystal
direction in our samples. However, the mechanism that aligns the stripes along this axis is still
elusive. In this respect, it is interesting to note that we observe a magnetic field-independent
anisotropy for the resistance along the main crystal axes in the ’L’-geometry. Also, we find
a similar field-independent anisotropy by studying the resistance drop as the distance between
current path and voltage probes is increased in the vdP geometry. So far, it is an open question
whether these field-independent anisotropies are caused by the same mechanism that leads to
the preferred orientation in the stripe phase. In the vdP geometry, we find anisotropy factors
of up toR[110]/R[110] ≈ 40 in the stripe phase. Factors as high as3500 have been reported in
the literature for large samples. Presumably, current channeling becomes even more effective
when the sample size is large compared to the period of the stripe modulationλCDW. In the
’L’-shaped Hall-bar geometry, the anisotropy is reduced to a factor ofρ[110]/ρ[110] ≈ 6 because
current channeling is negligible there.

The bubble phase and the adjacent IQHE have the same fingerprints, and in our sample, they
can not be distinguished at the lowest temperatures. However, aboveT ≥ 40 mK, a region of
non-zero longitudinal resistance separates the two phases and makes them discernible. Similar
to other groups, we extract a large difference in the activation energies for the electron- and
the hole-bubble phase from temperature dependent measurements. The same asymmetry is also
reflected in the different DC breakdown currents for these particle-hole conjugate phases. We
explain the observations with a monotonic increase of the coupling between edge channels of
the lower Landau levels and the correlated phase in the bulk with rising filling factorνN of the
topmost Landau level.

Differential resistance measurements Rather small DC currents (IDC ≈ 20 − 100 nA) are
sufficient to destroy the stripe and bubble phases in our vdP samples. These currents are smaller
by a factor 5-10 as compared to the ones reported for the breakdown of the bubble phase in larger
samples. For our small breakdown currents, we show that the results can not be explained by
Joule heating effects. For the first time, we demonstrate that the breakdown of the stripe as well
as the RIQHE of the bubble phase takes place in a well defined and reproducible way. We put
forward the hypothesis that breakdown is induced as soon as the portion of the DC Hall electric
field which drops across the bulk correlated phases becomes larger than the (pseudo-)gapEcorr

of these phases.
Within the stripe phase, a shift of the resistance maximum away fromν = 9/2 to higher

fillings is observed which occurs only at the lowest temperatures (T < 40 mK). We have no
explanation for this particle-hole asymmetry, but the strong temperature dependence suggest
subtle interaction effects to be involved. The experiments only agree with the theoretical pre-
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dictions for coupled Luttinger liquids if we assume unequal scattering times across filled and
empty stripe regions exactly atνN = 1/2.

We also observe strong negative differential resistance (NDR) signals at the breakdown of
the stripe as well as the bubble phase which have not been reported in the literature before.
These features appear only at low temperaturesT ≤ 60 mK for which the longitudinal re-
sistance in the bubble phase still remains zero. We infer from this that NDR presumably is a
signature of tunneling across incompressible regions within the bulk of the sample. This also
explains why the NDR signal is much larger in the electron-bubble phase than in the stripe
phase, since in the former the incompressible regions are simply wider than in the latter.

Throughout our measurements, we find strong similarities between the differential resis-
tance data in the stripe and the bubble phase which have gone unnoticed so far. In particular,
we observe

• a comparable magnitude of thedV/dI peak in both phases (Fig. 5.7),

• a continuous evolution of the stripedV/dI peak at zero DC current into the bubble peak
at intermediate DC current as a function of the magnetic field (Fig. 5.8),

• regions of negative differential resistance (NDR) in both phases for a range of DC currents
close to thedV/dI peak (Fig. 5.7),

• very similar dependence ofdV/dI peak values in both phases on the distance between
current path and voltage contacts (Fig. 5.10).

We interpret our findings as evidence for anisotropic transport in the magnetic field regime
of the bubble phase. This is corroborated by clear anisotropy seen in experiments in which the
DC current direction is fixed while the AC probe current direction is varied. Unlike in the stripe
phase, the anisotropy in the bubble phase regime appears only at intermediate DC currents, and
even more important, it is not related to the underlying crystal axis. The ’easy’-resistance axis
of the bubble regime anisotropy is always perpendicular to the DC current, i.e. parallel to the
Hall electric field.

Finally, we interpret the additional broadening of the IQHE minimum at low DC currents
as evidence for Wigner crystal formation in the wings of these minima. The correlated nature
of this phase renders it more susceptible to DC currents as the much more robust IQHE phase.
Preliminary measurements in lower Landau levels support this idea.

Outlook

Combining the experiments on Composite Fermion transport of chapter 3 with the interference
experiments of chapter 4 opens up the fascinating possibility to search for interference effects
of Composite Fermions. If observed, such effects would underline the predictive power of the
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CF concept and would also allow to study interference effects in strongly interacting systems
from a new viewpoint. The duality between external magnetic field and charge carrier density
for CFs holds the prospect of observing an Aharonov-Bohm effect driven exclusively by the
carrier density. However, we find a few remaining obstacles towards the goal of CF interfer-
ence experiments. So far, we observe ballistic Composite Fermion transport only in illuminated
samples. Unfortunately, illumination leads to persistent charge fluctuations in the sample which
are known to inhibit interference effects. Therefore, a necessary prerequisite for the proposed
experiments is to find samples with high mobility even without illumination. At the same time,
the samples must show a steep confinement potential at QPC constrictions which minimizes the
deflection of Composite Fermions as they pass through the QPC.

An important question arises from our observations in the correlated ELC phases. Is the
anisotropy we find in the regime of the bubble phase a sign of a new phase which forms only
at intermediate DC currents or does it reflect an inherent anisotropy of the bubble phase itself?
A detailed non-equilibrium theoretical description which treats stripe and bubble phase on an
equal footing is missing. In order to find out exactly how the DC current induces a breakdown
of the correlated phases, it will be important to compare the breakdown behavior in samples
of various sizes and also to determine how the DC Hall voltage drops across the sample in the
different phases. An important unsolved question is why the stripes always tend to align along
a certain crystal axis. Maybe a systematic study of the magnetic field-independent anisotropies
that we find and their relation to the preferred stripe direction is a starting point for resolving
this enigma. With respect to the Wigner crystal formation in the wings of the IQHE minima, it
would be interesting to determine how the size of the additional broadening of the minima at
low DC currents depends on the sample quality. All experiments performed in the regime of
the correlated phases so far have only indirectly inferred their properties. Ultimately, it would
be fascinating to resolve the spatial variation of the charge density within the ELC phases with
the help of a local probe, e.g. a scanning tunneling microscope (STM).

Final comments

We have learned in the introductory chapter that a well-defined mathematical operation trans-
forms a strongly interacting system of electrons into a weakly interacting one of Composite
Fermions. Is the existence of such a transformation just a lucky coincidence for strongly inter-
acting electrons living in a 2-dimensional plane? According to the holographic principle, first
introduced in 1993 by Gerard’t Hooft, any 3-dimensional physical system can be completely
described by a theory operating solely on its 2-dimensional boundary [95]. Therefore, in prin-
ciple, Composite Fermions and the more general concept of statistical transmutation, i.e. the
change of particle statistics by a mathematical transformation, may well have an impact on our
understanding of systems in higher dimensions. Even more generally, modern quantum field
theories, in particular string and M-brane theory, seem to indicate that every strongly interacting
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system has a dual weakly interacting one with equivalent physical properties [96]. The difficult
part is to find the duality transformation for a particular case. Therefore, it seems to be a matter
of our viewpoint how complicated a physical system looks like. We hope that further research
on the detailed properties of Composite Fermions will deepen the understanding of strongly
interacting systems even outside the realm of the 2DES.

The Electron Liquid Crystal phases are a beautiful example of self organization in systems
with competing ranges and types of interactions. Unlike their classical counterparts, the prop-
erties of ELC phases are modified by quantum fluctuations in ways which still remain poorly
understood. It has been proposed that very similar phenomena play a role in the formation of
high-Tc superconductivity. We hope that further investigations of the non-equilibrium transport
properties of ELC phases will ultimately benefit the understanding of quantum phase transitions
and dynamical ordering in general.





Deutsche Zusammenfassung

Seit der Entdeckung des ganzzahligen Quanten-Hall Effekts (IQHE) durch K. von Klitzinget

al. im Jahre 1980 [1] sind 2-dimensionale Elektronensysteme (2DES) in Halbleiterstrukturen
eine faszinierende Spielwiese für die experimentelle sowie theoretische Festkörperphysik.

Der experimentelle Fortschritt wurde vornehmlich durch eine kontinuierliche Verbesserung
der Probenqualität erzielt. In den besten zur Zeit verfügbaren Proben bewegen sich Elektronen
über Entfernungen von etwa 200µm fort, ohne gestreut zu werden. Dies entspricht einer Stei-
gerung um etwa drei Größenordnungen verglichen mit den Proben der frühen Experimente. Die
stark verbesserte Probenqualität, sowie die Fähigkeit empfindliche elektronische Messungen bei
hohen magnetischen Feldern (B ≈ 10 T) und immer tieferen Temperaturen (T ≈ 10 mK) aus-
zuführen, haben innerhalb der letzten 24 Jahre zu einer Palette aufregender Entdeckungen auf
dem Gebiet der 2DES geführt.

Diese Entdeckungen haben intensive theoretische Anstrengungen ausgelöst mit dem Ziel,
die zugrunde liegenden fundamentalen Prozesse und Prinzipien zu verstehen. In den frühen
Jahren der Forschung an 2DES waren nicht-wechselwirkende Einteilchen-Modelle vielfach aus-
reichend, um die beobachteten Phänomene zu beschreiben. Allerdings rückte die Entdeckung
des gebrochenzahligen Quanten-Hall Effekts (FQHE) im Jahre 1982 durch Tsuiet al. [2] und
seine Erklärung durch Laughlin [3] die Bedeutung von Elektron-Elektron Korrelationseffekten
in den Fokus. Schnell wurde auch klar, dass tiefe Einsichten in die Feinheiten der Quantenfeld-
theorie notwendig sind, um unser Verständnis der Physik auf dem Gebiet zu verbessern. So trug
zum Beispiel Laughlin der präzisen Quantisierung des Widerstands im IQHE Rechnung, indem
er ein Eichinvarianz Argument verwendete [4].

Bis heute bleiben die komplizierten kollektiven Phänomene, die durch elektronische Korre-
lationen hervorgerufen werden, eine Herausforderung für die Forschung. Diese Arbeit befasst
sich hauptsächlich mit zwei wichtigen Korrelationsphänomenen innerhalb von 2DES: Verbund-
fermionen und elektronischen Flüssigkristallen. Wir werden diese Effekte in den nächsten zwei
Abschnitten kurz einführen.

Im Jahre 1989, bei einem Versuch in intuitiver Weise die experimentell beobachteten FQH-
Zustände zu erklären, führte J. Jain das Konzept der Verbundfermionen ein [5]. Hierbei handelt
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es sich um Quasiteilchen, die jeweils aus einem Elektron und zwei elementaren magnetischen
Flussquanten zusammengesetzt sind. Innerhalb dieser Beschreibung lässt sich der FQHE in na-
türlicher Weise als der IQHE von Verbundfermionen verstehen. Von Halperin, Lee und Read
wurde in 1993 gezeigt, dass Verbundfermionen unabhängig vom IQHE existieren. Sie ver-
halten sich wie schwach wechselwirkende Teilchen, die einem effektiven magnetischen Feld
ausgesetzt sind, welches deutlich kleiner als das externe magnetische Feld ist [6].

Ausgehend von der Analogie zu Elektronensystemen bei kleinen magnetischen Feldern,
kann man sich mesoskopische Experimente für Verbundfermionen ausdenken. Dabei scheint
es unmöglich die Resultate solcher Experimente vorauszusagen, ohne sich des Konzepts der
Verbundfermionen zu bedienen. Verbundfermionen sind auch von einem allgemeine feldtheo-
retischen Blickwinkel aus faszinierend. Mit Hilfe einer wohldefinierten mathematischen Trans-
formation kann ein stark korreliertes System in ein schwach wechselwirkendes umgeformt wer-
den. Das transformierte System lässt sich wesentlich einfacher quantitativ behandeln und macht
es auch intuitiv leichter zugänglich.

In unserer Arbeit untersuchen wir hauptsächlich das teilchenartige Verhalten von Verbund-
fermionen in wohldefinierten und einstellbaren Geometrien. Diese Experimente sollen die
Grenzen des Verbundfermion Bildes beleuchten. Letztendlich stellt sich aber die faszinierende
Frage, ob es möglich ist, wellenartige Eigenschaften von Verbundfermionen nachzuweisen. Als
ein wichtiger erster Schritt in Richtung dieses Zieles untersuchen wir spezielle Proben, die star-
ke Interferenzeffekte für Elektronen bei kleinen magnetischen Feldern zeigen. Die ungelösten
Schwierigkeiten, die bisher noch einer Beobachtung von Intereferenzeffekten von Verbundfer-
mionen im Wege stehen, betrachten wir kurz am Ende dieser Zusammenfassung.

Bei mittleren magnetischen Feldern, unterhalb der Felder bei denen der FQHE beobachtet
wird, führen elektronische Korrelationen zu qualitativ ganz neuem Verhalten. In diesem Bereich
beobachtet man anisotropen Transport und einen wieder-eintretenden IQHE (RIQHE). Diese
Phänomene wurden erst im Jahre 1999, mit der Verfügbarkeit von Proben extrem hoher Qualität,
unabhängig voneinander von Lillyet al. und Duet al. entdeckt [7,8].

Die Effekte können qualitativ durch ein Modell beschrieben werden, das schon 1996, also
noch vor der experimentellen Entdeckung, von Koulakovet al. und auch von Moessner und
Chalker [10, 9] vorgeschlagen worden ist. Diese Gruppen sagten unabhängig voneinander eine
Instabilität des 2DES voraus, die zu einer spontanen räumlichen Modulation der Elektronen-
dichte mit einer langreichweitigen Ordnung führt. Die Modulation wird durch den Wettbewerb
zwischen abstoßenden und anziehenden Wechselwirkungskomponenten ausgelöst. Sie hat star-
ke Ähnlichkeit mit der Modulation in konventionellen Ladungsträger-Dichte-Wellen (CDW)
Leitern [11]. Abhängig von der jeweiligen Symmetrie der Modulation des 2DES unterscheidet
man zwischen anisotropen Streifen-Phasen und isotropen Blasen-Phasen. Übergänge zwischen
den verschiedenen Phasentypen können einfach herbeigeführt werden, indem das angelegte
senkrechte Magnetfeld leicht verändert wird. Die Blasen-Phase ähnelt dem wohlbekannten
Wigner Kristall [12]. Bei dem letzteren bilden einzelne Elektronen durch ihre gegenseitige ab-
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stoßende Coulomb Wechselwirkung ein Gitter mit dreieckiger Elementarzelle. In der Blasen
Phase wird stattdessen jeder Gitterplatz von zwei oder mehr Elektronen besetzt.

Ein anspruchsvolleres Modell wurde von Fradkin und Kievelson eingeführt [13]. Sie er-
kannten die Bedeutung von Quantenfluktuationen für eine realistische Beschreibung der korre-
lierten Phasen. Das resultierende Phasendiagramm ist dem der klassischen molekularen Flüs-
sigkristalle sehr ähnlich [14]. Deswegen ist das Modell bekannt als das elektronischer Flüs-
sigkristalle (ELC). Ähnliche langreichweitige Phasen treten in einer Vielzahl von chemischen
und physikalischen Systemen auf, wie zum Beispiel bei dünnen magnetischen Filmen und Fer-
rofluiden [15]. In allen Fällen können die Phasen auf konkurrierende abstoßende und anziehen-
de Wechselwirkungen zurückgeführt werden. Im Falle der Coulomb Wechselwirkung wird das
ELC Bild auch im Zusammenhang mit Hochtemperatur-Supraleitern diskutiert [16].

In unseren eigenen Untersuchungen der ELC Phasen in 2DES hoher Qualität benutzen wir
Gleichströme um eine Nicht-Gleichgewichts Situations in der Probe herbeizuführen und die
korrelierten Phasen in einer kontrollierten Art und Weise zu destabilisieren. Wir erhalten so
einen weiteren Parameter, den wir dazu verwenden die ELC Phasen im Detail zu untersuchen.
Am Ende dieser Zusammenfassung werden wir darstellen, welche neue Einblicke wir in die
ELC Phasen gewinnen konnten und welche interessanten neuen Fragestellungen sich daraus
ergeben.

Im Folgenden fassen wir unsere Arbeit nach Kapiteln geordnet zusammen:

Grundlagen (Kapitel 2)

Im Kapitel 2 dieser Arbeit diskutieren wir die grundlegenden Konzepte, die notwendig sind
um unsere eigenen experimentellen Ergebnisse in den späteren Kapiteln zu verstehen. Zuerst
führen wir 2-dimensionale Elektronensysteme, den ganz- und den gebrochenzahligen Quanten
Hall Effekt und den Aharonov-Bohm Effekt ein. Ein weiterer Abschnitt beschäftigt sich mit
Verbundfermionen, ihrem teilchenartigen Charakter und ihrer Rolle für das Verständnis des
FQHE. Am Ende diese Kapitels widmen wir uns den korrelierten Phasen, die bei mittleren
Magnetfeldern auftreten, und diskutieren das CDW sowie das ELC Bild.

Ballistischer Transport von Verbundfermionen (Kapitel 3)

Am Anfang von Kapitel 3 präsentieren wir Messungen der Leitfähigkeit an einem Quanten-
punktkontakt (QPC), einer Verengung des 2DES, die durch eine negative Spannung an metal-
lischen Oberflächenelektroden definiert werden. Die Qualität des QPC wird durch die große
Zahl von Quantisierungsstufen in der Leitfähigkeit bei verschwindendem Magnetfeld und der
Beobachtung von gebrochenzahligem Randkanaltransport durch den QPC unterstrichen. Dies
bestärkt uns darin, zwei gegenüberliegende QPCs so zusammenzuschalten, dass die Schaltung
empfindlich für geraden ballistischen Transport von Ladungsträgern ist. Einer der QPCs wird
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als Strominjektor benutzt, während der zweite als Spannungsdetektor fungiert. Auf diese Weise
beobachten wir ein klares Zeichen von ballistischem Transport von Elektronen bei verschwin-
dendem Magnetfeld.

Mit dem gleichen Aufbau demonstrieren wir unzweifelhaft geraden ballistischen Transport
von Verbundfermionen nahe Füllfaktorν = 1/2 sowieν = 3/2 über eine Distanz von1 µm.
Unsere Ergebnisse bestätigen sehr schön die teilchenartige Bewegung von Verbundfermionen
in der Nähe des halbgefüllten untersten Landau Niveaus (N = 0) und indirekt auch die Existenz
eines effektiven magnetischen Feldes für Verbundfermionen. Diese zentralen Voraussagen des
Verbundfermion Bildes wurden zwar schon vorher von anderen Gruppen bestätigt, allerdings
sind unsere Experimente die ersten die geraden ballistischen Transport adressieren, d.h. Trans-
port bei verschwindendem effektiven Magnetfeld. Weiterhin erlaubt das klare Signal und die
Einstellbarkeit der Probe, dass wir einige unabhängige Test durchführen können, die den bal-
listischen Charakter des Verbundfermion-Transports verifizieren. Insbesondere die (i) Tempe-
raturabhängigkeit (Abschnitt 3.3.2), (ii) Abhängigkeit von der Elektrodenspannung (Abschnitt
3.3.1) und die (iii) Konfigurationsabhängigkeit (Abschnitt 3.3.3) des Widerstandsextremums
naheν = 1/2 sowieν = 3/2 stimmen alle mit der Idee von geradem ballistischen Transport
von Verbundfermionen überein. Unseres Wissen gibt es keine Erklärung der experimentellen
Ergebnisse außerhalb des Verbundfermion Bildes.3

Abgesehen von den qualitativen Ähnlichkeiten zwischen ballistischem Transport für Elek-
tronen und für Verbundfermionen haben wir wichtige Unterschiede festgestellt, die allerdings
alle mit dem Verbundfermion Bild übereinstimmen. In einigen Messungen verschiebt sich des
ballistische Maximum der Verbundfermionen hin zu kleineren externen Magnetfeldern wenn
die QPC Verengung verkleinert wird. Wir erklären diesen Effekt mit einer verringerten La-
dungsträgerdichte innerhalb des QPCs. Die reduzierte Dichte lenkt die Verbundfermionen ab,
weil sie einem nicht verschwindenden effektiven Magnetfeld entspricht. Auf eine ähnliche Art
und Weise erklären wir die große Breite des Verbundfermion Maximums im Vergleich mit dem
Elektronen Maximum bei verschwindendem externen Magnetfeld. Unsere Beobachtungen un-
terstreichen die Dualität zwischen Ladungsträgerdichte und äußerem Magnetfeld für Verbund-
fermionen wie sie in Gleichung 2.28 zum Ausdruck kommt.

Die Beweise für den teilchenartigen Charakter der Verbundfermionen betont den Wert des
Verbundfermion Bildes über die Erklärung des FQHE hinaus, für den es ursprünglich eingeführt
worden ist. Es scheint ganz so, als ob Verbundfermionen unabhängig vom Quanten-Hall Effekt
existieren. Für bestimmte Experimente sind Verbundfermionen nicht nur eine weitere, duale
Art die Resultate zu erklären, sondern sie scheinen der einzige Weg zu sein, dies zu tun. Unsere
Experimente zeigen beispielhaft, dass es möglich ist, sich komplexe Transportexperimente für
Verbundfermionen auszudenken, in dem man die Analogie zu Elektronen bei niedrigen Ma-

3Tatsächlich ist der klassische Zyklotronradius für Elektronen bei den hohen magnetischen Feldern, die not-

wendig sind umν = 1/2 zu erreichen, kleiner als10 nm. Deswegen ist gerader ballistischer Transport von

Elektronen über Distanzen von1 µm nicht möglich.
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gnetfeldern ausnutzt.
Ein letztes Ergebnis des Kapitels steckt ein wenig verborgen zwischen den Zeilen. Wir

haben gezeigt, dass es möglich ist, metallische Elektroden mit Hilfe der Elektronenstrahl-
Lithographie auf die Oberfläche einer GaAs/AlGaAa Heterostruktur aufzubringen, ohne dass
die Qualität des 2DES merklich reduziert wird. Das kann man am einfachsten an dem nied-
rigen Widerstand beiν = 1/2 und den vielen FQHE Oszillationen in der Nähe erkennen, die
selbst bei bearbeiteten Proben beobachtet werden können.

Interferenzeffekte in einstellbaren Antidot Geometrien (Kapitel 4)

Die Ergebnisse des 4. Kapitels wurden mit einer Struktur gewonnen, in der sich ein einstellbarer
Antidot in der Mitte einer Verengung im 2DES befindet. Eine elliptische Oberflächenelektrode,
die mit Hilfe einer metallischen Luftbrücke kontaktiert ist, erlaubt es uns, ein Loch innerhalb
des 2DES (den Antidot) unterhalb der Elektrode zu erzeugen, ohne das 2DES an den anderen
Stellen zu beeinflussen.

Wir beobachten immer dann Resonanzen im Widerstand, wenn das magnetische Feld einen
geschlossenen, klassischen Elektronenorbit um den Antidot stabilisiert. Die Ausdehnung des
Orbits kann man aus der Position des Widerstandsmaximums auf der Magnetfeldachse ermit-
teln.

Bei tiefen Temperaturen deuten quasi-periodische Widerstandsoszillationen mit einer großen
Amplitude (δg ≈ 0.5 e2/h) auf einen Aharonov-Bohm-artigen Interferenzeffekt in dieser Geo-
metrie hin. Elektronen, die den Antidot umkreisen interferieren mit solchen, die ihn einfach
nur passieren. Die Fläche, die von den Elektronenorbits eingeschlossen wird, extrahieren wir
aus der Periode der Quantenoszillationen und stellen fest, dass sie sehr gut mit den Dimensio-
nen übereinstimmt, die wir aus der Analyse der klassischen Orbits erhalten hatten. Wir können
einen Übergang von einer Zyklotron-Bewegung zu einer Randkanal Bewegung beobachten, in-
dem wir die Veränderung der Aharanov-Bohm Periode mit dem Magnetfeld betrachten. Im
ersten Fall wird die Fläche der Orbits durch das angelegte Magnetfeld bestimmt, während dafür
im zweiten Fall im Wesentlichen die Fläche des Antidots verantwortlich ist. Wir analysieren
auch die Temperaturabhängigkeit der Interferenzoszillationen und vergleichen sie mit den Vor-
hersagen eines einfachen Modells. Die experimentell gewonnene charakteristische Temperatur
für den Abfall der Oszillationen stimmt recht gut mit der theoretischen Abschätzung überein.
Die Ergebnisse können erklärt werden, wenn man eine starke Koppelung (R ≈ 0.81) zwischen
geschlossenen Orbits um den Antidots und durchquerenden Bahnen annimmt.

Eine spezielle digitale Filtertechnik erlaubt es uns, die quasi-periodischen Oszillationen von
dem langsamer variierenden Hintergrund zu trennen. Durch dieses Verfahren gelingt es uns,
den Einfluss kleiner Änderungen der Elektrodenspannungen zu untersuchen. So beobachten
wir Phasensprünge, bei denen durch leichte Veränderung der Parameter bestimmte Oszillatio-
nen plötzlich verschwinden. Diese Phasensprünge werden als ein Zeichen für das Wechselspiel
zwischen miteinander im Wettbewerb stehender Orbits gewertet. Sie sind ein generelles Phä-
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nomen, das bei komplexen Interferenzmustern auftritt. Als ein weiteres Beispiel zeigen wir
Ergebnisse von interferierenden Bose-Einstein Kondensaten, wie sie in der Literatur zu finden
sind.

Die experimentellen Ergebnisse dieses Kapitels zeigen, dass die Luftbrücken-Verbindungs-
technik für den elektrischen Anschluss des Antidots einen vernachlässigbaren Einfluss auf das
darunter liegende 2DES hat. Diese Technik hat sich schon in einer Anzahl von Interferenzex-
perimenten bewährt, obwohl sie technologisch herausfordernd ist. Im Anhang A beschreiben
wir den Lithographieprozess für eine reproduzierbare Herstellung metallischer Luftbrücken mit
Fußabdrücken bis hinunter zu einer Größe von100× 200 nm und einer Überbrückungsdistanz
von etwa1 µm. Diese Brücken werden für weitere Interferenzexperimente ein wichtiges Werk-
zeug sein.

Transport in elektronischen Flüssigkristallen (Kapitel 5)

In Kapitel 5 präsentieren wir Transportexperimente an elektronischen Flüssigkristall (ELC)
Phasen imN = 2 Landau Niveau. Die meisten unserer experimentellen Ergebnisse haben
wir an kleinen, lithographisch definierten, van-der-Pauw Geometrien (90 × 90 µm) erhalten,
in denen Widerstandsanisotropien am deutlichsten hervortreten. Allerdings benutzen wir in
manchen Fällen auch eine ’L’-förmige Hall-bar Geometrie, um den Widerstand simultan in
beiden Kristallrichtungen zu messen und gleichzeitig eine besser definierte Stromverteilung zu
gewährleisten.

Widerstandsmessungen Wir bestimmen den Füllfaktorbereich für die anisotrope Streifen-
Phase zu4.37 < ν < 4.63 und für die Elektronen-Blasen-Phase zu4.19 < ν < 4.37. Die
Phasengrenzen sind unabhängig von den Details der Probe und gehorchen sehr gut der erwar-
teten Teilchen-Loch Symmetrie. In Übereinstimmung mit der Literatur finden wir, dass die
Streifen in unseren Proben immer entlang der[110] Kristallrichtung orientiert sind. Der Me-
chanismus, der die Streifen entlang dieser Richtung orientiert ist allerdings weiterhin ungeklärt.
Interessanterweise stellen wir eine ausgeprägte Anisotropie des Widerstands entlang der Haupt-
Kristallachsen in der ’L’-Geometrie fest, die unabhängig vom angelegten senkrechten Magnet-
feld ist. Zusätzlich beobachten wir eine magnetfeldunabhängige Anisotropie im Abfall des Wi-
derstands, der entsteht wenn wir die Distanz zwischen Strompfad und Spannungskontakten in
der vdP Geometrie vergrößern. Es bleibt eine offene Frage, ob diese magnetfeldunabhängigen
Anisotropien durch den gleichen Mechanismus hervorgerufen werden, der auch die Vorzugs-
richtung in der Streifen-Phase festlegt. In der vdP Geometrie finden wir in der Streifen-Phase
Anisotropiefaktoren von bis zuR[110]/R[110] ≈ 40. Faktoren bis zu3500 sind für grosse Pro-
ben in der Literatur berichtet worden. Dies kann durch den Effekt der Strombündelung erklärt
werden, der umso stärker ausgeprägt ist, je großer die Probe gegenüber der Periode der Strei-
fenmodulationλCDW ist. In der ’L’-förmigen Hall-bar Geometrie ist die Anisotropie auf einen
Wert vonρ[110]/ρ[110] ≈ 6 reduziert, weil dort die Strombündelung vernachlässigbar ist.



119

Die Blasen-Phase und der benachbarte IQHE haben die gleiche Signatur im Widerstand und
sie können in unseren Proben bei den tiefsten Temperaturen nicht unterschieden werden. Al-
lerdings trennt oberhalb vonT ≥ 40 mK ein Bereich von nicht-verschwindendem Widerstand
die Gebiete beider Phasen und macht sie so unterscheidbar. Wie auch schon andere Gruppen
vor uns extrahieren wir aus temperaturabhängigen Messungen einen großen Unterschied in den
Aktivierungsenergien für die Elektronen- und Loch-Blasen-Phase. Die gleiche Asymmetrie
zeigt sich auch in den unterschiedlichen DC Strömen, die zu einem Zusammenbruch diese bei-
den Teilchen-Loch konjugierten Phasen führen. Wir erklären diese Beobachtungen mit einer
Veränderung in der Kopplung zwischen den Randkanälen der untersten Landau Niveaus und
der jeweiligen korrelierten Phase im Bulk. Die Kopplung steigt kontinuierlich, mit steigendem
FüllfaktorνN des obersten Landau Niveaus, an.

differentielle Widerstandsmessung Recht kleine DC Ströme (IDC ≈ 20 − 100 nA) sind
ausreichend, um die Streifen- und Blasen-Phasen in unseren vdP Proben zu zerstören. Diese
Ströme sind um einen Faktor 5-10 geringer als diejenigen, die für größere Proben in der Lite-
ratur genannt wurden. Für unseren kleinen DC Ströme zeigen wir, dass die Ergebnisse nicht
einfach durch eine Joule’sche Erwärmung des Elektronensystems erklärt werden können. Wir
zeigen, dass in unseren kleinen Proben der Zusammenbruch der Streifen- und auch der Blasen-
Phase in einer wohldefinierten und reproduzierbaren Art und Weise stattfindet. Wir stellen die
Hypothese auf, dass der Zusammenbruch eintritt sobald der Teil des DC Hall-Feldes, der über
der korrelierten Phase im Bulk abfällt, größer wird als die (Pseudo-) EnergielückeEcorr dieser
Phase.

Wir stellen innerhalb der Streifen-Phase eine Verschiebung des Widerstands Maximums
von ν = 9/2 zu höheren Füllfaktoren fest, die allerdings nur bei den tiefsten Temperaturen
(T < 40 mK) auftritt. Wir haben keine Erklärung für diese unbekannte Teilchen-Loch Asym-
metrie aber die starke Temperaturabhängigkeit suggeriert, dass subtile Wechselwirkungseffekte
beteiligt sein müssen. Die Experimente stehen nicht im Widerspruch zur Theorie gekoppelter
Luttinger Flüssigkeiten, falls wir für die Streuung über gefüllte oder leere Regionen ungleiche
Streuzeiten annehmen.

Wir beobachten auch einen starken negativen differentiellen Widerstand (NDR) beim Zu-
sammenbruch der Streifen- sowie der Blasen-Phase. Dieser Effekt wurde bisher noch nicht in
der Literatur beobachtet und tritt nur bei tiefen TemperaturenT ≤ 60 mK auf, solange der lon-
gitudinale Widerstand in der Blasen-Phase noch verschwindet. Der NDR ist wahrscheinlich ein
Zeichen von Tunnelprozessen durch inkompressibele Regionen im Bulk der Probe. So erklärt
sich auch, warum das NDR Signal in der Elektronen-Blasen-Phase viel größer ist als in der
Streifen-Phase; in der ersteren sind die inkompressibelen Regionen schlichtweg breiter sind als
in der zweiteren.

In allen unseren Messungen finden wir starke Ähnlichkeiten zwischen dem differentiellen
Widerstand in der Streifen- und Blasen-Phase, die bisher nicht beobachtet worden sind. Insbe-
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sondere beobachten wir

• eine vergleichbare Größe derdV/dI Maxima in beiden Phasen (Bild 5.7),

• eine kontinuierliche Veränderung desdV/dI Maximums der Streifen-Phase in das der
Blasen-Phase als Funktion des Magnetfeldes (Bild 5.8),

• Regionen mit negativem differentiellen Widerstand (NDR) nahe derdV/dI Maxima (Bild
5.7),

• eine sehr ähnliche Abhängigkeit derdV/dI Maxima in beiden Phasen von der Entfernung
zwischen Strompfad und Spannungskontakten (Bild 5.10).

Wir interpretieren diese Ergebnisse als Beweis für anisotropen Transport im magnetischen
Feldbereich der Blasen-Phase, der durch Anlegen eines DC Stromes induziert wird. Diese The-
se wird unterstützt durch Experimente, bei denen die DC Strom Richtung festgelegt und nur
die AC Strom Richtung variiert wird. Hierbei ist eine Anisotropie im Bereich der Blasen-Phase
deutlich sichtbar, die allerdings im Unterschied zum Fall der Streifen-Phase nur bei mittleren
DC Strömen auftritt. Außerdem hängt die Richtung der Anisotropie nicht mit der zugrunde-
liegenden Kristallrichtung zusammen. Die Achse des niedrigen Widerstands steht hier immer
senkrecht zum DC Strom, d.h. parallel zum elektrischen Hall-Feld.

Schließlich interpretieren wir eine zusätzliche Verbreiterung des IQHE Minimums bei klei-
nen DC Strömen als einen Beweis für die Bildung eines Wigner Kristalls in den Flanken dieser
Minima. Diese korrelierte Phase ist empfindlicher gegenüber DC Strömen als die wesentlich ro-
bustere IQHE Phase. Vorläufige Messungen in niedrigeren Landau Niveaus unterstützen diese
Idee.

Ausblick

Gelingt es die Experimente mit Verbundfermionen aus Kapitel 3 mit den Interferenzexperimen-
ten aus Kapitel 4 zu kombinieren, eröffnet sich die faszinierende Möglichkeit, nach Interfe-
renzeffekten von Verbundfermionen Ausschau zu halten. Solche Effekte würden die Vorhersa-
gekraft des Verbundfermion-Konzepts unterstreichen und es gleichzeitig erlauben, Interferenz-
effekte in stark wechselwirkenden Systemen von einem neuen Blickwinkel aus zu betrachten.
Die Dualität zwischen externem magnetischen Feld und Ladungsträgerdichte, wie sie für Ver-
bundfermionen herrscht, birgt zusätzlich die Möglichkeiten einen Aharonov-Bohm Effekt zu
beobachten, der ausschließlich durch eine Änderung der Ladungsträgerdichte gesteuert wird.
Wir stellen ein paar verbleibende Hindernisse auf dem Weg zu Interferenzexperimenten mit
Verbundfermionen fest. Bis jetzt beobachten wir ballistischen Transport von Verbundfermionen
nur in beleuchteten Proben. Unglücklicherweise ruft die Beleuchtung der Probe langanhaltende
Ladungsträgerfluktuationen hervor, die Interferenzeffekte unterdrücken. Deswegen ist es eine
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entscheidende Voraussetzung für die vorgeschlagenen Experimente, dass Proben gefunden wer-
den, die auch ohne Beleuchtung eine hohe Mobilität besitzen. Gleichzeitig müssen diese Proben
ein steiles Einschlusspotenzial an der QPC Verengung aufweisen, so dass die Ablenkung der
Verbundfermionen minimiert wird wenn sie den QPC durchqueren.

Eine wichtige Frage stellt sich im Zusammenhang mit unseren Beobachtungen in den kor-
relierten ELC Phasen. Ist die Anisotropie im Bereich der Blasen-Phase ein Zeichen einer neuen
Phase, die nur bei mittleren DC Strömen auftritt, oder ist sie ein Zeichen für eine inhärenten
Anisotropie der Blasen Phase selbst? Eine detaillierte theoretische Nicht-Gleichgewichts Be-
schreibung, die Streifen- und Blasen-Phase gleichwertig behandelt, fehlt. Um herauszufinden
wie genau der DC Strom zum Zusammenbruch der korrelierten Phasen führt, wird es wich-
tig sein, den Zusammenbruch in Proben unterschiedlicher Größe zu betrachten und außerdem
festzustellen, wie die DC Hall Spannung über der Probe innerhalb der unterschiedlichen Pha-
sen abfällt. Eine wichtige offene Frage ist, warum die Streifen-Phase sich immer entlang einer
bestimmten Kristallrichtung ausrichtet. Vielleicht kann eine systematische Untersuchung der
von uns gefundenen magnetfeldunabhängigen Anisotropien einen Ansatzpunkt für die Lösung
dieses Problems darstellen. Im Zusammenhang mit der Formation von Wigner Kristallen in den
Flanken der IQHE wäre es interessant zu bestimmen, wie die Größe der zusätzlichen Verbreite-
rung bei kleinen DC Strömen von der Qualität der Probe abhängt. Alle Experimente im Bereich
der korrelierten Phasen haben bisher deren Existenz nur indirekt bestätigt. Letztendlich wäre es
faszinierend direkt die räumliche Variation der Ladungsträgerdichte innerhalb der ELC Phasen
direkt mit der Hilfe einer lokalen Methode, z.B. eines Rastertunnelmikroskops, zu beobachten.

Abschlusskommentar

Wir haben in der Einführung gelernt, dass eine wohldefinierte mathematische Operation ein
stark korreliertes Elektronensystem in ein schwach wechselwirkendes aus Verbundfermionen
transformiert. Ist die Existenz einer solchen Transformation nur ein glücklicher Zufall für kor-
relierte Elektronen in zwei Dimensionen? Nach dem holografischen Prinzip, das erstmals 1993
von Gerard’t Hooft eingeführt wurde, kann jedes 3-dimensionale physikalische System durch
eine Theorie, die ausschließlich auf dessen 2-dimensionaler Begrenzung operiert, vollständig
beschrieben werden [95]. Deswegen könnten im Prinzip Verbundfermionen und insbesonde-
re das allgemeinere Konzept der statistischen Transmutation, d.h. der Änderung der Statistik
eines Teilchens durch eine mathematische Transformation, auch einen Einfluss auf unser Ver-
ständnis von Systemen in höheren Dimensionen haben. Noch allgemeiner betrachtet scheinen
moderne Quantenfeldtheorien, insbesondere die String und M-brane Theorie, zu zeigen, dass
jedes stark wechselwirkende System eine duales schwach wechselwirkendes mit equivalenten
physikalischen Eigenschaften hat [96]. Die schwierige Aufgabe ist es, im einem bestimmten
Fall die Dualitätstransformation zu finden. Es scheint also, als ob es auf unsere Sichtweise
ankommt, wie kompliziert ein physikalisches System aussieht. Wir hoffen, dass eine weitere
Erforschung der detaillierten Eigenschaften der Verbundfermionen unser Verständnis von stark
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wechselwirkenden Systemen auch außerhalb des Bereichs der 2DES vertiefen wird.
Die elektronischen Flüssigkristall Phasen sind ein wunderschönes Beispiel von Selbstorga-

nization in Systemen, bei denen unterschiedliche Typen und Reichweiten von Wechselwirkun-
gen im Wettbewerb sind. Anders als ihre klassischen Gegenstücke werden die Eigenschaften
von ELC Phasen durch Quantenfluktuationen auf eine Art und Weise modifiziert, die nur un-
zureichend verstanden ist. Es wurde vorgeschlagen, dass sehr ähnliche Phänomene für das
Auftreten der Hochtemperatur-Supraleitung verantwortlich sein könnten. Wir hoffen, dass wei-
tere Untersuchungen der Nicht-Gleichgewichts Transporteigenschaften der ELC Phasen letzt-
endlich zum Verständnis von Quanten-Phasenübergängen und von dynamischer Ordnung im
Allgemeinen beitragen werden.



Appendix A

Sample fabrication

A.1 Heterostructures

The GaAs/AlGaAs-heterostructures, which we used for the experiments presented in the chap-
ters 3 and 5, were grown by Vladimir Umansky from the Weizmann Institute of Science, Re-
hovot, Israel. The most valuable wafer, VU4-97, combined high electron mobility after illumi-
nation with very good surface Schottky-gate behavior (i.e. low leakage current, small influence
on the sample quality). There has been no systematic study as to why the gate behavior differs
greatly between heterostructures. A large distance of the 2DES from the surface is certainly
beneficial in this respect. Unfortunately, there is a major drawback of using deep 2DES. When
defining small structures in the 2DES with surface gates, one looses spatial resolution because
the electrostatic potential of the gates gradually smears out with the distance from the surface.

wafer number spacer thickness2DES depth density mobility

VU4-97 67 nm 149 nm 2.1 · 1015 m−2 10 · 106 cm2/Vs

VU4-127 55 nm 220 nm 3.1 · 1015 m−2 12 · 106 cm2/Vs

A.2 Optical lithography

With the help of optical lithography, predefined patterns are transferred from a Cr-coated glass
mask onto a piece of the sample (Fig. A.1). In this way, certain areas of the sample are se-
lected (the mesa), ohmic contacts are defined and subsequently diffused into the 2DES, and
provisions for bonding and the following electron-beam (e-beam) lithography steps are made.
A completely processed sample is shown in Figure A.3.
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Figure A.1: (left) Mask with various layers (see color code) used for the optical

lithography steps. (right) Zoom into the central region around the mesa. The gate

connections (yellow) are only partially visible because they are covered mostly by

the pads (green) for protective reasons. The size of the square mesa (blue) without

arms is90 µm× 90 µm.

A.2.1 Mesa etch

In this step, the top of the heterostructure is etched away everywhere except in a region referred
to as the mesa. This leaves the 2DES intact only inside the mesa area, and it provides a well
defined geometry for later measurements. There are two different types of etching procedures.
Either one only etches down through the Si-dopant layer1 (shallow etch) or all the way through
the 2DES (deep etch). We have used shallow etching because we tried to minimize the step
height needed to be climbed by the thin e-beam gates (see below) when they run onto the mesa.
To further minimize the chance that the e-beam gate metallization is interrupted at the mesa
edge, we have used a special etchant that produces equally tilted etch facets in both the[110]

and the[11̄1] crystal directions (Fig. A.2) [97].

1To fully deplete the 2DES, it is not even necessary to etch away the dopant layer. Most charge carriers provided

by the dopants will be trapped in immobile surface states instead of contributing to the 2DES.
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Figure A.2: Mesa edge after etching with the recipe described in the text. The

edges in both main crystal directions (only one is shown) have a sufficiently small

slope so that metal, evaporated in later steps, can climb up the mesa border without

tearing at the step.

Process

1. Clean

(a) Immerse sample in acetone and put into ultra-sonic basin for 2 min

(b) Immerse sample in three consecutive acetone baths for a decreasing amount of time
(30 s, 10 s, 2 s)

(c) Splash with acetone

(d) Immerse sample in propanol, do not let the acetone dry on the sample as it will leave
a residue

2. Coat with photoresist S1805

(a) Use spin-coater 1001S/St146 (Convac)

(b) Adjust sample on platter and blow dry with nitrogen

(c) Apply a few drops of Shipley Microposit resist S1805 onto the sample and spin at
4500 min−1 for 30 s

(d) Bake for 2 s on hotplate at 90◦C
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3. Expose photoresist

(a) Use Karl Suess MJB3 mask aligner (300 - 400 nm UV-light)

(b) Expose sample for 7s with the MESA part of the mask (Figure A.1)

4. Develop photoresist

(a) Shake sample for 35 s in AZ 726 developer to remove exposed areas of the photore-
sist

(b) Rinse sample with DI-water to remove developer

(c) Blow dry sample with nitrogen

5. Etch with tilted facets

(a) Mix H2O : H2O2(31%) : H3PO4(35%) at a ratio of 50:1:50

(b) Cool etching solution to room temperature in water bath (otherwise it will etch much
faster)

(c) Etch sample in the mixture at a rate of approximately 250 nm/min (check with a test
sample first!)

(d) Rinse sample thoroughly with DI-water to completely remove the viscous etching
solution

(e) Blow dry sample with nitrogen

A.2.2 Ohmic contacts

Making ohmic contacts to the 2DES is an art by itself. One strives for a low contact resistance
combined with a linear, ohmic I-V characteristic. We have benefited from earlier work in which
recipes have been varied and the vast parameter space has been searched through [98]. We have
exclusively used the recipe given below.2 The contacts tended to show not only excellent ohmic
behavior, but they where also homogenous on theµm-scale. This turned out to be an important
prerequisite because in our case the overlap area between the contacts and the 2DES had to be
small. The quality of the ohmic contacts depends on the orientation of the interface between
the contacts and the 2DES with respect to the crystal axis. For this reason, a Christmas-tree
like shape has been chosen for the contacts. In this way, interfaces in both main crystal axis
directions occur (see Fig. A.1).

2Sometimes, problems during liftoff occurred because of bad adhesion of the Au layer on the substrate. This

was most likely triggered by too fast metal evaporation.
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Figure A.3: Image of a fully processed sample taken with an optical microscope.

Compare with the mask design (Fig. A.1) to identify the different parts. The size

of the square mesa without arms is90 µm× 90 µm.

Process

1. Clean

2. Prebake 5 min on hotplate at 120◦C

3. Coat with AZ 5214E photoresist

(a) Use spin-coater 1001S/St146 (Convac)

(b) Adjust sample on platter and blow dry with nitrogen

(c) Apply a few drops of AZ 5214E to the sample and spin at 6000 min−1 for 30 s

(d) Bake for 4 s on hotplate at 90◦C

4. Expose photoresist and create undercut (inverted process3)

(a) Use MJB3 mask aligner

(b) Expose sample for 6 s with the OHMIC CONTACTS part of the mask (Figure A.1)

(c) Postbake for 60 s on hotplate at 120◦

3After this process, the resist will be removed at all places where it wasnotexposed to light.
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(d) Flood exposure for 70 s without mask

5. Develop photoresist with AZ 726 for 40 s

6. Prepare sample surface for ohmic contact evaporation

(a) Process sample in an O2-plasma (30 s, pressure 0.3 torr, power 200 W in a 100-
EPLASMA SYSTEM from Technics Plasma GmbH)

(b) Immerse sample in ’Semico Clean’ for 2 min

(c) Dip sample in DI-water for 5 s

(d) Dip sample in HCl (30%) for 2 s

(e) Dip sample in DI-water for 1 s

(f) Put sample into evaporator within 5 min after HCl-Dip

7. Deposit ohmic contact metallization

(a) Use Leybold Heraeus Univex 450 evaporator with thermal sources

(b) evaporate 3200 nm of Au at a rate of≈ 0.2 nm/s

(c) evaporate 1600 nm of Ge at a rate of≈ 0.2 nm/s

(d) evaporate 1200 nm of Ni at a rate of≈ 0.1 nm/s

8. Liftoff

(a) Immerse sample into acetone, wait for the photoresist to dissolve, metal will only
stick at the predefined areas

(b) Immerse sample into propanol

(c) Blow dry with nitrogen

9. Alloy ohmic contacts

(a) Use annealing oven AZ500 from MBE-Komponenten GmbH with forming gas

(b) 370◦C for 120 s, forming gas pressure 0.3 bar, no gas flow

(c) 440◦C for 120 s, forming gas pressure 0.3 bar, no gas flow

(d) rapid cool down, forming gas flow

A.2.3 Gate connections

The gate connections provide access to the surface gates defined on the mesa by e-beam lithog-
raphy at a later stage (see Sec. A.3). The gate connections are relatively thin (30 nm) so that
they can be climbed by the e-beam gates. Most of the area of the gate connections is covered
by the pads (next section) to minimize the probability of damage to them.
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Process

1. Clean

2. Coat with photoresist

3. Expose photoresist and create undercut (inverted process)

4. Develop photoresist

5. Deposit gate metallization

(a) evaporate 30 nm of Pd/Au at a rate of≈ 0.2 nm/s

6. Liftoff

A.2.4 Pads and e-beam alignment marks

This layer has two functions. The pads facilitate wire-bonding to the sample and protect the
fragile gate connections. Additionally, the alignment marks provide a reference frame for later
e-beam lithography steps. The edges of the marks should be very straight to obtain optimal
alignment precision. Also, the marks should consist of a relatively thick layer of metal, because
this improves the contrast when looked at with an electron microscope. Thereby, manual and
automatic detection of the alignment marks is facilitated. For this high precision layer, the resist
buildup (’edge bead’) at the edges of the sample has to be removed manually. This increases
the surface flatness of the resist and allows to press the glass mask evenly against the sample
for a homogenous exposure during the optical lithography process. Although the resist removal
is a rather cumbersome procedure, it greatly improves the quality of the alignment marks.

Process

1. Clean

2. Coat with photoresist

3. Manually remove resist from sample edges with acetone

4. Expose photoresist and create undercut (inverse process)

5. Develop photoresist

6. Deposit metallization

(a) 20 nm of Cr at a rate of≈ 0.1 nm/s

(b) 120 nm of Au at a rate of≈ 0.2 nm/s

7. Liftoff
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A.3 Electron-beam lithography

The technique of electron-beam lithography is used to define the surface gate structures as well
as the airbridge structures on the mesa. To reliably obtain complicated devices with a high yield,
a lot of expertise in the lithography equipment is required. Most of our devices were written
by Ulrike Waizmann from the Max-Planck-Institut, Stuttgart, Germany, specialized in e-beam
lithography. Against common claims, we found it to be possible to process high mobility wafers
with e-beam lithography with virtually no sign of degradation of the samples in terms of the
electron mobility.

A.3.1 Surface gates

The surface gates are used to tailor predefined regions and constrictions of the 2DES within
the mesa. Mostly, we have patterned Quantum Point Contacts (section 3.1) and connections to
airbridge gates (section A.3.2) out of surface gates.

Process

1. Clean

Figure A.4: Optical microscope image of a sample after two consecutive e-beam

lithography steps. The star-like shape of the inner two groups of alignment marks

comes from the automatic alignment procedure of the e-beam machine. Up two

four e-beam steps would be possible with this layout.
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2. Coat with double layer e-beam resist (≈ 200 nm)

(a) Spin PMMA 200K 3.5% (from Allresist GmbH) for 5 s at 3000 min−1, then 30 s at
8000 min−1

(b) Bake in oven at 160◦C for 60 min

(c) Spin PMMA 950K 1.5% as above

(d) Bake as above

3. Expose resist with Leica EBL 100-03

(a) Set acceleration voltage 50 kV, beam current 30 pA, area dose 625µC/cm2

(b) Expose gate structures

4. Develop resist

(a) Develop in Methyl Isobutyl Ketone (MIBK):Propanol with mixing ratio 1:3 for 30
s/100 nm resist, add 30 s

(b) Stop development in Propanol

(c) Process sample in an O2 plasma (10 s, pressure 0.3 torr, power 200 W)

5. Deposit metallization

(a) 15 nm of AuPd at a rate of≈ 0.1 nm/s

(b) 15 nm of Au at a rate of≈ 0.1 nm/s

6. Liftoff

(a) Immerse for 90 min in AZ Remover at 55◦C

(b) Acetone/Propanol bath

A.3.2 Air-bridge gates

Building metallic air-bridges, i.e. gates that do not touch the surface of the sample for some
distance, on the sub-micron scale is a difficult task. We have used a process developed at
the Weizmann Institute of Science, Rehovot, Israel (courtesy of Diana Mahalu) and modified
it for our purposes and electron-beam equipment. Important tasks are to ensure the stability
of the bridge to obtain sufficient yield and alignment precision of the bridge with respect to
gates defined in a previous e-beam step. We have managed to reliably build air-bridges with a
footprint of 100 nm× 200 nm with an alignment precision of better than 20 nm.
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Figure A.5: The electron micrographs show a cross section through the triple

layer resist used for the air-bridge process. The thin top resist layer is only barely

visible. (a) With a dose of≈ 240 µC/cm2 only the first two resist layers are

developed. (b) With a dose of≈ 520 µC/cm2 all three layers are developed. The

second dose is used for the footprint and the bridge base, whereas the first one is

used for the free-standing part of the bridge.

Figure A.6: Electron micrograph showing (a) the high yield of the air-bridge

process and (b) an individual bridge with a footprint of100 nm× 200 nm.



A.3. ELECTRON-BEAM LITHOGRAPHY 133

Process

1. Clean

2. Coat with e-beam resist (≈ 700 nm)

(a) Spin PMMA 950K A5 for 60 s at 5000 min−1

(b) Bake in oven at 180◦C for 60 min

(c) Spin MMA(17.5%) - MAA EL9 as above

(d) Bake as above

(e) Spin PMMA 200K A3 as above

(f) Bake as above

3. Expose resist with Leica EBL 100-03

(a) Set acceleration voltage 50 kV, beam current 30 pA, area dose for bridge footprint
510µC/cm2, area dose for free-standing bridge section 270µC/cm2

(b) Expose air-bridge structures with the two area doses from above

4. Develop resist

5. Deposit metallization

(a) 25 nm of AuPd at a rate of≈ 0.1 nm/s

(b) 300 nm of Au at a rate of≈ 0.3 nm/s

6. Liftoff
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Figure A.7: Electron micrographs showing complete devices including the sur-

face gate and the air-bridge gate layer. The alignment precision of the two con-

secutive electron-beam steps is better than 20 nm. This can be seen best from the

overlap of the bridge footprint with the surface gate underneath. The alignment

is extraordinary if one takes into account that the sample has been removed from

the the e-beam machine and has been processed further by optical lithography

between e-beam steps.
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Ultra-low temperature probe

The base temperatureTbase of our Kelvinox TLM He3/He4 dilution refrigerator is10 mK.1 The
relevant temperatureT2DES for the experiments is that of the 2DES in the samples. Without any
special precautions, one usually finds thatT2DES > Tbase, and often the electron temperature
saturates aroundT2DES ≈ 60 mK even though the base temperature is considerably lower. In
our dilution refrigerator, the sample sits directly in the He3/He4 mixture, and therefore, one
would assume that the sample temperature should equilibrate with that of the mixture. Whereas
this is likely true for the GaAs and AlGaAs crystals, the assumption is not valid for the electrons
in the 2DES.

B.1 Cooling of the 2DES

The electrons from the 2DES are cooled mainly via two processes. The most effective one
at higher temperatures is that of electron-phonon scattering with a cooling power estimated
from [99]

Pel−ph(W ) ≈ 3.3× 106 A√
n

(T 5
2DES − T 5

GaAs). (B.1)

All quantities in this expression should be given in SI-units.TGaAs ≈ Tbase is the temperature
of the phonons in the GaAs host lattice. The electron-phonon cooling power depends directly
on the areaA of the 2DES. Therefore, large samples are favored for experiments at low temper-
atures. Because of the strong temperature dependence of phonon-electron cooling, a different
mechanism dominates electron cooling at the lowest temperatures. At those temperatures, elec-
trons mainly cool by diffusion of hot electrons from the 2DES into the leads and diffusion of
cold electrons in the opposite direction. The cooling power of this process can be determined

1This temperature has been determined by measuring the angular distribution of theγ-decay of a Co60 source

that has been mounted instead of the sample.
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Figure B.1: Simulated cooling power for electrons in a GaAs/AlGaAs 2DES as

a function of the temperature. The sample area isA = 1 · 10−8 m2, its resistance

per square is10 Ω, and the lattice temperature isT = 12 mK.

from the Wiedemann-Franz law to be [99]

Pel−diff(W ) ≈ 10−7

R
(T 2

2DES − T 2
leads), (B.2)

whereTleads is the temperature of electrons in the leads. For our 2DES parameters, we find that
belowT = 2 K the total cooling power is mainly determined by electron diffusion rather than
electron-phonon scattering (Fig. B.1). At the lowest temperatures, the diffusive cooling power
is a merePel−diff ≈ 1 pW, whereas cooling from electron-phonon scattering is completely
negligible. Therefore, even tiny amounts of energy deposited into the system will lead to heating
effects.2. Also, it is important that electrons entering into the sample via the leads have the same
temperature as the He3/He4 mixture in order to ensure optimal cooling of the 2DES. For this
reason, we cool the leads via heat exchangers made from sintered Ag-powder (see section B.4).

2We observe Joule heating effects at roughly10 nA excitation current. With a characteristic sample resistance

of R = 10 kΩ one obtains a heating power on the order ofP = 1 pW.
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B.2 RF-heating

A small cooling power of electrons in the 2DES means a long equilibration time between the
temperature of the 2DES and that of the host lattice. One generally finds the electron tempera-
ture to saturate well above the base temperature of the fridge suggesting that the electron system
is heated. High frequency electromagnetic radiation is the main candidate for the heating ef-
fect [100]. Small amounts of radio, microwave or thermal radiation couple into the system
either directly or via the many wires that run down into the fridge. This way, the power de-
posited into the 2DES may exceed its cooling power, and hence, it becomes necessary to filter
the wires at various stages outside and inside the dilution refrigerator. To avoid direct incidence
of electromagnetic radiation onto the sample, we enclosed it with a Faraday cage.

B.3 RF-filter

Three sets of high frequency filters have been mounted into the ultra-low temperature probe.

B.3.1 Room temperatureπ-filter

Theπ-filters for intermediate frequencies (100 MHz - 10 GHz) are mounted at room tempera-
ture at the top of the probe. They must be far away from the magnet since they rely on ferrites
for their inductances, and hence, stray magnetic fields degrade their performance. Because the
π-filters do not contain resistances, mounting them at room temperature does not add Johnson
noise to the system. We have mountedπ-filtered miniature connectors (Spectrum Control Inc.,
Series 700, 4000 pF). For optimal performance, the filters are mounted into a grounding plate

Figure B.2: Schematic drawing of the ultra-low temperature probe wiring. The

sample (dark gray square) is current biased with an excitation voltageVexc and

a resistanceR connected to the probe with coaxial cables (dark blue). The RF-

filters (colored) are mounted at various stages of the probe which are at different

temperatures. For simplicity, the filters are shown only for one line.
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that hermetically seals the input from the output side of the filter. Because it is necessary to
pump on the probe top, two waveguide openings are left in the grounding plane. The waveg-
uide nature of the openings, with a length of l = 3 cm and a diameter of d = 3 mm, ensures that
radiation below50 GHz will be strongly attenuated. From the specifications, we know that the
performance of theπ-filters starts to decrease beyond10 GHz.

B.3.2 RC-filter at 1K-Pot

To minimize the contribution from Johnson (Nyquist) noise [101], RC-filters, used to efficiently
filter in the lower frequency range, are mounted at the 1K-pot. Mounting the filters at still lower
temperatures is not advised, since Joule heating of the filters may exceed the cooling power at
the mixing chamber. At the 1K-pot, the cooling power is much higher so that heat from the
filters can be easily removed. The RC-filters use a resistance ofR = 1000 Ω and a capacitance
of C = 2 nF. Then the characteristic cutoff frequency is aroundf = 1/2πRC ≈ 80 kHz (Fig.
B.4).

B.3.3 Strip-line filter at base temperature

For the highest frequencies,f > 1 GHz, we have employed a special filter design referred to
as a micro-strip-line filter [100, 102]. The basic idea behind this filter design is that of a lossy
(resistive) coax cable with small diameter which acts as a distributed RLC-filter [103]. For each
line, the filter is made up of 50 cm of insulated50 µm-diameter Manganin wire with a resistance

Figure B.3: Photograph of the sample enclosure at the bottom of the ultra-low

temperature probe. The top part of the enclosure has been removed to allow a

view into the inside.
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Figure B.4: Performance of the RF-filters mounted at various points in the ultra-

low temperature probe.

of 218 Ω/m wound around a rod and covered with silver epoxy. The wire acts as the central
conductor, the epoxy is the outer shield, and the thin wire insulation serves as the dielectric.
For optimal performance, the silver epoxy outer shield must be well grounded to the dilution
refrigerator that serves as the main ground. The performance of the filter has been simulated
and the results are shown in figure B.4. The performance up to200 MHz has been verified. In
principle, the strip-line filter should behave well up to9 THz where TM- and TE- modes start
to propagate down the wire [102].

B.3.4 Ag/Si Faraday-shield

To minimize the effect of stray electromagnetic radiation onto the sample, we have surrounded
it with a metallic enclosure acting as a Faraday cage (see Fig. B.3). The only openings of the
enclosure are SSMB coaxial connectors for the wire feed-throughs and waveguide openings.
The enclosure can be pumped through the waveguide openings, and also the He3/He4 mixture
enters the enclosure through them. We used Ag as the enclosure material because of its small
nuclear magnetic moment. About1.5% Si is added to the Ag to increase the residual resistance
at low temperatures, and hence, to minimize eddy current heating when the magnetic field is
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swept.3

B.4 Sintered Ag-heat exchangers

As described above, at temperatures belowT < 1 K, the 2DES is mainly cooled via electron
diffusion from the leads. For efficient cooling, one has to make sure that electrons in the metallic
leads are well equilibrated with the He3/He4 mixture. Since the wires run directly through the
mixture, one expects them to be at the temperature of the mixture. One has to keep in mind,
though, that the heat transfer between a liquid (the mixture) and a solid (the wires) is very
inefficient, mainly because of the large differences in the speed of sound in both media [104].
The thermal resistance between two media is referred to as the Kapitza resistance

RK =
A∆T

Q̇
, (B.3)

whereA is the contact area,∆T the temperature difference between the media andQ̇ the heat
flux. Usually, the leads are made from 30 cm long CuNi wires with a diameter ofd = 200 µm.
The heat transfer between mixture and wires is very low because of the small surface area
A = 1.88 · 10−4 m of the wires (see table??). In our design, we use leads made out of 1 g
of sintered Ag powder with a nominal particle diameter ofd = 700 Å.4 The Kapitza resistance
at 10 mK is a factor of16 higher than for the CuNi wires, but the surface areaA ≈ 1 m2 is
much larger resulting in an increase of the heat flux by a factor of 300 (table B.1). The wire
parts made from sintered Ag should be close to the sample and no solder points should be in
between (see Fig. B.3). Solder points become superconducting at low temperatures and thus
very effectively inhibit heat transfer along the wire. If solder points are necessary, they should
be covered with conductive silver paste to ensure good thermal contact [106].

3This alloy composition was suggested to us by Christian Probst and colleagues from the Walter-Meissner In-

stitute, Munich, Germany, and the alloy was produced by Kessel Feinguß GmbH, Niefern-Öschelbronn, Germany.
4The Ag powder (70nm, 4N, Ulvac GmbH, Germany) is sintered under mechanical pressure in vacuum at

150 ◦C for 60 min (see also [101]).

material Kapitza resistanceRK(Km2/W) heat transferQ̇(W)

30 cm CuNi wire (200 µm) 1.9 · 104 20 · 10−12

1g Ag-sinter (700Å) 1.6 · 105 6.25 · 10−9

Table B.1: Kapitza resistance atT = 10 mK and heat transfer for∆T = 1 mK
for CuNi [104] wires and sintered Ag [105] leads.
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