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1 Introduction

Imagine an artificial crystal in which all spatial degrees of freedom are modulated in a
periodic fashion, just as in a real crystal, but with the added benefit of having full control
over the periodicity and geometry of this modulation. Since lattice characteristics which
are purely geometrical are the basis for many effects encountered in solid state physics,
an artificial crystal would permit access to a whole class of physical effects which are
difficult or even impossible to study using real crystals. The fabrication of an adequate 3D
artificial crystal is still impractical, so researchers use two-dimensional electron systems
on which a periodic 2D electric potential is superimposed [3–5]. Due to the reduced
dimensionality, additional effects may arise, like strong electron-electron correlations or
a different screening behavior. These will, however, not be considered here.

One effect expected for an artificial crystal is the formation of anartificial miniband
structure as a result of the reduced size of the new Brillouin zone and the minigaps
which emerge at the new Brillouin zone boundaries. Since the band structure determines
the propagation of electrons inside a crystal, this may be used to tune transport and op-
tical properties for a range of applications. Effects of this artificial band structure can
be studied using magnetotransport: in a magnetic field, electrons participating in trans-
port move on Fermi contours ink-space. Electrons onclosedFermi contours give rise
to oscillations in the magnetoresistance with a periodicity characteristic of the area en-
circled by the electron [6]. For an unmodulated sample, Shubnikov-de Haas oscillations
arise [7]. They correspond to the circular free-electron Fermi contour ink-space. Oscilla-
tions due to the smaller closed Fermi contours in an artificial band structure are, however,
not easily observed in magnetotransport: When a finite magnetic field is applied, tunnel-
ing across the small energy gaps on the Brillouin zone boundaries, known as magnetic
breakthrough, makes larger closed electron orbits possible by combining Fermi contour
sections belonging to different occupied minibands. Such a larger orbit, characteristic of
a 2D artificial modulation, was observed only recently [8] in a magnetotransport mea-
surement. Here we revisit this effect and find a whole range of possible closed orbits,
which demonstrates the high quality of our samples.
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Introduction

Another, hitherto unexplored, quantum mechanical effect in 2D artificial crystals is the
quantum interferenceof a single electron wave after traveling along two different paths.
In solid state physics, one can study this phenomenon by fabricating a mesoscopic, loop
shaped Aharonov-Bohm interferometer [9]. There, the interfering electron paths are fixed
in real space and consequently the area they enclose is also fixed. The phase difference
an electron picks up along the two paths changes linearly with the applied magnetic
field B. This leads toB-periodic magnetotransport oscillations. Could one “construct”
such an interferometer ink-space? It would change its real space size with 1/B to stay
constant in reciprocal space. This would lead to oscillations in 1/B in the magnetore-
sistance. Exactly such a system was found by Stark and Friedberg [10]. They observed
1/B-periodic magnetoresistance oscillations due to a quantum interference in magne-
sium. By inspecting the Fermi surfaces of magnesium, they found the interfering paths
responsible for the observed oscillation. These paths are weakly coupled by magnetic
breakthrough across two small energy gaps of different size and on different Brillouin
zone boundaries. A simpler interference than Stark and Friedberg’s was observed for an
artificially 1D-modulated sample [11–13], but was at first interpreted as a consequence
of modulation-induced Landau level broadening. Only recently it was realized that it is
also explainable by interferences ink-space [14]: The 1D modulation creates energy gaps
only in onek-vector direction. The possible quantum interferences are limited to paths
coupled by tunneling over gaps which have the same size and lie on the same Brillouin
zone boundary. Due to this restriction, the interfering paths are easily spotted. The first
observation of quantum interferences characteristic of a 2D artificial crystal is presented
in this work: We found novel quantum interferences of paths which couple across two
energy gaps of different size and/or position ink-space. This is also the case for the in-
terference in the original paper of Stark and Friedberg. In contrast to their interference,
where no intermediate tunneling is necessary, our interferometers, however, incorporate
many tunneling events on each arm. To pick among the large set of possible interferom-
eters the most probable ones, we developed a Monte Carlo simulation. Its output agrees
largely with the experimental data. Using this simulation, we can examine the band struc-
ture and even think about designing interferometers ink-space by applying the necessary
artificial modulation potential in real space.

Apart from the artificial band structure and its consequences, the artificial crystal lends
itself to the study of other spectacular quantum mechanical effects, like theHofstadter
butterfly spectrum, which has been studied theoretically for half a century [15–18] and
which was first plotted by Douglas Hofstadter in 1976 [19]. The butterfly is the picto-
rial representation of the fractal energy spectrum of a periodic 2D electron system in an
external magnetic field. It is caused by the competition of two characteristic area scales:
The area containing exactly one flux quantumΦ0 = h/e and the unit cell of the artificial
crystal. Unfortunately, the conditions for the Hofstadter butterfly are quite stringent: The
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flux through one unit cell has to be of the order of the flux quantum, which amounts to
magnetic fieldsB > 60000T for typical semiconductor lattices. Magnetic fields of this
magnitude are unaccessible with today’s facilities. So, one strategy has been to use ar-
tificial superlattices with a much larger unit cell, enabling in principle the observation
of the butterfly at moderate fields ofB≈ 1T. This situation is equivalent to thenearly
free electroncase of a very weak modulation potential acting on a Landau quantized
electron system [17,20]: Each Landau level is broadened and subdivided into minibands
according to the Hofstadter butterfly spectrum over an energy range proportional to the
modulation potential strength. We only mention here that Hofstadter originally consid-
ered the opposite limit of atight bindingelectron system in a relatively weak magnetic
field. It can be shown, however, that both limits ultimately lead to the same energy spec-
trum [17]. Unfortunately, due to a lack in sample quality, the undisputed experimental
observation of even the largest features in the Hofstadter butterfly remained elusive until
recently [21, 22]. This observation was able to resolve the most prominent features as-
sociated with the butterfly spectrum. Here we go one step beyond that work and present
an indication of the fractal properties of the spectrum, thanks to improvement in sample
quality which increases the resolution by one order of magnitude. The unperturbed spec-
trum assumed above is, however, somewhat idealized: in reality, coupling of the Landau
bands becomes important at lower magnetic fields, which may slightly distort or even
rearrange the observed spectrum [23]. The improvements in sample quality mentioned
above allow us to verify this rearrangement experimentally, and hence study the hitherto
experimentally unexplored region away from the nearly free electron limit.

The guiding principle throughout this work was to bridge the gap between theory and
experiment by comparing both side by side. The most important figures in this thesis fea-
ture direct comparisons of experimental data and theoretical calculations, which coincide
surprisingly well.

The structure of the thesis is as follows:

• In chapter 2, we introduce the properties of an unmodulated two-dimensional elec-
tron system, along with the Quantum Hall Effect.

• In chapter 3, we present the fundamental concepts necessary to discuss 1D- and
2D-modulated 2D electron systems: the competition of two characteristic length
scales, the modulation period and the magnetic length, leads to semiclassical com-
mensurability oscillations in the longitudinal magnetoresistance of 1D-modulated
samples. For the high magnetic field limit and a 2D modulation, this competition
leads to a quantum mechanical phenomenon: the Hofstadter butterfly spectrum.
We highlight its influence on magnetotransport measurements, in particular on the
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quantized Hall conductance. For the weak magnetic field limit, we start with the
miniband structure due to the artificial modulation and discuss Fermi contours and
their modifications due to magnetic breakthrough. We describe how closed electron
trajectories are manifested in magnetotransport.

• In chapter 4, we present the optimized sample fabrication procedure and measure-
ment technique used for the various devices in this work.

• In chapter 5, the fractal Hofstadter butterfly energy spectrum is unveiled, using the
quantized Hall conductivity as a probe. The long searched-for rearrangement and
deformation of this spectrum due to Landau band coupling is presented.

• In chapter 6, quantum interferences characteristic of a 2D artificial crystal and the
set of most probable electron orbits are measured and explained quantitatively for
the first time. We use Fourier-transformed magnetotransport data for a range of
electron densities to identify oscillations in comparison with Monte Carlo simula-
tions which were developed in this work.

• In chapter 7, we vary the lattice geometry: both a smaller lattice period and a Lieb
lattice are studied in light of quantum interferences. An unexpected avoided cross
over of two oscillations is found. The sensitivity of the quantum interferences to
the modulation potential shape is confirmed, and new interferences are discovered.
In the second part, we verify a recent theoretical prediction for rectangular lat-
tices experimentally. We observe a characteristic non-monotonic dependence of
the commensurability oscillation amplitudes on the appliedB-field, which is un-
known for square lattices.

• We conclude inchapter 8with a summary and outlook.

• In theappendices, details of the sample fabrication, measurement and analysis are
given.

Some of the results of this thesis have already been published:

• Detection of Landau Band Coupling Induced Rearrangement of the Hofstadter But-
terfly, M. C. Geisler, J. H. Smet, V. Umansky, K. von Klitzing, B. Naundorf, R. Ket-
zmerick and H. Schweitzer, Physical Review Letters,92, 256801 (2004)

• Detection of Landau band coupling induced rearrangement of the Hofstadter but-
terfly, M. C. Geisler, J. H. Smet, V. Umansky, K. von Klitzing, B. Naundorf, R. Ket-
zmerick and H. Schweitzer, Physica E,25, 227 (2004)

• Experimental Evidence for Predicted Magnetotransport Anomalies in Rectangular
Superlattices, M. C. Geisler, S. Chowdhury, J. H. Smet, L. H. Höppel, V. Umansky,
R. R. Gerhardts and K. von Klitzing, Physical Review B,72, 045320 (2005)
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2 The two-dimensional electron gas

As seen in the introduction, a possibility to create an artificial lattice is to start with a
two-dimensional electron system and apply a modulation in the remaining two spatial
degrees of freedom. In this work an AlxGa1−xAs/GaAsheterostructure incorporating a
two-dimensional electron gas (2DEG) is used as the starting point. Its composition and
properties are the subject of the following chapter.

2.1 The heterostructure

The AlGaAs/GaAs heterostructure is produced by Vladimir Umansky at the Weizmann
Institut of Science in Israel using molecular beam epitaxy (MBE). With MBE crystalline
layers of different materials can be deposited onto a substrate with nearly atomic preci-
sion [24]. The layer sequence is depicted at the top of Fig. 2.1.

An Al0.36Ga0.64As spacer is grown onto an (100)-GaAs substrate. While the lattices of
GaAs and AlxGa1−xAs are nearly perfectly matched, the work functions and band gaps
are different. Donors are introduced into the AlGaAs barrier layer using modulation
doping. To this end a short superlattice of Al0.36Ga0.64As quantum wells with AlAs
barriers and Si-delta doping is grown. Electrons will move from the silicon doped layers
to the energetically lower lying states in the GaAs and create a confinement potential
at the heterostructure interface as shown in the bottom of Fig. 2.1. This potential at
the heterostructure interface, which must be calculated by solving the Schrödinger and
Poisson equations self-consistently, quantizes the electron motion in the growth direction,
so only two spatial degrees of freedom are left [25].

Since the donors are spatially separated from the heterostructure interface and since the
sample is grown in an MBE chamber with excellent hight vacuum, electron scattering in
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2 The two-dimensional electron gas

Figure 2.1:
Top figure shows the growth sequence of heterostructure #5-74, which was mainly used in this
work. Below is a schematic of the conduction band profile. AtT = 0 all states up to the Fermi
energyEF are occupied.EF lies such that only the lowest subband is occupied.
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2.2 Properties of the 2DEG

the 2DEG is small. When illuminating the sample, a small parallel conduction layer may
appear in the quantum wells containing the dopants. These parallel conduction layers
screen the donor potential and further reduce scattering. High mobilities on the order of
3.4·106cm2/Vs are achieved in this way, which are needed in the experiments presented
in the later chapters.

The layer of Al0.36Ga0.63As closest to the top surfaces reduces leakage when using a
gate. Finally the structure is capped with GaAs to avoid oxidization of the AlGaAs layers
underneath when the sample is exposed to air.

2.2 Properties of the 2DEG

As already mentioned above, the electron motion is quantized in thez-direction. For low
temperatures and electron densities, only the lowest subband is occupied as depicted in
Fig. 2.1. So a two-dimensional electron gas in the strict sense of the word is formed with
the energy dispersion

E =
h̄2k2

x + h̄2k2
y

2m∗ +Ez , (2.1)

in the effective mass approximation. HereEz is the energy of the first subband and
(kx,ky) is the wave vector. In the conduction band of GaAs the electrons have a mass
m∗ = 0.067m0, with m0 being the free electron mass. AtT = 0, all states within the
contour of constant energyEF are occupied. Each state is doubly degenerate due to the
spin degree of freedom. The electron density may then be written as

ns =
m∗

πh̄2(EF−Ez) . (2.2)

The density of statesD(E) is constant and reads

D(E) =
dns

dE
=

m∗

πh̄2 . (2.3)

The Fermi wavevector takes on the form

kF =
√

2πns (2.4)

and can be used to calculate the Fermi wavelength

λF =
2π

kF
. (2.5)
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2 The two-dimensional electron gas

The latter is a fundamental length scale in the problem. For instance to observe quan-
tum mechanical effects due to an applied modulation potential, the modulation perioda
should to be of the order ofλF.

2.3 The 2DEG in a magnetic field

In an external, homogeneous magnetic field,B = Bez, perpendicular to the 2DEG the
classical orbit of an electron with energyEF is the circular cyclotron orbit with radius

Rc = l2BkF (2.6)

and angular frequencyωc = eB/m∗. Here,lB is referred to as the magnetic length and a
characteristic length scale in the system:

lB =

√
h̄
eB

. (2.7)

Quantum mechanically, the magnetic field quantizes the electron energy spectrum into
equidistant Landau energy levels as shown in Fig. 2.2 [26]. They result when solving the
time independent Schrödinger equationHhomΨ(r) = EΨ(r) in the presence of a magnetic
field. In this case, the Hamiltonian reads

Hhom =
1

2m∗ (p+eA)2 . (2.8)

We will use the Landau gaugeA = xBey. With this gauge, the canonical momentumpy

is a constant of motion and we may look for solutions of the formΨ(r) = χ(y)ψ(x) with

χ(y) being a normalized plane waveL−1/2
y exp(ikyy). Here,Ly is the sample size. The

problem reduces to a solution of[
− h̄

2m∗
∂ 2

∂x2 +
m∗ω2

c

2
(x−x0)2

]
ψn,x0(x) = Enψn,x0(x) , (2.9)

for ψn,x0(x). This is a harmonic oscillator equation centered aroundx0 = −l2Bky. It has
the eigenenergies

En = h̄ωc

(
n+

1
2

)
. (2.10)
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2.3 The 2DEG in a magnetic field

The eigenfunction corresponding to Landau leveln with energyEn encompasses an area
with radius

Rc = lB
√

2n+1 , (2.11)

which is identical to the classical cyclotron radius 2.6. Each Landau level isnL = gsnΦ0 =
gseB/h-fold degenerate asEn is independent of the center coordinatex0 or ky. The system
is assumed spin degenerate, sogs = 2. In experiment, spin is only resolved atB > 1.1 T
for the samples at hand. So we can write the density of states as

D(E) = nL ∑
n

δ (E−En) . (2.12)

Here the Landau levels enter asδ -distributions with a distancēhωc in energy. The number
of filled Landau levels for a certain electron densityns is given by thefilling factor,

ν =
gsns

nL
=

hns

eB
. (2.13)

It decreases with increasing magnetic field as illustrated in Fig. 2.2(a-c). When crossing
an even integer filling factorν/2∈N+, the partially filled level is completely depopulated
and the Fermi energyEF jumps to the next lower level, creating the sawtooth behavior
indicated in red in the lower panel of Fig. 2.2.

At exact even filling, all Landau levels below the Fermi energy are completely filled,
so no excitation within a Landau level is possible. Hence the energetically lowest lying
excitation is the one of an electron from the uppermost filled Landau level to the next
higher empty level. The Fermi energy lies in a real density of states gap. With disorder,
this gap turns into a mobility gap only, as we will see next.

2.3.1 Effects of disorder

The coulomb potential of the randomly distributed donor atoms and other sources of
disorder in a sample lead to potential fluctuations. These modify the density of states in
Eqn. 2.12 to a continously varying function of the energy, which has maxima around the
center of Landau levels at half filling and minima in between (Fig. 2.2c’). As a second
effect of the potential fluctuations, only a part of the electronic states can extend their
wavefunction across the whole sample. They are calledextended statesand are found
whenever a Landau level is half filled. The remaining states arelocalized states[27].
The energy ranges where only localized states are available represent a mobility gap [28].
This mobility gap reappears together with the minima in the density of states periodically

23



2 The two-dimensional electron gas

Figure 2.2:
(a)-(c): Landau levels are depopulated with increasing magnetic field. Bottom: The Landau
fan chart with Fermi energy in red. The positions of the top graphs are marked with a-c. The
picture is valid assuming spin degeneracy. (c’): Disorder broadened Landau levels. Around
even integer filling, the Fermi energy lies in a mobility gap.

around even integer filling factors. Using Eqn. 2.13 this periodicity can be expressed in
1/B,

∆
(

1
B

)
=

e
hns

. (2.14)

The oscillating density of states and the reappearing mobility gap have important conse-
quences for the magnetotransport quantitiesρi j as discussed in the next section.

2.4 Transport measurements

In the course of this thesis it will become apparent that modifications in the density of
states, quantum interferences and topological effects due to the applied modulation poten-
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2.4 Transport measurements

tial are observable in the magnetotransport properties. The starting point for a transport
measurement is a 2DEG shaped into a Hall bar with widthW as displayed in the inset
of Fig. 2.3. A currentI is driven through the sample and both the longitudinal voltage
Vxx and Hall voltageVxy are measured. The distance between adjacent potential probes
is equal toL. The geometry independent specific resistivities are

ρxx = Rxx/(L/W) and (2.15)

ρxy = Rxy . (2.16)

They can be calculated from the measured voltages asRxx = Vxx/I and Rxy = Vxy/I .
The Hall conductivityσxy in Fig. 2.3 is obtained from the measured resistivities via an
inversion of the resistivity tensor̂ρ

σxy = (ρ̂−1)xy =
−ρyx

ρxxρyy−ρxyρyx
≈

ρxy

ρ2
xx +ρ2

xy
. (2.17)

The above equation is exact for isotropic systems for whichρxx equalsρyy and for which
the Onsager-Casimir principle [29–31]holds withσxy =−σyx and henceρxy =−ρyx.

We will now discuss theρxx- and σxy-behavior expected for unmodulated two-
dimensional electron gases. Neglecting Landau quantization, the longitudinal resistivity
reads

ρxx =
1

nseµ
, (2.18)

in the Drude model [32, 33] and does not depend onB. The Hall resistivity linearly
increases withB

ρxy =
B

ens
. (2.19)

Formula 2.18 is used to determine the mobilityµ = eτtr/m∗ of the sample.τtr is the
momentum relaxation time of an electron at the Fermi energy. From the mobility the
transport mean free path

λmfp = vFτtr =
h̄kFµ

e
(2.20)

can be estimated. Here we used the Fermi velocityvF = h̄kF/m∗. For the modulated
devices in this work, the mean free path isλmfp = 35 µm after illumination. This is even
larger than the sample width of 20µm. The unmodulated samples have a larger mean
free path ofλmfp = 49 µm after illumination.
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2 The two-dimensional electron gas

2.4.1 Shubnikov-de Haas oscillations

As stated in section 2.3, due to Landau quantization the density of states at the Fermi
energy,D(EF), is oscillating in 1/B for a fixed electron densityns. This affects the
longitudinal transport resistivityρxx: Current transport along the applied electric field
in a perpendicular magnetic field is possible only if electrons scatter between different
eigenstatesΨn,x0,ky(r). At low temperatures, the occupied initial and the empty final
state of the scattering process have to be at the Fermi energy. Thus the number of such
scattering events is proportional to the square of the density of states atEF. The same is
true for the longitudinal conductivity found using the self consistent Born approximation
(SCBA) as in Refs. [34–36]. When simplified for the case of short range scatterers and
for T → 0, it reads

σ
sc
µµ(EF,T = 0) =

e2

h̄ ∑
n

(2n+1)
[
2π l2BDn(E)Γ0

]2
. (2.21)

Here,Dn(E) is the density of states contribution of Landau leveln andΓ0 is the collision
broadening. This longitudinal conductivity and thus also the longitudinal resistivityρxx

share the same 1/B-oscillatory behavior asD(EF). These are theShubnikov-de Haas
oscillations(SdH) [7] observed in theρxx trace of Fig. 2.3. For high enough magnetic
fields, ρxx will even drop to zero (in Fig. 2.3 forB > 1 T) in the limit T → 0 and the
longitudinal transport becomes dissipationless.

The Shubnikov-de Haas oscillations are used to determine the electron density in experi-
ment. They can also be accounted for when imposing the Bohr-Sommerfeld quantization
rule [37] on the closed cyclotron orbits of electrons. The fluxΦC = πR2

cB penetrating a
cyclotron orbit must be an integer multiple of a flux quantum. Using equation 2.6 and 2.7
this transforms into an oscillation period

∆
(

1
B

)
=

2πe
h̄

1
AF

. (2.22)

Here,AF = πk2
F is the area enclosed by the cyclotron orbit ink-space. The oscillation

period in equation 2.22 is identical to the one found in equation 2.14.

2.4.2 Quantum Hall effect

Using Eqns. 2.13, 2.19 and 2.17, the classical Hall conductivity can be rewritten as

σxy = ν ·e2/h . (2.23)
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2.4 Transport measurements

When the Shubnikov-de Haas minima approach zero (ρxx → 0) near even integer fill-
ing factors, the Hall conductivity deviates from the classical result (2.23) and is instead
quantized for a finiteν-region to the integer multiple ofe2/h. The resulting plateaus in
σxy can be seen in Fig. 2.3. The quantized plateau conductance is independent of sample
properties like geometry, electron density and sample material. This quantization of the
Hall conductance in connection with a vanishing longitudinal resistivity is the celebrated
Quantum Hall effect[38].

To explain the finite width of the plateaus, several models exist. Many rely on the local-
ized states introduced in section 2.3.1: In the Kubo-formalism, where conductivities are
calculated as the linear response to an external field, the conductivityσxx is governed only
by states at the Fermi energy, while forσxy all states below the Fermi energy contribute.
However, the localized states do not contribute to the transport at zero temperature. Thus
σxx and consequentlyρxx vanish ifEF is between two Landau levels, where only localized
states are available. At the same timeσxy is constant with a quantized value. If, however,
the Fermi energy moves through extended states,σxx is finite andσxy changes.

Irrespective of the model used for the conductivity, Laughlin was even able to demon-
strate that the Hall conductivity quantization is a general consequence of gauge invariance
and the existence of a mobility gap [28].

Other models rely on edge channels which arise due to the bending of Landau levels to
higher energies at the sample edges [39,40]. Each of theν filled Landau levels produces
a dissipationless one-dimensional edge channel where it crosses the Fermi energy. When
the Fermi energy is between two Landau levels in the bulk, it lies in the region of localized
states. So an applied current can only flow in the dissipationless edge channels and
backscattering across the bulk is suppressed [41]. The voltage drop between potential
probes on the same side of a sample is zero and so isρxx. The voltage drop due to the fact
that each edge channel contributes a conductivitye2/h can be measured between the two
sample sides as Hall voltage. This translates again to a quantization ofσxy to a plateau
for the range of localized states in the bulk.

The above models are however not consistent with recent measurements of the poten-
tial distribution in Hall samples using atomic force microscopy [42]. Newer work which
is consistent with these experiments does not rely on localization but only on screen-
ing effects and the inhomogeneity due to the electron-depletion regions near the sample
edges: Siddikiet al. [36] point out that screening effects create incompressible strips, in
which the Fermi level is in a Landau gap. No elastic impurity scattering is possible there
and locallyσxx will vanish for low temperatures. Hence an applied current will flow in
these incompressible strips. This leads to a vanishing longitudinal and quantized Hall
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2 The two-dimensional electron gas

Figure 2.3:
The measured longitudinal resistivityρxx and the Hall conductivityσxy (calculated fromρxx

andρxy) of a 2D electron gas are plotted versus the magnetic field.ρxx shows Shubnikov-de
Haas oscillations first and at higher fields the integer Quantum Hall effect.σxy is quantized
near even integer filling factorsν in units of 2e2/h. Inset: A Hall bar sample with applied
currentI and exposed to a perpendicular magnetic fieldB. Both the longitudinal voltageVxx

and the Hall voltageVxy are measured to obtainρxx andρxy.

conductances as long as such an incompressible strip exists in the sample. This model
differs from the edge channel picture since at most one incompressible strip exists at each
sample side. Also, the current is transported in the same direction on both sample sides.
When no incompressible strip is present, the current is flowing through the bulk of the
sample.
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3 The modulated two-dimensional
electron gas

Quantum mechanical and semiclassical commensurability effects arise when a 2D elec-
tron gas is simultaneously exposed to a periodic modulation potential with strength V0

and a uniform perpendicular magnetic field B. These effects originate from the competi-
tion of two length scales, namely the modulation period and the magnetic length. In this
chapter this problem will be studied for a weak modulation potential V0� EF and in two
limiting cases: (1) the strong magnetic field limit for which the Landau quantized elec-
tron system is weakly perturbed by a modulation potential (V0 � h̄ωc) and (2) the weak
magnetic field case (h̄ωc�V0) where the field perturbs the miniband structure produced
by the applied modulation.

Typical magnetotransport data for a modulated sample are shown in Fig. 3.1. Compared
to the unmodulated sample in Fig. 2.3 many additional features are visible. In particular,
three regions are of interest for this chapter: The positive magnetoresistance aroundB =
0, the quantum interferences for weak magnetic fields and the Hofstadter Butterfly for
stronger magnetic fields. In this chapter, we will lay out the theoretical basis to treat each
of these regions in the remaining chapters in more detail.

3.1 Strong magnetic field regime

In strong magnetic fields, a weak one-dimensional periodic modulation potential broad-
ens the discrete Landau levels into bands. For a two-dimensional modulation these bands
are subdivided further into subbands and minigaps that result in the Hofstadter Butterfly.
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3 The modulated two-dimensional electron gas

Figure 3.1:
The longitudinal and Hall resistivities for a modulated sample with period 102.7±0.5 nm. The
electron density isns = 4.32·1011cm−2. The inset shows the sample geometry. Spin splitting is
only resolved at higher magnetic fieldsB > 1 T (as indicated with the blue color). The positive
magnetoresistance (green; section 3.2.5), the quantum interference region (magenta; section
3.2.1 and chapter 6), the Hofstadter butterfly region (reg; section 3.1.2 and chapter 5) and the
flat band conditions (dotted; section 3.1.1) are discussed in more detail in the text.
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3.1 Strong magnetic field regime

3.1.1 Commensurability oscillations

The commensurability oscillations are visible in experiments on samples with one-
dimensional modulation for both high(h̄ωc � V0) and lowB-fields (h̄ωc � V0). Here
they are however introduced using an approach only valid in the high field limit. This
approach is useful in the later discussion of effects for two-dimensional modulations.

When the Landau quantized two-dimensional electron system is subjected to a weak
(V0 � EF andV0 � h̄ωc) one-dimensional modulation of the form

V(x) = (V0/2)cos(Kax) (3.1)

with Ka = 2π/a, the macroscopic degeneracy of the Landau states is lifted as displayed
in Fig. 3.3b. The Landau levels with orbital indexn = 0,1, . . . are broadened into bands
and the energy of the corresponding states,

En(x0) = h̄ωc

(
n+

1
2

)
+

1
2
V0cos(Kax0)e−

1
4K2

a l2BLn

(
1
2

K2
a l2B

)
, (3.2)

now depends on the center coordinatex0∈ [0;a] (cf. Fig. 3.3b). In this expression,Ln(X)
is the Laguerre polynomial of ordern and h̄ωc is the cyclotron energy. The resulting
Landau bands are depicted in Fig. 3.2b. They have a magnetic field dependent oscillatory
width. This width shrinks to zero wheneverLn(1

2K2
a l2B) = 0. At these fields the original

degeneracy is restored. For a Landau band with indexn, the Laguerre polynomial has
exactlyn zeroes. These are called theflat band conditions. They can be approximated
for largen by

2Rc = a

(
λ − 1

4

)
(3.3)

with λ ∈ N+. The maximal bandwidth is obtained when 2Rc = a(λ + 1
4).

The corresponding eigenstates give rise to aband conductivitycontribution∆σyy [13,43–
46], as the group velocity in the direction of the equipotential lines of the modulation
potential,

vg =− 1
m∗ωc

dEn

dx0
êy =

1
h̄

dEn

dky
êy , (3.4)

is no longer zero. This additional conductivity∆σyy adds to the usualscattering conduc-
tivity σsc

yy of the unperturbed Landau states. The longitudinal resistivityρxx is enhanced
accordingly:

ρxx =
σyy

σxxσyy−σxyσyx
≈

σyy

σ2
xy

. (3.5)
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3 The modulated two-dimensional electron gas

Figure 3.2:
(a) The Landau fan chart of an unmodulated system. The red line showsEF for a fixed electron
density as a function ofB. (b) Same as a) but in presence of a weak 1D modulation potential.
Landau levels are broadened into bands with vanishing bandwidth only at the flat band con-
ditions. (c) light blue: again the Landau bands of b). black: The Landau fan for a 2D weak
(V0 = 0.15 meV) modulation with perioda = 100 nm in the single band approximation. The
Landau bands break up into repeated Hofstadter butterflies. Additional jumps inEF are present
due to the internal structure. For lowB both b) and c) are unphysical sinceV0 � h̄ωc does not
hold and thus the single band approximation is not applicable: E.g. no gaps are expected for
B < 0.25 T, rather all Landau bands are vigorously mixed by coupling effects.
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3.1 Strong magnetic field regime
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Figure 3.3:
a) Top: For the flat band condition 2Rc = a(λ −1/4) the modulation potential average over
one cyclotron orbit is independent ofx0. Bottom: The average is changing withx0. b) The
dispersion relation in the top panel is degenerate. c) The resulting density of states. Van-Hove
singularities arise due to the flat dispersion atx0 = 0,a/2.

Hence, the oscillatory Landau band width results in 1/B-periodicρxx-oscillations often
referred to ascommensurabilityor Weissoscillations(CO) [11,12].

The scattering conductivity on the other hand describes the electron transport in the di-
rection of the applied electric field as a result of disorder-induced scattering of electrons.
We know from section 2.4.1 that this scattering is increased for a large density of states
at the Fermi energy. The density of states is maximal at flat band as seen in Fig. 3.3c.
At these positions the scattering conductivityσsc

µµ and thus the longitudinal resistivity is
increased. The resulting commensurability oscillations inρµµ are in antiphase with the
band conductivity commensurability oscillations.

The resistivityρxx is dominated by the band conductivity so that the antiphase commen-
surability oscillations can only be seen inρyy, where no band conductivity contribution
needs to be considered, since the corresponding∆σxx is zero. Both types of commensu-
rability oscillations have been observed in experiment [11,13].

For a two-dimensional modulation potential,

V(x,y) =
V0

4
[cos(Kax)+cos(Kay)] , (3.6)

additional intricate quantum mechanical effects arise. They will be the subject of the next
section.
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3 The modulated two-dimensional electron gas

3.1.2 Hofstadter Butterfly

The energy spectrum of a two-dimensional periodic quantum system has a sensitive de-
pendence on the magnetic fluxΦ = B ·A through the periodic unit cell with areaA = a2.
This is a consequence of the competition of the two characteristic area scales of the sys-
tem, the unit cell areaA and the areaΦ0/B one flux quantumΦ0 = h/e occupies. These
area scales are in frustration but one can solve for the spectrum whenever they are com-
mensurable, that is their ratioΦ/Φ0 is a rational numberp/q corresponding top flux
quanta perq unit cells, with p andq being natural numbers which share no common
factor. Additionally, the modulation potential has to be in either the strong (V0 � EF and
V0 � h̄ωc) or weak limit (V0 � EF andV0 � h̄ωc).

The first case is thetight binding limit. In its simplest manifestation the electron energy
spectrum consists of one cosine band. An applied weak perpendicular magnetic field
splits this band into subbands. The number of subbands and their degeneracy depends
sensitively on the ratioΦ/Φ0 [16,17,17,19,47].

The second limit is the so callednearly free electroncase. Fig. 3.2c displays the mod-
ifications to the discrete Landau level spectrum induced by a 2D periodic potential if
coupling among Landau levels is neglected. A weak one-dimensional modulation lifts
the macroscopic degeneracy of each Landau level and broadens it to a band with a field
dependent bandwidth as discussed in the previous section. When a modulation in the
second direction is added, this Landau band again splits as displayed in Fig. 3.2c due to
the additional Bragg scattering. The resulting subbands are governed by the inverse ratio
Φ0/Φ = q/p [17,20].

For both limits the allowed states, plotted againstΦ/Φ0 for the tight binding limit or
Φ0/Φ for the nearly free electron case as abscissa, form the appealingHofstadter butterfly
spectrumin Fig. 3.4. The spectrum is fractal. It emerges in a variety of contexts.

To observe this spectrum experimentally, the tight binding limit is not suitable, since it is
applicable to situations where the conduction band at the Fermi energy is energetically
well separated from all other bands. Although the semiconductor crystal, which has a
lattice constant of the order of̊Angstroms, produces well separated bands at the Fermi
energy, the static magnetic fields of 30T available to experimentalists correspond only to
a fluxΦ≈ 10−4Φ0 per unit cell. The Hofstadter spectrum on the other hand is best visible
aroundΦ/Φ0 = 1/2. This flux ratio is attainable for an artificial superlattice modulation
with perioda≈ 100nm at a moderate magnetic field of 0.8T. It is however very difficult
to realize a strong artificial modulation with sufficiently high uniformity.
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3.1 Strong magnetic field regime

Figure 3.4:
The Hofstadter butterfly energy spectrum for both limiting cases. The abscissa isΦ/Φ0 for the
tight binding limit andΦ0/Φ for nearly free electrons. The allowed valuesẼ will be explained
later in the context of Eqn. 3.10.

The nearly free electron limit on the other hand is experimentally accessible in weakly
modulated 2DEGs and will be exclusively considered in the following. To get an under-
standing of the band splitting in this limit, the symmetries of the single-electron Hamil-
tonian

H =
1

2m∗ [p+eA (r)]2 +V(r) (3.7)

of the modulated system in a magnetic field are determined as described in [48,49]. As in
Eqn. (2.8), the Landau gauge will be used. We consider the square modulation potential
(3.6), which is weak enough to ensure that coupling of Landau bands can be neglected.
This modulation potential is invariant under a translationR = l ·aex+m·aey by multiple
superlattice periods (l ,m∈ N). The corresponding translation operator

T̂R = exp

(
i
h̄

R ·p
)

(3.8)

does not commute with the HamiltonianH of the system since the translation̂TR

shifts the argument of the vector fieldA(r + R). This is a pure quantum mechan-
ical effect. It can be compensated for by a subsequent gauge transformationÊR =
exp
[

ie
h̄ r ·A(r)

]
. The combinedmagnetic translation operator[48, 50, 51]M̂R = ÊRT̂R

then commutes with the HamiltonianH. This magnetic translation operator gener-
ally does not commute with itself, but gives rise to an additional phase, for instance
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3 The modulated two-dimensional electron gas

Figure 3.5:
Examples of how the superlattice unit cell and magnetic unit cell form a magnetic unit cell of
the superlattice.

M̂aexM̂aey = M̂aeyM̂aex exp(−i2πΦ/Φ0) for the translations along the two basis vectors
of the superlattice. One can write this asM̂aexM̂aeyM̂

−1
aex

M̂−1
aey

= exp(−i2πΦ/Φ0), so a
translation of the wavefunction around a square with sidelengtha produces an additional
phase equal to the number of magnetic flux quanta through this square multiplied by 2π.
This is the well-known Aharonov-Bohm effect [52]. Nevertheless, one can define for a
rational flux ratioΦ/Φ0 = p/q a correspondingmagnetic latticewith aq-times enlarged
unit cell which is penetrated by an integer number ofp flux quantaΦ0. Examples for
this are given in Fig. 3.5. For all translationsR′ = n · (qa)ex + m·aey on this magnetic
lattice the magnetic translation operator commutes with itself, since the additional phase
is simply a multiple of 2π. We can then choose eigenfunctions|n,α〉 which simultane-
ously diagonalizeH andM̂ and obey the periodic boundary condition enforced by the
magnetic lattice. These are found in the course of Ref. [49] to be coupled Landau states
|n,ky +λKa〉 with center coordinates shifted by integer multiples ofl2BKa, so they can be
written as

|n,α〉=
∞

∑
λ=−∞

cλ (α)|n,ky +λKa〉 . (3.9)

These eigenstates are classified by the corresponding Landau level indexn and the set
of quantum numbersα = (kx,ky, j) with the vectork defined in the magnetic Brillouin
zone and a subband indexj = 1, . . . , p. Thus for a certain flux ratioΦ/Φ0 = p/q each
Landau band splits intop subbands, which are separated by minigaps and can be shown
to beq-fold degenerate [53]. For the simple potential (3.6) the coefficientscλ (α) are
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3.1 Strong magnetic field regime

independent ofn and are given byHarpers equation[15,17,53–55]

1
2
V0cos(λ l2BK2

a −Kax0)cλ (α)+
1
4
V0[cλ+1(α)+cλ−1(α)] =−Ẽαcλ (α) . (3.10)

This equation can be solved for the values ofẼα which range from−4 to 4. Their allowed
valuesẼ for a certainΦ0/Φ are precisely what the Hofstadter spectrum in Fig. 3.4 shows.
Thus the eigenenergies (3.2) take for the two-dimensional case the form

En = h̄ωc(n+ 1
2)+

1
8
V0Ẽe−

1
2πΦ0/ΦLn( πΦ0/Φ) , (3.11)

as depicted in Fig. 3.2c. Note that the Hofstadter butterfly is an internal structure common
to all Landau bands, independent of their orbital indexn, since thecλ (α) are independent
of n. Moreover, this pattern of subbands and minigaps is repeated forΦ0/Φ > 1 periodi-
cally with period unity. However, the degeneracy of all subbands will increase with each
repetition.

An important property of the butterfly spectrum for the experimental observation of the
minigaps inside a Landau band is theclusteringof subbands into groups. Starting with a
given flux ratiop/q, p subbands exist. For a nearby flux ratiop′/q′≈ p/q with p′ > p, the
p′ subbands will group intop clusters close to thep bands of the first flux. If scattering of
electrons at random impurities is taken into account, the density of statesD(E) calculated
from the butterfly spectrum will be broadened and all but the biggest minigaps in between
such clusters of subbands will smear out [20]. Thus the gaps visible to experiment will
stay the same on a finite flux range. This enables the spectroscopy of the Hofstadter
spectrum by magnetotransport measurements, where the magnetic field changes slightly
when moving through the spectrum at a fixed electron density.

Magnetoresistivities

Although the density of states can be accessed more directly by magnetization [56, 57]
and capacitance measurements [58, 59], a transport experiment yields additional infor-
mation in the Hall conductanceσxy, as will be explained in the next paragraph. The
measured longitudinal conductivityσyy = σsc

yy + ∆σyy has two contributions as already
discussed in section 3.1.1. If the collision broadening is so small that the modulation-
induced splitting is resolved, the overlap of subbandsj 6= j ′ with the same Landau index
n is small. The band conductivity contributed by the narrow subbands is strongly sup-
pressed compared to the one for the case when the subband splitting is totally smeared
out due to collision broadening [4, 49, 60]. Consequently, the scattering conductivity
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3 The modulated two-dimensional electron gas

Figure 3.6:
Hall conductivities from the Diophantic equation: (a) The Hofstadter butterfly. Hall conduc-
tance contributions in units of 2e2/h of the partially filled Landau band are indicated in some
gaps. (b) The numbers solving Eqn. 3.13 forΦ0/Φ = 1/3 and 2/3, (c) the Hall conductivity
contributionσ and (d) the density of states for these values of

σsc
µµ(EF,T = 0) ∝ D(EF)2 (see Eqn. 2.21) will dominate the transport. Therefore the

measured total conductivityσyy will reflect changes in the density of statesD(E). Hence
additional minima in the Shubnikov-de Haas peaks ofρxx are indicators of a resolved
subband splitting and thus of the Hofstadter spectrum.

While these additional minima inρxx only tell us about the existence of a minigap, the
value of the Hall conductance, which will be discussed next, depends also on the corre-
sponding minigap index. Using this additional information, observed minigaps can be
correlated to their position in the spectrum.

Hall conductivity

In accordance with Laughlin’s general gauge invariance argument for noninteracting
electrons [28], which we used already in section 2.4.2, the Hall conductivity is not only
quantized in the Landau gaps between adjacent Landau bands but also when the Fermi
energy is located inside a minigap. As for the unmodulated system, each of then com-
pletely filled spin-degenerate Landau levels contributes a conductivity 2e2/h to the total
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3.1 Strong magnetic field regime

Hall conductivityσxy = 2e2/h·n. Thouless [61] has shown that the contributionσ ·2e2/h
of a partially filled band to the total Hall conductance,

σxy = (n+σ) ·2e2

h
, (3.12)

varies in a non-trivial manner from minigap to minigap [23,61–63]. It can be obtained for
theg-th minigap and a given flux ratioΦ0/Φ = q/p by solving aDiophantic equation1,

g = wq+σ p, |w|6 p/2, (3.13)

with g, p,q ∈ N andw,σ ∈ Z. This equation is solved for illustrative purposes for two
values ofΦ0/Φ = q/p = 1/3 and 2/3 marked by grey lines in Fig. 3.6a. For both cases,
the spectrum consists ofp = 3 subbands. When the Fermi energy moves through the
subbands, the density of states reflects the threefold splitting as seen in Fig. 3.6d. For
each of the valuesΦ0/Φ and for each minigap (g = 1 andg = 2) thew- andσ -values,
which solve Eqn. 3.13, are listed in Fig. 3.6b. The resulting Hall conductance contribution
of the partially filled band is plotted in Fig. 3.6c. The discussed minigaps and others have
been labeled with their Hall conductance contributionσ in units of 2e2/h in Fig. 3.6a.

1 Named after Diophantus of Alexandria, approx. 250 AD.
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3 The modulated two-dimensional electron gas

3.2 Weak magnetic field regime

In this section we introduce what effect a weak artificial modulation potential (V0 � EF)
has on the dispersion relation and Fermi contours of a two-dimensional electron gas.
After treating the simpler case of a one-dimensional periodic potential modulation, the
two-dimensional case, of relevance here, will be studied. There, as in a natural crystal,
electrons are Bragg reflected at the Brillouin zone boundaries (BZB) of the artificial lat-
tice and energy gaps open up. Both closed and open electron orbits appear. An additional
weak magnetic field (h̄ωc�V0) enables tunneling across gaps at the BZB. This produces
an entire new network of electron paths, which can be studied using magnetotransport ex-
periments.

3.2.1 The miniband structure

We know from Eqn. 2.1 that the electrons, which form the two-dimensional electron gas
at a heterostructure interface, are quasi-free and have a paraboloidal dispersion inkx and
ky. The influence of the underlying semiconductor crystal potential is entirely absorbed
in the effective massm∗. A cut of this paraboloid with theky = 0 plane, the dispersion in
kx, is depicted in the left panel of Fig. 3.7b.

When adding a one-dimensional modulation potential with perioda in thex-direction as
in Eqn. 3.1, the translational invariance is lifted and electrons will experience Bragg re-
flection at the Brillouin zone boundarieskx = j ·Ka/2= j ·π/a with j ∈{±1,±2,±3, ...}.
Since the applied modulation is weak compared to the Fermi energyEF, the parabolic
dispersion is modified only in the vicinity of the Brillouin zone boundaries, where small
energy gaps open up. These gaps separate the parabolic dispersion intominibandsof
the artificial modulation potential. The term miniband indicates that these bands are
superposed on the underlying band structure of the heterostructure lattice. Away from
the Brillouin zone boundaries the dispersion is nearly unchanged from the unmodulated
case [65]. This behavior is seen in the periodic zone scheme of the middle panel of
Fig. 3.7b, which is created by repeating all sections of the parabolic dispersion at integer
multiples of reciprocal superlattice vectorsKa.

For a two-dimensional modulation, the band structure is more complicated, since gaps
open up in both thekx- andky-direction and the resulting sections are repeated along both
directions at reciprocal lattice vectorsq = Ka · (nx,ny), with nx,ny ∈ N. To find the gap
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3.2 Weak magnetic field regime

Figure 3.7:
Dispersion relation and periodic zone scheme for no modulation, 1D and 2D modulation. Left
panel: The free electron case. Middle panel: One dimensional modulation. Right panel: Two
dimensional modulation. a) Sample structure sketch. b) The dispersion relation. A dotted line
represents the Fermi energy. The modulation opens up gaps at Brillouin zone boundaries. The
band structure in the right panel is based on Fig. 4 in Ref. [64]. c) The periodic zone scheme,
depicting Fermi contours ink-space. Arrows indicate the chirality of the orbits imposed by the
applied magnetic field. Brillouin zones are marked in yellow. For the right panel the second
Brillouin zone is demarcated with dashed lines.

41



3 The modulated two-dimensional electron gas

Figure 3.8:
Gap positions in the periodic zone scheme for the 2D modulation case. Large red dots mark
the intersections of two Fermi circles with distanceq = Ka · (1,0). The intersections are on
the first Brillouin zone boundary (dotted red line). Green dots mark the intersections forq′ =
Ka · (−1,1). They are on the boundary of the second Brillouin zone (dotted green line).
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3.2 Weak magnetic field regime

positions, we need the Fourier expansion of the modulation potential

V(r) = ∑
q6=0

Vq exp(iq · r) . (3.14)

Gaps appear at Brillouin zone boundaries perpendicular to reciprocal lattice vectorsq 6= 0
with non-zero Fourier componentsV±q. This is demonstrated in Fig. 3.8 for the first (red;
q = Ka · (1,0)) and second (green;q′ = Ka · (−1,1)) Brillouin zone. The size of these
energy gaps can be estimated to be [65]

∆Eq = 2|Vq| . (3.15)

Cuts along first (Γ−A−M) and second (M−Γ) Brillouin zone boundaries through the
band structure are plotted in the right panel of Fig. 3.7b. Here, non-zero second order
Fourier components are included in the modulation potential and are e.g. responsible for
the degeneracy lifting (splitting into two lines) along the M−Γ direction.

The important properties in the discussion of a modulation potentialV(r) are both its
shape and its overall strength. To separate these two properties, we express all Fourier
componentsVq in terms of an additional parameterV0:

Vq = V0 ·αq . (3.16)

For instance for Eqn. 3.6, we haveVKa·(±1,0) = VKa·(0,±1) = V0 ·1/4. The single modula-
tion potential strength parameterV0 can now be treated independently from the modula-
tion potential shape, which is determined by the relative sizes of theαq.

3.2.2 Fermi contours

For a given electron densityns we can calculate the Fermi energyEF (cf. Fig.3.7b) and
plot thek-space Fermi surfaces with constant energyE = EF for the three discussed cases
illustrated in Fig.3.7c. Only electrons on these contours are relevant in dc-transport ex-
periments. For the unmodulated case in the left panel, the Fermi contour is just the Fermi
circle with radiuskF. In the presence of a perpendicular magnetic fieldB the electrons
will travel in a certain direction (blue arrow) on this constant energy contour. The cor-
responding real space trajectory is rotated byπ/2 and scaled withl2B = h̄/(eB). The
quantization of this real space electron trajectory leads to Shubnikov-de Haas oscilla-
tions in the longitudinal transport resistivity as explained in section 2.4.1. and produces
1/B-periodic oscillations with a period (Eqn. 2.22)

∆
(

1
B

)
=

2πe
h̄

1
AF

(3.17)
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3 The modulated two-dimensional electron gas

which depends on the enclosed areaAF. This is true for arbitrarily shaped areas. So by
analyzing the 1/B-periodicity of oscillations in the longitudinal magnetotransport, one
can determine the area enclosed by the corresponding Fermi contour.

For a one-dimensional modulation, open undulating and closed trajectories emerge. Ex-
amples are the blue and red trajectories in the middle panel of Fig. 3.7c. They are sepa-
rated by gaps at the boundary of the first Brillouin zone marked in yellow. The red closed
trajectory is smaller than the one for the unmodulated case. It will thus manifest itself by
a larger 1/B-period in the magnetotransport oscillations.

For a two-dimensional modulation more open and closed trajectories may show up. The
three even smaller closed trajectories (red, green, and blue) in the right panel of Fig. 3.7c
should be visible as three superposed 1/B-oscillations in magnetotransport.

Summing up, one can observe the influence of the modulation potential on the Fermi con-
tours using a magnetotransport experiment by analyzing the periodicity of 1/B-periodic
oscillations.

3.2.3 Magnetic breakthrough

When increasing the magnetic fieldB, the semiclassical picture used up to now no longer
holds. Quantum mechanical tunneling across gaps at the Brillouin zone boundary be-
comes possible. This is calledmagnetic breakthrough. It discloses an entire network
of alternative closed electron paths which produce additional 1/B-periodic oscillatory
features. In a simple model, the magnetic field introduces an uncertainty in real space
proportional to the magnetic length∆x≈ ∆y≈ lB. This corresponds to an uncertainty in
reciprocal space∆kx > 1/∆x≈ 1/lB. If this ∆k gets larger than the gaps introduced by
the modulation potential, tunneling becomes significant [65]. A proper calculation leads
to a tunnel probability [66–69]

P = exp

(
−

Bqm
0

B

)
= exp

(
−

π∆E2
q

4h̄ωcEFsin(2θq)

)
=: Pq(kF,Ka,V

2
0 /B) , (3.18)

if the modulation potential is weak (V0�EF). This probability depends on the energy gap
∆Eq ≈ 2|Vq| (3.15), and the incident Bragg scattering angleθq. For a weak modulation
potential, the size of the gap ink-space (Fig. 3.9b) can be estimated as follows:∆k≈
∆E/|∂E/∂k| ≈ ∆E/h̄vF. Here we used the dispersion of a free two-dimensional electron
gas. Both the gap∆k as well as the scattering angleθq are illustrated in Fig. 3.9b for the
simple one-dimensional case.
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3.2 Weak magnetic field regime

Figure 3.9:
a) Magnetic breakthrough between neighboring Fermi contours of a 1D modulated electron
system enables the lower blue trajectory with a probabilityP. There, the electron tunnels across
the gap at the Brillouin zone boundary. b) The Bragg scattering angleθ enters the tunneling
probabilityP. The energy gap∆E is accompanied by a corresponding change∆k in k-space.

The non-standard notationPq(kF,Ka,V2
0 /B) is introduced in Eqn. 3.18 to separate the

parameterq specifying a certain gap from all other parameters, which are identical for
all gaps: The parameterskF andKa determine the geometrical properties of the network
of repeated Fermi circles. They also control where and with which angleθq the circles
with distanceq will intersect ink-space. The energy gaps∆Eq at these intersections en-
ter the probability as∆E2

q ≈ (2Vq)2 (cf. Eqn. 3.15). As discussed in section 3.2.1, we
introduce a modulation potential strength parameterV0 and express the Fourier compo-
nents asVq = V0 ·αq. SinceV0 is independent ofq, we can use it to collect the energy
gap dependence together with the remaining magnetic field dependence in the parameter
V2

0 /B. Note that a change in the potential modulation amplitude can be compensated for
by a suitable change in the magnetic field. The dependence on the modulation potential
shape, described by the parametersαq, is absorbed in the symbolPq, which is different
for each gap parameterq.

3.2.4 The network model

To understand the implications of magnetic breakthrough, we revert to thenetwork model
devised by Pippard: An entire network of electron paths is created by the combination of
all sections of the Fermi contours and different tunneling events. For a given magnetic
field, the electron trajectory will lie on this network with a statistical distribution given
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3 The modulated two-dimensional electron gas

by the tunnel probabilities at each energy gap. The complete network will give rise to
several 1/B-periodic oscillatory features in the longitudinal resistivity [68, 70, 71]. Pip-
pard, however, pointed out that no adequate theory of the conductivity of such a coherent
network for a two-dimensional modulation has been devised [72]. Nevertheless, for the
case of a one-dimensional modulation, the network model is shown to provide the same
result as a full quantum mechanical calculation [73].

Instead of solving the two-dimensional network problem, we focus first on individual
closed trajectories in this network. As the magnetic field is swept, some closed trajecto-
ries become dominant while others are unlikely. The most probable trajectories are seen
in experiment as 1/B-oscillations in the longitudinal resistivity, just as described in sec-
tion 3.2.2. These 1/B-oscillations will be the subject of section 6.3. Two path quantum
interferences present in the network model are taken into account later in section 6.4.
The most probable quantum interferences give rise to additional 1/B-oscillations inρxx.
This two step approach will prove successful to explain the 1/B-oscillations observed in
experiment.

3.2.5 Positive Magnetoresistance

Magnetic breakthrough has also consequences near zero field, where it limits theposi-
tive magnetoresistance: Below B≈ 0.03 T a positive magnetoresistance peak inρxx is
seen in Fig. 3.1. This peak already arises for a one-dimensional modulationV(x) =
(V0/2)cos(Kx), but only for transport along the direction of the modulation (ρxx). It can
be explained in terms of the undulating runaway trajectories (e.g. in blue in the middle
panel of Fig. 3.7c). They dominate the transport, if tunneling is not significant. The
corresponding real space trajectories run along they-direction. Electrons traveling along
these open trajectories produce an additional contribution to the conductivity∆σyy and
hence an increase ofρxx [74–76]. This positive magnetoresistance will saturate when
tunneling gets significant. We will use the following criterion:P > e−1. Using Eqn. 3.18
the critical magnetic field at whichP > e−1 can be estimated as [66–69]

Bqm
0 ≈

π2m∗eaV2
0

h2vF
. (3.19)

Here, the approximations sin(2θ)≈ Ka/kF and∆E ≈V0 were used. They hold forkF �
Ka, which is valid for the samples at hand.

This model qualitatively describes the positive magnetoresistance, but the simpler model
of classical magnetic breakthrough [76–78] is better suited to explain the available exper-
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3.2 Weak magnetic field regime

imental data on one-dimensional modulation [76]. Electrons feel both the Lorentz force
FL = −evFB and a forceFV = −dV(x)/dx = (V0/2)Kasin(Kax) due to the modulation
potential. The latter drives the electrons back onto open trajectories. This again enhances
the conductivityσyy. The resulting positive magnetoresistance will saturate at a magnetic
field

Bcl
0 =

πV0

eavF
, (3.20)

where the two forcesFL andFV are equal [77].

Although both models hold only for one-dimensional modulation, Eqn. 3.20 has been
used on occasion to roughly estimate the amplitude of the potential modulationV0 even
for two-dimensional modulation. This is discussed further in appendix E.
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4 Sample preparation and
measurement procedures

To unveil the Hofstadter energy spectrum or quantum interferences typical for two-
dimensional lattices, both the sample fabrication and the measurement techniques have to
be optimized: A prerequisite is a shallow heterostructure design offering a high mobility.
In addition, fabrication procedures for short period lateral superlattices with minimal im-
pact on sample quality are developed. For the measurement, a self-adapting illumination
process is devised and finally an optimized data analysis is used. Here, we will discuss
each of these ingredients in more detail.

4.1 Optimized fabrication of modulated samples

4.1.1 The heterostructure

For the observation of signatures of the butterfly spectrum both mobility and two-
dimensional modulation amplitude need to be sufficiently large. The size of the minigaps
in the Hofstadter butterfly is proportional to the modulation amplitude. A large mod-
ulation amplitude ensures that the minigaps are big enough to be detected. To ensure
that disorder induced broadening does not smear out these minigaps, the total quantum
scattering timeτ0 should be large. First signs of the butterfly spectrum were seen in
samples with a mobility larger than 1.5 ·106cm2/Vs for typical modulation amplitudes
(V0 ≈ 4%EF ≈ 0.6meV) also used in this work.

Since the modulation is applied at the surface by a periodically displaced gate (see section
4.1.3), the final modulation amplitude felt by the electrons is sensitive to the depth of the
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4 Sample preparation and measurement procedures

two-dimensional electron gas. In order to get a large modulation, shallow heterostruc-
tures are thus needed. High mobility heterostructures typically have the donor layer as
far away from the two-dimensional electron gas as possible. This avoids scattering of
electrons in the two-dimensional electron gas by the random potential of the ionized
donor atoms. To optimize for both properties is difficult. In the heterostructure #5−741

mainly used here this is solved by growing several delta doped quantum wells above the
GaAs-AlGaAs interface as illustrated in Fig. 2.1. When illuminated, the persistent pho-
toconductivity effect not only increases the density of the two-dimensional electron gas,
but also produces some parallel conduction in these wells. It improves screening of the
random potential and the mobility is enhanced by as much as a factor of three: The mo-
bility rises from 1·106cm2/Vs to 3.4 ·106cm2/Vs. These samples also show excellent
Schottky barrier behavior at low temperatures, which is instrumental to tune the electron
density with an applied gate voltage. The samples do have one disadvantage though.
Their electron density and mobility reacts very sensitively and also non-monotonously to
the strength and duration of the illumination. A computerized control of the illumination
process was able to solve this problem as demonstrated in section 4.3.2.

Samples were fabricated from 5.9 mm times 6.1 mm big pieces of the shallow (100)-
GaAs/AlGaAs heterostructure. One each piece, 6×5 Hall bars are fabricated at the same
time. The Hall bars are oriented along the[011] direction of the heterostructure. Hall bars
along this direction have a slightly lower mobility [79], but exhibit the largest modulation
strength. This is further discussed in section 4.1.3.

The two cleavage directions can be distinguished using the big wafer flat. It is is parallel
to the[011] direction as depicted in Fig. 4.1. If the rest of the wafer is too small to see the
flat, the backside of the heterostructure still shows an etched pattern caused during wafer
lapping. It consists of ovals whose long axis is aligned along the[011] direction.

4.1.2 Hall bar fabrication

To measure the longitudinal and Hall resistances in a magneto-transport measurement,
Hall bar geometries are fabricated. The sample is spin coated with a thin layer of photo
resist and subsequently exposed with ultra violet light through an optical lithography
mask to define the mesa structure shown in blue in Fig. 4.1 The mask consists of a glass

1 The heterostructure is grown by Dr. V. Umansky, from the Braun Submicron Research Center at the
Weizmann Institute of Science in Rehovot, Israel
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4.1 Optimized fabrication of modulated samples

Figure 4.1:
The Hall bar mask and the crystal directions. Both the wafer flats and the ovals on the backside
of the wafer indicate the crystal direction. A not-to-scale microscopic image of the backside of
sample #5−74 and the Hall bar orientation used are shown. The different optical lithography
steps for Hall bar production are laid on top of each other using the colors blue (mesa), orange
(ohmic contacts), and yellow (bond pads).

plate coated with chrome in those areas where the resist should be left unexposed2. After
exposure, the resist is developed and only the mesa structure stays coated. A 70 nm deep
wet chemical etch removes the two-dimensional electron gas in the uncoated area (second
step of Fig. 4.2). After removing the remaining resist, a second lithography step defines
windows which will later form the ohmic contacts (orange in Fig. 4.1). Remaining photo
resist in these windows is removed by 30 seconds of O2 plasma. Any oxide layer on
the exposed heterostructure surface is then removed by dipping the sample for 2 minutes
in semicoclean, 5 seconds in water, 5 seconds in hydrochloric acid(30%) and 1 second
in water. Next 5 nm nickel, an eutectic mixture consisting of approximately 130 nm
germanium and 250 nm gold, and finally 40 nm of nickel are thermally evaporated on the
piece. Metal on top of the resist layer is lifted off by placing the sample in an acetone
bath. When heating the sample in forming gas mixture to 300◦C for 60 seconds and
subsequently to 440◦C for 30 seconds, these metals are annealed into the material and
provide ohmic contacts to the two-dimensional electron gas [80]. During a third optical
lithography step, approximately 20 nm chromium and 100 nm gold are deposited in the
yellow areas in Fig. 4.1 to complete the contact pads for easy wire bonding to a chip
carrier.
2 The masks necessary for all steps in the production of a Hall bar are typically combined side by side in

one CAD file and given to ”Masken Lithographie & Consulting GmbH, Jena” to produce one physical
glass mask. In the course of this work, several Hall bar masks were designed.
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4 Sample preparation and measurement procedures

Figure 4.2:
Fabrication steps to produce a Hall bar geometry with a two-dimensional lateral superlattice.
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4.1 Optimized fabrication of modulated samples

4.1.3 Gate fabrication

To achieve a sub-micrometer weak periodic electric potential modulation at the position
of the two-dimensional electron gas, different methods are available. To create a perma-
nent modulation, a resist layer on the sample surface is patterned in a periodic fashion.
The photo-resist is either exposed with two holographic illuminations using the interfer-
ence pattern produced with two coherent laser beams [11,81]. Periodicities on the order
of 200 nm are achieved with this procedure. Smaller periodicities of the order of 100 nm
can be obtained with electron beam lithography of a polymethyl methacrylate (PMMA)
resist. In both cases, the patterns are developed and must be etched or metalized to be
effective. Another possibility is to use in-situ holographic illumination and exploit the
persistent photoconductivity effect. When illuminated, deep traps in the doped AlGaAs
layers of the heterostructure, so called DX centers, are ionized and give up their electrons
to the two-dimensional electron system. These DX centers stay ionized at temperatures
below 100 K. They generate a local increase in electron density [82, 83]. This density
modulation is reversible and disappears when the sample is warmed up.

In this work a metallic gate patterned with e-beam lithography is used since it enables
electron density tuning and provides the necessary periodicities of 100 nm and smaller.
Etched samples were produced but not considered since the potential modulation strength
decreased considerably when illuminated. This is a crucial drawback. The heterostruc-
ture #5−74 exhibits a steep mobility increase with illumination. Only the gated samples
allow to exploit this property as illustrated in Fig. 4.3. They provide at the same time
sufficient modulation strength and high mobility, if all processing steps are carefully op-
timized as detailed below. Unrivaled mobilities above 3.4 ·106cm2/Vs are obtained for
processed samples after illumination.

Electron beam lithography

As a first step, the Hall bars are cleaned and spin coated with a layer of polymethyl
methacrylate (PMMA)3 resist. After baking, this resist is exposed in the active region of
the Hall bars with a 100 nm period square lattice of dots using an acceleration voltage of
50 kV for the samples used in chapters 5 and 6. The pattern is then developed4 into a
lattice of holes. A cartoon version of the patterned resist is depicted in the fourth panel of

3 Also sold under the trademark Plexiglas by the chemical company Rohm and Haas.
4 The developer is a mixture of methyl iso-butyl ketone (MIBK) and isopropylic alcohol. It solves the

exposed, shorter chains of PMMA.
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4 Sample preparation and measurement procedures

Figure 4.3:
The mobility versus electron density of samples produced from wafer #5−74. The ungated
sample is measured at 1.4 K and illuminated with a infrared LED from the backside while the
gated sample is measured in a dilution fridge at 50 mK and carefully illuminated with a red
light LED.
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4.1 Optimized fabrication of modulated samples

Fig. 4.2. The details of the electron beam lithography process, in particular the one used
for the samples of chapter 7, are listed in appendix B.

Essential for the optimization purposes is the availability of reproducible high quality
patterns across many different Hall bars and heterostructure pieces. Only when the pat-
terns are comparable in quality, the optimization of the subsequent evaporation steps can
be successful. The best samples came out of this optimization process and are used in
chapters 5 and 6.

Evaporation preparation

A piece with 6×5 Hall bars is cleaved into up to 16 smaller pieces for finding optimal
paramters. The electron beam pattern is treated with an O2 plasma and one of the smaller
pieces is glued with a tiny amount5 of S1805 photo resist onto a shadow mask holder. It
is baked for four minutes at 85◦C. A metal shadow mask with etched holes for the gate
is aligned with respect to the e-beam patterned Hall bars and fixed flush to the sample
surface.

Evaporation

The metal gate is evaporated through the holes of the shadow mask in an ultra high
vacuum chamber fitted with an electron beam evaporator. The sample and shadow mask
holder are mounted on a cold finger cooled by liquid nitrogen. First an adhesive layer,
here chromium, is evaporated. Then a first layer of gold is evaporated followed by two
more layers, while the sample is tilted at different angles with respect to the direction
of the evaporation source. This complex evaporation sequence appears to be essential to
obtain a large modulation strength while retaining the high mobility of the sample.

Modulation strength optimization

To optimize for a large modulation potential strength, the origin of the modulation has
to be known. Both anisotropic and isotropic modulation effects exist: The gate exerts a
periodical stress on the sample surface. The stress translates into an electrical modulation
potential via the piezoelectric effect. This effect is equal in magnitude but opposite in sign

5 Too much photoresist for gluing the sample can result in bad thermal conductivity of the holder to the
sample thereby impeding efficient cooling of the sample.
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4 Sample preparation and measurement procedures

Figure 4.4:
Magnetotransport data at 1.4 K of Hall bars oriented along the two different cleavage directions.
The Hall bars have a square modulation with 100 nm period. The observed commensurability
oscillations are similar in amplitude.

in the two cleavage directions{011}. On the other hand, isotropic effects may arise from
Fermi level pinning. Both type of effects play a role in the experiments of Ref. [84]: They
pattern a strained InGaAs layer on top of a heterostructure into pillars with 100 nm period.
These pillars try to expand the heterostructure, since the lattice constant of InGaAs is
7.2% larger than the one of GaAs [85]. They find larger commensurability oscillations
for Hall bars oriented along the[011] direction than for the perpendicular direction. In
these samples, the piezoelectric and anisotropic effects add along the[011] direction and
subtract in the other. This is different from the behavior we observe in a 100 nm period
2D modulated sample: We detect only a slight increase in commensurability oscillations
along the[011] direction (cf. Fig. 4.4). This small difference in the two longitudinal
resistances suggests that stress prevails over isotropic effects, like Fermi level pinning.
This observation is also supported by measurements on samples where the modulation
is aligned along the〈001〉 directions as discussed in chapter 7.4: No commensurability
oscillations are observable for these samples, as expected for a modulation of purely
piezoelectric origin, since the piezoelectric effect is absent along the〈001〉 directions of
the GaAs crystal.

Keeping this in mind, we optimized for a large periodical stress on the sample surface:
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4.1 Optimized fabrication of modulated samples

Care is taken to avoid residual water on the semiconductor surface, which may prevent
good adhesion of the gate metal during evaporation. The sample is inserted into a load
lock chamber which is pumped for one hour down to a pressure of 5·10−6 mbar. Then
the sample is inserted into the evaporation chamber. This chamber is pumped for 30
minutes and finally 5 nm of chromium are evaporated while the sample is rotated away
to clean the chromium surface of the source and to find suitable evaporation parameters.
This further improves the vacuum due to the getter pumping effect of chromium. Only
at a high vacuum below 5·10−9 mbar and an H2O partial pressure below 10−9 mbar the
sample is being cooled with the help of liquid nitrogen. Best results are achieved if the
H2O partial pressure does not rise above 5·10−9 mbar during the evaporation process.

The cooling with liquid nitrogen enhances the stress exerted by the gate and additionally
reduces the gate leakage.

The stress is also increased if the evaporation material has been used a few times already,
presumably because surface contamination is reduced.

Mobility optimization

The second important parameter for the experiments is mobility. Evaporating a thick
metal gate on the shallow high mobility sample decreases the mobility by as much as a
factor of 10.

In order to reduce the impact on the mobility, the appropriate combination of adhesive
layer and main gate material has to be selected. Among the material combinations tried
(nickel chromium and gold, chromium and gold, only chromium, only gold-palladium,
titanium and gold), chromium and gold were identified to be the best option. Moreover,
the evaporation angles and thicknesses were optimized to create a large stress on the
semiconductor surface (cf. table 4.1).

The electron beam evaporation process exposes the sample to fast secondary electrons
which may create defects in the heterostructure and degrade the mobility. Heating of the
sample may also occur. It may lead to a moderate flow of the structured PMMA resist
layer at temperatures as low as 110◦C. This affects holes of 100 nm diameter [86]. In
vacuum PMMA may get unstable at temperatures of 50◦C [87].

For these reasons, the electron beam emission current should be reduced to a minimum:

The emission rate controller “Inficon XTC Thin Film Thickness and Rate Monitor” was
bypassed and the hardware emission control of the Leybold high voltage supply was
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Evaporation Jeol (200 nm) Leica (90 nm)
Step Material thickness angle thickness angle

1 Chromium 20 nm 15 nm
2 Gold 40 nm 15 nm
3 Gold 40 nm 14◦ 40 nm 14◦

4 Gold 40 nm −10◦ 40 nm −12◦

Table 4.1:
The optimized evaporation thicknesses and angles for samples exposed in different lithography
systems. The PMMA resist thicknesses are shown in brackets. Angles are measured with
respect to the sample surface normal. The decrease in the evaporation angle for the fourth step
takes into account the material deposited during previous steps.

used instead. This way, a much finer control over the emission current becomes possible.
Very low stable evaporation rates (0.25Å/s for chromium and 0.7 Å/s for gold) can be
achieved.

The evaporation materials were put into crucibles instead of putting them directly into the
evaporation hearths. The crucibles prevent thermal contact between the materials and the
water-cooled evaporation hearths. The smaller diameter of the crucibles compared to the
bare hearth reduces the amount of material needed to get a sufficiently constant evapora-
tion rate. As a result, the electron beam power was dramatically reduced. For chromium,
an electrographite crucible6 is used. Gold is evaporated from a non-conducting boron
nitride silicon carbide (BNSC) crucible. It features a small hole in the base to allow for
electrical contact so that incident electrons can flow off. The boron nitrite is non-wettable
by the evaporation material.

The overall decrease in electron beam power is directly reflected in the increased mobility
of the finished gated samples.

4.1.4 Final steps

After evaporating the chromium and gold layers and slowly warming up the sample to
room temperature, individual Hall bars are cleaved and glued into chip carriers as de-
picted in Fig. 4.7. This is done to avoid a degradation of the modulation strength in
unbonded Hall bars on the same chip after multiple cooling cycles. To ensure a good
adhesion and to avoid bubbles between the sample and the chip carrier, only a small

6 Supplier of the crucibles is “Leybold Optics GmbH, Hanau”.
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Figure 4.5:
A microscopic image of sample #5-74/4-B1. During evaporation, the sample was tilted around
the horizontal axis. The writing field of the electron beam lithography is seen on the right hand
side as a dark square. The surface is still covered with PMMA.

amount of PMMA7 is used as glue and it is heated for 10 minutes to a temperature of
85◦C and 10 minutes to 160◦C. This procedure is necessary to make bonding through
the remaining PMMA layer on the sample surface onto the ohmic contacts possible. A
bonded sample is displayed in Fig. 4.5.

4.2 Measurement setup

To measure the Hall and longitudinal magnetoresistances, the chip carrier with the Hall
bar is put into a matching socket which is mounted at the end of a rod shaped sample
holder. This holder is inserted into the superconducting magnet of a cryostat. Preliminary
characterizations are performed in a4He bath cryostat. When pumping on the liquid
surface of the helium bath, its temperature is lowered from 4.2 K to 1.4 K. To measure
quantum effects as presented in chapters 5 and 6, lower temperatures are needed. There
the sample is cooled down to 50 mK using a3He/4He dilution refrigerator.

In both cases the longitudinalRxx and Hall resistancesRxy are measured using a four point
technique, as illustrated in Fig. 4.6: A 13.6 Hz alternating current is drawn between the
current contacts and the voltage dropsVxx andVxy across the respective potential probes
are measured using two “Princeton Applied Research EG&G 5210” lock-in amplifiers.

7 diluted to 7%
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xy

VVxxxx

VVxyxy
I

Figure 4.6:
A modulated Hall bar sample with applied currentI and perpendicular magnetic fieldB. Both
the longitudinal voltageVxx and the Hall voltageVxy can be measured.

Each lock-in amplifier is calibrated prior to the experiment by using a quantum Hall
plateau measurement as reference. The lock-ins are galvanically isolated from mains by
isolation transformers to avoid ground loops. To avoid unnecessary heating, the alternat-
ing current is lowered from 100 nA for measurements at 1.4 K to 20 nA for 50 mK. The
lock-in amplifiers output dVii/dI |I=0 as an analog signal to multimeters which digitize it
and send it to a computer. The bus connections to the computer are galvanically isolated.
To characterize samples, the magnetic field is swept from zero to 1.5 T at 0.1 T/min. For
measurements at lowest temperatures, slower sweep rates of 0.03 T/min are necessary to
catch all of the fine structure contained in the magnetoresistance.

4.3 Electron density variation

For the observation and identification of quantum interferences as described in chapter
6, a wide carrier density range is mandatory. Low densities can be achieved by tuning
the gate voltage. A negative voltage decreases the electron density, a positive one may
increase it. Large positive voltages can however not be applied because of gate leakage.
To access higher densities, we exploit the persistent photoconductivity effect introduced
in section 4.1.3. To achieve the highest densities possible, the sample illumination of
the sample is optimized by proper placement of the LED and by using a self-adapting
illumination sequence.
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4.3 Electron density variation

Figure 4.7:
Geometry used to illuminate the sample with a red LED. The LED is placed directly above the
active Hall bar.

4.3.1 LED type and placement

In early experiments the sample was glued onto a transparent glass plate mounted over a
hole in the chip carrier to enable illumination from the back side. An infrared LED with
a central wavelengthλLED = 1060 nm was used to ensure that the photon energy is below
the band gap of the GaAs substrate to prevent light absorption in the substrate.

Here, front illumination with a red LED is used instead. Both the electron density and the
sample mobility increase appreciably if the gated heterostructure is illuminated through
the 140 nm thick Cr/Au gate. This density tunability through a thick gate has also been
exploited by another group working on modulated two-dimensional electron gases [88].

For measurements in the dilution refrigerator one has to avoid excessive heating of the
mixing chamber due to the LED. Hence, it is vital to place the LED in the center of and at
a minimal distance from the measured Hall bar. An off-centered LED may also produce
an inhomogeneous density distribution.

4.3.2 Self-adapting illumination process

In contrast to earlier used heterostructures, the samples produced from wafer #5− 74
change their electron density highly nonlinear when illuminated. When a simple illu-
mination sequence is used to get a series of magnetotransport measurements at varying
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electron densities, wide ranges of densities are inevitably skipped. To cover a continuous
range of densities, which is necessary for the analysis in chapter 6, a self-adapting illumi-
nation process was devised. A computer program determines the actual electron density
and decides upon the illumination history and the next target electron density whether the
LED power has to be increased or decreased in the following illumination step or wether
magnetotransport data can be taken. As an additional benefit, much higher maximal den-
sities are reached than by manual illumination: Small LED currents are used repetitively
over a long period of time to reach the target density, so excessive heating is avoided. A
more detailed description of the illumination process is given in Appendix C.

4.4 Data analysis

While a single magnetoresistance trace is sufficient for the Hofstadter butterfly discussion
in chapter 5, further data analysis is needed for the study of quantum interference phe-
nomena in 2D superlattices: Initially, magnetotransport curves for roughly equidistant
steps in electron density are selected automatically from a measurement run. These are
splined using base points on a reciprocal magnetic field axis and subsequently Fourier
transformed to reveal 1/B-oscillations. Finally a 2D-colorplot is assembled from the
Fourier transforms obtained in this fashion. This colorplot reveals the density depen-
dence of the frequency of each of the 1/B-periodic oscillations. For this analysis it is
essential to avoid artifacts when applying the fast Fourier transformation. The prepara-
tion steps necessary to achieve this are outlined in appendix A.

The standard analysis procedure to determine the electron density and other parameters
goes as follows:

The longitudinal resistivityρxx = (Vxx/I)/(L/W) and Hall resistivityρxy = Vxy/I can
be calculated from the measured voltage drops, the applied alternating currentI and the
geometry factorL/W. A field offset due to trapped flux in the superconducting magnet
is corrected for by fitting a parabola to the longitudinal resistivity in the magnetic field
range[−0.01 T;0.01 T]. The apex value is the zero field longitudinal resistivityρxx|B=0

needed later on.

Next, the electron densityns can in principle be estimated from both the slope of the Hall
resistivityρxy (Eqn. 2.19) and the 1/B-periodicity of the Shubnikov-de Haas oscillations
in ρxx (Eqn. 2.14). The electron density estimates in this work are not obtained from the
Hall conductivity, since it might be suppressed at lowB [89, 90]. This effect was seen
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4.4 Data analysis

in recent experiments on weakly modulated samples [22] and is similar to what occurs
in antidot experiments [91–93]. Moreover, in our experiments oscillations appear inρxy

at fields as low asB≈ 0.1T for low temperatures due to the 2D modulation. Instead,
the electron densities are taken from the Shubnikov-de Haas analysis. Since additional
1/B-oscillations arise due to the 2D modulation (commensurability oscillations and mini-
band effects), a careful Fourier transformation as presented in appendix A is required to
determine the Shubnikov-de Haas 1/B-period.

Using the estimated electron density, the mobility can be calculated with the help of
equation 2.18:

µ =
1

ensρxx|B=0
. (4.1)

As a consistency check, the lattice period

a =
2h̄
√

2πns

e
∆
(

1
BCO

)
(4.2)

is determined from the observed commensurability oscillation 1/B-periodicity∆(1/BCO)
using equation 3.3.

As discussed in section 3.2.5, the modulation amplitudeV0 can be estimated for 1D mod-
ulated systems from the saturation fieldB0 of the positive magnetoresistance. Using
Eqns. 3.20 and 3.19, these estimates are

Vcl
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2πm∗ ·aB0

√
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]1/2

. (4.4)

In appendix E, the suitability of Eqn. 3.20 for the 2D modulated case is motivated by
results from the rectangular modulated samples in chapter 7.3. The saturation field of
the positive magnetoresistance,B0, is obtained by fitting a cubic polynomial in the range
[0 T;0.14 T] to the longitudinal resistivityρxx.
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5 The Hofstadter Butterfly unveiled

In this chapter clear signatures of the fractal Hofstadter butterfly energy spectrum are pre-
sented. Additionally, the rearrangement and deformation of this spectrum due to Landau
band coupling is shown for the first time.

5.1 Introduction

Gathering convincing experimental evidence for the Hofstadter butterfly spectrum has
turned out to be challenging. A first glimpse of the spectrum was announced in Ref. [21]
based on a study of the longitudinal resistivityρxx only. Using also the Hall conductivity,
precursors for the most prominent of all minigaps in the left and right wing of the but-
terfly were then reported for the regime where coupling between Landau bands can be
ignored [22].

In the present work, the Hall conductance reaches its quantized value for the largest
minigaps and many additional smaller minigaps are resolved. These improvements allow
to investigate the so far inaccessible intermediate regime where neither the modulation
nor the magnetic field can be viewed as a small perturbation and Landau band coupling
becomes important.

These main findings will be presented using the single magnetic field sweep trace ofρxx

andρxy at the fixed electron density ofns = 4.32· 1011cm−2 shown in Fig. 5.1. This
measurement was carried out as described in section 4.2. For magnetic fieldsB/ 0.03T,
a positive magnetoresistance appears in the longitudinal resistivityρxx. From this, the
potential modulation strength can be roughly estimated using Eqn. 3.20. We findV0 ≈
0.6meV≈ 4%EF.
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5 The Hofstadter Butterfly unveiled

To quantitatively understand the measurement, a comparison with the Hofstadter spec-
trum is mandatory. TheΦ0/Φ-axis on the top of Fig. 5.1 denotes the scope of the relevant
Hofstadter butterflies. These butterflies are plotted in Fig. 5.2.

5.2 The major gaps in the butterfly

In this section we will focus on the strong magnetic field regime, where Landau bands
are well separated.

Each butterfly has two major minigaps in each wing. They are expected to be observed the
easiest. Each Landau band splits exactly into three subbands for the flux ratiosΦ0/Φ =
1/3 and 2/3. Due to clustering of subbands, even at neighboring flux ratios subbands are
arranged into three groups. The contribution to the Hall conductance of each Landau band
goes either through the sequenceσ = {0,0,1,1} or σ = {0,1,0,1} as the Fermi energy
enters the various minigaps forB-fields near these flux ratios, depending on whether the
flux ratio Φ0/Φ is smaller or larger than 0.5. These Hall conductance sequences can
easily be calculated using Eqn. 3.13 for the flux ratiosΦ0/Φ = 1/3 and 2/3 respectively
as demonstrated in section 3.1.2. They are also indicated in Fig. 3.6 and Fig. 5.2.

We will first discuss the more exotic non-monotonic Hall conductance sequenceσ =
{0,1,0,1} for the right wing of the first butterfly (0.5 < Φ0/Φ < 1 in Fig. 5.2). In the
highlighted region between 0.6 and 0.7T in Fig. 5.1, Landau bandn = 13 and 14 are
gradually populated as the magnetic field is lowered and the Fermi energy crosses the
minigaps from the bottom to the top in the butterfly nearΦ0/Φ = 0.6. The Fermi energy
does not trace a vertical line asΦ0/Φ changes slightly upon lowering the field (for in-
stance for bandn = 13Φ0/Φ varies from 0.56 to 0.6). The Fermi energy jumps abruptly
in gapped regions, but otherwise moves towards largerΦ0/Φ with a slope determined by
the number of available states as seen schematically for Landau bandn = 13 in Fig. 5.2
(green line). This line can be calculated by determining for all flux ratiosΦ0/Φ up to
which subbandj ∈ 1. . . p the Landau band is filled using Eqn. 5.3 (the electron density
ns is fixed). Since the Landau bandsn = 13 and 14 are located far away from the flat
band conditions marked by the dashed lines in Fig. 5.1, their internal gaps have non-zero
width. The primary gaps that cause a three-fold splitting of the bands should be well re-
solved and we anticipate a clear Hall conductance sequenceσ = {0,1,0,1}. To compare
with experiment, the expectedσ -sequence is plotted on an energy axis while taking the
size of gaps in Fig. 5.2 as plateau widths (red trace in Fig. 5.3(b) ). Subsequently, this
curve is convoluted with a Gaussian of variance(2.1%h̄ωc)2 to simulate disorder and
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5.2 The major gaps in the butterfly

Figure 5.1:
The longitudinal and Hall resistivities for a modulated sample with period 102.7±0.5 nm. The
electron density isns = 4.32·1011cm−2. Dotted lines mark flat band positions. The inset shows
the sample geometry. Spin splitting is not resolved. Discussed Landau bands are denoted by
their orbital index. The additional features within a Shubnikov-de Haas peak are evidence for
a resolved Hofstadter butterfly spectrum. Violet color marks the field regions magnified in
Fig. 5.3d), g) and Fig. 5.6. The complex oscillatory behavior at low field will be discussed in
chapter 6.
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5 The Hofstadter Butterfly unveiled

Figure 5.2:
The repeated Hofstadter butterfly as the internal energy spectrum common to all Landau bands.
Hall conductance contributions of the partially filled Landau band when the Fermi energy is
located in a minigap are indicated for the dominant gaps in units of 2e2/h. The green line traces
the Fermi energy as Landau Bandn = 13 is filled with decreasing flux. The Hall conductance
contribution goes through the sequenceσ = {0,1,0,1}. For other bands theΦ0/Φ range across
which the Fermi energy moves as the band is filled is shown at the top.Φ is the magnetic flux
through a superlattice unit cell,Φ0 = h/e is the flux quantum.
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Figure 5.3:
The Hall conductance measurement and corresponding gaps in the butterfly: (a) Fermi en-
ergy traces for Landau bandsn = 14 and 13, showing jumps across gaps and their respective
Hall conductance values. (b) Hall conductance contributionσ for the same Landau bands in
red, constructed from the biggest gap sizes as plateau widths and their respective Hall conduc-
tance values. The black lines are obtained after convolution with a fitted Gaussian of variance
(2.1%h̄ωc)2. (b) Schematic representation of the density of states. (c) The measured Hall con-
ductance (black) and longitudinal resistivity (blue) for bandsn = 13 and 14. (d) Fermi energy
traces for Landau bandsn = 17 and 18. (e) Same as in (a) but for bandsn = 17 and 18 and a
Gaussian of(1.8%h̄ωc)2. (f) The experimentalρxx andσxy traces for bandsn = 17 and 18.
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temperature broadening (black trace in Fig. 5.3(b) ). The variance serves here as a fitting
parameter. This at first sight arbitrary procedure was chosen since a calculation of the
Hall conductances for the dirty Hofstadter system is currently not available. It only exists
for the here not applicable tight binding limit [94]. Motivated by the present work, a
publication dealing with our case is however published recently by M. Koshino [95]. The
non-monotonic behavior of Fig. 5.3(b) is already apparent in the Hall resistance measure-
ment in Fig. 5.1. Fig. 5.3(d) displays a blown up version of the longitudinal resistivityρxx

in blue and the Hall conductanceσxy in black. The latter is as usually obtained from the
inversion of the resistivity tensor using Eqn. 2.17. This Hall conductance nearly reaches
the quantized values in accordance with the curve predicted from the heuristic procedure
described above. The quantization is accompanied by deep dips inρxx which are due to
the two main gaps in the butterfly according to Eqn. 2.21. Both observations are only
possible because of the high quality of the device at hand.

In order to observe the Hall conductance contributionsσ = {0,0,1,1} typical for the
other,“left” wing of the first butterfly (Φ0/Φ < 0.5), magnetic fields higher thanB= 0.8 T
in Fig. 5.1 are needed. However at higher fields complications arise due to spin splitting.
Hence, we show a measurement at smaller densityns in Fig. 5.4 to avoid the issue. The
already discussed three-fold splitting and the non-monotonic Hall conductance sequence
typical for the “right” wing of the butterfly is observed again in the light blue area. For
the other wing we will concentrate on Landau bandn = 8, marked in pink. The shoulder
close toB = 1T together with the two peaks at lowerB corresponds to the expected
three-fold splitting. The measured Hall conductance is indeed monotonic and stays at the
same quantized value during the field range for which the first subband is filled around
1T. Then the Hall conductance increases abruptly by 2e2/h when the Fermi energy is
swept through the second subband. It keeps this quantized value while the third subband
is filled. This is in accordance with the predictedσ = {0,0,1,1}-sequence. Note that for
an unmodulated two-dimensional electron gas the Hall conductance is quantized only for
the magnetic field range of the Shubnikov-de Haas minima inρxx and varies continously
in between them.

After successfully observing the major gaps in the butterfly using bothρxx andσxy, we
will follow the same steps for higher order minigaps in order to verify the fractal charac-
teristics of the spectrum.
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5.2 The major gaps in the butterfly

Figure 5.4:
Top: Expected Hall conductance contributionσ and the splitting in the density of states due
to the major gaps in the first butterfly. Bottom: Transport data for the same samples as in
Fig. 5.1, but at lower densityns = 3.95·1011cm−2 and mobility. Dashed lines mark flat band
positions. The Hall conductance behavior is clearly different forΦ0/Φ ≈ 1/3 (left wing) and
Φ0/Φ≈ 2/3 (right wing).
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5.3 Higher order gaps

Inspection of the fractal energy spectrum in Fig. 5.2 reveals that higher order minigaps
of still sizeable but substantially reduced width open up at smaller fields to both sides
of Φ0/Φ = 0.8 = q/p = 4/5. Exactly at this flux ratio a Landau band splits intop = 5
subbands with a Hall conductance contribution sequenceσ = {0,1,2,−1,0,1} as seen in
Fig. 5.2. To both sides ofΦ0/Φ = 0.8 additional much smaller minigaps come into play
with contributionsσ = −2 and 3. These contributions however occur at different posi-
tions in the main sequenceσ = {0,1,2,−1,0,1} depending on whether the Fermi energy
passes on the right (σ = {0,1,2,−2,3,−1,0,1}) or left (σ = {0,1,−2,2,−1,3,0,1})
side ofΦ0/Φ = 0.8 through the spectrum. So analogous to the previous section, we can
again look for changes in the Hall conductance when comparing the filling of the Landau
band on the left or right side ofΦ0/Φ = 0.8. Landau bandsn = 17 and 18 are the most
suitable candidates as they are also centered between the next pair of flat band conditions
(cf. Fig. 5.1). Fig. 5.3(e) shows traces of the Fermi energy in red as the Landau bands
n = 17 and 18 are filled with decreasing magnetic field. The more complex and dis-
tinct series of consecutive Hall conductance values when filling the bands are plotted in
red in Fig. 5.3(f). After applying the heuristic procedure mentioned above with a Gaus-
sian of(1.8%h̄ωc)2 variance, all features including the weak shoulders and dents seen
in the black Hall conductance trace of Fig. 5.3(g) are reproduced. These fine features
can not be explained without invoking the much smaller minigaps, which contribute a
Hall conductance ofσ = 3 and−2. Hence we have delved experimentally deeper into
the self-replicating structure of the Hofstadter butterfly spectrum than ever before. The
ability to resolve such tiny minigaps in the Hofstadter spectrum is also the crucial pre-
requisite, which was previously not satisfied, to investigate the intermediate field regime
where Landau band coupling can no longer be ignored.

5.4 Landau band coupling effects

The Hofstadter butterfly spectrum appearing in Fig. 5.2 is valid only if Landau band cou-
pling can be neglected. This is the case for large magnetic fields(h̄ωc � V0). As we
decrease the magnetic field for a fixed potential modulationV0, we enter the intermediate
regime where neither the modulation nor the magnetic field can be viewed as a small
perturbation. Obermayr and Schellnhuberet al. [96–98] were first to calculate the spec-
trum for this regime and even larger values ofV0, but only for a few selected values of
Φ0/Φ. Spectra for full ranges ofΦ0/Φ were calculated later by Springsguth and Ket-
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5.4 Landau band coupling effects

Figure 5.5:
Top: Calculation of the internal spectrum of Landau bandn = 37 for K = 2πm?a2V0/h2 = 2
ignoring coupling with other bands for theΦ0/Φ range covered by the second Hofstadter but-
terfly. The energy is divided by the cyclotron energy for clarity. Hall conductance contributions
for major gaps are indicated. Bottom: Same as the top spectrum, but with coupling between
the six nearest neighboring bands taken into account. The symmetry is broken and deforma-
tions are visible. The red boxes mark the zoomed region used in Fig. 5.6. The white regions
surroundingΦ0/Φ = 1.5 are an artefact. For these values ofΦ0/Φ calculations become pro-
hibitively time consuming.
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zmericket al. [23]1. They characterized the Landau band coupling strength by a single
dimensionless parameter

K =
2π

h2 m?a2V0 (5.1)

independent of the magnetic field. ForK > 0, coupling is predicted to lift the flat band
condition, distort the butterfly and eventually rearrange subbands. Due to these changes,
the spectrum is no longer universal to all Landau bands but now depends on the orbital
indexn.

5.4.1 Anomalous Hall conductance contributions

For a rearrangement of subbands some minigaps in the spectrum have to close and new
ones open up. If the Fermi energy is in such a new minigap, the Hall conductance contri-
bution is changed compared to the same gapg in the uncoupled spectrum. The Diophantic
equation 3.13 is no longer valid. Only if the constraint|w| ≤ p/2 is dropped, Eqn. 3.13
remains valid, but is no longer unambiguous for a given set ofp, q andg [99, 100]. So
one has to resort to a different formula due to Středa [62]: The change in the number
of filled states per unit areaN(E) below the minigap at energyE with varying magnetic
field has to be calculated to get the Hall conductivity contribution

σ =
∂N(E)

∂B
h
e

. (5.2)

Since σ is quantized within the minigap, it is possible to replace∂N(E)/∂B by
∆N(E)/∆B for all flux ratios pi/qi = Bi · ea2/h (i = 1,2), which share the same mini-
gap [23]. With the number of states per unit area in one of thepi subbands,

Nsubband= eBi/hpi , (5.3)

and the number of subbands below the gapni Eqn. 5.2 becomes

σ =
n1q2−n2q1

p1q2− p2q1
. (5.4)

This equation is necessary to calculate theσ -values for Figs. 5.5 and 5.6.

Summing up, the change in number of states below a certain minigap due to rearrange-
ment of the spectrum will lead to a change inσ . Minigaps with unexpected Hall conduc-
tance contributions emerge.

1 In the nomenclature of Ref. [23], variablesp andq are interchanged.
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5.4 Landau band coupling effects

5.4.2 Experimental evidence

Coupling between Landau bands has been extensively investigated in theory in Ref. [23],
but experimental evidence remained elusive. These calculations were for the first butter-
fly and Landau band indicesn 6 14. For the device used in the present work, a rough
estimate forV0 from the positive magnetoresistance near zero field suggests a coupling
parameterK of order 1. Hence coupling is important only at low magnetic fields which
correspond to flux ratiosΦ0/Φ ' 1 and Landau bandsn ' 30. In collaboration with
R. Ketzmerick and B. Naundorf, the calculations of Ref. [23] were extended to handle
Landau levels with higher orbital indices andΦ0/Φ values in the range for the second
butterfly. The lower panel of Fig. 5.5 depicts such a calculation for bandn = 37, the
second butterfly and a coupling parameterK = 2. The contributionσ to the Hall conduc-
tance of bandn = 37 when the Fermi energy is located in selected minigaps is calculated
using Eqn. 5.4. Contrary to Eqn. 3.13, this formula holds also for the coupled Landau
band case. A comparison with the upper panel, where coupling effects are neglected,
helps to identify the influence of band coupling: For the in Fig. 5.5 depicted second but-
terfly, small coupling valuesK already produce significant effects. The first butterfly on
the other hand is not significantly affected at these smallK-values, as seen in Fig. 5.3(a)
and (e), where coupling is taken into account. This can be understood since in Fig. 3.2(b)
Landau bands get close for highΦ0/Φ values and to avoid band crossings the spectrum
will rearrange. The strongest impact of coupling appears near the flat band locations
Φ0/Φ ≈ 1.25 and 1.65 of the uncoupled case. The macroscopic degeneracy is lifted
and, in comparison with the uncoupled case, subbands rearrange and minigaps with un-
expected Hall conductance values appear. Away from the zero band width region the
spectrum is still distorted and the vertical symmetry is broken. No rearrangements occur.
Nevertheless, minigaps open up between so-called kissing bands. An example occurs ex-
actly atΦ0/Φ = 1.5. Such additional minigaps are however hard to verify experimentally
since no new Hall conductance sequences arise due to these minigaps. Furthermore the
energy spectrum in these regions changes rapidly, so these minigaps are very sensitive to
disorder broadening and small changes inΦ0/Φ.

Hence, the best place to look for coupling effects is at highΦ0/Φ values and near the
’flat’ band position of the uncoupled case. Signatures of band coupling are additional
shoulder structures inρxx as well as a non-monotonic behavior in the Hall conductance
σxy. This motivates and justifies our choice of the 37th Landau band situated right at a
flat band condition in the 2nd butterfly to look for Landau band coupling signatures (see
Fig. 5.1).

The bottom panel of Fig. 5.6 displays the Hall conductance for six carrier densities rang-
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5 The Hofstadter Butterfly unveiled

Figure 5.6:
Consequences of Landau band coupling: Top: Calculation of the internal spectrum of Landau
bandn = 37 ignoring coupling with other bands. Hall conductances for major gaps are indi-
cated. Middle: Deformations due to coupling. As in the top panel, traces of the Fermi energy
are plotted for three electron densities. Two Hall conductance traces are shown in blue and
red as insets. Bottom: the measured Hall conductance forns from 4.32· 1011cm−2 for a to
4.17·1011cm−2 for c. The longitudinal resistivity is plotted for each Hall conductance trace to
mark theB-field region where the Landau bandn = 37 is filled.76



5.4 Landau band coupling effects

ing from ns = 4.32·1011cm−2 for a to 4.17·1011cm−2 for c. Tracea is identical with
the Hall conductance trace of Fig. 5.1. For the sake of clarity, the Shubnikov-de Haas
peaks have been added. They demarcate the field interval across which the 37th level
is filled. The Hall conductance tracesa to c are plotted as thick lines. To compare the
experimental data with theory, the appropriate field range of the calculated Landau bands
in Fig. 5.5 is repeated in the top two panels of Fig. 5.6. They are of course only valid for
bandn = 37. For the densitiesa,b andc, the calculated behavior of the Fermi energy has
been included in the top two panels.

First focus on the red curve for the highest carrier density as the magnetic field is lowered.
In the single band approximation shown at the top the Fermi energy crosses a gap with
σ = 2 during theinitial stage of filling this band. The only sizeable gaps available after
this jump have a negativeσ = −1. This contradicts the experimental data, where an
overshoot appears during the second half of populating the band. Instead, the behavior
fits the numerical data with Landau band coupling, where the Fermi energy passes a
σ = 4-gap when the band has been filled more than half. The small size of the gap
unfortunately prevents the Hall conductance from reaching its quantized value. Note that
the corresponding Shubnikov-de Haas peak is featureless. It emphasizes once more the
importance of the Hall conductance to gain detailed information about the Hofstadter
spectrum.

The data at lower carrier densities again confirms that Landau band coupling plays a
dominant role. Due to band coupling, the large gap withσ = 2 has closed and a gap
with σ = −3 has taken its place. The consequences of this rearrangement for the Hall
conductivity are depicted schematically in the blue insets of Fig. 5.6. For the uncoupled
case, a positive Hall conductance contributionσ = 2 is followed by a negativeσ = −1.
This switching behavior is recognizable in the Hall conductance for other bands at higher
and lower flux ratios, but the traces forn = 37 differ: For both curvesb andc, the Hall
conductance drops ’negative’ instantly as the band is being filled. Curveb even develops
its absolute minimum as the Fermi energy reaches the first significant gap (withσ =−3)
in the spectrum. Both of these observations disagree with the positive contribution to
the Hall conductance ofσ = 2 predicted by the single band approximation. The blue
calculated Hall conductance trace for the coupled case nicely explains the behavior in
experiment.

In conclusion, owing to significant advances in sample quality and fabrication, it is now
possible to resolve higher order minigaps in Hofstadter’s energy spectrum with recourse
to the quantum Hall effect as a diagnostic tool. This progress has offered experimental
access to the hitherto-unexplored regime where Landau band coupling further enriches
the physics of this model problem with fractal nature, which arises in many different
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physical contexts.
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6 Quantum interference in square
lattices

In this chapter we demonstrate and discuss quantum interferences unique to a 2D arti-
ficial crystal. The 2D artificial crystal is realized by modulating a 2D electron system
in two directions. In such a system, electrons are Bragg reflected at the Brillouin zone
boundaries (BZB) of the artificial lattice, where energy gaps appear. In a B-field, elec-
trons move on constant energy contours in k-space, which deviate from the free electron
contours due to the gaps at the BZB. Both closed and open electron trajectories emerge.
At sufficiently large B-field, magnetic breakdown allows tunneling across the gaps at the
BZB, and enables an entirely new network of closed electron paths. These paths enclos-
ing different areas in k-space produce additional 1/B-periodic oscillatory features in the
transport quantities. In addition, quantum interferences of certain pairs of electron paths,
which share the same starting and ending point, give rise to a novel type of 1/B oscil-
lations for 2D artificial crystals. Their periodicity is also proportional to the enclosed
area in k-space. An electron density dependent study is instrumental to identify the rel-
evant orbits and groups of interfering paths. We present a Monte Carlo approach which
finds the plethora of new orbits and quantum interferences responsible for the oscillations
observed in our experiment.

6.1 Oscillations in the magnetotransport
measurement

We know from section 3.2 that miniband effects should be observable in a magnetotrans-
port measurement as 1/B-oscillations. So we replot the longitudinal transport data of
Fig. 3.1 as a function of 1/B.
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6 Quantum interference in square lattices

Figure 6.1:
The longitudinal resistivityρxx shown in Fig. 3.1 of the modulated sample plotted versus 1/B.
Two oscillation patterns with different 1/B-periodicitiesπ1 andπ2 are marked. The oscillations
with periodπ2 correspond to the Shubnikov-de Haas oscillations of the unmodulated system.
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6.2 The miniband structure

Several oscillation patterns with a different periodicity are already visible in the raw
data of Fig. 6.1. Using Eqn. 2.22, we know that the oscillation periodπ1 ≈ 0.61/T
corresponds to an electron trajectory which encloses an areaA1 = 1.5 · 1016/m2 in k-
space. This is four times larger than the area of the first Brillouin zone,ABZ = K2

a =
0.4 ·1016/m2. The second periodπ2 ≈ 0.11/T is just the Shubnikov-de Haas oscillation
period expected for an unmodulated sample with the same electron densityns = 4.3 ·
1011cm−2. It corresponds to the Fermi circle in the left panel of Fig. 3.7a, with an area
A2 = ASdH = πk2

F = 8.7·1016/m2, six times larger thanA1.

To find all the different 1/B-periodicities, the data of Fig. 6.1 is Fourier transformed. The
magnetic field range used is 0.04 T to 1.1 T, so that neither the positive magnetoresistance
at low B nor the spin splitting at highB is picked up. The details of how the Fourier
transform is carried out to ensure that low frequencies are properly resolved can be found
in appendix A.

In Fig. 6.2 more oscillations are visible than expected from the three types of closed
trajectories found in the right panel of Fig. 3.7c. This is not surprising, since this panel
corresponds to a density ofns= 0.4·1011cm−2 for a perioda= 100nm. The experimental
data, however, is taken at an electron densityns = 4.3 ·1011cm−2, at which many more
minibands are filled.

6.2 The miniband structure

In the samples at hand we can vary the electron density from 2.9 · 1011cm−2 to 4.3 ·
1011cm−2. To compare with the experiment, the band structure in the right panel of
Fig. 3.7b is extended to higher energies. The result can be seen in Fig. 6.3a. There,
the Fermi energy for a representative density ofns = 3.4 · 1011 cm−2 is marked with a
dotted line. Red circles along this line highlight energy gaps. Some of them are not
clearly resolved in spite of the in comparison with experiment exaggerated modulation
amplitude ofV0 = 2 meV. Gaps open up along the line M−Γ, since the modulation
potential used in the band structure calculation has the form

V(x,y) = V0

(
cos

πx
a
·cos

πy
a

)2
(6.1)

=
V0

4

(
1+cos

2πx
a

+cos
2πy
a

+
1
2

cos
2π(x+y)

a
+

1
2

cos
2π(x−y)

a

)
.
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6 Quantum interference in square lattices

Figure 6.2:
The Fourier transformation of the longitudinal resistivityρxx shown in Fig. 5.1. The oscillations
with periodsπ1 andπ2 of Fig. 6.1 are clearly visible. Each 1/B-oscillation corresponds to an
electron trajectory which encloses an areaAF in k-space. The top axis showsAF in units of the
first Brillouin zone areaK2

a .
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6.2 The miniband structure

Figure 6.3:
(a) The band structure for the two-dimensional modulation in Eqn. 6.1, with perioda= 100 nm
and amplitudeV0 = 2 meV. This graph is taken from [64]. For a sample with electron density
ns = 3.4 ·1011 cm−2, the Fermi energy lies atEF = 13.2 meV (dotted line). (b) The repeated
zone scheme for this Fermi energy. The main and diagonal Fourier components in Eqn. 6.1
are responsible for the gaps at the first and second Brillouin zone boundaries. The resulting
open and closed Fermi contours have different colors. The first Brillouin zone is demarcated in
yellow. (Based on [101]). (c) The closed trajectory types requiring no tunneling found in (b).

We can rewrite this potential as a Fourier expansion (3.14) with the four main coeffi-
cientsVKa·(±1,0) = VKa·(0,±1) = V0/8 and four diagonal coefficientsVKa·(±1,±1) = V0/16.
We use this type of modulation potential to illustrate the influence of diagonal Fourier
coefficients, since they play a role in the experiments presented here, as discussed later
in section 6.4.3. The diagonal components bring about gaps along higher order Brillouin
zone boundaries. The line M−Γ is part of the boundary of the second Brillouin zone.

The k-space periodic zone scheme in Fig. 6.3b corresponds to the chosen value of the
Fermi energy. In this figure, the Fermi circle for an unperturbed system is filled with
purple color. As a result of the high electron density, its radiuskF is more than twice
the widthKa = 2π/a of the Brillouin zone. Due to the two-dimensional character of
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6 Quantum interference in square lattices

the modulation, the large Fermi circle folds back into the first Brillouin zone, which is
highlighted in yellow. Depending on the particular Fourier components present in the
modulation potential, complicated electron trajectories are created, including runaway
trajectories that do not close.

In Fig. 6.3b and c five closed trajectories are found which would correspond to only five
oscillations inρxx. These are not sufficient to explain the large number of oscillations
found in Fig. 6.2. Furthermore, the five closed trajectories seen in Fig. 6.3c enclose areas
smallerthan the first Brillouin zone. Most of the peaks in the Fourier transform in Fig. 6.2
however correspond to enclosed areaslarger than the first Brillouin zone.

6.3 Magnetic breakthrough

Both aforementioned issues are resolved by the well known phenomena ofmagnetic
breakthrough, which was discussed in subsection 3.2.3. It allows for tunneling across
energy gaps at the Brillouin zone boundary with aB-field dependent probabilityPq, so
that additional closed trajectories may be traced by the electrons at the Fermi energy.

It turns out to be quite a challenge for a two-dimensionally modulated system to find the
most probable of these orbits in view of their large number: At high magnetic fields the
tunneling probability approaches 1 and electrons tunnel across all the gaps. Hence, the
electrons encircle the Shubnikov-de Haas orbit. At lower fields, magnetic breakthrough
occurs with high probability only for certain gaps and other closed trajectories than the
high field Shubnikov-de Haas orbit dominate. Many such closed trajectories are possible:
The first Brillouin zone shown in yellow in Fig. 6.3b is subdivided into 56 different
small basic shapes by the intersecting electron trajectories. The number and form of
these basic shapes changes drastically withkF and thus with the electron density. A
possible electron trajectory is the circumference of any area pieced together from these
basic shapes, provided the circumference is convex. A few trajectories which are possible
when magnetic breakthrough is taken into account for the case in Fig. 6.3 are presented
in Fig. 6.4. In this Figure, tunneling events are not marked, since they are too frequent
and would clutter the entire periphery. Instead, green dots mark gaps where an electron
stays on its track and does not tunnel. Each of these areas consists however of 700 and
more basic shapes. One can already obtain the idea that combinatorially many such
trajectories must be possible, much more than oscillations observed in experiment. In
order to compare with experiment, we therefore need to determine the probability of all
of these trajectories and select the most probable ones.

84



6.3 Magnetic breakthrough

Figure 6.4:
A few closed electron trajectories which are possible due to magnetic breakthrough. Green dots
mark gaps where electrons do not tunnel. Gaps where the electron does tunnel are not marked,
since they are too frequent and would clutter the entire picture. Inset (a) shows pictorially a
gap where the electron tunnels. Inset (b) illustrates one where it does not tunnel.
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6.3.1 Tunneling probability

We already introduced the tunnel probability

Pq(kF,Ka,V
2
0 /B) = exp

(
−

π∆E2
q

4h̄ωcEFsin(2θq)

)
(6.2)

in Eqn. 3.18. At each gap corresponding to an intersection of two Shubnikov-de Haas
circles with distanceq the electron can either tunnel with probabilityPq(kF,Ka,V2

0 /B) or
stay on its track with probabilityQq(kF,Ka,V2

0 /B) = 1−Pq(kF,Ka,V2
0 /B).

When calculating the round-trip probabilityPtotal(kF,Ka,V2
0 /B) of a trajectory, we count

how often an electron on the trajectory has to tunnel over a gap with probability
Pq(kF,Ka,V2

0 /B). This number isntunnel
q . We repeat the same count for non-tunnel events

and getnnon−tunnel
q . The round-trip probability of a closed trajectory is then

Ptotal(kF,Ka,V
2
0 /B) = ∏

q
P

ntunnel
q

q Q
nnon−tunnel

q
q . (6.3)

Since the computation cost to calculate the probabilityPtotal(kF,Ka,V2
0 /B) of all trajec-

tories would be prohibitive, we devised a Monte Carlo method which finds the most
probable orbits first. Note that this problem is unique to two-dimensional modulation.
For a one-dimensional modulation, the most probable orbits can be guessed easily [14].

6.3.2 The Monte Carlo simulation

One possibility to find the most probable closed trajectories is to walk along the segments
of the Fermi circles just like an electron does. At each intersection of two circles with
distanceq, the probability for tunneling,Pq(kF,Ka,V2

0 /B), is determined.

The necessary parameters are chosen in the following way: The Fourier component re-
sponsible for the energy gap∆Eq at the intersection and the Bragg scattering angleθq
are determined from the exact geometry of the intersection. This geometry is governed
by kF andKa = 2π/a. These two parameters are fixed for a simulation run, since the
perioda and electron density are known from experiment. The choice forB, V0 and for
the Fourier components of the modulation potential,Vq = V0 ·αq, will be motivated after
the discussion of the experimental results in the next section.
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6.3 Magnetic breakthrough

Figure 6.5:
Possible outcomes of a simulated electron walk through the reciprocal lattice. Start points are
red. Small blue dots mark tunnel events, big green dots mark intersections where the electron
stays on its track and changes from one Fermi circle to another. a) An example of a trajectory,
which does not close properly (arrow). b-d) Examples of closed electron trajectories, including
the starting trail from the simulation. A Brillouin zone is drawn as yellow square for reference.
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According to the calculated probabilityPq, the electron either tunnels or stays on its
Fermi surface until it reaches the next intersection. The whole process is repeated until a
closed trajectory is formed.

Typical results of such a simulated electron walk through the extended zone scheme are
illustrated in Fig. 6.5. The green repeated zone scheme is constructed in the limit of a
vanishing modulation potentialV0 → 0. All gaps are infinitesimally small but the mod-
ulation potential still defines the Brillouin zones and leads to a repetition of the Fermi
circle at reciprocal vectorsq. The red dots are the starting points for the simulation. Dur-
ing one iteration, each intersection of two Fermi circles in a half open quarter Brillouin
zone(0;π/a]× (0;π/a] is taken as starting point. Thus intersections lying on the border
of the quarter Brillouin zone are taken into account only once. From each starting point,
the simulation will start a random walk four times, one for each possible direction. This
random walk will continue until it hits its own track or at most for 10.1 times the total
number of possible tunnel events on a Fermi circle circumference. If the random walk
does not cross its own track until this cutoff count, it is discarded. This cutoff speeds up
the simulation and is justified for small[∆(1/B)]−1 ≤ 10 as in Fig. 6.6. If the trajectory
closes, the electron is followed one more step to determine whether this step is in the
same direction as the old track and thus the trajectory really closes. If this is not the case,
like for trajectory (a) in Fig. 6.5, again the trajectory is discarded. If on the other hand
a trajectory closes properly, its starting trail, which is not part of the closed trajectory, is
cut off. Examples of such starting trails are included in Fig. 6.5. Notice that starting trails
may be in- or outside of the orbits found. Both the area enclosed by the trajectory and its
probabilityPtotal(kF,Ka,V2

0 /B) are calculated. The area is approximated using a polygon
and refined by adding or subtracting missing circle segments. Statistics are kept of how
often each orbit is found, including its rotated, mirrored and translated variants1. For
each such orbit type one representative is saved to be accessible later on. The simulation
stops after finding more than 1000000 orbits. We will now outline how the result of the
simulation compares with experiment.
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6.3 Magnetic breakthrough

Figure 6.6:
Top: The Fourier transformation of magnetotransport data at 93 different values of the electron
density and a temperature ofT ≈ 50 mK. Red color signals a large Fourier transform amplitude.
The color axis is logarithmic. Peaks are labeled with their electron trajectories ink-space.
Bottom: The corresponding result of the simulation for closed electron trajectories.
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6.3.3 Comparison with the experiment

The experiment

To get more information about each oscillation inρxx, we can use an additional parameter
in experiment: the electron density. As the unperturbed Shubnikov-de Haas circle radius
kF increases with increasing electron densityns, all the intersections of different circles
will shift and the areas of closed orbits will change in a characteristic way. This will
cause a shift in the observed oscillation period∆(1/B) with ns.

To observe this shift over a range of electron densities, the automated illumination pro-
cedure presented in section 4.3.2 is mandatory. It enables to collect magnetotransport
data for a large set of densities. Fig. 6.6 consists of 93 measurements ofρxx, Fourier
transformed and stacked vertically. The logarithm of the Fourier transform amplitude
is plotted and color coded. Red corresponds to a large amplitude, blue to a vanishing
amplitude.

Several maxima are visible. The position∆(1/B) j of each maximum corresponds to an
areaA j enclosed by orbit typej in k-space. The largest oscillation amplitude is pro-
duced by the Shubnikov-de Haas oscillations as expected for unmodulated samples. The
associated circular orbit (D) is plotted at the bottom of the experimental color plot in
Fig. 6.6. These are the only oscillations with a periodicity which shifts linearly with
ns, sinceASdH = πk2

F = 2π2ns. The shift of the other peaks is not linear, but a com-
plicated function ofkF and the perioda. In general however, the range ofns is too
small to clearly observe the curvature. Trajectory (B) indicated on top of Fig. 6.6 for
instance is a lens shaped orbit. It is also found in 1D modulated systems. Its area is
AL(kF,a) = 2k2

F(arccos(η)−η
√

1−η2) with η = π/(akF) [64].

Although the two leftmost orbits (A,B) in the upper row were already predicted by
Langbein [17] and identified in magnetotransport experiments of modulated samples
by Albrecht [8] and Deutschmann [14], the remaining orbits (except for the circular
Shubnikov-de Haas orbit (D)) are by no means easily spotted. To identify them, the
here introduced Monte Carlo simulation has proven to be indispensable.

1 When using floating point variables for intersection coordinates, areas, and intersection angles, the
rounding errors will accumulate and prohibit the creation of correct statistics. Hence, all important
variables are represented in an exact way, without rounding errors: two packages LEDA and CGAL
are used which represent coordinates with square roots, which occur for intersections of circles. The
geometry package CGAL was extended for the here necessary cyclic boundary condition. See appendix
F.
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The simulation

We can now turn to the parameters (B, V0 andVq) needed to calculate the probabilities
Pq:

To find a suitableV0, it is important to note that the Fourier transform on the experi-
mental data uses a magnetic field range from 0.04 T to 1.1 T. Thus we have to average
each probabilityPtotal(kF,Ka,V2

0 /B) for the orbits found over the same range of magnetic
fields. This averaging, however, only changes the relative probabilities of the orbits. The
1/B-oscillation frequency, which is given by the orbits’ area, stays the same. Due to
the averaging, the importance of the exact knowledge of the potential modulation ampli-
tude is reduced. Nevertheless, Fig. 6.7 is reproduced here to exemplify the changes in
the probabilities of different quantum interferences ifV2

0 /B is varied. Due to the large
B-field range over which we have to average, the dominant interferences visible mainly
for low and highV2

0 /B in Fig. 6.7 are both entering the final Fig. 6.10. This is the case
also in experiment, where certain oscillations are dominant only in certain magnetic field
intervals.

For the simulation presented in Fig. 6.6 and Fig. 6.10, a value ofV0 as large as 8 meV
had to be used to resolve the two leftmost orbits in Fig. 6.7 as in the experimental panel.
This V0 is an order of magnitude larger than the value obtained from the positive mag-
netoresistance in chapter 5. A reason for this discrepancy may be the already discussed
unreliability of the positive magnetoresistance to evaluate the modulation amplitude for
2D modulated systems. The magnetic field range used in the Fourier transform translates
into theV2

0 /B-range of 16 meV2/T to 0.58 meV2/T.

To describe the shape of the modulation potential, we assumeVKa·(±1,0) = VKa·(0,±1) =
V0 ·0.3 for the main Fourier components andVKa·(±1,±1) =V0 ·0.005 for the first diagonal
components. This proved sufficient to explain the main oscillatory features observed in
experiment. The diagonal Fourier components turn out to be essential to explain the
features at low[∆(1/B)]−1 as discussed in section 6.4.3.

With these parameters, the bottom color plot in Fig. 6.6 is produced by running the simu-
lation for 100 evenly spacedns values. Each orbit found contributes a Gaussian of width
σGauss= 1/30 T centered at the orbit’s oscillation frequency[∆(1/B)]−1. The height of
the Gaussian is equal to the averaged probability of the orbit. This procedure is chosen
to enable the effortless comparison of the experimental and theoretical plots. The closed
trajectories found in the simulation label the various peaks visible both in the experimen-
tal and theoretical panel. For instance the unperturbed Fermi circle corresponding to the
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Figure 6.7:
Probability plot for the orbits of Fig. 6.6 versus potential modulation strengthV2

0 /B as it enters
the tunneling probabilityPtotal(kF,Ka,V2

0 /B). The calculation uses a density ofns = 2.85·
1011cm−2, so the closed trajectories have a different shape and size compared to Fig. 6.6. Red
color denotes a large probability. The color axis is logarithmic.
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6.4 Quantum interferences of two paths

Shubnikov-de Haas oscillations stands out as the most probable closed trajectory both in
experiment and simulation.

As apparent from the experimental plot, the oscillations can roughly be classified into two
groups: One group with a very weak dependence onns and one group with a stronger
density dependence. In the theory plot in Fig. 6.6, only those oscillations belonging to
the second category appear. Their Fourier maxima on the right hand side of the top
panel in Fig. 6.6 can be mapped exactly to their counterpart in the theory plot below.
Note that contrary to the orbit probabilityPtotal(kF,Ka,V2

0 /B), the shift of the frequency
[∆(1/B)]−1 is controlled only bykF anda. It does not depend on a certain choice ofB,
V0 or Vq. The majority of these orbits have not been observed and explained before. At
higher [∆(1/B)]−1-values even more oscillations are found in experiment. They agree
well with the orbits found in the simulation. An example is orbit G. We restrict however
the discussion here to a range where the two groups of oscillations with differentns-
dependence are easily distinguishable. To explain the second group of oscillations with a
weak dependence onns on the left hand side of the top panel of Fig. 6.6, we need to take
into account the possibility of quantum mechanical interference of two electron paths in
the system. By doing this we get a step closer to the full network model suggested by
Pippard for 2D modulated systems [72].

6.4 Quantum interferences of two paths

The slow resistance oscillations (small[∆(1/B)]−1 frequency) corresponding to the max-
ima on the left hand side of the upper panel in Fig. 6.6 do not arise from the quantization
of a closed orbit. They have no counterpart in the de Haas-van Alphen effect. Instead,
they are analogous to an Aharonov-Bohm interferometer ink-space, where the electron
wave has two alternative paths between two points. This type of interference was studied
for magnetoresistance oscillations in magnesium by Stark and Friedberg [10, 102–105].
Here we need to extend their approach: In contrast to Stark and Friedberg’s interference,
where no intermediate tunneling is necessary, our interferometers incorporate many tun-
neling events on each arm.

We consider the two simplified electron paths in Fig. 6.8 which constitute the quantum
interference (a) in Figs. 6.10 and 6.11. Each blue dot represents a gap. These gaps are
omitted for clarity in Fig. 6.8. We focus on electrons which tunnel over all these gaps via
magnetic breakthrough. In a finite magnetic fieldB, some of these electrons, which start
at position 1, may tunnel over one of the gapsq1 or q2 and exit at 4′. To determine the
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6 Quantum interference in square lattices

Figure 6.8:
(a) Two path quantum interference ink-space. The paths are simplified, gaps at the blue tun-
neling points are not shown. At the green point, the electron stays on the Fermi contour and
does not need to tunnel. The red points mark the start and end of the interference. This figure is
based on quantum interference a in Figs. 6.10 and 6.11. (b) The inset sketches the trajectory a
tunneling electron (upper, blue) and a reflected electron (lower, green) takes. They are labeled
by the transmitted|t〉 and reflected|r〉 wave function.

probability |〈4′|1〉|2 of this transition, we need the magnetic breakthrough probabilities
at each gap. For the example in Fig. 6.8, the probabilities at the red dots are the same and
can be written as

|〈2′|1〉|2 = |p|2 = Pq1(kF,Ka,V
2
0 /B) , (6.4)

|〈2|1〉|2 = |q|2 = 1−|p|2 = 1−Pq1(kF,Ka,V
2
0 /B) , (6.5)

|〈4′|3〉|2 = Pq2(kF,Ka,V
2
0 /B) = |p|2 = |〈2′|1〉|2 and (6.6)

|〈4′|3′〉|2 = 1−Pq2(kF,Ka,V
2
0 /B) = |q|2 = |〈2|1〉|2 . (6.7)

We introduced here the probability densitiesp andq∈ C. The transmitted,|t〉= |p|eiϕt ,
and reflected wave function,|r〉= |q|eiϕr , at a junction must be orthogonal (cf. Fig. 6.8b).
We use this information about their relative phase,

ϕt−ϕr =
(

n+
1
2

)
π , (6.8)

to choose these phases to beϕt = 0 andϕr = π/2. We collect the remaining blue and
green dots and the associated transition probabilities in the symbolsp23 andp2′3′. Using
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6.4 Quantum interferences of two paths

Eqn. 6.3, they are

|〈3|2〉|2 = |p23|2 =
3

∏
2

P
ntunnel

q
q Q

nnon−tunnel
q

q and (6.9)

|〈3′|2′〉|2 = |p2′3′|2 =
3′

∏
2′

P
ntunnel

q
q Q

nnon−tunnel
q

q . (6.10)

The phase change along the transition from 2 to 3 and 2’ to 3’ consists of two parts: A
magnetic field independent phase contribution from the tunnel and reflection events,η23

andη2′3′. A phase contributionϕ23 andϕ2′3′ due to the vector potentialA, given by

ϕ23 =
e
h̄

3∫
2

A ·dr . (6.11)

To reach 4’, the electron must tunnel either at junctionq1 or at q2. The probability
|〈4′|1〉|2 is given by the coherent superposition of both paths,

|〈4′|1〉|2 = |qp23p+ pp2′3′q|2

= QP23P+PP2′3′Q+ pp∗qq∗p23p∗2′3′ + p∗pq∗qp∗23p2′3′

= I0 +PQ|p23| |p2′3′|
(

ei(ϕ23+η23−ϕ2′3′−η2′3′) +ei(−ϕ23−η23+ϕ2′3′+η2′3′)
)

= I0 +2PQ
√

P23P′2′3′ cos(ϕ23−ϕ2′3′ +η23−η2′3′)

= I0 + I1cos(∆ϕ +∆η) . (6.12)

Here, we introduced the shorthandsI0 = QP23P+PP2′3′Q andI1 = 2PQ
√

P23P′2′3′. The

last term in Eqn. 6.12 causes an oscillation of the probability|〈4′|1〉|2 with the phase
difference,∆ϕ, the electron acquires due to the vector potential. This probability de-
termines which path the electron takes after the interference. Thus the trajectory the
electron follows after the quantum interference will oscillate with the phase difference
∆ϕ. This oscillation may in turn be visible in a magnetotransport experiment. The phase
difference,

∆ϕ =
e
h̄

∫
C

A ·dr =
h̄
eB
·AQI = 2π

Φ
Φ0

, (6.13)

is proportional to the fluxΦ = B·A enclosed by the two paths (C is the closed integration
path 2→ 3→ 3′ → 2′). This leads toB-periodic magnetotransport oscillations in the
Aharonov-Bohm effect [52,106], where the real space areaA is fixed. In the system stud-
ied here, however, thek-space areaAQI is constant and the real space areaA changes with
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6 Quantum interference in square lattices

the magnetic field. Therefore, the phase difference is proportional to 1/B (cf. Eqn. 6.13).
The resulting 1/B-oscillations in magnetotransport have the same periodicity as an os-
cillation due to a hypothetical closed orbit with the same sizeAF = AQI. The paths of
Fig. 6.8 are however not suitable as closed orbit, since they have the same chirality.

We only mention here that oscillations due to the quantum interference are expected
wheneverI1 is nonzero. For very small (B→ 0) or very large magnetic fields (B→ ∞),
eitherP or Q = 1−P is zero and consequentlyI1 and even|〈4′|1〉|2 vanishes. For both
limits, no electrons are expected to reach 4’.

6.4.1 Probability amplitudes

The probability for the electron to “switch paths”,|〈4′|1〉|2, is oscillating with the phase
difference∆ϕ. The oscillations’ amplitude given by Eqn. 6.12 isI1 = 2

√
QP23P·PP2′3′Q.

Here we already grouped the probabilities for the two paths. Each (blue) tunnel event thus
enters the amplitude via

√
P23 = |〈3|2〉| with

√
Pq, each (green) non-tunnel event with√

Qq and each of the two (red) interference junctions with
√

PQ (cf. Fig. 6.8). This is
true also for other quantum interferences. Since there are combinationally many possible
combinations of two paths to form a quantum interference, the most probable path pairs
will be found using a variant of the already introduced random walk approach.

6.4.2 The second Monte Carlo simulation

We now present a second simulation to search for the most probable quantum interfer-
ences. Analogous to subsection 6.3.2, probable quantum interference paths are found by
using random walks through the extended zone scheme. This second simulation runs as
described for the first one, only the probabilities are modified to agree with Eqn. 6.12.

Examples of interferences are shown in Fig. 6.9a and b. There, tunnel events are marked
with small blue dots. A big green dot marks gap locations where the electron is not
tunneling and thus stays on the same Fermi contour. Quantum interferences are marked
with big red dots. Interfering paths are drawn in light blue and magenta. As before, the
starting trail still need to be cut off. Then, the probability and enclosed area is calculated.
These values are stored and a statistic is kept for all these pairs of paths This information
yields the theoretical data in Fig. 6.10.
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6.4 Quantum interferences of two paths

Figure 6.9:
a,b) Possible outcomes of a simulated electron walk through the reciprocal lattice. The starting
points are black dots. c) An example for an electron trajectory which did not close before
reaching the threshold length. The Brillouin zone is filled in with yellow.
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6 Quantum interference in square lattices

The open trajectory c in Fig. 6.9 is an example of a random walk which does not close
after a length of 2.1 circumferences of the Shubnikov-de Haas circle. It does not enter
the statistics of probable quantum interferences. In the simulation for Fig. 6.10 the cutoff
is set at 10.1.

6.4.3 Comparison with the experiment

As already noted, the maxima on the left hand side of the upper panel of Fig. 6.10 can
not be explained by closed electron trajectories. Both the frequency[∆(1/B)]−1 and the
ns-dependence has no counterpart in the set of closed orbits found in the first simulation.

We will compare these maxima now with the result from the second simulation. For
the lower panel of Fig. 6.10 the simulation was run for the same 100ns values as in
Fig. 6.6. The resulting probabilities were averaged over the sameB-field range as before,
then represented by Gaussians. The outcome of this second simulation reproduces the
unexplained features in the experimental panel nicely. For a large set of peaks the corre-
sponding quantum interferences are indicated above and below the experimental panel of
Fig. 6.10.

The interference marked e is already known from 1D modulated systems [14]. The en-
closed area has a shape of a lens since it results from the interference of two Shubnikov-de
Haas orbits which are spaced a distanceKa apart. In the limit of largekF it corresponds to
the commensurability oscillations of a modulated system [14]. The remaining quantum
interferences (a-d,f-m) have however not been observed and explained before. All but the
two rightmost interferences in the lower row (e,i) can only be observed in 2D modulated
systems.

Now the weakns-dependence of most of these interferences can be understood as follows:
With increasingkF the Shubnikov-de Haas circles constituting the “outer” (convex) and
“inner” (concave) path of the interference grow. The growth of the outer path enlarges
the enclosed area, while the growth of the inner one reduces it. The total enclosed area
will not change dramatically in size and merely shift its position. As a consequence, the
oscillation frequency has a weak dependence onns orEF and thus temperature broadening
is not very effective [72].

Of the novel interferences, those with the smallest area ink-space (a,b,c) are peculiar
in that their area is close to the area of one, two and three Brillouin zones. The areas
can all be found as the intersections of three Shubnikov-de Haas circles spacedKa apart,
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6.4 Quantum interferences of two paths

Figure 6.10:
Top: The Fourier transformation of magnetotransport data at 93 different electron densities and
at a temperature ofT ≈ 50 mK. This is the same data as in the top panel of Fig. 6.6. Red color
signals a large Fourier transform amplitude. The color axis is logarithmic. Peaks are labeled
with the interfering paths given by the simulation. Bottom: The corresponding result of the
simulation for quantum interferences.
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6 Quantum interference in square lattices

as shown in Fig. 6.11. These areas are however only incidentally comparable to the
Brillouin zone, since they can both shrink and grow for densities smaller and larger than
the range available to experiment.

The two leftmost interferences (a,b) are only visible for high densitiesns> 3.4·1015cm−2

in experiment. This might be a consequence of the increase in mobility for higher densi-
ties, since the probability does not increase as dramatically in the simulation. The mean
free path changes for instance from 10µm to 35µm for the range of densities in Fig. 6.10.
The two interferences are most sensitive to the mobility as they are the largest in real
space. Their circumferences are 0.32 µm/(B/T) and 0.37 µm/(B/T) respectively. For
small magnetic fields of 0.03 T the circumferences are larger than the mean free path of
10µm at low electron densities.

Finally, a detailed comparison of experiment and theory reveals unexplained oscillations
in the experiment. An oscillation is found, whose frequency[∆(1/B)]−1 shifts from 1.5 T
to 3 T (as marked with arrows in Fig. 6.12), which is not present in both Monte Carlo
simulations as demonstrated in Fig. 6.12. This oscillation is also remarkably different
from all the rest: It is not continuous, but broken up into sections. At present, we have
no explanation for this oscillation.

We conclude this section with an overlay of the experimental and combined theoreti-
cal color plots in Fig. 6.13. In this overlay both the position and the probability of the
observed oscillations agrees well with the combined results from the two Monte Carlo
simulations. The small mismatch may be due to the accuracy with which the electron
density can be extracted from experiment. When shifting the experimental color plot by
∆ns≈ 0.03·1011 cm−2 to lower densities, this mismatch disappears.

Fourier components of the modulation potential

We already hinted at evidence for the presence of higher Fourier components in the mod-
ulation potential. Up to now no direct access to the relative strength of different Fourier
components is available in experiment. Only the case that the diagonal Fourier compo-
nentsVKa·(±1,±1) are larger than the first Fourier componentsVKa·(±1,0), VKa·(0,±1) can be
detected: The lattice effectively turnsπ/2 and changes its period, so a different frequency
of the commensurability oscillations can be observed [84].

Here we can detect higher order Fourier components even if their amplitude is only a frac-
tion of the main Fourier component. In Fig. 6.10 the diagonal Fourier component used
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6.4 Quantum interferences of two paths

Figure 6.11:
The quantum interferences shown in Fig. 6.10. Green dots mark gaps where electrons do not
tunnel. Red dots mark start and end points of the two interfering electron trajectories. Gaps
where electrons tunnel are not marked, since they are too frequent. A darker fill color indicates
a higher probability. The shapes shown here are for a density ofns = 4.24· 1011cm−2. The
enclosed area is given in units of the first Brillouin zone area. The Shubnikov-de Haas circles
at the top visualize how the area of the first three interferences come about ink-space. The first
Brillouin zone is filled with yellow.
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6 Quantum interference in square lattices

Figure 6.12:
Top: The Fourier transformation of the magnetotransport data in 1/B for a range of electron
densities, as for Fig. 6.10. The unexplained oscillations are marked with arrows. Bottom:
The simulation results depicted in Fig. 6.10 and Fig. 6.6 combined in one colorplot. The
aforementioned oscillations are not reproduced.
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6.4 Quantum interferences of two paths

Figure 6.13:
Overlay of the experimental and theoretical color plots presented in Fig. 6.12. The small mis-
match is due to the inevitable inaccuracy in the determination of the electron density from the
experimental data.
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6 Quantum interference in square lattices

Figure 6.14:
A simulation of quantum interferences for a pure cosine potential. Less interferences than in
Fig. 6.10 are visible. Red color denotes a large probability. The color axis is logarithmic.
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6.5 Summary

wasVKa·(±1,±1) = 1/60·VKa·(±1,0). When settingVKa·(±1,±1) to zero, some interference
oscillations (a,b,c) seen in experiment disappear from the simulations’ output, as illus-
trated in Fig. 6.14. This can be understood as follows: ForVKa·(±1,±1) = 0 all gaps on the
second Brillouin zone boundary are closed. These gaps are located where the diagonally
displaced Shubnikov-de Haas orbits in Fig. 6.11 intersect. One can see immediately that
the two leftmost interferences (labeled a,b in Fig. 6.10) have a no-tunnel point (green)
on such an intersection. The third interference (c) has its upper red point, where its two
paths meet, on such an intersection. Thus these three interferences enclosing the smallest
area ink-space are only possible if an electron finds a gap at the second Brillouin zone.

We already know thatVKa·(±1,±1) has to be non-zero. Its value can be estimated using
calculations as in Fig. 6.15. Obviously, already small values ofVKa·(±1,±1) are enough
to allow for the oscillations (a,b,c) observed in experiment. We choseVKa·(±1,±1) = V0 ·
0.005, since it best reflects the relative probabilities of the three novel oscillations (a,b,c)
at low [∆(1/B)]−1 with the remaining oscillations. For largerVKa·(±1,±1) these novel
oscillations become dominant, which is not true for the experiment.

6.5 Summary

Quantum interferences unique to a 2D artificial crystal have been measured for the first
time and are quantitatively accounted for. These studies have become possible due to
the unrivaled sample quality and the careful illumination technique used in our magneto-
transport measurements.

The electron density dependent study allows the identification of the relevant orbits and
groups of interfering paths. We present a Monte Carlo approach which correctly predicts
the plethora of new orbits and quantum interferences observed in our experiment.

Using the simulation techniques presented here, closed orbits and interferences can be
predicted for different lattice geometries, periods and modulation strengths to tailor future
samples.
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6 Quantum interference in square lattices

Figure 6.15:
A simulation using different relative Fourier component sizesVKa·(±1,±1)/VKa·(±1,0) for an elec-
tron density ofns = 2.85·1011cm−2. V2

0 /B is averaged as in Fig. 6.10. ForVKa·(±1,±1) = 0 many
interferences vanish. Red color denotes a large probability. The color axis is logarithmic. The
interference paths are depicted for the above density, so they have a different shape and size
compared to Fig. 6.10. The three interferences at the top of the figure have the same size like
the one below and contribute to the oscillation, but are not as probable.
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7 Different lattice geometries

Up to now, our discussion focused on modulations with square geometry and 100 nm
periodicity. In the present chapter we extend our scope to different periodicities and
geometries. The results are divided into two groups:

The first two sections confirm and refine the physics of quantum interferences of chapter
6. In the first section, the periodicity of the square lattice is reduced to 90 nm. This
changes the network of Shubnikov-de Haas circles in k-space. At large, the findings of
chapter 6 are confirmed for the altered network. Unexpected features arise only near
crossings of certain oscillations. These features can be reproduced also for the 100 nm
periodicity sample of the preceding chapters. In the second section, the square lattice
is replaced by a Lieb lattice [107]. For the Lieb lattice, the Brillouin zone is four times
smaller, different Fourier components appear, but the square symmetry of the lattice stays
the same. New quantum interferences are observed due to the additional Fourier compo-
nents.

In the third section we address samples with a rectangular modulation. The recent pre-
diction of a non-monotonous dependence of the commensurability oscillation amplitudes
on the applied magnetic field is verified.

7.1 Smaller lattices, higher temperatures

To check the findings of the preceding chapter, where we used a 100 nm periodicity
modulation, samples with square modulation anda = 90 nm periodicity were produced.
For such a sample, the network of Shubnikov-de Haas circles ink-space changes: The
distance of two neighboring Shubnikov-de Haas circles,Ka = 2π/a, gets larger. Thus, the
area enclosed by closed orbits (which have a convex circumference) will shrink. Hence,
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7 Different lattice geometries

Figure 7.1:
Top: The Fourier transformation of magnetotransport data at 53 different electron densities for
a square modulation with 90 nm period. Red color signals a large Fourier transform amplitude.
The color axis is logarithmic. In the grey region no data was taken due to limitations in the
illumination process. Peaks are labeled with their interfering paths. Bottom: The same for a
100 nm period modulation and 124 different electron densities. Both measurements are done at
T ≈ 300 mK. The lower plot can be compared to Fig. 6.12, which is measured atT ≈ 50 mK.
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the corresponding 1/B-oscillation frequency inρxx should get smaller compared to its
counterpart in the 100 nm lattice.

To verify this, the Fourier transformations of 53ρxx-traces obtained on a sample with a
90 nm period modulation are plotted in the upper panel of Fig. 7.1. For comparison, the
bottom panel shows a plot for a 100 nm period sample. This is the same sample as the one
used for the two previous chapters. In contrast to the data in the top panels of Fig. 6.6
and 6.10, which are taken atT ≈ 50 mK, the measurement temperature for Fig. 7.1 is
T ≈ 300 mK. The quantum interferences (a-i) and orbits (A,B) responsible for the peaks
in Fig. 7.1 are obtained with Monte Carlo simulations. The oscillation due to orbit (A)
confirms the predicted shift to lower 1/B-frequencies when comparing its position for
thea = 100 nm plot with its position for thea = 90 nm plot.

With increasingKa = 2π/a, the area enclosed by quantum interferences on the other
hand grows: the Shubnikov-de Haas circles constituting the “inner” (concave) path of
the interference move away from the “outer” (convex) path. The corresponding 1/B-
oscillation frequency increases. Indeed the 1/B-oscillations (a-i) are shifted to the right
in the top panel of Fig. 7.1. Due to this shift, the intersection point of the two 1/B-
oscillations (A) and (i) moves to higher electron densities.

Exactly at this intersection point, an unexpected feature arises: The two experimental
plots in Fig. 7.1 are different from the ones in chapter 6 as the 1/B-oscillations (i) and
(B) have about the same amplitude1. Right at the crossing of the two oscillations, this
amplitude is increased. At slightly higher and lower electron density, the amplitude is
nearly completely suppressed. Remnants of this behavior are also present for a different
sample of 100 nm period in Fig. 7.4. Since each of the 1/B-oscillations (A) and (i) are the
outcome of a different Monte Carlo simulation, we can not explain the above effect by
simply adding the two simulations as done in the previous chapter in Fig. 6.12. Instead, a
more complex interplay of the closed orbit and the two-path quantum interference seems
to take place. Such behavior is not properly captured by our simulations.

1 The data shown in the bottom panel in Fig. 7.1 was obtained using the same sample as in chapter 6.
However, the data was taken during a different cooldown cycle. This temperature cycling may be the
reason for a change in stress exerted by the metal gate and hence for a modified ratio of the Fourier
components.
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7 Different lattice geometries

7.2 The Lieb lattice

Figure 7.2:
A square (a) and Lieb (d) modulation potential, constructed from Gauss functions. (b,e) Ab-
solute value of the 2D Fourier transformation of the modulation potentials in a) and d). The
Fourier components used in the text are marked. (c,f) The first (red) and second (yellow) Bril-
louin zone corresponding to the first two Fourier components. A size comparison (dotted line)
reveals that the first Brillouin zone of c) is as large as the third one of f). (g) A scanning electron
microscopy of the Lieb lattice after evaporation and lift-off of a thin metal layer.

For the 90 nm lattice studied in the previous section, the size of the Brillouin zone is
slightly increased compared to a 100 nm lattice. The Fourier components however stay
essentially the same.

By replacing the square lattice in Fig. 7.2 a) with a Lieb lattice [107] as in Fig. 7.2 d),
the superlattice periodicity increases froma = 103 nm to ˜a = 2 ·a = 206 nm. The Lieb
lattice has a four times larger unit cell, so the Brillouin zone size is decreased to a quarter
of its original size (cf. Fig. 7.2 f). This leads to a much more nested network than before,
since each Shubnikov-de Haas circle needs to be shifted into this drastically reduced first
Brillouin zone. Additional gaps in this network appear along the new first Brillouin zone
boundary, corresponding to new first order Fourier components. We want to point out
that the Fourier components of the square lattice,Vq, are roughly the same as those for
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Figure 7.3:
Red: Longitudinal and Hall resistivities for a modulation with Lieb geometry of ˜a= 206 nm pe-
riod. The measurement temperature isT ≈ 300 mK, the electron density isns = 4.3·1011/cm2

and the mobility isµ = 2.2 · 106cm2/Vs. Blue: The same for a square modulation with
a = 103 nm period. The data for both plots is measured at the same time using a single Hall
bar with two active regions, which are patterned accordingly. The splitting inρxx and non-
monotonic behavior ofρxy aroundB = 0.62 T for square lattices is attributed to the Hofstadter
butterfly spectrum as in chapter 5.

the Lieb lattice,Ṽq, for example,VKa·(1,0) ≈ ṼKã·(2,0). Also the two underlying Bravais
lattices have the same symmetry.

For an optimal comparison of the two lattice types, a Lieb lattice and a square lattice
were exposed on the two active regions of one and the same Hall bar. Magnetotransport
traces for the two lattices, which are measured simultaneously using this single Hall bar,
are displayed in Fig. 7.3. The blue measurement for a square modulation exhibits less
fine structure around e.g.B = 0.6 T as the measurement in Fig. 5.1, which was attributed
to the Hofstadter butterfly. This is due to the lower mobility and higher measurement
temperatureT ≈ 300 mK in Fig. 7.3. Still, we will use this data, since it allows us to
directly compare 1/B-oscillations for the two lattices, while excluding changes due to a
difference in sample quality.

111



7 Different lattice geometries

Differences originating from the lattice geometry are already apparent in the envelope
of the Shubnikov-de Haas oscillations for the red and blueρxx-traces. The density de-
pendent Fourier analysis in Fig. 7.4 reveals particularly drastic differences in the two
1/B-oscillation patterns. The most prominent oscillations (b, c, f, h, i, A) for the square
modulation in the lower panel of Fig. 7.4 are very weak or vanish for the Lieb modula-
tion in the upper panel. Some oscillations, like (B), may get stronger for the Lieb case.
Most interesting are the oscillations (α, γ, ε, ζ , η), which are only present for the Lieb
modulated sample.

In order to find their corresponding quantum interferences, the Monte Carlo simula-
tion of the second type was carried out for a modulation potential withV0 = 8 meV
and Fourier components̃VKã·(±1,0) = ṼKã·(0,±1) = V0 · 0.03, ṼKã·(±1,±1) = V0 · 0.012,
ṼKã·(±2,0) = ṼKã·(0,±2) =V0 ·0.3 andṼKã·(±2,1) = ṼKã·(1,±2) =V0 ·0.0075, which describe a
Lieb lattice modulation potential. The resulting probabilities were averaged over a mag-
netic field range from 0.04 T to 1.1 T. We chose these parameters as they are similar to the
ones used for the square lattice in the previous chapter. In particular, the modulation po-
tentialV0, the magnetic field range and the main Fourier componentṼKã·(±2,0) =VKa·(±1,0)
are identical to the values used in Fig. 6.10.

The result of this simulation for 10 evenly spaced electron densities is plotted on top of
the experimental result in Fig. 7.52. As in experiment, the probabilities of the oscillations
(b, c, f, g, i) are decreased. Of these oscillations, (f, g, i) are present even for a modula-
tion potential, where only the main Fourier coefficientVKa·(±1,0) = VKa·(0,±1) is non-zero
(cf. tables A.2 and A.3). Since this Fourier component is the largest in our simulation,
the additional smaller Fourier components,ṼKã·(±1,0), ṼKã·(±1,±1) andṼKã·(±2,1), added to
construct the Lieb lattice pattern, must be the reason for the suppression of these oscil-
lations. Oscillation (A) is due to a closed trajectory, so it is not captured by this Monte
Carlo simulation. The quantum interferences (d, e) are also found for the square case,
while the quantum interference (β ) is new. It has approximately the same frequency
as (a) for the square case, but the shape is different. Most importantly, the simulation
finds quantum interferences for the Lieb lattice, (α,γ,ε,ζ , η), which are absent for the
square modulation potential. The quantum interferences (ζ ) and (η) are similar to the
interferences (d) and (f), only the points where no tunneling takes place lie on the new
first Brillouin zone of the Lieb lattice. As a consequence, their shape changes: The area
enclosed by (ζ ) is larger than (d), the one enclosed by (η) is smaller than (f). Pictorial

2 Only 10 different electron densities are used here, since the computation time for a singlens-value
increases by more than an order of magnitude compared to the square lattice case in Fig. 6.10. This is
due to the smaller Brillouin zone for the Lieb lattice, which divides each cyclotron orbit into many more
sections.
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Figure 7.4:
Top: The Fourier transformation of magnetotransport data at 65 different electron densities
for a modulation with Lieb geometry of ˜a = 206 nm period. The measurement temperature
is T ≈ 300 mK. Red color signals a large Fourier transform amplitude. The color axis is
logarithmic. Bottom: The same for a square modulation witha = 103 nm period. Prominent
oscillations are marked with their orbits or quantum interferences. The data for both plots is
measured simultaneously using a Hall bar with two active regions.
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Figure 7.5:
Overlay of the experimental color plot of Fig. 7.4 and a theoretical color plot. The simulation
was run for only 10 different densities, so peaks shift in a staircase like fashion. The quantum
interference paths are indicated at the top of the plot.

representations of all the quantum interferences mentioned for the Lieb lattice are given
in Fig. 7.5.

To summarize, we have found quantum interferences typical for Lieb lattices and we are
able to explain them using the same Monte Carlo simulation as for the square lattice. In
general, Fourier transformed magnetotransport data as in Fig. 7.5 is like a fingerprint of
the modulation potential experienced by the electrons in the 2D system. We can use such
data to get detailed information about the relative sizes of the Fourier components and
one may even test different models for the shape of the modulation potential.
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7.3 The rectangular lattice

In the preceding chapters two quantum mechanical effects typical for 2D electron sys-
tems modulated in two spatial directions were observed. Here we address another phe-
nomenon, which is already present for one-dimensional superlattices: the commensura-
bility or “Weiss” oscillations. These oscillations were first also considered to be of quan-
tum mechanical origin, but later they were explained semiclassically. A recent calculation
based on this semiclassical approach predicts for rectangularly modulated samples an in-
triguing non-monotonous dependence of the commensurability oscillation amplitudes on
the applied magnetic field. Such a dependence is neither known for one-dimensional nor
for square lattices, and has so far neither been confirmed by quantum calculations nor by
experiments. This section summarizes our effort to observe these novel features in sam-
ples modulated with a rectangular pattern. We are able to demonstrate a good agreement
between the theory and our experiments. 3

7.3.1 Commensurability oscillations for 1D modulation

The commensurability oscillations of the band conductivity were introduced in section
3.1.1. They are a consequence of the modulation induced broadening of the Landau
levels. They can, in contrast to the commensurability oscillations of the scattering con-
ductivity, also be understood in semiclassical terms as the result of a guiding center drift
of the classical cyclotron orbits of electrons at the Fermi energy [108]. To illustrate this,
we revert to the one-dimensional modulation of Eqn. 3.1. First we consider the flat band
condition where the band conductivity is zero. For this case the average of the potential
V(x) over the perimeter of a cyclotron orbit is the same for all guiding center coordinates
x0 as depicted for two examples in the top panel of Fig. 7.6a. Thus the guiding center
will not drift and no additional conductivity∆σyy is expected. The opposite is true for the
case shown in the bottom panel of Fig. 7.6a, which can be attained by changing the mag-
netic field and thus the cyclotron orbit radiusRc. For this second case, the guiding center
will drift along straight lines iny-direction and yield a contribution∆σyy. In brief, the
contribution∆σyy will oscillate when changing the cyclotron orbit radius. This produces
oscillations inρxx.

The guiding center picture is also valid for two-dimensional modulation potentials. It can
be used to explain the suppression of the band conductivity in samples modulated in two

3 This work on rectangular superlattices has been carried out in collaboration with Dr. S. Chowdhury.
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Figure 7.6:
a) Top panel: The average of the modulation potential with perioda over a cyclotron orbit is
independent ofx0 if the flat band condition is met. Bottom panel: The average changes with
x0. b) The corresponding dispersion relations. c) The resulting density of states. Van-Hove
singularities arise due to the flat dispersion atx0 = 0,a/2.

spatial directions as demonstrated in the next paragraph.

7.3.2 Band conductivity suppression for 2D modulation

The pioneering experiments on 1D modulated samples [11, 12] were soon followed by
experiments using a two-dimensional modulation potential. There, the commensurabil-
ity oscillations were much smaller in amplitude than those observed before in the band
conductivity for a 1D modulation (when the resistance is measured along the modula-
tion direction), but they were comparable in amplitude and phase with the scattering
conductivity observed in the 1D modulation case (when the current flows perpendicu-
lar to the modulation direction) [4]. This apparent suppression of the band conductivity
in 2D superlattices was first interpreted quantum mechanically [4, 49]: As elaborated in
chapter 5, due to the 2D modulation, Landau levels split into subbands according to the
Hofstadter butterfly spectrum. If collision broadening effects are so weak that spectral
functions of different subbands have little overlap, the calculated band conductivity is
considerably suppressed as compared to that calculated for the corresponding situation
with a 1D modulation. This suppression becomes more effective with increasing strength
of the 2D modulation and with increasing mobility [4, 49]. This is, of course, a rather
subtle argument, since the subband splitting was not observed in the experiments under
consideration. This splitting is also not observed in the samples presented in this chapter
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due to the relatively low electron mobilities.

Later, the suppression was also explained in the guiding center picture [109]. Initial
efforts to describe commensurability effects for 2D modulations were restricted to mod-
ulation potentials of the formV(x,y) =Vx(x)+Vy(y) with small amplitudesVj [110,111].
In this approximation, the modulation effects inx- andy-direction decouple and no sup-
pression of the commensurability oscillations is obtained [112]. A numerical solution of
the full Boltzmann equation without such a weak-potential approximation, on the other
hand, yielded a drastic suppression of the commensurability oscillations for large modu-
lation amplitude and high mobility [112]. Later Grantet al. [84, 113] argued that, for a
two-dimensional modulation, part of the guiding centers drift along pinned closed orbits
and thus should not contribute to the band conductivity. This should cause the sup-
pression of the commensurability oscillations. In subsequent work by Gerhardts and
Zwerschke, [109] the guiding center drift model was used for a detailed calculation of
commensurability oscillations and their suppression in rectangular geometries. For inter-
mediate magnetic field strengths and not too strong modulations, the results obtained in
Ref. [112] by numerical solution of the full Boltzmann equation (which requires heavy
numerical work and large computation time) could be reproduced. A direct comparison
of the predictions made in Ref. [109] with quantum calculations or experimental results
is, however, still missing.

We will reiterate here the physical picture put forward in Ref. [109] and its predictions
for modulations with additive potentials in thex- and they-direction and with different
periodsa 6= b.

7.3.3 2D rectangular modulation

To describe the transport in samples with rectangular superlattices, we assume a simple
harmonic modulation potential of the form

V(x,y) = Vxcos(Kax)+Vycos(Kby) (7.1)

with periodsa 6= b, Ka = 2π

a andKb = 2π

b . The modulation amplitudesVx andVy should
be comparable in magnitude.

For sufficiently weakVx andVy, the classical electron trajectories may be approximated as
a superpositionr(t) = rgc(t)+ rcyc(t) of a rapid cyclotron motionrcyc(t) = Rc[sin(ωct +
α0),−cos(ωct +α0)] around a slowly moving guiding centerrgc(t). Such trajectories are
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Figure 7.7:
The electron (red) and guiding center (blue) trajectory for a modulation potentialV(x,y) =
0.1EF(cosKax+ 0.25cosKay) with Ka = 2π/a andqR= 2. The equipotentials ofV(x,y) are
dotted. Taken from Ref. [109]

illustrated in Fig. 7.7. According to Refs. [113] and [109], the instantaneous velocity of
the guiding center, averaged over a perimeter of the unperturbed cyclotron orbit, is given
by [110]

vavg =−∇Veff×B/B2 , (7.2)

whereVeff is an effective potential. Hence the guiding center drifts along the contours of
this effective potential

Veff(R) = ∑
q6=0

eiq·RVqJ0(qRc) . (7.3)

Here,R = (X,Y) is the cyclotron orbit guiding center coordinate andJ0 is the Bessel
function of the first kind. TheVq are the Fourier coefficients of the modulation potential,

V(r) = ∑
q6=0

Vqeiq·r , (7.4)

with q = (nxKa,nyKb). The effective potentialVeff(R) can be understood geometrically:
It is the periodic potentialV(x,y) averaged over the perimeter of a cyclotron orbit cen-
tered atR = (X,Y) [111, 113]. It has the same periodsa andb, but different effective
modulation strengthsVeff

x (B) andVeff
y (B), which in contrast toVx andVy depend on the
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magnetic field. By studying the equipotentials of this effective potential accurate predic-
tions about the electronic transport are possible.

Considering only fundamental Fourier components for our rectangular lattice, which will
prove to be sufficient, we can write the actual potential modulation in the rectangular
superlattice in the form of Eqn. 7.1. The corresponding effective potential is given by [55]

Veff(X,Y) = Veff
x cos(2πX/a)+Veff

y cos(2πY/b) , (7.5)

where
Veff

x = VxJ0(2πRc/a) , Veff
y = VyJ0(2πRc/b) . (7.6)

Three consequences for the transport in 2D modulation potentials result. First, the Bessel
functionsJ0 for each direction are identical to those found for transport in a correspond-
ing 1D modulated system [43,44,108]. Hence, the commensurability oscillation minima
found in a 2D modulated system with periodsa andb agree with those of the correspond-
ing 1D systems. Second, some of the guiding centers will drift along pinned closed orbits
as seen on the right hand side of Fig. 7.7, so they can not contribute to the band conduc-
tivity. This suppresses the commensurability oscillation amplitude [109,113]. Third, the
oscillatory magnetic field dependencies ofVeff

x (B) andVeff
y (B) are different [109], due to

the different periodsa 6= b (cf. Eqn. 7.6). This will lead to a non-monotonic variation
of the commensurability oscillation amplitude [109]: When sweeping the magnetic field,
one can find situations withVeff

x (B) = 0, in which the guiding centers can only move
along open orbits inx-direction, situations withVeff

y (B) = 0, with only open orbits in
y-direction, and situations withVeff

x (B) = Veff
y (B), with only closed orbits for the guid-

ing centers. Thus, sweepingB should cover situations with effectively 1D modulations
in y- or x-direction and also situations with a strong suppression of the guiding center
contribution to the conductivities.

To verify these predictions in experiment, suitable samples have to be produced. Their
fabrication procedure is described next.

7.3.4 Sample preparation and measurement procedures

This work was carried out on two different GaAs-AlGaAs heterostructures, #6-159 and
#6-100, grown on (100) GaAs substrates by Dr. Vladimir Umansky from the Braun Sub-
micron Research center at the Weizmann Institut of Science in Rehovot, Israel. They have
lower mobility than heterostructure #5-74, which was used in the preceding chapters. The
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Figure 7.8:
(a) The L-shaped Hall bar mask. The mesa is light blue, alloy regions are orange, contact pads
yellow. The optional gate covers the Hall bar and has protruding corners to avoid excessive
rounding in the shadow mask etching process. (b) Sketch of the L-shaped Hall bar geometry
showing the extent and orientation of the superlattices. Thex- andy-directions coincide with
the cleavage directions of the (100) GaAs wafer. (c) Normal and (d) inverted views of a repre-
sentative AFM measurement on an etched 136 nm by 103 nm period superlattice after removal
of the resist.

two heterostructures contained a 2D electron system 42.5 nm below the surface. Hall bars
with L-shaped mesas (see Fig. 7.8a,b) were fabricated with standard lithographic tech-
niques. They were 20µm wide and the geometry factor,L/W, was equal to 1. When
unmodulated, the 2D electron system of the first heterostructure #6-159 showed a carrier
density ofns = 3.2× 1015 m−2 and a transport mobilityµ = 0.8 · 106 cm2/Vs at 4 K.
After a brief illumination with a light emitting diode at 4 K, the mobility improved to
1.0 · 106 cm2/Vs for a carrier density of 5× 1015 m−2. In the second heterostructure
#6-100, these quantities werens = 3× 1015 m−2 and µ = 0.83· 106 cm2/Vs without
illumination andns = 4×1015 m−2 andµ = 1.3·106 cm2/Vs after illumination.
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a b a : b a·b
108nm 100nm 1.1 (104nm)2

142nm 84nm 1.7 (109nm)2

120nm 100nm 1.2 (110nm)2

142nm 100nm 1.4 (119nm)2

253nm 151nm 1.7 (195nm)2

240nm 200nm 1.2 (219nm)2

283nm 200nm 1.4 (238nm)2

Table 7.1:The periods of the rectangular lattices used for the gated samples.

Electron beam lithography

Patterns of about 50 nm diameter holes arranged on a rectangular superlattice were pro-
duced with high resolution electron beam lithography in a 90 nm thick PMMA resist layer
coating the Hall bar. The main axes of the rectangular lattices were oriented along and
across the Hall bar, i.e. the cleavage directions of the (100) GaAs substrate (see Fig. 7.8b).
The area of each superlattice was large enough to cover more than an entire active area
on the Hall bar, as depicted in Fig. 7.8b.

The gated samples

In first experiments, the electron beam pattern was transferred to the electron gas using
a metal gate as described in section 4.1.3. Several samples with different rectangular
lattices were produced to find a suitable range of experimental parameters. The lattice
periods and ratios used are listed in table 7.1. The magnetoresistances of the devices
were measured after a brief illumination using lock-in techniques introduced in chapter
4.2. The measurement temperature was 4 K in order to suppress the Shubnikov-de Haas
oscillations at lowB-fields and bring out better the semiclassical guiding center effects.
To simultaneously acquire theρxx- andρyy-magnetoresistances for transport in the two
orthogonal directions of the rectangular superlattice, two nominally identical superlat-
tices oriented in the same direction with respect to the crystal directions were produced
on the two arms of the L-shaped Hall bar (see Fig. 7.8b in whichx andy are the cleavage
directions).

Since a more detailed discussion of the features present in experiments on these gated
samples follows in section 7.3.7, we will at this point only outline the relevant findings:
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The results obtained using the gated samples already confirm all predictions of the guid-
ing center drift model. Additionally, the most suitable range of experimental parameters
could be extracted from the large number of gated samples produced: Using modulation
periodsa≈ 100 nm and 130 nm< b < 140 nm, all features expected from theory can be
observed in a magnetic field range appropriate for experiment. In such lattices with large
ratiosa : b≈ 1.4, the difference between the modulation amplitudes in the two spatial
directions was however getting large (Vx/Vy ≈ 3). This is due to the stronger attenuation
of surface stress for smaller periods. For this reason, a wet etching process was intro-
duced which results in a smallerVx-Vy-difference for the same ratios ofa andb. For the
rest of this chapter, we will analyze the experiments on these, even more suitable, etched
samples.

The etched samples

A batch of samples was prepared as before, but instead of a metal gate, a room-
temperature shallow wet etching process transferred the electron beam pattern to the
heterostructure material: First, the oxide on the sample surface was removed by a 15 s
etch in 40 ml deionized water with 10 ml concentrated hydrochloric acid and one drop of
the surfactant benzalkonium chloride. The surfactant reduces the surface tension of the
etchants used. This in turn enables the etchants to reach into the nanoscale holes in the
PMMA. As etch stop the sample was dipped into iso-propyl alcohol for 60 s and blown
dry in a N2 flow. To transfer the electron beam pattern, the sample was subsequently
etched in 10 ml citric acid solution (prepared by mixing 10 g citric acid monohydrate
powder and 10 g deionized water), 30 ml 30% hydrogen peroxide and one drop of sur-
factant. By changing the etch time from 15 s to 60 s, the etch depth and the resulting
modulation strength were adjusted. Finally, the sample was rinsed 30 s in 50 ml deion-
ized water with a drop of surfactant to stop the etching, further rinsed in flowing deionized
water for 60 s and blown dry withN2. The resist was then entirely removed. In AFM
studies, the depth of the holes etched at the surface of the Hall bars was found to be
about 10 nm. Fig. 7.8c and d display normal and inverted AFM images of the etched
superlattice after the removal of the resist. No gate is deposited to avoid stress.

The mobility is reduced by the etching process toµ ≈ 0.55·106 cm2/Vs at an electron
density ofns = 4.4×1015 m−2 for heterostructure #6-159 andµ ≈ 0.65·106 cm2/Vs at
ns = 4.3×1015 m−2 for heterostructure #6-100. Both superlattices are etched at the same
time, and therefore we assume that the modulation strengths are similar for both.

The source of modulation has been identified as originating solely from the depletion
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effect. To this end, we studied square superlattices of 100 nm period. At the etched holes,
the surface states are closer to the dopants. Hence a density modulation is introduced at
the 2D electron system [114]. Combination of this depletion effect and stress modulation
is known to introduce asymmetry between the two cleavage directions on (100) GaAs
substrates in the case of square superlattices [84, 115]. However, here no asymmetry
was observed between the commensurability oscillations for transport along thex- and
y-directions. In view of the absence of asymmetry, we conclude that the modulation is
exclusively due to the depletion effect.

For the samples with rectangular superlattices, the resulting modulation amplitude ratio
Vx/Vy ≈ 1.5 for these etched samples is half the one found for gated samples. We will
focus on results from these etched samples first.

7.3.5 Key experimental observations

Resistance traces

Figure 7.9 shows the magnetoresistances measured at 4 K for transport along the two ax-
ial directions of a rectangular superlattice with lithographic periodicities ofa = 136 nm
along the[011] direction andb = 103 nm along the[011] direction of the GaAs crystal
(a : b≈ 1.3). Thex-direction is taken along the longer period and they-direction along
the shorter period of the modulation. The minima of the commensurability oscillations
in the trace for transport along the 136 nm period occur when 2Rc = (ka−1/4)a, where
Rc is the cyclotron radius andka = 1,2,3, . . ., while those in the trace for transport along
the 103 nm period coincide with the condition 2Rc = (kb−1/4)b wherekb = 1,2,3, . . ..
Hence, the location of the minima is identical to those anticipated for a 1D modulated
system with perioda andb respectively [13]. Unique to 2D superlattices of rectangular
shape are the following three striking features of the data:

(1) The amplitude of the commensurability oscillation peaks do not monotonically de-
crease as in 1D-modulated systems. For transport along the longer period (136 nm),
i.e. inρxx, the commensurability oscillation peak between theka = 3 and 4 minima is sig-
nificantly suppressed in amplitude (for instance as compared with its neighboring peak at
lower magnetic field, i.e. the commensurability oscillation peak between theka = 4 and
5 minima).

(2) Similarly, for transport along the shorter period (103 nm), i.e. inρyy, the commen-
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Figure 7.9:
Left panel, middle: Magnetoresistances measured at 4 K for transport along the 136 nm (x-
direction, thick blue) and the 103 nm (y-direction, thin red) period directions of a rectangular
superlattice. Bottom: Magnetoresistancesρxx (blue) andρyy (red) calculated using Ref. [109]
for the parametersVx = 5.6%EF,Vy = 3.9%EF, a ratioa : b= 1.32 andqλmfp = 26, as estimated
in appendix E. The vertical lines indicate the calculatedB values of the commensurability
oscillation minima ofρxx for indiceska (blue dashed) and ofρyy for indiceskb (red dotted).
They coincide with the zeroes of the corresponding effective potential amplitudes[Veff

x ]2 (blue
line) and[Veff

y ]2 (red line) shown, in arbitrary units, at the top as function of 1/(qRc). Right
panels: A, B, C, D, E and F show the contours of the effective potentialVeff

x cos(2πX/a) +
Veff

y cos(2πY/b) at the peaks marked in the left graph by A, B, C, D, E and F respectively. The
contours in these panels correspond to guiding center trajectories in real space.
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surability oscillation peak between thekb = 6 and 7 minima is significantly enhanced in
amplitude (compared with its neighboring peak at higher magnetic field, i.e. the com-
mensurability oscillation peak between thekb = 5 and 6 minima).

(3) The large commensurability oscillation peaks between theka = 2 and 3 minima
and thekb = 2 and 3 minima occur when the magnetoresistance in the other axial di-
rection exhibits a broad commensurability oscillation minimum. This corresponds to an
interchange of the high and low resistance directions between the two axial directions of
the superlattice.

These three characteristics of the commensurability oscillations in rectangular lattices
will be referred to assuppression, enhancement, andswitching.

7.3.6 Comparison with theory

The behavior of the effective potential

All of these features have been predicted by the theory outlined in Ref. [109]. Hence
we follow Ref. [109] and study the behavior of the effective potentialVeff(R) which was
already introduced in section 7.3.3: The most notable property of the effective potential
in the current context is that the magnetic field dependencies ofVeff

x andVeff
y are differ-

ent, as the arguments of the two Bessel functions involve the different periodicitiesa and
b. The Bessel functions entering theX- andY-dependent components of the effective
potential are identical to those Bessel functions describing the transport in 1D modu-
lated systems along the direction of modulation [43,44,108]. The zeroes of these Bessel
functions coincide with the commensurability oscillation minima. Hence, in a 2D modu-
lated system with periodsa andb the commensurability oscillation minima agree exactly
with those of the corresponding 1D systems at the zeroes of[Veff

x ]2 and[Veff
y ]2. For large

arguments of the Bessel functions, these zeroes occur in excellent approximation when
2Rc = (ka−1/4)a and 2Rc = (kb−1/4)b whereka,kb = 1,2,3, . . .. Figure 7.9 depicts
theB-dependence of[Veff

x ]2 and[Veff
y ]2 (uppermost traces, arbitrary units) fora= 136 nm

andb = 103 nm, calculated forVx/Vy = 1.45. The carrier density 4.4×1015 m−2, which
determinesRc, is obtained from the Shubnikov-de Haas (SdH) oscillations. Whereas the
peak values in the traces of|Veff

x |2 and |Veff
y |2 decrease monotonously with decreasing

magnetic field, the peak values of the commensurability oscillations in the experimental
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traces apparently do not. To understand this, we calculatedρxx(B) andρyy(B) for the
same parameter values from the model of Ref. [109] and plotted the results near the bot-
tom of Fig. 7.9. The ratioVx/Vy = 1.45 is chosen in order to obtain for the theoretical
resistance traces an overall appearance similar to the corresponding experimental traces
(of course apart from the SdH oscillations, which are not included in the calculation).
Other values in the range 1.3 . Vx/Vy . 1.7 would also be acceptable and compatible
with estimates given in appendix E.

At the zeroes of the Bessel functions, the effective potential amplitudes[Veff
x ]2 and[Veff

y ]2

drop to zero and these zeroes indeed align with the minima of the commensurability
oscillations observed inρxx andρyy. The phases of the squared effective potential am-
plitudes, plotted as functions ofB near the top of Fig. 7.9, are essentially the same as
those ofρxx andρyy, respectively. As is evident from the plot, the dominance of|Veff

x |
over|Veff

y | changes as a function of the magnetic field. The ratioαV = |Veff
x |/|Veff

y | is the
key to understanding the various features of the commensurability oscillations in ques-
tion (suppression, enhancement and switching) as it controls the shape of the effective
potential, i.e. the distribution of open and closed contours as well as the direction along
which open contours run. Since these contours are the trajectories of the guiding cen-
ters in real space, many open contours in a particular direction implies an enhancement
of the conductivity in this direction or, equivalently, an increase of the resistivity in the
perpendicular direction.

Suppression

In contrast to the peak values of the|Veff
x |2- and|Veff

y |2-traces in the upper part of Fig. 7.9,
the peak values of the measured commensurability oscillations show a non-monotonous
dependence on the magnetic field. For instance, the commensurability oscillation peak in
ρxx (blue curve) between theka = 3 and 4 minima at the magnetic field position with the
label A is much lower than the neighboring peaks at the field values with labels B and E.
A similar reduction of the peak height at A is seen in the corresponding theoretical curve
for ρxx at the bottom of Fig. 7.9. The explanation goes as follows: Near A both the|Veff

x |2
and the|Veff

y |2 traces have local maxima and the deviation of the ratioαV from 1 is not so
large as near B and E, where|Veff

x |2 has a local maximum while|Veff
y |2 is close to a local

minimum. As a consequence, in the cases B and E the effective modulation inx- direction
is much stronger than iny-direction, with many open guiding center trajectories iny-
direction. This results in large, quasi-1D commensurability oscillation peaks inρxx. At A,
on the other hand, the effective potential has 2D character with more closed equipotentials
and the commensurability oscillation peak is suppressed as compared with the 1D case.
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The contour plots of Fig. 7.9A, 7.9B, and 7.9E, which have been calculated for|Veff
y | =

0.60|Veff
x |, |Veff

y |= 0.32|Veff
x |, and|Veff

y |= 0.34|Veff
x |, support this explanation.

Similar arguments apply to the commensurability oscillation peak inρyy (middle red
curve: experiment; bottom red curve: theory) at A, which is lower than that labeled D
between thekb = 5 and 6 minima. At D we have|Veff

x | = 1.07|Veff
y |, so that nearly all

equipotentials are closed (see Fig. 7.9D) and the guiding center contributions to both
ρxx andρyy are suppressed below the corresponding 1D cases. At A, however, we have
open trajectories in they-direction but not in thex-direction, and, as a consequence,
the guiding center contribution toρyy is even smaller than that toρxx, which is already
suppressed compared with its neighboring peaks. This behavior is clearly seen in both
the theoretical and the experimental results.

Another feature, that is evident in the theoretical curve forρyy and less clear but visi-
ble also in the experimental curve, is the asymmetry of the commensurability oscillation
peaks betweenkb = 3 and 4 and betweenkb = 5 and 6. As compared to the corresponding
maxima of|Veff

y |2 in the upper part of Fig. 7.9, the maxima of the theoretical magnetore-
sistance curve are shifted towards the regions with lower values of|Veff

x |2, since the guid-
ing center contribution toρyy is stronger suppressed in field intervals with|Veff

y |2 < |Veff
x |2

than in those with|Veff
x |2 < |Veff

y |2.

Enhancement

The peak of|Veff
y |2 marked as C in Fig. 7.9 corresponds to the commensurability oscil-

lation peak inρyy between thekb = 6 and 7 minima. At this field value|Veff
x |2 nearly

vanishes,αV = 0.05. Fig. 7.9C displays the guiding center trajectories for this com-
mensurability oscillation peak. One sees only open trajectories which run along the
x-direction. This situation is very similar to a 1D modulation iny-direction, with an
1D-like, unsuppressed peak of the guiding center contribution toρyy and no guiding cen-
ter contribution toρxx. Compared with the adjacent peaks inρyy, the peak at position C
appears as enhanced. This effect is present in both the experimental and the theoretical
ρyy traces.
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Switching

So far we have compared commensurability oscillation peaks in theρxx and theρyy curves
only with adjacent peaks in the same curve. It is however also interesting to compare the
curves with each other.

From the experimental traces in Fig. 7.9 one gets the impression that, in general, the
commensurability oscillations inρxx are stronger than those inρyy. We have adapted
potential strengths in the upper part of the figure so that the theoretical curves near the
bottom of Fig. 7.9 reproduce this impression. The effective potential|Veff

x | associated
with the longer axial lattice constant is dominant for most of the magnetic field values.
Hence, at these magnetic fields, open trajectories of the guiding center existexclusively
along the shorter axial lattice constant (y-direction), and the guiding center contribution
to ρxx is considerably larger than that toρyy. The commensurability oscillation peaks for
transport along the shorter axial lattice constant (ρyy) at these magnetic fields are, how-
ever, not entirely absent. As a consequence of the finite mean free path and modulation
strength, a guiding center follows during its lifetime only a fraction of the trajectory and
its velocity inx-direction does not average to zero.

Near the magnetic field values labeled B and E and nearB = 1.3T the dominance of the
commensurability oscillations inρxx is clearly seen. There are, however, alsoB regions
whereρyy is larger thanρxx, e.g., near the positions labeled C and F. At these positions
|Veff

y |2 has a local maximum while|Veff
x |2 becomes very small, so that the equipotential

patterns of the effective potential are governed by open trajectories inx-direction (see
Fig. 7.9C and Fig. 7.9F, which was calculated for|Veff

x |= 0.31|Veff
y |).

As Fig. 7.9E and F show, the open trajectories in these two cases run along the two
orthogonal directions: in they-direction in the first case and in thex-direction in the
second. This corresponds to a complete switching of the guiding center drift direction
between the twoaxial directions of the superlattice and an interchange of the high and
low resistivity directions. All the features discussed so far are in nice agreement with the
theoretical predictions [109].

Limitations of the guiding center model

There are several features of the experimental magnetoresistance traces, which have no
counterpart in the theoretical traces at the bottom of Fig. 7.9, obtained within the simple
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semiclassical guiding center approximation [109]. For instance to reproduce the pro-
nounced SdH oscillations (observed forB ≥ 0.6T), one needs a quantum calculation
based on a modulation-induced Landau band structure, in which the group velocity takes
over the role of the classical guiding center drift velocity. The oscillatory width of Lan-
dau bands yields commensurability oscillations, which appear as a modulation of the
envelope of the SdH oscillations [44, 49]. The superposition of the SdH oscillations
makes it difficult to extract the positions of the commensurability oscillation minima
from the experimental curves. Moreover, near these minima, which we understand as
band-conductivity minima, one expects maxima of the scattering conductivities, related
to DOS maxima [4, 49]. Therefore, near the resistance minima quantum effects may
cause differences between the experimental traces and the theoretical traces in Fig. 7.9.

Also the pronounced positive magnetoresistance at very low magnetic fields and the over-
all decrease of the resistances in the region 0.1T . B. 1.0T are beyond the scope of the
guiding center approach of Ref. [109]. They can be reproduced by classical calculations
based on the full Boltzmann equation [112, 116]. The positive magnetoresistance has
been explained by the motion of electrons on channeled trajectories along minima of the
modulation potential [77, 116]. Even if the guiding center approach seems meaningful
(i.e., in Fig. 7.9 forB& 0.2T), the calculation based on Eq. (7.2) is not always reliable. It
has been pointed out in Ref. [109] that Eq. (7.2) does not correctly describe the guiding
center motion if the effective potential (7.5) vanishes. AtB-values close to thekb = 4 and
5 minima, the effective potentials|Veff

x | and |Veff
y | are both very small and the distance

of the experimental resistivity minima is apparently considerably smaller than the sepa-
ration between the minima in the theoretical curves. At present we do not know whether
this discrepancy could be resolved within the semiclassical approach [e.g., by a more
reliable treatment of the guiding center motion than on the basis of Eq. (7.2)], or whether
it is due to the above-mentioned quantum effects.

Finally we remark that, with decreasingB, the commensurability oscillations of the ex-
perimental traces decay much faster than those of the theoretical traces. As we know from
calculations for 1D superlattices [116–118] as well as for square superlattices [112], this
points towards predominant small-angle scattering caused by finite-range impurity po-
tentials. This is also not included in the approach of Ref. [109].

In view of all these limitations of the simple guiding center approach, we cannot expect a
quantitative agreement between the calculations of Ref. [109] and the measured magne-
toresistivity curves. However, qualitatively all predictions (non-monotonous decrease of
commensurability oscillation amplitudes, suppression, enhancement, and switching) are
confirmed in our experiments.
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7.3.7 Further experiments

Scaling behavior

We have also compared the commensurability oscillations of rectangular superlattices
for three different pairs ofa andb-values, while preserving the ratioa : b≈ 1.3. The
superlattices are 150 by 114 nm, 133 by 101 nm and 119 by 91 nm. The longer periods
were along the[011] direction and the shorter periods were along the[011] direction.
The data are plotted in Fig. 7.10. The magnetic field axis is rescaled as 1/(qRc), where
q = 2π/

√
ab, to take out both the density dependence and the dependence on period.

Becausea : b is the same in each case, similar features can be seen at the same value of
1/(qRc). The three commensurability oscillation minima forka = 5 for instance occur at
the same abscissa value in Fig. 7.10.

The important observation in Fig. 7.10 is related to the previously discussed suppressed
commensurability oscillation peak between theka = 3 and 4 minima. When comparing
the traces obtained on the different superlattices, the suppression is found to be least ef-
fective in the case of the 119 nm period peak and most effective in the case of the 150 nm
period peak. The superlattices were fabricated at the same time and hence the depths
of the etched holes are expected to be nearly the same in all cases. But the modulation
amplitudes are expected to vary. Because of the exponential decay of electric fields with
the distance of the 2D electron system from the heterostructure surface [110], a stronger
modulation is associated with a larger period. The transport mobilities are essentially the
same in all three cases. The data in Fig. 7.10 thus provide evidence of increasing sup-
pression with increasing modulation at a given mobility. This is in agreement with the
theory [109]. From Eq.(7.2), we conclude that the magnitude of the velocity of the guid-
ing center drift is proportional to the gradient|~∇Veff|. Therefore, this velocity increases
with the modulation amplitude. Hence for a given mobility, if the velocity of the guiding
centers is enhanced, more of them will be able to complete closed trajectories, which ren-
ders the suppression more effective. Of course, if the modulation is too large, then this
picture will not hold as then one cannot average the drift velocity over the unperturbed
cyclotron orbit to get the average velocity and Eq.(7.2) loses its validity.

Flattening of the commensurability minima

The data discussed so far were obtained from devices using heterostructure #6-159. De-
vices from heterostructure #6-100 exhibited stronger modulations. Data for transport
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Figure 7.10:
Magnetoresistances measured at 4 K for transport in rectangular superlattices of three different
pairs of lattice constants having the ratio 1.3. Thick lines are for transport along the longer
periods(ρxx), thin lines for transport along the shorter periods(ρyy). The periods are indicated
in the plot. For clarity, the middle and the upper pair of traces have been offset by 30Ω and
by 60Ω, respectively. The three commensurability oscillation minima (inρxx) for ka = 5 occur
at the same dashed vertical line. The commensurability oscillation peaks inρxx marked by
downward arrows betweenka = 3 and 4 are increasingly suppressed with increasing modulation
period.
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Figure 7.11:
Top: Magnetoresistances measured at 4 K for transport along the 136 nm (thick line) and
103 nm (thin line) period of a rectangular superlattice on heterostructure #6-100. The verti-
cal lines mark the calculated magnetic field values of the commensurability oscillation minima
for indiceska andkb. Note that the broad commensurability oscillation minima atka = 2 and
kb = 3 are flattened. Bottom: Magnetotransport calculation using Ref. [109] withVx = 9%EF,
Vy = 7%EF, the ratioa : b = 1.32 andqλmfp = 37.
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Fig. 7.9

Fig. 7.11

Fig. 7.9

Fig. 7.11

Figure 7.12:
The Magnetoresistances of Fig. 7.9 (thin) and Fig. 7.11 (thick) plotted versus 1/(qRc), so com-
mensurability oscillation minima are aligned. Note that the SdH oscillations for the commen-
surability oscillation minima atka = 2 andkb = 2,3 are suppressed for the thick lines (larger
modulation amplitude) as compared to the thin lines.
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along the two axial directions of a 136 nm by 103 nm superlattice measured at 4 K after
a brief illumination are depicted in Fig. 7.11. The 136 nm period was along the[011]
and the 103 nm period was along the[011] direction. As is evident, all the characteristics
of the commensurability oscillations discussed in connection with the data of Fig. 7.9
are present in the data of Fig. 7.11. One additional feature in the data is a flattening
and broadening of the commensurability oscillation minima inρxx andρyy at ka = 2 and
kb = 3, respectively. This is best illustrated in Fig. 7.12, which is directly comparing the
data of Fig. 7.9 (thin line) and Fig. 7.11 (thick line). For sample B (thick line), the SdH
oscillations ofρyy are strongly suppressed near 1/(qRc) ≈ 0.13, and at 1/(qRc) & 0.2,
and those ofρxx are suppressed near 1/(qRc) = 0.15.

This magnetoresistance feature was predicted for relatively high mean free paths (e.g. for
qλmfp = 800 rather than 80; see Fig. 8 of Ref. [109]), and we would expect it to be more
pronounced, if we calculateλmfp from the transport time (this would yieldqλmfp & 300
for the data of Fig. 7.9). The large transport times in our samples result from the predom-
inance of small-angle scattering, which was not considered in Ref. [109]. Since already
small changes of the momentum can lead to trajectories with very different guiding cen-
ters, we should calculateλmfp from the total scattering timeτ0 instead (see appendix
E.2). This reduces theqλmfp values by more than an order of magnitude, and we obtain
qλmfp ∼ 26 and∼ 37 for the data of Fig. 7.9 and Fig. 7.11, respectively. The modulation
amplitudes are, however, much larger for the data of Fig. 7.11. Using the commensurabil-
ity oscillation peaks between theka = 4 and 5 minima and thekb = 6 and 7 minima, and
the Mirlin and Wölfle [117] theory as described in appendix E.2, the potential amplitudes
are estimated to beVx = 10%EF andVy = 6%EF for the data of Fig. 7.11. Nevertheless,
the magnetotransport calculation best reproduces the experimental data of Fig. 7.11 for a
smaller ratioVx/Vy = 1.3 and amplitudesVx = 9% andVy = 7% ofEF . This is still nearly
twice as large as the values for Fig. 7.9. According to Ref. [109], larger modulation and
larger mean free path are complementary within the limits of the guiding center drift
model. Hence, the larger modulation amplitudes enable the observation of this flattening
of the commensurability oscillation minima in Fig. 7.11. This effect should be even more
pronounced in samples with larger scattering times.

Gated samples

We already presented the conclusions drawn from experiments on gated samples in sec-
tion 7.3.4. Now we can discuss these results in more detail:

Using the magnetotransport measurements on gated samples using the lattices in table
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7.1, the ranges of experimental parameters suitable for an optimal check of the theory
were identified. Samples with small superlattice areasa·b≤ (110 nm)2 show oscillations
due to miniband effects at fields as high asB = 0.4 T and with amplitudes comparable
to the amplitude modulation of the commensurability oscillations. In lattices with small
ratiosa : b≤ 1.2, the switching effect was not very pronounced, as confirmed by corre-
sponding simulations. In lattices with large ratiosa : b≥ 1.4, the difference betweenVx

andVy is getting big (Vx/Vy ≈ 3). This is due to the stronger attenuation of a periodical
surface stress with small periodicity compared to one with a larger periodicity. The dif-
ference inVx andVy leads to a strong suppression of the commensurability oscillations for
the shorter lattice period. This suppression is visible inρyy in Fig. 7.13, whereVx/Vy≈ 3.
The switching of high- and low-resistance directions with the magnetic field predicted by
the guiding center theory is visible in this figure only at certain positions such as the one
marked with an arrow. Still, the result of the theory in the bottom part of Fig. 7.13 nicely
reproduces the experimental magnetoresistance trace on top. Only the Shubnikov-de
Haas oscillations found at higher magnetic fields in experiment are naturally not covered
in the semiclassical theory. At even higher ratiosa : b the magnetotransport data is more
difficult to interpret, simply because the modulation potential shape at the position of the
two-dimensional electron gas is not known well enough. Higher Fourier components may
play an important role. They are probably present since the electron beam pattern con-
sists of circular symmetric holes on a rectangular grid. Matched oval holes may remedy
this problem.

7.3.8 Conclusions

In summary, we have investigated the commensurability oscillations in gated and un-
gated rectangular two-dimensional superlattices. The characteristic features of the com-
mensurability oscillations can only be explained by the drift of the guiding center of the
cyclotron motion along contours of a magnetic-field-dependent effective potential as de-
scribed in a recent magnetotransport theory [109]. For transport along the longer period,
the commensurability oscillation peaks for which the asymmetry of the effective poten-
tials is small were suppressed relative to their neighboring commensurability oscillation
peaks at lower magnetic fields. In our systematic study, the suppression was found to
be more effective with increasing modulation amplitudes at a given transport mobility.
For transport along the shorter periods, the commensurability oscillation peaks at which
the effective potentials along the longer periods are small were enhanced relative to their
neighboring commensurability oscillation peaks at higher magnetic fields. A magnetic-
field-dependent switching of high and low resistance directions between the two axial
directions of the superlattices was also observed. Comparison of the data with the the-
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Figure 7.13:
Bottom: Magnetotransport data for a sample with rectangular modulation of 103 nm and
142 nm, mobility 0.8 ·106 cm2/Vs, and electron density 3.27·1015 m−2 Top: The calculated
magnetoresistance. Electron density and lattice periods were extracted from experiment. The
modulation strengths were taken to beVx = 1.5% EF andVy = 4.5% EF. A mean free path
qλmfp = 40 was used.

oretical calculation [109] showed good agreement. For a larger modulation amplitude,
we observed a flattening of commensurability oscillation minima, which was predicted
by the calculation [109]. None of these characteristic features can be explained by ear-
lier perturbative calculations [110, 111] which are valid for weak modulation only. In
particular, the earlier semiclassical and quantum theories predict a monotonic decay of
the commensurability oscillation amplitude with decreasing magnetic field which is not
the case in the data. Finding a quantum mechanical version of the semiclassical calcula-
tion [109] remains as a theoretical challenge.
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7.4 Rotated lattices

In this section, we compare experiments on square superlattices which are oriented along
different directions of the crystalline lattice. This comparison provides further evidence
that the modulation at the position of the two-dimensional electron gas is a consequence
of mechanical stress exerted by the metal gate and the piezoelectric properties of the
GaAs crystal:

The heterostructures used throughout this work are grown on (100) GaAs substrates.
Hall bars are oriented parallel to the{011}-cleavage planes (cf. Fig. 4.1). Except for
this section, all samples are modulated with superlattices oriented along the Hall bar and
cleavage directions. For this section, similar 100 nm square lattices were produced on
the two active areas of a single Hall bar: One of the two superlattices is oriented along
the〈011〉 cleavage directions, the other along the〈001〉 directions (45◦). For the rotated
lattice, the periodically displaced gate produces hardly any modulation (cf. Fig. 7.14).
The remaining weak oscillation can be interpreted as commensurability oscillations due
to the diagonal perioda′ = 103/

√
2nm= 73nm of the〈001〉 lattice in the〈011〉 direc-

tion. This observation can be understood as follows: In GaAs, the components of the
piezoelectric tensor in the〈001〉-directions vanish, whereas they are large in the〈011〉-
directions [119]. The metallic gate and patterned PMMA layer underneath act as periodic
stressors, but only the stress in the〈011〉-direction produces a periodic electric field. This
fits well with calculations of stress induced modulation potentials [120]. Further evidence
comes from experiments on superlattices fabricated by etching and subsequently remov-
ing the patterned e-beam resist layer: For the etched samples both orientations of the
lattice produce similar modulation. There, the modulation is caused by local depletion
instead. As it does not rely on the piezoelectric effect, the orientation is irrelevant.
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Figure 7.14:
Longitudinal resistances measured at the same time using a Hall bar with two active regions
and square lattices oriented along the〈011〉 and 〈001〉 directions of the GaAs crystal. The
flat band conditions are marked with triangles for modulations with periodicities 103 nm and
103/

√
2 nm= 73 nm. Modulation effects are only clearly visible for the pattern oriented along

〈011〉.
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8 Conclusion

In this work, we studied 2D electron systems in a 2D periodically modulated electric
potential by means of magnetotransport measurements. Such experiments have been per-
formed for more than a decade, using GaAs/AlGaAs heterostructures, in the search for
effects caused by an artificial band structure and due to the competition of characteris-
tic length scales in the system. Here we present samples with modulations of 100 nm
periodicity and with the highest reported mean free path to date, thus enabling the mea-
surement of previously-unobserved quantum mechanical phenomena in 2D modulated
electron systems.

In strong magnetic fields (̄hωc �V0), the 2D electron system is Landau quantized. This
quantization is manifested as Shubnikov-de Haas oscillations in the longitudinal mag-
netoresistance and as quantized plateaus in the Hall conductance. The additional 2D
modulation broadens the discrete Landau levels into bands, which are further subdivided
into a certain number of subbands and minigaps. This subdivision is governed by the
rational number of flux quanta through a unit cell of the periodic modulation,Φ/Φ0.
The Hofstadter butterfly energy spectrum depicts this arrangement of minibands for a
range ofΦ/Φ0. Minigaps should be detectable as additional minima in Shubnikov-de
Haas peaks, whereas the Hall conductance should be quantized to values given by the
integer solutions to an equation first studied by Diophantus of Alexandria around 250
AD. Recently, definite precursors of this behavior for the primary gaps in the Hofstadter
spectrum were demonstrated in a regime where coupling between adjacent Landau bands
can be ignored [22]. Due to advances in sample quality, our experiments could go fur-
ther: we have observed the quantization of the Hall conductance for the largest minigaps
and have been able to disclose higher order minigaps in the spectrum. The observa-
tion of smaller minigaps is the first indication of the fractal properties of the Hofstadter
spectrum. Finally, distortions and rearrangements of subbands are observed within the
Hofstadter spectrum. We can ascribe these to Landau band coupling by comparing our
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magnetotransport data to theory [23].

For an even more detailed analysis, a calculation of the Hall conductance for the Hofs-
tadter system in the nearly free electron case is essential. The present work has already
motivated such a calculation for the first Landau band [95], but further work is needed
for the higher Landau bands relevant to the experiments.

For weak magnetic fields (̄hωc � V0), the artificial band structure is the key to under-
standing the magnetotransport experiments: the artificial 2D crystal, which is defined by
the periodic modulation potential, creates energy gaps at the Brillouin zone boundaries.
Both closed and open Fermi contours appear. Electrons move on these constant energy
contours ink-space and closed orbits should manifest themselves in magnetotransport as
1/B-periodic oscillations. Due to the finite magnetic field, electrons can tunnel across
gaps at the Brillouin zone boundaries and larger closed electron paths should emerge. A
first closed path characteristic of a 2D artificial modulation was reported recently [8]. We
find a range of additional 1/B-periodic oscillations which also correspond to such closed
orbits. The shapes of these orbits ink-space are discovered in the direct comparison of a
density dependent magnetotransport study with a Monte Carlo simulation devised in this
work. This simulation correctly predicts the relative probability of the closed orbits ob-
served in our experiment. Moreover, quantum interference of electron paths which share
the same starting and ending point should also give rise to 1/B-periodic oscillations pro-
portional to the enclosed area in k-space. While theory easily finds the most probable
interferences for a 1D modulation [14], this becomes an elaborate task for a 2D modula-
tion. We observe and explain, for the first time, quantum interferences characteristic for a
2D artificial modulation. The contributing paths of the large set of quantum interferences
found are extracted with the help of a second Monte Carlo simulation. This simulation
keeps track of the phase difference which the electron wave function picks up on pairs of
paths.

Three of these novel quantum interferences are only present if the modulation potential
has second-order Fourier components. Therefore, a Lieb lattice modulation was used
in order to introduce additional Fourier components. Additional quantum interferences
were observed as a result. Furthermore, two types of unexplained features are encoun-
tered in comparing experiment and theory: we find an oscillation which is present only
for certain electron density ranges and which has no counterpart in the Monte Carlo
simulations. For a modulated sample with a smaller lattice period, two oscillations are
suppressed in the vicinity of their crossing. To understand the origin of these features,
further theoretical work is needed. Also, experiments with different periodicities or elec-
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tron densities may facilitate the observation of crossings of other oscillations.

Finally, we further exploit the possibility of manipulating the properties of the artificial
crystal by modifying the geometry of the modulation potential. We are able to verify
experimentally a recent prediction for rectangularly modulated samples [109]: in a 1D
modulation, commensurability oscillations arise [11,12]. They are a consequence of the
competition between the magnetic length and modulation period. By using different arti-
ficial lattice periods in the two spatial directions, we observe an intriguing non-monotonic
dependence of the commensurability oscillation amplitudes on the applied magnetic field.
Such a dependence is not known for 1D modulations or square artificial lattices. This
particular study might be useful for 2D modulated samples where the two directions are
modulated by different methods, as in recent experiment in the group of Prof. D. Weiss
in which atomic force microscope oxidization is combined with cleaved-edge overgrown
samples. In such samples, a non-symmetrical modulation is unavoidable.
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9 Deutsche Zusammenfassung

Man stelle sich einen k̈unstlichen Kristall vor, in dem alle räumlichen Freiheitsgrade pe-
riodisch moduliert sind, wie in einem natürlichen Kristall, allerdings mit dem Vorteil,
daß die Periodiziẗat und Geometrie dieser Modulation nun frei wählbar sind. Da die
Gittergeometrie die Basis für viele Effekte in der Festk̈orperphysik ist, erm̈oglicht ein
solcher k̈unstlicher Kristall das Studium einer ganzen Klasse physikalischer Effekte,
die mit naẗurlichen Kristallen nur schwer oder gar nicht zugänglich ẅaren. Tats̈achlich
läßt sich solch ein k̈unstlicher Kristall mit 2D-Elektronensystemen auf der Basis von
GaAs/AlGaAs Heterostrukturen, auf denen ein periodisches 2D elektrisches Potential
aufgepr̈agt ist [3–5], realisieren. Zumal die Herstellung von künstlichen 3D-Kristallen
in entsprechender Qualität noch nicht m̈oglich ist. Entscheidend für die Beobach-
tung quantenmechanischer Effekte ist dabei eine hohe Probenqualität. Hier konnte
die vorliegende Arbeit auf der Basis von hochmobilen GaAs/AlGaAs Heterostrukturen
durch optimiertes Aufbringen eines 100 nm periodisch strukturierten metallischen Gates
wesentliche Fortschritte erzielen: bislang unerreicht hohe mittlere freie Weglängen wur-
den realisiert.

Ein zu erwartender Effekt beim künstlichen Kristall ist die Ausbildung einerkünstlichen
Bandstruktur infolge der verkleinerten Brillouinzone und der Lücken, die an den neuen
Brillouinzonengrenzen entstehen. Da die Bandstruktur die Bewegung von Elektronen im
Kristall festlegt, kann man dies nutzen, um Transporteigenschaften und optische Eigen-
schaften den Anforderungen entsprechend anzupassen. Effekte dieser künstlichen Band-
struktur k̈onnen mit Hilfe von Magnetotransportexperimenten untersucht werden: In
einem Magnetfeld bewegen sich die am Transport beteiligten Elektronen auf Fermikon-
turen imk-Raum. Elektronen aufgeschlossenenFermikonturen erzeugen Oszillationen
im Magnetowiderstand, deren Periodizität charakteristisch ist für die vom Elektron um-
laufene Fl̈ache [6]. In unmodulierten Proben entstehen Shubnikov-de Haas Oszillatio-
nen [7]. Diese entsprechen der kreisförmigen Fermikontur eines freien Elektrons. Os-

143



9 Deutsche Zusammenfassung

zillationen aufgrund der kleineren geschlossenen Fermikonturen einer künstlichen Band-
struktur sind jedoch im Magnetotransport nicht leicht nachzuweisen. Denn in einem
endlichen Magnetfeld k̈onnen Elektronen im sogenannten magnetischen Durchbruch
über die L̈ucken an den Brillouinzonengrenzen tunneln. Da so Teile von Fermikonturen
verschiedener besetzter Minibänder verkn̈upft werden, k̈onnen gr̈oßere geschlossene
Elektronenorbits entstehen. Für eine zweidimensionale künstliche Modulation konnte
ein solcher Orbit erst vor kurzem im Magnetotransportexperiment beobachtet werden [8].
Die vorliegenden Arbeit nahm diese Suche auf und konnte mit Hilfe der verbesserten
Proben eine ganze Reihe von derartigen geschlossenen Orbits nachweisen, was Hoffnung
auf die Realisierung einer künstlichen Bandstruktur nährt. Die Formen dieser Orbits im
k-Raum wurden mit einer in dieser Arbeit entwickelten Monte-Carlo-Simulation im di-
rekten Vergleich mit den Magnetotransportexperimenten gefunden. Diese Simulation
sagt auch die relativen Wahrscheinlichkeiten der nachgewiesenen geschlossenen Orbits
voraus.

Ein anderer, bis jetzt unerforschter, quantenmechanischer Effekt in künstlichen 2D-
Kristallen ist dieQuanteninterferenz einer einzelnen Elektronenwellenfunktion, die
zwei unterschiedliche Pfade durchlaufen hat. In der Festkörperphysik werden solche
Pḧanomene bereits mit mesoskopischen, ringförmigen Aharonov-Bohm Interferometern
untersucht [9]. Dort sind die interferierenden Elektronenpfade und damit auch die von
ihnen umschlossene Fläche im Ortsraum festgelegt. Der Phasenunterschied, den die
Elektronenwellenfunktion nach dem Durchlaufen der beiden Pfade aufweist,ändert sich
linear mit dem angelegten MagnetfeldB. Dies f̈uhrt zu B-periodischen Oszillationen
im Magnetotransport. K̈onnte man solch ein Interferometer auch im reziproken Raum
konstruieren? Dieses Interferometer müßte seine Gr̈oße im Ortsraum mit 1/B ändern,
um im reziproken Raum konstant zu bleiben. 1/B-periodische Oszillationen im Magne-
towiderstand ẅaren die Folge. Genau solch ein System wurde von Stark und Friedberg
gefunden [10]. Sie konnten 1/B-periodische Magnetowiderstandsoszillationen in Mag-
nesium messen, die auf eine Quanteninterferenz zurückzuf̈uhren sind. Durch Betrach-
tung der Fermifl̈achen von Magnesium machten Sie interferierenden Pfade aus, die für
die beobachteten Oszillationen verantwortlich sind. Diese Pfade sind durch magnetis-
chen Durchbrucḧuber zwei L̈ucken, die verschieden groß sind und auf verschiedenen
Brillouinzonengrenzen liegen, schwach gekoppelt. Eine einfachere Interferenz als die
von Stark und Friedberg wurde für künstlich 1D-modulierte Proben beobachtet [11–13],
jedoch zun̈achst nur durch die modulationsinduzierte Landaulevelverbreiterung erklärt.
Erst in jüngster Zeit wurde erkannt, daß diese Messungen auch durch eine Interferenz
im k-Raum erkl̈arbar sind [14]. Allerdings erzeugt die 1D-Modulation nur in einer
k-Vektorrichtung Energielücken. Die m̈oglichen Quanteninterferenzen sind deshalb
beschr̈ankt auf Pfade, die durch Tunnelnüber L̈ucken gekoppelt sind, welche dieselbe
Größe haben und auf denselben Brillouinzonengrenzen liegen. Aufgrund dieser Ein-
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schr̈ankung sind die an der Interferenz beteiligten Pfade leicht zu finden. In der vor-
liegenden Arbeit wurden nun erstmals Quanteninterferenzen, die für ein k̈unstliches 2D-
Kristall charakteristisch sind, beobachtet und erklärt: Nachgewiesen wurden neuartige
Quanteninterferenzen von Pfaden, dieüber zwei L̈ucken von verschiedener Größe und
Position imk-Raum koppeln. Zwar gibt es bei der von Stark und Friedberg vorgestellten
Interferenz in Magnesium auch eine derartige Kopplung, aber die in der vorliegenden Ar-
beit gefundenen Tunnelprozesse in den Interferometerarmen sind nicht vorhanden. Dies
hängt zusammen mit der verkleinerten Brillouinzone des künstlichen Kristalls im Vergle-
ich zu einem naẗurlichen Kristall und der dadurch bedingten großen Anzahl von Lücken
im k-Raum. Um aus der großen Menge möglicher Interferometer die wahrscheinlichsten
herauszufiltern, wurde in dieser Arbeit eine weitere Monte-Carlo-Simulation entwick-
elt. Auch ihr Ergebnis stimmt mit dem experimentellen Daten weitgehendüberein. Mit
Hilfe dieser Simulation kann die detaillierte Bandstruktur bestimmt werden. Sie eröffnet
sogar die M̈oglichkeit, Interferometer imk-Raum zu entwerfen, indem das notwendige
künstliche Modulationspotential im Ortsraum der Probe aufgeprägt wird.

Drei der neu gefundenen Quanteninterferenzen benötigen Fourierkomponenten höherer
Ordnung im Modulationspotential. Diese Einsicht legt nahe, eine Lieb-Gitter Modula-
tion zu verwenden, bei der weitere Fourierkomponenten zu erwarten sind. So wurden
zus̈atzliche Quanteninterferenzen für diesen Fall gefunden. Die wenigen verbleibenden
Differenzen zwischen Experiment und Simulation könnten durch einëuber die hier ver-
wendete N̈aherung hinausgehende Theorie erklärt werden. Dies ẅurde bedeuten, nicht
nur einzelne geschlossene Orbits und Paare von Pfaden zu betrachten, sondern das Wech-
selspiel aller Pfade zu berechnen. Ein derartiger Vorschlag von Pippard [72] hat sich
jedoch bis jetzt f̈ur eine 2D-Modulation als undurchführbar erwiesen.

Ein künstliches Kristall birgt neben der künstlichen Bandstruktur und ihrer Konsequen-
zen weiteres Potential zu vielversprechenden quantenmechanischen Effekten, wie dem
Hofstadter Schmetterlingsspektrum, das schon seit einem halben Jahrhundert theo-
retisch erforscht wird [15–18] und dessen Selbstähnlichkeit von Hofstadter 1976 demon-
striert wurde [19]. Der Schmetterling ist die grafische Darstellung des fraktalen En-
ergiespektrums eines periodischen 2D-Elektronensystems im externen Magnetfeld. Er
wird durch die Konkurrenz von zwei charakteristischen Flächenskalen erzeugt: Erstens
die Fl̈ache, die genau ein FlußquantΦ0 = h/e entḧalt und zweitens die Einheitszelle
des k̈unstlichen Kristalls. Leider sind die Bedingungen für den Hofstadter Schmetterling
sehr streng: Der magnetische Fluß durch eine Einheitszelle muß von der Größenordnung
eines Flußquants sein. Dies entspricht einem MagnetfeldB > 60000T f̈ur typische Hal-
bleitergitter. Magnetfelder dieser Größe sind mit heutigen Anlagen nicht zu erreichen.
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Eine Strategie war aus diesem Grund, künstlicheÜbergitter zu verwenden, die eine deut-
lich größere Einheitszelle haben, so daß der Schmetterling bei gemäßigten Feldern von
B ≈ 1T beobachtbar wird. Die in dieser Arbeit dem entsprechend untersuchte Situa-
tion kommt dem “nearly free electron” Grenzfall eines sehr schwachen Modulationspo-
tentials nahe, das auf ein Landau-quantisiertes Elektronensystem wirkt [17, 20]. Nur
am Rande sei hier erẅahnt, daß Hofstadter ursprünglich den entgegengesetzten Gren-
zfall eines “tight binding” Elektronensystems in einem relativ schwachen Magnetfeld
zu Grunde legte. Es kann jedoch gezeigt werden, daß beide Grenzfälle schließlich
auf das gleiche Energiespektrum hinauslaufen [17]. Im “nearly free electron” Grenz-
fall verbreitert sich jedes Landau-Niveau proportional zur Stärke des Modulationspoten-
tials und ist in Minib̈ander nach Vorgabe des Hofstadter Spektrums unterteilt. Diese
Unterteilung in Minib̈ander wird von der rationalen Anzahl Flußquanten pro Einheit-
szelle der periodischen Modulation,Φ/Φ0, bestimmt. Minigaps sollten als zusätzliche
Minima in Shubnikov-de Haas Maxima sichtbar werden, während die Hall-Leitf̈ahigkeit
quantisierte Werte annimmt, die durch die ganzzahligen Lösungen einer Gleichung mit
mehreren Variablen gegeben sind. Diese Gleichung wurde von Diophant von Alexan-
drien um 250 v. Chr. aufgestellt. Jüngst sind eindeutige Vorboten dieser Merkmale im
Magnetotransport für die gr̈oßten L̈ucken im Hofstadter Spektrum nachgewiesen wor-
den in einem Bereich, in dem Kopplung von Landaubändern vernachlässigbar ist [22].
Die vorliegende Arbeit geht einen Schritt weiter und zeigt für die gr̈oßten Minigaps
die Quantisierung der Hall-Leitfähigkeit und kann Minigaps höherer Ordnung im Spek-
trum nachweisen. Die Beobachtung von Minigaps höherer Ordnung ist das erste In-
diz für die fraktale Eigenschaft des Hofstadter Spektrums. Das oben angenommene
ungesẗorte Spektrum ist jedoch geringfügig idealisiert: Tats̈achlich spielt bei niedrigen
Magnetfeldern Landaubandkopplung eine Rolle und kann das beobachtete Spektrum le-
icht verzerren oder sogar umordnen [23]. Die vorliegende Arbeit kann dies aufgrund der
oben erẅahnten Probenverbesserungen experimentell nachweisen und hat damit den bis
jetzt unerkundeten Bereicḧuber den “nearly free electron”-Grenzfall hinaus untersuchen
können.

Schließlich wurde die M̈oglichkeit, die Geometrie des künstlichen Kristalls zu ẅahlen,
weiter ausgenutzt: Es ist in dieser Arbeit möglich geworden, eine k̈urzlich gemachte
Voraussage f̈ur rechteckig modulierte Proben [109] experimentell zu bestätigen: In 1D-
modulierten Proben entstehen Kommensurabilitätsoszillationen [11, 12]. Sie entstehen
aufgrund der Konkurrenz zwischen der magnetischen Länge und der Modulationsperi-
ode. Indem die vorliegende Arbeit die künstlichen Gitterperioden in den beiden Raum-
richtungen unterschiedlich ẅahlt, kann ein interessantes, nichtmonotones Verhalten der
Amplitude der Kommensurabilitätsoszillationen vom Magnetfeld nachgewiesen werden.
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Solch eine Abḧangigkeit ist bei 1D-Modulationen oder quadratischen künstlichen Gittern
nicht vorhanden.

Zusammenfassendes Leitmotiv für den Aufbau dieser Arbeit ist es, die Kluft zwischen
Theorie und Experiment durch eng geführte Vergleiche und direkte Gegenüberstellungen
zu schließen. Aus diesem Grund werden in allen Hauptabbildungen die experimentellen
Daten direkt mit den theoretischen Berechnungen verglichen. Basierend auf diesem
Ineinandergreifen von Experiment und Theorie und der dabei sichtbar gewordenen
grunds̈atzlichenÜbereinstimmung sind die Kernaussagen dieser Arbeit erst möglich
geworden.

Diese Arbeit gliedert sich daher wie folgt:

• In Kapitel 2 werden die Eigenschaften eines unmodulierten zweidimensionalen
Elektronensystems mit Berücksichtigung des Quanten Hall Effekts eingeführt.

• In Kapitel 3werden die Grundlagen von 1D- und 2D-modulierten 2D-Elektronen-
systemen er̈ortert: Die Konkurrenz zweier charakteristischer Längenskalen, der
Modulationsperiode und der magnetischen Länge, f̈uhren zu semiklassischen
Kommensurabiliẗatsoszillationen im longitudinalen Magnetowiderstand von 1D-
modulierten Proben. Im Grenzfall eines starken Magnetfeldes und einer 2D-
Modulation f̈uhrt diese Konkurrenz zu einem quantenmechanischen Phänomen:
dem Hofstadter Schmetterlingsspektrum. Sein Einfluß auf Magnetotransport-
Messungen wird herausgestellt, insbesondere auf die quantisierte Hall-Leitfähig-
keit. Für den Grenzfall eines schwachen Magnetfeldes wird bei der durch
künstliche Modulation erzeugten Minibandstruktur angesetzt und im Anschluß die
Fermikonturen und ihrëAnderung aufgrund des magnetischen Durchbruchs disku-
tiert. Es wird beschrieben, wie sich geschlossene Elektronenorbits im Magneto-
transport manifestieren.

• In Kapitel 4wird der optimierte Prozess zur Probenherstellung und die verwendete
Meßtechnik vorgestellt.

• In Kapitel 5 wird das fraktale Hofstadter Schmetterlingsspektrum mittels der quan-
tisierten Hall-Leitf̈ahigkeit experimentell nachgewiesen. Die theoretisch vorherge-
sagte Umordnung und Deformierung des Spektrums infolge von Landaubandkop-
plung wird in Messungen bestätigt.

• In Kapitel 6wird die Gruppe der wahrscheinlichsten geschlossenen Elektronenor-
bits ermittelt und im Experiment nachgewiesen. Erstmals werden Quanteninter-
ferenzen, die charakteristisch für ein k̈unstliches 2D-Kristall sind, gemessen und
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quantitativ erkl̈art. Dabei werden Fourier-transformierte Magnetotransportdaten,
die bei verschiedenen Elektronendichten gewonnen wurden, genutzt, um Oszilla-
tionen im Vergleich mit hierf̈ur entwickelten Monte-Carlo-Simulationen zu identi-
fizieren.

• In Kapitel 7wird die Gittergeometrie variiert: Sowohl eine kleinere Gitterperiode
als auch ein Lieb-Gitter werden im Hinblick auf Quanteninterferenzen untersucht.
Ein unerwartete “vermiedene Kreuzung” von zwei Oszillationen wird beobachtet.
Der Einfluß der Fourierkomponenten des Modulationspotentials auf die Quanten-
interferenzen wird bestätigt; neue Interferenzen werden gefunden.

Im zweiten Teil wird die j̈ungste Voraussage für rechteckige Gitter im Experiment
besẗatigt: Es wird eine charakteristische nichtmonotone Abhängigkeit der Ampli-
tude der Kommensurabilitätsoszillationen vom Magnetfeld gefunden, die für 1D-
und quadratische 2D-Modulationen nicht existiert.

• Die Arbeit schließt mit einer Zusammenfassung imKapitel 8.

• In den Anḧangen werden Details der Probenherstellung, Meßverfahren und
Auswertung gegeben.
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A Appendix

A The fast Fourier Transform

For the analysis presented in chapter 6 each magnetoresistance traceρxx(B) is Fourier
transformed. To unveil the low frequencies of the novel quantum oscillations in the
Fourier transform, the following steps are necessary:

For each measured magnetic field trace only data in the magnetic field range 0.04 T<
B < 1.1 T is used for the fast Fourier transform to avoid influence of the positive magne-
toresistance aroundB= 0 T. Then the data is splined usingN = 214 points on an inverted
magnetic field axis, since the Fourier transform algorithm is most efficient with input
data dimensions that are a power of 2 [121]. The spline is multiplied with the Hanning
function

Han(t) =
1
2
− 1

2
cos
(

2π
t
N

)
(A.1)

to reduce leakage and at the same time avoid excessive broadening in the frequency do-
main [122]. Leakage is inherent in the discrete Fourier transform due to the unavoidable
truncation of the input data. Truncation results in a sharp discontinuity and leads to side-
lobes in the frequency domain. Using the Hanning as a truncation function removes the
discontinuities. To avoid zero frequency contributions in the Fourier transform, the sum
over the magnetoresistivities∑ρxx(B)Han(1/B)∆(1/B) should be zero. This is achieved
by subtracting a constantc from eachρxx value. This constant is given by

∑(ρxx(B)−c)Han(1/B)∆1/B = 0

⇔ ∑ρxx(B)Han(1/B) = c∑Han(1/B)

⇔ c = ∑ρxx(B)Han(1/B)
∑Han(1/B)

. (A.2)

The result is seen in the middle row (b,e) of Fig. A.1. It is padded with(M−1) ·N = (24−
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Figure A.1:
(a) Magnetotransport measurement at an electron density of 4.5 · 1015 m−2. (b) Conversion
of the raw data for the Fast Fourier transformation. (d,e) Same for lower electron density of
3 · 1015 m−2. Right: Color plot of log|FFT| for a large set of densities. (c,f) The Fourier
transformations of b) and e). Peaks associated with oscillations of the same origin are marked
for clarity.

1) ·214 zeroes. This padding yields an interpolated Fourier transform of length 218 [123].
This amount of data points is necessary to provide sufficient resolution for the final plot,
which has again an inverse abscissa(∆1/B)−1. The end result is a color plot of the natural
logarithm of the absolute value of the complex Fourier transform log(|FFT(Han(ρxx−
c))|), as seen in Fig. A.1. These are presented in chapter 6.

B Electron beam lithography

Two lithography systems produced the lattice patterns needed in this work (cf. table A.1):

For the square lattices used in chapters 5 and 6, a high reproducibility was needed to opti-
mize the subsequent evaporation steps. These patterns were produced in the “Mikrostruk-
turlabor” of Prof. H. Schweizer at the University of Stuttgart by Mrs. H. Gräbeldinger us-
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B Electron beam lithography

Electron beam Acceleration Resist Samples used
lithography system voltage thickness in chapters

Jeol IBX5DII (Univ. Stuttgart) 50 kV 200 nm 5,6
Leica EBL100-03 (MPI Stuttgart) 95 kV 90 nm 7

Table A.1: The two electron beam systems.

ing a Jeol lithography system. In the Jeol system, the samples are pressed flush with the
resist-covered surface onto the backside of a metal sample holder. This sample holder has
an aperture through which the exposure takes place. This ensures an optimal perpendicu-
lar alignment of the sample surface with the electron beam gun. The sample surface can
be held in focus even for a deflected electron beam. Additionally, the sample is moved
laterally so that each writing field is centered under the electron beam gun when the ex-
posure takes place. Hence, all patterns exposed during one run share the same writing
quality.

In the Leica system used by Mrs. U. Waizmann at the Max-Planck Institute for Solid
State Research in Stuttgart, the samples lie with the backside on an immobile sample
holder. An irregular sample backside or dirt between the sample and its holder will
translate into a non-perpendicular alignment of the sample surface and the electron beam
gun. The change in the distance between the sample and the electron beam gun across
the writing fields can cause a change in beam spot size and hence in the quality of the
written patterns. Hence, these samples are not ideal to optimize subsequent processing
steps. Still, using the already optimized gate production steps with adapted gate material
thicknesses and angles, all samples with non-square geometries, as presented in chapter
7, were produced using patterns exposed by this system.

Since the two lithography systems use different acceleration voltages, the damage done
by electrons entering the heterostructure during exposure was studied. The effect of the
electron beam lithography on the mobility is less than 10% and no systematic dependence
on the two different acceleration voltages is observed.

Since the total exposure time is proportional to the area being written, only the parts
important for the measurement around the Hall bar and voltage probes are exposed. To
be insensitive to alignment errors in the lithography, the pattern area was chosen to be
80 µm wide while the Hall bar width is only 20µm.
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C The self-adapting illumination process

To obtain magnetotransport measurements at a continuous range of electron densities, a
self-adapting illumination process was devised. This process is illustrated in Fig. A.2.
In the beginning, an LED current variable is initialized toION = 10−7 A. The gate volt-
age isVG = 0.05 V. It is lowered to zero during illumination. When the Hall voltage
Vxy|B=−0.05T settles, the electron density is estimated and a magnetotransport measure-
ment is initiated if the desired density is reached or if the sample was already illuminated
10 times. In both cases, the LED currentION for the next illumination is decreased to
avoid large increases in electron density. If both conditions are not met, the LED current
ION is increased by 10%. The program stops when the LED current exceeds 100 mA.

Compared to manual illumination, much higher maximal densities are reached: Small
LED currents are used repetitively over a long period of time to reach the target density,
so excessive heating is avoided.
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C The self-adapting illumination process

Figure A.2:
The automated LED illumination and measurement flowchart. The electron density is deter-
mined from a measurement of the Hall voltage atB =−0.05 T.
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D Fourier components important for the orbits and
quantum interferences

To calculate the round-trip probability of a closed trajectory, we need the number of times
ntunnel

q an electron on this trajectory has to tunnel over a gap. Here,q = Ka · (nx,ny) is
the reciprocal lattice vector perpendicular to the Brillouin zone boundary the gap lies
on. Gaps open up only for Fourier componentsV±q. Also the non-tunnel event counts
nnon−tunnel

q are needed. Bothntunnel
q andnnon−tunnel

q for the closed orbits of Fig. 6.6 are
listed in table A.2. The upper part of the table is for an electron density ofns = 4.24·
1011cm−2, the lower part forns = 2.9·1011cm−2. For the numbers in brackets,VKa·(nx,ny)
is zero, no gap is present and the electron does not need to tunnel.

Closed Non-tunnel Tunnel
orbit (1,0) (1,1) (1,0) (1,1) (2,0) (2,1) (2,2)

A 4 8 (8) (8) (8)
B 2 4 8 (8) (12) (8)
C 4 4 8 (8) (16) (8)
D 8 8 (8) (16) (8)
E 6 4 8 (8) (20) (8)
F 2 8 8 (8) (20) (8)
G 4 8 8 (8) (24) (8)
A 4 8 (8) (8)
B 2 4 8 (8) (12) (4)
C 4 4 8 (8) (16) (8)
D 8 8 (8) (16) (8)
E 6 4 8 (8) (20) (12)
F 2 8 8 (8) (20) (12)
G 4 8 8 (8) (24) (16)

Table A.2:
The non-tunnel counts,nnon−tunnel

q , and tunnel counts,ntunnel
q , for the closed orbits (A-G) of

Fig. 6.6. The reciprocal lattice vectorsq = Ka · (nx,ny) are given in units ofKa as column title.
The upper half of the table is for an electron density ofns = 4.24·1011cm−2, the lower half for
ns = 2.9 ·1011cm−2. For the numbers in brackets, the Fourier componentsVKa·(nx,ny) are zero,
so no gap is present and the tunneling probability is 1.

Table A.3 lists the same counts for the quantum interferences (a-m) of Fig. 6.10. Here, ad-
ditionally the positions of the interference points are given. Quantum interferences (a,b,c)
include non-tunnel events or interference points on the second Brillouin zone boundary,
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Quantum Non-tunnel Tunnel Interference
interference (1,0) (1,1) (1,0) (1,1) (2,0) (2,1) (2,2) (1,0) (1,1)

a 1 2 2 (4) (6) (4) 2
b 1 2 4 (4) (10) (4) 2
c 1 3 5 (6) (10) (6) 1 1
d 2 2 8 (8) (12) (8) 2
e 6 8 (8) (16) (8) 2
f 2 6 8 (8) (20) (8) 2
g 4 6 8 (8) (24) (8) 2
h 4 2 8 (8) (16) (8) 2
i 2 6 8 (8) (20) (8) 2
j 6 2 8 (8) (20) (8) 2
k 2 6 12 (12) (20) (12) 2
l 4 6 12 (12) (24) (12) 2
m 2 8 12 (12) (24) (12) 2

Table A.3:
The non-tunnel counts,nnon−tunnel

q , tunnel counts,ntunnel
q , and interference positions for the

quantum interferences (a-m) of Fig. 6.10. The electron density isns = 4.24·1011cm−2. The
reciprocal lattice vectorsq = Ka · (nx,ny) are given in units ofKa as column title. For the
numbers in brackets, the Fourier componentsVKa·(nx,ny) are zero, so no gap is present and the
tunneling probability is 1.

corresponding to aq = Ka · (1,1). When the Fourier componentVKa·(1,1) is zero, the total
probability of all three quantum interferences goes to zero.
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E Estimate of modulation amplitudes in rectangular
lattices

E.1 From the surface modulation

Since in Fig. 7.9 the commensurability oscillations ofρxx are apparently stronger than
those ofρyy, the amplitude of the potential modulation inx direction should be larger
than that of the potential modulation iny direction. To obtain a crude estimate, [124]
argues as follows.

The GaAs surface of the heterostructure is assumed to be an equipotential, due to the
well-known mid-gap pinning of the Fermi level by surface states. Etching the holes into
the surface produces a periodically corrugated surface of constant potential. We crudely
simulate this with a periodic potential

V(x,y) = VB + ∑
n,m

V0e−[(x−na)2+(y−mb)2]/σ2
hl (E.3)

in the z = 0-plane (top surface). HereVB ≈ 0.7eV describes the Schottky barrier and
σhl ≈ 25nm is the radius of the etched holes. The magnitude of this periodic component
of the potentialV0 is estimated from the depthd ≈ 10nm of the holes and the distance
D ≈ 40nm between the surface and the 2D electron system asV0 ∼ VBd/D. Fourier
expansion of the potential (E.3) yields for the Fourier coefficients of the external potential
in the planez= D of the 2D electron system

Vq ≈V0(πσ
2
hl/ab)exp(−qD−q2

σ
2
hl/4) , (E.4)

with q = |q| andq = (nxKa,nyKb). Considering only the fundamental harmonics with
(nx =±1,ny = 0) and(nx = 0,ny =±1), we obtain for the relevant modulation potential
Eq. (7.1) with

Vx = 2
[
Vqx/ε(qx)

]
, Vy = 2

[
Vqy/ε(qy)

]
, (E.5)

whereqx = (Ka,0), qy = (0,Kb), and the dielectric constantε(q) = 1+ 2/(a?
Bq). Here

a?
B ≈ 10nm is the effective Bohr radius. It describes the static screening by the 2D elec-

tron system (for zero and smallB). Putting in numbers, we obtainVx ∼ 1.0meV∼
7%EF andVy ∼ 0.6meV∼ 4%EF , with EF ≈ 15.7meV for a 2D electron density of
4.4 · 1011cm−2. These modulation strengths are of a reasonable order of magnitude,
although the ratioVx/Vy ∼ 1.7 is somewhat larger than that used in the discussion of
Fig. 7.9. The weak points of this estimate are the crude ansatz of Eq. (E.3) and the ne-
glect of the effect of the “short illumination” of the sample at 4K, which may change the
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charge distribution in the Si-doped layer and, thereby, the screening properties. Addi-
tional screening will reduce the values ofVx andVy, but probably also the ratioVx/Vy.

E.2 From the amplitude of commensurability oscillations

At present, no theoretical calculation on 2D superlattices is available to directly extract
the potential amplitudes from the magnitude of the commensurability oscillations. Refer-
ring back to Fig. 7.9, one can see that for some of the commensurability oscillation peaks,
the effective potential is close to 1D. Although this quasi one-dimensionality refers only
to the effective potential, which according to Eq. (7.2) describes approximately the guid-
ing center motion [109], we will use such situations to estimate the modulation strengths.

Analytic forms of the magnetic field dependence of the commensurability oscillations for
1D superlattices have been proposed by Mirlin and Wölfle [117]. They took into account
the effect of small angle scattering (which is a characteristic of the scattering due to
remote ionized impurities) on the decay of commensurability oscillations with decreasing
magnetic field. From the data of Fig. 7.9, we use the height∆ρ of the commensurability
oscillation peak between theka = 4 and 5 minima to estimate the potential amplitude
associated with the 136 nm period and thekb = 6 and 7 minima for the potential amplitude
associated with the 103 nm period, respectively. For this magnetic field range Eq. (49) of
Ref. [117],

∆ρ

ρ0
=

η2
V

4

(
2πRc

a

)
ωcτtr

[
1+2e−π/(ωcτ0) sin

(
4πRc

a

)]
, (E.6)

is appropriate. The potential amplitudeV0 can be calculated fromηV = V0/EF . In
Eq. (E.6)∆ρ is the deviation of the resistivity from the Drude zero field resistivityρ0

andωc = eB/m is the cyclotron frequency. The classical transport (momentum relax-
ation) timeτtr ≈ 20 ps, defined by the Drude conductivityρ

−1
0 = e2nelτtr/m, is calculated

from the mobilityµ ≈ 0.55·106 cm2/Vs of the sample. For a high-mobility 2D electron
system in a GaAs sample it may be much larger than the total (quantum) scattering time
τ0, defined by the imaginary part̄h/2τ0 of the single-electron self-energy [125]. Unfor-
tunately we know little about the ratioτtr/τ0 for our modulated samples. Taking as a
reasonable estimateτtr/τ0 ≈ 13 [126], we obtainτ0 ≈ 1.5ps, andqλ = 26 for the scaled
mean free path. This value has been used in Fig. 7.9 and in the discussion in connection
with the “flattening” in Fig. 7.11. The potential modulation amplitudes obtained from
Eq. (E.6) are thenVx = 5.9%EF andVy = 3.5%EF , with Vx/Vy = 1.7.
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E.3 From the positive magnetoresistance

In 1D superlattices the modulation amplitude can be estimated from the saturation field
B0 of the positive magnetoresistance at low magnetic fields as described in section3.2.5.
Semiclassical calculations have shown that for the smallV0 present here the positive
magnetoresistance stays the same in amplitude and shape for a symmetric 2D modulation
[112]. This motivates the estimate ofV0 even for the 2D modulation case using formula
3.20. We find for the data of Fig. 7.9Vx = 4.8% andVy = 3.8% of the Fermi energy, with
Vx/Vy ≈ 1.3.

Since all the mentioned estimates in this appendix yield modulation amplitudes of the
same order of magnitude, we believe that our choice ofVx = 5.6%EF andVy = 3.9%EF

with ratioVx/Vy = 1.44 as model parameters is reasonable for a qualitative understanding
of the experimental results. We also use this insight to motivate our choice of formula
3.20 to estimateV0 of square modulation potentials in section 4.4.

F Software packages used

Two C++ software packages were used in chapter 6 for the Monte Carlo simulations:

LEDA [2] was used for itsleda real type. This type can represent results of square roots
without rounding error and is used for all coordinates, angles and areas in the problem.
This allows even after many calculation steps an exact comparison of two areas to decide
whether they are equal or not. The collection of correct statistics for the trajectories
found in the Monte Carlo simulation would not be possible with a standard floating point
number which is clipped internally after a finite number of digits.

The open source CGAL [1] library provides access to general geometric algorithms from
computational geometry. It is a collaborative effort of several sites in Europe and Israel.
From this library the geometric primitives such as points, vectors, lines and circles were
used. It allows to query intersections and neighbor relations of points, segments and
areas. The whole library had to be extended however to exploit the circular boundary
condition present in the problem in this work.

The final C++ code for the Monte Carlo simulation excluding the libraries was 5000 lines
long.
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