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Abstract

Nature has found, through billions years of natural evolution, many ingenious ways to

produce materials with superior mechanical properties. It would be a convenient and

practical way for us to explore the existing biological systems for the ideas of designing

novel materials. In this thesis, our attention will be focused on dry adhesion, a specific

phenomenon observed frequently in many animal species like gecko, fly and insects.

Our goal is to elucidate the adhesion mechanism behind these professional climbers.

The prospective results may provide a useful guideline for the fabrication of the novel

materials and devices in engineering.

The whole thesis can be broadly divided into three parts. In part one, which consists

of Chapter 1-3, we begin by introducing the motivation and overview of this work.

Then, in Chapter 2 the theory of contact mechanics is reviewed briefly. It is followed

by Chapter 3 in which the useful research methods are introduced with emphasis on the

mathematical preliminaries and computational methods.

For animals like gecko, the robustness and releasability of the attachment systems

are two essential features ensuring their locomotion on vertical walls or ceilings. The

second part of this thesis (Chapter 4-6) is entirely devoted to the investigation on these

two seemingly contradictive characteristics. While the adhesion robustness is treated in

Chapters 4 and 5, adhesion releasability is the subject of Chapter 6.

Given contact area, adhesion strength is commonly measured by the magnitude of the

pull-off force, i.e., the force required to pull two bonded objects apart. The higher the

pull-off force, the stronger is the adhesive joint. How to increase the adhesion strength

as much as possible is what we are interested in. In Chapter 4, we start with study

on the adhesion between two single contact asperities. It is found that the adhesion

strength is strongly dependent on the geometric shape and size of the contact surfaces

and limited by the theoretical strength. There exists a specific shape termed optimal

shape, by which theoretical adhesion strength can be achieved. A general methodology

for determining the optimal shape is developed, by which analytical expressions of the
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optimal shapes for several example cases are obtained. However, shape optimization

design for optimum adhesion is found to be unreliable especially at the macroscopic

scale because the pull-off force then is quite sensitive to the small variations in the

contact shape. A robust design of shape-insensitive optimal adhesion becomes possible

only when the characteristic size of the contact area is reduced to a length scale on the

order of 100 nm. In general, optimal adhesion could be achieved by a combination of size

reduction and shape optimization. The smaller the size, the less important the shape.

It is basically for this reason that the fibrillar nanostructures in biology possess high

adhesion strength.

The results obtained in Chapter 4 imply that materials have intrinsic ability to tolerate

quite small contact flaws. In reality, however, contact surfaces tend to be rough in a

variety of length scales, leading to multi-scale contact flaws. Optimizing adhesion at the

level of single asperities or fibrils does not automatically address the problem of robust

adhesion on rough surfaces at macroscopic scales. To solve this problem, we study, in

Chapter 5, the adhesion strength between rough surfaces. Instead of directly modeling

adhesive contact on random or fractal rough surfaces, we follow a different approach

by considering the behavior of an interfacial crack representing random contact flaws

due to surface roughness or contaminants. By investigating the conditions under which

the representative crack does not grow, we effectively treat, in a statistically average

sense, the problem of how to prevent randomly occurring poor contact regions from

triggering crack-like adhesive failure. So that a state of flaw-tolerance is achieved in

which preexisting cracks do not propagate even as the material is stretched to failure

near its theoretical strength. In Chapter 5, various strategies for achieving flaw tolerant

adhesion are discussed. It is found that in traditional homogeneous materials, flaw

tolerance can only be achieved on condition that the structure dimension is reduced to

below a critical length scale. To achieve the generalized flaw tolerance in which crack-

like flaws of all sizes can be tolerated, we have to appeal to the graded material or

hierarchical design. Both theoretical modeling and numerical simulation show that a

graded material in conjunction with hierarchical energy dissipation mechanism can be

designed to suppress the growth of interfacial cracks of all sizes so as to achieve the

flaw tolerance from the smallest dimension up to macroscopic length scales. Such design

philosophy also agrees well with the common structural features observed from a variety

of biological attachment systems.

For most animals, however, only having robust adhesion ability can not sufficiently

ensure them to move on the vertical and even reverse surfaces. The releasability of the



attachment devices is just as important as the robustness. Our discussion of Chapter 6

is dedicated to the problem of how to release the robust adhesion with ease. Inspired

by the common structural features of the biological attachment systems, we study the

effect of the material anisotropy on the orientation dependence of adhesion strength. It is

found that materials with strong anisotropy allow the adhesion strength to vary strongly

with the direction of pulling. The resulting orientation-dependent pull-off force enables

robust attachment in the stiff direction of the material to be released just by pulling in

the soft direction, achieving an orientation-controlled switch between attachment and

detachment.

Biological adhesion devices are sophisticated systems which provide a rich source of

ideas for development of industrial applications. The concept developed in this thesis

should be of general value in understanding the biological attachment devices and the

design of synthetic adhesive systems in engineering. In the last part of this thesis,

Chapter 7, the most important results obtained in this thesis are summarized and the

whole thesis is concluded by providing an outlook to the future work.
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Chapter 1. Introduction

Nature, through billions years of natural selection, has found many ingenious ways to

produce materials with superior mechanical properties. Understanding of the mecha-

nisms behind these natural materials will be of great value to the design of the novel

materials in engineering. A handy example of biomimicking material is the recently

developed self-cleaning material whose advent can be attributed to the understanding

of the principle of lotus-effect [9]. It would be a convenient and practical way for man to

explore the existing biological systems for the ideals of material designs. In this thesis,

our attention is focused on dry adhesion, a specific phenomena in biology. Our objective

is to elucidate the adhesion mechanism from the viewpoint of mechanics. Although the

investigations are inspired by the biological adhesion systems, the revealed mechanical

principles can be extensively treated as the general rules of interfacial adhesion.

1.1. Biological attachment systems: motivations

It is widely observed in nature that many animal species like gecko, fly, spider and some

insects possess extraordinary ability to move rapidly on vertical walls or ceilings with

unpredictable surface roughness and material properties. From the robustness point of

view, these biological attachment systems must be insensitive to the adhesion flaws in-

duced by roughness, contaminants, trapped air bubbles and skewed contact angles. On

the other hand, the survivability of animals not only necessitates the robustness of ad-

hesion but also an ability to rapidly switch between attachment and detachment during

animal’s locomotion. How can an adhesion system designed for robust attachment allow

easy detachment simultaneously? Clearly, this problem has been solved successfully by

nature. The remaining task for us is to reveal the ingenious design principles behind

these existing biological materials or structures.

During last century, much effort has been invested in the adhesion principle in bi-

ological attachment systems and a variety of adhesion mechanisms have been brought

forward, such as mechanical interlocking, suction, adhesive secretion, capillary forces
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Chapter 1. Introduction

and so on [70]. More recently, the development of MEMS and nano-technology makes

it possible to obtain new insights into the biological attachments. For example, strong

evidence has been provided that the adhesion ability of geckos is basically owing to the

van der Waals interaction [56] between the contacting surface and hundreds of thou-

sands of keratinous hairs or setae on the gecko’s foot [3, 5]. Each seta is 110 µm long

and contains hundreds of 200-500 nm projections called spatulae (Figure 1.1a). This

finding may appear somewhat surprising because van der Waals interaction is so weak

(≈ 0.01− 0.05 J/m2) that people commonly disregard it in the macroscopic scale. How

can such a weak interaction be applied to support the appreciable weight of an ani-

mal? Obviously, the fibrillar structure of gecko plays an important role. A question

thus arises. Are there any other alternative adhesion systems in nature? Comparative

Figure 1.1.: Biological attachment systems of (a) gecko (b) cicada and (c) Tettigonia viridis-
sima(Photograph courtesy of S. Gorb, Max Planck Institute for Metals Research).

studies of hundreds of insects and animal species [10] revealed that biological attachment

systems show convergent evolution into two principal designs. While species like gecko,

fly, spider and beetle exhibit “hairy” protruding fibrils on their feet, others like cicada,

bee and bush cricket (Tettigonia viridissima) adopt smooth membranes covering some

finely structured tissues. Scanning electron microscopy has been particularly useful in

revealing the ultrastructures of biological attachment pads [41, 72, 84]. The ultrastruc-

ture on gecko’s feet shows a hairy hierarchical structure with hundreds of thousands of

setae; each seta further branches into hundreds of submicron protrusions called spatulae

(Figure 1.1 a). On the other hand, the attachment pad of cicada exhibits a smooth

top membrane covering an anisotropic foam-like microstructure with varying cell size

and wall thickness (Figure 1.1 b). The pad of bush cricket shows a smooth membra-
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1.2. Overview

nous layer covering arrays of cross-linked rod-like fibers that are branches of thicker

principle located deeper in the cuticle and oriented at some angle to the cuticle surface

(Figure 1.1 c). It can be noted that the common features shared by all these biological

ultrastructures are nothing but the nonhomogeneous and strongly anisotropic material

properties accomplished via a variety of microstructure designs. We believe correlations

must exist between the superior adhesion properties of biological attachment systems

and their common structural features. The main purpose of this thesis is to uncover

these correlations within the framework of continuum mechanics. After our study, we

hope to find the answers to the following questions:

• How can we increase the adhesion strength?

• How can we achieve the robust (flaw tolerant) adhesion on rough surface?

• How can we release a robust attachment system easily?

1.2. Overview

In the remainder of this dissertation, we investigate the mechanics of robust and re-

leasable adhesion in biology. In Chapter 2, we first present some fundamental concepts

of the intermolecular force which is actually the physical root of dry adhesion. Then,

we briefly review the classical theories of contact mechanics, including Hertz model,

JKR (Johnson-Kendall-Roberts) model [62], DMT (Derjaguin-Muller-Toporov) model

[21] and M-D (Maugis-Dugdale) model [67]. Next, in Chapter 3 we introduce the re-

search methods that will be used in the subsequent chapters with emphasis placed on the

mathematical preliminaries and computational methods. Throughout Chapter 2 and 3,

the necessary preliminaries of this thesis are prepared.

As the backbone of this thesis, Chapters 4, 5 and 6 approach our principle topic, me-

chanics of robust and releasable adhesion. While the former two chapters are devoted

to answering the question of how to maximize the adhesion strength, the later one is

dedicated to the reverse question of how to release the strong adhesion readily. In Chap-

ter 4, our attention is focused on the adhesion strength between a single asperity and a

substrate. The effect of the geometric shape upon the adhesion strength is investigated

in an attempt to find the optimal shape through which the maximum adhesion strength

can be achieved. However, optimal shape does not sufficiently ensure that optimum

adhesion can occur spontaneously. Condition for spontaneous optimum adhesion then

is developed by investigating the variation of adhesive force in the approaching-receding

3
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procedure between an optimal-shaped solid and a substrate. Since optimal strength on

the level of individual contact elements does not automatically address flaws on scales

larger than single asperities, in Chapter 5 we investigate the adhesion between rough

surfaces. The concept of flaw tolerance is introduced, in which the contact region around

a crack-like flaw fails not by crack propagation but by uniform detachment at the the-

oretical strength of adhesion. Within the framework of continuum mechanics, various

strategies for flaw tolerance are discussed. In Chapter 6, we turn our attention to the

opposite question of how to release the strong adhesion with ease. Orientation depen-

dence of adhesion strength induced by severe anisotropy is proved to be a reasonable

solution to the releasable adhesion.

In Chapter 7, we summarize the most important results obtained in this thesis, whose

potential applications get discussed subsequently. Lastly, the whole thesis is closed with

an outlook to the future research.
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Chapter 2. Theoretical background

Although this thesis is not primarily concerned with the intermolecular forces, it is

nevertheless appropriate to start it by reviewing some fundamental principles about

intermolecular forces without which a mere knowledge of surface forces may not always

be very meaningful. In the first section of this chapter, we begin by introducing some

fundamental concepts of the intermolecular forces. Then based on the Lennard-Jones

pair potential for two molecules, the stress-separation law of two surfaces is derived. In

the second section, several classical contact models are reviewed, such as Hertz model

[49], JKR (Johnson-Kendall-Roberts) model [62], DMT (Derjaguin-Muller-Toporov) [21]

model and M-D (Maugis-Dugdale) model [67].

2.1. Intermolecular and surface forces

2.1.1. Force between molecules

It is well established that there are four distinct forces in nature, which are, in de-

creasing order of intensity, strong interactions, electromagnetic force, weak interaction

and gravitation. The forces between atoms and molecules belong to the category of

electromagnetic force.

Forces binding atoms in a molecule are due to chemical bonding. The energy required

to break a bond is referred to bond-energy. The force holding molecules together are

generally called intermolecular forces. The energy required to break molecules apart

is much smaller than a typical bond-energy. But intermolecular forces play important

roles in determining the properties of a substance, such as melting point, vapor pressure,

evaporation, viscosity, surface tension and solubility. In addition, intermolecular forces

pin gigantic molecules like enzymes, proteins and DNA into the shapes required for

biological activity.

The intermolecular forces may be either attractive or repulsive in nature. In general,

the attractive forces can be divided into several categories by their origins. The four
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prominent types are: ionic attraction forces, dipole-dipole forces, Hydrogen bonding

forces and London dispersion forces. The forces between neutral (uncharged) molecules

include dipole-dipole forces, Hydrogen bonding forces, London dispersion forces. Typi-

cally, dipole-dipole forces and London dispersion forces are grouped together and termed

as van der Waals forces (sometimes the hydrogen bonding forces are also included within

this group). The forces related to ions or the ionic attraction force can be subdivided

into two types: ion-dipole force and ionic bonding, depending on the presence of polar

molecules. Figure 2.1 summarizes the classification of the intermolecular forces.

Figure 2.1.: Classification of the intermolecular forces.

The van der Waals forces between polar molecules consists of three distinct contribu-

tions: the orientation force, the induction force and the dispersion force, each of which

has an interaction free energy that is inversely proportional to the sixth power of in-

termolecular separation r. The orientation force is the interaction of two permanent

dipoles which depends on their relative orientation, and might be expected to be zero

overall for a compound if all orientations are possible. The interaction energy due to

orientation effect varies as 1/r6, the force between the dipoles as 1/r7. The induction

force also varies as 1/r7 and its magnitude depends on the polarizability of the molecule.

As the weakest intermolecular force, the dispersion force is the only force of interaction
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2.1. Intermolecular and surface forces

in non-polar molecules, and arises from a temporary dipole induced by a complemen-

tary dipole in an adjacent molecule. Therefore, this force is sometimes called an induced

dipole-induced dipole attraction. These dipoles are always shifting, but are induced in

phase and give a net attraction. They depend on the polarizability of the molecule, and

also vary as 1/r7.

The repulsive forces are of much shorter range than the attractive ones. Its physical

origin is related to the Pauli principle: when the electronic clouds surrounding the

atoms start to overlap, the energy of the system increases abruptly. The three most

common potentials are the hard sphere potential, the inverse power-law potential and

the exponential potential.

The hard sphere model gives the potential as

U(r) = (r0/r)
n, where n = ∞. (2.1)

Since for r > r0 the value of U(r) is effectively zero while for r < r0 it is infinite,

this expression nicely describes the hard sphere repulsion where r0 is the hard sphere

diameter of a molecule.

While the power-law potential is given by U(r) = (r0/r)
n the exponential potential

can be expressed as U(r) = c · exp(−r/r0), where n is an integer (normally taken

as a number between 9 and 16, say, 12), c and r0 are adjustable constants. Both of

these two potentials are more realistic than the hard sphere model since they allow

finite compressibility of the molecules. Actually, on physical grounds, the exponential

potential is more appropriate than the power-law potential, but due to mathematical

convenience the power-law potential is used more frequently.

Knowing the attractive and repulsive intermolecular potentials, the total intermolecu-

lar pair potential is obtained by summing up all the attractive and repulsive potentials.

As the most well-known potential, Lennard-Jones or ‘6 − 12’ potential describes the

total pair potential as

ULJ(r) = A/r12 −B/r6, (2.2)

where A,B are two constants chosen to fit the material properties. In Equation (2.2)

term A/r12 represents the repulsion between molecules when they are brought very close

to each other, while term B/r6 describes the long-distance attractive interaction.
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2.1.2. Force between surfaces

Having obtained the pair interaction between two molecules, let us now consider the

interactions between a molecule and a solid surface and further between two solid sur-

faces. Related results were firstly obtained by de Boer [19] and Hamaker [48]. Suppose

Figure 2.2.: Scheme for calculating the interaction energies between (a) a molecule and a solid
surface, and (b) two solid surfaces by integrating the interaction energies between molecules
in solids (adapted from [56]).

that the pair potential between two molecules separated by distance r has the form

U(r) = A/r12 − B/r6. With additional assumption of additivity, the net interaction

energy between a molecule and a planar surface of a solid made up of same molecules

will be the sum of its interactions with all the molecules in the body. As shown in

Figure 2.2(a), for molecules in a circular ring of cross-sectional area dxdz and radius x,

the ring volume is 2πxdxdz, and the number of molecules in the ring will be 2πρxdxdz,

where ρ is the number of molecules per unit volume in the solid. The net interaction

energy for a molecule at distance D away from the surface can be calculated by

U(D) = 2πρ

∫ ∞

D

dz

∫ ∞

0

[
A

(z2 + x2)6
− B

(z2 + x2)3

]
xdx = xρ

(
A

45D9
− B

6D3

)
. (2.3)

Based on this result, now let us calculate the interaction energy between two planar

surfaces at distance h apart (Figure 2.2b). For two infinite surfaces, the result must

be infinity, and so we have to consider the energy per unit surface area. Let us start
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with a thin sheet of molecules of unit area and thickness dz at a distance z away from

an extended surface of large area. According to Equation (2.3) the interaction energy

between this sheet and the surface is

πρ

[
A

45z9
− B

6z3

]
ρ′dz,

where ρ′ is the number of molecules per unit volume in the thin sheet. The energy

between two surfaces thus can be immediately written as

U(h) =

∫ ∞

h

πρρ′
(

A

45z9
− B

6z3

)
dz = πρρ′

(
A

360h8
− B

12h2

)
. (2.4)

Therefore, the interaction force per unit area, or the interaction stress, between two

surfaces is given by

σ(h) =
∂U

∂h
= πρρ′

(
B

6h3
− A

45h9

)
. (2.5)

Here we define the stress as ∂U/∂h rather than −∂U/∂h so as to make the sign of

the interaction stress consistent with the convention in elasticity theory, i.e. tensile is

positive. Denoting the equilibrium separation by z0 at which the interaction stress of

Equation (2.5) vanishes, we have

A =
15

2
Bz6

0 (2.6)

Substituting Equation (2.6) back into Equation (2.5) to eliminate parameter A, the

interaction stress thus can be rewritten as

σ(h) =
πBρρ′

6z3
0

[(z0

h

)3

−
(z0

h

)9
]

. (2.7)

Hence, the work required to separate two surfaces from the equilibrium separation to

infinity, which is normally termed work of adhesion (units of J/m2), is given by

Wad =

∫ ∞

z0

σ(h)dh =
3z0

8

πBρρ′

6z3
0

. (2.8)

On the other hand, the creation of new surface in a solid is obtained by breaking the

bonds which ensure the cohesion of that condensed phase. In this regard, the work of

adhesion should equal the differential surface energy ∆γ = γ1 +γ2−γ12, where γ1, γ2 are

the surface energy of two solids and γ12 is their interfacial energy. But this is not always

the case. For some circumstances in which the break of adhesive bonds is accompanied
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by irreversible energy dissipation process like work hardening or viscous losses, the work

of adhesion would be much greater than the surface energy ∆γ. In this thesis, the

adhesion failure processes, except those specified particularly, are assumed reversible,

i.e. Wad = ∆γ. Equating Equation (2.8) to ∆γ gives rise to

πBρρ′

6z3
0

=
8∆γ

3z0

. (2.9)

Substituting Equation (2.9) into Equation (2.7), we have

σ(h) =
8∆γ

3z0

[(z0

h

)3

−
(z0

h

)9
]

. (2.10)

Equation (2.10) gives the surface-surface interaction stress in terms of equilibrium sep-

aration z0, work of adhesion ∆γ and interfacial separation h. Given ∆γ and z0, the

maximum tensile stress, or the theoretical strength of adhesion σth, occurs at h = 31/6z0

and equals 16∆γ/9
√

3z0. Figure 2.3 plots the variation of the normalized interaction

stress as a function of separations h. The shape of the σ − h curves is related to the
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Figure 2.3.: Lennard-Jones and Dugdale laws for interaction between two surfaces.

competition between the attractive and repulsive forces. The interactive range of the

attractive force is longer than that of the repulsive one, and for h > z0 the long-ranged

force dominates the interfacial interaction and draws the surfaces closer together with a

concurrent reduction in potential energy. On the other hand, for separations less than
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2.2. Classical theories of contact mechanics

z0, the repulsive forces, which arises primarily from electron-electron overlap of the inner

electron shells of the individual atoms, dominates. Hence, the attractive and repulsive

forces are equal and opposite at h = z0. The net force at equilibrium is zero, which

is associated with the minimum in potential energy since σ = ∂U/∂h. Thus, in the

absence of externally applied forces, two flat solid surfaces are two parallel planes with

an equilibrium interfacial separation of z0.

Although Equation (2.10) depicts the interaction between two planar surfaces, it is

often applied to the interaction between two unparallel solid surfaces [43]. Actually, this

argument was first proposed by Derjaguin [20] in terms of energy rather than forces.

The Derjaguin approximation stated that the interaction energy between two small

solid surfaces, which may be curved and slightly inclined to each other, is the same as

the energy per unit area between two parallel planes. In our studies, especially in the

numerical calculations, Equation (2.10) and Derjaguin approximation are adopted.

However, the Lennard-Jones law of Equation (2.10) appears too complex especially

for the theoretical analysis. Under this circumstance, a simpler approximate law like

Dugdale model [23] becomes quite useful in which the attractive force is assumed to be

a constant and equal to the theoretical strength σth if the separation falls in the range of

z0 ≤ h ≤ z0 + δ0 with δ0 being the effective interaction range of adhesion (Figure 2.3). As

the work of adhesion should not be altered after the approximation, δ0 then is determined

by δ0 = ∆γ/σth = 0.974z0. It has been pointed out that use of a more realistic interaction

law like Lennard-Jones law generally yields results qualitatively similar to those derived

based on the Dugdale model provided that the theoretical strength and the work of

adhesion remain unchanged [8, 67].

2.2. Classical theories of contact mechanics

In the preceding section, we have introduced the intermolecular and surface forces that

inevitably occur when two solids are brought into contact. As a consequence, deforma-

tion of the solids will take place. Contact mechanics is just such a subject that is aimed

to study the stresses and deformation arising from the contact. In this section, we will

briefly review some classical models in the theory of contact mechanics. These models

can be thought of the fundamental of contact mechanics and some of them are still used

broadly.
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2.2.1. Hertz theory: a non-adhesive contact model

The history of contact mechanics theory can be traced back to 1882 [49] when Hertz

published his famous paper “On the contact of elastic solids”. In this paper, Hertz solved

the contact problem between two elastic spheres compressed by externally applied forces

P , as shown by Figure 2.4(a). The basic assumptions introduced by Hertz allowed him

Figure 2.4.: (a) Two elastic spheres are pressed together by force P , resulting in contact area
with radius a. (b) Integration scheme for calculating the displacement of the contact area.

to deal with the problem in an analytical manner and obtain the solutions with very

simple forms. These assumptions can be summarized as follows:

• Two spheres are assumed to be frictionless so that only normal pressure is trans-

mitted between them.

• In contrast to the spheres radii, the contact size is quite small, i.e., a ¿ R1,2.

• Each sphere can be considered as an elastic half-space.

• Profiles of the spheres can be approximated by parabola r2/2R1,2.

In elasticity theory, the problem of determining the deformation in an elastic half-space

due to a point force applied normally to the surface is termed Boussinesq ’s problem [11].

According to the solution of Boussinesq’s problem, the vertical displacement of surface

w induced by a unit concentrated force acting normally to the half-space surface at the

origin r = 0 can be expressed as

w(r) = (1− ν2)/πEr, (2.11)
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where E and ν denote the Young’s modulus and Poisson’s ratio of the half-space respec-

tively. For the contact between two spheres, based on the assumptions proposed above,

the surface deflections of two contacting spheres can be expressed by

wi(r) =
1− ν2

i

πEi

∫ a

0

sp(s)ds

∫ 2π

0

(
r2 + s2 − 2rs cos θ

)−1/2
dθ

=
4(1− ν2

i )

πEi

∫ a

0

s

r + s
K

(
2(rs)1/2

r + s

)
p(s)ds, (i = 1, 2) (2.12)

where function p is the pressure acting on the contact area, s and θ are coordinates

parameters as defined in Figure 2.4(b) and K(·) is the complete elliptical integral of first

kind.

On the other hand, the geometric conformability within the contact region requires

w1 + w2 = δ − r2

2R
, (r < a) (2.13)

where R = [1/R1+1/R2]
−1 is the reduced radius of the spheres and δ denotes the relative

approach of distant points in these two spheres. The contact problem between two

spheres now can be stated as such that the mutual axisymmetric pressure distribution

p(r) acting over the circular contact area A on the surface of two elastic half-spaces is

required which will produce deflections satisfying following condition within the contact

area

w1 + w2 =
4

πE∗

∫ a

0

s

r + s
K

(
2(rs)1/2

r + s

)
p(s)ds = δ − r2

2R
, (r < a) (2.14)

where the combined elastic modulus of the spheres E∗ = [(1− ν2
1)/E1 + (1− ν2

2)/E2]
−1.

Equation (2.14) implies that the contact pressure p(r) only depends on R, E∗. That is,

for a given δ the pressure distribution in an elastic-sphere/rigid-plane contact system is

identical to that in a rigid-sphere/elastic-plane system as long as R, E∗ are the same for

both cases. Actually, it is the common feature of the classical contact models concerning

two elastic spheres.

By assuming an elliptical distribution of pressure in the contact area, Hertz proposed

the solution of Equation (2.14) as

p(r) =
2aE∗

πR

[
1− (r/a)2

]1/2
. (r < a) (2.15)
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Due to Newton’s third law, integration of Equation (2.15) over the contact area A gives

rise to the external load applied on the stationary spheres as

P =
4E∗a3

3a
. (2.16)

Substitution of Equation (2.15) into Equation (2.14) yields the penetration

δ =
a2

R
. (2.17)

Hertz theory has been proved a good description in macroscopic scale although the

intermolecular adhesion between two solid surfaces has not been considered as we can

see from the nonnegative pressure of Equation (2.15). However, as the size decreases the

surface-to-bulk ratio will become more and more significant and the surfaces adhesion

induced by the intermolecular interactions can not be neglected any more. After 1930

when the London theory of van der Waals forces was established, a great deal of efforts

were made for understanding the interact forces between small particles like colloids. In

the following, we will introduce several theoretical models, in which the adhesive forces

are taken into account on the basis of various assumptions.

2.2.2. Adhesive contact models

In 1932, Bradley [12] assessed the attractive force between two rigid (nondeforming)

spheres in contact by integration

F = 2π

∫ ∞

0

rσ(h)dr, (2.18)

where σ(h) is the adhesive stress which is a function of the surface separation h. By using

the parabola expression to approximate the spherical profile, the separation between two

surfaces can be written as h(r) = h0+r2/2R, where R is the reduced radius of the spheres

and h0 is the surface-surface separation at r = 0. Taking derivative of h with respect to

r yields

Rdh = rdr. (2.19)

Substituting Equation (2.19) into Equation (2.18), we obtain the adhesive force in

terms of h0 as

F (h0) = 2πR

∫ ∞

h0

σ(h)dh. (2.20)
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In fact, the integral on the right-hand side of Equation (2.20) stands for the area enclosed

by the σ(h) − h curve ranging from h = h0 to h = ∞. Recalling the definition of work

of adhesion, the maximum of this integral will occur at h0 = z0 and equal the work of

adhesion ∆γ. Therefore, the maximum adhesion force between two rigid spheres can be

immediately written as

F f = 2πR∆γ, (2.21)

a result actually independent of the exact form of the interaction law. This maximum

value represents the force required to separate two spheres from adhesive contact and

therefore is commonly called pull-off force.

Obviously, the Bradley model did not consider the deformation of the spheres induced

by the contacting forces. To solve this problem, Johnson et al. [62] investigated the

adhesive contact problem between two elastic spheres. Their theory, commonly termed

JKR (Johnson-Kendall-Roberts) model, is based on the Griffith energy argument [45] in

which equilibrium state is achieved when the strain energy release rate equals the work

of adhesion, i.e. G = ∆γ. The resulting pressure within the contact area is given by

p(r) =
2aE∗

πR

[
1− (r/a)2

]1/2 −
(

2∆γE∗

πa

)1/2 [
1− (r/a)2

]−1/2
. (r < a) (2.22)

In comparison with the Hertzian result of Equation (2.15), Equation (2.22) contains

an additional adhesive (negative) term with a square root singularity near the contact

periphery r = a, by which one may be immediately reminded of the similar stress

singularity occurring at the crack tip in fracture mechanics. This resemblance exhibits

the similarity between contact problem and fracture problem in mathematics.

Integrating Equation (2.22) over the contact area gives rise to the external load applied

on the stationary spheres as

P = 2π

∫ a

0

p(r)dr =
4E∗a3

3R
−

√
8π∆γE∗a3. (2.23)

Equation (2.23) has a non-zero root a = (9πR2∆γ/2E∗)1/3 for P = 0, suggesting that

two spheres can adhere to each other even under zero external force. This behaviour

can not be seen from the Hertz model because it is derived on the basis of nonadhesive

contact. The minimum of Equation (2.23) occurs at the contact radius

a = ac = (9π∆γR2/8E∗)1/3, (2.24)
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which gives the pull-off force as

F f = −Pmin =
3

2
πR∆γ. (2.25)

This is really an astonishing result because of its independence on the elastic properties

of the spheres. In that case, in the limit of two rigid spheres, the pull-off force between

two rigid spheres should be 3
2
πR∆γ rather than 2πR∆γ as predicted by the Bradley

model. Same contradiction also exists between JKR model and DMT model [21] in

which the interaction forces outside the “contact area” are considered but are assumed

not to deform the profile so that the net load is expressed by

P =
4E∗a3

3R
− 2πR∆γ, (2.26)

giving pull-off force 2πR∆γ. This conflict hadn’t been solved until the introduction of

the Tabor number [93]

µ ≡
(

R∆γ2

E∗2z3
0

)1/3

, (2.27)

where z0 is the equilibrium interfacial separation as in Equation (2.6). It was pointed out

by Tabor that the JKR theory applied to the cases with large µ while the DMT model

held for the cases with small µ. For the intermediate range between JKR and DMT

models, an analytical solution was obtained by Maugis [67] on the basis of Dugdale’s

model [23]. The contact pressure and net load predicted by M-D (Maugis-Dugdale)

model are

p(r) =





2aE∗

πR

[
1− (r/a)2

]1/2 − σth

π
cos−1

(
2a2 − c2 − r2

c2 − r2

)
, (r ≤ a)

−σth, (a ≤ r ≤ c)

(2.28)

P =
4E∗a3

3R
− 2σtha

[
a
√

c2 − a2 + c2 sec−1(c/a)
]
, (2.29)

where c is the outer radius of the cohesive zone determined by following equation

a2σth

πR∆γ

[
(m2 − 2) sec−1 m +

√
m2 − 1

]
+

4σ2
tha

π∆γE∗

[√
m2 − 1 sec−1 m + 1−m

]
= 1

(2.30)

with m = c/a. The pull-off force given by M-D model ranges from 3
2
πR∆γ to 2πR∆γ,

depending on the Tabor number. This result have been confirmed by the numerical re-

sults based on the more realistic Lennard-Jones law [43, 61]. Although M-D theory gives

16



2.2. Classical theories of contact mechanics

the analytical solutions, the results are still presented in an implicit form. To overcome

this inconvenience in the practical applications, some simpler experiential formulae with

a very good approximation to the M-D solutions were developed [16, 80].

Figure 2.5.: Contact pressure distributions predicted by different contact models (adapted from
[61]).

Figure 2.5 schematically shows the distribution of the contact stress predicted by

various models in the classical contact theory. The absence of the corresponding curve

for DMT model is due to its identical pressure with Hertz theory within the contact area,

while out the contact area no exact expression has been given. For comparison, Table 2.1

tabulates the external load P and the pull-off force F f given by different models.

Table 2.1.: Summary of the classic contact models for two elastic spheres
Models External load Pull-off force
Hertz P = 4E∗a3/3R F f = 0
JKR P = 4E∗a3/3R−

√
8π∆γE∗a3 F f = 3

2πR∆γ
DMT P = 4E∗a3/3R− 2πR∆γ F f = 2πR∆γ

M-D P = 4E∗a3/3R− 2σtha
[
a
√

c2 − a2 + c2 sec−1(c/a)
]

F f ∈ ( 3
2πR∆γ, 2πR∆γ)

In essence, the difference between these theories can be attributed to the different

stress-separation laws [16] that they are based on. Figure 2.6 shows the stress-separation

laws applied in Hertz, JKR, DMT and M-D models. It can be seen that no attractive

force exists in the Hertz model at all. While the JKR model employs a short-range/high-

strength adhesion law which is essentially a delta function with strength ∆γ, the DMT

model adopts a long-range/low-strength interaction. In M-D model, Dugdale law is

adopted so that the adhesive stress is constant within the interaction range. Given work

of adhesion ∆γ, Dugdale law will approach a delta function as the interaction range

decreases. Reversely, if the interaction range increases, it will get close to the DMT

17
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model. Figure 2.6 shows that the M-D model describes the transition from JKR model

to DMT model nicely.

Figure 2.6.: Stress-separation laws applied respectively in (a) Hertz model, (b) JKR model, (c)
DMT model and (d) M-D model (adapted from [16]).

In addition to the above-mentioned contact models for spheres (three-dimensional),

corresponding theories also have been developed for the cylinders (two-dimensional). For

example, Barquins [7] obtained the JKR-like solutions for the contact between a rigid

cylinder and elastic flat surface. According to his results, the contact pressure can be

given by

p(x) =
E∗

2R
(a2 − x2)1/2 −

√
2E∗∆γ

π
(a2 − x2)−1/2. (2.31)

The externally applied load per unit cylinder length is

P = πE∗a2/4R−
√

2E∗πa∆γ. (2.32)

The minimum load occurs at the half-width of contact

a = ac =

(
2∆γR2

πE∗

)1/3

, (2.33)

which gives the pull-off force per unit cylinder length

F f = 3

(
πE∗∆γ2R

16

)1/3

. (2.34)
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2.2. Classical theories of contact mechanics

The counterpart of the M-D theory in two-dimensional case was proposed by Baney and

Hui [6]. More recent endeavors have extended the contact theories to the periodic contact

asperities [54], coupled normal and shear loads [64], viscoelastic materials [46, 51] and

biological attachments [1, 2, 5, 33, 34, 50, 78, 89].

19



Chapter 2. Theoretical background

20
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Theoretical modeling, computational simulation and experiment are referred to as three

basic approaches of scientific research. In this thesis, our studies are carried out mainly

by means of the former two methods. In order to build up a successful theoretical model,

some simplifications and assumptions have to be made on condition that no essence of the

problem is lost. For instance, in the classical contact theories, contact solids are usually

treated as elastic half-spaces so as to make it possible to calculate the deformation

of the solids analytically. However, for most contact problems it is still impossible

to get the solution in an analytical form. Under these circumstances, computational

simulation becomes very useful because it is capable of handling more realistic but

complicated cases. It is basically for this reason that computational simulation is often

used as the benchmark to verify the prediction of the theoretical model. In this regard,

computational simulation is usually called computational experiment.

3.1. Theoretical modeling: application of Hankel

transform in contact mechanics

According to the classical elasticity theory, the general solution to the Láme-Navier

equation can be constructed by harmonic or bi-harmonic strain functions [88, 96]. Par-

ticularly, for an axisymmetric problem, the number of such strain functions is reduced

to one for bi-harmonic function or two for harmonic functions. On the other hand, any

harmonic function can be expressed in terms of Hankel transforms with respect to two

unknown functions. Therefore, the general solution for any axisymmetric problem can

be given by Hankel transforms with respect to four unknown functions. After applying

the boundary conditions, these unknown functions can be determined by solving a pair

of dual integral equations. This Hankel-transform-based method has been systemati-

cally discussed by Sneddon [88] and widely used in contact mechanics. In the following,

we first present a brief introduction to the expression of harmonic function in terms of

Hankel transforms. It is followed by the formulation of the axisymmetric problem in an
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elastic half-space via Hankel transforms. Then, general solutions to some special dual

integral equations are introduced. Finally, application of this approach is illustrated by

solving a typical contact problem.

3.1.1. Expression of harmonic function in terms of Hankel

transforms

Hankel transforms are widely used especially in the axisymmetric problems in elasticity

theory. Given function f(r) , the nth order Hankel transform is defined as

F (ξ) ≡ Hn[f(r); r → ξ] ≡
∫ ∞

0

rf(r)Jn(rξ)dr, (3.1)

where Jn(rξ) is the nth order Bessel function of the first kind. The inversion of Hankel

transform is defined as:

f(r) ≡ H−1
n [F (ξ); ξ → r] ≡

∫ ∞

0

ξF (ξ)Jn(ξr)dξ. (3.2)

Apparently, Equations (3.1) and (3.2) shows that Hankel transform and its inversion

describe the same operation, namely, H−1
n = Hn.

Since the nth order Bessel functions are more frequently defined as the solutions to

the differential equation

d2y

dx2
+

dy

xdx
+

(
1− n2

x2

)
y = 0,

function Jn(rξ) must satisfy equation

(
∂2

∂r2
+

1

r

∂

∂r
− n2

r2
+ ξ2

)
Jn(rξ) = 0. (3.3)

Letting operator Bn ≡ ∂2

∂r2
+

1

r

∂

∂r
− n2

r2
, rearrangement of Equation (3.3) gives rise to

Bn[Jn(rξ)] = −ξ2Jn(rξ). (3.4)

Performing operator Bn on both sides of Equation (3.2) leads to

Bn[f(r)] = Bn

[∫ ∞

0

ξF (ξ)Jn(rξ)dξ

]
=

∫ ∞

0

ξF (ξ)Bn[Jn(rξ)]dξ. (3.5)
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On substituting Equation (3.4) into the far right-hand side of Equation (3.5), we have

Bn[f(r)] = −
∫ ∞

0

ξξ2F (ξ)Jn(rξ)dξ = −H−1
n

[
ξ2F (ξ); ξ → r

]
. (3.6)

Perform Hankel transform on both sides of Equation (3.6) to get

Hn[Bnf(r); r → ξ] = −ξ2F (ξ) = −ξ2Hn[f(r); r → ξ]. (3.7)

In cylindrical coordinates (r, θ, z), the Laplace operator can be expressed as

∇2 =
∂2

∂r2
+

1

r

∂

∂r
+

1

r2

∂2

∂θ2
+

∂2

∂z2
.

For an arbitrary quantity f(r, z) associated with an axisymmetric problem, owing to its

independence of angle θ, we have

∇2f(r, z) =

(
∂2

∂r2
+

1

r

∂

∂r
+

∂2

∂z2

)
f(r, z) = (B0 +

∂2

∂z2
)f(r, z). (3.8)

Performing Hankel transform H0 on Equation (3.8) and then applying Equation (3.7)

with n = 0 yield

H0[∇2f(r, z); r → ξ] = (D2
z − ξ2)F (ξ, z) (3.9)

where Dz = ∂/∂z and

F (ξ, z) ≡ H0[f(r, z); r → ξ] =

∫ ∞

0

rf(r)J0(rξ)dr.

Equation (3.9) indicates that f(r, z) is a harmonic function with ∇2f(r, z) = 0 only if

its 0th order Hankel transform F (ξ, z) satisfies

(D2
z − ξ2)F (ξ, z) = 0, (3.10)

and vice versa. Since the general solution to the differential Equation (3.10) is

F (ξ, z) = A1(ξ) exp(−ξz) + A2(ξ) exp(ξz) (3.11)

with A1(ξ) and A2(ξ) being two arbitrary functions of ξ,, inversion of Equation (3.11)

immediately leads to the expression of the arbitrary axisymmetric harmonic function
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f(r, z) in terms of Hankel transform as:

f(r, z) = H0[A1(ξ) exp(−ξz) + A2(ξ) exp(ξz); ξ → r]. (3.12)

3.1.2. Formulation of axisymmetric half-space problems via Hankel

transforms

In classical elasticity theory, the Papkovich-Neuber solution [71, 75] provides a gen-

eral solution to the Láme-Navier equation. Following Papkovich-Neuber solution, the

displacement components for an axisymmetric problem can be given by

ur = − 1

2G

∂

∂r
(zΨ + Φ), (3.13)

uz =
1

2G

[
4(1− ν)Ψ − ∂

∂z
(zΨ + Φ)

]
, (3.14)

uθ = 0, (3.15)

where G is the shear modulus and Ψ ,Φ are two strain functions to be determined by

boundary conditions. If no body force is considered, strain functions Ψ ,Φ must be

harmonic, i.e.,

∇2Ψ = 0, (3.16)

∇2Φ = 0. (3.17)

On the other hand, for the axisymmetric problem in elastic half-space z ≥ 0, harmonic

functions Ψ , Φ should be independent of angle θ. Considering the limited displacements

at z = ∞, harmonic functions Ψ , Φ must be finite at z = ∞ and, in the light of

Equation (3.12), can be expressed in terms of Hankel transforms as

Ψ(r, z) = H0[ξ
−1A(ξ) exp(−ξz); ξ → r], (3.18)

Φ(r, z) = H0[ξ
−2C(ξ) exp(−ξz); ξ → r], (3.19)

where A(ξ), C(ξ), functions of ξ, will be determined through the boundary conditions

of the problem.

Substituting Equations (3.18, 3.19) into Equations (3.13, 3.14) and then applying the

relationship between Hankel transforms H0 and H1 for arbitrary function g(ξ)

∂

∂r
H0[g(ξ); ξ → r] ≡ −H1[ξg(ξ); ξ → r], (3.20)

24



3.1. Theoretical modeling: application of Hankel transform in contact mechanics

the displacement and accordingly the stress solutions can be expressed in terms of Hankel

transforms as

ur(r, z) = H1[Y (ξ, z); ξ → r], (3.21)

uz(r, z) = H0[V (ξ, z); ξ → r], (3.22)

τrz(r, z) = H1[S(ξ, z); ξ → r], (3.23)

σzz(r, z) = H0[T (ξ, z), ξ → r], (3.24)

with 


2GY

2GV

−S

−T




=




(ξzA + C)ξ−1

[(3− 4ν)A + ξzA + C]ξ−1

(1− 2ν)A + ξzA + C

(2− 2ν)A + ξzA + C




exp(−ξz). (3.25)

Equations (3.21-3.25) summarize the general solution to an axisymmetric problem of

an elastic half-space in terms of Hankel-transforms. Similar expressions were firstly

presented by Harding and Sneddon [47].

3.1.3. Dual integral equations

We have expressed the general solutions to the axisymmetric problem of half-space in

terms of Hankel transforms with respect to two unknown functions. The determination

of these two functions by using boundary conditions finally converges on the solution of

a pair of dual integral equations of type

∫ ∞

0

ξ−2αφ(ξ)Jn(ρξ)dξ = F1(ρ), (0 ≤ ρ ≤ 1) (3.26)

∫ ∞

0

φ(ξ)Jn(ρξ)dξ = G2(ρ), (ρ > 1) (3.27)

where F1(ρ) and G2(ρ) are two known functions correlated with the specific boundary

conditions. In mathematics, the solution to such kind of dual integral Equations has

been systematically discussed by Titchmarsh [99] and Sneddon[88]. Following the general

solutions given by Sneddon, here we just synopsize1 the solutions to four special cases

with different combinations of α and n. A frequent use of these general solutions will be

made in our later discussions on the axisymmetric contact problems.

1The errors that occur in the formulae given by Sneddon [88] have been corrected here.
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Case(a):

If α = 1
2
, n = 0, Equations (3.26) and (3.27) can be rewritten as

∫ ∞

0

ξ−1φ(ξ)J0(ρξ)dξ = F1(ρ), (0 ≤ ρ ≤ 1) (3.28)

∫ ∞

0

φ(ξ)J0(ρξ)dξ = G2(ρ), (ρ > 1) (3.29)

The solution to these dual integral equations is given by (see Equation 4.4.4 in [88])

φ(ξ) =
2ξ

π

{
cos ξ

∫ 1

0

tF1(t)dt√
1− t2

+ ξ

∫ 1

0

sds√
1− s2

∫ 1

0

t sin(ξt)F1(st)dt

+

∫ ∞

1

t cos(ξt)dt

∫ ∞

1

sG2(st)ds√
s2 − 1

}
. (3.30)

Denoting

F2(ρ) ≡
∫ ∞

0

ξ−1φ(ξ)J0(ρξ)dξ, (ρ > 1)

G1(ρ) ≡
∫ ∞

0

φ(ξ)J0(ρξ)dξ, (0 ≤ ρ ≤ 1)

we have

F2(ρ) =
2

π

∫ ρ

1

G∗∗(ξ)dξ√
ρ2 − ξ2

+
2
√

ρ2 − 1

π

∫ 1

0

tF1(t)dt

(ρ2 − t2)
√

1− t2
, (3.31)

G1(ρ) = − 2

πρ

d

dρ

∫ 1

ρ

ξF∗∗(ξ)dξ√
ξ2 − ρ2

− 2

π
√

1− ρ2

∫ ∞

1

t
√

t2 − 1G2(t)dt

t2 − ρ2
, (3.32)

where

F∗∗(ξ) =
d

dξ

∫ ξ

0

sF1(s)ds√
ξ2 − s2

, G∗∗(ξ) =

∫ ∞

ξ

sG2(s)ds√
s2 − ξ2

. (3.33)

Case(b):

If α = −1
2
, n = 0, Equations (3.26)(3.27) can be rewritten as

∫ ∞

0

ξφ(ξ)J0(ρξ)dξ = F1(ρ), (0 ≤ ρ ≤ 1) (3.34)

∫ ∞

0

φ(ξ)J0(ρξ)dξ = G2(ρ), (ρ > 1) (3.35)
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The solution to these dual integral equations is given by (see Equation 4.4.12 in [88])

φ(ξ) =
2

π

∫ 1

0

sin(ξt)dt

∫ t

0

τF1(τ)dτ√
t2 − τ 2

− 2

π
sin ξ

∫ ξ

1

τG2(τ)dτ√
τ 2 − 1

+
2ξ

π

∫ ∞

1

cos(ξt)dt

∫ ∞

t

τG2(τ)dτ√
τ 2 − t2

. (3.36)

Letting

F2(ρ) ≡
∫ ∞

0

ξφ(ξ)J0(ρξ)dξ, (ρ > 1)

G1(ρ) ≡
∫ ∞

0

φ(ξ)J0(ρξ)dξ, (0 ≤ ρ ≤ 1)

we have

F2(ρ) =
2

π

d

dρ

∫ ρ

1

ξG∗(ξ)dξ√
ρ2 − ξ2

− 2

π
√

ρ2 − 1

∫ 1

0

t
√

1− t2F1(t)dt

ρ2 − t2
, (3.37)

G1(ρ) =
2

π

∫ 1

ρ

F∗(ξ)dξ√
ξ2 − ρ2

+
2
√

1− ρ2

π

∫ ∞

1

tG2(t)dt

(t2 − ρ2)
√

t2 − 1
, (3.38)

where

F∗(ξ) =

∫ ξ

0

sF1(s)ds√
ξ2 − s2

, G∗(ξ) = − d

dξ

∫ ∞

ξ

sG2(s)ds√
s2 − ξ2

. (3.39)

Case(c):

If α = −1
2
, n = 1, by Equations (3.26) and (3.27) we have

∫ ∞

0

ξφ(ξ)J1(ρξ)dξ = F1(ρ), (0 ≤ ρ ≤ 1) (3.40)

∫ ∞

0

φ(ξ)J1(ρξ)dξ = G2(ρ), (ρ > 1) (3.41)

In this case, the solutions can derived from Equation 4.2.21 in [88] as

φ(ξ) =

√
2ξ√
π

∫ 1

0

1√
t
J3/2(ξt)dt

∫ t

0

τ 2

√
t2 − τ 2

F1(τ)dτ

−
√

2ξ√
π

∫ ∞

1

t
√

tJ3/2(ξt)dt
d

dt

∫ ∞

t

1√
τ 2 − t2

G2(τ)dτ (3.42)
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Similarly, letting

F2(ρ) ≡
∫ ∞

0

ξφ(ξ)J1(ρξ)dξ, (ρ > 1)

G1(ρ) ≡
∫ ∞

0

φ(ξ)J1(ρξ)dξ, (0 ≤ ρ ≤ 1)

we have (see Equations 4.3.13 and 4.3.14 in [88])

F2(ρ) =
2

ρ2π

d

dρ

∫ ρ

1

ξ3G∗(ξ)dξ√
ρ2 − ξ2

− 2

πρ
√

ρ2 − 1

∫ 1

0

t2
√

1− t2F1(t)dt

ρ2 − t2
, (3.43)

G1(ρ) =
2ρ

π

∫ 1

ρ

F∗(ξ)dξ

ξ2
√

ξ2 − ρ2
+

2ρ
√

1− ξ2

π

∫ ∞

1

G2(t)dt

(t2 − ρ2)
√

t2 − 1
, (3.44)

where

F∗(ξ) =

∫ ξ

0

s2F1(s)ds√
ξ2 − s2

, G∗(ξ) = − d

dξ

∫ ∞

ξ

G2(s)ds√
s2 − ξ2

. (3.45)

Case(d):

If α = 1
2
, n = 1, Equations (3.26, 3.27) turn to be

∫ ∞

0

ξ−1φ(ξ)J1(ρξ)dξ = F1(ρ), (0 ≤ ρ ≤ 1) (3.46)

∫ ∞

0

φ(ξ)J1(ρξ)dξ = G2(ρ), (ρ > 1) (3.47)

In this case, the solutions can be derived from Equation 4.2.27 in [88] as

φ(ξ) =
2ξ

π

{
sin(ξ)

∫ 1

0

(1− t2)−1/2t2F1(t)dt

+

∫ 1

0

(1− τ 2)−1/2τ 2dτ

∫ 1

0

[sin(ξt)− ξt cos(ξt)]F1(τt)dt

+

∫ ∞

1

t sin(ξt)dt

∫ ∞

1

(τ 2 − 1)−1/2G1(tτ)dτ

}
. (3.48)

Letting

F2(ρ) ≡
∫ ∞

0

ξ−1φ(ξ)J1(ρξ)dξ, (ρ > 1)

G1(ρ) ≡
∫ ∞

0

φ(ξ)J1(ρξ)dξ, (0 ≤ ρ ≤ 1)
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we have (see Equations 4.3.19, 4.3.20 in [88])

F2(ρ) =
2

πρ

∫ ρ

1

ξ2G∗∗(ξ)dξ√
ρ2 − ξ2

+
2
√

ρ2 − 1

πρ

∫ 1

0

t2F1(t)dt√
1− t2(ρ2 − t2)

, (3.49)

G1(ρ) = − 2

π

d

dρ

∫ 1

ρ

F∗∗(t)dt

t
√

t2 − ρ2
− 2ρ

π
√

1− ρ2

∫ ∞

1

√
t2 − 1G2(t)dt

(t2 − ρ2)
, (3.50)

where

F∗∗(t) =
d

dt

∫ t

0

s2F1(s)ds√
t2 − s2

, G∗∗(t) =

∫ ∞

t

G2(s)ds√
s2 − t2

. (3.51)

3.1.4. Application example

Having introduced the Hankel transform and the dual integral equations, now let us try

to apply them to an example problem involving an axisymmetric rigid punch in contact

with an elastic half-space. The solution to this problem was first given by Sneddon [87].

Figure 3.1.: Schematic of a rigid punch in contact with an elastic half-space.

As shown in Figure 3.1, an axisymmetric rigid punch is in contact with an elastic half-

space z ≥ 0 . If friction forces are neglected, one can immediately write the boundary

conditions as

uz|z=0 = δ − f(r/a), (0 ≤ r ≤ a) (3.52)

τzr|z=0 = 0, (r ≥ 0) (3.53)

σzz|z=0 = 0, (r > a) (3.54)

where δ is penetration of the punch tip, f(r/a) is the shape of the punch profile with

f(0) = 0 and a denotes the radius of the contact area.

By using Equations (3.21-3.25), the general solutions to the axisymmetric problem in

half-space, boundary conditions (3.52-3.54) can be rewritten in terms of Hankel trans-

forms as
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uz|z=0 =
1

2G
H0

[
ξ−1[(3− 4ν)A + C]; ξ → r

]
= δ − f(r/a), (0 ≤ r ≤ a) (3.55)

τrz|z=0 = −H1 [(1− 2ν)A + C; ξ → r] = 0, (r ≥ 0) (3.56)

σzz|z=0 = −H0 [(2− 2ν)A + C; ξ → r] = 0. (r > a) (3.57)

Equation (3.56) implies that

(1− 2ν)A + C = 0 or C = (2ν − 1)A. (3.58)

Substituting Equation (3.58) into Equations (3.55) and (3.57) results in

H0

[
ξ−1A; ξ → r

]
=

E∗

2
[δ − f(r/a)] , (0 ≤ r ≤ a) (3.59)

H0 [A; ξ → r] = 0, (r > a) (3.60)

where E∗ = 2G/(1− ν) = E/(1− ν2).

Now denoting ψ(ξ) = A(ξ/a), Equations (3.59) and (3.60) can be normalized to be

H0

[
ξ−1ψ(ξ); ξ → r

]
=

∫ ∞

0

ψ(ξ)J0(ξρ)dξ =
aE∗

2
[δ − f(ρ)], (0 ≤ ρ ≤ 1) (3.61)

H0 [ψ(ξ); ξ → r] =

∫ ∞

0

ψ(ξ)ξJ0(ξρ)dξ = 0, (ρ > 1) (3.62)

where ρ = r/a. It is evident that Equations (3.61-3.62) are just a special case of standard

dual integral equations (3.28-3.29) with F1 =
aE∗

2
[δ− f(ρ)] and G2 = 0. Actually, what

we are interested in here is not the solution of ψ(ξ) but G1, i.e., the expression of

H0[ψ(ξ); ξ → r] within 0 ≤ ρ ≤ 1, by which the contact stress can be expressed as

σzz|z=0 = −H0[A; ξ → r] = − 1

a2

∫ ∞

0

ξψ(ξ)J0(ξρ)dξ = − 1

a2
G1(ρ). (0 ≤ ρ ≤ 1) (3.63)

Substitute F1 =
aE∗

2
[δ − f(ρ)] and G2 = 0 directly into Equation (3.32) to get

G1(ρ) = − 2

πρ

d

dρ

∫ 1

ρ

ξF∗∗(ξ)dξ√
ξ2 − ρ2

=
2

π

[
F∗∗(1)√
1− ρ2

−
∫ 1

ρ

F′∗∗(ξ)dξ√
ξ2 − ρ2

]
, (3.64)

where

F∗∗(ξ) =
aE∗

2

d

dξ

∫ ξ

0

s[δ − f(s)]ds√
ξ2 − s2

=
aE∗

2

[
δ − ξ

∫ ξ

0

f ′(s)ds√
ξ2 − s2

]
. (3.65)
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Inserting Equation (3.64) into (3.63) gives rise to

σzz|z=0 = −E∗

2a

[
χ(1)√

1− r2/a2
−

∫ 1

r/a

χ′(ξ)dξ√
ξ2 − r2/a2

]
, (0 ≤ r ≤ a) (3.66)

where

χ(ξ) =
4

πaE∗F
∗∗(ξ) =

2

π

[
δ − ξ

∫ ξ

0

f ′(s)ds√
ξ2 − s2

]
. (3.67)

One can note that the stress in Equation (3.66) contains two parts: one is the compressive

part with vanishing value at r = a and the other is attractive part with an inverse-square-

root singularity at the contact periphery r = a, similar to the JKR model. We therefore

call this solution as JKR-like solution.

Equation (3.67) indicates that the penetration

δ =
π

2
χ(1) +

∫ 1

0

f ′(s)ds√
1− s2

. (3.68)

Due to the Newton’s third law, the load P required to achieve such a penetration is

P = −2πa2

∫ 1

0

σzz|z=0ρdρ = πaE∗
∫ 1

0

χ(ξ)dξ = 2aE∗
[
δ −

∫ 1

0

sf(s)ds√
1− s2

]
. (3.69)

In particular, for a spherical punch with profile function

f(ρ) = a2ρ2/2R, ρ = r/a, (3.70)

Equation (3.67) gives

χ(ξ) =
2

π

[
δ − a2ξ2

R

]
, (3.71)

χ(1) =
2

π

[
δ − a2

R

]
. (3.72)

If we take χ(1) = 0 to have stresses finite at r = a, we have

δ =
a2

R
, (3.73)

P =
4a3E∗

3R
, (3.74)

σzz|z=0 = −2aE∗

πR

[
1− (r/a)2

]1/2
, (0 ≤ r ≤ a) (3.75)
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which actually are the Hertzian results. If we take χ(1) 6= 0, we have

δ =
a2

3R
+

P

2aE∗ , (3.76)

σzz|z=0 =
KI√
πa

[
1− (r/a)2

]−1/2 − 2aE∗

πR

[
1− (r/a)2

]1/2
, (3.77)

where KI = −E∗

2
χ(1)

√
π

a
is the stress intensity factor. The Griffith fracture crite-

rion [45] correlates it with the surface energy ∆γ by

KI =
√

2∆γE∗,

therefore

σzz|z=0 =

(
2∆γE∗

πa

)1/2 [
1− (r/a)2

]−1/2 − 2aE∗

πR

[
1− (r/a)2

]1/2
, (3.78)

P =
4E∗a3

3R
−

√
8π∆γE∗a3, (3.79)

which are actually the results as given by JKR theory.

In fact, it can be shown that Equations (3.66-3.69) also apply to two elastic solids just

by taking f(r/a) = f1(r/a) + f2(r/a) and E∗ = [(1− ν2
1)/E1 + (1− ν2

2)/E2]
−1, provided

that the half-space assumption is still valid for each elastic solid.

3.2. Computational methods

We have derived the JKR-like solutions for contact problem between an arbitrary-shaped

rigid punch and an elastic plane on the basis of Hankel transforms. The results, say

Equation (3.66), involve a repeated integral associated with the profile function f(r/a).

Hence, if the punch has a complex profile, it would be not easy to get an explicit result

due to the mathematical intractability. Additionally, like the JKR theory these solu-

tions are also based on a delta-function-like force-separation law (Figure 2.6b). It has

been pointed out that such a force-separation law is not always applicable especially

for the cases with small Tabor number. We therefore develop some numerically com-

putational methods, by which we can handle more complex profiles and more realistic

stress-separation laws. These methods will be very useful in understanding the effect

of the contact shape on the adhesion strength, which is actually the topic of the next
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chapter. Before we start the discussion on the computational approaches, it would be

better to explore some basic correlations in the typical contact problems.

3.2.1. Self-consistent correlations in contact problems

When two solids come into contact, their surfaces will experience tractions due to the

intermolecular forces. In the contact region, the local traction stress σ could be com-

pressive or tensile or zero, depending on the local surface-surface separation h at that

point. As a consequence, deformation of the surfaces would occur if the materials are

deformable. Although the magnitude of the surface deformation u might be very small

in comparison with the dimension of the solids, it is still capable of causing some changes

in the interfacial separation h and in turn leading to an appreciable change in the stress

field σ owning to the dependence of σ on h. Therefore, as shown in Figure 3.2, traction

Figure 3.2.: Self-consistent relationships in contact problems.

σ, deformation u and interfacial separation h are correlated to one another. At the

equilibrium state all these three quantities should be self-consistent. That is, all in-

terrelations among them should be met simultaneously. These relations include the

stress-separation law between h and σ, the deformation response correlating u and σ

and the geometric relation between u and h. In our preceding Hankel-transform-based

approach, the stress-separation law is assumed as a delta-function with strength ∆γ and

the deformation is calculated by using the Boussinesq’s solution as the Green’s function.

In the coming section, we will use the Lennard-Jones potential to describe the surface

interaction. But we will still keep the half-space assumption for the moment, so that

the surface deformation can be calculated numerically by using Boussinesq’s solution as

the Green’s function.
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3.2.2. Green’s function method

Consider a rigid cylinder punch contacting with and elastic half-space z ≤ 0, as shown

in Figure 3.3. Lennard-Jones law is adopted to describe the stress between two surfaces

Figure 3.3.: Schematic of an axisymmetric rigid punch in contact with an elastic plane.

separated by distance h even though two surfaces are inclined or curved:

σ(h) = −p(h) =
8∆γ

3z0

[(z0

h

)3

−
(z0

h

)9
]

. (3.80)

On the other hand, using Boussinesq’s solution, the normal displacement of the plane

surface caused by an axisymmetric pressure distribution p(r) can be expressed as

w(r) = uz|z=0 =
4

πE∗

∫ R

0

r0p(r0)

r + r0

K

(
2(rr0)

1/2

r + r0

)
dr0, (3.81)

where K(·) is the complete elliptic integral of the fist kind. One can see that the

integrand in Equation (3.81) has singularity as r = r0 since K(1) = ∞. Denoting the

punch profile by function f(r), the geometric relation that correlates the separation h(r)

and deformation w(r) can be written as

h(r) = −δ + w(r) + f(r) + z0, (3.82)

where δ is the penetration of the punch with respect to the zero force position h(0) =

z0. Since σ(r) = −p(r), Equations (3.80-3.82) formulate the contact problem by three

intercoupling equations with respect to three unknown functions p(r), h(r) and w(r),

whose solutions can be calculated numerically as follows.
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Introducing non-dimensional parameters

x =
2r

R
− 1, H̄(x) =

h(r)− z0

z0

, P̄ (H̄) = p(h)
z0

∆γ
, ∆̄ =

δ

z0

,W (x) =
w(r)

z0

, F̄ (x) =
f(r)

R
,

Equations (3.80-3.82) can be normalized to be

P̄ (H̄) =
8

3

[(
1

1 + H̄

)9

−
(

1

1 + H̄

)3
]

, (3.83)

W (x) =
2λη

π

∫ 1

−1

(x0 + 1)P̄ (H̄(x0))

x + x0 + 2
K

(
2
√

(x + 1)(x0 + 1)

x + x0 + 2

)
dx0, (3.84)

H̄(x) = −∆̄ + W (x) + λF̄ (x), (3.85)

where λ =
R

z0

, η =
∆γ

E∗z0

. The general strategy to calculate the singular integration in

Equation (3.84) is to employ the Gauss-Chebyshev numerical quadrature [25, 26] which

results in

W (x∗i ) =
4λη

(2n + 1)

n∑

k=1

√
1− x2

k(1 + xk)

x∗i + xk + 2
P̄ (H̄(xk))K

(
2
√

(x∗i + 1)(xk + 1)

x∗i + xk + 2

)
, (3.86)

where xk and x∗i are integration points and collocation points defined respectively by

xk = cos

(
2k − 1

2n + 1
π

)
, (k = 1, 2, · · · , n) (3.87)

x∗i = cos

(
2iπ

2n + 1

)
. (i = 1, 2, · · · , n) (3.88)

Denoting

W
∗
i = W (x∗i ), H̄k = H̄(xk), P̄k = P̄ (H̄k), F̄k = F̄ (xk),

Kik =
4

(2n + 1)

√
1− x2

k(1 + xk)

x∗i + xk + 2
K

(
2
√

(x∗i + 1)(xk + 1)

x∗i + xk + 2

)
,

Equations (3.83-3.85) thus can be discretized to be

P̄k =
8

3

[
1

(1 + H̄k)9
− 1

(1 + H̄k)3

]
, (3.89)

W
∗
i = λη

n∑

k=1

KikP̄k, (3.90)

H̄k = −∆̄ + W k + λF̄k. (3.91)
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For a given ∆̄, Equations (3.89-3.91) can be solved by numerical iterations process as

shown in Figure 3.4.

Figure 3.4.: Iteration process for solving Equations (3.89-3.91).

After getting the convergent normalized pressure P̄k, we then can calculate the load

force via numerical integration

P =

∫ R

0

2πrp(r)dr =
πR2

2

∫ 1

−1

(x + 1)p(h(x))dx =
π2R2∆γ

(2n + 1)z0

n∑

k=1

(1 + xk)
√

1− x2
kP̄k.

(3.92)

By repeating this process for a series of ∆̄’s, we can track the variation of the adhesion

force as the punch approaches the substrate. Generally, this iteration process is initiated

with a sufficiently small ∆̄ corresponding to a large separation, so that the interfacial

tractions are weak and the calculation convergence is easy to get. Once convergence is
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reached for a separation ∆̄n, we let the punch have a small increment, arriving at a new

∆̄n+1. Then a new round of iterations is triggered by taking the H̄k that results from

the previous round as the initial value. Similarly, we can simulate the adhesion force in

a receding process just by changing the sign of the increment of ∆̄, as we will show in

section 4.3.

3.2.3. Finite element simulation

The Green’s function method introduced in the above is based on the half-space as-

sumption which is appropriate only if the contact area is much smaller than the overall

dimension of the contacting solids. Obviously, it is not always the case. If the contact

area is comparable to the solid dimension, the solid deformation has to be calculated by

using real numerical method (e.g. Finite Element Method). Tahoe2 is such a finite ele-

ment code that can fulfill this function via its specific cohesive surface elements. Since,

most computational simulations in this thesis are performed on Tahoe, it is worthwhile

to introduce some immediately relevant concepts in Tahoe here.

Figure 3.5.: Meshing implementation of an adhesion problem in Tahoe.

The process of solving an adhesion problem in Tahoe is also aimed to find the equi-

librium point at which all the self-consistent relationships (Figure 3.2) are satisfied.

What distinguishes it from the preceding methods is that in Tahoe the deformation is

calculated by using finite element method and the surface-surface interaction is accom-

plished by the constitutive relation of the Surface Cohesive Elements (SCE). Consider

an adhesion problem between two materials, Figure 3.5 schematically shows the meshing

2http://tahoe.ca.sandia.gov
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implementation by Tahoe. Here, the elastic solids are simulated by the traditional finite

elements, whereas the interface is modeled by the SCE with specific constitutive rela-

tion. Tahoe supports many SCE constitutive relations, including Tvergaard-Hutchinson

model [100], Xu-Needleman model [103], Lennard-Jones model and etc. In the simu-

lations presented in this thesis, we adopt the Tvergaard-Hutchinson model due to its

simplicity and preservation of adhesion energy regardless of the separation direction. In

the following, we will give a brief introduction to it.

Like any other SCE constitutive relations, Tvergaard-Hutchinson model also specifies

a relationship between the traction vector T and the interface separation vector ∆

(Figure 3.5). The interface separation in Tvergaard-Hutchison model is characterized

by a dimensionless scalar

λ̄ =

√(
∆n

δcn

)2

+

(
∆t

δct

)2

,

where ∆n and ∆t are the components of ∆ in normal and tangential directions respec-

tively; δcn and δct are two parameters denoting the critical opening for complete failure.

The potential function U is defined by

U(λ̄) = δcn

∫ λ̄

0

ϕ(λ̃)dλ̃.

The force function ϕ(λ̄) is taken to be tri-linear,

ϕ(λ̄) =





σmaxλ̄/Λ1, (λ̄ < Λ1)

σmax, (Λ1 < λ̄ < Λ2)

σmax(1− λ̄)/(1− Λ2), (Λ2 < λ̄ < 1)

with Λ1 and Λ2 being the values of λ̄ at which the cohesive force stress reaches the peak

σmax, as shown in Figure 3.6.

Figure 3.6.: Force function in Tvergaard-Hutchinson model.
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Taking partial derivatives of the potential with respect to the normal and tangential

separations respectively gives the normal and tangential tractions as

Tn =
∂U

∂∆n

=
∆n

δcn

ϕ(λ̄)

λ̄
, Tt =

∂U

∂∆t

=
δcn

δct

∆t

δct

ϕ(λ̄)

λ̄
.

It is clear that Tvergaard-Hutchinson model not only takes account of the normal trac-

tions but also the tangential tractions. Knowledge of all five parameters δcn, δct, σmax,

Λ1, Λ2 completely determines the constitutive relation. The work of adhesion thus can

be calculated by

∆γ = 0.5(1 + Λ2 − Λ1)σmaxδcn.

For example, if we take σmax = 10 MPa, Λ1 = 0.1, Λ2 = 0.9, δcn = δct = 5 nm, the work

of adhesion can be immediately given by

∆γ = 0.5(1 + Λ2 − Λ1)σmaxδcn = 45 mJ/m2.

Actually, what we have introduced above is just the two-dimensional Tvergaard-

Hutchinson model. It is easy to extend it to three dimension by defining

λ̄ =

√(
∆n

δcn

)2

+

(
∆t1

δct

)2

+

(
∆t2

δct

)2

where ∆n, ∆t1, ∆t2 are components of ∆ in normal and two tangential directions of the

mid-plane respectively. Under this circumstance, the tractions components are given by

Tn =
∂U

∂∆n

=
∆n

δcn

ϕ(λ̄)

λ̄
, Tt1 =

∂U

∂∆t1

=
δcn

δct

∆t1

δct

ϕ(λ̄)

λ̄
, Tt2 =

∂U

∂∆t2

=
δcn

δct

∆t2

δct

ϕ(λ̄)

λ̄
.

In this chapter, we have mainly introduced the research methods, including the

Hankel-transform-based approach, Green’s function method and FEM (Finite Element

Method). A frequent use of these approaches will be made in the subsequent chapters.
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Chapter 4. Shape-insensitive optimal

adhesion

Having introduced the necessary preliminaries, now let us turn our attention to the

theme of this thesis. In this chapter, we will firstly consider the effect of surface shape

on the adhesion strength. By investigating the adhesion strength for the power-law

shape z = rn/nRn−1 (n > 0), we will find that the adhesion strength between two solid

surfaces is dependent on their geometric shapes. This result motivates us to seek for the

optimal shape by which the adhesion strength can be maximized. A general methodology

for determining the optimal shape is developed, by which various examples of optimal

shapes are presented. However, optimal shape does not necessarily ensure spontaneous

optimal adhesion. The condition for spontaneous optimal adhesion is investigated by

exploring the variation of the adhesion force in an approaching/receding process between

an optimal-shaped punch and a flat substrate.

4.1. Shape effect on adhesion strength

Recalling the classical adhesive contact theories such as JKR, DMT and M-D models,

we note that the spheres in all these models are approximated by a parabola function

z = r2/2Ri (i = 1, 2), where R1, R2 are the radii of two spheres respectively. Under

this circumstance, the pull-off force falls in the range between 3
2
πR∆γ and 2πR∆γ with

R = (1/R1 +1/R2)
−1, depending on the Tabor number of the case. It should be of great

interest to investigate the pull-off force for solids (or punches) with other profile shapes.

4.1.1. JKR-like solution for punch with power-law shape

Consider an axisymmetric elastic punch with profile f(r/a) in frictionless contact with

an elastic plane. According to the result of subsection 3.1.4, the stress underneath the

41



Chapter 4. Shape-insensitive optimal adhesion

punch is given by

σzz|z=0 = −E∗

2a

[
χ(1)√

1− r2/a2
−

∫ 1

r/a

χ′(ξ)√
ξ2 − r2/a2

dξ

]
, (0 ≤ r ≤ a) (4.1)

where

χ(ξ) =
2

π

[
δ − ξ

∫ ξ

0

f ′(s)ds√
ξ2 − s2

]
, E∗ =

[
1− ν2

s

Es

+
1− ν2

p

Ep

]−1

, (4.2)

with a being the radius of the contact region; Ep, νp, Es, νs the Young’s moduli and

Poisson’s ratios of punch and substrate, respectively. We can note that the stress in

Equation (4.1) contains two parts: one is the compressive part with vanishing value at

r = a and the other is attractive part with an inverse-square-root singularity at the

contact periphery r = a. This is quite similar to the JKR model. Applying Griffith’s

energy balance [45] to the singularity term at the contact edge leads to

KI = lim
r→a

√
2π(a− r)σzz(r) = −E∗χ(1)

√
π

2
√

a
, (4.3)

G =
K2

I

2E∗ =
E∗π
8a

[χ(1)]2, (4.4)

G = Wad, (4.5)

where Wad denotes the work of adhesion which is taken to be the surface energy ∆γ in

the absence of bulk energy dissipation. Combining Equation (4.4) and Equation (4.5)

yields

χ(1) = −
√

8∆γa

πE∗ . (4.6)

Inserting Equation (4.6) into Equation (4.1) and then integrating the contact stress over

the entire contact area r ≤ a give the applied pulling force as

F =
√

8πa3∆γE∗ − 2aE∗
∫ 1

0

s2f ′(s)ds√
1− s2

. (4.7)

Equation (4.7) generalizes the JKR model to the adhesive contact between elastic bodies

with arbitrary axisymmetric surface profiles.

Consider the power-law profile

z = f(r/a) = f(ρ) =
rn

nRn−1
=

anρn

nRn−1
, (n > 0) (4.8)
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where R is the characteristic length and n is the shape index. Different n’s lead to

different surface shapes as shown in Figure 4.1. The case n = 2 corresponds to the

parabola shape used in most of the classical contact mechanics models to approximate

a sphere of radius R.
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Figure 4.1.: Power-law surfaces z = rn/nRn. The parabolic case n = 2 is most widely used in
classical contact mechanics theories.

Substituting Equation (4.8) into (4.7) and then making use of the integral

∫ 1

0

sn+1

√
1− s2

ds =
Γ (1 + n/2)

(n + 1)Γ (1/2 + n/2)
(4.9)

result in

F =
√

8πa3E∗∆γ − 2
√

πan+1Γ (1 + n/2)E∗

(n + 1)Rn−1Γ (1/2 + n/2)
, (4.10)

where Γ (·) is the Gamma function. Given E∗, ∆γ, n, Equation (4.10) expresses the

applied pulling force as a function of the contact radius a. The maximum of the pulling

force occurs at the contact radius

a = ac =

[
3Γ (1/2 + n/2)√

2Γ (1 + n/2)

]2/(2n−1)

R2(n−1)/(2n−1)(∆γ/E∗)1/(2n−1), (4.11)
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which gives the pull-off force as

F f =
√

2π

(
2n− 1

n + 1

)[
3Γ (1/2 + n/2)√

2Γ (1 + n/2)

]3/(2n−1)

E∗(n−2)/(2n−1)R3(n−1)/(2n−1)∆γ(n+1)/(2n−1).

(4.12)

Equation (4.12) indicates that the pull-off force F f depends on the index n and accord-

ingly on the surface shape. For the parabolic case n = 2, the exponent of E∗ in Equa-

tion (4.12) vanishes and the pull-off force is reduced to the JKR prediction F f = 3
2
πR∆γ.

Therefore, the absence of Young’s modulus in the JKR pull-off force can be attributed

to the assumption of a parabolic surface profile. In the limit of n = ∞, the pull-off force

is reduced to F f =
√

8πR3E∗∆γ, a solution associated with an external circumferential

crack with radius R. Variation of the pull-off force with RE∗/∆γ for different shape

indexes n is shown in Figure 4.2. Further discussions of the effect of contact shapes on

adhesion strength can be found in the work by Spolenak et al. [89].
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Figure 4.2.: Variation of the normalized pull-off force with parameter RE∗/∆γ for different
shape indexes n.

The shape effect on the adhesion suggests that the parabolic approximation in the JKR

model may not always be appropriate to describe the behavior of adhesion between two

spheres. In order to evaluate the possible error induced by such parabolic approximation

in the JKR model, we calculate the pull-off force between a rigid sphere with exactly

spherical shape and a flat elastic substrate.
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4.1. Shape effect on adhesion strength

4.1.2. JKR-like solution for exact sphere

Consider a rigid punch with exactly spherical profile

f(ρ) = R−
√

R2 − a2ρ2, ρ = r/a, (4.13)

where R denotes the radius of the sphere. On substituting Equation (4.13) into (4.2),

we have

χ(ξ) =
2

π

[
δ − ξ

∫ ξ

0

f ′(s)ds√
ξ2 − s2

]
=

2

π

{
δ − ξ

∫ ξ

0

a2sds√
R2 − a2s2

√
ξ2 − s2

}

=
2

π

{
δ − aξ

[
1

2
ln

(
R2/a2 + ξ2 − 2s2 − 2

√
R2/a2 − s2

√
ξ2 − s2

)
|ξ0

]}

=
1

π

{
2δ − aξ ln

[
R + aξ

R− aξ

]}
. (4.14)

It follows that

χ′(ξ) = −a

π
ln

[
R + aξ

R− aξ

]
− ξ

π

[
2R

R2/a2 − ξ2

]
. (4.15)

Substituting Equation (4.15) into (4.1) and then applying (4.6) give the contact stress

as

σzz|z=0(r) =

√
2E∗∆γ

πa

1√
1− r2/a2

− E∗

2π

{∫ 1

r/a

ln

[
R + aξ

R− aξ

]
dξ√

ξ2 − r2/a2

+
2R

a

∫ 1

r/a

ξdξ

(R2/a2 − ξ2)
√

ξ2 − r2/a2

}
. (4.16)

Then the external load force can be calculated by integrating

F =2π

∫ a

0

rσzz|z=0dr

=
√

8πa3E∗∆γ − πE∗
∫ a

0

rdr

∫ 1

r/a

ln

[
R + aξ

R− aξ

]
dξ

π
√

ξ2 − r2/a2

− 2E∗R
a

∫ a

0

rdr

∫ 1

r/a

ξdξ

(R2/a2 − ξ2)
√

ξ2 − r2/a2
. (4.17)

Interchanging the integration order in Equation (4.17) gives rise to
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Chapter 4. Shape-insensitive optimal adhesion

F =
√

8πa3E∗∆γ − a2E∗
∫ 1

0

ln

[
R + aξ

R− aξ

]
dξ

∫ ξ

0

sds√
ξ2 − s2

− 2aRE∗
∫ 1

0

ξdξ

(R2/a2 − ξ2)

∫ ξ

0

sds√
ξ2 − s2

=
√

8πa3E∗∆γ − a2E∗
[
ξR

a
+

1

2

(
ξ2 − R2

a2

)
ln

(
R + aξ

R− aξ

)]

|10

− 2aRE∗
[
R

a
tanh−1

( a

R

)
− 1

]

=
√

8πa3E∗∆γ − aRE∗
[(

a

2R
− R

2a

)
ln

(
R + a

R− a

)
+

2R

a
tanh−1

( a

R

)
− 1

]
. (4.18)

Denoting ā = a/R, Equation (4.18) can be normalized to be

F

πR∆γ
=

√
8RE∗

π∆γ
ā3/2 − RE∗

π∆γ

[
(ā2 + 1)

2
ln

(
1 + ā

1− ā

)
− ā

]
, (4.19)

where Equation (A.17) has been used.
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Figure 4.3.: Variation of adhesive force with the contact radius for different RE∗/π∆γ.

Figure 4.3 plots the variation of F/πR∆γ as a function of a/R for various RE∗/π∆γ in

contrast to the JKR results. It can be seen that for larger RE∗/π∆γ, say 1000, parabola

assumption exhibits a very good approximation to the spherical surface, whereas for the
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4.1. Shape effect on adhesion strength

case with small RE∗/π∆γ considerable deviation occurs as the contact radius increases.

Even so, the parabola is still a quite good approximation when the contact radius is

small, say a/R < 0.2. Therefore, even in the JKR regime characterized by large Tabor

number, JKR theory is applicable only when the contact area is small in comparison

with the radius R. Another interesting observation from Figure 4.3 is that the pull-off

force for the exact spheres varies with RE∗/π∆γ instead of being an invariant 3
2
πR∆γ

as predicted by JKR theory. It is reconfirmed that the absence of Young’s modulus in

the pull-off force of JKR theory is just owing to the parabola approximation for the

spherical profile.

4.1.3. JKR-like solution for a ring-shaped punch: numerical results

It will be also interesting to investigate the pull-off force between a rigid circular cylinder

and an elastic substrate, as shown in Figure 4.4(a). The associated theoretical investiga-

tions in contact mechanics theory [38] show that it is not easy to get a simple expression

for the adhesive force. Here we therefore develop a numerical method to compute the

adhesive force between a rigid ring-shaped punch and an elastic substrate.

Figure 4.4.: Schematic of a rigid ring-shaped punch in contact with an elastic half-space sub-
strate.

As shown in Figure 4.4(b), the outer and inner radii of the contact region is denoted

by a and b. According to the Boussinesq’s solution, the normal surface displacement of

the elastic substrate (half-space) under the axisymmetric pressure p(r) can be expressed

in terms of integral as

w(r) =
4

πE∗

∫ a

b

r0p(r0)

(r + r0)
K

(
2(r0r)

1/2

r + r0

)
dr0, (4.20)

where K(·) is the complete elliptical integral of first kind and E∗ = E/(1 − ν2) with

E, ν being the Young’s modulus and Poisson’s ratio of the substrate.

47



Chapter 4. Shape-insensitive optimal adhesion

JKR theory implies that the contact stress p(r0) tends to be infinite in a square root

singular manner as r0 approaches a− and b+. We therefore assume that p(r0) can be

expressed as the product of a fundamental solution [(1 − r0/a)(r0/b − 1)]−1/2 and an

unknown regular function
a− b

2
√

ab
φ(r0), i.e.,

p(r0) =
1√

(1− r0/a)
√

(r0/b− 1)

a− b

2
√

ab
φ(r0). (4.21)

Denoting

x0 =
2(r0 − a)

a− b
+ 1, (4.22)

Equation (4.21) can be rewritten as

p

(
a +

(a− b)(x0 − 1)

2

)
=

1√
1− x0

√
1 + x0

φ

(
a +

(a− b)(x0 − 1)

2

)
. (4.23)

On substituting Equation (4.23) into Equation (4.20), we have

w(r) =
2(a− b)

πE∗

∫ 1

−1

1√
1− x2

0

φ

(
a +

(a− b)(x0 − 1)

2

)
r0

r + r0

K

(
2(r0r)

1/2

r + r0

)
dx0.

(4.24)

By using Gauss-Chebyshev quadrature [25, 26], the integral in Equation (4.24) can be

calculated numerically as

w(r′i) =
2(a− b)

nE∗

n∑

k=1

φ(rk)
rk

r′i + rk

K

(
2(rkr

′
i)

1/2

r′i + rk

)
. (4.25)

with integration points and collocation points given by

rk = a +
(a− b)(xk − 1)

2
, xk = cos

(2k − 1)π

2n
(k = 1, 2, · · · , n), (4.26a)

r′i = a +
(a− b)(x′i − 1)

2
, x′i = cos

(
iπ

n

)
(i = 1, 2, · · · , n− 1). (4.26b)

Letting

ε =
b

a
, y = 1 +

(1− ε)(x− 1)

2
, (4.27)

Equation (4.25) can be recast into
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4.1. Shape effect on adhesion strength

w(ay′i) =
2(1− ε)a

nE∗

n∑

k=1

φ(rk)
yk

y′i + yk

K

(
2(yky

′
i)

1/2

y′i + yk

)
. (4.28)

In addition, the square-root singularity of the contact stress at the contact edge suggests

that

lim
r→a−

p(r) = − KI√
2π(a− r)

, lim
r→b+

p(r) = − KI√
2π(r − b)

, (4.29)

where stress intensity factor KI, according to the Griffith fracture criterion, is given by

KI =
√

2E∗∆γ,

with ∆γ being the adhesion energy. From Equation (4.26a), one can see that r1 ≈ a,

rn ≈ b for large n. Hence, combination of Equation (4.23) with Equation (4.29) leads to

φ(r1) = −
√

2E∗∆γ
√

1 + x1√
πa(1− ε)

, (4.30)

φ(rn) = −
√

2E∗∆γ
√

1− xn√
πa(1− ε)

, (4.31)

Denoting

Φk = φ(rk)

√
a

E∗∆γ
, Wi = w(ay′i)

√
E∗

∆γa
, (4.32)

Equations (4.30)(4.31)(4.28) then can be normalized to be

Φ1 = φ(r1)

√
a

E∗∆γ
= −

√
2(1 + x1)

π(1− ε)
, (4.33)

Φn = φ(rn)

√
a

E∗∆γ
= −

√
2(1− xn)

π(1− ε)
, (4.34)

Wi =
n∑

k=1

KikΦk, (4.35)

where

Kik =
2(1− ε)

n

yk

y′i + yk

K

(
2(yky

′
i)

1/2

y′i + yk

)
. (4.36)

On the other hand, the geometric compatibility within the contact region b < r < a

indicates that

w(r′i) = δ − f(r′i), (i = 1, 2, · · · , n− 1) (4.37)
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Chapter 4. Shape-insensitive optimal adhesion

where δ is the penetration of the punch tip and f(r) is the function describing the profile

of the punch. For the circular annulus, we have

f(r) = R1 −
√

R2
1 − (r −R2)2, (4.38)

where R1, R2 are two principal radii at the annulus bottom, as shown in Figure 4.4(b).

Denoting

∆̄ = δ

√
E∗

∆γa
, F̄i = f(r′i)

√
E∗

∆γa
=

√
E∗

∆γa
R1


1−

√
1−

(
ay′i
R1

− R2

R1

)2

 , (4.39)

Equation (4.37) can be expressed in a normalized form as

Wi = ∆̄− F̄i. (4.40)

On substituting Equation (4.40) into Equation (4.35), we have




∆̄− F̄1

∆̄− F̄2

...

∆̄− F̄n−1




(n−1)×1

=




K11 K12 · · · K1n

K21

...
. . .

...

Kn−1,1 · · · Kn−1,n




(n−1)×n




Φ1

Φ2

...

Φn




n×1

. (4.41)

Given ε and n, in Equation (4.41), Φ1, Φn and matrix K can be determined easily

by Equations (4.33)(4.34)(4.36), respectively. So we have n unknown variables ∆̄, a,

Φ2, · · · , Φn−1 whereas n−1 equations. In order to solve these equations, an additional

assumed condition is introduced that

a + b = a(1 + ε) = 2R2,

namely,

a =
2R2

1 + ε
. (4.42)

This assumption is appropriate when the contact region is quite small in contrast to the

radius R1. Substituting Equation (4.42) into Equation (4.39) results in

F̄i =
ς
√

1 + ε

ϑ


1−

√
1− ϑ2

[
2y′i

(1 + ε)
− 1

]2

 , (4.43)
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4.1. Shape effect on adhesion strength

where

ς =

√
E∗R2

2∆γ
, ϑ =

R2

R1

. (4.44)

The externally applied force P then can be calculated as

P = 2π

∫ a

b

rp(r)dr =
4(1− ε)π2R2

n(1 + ε)

√
E∗∆γR2

2(1 + ε)

n∑

k=1

ykΦk,

which can be normalized to be

P̄ =
P

πR2∆γ
=

4π(1− ε)ς

n(1 + ε)3/2

n∑

k=1

ykΦk. (4.45)

Combination Equation (4.45) with Equation (4.41) results in




∆̄− F̄1

∆̄− F̄2

...

∆̄− F̄n−1

P̄




n×1

=




K11 K12 · · · K1n

K21

...
. . .

...

Kn−1,1 · · · Kn−1,n

4πς(1− ε)y1

n(1 + ε)3/2
· · · 4πς(1− ε)yn

n(1 + ε)3/2




n×n




Φ1

Φ2

...

Φn




n×1

. (4.46)

Given ε, ς, ϑ, in Equation (4.46) we have n unknown variables Φ2, · · · , Φn−1, ∆̄, P̄ and
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Figure 4.5.: Variation of the adhesive force with ε for a ring-shaped punch.
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Chapter 4. Shape-insensitive optimal adhesion

n equations. It can be solved by general linear algebra approach. For instance, taking

R1 = 0.05 µm, R2 = 0.25 µm, E = 1.0 GPa, ν =0.3 and ∆γ = 10 mJ/m2, Figure 4.5

shows the variation of the adhesive force P/πR2∆γ as a function of ε. One can see that

the pull-off force for such a ring-like punch is about 61πR2∆γ, which is much higher

than 3
2
πR2∆γ, the JKR value corresponding to a spherical punch with radius R2.

4.2. Optimal shape

It has been pointed out that the pull-off force is dependent on the profile shape of

the contact surfaces. For the adhesive contact between two elastic solids, the adhesion

strength is commonly measured by the pull-off force per unit contact area. For the

above-mentioned case associated with a power-law-shaped punch in contact with a plane,

Equations (4.11-4.12) give the adhesion strength as

σc = F f/πac
2

=

√
2

π

(
2n− 1

n + 1

) [√
2Γ (1 + n/2)

3Γ (1/2 + n/2)

]1/(2n−1)

E∗n/(2n−1)

(
∆γ

R

)(n−1)/(2n−1)

, (4.47)

which is also a function of shape index n. In general, the adhesion strength given in

Equation (4.47) is much smaller than the theoretical adhesion strength σth unless the

characteristic size R is reduced to below a nanoscale threshold. Given the shape effect

described in Equations (4.12, 4.47), we will advance further to see whether there exist

surface shapes that can have the adhesion strength to reach the theoretical adhesion

strength σth.

4.2.1. Definition of optimal shape

In conventional engineering, if two elastic bodies are jointed together (Figure 4.6a) by

adhesion and then subjected to a pulling load, stress concentration is expected to oc-

cur near the edge of the joint. As the load increases, the intensity of stress concen-

tration ultimately reaches a critical level to drive a crack to propagate and break the

joint(Figure 4.6b). Under this circumstance, the carrying capacity of the joint is not

used most efficiently because only a small fraction of material is highly stressed at any

instant of loading, and failure occurs by incremental crack propagation. Clearly, in order

to achieve the utmost adhesion strength, it is necessary to homogenize the distribution

of the adhesive stress so as to achieve such an ideal scenario that at pull-off the stress
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4.2. Optimal shape

Figure 4.6.: Shape effect on the adhesive stress distribution.

is uniformly distributed over the contact region with magnitude equal to the theoretical

adhesion strength σth(Figure 4.6c). We call this perfect adhesion state as optimal adhe-

sion. In theory, it is always possible to achieve optimal adhesion via shape optimization.

The optimal shape of two objects in adhesive contact over a surface area A is defined

as such that the stress distribution is uniform and equal to the theoretical strength

σth of adhesion at pull-off. In contrast to the optimal shape, the singular shape of two

contacting objects over a surface area A is defined as such that the stress distribution

is equivalent to the singular stress distribution associated with a crack external to the

connecting area A at pull-off.

4.2.2. Methodology for determining the optimal shape

Now let us see how to determine the optimal shape and singular shape in practice. In

Chapter 2, it has been addressed that the molecular adhesion force between two contact-

ing surfaces relies on the surface-surface separation. There exists a unique separation hc

at which the maximum (theoretical) adhesion strength σth can be reached. For optimal

shape, since the adhesive stress at pull-off is uniformly equal to the theoretical strength

over the entire contact area, the separation between two surfaces are uniform and equal

to hc. That is, the deformed contact surfaces are complementary to each other, as shown

in Figure 4.7(a).

Provided that the configuration in Figure 4.7(a) is known, to determine the optimal

shape free of stress, a uniform pressure with magnitude equal to σth is applied separately

on the contact region of the two objects which will deform as depicted in Figure 4.7(b).

Superposing Figure 4.7(a) and (b) leads to the optimal shape before deformation. Here,

we can use two arbitrary complementary surfaces to determine the undeformed config-

urations of the optimal shape by the superposition theorem in elasticity [96]. If the

deformed configuration of the conforming interface (Figure 4.7a) is not prescribed in ad-
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Chapter 4. Shape-insensitive optimal adhesion

Figure 4.7.: Methodology for determining the optimal and singular shapes.

vance, we can in principle find an infinite number of solutions for the optimally shaped

contacting surfaces which give rise to the theoretical pull-off force. The solution is

unique only when the deformed configuration of the contact interface is known or the

undeformed configuration of one solid is prescribed. For example, assuming that the

undeformed shape of the substrate in Figure 4.7(c) is prescribed, we can find the opti-

mal shape for the other solid as follows. Firstly, by applying the uniform tensile stress

with magnitude σth on the substrate, we can calculate its deformed shape (Figure 4.7a).

Then according to the conformability condition, the deformed contacting area shape

for the other solid is determined. Superposing a uniform pressure with magnitude σth

(Figure 4.7b) on this deformed configuration finally gives rise to the optimal shape of

the solid free of stress (Figure 4.7c).

Similarly, Figure 4.7(d-e) describes the procedure that can be used to determine the

singular shapes for the contacting objects. Instead of a uniform stress, now the adhesive

stress has singular stress distribution associated with an external crack. Two contact

surfaces are always bonded together before pull-off and therefore complementary to

each other even though the adhesive stress is not uniform any more (Figure 4.7d). At

first glance, it seems incompatible with the stress-separation law which implies that

uniform separation gives rise to uniform stress. However, the presence of the singular
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4.2. Optimal shape

stress implies that the stress-separation law we face here is a delta-function, as shown

in Figure 2.6(b). Under this circumstance, surface conformability or uniform separation

does not necessarily lead to uniform stress.

The procedure illustrated in Figure 4.7 can be used as the methodology for determining

the optimal shape and singular shape for general adhesive joint. A critical step in this

methodology is to solve the boundary value problem defined in Figure 4.7(b) and (e).

Assuming the deformation of the solids is small (linear elastic) at pull-off, the existence

and uniqueness theorems of elasticity guarantee that the solution can be determined

uniquely. Now let us apply the above-mentioned methodology to determine the optimal

shapes for some special cases.

4.2.3. Optimal shape for frictionless adhesion

We first consider a case of a cylindrical fiber in contact with a half-space. Assuming

that the half-space is flat, the optimal shape of the fiber tip is expected to maximize the

adhesion strength. For simplicity, frictions are neglected at the moment.

Figure 4.8.: Schematic illustrations of the optimal shapes for (a) elastic punch/rigid substrate
and (b) rigid punch/elastic substrate.

If the fiber is elastic and the substrate is rigid. One can immediately realize that

the optimal shape is flat because the tip shape of a flat-ended cylinder keeps flat under

uniform traction (Figure 4.8a), which makes it conform to the rigid substrate plane. In

this case, however, the singular shape can not be determined in closed form.

In contrast, if the fiber is rigid while the substrate is elastic, we find that the flat turns

to be the singular shape. The associated pull-off force can be calculated according to
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the Griffith condition for crack initiation as

F f
crack =

√
8πR3E∗∆γ = πR2

√
8

π

(
E∗∆γ

R

)1/2

, (4.48)

where R is the radius of the cylinder fiber, E∗ is defined as E∗ = E/(1 − ν2), E, ν

being Young’s modulus and Poisson’s ratio of the substrate, ∆γ is the work of adhesion.

On the other hand, since the punch is nondeforming, the optimal-shaped tip must be

conformal to the deformed elastic substrate under uniform traction σth (Figure 4.8b).

Assuming the substrate is an elastic half-space, the surface deflection due to the uniform

tensile σth acting on the circular area r ≤ R is given by [60]

w(r) = −4σthR

πE∗ E(r/R), (r ≤ R) (4.49)

where E(·) is the complete elliptic integral of the second kind. Therefore, the optimal

shape of the rigid fiber can be described by shape function

fopt(r) =
σthR

E∗

[
4

π
E(r/R)− 2

]
, (r ≤ R) (4.50)

where a constant has been added to make f(0) = 0. As shown in Figure 4.9, it is a

concave with depth 0.726σthR/E∗. Normally, the ratio σth/E
∗ is quite small (1 − 2%)
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Figure 4.9.: Optimal shapes for rigid punch in contact with a planar elastic substrate.
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and so is the concave depth, suggesting that the difference of the optimal shape and

singular shape is small. Clearly, the pull-off force associated with the optimal shape is

F f
opt = πR2σth. (4.51)

In fact, Equations (4.48)(4.51) also apply to an elastic fiber on a rigid substrate

when E∗ is interpreted as the modulus of the fiber. More generally, for an elastic fiber

with Young’s modulus Ef and Poisson’s ratio νf in contact with an elastic substrate with

Young’s modulus Es and Poisson’s ratio νs, the pull-off force associated with the singular

shape would still be given by Equation (4.48) if E∗ is properly generalized according to

1

E∗ =
1− ν2

f

Ef

+
1− ν2

s

Es

.

The pull-off force for the optimal shape is always defined by Equation (4.51).
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Figure 4.10.: Saturation of adhesion strength for the singular-shaped punch. (a) The variation
of the normalized pull-off force with the nondimensional parameter (E∗∆γ/Rσ2

th)
1/2. (b)The

distribution of the adhesive stress along the contact radius for various punch radii.

Figure 4.10(a) plots the normalized adhesive strength F f/πR2σth as a function of the

non-dimensional parameter (E∗∆γ/Rσ2
th)

1/2. The predictions of Equation (4.48) and

(4.51) are plotted as two straight solid lines labeled by “Singular shape by Griffith con-

dition” and “Optimal shape” respectively. In addition, we used the numerical Green’s

function method developed in subsection 3.2.2 to study the pull-off force associated with

a rigid singular-shaped fiber in contact with an elastic substrate. The computational

results of the pull-off force for the singular shape, as shown in Figure 4.10(a), agrees
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Chapter 4. Shape-insensitive optimal adhesion

well with the prediction by Griffith criterion for large fiber sizes but asymptotically ap-

proaches the theoretical adhesion strength as the fiber size decreases. This is because

the theoretical strength is the upper limit of adhesion. The Griffith condition assumes

that failure always occurs by crack propagation, i.e. a crack is assumed to nucleate at

the edge of the contact and propagates to break the joint. This assumption breaks down

for very small fibers. The results of Figure 4.10(a) shows that the theoretical adhesion

strength can be achieved in two ways: The first is by accurately adopting the optimal

shape of the tip of the fiber and the second is by reducing the diameter of the fiber. If

theoretical strength is achieved, failure occurs no longer by crack propagation, but by a

uniform detachment over the entire contact region. For very small sizes, the condition

for crack propagation can not be satisfied before the theoretical strength is reached. The

calculated pull-off force associated with the singular shape shows a smooth transition

between two failure modes: crack propagation at large sizes and uniform detachment at

small sizes. Figure 4.10(b) shows the distribution of adhesive traction at pull-off for the

singular shape with different punch sizes, corresponding to the four date points in Fig-

ure 4.10(a). It is quite clear that the adhesive traction becomes more and more uniform

as the fiber size decreases, eventually becoming uniform at a critical size.

On the other hand, at macroscopic sizes the pull-off force is quite sensitive to the

variation in the tip shape of the fiber. For example, taking ∆γ = 10 mJ/m2, σth =

20 MPa and E∗ = 1 GPa (the case of a keratinous fiber in contact with a rigid substrate)

and fiber radius equal to 1 mm, the pull-off force for the optimal shape is estimated

to be 62.8 N and that for the singular shape is only 0.5 N. The design of optimal

shape, although theoretically feasible, is unrealizable in practice at macroscopic scale.

Interestingly, Figure 4.11 shows that the difference between the adhesive strength of the

optimal shape and that of the singular shape decreases as the size of the fiber is reduced.

At the critical size

Rcr =
8

π

E∗∆γ

σ2
th

, (4.52)

the strength of the singular shape predicted by Equation (4.48) becomes equal to that of

the optimal shape predicted by Equation (4.51). Taking ∆γ = 10 mJ/m2, σth = 20 MPa

and E∗ = 1 GPa, we estimate Rcr ≈ 64 nm. From these results we can conclude

that the sensitivity of adhesion strength to tip geometry of the fiber decreases as the

fiber diameter is reduced, and a robust design of optimal adhesion becomes possible

around a critical size at which the pull-off force is no longer sensitive to variations in tip

geometry. This length scale is around 100 nanometers, suggesting that the nanometer

size of the fibrillar ultra-structure (spatula) of gecko and many insects may be the
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Figure 4.11.: The shape sensitivity of adhesion strength. As E∗∆γ/Rσ2
th increases, or the

punch radius decreases, the difference between the adhesive strength of the singular shape and
that of the optimal shape decrease, eventually vanishes at the critical length on the order of
100 nm.

result of optimization for reliable and optimal adhesion. It has recently [32] been shown

that the nanometer size of mineral particles in bone-like biological materials may have

been selected to ensure optimum fracture strength and maximum tolerance of crack-like

flaws. The present result shows that the nanoscale dimension may play a crucial role in

achieving reliable adhesion in a fibrillar structure, agreeing with the recently discovered

fact that adhesion strength can be enhanced by splitting the contact area [1, 2].

The optimal adhesion strength described here can be compared with the JKR solution

for a fiber having radius of curvature R at the tip in contact with a flat surface. The

ratio of the optimal solution to that of JKR is

F f
opt

F f
JKR

=
2

3

Rσth

∆γ
. (4.53)

Taking ∆γ = 10 mJ/m2, σth = 20 MPa, this ratio is evaluated to be as large as 106

for a fiber of radius around 1 mm and 103 for that around 1 µm. Therefore, a huge

magnification of pull-off force can be achieved by modification of the tip shape (shape

optimization). Depending on animal species and convenience, optimal adhesion could

be achieved by a combination of size reduction and shape optimization. The smaller the

size, the less important the shape. At large sizes, the optimal adhesion could still be
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achieved if the shape could be manufactured to a sufficiently high precision.

So far, our discussion about optimal shape has always been limited in the frictionless

case. Generally, owing to the asymmetry of two solids with respect to the interface,

either in material or in structure, interfacial friction will occur between two surfaces. Is

it still possible to find the optimal shape in the presence of friction stresses? Will the

friction force affect the optimal shape drastically or slightly? To answer these questions,

the concept of optimal shape will be discussed in the following within the context of

frictional adhesion [105].

4.2.4. Optimal shape for frictional adhesion

Figure 4.12.: Methodology for determining the optimal shapes for adhesive binding of two
elastic bodies over a prescribed contact area. (a) The optimal-shaped surfaces should achieve
conformal contact at pull-off with uniform normal traction equal to the theoretical strength of
interactive forces. Tangential traction exists if the contact interface has finite shear strength.
(b) Superposition of a uniform pressure σth and inverse shear stress −τzr over the contact
region results in the optimal shapes under traction-free conditions, as depicted in (c).

Consider two axisymmetric elastic bodies in adhesive binding over a circular patch of

radius R (Figure 4.12). The interactive forces are restricted to within the binding region

in which the optimal shapes will be determined. The contact interface is assumed to have

a finite shear strength τf so that shear traction also exists along the interface, as shown

in Figure 4.12(a). Two special cases, τf = 0 or τf = ∞, correspond to frictionless or

perfectly bonded conditions respectively. We seek to determine optimal surface shapes

that lead to uniform separation hc corresponding to uniform adhesion stress σth at pull-

off.

Since the contact interface has finite shear strength, the tractions within the contact

region at pull-off consist of a uniform tension σth and a distribution of shear stress τzr(r).

If the deformed configuration of the contact interface is known (Figure 4.12a), the opti-

mal shape can be determined via superposition of a uniform pressure σth and an inverse
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tangential traction field −τzr(r) over the contact region, as depicted in Figure 4.12(b).

Superposition of Figures 4.12(a) and (b) then gives the optimal surface shapes free of

tractions, as in Figure 4.12(c). The reasoning in the above indicates that it is the gap

between the two solid surfaces which determines the pull-off force. For two contacting

bodies, there should be a family of optimal shapes that all lead to the same theoretical

adhesion strength as long as the gap between the two surfaces is appropriately selected.

In other words, the solution of the optimal shapes is unique only when the deformed

configuration of the contact interface is prescribed. The superposition procedure in

Figure 4.12 provides a useful strategy to determine the optimal shapes as soon as the

distribution of shear stress τzr(r) at pull-off is known.

Following the classical contact models, we assume that the contact region is much

smaller than the characteristic dimensions of both contacting bodies so that each body

can be effectively treated as an elastic half-space. Slip between the contacting surfaces

is allowed whenever the local shear stress reaches the interfacial shear strength τf . This

causes the contact region to be divided into a slipping region (a ≤ r ≤ R) in which the

shear stress is equal to τf and a non-slipping region (0 ≤ r ≤ a) in which the relative

tangential displacement between the two surfaces vanishes (Figure 4.13a,b).

Figure 4.13.: Surface tractions on optimal-shaped solids #1 and #2 at pull-off. The normal
traction is uniform and equal to the theoretical adhesion strength σth. The shear traction is
equal to the interfacial shear strength τf in the slipping region while slip vanishes in the non-
slipping region. The directions of shear stresses in (a) and (b) are plotted assuming positive
Dundurs’ constant.

According to the general solution to the axisymmetric problems associated with an

elastic half-space (see subsection 3.1.2), the displacement and stress components on the

half-space surface (Figure 4.13a,b) can be expressed in terms of Hankel transform as





u(1)
r (r, 0) =

1

2G1

H1

[
ξ−1C1; ξ → r

]

τ
(1)
zr (r, 0) = −H1 [(1− 2ν1)A1 + C1; ξ → r]

σ
(1)
zz (r, 0) = −H0 [(2− 2ν1)A1 + C1; ξ → r] ,

(4.54a)
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for solids #1 and





u(2)
r (r, 0) =

1

2G2

H1

[
ξ−1C2; ξ → r

]

τ
(2)
zr (r, 0) = −H1 [(1− 2ν2)A2 + C2; ξ → r]

σ
(2)
zz (r, 0) = −H0 [(2− 2ν2)A2 + C2; ξ → r] ,

(4.54b)

for solids #2, where G1, G2 are shear moduli, ν1, ν2 are Poisson’s ratios and A1, A2,

C1, C2, generally functions of ξ, will be determined through the boundary conditions;

superscripts ‘(1)’and ‘(2)’ are used to denote the quantities pertaining to the materi-

als #1 and #2. Note that the components in Equations (4.54a,b) are referred to the

respective coordinate system of each material with z-axis pointing into the material

(Figure 4.13a,b).

It is clear that when two solids are brought into contact, the continuity of traction

across the interface requires

σ(1)
zz (r, 0) = σ(2)

zz (r, 0), τ (1)
zr (r, 0) = −τ (2)

zr (r, 0). (4.55)

For an optimal-shaped surface, the stresses at pull-off should satisfy

σ(1)
zz (r, 0) = σ(2)

zz (r, 0) = T (r/a), (0 ≤ r < ∞) (4.56)

τ (1)
zr (r, 0) = −τ (2)

zr (r, 0) = Q(r/a), (a ≤ r < ∞) (4.57)

where

T (r/a) =

{
σth, (0 ≤ r ≤ R)

0, (R < r < ∞)
(4.58)

and

Q(r/a) =

{
τf , (a ≤ r ≤ R)

0, (R < r < ∞)
(4.59)

Substituting Equations (4.54a,b) into Equation (4.55), one can obtain the relationship

between functions A1, C1 and A2, C2 as

(2− 2ν1)A1 + C1 = (2− 2ν2)A2 + C2, (4.60)

(1− 2ν1)A1 + C1 = −(1− 2ν2)A2 − C2. (4.61)

Eliminating A2 in Equations (4.60) and (4.61), one can express C2 in terms of A1 and
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C1 as

C2 = −
[
A1

2
(κ1κ2 − 1) + κ2C1

]
, (4.62)

where κi ≡ 3− 4νi (i = 1, 2). Similarly, by using Equation (4.54a) boundary conditions

of Equations (4.56) and (4.57) can be rewritten in terms of Hankel transforms as

−H0[(2− 2ν1)A1 + C1; ξ → r] = T (r/a), (0 ≤ r < ∞) (4.63)

−H1[(1− 2ν1)A1 + C1; ξ → r] = Q(r/a). (a ≤ r < ∞) (4.64)

On the other hand, in the non-slipping region the displacement continuity indicates

u(1)
r (r, 0)− u(2)

r (r, 0) = 0. (0 ≤ r ≤ a) (4.65)

Substituting the expression for u
(1)
r and u

(2)
r of Equations (4.54a,b) into (4.65) and then

invoking Equation (4.62) lead to

H1

[
ξ−1(C1 + ωA1); ξ → r

]
= 0, (0 ≤ r ≤ a) (4.66)

where

ω =
(κ1κ2 − 1)G1

2(G2 + G1κ2)
. (4.67)

Denoting

ψ(ξ) = A1(ξ/a), φ(ξ) = C1(ξ/a), (4.68)

Equations (4.63) (4.64) and (4.66) then can be normalized to be

H0 [(2− 2ν1)ψ(ξ) + φ(ξ); ξ → ρ] = −a2T (ρ), (ρ ≥ 0) (4.69a)

H1 [(1− 2ν1)ψ(ξ) + φ(ξ); ξ → ρ] = −a2Q(ρ), (ρ ≥ 1) (4.69b)

H1

[
ξ−1[φ(ξ) + ωψ(ξ)]; ξ → ρ

]
= 0, (0 ≤ ρ < 1) (4.69c)

where ρ = r/a. With Equation (4.58), inversion of Equation (4.69a) yields

(2− 2ν1)ψ(ξ) + φ(ξ) = −aRσth
J1(Rξ/a)

ξ
. (4.70)
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Inserting Equation (4.70) back into Equations (4.69b,c) to eliminate function φ(ξ) yields

H1

[
ξ−1ψ(ξ); ξ → ρ

]
=

a2σthρ

2[ω − (2− 2ν1)]
, (0 ≤ ρ < 1) (4.71a)

H1 [ψ(ξ); ξ → ρ] = a2Q(ρ)− aRσthH1

[
J1(Rξ/a)

ξ
; ξ → ρ

]
. (ρ ≥ 1) (4.71b)

Equation (4.71b) suggests that function ψ(ξ) must have the form

ψ(ξ) = −aRσth
J1(Rξ/a)

ξ
+ ψ̄(ξ), (4.72)

where ψ̄(ξ) is determined, according to Equations (4.71a,b), by dual integral equations

H1

[
ξ−1ψ̄(ξ); ξ → ρ

]
=

a2σthβρ

2
, (0 ≤ ρ < 1) (4.73a)

H1

[
ψ̄(ξ); ξ → ρ

]
= a2Q(ρ), (ρ ≥ 1) (4.73b)

with

β =
(κ1 − 1)/G1 − (κ2 − 1)/G2

(κ1 + 1)/G1 + (κ2 + 1)/G2

(4.74)

being the Dundurs’ constant [24]. Without loss of generality, we assume β ≥ 0, i.e.

(κ1−1)/G1 ≥ (κ2−1)/G2. It can be seen that Equations (4.73a,b) is just a special case

of standard dual integral equations (3.46-3.47) with F1(ρ) = a2σthβρ/2 and G2(ρ) =

a2Q(ρ). Following Equation (3.48), the solution to Equations (4.73a,b) is given by

ψ̄(ξ) =
2

π
a2τf

∫ R/a

1

t ln

[
R

at
+

√
R2

a2t2
− 1

]
sin(ξt)dt+

2

π
a2σthβ

(
sin ξ

ξ2
− cos ξ

ξ

)
. (4.75)

Meanwhile, the shear stress τ
(1)
zr (r, 0), according to Equations (4.54a, 4.68, 4.72), can

be expressed in terms of ψ̄(ξ) as

τ (1)
zr (r, 0) =

1

a2
H1

[
ψ̄(ξ); ξ → ρ

]
. (4.76)

Substituting Equation (4.75) into (4.76) yields

τ (1)
zr (r, 0) =

2

π

[
σthβ

ρ√
1− ρ2

− τfρ√
1− ρ2

∫ R/a

1

(t2 − 1)1/2dt

t2 − ρ2

]
, (0 ≤ ρ < 1) (4.77)

where integral (A.8) and relationship (A.15) (see Appendix A) have been used.
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The continuity of the frictional stress at the edge of the slipping region ρ = 1 requires

that the stress singularity in Equation (4.77) vanishes, i.e.,

lim
ρ→1

2

π

√
1− ρ

[
σthβ

ρ√
1− ρ2

− τfρ√
1− ρ2

∫ R/a

1

(t2 − 1)1/2dt

t2 − ρ2

]
= 0. (4.78)

This yields the following equation

R +
√

R2 − a2

a
= exp

(
σthβ

τf

)
, (4.79)

to determine the size of the non-slipping region as a function of the Dundurs’ constant

β, the theoretical adhesion strength σth and the interfacial shear strength τf . Taking

τf = σth, ν1 = 0.3, G2 → ∞ in Equation (4.79) yields a ≈ 0.96R. The variation of

a/R with σthβ/τf is plotted in Figure 4.14. As expected, a approaches 0 in the limit

of frictionless contact τf → 0 (σthβ/τf → ∞) and approaches R in the limit of perfect

bonding τf →∞ (σthβ/τf = 0).
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Figure 4.14.: The normalized radius of the non-slipping region a/R as a function of the dimen-
sionless parameter σthβ/τf

Substituting Equation (4.79) into (4.77) gives rise to the shear stress in the non-
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slipping region (0 ≤ r < a) as

τ
(1)
f (r, 0) =

2

π

ρτf√
1− ρ2

[
ln

(
R/a +

√
R2/a2 − 1

)
−

∫ R/a

1

(t2 − 1)1/2dt

t2 − ρ2

]
. (4.80)

Since

ln
(
R/a +

√
R2/a2 − 1

)
=

∫ R/a

1

(
t2 − 1

)−1/2
dt,

Equation (4.80) can be reduced further to be

τ (1)
zr (r, 0) =

2

π

ρτf√
1− ρ2

[∫ R/a

1

dt

(t2 − 1)1/2
−

∫ R/a

1

(t2 − 1)1/2dt

t2 − ρ2

]

=
2

π
ρτf

√
1− ρ2

∫ R/a

1

1

(t2 − ρ2)
√

t2 − 1
dt

=
τf

π

√
1− ρ2

∫ R/a

1

[
1

(t− ρ)
√

t2 − 1
− 1

(t + ρ)
√

t2 − 1

]
dt

=
τf

π

[
sin−1 Rr − a2

(R− r)a
+ sin−1 Rr + a2

(R + r)a

]
, (4.81)

where integrals of (A.9) and (A.10) have been applied. Taking a = 0.96R, friction stress

is plotted in Figure 4.15. As expected, the friction stress distribution is continuous at

the edge of the non-slipping region r = a.
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Figure 4.15.: Distribution of friction stress within the contact region for a/R = 0.96.
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The normal and tangential tractions applied on the contact area now can be summa-

rized as follows,

σ(1)
zz (r, 0) = σ(2)

zz (r, 0) = σth, (0 ≤ r ≤ R) (4.82a)

τ (1)
zr (r, 0) = −τ (2)

zr (r, 0) =
τf

π

[
sin−1 Rr − a2

(R− r)a
+ sin−1 Rr + a2

(R + r)a

]
, (0 ≤ r < a) (4.82b)

τ (1)
zr (r, 0) = −τ (2)

zr (r, 0) = τf , (a ≤ r ≤ R) (4.82c)

The associated surface displacements in the normal direction is calculated [60]

u(1)
z (r, 0) = −4σthR

πE∗
1

E
( r

R

)
− 2(κ1 − 1)τf(R− a)

π(κ1 + 1)E∗
1

− 2(κ1 − 1)τfa

π2(κ1 + 1)E∗
1

[
π− r

a
sin−1 Rr − a2

(R− r)a

−r

a
sin−1 Rr + a2

(R + r)a
− 2

R

a
sin−1

√
a2 − r2

R2 − r2

]
, (0 ≤ r < a) (4.83a)

u(1)
z (r, 0) = −4σthR

πE∗
1

E
( r

R

)
− 2(κ1 − 1)τf(R− r)

π(κ1 + 1)E∗
1

, (a ≤ r ≤ R) (4.83b)

u(2)
z (r, 0) = −4σthR

πE∗
2

E
( r

R

)
+

2(κ2 − 1)τf(R− a)

π(κ2 + 1)E∗
2

+
2(κ2 − 1)τfa

π2(κ2 + 1)E∗
2

[
π− r

a
sin−1 Rr − a2

(R− r)a

−r

a
sin−1 Rr + a2

(R + r)a
− 2

R

a
sin−1

√
a2 − r2

R2 − r2

]
, (0 ≤ r < a) (4.84a)

u(2)
z (r, 0) = −4σthR

πE∗
2

E
( r

R

)
+

2(κ2 − 1)τf(R− r)

π(κ2 + 1)E∗
2

, (a ≤ r ≤ R) (4.84b)

where E(·) is the complete elliptic integral of the second kind and E∗
1 = E1/(1 − ν2

1),

E∗
2 = E2/(1 − ν2

2). Following the superposition procedure outlined in Figure 4.12, the

optimal shapes for solid #1 and #2 are obtained as

f
(1)
opt(r) =

σthR

E∗
1

[
4

π
E

( r

R

)
− 2

]
+

2(κ1 − 1)τfa

π2(κ1 + 1)E∗
1

[
2R

a
sin−1

( a

R

)
− r

a
sin−1 Rr − a2

(R− r)a

−r

a
sin−1 Rr + a2

(R + r)a
− 2R

a
sin−1

√
a2 − r2

R2 − r2

]
+ f̃(r), (0 ≤ r < a) (4.85a)

f
(1)
opt(r) =

σthR

E∗
1

[
4

π
E

( r

R

)
− 2

]
+

2(κ1 − 1)τfa

π2(κ1 + 1)E∗
1

[
2R

a
sin−1

( a

R

)
− rπ

a

]
+ f̃(r),

(a ≤ r ≤ R) (4.85b)
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f
(2)
opt(r) =

σthR

E∗
2

[
4

π
E

( r

R

)
− 2

]
− 2(κ2 − 1)τfa

π2(κ2 + 1)E∗
2

[
2R

a
sin−1

( a

R

)
− r

a
sin−1 Rr − a2

(R− r)a

−r

a
sin−1 Rr + a2

(R + r)a
− 2R

a
sin−1

√
a2 − r2

R2 − r2

]
− f̃(r), (0 ≤ r < a) (4.86a)

f
(2)
opt(r) =

σthR

E∗
2

[
4

π
E

( r

R

)
− 2

]
− 2(κ2 − 1)τfa

π2(κ2 + 1)E∗
2

[
2R

a
sin−1

( a

R

)
− rπ

a

]
− f̃(r),

(a ≤ r ≤ R) (4.86b)

where f̃(r) is an arbitrary function representing the deformed configuration of the con-

tact interface at pull-off. Equations (4.85a,b) and (4.86a,b) define the optimal shapes for

adhesive binding of two elastic bodies over the circular patch (0 ≤ r ≤ R). The second

term of each equation corresponds to the effect of finite interfacial shear strength. Since

the pull-off force only depends on the summation f
(1)
opt(r)+ f

(2)
opt(r), an arbitrary function

f̃(r) has been included without affecting the optimized adhesion strength.

It therefore suffices to consider the special solution when the deformed contact area

at pull-off is a perfectly flat circular patch, namely, f̃(r) = 0 . A few special cases can

be discussed to give some insight into the problem. In the frictionless limit of τf = 0 or

β = 0, Equations (4.85a,b) and (4.86a,b) are reduced to be

f
(1)
FL (r) =

σthR

E∗
1

[
4

π
E

( r

R

)
− 2

]
, (0 ≤ r ≤ R) (4.87a)

f
(2)
FL (r) =

σthR

E∗
2

[
4

π
E

( r

R

)
− 2

]
. (0 ≤ r ≤ R) (4.87b)

In the perfect bonding limit of τf →∞, rearranging Equation (4.79) as

τf =
σthβ

ln
[

R+
√

R2+a2

a

] , (4.88)

substituting Equation (4.88) into Equations (4.85a,b) (4.86a,b) and then letting lead to

the optimal shape as

f
(1)
PB(r) =

σthR

E∗
1

[
4

π
E

( r

R

)
− 2

]
+

4(κ1 − 1)βσthR

(κ1 + 1)π2E∗
1

[√
1− r2/R2 − 1

]
, (4.89a)

f
(2)
PB(r) =

σthR

E∗
2

[
4

π
E

( r

R

)
− 2

]
− 4(κ2 − 1)βσthR

(κ2 + 1)π2E∗
2

[√
1− r2/R2 − 1

]
. (4.89b)
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Since

β =
(κ1 − 1)/G1 − (κ2 − 1)/G2

(κ1 + 1)/G1 + (κ2 + 1)/G2

,
κ1 − 1

κ1 + 1
=

1− 2ν1

2(1− ν1)
,

κ2 − 1

κ2 + 1
=

1− 2ν2

2(1− 2ν2)
,

for positive Poisson’s ratios, the largest deviation between the perfect bonding solution

(4.89a,b) and the frictionless solution (4.87a,b) occurs when β =
κ1 − 1

κ1 + 1
=

κ2 − 1

κ2 + 1
=

1

2
,

in which case

f
(1)
PB(r) =

σthR

E∗
1

[
4

π
E

( r

R

)
− 2

]
+

σthR

π2E∗
1

[√
1− r2/R2 − 1

]
, (4.90a)

f
(2)
PB(r) =

σthR

E∗
2

[
4

π
E

( r

R

)
− 2

]
− σthR

π2E∗
2

[√
1− r2/R2 − 1

]
. (4.90b)

0.0 0.2 0.4 0.6 0.8 1.0

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0.0

8

f  (2)
opt range

 

 

r/R

 f(1)
opt,f

(2)
opt( 0 or f=0)

 f(1)
opt( 0.5 and f=  )

 f(2)
opt( 0.5 and f=  )

f  (1)opt range

f(i) op
tE

* i/(
th
R
)

8

Figure 4.16.: The normalized optimal shapes for frictionless and perfect bonding contact in-
terfaces. For other cases with moderate frictional effect, the optimal shapes must lies in the
ranges confined by them. In this plot, the deformed configuration of the contact interface is
assumed to be a perfectly flat circular patch. An arbitrary function can be added to modify
both surfaces at the same time without affecting the adhesion strength.

For other cases with moderate frictional effect, the optimal shapes f
(1)
opt, f

(2)
opt must

lie in the ranges confined by Equations (4.87a, 4.90a) and (4.87b, 4.90b) respectively,

as shown in Figure 4.16. The relative difference between the frictionless solution and

perfect bonding solution

R =

∣∣∣∣∣
f

(i)
PB(r)− f

(i)
FL(r)

f
(i)
FL(r)

∣∣∣∣∣ =

√
1− r2/R2 − 1

π2 [4E(r/R)/π− 2]
, (i = 1, 2) (4.91)
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Chapter 4. Shape-insensitive optimal adhesion

is plotted in Figure 4.17 as a function of r/R. The result indicates that the effect of

interfacial shear strength can cause up to 14% variation in the optimal shape.
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Figure 4.17.: The relative difference between the optimal shapes for frictionless and perfect
bonding contact interfaces as a function of r/R.

4.2.5. Optimal shape for fiber cluster

In the above, our discussion on the optimal shape has been just focused on a single

fiber. In practice, adhesions involving multiple fibers tend to occur in concert. Under

this circumstance, the deformation of the substrate within one contacting region will

be affected by the tractions applied on the neighboring regions. Therefore a different

optimal shape is needed to achieve the optimal adhesion provided that the fibers are

separated not too faraway from one another. In this section, we will discuss the optimal

shape for a rigid fiber cluster contacting with an elastic substrate. Let us start with the

two-dimensional case.

Two-dimensional array:

As shown in Figure 4.18, a 2D (two-dimensional) fiber array is in contact with a plane

substrate. All the fibers are assumed identical and periodically separated by spacing 2L.

For simplicity, frictions are ignored. What we are interested in is the optimal shape of

the fiber tips by which optimal adhesion can be achieved.

Obviously, if the fibers are elastic and substrate is rigid, the optimal shape is flat as
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4.2. Optimal shape

Figure 4.18.: Schematic illustration of 2D fiber array.

we have discussed for the single fiber case. Now let us focus our attention on the case

of rigid fibers on elastic substrate. Like the single fiber case, the optimal shape for the

fiber array should be conformal to the deformed shape of the elastic substrate under

tractions, as shown in Figure 4.18. To evaluate the deformation of the substrate, we

first consider the surface displacement produced by a concentrated force of intensity F

per unit length distributed in y-axis (out-plane) and acting in a direction normal to the

substrate surface (Figure 4.19a). According to the Boussinesq’s solution, the normal

displacement of the surface can be given by

uz(r, 0) = w(r) =
2F

πE∗ ln r + C, (4.92)

where r measures the distance from the loaded point, C is a constant and E∗ is the

elastic modulus of the substrate defined by E∗ = E/(1 − ν2). Therefore, for an array

of such concentrated forces applied periodically on the substrate surface by spacing 2L

(Figure 4.19b), the normal displacement of the surface can be calculated by summing

all the contributions as

w(r) =
2F

πE∗ ln r +
∞∑

n=1

2F

πE∗ ln(2nL + r) +
∞∑

n=1

2F

πE∗ ln(2nL− r) + C,

=
2F

πE∗

[
ln r +

∞∑
n=1

ln
(
4n2L2 − r2

)
]

+ C. (r ≤ L) (4.93)

The surface displacement produced by an array of uniform stresses σth acting period-
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Chapter 4. Shape-insensitive optimal adhesion

Figure 4.19.: Displacement due to (a) concentrated (line) force (b) periodic concentrated forces
(c) periodic tractions.

ically on the substrate can be calculated as

w(r) =
2σth

πE∗

{∫ R

−R

ln |r − r0|+
∞∑

n=1

ln
[
4n2L2 − (r − r0)

2
]
}

dr0 + C, (r ≤ R ≤ L)

=
2σth

πE∗ [(R + r) ln(R + r) + (R− r) ln(R− r)− 2R]

+
2σth

πE∗

∞∑
n=1

[(2nL + R + r) ln(2nL + R + r)− (2nL + r −R) ln(2nL + r −R)]

+
2σth

πE∗

∞∑
n=1

[(2nL + R− r) ln(2nL + R− r)− (2nL− r −R) ln(2nL− r −R)] + C,

(4.94)

where R is the half-width of the stress loading (Figure 4.19c). Considering that the

optimal shape of the fiber tip must be conformal to the deformed substrate at pull-off,

we have
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4.2. Optimal shape

fopt(r) = −2σth

πE∗

[
R ln

(
R2 − r2

R2

)
+ r ln

(
R + r

R− r

)]

− 2σth

πE∗

∞∑
n=1

[
R ln

(
(2nL + r)2 −R2

(2nL)2 −R2

)
+ (2nL + r) ln

(
2nL + r + R

2nL + r −R

)
− 2nL ln

(
2nL + R

2nL−R

)]

− 2σth

πE∗

∞∑
n=1

[
R ln

(
(2nL− r)2 −R2

(2nL)2 −R2

)
+ (2nL− r) ln

(
2nL− r + R

2nL− r −R

)
− 2nL ln

(
2nL + R

2nL−R

)]
,

(4.95)

where a constant has been added to make fopt(0) = 0.

Letting λ =
L

R
, ρ =

r

R
, f̄opt(ρ) =

πE∗

2σthR
fopt(r), Equation (4.95) can be normalized

to be

f̄opt(ρ) = −
[
ln

(
1− ρ2

)
+ ρ ln

(
1 + ρ

1− ρ

)]

−
∞∑

n=1

[
ln

(
(2nλ + ρ)2 − 1

(2nλ)2 − 1

)
+ (2nλ + ρ) ln

(
2nλ + ρ + 1

2nλ + ρ− 1

)
− 2nλ ln

(
2nλ + 1

2nλ− 1

)]

−
∞∑

n=1

[
ln

(
(2nλ− ρ)2 − 1

(2nλ)2 − 1

)
+ (2nλ− ρ) ln

(
2nλ− ρ + 1

2nλ− ρ− 1

)
− 2nλ ln

(
2nλ + 1

2nλ− 1

)]
,

(4.96)

Since

lim
n→∞

(2nλ)2

[
ln

(
(2nλ + ρ)2 − 1

(2nλ)2 − 1

)
+ (2nλ + ρ) ln

(
2nλ + ρ + 1

2nλ + ρ− 1

)
− 2nλ ln

(
2nλ + 1

2nλ− 1

)

+ ln

(
(2nλ− ρ)2 − 1

(2nλ)2 − 1

)
+ (2nλ− ρ) ln

(
2nλ− ρ + 1

2nλ− ρ− 1

)
− 2nλ ln

(
2nλ + 1

2nλ− 1

)]
= −2ρ2,

(4.97)

the convergence of the series in Equation (4.96) is ensured. In practice, we just need

to sum up the leading N terms of the series to get the optimal shape. For example,

taking N = 20, Figure 4.20 plots the optimal shapes for different values of L/R in

comparison with that for single fiber case, i.e. L/R = ∞. As expected, the effect of

neighboring contacts upon the optimal shape increases as the fiber spacing decreases.

Interestingly, the optimal shape given by Equation (4.96) has been verified recently by

molecular dynamics simulation [14].
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Figure 4.20.: Optimal shapes for 2D fiber array case with different fiber spacings.

Three-Dimensional cluster:

Now, let us extend the concept of optimal shape to the more realistic 3D (three-

dimensional) fiber cluster. Consider cylindrical fibers with radius R contacting with

substrate, as shown in Figure 4.21. All the fibers are arrayed periodically in a rectangular

pattern. The spacings in x-direction and y-direction are 2Lx, 2Ly, respectively. Suppose

that the fibers are rigid and the substrate is elastic. To determine the optimal shape

of the fiber tip, we should calculate the deformation of the substrate under tractions

σth applied on the circular contacting regions (Figure 4.21). Owing to the periodicity,

Figure 4.21.: Top view of a 3D fiber cluster.
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4.2. Optimal shape

we just need to find the normal displacement in one contacting region. As shown in

Figure 4.21, if we choose the center of one contacting region as the coordinate origin,

the distance from a point (r, θ) in this region to any other region center can be expressed

as

rij =
√

(xi − r cos θ)2 + (yj − r sin θ)2 =
√

(2Lxi− r cos θ)2 + (2Lyj − r sin θ)2 (4.98)

with i, j = ±1, ± 2, ± 3, · · · . Each pair of (i, j) corresponds to a contacting region.

It has been shown [60] that the displacement of a half-space surface produced by a

uniform tensile stress σth applied on the circular surface region (r ≤ R) is given by

w(r) = uz(r, 0) = −4σthR

πE∗ E
( r

R

)
, (r < R)

w(r) = uz(r, 0) = −4σthr

πE∗

[
E

(
R

r

)
−

(
1− R2

r2

)
K

(
R

r

)]
, (r > R)

where K(·), E(·) are complete elliptical integrals of first and second kind respectively.

Therefore, for our case the displacement of one contacting region can be obtained by

superposing the contributions of the tractions applied on all contacting regions

w(r) = −4σthR

πE∗ E
( r

R

)
−

∞∑
i=−∞

∞∑
j=−∞

4σthrij

πE∗

[
E

(
R

rij

)
−

(
1− R2

r2
ij

)
K

(
R

rij

)]
. (|i|+|j| 6= 0)

It follows that the optimal shape

fopt(r) =
4σthR

πE∗

[
E

( r

R

)
− π

2

]
+

∞∑
i=−∞

∞∑
j=−∞

4σthrij

πE∗

[
E

(
R

rij

)
−

(
1− R2

r2
ij

)
K

(
R

rij

)]

−
∞∑

i=−∞

∞∑
j=−∞

4σthr
0
ij

πE∗

[
E

(
R

r0
ij

)
−

(
1− R2

r0
ij

2

)
K

(
R

r0
ij

)]
, (|i|+ |j| 6= 0) (4.99)

where r0
ij =

√
4L2

xi
2 + 4L2

yj
2. Letting λx =

Lx

R
, λy =

Ly

R
, ρ =

r

R
, f̄opt(ρ) =

πE∗

4σthR
fopt(r),

Equation (4.99) can be normalized to be

f̄opt(ρ) = E(r̄)− π

2
+

∞∑
i=−∞

∞∑
j=−∞

r̄ij

[
E

(
1

r̄ij

)
−

(
1− 1

r̄2
ij

)
K

(
1

r̄ij

)]

−
∞∑

i=−∞

∞∑
j=−∞

r̄0
ij

[
E

(
1

r̄0
ij

)
−

(
1− 1

(r̄0
ij)

2

)
K

(
1

r̄0
ij

)]
, (|i|+ |j| 6= 0) (4.100)
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with

r̄ij =
√

(2λxi− ρ cos θ)2 + (2λyj − ρ sin θ)2, r̄ij =
√

4λ2
xi

2 + 4λ2
yj

2.

Because

lim
i→∞

(2λxi)
2

{
r̄ij

[
E

(
1

r̄ij

)
−

(
1− 1

r̄2
ij

)
K

(
1

r̄ij

)]

−r̄0
ij

[
E

(
1

r̄0
ij

)
−

(
1− 1

(r̄0
ij)

2

)
K

(
1

r̄0
ij

)]}
= ρ cos θ,

lim
i→∞

(2λyj)
2

{
r̄ij

[
E

(
1

r̄ij

)
−

(
1− 1

r̄2
ij

)
K

(
1

r̄ij

)]

−r̄0
ij

[
E

(
1

r̄0
ij

)
−

(
1− 1

(r̄0
ij)

2

)
K

(
1

r̄0
ij

)]}
= ρ sin θ,

we have lim
i,j→∞

{
r̄ij

[
E

(
1

r̄ij

)
−

(
1− 1

r̄2
ij

)
K

(
1

r̄ij

)]

−r̄0
ij

[
E

(
1

r̄0
ij

)
−

(
1− 1

(r̄0
ij)

2

)
K

(
1

r̄0
ij

)]}
= O

(
1

i2j2

)
.

Therefore, the convergence of the series summation in Equation (4.100) is ensured. Given

λx and λy, optimal shape (4.100) is a function of ρ and θ. Taking λx = λy = 1.33 and

|i| ≤ 20, |j ≤ 20| as the cut-off of the series summation, Figure 4.22 plots the slices of

the optimal shape at θ = 0 and θ = 45◦ in comparison with the result for the single fiber

case.

0.0 0.2 0.4 0.6 0.8 1.0
-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0.0

 =0

=

 

 

E
* f op

t(r
)/4

R
th

r/R

 single fiber
 cluster =0
 cluster =

Figure 4.22.: Optimal shape for 3D fiber cluster when Lx = Ly = 1.33R
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4.3. Spontaneous optimal adhesion

The discussion so far has been focused on how to achieve the theoretical pull-off force by

shape optimization. Now, a question arises. Given two optimal-shaped structures, is it

always possible to achieve the optimum adhesion spontaneously? In other words, if we

put two optimal-shaped structures close to a substrate, can the adhesion force pull them

together and form a conjunction spontaneously with theoretical adhesion strength?

To answer these questions we calculate the approaching/receding process between

an optimally shaped rigid fiber and an elastic substrate (Figure 4.23a) by using the
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Figure 4.23.: Variation of adhesive force as the optimally shaped rigid fiber approaches or
recedes from an elastic substrate. (a) Schematic illustration of the problem. (b-e) different
behaviors of fibers with radius equal to (b) R = 0.13E∗∆γ/σ2
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numerical Green’s function method developed in subsection 3.2.2. For simplicity, friction

forces are neglected. With relationship σth = 16∆γ/9
√

3z0 given by Lennard-Jones law,

it can be demonstrated that the solution to the Equations (3.89-3.91) for optimal shape

of Equation (4.50) depends only on one non-dimensional parameter Rσ2
th/E

∗∆γ. That

is, for a given Rσ2
th/E

∗∆γ, the adhesive force along the approaching or receding path

can be determined.

Figure 4.23(b-e) display the variation of the normalized adhesive force −P/πR2σth

as a function of −δ/z0, where δ is the penetration of the tip surface centre of the

fiber with respect to zero force position and z0 is the equilibrium distance. Fibers of

different sizes are considered. Figure 4.23(b) shows the behavior of a fiber with radius

R = 0.13E∗∆γ/σ2
th (3.2 nm for ∆γ = 10 mJ/m2, σth = 20 MPa and E∗ = 1 GPa). For

this fiber, the approach and recession follow the same path. As the fiber approaches the

substrate from a distant position, the adhesive force first increases and then drops to

zero at the equilibrium contact position. During this period, the adhesive force is always

attractive. Therefore, if we put such a fiber near the substrate the adhesion force will

pull the fiber close to the substrate automatically until an equilibrium contact position

is reached with zero net interactive force. As the fiber recedes from the equilibrium

position, there exists a maximum adhesive force equal to the theoretical pull-off force,

confirming that the tip shape is indeed optimized.

Figure 4.23(c) shows the behavior of a larger fiber with R = 1.3E∗∆γ/σ2
th (32.5 nm

for ∆γ = 10 mJ/m2, σth = 20 MPa and E∗ = 1 GPa). Now the approach and recession

follow different paths giving rise to a hysteresis. During approaching, the adhesive

force is always positive and the fiber is drawn toward the substrate until equilibrium.

Interestingly, the approaching process is unstable. At a critical distance from substrate,

there is a sudden increase in adhesive force and the fiber jerks toward the substrate.

During recession, the adhesive force increases until reaching the theoretical pull-off force

and then abruptly drops to a small value. Similar collapse in adhesion has been termed

adhesive avalanche [86].

For an even larger fiber with R = 13.7E∗∆γ/σ2
th (342.5 nm for ∆γ = 10 mJ/m2,

σth = 20 MPa and E∗ = 1 GPa) shown in Figure 4.23(e), the theoretical adhesive

strength can not be achieved spontaneously. It can be seen that as the fiber approaches

the substrate, the adhesive force vanishes at two equilibrium positions. Only after the

second equilibrium position can the fiber achieve the theoretical pull-off force upon

recession. If the fiber is pulled back near the first equilibrium position, full contact

between the fiber and substrate has not been achieved yet and the adhesive force goes
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4.3. Spontaneous optimal adhesion

back along the approaching path BA with a tiny hysteresis and small pull-off value.

Between the two equilibrium positions, the adhesive force is actually negative, implying

that an externally applied pressure is needed to help the fiber to reach full contact with

the substrate. In this case, the theoretical pull-off force can not be achieved unless

full contact is achieved by pressing the fiber hard enough against the substrate before

recession.

The above analysis indicates that there must exist a threshold radius for spontaneous

approaching of substrate, which is calculated to be Rspon = 11.3E∗∆γ/σ2
th for a rigid

fiber interacting with an elastic substrate. The behavior of such a fiber at threshold

radius is shown in Figure 4.23(d). Taking ∆γ = 10 mJ/m2, E∗ = 1 GPa, and σth = 20

MPa, Rspon is estimated to be ≈ 282.5 nm. Fibers with radius smaller than Rspon can

spontaneously achieve full contact and attain the theoretical pull-off force without any

externally applied pressure.

In this chapter, we mainly focus our attention on the shape of the contacting surfaces.

Although the adhesion strength can in principle be designed to approach the theoret-

ical strength for any contact size, interfacial crack-like flaws due to surface roughness

and contaminants are always present to weaken the actual strength. Gao et al. [33]

performed finite element calculations to show that the adhesion strength of an elastic

cylinder in partial contact with a rigid substrate saturates at the theoretical strength

at a critical diameter around 200 nm for van der Waals interaction. A similar phenom-

enon of strength saturation in small contact bodies has been discussed by Persson [77]

in the case of a rigid cylinder in frictionless contact with an elastic half-space and by

Glassmaker et al. [39] in the case of an elastic cylinder in perfect adhesive bonding with

a rigid substrate. It is found that the theoretical strength can be achieved either by

optimizing the shape of the contact surfaces or by reducing the size of the contact area;

the smaller the size, the less important the shape. A shape-insensitive optimal adhesion

at the theoretical strength can be realized below a critical size which can be related to

the intrinsic capability of a small scale material to tolerate crack-like flaws [29, 31, 32].

Theses studies have provided significant insights into various aspects of adhesive contact

mechanics in engineering and biological systems. However, a general understanding is

still lacking with respect to a number of critical issues. First, surface roughness should

play a very important role in bio-adhesion and needs to be further investigated. Opti-

mizing adhesion at the level of single asperities or fibrils does not automatically address

the problem of robust adhesion on rough surfaces at macroscopic scales. Releasable

adhesion at the level of single seta does not provide full explanations on how releasable
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adhesion is achieved in macroscopic contact on rough surfaces. The existence of smooth

attachment systems indicates that the size reduction of contact elements in hairy attach-

ment systems is not the only viable strategy in bio-adhesion. To elucidate these issues,

in the next two chapters we will advance further to discuss the mechanics of robust

(flaw-tolerant) and releasable adhesion at macroscopic scales.
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Although the flexibility of biological attachment pads facilitates, to a great extent, the

formation of good contact, crack-like flaws may still exist along the contact interface

due to the surface roughness, impurities, contaminants, trapped air bubbles and skewed

contact angles, etc. Normally, when two bonded solids are subjected to an external

pulling force, such crack-like flaws will induce stress concentration around them. Under

increasing load, the intensity of stress concentration ultimately reaches a critical level

and the contact is broken by crack propagation. Under this circumstance, the adhesion

is not optimal because only a small fraction of material is highly stressed at any instant

of loading. However, we recognize that the biological attachment systems seem have

never been troubled by adhesion flaws. They even can adhere to the reversed surfaces

firmly in spite of the unpredictable roughness. The extraordinary ability of biological

attachment systems implies that nature must have evolved a specific solution to deal

with the interfacial flaws. What is the basic principle of robust adhesion in biology?

For macroscopic contact, surface roughness has long been recognized as a critically im-

portant factor. Greenwood and Williamson [44] developed a statistical approach to con-

tact between elastic or plastic asperities with identical radius of curvature but Gaussian

distributed heights. Fuller and Tabor [27] extended this approach to adhesive contact

via the JKR model. Maugis [68] discussed a stochastic approach to adhesive contact

on rough surfaces based on the DMT model. Morrow et al. [69] extended such analysis

to the Maugis-Dugdale model and a modification by Kim et al. [64]. Fractal surface

models with scale-dependent asperity heights, slope and radius of curvature based on

the Weierstrass-Mandelbrot fractal function have been developed by Majumdar and

Bhushan [65, 66] who expressed contact area and load in terms of fractal dimensions.

Such fractal surface models have been coupled with the JKR model [82] and also ex-

tended to friction and wear [83]. Some mechanisms of biological attachment on random

rough surfaces have been discussed by Persson [78] and Persson and Gorb [79].

Despite of significant research in the past four decades, adhesive contact on rough sur-

faces remains to be a challenging topic. Instead of directly modeling adhesive contact on
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Chapter 5. Flaw-tolerant adhesion

Figure 5.1.: The interfacial crack model. (a) Schematic drawing of adhesion on a rough surface
with poor contact regions around asperities. (b) An interfacial crack is used to represent
random contact flaws induced by roughness or contaminants.

random or fractal rough surfaces as Greenwood and Williamson [44] and Majumdar and

Bhushan [65, 66] did, we shall follow a different approach by considering the behavior of

an interfacial crack representing random contact flaws due to surface roughness or conta-

minant (Figure 5.1). In comparison with the previous contact models on rough surfaces,

our approach offers a distinct advantage in addressing questions related to robustness and

releasability of adhesion. The crack model greatly simplifies the mathematical problem

and allows us to extend the adhesive contact theories to nonhomogeneous (see section

5.3), hierarchical (see section 5.4) and anisotropic contact systems (see Chapter 6). We

adopt the viewpoint that robust adhesion on a random rough surface (Figure 5.1a) is

equivalent to flaw tolerant adhesion in which the growth of a representative interfacial

crack is suppressed irrespective of the crack size (Figure 5.1b). In other words, it is

hypothesized that an adhesive material designed to tolerate an interfacial crack of any

size will also be able to adhere robustly to any random rough surface, and vice versa.

By investigating the conditions under which the representative crack does not grow, we

effectively treat the problem of how to prevent randomly occurring poor contact regions

from triggering crack-like adhesive failure.

In this chapter, we begin by introducing the fundamental concepts of flaw tolerance.

Based on the Dugdale model, we first investigate the condition for flaw tolerance within

the context of homogeneous material. Critical length scales for various crack configu-

rations are calculated, under which the representative crack does not grow. To achieve

flaw-tolerant adhesion with no size limit, i.e. the so-called generalized flaw tolerance,

we extend our discussion to the inhomogeneous material and hierarchical structure. We

show that graded elasticity, hierarchical energy dissipation and scale-dependent adhesion

strength are three primary strategies that can be used to suppress crack growth and to
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5.1. Definition of flaw tolerance

achieve flaw tolerant adhesion in all length scales. Our results exhibit a good agreement

with the common structural features shared by a variety of biological adhesion systems.

5.1. Definition of flaw tolerance

Consider two dissimilar elastic solids bonded by adhesion along the interface (Fig-

ure 5.2a). A crack is assumed to occupy a finite region of the interface to model the

imperfect adhesion due to the surface roughness or other kind of flaws. For simplicity,

friction effects are neglected at the moment so that no shear stress exists along the

interface.

Figure 5.2.: The concept of flaw tolerance in adhesive contact. (a) Adhesion strength between
dissimilar elastic solids is often dominated by the crack-like flaws along the interface. (b) In
the flaw tolerance state, a pre-existing crack does not participate at all in the failure process
and the stress ahead of the crack tip reaches the theoretical strength of the material uniformly.

Dugdale model is adopted to describe the adhesive interaction across the interface in

which

σ(δ) =

{
σth, δ ≤ δ0

0, δ > δ0

where σ is the normal traction, δ is the displacement opening across the interface, σth is

the theoretical strength of adhesion and δ0 is the interaction range. Therefore the work

of adhesion would be ∆γ = σthδ0.

For the generic crack problem described in Figure 5.2(a), what we are interested in

is whether there exists such a state in which pre-existing crack does not propagate

before the failure of the interface as the externally applied load increases to separate the

adhesion. First let us introduce the following definition:

The state of flaw tolerance is defined as such that a pre-existing crack

does not propagate and does not participate at all the failure process. The

failure occurs by having the normal traction uniformly reach the theoretical
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Chapter 5. Flaw-tolerant adhesion

adhesion strength everywhere along the interface except the region occupied

by the crack.

The stress distribution at flaw tolerance state is schematically shown in Figure 5.2(b),

where, for clarity, only material #1 is plotted. The existence of flaw tolerance im-

plies that the conventional engineering concept of stress concentration near the crack

tip becomes invalid. Failure occurs not by crack propagation but by the simultaneous

detachment of the whole contacting area, achieving the maximum adhesion strength. In

the light of the Dugdale model, the condition for the existence of flaw tolerance solution

can be expressed as

δf
tip ≤ δ0 = ∆γ/σth, (5.1)

where δf
tip is the crack tip opening. Since the stress filed in the state of flaw toler-

ance is uniform, one can easily determine the crack tip opening δf
tip which is normally

a monotonic increasing function of crack size. Therefore, from Equation (5.1) we can

deduce a critical length scale of the crack size associated with flaw tolerance. In the

following, we will show that in a homogeneous material the only way to achieve flaw tol-

erance is to restrict the size of the flaws to below a critical length scale. The generalized

flaw tolerance, in which propagation of any-sized crack is suppressed, can be realized via

graded elasticity design, hierarchical energy dissipation and scale-dependent adhesion

strength.

5.2. Size-limited flaw tolerance in homogeneous

materials

Let us start with the traditional homogeneous material. Various crack configurations

will be considered in this section, including penny-shaped crack, circumferential external

crack, 2D internal and external cracks.

5.2.1. Size-limited flaw tolerance solution for a penny-shaped crack

Consider two dissimilar elastic homogeneous materials adhering to each other via adhe-

sive interface (Figure 5.3a). A penny-shaped crack with radius a is introduced on the

interface to model the crack-like flaw. The materials are considered as elastic half-spaces

subjected to remote stress load σ∞ which, if sufficiently large, would pull the materials

apart. What we are most concerned about is the existence of the flaw tolerant state in

such a contact system.
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5.2. Size-limited flaw tolerance in homogeneous materials

Figure 5.3.: (a) Penny-shaped interfacial crack. (b) Schematic illustration of the flaw tolerance
state in which the surface displacement relative to a remote point on the interface is equivalent
to that in case (c).

Assuming flaw tolerant state has been achieved, so that at the pull-off instant there

should be a uniform distribution of adhesive stress with magnitude σth outside the crack

region (Figure 5.3b), causing an inward deflection of the surface relative to a remote

point on the surface. The crack tip opening at pull-off moment thus can be given by

δf
tip = δ1 + δ2, (5.2)

where δ1 and δ2 are surface deflection at point r = a of material 1 and 2 respectively,

as shown in Figure 5.3(b). Actually, the mathematical problem of finding δ1 and δ2

can be simplified by superposing a uniform pressure equal to σth on the entire surface.

The problem of Figure 5.3(b) is then converted to an elastic half-space subjected to

uniform pressure σth over r ≤ a (Figure 5.3c) while δ1 and δ2 remain unaltered. This

simplification strategy not only applies to the traditional homogeneous material but also

holds for the graded material (see section 5.3) whose Young’s modulus is dependent on

the distance from the surface. A frequent use of this simplification strategy will be made

in our discussion later.

For a homogeneous material, it is easy to attain the tip deflection in Figure 5.3(c) as

δ1 =
4(1− ν2

1)σtha

πE1

, δ2 =
4(1− ν2

2)σtha

πE2

, (5.3)

where subscripts ‘1’ and ‘2’ denote the quantities pertaining to materials #1 and #2

respectively. Substituting Equation (5.3) into (5.2) and then using Equation (5.1) show

that the flaw tolerance solution exists as long as

a ≤ πE∗∆γ

4σ2
th

(5.4)
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where

E∗ =
[
(1− ν2

1)/E1 + (1− ν2
2)/E2

]−1
. (5.5)

The upper limit of the crack size allowing flaw tolerance is usually termed critical length

scale for flaw tolerance and denoted by acr. For penny-shaped crack, Equation (5.4)

suggests

acr =
πE∗∆γ

4σ2
th

. (5.6)

Once the crack size is decreased to below this threshold, flaw tolerance state is achieved.

The above simple analysis gives the critical length at which the adhesion strength

saturates at the theoretical strength. However, it has not shown us the evolution of the

adhesion strength as the crack size decreases. For this purpose, let us go through the

mathematical solution of the three dimensional Dugdale model.

In the Dugdale model of adhesive contact around a penny-shaped crack, the contact

area (r ≥ a) consists of a cohesive zone (a ≤ r < c) in which the adhesion stress equals

the theoretical strength σth and a perfectly bonded region (r ≥ c) in which the separa-

tion between contact surfaces vanishes, as shown in Figure 5.4(a). The mathematical

solution to the Dugdale model of a penny-shaped crack has been found by Rice [81]

and Olesiak and Wnuk [74]. Here we will present a simpler approach to get the results

of concern. Actually, in mechanics this problem can be treated as a superposition of

two sub-problems: (a) a penny-shaped crack with radius c undergoing remote tension

(Figure 5.4b) and (b) a penny-shaped crack with closure stress σth over a ring-shaped

cohesive zone at the tip (Figure 5.4c). For both sub-problems, the corresponding stress

intensity factors KI at r = a and crack opening at are given by [94]

Figure 5.4.: (a) In the Dugdale model of this interfacial crack problem, the contact area is
assumed to consist of a cohesive zone (a ≤ r < c) and a bonded region (r ≥ c). The problem
is equivalent to the superposition of two sub-problems (b) and (c).

86



5.2. Size-limited flaw tolerance in homogeneous materials

K
(a)
I = 2σ∞

√
c

π
, (5.7a)

δ(a)(a) =
4σ∞c

πE∗
√

1− a2/c2, (5.7b)

K
(b)
I = −2σth

√
c

π

√
1− a2/c2, (5.8a)

δ(b)(a) = −4σthc

πE∗

(
1− a

c

)
. (5.8b)

The stress continuity at the edge of cohesive zone r = c requires that the combined

stress intensity factor

KI = K
(a)
I + K

(b)
I = 0. (5.9)

Substitution of Equations (5.7a) and (5.8a) into (5.9) gives rise to

σ∞ = σth

√
1− a2/c2. (5.10)

At the critical state of pull-off, the crack opening at the edge of contact r = a reaches

the limiting for bond breaking, i.e.,

δf
tip = δ(a)(a) + δ(b)(a) = δ0 = ∆γ/σth. (5.11)

Substituting Equations (5.7b)(5.8b) into (5.11) and then making use of Equation (5.10)

yield
a

c
= 1− πE∗∆γ

4σ2
tha

. (5.12)

Equation (5.12) gives the outer radius of the cohesive zone c as a function of E∗, σth,

∆γ and a. Substituting Equation (5.12) into (5.10) gives rise to the adhesion strength

as

σ∞cr = σth

√
1−

(
1− πE∗∆γ

4σ2
tha

)2

. (5.13)

On the other hand, if we directly adopt the Griffith fracture criterion instead of the

Dugdale model to the penny-shaped crack, the adhesion strength can be given by

σ∞cr =

√
πE∗∆γ

2a
. (5.14)
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Figure 5.5.: Variation of the adhesion strength with the crack size.

Figure 5.5 displays the normalized adhesion strength as a function of the dimensionless

parameter (πE∗∆γ/4σ2
tha)1/2. It can be seen that the adhesion strength predicted by

the Dugdale model agrees well with the Griffith prediction for large crack sizes and then

deviates from it as the crack size decreases. It will eventually saturate at the theoretical

strength σth as the crack size is reduced to below the critical length scale

acr =
π∆γE∗

4σ2
th

,

which is actually the same as Equation (5.6). Taking typical values for van der Waals

interaction ∆γ = 0.02 J/m2, E∗ = 1.0 GPa, σth = 20 MPa, the critical length scale is

estimated to be around 40 nm. When a ≤ acr the adhesion strength is a constant equal

to the theoretical strength and decreases with a when a > acr. Therefore, a homogeneous

material tolerates sufficiently small cracks.

In the analysis so far, we have not considered the effect of friction which may possibly

occur on the interface. In effect, friction would unavoidably take place on the interface

due to the slip or slip tendency between two contact surfaces. Such friction would

cause an additional normal displacement of the surface therefore affect the displacement

opening at the crack tip. In this way, the critical length scale for flaw tolerance will

be changed. Does the friction force make for or against flaw tolerance? In order to
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5.2. Size-limited flaw tolerance in homogeneous materials

answer this question, let us assess the critical length scale for the frictional adhesion

with penny-shaped crack-like flaw.

The frictional flaw tolerance state is schematically illustrated by Figure 5.6. In addi-

tion to the uniform normal stress σth, now tangential frictional stress is also applied on

the surfaces. Assuming the normal traction is only dependent on the surface separation

in normal direction and obey the Dugdale law, the condition for flaw tolerance given in

Equation (5.1) is still valid. Different from the frictionless case, now the critical crack tip

opening δf
tip has two contributions. One is the displacement due to the uniform normal

adhesive force σth and the other is the deformation induced by the tangential friction

force whose exact distribution remains to be found.

Figure 5.6.: Schematic of frictional flaw tolerance state for (a) material #1 and (b) material
#2.

Suppose that slip between two surfaces is allowed whenever the friction stress reaches

critical friction strength τf . Therefore the contact area (r ≥ a) is divided into a slipping

region (a ≤ r ≤ c) in which the friction stress equals the friction strength τf and a non-

slipping region (r > c) in which relative tangential displacement between two surfaces

vanishes and the tangential stress remains to be found, as shown in Figure 5.6.

This posed mathematical problem is quite similar to that associated with the optimal

shape of frictional adhesion (subsection 4.2.4). Likewise, we can express the displacement

and stress components in terms of Hankel transforms as





u(1)
r (r, 0) =

1

2G1

H1

[
ξ−1C1; ξ → r

]

τ
(1)
zr (r, 0) = −H1 [(1− 2ν1)A1 + C1; ξ → r]

σ
(1)
zz (r, 0) = −H0 [(2− 2ν1)A1 + C1; ξ → r] ,

(5.15a)
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for solid #1 and





u(2)
r (r, 0) =

1

2G2

H1

[
ξ−1C2; ξ → r

]

τ
(2)
zr (r, 0) = −H1 [(1− 2ν2)A2 + C2; ξ → r]

σ
(2)
zz (r, 0) = −H0 [(2− 2ν2)A2 + C2; ξ → r] ,

(5.15b)

for solid #2, where G1, G2 are shear moduli, ν1, ν2 are Poisson’s ratios and A1, A2, C1, C2,

generally functions of ξ, will be determined by using the boundary conditions; super-

scripts ‘(1)’ and ‘(2)’ are used to denote the quantities pertaining to the material #1

and #2. Note that the components in Equations (5.15a,b) are referred to the respective

coordinate system of each material with z-axis pointing into the materials, as shown in

Figure 5.6. The continuity of stress across the interface requires

σ(1)
zz (r, 0) = σ(2)

zz (r, 0), τ (1)
zr (r, 0) = −τ (2)

zr (r, 0). (5.16)

Assuming flaw tolerance is achieved, the stresses at pull-off should satisfy

τ (1)
zr (r, 0) = −τ (2)

zr (r, 0) = Q(r/c), (0 ≤ r ≤ c) (5.17)

σ(1)
zz (r, 0) = σ(2)

zz (r, 0) = T (r/c), (r ≥ 0) (5.18)

with

Q(r/c) =

{
−τf (a ≤ r ≤ c)

0, (0 ≤ r < a)
(5.19)

and

T (r/c) =

{
σth (a < r < ∞)

0, (0 ≤ r ≤ a)
(5.20)

Substituting Equations (5.15a,b) into (5.16) leads to the relationships between functions

A1, C1 and A2, C2 as

(2− 2ν1)A1 + C1 = (2− 2ν2)A2 + C2 (5.21)

(1− 2ν1)A1 + C1 = −(1− 2ν2)A2 − C2 (5.22)

By eliminating A2 in Equations (5.21) and (5.22), C2 can be expressed in terms of A1

and C1 as

C2 = −A1

2
(κ1κ2 − 1)− κ2C1, (5.23)
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where κi ≡ 3 − 4νi (i = 1, 2). Similarly, using Equation (5.15a), the stress boundary

conditions of Equations (5.17) and (5.18) for solid #1 can be rewritten in terms of Hankel

transforms as

τ (1)
zr (r, 0) = −H1 [(1− 2ν1)A1 + C1; ξ → r] = Q(r/c), (0 ≤ r ≤ c) (5.24)

σ(1)
zz (r, 0) = −H0 [(2− 2ν1)A1 + C1; ξ → r] = T (r/c). (r ≥ 0) (5.25)

On the other hand, in the non-slipping region, the continuity of radial displacement

requires

u(1)
r (r, 0)− u(2)

r (r, 0) = 0, (r > c) (5.26)

which, by using Equations (5.15a,b), can be rewritten as

H1

[
ξ−1

(
C1

G1

− C2

G2

)
; ξ → r

]
= 0. (r > c) (5.27)

On substituting (5.23) into (5.27) to eliminate C2, we have

H1

[
ξ−1 (C1 + ωA1) ; ξ → r

]
= 0, (r > c) (5.28)

where

ω =
(κ1κ2 − 1)G1

2(G2 + G1κ2)
.

Denoting

ψ(ξ) = A1(ξ/c), φ(ξ) = C1(ξ/c) (5.29)

Equations (5.24, 5.25) and (5.28) can be normalized to be

H1 [(1− 2ν1)ψ(ξ) + φ(ξ); ξ → ρ] = −c2Q(ρ), (0 ≤ ρ ≤ 1) (5.30)

H0 [(2− 2ν1)ψ(ξ) + φ(ξ); ξ → ρ] = −c2T (ρ), (ρ ≥ 0)) (5.31)

H1

[
ξ−1[φ(ξ) + ωψ(ξ)]; ξ → ρ

]
= 0, (ρ > 1) (5.32)

where ρ = r/c.

With Equation (5.20), inversion of Equation (5.31) gives rise to the relationship be-

tween functions ψ(ξ) and φ(ξ) as

(2− 2ν1)ψ(ξ) + φ(ξ) = −c2σth

∫ ∞

a/c

ρJ0(ρξ)dρ = caσthξ
−1J1(aξ/c).
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It follows that

φ(ξ) = caσthξ
−1J1(aξ/c)− (2− 2ν1)ψ(ξ). (5.33)

Substituting Equation (5.33) back into (5.30) and (5.32) to eliminate φ(ξ) yields

H1 [ψ(ξ); ξ → ρ] = c2Q(ρ) + acσthH1

[
J1(aξ/c)

ξ
; ξ → ρ

]
, (0 ≤ ρ ≤ 1) (5.34)

H1

[
ξ−1ψ(ξ); ξ → ρ

]
= − a2σth

2[ω − (2− 2ν1)]ρ
. (ρ > 1) (5.35)

Equation (5.34) suggests that function ψ(ξ) must have form

ψ(ξ) = acσth
J1(aξ/c)

ξ
+ ψ̄(ξ), (5.36)

where function ψ̄(ξ) satisfies, according to (5.34) and (5.35), the dual integral equations

H1

[
ψ̄(ξ); ξ → ρ

]
= c2Q(ρ), (0 ≤ ρ ≤ 1) (5.37)

H1

[
ξ−1ψ̄(ξ); ξ → ρ

]
= −a2σthβ

2ρ
, (ρ > 1) (5.38)

with β =
(κ1 − 1)/G1 − (κ2 − 1)/G2

(κ1 + 1)/G1 + (κ2 + 1)/G2

being the Dundurs’ constant [24]. Without loss

of generality, we can assume β ≥ 0, i.e. (κ1 − 1)/G1 ≥ (κ2 − 1)/G2. Equations (5.37,

5.38) are just a special case of standard dual integral equations (3.40-3.41) with F1(ρ) =

c2Q(ρ), G2(ρ) = −a2σthβ/2ρ. Actually, what we are interested in here is not the solution

to ψ̄ but the shear stress τ
(1)
zr (r, 0) which, according to Equations (5.15a, 5.29, 5.36), can

be expressed in terms of ψ̄ as

τ (1)
zr =

1

c2
H1

[
ψ̄(ξ); ξ → ρ

]
. (ρ > 1) (5.39)

Substituting G2(ρ) = −a2σthβ/2ρ into formula (3.45) yields

G∗(ξ) = − d

dξ

∫ ∞

ξ

G2(s)ds√
s2 − ξ2

= −πa2σthβ

4ξ2
. (5.40)

With Equation (5.19), substitution of F1(ρ) = c2Q(ρ) and Equation (5.40) into formula
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(3.43) gives rise to

H1

[
ψ̄(ξ); ξ → ρ

]
= F2(ρ)

=
2

ρ2π

d

dρ

∫ ρ

1

ξ3
√

ρ2 − ξ2G∗(ξ)dξ − 2

πρ
√

ρ2 − 1

∫ 1

0

t2
√

1− t2F1(t)dt

ρ2 − t2

= − a2σthβ

2ρ
√

ρ2 − 1
+

2c2τf

πρ
√

ρ2 − 1

∫ 1

a/c

t2
√

1− t2

ρ2 − t2
dt. (5.41)

Inserting Equation (5.41) into Equation (5.39) results in the shear stress

τ (1)
zr (r, 0) =

1

c2
H1

[
ψ̄(ξ); ξ → ρ

]

=
2τf

πρ
√

ρ2 − 1

∫ 1

a/c

t2
√

1− t2

ρ2 − t2
dt− a2σthβ

2c2ρ
√

ρ2 − 1
. (ρ > 1) (5.42)

The continuity of the shear stress at edge of slipping region ρ = 1 requires that the stress

singularity in Equation (5.42) vanishes, i.e.,

lim
ρ→1

√
ρ− 1

[
2τf

πρ
√

ρ2 − 1

∫ 1

a/c

t2
√

1− t2

ρ2 − t2
dt− a2σthβ

2c2ρ
√

ρ2 − 1

]
= 0.

It follows that
2τf

π

∫ 1

a/c

t2√
1− t2

dt =
a2σthβ

2c2
,

namely, √
c2

a2
− 1 +

c2

a2
cos−1

(a

c

)
=

πσthβ

2τf

. (5.43)

Equation (5.43) determines the radius of the slipping zone c as a function of the theoret-

ical adhesion strength σth, critical friction strength τf and Dundurs’ constant β. Taking

τf = σth, ν1 = 0.3, G2 →∞ (nondeforming), Equation (5.43) gives c ≈ 1.024a. Inserting

Equation (5.43) back into Equation (5.42) yields

τ (1)
zr (r, 0) =

2τf

√
ρ2 − 1

πρ
cos−1

(a

c

)
− τf

π

[
cos−1

(
ρa− c

ρc− a

)
+ cos−1

(
ρa + c

ρc + a

)]
, (ρ > 1) (5.44)

where Equations (A.11) and (A.12) have been used. Taking c = 1.024a, the friction stress

in the contact area is plotted in Figure 5.7. As expected, the friction stress distribution
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is continuous at the edge of the slipping region r = c.
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Figure 5.7.: Distribution of friction stress in the contact area.

Now, the normal and tangential tractions applied on the contact area can be summa-

rized as follows,

σ(1)
zz (r, 0) = σ(2)

zz (r, 0) = σth, (0 ≤ r ≤ a) (5.45)

τ (1)
zr (r, 0) = −τ (2)

zr (r, 0) =

τf

π

{
2
√

ρ2 − 1

ρ
cos−1

(a

c

)
−

[
cos−1

(
ρa− c

ρc− a

)
+ cos−1

(
ρa + c

ρc + a

)]}
, (r > c) (5.46)

τ (1)
zr (r, 0) = −τ (2)

zr (r, 0) = −τf . (a ≤ r ≤ c) (5.47)

The associated displacement in the normal direction at crack tip r = a relative to a

surface point at infinity is

δ1 =
4σtha(1− ν2

1)

πE1

+
(1− 2ν1)(1 + ν1)τfc

πE1

cos−1
(a

c

)
, (5.48)

δ2 =
4σtha(1− ν2

2)

πE2

− (1− 2ν2)(1 + ν2)τfc

πE2

cos−1
(a

c

)
. (5.49)
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5.2. Size-limited flaw tolerance in homogeneous materials

Therefore, the crack tip opening

δf
tip = δ1 + δ2 =

4σtha

πE∗ +
2βτfc

πE∗ cos−1
(a

c

)
, (5.50)

where E∗ = [(1− ν2
1)/E1 + (1− ν2

2)/E2]
−1

is the combined elastic modulus. By using

condition of Equation (5.1), the critical length scale for flaw tolerant adhesion now turns

to be

acr =
π∆γE∗

4σ2
th

[
1 +

τfβc

2σtha
cos−1

(a

c

)]−1

. (5.51)

When τf → 0 or β → 0, Equation (5.51) will be reduced to Equation (5.6). Moreover,

since c ≥ a, Equation (5.43) implies that τf and β have the same sign. Therefore, the

factor

[
1 +

τfβc

2σtha
cos−1(a/c)

]−1

in Equation (5.51) must be smaller than unity, giving a

smaller for frictional adhesion in contrast to that of the frictionless case.

5.2.2. Size-limited flaw tolerance solution for a circumferential

external crack

Figure 5.8.: (a) Schematic of a circumferential external crack. (b) At flaw tolerance state,
the stress distribution over the contact region is uniformly equal to the theoretical adhesion
strength.

Now, let us consider another crack configuration. As shown in Figure 5.8(a), two dis-

similar materials adhered to each other over a circular area, forming a circumferential

external crack. Similarly, we assume that the flaw tolerance state exists. If no friction is

considered, the normal adhesive stress at pull-off will be uniformly equal to the theoreti-

cal adhesion strength σth, as shown in Figure 5.8(b). The crack tip opening δf
tip = δ1+δ2,
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Chapter 5. Flaw-tolerant adhesion

where δ1 and δ2 are surface displacement at r = a relative to the surface point r = 0.

Based on the half-space assumption for the solids, it is easy to obtain [60]

δ1 =
4σtha(1− ν2

1)

πE1

(π

2
− 1

)
, δ2 =

4σtha(1− ν2
2)

πE2

(π

2
− 1

)
.

It follows that

δf
tip = δ1 + δ2 =

4σtha

πE∗

(π

2
− 1

)
. (5.52)

Applying Equation (5.52) to condition (5.1) immediately leads to the critical length scale

for flaw tolerance as

acr =
π∆γE∗

2(π− 2)σ2
th

. (5.53)

Figure 5.9.: (a) In the Dugdale model of this external crack problem, the contact area is
assumed to consist of a cohesive zone (c ≤ r ≤ a) and a perfectly bonded region (r < c). The
problem is equivalent to the superposition of two sub-problems (b) an external crack under
remote tension and (c) an external crack with closure stress σth over ring-shaped cohesive zone.

Equation (5.53) provides us the critical length scale for the contact area below which

the theoretical adhesion strength can be achieved. In order to obtain more insight into

the evolution process of adhesion strength as the size decreases, we need to know the

adhesion strength as a function of the crack size. On the basis of Dugdale model, the

contact area consists of a cohesive zone (c ≤ r ≤ a) in which the adhesion stress equals to

the theoretical strength σth and a perfectly bonded region (r < c) in which the separation

between contact surfaces vanishes, as shown in Figure 5.9(a). In mechanics, this problem

can be treated as a superposition of two sub-problems: (a) a circumferential external

crack of radius c under remote force F (Figure 5.9b) and (b) a circumferential external

crack with closure stress σth over a ring-shaped cohesive zone at the tip (Figure 5.9c).
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5.2. Size-limited flaw tolerance in homogeneous materials

For both cases, the stress intensity factors and separations at r = a are given by [94]

K
(a)
I =

F

2c
√

πc
, (5.54a)

δ(a)(a) =
F

πE∗c
cos−1 c

a
=

2K
(a)
I

√
πc

πE∗ cos−1 c

a
, (5.54b)

K
(b)
I = − σth√

πc

(√
a2 − c2 +

a2

c
cos−1 c

a

)
, (5.55a)

δ(b)(a) =
2

πE∗K
(b)
I

√
πa cos−1 c

a
− 4σth

πE∗

[
(a− c)−

√
a2 − c2 cos−1 c

a

]
. (5.55b)

The continuity of adhesive stress at r = c requires

K
(a)
I + K

(b)
I = 0,

which, by using Equation (5.54a) and (5.55a), gives rise to

F = 2a2σth

(
c

a

√
1− c2

a2
+ cos−1 c

a

)
. (5.56)

It follows that
F

πa2
=

2

π

(
c

a

√
1− c2

a2
+ cos−1 c

a

)
σth. (5.57)

On the other hand, the Dugdale model indicates that at the critical (pull-off) moment

the crack tip opening must be equal to the interaction range of the adhesion, i.e.,

δf
tip = δ(a)(a) + δ(b)(a) =

4σth

πE∗

[√
a2 − c2 cos−1 c

a
− (a− c)

]
=

∆γ

σth

. (5.58)

Equation (5.57), in conjunction with (5.58), determines implicitly the critical adhesive

force (pull-off force) F f as a function of E∗, ∆γ, σth and a. Figure 5.10 plots the variation

of the normalized adhesion force with (πE∗∆γ/4aσ2
th)

1/2
, in contrast to the prediction

based on the Griffith criterion, i.e., F f/πa2σth =
√

8E∗∆γ/πaσ2
th. It is observed that as

the size of the contact region decreases, the adhesion strength will increase and finally

saturates at the theoretical strength σth when a reaches πE∗∆γ
2(π−2)σ2

th
, a critical value as

predicted by Equation (5.53).

Like the penny-shaped crack case, friction can also be taken into account for the flaw

tolerance problem of circumferential external crack. Partial slip model is used again,

in which slip is allowed whenever the friction stress reaches critical friction strength τf .
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Figure 5.10.: Variation of adhesion strength with crack size.

Therefore, the contact region (0 ≤ r ≤ a) can be divided into two regions, one is slipping

zone (c ≤ r ≤ a) in which the friction force is uniformly equal to τf , and the other is

non-slipping zone (0 ≤ r ≤ c) in which no relative slip occur between two surfaces and

the friction force remains to be found. Owing to the flaw tolerance state, the normal

adhesive force is uniformly equal to the theoretical adhesion strength σth at pull-off

(Figure 5.11). Actually, this boundary condition problem has been solved in subsection

4.2.4. Equations (4.82a,b,c) gives the stresses applied on two surfaces as

Figure 5.11.: Flaw tolerance state for frictional adhesion (circumferential external crack). For
clarity, only the stress applied on material #1 is plotted.
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5.2. Size-limited flaw tolerance in homogeneous materials

σ(1)
zz (r, 0) = σ(2)

zz (r, 0) = σth, (0 ≤ r ≤ a)

τ (1)
zr (r, 0) = −τ (2)

zr (r, 0) =
τf

π

[
sin−1

(
ar − c2

(a− r)c

)
+ sin−1

(
ar + c2

(a + r)c

)]
, (0 ≤ r < c)

τ (1)
zr (r, 0) = −τ (2)

zr (r, 0) = τf . (c ≤ r ≤ a)

The outer radius of the non-slipping zone c is determined by

a +
√

a2 − c2

c
= exp

(
σthβ

τf

)
. (5.59)

The associated displacement at crack tip r = a relative to the point r = 0 is given by

δ1 =
2σtha

E∗
1

(
1− 2

π

)
+

2(κ1 − 1)τfa

π(κ1 + 1)E∗
1

[
1− 2

π
sin−1

( c

a

)]
, (5.60a)

δ2 =
2σtha

E∗
2

(
1− 2

π

)
− 2(κ2 − 1)τfa

π(κ2 + 1)E∗
2

[
1− 2

π
sin−1

( c

a

)]
, (5.60b)

where E∗
1 = E1/(1− ν2

1), E∗
2 = E2/(1− ν2

2). The crack tip opening thus can be written

as

δf
tip = δ1 + δ2 =

2σtha

πE∗ (π− 2) +
2τfaβ

πE∗

[
1− 2

π
sin−1

( c

a

)]
, (5.61)

with E∗ = [(1− ν2
1)/E1 + (1− ν2

2)/E2]
−1. Substituting Equation (5.61) into (5.1) yields

acr =
πE∗δ0

2σth(π− 2)

[
π− 2

(π− 2) + 2τfβ cos−1(c/a)/πσth

]
. (5.62)

When τf → 0 or β → 0, Equation (5.62) will be reduced to Equation (5.53). Since c ≤ a,

Equation (5.59) indicates that τf and β have the same sign. The factor

[
π− 2

(π− 2) + 2τfβ cos−1(c/a)/πσth

]

in Equation (5.62) therefore must be smaller than unity, giving a smaller critical length

scale for frictional adhesion in comparison with that of the frictionless case. Recalling

the similar result associated with the penny-shape crack, we conclude that the interfacial

friction retards flaw tolerance.
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5.2.3. Size-limited flaw tolerance solution for other crack

configurations

It should be of interest as well to extend the concept of size-limited flaw tolerance to other

possible crack configurations like two-dimensional internal crack (Figure 5.12a) and two-

dimensional external crack (Figure 5.12b). For simplicity, frictions are neglected here.

Figure 5.12.: Schematics of other crack configurations: (a) 2D internal crack. (b) 2D external
crack.

(a) Two-dimensional internal crack

Figure 5.13.: (a) For a half-space subjected to uniform stress on region external to the crack
area, the crack tip displacement relative to a remote point on the surface is equivalent to that
of case (b) in which the uniform pressure is applied on the crack surface.

Assuming that flaw tolerance is achieved, let us check if the condition of Equation (5.1)

can be satisfied. In this case, the crack tip opening equals the summation of δ1 and δ2,

the surface displacements at x = a relative to a remote surface point, as shown in Fig-

ure 5.13(a). The mathematical problem of finding δi (i = 1, 2) can be simplified by

superposing a uniform pressure equal to σth on the entire surface. The problem of Fig-

ure 5.13(a) is then converted to an elastic half-space subjected to uniform pressure σth

over strip |x| ≤ a (Figure 5.13b) while δi remains unaltered. However, it is found that

under such pressure, the normal surface displacement at |x| = a relative to a remote
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5.2. Size-limited flaw tolerance in homogeneous materials

point on the interface goes to infinity. This is actually an inevitable feature of two-

dimensional deformation of an elastic half-space [60]. Therefore, for this case the crack

tip opening is infinite no matter how big the crack is, suggesting no solution for flaw

tolerance. In this regard, material has “zero tolerance” to the two-dimensional internal

crack.

(b) Two-dimensional external crack

For 2D external crack case (Figure 5.14), the existence of the flaw tolerance state

depends on the surface displacements at x = a relative to that of point x = 0 instead of

a remote point. Assuming flaw tolerance state is achieved, the relative displacement for

two solids can be easily calculated as [96]

Figure 5.14.: Flaw tolerance state for 2D external crack.

δ1 =
4(1− ν2

1)σtha ln 2

πE1

, (5.63a)

δ2 =
4(1− ν2

2)σtha ln 2

πE2

. (5.63b)

It follows that the crack tip opening

δf
tip = δ1 + δ2 =

4 ln 2σtha

πE∗ , (5.64)

with E∗ = [(1−ν2
1)/E1+(1−ν2

2)/E2]
−1. Substituting Equation (5.64) into Equation (5.1)

yields

acr =
π

4 ln 2

∆γE∗

σ2
th

. (5.65)

In addition to the typical crack configurations discussed above, critical length scale

for flaw tolerance also has been observed in other configurations like thin film [30]. We

note that all the crack configurations, except the 2D internal crack, have critical length
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scales for flaw tolerance that can be expressed in a unified form

acr = Ω
E∗∆γ

σ2
th

, (5.66)

where Ω is a geometrical constant typically of order of magnitude unity but varying

with flaw geometry. For instance, in the case involving penny-shaped crack-like flaw,

Ω = π/4. Alternatively, the flaw tolerance condition a ≤ acr = Ω∆γE∗/σ2
th can also be

expressed by

Λa
ft =

∆γE∗

σ2
tha

≥ 1

Ω
≈ 1, (5.67)

where Λa
ft can be referred to as a flaw tolerance number. Equation (5.67) suggests that

a sufficiently large flaw tolerance number is necessary to achieve the flaw tolerance

state. During our previous discussion, we always treat the material as an elastic half-

space, implying that the dimension of the material itself is quite larger than that of the

contact flaws. This assumption is sound for macroscopic materials. In order to find the

material to tolerate crack-like flaws of all sizes, Gao and Chen [29] proposed a strategy

of constraining the dimension of material. It is pointed out that the generalized flaw

tolerance is achieved when the flaw tolerance number ΛH
ft = ∆γE∗/σ2

thH is not less

than a quantity on order of 1, where H denotes the characteristic size of the material

instead of the flaws. This conclusion does make sense since the flaw size a will never

exceed the material dimension H. If ΛH
ft ≥ 1 is ensured, condition Λa

ft ≥ 1 must be

met for all possible cracks, resulting in a “generalized” flaw tolerance state. In a word,

for traditional homogeneous material, general flaw tolerance can be achieved by small

material or structure. But for the macroscopic material, only propagation of very small

crack-like flaws can be suppressed.

Now, the question we are most concerned about is whether and how flaw tolerance

can be achieved for macroscopic contact with rough surfaces where crack-like flaws with

various sizes arise randomly in regions of poor contact. Based on Equation (5.67), the

flaw tolerance condition for macroscopic contact would require

∆γE∗

σ2
tha

≥ 1. (0 < a < ∞) (5.68)

While it is obvious that this condition can not be satisfied for a homogeneous material

system with constant parameters E∗, ∆γ, σth, Equation (5.68) suggests the following

three strategies to achieve flaw tolerant adhesion for macroscopic contact.

Strategy 1: The flaw tolerance condition in Equation (5.68) can be satisfied by
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5.3. Flaw tolerance via graded elasticity

having a material with effective Young’s modulus increasing proportional to the crack

size, i.e. E∗ ∝ a. Since the zone of stress field affected by an interfacial crack is on

the order of the crack size a, the behavior of the crack would also be dominated by

the elastic property of the material within a depth on the order of a from the surface.

Therefore, this strategy corresponds to an elastically nonhomogeneous material with

elastic constant increasing as a function of depth from the surface (see section 5.3).

Strategy 2: The flaw tolerance condition in Equation (5.68) can be satisfied by

having a material with work of adhesion increasing proportional to the crack size, i.e.

∆γ ∝ a. This strategy corresponds to a material with hierarchical (multi-scale) energy

dissipation mechanisms (see section 5.4).

Strategy 3: The flaw tolerance condition in Equation (5.68) can be satisfied by having

a material with scale-dependent adhesion strength, i.e. σth ∝ 1/
√

a. This strategy

corresponds to hierarchically weakening the adhesion strength to increase the fracture

process zone along the adhesive interface. However, this strategy by itself leads to

vanishing adhesion strength in the limit of large cracks, in which case the concept of

flaw tolerance also becomes meaningless. From this point of view, the strategy of scale-

dependent reduction of adhesion strength should be used only in combination with

graded elasticity and hierarchical energy dissipation in order not to over-degrading the

adhesion strength. This will be shown in the later discussion on the bottom-up designed

hierarchical structure (see subsection 5.4.3). We do not pursue this point further in this

thesis.

While it will be most effective to use a combination of these strategies to achieve

optimal result, for conceptual clarity we will discuss them separately in the following

sections.

5.3. Flaw tolerance via graded elasticity

Since the stress field around a crack occupies a region on the same order as the crack

size, the strategy of having an effective Young’s modulus increasing proportional to

the crack size, E∗ ∝ a, can be achieved by adopting a nonhomogeneous material with

Young’s modulus rising as a function of distance from the surface. In this regard, simply

increasing E∗ in a homogeneous material is not a practical solution for flaw tolerant

adhesion since sufficiently flexible material in the vicinity of the surface is necessary

to achieve good contact with a rough surface. A compromise between soft surface for

conformal contact and stiff bulk for flaw tolerance is to grade the elastic property in such
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a way that the average stiffness around a crack is rigid enough to suppress crack growth

while the surface remains flexible enough to allow good contact. Graded materials of

various kinds have previously been considered to enhance the resistance to frictional

sliding-contact and indentation [59, 76, 92]. Here we show that they can also lead to

flaw tolerant adhesion.

5.3.1. Theoretical modeling

Figure 5.15.: Flaw tolerant adhesion via graded elasticity. (a) A non-homogeneous elastic
material with graded Young’s modulus E(z) is in contact with a rigid substrate. (b) In the
state of flaw tolerance, the adhesive stress outside the crack is uniform and equal to the
theoretical strength at the critical state of pull-off. By superposing a uniform pressure of
σth on the entire surface (c), the flaw tolerant adhesion problem is converted into an elastic
half-space subjected a uniform pressure over a circular area (d).

To demonstrate the strategy of graded elasticity for flaw tolerant adhesion, we consider

an elastic half-space z ≥ 0 adhering to a rigid substrate, as shown in Figure 5.15(a).

We assume that the Young’s modulus varies as a function of distance from the surface

E = E(z) and Poisson’s ratio ν as a constant. A penny-shaped interfacial crack of

radius a is used to simulate the random contact flaws along the interface. The question

is whether it is possible to select a function E(z) such that cracks of all sizes are tolerated,

in which case the stress outside the crack uniformly reaches the theoretical strength σth
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5.3. Flaw tolerance via graded elasticity

at pull-off while the crack tip separation δf
tip does not exceed δ0 (Figure 5.15b).

Likewise, the posed mathematical problem can be simplified by superposing a uniform

pressure equal to σth on the entire surface, as shown in Figure 5.15(c). The flaw tolerance

solution of Figure 5.15(a) is then converted to an elastic half-space subjected to uniform

pressure σth over r ≤ a, as shown in Figure 5.15(d). The crack tip separation δf
tip in

Figure 5.15(b) is equal to the surface displacement at r = a relative to a surface point

at infinity in Figure 5.15(d). The condition for flaw tolerance is that δf
tip should stay

within the interaction range of adhesion forces, i.e.,

δf
tip ≤ δ0 =

∆γ

σth

for any crack size 0 < a < ∞. (5.69)

For homogeneous materials, Equation (5.69) can not be satisfied since δf
tip is a monoton-

ically increasing function of a. In the special case of ν = 0.5 (a condition approximately

satisfied by many soft biological tissues), an interesting solution to the problem posed

in Figure 5.15 and Equation (5.69) is the so-called Gibson soil [37] with

E(z) = E0z/c0. (5.70)

From the analysis of Gibson [37], one can calculate (δf
tip)Gibson = 3σthc0/2E0 and obtain

from Equation (5.69) the flaw tolerance solution

E(z) =
3σ2

thz

2∆γ
, ν = 0.5. (5.71)

The Gibson soil defined in Equation (5.71) is then predicted to tolerate interfacial cracks

of all sizes when it is brought into contact with a rigid substrate. According to our

hypothesis, it should also adhere robustly on a random rigid rough surface.

The flaw tolerance solution in the form of Gibson’s soil can be understood from the

following heuristic point of view. As indicated by Equation (5.66), a given homogeneous

material can only tolerate cracks below a critical size. We can also interpret this result

in a slightly different way that, for a given crack size, there exists a critical Young’s

modulus for the material above which the crack growth is suppressed. We note that this

critical Young’s modulus scales up with the crack size, indicating that small cracks can

be tolerated by relatively soft material but the tolerance of larger cracks requires stiffer

material. Since the zone of stress field affected by an interfacial crack is on the order

of the crack size a, the behavior of the crack would also be dominated by the elastic

property of the material within a depth on the order of a from the surface. Therefore,
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if we distribute stiffer material in the bulk (for flaw tolerance) and softer material near

the surface (for good contact with rough surfaces), the requirement for the Young’s

modulus to increase with crack size can be satisfied. The Gibson soil demonstrates the

basic principle of flaw tolerant adhesion via graded elasticity.

In the more general case of ν 6= 0.5, the linearly graded material E(z) = E0z/c0, still

referred to as the Gibson soil, is no longer flaw tolerant to any crack size as the crack

tip separation δf
tip diverges logarithmically with the crack size a. On the other hand,

we still expect that the stiffness of a flaw tolerant adhesive material is distributed in

a way similar to that of the Gibson soil. Consider a monotonically increasing stiffness

function E(z) similar to that of the Gibson soil. While it is difficult to obtain a general

solution to E(z), we derive below an asymptotical solution in the limit of large cracks

δf
tip(a →∞).

To derive the asymptotic solution in the limit of a → ∞, let us first focus on the

displacement field in the vicinity of r = 0 (Figure 5.15d) which, due to symmetry

conditions in this limit, should have only one non-zero displacement component uz that

depends only on z and leads to only one non-zero strain component εzz. Under this

circumstance, the equilibrium equations and Hooke’s law are reduced to

∂σzz

∂z
= 0, (5.72)

σzz =
E(z)(1− ν)εzz

(1 + ν)(1− 2ν)
. (5.73)

Considering the boundary condition σzz = −σth at z = 0, the solutions to Equa-

tions (5.72) and (5.73) are σzz = −σth and

εzz = −(1 + ν)(1− 2ν)σth

(1− ν)E(z)
. (5.74)

Therefore, the asymptotical solution to the surface deflection at the center of the pres-

surized region (z = 0, r = 0) in Figure 5.15(d) is

lim
a→∞

δf
center =

(1 + ν)(1− 2ν)σth

(1− ν)

∫ ∞

0

1

E(z)
dz. (5.75)

Provided that the integral in Equation (5.75) is integrable, the following relation can be

shown appropriate (Appendix B):
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lim
a→∞

δf
tip =

1

2
lim
a→∞

δf
center =

(1 + ν)(1− 2ν)σth

2(1− ν)

∫ ∞

0

1

E(z)
dz. (5.76)

Since large cracks are usually more susceptible to growth than small cracks, incorporating

Equation (5.76) into Equation (5.69) yields a necessary condition for flaw tolerance via

graded elasticity as

∫ ∞

0

1

E(z)
dz =

2(1− ν)∆γ

(1 + ν)(1− 2ν)σ2
th

, (−1 < ν < 0.5). (5.77)

For example, if we consider Gibson-soil-like modulus grading

E(z) = E0(1 + z/c0)
α, (5.78)

where α > 0, E0 is the value of Young’s modulus at the surface and c0 is a length para-

meter, the flaw tolerance condition (with no over-design) according to Equation (5.77)

becomes

α > 1, c0 =
2(1− ν)(α− 1)E0∆γ

(1− 2ν)(1 + ν)σ2
th

, − 1 < ν < 0.5. (5.79)

Assuming the parameter α remains close to 1, similar to the Gibson soil, the parameter

c0 measures the rate of change of Young’s modulus with the depth z. The smaller the

c0, the steeper the rise of E(z) with z. c0 →∞ corresponds to a homogeneous material.

Taking α = 2, σth = 20 MPa, E0 = 1 GPa, ν = 0.25, ∆γ = 0.024 J/m2, the critical c0

is estimated to be 144 nm.

For materials with graded Young’s modulus given in the form of Equation (5.78),

analytical solutions to the problem described in Figure 5.15(d) have been found for

several special cases. For instance, Brown and Gibson [13] presented a solution for α = 1

with Poisson’s ratio ν in the range of 0 − 1/2. Chuaprasert and Kassir [17] obtained a

solution for any α > 0 and ν satisfying the relation αν = 1− 2ν (e.g., α = 2, ν = 0.25).

Based on these existing solutions for nonhomogeneous elastic solids, Figure 5.16 shows

the evolution of the normalized energy release rate GE0/σ
2
thc0 = E0δ

f
tip/σthc0 with the

crack size a for α =0, 1 and 2. In the well-known homogeneous case α = 0, G grows

linearly with the crack size. In fact, G grows unboundedly with increasing crack size as

long as α ≤ 1 (linearly when α = 0 and logarithmically when α = 1). For α = 2 and

ν = 0.25, G is seen to asymptotically approach a constant value 5σ2
thc0/12E0. That is,

δf
tip has an asymptotical limit of 5σthc0/12E0 which agrees with the asymptotical solution

given by Equation (5.76) and confirms that this material can be made flaw tolerant by
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choosing parameters satisfying Equation (5.79).
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Figure 5.16.: The variation of normalized energy release rate GE0/σ2
thc0 as a function of the

normalized crack size a/c0 for a graded material with E(z) = E0(1 + z/c0)α (α = 0, 1, 2) and
ν = 0.25. The dotted line indicates the crack growth criterion.

5.3.2. Numerical simulations

To further verify the strategy of flaw tolerant adhesion via graded elasticity, we have

also performed numerical simulations using Tahoe. The simulation system involves an

elastic cylindrical punch of finite dimension (radius×height=6a× 6a) in contact with a

rigid substrate (Figure 5.17a). A penny-shaped interfacial crack of radius a is introduced

at the central region of contact. A uniform vertical displacement is applied on the top

surface of the cylinder. The net force F at a given displacement load is calculated by

summing up all the nodal forces on the top surface. We consider a graded material of

the type E = E0(1 + z/c0)
2 with E0 = 1.0 GPa and c0 = 144 nm; the latter is evaluated

according to Equation (5.79) by taking σth = 20 MPa, ∆γ = 0.024 J/m2 and ν = 0.25.

The results are compared to the homogeneous case E ≡ E0. The pull-off force F f is

calculated for three different punch sizes: 50 nm, 500 nm and 1000 nm. The normalized

adhesion strength F f/Aσth, where A is the actual contact area, is plotted as a function

of the non-dimensional parameter (σ2
tha/E0∆γ)1/2 in Figure 5.17(b). As expected, the

adhesion strength in the homogeneous case decreases as the contact size increases, while
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Figure 5.17.: FEM simulations of an elastic cylindrical punch adhering to a rigid substrate.
(a) Schematic of the simulation model. (b) The normalized adhesion strength F f/Aσth as
a function of the size parameter (σ2

tha/E0∆γ)1/2; A being the actual contact area. (c) The
distribution of adhesion stress within the contact region for six pull-off states, P1-P6. Due to
the axial symmetry, only a quarter of the contact area is shown.
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in the graded case the adhesion strength is maintained at the theoretical strength σth

independent of the punch size. Figure 5.17(c) shows the stress distribution inside the

contact area for the six different pull-off states, P1-P6, shown in Figure 5.17(b). The

top three figures in Figure 5.17(c) show that pull-off in the homogeneous cases occurs

increasingly by crack propagation via stress concentration near the crack tip as the

contact size increases. In this situation, size reduction helps to homogenize the stress

distribution inside the contact area and change the failure mode from crack growth to

uniform detachment near the theoretical strength of adhesion. In contrast, the bottom

three figures in Figure 5.17(c) indicate that pull-off in the graded material occurs by

uniform detachment at the theoretical strength irrespective of the size, confirming the

strategy of flaw tolerant adhesion via graded elasticity.

5.4. Flaw tolerance via hierarchical energy dissipation

In the discussions so far, we have assumed that the work of adhesion consists only of

surface energy contribution ∆γ which is typically on the order of 0.01 − 0.05 J/m2 for

van der Waals interaction. This assumption is appropriate if no bulk dissipation oc-

curs during the break of adhesion. In fact, biological adhesion systems rely heavily on

energy dissipation mechanisms based on various mechanisms such as viscoelastic defor-

mation [51, 57] and irreversible loss of elastic strain energy [31, 58, 78]. In the following,

this point is illustrated by using a simple hairy surface model. It is demonstrated that

the work of adhesion can be increased greatly via fibrillar structures. But such incre-

ment is limited by the fiber stability condition against self-bunching. To overcome this

constraint, we design a hierarchical fibrillar structure by which a scale-dependent work

of adhesion is achieved, resulting in a generalized flaw tolerance state.

5.4.1. High work of adhesion in fibrillar structures

As mentioned in section 2.1.2, if two smooth solid surfaces are brought into contact (Fig-

ure 5.18a), surface adhesion will occur, which, according to the Lennard-Jones potential,

can be described as a function of the interfacial separation h:

σ(h) =
8∆γ

3z0

[(z0

h

)3

−
(z0

h

)9
]

,

where ∆γ is the work of adhesion representing the work required to separate two unit

surfaces from the equilibrium place h = z0 to h = ∞. In this regard, the work of
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adhesion can be visualized as the area below the σ − h curve ranging from h = z0 to

h = ∞.

Figure 5.18.: Schematic of contact between (a) two smooth surfaces and (b) a hairy surface
and smooth substrate.

Now, let us have one surface extrude into a great number of identical thin fibers and

bring it into contact with a smooth substrate, as shown in Figure 5.18(b). We assume

that: (1) two surfaces are separated so far that the direct interaction can be ignored;

(2) the diameter of the fibers meets the condition for robust adhesion.

Let L and s denote the fiber length and the separation between fiber tip and substrate

respectively, the apparent surface-surface separation now can be given by

h = L + s. (5.80)

According to the Hooke’s law, we have

L = L0(1 + σ/Ef), (5.81)

where L0 is the original length of the fibers, Ef is the Young’s modulus and σ is the

tensile stress correlated with s by Lennard-Jones law

σ(s) =
8∆γ

3z0

[(z0

s

)3

−
(z0

s

)9
]

. (5.82)

Equations (5.80-5.82) define the adhesion stress σ as a function of apparent surface-

surface h implicitly. Given ∆γL0/Efz
2
0 , the variation of σ with apparent separation h is

plotted in Figure 5.19. We can see that the σ−h curve is tilted as ∆γL0/Efz
2
0 increases,

resulting in unstable adhesion stress on the separating path. Under this circumstance,

pull-off will occur accompanied by an abrupt drop in adhesion stress and the strain

energy stored in the fiber is dissipated, giving an additional component to the work
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done per unit surface area of fracture advance, i.e.

Wad = ∆γ + Wdiss = (∆γ + σ2
thL0/2Ef)ϕ, (5.83)

where ϕ denotes the area fraction of fibers. Taking ∆γ = 0.01 J/m2, σth = 20 MPa,

L0 = 100 µm, Ef = 1.0 GPa, ϕ = 0.5, the work of adhesion is calculated to be Wad ≈
10 J/m2, a value much larger than ∆γ. Such enhancement in work of adhesion by fibrillar

structures has been reported and/or discussed by Jagota and Bennison [58], Persson [78]

and Tang et al. [95].
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Figure 5.19.: Effective stress-separation curve in fibrillar structures with different fiber lengths.

If we apply such hairy structure to the tip of a stalk fiber, as shown in Figure 5.20,

a two-levelled fibrillar structure or a “brush” will be designed. According to Equa-

tion (4.52), now the condition for flaw tolerant adhesion of this hairy tipped fiber can

be described as

R ≤ 8WadEf

π(1− ν2
f )(ϕσth)2

, (5.84)

where νf denotes the Poisson’s ratio of the fiber and Wad is the work of adhesion given

by Equation (5.83). For most of the discussions in following, we shall take the equality

sign in Equation (5.84) corresponding to the optimal condition with no over-design.

Normally, since Wad is much greater than ∆γ, Equation (5.84) in comparison with

Equation (4.52) reveals that flaw tolerant adhesion can be extended to a larger length
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scale by using hairy structure. From the viewpoint of robustness, slender hairs with

large aspect ratio can significantly increase the work of adhesion and contribute to the

robustness of adhesion at higher structural levels. However, the length of the fibrils

cannot be too long as there is an instability leading to fiber bunching as the aspect ratio

of the fibrils increase. This point will be discussed in the following.

Figure 5.20.: Schematic of a brush structure.

5.4.2. Anti-bunching condition for fibrillar structures

In an array of slender hairs on a surface, the van der Waals interaction among neighbour-

ing fibers can cause them to bundle together [33, 35, 40, 52, 78, 85]. The anti-bunching

condition is an important factor in the design of hairy adhesion structures. The exact

form of the anti-bunching condition depends on the geometry of the fiber. For example,

the anti-bunching condition for fibers of square cross section has been derived by Hui

et al. [52] and Gao et al. [33]. In this paper, we focus on cylindrical fibers as has been

considered by Glassmaker et al. [40].

Consider two neighboring identical cylindrical fibers with circular cross-sections. When

the separation 2w becomes small, the surface adhesive force between them will cause

to bundle together, as shown Figure 5.21(a). In other words, given separation 2w and

radius R, there exists a critical length beyond which lateral bunching of neighbouring

fibers becomes stable configurations. For two identical cylindrical fibrils adhering to one

anther in parallel, the 2D JKR theory [53] gives the externally applied force as

P =
πEfb

2

4(1− ν2
f )R

−
√

2bπEfγf/(1− ν2
f ), (5.85)
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where γf is the surface energy of the fiber material. In our case, since no end constraint

occurs, with P = 0 the half-width of contact (Figure 5.21b) can be estimated from

Equation (5.85) as

b =

[
32R2(1− ν2

f )γf

πEf

]1/3

. (5.86)

Figure 5.21.: Anti-bunching condition of a fibrillar structure. (a) Configuration of self-bunching
in fiber cluster. (b) A bottom-up view of the sticking ends.

Due to the local deformation of the contact region, there is an accompanying stored

elastic energy Uc in the fibrils. At equilibrium, we have [40]

∂Uc

∂b
= 4γf . (5.87)

Substituting Equation (5.86) into Equation (5.87) yields

∂Uc

∂b
=

b3πEf

8(1− ν2
f )R

2
.

It follows that

Uc =
b4πEf

32(1− ν2
f )R

2
=

bπEf

32(1− ν2
f )R

2
b3 = γfb. (5.88)

On the other hand, the strain energy associated with bending can be calculated by

using the elementary beam theory [18]

Ub = 2× 6EfIw2

l3
=

12EfIw2

l3
, I =

πR4

4
.

The length of the non-contact region l is determined by using the equilibrium condition

d [Ub + (Uc − 2γf2b) (L− l)] /dl = 0,
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which results in

l =

[
36EfIw2

4γfb− Uc

]1/4

. (5.89)

Substituting Equation (5.88) into Equation (5.89) gives rise to

l =

[
36EfIw2

3γfb

]1/4

=

[
3πEfR

4w2

γfb

]1/4

=

[
π4EfR

211γf(1− ν2
f )

]1/12 [
12EfR

3w2

γf

]1/4

. (5.90)

Assuming that the fibers are distributed in a regular lattice pattern, half-separation

w and radius R thus can be correlated by the area fraction ϕ as

w = (
√

ϕmax/ϕ− 1)R, (0 < ϕ < ϕmax) (5.91)

where ϕmax stands for the maximum area fraction of a given hair pattern. It can be shown

that ϕmax = π/2
√

3 for a triangular pattern (Figure 5.22a), ϕmax = π/4 for a square

lattice (Figure 5.22b) and π/3
√

3 for a hexagonal lattice (Figure 5.22c). Substituting

Equation (5.91) into (5.90) leads to

l = Rα

(
EfR

γf

)1/3 (√
ϕmax/ϕ− 1

)1/2

, (5.92)

where α =

[
33π4

25(1− ν2
f )

]1/12

. Equation (5.92) gives the upper limit of the fibril length

over which lateral bunching between two fibrils will take place. The anti-bunching

condition thus can be expressed as

L ≥ Lcr = l = Rα

(
EfR

γf

)1/3 (√
ϕmax/ϕ− 1

)1/2

. (5.93)

Figure 5.22.: Possible layout patterns of fibers: (a) triangular pattern (b) square pattern and
(c) hexagonal pattern.
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Equation (5.93) has been derived for the lateral sticking between two neighboring

fibrils. Similar analysis can also be carried out for other possible bunching configurations

involving multiple neighbouring fibers, as shown in Figure 5.23. We find that the critical

fiber length for multiple fiber bunching is no less than that given by Equation (5.93). It

seems that the anti-bunching condition between two fibers is the most critical condition

against bunching involving multiple fibers.

Figure 5.23.: Other possible bunching configurations involving multiple neighboring fibers in
(a) triangular pattern (b) square pattern and (c) hexagonal pattern.

5.4.3. Bottom-up designed hierarchical structures

Given that the work of adhesion can be increased to a larger value by adopting a

“hairy” structure [31, 58, 78, 95], the critical length for flaw tolerant adhesion can

also be extended to a larger scale, according to Equation (5.84). Meanwhile, the in-

crease in work of adhesion with each level of added hierarchy should be limited by the

maximum length of the fibers allowed by the anti-bunching condition. In other words,

bunching between fibers provides an upper limit on how much the flaw tolerant length

scale can be extended by one level of hierarchy. In order to achieve flaw tolerant adhesion

at macroscopic length scales, multiple levels of hierarchy may be needed. To demon-

strate the principle of flaw tolerance via structure hierarchy, we propose a “fractal gecko

hairs” model, in which a hierarchical fibrillar structure is made from multiple levels of

self-affine “brush”structures, as shown in Figure 5.24. In this fractal structure, the tips

of fibers at each level of hierarchy are assumed to be coated with a “brush” structure

consisting of smaller fibrils from one level below. The flaw tolerance and anti-bunching

conditions are applied to all hierarchical levels from bottom and up to ensure robustness

and stability at all levels. That is, the robustness principle of flaw tolerance and the

stability principle of anti-bunching are used to determine the fiber geometry at different

scales. The bottom-up construction of the desired hierarchical structure is described in

detail below.
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Figure 5.24.: Schematic of the bottom-up design scheme for a hierarchical structure. At each
level, the fibers depend on smaller fibrils form the lower hierarchical levels as effective “adhesive
bonds” with a surface. Interestingly, the fibers themselves act as “adhesive bonds” for larger
fibers from higher hierarchical levels.

At the lowest level of hierarchy, the failure process is governed by the van der Waals

interaction between the smallest fibers (ultrastructure) and a solid surface. In this case,

the maximum fiber radius ensuring flaw tolerant adhesion is given by

R1 =
8∆γEf

π(1− ν2
f )σ

2
th

, (5.94)

where the work of adhesion is simply equal to the surface energy ∆γ due to van der

Waals interaction and σth is the theoretical strength of van der Waals forces.

In light of the anti-bunching condition of Equation (5.93), the maximum fiber length

of the bottom level can be expressed as a function of the area fraction ϕ1 of this level as

L1(ϕ1) = R1α

(
EfR1

γf

)1/3 (√
ϕmax/ϕ1 − 1

)1/2

. (5.95)

With these parameters, the work of adhesion associated with the next (second) level is

given by

W ad
2 (ϕ1) =

(
σ2

thL1

2Ef

+ ∆γ

)
ϕ1, (5.96)

which is a function of the area fraction ϕ1. This function exhibits a maximum at a specific

value of ϕ1 due to the opposing trends of variation of the parameters L1 and ϕ1: denser

fibers with larger ϕ1 require smaller L1 for stability against bunching. Therefore, we

can choose the fiber area fraction ϕ1 to maximize the work of adhesion at the next level
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according to Equation (5.96). After ϕ1 is calculated, the fiber length L1 is immediately

determined by Equation (5.95). In this way, all the structural parameters characterizing

the first level R1, L1, ϕ1 have been determined. In addition, the work of adhesion for

the second level W ad
2 is given by Equation (5.96).

We now advance to the design of the second (next) level. The fiber radius is again

chosen to ensure flaw tolerant adhesion,

R2 =
8W ad

2 Ef

π(1− ν2
f )(S2)2

=
8W ad

2 Ef

π(1− ν2
f )(ϕ1σth)2

, (5.97)

where S2 = ϕ1σth is the effective adhesion strength of the second level. Similarly, the

anti-bunching condition allows the fiber length to be determined as a function of the

area fraction ϕ2 as

L2(ϕ2) = R2α

(
EfR2

γf

)1/3 (√
ϕmax/ϕ2 − 1

)1/2

, (5.98)

upon which the work of adhesion for the third level can be determined,

W ad
3 (ϕ2) =

[
W ad

2 +
(S2)

2L2

2Ef

]
ϕ2 =

[
W ad

2 +
(ϕ1σth)

2L2

2Ef

]
ϕ2. (5.99)

Next, the area fraction ϕ2 is determined by maximizing W ad
3 (ϕ2). Once ϕ2 is known, the

fiber length L2 is determined from Equation (5.98). Hence all the structural parameters,

R2, L2, ϕ2, for the second hierarchical level, as well as the work of adhesion W ad
3 for the

third level, have been determined.

A general iterative procedure can now be formulated to determine the structural

parameters at all hierarchical levels, starting from the lowest level. Assuming we have

completed the design from the first to (n − 1)th levels so that Ri, Li, ϕi, W ad
i (i =

1, 2, · · · , n − 1) as well as W ad
n have been determined, for the nth level (n > 1), the

(maximum) fiber radius ensuring flaw tolerant adhesion is given by

Rn =
8W ad

n Ef

(1− ν2
f )(Sn)2

=
8W ad

n Ef

(1− ν2
f )π(σthΦn−1)2

, (5.100)

where

Sn = σthΦn−1, Φn−1 = ϕ1ϕ2 · · ·ϕn−1 =
n−1∏
i=1

ϕi, (5.101)

is the effective adhesion strength of the nth level. The (maximum allowable) fiber length
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of the nth level can then be expressed, according to the anti-bunching condition, as a

function of the area fraction ϕn,

Ln(ϕn) = αRn

(√
ϕmax/ϕn − 1

)1/2
(

EfRn

γf

)1/3

, (5.102)

The work of adhesion for the (n + 1)th level is

W ad
n+1(ϕn) =

[
W ad

n +
(Sn)2Ln

2Ef

]
ϕn =

[
W ad

n +
(σthΦn−1)

2Ln

2Ef

]
ϕn. (5.103)

The area fraction for the nth level ϕn can now be determined by maximizing W ad
n+1(ϕn),

upon which Ln and W ad
n+1 can be readily calculated. This iterative, bottom-up design pro-

cedure can be repeated until the desired size scale for flaw tolerant adhesion is reached.

Upon the knowledge of the fiber radius and area fraction of each level, we can calculate

the number of fibrils on the tip of a fiber at the next higher level,

N f
n = ϕn (Rn+1/Rn)2 , (5.104)

as well as the net pull-off force at each hierarchical level,

F f
n = πR2

nSn. (5.105)

Figure 5.25 shows the calculated hierarchical fibrillar structures following the bottom-

up design procedure described above. In the calculations, we have taken the material

properties of keratin as Ef = 1.0 GPa, νf = 0.3, ∆γ = 10 mJ/m2, γf = 5 mJ/m2 and

σth = 20 MPa. Three lattice patterns, triangular, square and hexagonal, for the fiber

cluster are considered. As shown in Figure 5.25(a) and (b), both the fiber radius and

length increase exponentially with the hierarchy level. Under the selected parameters,

the critical fiber radius of flaw tolerant adhesion is only around 100 nm at the lowest

level of structure. With hierarchical design, the flaw tolerant radius increases to 1 µm

with 2 levels, 1 mm with 3 levels, 1 m with 4 levels of hierarchy. With 8 levels, the

dimension of flaw tolerant radius has reached 1026 m, which is an astronomical size!

These calculations demonstrate the enormous potential of a hierarchical structure for

flaw tolerant adhesion. Figure 5.25(c) displays the variation of the area fraction with

the number of hierarchy levels. Interestingly, the area fraction converges to a constant

after the third hierarchy level for each fiber layout pattern. Figure 5.25(d) shows the

work of adhesion at different hierarchical levels. In the first 6 levels, the triangular fiber
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fibers N f
n as a function of the hierarchical level n.
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pattern exhibits higher work of adhesion than the other two patterns. With further

increase in hierarchy levels, this advantage is taken over by the hexagonal fiber pattern.

Figure 5.25(e) shows the effective adhesion strength which decreases and asymptotically

approaches zero with the increasing hierarchy level. Therefore, the strategy of scale-

dependent adhesion strength also exists in this fractal structure. On the other hand, the

pull-off force F f
n, as shown in Figure 5.25(f), increases exponentially with the hierarchy

level. Figure 5.25(g) illustrates the number N f
n of fibrils on the tip of a fiber at the next

level. We see that N f
n increases sharply with increasing hierarchy levels. Most results in

Figure 5.25 are presented in the normalized form. The quantitative estimates based on

the assumed materials properties are tabulated in Table 5.1.

Table 5.1.: Calculated geometrical and mechanical properties of a bottom-up designed fractal
hair structure.

n Rn(m) Ln(m) ϕn W ad
n (J/m2) Sn(MPa) F f

n(N) N f
n

Triangular
1 7.00× 10−8 1.37× 10−6 0.5260 0.01 20 3.08× 10−7 1.539× 103

2 3.78× 10−6 2.86× 10−4 0.5169 0.15 10.52 4.73× 10−4 2.2032× 104

3 7.81× 10−4 0.36 0.5079 8.26 5.44 10.43 7.9914× 105

4 0.98 4.80× 103 0.5079 2.67× 103 2.76 8.33× 106 9.2685× 107

5 1.32× 104 1.55× 109 0.5079 9.31× 106 1.4026 7.72× 1014 5.2558× 1010

6 4.26× 109 3.41× 1016 0.5079 7.72× 1011 0.7123 4.06× 1025 2.4676× 1014

7 9.39× 1016 2.11× 1026 0.5079 4.39× 1018 0.3618 1.00× 1040 1.9399× 1019

8 5.80× 1026 2.39× 1039 0.5079 7.0× 1027 0.1837 1.94× 1059 6.5330× 1025

Square
1 7.00× 10−8 1.37× 10−6 0.4555 0.01 20 3.08× 10−7 1.777× 103

2 4.37× 10−6 3.46× 10−4 0.4477 0.13 9.11 5.47× 10−4 2.7977× 104

3 1.10× 10−3 0.56 0.4398 6.49 4.08 15.50 1.1534× 106

4 1.7691 1.06× 104 0.4398 2.03× 103 1.79 1.76× 107 1.5865× 108

5 3.36× 104 5.35× 109 0.4398 7.47× 106 0.79 2.80× 1015 1.1291× 1011

6 1.70× 1010 2.16× 1017 0.4398 7.33× 1011 0.35 3.16× 1026 7.1761× 1014

7 6.88× 1017 3.0× 1027 0.4398 5.72× 1018 0.15 2.27× 1041 8.4482× 1019

8 9.53× 1027 9.97× 1040 0.4398 1.53× 1028 0.067 1.91× 1061 4.8744× 1026

Hexagonal
1 7.00× 10−8 1.37× 10−6 0.3507 0.01 20 3.08× 10−7 2.309× 103

2 5.68× 10−6 4.91× 10−4 0.3446 0.10 7.01 7.10× 10−4 4.3203× 104

3 2.00× 10−3 1.25 0.3386 4.20 2.42 30.37 2.2486× 106

4 5.18 4.42× 104 0.3386 1.24× 103 0.82 6.90× 107 4.2178× 108

5 1.83× 105 5.12× 1010 0.3386 5.02× 106 0.28 2.91× 1016 4.5376× 1011

6 2.12× 1011 6.23× 1018 0.3386 6.66× 1011 0.0938 1.32× 1028 5.0028× 1015

7 2.57× 1019 3.75× 1029 0.3386 9.27× 1018 0.0318 6.61× 1043 1.2276× 1021

8 1.55× 1030 8.85× 1043 0.3386 6.40× 1028 0.0108 8.14× 1064 1.8860× 1028

It should be of interest to make a comparison between our calculated results with the

observed hierarchical structure in nature. Under the selected parameters, our results

show that the diameter and length of the first level fiber are 140 nm and 1.37 µm. These
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Chapter 5. Flaw-tolerant adhesion

values are not inconsistent with the dimension of the topmost spatula hairs (stalk) of

Tokay gecko (Gekko gecko) which is around 100-200 nm wide and 0.5−3 µm long3 [3, 101].

The dimension of the second level of our bottom-up constructed structure is around

7.56− 11.34 µm wide and 286− 491 µm long, depending upon the pattern of the fiber

cluster, while the size of a seta on gecko’s feet is about 5 µm in width and 110 µm in

length [101]. In addition, our calculation predicts that the number of the lowest level

fibrils accommodated by a fiber of the second level is around 1539-2309, which is qual-

itatively similar to the observation of 100-1000 spatulae/seta [4]. Furthermore, from

our calculated results we evaluate the density N f
2/πR2

3 of the second level fiber to be

11, 494, 7363, 3439 mm−2 for triangular, square and hexagonal patterns, respectively.

This is also comparable to the observed density of seta around 14, 400 mm−2 [4]. There-

fore, it seems that gecko only adopts a few levels of hierarchical fibrillar structures to

achieve robust adhesion. A question then is why nature has not evolved more hierar-

chical levels, thus larger adhesion species heavier than gecko? A possible answer to this

question is addressed in the next subsection.

5.4.4. Fiber fracture: an upper limit on flaw tolerant adhesion

design

In the preceding discussions, we have focused on the failure along an adhesion interface

and implicitly assumed that the fibers themselves do not fracture. In practice, as the

adhesion strength is enhanced by introducing hierarchical fibrillar structures, the fracture

of fibers eventually rises to become the dominant issue for failure at the system level. In

other words, a robust adhesion system must be robust against not only adhesion failure

but also fiber fracture.

Consider a single fiber at hierarchy level n. A penny-shaped crack is introduced in the

center of the cross-section as a possible internal flaw. Other configurations of crack-like

flaws, such as edge/corner cracks/singularities, can be considered without affecting the

basic idea. The maximum tensile stress that this fiber can sustain can be determined

from the Griffith’s criterion [45] for crack growth as (see [94]),

σmax
n =

√
E∗

f Γf

Rn

√
πRn/2a

g(a/Rn)
, (5.106)

3These values are estimated from the micrographs in the references.

122



5.4. Flaw tolerance via hierarchical energy dissipation

where a is the crack radius, E∗
f = Ef/(1− ν2

f ), Γf is the fracture energy and

g(a/Rn) =
1− 0.5a/Rn + 0.148(a/Rn)3

√
1− a/Rn

(5.107)

is a geometrical parameter [94]. Considering a crack half the size of the fiber, i.e.

a/Rn = 0.5, Equation (5.106) can be further reduced to

σmax
n = 1.63

√
E∗

f Γf/Rn. (5.108)
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Figure 5.26.: Comparison between the fracture strength σmax
n of a cracked fiber and the nth

level adhesion strength Sn of the bottom-up designed fractal hairs. If σmax
n > Sn, adhesion

failure is regarded as the principal failure mode, otherwise (σmax
n < Sn) fiber fracture is thought

of as the principal failure mode.

The relative significance of fiber fracture can be measured by a comparison between

σmax
n and the effective adhesion strength Sn at the nth hierarchical level. If σmax

n > Sn,

adhesion failure is regarded as the dominant issue and further increase in hierarchical

levels can be considered. On the other hand, if σmax
n < Sn, fiber fracture is regarded

as the dominant failure mode, which imposes an upper limit on the hierarchical design.

Taking Γf = 5.0 J/m2 and E∗
f = 1.0 GPa, we compare σmax

n and Sn for the fractal hair

structures constructed above. As shown in Figure 5.26, for triangular and square fiber

layout, only fibers within the first two levels satisfy the condition σmax
n > Sn; for the

hexagonal layout, this condition is satisfied for the first three levels. Hence, although

123



Chapter 5. Flaw-tolerant adhesion

there is no upper bound for flaw tolerant adhesion via fractal hairs design, crack-like

flaws in the hairs themselves would impose a practical limit upon the usefulness of this

strategy.

In this chapter, we have studied some basic principles of robust adhesion on rough

surfaces within the framework of continuum interfacial failure mechanics. Instead of

directly modeling the adhesive contact on random or fractal rough surfaces as in some

of the previous studies in the literature, we have adopted a different modeling approach

by considering an interfacial crack as a representative contact flaw. In comparison with

previous contact models on rough surfaces, the crack model is mathematically more

tractable and allows us to consider adhesive contact in hierarchical and nonhomoge-

neous elastic materials, which is crucially important for biological systems. We have

assumed that robust adhesion on random rough surfaces is equivalent to flaw tolerant

adhesion in which the growth of a representative interfacial crack is suppressed for any

crack size. By using the concept of flaw tolerant adhesion, we have shown that graded

elasticity, hierarchical energy dissipation [104] and scale-dependent adhesion strength

are three basic strategies to make the system insensitive to crack-like contact flaws due

to roughness or contaminants. The strategy of graded elasticity tends to ensure that the

average property of material around a crack is rigid enough to suppress the crack growth

while the surface remains sufficiently compliant to achieve good contact with a rough

surface. The strategy of hierarchical energy dissipation tends to increase the work of

adhesion in proportion to the flaw size. The scale-dependent adhesion strength strategy

trades the strength for toughness. Based on a bottom-up scheme, a hierarchical fibrillar

structure is constructed for tolerating crack-like flaws of all sizes. This conclusion is

appropriate provided that the fibers themselves will not fracture before the failure of the

adhesion. Further consideration of crack-like flaws in the hairs themselves results in an

upper size limit for flaw tolerant design. Therefore, Flaw tolerance can be achieved by

a combination of graded elasticity, hierarchical energy dissipation and scale-dependent

adhesion strength. For biological adhesion systems, it seems even necessary to adopt a

combination of these strategies. For example, it seems difficult to achieve flaw tolerant

adhesion via graded elasticity alone. If we take E = E0(1+z/c0)
2 and c0 = 144 nm as we

have assumed in our numerical simulation, the Young’s modulus at a depth of z = 5 µm

(typical size of bio-adhesion system is one hundred microns or so) would already exceed

1200 times of that on the surface. Achieving such a sharp grading of elasticity may be

difficult especially for biological systems. Therefore, the strategy of hierarchical energy

dissipation plays a more important role in the biological attachments than the other
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5.4. Flaw tolerance via hierarchical energy dissipation

two.

A quantitative comparison of the present findings with biological adhesion systems is

still difficult due to the lack of accurate measurement data for local elastic properties

of biological attachment pads. On the other hand, some qualitative remarks can be

readily made. The nanoscale spatulae on the toe of gecko exhibits hierarchical hairy

structures which effectively induce hierarchical energy dissipation with graded elastic

property (Figure 1.1a). The attachment pad of cicada contains a foam-like structure with

variable cell size and wall thickness (Figure 1.1b). Since the Young’s modulus of a foam-

like material is proportional to (t/l)3, where t and l denote the wall thickness and size

of the cell respectively [36], the variation of (t/l)3 with distance from the surface could

result in a graded Young’s modulus. Furthermore, because these foams are normally

filled with viscous liquid, the varying cell sizes could also introduce hierarchical energy

dissipation due to viscoelastic deformation around an interfacial crack. These different

microstructural designs seem to share a common feature of nonhomogeneous material

property with an ability to dissipate energy in scale with crack size.

In the next chapter, we will turn our attention from robust adhesion to releasable

adhesion.
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Chapter 6. Releasable adhesion

For geckos and insects, robust adhesion alone is insufficient for survival as these animals

also need to move swiftly on walls and ceilings; the reversibility of attachment is just as

important as the robustness. One conceivable way for reversible adhesion is to design

an orientation-controlled switch between attachment and detachment, with adhesion

strength varying strongly with the direction of pulling. An ideal scenario of robust and

releasable adhesion is that the adhesion strength would be maintained near the theo-

retical strength insensitive to crack-like flaws when pulled in some range of directions,

but then dramatically reduced when pulled in another range of directions. The switch

between attachment and detachment thus can be accomplished simply by changing the

pulling angles (e.g., by exerting different muscles). Some known examples of anisotropic

adhesion systems in which the pull-off force varies strongly with the direction of pulling

include an elastic tape on substrate [50, 63, 89] and a single seta of gecko sticking to

a wall [3, 33]. In these single contact systems, the anisotropic behaviors of the pull-off

force are due to the asymmetric structure of the material. A different theory will be

needed to explain how bio-adhesion can be released in macroscopic contact with rough

surfaces.

In the following, we will address the question of releasable adhesion on rough surfaces

within the framework of continuum interfacial failure mechanics. This generalization is

also necessary for explaining how adhesion is released in the smooth attachment sys-

tems in biology. The previous studies on the behavior of a single seta of gecko [3, 33]

or spatula [50] can not explain why adhesion can also be released in smooth attachment

systems with no fibrillar contact structure. We perform theoretical modeling and numer-

ical simulations to show that strong elastic anisotropy on the continuum level induces

a strong orientation dependence of the pull-off force similar to the behavior of a single

seta observed by Autumn et al. [3] in experiment and Gao et al. [33] in simulation.
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Chapter 6. Releasable adhesion

6.1. Orientation-dependent adhesion of an anisotropic

elastic material

Figure 6.1.: The interfacial crack model for releasable adhesion. (a) A transversely isotropic
solid contacting a rough surface. (b) An interfacial crack is used to represent random contact
flaws.

To facilitate the theoretical analysis of releasable adhesion on rough surfaces schemat-

ically shown in Figure 6.1(a), we consider a plane-strain adhesion problem shown in

Figure 6.1(b) where a transversely isotropic elastic half-space (y ≥ 0) contacts a rigid

substrate. A plane-strain interfacial crack of size 2a is used to simulate the random

contact flaws due to surface roughness or contaminants. Although the actual adhesion

strength depends on the crack size, the ratio between the maximum and minimum pull-

off stresses as the pulling angle varies will be shown to be independent of the crack

geometry and used as a measure for the releasability of adhesion.

In this interfacial crack model, the longitudinal direction of the material (y0-axis)

is tilted at the angle θ from the tangent of the substrate plane (x-axis). A remote

uniaxial tensile stress σ∞ is applied at an angle φ (0 < φ < π) with respect to the

x-axis. The transversely isotropic material is characterized by five independent elastic

constants: Et, El, νt, νl and G. Et and El stand for the transverse (x0 direction) and

longitudinal (y0 direction) Young’s moduli; νt, νl are Poisson’s ratios associated with

transverse (x0 direction) and longitudinal (y0 direction) loading, respectively; G denotes

the shear modulus in the x0 − y0 plane.

We are interested in the pull-off stress of the above adhesion system as a function of

the pulling direction. This problem can be solved as a classical interfacial crack between

two dissimilar anisotropic elastic solids [28, 42, 55, 91, 97, 102]. A general solution

for the interfacial crack problem between two dissimilar anisotropic materials has been

considered by many authors [28, 55, 91, 98] based on the Stroh formalism [90]. In this
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6.1. Orientation-dependent adhesion of an anisotropic elastic material

field of research, several different groups of notations have been used in the literature.

Here we just summarize the results immediately relevant to our present study by using

the notations in [55].

For a finite interfacial crack between two dissimilar anisotropic elastic solids, the

stress intensity factor at the right crack tip induced by remotely applied loading t∞ =[
σ∞xy σ∞yy σ∞yz

]T

can be expressed as

K =




KII

KI

KIII


 =

√
πaΛ〈〈(1 + 2iεα)(2a/`)−iεα〉〉Λ−1t∞, (6.1)

Λ = [λ1 λ2 λ3] , εα = Im(δα), i =
√−1, (6.2)

where the angular bracket 〈〈·〉〉 stands for the diagonal matrix, i.e. 〈〈fα〉〉 = diag[f1, f2, f3];

Im(·) denotes the imaginary part of a complex variable; 2a is the width of the interface

crack; ` is a length parameter which can be chosen arbitrarily; δα and λα (α = 1, 2, 3)

are eigenvalues and eigenvectors of the following problem

(
M∗ + e2iπδM

∗)
λ = 0. (6.3)

Here, M
∗

is the complex conjugate of the bimaterial matrix M∗ which is defined as

M∗ = D− iW, (6.4)

D = L−1
1 + L−1

2 , W = S1L
−1
1 − S2L

−1
2 , (6.5)

where S, L are the Barnett-Lothe tensors [98]; subscripts ‘1’ and ‘2’ are used to denote

the quantities pertaining to the materials 1 and 2. The explicit solution to the eigenvalues

of problem Equation (6.3) have been obtained as [97]

δα = −1

2
+ iεα, (α = 1, 2, 3)

ε1 = ε =
1

2π
ln

1 + β

1− β
, ε2 = −ε, ε3 = 0, β =

[
−1

2
tr

(
WD−1

)2
]1/2

, (6.6)

where ‘tr’ stands for the trace of a matrix.

The influence of the material properties on the solutions is reflected through the

Barnett-Lothe tensors S, L whose matrix expressions are composed of elastic con-

stants [22]. For a given bimaterial, once the matrices S, L of each material are obtained,
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Chapter 6. Releasable adhesion

the stress intensity factor can be deduced from Equations (6.1-6.6) and the corresponding

energy release rate then can be evaluated according to the formula

G =
1

4
KTEK, (6.7)

where

E = D + WD−1W. (6.8)

Substitution of Equation (6.1) into Equation (6.7) yields

G(t∞) =
πa

4

[
(t∞)T(Λ−1)T〈〈(1 + 2iεα)(2a/`)−iεα〉〉ΛT

]
E

[
Λ〈〈(1 + 2iεα)(2a/`)−iεα〉〉Λ−1t∞

]
.

(6.9)

For our problem proposed in Figure 6.1(b), we first consider the case of θ = π/2 in which

the material coordinates (x0, y0) is coincident with the fixed spatial coordinates (x, y).

According to Equation (6.9), the energy release rate induced by a remote load t∞ can

be written as

G0(t
∞) =

πa

4

[
(t∞)T(Λ−1

0 )T〈〈(1 + 2iεα)(2a/`)−iεα〉〉ΛT
0

]
E0

[
Λ0〈〈(1 + 2iεα)(2a/`)−iεα〉〉Λ−1

0 t∞
]
.

(6.10)

where subscript ‘0’ stands for quantities referred to the material coordinates (x0, y0).

With the help of the relevant explicit expressions given by [55] for orthotropic bimateri-

als, the energy release rate (plane strain) of Equation (6.10) can be explicitly expressed

as

G0(t
∞) =

πa(1 + 4ε2)

4 cosh2 πε

[
D22(σ

∞
yy)

2 + D11(σ
∞
xy)

2
]
, (6.11)

with

ε =
1

2π
ln

1 + β

1− β
, β =

∣∣W21(D11D22)
−1/2

∣∣ , (6.12)

D11 =
1

Et

√
Et

El

(1− ν2
t )

1/2

{
El

G
+ 2

[√
(1− ν2

t )

(
El

Et

− ν2
l

)
− νl(1 + νt)

]}1/2

, (6.13)

D22 =
1

El

(
1− ν2

l

El

Et

)1/2
{

El

G
+ 2

[√
(1− ν2

t )

(
El

Et

− ν2
l

)
− νl(1 + νt)

]}1/2

, (6.14)
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6.1. Orientation-dependent adhesion of an anisotropic elastic material

W21 = −
√

1

EtEl

[√
(1− ν2

t )

(
1− ν2

l Et

El

)
− (1 + νt)νl

√
Et

El

]
, (6.15)

where we only consider the in-plane load, i.e. t∞ =
[
σ∞xy σ∞yy 0

]T
.

When θ 6= π/2, the material coordinates (x0, y0) do not coincide with the fixed

coordinate system (x, y) any more. The transformations of the Barnett-Lothe tensors

between these two coordinate systems are

S = ΩS0Ω
T, L = ΩL0Ω

T, (6.16)

where Ω is the transform matrix from (x0, y0) to (x, y) and

Ω =




sin θ cos θ 0

− cos θ sin θ 0

0 0 1


 (6.17)

Based on (6.16), one can get the transformations for other related matrices as

D = ΩD0Ω
T, W = ΩW0Ω

T, M∗ = ΩM∗
0Ω

T, E = ΩE0Ω
T, Λ = ΩΛ0, (6.18)

where the orthotropic condition of the transformation matrix, Ω−1 = ΩT, have been

used. Substituting the last relation of (6.18) into (6.1), we obtain the stress intensity

factor for θ 6= π/2 as

K =




KII

KI

KIII


 =

√
πaΩΛ0〈〈(1 + 2iεα)(2a/`)−iεα〉〉Λ−1

0 ΩTt∞. (6.19)

The corresponding energy release rate then is given by

G =
1

4
KTEK =

πa

4

[
(t̂T(Λ−1

0 )T〈〈(1 + 2iεα)(2a/`)−iεα〉〉ΛT
0

]
E0

[
Λ0〈〈(1 + 2iεα)(2a/`)−iεα〉〉Λ−1

0 t̂
]
.

(6.20)

where

t̂ = ΩTt∞ =




sin θ − cos θ 0

cos θ sin θ 0

0 0 1







σ∞xy

σ∞yy

0


 =




σ∞xy sin θ − σ∞yy cos θ

σ∞xy cos θ + σ∞yy sin θ

0


 . (6.21)
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Comparing (6.10) with (6.20) shows that the latter can be evaluated simply by replacing

t∞ with t̂ in the former. If only in-plane load is considered, after some straightforward

calculations we obtain

G =
πa(1 + 4ε2)

4 cosh2 πε

[
D22

(
σ∞xy cos θ + σ∞yy sin θ

)2
+ D11

(
σ∞xy sin θ − σ∞yy cos θ

)2
]
, (6.22)

with ε, D11, D22 are constants given by Equations (6.12-6.15). Although Equation (6.22)

is the energy release rate corresponding to the right crack tip, similar analysis leads to

an identical expression associated with the left crack tip.

For the uniaxial pulling stress σ∞ applied at an inclined angle φ, as shown in Fig-

ure 6.1(b), the components σ∞xy and σ∞yy can be expressed as

σ∞xy = σ∞ sin φ cos φ, σ∞yy = σ∞ sin φ sin φ. (6.23)

Substituting (6.23) into (6.22) and then applying the Griffith criterion for crack ini-

tiation G = Wad lead to the following prediction of adhesion strength in the presence of

the interfacial crack,

σ∞cr (θ, φ) =

√
Wad/πa

sin φ
√

C[D22 cos2(θ − φ) + D11 sin2(θ − φ)]
, (6.24)

where

C =
(1 + 4ε2)

4 cosh2 πε
. (6.25)

Given material constants and the anisotropy direction θ, Equation (6.24) indicates that

the adhesion strength varies as a function of the pulling angle φ. To calculate the critical

(maximum and minimum) values as well as the corresponding directions, we try to solve

equation ∂σ∞cr (θ, φ)/∂φ = 0 and obtain

1 + D22/D11

1−D22/D11

cos φ = cos(3φ− 2θ), D22/D11 =

√
Et(El − ν2

l Et)

E2
l (1− ν2

t )
. (6.26)

If the Young’s modulus in the longitudinal direction (e.g., along a fiber axis) is much

larger than that in the transverse direction (e.g. transverse to the fiber direction), i.e.

El/Et À 1, Equation (6.26) has two roots

φ1 = θ, φ2 = θ/2 + π/2, (6.27)
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6.1. Orientation-dependent adhesion of an anisotropic elastic material

corresponding to the directions of the maximum and minimum pull-off stress, respec-

tively. The adhesion releasability thus can be measured by the ratio of the maximum to

the minimum pull-off stresses:

(σ∞cr )max

(σ∞cr )min

=
(1 + cos θ)

2 sin θ

(
D11

D22

)1/2

=
(1 + cos θ)

2 sin θ

[
E2

l (1− ν2
t )

Et(El − ν2
l Et)

]1/4

. (6.28)

For small Poisson’s ratios, Equation (6.28) suggests that the releasability of adhesion

mainly depends on the stiffness ratio El/Et and the anisotropy direction θ. The stronger

the anisotropy, the higher the releasability of adhesion. Assuming νl = νt = 0.3, θ = 30◦

and El/Et = 104, Figure 6.2 plots the normalized pull-off stress as a function the pulling

angle φ. We can see that the elastic anisotropy causes about an order of magnitude

change in adhesion strength as the pulling angle varies. A switch between attachment

and detachment can thus be accomplished just by shifting the pulling angle between these

two directions. In contrast, the adhesion strength of an isotropic material with El = Et

and νl = νt is much less sensitive to the pulling direction. We conclude that strong

elastic anisotropy can result in an orientation-controlled switch between attachment and

detachment.
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Figure 6.2.: Variation of the normalized adhesion strength as a function of the pulling angle φ
for the anisotropic case (νt = νl = 0.3, θ = 30◦ and El/Et = 104) and the isotropic case.

One might note that Equation (6.24) implies an infinite adhesion strength in the limit

of φ = 0. This is caused by the assumed loading by a uniaxial tensile stress. Actually,
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the limit φ = 0 should be characterized as sliding under an applied shear stress. If,

instead of pulling, we apply a remote shear stress σ∞xy, the critical shear stress becomes

(σ∞xy)cr =

√
Wad/πa√

C(D22 cos2 θ + D11 sin2 θ)
, (6.29)

which can be reduced to

(σ∞xy)cr =
2
√

Wad/πa√
CD11

(6.30)

when D22 ¿ D11 and θ = 30◦, and to

(σ∞xy)cr =

√
Wad/πa√
CD11

(6.31)

when D22 = D11 for the isotropic case.

6.2. Orientation-dependent adhesion of an attachment

pad: numerical simulations
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Figure 6.3.: Releasable adhesion in an attachment pad. (a) Geometry of the attachment pad
used in FEM calculations. (b) Variation of the normalized pull-off force with the pulling angle.
P.B.C.: Periodic boundary condition.

To further verify the principle of orientation-controlled adhesion switch via strong elastic

anisotropy, we have also performed numerical simulations of the adhesion of a strongly

anisotropic attachment pad (mimicking the hairy structured tissue on gecko’s feet) via

Tahoe.

134
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The simulation system consists of a plane-strain anisotropic (transversely isotropic)

elastic pad adhering to a rigid substrate with a crack situated at the central region

of the contact interface (representing an adhesion flaw due to surface roughness), as

shown in Figure 6.3(a). A displacement-controlled load is applied on the upper surface.

At a given displacement, summation of all the nodal forces on the upper surface gives

the pulling force F with components Fx, Fy. The pulling angle is then calculated via

φ = tan−1(Fy/Fx). Periodic boundary conditions are applied on the left and right sides

of the simulation domain. For comparison, both isotropic case and anisotropic case are

considered. The material constants and potential parameters for each simulation case

are listed in Table 6.1 where we adopt the calculated parameters S3 and W ad
3 of the

triangular hair pattern (see Table 5.1) as the effective adhesion strength and work of

adhesion in simulating the detaching process of the pad.

Table 6.1.: Parameters used in FEM simulations.
Isotropic case E = 1.0 GPa, ν = 0.3
Anisotropic case Et = 0.1 MPa, El = 1.0 GPa, νt = νl = 0.3, G = 10 MPa, θ = 30◦

Parameters for Tvergaard-Hutchinson model:
Λ1 = 0.1, Λ2 = 0.9, σth = 5.44 MPa, δcn = δct = 1.687 µm.(Wad = 8.26 J/m2)

Figure 6.3(b) plots the normalized pull-off stress F f/σthA as a function of the pulling

angle φ. In the anisotropic case, saturation of adhesion strength is observed in the vicin-

ity of φ = θ = 30◦, corresponding to a plateau of the curve in the range of 20◦ < φ < 40◦.

If the pulling angle deviates from this range in either direction, the adhesion strength

decreases quickly to a lower plateau, illustrating the anisotropy-induced releasability

of adhesion. This two-plateau adhesion strength is ideal for rapid switch between at-

tachment and detachment during animal movement. The ratio between the maximum

and minimum strengths reaches four for the given geometry, giving rise to significant

releasability. In contrast, for the isotropic cases, no variation in pull-off force is observed

as the pulling angle varies. Therefore, we conclude that strong elastic anisotropy leads

to releasable adhesion via an orientation-controlled switch between strong and weak

adhesion.

In this chapter, we have studied the mechanics principle of releasable adhesion. It has

been shown that strong elastic anisotropy allows the adhesion strength to vary strongly

with the direction of pulling. This orientation-dependent pull-off force enables robust

attachment in the stiff direction of the material to be released by pulling in the soft

direction. This strategy, conveniently summarized as “stiff-adhere, soft-release” prin-

ciple, can be interpreted in a simple way as follows. When pulled in the stiff direction,
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less elastic energy can be stored in the material (much like a stiff spring can store less

energy compared to a soft spring), leading to lower energy release rate to drive random

crack-like flaws induced by surface roughness. On the other hand, much more elastic

energy can be stored in the material when pulled in the soft direction, especially when

the material is strongly anisotropic, leading to much higher energy release rate to drive

the roughness induced crack-like flaws.
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We have systematically investigated the mechanical principles of robust and releasable

adhesion within the framework of continuum mechanics. The studies include

• shape effect on adhesion,

• flaw tolerant (robust) adhesion and

• releasable adhesion.

Although the work is motivated by the biological attachment systems, the results we

obtained can be interpreted extensively as the general principles governing the adhesion.

In this chapter, the important results obtained in this thesis will be summarized.

Then, we will discuss the potential application of our results in the fabrication of the

synthetic adhesion devices. Finally, the whole thesis will be concluded with an outlook

to the future work.

7.1. Summary and discussion

It is the superior adhesion capability of biological attachment systems that motivates

the studies reported in this thesis. Our objective is to elucidate the mechanics principles

accounting for the robust and releasable adhesion of these natural attachment systems.

When two solid surfaces are brought into adhesive contact, a critical force, normally

termed pull-off force, is required to pull them apart. Since the pull-off force is affected

by the size of the contact area, adhesion strength is defined more often by the pull-off

force per unit contact area. This definition allows us to compare the adhesion strength

between two joints even thought their contact areas are different. On the other hand,

the traction between two surfaces is limited by the theoretical strength σth. Given two

solids, is it possible to achieve the theoretical adhesion via structural optimization? To

answer this question, we first investigated the effect of size and shape on the adhesion

strength for a single contact asperity. It has been found that the optimal adhesion
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with theoretical adhesion strength can be realized either by size reduction or by shape

optimization. The smaller the size, the less important the shape [34]. At larger contact

sizes, optimal adhesion could still be achieved if the shape can be manufactured to a

sufficiently high precision. Under this circumstance, however, the optimal adhesion is

not robust because a small variation in the contact shape could leads to large decrease

in the adhesion strength. The robust design of optimal adhesion can be obtained at

nanoscale, in which case the contact shape is not a dominant issue any more. This

finding provides a plausible explanation to the convergent evolution of hairy attachment

systems in biology.

However, optimizing adhesion at the level of single asperities or fibrils does not au-

tomatically address the problem of robust adhesion on rough surfaces at macroscopic

scales. To solve this problem, we have studied the adhesion strength between rough sur-

faces. Instead of directly modeling adhesive contact on random or fractal rough surfaces

as in the pervious works, we have adopted a different modeling approach by considering

an interfacial crack as a representative contact flaw. In comparison with previous con-

tact models on rough surfaces, the crack model is more tractable in mathematics and

allows us to deal with adhesive contact associated with hierarchy, elasticity grading and

anisotropy that are crucially important for biological systems. We have hypothesized

that robust adhesion on random rough surfaces is equivalent to flaw tolerant adhesion

in which the growth of a representative interfacial crack is suppressed for any crack size.

By using the concept of flaw tolerant adhesion, we have shown that graded elasticity and

hierarchical energy dissipation are two important strategies to make the system insensi-

tive to crack-like contact flaws. But these two strategies have distinct theoretical bases.

The strategy of graded elasticity works because it ensures that the average property

of material around a crack is rigid enough to suppress crack growth while the surface

remains sufficiently compliant to achieve good contact with a rough surface. The strat-

egy of hierarchical energy dissipation operates because it makes the work of adhesion

scale up with the flaw size. In principle, these two strategies are equivalently effective in

promoting the flaw tolerance. However, for adhesion due to van der Waals interaction

as in the biological attachment systems, the graded elasticity strategy by itself seems

less practical because flaw tolerance needs such a steep gradient in elasticity that can

not be realized in reality easily. In practice, therefore, flaw tolerance can be achieved by

a combination of graded elasticity and hierarchical energy dissipation.

In addition to the robustness, adhesion releasability is also important for animals.

How to release an attachment designed for robust adhesion becomes the topic that we
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are most concerned about. Instead of modeling the microscopic structure of a specific

adhesion device as in some of previous studies, in this thesis we focus our attention

on the general mechanical principle of releasable adhesion. Motivated by the common

feature observed in the various biological attachment systems, we proposed that strong

elastic anisotropy may allow the adhesion strength to vary with the direction of pulling

force, achieving an orientation-controlled switch between attachment and detachment.

This proposition has been demonstrated by theoretical modeling and numerical simula-

tion within the framework of continuum fracture mechanics. The orientation-dependent

pull-off stress induced by the elastic anisotropy allows robust attachment in the stiff

direction of the material to be released by pulling in the soft direction. In this regard,

it can be summarized as “stiff-adhere, soft-release”. This finding provides a plausible

explanation for the adhesion releasability and agrees well with the common anisotropy

feature observed in the biological attachment systems with different microscopic struc-

tures.

Table 7.1.: Parameters used in FEM simulations.
Homogeneous Graded

Isotropic E = 1.0 GPa, ν = 0.3 E(y) = E0(1 + y/c0)2,
E0 = 1.0 GPa, c0 = 1 µm, ν = 0.3

Anisotropic Et = 0.1 MPa, El = 1.0 GPa,
νt = νl = 0.3, G = 10 MPa, θ = 30◦

El(y) = El0(1 + y/c0)2,
El0 = 1.0 GPa, c0 = 1 µm,
Et = 0.1 MPa, G = 10 MPa,
νt = νl = 0.3, θ = 30◦

Parameters for the Tvergaard-Hutchinson model:
σth = 10 MPa, Λ1 = 0.1, Λ2 = 0.9, δcn = δct = 5 nm, (Wad = 0.045 J/m2)

For conceptual clarity, our discussions for the adhesion robustness and releasability

have been carried out separately. This does not mean these two aspects are completely

independent. On the contrary, they affect each other. To illustrate this point, we

calculate the adhesion strength for an anisotropic graded material by using the same

simulation system illustrated in Figure 6.3(a). For comparison, we consider three control

cases in addition to the anisotropic homogeneous case: isotropic homogeneous case,

isotropic graded case and anisotropic graded case. The material constants and potential

parameters for each simulated case are listed in Table 7.1 in terms of a combination

of two classes of properties “isotropic/anisotropic” and “homogeneous/graded”. Here

we ignore the effect of energy dissipation for the moment by taking a typical value of

surface energy (0.045 J/m2) as the work of adhesion. The effects of graded elasticity

and anisotropy on the pull-off stress as a function of the pulling angle are shown in

Figure 7.1. For the isotropic homogeneous case, it can be seen that introduction of
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graded elasticity enhances the adhesion strength toward the theoretical strength for all

directions of pulling. In particular, adhesion stress saturates at the theoretical value in

the vertical direction φ = 90◦. The unsaturation of adhesion stress in the other directions

might be attributed to the relatively smaller elasticity gradient in these directions. On

the other hand, introduction of anisotropy increases the adhesion releasability but it

simultaneously reduces the adhesion strength in all directions. The joint anisotropic

graded material combines these two effects together and results in a “robust” and

releasable adhesion, although the associated maximum adhesion strength can not reach

the theoretical value. We can make it up by increasing the elasticity grading or by

adopting energy dissipation strategy.
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Figure 7.1.: Variation of the normalized pull-off force as a function of the pulling an-
gle; iso+homo: isotropic homogeneous case; iso+grad: isotropic graded case; aniso+homo:
anisotropic homogeneous case; aniso+grad: anisotropic graded case.

In addition, work of adhesion Wad also has an effect on the adhesion releasability. For

the anisotropic case defined in Table 6.1, if we replace the work of adhesion with a lower

value Wad = 7.83 J/m2 or a higher value Wad = 48.96 J/m2 while keep all the other

parameters unchanged, the variations of the pull-off force are plotted in Figure 7.2 as a

function of the pulling angle. One can see that while a higher work of adhesion decreases

the releasability, a lower work of adhesion will make the pull-off stress around the robust

direction too sensitive to the pulling angle even though optimal adhesion is achieved

there. An effective attachment system therefore needs a proper work of adhesion which
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Figure 7.2.: Variation of the normalized pull-off force with the pulling angle for different work
of adhesion.

not only can ensure optimal adhesion in a certain range of pulling angle but also can

maintain sufficient releasability.

Figure 7.3.: Synthetic attachment systems. (a) Array of submicron pillars (adapted from [35])
(b) Multi-scaled conformal system (adapted from [73].

Biological adhesion devices are complex systems which provide a rich source of inspi-

rations for industrial applications. Some novel synthetic attachment systems have been

produced in laboratory by mimicking the fibrillar structure of gecko. For instance, Geim

et al. [35] fabricated arrays of polymeric nanopillars on solid substrate (Figure 7.3a).

A considerable adhesion force was obtained via such man-made hairy structures. More
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recently, Northen and Turner [73] made use of massively parallel MEMS processing tech-

nology to produce hierarchical hairy adhesive materials containing single slender pillars

coated with polymer nanorods (Figure 7.3b), and reported significantly improved adhe-

sion in this multi-scale system. All these synthetic adhesion materials or structures have

been designed to achieve strong adhesion. With the guidance of the results reported in

this thesis, maybe we can develop a flaw-tolerant and releasable attachment device in the

near future. While we usually do not expect to capture all the bio-complexities in simple

models, the essence of bio-inspired mechanics is to break a complex problem into many

comprehensible sub-problems that can be understood using mechanics principles. In this

thesis, we have considered the effects of graded elasticity, hierarchical dissipation energy,

scale-dependent adhesion strength and elastic anisotropy on robust and releasable ad-

hesion. Many other important aspects of the problem, such as viscoelasticity and large

nonlinear deformation have not been taken into account. Much further work will be

needed to advance our current understanding of bio-adhesion mechanisms. The studies

on such problems should be of interest not only to the mechanics community but also

to a variety of other disciplines including materials science, biology and nanotechnology.

7.2. Outlook to the future research

On the basis of the work reported in the thesis, two prospective projects are proposed.

Project 1 Investigates the condition for robust (flaw tolerant) adhesion between fractal

rough surfaces. Project 2 models the twist-induced releasable adhesion.

Project 1. Robust adhesion between fractal rough surfaces

In our previous modeling, we have reduced the contact problems to the crack problems

by neglecting the profile of the roughness asperities. This approximation is appropriate

when the roughness wave amplitude is quite small in comparison with the wave length.

If it is not the case, the non-planar profile of the roughness asperities will become the

essential feature which distinguishes a contact problem from a fracture problem. For

example, in the crack problem, the area of the contact (bonded) region is invariant

before fracture, while in a typical contact problem the contact area is shrunk as the

external pulling load increases until detachment occurs. In essence, this dissimilarity

can be attributed to the non-planar roughness profile.

In the future research, we plan to take the roughness protrusion into account so as to

investigate the condition for robust (flaw tolerant) adhesion between real rough surfaces.
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Figure 7.4.: (a) Schematic of a rigid solid with sinusoidal roughness in contact with an elastic
flat substrate. (b) Variation of the adhesion force with the contact area for Σ = 1.0 and
different Θ .

We will begin with a simple model in which a rigid solid with sinusoidal roughness is in

contact with a flat substrate (Figure 7.4a). Actually, this problem has been solved by

Hui et al. [54]. We will apply the relative results into our discussion on the flaw tolerant

adhesion between solids with periodic roughness. Given materials, the roughness height

h and periodicity L are two important factors that dominate the behavior of adhesion.

Denoting

Σ =
2σthL

πE∗h
, Θ =

(
8L∆γ

h2π2E∗

)1/2

with σth being the theoretical adhesion strength, ∆γ the adhesion energy and E∗ =

E/(1 − ν2) with E, ν being the Young’s modulus and Poisson’s ratio of the substrate,

the variation of the adhesion force with the contact area is fully determined by these

two dimensionless parameters. Taking Σ = 1.0, Figure 7.4(b) shows the variation of

the adhesion force with the contact area for different Θ . The dash line stands for the

flaw tolerant state in which the adhesive force equals 2bσth. One can see that for a

given Σ , large Θ , corresponding to large aspect ratio L/h, small roughness height h or

small modulus E∗, facilitates flaw tolerant adhesion. Based on these preliminary results,

in this project we plan to extend the discussion further to the three-dimensional case.

First, we can assume that roughness asperities are uniform and distributed periodically.

Then, we will consider a more sophisticated but realistic case in which the roughness is

not simply periodic but obeys a certain statistic distribution. After that, the discussion
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can be advanced to the contact between two surfaces with fractal roughness [15]. Besides

robust adhesion, other interesting concepts like spontaneous adhesion [34] are also worth

studying within the framework proposed above.

Project 2. Twist-induced releasable adhesion

It has been pointed out that materials with strong anisotropy can produce orientation-

dependent adhesion strength. Switch between attachment and detachment thus can

be accomplished by changing the pulling angles (e.g., by exerting different muscles)

(Figure 7.5a). Under this circumstance, the releasability of adhesion can be measured

by ratio of the maximum pull-off force to the minimum F f
max/F

f
min. The higher the ratio,

the more efficient the releasable adhesion.

Figure 7.5.: Two possible strategies for achieving releasable adhesion: (a) via strong anisotropy
and (b) via twisting.

Motivated by the movement feature of gecko’s feet at the detachment moment here

we propose another possible mechanism for releasable adhesion. We hypothesize that

robust adhesion may be easily released by applying a torque, as shown in Figure 7.5(b).

The problem of designing releasable adhesion thus can be stated as to find such an

attachment system that can withstand strong tensile force but small torque. So that

strong adhesion can be easily detached via twisting.

The work of this project will begin by studying the adhesive contact between single

asperities like a sphere or a fiber. Different from our previous studies, now we will focus

our attentions on the failure of adhesion under torque loading. The magnitude of the

critical torque Mc, i.e. the moment required to twist two surfaces apart, reflects the

ability of the attachment to withstand torsion loading. How does the magnitude of Mc

rely on the factors such as contact size, shape and material properties (e.g. Young’s

modulus)? How to optimize Mc by controlling these factors? All these questions will
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be discussed systematically in the present project. For the twist-induced releasable

adhesion, the releasability can be measured by ratio of F f`/Mc, where F f is the pull-off

force and ` is the characteristic length scale of the contact area. Our objective is to

find such a design that has a small Mc and a large pull-off force F f , resulting in a large

releasability F f`/Mc. In addition, we can extend our investigation from single asperities

to rough surfaces. For simplicity, we can begin by modeling the adhesion defects due

to roughness as the interfacial cracks. Then, other complex factors like the protrusion

of the roughness, the statistic distribution of the roughness can be incorporated into

our model gradually. Moreover, it will be an interesting research topic to combine the

twist-induced releasable adhesion with concepts of elasticity grading or hierarchy [104].

Our discussions so far have been limited within the linear elastic materials. A point

of particular interest is to extend the studies to the nonlinear and time-dependent elas-

ticity. This viscoelasticity, as it is called, is actually most common to the biological

materials. Such extension could shed much light on the problem of biological attach-

ment. Meanwhile, our previous studies mainly focus on the dry adhesion. It should be

quite interesting as well to extend the existing discussions to the regime of wet adhesion

in which a certain amount of liquid is existent between two contact surfaces. Under this

circumstance, the effect of liquid surface tension should be taken into account.

Understanding the engineering principles of biological systems can play an important

role in helping address some of the major challenges in materials science and engineering

in the 21st century. We believe that the development of nanotechnology will eventually

open up enormous possibilities in developing multi-functional and hierarchical material

systems. What we have reported in this thesis regarding the adhesion in biological

attachment systems is just a tentative step of this grand endeavor. In some cases,

such as the biological attachment systems discussed in this thesis, convergent evolutions

occur when genetically unrelated biological systems have adopted the same strategies to

achieve the same goal or properties or functions. In other cases, genes associated with

a given set of properties or functions of the same biological system may be found to be

strongly conserved over the history of evolution. Whenever convergent evolutions occur,

we may look for hints on property optimization. We have discussed in this thesis adhesion

strength in connection with the principle of flaw tolerance. Similar investigations may

be conducted with respect to other properties including friction, fatigue, corrosion and

hydrophobicity. There is still a long way to go before the complexities of hierarchical

structures of biological systems and their associated functions are fully understood.
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Appendix

A. Useful Integrals and Relations

∫ ∞

0

cos(ξt)J0(ξρ)dξ =

{
0, (0 < ρ < t)

1
(ρ2−t2)1/2 , (ρ > t)

(A.1)

∫ ∞

0

sin(ξt)J0(ξρ)dξ =

{
1

(t2−ρ2)1/2 , (0 < ρ < t)

0, (ρ > t)
(A.2)

∫ ∞

0

cos(ξt)J1(ξρ)dξ =

{
1
ρ

[
1− t

(t2−ρ2)1/2

]
, (0 < ρ < t)

1/ρ, (ρ > t)
(A.3)

∫ ∞

0

sin(ξt)J1(ξρ)dξ =

{
0, (0 < ρ < t)

t
ρ(ρ2−t2)1/2 , (ρ > t)

(A.4)

∫ ∞

0

ξ−1 sin(ξt)J0(ξρ)dξ =

{
π/2, (0 < ρ < t)

sin−1(t/ρ), (ρ > t)
(A.5)

∫ ∞

0

ξ−1 sin(ξt)J1(ξρ)dξ =

{
1−
√

1−ρ2/t2

ρ
, (0 < ρ < t)

t/ρ, (ρ > t)
(A.6)

∫ ∞

0

ξ sin(ξt)J0(ξρ)dξ =

{
0, (0 < ρ < t)

− t
(ρ2−t2)3/2 , (ρ > t)

(A.7)

∫ ∞

0

ξ sin(ξt)J1(ξρ)dξ =

{
− ρ

(t2−ρ2)3/2 , (0 < ρ < t)

0, (ρ > t)
(A.8)
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∫
dt

(t− ρ)
√

t2 − 1
=

1√
1− ρ2

sin−1

(
ρt− 1

t− ρ

)
(ρ ≤ 1 ≤ t) (A.9)

∫
dt

(t + ρ)
√

t2 − 1
= − 1√

1− ρ2
sin−1

(
ρt + 1

t + ρ

)
(ρ ≤ 1 ≤ t) (A.10)

∫
dt

(ρ− t)
√

1− t2
=

1√
ρ2 − 1

sin−1

(
ρt− 1

ρ− t

)
(t ≤ 1 ≤ ρ) (A.11)

∫
dt

(ρ + t)
√

1− t2
=

1√
ρ2 − 1

sin−1

(
ρt + 1

ρ + t

)
(t ≤ 1 ≤ ρ) (A.12)

d

dz
[zνJν(z)] = zνJν−1(z) (A.13)

d

dz
[z−νJν(z)] = −z−νJν+1(z) (A.14)

ln

[
c

t
+

√
c2

t2
− 1

]
=

∫ c

t

dτ√
τ 2 − t2

(A.15)

∫ 1

−1

∫ 1

−1

[√
1− x2

√
1− y2

+

√
1− y2

√
1− x2

]
1

x− y
ln

(
1 + x

1− x

)
dxdy = 2π2 (A.16)

ln
1 + x

1− x
= 2 tanh−1(x) (A.17)
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B. Proof of relationships lim
a→∞

δf
tip(a) = 1/2 lim

a→∞
δf
center(a)

Consider the problem shown in Figure 5.15(d) where an elastic half-space with graded

Young’s modulus E(z) is subjected to a uniform pressure σth over a circular surface

region r ≤ a. The surface depressions at the center r = 0 and the edge r = a of the

loaded region are denoted by δf
center(a) and δf

tip(a) respectively.

Theorem:

If lim
a→∞

δf
center(a) < +∞, then lim

a→∞
δf
tip(a) = 1/2 lim

a→∞
δf
center(a)

Proof:

The surface depression at the edge r = a can be calculated by integrating the over

the loaded region,

δf
tip = 2

∫ π/2

0

dθ

∫ 2a cos θ

0

σthG(r)rdr, (B.1)

where G(r) is the Green’s function. Interchanging the order of integration yields

δf
tip(a) = 2

∫ 2a

0

G(r)rdr

∫ cos−1(r/2a)

0

σthdθ = 2σth

∫ 2a

0

cos−1
( r

2a

)
G(r)dr. (B.2)

Similarly, the surface depression at the center r = 0 can be expressed as

δf
center(a) = 2πσth

∫ a

0

G(r)rdr. (B.3)

If δf
center converges to a finite value as a →∞, i.e.

lim
a→∞

δf
center(a) = 2πσth lim

a→∞

∫ a

0

G(r)rdr < +∞, (B.4)

the following relation should exist

lim
a→∞

δf
center(a) = 2πσth lim

a→∞

∫ a

0

G(r)rdr = 2πσth lim
a→∞

∫ 2a

0

G(r)rdr < +∞. (B.5)

Therefore, according to Equations (B.2) and (B.5),

lim
a→∞

[
δf
tip −

1

2
δf
center

]
= 2σth lim

a→∞

∫ 2a

0

[
cos−1

( r

2a

)
− π

2

]
G(r)rdr. (B.6)
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Introducing dimensionless parameter â = 2a/`, Equation (B.6) can be rewritten as

lim
a→∞

[
δf
tip −

1

2
δf
center

]
=2σth lim

â→∞

{∫ `
√

â

0

[
cos−1

( r

`â

)
− π

2

]
G(r)rdr

+

∫ `â

`
√

â

[
cos−1

( r

`â

)
− π

2

]
G(r)rdr

}
, (B.7)

where ` is an arbitrary length scale. Letting r/` = ξ
√

â , the first term of the right-hand

of Equation (B.7) is recast as

2σth`
2 lim

â→∞

∫ 1

0

[
cos−1

(
ξ/
√

â
)
− π

2

]
âG(ξ`

√
â)ξdξ. (B.8)

As Equation (B.4) implies that

lim
â→∞

∫ `
√

â

0

G(r)rdr = `2 lim
â→∞

â

∫ 1

0

G(ξ`
√

â)ξdξ < +∞, (B.9)

G(ξ`
√

â) must have the same order as 1/â when â →∞, namely

G(ξ
√

â) ∼ O(1/â). (â →∞) (B.10)

Substituting Equation (B.10) into Equation ( B.8), we have

2σth lim
â→∞

∫ `
√

â

0

[
cos−1

( r

`â

)
− π

2

]
G(r)rdr = 0. (B.11)

For the second term on the right-hand side of Equation (B.7),

∣∣∣∣ lim
â→∞

∫ `â

`
√

â

[
cos−1

( r

`â

)
− π

2

]
G(r)rdr

∣∣∣∣ ≤
π

2
lim
â→∞

∫ `â

`
√

â

|G(r)|rdr = 0, (B.12)

where the following additional assumption has been employed

lim
â→∞

∫ `â

0

|G(r)|rdr < +∞. (B.13)

Substitution of Equations (B.11) and (B.12) into Equation (B.7) yields

lim
a→∞

δf
tip = 1/2 lim

a→∞
δf
center. (B.14)
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C. Zusammenfassung (in German)

Über Milliarden von Jahren hat die Natur viele erfinderische Wege gefunden, Mate-

rialien mit hochwertigen mechanischen Eigenschaften herzustellen. In dieser Disserta-

tion richten wir die Aufmerksamkeit auf die trockene Haftung, die als ein spezifisches

Phänomen häufig in vielen Tierarten in der Natur zu finden ist, wie Gecko, Fliegen

und Insekten. Unser Ziel ist, die Haftungsmechanismen aufzuklären, die in diesen pro-

fessionellen Kletterern verborgen sind. Diese Untersuchung könnte Richtlinie für die

Entwicklung neuartiger Materialen oder Vorrichtungen für industrielle Anwendungen

sein.

Die Dissertation ist in drei Teilen organisiert. Im ersten Teil bestehend aus den

Kapiteln 1-3 stellen wir zunächst in Kapitel 1 die Motivation der Forschung und die

Organisation der Dissertation vor. Der theoretische Hintergrund der Kontaktmechanik

wird in Kapitel 2 wiederholt. Danach beschreiben wir in Kapitel 3 die Methoden, die

in dieser Dissertation verwendet werden. Der Schwerpunkt richtet sich dabei auf die

mathematischen Grundlagen und die verwendeten numerischen Verfahren.

Robustheit und Freilassung sind zwei wesentliche Eigenschaften der biologischen Haf-

tung. Der zweite Teil dieser Dissertation (Kapitel 4-6) ist auf das Ergründen der mecha-

nischen Prinzipien dieser zwei Eigenschaften gerichtet. Bei gegebener Kontaktfläche wird

die Haftkraft durch die Größe der Abreißkraft gezeichnet, d.h. die Kraft, die notwendig

ist, um zwei abgebundene Körper auseinander zuziehen. Je größer diese Abreißkraft,

desto stärker ist die haftende Verbindung. Im Rahmen dieser Dissertation beschäftigen

wir uns mit der Frage, wie diese Haftkraft maximiert werden kann.

In Kapitel 4 diskutieren wir die Haftung zwischen zwei einzelnen Kontaktuneben-

heiten. Es zeigt sich, daß die Haftkraft von der geometrischen Form und der Größe der

Kontaktflächen abhängt und durch die theoretischen Festigkeit begrenzt ist. Es ergibt

sich eine spezifische Form, die optimale Form, durch die die theoretische Festigkeit erzielt

werden kann. Eine allgemeine Methode für die Bestimmung der optimalen Form wird

entwickelt, mit der analytische Ausdrücke für einige Beispielfälle entwickelt werden. Je-

doch zeigt die Formoptimierung hinsichtlich optimaler Haftung, daß das Design für die

optimale Haftung besonders auf der Makroskala unzuverlässig ist, da dort die Haftskraft

sehr empfindlich gegenüber kleinen Unregelmäßigkeiten in der Geometrie der Haftkon-

takte verhält. Ein robustes Design für formunempfindliche, optimale Haftung ist nur

möglich, wenn die charakteristische Größe der Kontaktfläche auf einen Bereich von 100

nm verringert wird. Allgemein kann die optimale Haftung durch eine Kombination von
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Miniaturisierung und Formoptimierung erzielt werden. Je kleiner der Haftkontakt, desto

unwesentlicher wird seine Form. Aus diesem Grund besitzen biologische, feinfaserige

Nanostrukturen eine hohe Haftkraft.

Die in Kapitel 4 erzielten Ergebnisse lassen den Schluss zu, daß Materialien die intrin-

sische Fähigkeit besitzen, ziemlich kleine Kontaktfehler tolerieren. In der Wirklichkeit

neigen Kontaktflächen jedoch dazu, auf verschiedenen Längenskalen rauh zu sein, was

zu multiskaligen Kontaktfehlern führt. Auf der Makroskala wird robuste Haftung auf

rauhen Oberflächen nicht automatisch durch die optimale Haftung der einzelnen Kon-

takte oder der Feinfaser erzielt. Um dieses Problem zu lösen, untersuchen wir in Kapitel

5 die Haftkraft zwischen rauhen Oberflächen. Anstatt einen haftenden Kontakt auf

willkürlichen oder fraktalen rauhen Oberflächen direkt zu modellieren, betrachten wir

das Verhaltens eines Grenzflächenrisses, der die gelegentlichen Kontaktfehler aufgrund

von Oberflächenrauheit oder Verunreinigungen repräsentiert. Indem wir die Bedingun-

gen untersuchen, unter denen dieser repräsentative Riss nicht wächst, behandeln wir

im Sinne einer statistischen Mittelung das Problem des Riss initiierten Haftversagens

aufgrund eines zufällig auftretenden, schwachen Kontaktbereiches. So wird ein Zustand

der Fehlertoleranz erzielt, in dem bereits existierende Risse nicht mehr wachsen, selbst

wenn das Material bis zum Versagen nahe der theoretischen Festigkeit belastet wird. In

diesem Kapitel werden Strategien für das Erzielen fehlertoleranter Haftung systematisch

diskutiert. Die Untersuchungen zeigen, daß die Fehlertoleranz in klassischen, homoge-

nen Materialien nur erhalten werden kann, wenn die Strukturgröße unter eine kritis-

chen Längenskala verringert wird. Um die allgemeine Fehlertoleranz zu erzielen, in der

rissähnlicher Fehler aller Größen zugelassen werden können, müssen wir uns den Gradi-

entenwerkstoffen oder einem hierarchischen Design zuwenden. Theoretische Modelle und

numerische Simulationen zeigen, daß Gradientenwerkstoffe in Verbindung mit hierarchis-

chen, Energie aufnehmenden Mechanismen entworfen werden können, um das Wachstum

von Grenzenflächenrisse jeglicher Größe zu unterdrücken. So kann eine Fehlertoleranz

von der kleinsten Längenskala bis zur makroscopischen Ebene erzielt werden. Solche

Konstruktionsprinzipien stimmen auch gut mit den allgemeinen, strukturellen Eigen-

schaften überein, die bei einer Vielzahl der biologischen Haftsysteme beobachtet werden.

Für die meisten Tiere ist jedoch die robuste Haftfähigkeit nicht allein für ihre Mobilität

auf vertikalen Flächen und auf den Unterseiten von Flächen ausreichend. Für diese

Situationen ist die Freilassung(die Lösbarkeit) der haftenden Vorrichtungen genauso

wichtig wie ihre Robustheit. Unsere Diskussion in Kapitel 6 richtet sich auf das Prob-

lem des leichten Freigebens (der Lösbarkeit) einer robusten Haftung. Inspiriert durch
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die allgemeinen strukturellen Eigenschaften biologischer Haftsysteme untersuchen wir

die Effekte der Materialanisotropie auf die Abhängigkeit der Haftkraft von der Ori-

entierung des Kontaktes. Die Untersuchungen zeigen, daß bei Materialien mit starker

Anisotropie die Haftkraft mit Änderung der Zugrichtung stark variiert. Die resultierende

orientierungsabhängige Zugkraft ermöglicht das Lösen robuster Haftung in der steifen

Richtung des Materials durch das Ziehen in die weiche Richtung und ermöglicht einen

orientierungskontrollierten Schalter zwischen Haftung und Trennung.

Biologische Haftvorrichtungen sind sehr komplizierte Systeme und liefern einen ganzen

Zoo von Ideen für die Entwicklung industrieller Anwendungen. Das in dieser Disserta-

tion entwickelte Konzept sollte vom allgemeinen Wert für das Verständnis biologischer

Haftvorrichtungen und das Design künstlicher Haftsysteme für die Technik sein. Im let-

zten Teil dieser Dissertation (Kapitel 7) werden die wichtigsten Ergebnisse kurz zusam-

mengefasst. Den Schluss bildet ein Ausblick auf zukünftige Arbeiten.
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