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Meinen braven Eltern



Die Zeit ist ein Flugzeug, es fliegt durch den Raum
Wir sitzen im Cockpit, es ist wie im Traum
Wir sitzen ganz vorn, das ist eigentlich verboten
Doch wir sind die Kinder vom Autopiloten

(Funny van Dannen)
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Abbreviations

AF AntiFerromagnet(ic), often also the combined spin/charge density wave

BZ Brillouin-Zone

δvH = µ− 4t′, shifted chemical potential; distance to the van Hove points

EV EigenValues; often a synonym for the mean-field dispersions

HM two-dimensional Hubbard Model

HS Hubbard-Stratonovich (transformation)

MF Mean-Field

µvH = 4t′, chemical potential for which the bare Fermi surface includes the van
Hove points (0,±π),(±π, 0)

µ1/2 = 2t′, chemical potential for which a system with a finite self-consistent
AF-gap is half-filled, see figure (4.6) and section (4.2)

pp particle-particle

ph particle-hole

RG Renormalisation Group

RHS Right-Hand Side of the gap equations or sometimes of the flow equations

RPA Random Phase Approximation

SC SuperConductor/SuperConducting

t Nearest neighbour hopping, used also as energy scale for all energies

t′ Next nearest neighbour hopping, t′ ≤ 0 in this work

The prime (
∑

k
′) marks summation over the magnetic BZ.
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Chapter 1

Introduction

Systems with strong correlations and competing instabilities have attracted
much attention over the last years. Strong stimulation to this field came by the
ground-breaking finding of Bednorz and Müller [Bednorz and Müller 1986], who
in 1986 discovered an unexpected high superconducting transition temperature
of 30K in Ba-La-Cu-O. Not only was its transition temperature higher than that
of any other known superconductor, but the probe also belonged to a material
class where superconductivity was believed to be a rare feature. Especially
the proximity to magnetism and the poor conductivity in the normal state,
obtained by doping the antiferromagnetic parent-compound, was untypical for
superconductors. Further investigation revealed other strange, and largely still
not understood features, such as the deviation from Fermi liquid behaviour in
the normal state, seen for example in the linear (instead of quadratic) tem-
perature dependence of the resistivity and the onset of a pseudo-gap, i.e., a
suppression of the density of states near the Fermi surface. The nature of the
ground state for certain doping regions is still under debate.

Other features are widely, but not generally, agreed on. The superconduc-
tivity is due to pairing of two electrons, like in (classical) BCS superconductors
[Bardeen et al. 1957], as is seen from analysing the a.c. Josephson effect [Esteve
et al. 1987] and from flux quantisation [Gammel et al. 1987]. These electrons
pair with antiparallel spin, forming a singlet, which is concluded from Knight-
shift measurements of the spin susceptibility [Barrett et al. 1990], [Takigawa
et al. 1989]. The symmetry of the pair-function, which first was controversial,
is d-wave in contrast to the conventional s-wave symmetry, as seen in ARPES
data [Shen et al. 1993] and in the famous tri-crystal experiments [Tsuei et al.
1994].

The electron motion seems to be mainly restricted to the Cu-O planes,
leading to a strong anisotropy of the conductivity within and perpendicular to
these planes. The coupling to the third dimension might therefore be of less
importance.

Since the first works this new, unconventional superconductivity has been
observed in lots of similar materials. The unusual electronic properties, the
closeness to antiferromagnet ordering and the layered structure of the lattice
are common to most of these materials.

1



2 CHAPTER 1. INTRODUCTION

These new, spectacular experimental discoveries unleashed a tremendous
amount of theoretical work trying to explain the different features, but until
today the key issue, the pairing mechanism, is strongly controversial. Among
others phonon mechanisms resonating valence bond (RVB) theories [Anderson
et al. 1987; Anderson 1987], high symmetries like SO(5) [Zhang 1997], Schrief-
fer’s spin bag [Schrieffer et al. 1988] and spin-fluctuation mechanisms [Scalapino
1995] have been suggested.

The d-wave symmetry seems to favour an electronic mechanism over a
phonon mechanism, which usually yields s-wave superconductivity [Scalapino
1995]. Also the lack of an isotope effect at optimal doping1 is interpreted as
evidence against a phonon mechanism. An electronic mechanism for super-
conductivity has already been suggested in the famous paper of [Kohn and
Luttinger 1965]. Although the transition temperatures estimated there are ex-
tremely low, they already suggest that a suitable dispersions might increase this
transition temperature considerably.

Numerical and analytical calculations for the Hubbard model, one model
suggested as a model for cuprates, yielded evidence for d-wave pairing on the
basis of an electronic mechanism ([Scalapino 1995], and references therein).

The two dimensional (2D) Hubbard model is given by

H = −
∑

i,j

tija
†
iσajσ + U

∑

i

ni↑ni↓. (1.1)

Even though it was originally proposed as a model describing ferromagnetism
of narrow-band electrons it was found to exhibit also antiferromagnetism and
superconductivity close to half filling. The model contains only electronic de-
grees of freedom and does not include effects due to lattice distortion, i.e., it
neglects phonons.

The two dimensional structure is identified with the two dimensional Cu-O
planes, widely believed to be the crucial part of the high-Tc materials, respon-
sible for the superconducting features. Although a three-band model seems
appropriate on first sight [Hybertsen et al. 1992], it was found that this can be
mapped on an effective one-band model [Zhang and Rice 1988]. The coupling
to the third dimension is assumed to be much smaller than the coupling within
the planes. It might however be import to stabilise certain order parameters
which are known to be suppressed by thermal fluctuations in two dimensions2

[Mermin and Wagner 1966].
This seemingly simple model has proven a tremendous task in two dimen-

sions. It is agreed on that the ground state for half-filled systems with large
interactions is antiferromagnetically (AF) ordered. For special choices of the
hopping amplitudes it may favour ferromagnetism [Honerkamp and Salmhofer
2001; Katanin and Kampf 2005]. Superconductivity (SC) with a d-wave form
factor was found by numerous calculations for small doping.

1 Although an isotope effect is seen in some experiments away from optimal doping.
2 To avoid these problems in the present work T = 0 is always assumed.
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The Fourier transformation of (1.1) leads to

H =
∑

k,σ

εka
†
kσakσ +

∑ 1

4
U(δ

σ1σ
′
1
δ
σ2σ

′
2
− δ

σ1σ
′
2
δ
σ2σ

′
1
)a†
k1σ1

a†
k2σ2

a
k′2σ

′

2

a
k′1σ

′
1
.

The tight-binding dispersion is εk = εtk + εt
′

k with

εtk = −2t(cos kx + cos ky),

εt
′

k = −4t′ cos kx cos ky.

While εtk is antisymmetric under translation by Q = (π, π), εt
′

k is symmetric
under this translation. The t′ contribution is often neglected; however, in this
work it is found to be of great importance for the possibility of doping a system
with finite AF and the coexistence of the AF and SC order parameter.

The renormalisation group (RG) has been one tool to study the Hubbard
model. Although developed first in the high-energy context to remove divergen-
cies in field theories and in the context of critical phenomena, where it paved
the way to calculate critical exponents, it also became important in solid state
physics, most prominently for Kondo physics [Wilson 1975].

Early works for the high-Tc problems include [Schulz 1987; Dzyaloshinskii
1987; Lederer et al. 1987] where the coupling function was parametrised by a
few couplings. Due to the line of divergencies on the Fermi surface no RG with
a finite number of renormalised couplings seems to be sufficient, so that the
functional RG seems more appropriate. At least the momentum dependence of
the coupling function parallel to the Fermi surface (FS) has to be taken into
account, see e.g. [Shankar 1994].

This functional RG follows the spirit of the momentum-shell RG of Wilson3,
which provides a mapping of the original Hamiltonian on a series of effective
Hamiltonians. Since by this procedure terms of all orders of the original in-
teraction are summed up, studying this mapping can reveal physics which is
not caught by näıve perturbation theory (PT). Even though other formula-
tions of the RG were found more practical for calculations [Amit 1978], later
[Polchinski 1984] used the concept of Wilson to prove renormalisability of the
ϕ4-theory, without relying on combinatorics to show that indeed all divergen-
cies can be absorbed into renormalised couplings (see ref. (3-5) of [Polchinski
1984]). Renormalisability in this context means that all divergencies in any
order of PT can be absorbed by redefining a finite number of couplings.

The functional RG in the Polchinski scheme was used by [Zanchi and Schulz
1998, 2000] to treat the relevant dependences of the coupling function parallel
to the FS; to allow a numerical treatment the momentum dependence parallel
to the FS was discretised.

Other formulations of the functional RG were developed. The one-particle
irreducible scheme [Wetterich 1993; Morris 1994; Salmhofer and Honerkamp
2001] allowed an easy inclusion of the self-energies and naturally produced a
local one-loop equation for the interactions. In the Wick-ordered scheme in-
troduced by [Salmhofer 1998], the flow of the vertices is given by (a sum over)

3 Early, but still worth reading is [Wilson and Kogut 1974].
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bilinear terms; the one-loop equation follows naturally from it. All propagators
have an upper bound given by the cut-off, which allows in certain cases rigorous
statements for the validity of common approximations. This scheme was used
by [Halboth and Metzner 2000; Halboth 1999], [Rohe and Metzner 2005] for a
numerical treatment of the Hubbard model.

While the cut-off is usually a sharp momentum cut-off function also other
procedures where used, for example the temperature flow [Honerkamp and
Salmhofer 2001], [Katanin and Kampf 2003; Kampf and Katanin 2003] and
the interaction flow [Honerkamp et al. 2004].

The works cited above were done in the symmetric phase. The symmetry-
broken state was not allowed for so that tendencies to a symmetry broken-
ground state had to be deduced from strongly enhanced couplings or suscep-
tibilities. To gain insight into the symmetry-broken ground state with the
RG [Berges et al. 2002; Wetterich 2002] used (partial) bosonisation. To keep
the computational effort manageable the vertices where phenomenologically
parametrised.

In the fermionic RG a symmetry-breaking field can be introduced yielding
anomalous propagators and vertices; after reorganising the flow equations of
the one-particle irreducible scheme [Katanin 2004] the correct contribution to
the anomalous self energy was accounted for. This allowed to reproduce the
Eliashberg equations [Honerkamp and Salmhofer 2005] and to recover the exact
solutions of MF-models [Salmhofer et al. 2004; Gersch et al. 2005]. In com-
bination with the interaction flow and a counter term, also first-order phase
transition and metastable phases can be treated [Gersch et al. 2006]. Within
these schemes the flow equations can be (numerically) integrated. Since in-
troducing a symmetry-breaking term leads to a considerably larger complexity
only mean-field models have been treated so far.

In this work a different route will be followed. The fermionic RG in the
symmetric phase is combined with a mean-field calculation allowing symmetry
breaking. The RG scheme employed here is the Wick-ordered scheme in one-
loop approximation. The numerical implementation of [Rohe 2005; Rohe and
Metzner 2005] is used to solve the flow equations. The energy dependence as
well as the radial momentum dependence of the effective interaction are ne-
glected, see section 2.3. Since divergent couplings hinder the complete integra-
tion of the flow equations (Λ → 0), only the high-energy modes |εk −µ| > ΛMF

can be treated within the RG; the low-energy modes |εk−µ| < ΛMF are treated
within a mean-field ansatz. The one-loop approximation is expected to be con-
trolled for moderate initial interaction4 [Salmhofer 1998; Salmhofer and Hon-
erkamp 2001]. For the low-energy model the cut-off ΛMF provides a small
parameter [Feldman et al. 1993].

4 The estimates work only for Fermi surfaces without van Hove points. However here the
scheme will also be used close to the van Hove points.
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1.1 Outline of the Work

In chapter 2 the renormalisation scheme will be motivated and derived. As an
intermediate step the Polchinski scheme will be obtained from which the Wick-
ordered scheme immediately follows. The Wick-ordered scheme is especially
useful for our purposes, since the scale-dependent interactions can unambigu-
ously be interpreted as an effective low-energy model. To gain some insight
into the one-loop approximation used here, the interaction resulting from the
integration of the flow equation will be interpreted graphically as the so called
parquet diagram approximation. Finally the flow to large couplings, invalidat-
ing the one loop approximation, will be explained, and as a way to circumvent
this problem the obtained interactions together with the low-energy cut-off will
be understood as an effective low-energy model, which then is treated in a
different manner, namely within a mean-field approximation. From the RG
treatment the couplings of the effective model have a non-trivial momentum
dependence and become attractive in various channels. This allows to obtain
non-trivial results within a mean-field approximation which would not have
been obtained in a mean-field theory for the bare model.

In chapter 3 the mean-field (MF) equations are presented. After a short
introduction to symmetry breaking and mean-field theory, understood as a self-
consistent perturbation theory, the MF equations are derived. The equations
are coupled MF equations for several order parameters; a superconducting pair
with zero momentum and a spin/charge-density wave with Q = (π, π) modu-
lation, since these instabilities are found to be important in both experimental
and theoretical works. A pair with momentum Q, called π-pair, is found to
be a natural combination with the former two order parameters. A Fermi sur-
face distortion in the spin/charge-channel can be introduced into the scheme
without complicating the gap equations.

The gap equations are derived in two manners. On the one hand, within the
Grassmann path integral formalism, using a Hubbard-Stratonovich transforma-
tion, and performing a saddle-point approximation for the obtained action. On
the other hand, they are derived within the operator formalism using a mean-
field decoupling. While the first scheme is more general, and annexed naturally
to the RG scheme, and could for example easily be modified for different cut-off
procedures, the latter is shorter and less technical. Both derivations make only
little use of specific properties of the gaps or the model and are therefore easy
to generalise to more or other order parameters, or to other models.

In chapter 4 the mean-field theory for only the spin-density wave having non-
zero amplitude is discussed in detail. Frustration due to the chemical potential µ
and due to next-nearest-neighbour hopping t′ lead to a richer and more complex
behaviour compared with an antiferromagnet in the perfect nesting case or the
BCS theory. Meta-stability and antiferromagnetic systems with and without
Fermi surfaces are found. Despite this complexity, a rather transparent picture
emerges.

For t′ = 0 homogeneous systems with a finite gap are always half-filled.
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Doping leads to a complete breakdown of the gap5. A finite6 chemical potential
µ within the band gap changes the free energy of the gapped solution and leads
for a finite µ to metastable gapless solutions. For an even larger µ the gapless
solution becomes the thermodynamically stable solution.

A finite t′ can allow for doped antiferromagntic solutions. Therefore, finite
gap solutions with an effective Fermi surface are possible. The behaviour of the
solution as a function of µ and the interaction is to a wide extent determined
by these effective Fermi surfaces. Metastable phases are mainly restricted to
occur only below µvH = 4t′.

In the final section of chapter 4 the interplay of the RG and the AF mean-
field calculation is discussed. It is shown that due to the possibility of first
order transitions the usual RG scheme does not always create adequate low
energy models, nor does a non-divergent flow exclude a symmetry-broken state.
Further it is shown that even in cases where no metastable solutions exist
inadequate low-energy models can be created by the RG. All these effects can
be attributed to the strong change of the Fermi surface structure with the
antiferromagnetic gap. It becomes clear for which scales the low-energy models
are still valid.

Understanding the mean-field theory of the antiferromagnet proved essential
for interpreting the calculations for full RG+MF combinations.

In chapter 5 the mean-field theory for only the π-pair having non-zero am-
plitude is discussed in brevity. Since this order parameter is, in agreement with
the expectations, found to be unimportant, the discussion is restricted to the
main facts. Already in bare mean-field theory it is apparent that this order
parameter plays only a minor rôle. The coexistence of the AF and SC gap cre-
ates a π-pair, as stated by [Kyung 2000]. The relevant facts for the numerical
calculation are discussed.

The interplay of the superconducting and antiferromagnetic gap in the cou-
pled mean-field theory is discussed. It is found that in contrast to the general
belief a finite AF gap can increase the SC gap under suitable circumstances.
This increase is due to the enlargement of the effective Fermi surfaces with a
small AF gap for systems with a bare FS below the van Hove points, discussed
in chapter 4.

Since the gap equations are obtained as derivatives of the grand canonical
potential, the changes of the SC gap equation due to an AF gap can be con-
nected with the change of the AF gap equation with the SC gap. This proves
helpful in understanding certain features of the AF gap equation, especially the
possibility of changing a first- to a second-order transition.

In chapter 6 the results of the numerical calculations of the combined renor-
malisation group and mean-field method are presented. First the case of an
attractive Hubbard model is examined. This allows qualitative comparison
with analytic works, showing a reduction of the true gap with respect to the
bare mean-field gap due to fluctuations. It also provides a check of the method

5 Forcing a system to certain filling thus results in a inhomogeneous system, i.e., it leads to
phase separation.

6 For t′ = 0 the bare system is half filled for µ = 0.
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for the SC channel showing that the involved approximations are justified, and
are better than in the AF case, as was expected.

For the repulsive Hubbard model, phase diagrams for zero and finite next
nearest neighbour hopping t′ are presented. For a zero t′ the system is either
antiferromagnetic and half-filled or superconducting. Forcing the system to
certain fillings would lead to phase separation. For finite t′, Fermi surfaces with
a finite AF gap and coexistence of AF and SC are found. This most interesting
case is discussed in detail; the gap amplitudes for different bare interactions and
dopings are presented. Effective Fermi surfaces and gap structures are shown.
The momentum dependence of the gaps is generated by the method.

Finally, numerical values for the π-pair are presented, showing that this
order parameter is indeed much smaller than the other gaps, justifying the
assumption of its absence in the other calculations.

Appendix A provides a short pedagogical example for the RG. It is shown
within a perturbation theory for nonlinear ordinary differential equations that
renormalisation group equations can sum divergent terms to infinite order. The
obtained approximative solutions are well behaved due to this procedure. In
this framework it is easily seen that näıve perturbation theory might destroy
the correct structure which is recovered by the RG technique.

Appendices B-D provide details of the derivation of the gap equations and
some matrix algebra which is needed for simplifying the equations.
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Chapter 2

Renormalisation Group
Equations

In this chapter the renormalisation group (RG) equations will be derived. The
RG will be understood as a tool to overcome divergencies of the näıve pertur-
bation theory by resumming a subset of higher order contributions. By means
of the RG effective low energy interactions will be obtained, incorporating the
high energy physics. As a pedagogical toy-model it is shown in the appendix A
how to apply this concept to ordinary differential equations.

The RG will respect the symmetry of the original model, and no symmetry
breaking fields will be introduced, as this would complicate the equations and
drastically increase the numerical effort. The symmetry breaking will be intro-
duced effectively in the low energy model, by a mean-field ansatz, described in
the next chapter. The derivation of the RG flow equations follows largely [Enss
2005].

The starting point is a normal-ordered Hamiltonian of a fermionic system

H = H0[a, a
†] +HI [a, a

†], (2.1)

with a free part H0 and an interacting part HI . From this the action S[ψ, ψ̄]
in Grassmann-path-integral formalism follows as S[ψ, ψ̄] = S0[ψ, ψ̄] + SI [ψ, ψ̄],
where the free part is given by

S0[ψ, ψ̄] =
∑

K

ψ̄KC
−1
K ψK =

∑

K

ψ̄KiωψK −H0[ψ, ψ̄], (2.2)

with the inverse propagator

QK = C−1
K = (iω − ξk). (2.3)

The bare interaction-part is given by

SI = −
∑

K1,K2,K′
2,K

′
1

1

4
V (K1,K2,K

′
2,K

′
1)ψ̄K1 ψ̄K2ψK′

2
ψK′

1
= −HI [ψ, ψ̄] (2.4)

K is the usual multi-index (ωn, k, σ) of the spin, energy and momentum degrees
of freedom; ψ and ψ̄ are fields of Grassmann numbers.

9



10 CHAPTER 2. RENORMALISATION GROUP EQUATIONS

One would like to calculate the partition function

Z[η, η̄] =
1

Z0

∫

D(ψ, ψ̄)eS[ψ,ψ̄]e−(ψ̄,η)−(η̄,ψ) (2.5)

with external fields η and η̄ as it contains the physically relevant information.
Z0 is the partition function without interaction and with zero external fields,
given by

Z0 =

∫

D(ψ, ψ̄)e(ψ̄,Qψ) = det(Q). (2.6)

The non-interacting system with external fields can be integrated, leading to

Znon[η, η̄] =
1

Z0

∫

D(ψ, ψ̄)e(ψ̄,Qψ)e−(ψ̄,η)−(η̄,ψ)

=
1

Z0

∫

D(ψ, ψ̄)e(ψ̄+η̄CT ,Q(ψ+Cη))e−(ψ̄+η̄CT ,η)−(η̄,ψ+Cη)

= e−(η̄,Cη) 1

Z0

∫

D(ψ, ψ̄)e(ψ̄,Qψ)

= e−(η̄,Cη) (2.7)

where C = Q−1 is the propagator. In the second line the integration variables
where shifted by η̄CT and Cη, respectively. In the following the abbreviation

∫

dµQ[ψ, ψ̄] =
1

Z0

∫

D(ψ, ψ̄)e(ψ̄,Qψ) (2.8)

will be used. Including the quadratic part into the measure is in the spirit of
N. Wiener, who derived path integrals to do statistics over random walks.

The generating functional of the connected Green’s functions is

G[η, η̄] = − lnZ[η, η̄] (2.9)

since taking the derivative with respect to η and η̄ produces the connected
Green’s functions. From this we obtain by rewriting

exp (−G[η, η̄])

=
1

Z0

∫

D(ψ, ψ̄)eSI [ψ,ψ̄]e(ψ̄,Qψ)−(ψ̄,η)−(η̄,ψ)

=
1

Z0

∫

D(ψ, ψ̄)eSI [ψ,ψ̄]e((ψ̄−η̄C
T ),Q(ψ−Cη))−(η̄ ,Cη)

= e−(η̄,Cη)

∫

dµQ[ψ, ψ̄]eSI [ψ+Cη,ψ̄+η̄CT ]

= e−(η̄,Cη)e−V [χ,χ̄] (2.10)

the effective interaction

V[χ, χ̄] = G[η, η̄] − (η̄, Cη), (2.11)



11

where χ = Cη and χ̄ = η̄CT have been introduced. The new variables have the
effect of amputating the legs, i.e., the external bare propagators of all diagrams.
The effective interaction can be formally calculated to be

e−V [η,η̄] =

∫

dµQ[ψ, ψ̄] exp(SI [ψ + χ, ψ̄ + χ̄])

=

∫

dµQ[ψ, ψ̄] exp(SI [∂ϕ̄, ∂ϕ])e(ϕ̄,ψ+χ)−(ψ̄+χ̄,ϕ)
∣
∣
∣
ϕ=ϕ̄=0

= exp(SI [∂ϕ̄, ∂ϕ])e(ϕ̄,χ)−(χ̄,ϕ)

∫

dµQ[ψ, ψ̄]e(ϕ̄,ψ)−(ψ̄,ϕ)
∣
∣
∣
ϕ=ϕ̄=0

= exp(SI [∂ϕ̄, ∂ϕ])e(ϕ̄,Cϕ)e(ϕ̄,χ)−(χ̄,ϕ)
∣
∣
∣
ϕ=ϕ̄=0

= e(∂χ,C∂χ̄) exp(SI [∂ϕ̄, ∂ϕ])e(ϕ̄,χ)−(χ̄,ϕ)
∣
∣
∣
ϕ=ϕ̄=0

= e(∂χ,C∂χ̄)eSI [χ,χ̄]. (2.12)

Expanding in the last line eSI in the bare potential and comparing order by
order with V as

V =

∞∑

m=0

1

(m!)2

∑

K1...Km

∑

K′
1...K

′
m

Vm(K ′
1 . . . K

′
m;K1 . . . Km)

m∏

j=0

χ̄K′
j
χKj

(2.13)

leads to the näıve perturbation series. Observe that in (2.12) all terms χ and χ̄
appear in the same order, reflecting the particle conservation; therefore also the
expression (2.13) has only such terms. A perturbation theory cannot break the
symmetry of the underlying Hamiltonian. To produce the physically correct
symmetry-broken ground state one has to break the symmetry by hand by
introducing a symmetry-breaking field or by doing a self-consistent perturbation
theory, in which the symmetry is broken by choosing one of several solutions,
as is done in chapter 3.

Unfortunately the perturbation theory breaks down in certain cases. Con-
sider for example the effective two-particle interaction up to second order in the
bare interaction of the 2D t− t′−Hubbard Model

= +

+ + (2.14)

If the interaction is a constant in momentum space as in the Hubbard model,
the terms can be expressed using the particle-particle (pp) bubble

Ξ(P ) = =
∑

K

C(K)C(P −K) (2.15)

and the particle-hole (ph) bubble

Π(P ) = = −
∑

K

C(K)C(P +K). (2.16)
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For T = 0 and external momentum p = 0 the particle-particle bubble is always
divergent. This is due to the fact that electrons are scattered from k → −k,
which has in the case of the inflection-symmetric FS ξk = ξ−k, assumed here,
a huge scattering space. This divergency leads, as long as the interaction is
attractive (negative) in any channel, to a diverging susceptibility, interpreted
as an instability towards a superconducting state, as the pp-bubble is closely
connected to the susceptibility of the superconductor.

Again for T = 0, but for the momentum p = (π, π), the particle-hole bubble
is divergent for µ = 4t′. The bare Fermi surface crosses the van Hove points at
(0,±π) and (±π, 0), so that the divergent density of states leads to a divergent
particle-hole bubble.

For a positive interaction the divergent ph bubble always lead to a divergent
spin-susceptibility, which is interpreted as an instability towards an antiferro-
magnet (AF). However the converse is not always true. A finite susceptibility
does not exclude a symmetry-broken ground state, as the AF can exhibit a first
order transition, as is discussed in detail in chapter 4.1

It is straightforward to see that higher order diagrams, which contain the
particle-particle or particle-hole bubbles, diverge as strong or even more strongly,
leading to more and more divergent terms in higher orders. These divergencies
make the perturbation theory useless even for small coupling.

2.1 Derivation of the RG Equations

The renormalisation group (RG) is one tool to overcome this problem. A new
energy scale Λ is introduced, by which the model is split into a high- and a
low-energy part. Thereby scale-dependent n-point functions are defined, which
become the full n-point functions in the limit Λ → 0. The dependence of the
n-point functions on this energy scale Λ is governed by the RG equations, so
that solving the RG equations yields the desired n-point functions.

From different generating functionals different RG equations follow, which
have different advantages and disadvantages. As an intermediate step first the
Polchinski equation is derived, from which the Wick-ordered scheme, which is
the most appropriate one for our purpose, straightly follows.

To derive the RG a new energy scale Λ is introduced splitting the quadratic
part into

(δχ, Cδχ̄) = (δχ, (D
Λ + CΛ)δχ̄)

= (δχ, D
Λδχ̄) + (δχ, C

Λδχ̄), (2.17)

with the high and low energy propagator

DΛ = (iω − ξk)
−1 χΛ

k (2.18)

CΛ = (iω − ξk)
−1
(
1 − χΛ

k

)
, (2.19)

1 A more detailed discussion of the divergencies of the pp and ph bubble is found in [Halboth
1999].
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with the cut-off function

χΛ
k = Θ(Λ − |ξk|), (2.20)

where the energy scale is defined according to the non-interacting system.

This regularises the perturbation theory as the divergent contributions are
cut out if the propagator CΛ is used instead of C. The dependence on the
cut-off Λ can also be used to gain an effective low-energy model, as will be done
in the following.

Splitting the propagator as in (2.17) and inserting this in the expression for
the effective interaction (2.12)

e−V [χ,χ̄] = e(∂χ ,D∂χ̄)eSI [χ,χ̄]

= e(∂χ ,DΛ∂χ̄)e(∂χ,CΛ∂χ̄)eSI [χ,χ̄]

≡ e(∂χ ,DΛ∂χ̄)e−VΛ[χ,χ̄] (2.21)

one obtains the Λ-dependent effective action VΛ[χ, χ̄]. Rewritten as a functional
integral, (2.21) reads

e−V [χ,χ̄] =

∫

dµC−1 [ψ, ψ̄] exp(SI [ψ + χ, ψ̄ + χ̄])

=

∫

dµ(DΛ)−1 [ψ, ψ̄] exp(−VΛ[ψ + χ, ψ̄ + χ̄]). (2.22)

The last expression has the formal structure

V(DΛ +CΛ, SI) = V(DΛ,−V(CΛ, SI)) (2.23)

which is the structure of a semi-group [Salmhofer and Honerkamp 2001]. This
identity can be interpreted as relating two systems, which are given by different
microscopic parameters, but describing the same physics. The parameters are
renormalised. It is this (semi-)group property, which gives the name renormal-
isation group. This property is exact, so that this RG is also called exact RG.
However, to do calculations in non-trivial systems, approximations have to be
employed.

The derivative of the effective action with respect to Λ is by its definition
(2.21)

∂ΛV = −eVΛ
∂Λe

−VΛ

= −eVΛ
∂Λ

(

e(∂χ,CΛ∂χ̄)eSI

)

= −eVΛ
(∂χ, Ċ

Λ∂χ̄)e
−VΛ

(2.24)

leading to the flow equation for VΛ

V̇ =
(

(∂χ, Ċ
Λ∂χ̄)V

)

+ (∂χV, ĊΛ∂χ̄V), (2.25)

which is the Polchinski equation [Polchinski 1984].
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This can be graphically presented, if one expands V and compares orders,
as

∂Λ

V Λ
m

=

ĊΛ

V Λ
m+1

+
∑

k

ĊΛ

V Λ
k V Λ

m−k+1

(2.26)

One obtains an infinite hierarchy of flow equations; leaving out the equation for
the zero-leg vertex, which does not couple back to the other equations, the first
three equations are explicitly:

∂Λ

V Λ
1

=

ĊΛ

V Λ
2

+
ĊΛ

V Λ
1 V Λ

1

(2.27)

∂Λ

V Λ
2

=

ĊΛ

V Λ
3

+
ĊΛ

V Λ
2 V Λ

1

(2.28)

∂Λ

V Λ
3

=

ĊΛ

V Λ
4

+
ĊΛ

V Λ
2 V Λ

2

+
ĊΛ

V Λ
3 V Λ

1

(2.29)
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The initial condition is

VΛ0 = −1

4
V, (2.30)

with Λ0 being the maximum of |ξk| on the Brillouin zone.
To do any numerical calculation one has to truncate this hierarchy, i.e., set

all coefficients higher than some n0 to zero: Vn = 0,∀n ≥ n0.
This scheme was used by [Zanchi and Schulz 2000],[Zanchi and Schulz 1998]

for the 2D Hubbard model. However, to calculate effective two particle interac-
tions to second order in the interaction, the authors had to incorporate the six
point function V3; the RHS of flow equation of V3, (2.29), is approximated by
the term quadratic in V2, so that the eight-point function V4 and the feedback
due to the the term ∝ V3V1 is neglected. Inserting the tree term ∝ (V2)

2 into
eq. (2.28), and closing this tree diagram by the tadpole in the equation for V2

leads to the desired one-loop term. Due to this procedure the locality in the
flow is lost and one propagator lives on energy scales above the cut-off [Zanchi
and Schulz 2000]. Thus the flow history is needed to calculate the flow of an
interaction. Due to this the effective couplings at a given scale Λ cannot be in-
terpreted as an effective low energy model. To overcome this, the Wick-ordered
scheme can be used.

The Wick ordered generating functional is defined as

WΛ[χ, χ̄] = e(∂χ ,DΛ∂χ̄)VΛ[χ, χ̄]. (2.31)

Graphically, this can be interpreted as adding all tadpoles to the monomials:

WΛ
m

=

V Λ
m

+

DΛ

V Λ
m+1

+

DΛDΛ

V Λ
m+2

+ · · · (2.32)

The flow equation in the Wick-ordered scheme is derived from

∂ΛWΛ = (∂χ, Ḋ
Λ∂χ̄)e

(∂χ ,DΛ∂χ̄)V + e(∂χ ,DΛ∂χ̄)∂ΛV
= (∂χ, Ḋ

Λ∂χ̄)e
(∂χ ,DΛ∂χ̄)V − e(∂χ ,DΛ∂χ̄)(∂χ, Ḋ

Λ∂χ̄)VΛ

+e(∂χ,DΛ∂χ̄)(∂χVΛ, ḊΛ∂χ̄VΛ)

= e(∂χ,DΛ∂χ̄)(∂χVΛ, ḊΛ∂χ̄VΛ), (2.33)

where in the second line the Polchinski equation, (2.25) was exploited, rewritten
using (∂χ, Ċ

Λ∂χ̄) = −(∂χ, Ḋ
Λ∂χ̄). The Laplacian can be split into

(∂χ, D
Λ∂χ̄)

= (∂1
χ, D

Λ∂1
χ̄) + (∂1

χ, D
Λ∂2

χ̄) + (∂2
χ, D

Λ∂1
χ̄) + (∂2

χ, D
Λ∂2

χ̄). (2.34)

where the superscripts mark whether the derivative acts on the first or the
second V in (2.33). As all terms in (2.34) commute, the exponential of the
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Laplacian in (2.33) can be written as a product, which permits one to rewrite
the RHS of (2.33) in W as

∂ΛWΛ

= e(∂
1
χ ,D

Λ∂2
χ̄)+(∂2

χ,D
Λ∂1

χ̄)
(

∂χ

(

e(∂χ,DΛ∂χ̄)VΛ
)

, ḊΛ∂χ̄

(

e(∂χ,DΛ∂χ̄)VΛ
))

= e(∂
1
χ ,D

Λ∂2
χ̄)+(∂2

χ,D
Λ∂1

χ̄)
(

∂χWΛ, ḊΛ∂χ̄WΛ
)

, (2.35)

which is the desired flow equation for the Wick-ordered functional.
The flow equation has the graphical representation

∂

∂Λ

WΛ
m

=
∑

k,j

∑

permutations

ḊΛ

DΛ

WΛ
k WΛ

m−k+j

This flow equation is now not only an infinite hierarchy if sorted by orders, but
the right hand side of any equation contains also infinitely many terms. To do
any calculations one has to truncate the hierarchy and the right hand sides.

As an advantage the flow equations contain the one loop terms quadratic in
W2 without taking WΛ

3 in account, and due to the Wick ordering all propagators
live on energy scales |ξk| < Λ. One does not need the history of the flow to
integrate the equations. Therefore the flowing couplings can be interpreted as
an effective low-energy model at any scale Λ. The one-loop approximation of
the flow of the two-particle interaction, rewritten in the one-particle-irreducible
scheme [Halboth 1999], is given by

∂

∂Λ
ΓΛ(K ′

1,K
′
2;K1,K2) =

∑

K,K′

∂

∂Λ

[
DΛ(K)DΛ(K ′)

]
×
[1

2
ΓΛ(K ′

1,K
′
2;K,K

′) ΓΛ(K,K ′;K1,K2)

− ΓΛ(K ′
1,K;K1,K

′) ΓΛ(K ′,K ′
2;K,K2)

+ ΓΛ(K ′
2,K;K1,K

′) ΓΛ(K ′,K ′
1;K,K2)

]

(2.36)
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or graphically

∂

∂Λ

1

2

1′

2′

=

1

2

1′

2′

+

1

2

1′

2′

+

1

2

1′

2′

(2.37)

The first term of the RHS is the particle-particle ladder or BCS digram, the
second one is the RPA or ZS (zero sound) and the third is the ZS’ digram; the
ZS and ZS’ diagram will be referred to as particle-hole diagrams.

The starting condition is, as DΛ0 = C:

WΛ0 = e(∂χ,C∂χ̄)SI [χ, χ̄] = + + (2.38)

2.2 Discussion of the RG Equations

In this section it will be shown that integrating the one-loop Wick equation
creates structurally the parquet diagrams. This is done by taking the feed-
back in the RG equation of the created effective two-particle interactions only
stepwise into account, i.e., approximating the RHS by an RHS with effective
interaction created at a fixed higher Λ-scale. Thereby the iteration creating the
parquet diagrams becomes apparent. This iteration leads to a restriction on
the momenta of certain propagators, which is also not lifted if the step-size is
going to zero.

In [Binz et al. 2003] it is argued that the one loop flow equations create the
so called parquet diagrams [Diatlov et al. 1957], with certain restrictions on
inner propagators. To see this it is helpful to replace the derivative by a (small)
step in δΛ. The original equation is regained by setting δΛ → 0.

The starting value for the effective interaction is just the bare interaction
(2.38) and the crossed term:

. (2.39)

Inserting these into (2.37) and doing the step δΛ we produce all the diagrams
as in (2.14), where the Fermi propagators are restricted to |ξk| < Λ0− δΛ = Λ1.
Thus in the first step the effective iteration is given by the bare interaction plus
the one loop diagrams, with restricted propagators, such as

1

1
(2.40)
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where 1 ≡ Λ1 marks the restriction on the propagator. In the next step,
Λ1 − δΛ = Λ2, the newly created diagrams also have to be inserted in the RHS
of the flow equation, leading to an insertion on the inner lines, giving for exam-
ple

1

2 2
. (2.41)

As the ladder diagram was created on a higher energy scale than the RPA-
bubble, the energy will be restricted by the energy scale of the RPA bubble,
also in the limit δΛ → 0. Iterating once more we obtain, e.g.,

3

1

3

2 2
. (2.42)

Thus by integrating the flow equation one iteratively inserts the one loop terms
in all ways on the inner lines, effectively creating topologically the parquet
diagram subset.

All the parquet diagrams are created; however, due to the way the diagrams
are created momenta of some propagators are restricted by the momenta of
others. It can be shown, that all divergencies in leading logarithmic order are
correctly included [Binz et al. 2003].

Even though the leading order divergency is included correctly, i.e., summed
over, divergencies can appear when integrating this flow equation, namely below
a certain temperature. This is indicating the onset of a (second order) instability
towards a symmetry-broken phase. This divergency is not an artefact of the
perturbation theory, but has to be considered as a physical one indicating the
existence of a symmetry-broken ground state.

This divergency can be due to a simple geometric-series-like sub-class, like
the RPA-diagrams for the antiferromagnet; others like the SC rely (in the repul-
sive Hubbard model) on the creation of an attractive channel by the interplay
of other diagrams to make a sub-class divergent.

This divergency can be handled in the RG scheme by introducing a finite
symmetry-breaking gap, leading to extra terms in the RHS of the flow equations.
In the one particle irreducible scheme the equations can be reorganised due to
[Katanin 2004] so that a correct ground state can be reached [Salmhofer et al.
2004] and [Gersch et al. 2005], at least in mean-field models2.

In the next section a different ansatz will be followed, namely the flow will
be stop before couplings become large. Symmetry-breaking will be introduced
within a mean-field framework, which is presented in chapter 3.

2.3 Integrating the RG Equation & Introducing MF

The one-loop RG equation (2.37) is so complex that it can be integrated for
the given model neither analytically nor numerically. Therefore, further sim-

2 First order phase transitions require a different treatment, see 4.3, and [Gersch et al. 2006].
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Figure 2.1: Left: The bandwidth W of the bare model and the band-width of
the low-energy model ΛMF. The degrees of freedom treated by the RG are given
by |ξk| > ΛMF, depicted in black, the one treated by the mean-field calculation
are given by |ξk| < ΛMF, depicted in red. Right: The restriction of the momenta
by the low energy cut-off ΛMF. Patches are marked by dashed lines.

plifications have to be employed. The energy dependence is usually assumed to
be of minor importance, since divergences appear for ω = 0 in the perturbation
theory, and will thus, as in most works, be neglected. This allows one to per-
form the Matsubara sums analytically; the resulting Fermi functions together
with the here used sharp cut-off function reduce the momentum integration to
a one-dimensional integral. For Λ → 0 the momenta are restricted to a shell
close to the FS, making it reasonable to replace the momenta by momenta pro-
jected onto the FS. For large Λ the momentum dependence of the interaction is
expected to be weak, since the initial interaction at Λ = Λ0 is just the constant
bare Hubbard U , so that the projection seems reasonable also in this case.

The dependence on the angle, i.e., parallel to the FS, cannot be neglected,
since already in perturbation theory a tendency towards d-wave superconduc-
tivity is seen. To allow a numerical treatment the angular dependence is dis-
cretised. The discretisation, into so-called patches, is shown in fig. (2.1), right;
the dependence of the effective interaction on continuous momenta is thereby
replaced by a dependence on discrete patch numbers. The patches are chosen
to be of equal area, and to be congruent under a (π, π)-translation. The latter
is important for defining a spin/charge-density wave with (π, π)-modulation.
Three of the outer momenta of the flow equation (2.37) are projected onto the
FS, while the dashed propagator contributes for a sharp cut-off only at scale Λ.
The remaining momenta are determined by momentum conservation.

The Hubbard model is spin-rotation invariant, permitting a simple parametri-
sation of the spin dependence [Halboth 1999]. Two decompositions are used in
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this work. The singlet-triplet decomposition is given by

ΓΛ

(

σ1 σ2 σ
′
2 σ

′
1

k1 k2 k′1 k′2

)

=
1

2
ΓΛ
t (k1, k2, k

′
1, k

′
2)
(

δ
σ1 ,σ

′
1
δ
σ2 ,σ

′
2
+ δ

σ1,σ
′
2
δ
σ2,σ

′
1

)

+
1

2
ΓΛ
s (k1, k2, k

′
1, k

′
2)
(

δ
σ1,σ

′
1
δ
σ2,σ

′
2
− δ

σ1,σ
′
2
δ
σ2,σ

′
1

)

(2.43)

and is used in the RG numerics. It is also adequate for the superconducting
gap. The spin-charge decomposition

ΓΛ

(

σ1 σ2 σ
′
2 σ

′
1

k1 k2 k′1 k′2

)

= ΓΛ
C(k1, k2, k

′
1, k

′
2)δσ1 ,σ

′
1
δ
σ2,σ

′
2

+ΓΛ
S(k1, k2, k

′
1, k

′
2)
(

2δ
σ1,σ

′
2
δ
σ2,σ

′
1
− δ

σ1 ,σ
′
1
δ
σ2 ,σ

′
2

)

(2.44)

is most suitable for the magnetic gaps, as it reveals the interpretation as a
combination of a spin/charge-density-wave gap, or a spin/charge Pomeranchuk
distortion, respectively, see section (3.3).

As mentioned earlier, the effective couplings diverge below a certain tem-
perature in the limit Λ → Λc in one or more channels. This is interpreted as an
instability towards a symmetry-broken state. The large couplings invalidate the
one-loop approximation. It is difficult to separate between different instabilities
if the couplings, or the associated susceptibilities, become large in more than
one channel.

To circumvent this problem the RG flow can be stopped at a certain scale,
for which the one-loop RG still seems to be valid, to treat the low-energy de-
grees of freedom Λ < ΛMF by another approximation, assumed to be valid in
this regime. The scheme used here is an extended mean-field (MF) calcula-
tion, allowing for the coexistence of several order-parameters with arbitrary
momentum-structure. The energy scale down to which the RG was utilised be-
comes therefore the upper cut-off or bandwidth of the low-energy model and will
be called called ΛMF in the following, see fig. (2.1), left. The small bandwidth
can be viewed as a smallness parameter which suppresses fluctuations [Feldman
et al. 1993]. This is in agreement with the works of [Kuchiev and Sushkov 1996]
and [Kos et al. 2004], who find in a direct calculation a suppression of the BCS
gap renormalisation by the smallness of the bandwidth.

The low-energy couplings obtained by the RG can be viewed as the residual
interactions between the quasi-particles. Thus, the MF approximation investi-
gates instabilities of the RG-derived Landau-Fermi liquid.

The symmetry breaking can in principle also be included in the RG scheme.
This complicates the RG equations considerably, so that so far only rather
simple models were treated within this method, [Salmhofer et al. 2004] and
[Gersch et al. 2005]. However, the scheme used here can be viewed as an
approximation to this method, which will help to determine a reasonable low-
energy scale ΛMF, see chapter 6.



Chapter 3

The Mean-Field
Approximation

3.1 Symmetry Breaking

Some physical systems are known to have ground states that do not have the
full symmetry of the Hamiltonian. This symmetry breaking changes the physics
of the system, and leads to a big variety of physical effects. In the following,
the symmetry breaking will first be discussed in general, in order to proceed
then to the concrete problem, which is the simultaneous breaking of different
specific symmetries, which are assumed to be important in the Hubbard model.

Consider a Hamiltonian H and its eigenstates Ψi with the energy Ei so that

HΨi = EiΨi. (3.1)

The Hamiltonian is said to obey the symmetry specified by a symmetry-operation
S if and only if

SH = HS. (3.2)

From this follows, due to

SHΨi = HSΨi

= Ei SΨi, (3.3)

that SΨi is also an eigenvector with the same energy as Ψi. If the eigenvectors
are non-degenerate, that is, there is only one eigenvector for a given eigenvalue,
it follows that

SΨi = Ψi, (3.4)

and the eigenvector has the same symmetry as the Hamiltonian. If, however,
the eigenvector is degenerate iterative action of the symmetry operation on
the eigenvector forms a set of eigenvectors, where the sum over all elements is
again symmetric according to the symmetry-operation S. A Hamiltonian can

21
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be composed entirely of eigenvectors which do not have the symmetry of the
Hamiltonian.

If a Hamiltonian has degenerate ground states they might break a symmetry.
From what was said before it is clear that there is always a linear combination
which is again a ground state and which does respect the symmetry. The set
which has to be summed over can either be finite, as for the uniaxial ferromag-
net, or infinite, as for the superconductor. In the first case the easy-axis spin
symmetry, i.e., a discrete symmetry, of the Hamiltonian is broken whereas in
the superconducting case the particle conservation is violated and the gauge
symmetry is broken. The integration over all states, described by different
phases, restores the particle conservation.

In real systems the symmetry is often truly broken. This is either due to a
small field, always expected to be present in real systems, or it was broken at
some earlier time and persists even when the field is removed again; a broken
symmetry in a large system is expected to remain for macroscopically long time
scales and even to withstand (not too big) perturbations favouring another
ground state.

As an example consider a spin-density-wave ground state of a system with
easy axis in z-direction. There the translational invariance in the spin channel
is broken. The symmetry-breaking field h (h in z-direction) couples to

∑

ω,k

h(ψ̄ω,k,↑ψω,k+Q,↑ − ψ̄ω,k↓ψω,k+Q↓) =
∑

ω,k

h
(

nQk,ω↑ − nQω,k↓

)

. (3.5)

The external field h yields a contribution to the dispersion. The quadratic part
of the action is therefore, in the Nambu formalism,

S0 =
∑

ω,k,σ

′ (
ψ̄ω,k,σ, ψ̄ω,k+Q,σ

)
(
iω − ξk hσ
hσ iω − ξk+Q

)(
ψω,k,σ
ψω,k+Q,σ

)

, (3.6)

with h = h↑ = −h↓.
As a function of the external field h the expected behaviour of the magneti-

sation m = m↑ = −m↓, mσ = 〈∑kω n
Q
kσ〉 is sketched in figure (3.1). Above a

certain temperature Tc the magnetisation vanishes continuously for vanishing
external field, while below Tc this limit produces a finite magnetisation.

The zero-field magnetisation is defined as

m(h = 0) ≡ lim
h→±0

m = ±m0. (3.7)

Below Tc its sign depends on the side from which zero is approached. For T = 0
the magnetisation is given by the magnetisation of the ground state.

The first order contribution to the self-energy is given by the Hartree dia-
gram1

Σ = (3.8)

1 A nice introduction to Feynman-diagrams in the symmetry-broken phase is given by the
article [Mattuck and Johansson 1968].
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Figure 3.1: Sketch of the magnetisation as a function of the external field above
and below the critical temperature. Only the thermodynamically stable state
is plotted; the hysteresis is not shown.

where the propagator is the anomalous propagator. The latter is due to the
magnetic field and is obtained as the off-diagonal part of the inverse of the
matrix of (3.6), easily calculated with Cramer’s rule. Explicitly, the anomalous
part of the self-energy, being the off-diagonal part of the self-energy matrix

Σ =

(
Σn
σ Σh

σ

Σh
σ Σn

σ

)

, (3.9)

is obtained by closing the anomalous propagator to a loop, yielding in first
order, Σh

σ = h1
σ + O(U2),

h1
σ = U

∑

kω

hσ
(ξk − iω)(ξk+Q − iω) − h2

σ

= Um(hσ). (3.10)

U is the interaction of the system, assumed to be non-zero only in the spin-
channel and for Q = (π, π) momentum transfer. The off-diagonal part of the
loop in eq. (3.8) is the bare magnetisation m(h). Thus, the magnetisation with
first order contribution to the self-energy is given by m1(hσ) ≡ m(hσ+h1

σ). The
bare magnetisation m and the first order corrected magnetisation m1 is plotted
in fig. (3.2). If the external field h vanishes, also m1 vanishes, so that no spon-
taneous magnetisation remains. To any finite order this will remain true, even
though the approach towards zero will become steeper and steeper. There-
fore, finite order perturbation theory cannot describe spontaneous symmetry
breaking.

To circumvent this one could go to infinite order in perturbation theory2.
One way to do this is by employing the RG. But successfully handling this
problem with RG has only recently been accomplished [Salmhofer et al. 2004],
[Gersch et al. 2005] and was only possible after the flow equations were reor-
ganised by [Katanin 2004]; it is, however, rather involved already on mean-field
level. Another way is a self-consistent perturbation theory demanding that the

2 For MF-exact models the infinite summation can be performed analytically, see [Gaudin
1960] and [Langer 1964].
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Figure 3.2: Bare magnetisation m(h) and magnetisation with first-order self-
energy corrections m1 = m(h+h1) as a function of the external field for T = 0.

effective field h̄σ = hσ + Um. This is an intuitive way to proceed, as an inter-
nal field created by a spin acts via the interaction like an external field on the
other electrons, at least as long as fluctuations can be neglected. This yields a
self-consistency equation

h̄σ = Um(hσ + h̄σ) (3.11)

for the effective field h̄, and indeed sums a subclass of diagrams up to infinite
order, which is seen by expanding the propagator as

G =

(
Gn F
F Gn

)

=
(
G−1

0 − Σ
)−1

= G0 −G0ΣG0 +G0ΣG0ΣG0 + · · ·
= − Σ + Σ Σ + · · · (3.12)

and inserting the result into the Hartree diagram, leading to the so-called cactus
diagrams

· · · (3.13)

Summing these diagrams reproduces the self-consistency equation.

Thus, a self-consistent perturbation theory can produce results which do not
obey the symmetry of the Hamiltonian, in contrast to the näıve, finite order
perturbation theory which cannot break the symmetry, as stated in the previous
chapter.

In the next section the self-consistency equation will be derived in a slightly
different manner, but from the result it will be clear that indeed it is a self-
consistent first order approximation for the self energy.
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3.2 Derivation of Gap Equations

In the following the gap equations will be derived. Two different methods are
presented. In the functional integral formalism via a Hubbard-Stratonovich
decoupling a bosonic field is introduced, which then is treated within a saddle
point approximation. This ansatz naturally combines with the RG method, as
it utilises also the functional integral formalism with Grassmann variables.

The operator formalism, in contrast, makes use of the Hamiltonian scheme
and is thus not an as natural combination with the RG; but it reveals more
clearly the interpretation of the gaps as mean-fields of certain operators, and
has thus a straightforward interpretation in physical terms.

3.2.1 Operator Formalism

In this section the derivation of the gap equations in the operator formalism
will be sketched. Even though the derivation outlined in the next section is
more general, and more natural in the RG context, this ansatz has the merit
of brevity. Details can be found in appendix B. Mean-field (MF) calculations
with several gaps where also done by [Kyung 2000; Murakami and Fukuyama
1998; Psaltakis and Fenton 1983; Inui et al. 1988],[Yamase and Kohno 2004];
see furthermore [Murakami 2000]; as in those papers certain form-factors of
the gaps or symmetries of the dispersion were assumed, the eigenvalues of the
matrix describing the part quadratic in the fermionic operators, could be easily
calculated analytically. In contrast here general gap structures will be allowed,
leading to a general 4th order polynomial for the eigenvalues, practically pro-
hibiting the analytic calculation. Thus, the gap equations have to be derived
without the explicit knowledge of the eigenvalues. The present scheme is more
transparent and easier to handle then the one used by the cited authors. A
further benefit of this derivation is that is is easy to redo the calculations for
more or different gaps.

Starting by rewriting the action as a Hamiltonian, one obtains

H =
∑

K

ξka
†
KaK (3.14)

+
∑

K1,K2,K
′
1,K

′
2

1

4
ΓΛ(K1,K2;K

′
2,K

′
1)a

†
K′

1
a†K′

2
a
K2

a
K1

,

(3.15)

K here being the multi-index K = (k, σ). The interaction is zero if one of the
momenta k is such that

|ξk| > Λ. (3.16)

The decoupling of the quartic term is done by the mean-field approximation.
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In the superconducting case it is

a†
k′1σ

′
1
a†
k′2σ

′
2
ak2σ2

ak1σ1
≈

〈a†k′1σ′1a
†
k′2σ

′
2
〉ak2σ2

ak1σ1
+ a†k′1σ′1

a†k′2σ′2
〈ak2σ2

ak1σ1
〉 − 〈a†k′1σ′1a

†
k′2σ

′
2
〉〈ak2σ2

ak1σ1
〉

(3.17)

where terms quadratic in the fluctuations have been neglected

(

a†
k′1σ

′
1
a†
k′2σ

′
2
− 〈a†

k′1σ
′
1
a†
k′2σ

′
2
〉
)(

ak2σ2
ak1σ1

− 〈ak2σ2
ak1σ1

〉
)

≈ 0. (3.18)

By further restricting the momenta and spin-configurations, singlet supercon-
ductivity with zero and Q = (π, π) pair-momentum k1+k2 is chosen. The latter
is referred to in the following as π-pairing.

A similar decoupling leads to the spin/charge-density wave. To determine

how to group the operators, i.e., whether to group a†K′
1

with aK1
or with aK2

,

so that the spin rotational invariance is not destroyed by the MF decoupling, a
comparison with a mean-field theory for the spin operators

~S~S ≈ 2〈~S〉~S − 〈~S〉〈~S〉, (3.19)

is helpful; setting the x,y-component zero after this MF decoupling, identifies
unambiguously the correct terms for a spin wave in z-direction. A different
grouping can lead to a wrong mean-field theory, in which the spin (charge) part
of the AF gap does not couple to the spin (charge) part of the potential.

Also, a Fermi surface deformation is allowed, which will be called Pomer-
anchuk distortion.

By adding the various channels one arrives at the MF-Hamiltonian

HMF = Ec +
∑

k

′
a
†
kMkak. (3.20)

Double counting appears due to the overlap of the AF and Pomeranchuk channel
with the other two channels, which is negligible, since the overlap is of zero
measure in the thermodynamical limit. The term

Ec = −
∑

k

[

〈a−k↓ak↑〉∆∗
k + 〈a−k−Q↓ak↑〉π∗k

]

−
∑

kσ

〈a†kσak+Qσ〉Ak,σ/2 −
∑

kσ

〈nσk〉δµkσ/2 +
∑

k

ξ̄k↓ (3.21)

will be called the c-number term. The last term is due to commutating the
operators of the kinetic energy, to include it in the matrix part. The quadratic
term is given by the matrix

Mk =







ξ̄k,↑ ∆k Ak,↑ πk
∆∗
k −ξ̄−k,↓ π∗k+Q −A∗

−k,↓

A∗
k,↑ πk+Q ξ̄k+Q,↑ ∆k+Q

π∗k −A−k,↓ ∆∗
k+Q −ξ̄−k+Q,↓







(3.22)
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and the Nambu operators

a
†
k = (a†k↑, a−k↓, a

†
k+Q↑, a−k−Q↓). (3.23)

The energy gaps in the matrix part are for the superconducting gap

∆k =
∑

k′

Vk,k′〈a−k′↓ak′↑〉 with Vkk′ = ΓΛ
(

↑ ↓ ↓ ↑
k −k −k′ k′

)

(3.24)

for the π-gap

πk =
∑

k′

Wk,k′〈a−k′+Q↓ak′↑〉 with Wkk′ = ΓΛ
(

↑ ↓ ↓ ↑
k −k−Q −k′+Q k′

)

(3.25)

and for the spin/charge-wave-gap

Ak,σ =
1

2

∑

k′,σ′

Uσσ
′

kk′ 〈a†k′σ′ak′+Qσ′〉 with Uσσ′

kk′ = ΓΛ
(
σ σ′ σ′ σ
k k′ k′+Q k+Q

)

. (3.26)

The dispersion is

ξ̄kσ = ξk + δµkσ (3.27)

with the Pomeranchuk distortion

δµkσ =
1

2

∑

k′σ′

fσσ
′

kk′ 〈nσ
′

k′ 〉 with fσσ
′

kk′ = ΓΛ
(
σ σ′ σ′ σ
k k′ k′ k

)
. (3.28)

and the bare dispersion ξk = εk − µ.

The gaps have to be calculated self-consistently. The self-consistency equa-
tions can either be derived by using the definition of the gaps, re-expressing the
expectation values in operators for which the matrix M is diagonal, leading, as
these new operators also fulfil the Fermi commutator rules, to Fermi distribu-
tions with quasi-particle energies Ek. For this procedure the explicit form of the
transformation between the old and new operators has to be known. Instead
one can evaluate

δΩ = 0. (3.29)

The variation of the grand canonical potential has to be done with respect to
the different mean-fields, as the grand canonical potential has to be at a mini-
mum with respect to all internal variational parameters. This can be evaluated
without explicit knowledge of the transformation or even the eigenvalues. The
resulting equations are in both cases the same.

After formally diagonalising the Hamiltonian the grand canonical potential
is found to be (see B.47),

Ω = Ec + (−β)−1
∑

k′α

′
ln (1 + exp(−βEα

k′)) (3.30)
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so that the variation leads to the expressions

0 = −
∑

k′

∂Eck′

∂Fk
+
∑

k′

′∑

α

∂Eαk′

∂Fk
f(Eα

k′) (3.31)

where F denotes one of the expectation values, introduced in the MF decou-
pling, and the Eα

k represent the eigenvalues of the matrix M. While the first
term reproduces straight away the different gaps, more attention has to be paid
to the second term. Using the characteristic polynomial

0 =
∂

∂Fk
|Mk′ − 1Eα

k′ | ≡
∂

∂Fk
|Mα

k′ |, (3.32)

the derivative of the eigenvalues can be expressed by minors of Mα = M−1Eα,

∂Eαk′

∂Fk
=

(
∑

l

|Mα
ll|(k′)

)−1
∑

i,j

∂mij(k
′)

∂Fk
(−1)i+j |Mα

ij |(k′), (3.33)

where mij are the elements of M. Details are found in appendix B.

The filling is calculated by the usual thermodynamic relation

n = −∂Ω

∂µ
, (3.34)

where no ambiguities appear in contrast to the HS formalism where convergence
producing factors have to be introduced correctly, so that for zero-gaps the bare
filling is reproduced. The reason is that the last term in the c-number term
∑
ξ̄k↓, (3.21), which is due to operator commutation, does the bookkeeping of

the operator order.

3.2.2 Functional Integral Formalism

In this section the derivation of the mean-field equations will be sketched
as the saddle-point approximation of a bosonic action, [Mühlschlegel 1962],
which is obtained by means of the Hubbard-Stratonovich (HS) transformation
[Stratonovich 1958; Hubbard 1959]. Details can be found in appendix C. Here,
only the calculation of the SC gap equation is sketched, the calculations for the
other gaps are alike.

The effective partition function is written as a Grassmann path integral

Z =

∫
∏

K

dψ̄dψ exp(SΛ[ψ, ψ̄]), (3.35)

where ψ̄ and ψ are the Grassmann fields. The Λ-dependent action is given by
SΛ = SΛ

0 + SΛ
I , with the quadratic part

SΛ
0 [ψ, ψ̄] =

∑

K

ψ̄KC
−1
K χ−1

k ψK . (3.36)
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χk is the momentum cut-off function defined in (2.20). The interaction part is

SΛ
I = −

∑

K1,K2,K
′
2,K

′
1

1

4
ΓΛ(K1,K2,K

′
2,K

′
1)ψ̄K1 ψ̄K2ψK′

2
ψK′

1
, (3.37)

where Ki = (ωi, ki, σi) are multi-indices containing the frequency, the momen-
tum and the spin argument.

The HS transformation is performed by completing the square in the expo-
nent, which allows to rewrite the fermion-fermion interaction as an interaction
with bosonic (i.e., complex) fields depending on two momenta ϕ ≡ ϕ(k, q)
which can in the superconducting case be chosen to k being (half) of the rela-
tive momentum of the electrons and q the pair momentum. In the SC case the
decoupling is

const × exp

(
1

4

∑

−Γ ψ̄K1ψ̄K2ψK′
2
ψK′

1

)

=

∫

Dϕ exp

(
1

4

∑[

−ϕ∗Γϕ+ ϕ∗ΓψK′
2
ψK′

1
+ ψ̄K1ψ̄K2Γϕ

])

, (3.38)

with the potential Γ = Γ(k,−k + q;−k′ + q, k′). The bosons can be viewed as
exchange particles mediating the interaction via a Yukawa coupling term. This
transformation is exact as long as all momenta are taken into account. But
to reduce the computational effort usually one restricts the bosons to one or a
few channels, which are assumed to be most important; for example restricting
the bosons to q = 0 leads to the usual Cooper pairs. Due to this restriction
this decoupling becomes an approximation. In the full calculation the channels
of interest are the spin/charge-density wave Ak,σ, a spin/charge Fermi-surface-
distortion δµk,σ and the superconductor with zero momentum ∆k and a pair
πk which has the pair-momentum Q = (π, π); they overlap partly, resulting in
double counting, but since the overlapping k-space is lower-dimensional, it is
expected to be of zero measure in the thermodynamical limit. Introducing the
bosons one writes the partition function

Z =

∫

DϕDψDψ̄ exp
(
S[ψ, ψ̄, ϕ]

)
(3.39)

with a new action

S[ψ, ψ̄, ϕ] = S0[ψ, ψ̄] + SI [ψ, ψ̄, ϕ]

= S0[ϕ] −
∑

kω

′
ψMψ̄, (3.40)

which contains fermionic and bosonic degrees of freedom. The prime on the
sum denotes the restriction to the magnetic BZ.

Since there is no direct interaction between the fermions any more, the
fermionic integral can be performed, leading to a purely bosonic model

Z =

∫

Dϕ exp (S[ϕ]) (3.41)
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with a new, purely bosonic effective action

Seff[ϕ] = Sc + β
∑

k,ω

′
ln detM. (3.42)

The first term is the c-number term, being quadratic in the bosonic fields

Sc[ϕ] =
∑

ω,k

ϕs
ω,k∆

∗(ω, k) +
∑

ω,k

ϕπω,kπ
∗
ω,k

+
∑

(ϕA
ω,k,σ)

∗ 1

2
Aω,k,σ +

∑

ω,k,σ,

ϕδω′,k′,σ′
1

2
δµω,k,σ. (3.43)

The matrix M is defined as3

Mk,ω =







ξ̄k,↑ − iω ∆k,ω Ak,ω,↑ πk,ω
∆∗
k,ω −ξ̄−k,↓ − iω π∗k+Q,ω −A∗

−k,−ω,↓

A∗
k,ω,↑ πk+Q,ω ξ̄k+Q,↑ − iω ∆k+Q,ω

π∗k,ω −A−k,−ω,↓ ∆∗
k+Q,ω −ξ̄−k+Q,↓ − iω






, (3.44)

where, for example the SC-gap, is given by

∆kω = T
∑

k′ω′

V
(
ω′ ω
k′ k

)
ϕ(k′ω′) (3.45)

The potential is obtained by restricting the full interaction

V
(
ω′ ω
k′ k

)
= Γ

(
ω′ −ω′ −ω ω
k′ −k′ −k k
↑ ↓ ↓ ↑

)

. (3.46)

The other order-parameters are defined similarly, in the appendix (C.28) (C.37)
and (C.49)

Treating the integral (3.41) within a saddle-point approximation leads to
equations determining the saddle point. These coupled self-consistency equa-
tions are the desired mean-field equations. In the SC case one obtains

∆∗
kω =

∑

k′ω′

det (M12(k
′, ω′)) V

(
ω′ ω
k′ k

)

detM(k′, ω′)
. (3.47)

The determinant M12 is the minor of the matrix M, i.e., the determinant of the
matrix which is obtained by crossing out the first line and the second column of
M. According to Cramer’s rule (D.9) the fraction of the two determinants can
be interpreted as an element of the inverse matrix of M. This is nothing but
the anomalous SC propagator, so that in (3.47) the anomalous self-energy is
given by the effective interaction which is closed by an anomalous propagator,
or diagrammatically

∆ =

V

(3.48)

3 Here the cut-off functions are not written explictly, cf. eq. (C.54).
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This is indeed equivalent to the one loop self-consistency equation mentioned
earlier.

If the potential V is frequency independent, which is the case in the numerics
since the used RG scheme neglects ω-dependence, the gap will also not depend
on the frequency. Then the Matsubara sum can be performed analytically,
leading to

∆∗
k = −

∑

k′

∑

α

det (Mα
12(k

′))Vk′k
∑

l detMα
ll(k

′)
f(Eα

k′). (3.49)

where Eα
k are the eigenvalues of the matrix M(iω = 0), i.e., the zeros of

det(Mα) = det(M(iω = Eα
k )). These new energies Eα

k stem from the fact
that for iω = Eα

k the propagator has poles, which can be interpreted as quasi-
particles energies. As the self energy has no imaginary part these quasi particles
have infinite life-time, also far from the Fermi surface, as expected for a mean-
field theory. Similar equations can be derived for the π-pair, the AF gap and
for the Pomeranchuk distortion.

When calculating the filling, convergence creating factors carefully have to
be employed. Neglecting them can lead to wrong results, even though the ex-
pressions might seem well behaved. The reason is that in the Green’s functions
the time-difference was set to zero throughout the calculation, instead of tak-
ing the limit at the end of the calculation. By checking that for zero gaps the
correct filling is reproduced one can unambiguously find the correct factors.
Similar problems are found for the Pomeranchuk distortion, since this is closely
related to the filling, where the same convergence factors have to be employed.

3.3 The Gap Equations

In the following the gap equations are given. The equations contain the matrix
M defined as M = M− Ek in the operator formalism, or, yielding the same,
M = M(iω = Ek) in HS formalism.

The equation for the singlet superconducting gap is

∆∗
k = −

∑

k′

∑

α

Vkk′ |Mα
12(k

′)|
∑

l |Mα
ll(k

′)| f(Eα
k′). (3.50)

Following appendix (D.3) the denominator can be interpreted as the trace of
the inverse matrix of Mα(k), and can be therefore re-expressed in terms of the
eigenvalues Eα

k , yielding

∆∗
k = −

∑

k′

∑

α

Vkk′ |Mα
12|(k′)

∏

i6=α(E
i
k′ −Eαk′)

f(Eα
k′). (3.51)

With some further matrix algebra, see appendix (D.3), the gap-equation can
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be re-expressed as4

∆∗
k = −

∑

k

∑

α

[
Vk′kv

2
α(v1

α)∗
]
f(Eα

k′), (3.52)

where viα is the ith component of the normalised eigenvector corresponding
to the eigenvalue Eα

k . This expression has (numerical) advantages, when two
eigenvalues approach each other.

In singlet/triplet decomposition, eq. (2.43), the potential V Λ
kk′ reads

Vkk′ = ΓΛ
(

↑ ↓ ↓ ↑
k −k −k′ k′

)

(3.53)

=
1

2

(
V s
kk′ + V t

kk′
)
, (3.54)

with the symmetry V
s/t
k,k′ = ±V s/t

k,−k′. If ∆k = ∆−k is assumed, the triplet part
is projected out. This is in accordance with earlier works which found a much
stronger attraction in the singlet than in the triplet channel.

The equation for the π-pair is given by

π∗k = −
∑

k′

∑

α

WΛ
kk′|Mα

14|(k′)
∏

i6=α(E
i
k′ −Eαk′)

f(Eα
k′). (3.55)

Again, as in the SC case, the potential can be written as

Wkk′ = ΓΛ
(

↑ ↓ ↓ ↑
k −k−Q −k′+Q k′

)

(3.56)

=
1

2

(
W s
kk′ +W t

kk′
)
. (3.57)

If πk = ±π−k+Q then according to W−k+Q,k′ = 1/2
(
W s
kk′ −W t

kk′
)

either the
triplet or singlet part of the potential is projected out. In case of a (cos(kx) − cos(ky))
form-factor we have π−k+Q = −πk, so that only the triplet part contributes.
In section (5.3.2) it is argued that indeed the π-pair is a spin-triplet pair, with
zero spin projection in the z-direction, also for different form factors.

The gap equation for the AF gap is

Akσ =
∑

k′

∑

α

1

2

UΛ
(
σ ↑
k k′

)

|Mα
13| − UΛ

(
σ ↓
k −k′

)

|Mα
42|

∏

i6=α(Eik′ −Eαk′)
f(Eα

k′). (3.58)

The potential can be decomposed in the singlet/triplet representation, eq. (2.43),

U
(
k k′

σ σ′

)
= ΓΛ

(
σ σ′ σ′ σ
k k′ k′+Q k+Q

)

(3.59)

= U sk,k′
1

2

(
1 − δσ,σ′

)
+ U tk,k′

1

2

(
1 + δσ,σ′

)
(3.60)

4 This expression is very close to the text-book calculation of the BCS theory, where it is
found that ukvk = ∆/(2Ek) where uk and vk are transformation-components between new
and old operators, see for example [Fetter and Walecka 1971].
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and in the spin/charge representation, eq. (2.44),

U
(
k k′

σ σ′

)
= UCk,k′ + USk,k′

(
2δσ,σ′ − 1

)
. (3.61)

If the latter form is inserted into the gap definition (3.26) one obtains

Ak,σ =
1

2

∑

k′

UCk,k′
(

〈a†k′↑ak′+Q↑〉 + 〈a†k′↓ak′+Q↓〉
)

+
1

2

∑

k′

USk,k′σ
(

〈a†k′↑ak′+Q↑〉 − 〈a†k′↓ak′+Q↓〉
)

, (3.62)

σ being ±1, depending on the spin-index of the gap. As expected, UC cou-
ples to the charge part, while US couples to the spin part. This makes the
decomposition

Aσ
k = Ck + σSk (3.63)

reasonable, where Ck is the charge density wave, and Sk the spin density wave.
For a special case relevant in the numerics the gap equation (3.58) can be
simplified further. If the Pomeranchuk distortion is so that ξ̄k↑ = ξ̄−k↓ and all
gaps are real, if further the AF gap is of s-wave type and the π-pair and the
superconducting pair have d-wave structure, the matrices Mα

13 and Mα
42 have

the same value, which can be seen by direct calculation. Then the numerator
of (3.58) reads, after changing the summation of the second addend k ′ → −k′,

UΛ
(
σ ↑
k k′

)

|Mα
13| − UΛ

(
σ ↓
k k′

)

|Mα
42|

= |Mα
13|
(

UΛ
(
σ ↑
k k′

)

− UΛ
(
σ ↓
k k′

))

= |Mα
13|USkk′2σ, (3.64)

where σ is ±1 for up/down spin. In the third line (3.61) was used.

The gap equation for the Pomeranchuk distortion is

δµkσ =
1

2

∑

k′

∑

α

f↑,σk′,k|Mα
11| − f↓,σ−k′,k|Mα

22|
∏

l 6=α(E
l
k′ −Eαk′)

f(Eα
k′) +

∑

k′

1

2
f↓,σ−k′,k. (3.65)

As for the AF potential the spin-charge representation

fσσ
′

kk′ = fCkk′ + fSkk′
(
2δσ,σ′ − 1

)
(3.66)

leads to a natural decomposition of δµ into

δµσk = δµPk + σδµmk (3.67)

where δµPk is for example a spin-independent Fermi surface deformation in the
case of a d-wave, and δµmk is for example a ferromagnetic gap in the case of an
s-wave.
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The filling is

n = −
∑

k′,α

′∑

m

det (Mα
mm)

∏

i6=α(Eik′ −Eαk′)
f
(
(−1)m+1 Eαk′

)
, (3.68)

where the sum still runs over the magnetic BZ, indicated by the prime. The
filling is for k and k + Q outside the Λ-reduced BZ, the same as for the non-
interacting gas, as there all gaps are zero. The fraction in (3.68) is not unity
only if the π or SC gap is non-zero, due to the mixing of particles and holes.

If there are several locally stable solutions of the gap equations, one has to
compare the grand canonical potentials to distinguish globally stable solutions
from meta-stable solutions. In this work T = 0 is always assumed; finite T is
not considered since there fluctuation correction should be taken into account.

The grand canonical potential Ω is given by (3.30). In the limit T → 0 the
second part becomes

∑

k,α;Eα
k
<0

Eαk , (3.69)

which is just the sum over the negative eigenvalues.
To rewrite the c-number term in terms of the gaps, one has to invert the gap

definitions (3.24), (3.25), (3.26) and (3.28) to eliminate the expectation values
(or bosonic fields), which requires some care if the interaction-matrices5 do not
have full rank. Details can be found in the appendix (B.6). The c-number term
is obtained in the form6

Ec =
∑

i

∆2
i

vi
+
∑

i

π2
i

wi
+
∑

i

C2
i

2uCi
+
∑

i

S2
i

2uSi
+
∑

i

(δµPi )2

2fCi
+
∑

i

(δµmi )2

2fSi
.(3.70)

Here vi, wi etc., are the non-zero eigenvalues of the interactions, and ∆i, πi etc.,
are the coefficients of the gaps decomposed in eigenvectors of the associated
potentials. Combining this rewritten c-number term with (3.69) leads to the
desired zero-temperature grand canonical potential as a function of the order
parameters.

5 The interaction have finite dimension due to the discretisation in the numerical evaluation.
6 Where the various factors in front of the potential in the relation between the gaps and the
expectation values have been absorbed into the eigenvalues of the potential.



Chapter 4

AF Mean-Field Solutions

In this chapter we discuss the mean-field equation for the case of a purely
antiferromagnetic (AF) order parameter. It turns out that the structure is
much richer than the structure of the mean-field theory of a superconductor,
due to the possibility of Fermi surfaces even in presence of a finite AF-gap.
The results presented here are important for interpreting the results of the full
RG+MF calculation, given in chapter 6.

First the right hand side (RHS) of the gap equation will be discussed for
t′ = 0 and t′ 6= 0. Then in section (4.2) the solutions of the self-consistency
requirement, the corresponding filling and the corresponding grand canonical
potential will be analysed. Finally the connection to the renormalisation-group
equations will be made.

Some parts of the facts discussed here are known, but are scattered over the
literature: [Hirsch 1985; Lin and Hirsch 1987], [Sachdev et al. 1995; Chubukov
and Frenkel 1992], [Singh and Tešanović 1990], [Fazekas 2003], [Hofstetter and
Vollhardt 1998] and [Langmann and Wallin 1997, 2004]. Often the authors
contend themselves with studying the susceptibility, which turns out not to
be sufficient in all cases. Even where such a study determines correctly the
AF order it does not capture the doping dependence, since the filling strongly
depends on the size of the gap.

4.1 The Right Hand Side

The gap equation for a spin/charge-density wave with modulation Q = (π, π)
reads

Akσ = −
′∑

k′ω′σ′

Ak′σ′U
(
k k′

σ σ′

)

|Qk′σ′(iω′)| (4.1)

where the prime is marking the sum over the magnetic Brillouin zone. The
inverse propagator in Nambu notation is

Qk′σ′(z) =

(
ξk′ − z Ak′σ′

A∗
k′σ′ ξk′+Q − z

)

. (4.2)

35
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After performing the Matsubara sum, the gap equation reads

Akσ =
′∑

k′,α=±,σ′

Ak′σ′U
(
k k′

σ σ′

)

Eαk′σ′ −E−α
k′σ′

f(Eα
k′,σ′), (4.3)

The eigenvalues are given by

E±
kσ =

ξk + ξk+Q
2

±

√

(ξk − ξk+Q)2

4
+ |Akσ|2 (4.4)

= εt
′

k ±
√
(
εtk
)2

+ (Akσ)
2 − µ (4.5)

where we have used ξk = εtk + εt
′

k − µ with the anti-symmetric and symmetric
part under (π, π)-translation:

εtk = −2t(cos kx + cos ky)

εt
′

k = −4t′ cos kx cos ky. (4.6)

As εtk vanishes on the umklapp-surface the gap will have the largest impact
close to the umklapp-surface. There, the eigenvalues are

E±
k

∣
∣
kumklapp

= εt
′

k ± |Ak| − µ
∣
∣
∣
kumklapp

(4.7)

= 4t′ cos2 kx ± |Ak| − µ, (4.8)

see fig. (4.6). The two branches can, as a function of kx, have zeros even for
a non-zero gap. This is in contrast to the superconducting (SC) case, where
E±
k = ±Ek, with Ek > 0 if the SC gap is non-zero. An electron-pocket exists,

if E+
k = 0 for some k-values; a hole-pocket exists, if E−

k = 0. For t′ < 0 the
electron-pocket will be found to be around (±π, 0) and (0,±π), the hole-pocket
will be around (±π/2,±π/2).

If t′ and µ are zero, i.e., in the case of perfect nesting, E±
k = ±Ek and the

gap equation is the same as in the SC case for an attractive U . If µ or t′ are
non-zero the gap-equation will structurally change, leading to a much richer
behaviour compared with the SC case. Observe that µ and t′ enter only via the
Fermi functions, since

E±
k′ −E∓

k′ = ±2

√
(
εtk
)2

+ |Akσ|2. (4.9)

In the following a momentum independent AF gap Akσ = Asσ, with the
spin structure s↑ = −s↓ = 1 and T = 0 will be assumed. The slope of the RHS
of (4.1) with respect to A is given by

′∑

k′,ω′,σ′

U
(
k k′

σ σ′

)
sσ′

|Qk′σ′(iω′)| + 2

′∑

k′,ω′σ′

(A)2sσ′U
(
k k′

σ σ′

)

|Q(iω′)k′σ′ |2
. (4.10)

The first term can, in the limit A → 0 be interpreted as the AF-bubble in
the symmetric state, the second term as the anomalous contribution to the
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AF-bubble in the symmetry-broken state. The spin-density-wave form-factor
projects on the spin part US of the potential, which will be simply denoted by
U = US , in the following.

After performing the ω-sum, one obtains

∑

k′,±

′ 2U

E±
k′ −E∓

k′
f(E±

k′) −
∑

k′,±

′ 8UA2

(
E±
k′ −E∓

k′

)3 f(E±
k′) −

∑

k′,±

′ 4UA2

(
E±
k′ −E∓

k′

)2 f
′(E±

k′).

(4.11)

The f ′ term is due to the second order pole of (4.10). The term with f ′ can be,
at T = 0, expressed as a line integral due to f ′(x) = −δ(x) as

1

4π2

∫

dkx|∇E±
k |−1 UA2

(εtk)
2 + |A|2

√

1 +

(
dky
dkx

)2

, (4.12)

where ky is on the Fermi surface. While the first two terms in (4.11) are always
finite for a finite gap, this terms can become divergent due to the derivative
|∇E±

k |−1.
In absence of an external field the RHS is antisymmetric with respect to the

origin, therefore only the positive side will be drawn.

4.1.1 Zero Next-Nearest Neighbour Hopping

If t′ = 0 is assumed, the eigenvalues are given by

E±
k = ±

√
(
εtk
)2

+ A2 − µ. (4.13)

If |A| > |µ| the upper branch will be always positive, the lower always negative.
Thus, the RHS does not depend on µ, which enters only via the Fermi functions.
At |A| = |µ| one of the branches, say E−

k , changes the sign and the whole-
umklapp-surface is cut out of the integral (4.3). Thus the RHS has there a
kink, see figure (4.1).

The kink is associated with the appearance of an effective Fermi-surface,
found from E±

k = 0 to be

cos ky = ±δ/(2t) − cos kx, (4.14)

where δ =
√

µ2 −A2 = |εtk|.
The slope of the RHS is divergent at the kink, as will be shown in the

following. The term

∇E−
k =

2tδ

µ

(
sin(kx)
sin(ky)

)

(4.15)

vanishes with with δ → 0. With the help of (4.14) we get from

sin2(kx) + sin2(ky) = sin2(kx) + 1 − cos2(ky)

= 2 sin2(kx) +
δ

t
cos2(kx) + O(δ2) (4.16)
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Figure 4.1: The RHS of the AF gap equation with t′ = 0 for different µ. Due to
the appearance of an effective Fermi surface the RHS has a kink at |A| = |µ|.
Dashed line is the bisector. Coupling U = 2.0.

we get another zero for δ → 0 and kx → 0. The contribution to the slope (4.12)
becomes

∫ k̄x

0

µ

2tδ

1
√

2 sin2(kx) + δ
t cos2(kx)

1

4

4UA2

µ2

√

1 +

(
dkx
dky

)2

. (4.17)

k̄x is the crossing point of the Fermi surface with the border of the octant.
We restrict the discussion to the second octant, i.e., ky > kx > 0, and to the
magnetic BZ. Due to this 0 ≤ dkx

dky
≤ 1 so that the second square root term can

be neglected. The integrand becomes infinite close to kx ≈ 0, where cos kx ≈ 1
and sin kx ≈ kx can be employed. The integral is for δ → 0 thus dominated by

1

δ

UA2

2tµ

∫ 1

0
dkx

1
√

2k2
x + δ/t

c̃ (4.18)

∼ 1

δ

UA2

2tµ

c̃√
2

[

ln

(

kx +

√

k2
x +

2δ

t

)]1

0

(4.19)

∼ 1

δ
ln δ ∼ 1√

δA
ln

√
δA, (4.20)

divergent for δ → 0 or δA = (µ−A) → 0. The slope of one RHS is plotted in
figure (4.3).

This peculiar behaviour of the RHS for t′ = 0 leads to either fully gapped,
half-filled systems, or to systems with zero gap,1 as will be discussed in section
(4.2).

[Hirsch 1985] did similar MF calculations for t′ = 0 which he compared with
Monte Carlo (MC) data. Since he utilised the susceptibility and presumably
the bare filling he predicted a finite doping range with non-zero AF-gap in

1 Forcing the system to a certain filling can thus lead to phase separation.
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Figure 4.2: The effective Fermi-surface for t′ = 0. The effective Fermi surfaces
have the same shape as bare FSs with an effective chemical potential δ =
√

µ2 −A2.

contradiction with his MC data. However, our MF results agree qualitatively
with these MC data.

4.1.2 Finite next-nearest Neighbour Hopping

For t′ 6= 0 the Fermi surface can cross the umklapp surface. Due to this the
effective Fermi surfaces, i.e., the borders of the electron- or hole-pocket (defined
by E±

k = 0) have a more complex behaviour, and can not be described by a
single parameter δ like in the case2 t′ = 0. As the structure of the effective
Fermi surface determines widely the behaviour of the RHS of the gap equation,
it will be discussed in the following. t′ < 0 will always be assumed, t′ > 0 leads
to similar results.

If the gap is zero the eigenvalues reduce to:

E±
k = εt

′

k ±
∣
∣εtk
∣
∣− µ. (4.21)

As εtk < 0 (> 0) inside (outside) the magnetic BZ, E−
k is the free dispersion

inside, E+
k the free (π, π)-shifted dispersion outside the magnetic BZ.

Thus, the electron/hole-pocket picture is a mere reinterpretation, see figure
(4.4). If the Fermi surface crosses the umklapp surface, there is an electron-
and a hole-pocket. Those pockets touch on the umklapp-surface where the bare
Fermi surface crosses it. If the FS does not cross the umklapp-surface there will
be either of the pockets.
If now a finite gap is introduced, the pockets separate and shrink. This can
be understood by considering the dispersion on the umklapp surface, which is
given by eq. (4.8) and shown in figure (4.6). The two branches are shifted by 2A
against each other, thus for a non-zero gap the pockets separate. By increasing
A the size of the pockets is reduced.

2 The explicit expression is given by eq. (4.24).
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Figure 4.3: The slope of the RHS for t′ = 0, µ = 0.2. At A = |µ| a divergence
∝ (1/

√

|µ| − A) log(|µ| − A) is found.

The value of µ and the height of the branches, given by 4t′, determines for
which gap-size the pockets vanish. For a gap of A ≥ µ−4t′ the electron-pocket
vanishes, for A ≥ −µ the hole-pocket vanishes. In the following µ− 4t′ ≡ δvH
describing the energy distance of the bare Fermi surface from the van Hove
point will play an important rôle. To have half-filling with a finite gap both
pockets have to be closed3. This is obtained, if the gap is at least |A| ≥ −2t′,
for a system with µ = µ1/2 ≡ 2t′, see figure (4.6), right.

In the following we assume that the system is on the hole-doped side, i.e.,
the electron-pocket vanishes first. The electron-doped case will be discussed
briefly at the end of this section.

4.1.2.1 δvH = 0

The van Hove points cause a logarithmic divergence in the density of states.
This leads to a well known divergence of the first term in (4.11), being identical
with the RPA bubble of the symmetric system, for a vanishing gap. The diver-
gence at A = 0 leads, like it is generic in the SC case, to a solution for any U ,
see fig. (4.7).

The kink due to the opening of the hole Fermi surface in the RHS is at
|A| = |µ| = −4t′. For larger |t′| the kink will be at larger |A|, leading to a
smaller RHS close to the origin. A larger t′ thus reduces the size of the gap for
systems with µvH = 4t′, see figure (4.8).

3 Half-filling with both, hole- and electron-pocket, which could in principle also lead to half-
filling with Fermi surfaces, is not expected to be stable, as will be discussed later, see page
49.
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Figure 4.4: The pockets without a gap. Hole-pocket in black, electron-pocket
in red. In the absence of a gap the pockets are merely a reinterpretation of the
bare FS.

4.1.2.2 δvH > 0

For A = µ − 4t′ = δvH the electron-pocket vanishes, as stated before. To
determine the jump of the slope of the RHS due to the closing of the electron-
pocket consider (4.12). E+

k can be expanded around the van Hove points,
yielding (around (0, π))

E+
k = 4t′ + |A| − µ+ 2t′

(
−δ2x − δ2y

)
+ O(δ4x,y), (4.22)

thus becoming a circle with radius r2 = (|A| − δvH )/2t′. Therefore |∇E+
k | =

|4t′|r and the integral (4.12) can with εtk ≈ 0 be evaluated to

U
1

4π2

∫

dδx
1

4t′r

√

r2

r2 − δ2x
=

U

8πt′
, (4.23)

i.e., it stays finite for A ↗ δvH . Due to the vanishing FS a jump in the slope
occurs, which is independent of µ. It is plotted in figure (4.9).

4.1.2.3 δvH < 0

The situation for δvH < 0 is more complex. As the bare Fermi surface does not
cross the umklapp surface only a hole-like FS appears, which has a pocket-like
structure only for larger gap values.

For a gap-value a little bigger than |δvH | the branch E−
k becomes negative

at the van Hove points and a second Fermi surface appears there.4 It unites

4 This is also a hole Fermi surface, and is not to be mixed with the electron-pocket. The states
at the van Hove points are filled.
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Figure 4.5: With a gap the pockets shrink; here the electron-pockets have
almost vanished.

with the other FS for a larger value. This gap value is readily obtained from
the expression for the Fermi surface given by5

cos ky = − t2x− t′µx

t2 − 4t′2x2
±

√
(
t2x− t′µx

t2 − 4t′2x2

)2

+
µ2 −A2 − 4t2x2

4(t2 − 4t′2x2)
(4.24)

where x = cos kx. The gap-value for which the two pockets unite is determined
the vanishing of the square-root term (at x = cos(kx) = 1), which leads to

A2 = 4
(t2 − 4t′µ)2

t2 − 4t′2
+ µ− 4t2. (4.25)

The corresponding effective Fermi surface is plotted in figure (4.10).
The dispersion around the saddle point can be approximated as

E−
k = −4t′ cos k̄ − c0 − µ

+δyc1 + δ2xc2 + δ2y c̃2 + O(δ5) (4.26)

where

cos k̄ = − t2x− t′µx

t2 − 4t′2x2
(4.27)

is the saddle point of the effective dispersion, with the gap given by (4.25). It is
clear by construction, that for the saddle point gap c1 = 0, c2 > 0 and c̃2 < 0.
From the slope of the Fermi surface, which is close to one, it is clear that c2/c̃2
is close to one. The contribution of the FS to the slope of the RHS obtained is
given by (4.12) with

|∇E−
k | = 2

√

c2δ2x + c̃2δ2y = const · δx. (4.28)

5 By inverting E±
k = 0 one loses the sign of the square-root term. Thus the expression (4.24)

is either the electron or hole Fermi surface, which has to be determined by evaluating the
expression E±

k for the obtained values (kx, ky).
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Figure 4.6: Left: The dispersion along the umklapp surface. Due to a finite
gap the two branches are separated. Right: Existence of pockets as a function
of µ and A. The minimal gap for a fully gapped system is A = |2t′|. The line
below µvH is discussed in section (4.1.2.3).
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Figure 4.7: RHS for δvH = µ − 4t′ = 0, and its derivative, showing the well-
known logarithmic divergence at A = 0. Parameters: U = 2.25, t′ = −0.2.

The integral (4.12) can be approximated by

const

∫ 1

ε
dδx δ

−1
x

1

A
√

2 ∼ ln ε → ∞ for ε→ 0. (4.29)

as is expected for a saddle point.
As the distance of a gap in the RHS to the saddle-point-gap, eq. (4.25),

serves as an effective cut-off, also the slope of the RHS is expected to diverge
logarithmically as a function of the gap. The jump in the slope of the RHS
due to the opening of the second Fermi surface, and the divergence due to the
saddle point for a slightly larger gap value is clearly seen in figure (4.11).

4.1.3 Electron-doped side

To have the possibility of electron-doping, the hole-pocket has to close for a
smaller gap than the electron-pocket. Thus, following from the argumentation



44 CHAPTER 4. AF MEAN-FIELD SOLUTIONS

0 0.2 0.4 0.6 0.8 1
AF-Gap

0

0.1

0.2

0.3

0.4

0.5

0.6

R
H

S
t’=-0.15
t’=-0.2
t’=-0.25

Figure 4.8: RHS for different t′ with δvH = µ − 4t′ = 0 and U = 2.25 fixed.
The RHS is reduce by t′.
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Figure 4.9: The RHS for δvH > 0, and its slope in the inset, showing the finite
value and the jump at A = δvH = 0.15. Parameter: U = 2.25, t′ = −0.2.

on page 40, fig. (4.6), electron doping can only happen if µ > 2t′.
The jump of the slope of the RHS at A = |µ| is again calculated with (4.12).

The dispersion around (π/2, π/2) is given by

E±
k = ±|A| − µ± 2t2

|A|
(
δ2x + δ2y

)
+

(

−4t′ ± 4t2

|A|

)

δxδy + O(δ4), (4.30)

which describes a general ellipse. The integration in (4.12) is thus more difficult,
compared with jump at |A| = δvH with circular pockets around the van Hove
points; but having in mind that for T = 0 the Fermi function is a Heaviside
function, determining the integration area as the k-values for which E±

k < 0,
the derivative Fermi function can be rewritten as the change of the pocket-size

1

4π2

∫

dkxdky
UA2

(εtk)
2 + |A|2∂AAh

∣
∣
∣
A=|µ|

(4.31)
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Figure 4.10: The hole-like FS for different gaps. At A = |δvH | an additional
hole-like FS appears at the van Hove points, which unites for larger gap values
with the other FS to form a pocket. The effective Fermi surface with saddle
points away from (0,±π) and (±π, 0) is plotted in green.

with Ah being the area of the hole-pocket. To obtain this area rewrite E−
k = 0

as

1 −
(
δx
δy

)(
d n
n d

)(
δx
δy

)

= 0 (4.32)

with

d =
2t2

A
1

A + µ
and n =

1

2

4t′ + 4t2/A
A + µ

. (4.33)

The eigenvalues are λ± = d ± n, the main axes of the ellipse are along and
perpendicular to the umklapp surface, as expected. In new coordinates the
ellipse is given by 1 = x′2λ+ + y′2λ−, so that the area is

Ah =
√

λ−1
− λ−1

+ π. (4.34)

Performing the derivative

∂A|A=|µ|Ah = |A|
(
(2t2)2 − (2t′A + 2t2)2

)−1/2
. (4.35)

yields, again with εtk ≈ 0, the jump

2
U

4π
|µ|
(
(2t2)2 − (2t′µ+ 2t2)2

)−1/2
, (4.36)

where a factor two has been introduced due to the two ellipses inside the mag-
netic BZ, and the gap has been set to the jump-value A = |µ|.
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Figure 4.11: The RHS for δvH < 0. The slope of the RHS in the inset, showing
the finite jump at A = |δvH | = 0.05, and the logarithmic divergence for a
slightly larger gap A ≈ 0.05454.

For typical values6 |µ| < |4t′| and µ, t′ < 0 it can be assumed (2t′µ)2 �
8t′µt2 and the jump can be estimated to

U

2π

√
µ√

−8t′
≤ U

2π
√

2
, (4.37)

where in the last step again |µ| < |4t′| was used, i.e., the bare Fermi surface is
above the van Hove point δvH > 0; δvH < 0 is not interesting, see section (4.2).
Comparing this with the jump due to the electron-pocket (4.23), one gets an
estimate

√
2 > 4t′, for which the jump in the slope of the RHS is larger due to

closing an electron-pocket than for a hole-pocket, which is fulfilled throughout
this work.

In figure (4.12) the RHS for µ = −0.2 is plotted, with the kink at A = 0.2 for
the opening hole- and A = 0.6 for the opening electron-pocket. As a comparison
the RHS for µ = −0.6 is plotted having the hole-pocket and the electron-pocket
kink vice versa. The smaller kink for the closing electron-pocket leads to a
steeper RHS for the electron-doped systems (µ > 2t′) between the kinks. Thus,
the solution will depend more sensitively on U , and the free energy gain will
be smaller (see section 4.2). The different jump sizes contribute strongly to
the different behaviour for the electron and the hole-doped side in the phase
diagram.

For µ > 0 only an electron-pocket exists. Similar to the case δvH < 0 the
gap can create a saddle point in the effective dispersion, now at (π/2, π/2),
leading to a logarithmic divergence in the slope, but being very narrow, it leads
to an upturn in the RHS in only such a small regime that it hardly creates new
solutions, see figure (4.13).

6 Below µvH = 4t′ no electron pocket exists for any gap.
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Figure 4.12: The RHS for µ = −0.2 and for comparison µ = −0.6. The slopes
of the RHS in the inset. Due to the different jumps in the slope for vanishing
electron- and hole-pocket, the gaps-sizes differ. U = 2.0. The steeper slope
between A = 0.2 and A = 0.6 of the RHS for µ = −0.2 leads to a stronger U
dependence of the MF solution.

4.2 Solutions of the Gap Equation & Free Energies

The self-consistent solutions are given by the intersections of the bisector with
the RHS. Having in general more than one crossing point, one has to choose
the physically correct one. See figure (4.11) or (4.1).

The gap equation is obtained by demanding the vanishing of the derivative
of the free energy7 with respect to expectation values 〈a†kσak+Qσ〉. Thus, the
solutions are extrema of the free energy, being either a maximum or a mini-
mum8. A maximum is unstable and therefore unphysical. A minimum is called
metastable if it is only local, and stable if it is global. To have a free energy
with a lower bound the solution with the biggest gap has to be a minimum. As
minima and maxima alternate, it is easy to tell minima from maxima9. It is
therefore clear that a solution is a (local) minimum if and only if the bisector
has a bigger slope than the RHS in the crossing point.

The free energy is given by (3.30), which can be written as, if only the
AF-gap is non-zero,

Ω = −
∑

k

A2

2U
− T

∑

k,α=±

′
ln (1 + exp(−βEα

k )) . (4.38)

It is A = A↑ = −A↓ assumed with a constant potential U . For T → 0 the free

7 Actually the grand canonical potential Ω. Since no confusion is expected, free energy will be
used synonymously.

8 Saddle points are only found for special choice of parameters, and are of little importance.
9 A point in which the RHS touches with the bisector is of course a saddle point of F and to
be counted as a minimum and maximum at the same value.
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Figure 4.13: The RHS for µ = 0.05 > 0. The slope of the RHS in the inset.
The divergent slope is practically invisibly in the RHS plot.

energy reads

Ω = −
∑

k

A2

2U
+
∑

k,α

′
Eαk Θ(−Eα

k ). (4.39)

Since the gap equation is obtained by setting the derivative of the free energy
to zero, the area between the bisector and the RHS gives the free energy gain.

The filling is given by

n =
∑

k,±

′
f(E±

k ). (4.40)

This simple form, a sum over Fermi functions, is due to the fact that ∂
∂µE

±
k = −1

(in contrast to the superconduction eigenvalues), since the quasi-particles have
well defined charge. Calculating the filling one can plot the gap as a function
of n, see figure (4.18).

If t′ = 0 the zero solution can for a non-zero µ become meta-stable or even
stable, even though a non-zero solution exists, see figure (4.14). Observe that
the non-zero solution is always located at the same gap value. For the chosen
potential of U = 2.0 the zero solution becomes globally stable for µ ≥ 0.2484.

For t′ = 0 the system is either fully gapped and is therefore at half filling, or
has no gap, and is therefore at the same filling as the non-interacting system.
For a broad region metastable solutions exist.

If t′ 6= 0, µ and δvH = µ − 4t′ differ, the van Hove chemical potential is
µvH = 4t′. For a large enough U only the non-zero solution is a minimum.

For t′ 6= 0 systems with a finite gap away from half filling, having a FS, are
possible. The solution as a function of µ is plotted in (4.17). If µ is inside the
band-gap, µ ≈ 2t′, the solution is µ-independent, as one expects, since µ enters
the gap equation only via the Fermi functions. µ outside the band gap changes
the filling and the size of the gap, until the gap breaks down.
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Figure 4.14: Free energy for t′ = 0, U = 2.0. The position of the minimum
at non-zero gap values does not change with µ, while the energy gain strongly
depends on it. F (A = 0) is subtracted from all curves.

If a fully gapped solution (E+
k > 0 and E−

k < 0 ) exists, that is close to
µ = 2t′, in general the non-zero solution is unique10, see fig. (4.15). It stays
unique down to δvH = 0, see again fig. (4.15). For a slightly smaller µ the zero-
solution will become metastable, and for an even smaller µ the non-zero solution
will disappear, see fig. (4.16). A lower bound for this is given by −|A0| < δvH ,
where A0 is the gap at δvH = 0, see fig. (4.17). This is due to the fact that the
upturn of the RHS takes place at A = |δvH |, see section (4.1.2.3).

This behaviour of the solution as a function of µ is expected to be generic,
therefore for a large enough t′ the region for which metastable solutions exist
is rather small, and restricted to µ < µvH = 4t′. The region of fully gaped
solutions is small leading to a large region with doped finite AF solutions.

For a (meta-)stable zero-solution, the slope of the RHS for A = 0 has to
be lower than the slope of the bisector, i.e., less than one. For the values
U = 2.25 and t′ = −0.2 used here, metastable zero-solutions are found for
δvH < −0.01498. For δvH ≈ −0.04 the two solutions, A = 0, A 6= 0, have the
same free energy, see fig. (4.16), while the non-symmetric solution disappears
for δvH ≈ −0.05. In contrast to the t′ = 0 case the location of the minimum
changes with µ.

For a solution to exist at all, the slope of the RHS has to be for some gap
value bigger than one, and then become smaller for a bigger gap. The behaviour
away from δvH = 0 is dominated by the effective Fermi surface. For a reduced
slope at least one Fermi surface should close, yielding a solution with either a
hole- or electron-pocket, so that no finite solutions with an electron- and a hole-
pocket are expected. This argumentation is agreement with numerical findings,
where also a positive curvature of the RHS was always observed for gap values
which allow for a hole and an electron Fermi surface.
10Up to the sign, of course. For a gap-size very close to the break down value A = |2t′| a
zero solution develops, because the curvature of the RHS is positive (but very small) for
A < |2t′|. But this range of metastability being tiny it does not seem relevant in most cases.
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Figure 4.16: Free energy for t′ = −0.2, U = 2.25. The position of the minimum
and the free energy gain depends on µ. For δvH ≈ −0.04 the different solutions
have the same free energy. Only free energies for δvH ≤ 0 are shown, since only
there metastable states are expected.

4.3 RG and AF-Mean-Field Theory

This section aims to elucidate the relation between RG and AF-MF; this is
done by introducing a cut-off in the gap equation and changing the coupling in
such a way that the solution is independent of the cut-off. It is found that a
RG in the symmetric phase works well for large Λ, while for smaller Λ problems
appear, which are absent for a similar SC case. They are closely connected to
the possibility of first order transitions, that is, they are closely connected to
the existence of a FS with, and change due to, the AF gap.
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Figure 4.17: The AF gap as a function of µ, for t′ = −0.2 and U = 2.25. The
lines indicating the formation of effective Fermi surfaces: Hole pocket (h) in
black, electron-pocket (e) in red, opening of the secondary hole-like FS in pink.
With hole- and electron (e+h) pocket no finite solutions are expected to exist.
In the fully gapped region (g) no FSs exist. The secondary hole-like FS line is a
lower bound for the existence of a finite gap. In case of the existence of a finite
gap, metastability with respect to a zero gap solution is not checked.

This problem is important for the interpretation of the full flows in chapter 6;
it also motivated the work [Gersch et al. 2006].

Starting point is the gap equation

A = −
∑

kω

2AU
|Q(iω)| . (4.41)

If the integrand becomes Λ-dependent by a (here unspecified) cut-off function,
and also a Λ-dependent potential is allowed, one obtains

A = −UΛ
∑

kω

2A
|QΛ(iω)| . (4.42)

Demanding that the gap is non-zero and independent of Λ yields

0 = U̇Λ
∑

kω

2

|QΛ(iω)| − UΛ
∑

kω

2|Q̇Λ(iω)|
|QΛ(iω)|2 , (4.43)

where the dot marks the derivative with respect to Λ. Making use of the gap
equation in the first term one arrives at the flow equation

U̇Λ =
(
UΛ
)2∑

kω

2|Q̇Λ(iω)|
|QΛ(iω)|2 . (4.44)

It describes how the potential U has to be changed with Λ, to guarantee a
Λ-independent solution of the MF equation, i.e., to produce a set of physically
equivalent effective models.
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Figure 4.18: The gap as a function of the filling n, for t′ = −0.2 and U = 2.25.
Filling as a function of µ in the inset.

The choice of the cut-off function involves some arbitrariness. One common
way is

Q(z) =




(ξk′ − z)

(
χΛ
k

)−1 A
A (ξk′+π − z)

(

χΛ
k+Q

)−1



 , (4.45)

which will be used in the following. χk is the usual momentum shell cut-off
function (2.20).

4.3.1 Flow without Gap

If one, as an approximation, sets the gap in the flow equation (4.44) to zero one
obtains

U̇Λ = −
(
UΛ
)2

2
∑

kω

χ̇kχk+Q + χkχ̇k+Q
(ξk′ − iω)(ξk′+Q − iω)

, (4.46)

which corresponds to the particle-hole or RPA diagram of the RG equation
(2.37). It is also closely connected to the slope with respect to the gap of the
RHS of the gap equation, which is the bare susceptibility.

The solution of the flow equation is given by

UΛ = U0 + U0Π
ΛUΛ (4.47)

where the scale dependent ph-bubble is ΠΛ =
∑ |QΛ(iω)|−1 with A = 0. The

solution is easily checked by iterating the equation (4.47) to obtain the sum of
all RPA diagrams. This sum fulfils (4.46), as can be seen by direct calculation.
Since the potential is (trivially) separable, the solution can be rewritten as

UΛ =
U0

1 − U0ΠΛ
. (4.48)
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It is clear that the coupling diverges if the denominator vanishes. Since ΠΛ0 = 0
at the beginning of the flow, and ΠΛ=0 is the RPA diagram at the end of the
flow given by the slope of the RHS at A = 0, the ladder diverges for some scale
Λc, if the RHS has a larger slope then the bisector, i.e., if the free energy has
a (local) maximum. If the slope is smaller, i.e., the free energy has a (local)
minimum, the flow produces a sharp plateau in UΛ below a Λp, where no degrees
of freedom are left so that k and k +Q are part of the Λ reduced BZ. Observe
that a non-divergent flow does not necessarily exclude a finite gap solution.
Flows for different µ are shown in figure (4.19).

4.3.2 Flow with Gap

If the gap is non-zero, one obtains for a sharp cut off

∂Λ

∑

kω

2

|QΛ(iω)|

=
∑(

χ̇k∂χk
+ χ̇k+Q∂χk+Q

) 2

|QΛ(iω)|

=
∑

(

χ̇k

∫ 1

0
dχk∂χk

+ χ̇k+Q

∫ 1

0
dχk+Q∂χk+Q

)
2

|QΛ(iω)|

=
∑ χ̇kχk+Q

(ξk′ − iω)(ξk′+Q − iω) − χk+QA2
+

χkχ̇k+Q
(ξk′ − iω)(ξk′+Q − iω) − χkA2

,

(4.49)

where in the third line the Morris lemma [Morris 1994] was used

∫ ∞

−∞
dx δ(x)f(Θ(x), x) = δ(x)

∫ 1

0
dt f(t, x), (4.50)

which is just the chain rule, easily seen, if one chooses a concrete representation
of the δ-function. This flow equation is exact for the mean-field model. It was
derived from a MF equation with no external field. It does not destroy the
symmetry of the free energy as only A2 enters.

By choosing a sharp cut-off χΛ
k , say (2.20), the domain of the integration is

restricted.

4.3.3 Numerical Results

To get a quantitative understanding of the quality of approximating the flow
equation by the zero gap equation (4.46), it is integrated numerically. At any
scale Λ the mean-field equation is solved. The cut-off function is defined with
respect to the free dispersion, i.e., χΛ

k = Θ(Λ − |ξk|), as in the full RG. In the
following U = 2.25 and t′ = −0.2 is used.

The flowing coupling and the mean-field solution as a function of the cut-off
are plotted in fig. (4.19). The MF solution should be constant as a function
of Λ, as the low energy model should describe the same physics. For Λ > 1
this is very well fulfilled, but below a certain scale Λ ≈ 1 the solution changes
considerably. Thus, the zero gap approximation is not good any more.
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Figure 4.19: Flow of the coupling for different chemical potentials with zero gap
in Π̇Λ. Flow with a plateau in red. Inset: The associated gaps as a function of
the scale ΛMF. Parameters: U = 2.25, t′ = −0.2.

To get some insight into what causes the error, the RHSs of the MF equation
for the flows in fig. 4.19 with δvH = 0.4 is shown for different cut-offs Λ in
fig. (4.20).
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Figure 4.20: RHSs for δvH = 0.4 for different cut-offs. Below Λ = 0.4 the
behaviour changes qualitatively.

According to section (4.1.2.2) at A = |2t′| = 0.4 the electron- and the hole-
pocket close which should lead to a kink in the RHS. For Λ > 0.4 this is indeed
the case, but for Λ < 0.4 the RHS has already saturated. The van Hove point
and the point (π/2, π/2) are no longer part of the effective model; thus, the
kinks, which are due to the closing of the FSs close to these points, and which
are essential for the solutions, disappear. Therefore, the low energy model
cannot describe the correct physics. The flattening close to A = Λ results from
a saturation of the integrand in the Λ-reduced BZ and is not due to the Fermi
functions.
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To understand why the flow equation creates non-valid low-energy models
in this case, it is helpful to compare the zero-gap flow with a flow with the
correct gap, which is the gap solving the mean-field equation. By construction,
such a low energy model has to have the same solution as the original model.
The comparison is shown in figure (4.21).
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Figure 4.21: Comparison between exact and zero gap flow. The coupling of the
flow with a gap is smaller for ΛMF > |δvH | to have a sharp upturn at ΛMF =
|δvH |. The coincidence of the couplings close to ΛMF = |δvH | is accidental.
Inset: The gaps of the flow with and without a gap. The first is a constant
while the latter shows some deviations from the correct constant behaviour.

The gap is constant, as expected. For ΛMF > 0.4 the effective coupling is
smaller than before, but has a sharp upturn at Λ = 0.4, preventing the flow to
smaller scales11. The reason can be found in the behaviour of the factor of the
RHS of the flow equation ∂ΛΠΛ, given by (4.49), which is plotted in fig. (4.22).
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Figure 4.22: The RHS factor ∂ΛΠΛ as a function of the cut-off for the exact
and the zero gap flow.

The RHS factor of the zero-gap flow shows a kink at approximately Λ =
1.0,Λ = 0.8 and Λ = 0.6. While the first kink at Λ = 1.0 comes about when the

11At least numerically; it was not checked if the singularity is integrable.
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borders at ξk = −Λ and ξk+Q = Λ touch each other tangentially at the kx, ky-
axes, the second and third are due to a large integrand when the integrated
shell touches the Fermi surface at the bisector or, for smaller Λ, at the axis.
While the kink at Λ ≈ 1 remains the same for the flow with the correct gap,
the other kinks disappear as the Fermi surfaces are gapped out12.

For even smaller Λ < 0.4 the integrated shell lies partly in an area with
ξk < 0 and ξk+Q < 0, which can be interpreted as an electron-pocket for zero
gap (see section (4.1.2)). In the zero-gap case the integrand there is zero due
to the cancellation of the Fermi functions, see fig. (4.23), leading to a much
reduced RHS factor, and therfore a reduced feedback to the potential U Λ.

This is in contrast to the flow with a gap. Since the electron-pocket is
closed13 the large density of states close to the van Hove points contributes to
the integrand leading to the sharp upturn of the coupling close to Λ = 0.4,
fig. 4.21 and preventing the flow into non-physical regions.

(0,0) (π,0)
k
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(0,π)

k y

Figure 4.23: The reduced momentum space δvH = 0.4 for Λ = 0.5 (shaded).
Fermi surface black dashed and (π, π)-shifted Fermi surface red dashed, re-
striction |ξk| = Λ in black, |ξk+Q| = Λ in red. Integration region within the
electron-pocket, which does not contribute to the zero-gap flow in blue.

Therefore the problem is closely related to the fact that the AF has first
order transitions; an AF gap changes the Fermi surfaces strongly. Due to this
degrees of freedom contribute at finite gap to the RHS which are not evaluated
at zero gap, neither in the zero-field susceptibility, nor in the zero-field flow.
Therefore one has to be careful not to enter this unphysical region in the full
scheme.

Finally, one way to meet this problem will be suggested; it is not imple-
mented in the full RG. The newly developed ansatz of a flow into the symmetry-
broken phase with a counter term seems to be the better solution, in spite of
its technical complexity [Gersch et al. 2006].

12This is special for the half-filled system close to µ = 2t′; doped AF systems still have a FS.
13For all hole-doped systems with non-zero AF gap.
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To correctly account for the low energy degrees of freedom, the flow has
to be performed with the correct gap. But in general the solution of the low-
energy model is not known. Therefore one seeks a suitable gap which can be
introduced instead of the correct one into the flow equation, providing a better
approximation than the zero gap. This gap will be called counter-gap. In
figure (4.24) gap flows for different counter-gaps and the corresponding RHS
factors are shown. One finds, that for a counter-gap Ac = 0.4 = δvH only correct
contributions of Fermi surfaces and, more importantly, the correct contributions
of the van Hove singularities are taken into account. The too small gap in the
dominator leads to a diverging gap close to the break down of a low-energy
model, which is however restricted to a narrow region. Also away from half-
filling for hole-doping Ac = δvH seems to be a good choice, guaranteeing the
correct inclusion of the van Hove points, even though the effective FSs are
wrongly positioned.
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Figure 4.24: The RHS factor ∂ΛΠΛ for different gaps (left). The low energy
model solutions for different counter gaps. A counter gap Ac = δvH = 0.4 gives
reasonable results (right).

The concept of a counter delta can be generalised to the electron-doped
side, where Ac = −µ seems to be good choice.

However, the implications in a full scheme on the couplings in other but the
AF channel are difficult to estimate.
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Chapter 5

SC, Pi-Pair and Coexistence

In this chapter first the basic facts for the π-gap equation and for the supercon-
ducting gap equation are stated. Then, the interplay of the AF and SC gaps
and the influence on the π-pair, for the case which is relevant for the numerics
is briefly discussed.

5.1 Only Pi Gap

If only the π-pair gap is non-zero the quadratic part of the mean-field Hamil-
tonian is described by the matrix

Q(z) =

(
ξk′ πk
π∗k −ξ−k′+π

)

. (5.1)

Therefore the eigenvalues are

E±
k = εtk ±

√

(εt
′

k − µ)2 + |π|2, (5.2)

with εtk (εt
′

k ) being the t (t′) dependent part of the bare dispersion, see page 36.
If in the case of perfect nesting t′ = µ = 0, (5.2) simplifies to

E±
k = εtk ± |π|, (5.3)

i.e., the square root part vanishes, so that E±
k become identical for vanishing

gap values in the case t′ = 0. The Fermi functions therefore cancel in a wide
k-range yielding a π-gap equation that has a finite, nearly constant slope for a
small π-gap. This is in contrast to the eigenvalues in the SC case E±

k = ±Ek,
eq. (5.5). There only one of the Fermi functions contributes for T = 0, and
consequently the pole in the integrand leads to a diverging slope at ∆ = 0.

The gap equation reads

π∗ = −
∑

k,α=±

Wkk′π
∗

α
√

(εt
′

k − µ)2 + |π|2
f(Eα

k ). (5.4)

As for the SC case a potential is attractive if Wkk′ is in some channel negative.
The RHS is plotted in fig. (5.1). The slope of the RHS at π = 0 is not

enhanced, so that no self sub-stained solution is found for a reasonable potential.
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Figure 5.1: RHS of the π-pair equation for W = −2. A finite not too big t′ and
µ does not affect the qualitative behaviour.

5.2 Only SC Gap

The MF solutions of the superconductor are discussed in detail in the literature,
[Fetter and Walecka 1971], [Annett 2004]. This discussion will not be repeated
here. For completeness here the facts most important for this work will be
summarised. The behaviour is mostly determined by the main properties of
the bare Fermi surface and the interaction.

The eigenvalues are

E±
k = ±

√

(ξk)2 + |∆k|2. (5.5)

As both branches are non-zero for a non-zero gap no Fermi surface exists. A
typical RHS is plotted in fig. 5.2, black curve (AF=0). The slope of the RHS
at ∆ = 0 is infinite, due to the fact that the particle-particle bubble is always
divergent for T = 0, as long as ξk = ξ−k.

1 This leads to a solution for arbitrarily
small interaction. At T = 0 this solution is, for a k-independent potential with
negligible radial dependence,

∆0 =
ω

sinh(1/V D(εF ))
≈ 2ωe−1/V D(εF ) (5.6)

where ω is the bandwidth of the interaction, in BCS superconductors often
identified with the Debye frequency. In the second step it was assumed that
the interaction V is small. D(εF ) is the density of states at the Fermi level.
The critical temperature has a simple connection with the zero temperature
gap ∆0

2

Tc = ∆0/1.76. (5.7)

The transitions are always second order as a function of temperature.

1 This is nearly always the case, as this is implied by the time reversal symmetry.
2 This changes if the interaction is strongly peaked or suppressed at the Fermi level.
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The simple behaviour of the SC gap is in contrast to the AF mean-field
solutions, where no so simple relations for the gap at zero temperature or the
critical temperature can be given.

The combination with the RG will prove to work much better than for the
AF gap, cf. sec. 4.3. The important degrees of freedom for the SC gap are
those close to the FS, which would only treated by the RG and therefore not be
part of the low energy model for Λ → 0; but since the MF calculation is done
well above the divergence scale Λc, the low energy model contains always the
essential degrees of freedom for the SC gap, see page 68.

5.3 Coexistence

5.3.1 SC and AF

Of special interest is the case of a d-wave superconductor and an s-wave anti-
ferromagnet. This is on the one hand based on the experimental fact that these
order parameters are important in high-Tc materials, which is the motivation for
these calculations. On the other hand, evidence was found in earlier RG based
works for the Hubbard model, that the couplings in the s-AF and d-SC channel
and the corresponding susceptibilities are strongly enhanced towards low scales
Λ. Therefore in the numerics for the repulsive HM a d-wave superconductor,
∆k = −∆k̄, and an s-wave antiferromagnet, Ak,σ = Ak̄,σ, Ak,↑ = −Ak,↓ ≡ Ak

will be assumed, where k̄ is k rotated by 90 degrees. Otherwise the gap struc-
ture will not be fixed so that in the first octant of the BZ the values are not
assumed to have a certain structure. Assuming the d-wave SC and s-wave AF,
and further, that the π-gap is negligible it is straightforward to see that the
eigenvalues, given by

∣
∣
∣
∣
∣
∣
∣
∣







ξk −Ek ∆k Ak

∆∗
k −ξ−k −Ek A∗

−k

A∗
k ξk+Q −Ek ∆k+Q

A−k ∆∗
k+Q −ξ−k+Q −Ek







∣
∣
∣
∣
∣
∣
∣
∣

= 0, (5.8)

also have an s-wave structure, as the characteristic polynomial contains only
even powers of ∆.

In the following the influence of the SC gap on the AF gap and vice versa is
investigated. The näıve expectation is that the appearance of one of the order
parameters suppresses the other one. This is usually, but not always, the case.

In fig. 5.2 the RHS of the SC gap equation for t′ = µ = 0 is plotted. The
larger the AF gap is the more the SC RHS is reduced. The slope of the RHS is
finite for any finite AF gap, reflecting the fact that, for the parameters chosen
here, the FS is fully gapped by an arbitrarily small AF gap.

For a finite t′ = −0.2 and a chemical potential µ = 4t′ + δvH = 4t′ − 0.05
(below µvH = 4t′) the SC RHS is first increased and then decreased by the
presence of a AF gap, see fig. 5.3. The maximal increase is found for A ≈ |δvH |.
It is shown in sec. 4.1.2.3, that the effective FS can be enlarged by the AF gap
for δvH < 0, being largest at A ≈ |δvH |. Therefore, the RHS increase with the
AF gap is attributed to the larger FS.
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Figure 5.2: The RHS of the SC gap equation for t′ = 0 and µ = 0 with various
AF gaps present. An AF gap reduces the RHS.

Above the van Hove chemical potential µvH the expected behaviour is found,
see fig. 5.4, namely a reduction by the AF gap. The slope seems to be finite,
even though an infinite slope is expected; for all AF gaps in the plot pocket-
like FSs are open, albeit rather small and around (π/2, π/2), where the d-wave
interaction is weak, so that this infinite slope is presumably invisible due to the
restricted numerical resolution.

The change of the AF RHS with the SC gap can be derived from the change
of the SC gap with the AF gap. Remembering that the gap equations are
derivatives of the free energy and that the c-number term of the Hamiltonian
contains no mixed terms of the AF and SC gap one immediately sees

∂∆ RHSA = ∂∆∂AF = ∂A RHS∆ . (5.9)

Thus, an increase of the SC RHS for a certain AF gap value implies that the
AF RHS is also increased at this certain AF value by a finite SC gap.

In fig. 5.5 an AF RHS for t′ = 0 and µ = −0.2 is shown. For A > |µ| the
RHS is decreased by an SC gap, whereas for some smaller value the AF RHS is
increased. There the FS is strongly increased by the AF gap, which would also
lead to a strong increase of the SC RHS.

For a finite t′ = −0.2 and below the van Hove chemical potential δvH =
−0.05 a similar behaviour is found. For A < |δvH | the RHS is increased, while
for A > |δvH | the RHS is decreased by the SC gap. This is in agreement with
the corresponding SC RHS, fig. 5.3, where for a small AF gap an increase was
found, which became smaller for A > |δvH |.

As the AF RHS becomes more smooth in the presence of a SC gap the jump
as a function of µ in the AF gap can be reduced. This depends of course on
the chosen parameters. It was found numerically that the first order transition
of the AF gap can be changed to a continuous transition.

If the bare FS is above the van Hove points the AF RHS, fig. 5.3.1, is reduced
everywhere. This again is compatible with the SC RHS, shown in fig. 5.4.
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Figure 5.3: The RHS of the SC gap equation with finite t′ = −0.2 and a bare
Fermi surface below the van Hove points δvH = µ− 4t′ = −0.051 with various
AF gaps. A small AF gap A ≈ |δvH | increases the RHS, while it is reduced for
bigger AF gaps. This is attributed to the change of the effective FSs due to the
AF gap.

5.3.2 Interplay with the Pi-pair

As discussed in section 5.1 the π-pair needs a very big attraction to have a self-
consistent non-zero solution. Such a potential is not created in the RG flow, as
the relevant scattering is unimportant. But as pointed out by [Kyung 2000] a
π-gap can be created by the coexistence of the SC and AF gap. If we neglect
the π-pair on the RHS in its MF equation, the minor detM14 is given by

detM14 =

∣
∣
∣
∣
∣
∣





∆∗
k −ξ−k −Ek

A∗
k ξk+Q −Ek

−A−k −∆∗
k





∣
∣
∣
∣
∣
∣

. (5.10)

Since the EVs have s-wave symmetry, the minor has d-wave symmetry. There-
fore, the π-pair will be assumed to have d-wave symmetry, as the superconduc-
tor. If all spins of the π-pair RHS are flipped, the RHS remains the same; the
singlet SC gap and the pure spin-density-wave AF gap changes sign, ∆k → −∆k

and Ak → −Ak, so that the sign drops out in product of both gaps. Therefore,
the π-pair, created by the other two gaps, is a triplet gap.

If the potential were strictly zero, the only solution for the π-pair would also
be strictly zero, as was already mentioned by [Psaltakis and Fenton 1983]; this
is not in contradiction to the findings of [Kyung 2000], as there the expectation

value 〈a−k−Q↓ak↑〉 is discussed, while here the focus is on the mean-field or gap

πk = 4
∑

k′

WΛ
k,k′〈a−k′+Q↓ak′↑〉. (5.11)

The issue is the feedback of the π-pair on the other order parameters, and
it is the gap which couples back to the MF equations, not the expectation



64 CHAPTER 5. SC, PI-PAIR AND COEXISTENCE

0 0.05 0.1 0.15 0.2 0.25
SC

0

0.05

0.1

0.15

0.2

R
H

S SC
AF: 0.000
AF: 0.025
AF: 0.050
AF: 0.075
AF: 0.100

Figure 5.4: The RHS of the SC gap equation with t′ = −0.2 and a bare FS
above the van Hove points δvH = µ− 4t′ = 0.1 with various AF gaps. Since the
FS is reduce by the AF Gap the SC-RHS is also reduced.

0 0.1 0.2 0.3 0.4
AF

0

0.1

0.2

0.3

0.4

R
H

S A
F

SC: 0.00
SC: 0.02
SC: 0.06
SC: 0.10
SC: 0.14
SC: 0.18

Figure 5.5: The RHS of the AF gap equation for t′ = 0 and δvH = µ = −0.2.
The AF-RHS is reduced by the SC gap well below and increased well above µ.

values. The strength of the potential is therefore crucial; it will be found to be
numerically of little importance, see section 6.2.4.
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Figure 5.6: The RHS of the AF gap equation for t′ = −0.2 and δvH = −0.051.
Due to the increase for small and decrease for big A values due to ∆ the AF-
RHS becomes smoother.
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Figure 5.7: The RHS of the AF gap equation for t′ = −0.2 and δvH = 0.1. The
AF-RHS is decreased everywhere due the SC gap.
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Chapter 6

Numerical Results

In this chapter numerical results for the two-dimensional Hubbard model (HM)
from the combination of functional renormalisation group and mean-field cal-
culation are presented. As a function of the energy scale ΛMF, at which the
RG is stopped, different effective low-energy models are derived, which are then
handled within the mean-field approximation. The results thus in general de-
pend on the energy scale ΛMF. Therefore, one has to find a suitable criterion
to choose the solution.

One could hope that in a certain cut-off range the result does not, or only
very weakly, depend on the scale. At such scales the approximation involved in
the one loop RG and the mean-field approximation balance, i.e., the reduction
of phase space by the cut-off function is compensated by an appropriate increase
in the couplings, leading to a constant solution as a function of ΛMF, a plateau.
This is the case if the RG flow is mainly driven by one of the diagrams, which
is connected to the susceptibility of the dominant MF solution. Näıvely one
expects this behaviour to be the usual one, as the susceptibility growing most
strongly is often interpreted as indicator for the dominant symmetry breaking.

If, however, several diagrams contribute down to low scales, or if the dom-
inant MF solution is different from the most strongly growing susceptibility,
no such plateau is expected. There, another stop criterion is needed. In the
following, if not stated differently, the ratio between the largest gap value, ∆,
and the low-energy scale Λ is utilised. The motivation is twofold: on the one
hand it seems unphysical that a low-energy model creates energy scales which
are larger than those it contains initially. On the other hand one can view the
scheme used here as an approximation to an RG with symmetry-breaking, that
is an RG with flow equations for gaps and anomalous interactions. There, the
creation of a finite gap effectively serves as cut-off on the propagators, leading
to a saturation of the flow. This can be modeled by stopping the flow at a scale
ΛMF = ∆ · c, where the constant is c ' 1.

The so-called critical scale Λc at which the flow diverges in a certain channel
is sometimes interpreted as the scale for the dominant gap. As the AF gap can
have meta-stable zero solutions, this does not seem reliable; in this case the
flow stays finite, even though a finite gap is the correct solution. It was found
that this scale cannot be used as a reasonable stop criterion. As discussed in
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section 4.3, it is possible to flow into unphysical low-energy models, which one
has to bear in mind when analysing certain flows. It seems that these invalid
low-energy models lead to a Λc which cannot be taken as the scale for the
physical gap.

All numerical values in this chapter are given in units of the hopping t.

6.1 Attractive Hubbard model

Although the main focus of this work is on the repulsive Hubbard models,
it is also interesting to study the attractive case U < 0. In this model an
instability toward an s-wave superconductor already appears in a simple mean-
field calculation. It is known that mean-field calculations have a tendency to
overestimate the size of order parameters, or even predict phases which do not
exist in the exact solution. This is due to the fact that fluctuations, which are
not included in the MF calculations, usually reduce order parameters or even
destroy the symmetry breaking. The reduction of the gap was shown in a 1/d
expansion by [van Dongen 1991], in the 2D-Hubbard model by [Mart́ın-Rodero
and Flores 1992] and for a continuum model by [Kuchiev and Sushkov 1996].
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Figure 6.1: The SC s-wave gap as a function of the MF cut-off. Parameters
U = 1.5, t′ = −0.1, n ∼ 1. Patch is referring to the BZ discretisation, depicted
in fig. (2.1).

In fig. (6.1) a typical flow is shown. At Λ = Λ0 ≈ 4.66 no states are
integrated out by the RG. Therefore the MF solution is the solution for the bare
model. Treating high energy degrees of freedom by the RG leads to a reduction
of the gap. As this reduction is due to the two particle-hole diagrams, it is
interpreted as a ph-fluctuation renormalisation of the gap.

If these ph-contributions are suppressed, the change of phase space is com-
pensated by the changed interaction, also shown in fig. (6.1). This can be used
to check the numerics, as well as the quality of some of the approximations.
Observe that for the SC case these approximations are much better than for
the AF case presented in section 4.3. This is because the two involved particles
of the SC vertex are either both at the FS or away form it, while in the AF
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Figure 6.2: The gap renormalisation ∆MF/∆min for t′ = −0.1 and n ≈ 1
(δvH ≈ 0.1388).

case, involving momenta k and k + Q, this is only true in special cases. The
essential degrees of freedom for the AF-MF calculations are (parts of) the umk-
lapp surface, which might not be part of the low energy model well above Λc,
see sec. (4.3) for details. The essential degrees for the SC case are the states
close to the FS, which are only integrated by the RG in the limit Λ → 0, which
is not reached.
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Figure 6.3: The gap renormalisation ∆MF/∆min for t′ = 0 and µ = 0.

The most physical solution is assumed to be the minimal gap. There the
fluctuations had the strongest impact, while the increase for lower Λ is due to
the breakdown of the symmetric RG flow; there the approximation of the full
flow by a flow in the symmetric state breaks down.

In figures (6.2)-(6.4) the gap renormalisation, defined as the ratio between
the MF gap of the bare model and the minimal gap from the RG and MF
combination is shown. In fig. (6.2) the gap renormalisation increases steadily
with decreasing bare interaction, while in fig. (6.3) the gap renormalisation
saturates around U ≈ −1.0; for the parameters t′ = µ = 0 used here, the
bare FS includes the van Hove points leading to a strong log2-divergency in the
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Figure 6.4: The gap renormalisation ∆MF/∆min for t′ = −0.1 and δvH = µ −
4t′ = 0.

pp-diagram. The closeness to the van Hove points seems to lead to the to the
saturation at this scale of U , as the gap renormalisation for finite t′ = −0.1,
again with a bare FS including the van Hove points, shows the same saturation,
see fig. (6.4).

It was not investigated, whether this saturation is an artefact of the calcula-
tions or of physical origin. But it seems probable that the strong divergency of
the pp-bubble leads to a larger divergency scale Λc; this effect becomes larger for
smaller U , since there the RG integration gets closer to the vH points. Therefore
this saturation might be an artefact of the minimal-gap stop criterion.

6.2 Repulsive Hubbard Model

In the following the repulsive Hubbard model, U > 0, is discussed. The domi-
nant instabilities over a wide range of parameters are an s-wave antiferromagnet
and a d-wave superconductor [Zanchi and Schulz 2000; Honerkamp et al. 2001;
Halboth and Metzner 2000]. First calculations where only one of the gaps is
allowed, are presented. Then the interplay of both is shown. In section 6.2.4
the numerical results for the pi-pairing will be shortly discussed.

The stop criterion is the relation between the maximal gap value and the
cut-off Λ. It is always chosen to be Λ/∆ = 2.0, which seems reasonable in all
cases. The dependence on this ratio is discussed at the end of the chapter.

6.2.1 Only Superconducting Gap

The flow equation (2.37) produces an attraction for a d-wave superconductor
from the purely repulsive HM. A sizable attraction develops only at low scales.
Two plots are presented in fig. (6.5). While in the first case (left) a flattening
is seen before the gap diverges, although this flattening is not perfect, in the
second case no such feature appears. In the first case the bare FS is well away
from the van Hove points, whereas in the second case the FS is closer to the
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van Hove points leading to a contribution of all diagrams of the flow equation
down to very low energy scales. Therefore, no regime of flattening is found.

Usually for smaller initial U bigger ranges of compensation, or plateaus are
found, as Λc becomes much smaller, meaning that the ph diagrams do not
contribute any more well before the flow diverges.
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Figure 6.5: The SC gap as a function of the MF bandwidth ΛMF for two different
µ. The red line depicts the used stop criterion. U=2.5, t′ = −0.2, µ = −0.477
(left) and µ = −0.687 (right).

As a plateau can not always be identified, and even in these cases some
arbitrariness would be introduced in determining the exact position, the ratio
of the cut-off and the maximal gap value, that is the maximal value of the
SC-gap as a function of k, is used as a stop criterion. The criterion is depicted
as a dashed red line in the graphs. By this procedure the SC gap as a function
of µ is obtained, shown in fig. (6.6), left.
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Figure 6.6: The superconducting gap as a function of the chemical potential
(left), and as a function of the filling (right), if no AF gap is allowed. U = 2.5,
t′ = −0.2.

The superconductor has, as a function of the chemical potential, a dome-
like structure, with a maximum close to, but not exactly at µvH = 4t′ = −0.8.
While the scattering phase space is largest exactly at the van Hove filling, the
d-wave attraction increases for a little larger chemical potential, leading to a
small shift of the maximum.
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In fig. (6.6), right, the SC gap is plotted as function of the filling. As a
Fermi surface exists even at half filling, due to the lack of the AF gap, it is not
surprising that there also a finite SC gap is found.

6.2.2 Only Antiferromagnetic Gap

The Hubbard model produces an s-wave AF already on the mean-field level.
Similarly to the attractive HM (U < 0), the gap gets renormalised by fluctua-
tions. In contrast to the SC the AF can have first order transitions as a function
of the interaction, see chapter 4. Additionally, certain peculiarities can arise
when combined with an RG scheme, see sec. (4.3), which make the validity of
the here used method at very low scales ΛMF doubtful.

In fig. (6.7) the dependence of the AF-gap on the mean-field cut-off ΛMF

at δvH = µ − 4t′ = 0 is shown. Since the AF-gap equation has a solution for
arbitrarily small interaction at µvH , thus being similar1 to the SC case with
attractive U , a comparable behaviour is expected. Indeed the gap gets first
renormalised, then saturates, and finally diverges at a low energy scale Λc.
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Figure 6.7: The AF gap as a function of MF band-width ΛMF at δvH = µ−4t′ =
0. U = 2.5, t′ = −0.15. The scale dependence is similar to the SC case for the
attractive HM.

For µ < µvH the AF gap can discontinuously jump to zero if the potential
is below a certain value. In fig. (6.8) a run for δvH = −0.04 < 0 is shown,
where at a scale Λ ≈ 0.3 the potential is so strongly renormalised, that the gap
breaks down. For Λ scales little larger than this point the non-zero solution is
metastable with respect to the zero solution, but this appears only in a tiny
region for the here chosen U and t′, therefore no attention is paid to this fact
here.

If the potential is large enough, the AF is expected to show maximal gap
values much above µvH = 4t′ around µ = 2t′, where the electron and hole
pocket close for the same gap value A = |2t′|. A solution is only found if

1 But not the same. Due to the existence of the FS the Fermi functions effectively reduce the
integration area of the RHS, reducing the AF-gap compared with an SC-gap for the same
interaction strength.
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Figure 6.8: The AF gap for µ below µvH = 4t′. The first order transition as a
function of the interaction causes an abrupt break down of the gap. U = 2.5,
t′ = −0.15, µ = −0.64.

the gap is larger than |2t′|, leading to a fully gapped, and therefore half-filled
system, see section 4.2 for details. A run close to this point, leading already to a
half-filled system, is shown in fig. (6.9). A plateau is forming around Λ ≈ 0.75.
For smaller Λ < 0.5 the gap breaks down to a much smaller value, which is due
to the creation of the unphysical low-energy model, in which parts of the BZ,
essential for the MF calculation, are integrated out. This is possible because
of the very different Fermi surface topology of the ungapped and the gapped
system. This problem is discussed in detail in section 4.3 within a MF-exact
model. Therefore the plateau around Λ ≈ 0.75 has to be considered as the
renormalised, physical solution.
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Figure 6.9: The AF gap close to µ = 2t′ where half filling is forced by an
existing gap, by fully gapping the system. U = 2.5, t′ = −0.15, µ = −0.35.

If the potential U was not strong enough, the gap would break down, or be
zero already in MF theory, since the minimal AF gap is there A > |2t|′. In this
case the frustration due to t′ would lead to a half-filled system without an AF
gap, in contrast to the näıve expectation, and only in an (unsymmetric) region
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around µvH AF solutions would be found.

Applying the stop criterion ΛMF/A = const enables one again to plot the
gap as a function of the chemical potential. This is shown in fig. (6.10). The
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Figure 6.10: The AF gap as a function of µ Parameters: U = 2.5, t′ = −0.15,
3 patches. Thin, dotted lines mark the AF values for which effective Fermi
surfaces appear. Gap values larger then both lines correspond to fully gapped,
half-filled systems, below one line a pocket opens (here a hole pocket); no non-
zero solution is stable below both lines.

result is qualitatively similar to the unrenormalised MF calculation shown in
fig. (4.17), with a reduced U . Observe however that the solution is not strictly
constant around µ = 2t′ = −0.3. Changing µ should have no influence on the
solution as µ is within the gap of a fully gapped system. The slight dependence
is most likely due to the stop criterion, as it leads to effective low-energy models
which include different degrees of freedom, as Λ is defined with respect to the
FS, which is shifted by µ. Two systems for which the gap breaks down before
the stop criterion is reached are included as zero solutions; they show that here
again a jump in the AF order parameter occurs at a certain value δvH ≈ −0.035.
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Figure 6.11: The AF gap as a function of the filling, U = 2.5, t′ = −0.15. The
inset shows the jump in the filling due to the jump in the AF gap value for a
certain µ.
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The gap versus the filling is plotted in fig. (6.11). Again it is very similar
to the pure MF calculation with slightly reduced U , see fig. (4.18). The jump
of the AF order parameter leads to a jump in the density, which is illustrated
in the inset.

6.2.3 Interplay of both Gaps

In the following results are presented, where an SC-d-wave-gap and an AF-s-
wave-gap are both allowed. Only the hole-doped side will be considered. The
electron-doped side leads to difficulties, which are discussed in section (6.2.5).

If a large AF order parameter gaps out the FS completely, or reduces the FS
to a small pocket around2 (π/2, π/2), the SC gap will be zero or exponentially
small. Therefore it is expected to find SC solutions only close to or below
µvH = 4t′, where the effective FS is extended, leading to a reduced AF gap,
so that the SC gap can coexist with, or even suppress the AF gap. If the AF
breaks down, an SC gap has to be created, as for any small potential a SC is
created if an FS exists; the RG creates an attractive interaction in the d-channel
from the purely repulsive electron-electron interaction, albeit it might be small.
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Figure 6.12: Cut-off dependence of the AF and SC gap. Comparing the free
energy (not shown here) of the finite AF solution with the free energy of a pure
SC solution determines the stable one. For large ΛMF the finite AF solution is
preferred, while at ΛMF ≈ 0.35 the AF zero-gap solution has lower free energy.
The SC has inverse behaviour, being suppressed by the AF. Abbreviation ’p’
stands for ’patch’. Parameters t′ = 0, U = 2.0, µ = −0.13.

6.2.3.1 Zero Next-Nearest Neighbour Hopping

Fig. (6.12) shows the ΛMF dependence of the AF and SC for t′ = 0. The system
is fully gapped as long as the AF gap is present, therefore no SC appears, while
an SC gap builds up for ΛMF-values, where the AF gap is zero. It is shown in

2 As it is expected for the hole-doped case, see chapter 4.
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section (4.1.1) that for t′ = 0 there is a big range of µ where AF metastable
solutions exist; corresponding free energies are plotted in fig. (4.14). Thus the
free energy of the AF solution is compared with the pure SC solution, leading
to a range where the AF is metastable, see again fig. (6.12). It is not checked,
from which scale on the zero AF solution metastably exists, since the focus is
on the stable solution. It is assumed that the SC gap is too small to destabilise
the zero AF solution, i.e., to change the minimum with respect to the AF gap
of free energy at A = 0 to a maximum, which is in principle possible, see section
(5.3.1).
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Figure 6.13: Gap sizes and transition-µ for t′ = 0. The phase diagram in the
inset. Dotted lines depict change from pure AF to pure SC solutions.

Depending on the scale where the AF gap breaks down, the stop criterion
leads either to a pure SC or a pure AF solution. The phase diagram and the
gap sizes are shown in fig. (6.13); there is always a sharp µ for which the system
changes from the SC to the AF state, as no coexistence is found. The SC gap
becomes very small for small U , so that for U = 1.0 the SC gap is practically
invisible.

6.2.3.2 Finite next-nearest Neighbour Hopping

The results change qualitatively for a finite t′. Now the SC and the AF gap
can coexist. A typical ΛMF-dependence of the gaps is shown in fig. (6.14).
The nonzero AF gap, coexisting with an SC gap, is nearly always the stable
solution, and only in a very narrow range a pure SC state is preferred. Therefore
further on a nonzero AF gap will be chosen, if it exists at all, and no check of
metastability of the solution with a finite AF gap with respect to a pure SC
state will be performed.

In fig. (6.15) the corresponding phase diagram is presented. For a medium-
sized bare interaction of U = 2.0 coexistence is found close to µvH = 4t′, for
lower µ the superconductor wins3. AF dominates going towards µ1/2 = 2t′,

3 Here a finite AF solution with a FS is considered to be a pure AF already if the SC is
numerically zero (at least 10−3 smaller the the AF).
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Figure 6.14: ΛMF dependence of the AF and SC gap for finite t′ = −0.1,
U = 2.0, µ = −0.401, and comparison with a pure SC state. The free energy
determines which of the solutions is stable and which is metastable. Only the
anti-nodal SC gap value is shown.

at which half filling is forced, if a AF gap exists, see page 40. At µ1/2 for an
AF solution the frustration by t′ is too strong so that the SC takes over again.
However, analysing the corresponding RG+MF-run, one can see that the AF
gap is close to survive for µ = µ1/2.

For larger U = 2.5 the situation resembles the t′ = 0 case, having less or no
coexistence, and an abrupt change from the AF to the SC dominated system.

For smaller U the AF range is reduced more and more; first the frustration
of the AF gap due to t′ becomes too big at µ1/2, where the AF system was fully
gapped and therefore half-filled. For even smaller U the range where the AF is
destroyed is growing towards µvH until the superconductor gap is the only one
over the whole range of µ.

At µvH = 4t′ the pp and the ph bubble diverge, which is interpreted as
competing instabilities of SC and AF type. This point is therefore of special
interest and is studied in the following. The corresponding plot is presented
in fig. (6.16). At a given U for small t′ the AF wins, as expected. There the
system is close to half filling, leading to no or only a small FS. For intermediate
t′ a coexistence region is found, while for big t′ the superconductor wins. This is
in qualitative agreement with earlier findings, based on flows of susceptibilities
[Halboth and Metzner 2000]. The numerical values do not fit perfectly, which
was expected because they depend on the exact stop ratio in this scheme, and
on the break size4 of the susceptibilities in the other. However the methods
should be most comparable for µvH , since there not first order transition is
expected, making the susceptibility a reasonable indicator5.

The possibility of having a doped AF and the coexistence with the SC due

4 The large but finite size of the susceptibilities which determines the divergence scale Λc in
the numerics; the true divergence point can of course not be determined numerically.

5 It is, however, not guaranteed that a stronger divergence of the susceptibility necessarily
leads to a larger free energy gain of the symmetry-broken state.
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Figure 6.15: The phase-diagram for finite t′ = −0.1. For large U it resembles
the t′ = 0 case, while for lower U the AF is frustrated, and destroyed starting
at µ1/2 = 2t′, leading to a superconducting system. For moderate U a range of
coexistence is found.

to a finite t′ seems to be the most interesting case and is examined in more
detail in the following. If the interaction is strong enough to create an AF gap
A & |2t′| at µ = 2t′ half filling solutions are possible, providing a guideline for
the parameters U and t′. The first three sets of data are discussed with a bare
interaction of U = 2.5 and with different t′ = −0.2,−0.15,−0.11, to understand
how in detail the gaps depend on the next nearest neighbour hopping. Then a
system with t′ = −0.11 but a smaller U = 2.25 is presented. For higher U or
lower U the system is similar to t′ = 0 or always superconducting, respectively.

For U = 2.5 and t′ = −0.15, fig. (6.17), the AF gap at µ = µ1/2 = −0.3 is
A ≈ 0.42. Therefore, the system is fully gapped and half-filled. The SC gap is
numerically zero, and is expected to be truly zero due to lack of a FS. Towards
the van Hove chemical potential µvH = 4t′ = −0.6 the AF solution crosses the
line depicting the appearance of a FS. The AF gap size is therefore reduced, but
stays finite. The SC gap is numerically still zero, even though a tiny value is
expected, as in the presence of a FS a finite attraction always creates a SC gap.
However the FS being small, and close to the points (π/2, π/2), see fig. (6.21),
the SC gap is strongly suppressed.

Close to µvH the AF gap is strongly reduced and a sizeable SC gap appears,
which becomes bigger than the AF gap for an even smaller chemical potential.
For an even lower µ the AF gap is truly zero.

In fig. (6.18) the same data is plotted as as function of the filling and, for
comparison, the results of the calculations where only SC or only AF is allowed.
As expected, the AF gap is maximal at half filling. The AF gap has the same
size as in the only-AF calculation, while the SC gap, being finite in the only-SC
calculation, is now suppressed to zero. At the point where the superconductor
wins over the AF a jump in the filling is found. This is, as in the pure AF case,
due to the jump in the AF gap, which strongly changes the filling.
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Figure 6.16: The phase diagram at δvH = 0. For small t′ the AF dominates,
while for large t′ the system is purely superconducting, in contrast to t′ = 0
a coexistence region is found. Phase-diagram in the inset, line marking the
cross-over.

For three different choices of µ, or fillings, the gap structure and the effective
FSs are shown in figures (6.19)-(6.21). In the numerics only the angular part of
the k-dependence was taken into account. The angle is measured with respect
to one crystal axis. In fig. (6.19) a doping with zero AF gap and finite SC
gap is chosen, the d-wave gap structure is clearly visible. The k-dependence is
generated by the RG, and is not assumed to have a special form. Frequently,
in previous calculations a special form, for example ∆ (cos kx − cos ky), was
assumed. The effective (gapped) Fermi surface is identical to the bare one.

For a µ close to half filling, fig. (6.21), the SC gap is numerically zero. The
AF gap has s-wave-structure, with a slight enhancement at the crystal axes.
The FS is a small hole pocket around (π/2, π/2). The smallness of the FS and
the weak d-wave potential for the SC around the nodal points lead to a strong
suppression of the SC gap.

In the coexistence region, fig. (6.20), the FS has extended to be of nearly
the same size as the bare one. However, the small part at the van Hove points
between hot spots and the crystal axis is not part of it. Due to this big FS
which is also closer to the van Hove points than the one in fig. (6.21) a finite SC
gap is possible. The enhancement of the AF gap at the crystal axis is stronger
than in fig. (6.21).

For a comparison, now two further sets of data are discussed, having the
same bare potential U = 2.5, but a larger t′ = −0.2 and a smaller t′ = −0.11.

For smaller t′ = −0.11 the data are shown in fig. (6.22) and fig. (6.23). The
maximal values of the AF gap are obtained close to µ = µ1/2 = 2t′ = −0.22, for
half filling. It has the approximately same value as the half-filled AF value in
the t′ = −0.2 case. This is in agreement with the pure mean-field calculation
of chapter 4, where it was found that the AF half-filling solution, if it exists, is
independent of t′. It is also expected to be independent of µ for a fully gapped
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Figure 6.17: Gaps as a function of µ for U = 2.5, t′ = −0.15, ΛMF/∆ = 2.0.
Lines for which FSs disappear due to the AF gap are depicted. Coexistence is
found close to µvH = 4t′.
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Figure 6.18: Gaps as a function of the filling for U = 2.5, t′ = −0.15. ΛMF/∆ =
2.0. Towards half filling the AF dominates, while for strong doping the SC wins.
Coexistence is found in the cross-over region. The AF gap value at half filling
is not unique, since a slight µ-dependence of the half filled solution was found,
see fig. 6.17. For comparison results from calculations where only the SC gap
or only the AF gap was allowed are shown.

system, which is not fulfilled very well here. This problem was already discussed
in sec. (6.2.2), and is stronger here, since the gapped µ-range is rather large.

Since the region (as a function of µ) of the half-filled system is larger, the
region of the doped AF is smaller, and in contrast to the t′ = −0.15 case the
AF is still dominant at µvH = −0.44 leading to a smaller range of coexistence.
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Figure 6.19: The gap structure as a function of the angle with respect to a
crystal axis for strong doping n = 0.8623, µ = −0.6201 (left); the effective
(gapped) Fermi surface is on-top of the bare FS (right). The AF gap is zero
resulting in a system with a pure SC order parameter. Patches are depicted by
thin dashed lines.
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Figure 6.20: The Gap structure and the Fermi surfaces at µ = −0.59, n =
0.9063, AF and SC coexist.
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Figure 6.21: The Gap structure and the Fermi surfaces at µ = −0.4, n = 0.99.
Close to half filling the AF dominates and the SC gap is numerically zero.



82 CHAPTER 6. NUMERICAL RESULTS

-0.6 -0.5 -0.4 -0.3 -0.2µ1/2µ
vH

µ

0

0.1

0.2

0.3

0.4

0.5

G
ap

s

SC Gap
AF Gap

Figure 6.22: Gaps as a function of µ, for a smaller t′ = −0.11 than before
(fig. 6.17). The fully gapped region becomes larger, while the doped region
becomes smaller. Solutions at µvH are closer to half filling so that there the AF
gap still dominates. Parameters: U = 2.5, Λ/∆ = 2.0.
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Figure 6.23: Gaps as a function of the filling for U = 2.5, t′ = −0.11, Λ/∆ = 2.0.
The half-filled AF gap is not unique due to the µ-dependence of the fully gapped
solution.

This becomes clear if one compares with the t′ = 0 case, fig. (6.13). There, a
jump from the AF fully gapped, half-filled system to a pure SC state was found;
in a finite region around µ = 0 ≡ µvH the AF is the only solution. The solution
for t′ → 0 should more and more resemble the t′ = 0 case.

For the larger t′ = −0.2 the coexistence region grows and is shifted to
higher µ, being situated now well above the van Hove chemical potential µvH ,
see fig. (6.24). The jump of the AF gap in the coexistence region is much
smaller, and therefore also the jump in the filling. The magnetic frustration
due to the diagonal hopping t′ is now so strong, that for µ = µ1/2 = 2t′ the
interaction renormalisation leads to a break-down of the AF gap, so that even
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at half filling a superconductor is found. Surprisingly, for a finite doping the
AF gap is still finite. Fluctuations might change this since the free energy gain
of this solution close to the value for which an electron pocket opens is rather
small, see chapter 4.

If the bare interaction is reduced while keeping t′ fixed, the range with
a non-zero AF gap is further and further reduced, until the AF gap is zero
everywhere leading to a superconducting ground-state for any doping.
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Figure 6.24: Gaps as a function of µ for U = 2.5, t′ = −0.2. The frustration
due to t′ becomes to big close to µ1/2.
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Figure 6.25: Gaps as a function of the filling. U = 2.5, t′ = −0.2. At half filling
the AF gap is zero yielding a SC ground state.

If for t′ = −0.11 the bare potential is reduced from U = 2.5 to U = 2.25,
figures (6.26) and (6.27), the half-filled µ-range becomes smaller, and the range
of the doped AF bigger; also the relative jump of the AF gap in the coexistence
region becomes smaller. Qualitatively the plot resembles the diagram for U =
2.5 and t′ = −0.15.

The jump of the AF gap from a finite to a different but also finite value
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Figure 6.26: Gaps as a function of µ. U = 2.25, t′ = −0.11, Λ/∆ = 2.0.
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Figure 6.27: Gaps as a function of the filling. U = 2.25, t′ = −0.11, Λ/∆ = 2.0

close to µvH = 4t′ is surprising (see fig. 6.17, fig. 6.18). It is due to the fact
that the AF gap for the two calculations breaks away at a finite ΛMF-scale, so
that the stop criterion in one of the calculations is reached due to the AF gap
and in the other, where the AF gap breaks away for slightly larger ΛMF, due
to the SC gap. Typically the SC gap is smaller at this scale. This leads to to a
jump in the scale ΛMF, down to which the RG is employed and thus to a jump
in the AF gap. Therefore, the way the jump is created is closely connected to
the stop criterion, and might therefore well be an artefact of the method.

The jump of the AF gap from a finite value to zero, seen before in the pure
AF case, is not always observable any more if a SC gap is allowed. It is possible
that the inclusion of the SC gap changes, for suitable values of the potential,
the AF transition to a continuous one, see section 5.3.1. It is, however, difficult
to resolve this area well, because the numerics is very involved there; the RHS
of the AF gap has nearly the same slope as the bisector (similar to a RHS at the
critical point) leading to very bad convergence of the self consistency equation.
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The dependence on the stop ratio is shown in fig. (6.28). It can be seen
that the overall picture does not change much. The strongest change is in the µ
value, for which the crossover between AF and SC is found. The amplitude of
the SC gap changes moderately. If plotted against the filling the AF gap does
hardly change, as the AF gap size strongly determines the filling.
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Figure 6.28: Dependence on the stop ratio Λ/∆. Qualitatively the results
change only slightly.

The value ΛMF/∆ = 2.0 used here proved to work well in all cases for a bare
coupling of U ≈ 2. The gaps are at or close to a plateau, if it exists. The energy
cut-off ΛMF of the systems where the AF gap dominated were well above the
cut-off of the invalid low-energy model discussed in section 4.3.

6.2.4 The Pi-pairing

It was found in section 5.1 that the pi-pair needs a big attractive potential
to have a self consistent non-zero solution. No strong attractive interaction
is created by the RG, but instead a repulsive d-wave component is found, see
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Figure 6.29: The RHS of the d-wave pi-pair, with and without other gaps, see
text. Since the RHS is negative for positive π-gap values the interaction is
repulsive.

fig. (6.29). Following [Kyung 2000] it was mentioned in section 5.3.2 that a
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π-gap is created if the SC and the AF coexist. The RHS of the pi-pair in
presence of a finite s-wave-AF and d-wave-SC gap is also shown in fig. (6.29);
the gap sizes are taken to be the same as in the system depicted in fig. (6.30)
at Λ = 0.2485, where the two gaps are of similar size, and the biggest effect on
the RHS of the pi-pair is expected. The RHS is indeed nonzero at zero π-gap.

The self-consistent solution, given by the crossing point with the bisecting
line, is of the same order as the zero gap value, but is difficult to reach by
iteration, since the slope of the RHS is negative. Therefore, the self-consistent
solution is replaced by the value of the RHS at π = 0, i.e., by the non-self-
consistent or direct value. The direct value of the π-gap for one run is plotted
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Figure 6.30: A coexistence run with the pi-pair, calculated non-self-consistent.

in fig. (6.30). It is indeed biggest close to Λ = 0.2485, where it is π ≈ 0.004,
which is two orders of magnitude smaller then the other gaps. It is therefore
neglected in the other calculations. This finding is in agreement with findings
for the t− J model of [Yamase and Kohno 2004].

6.2.5 Electron-doped Side

All data presented so far were for hole doped systems. Here, some results for
the electron-doped side are presented. The stop criterion plays an essential rôle
for determining which degrees of freedom are treated by the RG and which are
treated within the MF approximation. Unfortunately, no satisfactory criterion
was found for the electron doped side.

It was discussed in section (4.1.3) that the solutions of the AF mean-field
equation for µ > 2t′, where the electron-doping is possible, differ from the side
(µ < 2t′, t′ < 0), where the hole-doping is possible. Going away from the half-
filled state the AF solution decays faster on the electron-doped (e-doped) side
than on the hole doped (h-doped) side as a function of µ, see fig. (4.17), which
finds its reason in the different properties of the electron and the hole pockets.
Furthermore, while on the h-doped side a µ = µvH = 4t′ exists for which for
an arbitrarily small interaction an AF solution is found, nothing comparable
exists on the e-doped side.
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Most importantly, for the e-doped side the gap’s dependence on the inter-
action is much stronger then on the h-doped side, see again section (4.1.3) and
fig. (4.12).
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Figure 6.31: The AF gap for electron doping µ > 2t′ as a function of the
MF bandwidth ΛMF. The red dashed line shows the standard stop criterion.
It does not allow entering the doped regime for a big range of µ, due to the
long persistency followed by a rapid change of the gap. Parameters: U = 2.9,
t′ = −0.15 and µ = −0.1.

In fig. (6.31) the AF gap’s dependence on ΛMF is shown. For large scales the
gap is only slightly renormalised; at a scale ΛMF ≈ 1 the gap value allows the
appearance of an electron pocket, leading to a much more sensitive dependence
on the renormalised interaction, resulting in a strong renormalisation in a small
range of ΛMF. At even lower scales the gap changes only slightly with ΛMF and
saturates to a much smaller gap-value.
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Figure 6.32: The AF gap as a function of the filling on electron doped side. The
stop criterion differs from the one used before, see text. U = 2.9, t′ = −0.15.

Due to this behaviour the stop criterion, being the ratio of gap and ΛMF

used in part before, causes jumps of the gap as a function of µ, which have to
be considered as artefacts. No satisfactory criterion was found. These jumps



88 CHAPTER 6. NUMERICAL RESULTS

are similar to the jumps from a finite to a different finite AF-value discussed
on page 84, but are much bigger here. In section (4.3) it was argued that
unphysical low-energy models are created on the e-doped side for ΛMF ≤ |µ|.
A stop criterion ΛMF = c · |µ|, c > 1, might produce reasonable results over
a wide range, but it surely fails, if a finite solution is expected at µ = 0. In
fig. (6.32) this criterion, with c = 2.0, is used. The result resembles the result
from the pure AF mean-field calculation. However, a very strong ambiguity
at half filling is found. For the chosen parameters no gap was found at µ = 0
already for large ΛMF. Being unable to find a satisfactory stop criterion, a
systematic investigation of the e-doped side was impossible.



Chapter 7

Conclusions and Outlook

In this thesis a new method to gain insight into the symmetry-broken phase
of systems with competing instabilities, namely a combination of a functional
renormalisation group (RG) and an extended mean-field (MF) calculation, was
investigated. The ground state phase diagram, the gap amplitudes as well as
gap form-factors were computed for the two dimensional Hubbard model at
weak to intermediate couplings.

In contrast to earlier fermionic functional RG methods a controlled step into
the symmetry-broken phase was made. While in older schemes the instability
towards a certain order parameter had to be read off from growing couplings or
susceptibilities, here the order parameters could be calculated. The scheme used
here is more controlled, since it was possible to stay with the RG in a regime
where the couplings are still of moderate size. Large couplings invalidate the
one-loop approximation usually made. It also became clear that a large coupling
or susceptibility does not guarantee a large gap or a large free energy gain.
Furthermore, coexistence of the antiferromagnet and superconductor could be
investigated. Also the gap dependence of the filling, which can strongly deviate
from the filling of the bare system, could be determined. This can for example
lead to a finite range of the chemical potential µ where the filling is constant.

The functional RG allowing for gaps and anomalous vertices, which might
be an alternative, leads to considerably larger analytical and numerical effort,
so that only simple models have been treated so far.

A new derivation of coupled mean-field equations was presented. Although
not being the first one, the procedure used here has several advantages over the
former ones. Most importantly the derivation is very general and can easily be
adapted to other problems. This is due to the fact that only little use of the
specific gaps or the model used here was made. In spite of their generality the
derivations are easier and more transparent than the former derivations.

To be able to understand combined RG+MF calculations a detailed under-
standing of the pure antiferromagnetic (AF) mean-field theory was necessary.
A transparent picture emerged. The effective Fermi surfaces (FS) determine
most features, so that understanding the FS is the key to understanding the
AF gap solutions. The possibility of metastable phases and a strong dependence
of the filling on the gap was found. These two facts are often not taken into
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account in similar works which only consider the susceptibility and therefore
arrive sometimes at misleading results.

The first-order transition or even only the proximity to a first order transi-
tion was found to be problematic for this RG+MF scheme, and is expected to
affect also other methods based on susceptibilities. The problem was discussed
in detail for a purely AF model.

Some analytical insight into the interplay of SC and AF was presented.
Unexpected at first sight, but clear after the discussion of the effective FSs of
the pure AF mean-field theory, the AF gap does not always reduce an SC gap,
but can as well increase it. Since the gap equations are not independent, but
are connected as derivatives of the grand canonical potential, similar behaviour
is found for the AF gap equation.

Several extensions to the scheme presented here are promising.

The numerical treatment of ferromagnetic order and Pomeranchuk distor-
tion might elucidate their importance in the Hubbard model. Especially a
Pomeranchuk distortion with d-wave symmetry has been analysed in recent
years [Halboth and Metzner 2000; Neumayr and Metzner 2003; Yamase et al.
2005]. In certain regions the charge density wave might play an important rôle.
Thus, investigating further order parameters or form factors, partly already
implemented in the numerics or easy to implement within a short time, might
be rewarding.

Gap structures have been calculated. Some experimental features result
from details of the momentum dependence, such as the heat-conductivity of the
d-wave-SC state, [Durst and Lee 2000]. A detailed study of the gap-structure
might give some new insight into experimental data, [Sutherland et al. 2003;
Sun et al. 2006].

Further discussion of the interplay of the antiferromagnetic and supercon-
ducting gap seems very interesting. Especially the fact that below the van Hove
chemical potential µvH = 4t′ the presence of one gap can increase another gap
is unexpected and, therefore, worth to be investigated further. Even if no self-
consistent solution is found for gap sizes which increase each other, a remnant
of this effect could still show up in calculations including fluctuations.

The mean field-equation for the AF gap was discussed in detail. Since all
main features of the bare MF calculation survive in the combined method, a
detailed comparison with experimental data could elucidate whether the ob-
tained results are accidentally similar to high-Tc materials, or catch some of
the true physics. Three facts come into mind: first, the pocket structure, which
should be seen for example in ARPES, second, the very existence of the Fermi
surfaces, leading to a metallic state where the conductivity could be strongly
suppressed by impurities and third, the effective band structure.

The criterion for determining the energy-scale ΛMF down to which the RG
was employed and where the MF method started leads to some problems.
Therefore, redoing this method with another cut-off scheme, like a cut-off in
the Matsubara frequency or a temperature cut-off might improve the situation
strongly, since there the phase-space of the AF would not be reduced so dras-
tically by the cut-off (compared with the phase-space of the superconductor)
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away from perfect nesting. This alone would however not be sufficient to cure
the problems connected with the proximity to a first-order transition.

A better understanding how to handle order parameters which can in prin-
ciple exhibit first-order transitions is needed. Some progress was already made
by using counter terms [Gersch et al. 2006].
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Appendix A

Analogy of the RG in ODE
Theory

In this section perturbation theory in ordinary differential equations is shown
to provide a simple, but instructive example for the RG. As an example the
anharmonic oscillator is treated by the RG. It is stressed, however, that the
scheme is much more general [Chen et al. 1996].

A.1 Stating the Problem

Consider an ordinary differential equation (ODE)

ẏε(t) = fε(t, yε(t)) (A.1)

where ε is some small parameter, and the solution for ε = 0

ẏ0(t) = f0(t, y0(t)) (A.2)

is supposed to be known. One might try to systematically get a solution by
expanding yε(t) in a series of functions

yε(t) =

∞∑

n=0

εnyn(t). (A.3)

The ansatz is local in ε, i.e., valid for small ε, if the series is approximated by
the first terms, but global in t.

As an example consider the anharmonic oscillator

ÿ(t) + y(t) + εy3(t) = 0. (A.4)

Inserting the ansatz (A.3) into this ODE and sorting by the order in ε one
obtains

ÿ0(t) + y0(t) = 0 (A.5)

ÿ1(t) + y1(t) = −y3
0(t) (A.6)

. . .
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The general zero-order solution is of course

y0(t) = A cos(t+ Θ), (A.7)

from which the first order equation is found to be, using a trigonometric identity

ÿ1(t) + y1(t) = −y3
0(t) = −A3

(
1

4
cos(3t+ 3Θ) +

3

4
cos(t+ Θ)

)

. (A.8)

The solution is

y1(t) = H.S.+
A3

32
cos(3t+ 3Θ) − 3A3

8
t sin(t+ Θ), (A.9)

where the H.S. stands for the homogeneous solution. While the first term is
just an oscillation due to and with the same frequency as the first term of
the inhomogeneity (A.8), the second term’s amplitude grows linearly with t.
This is because the second term in (A.8) is in resonance with the homogeneous
equation. Such a term is called secular. The solution up to first order by (A.3)
is

yε(t) = A cos(t+ Θ) + εH.S.+ ε
A3

32
cos(3t+ 3Θ) − εt

3A3

8
sin(t+ Θ)

+O(ε2) (A.10)

As long as ε� 1 and t� 1 this appears to be a reliable perturbation expansion,
as the correction to the unperturbed solution is small. If ε� 1 but t ∝ 1/ε the
secular term becomes of order one, so that the first order correction is of the
same size as the zeroth order and näıve perturbation theory breaks down. It is
straight-forward to show, that this secular term leads in second order to a term
which is growing with t2, and in general in nth order a term growing like tn is
found. The structure is

y(t)= f0

+ ε f0
1 +ε t f1

1

+ ε2f0
2 +ε2t f1

2 +ε2t2f2
2

...
...

...
. . .

where the functions f ji are of order one. For t ∝ 1/ε one has therefore to
sum over all terms εntnfnn ∝ 1, to regain a small parameter1.

Thus, even though a global ansatz in t was inserted the solution is only valid
for small t, meaning it is local in t.

This problem is well known. It is due to the fact, that the strict ε-expansion
destroys the correct structure of the solution. It can be handled in several ways.
The terms can be summed by hand, which is possible in this special case, but
impossible in general. A counter term can be introduced, which is tuned in

1 A divergence is not necessary to have a non-valid perturbation series. If for example the
unperturbed solution of an ODE was e−t, terms like tne−t would be secular and and lead to
terms of order one for any fixed t.
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such a way that the resonant, secular term is cancelled. This again works only
for a restricted set of problems. A more general ansatz is the multiple-scale
analysis, which is sometimes not trivial to carry out [Bender and Orszag 1999].
Also a Z-factor RG can be employed which seems the most general and handy
method, see [Chen et al. 1996]. In the following an RG scheme will be derived,
following the spirit of the exact RG.

A.2 Deriving the RG equations

If the RHS of (A.1) is t-independent, any solution fulfils2

y(t+ s, y(0)) = y(t, y(s, y(0))) (A.11)

y(0, y(0)) = y(0), (A.12)

which is also called the flow axiom, where the first argument is the time, the
second the initial value. It states simply, that a solution at a certain time t+ s
and for an initial value y(0) can be rewritten as the solution with the value
reached at time s as the initial value and flow for only the residual time t.

The approximate solution breaks the flow axiom, which is not easy to see
directly. We will argue at the end, that this is the case.

With the flow axiom a solution for a time t can be rewritten as

y(t, y(0)) = y(t− τ, y(τ, y(0))). (A.13)

This equation takes the rôle of the semi-group property of the exact RG (2.23).
Taking the derivative with respect to τ one obtains, as the left hand side is
independent of τ ,

∂τy(t− τ, y(τ, y(0)) = 0. (A.14)

The dependence on the initial value is given by the integration constants, which
are n− 1 for an ODE of order n. Thus the equation (A.14) gives a system of
n− 1 equations for the integration constants as a function of τ . This resembles
strongly functional RG where the dependence of various quantities on some
parameter, usually the cut-off, is transformed into a dependence of the action,
which is determined by the model and considered to be given by constants, like
the (bare) mass or the (bare) interaction.

After solving (A.14) τ can be chosen. For any τ we gain a good approxima-
tion local in t− τ , touching the global solution at τ . One can thus consider the
global solution as the envelope of those local solutions [Kunihiro and Tsumura
2005].

If τ is set to t the time dependence is completely shifted to the time depen-
dence of the constants:

yren(t) = y(0, y(t, y(0))). (A.15)

2 To be strict the RHS has to fulfil the Lipschitz condition. Otherwise the solution is not
unique, and the flow axiom is not generally valid. As in physics determinism is usually
assumed we will not worry about this.



96 APPENDIX A. ANALOGY OF THE RG IN ODE THEORY

This fulfils by construction the flow axiom (A.11).

a) As a very first example consider the harmonic oscillator

y(t) = A cos(ωt+ Θ). (A.16)

The flow equation is derived from

∂τA cos (ω(t− τ) + Θ) = 0 (A.17)

to be

Ȧ cos (ω(t− τ) + Θ) + (−ω + Θ̇) sin (ω(t− τ) + Θ) = 0, (A.18)

where the dot marks the derivative with respect to τ . Therefore,

Ȧ = 0 (A.19)

Θ̇ = ω, (A.20)

and from this A = const = A0, and Θ = ωτ + Θ0. Inserting this and using
(A.15)

yren(t) = A(τ) cos(ω(t− τ) + Θ(τ))|τ=t
= A0 cos(ωt+ Θ0), (A.21)

which is of course the original, exact solution.

b) The perturbative solution of the anharmonic oscillator is

y(t) = A cos(t+ Θ) + ε
A3

32
cos(3t+ 3Θ) − εA3 3

8
t sin(t+ Θ) + O(ε2), (A.22)

where the homogeneous solution in first order has been absorbed into the zeroth
order by appropriate redefinition of the constants.

From this we derive the RG equations by

∂τy (t− τ, y(τ, y(0)))

= Ȧ cos(t− τ + Θ) −A sin(t− τ + Θ)(−1 + −εA2 3

8
+ Θ̇)

+
ε

32
3A2Ȧ cos(3(t − τ + Θ)) − ε

32
A3 sin(3(t − τ + Θ))3(−1 + Θ̇)

−ε3A2Ȧ
3

8
(t− τ) sin(t− τ + Θ) − εA3 3

8
(t− τ) cos(t− τ + Θ)(−1 + Θ̇) + O(ε2)

= 0 (A.23)

as

Ȧ = 0 + O(ε2) (A.24)

Θ̇ = 1 + εA2 3

8
+ O(ε2), (A.25)
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where Θ̇ − 1 = O(ε) has been used. Integrating equations (A.24),(A.25) leads
to

A = A0 + O(ε2) (A.26)

Θ = Θ0 + τ

(

1 + εA2 3

8

)

+ O(ε2). (A.27)

It is no surprise that the amplitude does not change with time. It reflects the
conservation of energy, as the perturbation is non-dissipative.

The renormalised function is thus

yren(t) = y (0, y (t, y (0)))

= A(t) cos (Θ(t)) + ε
A(t)3

32
cos(3Θ(t)) − εA(t)3

3

8
(0) sin(Θ(t)) + O(ε2)

= A0 cos
(
t
(
1 + εA2

03/8
)

+ Θ0

)
+ ε

A3
0

32
cos
(
3t
(
1 + εA2

03/8
)

+ 3Θ0

)

(A.28)

Obviously the flow axiom is full-filled,since s shift in the time t can be absorbed
into Θ0.

Choosing the initial values as y(0) = 1, ẏ(0) = 0 one obtains

y(t) = cos(tω) + ε
1

32
(cos(3tω) − cos(tω)) (A.29)

with the changed frequency ω = 1+ ε 3/8. This is the desired correct structure,
a frequency-shift, which is destroyed by the strict ε-expansion. The secular
terms can be reproduced by expanding the cosine-functions in ε. It can be
shown that this frequency-shift sums up all terms εntn fnn . Observe that the
frequency shift (A.27) is different for different amplitudes, likewise the shape of
the oscillation is, given by (A.28).

It was stated above, that the näıve perturbation result breaks the flow
axiom; forcing the solution to fulfil the flow axiom, led to the RG equations;
since the obtained solution after solving the RG equations is different, (A.10)
did not fulfil the flow axiom.

In general not every the zero order of a perturbation theory is a good starting
point for this ODE-RG. It has to have as many integration constants as the full
equation, otherwise the RG cannot, in general, reproduce the full solution. The
equations (3.7)-(3.10) in [Chen et al. 1996] are therefore of doubtful value, and
are not an example for the Wilson RG as claimed.

For other properties of the field theoretical RG examples can be found; for
example oscillators with limit cycles, as the Rayleigh-oscillator, approaching a
subspace in the long time limit, are examples for irrelevant variables, as used
by [Polchinski 1984] to prove renormalisability. In this case less RG equations
are needed to describe the physics than näıvly expected, as it is the case in
field theory, where a finite number of equations is enough, instead of infinitely
many.
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Appendix B

Gap Equations in Operator
Formalism

In this section the derivation of the mean-field equations in the operator for-
malism will be presented in detail.

Starting-point is the Hamilton-operator

H =
∑

k,σ

ξka
†
k,σak,σ

+
∑

K′
1,K

′
2,K1,K2

1

4
ΓΛ(K1,K2;K

′
2,K

′
1)a

†
K′

1
a†K′

2
a
K2

a
K1

(B.1)

where ξk = εk−µ is the free dispersion, and K = (σ, k) is the usual multi-index.
The restriction to the low energy BZ is by restriction of the interaction

ΓΛ(K ′
1,K

′
2;K2,K1) = Γ(K ′

1,K
′
2;K2,K1)Θ

Λ(k′1, k
′
2, k2, k1) (B.2)

where ΘΛ(k1, . . . , kn) = ΘΛ(k1) · · ·ΘΛ(kn) and ΘΛ(k) = Θ(Λ−|ξk|) is the usual
cut-off function (2.20).

B.1 Antiferromagnetism

The spin/charge-density wave gap with modulation Q = (π, π) and spin projec-
tion in the z-direction will be derived. It will be referred to simply as AF-gap.

To be able apply the mean-field approximation in the AF-channel one has
to regroup the operators first, as the AF mean-field is built from a creation
and an annihilation operator. It is a priori not clear whether one should group
the creation operator a†K1

with a
K′

1
or a

K′
2
, or even regroup the operators in a

certain representation of the potential. Comparison with the MF calculation
for the z-component of the spin operators ~S ∼ ~σ shows that the naive grouping
K1 ↔ K ′

1, K2 ↔ K ′
2 is the correct one. Regrouping leads to

∑

ΓΛ(K ′
1,K

′
2;K2,K1)a

†
K′

1
a†K′

2
aK2

aK1

=
∑

ΓΛ(K ′
1,K

′
2;K2,K1)

(

a†
K′

1
aK1

a†
K′

2
aK2

− a†
K′

1
aK2

δK1,K′
2

)

. (B.3)
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The second term leads to a contribution to the kinetic energy

−
∑

ΓΛ(K ′
1,K

′
2;K2,K1)a

†
K′

1
aK2

δK1,K′
2

= −
∑

K

a†KaK

∑

K′

ΓΛ(K,K ′;K,K ′)

(B.4)

which will be neglected.
The first term of (B.3) leads in the MF decoupling to

a†
K′

1
aK1

a†
K′

2
aK2

→ −〈a†
K′

1
aK1

〉〈a†
K′

2
aK2

〉 + 〈a†
K′

1
aK1

〉a†
K′

2
aK2

+ a†
K′

1
aK1

〈a†
K′

2
aK2

〉 (B.5)

and with the restriction to the z-spin-projection and modulation Q = (π, π)

〈a†
k′1σ

′
1
ak1σ1

〉 = δk′1,k1+Q δσ′1,σ1
〈a†
k′1σ1

a
k′1+Qσ1

〉 (B.6)

to

−
∑

kσ

Fkσ
1

2
Ak,σ +

∑

kσ

a†kσak+QσAk,σ, (B.7)

where the AF gap

Ak,σ =
1

2

∑

k′,σ′

UΛ
(
σ σ′

k k′

)
Fk′σ′ (B.8)

was introduced. The potential is defined as

UΛ
(
σ σ′

k k′

)
= ΓΛ

(
σ σ′ σ′ σ
k k′ k′+Q k+Q

)

(B.9)

= UΛ
(

σ σ′

k+Q k′+Q

)

(B.10)

The expectation value is

Fkσ = 〈a†kσak+Qσ〉 = F∗
k+Qσ. (B.11)

It follows immediately that

Ak+Qσ = A∗
kσ. (B.12)

In order to rewrite the result as a Nambu matrix the magnetic BZ is introduced
with the help of

∑

k

f(k) =
∑

k

′
(f(k) + f(k +Q)), (B.13)

where the prime signals the sum over the magnetic (half) BZ. Therefore we get
the magnetic contribution

∑

k

′ (

a†k↑ak+Q↑Ak↑ + a†k+Q↑ak↑A∗
k↑

)

(B.14)

+
∑

k

′ (

a†−k↓a−k−Q↓A−k↓ + a†−k−Q↓a−k↓A∗
−k↓

)

(B.15)

The second sum runs over −k instead of k which will prove to be helpful later.
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B.2 Superconductivity and the π-Pairing

The contribution to the Hamiltonian of the singlet superconducting pair (SC)
with zero centre of mass momentum and with centre of mass momentum Q =
(π, π) will be derived. The latter will be called π-pair.

The procedure in SC case is

1

4

∑

K′
1,K

′
2,K1,K2

ΓΛ(K ′
1,K

′
2;K2,K1) ×

(

−〈a†
K′

1
a†
K′

2
〉〈aK2

aK1
〉 + a†

K′
1
a†
K′

2
〈aK2

aK1
〉 + aK2

aK1
〈a†
K′

1
a†
K′

2
〉
)

.(B.16)

The restriction to spin singlets and to zero pair momentum and Q pair momen-
tum is formalised

〈ak2σ2
ak1σ1

〉 = δσ1,−σ2δk1+k2〈a−k1,−σ1
ak1σ1

〉 + δσ1,−σ2δk1+k2+Q〈a−k1+Q,−σ1
ak1σ1

〉,

which leads in (B.16) after performing the spin sums to

−
∑

k

(Fo
k )

∗∆k −
∑

k

(Fπ
k )∗πk

+
∑

k

a†k↑a
†
−k↓∆k +

∑

k

a†k↑a
†
−k−Q↓πk

+
∑

k

a−k↓ak↑∆
∗
k +

∑

k

a−k−Q↓ak↑π
∗
k (B.17)

where the SC pair field is F o
k = 〈a−k,↓ak↑〉 and the π-pair field is Fπ

k =

〈a−k−Q↓ak↑〉 and the associated gaps

∆k =
∑

k′

Vk,k′Fo
k′ (B.18)

and

πk =
∑

k′

Wk,k′Fπ
k′ (B.19)

have been introduced. The potentials are given by

V Λ
k,k′ = ΓΛ

(
↑ ↓ ↓ ↑
k −k −k′ k′

)

(B.20)

and

WΛ
k,k′ = ΓΛ

(
↑ ↓ ↓ ↑
k −k−Q −k′+Q k′

)

(B.21)

The restriction of the sums containing quadratic terms in the operators of
(B.17) to the magnetic BZ is again accomplished by using (B.13), leading for
the Cooper pair to

∑

k

′ (

a†k↑a
†
−k↓∆k + a†k+Q↑a

†
−k−Q↓∆k+Q

)

(B.22)

+
∑

k

′ (

a−k↓ak↑∆
∗
k + a−k−Q↓ak+Q↑∆

∗
k+Q

)

(B.23)
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and for the π pair to

∑

k

′ (

a†k↑a
†
−k−Q↓πk + a†k+Q↑a

†
−k↓πk+Q

)

+
∑

k

′ (

a−k−Q↓ak↑(πk)
∗ + a−k↓ak+Q↑(πk+Q)∗

)

. (B.24)

B.3 The Pomeranchuk and Magnetic Gap

The Pomeranchuk and magnetic gap is the spin and charge wave with q = 0
modulation. It is thus closely related to the spin and charge wave, derived in
the section (B.1).

The Pomeranchuk and magnetic gap is due to forward scattering processes
of the form

∑

kk′,σσ′

nσkf
σσ′

kk′ n
σ′

k′ (B.25)

where nσk = a†kσakσ. The scattering potential is therefore given by1

fσσ
′

kk′ = = ΓΛ
(
σ σ′ σ′ σ
k k′ k′ k

)
(B.26)

The mean field decoupling (3.17) of (B.25) leads to

∑

kσ

δµkσn
σ
k −

1

2

∑

kσ

δµkσ〈nσk〉, (B.27)

where the Pomeranchuk gap

δµkσ =
∑

k′σ′

1

2
fσσ

′

kk′ 〈nσ
′

k′ 〉 (B.28)

was introduced. The first term of (B.27) has the form of a k- and σ-dependent
chemical potential, and can therefore absorbed into the dispersion

ξ̄kσ = ξk + δµkσ, (B.29)

which becomes spin dependent. The second term of (B.27) is a contribution to
the c-number term.

B.4 The Mean-Field Hamiltonian

The mean-field Hamiltonian is given by the sum of the different channels. While
the SC and π pairs are disjoint, as the AF pair and the Pomeranchuk pair are,
the first two overlaps with the other two, that is, there are scattering terms
which belong to the AF or Pomeranchuk channel and the SC or π channel.
As the dimension of the overlap is one dimension lower than the dimension of

1 The cut-off Λ will not be written explicitly in the following.
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potentials, it is expected to be of zero measure. If the potential diverged in the
relevant subspace, this approach would have to be reconsidered.

HMF = −
∑

k

[Fo
k∆

∗
k + Fπ

k π
∗
k] −

∑

kσ

Fk,σAk,σ/2 −
∑

kσ

〈nσk〉δµkσ/2 +
∑

k

ξ̄k↓

+
∑

k

′
a†kMkak (B.30)

≡ Ec +
∑

k

′
a†kMkak (B.31)

with the Nambu operator a†k = (a†k↑, a−k↓, a
†
k+Q↑, a−k−Q↓) and

M =







ξ̄k↑ ∆k Ak,↑ πk
∆∗
k −ξ̄k↓ π∗k+Q −A∗

−k,↓

A∗
k,↑ πk+Q ξ̄k+Q,↑ ∆k+Q

π∗k −A−k,↓ ∆∗
k+Q −ξ̄k+Q,↓






. (B.32)

Observe that due to the definition of the potential the gaps are only non-zero
if χΛ(k) is no-zero in the SC case and χΛ(k)χΛ(k + Q) is nonzero in the AF
and π case. The last term in the c-number term is due to the commutation of
a−k↓a

†
−k↓ and a−k−Q↓a

†
−k−Q↓ respectively, necessary to obtain the matrix form.

The effective dispersion is due to the Pomeranchuk gap

ξ̄kσ = ξk + δµkσ (B.33)

where

ξk = εk − µ (B.34)

is just the free dispersion, and where the last term from (B.4) was neglected.
The gap functions are defined as

∆k =
∑

k′

V Λ
k,k′Fo

k′ , Fo
k′ = 〈a−k′↓ak′↑〉 (B.35)

for the SC singlet,

πk =
∑

k′

WΛ
k,k′Fπ

k′ , Fπ
k′ = 〈a−k′+Q↓ak′↑〉 (B.36)

for the π pairing and

Ak,σ =
1

2

∑

k′,σ′

UΛ
(
σ σ′

k k′

)
Fk′σ′

Fk′,σ = 〈a†k′σak′+Qσ〉 (B.37)

for the spin/charge-density-wave. The Pomeranchuk gap is

δµkσ =
∑

k′σ′

1

2
fσσ

′

kk′ 〈nσ
′

k′ 〉. (B.38)
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B.5 Gap Equations

First the general procedure will be sketched. Then the gap equations will be
derived.

The derivative of the grand canonical potential has to vanish

∂

∂Fk
Ω = 0, (B.39)

where Fk is one of the expectation values

Fo
k′ = 〈a−k′,↓ak′↑〉, Fπ

k′ = 〈a−k′−Q↓ak′↑〉, Fkσ = 〈a†kσak+Qσ〉, 〈nσ
′

k′ 〉, (B.40)

here considered as variational parameters. Alternatively one could vary the
gaps, but this complicates the derivation a little bit, as one would have to
invert the various potentials in the c-number term, which might be of low rank,
so that it seems on first sight not well defined.

(B.39) can also be shown by direct calculation

∂

∂Fk
Ω =

〈
∂H
∂Fk

〉

(B.41)

= −
∑

k′

δk−k′∆k′ +
∑

k′

′
〈 ∂

∂Fk

(

a†k′Mak′
)

〉 (B.42)

= −∆k + ∆k = 0. (B.43)

Here ∆k is the gap functions corresponding to one of the expectation values
(B.40 ).

Since the matrix is hermitian it can be diagonalised2:

∑

k

′
a†kMak =

∑

k

′
α†
kDkαk (B.44)

where α†
k = (α†

k,1, αk,2, α
†
k,3, αk,4) is the new Nambu operator and D a diagonal

matrix3

Dk =








E
(1)
k

E
(2)
k

E
(3)
k

E
(4)
k







. (B.45)

Therefore (B.31) becomes

HMF = Ec +
∑

k

′
α†
kDkαk

= Ec +
∑

kα

′
Eαk n̂

α
k , (B.46)

2 The transformation is unitary, the new operators still obey the fermionic commutator rela-
tions, thus are still describing fermions.

3 Some authors claim that one has to commute the operators to guarantee positive energies.
For fermions the spectrum is restricted in either case, and the result is independent of this.
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from which the grand canonical potential is calculated to be

Ω = −β−1 lnZ

= Ec + (−β)−1
∑

k′α

′
ln (1 + exp(−βEα

k′)) . (B.47)

The derivative of the grand canonical potential has to vanish, leading to

0 =
∂Ec

∂Fk
+
∑

k′

′∑

α

∂Eαk′

∂Fk
exp(−βEα

k′)

1 + exp(−βEα
k′)

=
∂Ec

∂Fk
+
∑

k′

′∑

α

∂Eαk′

∂Fk
f(Eα

k′). (B.48)

The derivative of the energy eigenvalues can be expressed by utilising the char-
acteristic polynomial

0 =
∂

∂Fk
|Mk′ − 1Eα

k′ | ≡
∂

∂Fk
|Mα

k′ |, (B.49)

since, with (D.3), the derivative of any determinant can be expressed as

∂

∂f
|A| =

∑

i,j

∂aij
∂f

∂

∂aij
|A| (B.50)

=
∑

i,j

(−1)i+j
∂aij
∂f

|Aij |, (B.51)

where aij is the element of the matrix in the ith row and jth column, and Aij
is the corresponding minor.

Due to this the derivative of the characteristic polynomial is

−∂E
α
k′

∂Fk
∑

l

|Mα
ll| +

∑

i,j

∂mij

∂Fk
(−1)i+j |Mα

ij | = 0 (B.52)

where mij are the elements of M, and the derivatives of the energies can be
expressed as

∂Eαk′

∂Fk
=

(
∑

l

|Mα
ll|(k′)

)−1 i6=j
∑

i,j

∂mij(k
′)

∂Fk
(−1)i+j |Mα

ij |(k′). (B.53)

In the explicit form of the gap equation this expression is much more compact,
as only few elements of the matrix depend on a certain mean-field.

To further simplify the gap equations the structure of the M matrix will be
used, being

Mα
k =

(
Dk − 1Eα

k Nk

Nk+Q Dk+Q − 1Eα
k

)

(B.54)

from which it is apparent that Eα
k+Q = Eαk and

|Mα
ij |(k +Q) = |Mα

i+2,j+2|(k). (B.55)
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Here i+2 and j+2 is to be understood modulo 4. After these remarks the gap
equation are easily obtained in the following.

Superconducting Gap

First the SC gap equation is derived. It will be made use of the relation

∂∆k′

∂Fo
k

= V Λ
kk′. (B.56)

The derivative of the eigenvalues is, following (B.53)

∂Eαk′

∂Fo
k

=

(
∑

l

|Mα
ll|
)−1

∑

i,j

∂mij

∂Fo
k

(−1)i+j |Mα
ij |

=

(
∑

l

|Mα
ll|
)−1(

−∂∆k′

∂Fo
k

|Mα
12| −

∂∆k′+Q

∂Fo
k

|Mα
34|
)

(B.57)

Combined with (B.48) and with (B.56), this leads to

−∂E
c

∂Fo
k

= ∆∗
k

= −
∑

k′

′∑

α

∂∆k′

∂Fo
k
|Mα

12|(k′) +
∂∆k′+Q

∂Fo
k

|Mα
34|(k′)

∑

l |Mα
ll|(k′)

f(Eα
k′)

= −
∑

k′

∑

α

4V Λ
kk′ |Mα

12|
∑

l |Mα
ll|(k′)

f(Eα
k′). (B.58)

In the second line Ek′ = Ek′+Q and |Mα
34|(k′) = |Mα

12|(k′ +Q) was used (B.55),
from which directly

∑

l |Mα
ll|(k′) =

∑

l |Mα
ll|(k′+Q) follows, so that with (B.13)

the sum can be rewritten to cover the whole BZ.

π-Pairing

The derivation of the gap equation for the π-pair proceeds analogously, using

∂πk′

∂Fπ
k

= WΛ
k,k′ (B.59)

and |Mα
14|(k +Q) = |M32|(k) (B.55), leading to

π∗k = −
∑

k′

∑

α

WΛ
kk′|Mα

14|(k′)
∑

l |Mα
ll|(k′)

f(Eα
k′). (B.60)

Spin/Charge-Wave

The gap equation for the AF-gap requires a little more work, as none of the

derivatives
∂A

(∗)
kσ

∂Fk′σ′
vanishes4, but is in principle absolutely parallel. First we

4 While in the SC and π case it is a matter of taste, whether one varies the gap or the
expectation value, here the expectation value has to be used. Otherwise the variation of the
c-number term is not so easy to evaluate.
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note

∂Ak′σ′

∂Fkσ
=

1

2
UΛ
(
σ σ′

k k′

)
. (B.61)

The derivative of the energy (B.53) can, with

i6=j
∑

i,j

∂mij

∂Fkσ
(−1)i+j |Mij |

=

(
∂Ak′↑

∂Fkσ
|Mα

13| −
∂A∗

−k′↓

∂Fkσ
|Mα

24| +
∂A∗

k′↑

∂Fkσ
|Mα

31| −
∂A−k′↓

∂Fkσ
|Mα

42|
)

,

be written as

∂Eαk′

∂Fkσ
=

∂Ak′↑

∂Fkσ
|Mα

13| −
∂A∗

−k′↓

∂Fkσ
|Mα

24| +
∂A∗

k′↑

∂Fkσ
|Mα

31| −
∂A−k′↓

∂Fkσ
|Mα

42|
∑

l |Mll|
.

(B.62)

With A∗
k′ = Ak′+Q and |Mα

24|(k′ +Q) = |Mα
42|(k′), |Mα

13|(k′ +Q) = |Mα
31|(k′)

the gap equation is found to be

Akσ =
∑

k′

∑

α

1

2

UΛ
(
σ ↑
k k′

)

|Mα
13| − UΛ

(
σ ↓
k −k′

)

|Mα
42|

∑

l |Mα
ll|

f(Eα
k′). (B.63)

Pomeranchuk Gap

To derive the gap equation for the Pomeranchuk gap δµ (B.28), note first that
its derivative by the expectation value is given by

∂δµkσ

∂〈nσ′k′ 〉
=

1

2
fσ

′σ
k′k . (B.64)

The derivation of the eigenvalues is calculated as before from the characteristic
polynomial:

0 =
∂

∂〈nσk 〉
|Mk′ − 1Eα

k′ |

=
∑

i

∂mα
ii

∂〈nσk〉
|Mα

ii | (B.65)

=
∑

i

∂Eαk′

∂〈nσk〉
|Mα

ii | +
1

2
f↑,σk′,k|Mα

11| +
1

2
f↑,σk′+Q,k|Mα

33

− 1

2
f↓σk′k|Mα

22| −
1

2
f↓σk′+Qk|Mα

44|, (B.66)

where in the third line (B.64) was used. Thus the derivative of the energies is
given by

∂Eαk′

∂〈nσk〉
=

1

2

f↑σk′k|Mα
11| − f↓σk′k|Mα

22|
∑

i |Mα
ii |

+ Rk+Q, (B.67)
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where Rk+Q represents a term identical with first term with the replacement
k′ → k′ +Q. From the variation of the grand canonical potential

∂Ω

∂〈nσk〉
=

∂Ec

∂〈nσk〉
+
∑

k′

′∑

α

∂Eαk′

∂〈nσk〉
f(Eα

k′) (B.68)

we get

δµkσ =
∑

k′

∑

α

1

2

f↑,σk′,k|Mα
11| − f↓,σ−k′,k|Mα

22|
∏

l 6=α(E
l
k′ −Eαk′)

f(Eα
k′) +

∑

k′

2f↓,σ−k′,k (B.69)

where the last term stems from the c-number term, going back to the commu-
tation of the creator and annihilator in the 2nd and 4th diagonal element of the
matrix part.

The Filling

The filling is given by

−n =

(
∂Ω

∂µ

)

∆(µ)

=
∂Ω

∂µ
+
∂Ω

∂∆
︸︷︷︸

=0

∂∆

∂µ
=
∂Ω

∂µ
(B.70)

where ∆ here represents all different gaps. Thus only the direct dependence on
µ has to be evaluated:

∂Ω

∂µ
=
∑

k′

∂ξk
∂µ

+
∑

k′α

f(Eα
k′)
∂Eαk′

∂µ
. (B.71)

The first term is due to
∑

k ξk contribution of the c-number term, which stems
from operator permutations.

Only the diagonal elements of the characteristic determinant depend on µ,
so that the calculation for the derivation of the eigenvalues is parallel to the
one of Pomeranchuk gap (B.65), leading to

0 =
∂

∂µ
|Mk′ − 1Eα

k′ |

=
∑

i

|Mα
ii |

∂

∂µ
(ξk(−1)i+1 −Eαk′) (B.72)

so that the derivative of the energies is

∂Eαk′

∂µ
=

∑

i(−1)i|Mα
ii|

∑

i |Mα
ii|

. (B.73)

The expression for the filling therefore becomes

n =
∑

k′

1 −
∑

k′α

′
f(Eα

k′)

∑

i(−1)i|Mα
ii|

∑

i |Mα
ii|

(B.74)
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The denominator can be rewritten, leading to

n =
∑

k′

1 −
∑

k′α

′
f(Eα

k′)

∑

i(−1)i|Mα
ii|

∏

l 6=α(E
l
k′ −Eαk′)

(B.75)

the first term can be absorbed into the second by (C.107) leading to the final
result

n = −
∑

k′α

∑

m

f((−1)m+1Eαk′)
|Mα

mm|
∏

l 6=α(E
l
k′ −Eαk′)

. (B.76)

The expressions (B.75) and (B.76) have similar numerical costs, so it is a matter
of taste which of both one prefers.

B.6 Grand Canonical Potential for T = 0

The grand canonical potential Ω is given by (B.47). In the limit T → 0 the
second part becomes

∑

k,α;Eα
k
<0

Eαk , (B.77)

which is just the sum over the negative eigenvalues.
To rewrite the c-number term in terms of the gaps, one has to invert the

gap definitions (B.35), (B.36), (B.37) and (B.28) to eliminate the expectation
values, which requires some care, if the interactions do not have full rank5. For
example in the SC case, the potential can be written as

Vk,k′ =
∑

i

vie
i
ke
i
k′ , (B.78)

where vi are the eigenvalues and eik are the elements of the eigenvectors. If the
interaction is separable, only one eigenvalues is non-zero.

If one assumes that the gap is composed only of the eigenvectors of the
potential with non-zero eigenvalues, which is the case for all self-consistent
solutions, the gap can be re-expressed in amplitudes ∆i in these eigenvectors:

∆p =
∑

i

eip∆i. (B.79)

Since the expectation values F are multiplied with the gaps in the c-number
term, other parts of the expectation values, not composed of these eigenvectors,
are projected out, so that one can assume that also F is composed of the
eigenvectors:

Fp =
∑

i

eipFi (B.80)

5 The calculation is done with regard to the numerics, where the interactions a discretised;
nevertheless it should be valid for continuous interactions also.
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Using the self-consistency equation we find

∆ =
∑

i

ei∆i =
∑

i,j

ei(ej)T vje
iFi =

∑

j

ejvjFj , (B.81)

so that ∆i = viFi and the c-number term is given by6

−Ec =
∑

i

∆2
i

vi
+
∑

i

π2
i

wi
+
∑

i

C2
i

2uCi
+
∑

i

S2
i

2uSi
+
∑

i

(δµPi )2

2fCi
+
∑

i

(δµmi )2

2fSi
.

(B.82)

Combining this rewritten c-number term with (B.77) leads to the desired zero-
temperature grand canonical potential.

6 Where the various factors in front of the potential in the relation between the gaps and the
expectation values have been absorbed into the eigenvalues of the potential.



Appendix C

Gap Equations in Path
Integral Formalism

In this section the gap equations will in detail be derived within the functional
integral formalism.

C.1 Effective Action

One would like to calculate the partition function

Z =

∫
∏

K

dψ̄dψ exp(S[ψ, ψ̄]) (C.1)

with S[ψ, ψ̄] = S0[ψ, ψ̄] + SI [ψ, ψ̄], where the free part is given by

S0[ψ, ψ̄] =
∑

K

ψ̄KC
−1
K χ−1

k ψK , (C.2)

with the sharp momentum-cut-off function

χ−1
k = Θ(Λ − |ξk|), (C.3)

always used in this work. The interaction part is given by

SI = −
∑

K1,K2,K′
2,K

′
1

1

4
ΓΛ(K1,K2,K

′
2,K

′
1)ψ̄K1 ψ̄K2ψK′

2
ψK′

1
. (C.4)

K = (ωn, k, σ) is the usual multi-index. Momentum, energy and total spin is
assumed to be conserved.

To introduce symmetry-breaking, it is helpful to rewrite (C.1) in terms of a
collective field. This is done by means of a Hubbard-Stratonovich transforma-
tion, which means completing the square in the exponent. The calculations are
long but straightforward.
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Introducing the Cooper Field (SC)

First the SC channel; the dependence of the Grassmann fields on the multi-
index is rewritten, to avoid redefinition further down. The arguments of the
potential are suppressed. Consider first only the terms with fixed (but arbi-
trary) momentum- (q) and energy-transfer (ω̃) and fixed spins:

exp
[

− 1

4

∑

k,k′

∑

ωnω′
n

Γ Ψ̄

(
ω′

n

k′

σ′1

)

Ψ̄

(
−ω′

n+ω̃n

−k′+q
σ′2

)

Ψ
(

−ωn+ω̃n

−k+q
σ2

)

Ψ
( ωn

k
σ1

) ]

= exp
[1

4

∑

k,k′

∑

ωnω′
n

Γ X̄
ω′

nω̃n

k′,q,σ′1σ
′
2
Xωnω̃n

k,q,σ1σ2

]

, (C.5)

where the abbreviation X̄ = Ψ̄Ψ̄, X = ΨΨ was introduced, indices like before.
This can be rewritten by completing the square1

C(q, ω̃, σ) =

∫

DϕDϕ∗ exp
[1

4

∑(
X̄ − ϕ∗

)
Γ (X − ϕ)

]

= exp
[1

4

∑

X̄ ΓX
] ∫

DϕDϕ∗ exp
[1

4

∑

ϕ∗Γϕ− X̄Γϕ− ϕ∗ΓX
]

as
∫

DϕDϕ∗ exp
[

− 1

4

∑

k,k′

∑

ωnω′
n

−ϕ∗Γϕ+ ϕ∗ΓX +XΓϕ
]

(C.6)

where bosonic fields have been introduced. The first term in (C.6) can be viewed
as the free dispersion of the bosons, the second and third term as a coupling to
the fermions (Yukawa coupling). The bosonic fields

ϕ∗ = ϕ∗(k′, ω′
n; q, ω̃n, σ

′
1σ

′
2) (C.7)

ϕ = ϕ(k, ωn; q, ω̃n, σ2σ1) (C.8)

(C.9)

are c-number fields. If more then one bosonic field is discussed the SC field is
called ϕs.

To rewrite the complete interaction consider

exp
[

− 1

4

∑

σ′1σ
′
2σ2σ1

∑

qω̃n

∑

kωnk′ω′
n

Γ ψ̄ψ̄ψψ
]

=
∏

σ′1σ
′
2σ2σ1

∏

qω̃n

exp
[

− 1

4

∑

kωnk′ω′
n

Γ ψ̄ψ̄ψψ
]

=
∏

σ′1σ
′
2σ2σ1

∏

qω̃n

∫

Dϕ∗Dϕ exp
[

− 1

4

∑

kωnk′ω′
n

(−ϕ∗Γϕ+ ϕ∗ΓX +XΓϕ)
]

=

∫

Dϕ∗Dϕ exp
[

− 1

4

∑

σ′1σ
′
2σ2σ1

∑

qω̃n

∑

kωnk′ω′
n

(−ϕ∗Γϕ+ ϕ∗ΓX +XΓϕ)
]

,

(C.10)

1 Up to the constant from performing the Gaussian integral, which is unimportant here, as
the focus in this work is only on the saddle point.
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i.e., all the interactions are still fully taken into account, so that this step is
still exact.

Since not all channels are expected to be of the same importance restrictions
are employed to reduce the complexity. First set q = 0, i.e., pairs have not net
momentum, and ω̃ = 0, i.e., pairs are static. Further σ2 = −σ1 = −σ, i.e.,
only singlet pairs (→ σ′

2 = −σ′1 ≡ −σ′ from the spin-rotation symmetry) are
considered. The interaction for the superconductor is, therefore, defined as

V
(
ω′ ω σ
k′ k σ′

)
= Γ(K ′,−K ′;−K,K) = Γ(−K ′,K ′;K,−K)

= V
(

−ω′ −ω −σ
−k′ −k −σ′

)

. (C.11)

Like in the operator mean-field calculation the spin sum can be performed,
but the symmetries of the bosonic fields are not as obvious as for the expectation
values. To deduce them, consider first only one of the terms of the exponent of
(C.10), say

∑

ϕ∗(k′, ω′
n; q, ω̃n, σ

′
1σ

′
2)Γ

(
ω′ ω ω̃
k′ k q , σ

)

Ψ

(
−ωn+ω̃n

−k+q/2
σ2

)

Ψ

(
ωn+ω̃n

k+q/2
σ1

)

. (C.12)

With the restrictions given above and the interaction V (C.11) we find

T
∑

ϕ∗(k′, ω′, σ′)V
(
ω′ ω σ
k′ k σ′

)
Ψ
(−ωn

−k
−σ

)

Ψ
( ωn

k
σ

)

= T
∑

ϕ∗(k′, ω′, σ′) ×
[

V
(
ω′ ω ↑
k′ k σ′

)

Ψ

(
−ωn

−k
↓

)

Ψ
( ωn

k
↑

)

− V
(
ω′ ω ↓
k′ k σ′

)

Ψ
( ωn

k
↓

)

Ψ

(
−ωn

−k
↑

)]

= T
∑

ϕ∗(k′, ω′, σ′)
[

V
(
ω′ ω ↑
k′ k σ′

)

− V
(
ω′ −ω ↓
k′ −k σ′

)]

Ψ

(
−ωn

−k
↓

)

Ψ
( ωn

k
↑

)

= T
∑[

ϕ∗(k′, ω′, σ′) − ϕ∗(−k′,−ω′,−σ′)
]
V
(
ω′ ω ↑
k′ k σ′

)

Ψ

(
−ωn

−k
↓

)

Ψ
( ωn

k
↑

)

.

(C.13)

The expression in the last line

ϕ∗(k′, ω′, σ′) − ϕ∗(−k′,−ω′,−σ′) (C.14)

projects the antisymmetric part out. Thus, ϕ∗ can be assumed to be antisym-
metric, so that (C.14) becomes

ϕ∗(k′, ω′, σ′) + ϕ∗(k′, ω′, σ′) = 2ϕ∗(k′, ω′, σ′). (C.15)

From

V
(
ω′ ω ↑
k′ k σ′

)

= −V
(

−ω′ ω ↑
−k′ k −σ′

)

(C.16)

we obtain in the same manner
∑

ω′k′σ′

ϕ∗(k′, ω′, σ′)V
(
ω′ ω ↑
k′ k σ′

)

=
∑

ω′k′

(
ϕ∗(k′, ω′, ↑) − ϕ∗(−k′,−ω′, ↓)

)
V
(
ω′ ω ↑
k′ k ↑

)

. (C.17)
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Thus, we finally find (suppressing the spin indices in the interaction)

T
∑

ϕ∗
k′,ω′V

(
ω′ ω
k′ k

)
Ψ

(
−ωn

−k
↓

)

Ψ
( ωn

k
↑

)

. (C.18)

The other terms in (C.10) are in a treated similar manner. The interaction in
the SC-channel therefore becomes

SSC
I [ψ, ψ̄, ϕ] = SSC,c

I [ϕ] + SSC,q
I [ψ, ψ̄, ϕ], (C.19)

with the condensation energy

SSC,c
I [ϕ] =

∑

ω,k

∆∗
ω,kϕω,k (C.20)

and the part quadratic in ψ

SSC,q
I [ψ, ψ̄, ϕ] = −

∑

ω,k

Ψ2

(
∆ω,k

∆∗
ω,k

)

Ψ̄2 (C.21)

or, summing only over the magnetic BZ (indicated by the prime) to prepare
the combination with the AF gap,

SSC,q
I [ψ, ψ̄, ϕ]

= −
∑

ω,k

′
Ψ4







∆ω,k

∆∗
ω,k

∆ω,k+Q

∆∗
ω,k+Q







Ψ̄4,

(C.22)

where the gap was defined as

∆kω = T
∑

k′ω′

V
(
ω′ ω
k′ k

)
ϕk′ω′ (C.23)

and where the Nambu operators are

Ψ2 =

(

Ψ̄
( ω
k
↑

)

,Ψ

(
−ω
−k
↓

))

, (C.24)

for the 2 × 2 case and

Ψ4 =

(

Ψ̄
( ω
k
↑

)

,Ψ

(
−ω
−k
↓

)

, Ψ̄
( ω
k+Q
↑

)

,Ψ

(
−ω

−k+Q
↓

))

. (C.25)

for the 4 × 4 case, respectively.
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Introducing the Pi-Pair

Parallel to the SC-pair the π-pair case is introduced. Instead of the restriction
to zero-momentum pairs (q = 0), pairs with q = (π, π) ≡ Q are considered. No
double counting of degrees of freedom appears with respect to the supercon-
ducting chanel. The potential is defined by

W
(
ω′ ω σ
k′ k σ′

)
= Γ

(
ω′ −ω′ −ω ω

k′+Q/2 −k′+Q/2 −k+Q/2 k+Q/2
σ′ −σ′ −σ σ

)

. (C.26)

From this again certain symmetries follow:

W
(
ω′ ω
k′ k
σ′ σ

)

= W

(
−ω′ −ω
−k′ −k
−σ′ −σ

)

= −W
(

−ω′ ω
−k′ k
−σ′ σ

)

. (C.27)

A strictly parallel calculation to th SC case leads to the π-gap2

πωk = T
∑

ω′k′

W
(
ω′ ω
k′ k

)
ϕπω′k′ (C.28)

a contribution to the condensation energy

Sπ,c
I [ϕ] =

∑

ω,k

π∗(ω, k)ϕπ(ω, k), (C.29)

and a contribution to the quadratic part

Sπ,q
I [ψ, ψ̄, ϕ]

=
∑

ω,k

′
Ψ4







πω,k
π∗ω,k+Q

πω,k+Q
π∗ω,k







Ψ̄4, (C.30)

with the same Nambu operators (C.25) as before.

Introducing the Spin/Charge-Wave (AF)

To prepare the HS-transformation in the AF channel the energy ω and momen-
tum k dependence in the interaction is written as

SI =
∑

K1,K2,K′
2,K

′
1

1

4
Γ(K1,K2,K

′
2,K

′
1)Ψ̄K1Ψ̄K2ΨK′

2
ΨK′

1

=
1

4

∑

Ψ̄

(
ω′

k′

σ′1

)

Ψ

(
ω′+ω̃
k′+q
σ1

)

Ψ̄

(
ω+ω̃
k+q
σ′2

)

Ψ
( ω
k
σ2

)

Γ(kk′ωω′, ω̃q, σ)

=
1

4

∑

X̄(k′ω′σ′1, q, ω̃σ1)X(kωσ2, q, ω̃σ2)Γ(kk′ωω′, ω̃q, σ) (C.31)

2 With a different field than in the SC case ϕπ.
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Performing the Hubbard-Stratonovich transformation parallel as in (C.10),
with a different field ϕA ≡ ϕ in this section, one obtains

exp(SI)

=

∫

DϕDϕ∗

(

−1

4

∑(
−ϕ∗Γϕ+ ϕ∗ΓX + X̄Γϕ

)
)

, (C.32)

where
∑

=
∑

σi

∑

qω̃

∑

kk′ωω′ , X, X̄ like before, arguments of ϕ,ϕ∗ like X, X̄ ,
and

Γ(K ′
1,K

′
2;K2,K1) = Γ

(
ω′ ω+ω̃
k′ k+q
σ′1 σ′2

;
ω ω′+ω̃
k k′+q
σ2 σ1

)

. (C.33)

The channel considered to be relevant is given by the restriction to ω̃ = 0, i.e.,
static pairs, q = (π, π) ≡ Q, i.e., commensurate charge/spin-order, σ1 = σ′1 →
σ2 = σ′2, i.e., spin-projection axis in z-direction. The interaction in this chanel
is hence given by

Γ

(
ω′ ω
k′ k+Q
σ′ σ

;
ω ω′

k k′+Q
σ σ′

)

= U
(
ω′ ω
k′ k
σ′ σ

)

= U
(
ω ω′

k k′

σ σ′

)

= U

(
ω′ ω

k′+Q k+Q
σ′ σ

)

. (C.34)

While in the SC- and π-case the spin sum can be performed by using the
symmetry of the potential, in the AF case the summation can be reduced in
k-space to the magnetic BZ. This is seen by considering first the last two terms
in the exponent of (C.32)

1

β

∑

σσ′

∑

kωk′ω′

Ψ̄
(
ω′

k′

σ′

)

Ψ

(
ω′

k′+Q
σ′

)

ϕ
(
k
ω
σ

)

U
(
ω′ ω
k′ k
σ′ σ

)

+
1

β

∑

σσ′

∑

kωk′ω′

ϕ∗
(
k′

ω′

σ′

)

Ψ̄
(

ω
k+Q
σ

)

Ψ
(
ω
k
σ

)

U
(
ω′ ω
k′ k
σ′ σ

)

=
1

β

∑

σσ′

∑

kωk′ω′

(

ϕ∗
(
k+Q
ω
σ

)

+ ϕ
(
k
ω
σ

))

Ψ̄
(
ω′

k′

σ′

)

Ψ

(
ω′

k′+Q
σ′

)

U
(
ω′ ω
k′ k
σ′ σ

)

(C.35)

where (C.34) was used. Due to this the part anti-symmetric under translation
and complex conjugation is projected out so that

ϕ∗
(
k+Q
ω
σ

)

= ϕ
(
k
ω
σ

)

(C.36)

can be assumed. With the definition of the gap as

A∗
(
ω
k
σ

)

=
1

2
T
∑

U
(
ω′ ω
k′ k
σ′ σ

)

ϕ∗
(
ω′

k′

σ′

)

= A
(

ω
k+Q
σ

)

(C.37)

both Yukawa terms in (C.32) are given by

∑

kωσ

Ψ̄
(

ω
k+Q
σ

)

Ψ
(
ω
k
σ

) 1

2
A∗
(
ω
k
σ

)

+
∑

k′ω′σ′

Ψ̄
(
ω′

k
σ′

)

Ψ

(
ω′

k′+Q
σ′

)
1

2
A
(
ω′

k′

σ′

)

. (C.38)
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With the help of

∑

f(k) =
∑′

(f(k) + f(k +Q)), (C.39)

the sum can be restricted to the magnetic BZ, indicated by the prime ′, so that
the factors 1/2 in (C.38) vanish

∑

kωσ

′[

Ψ̄
(

ω
k+Q
σ

)

Ψ
(
ω
k
σ

)

A∗
(
ω
k
σ

)

+ Ψ̄
(
ω
k
σ

)

Ψ
(

ω
k+Q
σ

)

A
(
ω
k
σ

) ]

(C.40)

where (C.37) was used.
The contribution to the condensation term is

SAF,c
I =

∑

ϕ∗Uϕ =
∑

ϕ∗
(
ω
k
σ

) 1

2
A
(
ω
k
σ

)

(C.41)

So that altogether the AF contribution is

SAF
I = SAF,c

I + SAF,q
I (C.42)

where the quadratic part can be written in matrix form,

SAF,q
I = −

∑

kωσ

′
Ψ2

( Aω,k,σ

A∗
ω,k,σ

)

Ψ̄2 (C.43)

= −
∑

kω

′
Ψ4







Aω,k,↑

−A∗
−ω,−k,↓

A∗
ω,k,↑

−A−ω,−k,↓







Ψ̄4

(C.44)

where the Nambu spinor is here

Ψ2 =
(

Ψ̄
(
ω
k
σ

)

Ψ̄
(

ω
k+Q
σ

))

(C.45)

in the 2 × 2 case and

Ψ4 =

(

Ψ̄
( ω
k
↑

)

,Ψ

(
−ω
−k
↓

)

, Ψ̄
( ω
k+Q
↑

)

,Ψ

(
−ω

−k+Q
↓

))

. (C.46)

in the 4 × 4 case as before (C.25), respectively.

The Pomeranchuk distortion (and magnetic gap) δµk

The q = 0 terms of (C.32) can be interpreted as a distortion of the Fermi
surface, which is the Pomeranchuk distortion if it is spin-independent and the
ferromagnetic gap if it is spin-dependent. Therefore, define the interaction for
q = 0 (with spins like in the AF case)

Γ
(
ω′ ω
k′ k
σ′ σ

;
ω ω′

k k′

σ σ′

)

= f
(
ω′ ω
k′ k
σ′ σ

)

= f
(
ω ω′

k k′

σ σ′

)

. (C.47)
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Due to this symmetry, ϕ(ω, k, σ) = ϕ∗(ω, k, σ)|3 can be assumed so that the
Ψ–dependent part reads

1

2
T
∑

σσ′

∑

kωk′ω′

Ψ̄
(
ω
k
σ

)

Ψ
(
ω
k
σ

)

ϕ
(
k′

ω′

σ′

)

f
(
ω ω′

k k′

σ σ′

)

. (C.48)

Defining the gap as

δµω,k,σ =
1

2
T
∑

ω′k′σ′

f
(
ω′ ω
k′ k
σ′ σ

)

ϕω′,k′,σ′ , (C.49)

this contribution has the form of a dispersion:

−
∑

ωkσ

Ψ̄
(
ω
k
σ

)

Ψ
(
ω
k
σ

)

δµω,k,σ. (C.50)

The contribution to the condensation energy is

∑

ω,k,σ

ϕω,k,σ
1

2
δµω,k,σ. (C.51)

C.2 Bosonic Action

Altogether, the sum of the different contributions for the SC-, π-, AF- and
Pomeranchuk pair

SI [ψ, ψ̄, φ] = SSC
I + SπI + SAF

I + Sf
I (C.52)

gives

S[ψ, ψ̄, ϕ] = S0[ψ, ψ̄] + SI [ψ, ψ̄, ϕ]

= Sc[ϕ] −
∑

kω

′
ψMψ̄ (C.53)

with M(k, ω) =








ξ̄k − iωχ−1
k ∆ω,k Aω,k,↑ πω,k

∆∗
ω,k −ξ̄k − iωχ−1

k π∗ω,k+Q −A∗
−ω,−k,↓

A∗
ω,k,↑ π∗ω,k+Q ξ̄k+Q − iωχ−1

k+Q ∆ω,k+Q

π∗ω,k −A−ω,−k,↓ ∆∗
ω,k+Q −ξ̄k+Q − iωχ−1

k+Q








(C.54)

denoting

ξ̄k = (εk − µ)χ−1
k + δµω,k,σ (C.55)

and the Nambu spinor

Ψ4 =

(

Ψ̄
( ω
k
↑

)

,Ψ

(
−ω
−k
↓

)

, Ψ̄
( ω
k+Q
↑

)

,Ψ

(
−ω

−k+Q
↓

))

. (C.56)

3 Meaning that the field is real, like one expects, as this field can be interpreted as a
momentum- and spin-dependent density.
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The condensation term is

Sc[ϕ] =
∑

ω,k

ϕs
ω,k∆

∗(ω, k) +
∑

ω,k

ϕπω,kπ
∗
ω,k

+
∑

ω,kσ

(ϕA
ω,k,σ)

∗ 1

2
Aω,k,σ +

∑

ω,k,σ,

ϕδω,k,σ
1

2
δµω,k,σ. (C.57)

As the SC and Pi part on the one hand and the AF and Pomeranchuk part on the
other hand are näıvely added, double counting appears, because the channels
are not disjoint. For example the Γ(k,−k,−k − Q, k + Q) is part of the SC
and the AF potential, hence the relevant degrees of freedom are included twice.
Since these elements form a space whose dimension is smaller the potential for
the gap by one, it is of zero measure, so that this error is negligible4.

The action is quadratic in ψ̄ and ψ, therefore the integral can be evaluated
leading to

Z =

∫

Dψ̄ψDϕ exp
(
S[ψ, ψ̄, ϕ]

)

=

∫

DϕDψ̄ψ exp
(
S[ψ, ψ̄, ϕ]

)

≡
∫

Dϕ exp
(

Seff[ϕ]
)

(C.58)

with5

Seff[ϕ] = Sc + β
∑′

ln detM. (C.59)

The obtained action is purely bosonic. It is no longer quadratic in ϕ, as ex-
panding the logarithm leads to terms of all orders. Therefore, the integration
cannot be performed exactly, and approximations have to be employed. If the
employed approximations are valid, this model describes the same physics as
the fermionic one. However, it paves the way into the symmetry-broken state.

C.3 Saddle-Point Approximation

The saddle-point approximation is equivalent to the mean-field approximation
in the operator formalism. Thus we have to evaluate

δSeff[ϕ] ≡ 0. (C.60)

The variation with respect to each field has to vanish, leading to (coupled)
self-consistency equations, one for each pair-field – the gap equations.

4 In the numerics the BZ is discretised, so that one cannot speak of zero measure. But the
error still should be small, as long as the interactions of the doubly counted elements do not
become much larger compared with the others.

5 detM is of dimension T 4, so the log is not defined strictly. This could be corrected by an
appropriate factor, which would drop out in the gap equations. The factor β in front of the
sum, however, must not be omitted as this would alter the gap equations. It stems from the
convention used here

P

ωn

= T
P

n
.



120APPENDIX C. GAP EQUATIONS IN PATH INTEGRAL FORMALISM

The gap equation for the SC gap

First the cooper-pair field, from

δ

δϕs(ω′, k′)
Seff[ϕ] =

δ

δϕs(ω′, k′)

[

Sc − β
∑′

ln detM
]

= 0 (C.61)

with the help of (ϕ ≡ ϕs in this section)

δ

δϕ(ω′, k′)
∆(ω, k) = T 2V

(
ω′ ω
k′ k

)
(C.62)

the condensation term yields

∑

ω,k

∆∗(ωk)δ k,k′

ωω′

= T∆∗(ω′, k′). (C.63)

The second term is

β
∑′

ω,k

1

detM
δ

δϕ(ω′, k′)
detM (C.64)

with

δ

δϕ(ω′, k′)
detM

= −det (M12)T
2V
(
ω′ ω
k′ k

)
− det (M34) T

2V
(
ω′ ω
k′ k+Q

)

. (C.65)

Inserting (C.65) in (C.64) and summing with (C.39) over the whole BZ one
obtains

T
∑

kω

det (M12) V
(
ω′ ω
k′ k

)

detM . (C.66)

The potential is assumed to be ω-independent, since the RG is done in the
static approximation6. Thus it can be taken out of the Matsubara summation.
The details can be found in appendix (D.4), formula (D.48). This leads to

T
∑

k

∑

α

det (Mα
12) Vk′k

∑

l detMα
ll

−1

1 + exp(βEα
k )
, (C.67)

where M = M(iω = Ek) has been introduced.
Combining (C.67) and (C.63) one gets the desired gap equation for the SC

gap

∆∗
k = −

∑

k′

∑

α

det (Mα
12(k

′))Vkk′
∑

l detMα
ll(k

′)
f(Eα

k′). (C.68)

6 From this follows also an ωn-independent gap.
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The denominator can be interpreted as the trace of the inverse matrix times the
determinant, thus can be expressed in terms of the eigenvalues (D.27), giving

∆∗
k = −

∑

k

∑

α

det (Mα
12(k

′))Vkk′
∏

i6=α(E
i
k′ −Eαk′)

f(Eα
k′). (C.69)

With some further matrix algebra (D.31) this can be written as

∆∗
k = −

∑

k

∑

α

[
Vk′kv

2
α(v

1
α)∗
]
f(Eα

k′) (C.70)

where viα is the ith component of the αth normalised eigenvector of the matrix
M where the frequencies ωn are set to zero. As in the four by four case the last
two gap equations seem to have similar numerical requirements, so that any of
them can be chosen in numerical calculations.

In case of a spin-rotational invariant interaction the potential can be de-
composed in various ways. Here we employ the singlet–triplet decomposition is
employed, which leads to

Vkk′ =
1

2

(
V s
kk′ + V t

kk′
)

(C.71)

and to the gap

∆k = T
∑

k′

1

2

(
V s
kk′ + V t

kk′
)
ϕ(k′). (C.72)

From the fact that ∆(k) = ∆(−k) will be assumed, and from the symmetry
of the potentials, namely V s

kk′ = V s
−kk′ and V t

kk′ = −V t
−kk′ if follows that the

triplet potential will not contribute and thus can be ignored.

The gap equation for the Pi-pair

The calculation is parallel to the SC case. Evaluating

δ

δϕπω′ ,k′
Seff[ϕ] =

δ

δϕπω′ ,k′



Sc + β
∑

ω,k

′
ln detM



 = 0 (C.73)

the condensation term gives

∑

kω

π∗kωδ k,k′

ωω′
= +Tπ∗k′,ω′ , (C.74)

with the derivative of the gap

δ

δϕπk′ω′

πkω = T 2W
(
ω′ ω
k′ k

)
. (C.75)
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The matrix term yields

T
∑

kω

det (M14)W
(
ω′ ω
k′ k

)

detM , (C.76)

leading, after performing the Matsubara summation, to the gap equation

π∗k = −
∑

k′

∑

α

det (Mα
14(k

′))Wkk′
∑

l detMα
ll(k

′)
f(Eα

k′), (C.77)

with M = M(iω = Ek), which can be simplified to either

π∗k = −
∑

k′

∑

α

det (Mα
14(k

′))Wkk′
∏

i6=α(Eik′ −Eαk′)
f(Eα

k′) (C.78)

or

π∗k = −
∑

k′

∑

α

[
Wkk′v

4
α(v

1
α)∗
]
f(Eα

k′). (C.79)

The gap equation for the AF gap

The derivation of the gap equation for the AF order parameter is largely similar
to the SC case. We have to evaluate

δ

δϕAω,k,σ
Seff[ϕ] =

δ

δϕAω,k,σ

[

Sc + β
∑

ω′k′

′
ln detM

]

(C.80)

With (ϕ ≡ ϕA)

δ

δϕω,k,σ
Aω′,k′,σ′ = T 2 1

2
U
(
k′ k
ω′ ω
σ′ σ

)

(C.81)

and, as δϕ∗/δϕ 6= 0 by (C.36)

δ

δϕAω,k,σ
A∗
ω′,k′,σ′ = T 2 1

2
U

(
k′+Q k
ω′ ω
σ′ σ

)

(C.82)

the condensation term leads to

δ

δϕω,k,σ

∑

ϕ∗
ω′,k′,σ′

1

2
Aω′,k′,σ′ = TAω,k,σ. (C.83)

The second term in (C.80) is

δ

δϕAω,k,σ

[

β
∑′

ln detM
]

=
∑′ 1

|M|
δ

δϕ
detM, (C.84)

the inner derivative yields

δ

δϕ
detM = + |M13|T 2 1

2
U

(
ω ω′

k k′
σ ↑

)

+ |M31|T 2 1

2
U

(
ω ω′

k k′+Q
σ ↑

)

− |M42|T 2 1

2
U

(
ω −ω′

k −k′

σ ↓

)

− |M24|T 2 1

2
U

(
ω −ω′

k −k′+Q
σ ↓

)

(C.85)
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With this and (C.39) the second term (C.84) becomes

−1

2
T
∑

|M13|U
(
ω ω′

k k′
σ ↑

)

− |M42|U
(
ω −ω′

k −k′

σ ↓

)

|M| (C.86)

where the k′ sum runs again over the whole BZ. Again the interaction is assumed
to be ω and ω′-independent, so that with the help of (D.48) the Matsubara sum
can be performed leading to

1

2
T
∑

k′

∑

α

|Mα
13|U

(
k k′
σ ↑

)

− |Mα
42|U

(
k −k′

σ ↓

)

∑

l |Mll|
f(Eα

k′), (C.87)

where iωn is replaced by the different eigenvalues Eα
k , depicted by M = M(ω =

Eαk ), over which is summed. This, combined with (C.83), leads to the gap-
equation for the AF gap:

Ak,σ =
1

2

∑

k′

∑

α

|Mα
13|U

(
k k′
σ ↑

)

− |Mα
42|U

(
k −k′

σ ↓

)

∑

l |Mα
ll|

f(Eα
k′). (C.88)

Again, as in the SC case, the denominator can be rewritten with (D.27) as

Ak,σ =
1

2

∑

k′

∑

α

|Mα
13|U

(
k k′
σ ↑

)

− |Mα
42|U

(
k −k′

σ ↓

)

∏

i6=α(Eik′ −Eαk′)
f(Eα

k′) (C.89)

and further with (D.31) this can be rewritten as

Ak,σ =
1

2

∑

k′

∑

α

[

v3
α(v1

α)∗U
(
k′ k
↑ σ

)

− v2
α(v4

α)∗U
(

−k′ k
↓ σ

)]

f(Eα
k′). (C.90)

Again it is a matter of taste which of the last two one chooses.
If the original Hamiltonian is spin-rotation invariant, the spin dependence

of U can be expressed in different ways, out of which only the singlet-triplet

U
(
k k′

σ σ′

)
= U sk,k′

1

2

(
1 − δσ,σ′

)
+ U tk,k′

1

2

(
1 + δσ,σ′

)
(C.91)

and the spin–charge decomposition, which seems more natural for the spin/charge-
wave gap

U
(
k k′

σ σ′

)
= UCk,k′ + USk,k′

(
2δσ,σ′ − 1

)
(C.92)

are used. The gap becomes

Akσ =
1

2
T
∑

k′

U sk,k′ϕ
−σ
k′ + U tk,k′

(
2ϕσk′ + ϕ−σ

k′

)

=
1

2
T
∑

k′

UCk,k′
(
ϕσk′ + ϕ−σ

k′

)
+ USk,k′

(
ϕσk′ − ϕ−σ

k′

)
. (C.93)
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In the last line it becomes obvious that UC couples to a charge-density wave,
while US couples a spin-density wave, which can be exploited by decomposition
of the gap into (σ = 1 for spin up, σ = −1 for spin down)

Ak,σ = Ck + σSk, (C.94)

where Ck represents the charge-density wave and Sk the spin-density wave, i.e.,
the anti-ferromagnet.

The gap equation for δµ

The gap equation for the Pomeranchuk gap is derived parallel to the anti-
ferromagnetic gap.

With

δ

ϕδ (ω, k, σ)
δµ
(
ω′, k′, σ′

)
=

1

2
T 2f

(
ω′ ω
k′ k
σ′ σ

)

(C.95)

we get from the condensation energy

δ

δϕ
Sc = Tδµ (ω, k, σ) . (C.96)

With

δ

ϕδ (ω, k, σ)
|M| = |M11|

1

2
T 2f

(
ω′ ω
k′ k
↑ σ

)

− |M22|
1

2
T 2f

(
−ω′ ω
−k′ k
↓ σ

)

+Rk+Q,

(C.97)

where the reminder term equals the first two terms with k replaced by k +Q.
Assuming an ω-independent potential, we obtain from the second term in

the usual way:

1

2
T
∑

k′ω′

exp(iω′δ)|M11|f
(
k′ k
↑ σ

)

− exp(−iω′δ)|M22|
(

−k′ k
↓ σ

)

|M| , (C.98)

where factors have to be introduced to guarantee convergence, as the determi-
nants of the nominator is of order (iω ′)3 and the denominator is of order (iω′)4.
The signs are chosen to be the same as in the calculation of the filling further
down. The result will prove to be consistent with a calculation in the operator
formalism.

Thus the gap equation is

δµk,σ

=
1

2

∑

k′σ′

∑

α

|Mα
11|f

(
k′ k
↑ σ

)

∑

l |Mα
ll |

f(Eα
k ) +

1

2

∑

k′

∑

α

|Mα
22|f

(
−k′ k
↓ σ

)

∑

l |Mα
ll |

f(−Eα
k )

=
1

2

∑

k′α

|Mα
11|f

(
k′ k
↑ σ

)

− |Mα
22|f

(
−k′ k
↓ σ

)

∏

i6=α(Eik′ −Eαk′)
f(Eα

k ) +
1

2

∑

k′

f
(

−k′ k
↓ σ

)

(C.99)
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where the last step was done to obtain the same form as the result of the
operator calculation. It is parallel to the steps in the filling calculation.

Again using the spin–charge decomposition, we find

δµk,σ =
1

2
T
∑

k′σ′

fCk′k

(

ϕδk′σ + ϕδk′−σ

)

+ fSk′k

(

ϕδk′σ − ϕδk′−σ

)

(C.100)

which implies

δµk,σ = δµPk + σδµmk , (C.101)

where δµPk is the Pomeranchuk distortion of the Fermi surface with arbitrary
form factor, and δµmk is a ferromagnetic gap with arbitrary form factor.

Calculation of the Filling

The filling is given by

−n = ∂µΩ = −T∂µ lnZ. (C.102)

As the condensation term is independent of µ|7 we get

−n = −T
∑

k,ωn

′
∑

m |Mmm| (−1)m

|M | . (C.103)

As the integrand is of order ∼ (iωn)
−1 factors have to be introduced to get

convergent expressions. A priori it is not clear whether exp(iωnδ) or exp(−iωnδ)
has to be used. They are chosen in such a way that for vanishing gaps the
density of the free electron gas is reproduced, which is

−n = −T
∑

k,ωn

′
∑

m exp((−1)m+1iωnδ) |Mmm| (−1)m

|M| (C.104)

Evaluating the Matsubara sum as before yields

= −
∑

k,α

′∑

m

|Mα
mm|

∑

l

∣
∣Mα

ll

∣
∣
f
(
(−1)m+1Eαk

)
(C.105)

= −
∑

k,α

′∑

m

(−1)m+1 |Mα
mm|

∑

l

∣
∣Mα

ll

∣
∣

f (Eα
k ) −

∑

k,α

|Mα
22|

∑

l

∣
∣Mα

ll

∣
∣

(C.106)

= −
∑

k,α

′∑

m

(−1)m+1 |Mα
mm|

∑

l

∣
∣Mα

ll

∣
∣

f (Eα
k ) −

∑

k

(1) (C.107)

where the second steps follows from M22(k+Q) = M44(k) and (C.39). The last
step follows from |Mα

22|/
∑

l |Mα
ll | = |v2

α| (D.31) and the fact that in a matrix
formed of orthonormal column-vectors the row vectors are also orthonormal.

7 This is in contrast to the operator formalism.
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The last step is done to give the equation the same form as in the operator
formalism.

This can again be rewritten as

n =
∑

k

1 +
∑

k,α

′∑

m

(−1)m+1 |Mα
mm|

∑

l

∣
∣Mα

ll

∣
∣

f (Eα
k ) (C.108)

=
∑

k

1 +
∑

k,α

′∑

m

(−1)m+1 |Mα
mm|

∏

i6=α(Eik′ −Eαk′)
f (Eα

k ) (C.109)

=
∑

k

1 +
∑

k,α

′∑

m

(−1)m+1|vmα |f (Eα
k ) . (C.110)



Appendix D

Mathematical Details

D.1 Determinants and Minors

In this section equations, necessary for deriving and simplifying the gap equa-
tions, will be derived.

Consider the Hermitian matrix M with elements mij where i is the row and
j the column index. The determinant is defined recursively by

|M| = det(M) =
N∑

i

mij |Mij |(−1)i+j ∀j (D.1)

where |Mij | is the Minor of the matrix M, i.e., the determinant of the matrix
which is obtained by removing the ith row and jth column.

It follows immediately that

∂

∂mij
detM = (−1)i+j detMij , (D.2)

and from this

∂

∂x
detM =

∑

i,j

(−1)i+j det (Mij)
∂

∂x
mij. (D.3)

To derive Cramer’s rule, define the matrix

M0 = {|Mij |(−1)i+j}tr =






|M11| −|M21| . . .
−|M12| |M22| . . .

...
...

. . .




 . (D.4)

Multiplication with M leads to

MM0 = D (D.5)

with the elements

dij =

N∑

k

mik|Mjk|(−1)j+k. (D.6)
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For i = j one finds, using (D.1):

dii =

N∑

k

mik|Mik|(−1)i+k = det(M). (D.7)

For i 6= j one obtains, again using (D.1):

dij =

N∑

k

mik|Mjk|(−1)i+j = det(M′) (D.8)

where M′ is a matrix where the ith and jth row is identical, so that the deter-
minant vanishes. Therefore D is the identity times the determinant of M so
that Cramer’s rule follows

→ M0 = {|Mij |(−1)i+j}tr = M−1 · det(M) (D.9)

Note that M0 is still well-defined even if M is singular.
In the following some properties of minors of matrices with at least one

vanishing eigenvalue will be derived.
First consider

∑

l

|Mll| = Tr(M−1) detM, (D.10)

which is up to a factor the trace of the inverse matrix, see (D.9). As the trace
is independent of the basis, the most convenient one will be chosen, which is
the basis of eigenvectors, yielding

M = diag(λ1, . . . , λN )

M−1 = diag(λ−1
1 , . . . , λ−1

N )

(D.11)

and, of course, det(M) =
∏

i λi. It follows

∑

l

|Mll| = det(M) ·
∑

m

1

λm

=
∑

m

∏

i6=m

λi. (D.12)

if the eigenvalue α vanishes, all terms but the αth one become zero in (D.12):
∑

l

|Mll| =
∏

i6=α

λi ≡ Λα, for λα = 0. (D.13)

Note that M differs from the matrix in the gap equation, as here eigenvalues
λi are assumed, while in the gap equation Eα − z is assumed.

The Hermitian matrix M can in general be written in terms of the eigen-
vectors vi and the associated eigenvalues λi as

M =
∑

i

viλiv
ad
i , (D.14)
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as multiplication with the eigenvectors yields

M =
∑

i

viλiv
ad
i vj

=
∑

i

viλiδij

= vjλj, (D.15)

so that (D.14) has the same mapping as the matrix M. Similarly the inverse
matrix can be written as

M−1 =
∑

i

vi(λi)
−1vadi , (D.16)

since, assuming full rank,

MM−1 =
∑

i

vi(λi)
−1vadi

∑

i

viλiv
ad
i

=
∑

j

vjv
ad
j = 1. (D.17)

The last step follows from
∑

i

viv
ad
i vj = vj ∀j. (D.18)

D.2 Matrices with Big Values

In this section matrices with very large values, necessary to introduce the cut-off
function in the Matsubara sum, are discussed.

Consider a matrix of the following

M =







a ∆
∆ a′

C

C̄
b ∆′

∆′ b′







(D.19)

where a′ = O(a) and a is large. If we make the ansatz for the eigenvalue
E = O(a) the eigenvalue equation reduces to

∣
∣
∣
∣

a−E ∆
∆ a′ −E

∣
∣
∣
∣
E2 + O(a2) = 0 ⇒ E = a ∨ E = a′, (D.20)

i.e., the eigenvalue is the eigenvalue of the first diagonal block. The ansatz
E = O(1) leads to

∣
∣
∣
∣

b−E ∆′

∆′ b′ −E

∣
∣
∣
∣
· a · a′ + O(1) = 0, (D.21)

i.e., the eigenvalue is determined by the second diagonal block.
Thus, the eigenvalues of a matrix with big values are given by the eigenvalues

of the blocks with and without the big values.
The determinant is given by

detM = a · a′ ·
∣
∣
∣
∣

b ∆′

∆′ b′

∣
∣
∣
∣
. (D.22)
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D.3 Simplification of the Gap Equations

The Matrix M in the gap equations has the structure

M(z) = M− z1 (D.23)

where M is a Hermitian matrix1 and z a number. M has eigenvalues and
eigenvectors defined by

Mvi = Eivi, (D.24)

so that M has the same eigenvectors and different eigenvalues given by

Mvi = (Ei − z)vi. (D.25)

Thus, by (D.13) the denominator of the gap equations is given by:

∑

l

|Mll(z)| =
∑

k

∏

i6=k

(Ei − z)

→
∏

i6=α

(Ei −Eα) for z → Eα (D.26)

≡ Λα (D.27)

where the product and the sum run over all eigenvalues.
Now the nominator can be expressed, due to (D.9), by elements of the

inverse:

|Mij | =
1

det(M)
{M−1}ji(−1)i+j (D.28)

while the inverse can be expressed by the eigenvalues and eigenvectors of the
matrix due to (D.16)2

{M−1}ij =
∑

l

vil(v
j
l )

∗(El − z)−1 (D.29)

combining (D.28) and (D.29) and taking the limit z → λα we obtain

|Mα
ij | = vjα(v

i
α)∗Λα(−1)i+j (D.30)

for the nominator, with Λα like (D.27). The fraction in the gap equation can
thus be written as

|Mα
ij |

∑

l |Mα
ll|

= vjα(viα)∗(−1)i+j . (D.31)

1 Here, the matrix M of the operator formalism, or M ≡ M(iω = 0) of the HS formalism is
assumed.

2 Observe that the definition of the matrix there differs slightly from this one.
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D.4 Performing the Matsubara Sum

In this section the Matsubara sum, appearing in the MF equations with an
ω-independent potential, is performed and the RG cut-off is introduced.

Terms like

∑

ωn

1

detM(iωn)
detMij(iωn) =

1

β

∑

n

1

detM(iωn)
detMij(iωn) (D.32)

have to be evaluated, with M(iωn) = M(0)−1iωn, where M(0) is a Hermitian
matrix, independent of ωn. Define

f(z) =
1

detM(z)
detMij(z) (D.33)

where z = iωn. The auxiliary function

h(z) = (1 + exp(βz))−1 (D.34)

has poles at zn = iωn = i2n+1
β π, with the residuum

Resh(zn) = − 1

β
∀n. (D.35)

Define the complex function g(z) = h(z)f(z). It is

∮

g(z)dz → 0 for r → ∞, (D.36)

if g(z) is of O(z−2) as z → ∞.

Introducing the RG Cut-off

Here seems to be the best place to introduce the cut-off functions, but this is
not essential for performing the Matsubara sum and can be skipped at first
reading.

In the RG the cut-off is introduced by a cut-off function χk multiplied with
the bare propagator. Assume k is such that χk = 1, 1 � χ−1

k+Q ≡ χ−1. Then,
according to (D.2), the matrix can be represented as

|M| =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

C−1
k,ω ∆k

∆∗
k C−1

k,ω

...

...
0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0

...

...

χ−1C−1
k+Q,ω 0

0 χ−1C−1
−k+Q,−ω

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

= χ−2

∣
∣
∣
∣
∣

C−1
k,ω ∆k

∆∗
k C−1

k,ω

∣
∣
∣
∣
∣
C−1
k+Q,ωC

−1
−k+Q,−ω (D.37)
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The minor if of quadratic order in χ−1 in the SC case

|M12| =

∣
∣
∣
∣
∣
∣

∆∗
k

χ−1C−1
k+Q,ω

χ−1C−1
−k+Q,−ω

∣
∣
∣
∣
∣
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and of liner order in the AF case:
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Thus

|Mij |
|M| (D.40)

vanishes for the A and π cases, and reduces in the SC case to the simple
superconducting expression:
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Back to the Matsubara sum:

The function f(z) has the structure

f(z) =
det(Mij(z))

detM(z)
≡ f1

f2
(D.42)

Poles can occur only if f2(zα) = 0, implying

detMα = det (M(iω = zα)) = 0, (D.43)

i.e., if zα is an eigenvalue of M. Assuming that det(Mij) 6= 0 and that the
eigenvalues are not degenerate3

Res f(zα) =
f1(zα)

f ′2(zα)
, (D.44)

3 The two assumptions do not always hold; in this case it is expected that the additionally
zeros of numerator and denominator can be reduced.



D.4. PERFORMING THE MATSUBARA SUM 133

holds, where, due to (D.3)
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so that

Res g(zα) = (1 + exp(βzα))−1(−1)
detMij(zα)
∑
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. (D.46)

All together
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With our convention
∑

ωn
= T

∑

n for the ωn sum we finally obtain
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where zα = Eαk is the eigenvalue of the matrix M(iω = 0).
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Appendix E

Technical details

Here some technical details are discussed in brevity.

The numerics proved to be more costly than first expected. This is due to
costly integrals and slow convergence of the iteration of the gap equations.

The costly integration is due to jumps in the integrand. Even if the jumps
due to the patching are taking care of, the effective FSs of the AF yield further
jumps, which are not easy to determine in the full scheme. The 2D integration
was split into two 1D integration by first integrating over energy shells (kx as a
variable or ky) with respect to the free dispersion εk and second integrating over
the energies. Since the energy shells of the effective dispersion Ek can cross the
former ones this has no advantage and a simple kx, ky-integration might even
be cheaper.

The convergence is poor due to limit cycles and due to RHSs which cross
the bisector with a small angle. The first problem can be healed by a standard
mixing factor, i.e., adding to the newly calculated gap-value a fraction of the
old value, which is just Newton’s method with a fixed value for the slope. The
convergence can be drastically accelerated by a Shanks-transformation

Sn =
An+1An−1 −A2

n

An+1 +An−1 − 2An

which maps a series An = A + αqn → A. Such a behaviour is expected for
self-consistency equations, as long as the relative angle of the two intersecting
curves is finite. The transformation can be iterated, see [Bender and Orszag
1999]1 for details.

Bisection does not always work for the AF gap due to metastable zero-gap
solutions. Still something can be learned from chapter 4 (without proof): For
µvH < µ < 0 the value of the RHS at the lower kink should be above the
bisector to have a solution. Thus the position of the lower kink is a good lower
point for a bisection. For µ < µvH , the solution has to be |A| > |δvH |, at least
if no SC gap is present.

The potentials Vkk′ , Wkk′ and Ukk′ are symmetric by construction. Due
to the projection procedure in the RG, placing three of the momenta on the

1 Very much worth reading.
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FS, the 4th momentum is by momentum conservation generally not on the FS.
This unsymmetric treatment of the momenta leads to unsymmetric couplings
for Wkk′ and Ukk′ , which are symmetrised for the MF part. Also the Q = (π, π)
transfer is only an approximation, since the vector between the FSs is only in
special cases exactly Q.

An eigenvalue decomposition of the interactions shows that they are usually
dominated by one eigenvalue. The corresponding eigenvector determines the
gap-structure to a large extent. Searching for solutions in this 1D subspace
drastically reduces the computational effort and is suitable for getting a good
overview. However, all data presented in this work were obtained with full
momentum dependences.

The free energy is easy to program, computationally cheap for T = 0, and
gives a first insight if combined with the eigenvalue decomposition mentioned
above. It might therefore be a good starting point for similar numerics, even
though determining the exact minima is again expected to be expensive.



Appendix F

Deutsche Zusammenfassung

Systeme mit verschiedenen konkurrierenden Instabilitäten stellen eine große
Herausforderung der theoretischen Physik dar. Ein Paradebeispiel für solche
Systeme ist die Stoffklasse der Kupferoxide, wie z.B. Ba-La-Cu-O. Während
die Materialien im undotierten Zustand gewöhnlich Mott-Isolatoren sind, wer-
den sie durch Dotierung zu Leitern bzw. unterhalb einer kritischen Tempera-
tur zu Supraleitern. Diese supraleitenden Eigenschaften setzen bei für dieses
Phänomen hohen Temperaturen ein, weshalb sie auch als Hoch-Tc-Materialien
bezeichnet werden. Auch der normalleitende, unmagnetische Zustand weist
ungewöhnliche und weitestgehend unverstandene Eigenschaften auf. So ist un-
terhalb einer gewissen Temperatur die Zustandsdichte in der Nähe der Fer-
mifläche unterdrückt; weiterhin ist die Temperaturabhängigkeit des Wider-
standes linear, im Gegensatz zu dem aus der Fermiflüssigkeits-Theorie erwartet-
en quadratischen Verhalten.

Es liegt die Vermutung nahe, dass diese Eigenschaften ihren Ursprung in
dem Wechselspiel verschiedener Instabilitäten finden. Eine kontrollierte Rech-
nung, die verschiedene Instabilitäten gleichberechtigt zulässt, ist also wün-
schenswert. Leider ist bisher keine praktikable Methode bekannt, die für typ-
ische Parameter der Hoch-Tc-Materialien anwendbar wäre.

Die in dieser Arbeit vorgestellte Methode ist eine Kombination aus funk-
tionaler Renormierungsgruppe (RG) und einer erweiterten Molekularfeld-Rech-
nung. Die RG ist kontrolliert für kleine Wechselwirkungen (WW), nicht jedoch
für die relativ starken WW des oben beschriebenen Problems; jedoch kann man
etwas über die Hoch-Tc-Systeme durch Untersuchung des Limes schwacher Kop-
plungen lernen, zumindest unter der Annahme, dass das Verhalten kontinuier-
lich von der Wechselwirkungsstärke abhängt.

Die störungstheoretische Berechnung verschiedener Größen führt zu Diver-
genzen verschiedener Klassen von Diagrammen. Für kontrollierte Rechnun-
gen ist es daher unumgänglich, diese Beiträge gleichberechtigt zu erfassen, d.h.
aufzusummieren. Nur in speziellen Fällen ist dieses analytisch möglich. Die
Idee der Renormierung besteht darin, das ursprüngliche Problem in Moden
hoher und Moden niedriger Energie zu zerlegen. Dazu wird eine Regular-
isierungsskala (Cut-Off) Λ eingeführt und entsprechende skalenabhängige n-
Punkt-Funktionen, die nur Beiträge hoher Energie enthalten. Die Änderung
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dieser Funktionen mit der Skala Λ wird durch die Renormierungsgruppenglei-
chungen oder Flussgleichungen beschrieben. Das Lösen dieser Differentialgle-
ichungen summiert im Limes Λ → 0 systematisch die führenden Beiträge. Auch
diese Integration kann zu Divergenzen führen; diese sind jedoch keine Artefakte
der Störungstheorie, sondern Zeichen einer Instabilität zu einer symmetriege-
brochenen Phase. Diese Divergenzen verhindern die Ausintegration (Λ → 0)
der RG-Gleichungen. In der Herleitung gemachte Näherungen werden durch
das Anwachsen verschiedener Kopplungen ungültig. Daher ist es naheliegend,
die Integration nur bis zu einer Skala ΛMF durchzuführen, und die weiteren
Freiheitsgrade auf andere Weise zu behandeln. Tatsächlich lassen sich die n-
Punkt-Funktionen zusammen mit dem Cut-Off im in dieser Arbeit verwendeten
RG Schema als skalenabhängiges Niederenergie-Modell auffassen.

Dieses Niederenergie-Modell wird im Rahmen einer erweiterten Molekular-
feldnäherung (MF) behandelt. Die Molekularfeld-Rechnung erlaubt die gleich-
zeitige Berücksichtigung verschiedener Ordnungsparameter. Dabei stehen d-
Wellen-Supraleitung und Spin-Dichte-Wellen (Antiferromagnet) im Mittelpunkt.
Diese kombinierte MF+RG Theorie erlaubt derren Wechselspiel und eine mög-
liche Koexistenz zu untersuchen. Die Energielücken-Struktur (Gap-Struktur)
und die Gapamplituden können berechnet werden.

F.1 Übersicht der Arbeit

Im Kapitel 2 wird das in dieser Arbeit verwendete Renormierungsschema, das
Wick-geordnete Schema, motiviert und hergeleitet. Um eine numerische Be-
handlung zu ermöglichen werden Näherungen gemacht; die erhaltene ein-Schlei-
fen Gleichung berücksichtigt nur die zur Fermifläche tangentialen Impulsab-
hängigkeiten, vernachlässigt jedoch die radialen Impulsabhängigkeiten und die
Energieabhängigkeit. Das Wick-geordnete Schema ist im Kontext dieser Arbeit
besonders geeignet, da eine Interpretation als Niederenergie-Modell möglich ist.

Um zu klären, welche Beiträge in der verwendeten Näherung enthalten
sind, wird die Lösung grafisch als die sogenannte Parquet-Approximation in-
terpretiert. Das Niederenergie-Modell wird beschrieben und der Übergang zur
Molekularfeld-Rechnung motiviert.

Symmetriebrechung und Molekuarfeldtheorie werden in Kapitel 3 kurz all-
gemein eingeführt um dann das konkrete Problem zu behandeln: die gekop-
pelte MF-Theorie verschiedener Ordungsparameter. Die gekoppelten MF-Glei-
chungen werden auf zwei Weisen hergeleitet. Zum einen mit Hilfe des Pfad-
integralformalismus; das Einführen bosonischer Felder mittels einer Hubbard-
Stratonovich-Transformation erlaubt den Übergang zu einer rein bosonischen
Wirkung, die im Rahmen einer Sattelpunktsintegration behandelt wird, was zu
den MF-Gleichungen führt. Zum anderen kann der Hamiltonoperator durch
eine MF-Entkopplung auf quadratische Form gebracht werden, so dass die Zus-
tandssumme unmittelbar angegeben werden kann. Die Variation des großkanon-
ischen Potentials führt zu den MF-Gleichungen.

Während sich die erste Herleitung nahtlos an die Renormierungsgruppe
anfügt, und sich daher auch leicht auf andere Cut-Off Schemata als dem hier
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verwendeten erweitern läßt, hat die Molekularfeldentkopplung des Hamiltonop-
erators den Vorteil größerer Übersichtlichkeit.

Die hier berücksichtigten Ordungsparameter (OP) sind die Supraleitung
und eine Spin/Ladungs-Dichte-Welle mit Modulation Q = (π, π); bei einer
Anwesenheit dieser beiden OP ergibt sich bei endlicher Kopplung auch ein Gap
durch Paare mit Gesamtimpuls Q, das π-Paar.

Beide Herleitungen machen wenig Gebrauch von der speziellen Gap-Struktur
oder dem Modell und lassen sich daher leicht auf mehr oder andere Gaps oder
andere Modelle verallgemeinern.

Die MF-Rechnung für den Antiferromagneten hat gegenüber der Rechnung
für den Supraleiter einige Besonderheiten, die in Kapitel 4 diskutiert werden.
Insbesondere kann es bei endlichem Ordnungsparameter effektive Fermiflächen
geben, die sich von der nackten Fermifläche unterscheiden; für ein endliches
übernächstes-Nachbar-Hüpfen t′ kann solch ein OP sogar die einzig stabile
Lösung sein. Das Verhalten der MF-Lösung wird zu einem großen Teil von
diesen effektiven Fermiflächen bestimmt, die daher ausführlich diskutiert wer-
den.

Im letzten Abschnitt des Kapitels 4 wird das Zusammenwirken der Renor-
mierung und der Molekularfeldtheorie im Spezialfall rein antiferromagnetischer
Wechselwirkung untersucht. Es stellt sich heraus, dass die RG unphysikalische
Niederenergie-Modelle erzeugen kann. Dieses hängt eng zusammen mit der
Möglichkeit von Phasenübergängen erster Ordnung; beides wird zurückgeführt
auf die Existenz effektiver Fermiflächen in Gegenwart des AF Gaps, und deren
Abhängigkeit von diesen.

Die Eigenschaften der Lösung der AF-Gapgleichung sind wichtig zum Ver-
ständnis des Wechselspiels mit der Supraleitung (SL) und zur Interpretation
der numerischen Rechnungen.

In Kapitel 5 werden kurz die MF-Rechnung für die Supraleitung und das
π-Paar diskutiert. Während die Rechnung für erstere als bekannt vorrausge-
setzt wird stellt sich heraus, dass das π-Paar von untergeordneter Bedeutung
ist. Weiterhin wird das Wechselspiel zwischen Supraleitung, Antiferromag-
netismus und π-Paarung diskutiert. Die Anwesenheit eines AF-OP kann die
rechte Seite des SL-Gapgleichung verkleinern oder auch vergrößern. Letzteres
steht im Gegensatz zur allgemeinen Erwartung. Entsprechendes gilt für die
rechte Seite des AF-OP. Da beide Gapgleichungen Ableitungen des großkanon-
ischen Potentials sind, sind die jeweiligen Abhängigkeiten verknüpft.

Numerische Ergebnisse der RG+MF Kombination werden in Kapitel 6 prä-
sentiert. Die numerische Implementierung der RG stammt von [Rohe 2005].

Es wird kurz auf das attraktive Hubbard Modell (U < 0) eingegangen, was
u.a. Aussagen über die Qualität der gemachten Näherungen erlaubt. Es findet
sich die erwartete Reduktion des SL-Gaps durch Fluktuationen.

Der Hauptteil des Kapitels beschäftigt sich mit dem repulsiven Hubbard-
Modell (U > 0). Ohne übernächstes-Nachbar-Hüpfen (t′ = 0) sind die ge-
fundenen Lösungen entweder antiferromagnetisch, isolierend und halb gefüllt
oder rein supraleitend. Für endliches t′ kann es trotz eines endlichen AF Fer-
miflächen geben. Dies erlaubt Dotierung und Koexistenz mit Supraleitung.
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Für Parameter, die Dotierung und Koexistenz erlauben, wird die t′- und U -
Abhängigkeit der Gapamplituden untersucht. Für einen Parametersatz werden
die effektiven Fermiflächen und Gapstrukturen in Abhängigkeit vom chemisch-
en Potential µ angegeben. Schließlich wird beispielhaft gezeigt, dass das bis
dahin vernachlässigte π-Paar-Gap klein gegenüber den anderen Gaps ist.

Anhang A enthält ein pädagogisches Beispiel der Renormierung. Stör-
ungsrechnung in gewöhnlichen, nichtlinearen Differentialgleichungen kann zu
strukturell falschen Ergebnissen führen. Die Flussbedingung der Differential-
gleichung hat die selbe Gruppenstruktur wie die funktionale Renormierungs-
gruppe. Unter Ausnutzung dieser Gruppeneigenschaft ergeben sich Flussgleich-
ungen, deren Integration zu einer strukturell sinnvollen Näherung des ursprüng-
lichen Problems führt.



Bibliography

D. J. Amit, Field theory, the renormalization group, and critical phenomena,
McGraw-Hill, New York, 1978.

P. W. Anderson, The resonating valence bond state in La2CuO4 and supercon-
ductivity, Science 235, 1196 (1987).

P. W. Anderson, G. Baskaran, Z. Zou, and T. Hsu, Resonating-valence-bond the-
ory of phase transitions and superconductivity in La2CuO4-based compounds,
Physical Review Letters 58, 2790 (1987).

J. F. Annett, Superconductivity, superfluids, and condensates, Oxford Univ.
Press, Oxford, 2004.

J. Bardeen, L. N. Cooper, and J. R. Schrieffer, Theory of Superconductivity,
Physical Review 108, 1175 (1957).

S. E. Barrett, D. J. Durand, C. H. Pennington, C. P. Slichter, T. A. Friedmann,
J. P. Rice, and D. M. Ginsberg, 63Cu Knight shifts in the superconducting
state of Y Ba2Cu3O7−δ (Tc = 90K), Phys. Rev. B 41, 6283 (1990).

J. Bednorz and K. Müller, Possible high Tc superconductivity in the Ba-La-Cu-O
system, Zeitschrift fr Physik B 64, 189 (1986).

C. Bender and S. Orszag, Advanced Mathematical Methods for Scientists and
Engineers, Springer, New York, 1. edition, 1999.

J. Berges, N. Tetradis, and C. Wetterich, Non-perturbative renormalization flow
in quantum field theory and statistical physics, Phys. Rep. 363, 223 (2002),
hep-ph/0005122.

B. Binz, D. Baeriswyl, and B. Douçot, Weakly interacting electrons
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geregten und nützlichen Diskussionen über Physik und Nichtphysik und die
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