

Max-Planck-Institut für Festkörperforschung

Stuttgart

Ein neuer Beitrag zur Synthese und Charakterisierung binärer/ternärer Alkaliund Erdalkalimetallhalogenide sowie einzelner Hydrate

Yvonne Liebold Ribeiro

Dissertation an der Universität Stuttgart

Stuttgart, 2008

Ein neuer Beitrag zur Synthese und Charakterisierung binärer/ternärer Alkali- und Erdalkalimetallhalogenide sowie einzelner Hydrate

Von der Fakultät Chemie der Universität Stuttgart zur Erlangung der Würde eines Doktors der Naturwissenschaften (Dr. rer. nat.) genehmigte Abhandlung

Vorgelegt von

Yvonne Liebold Ribeiro

aus Rentzschmühle

Hauptberichter: Mitberichter: Prof. Dr. Dr. h. c. M. Jansen Prof. Dr. Th. Schleid

Tag der Einreichung:06.06.2008Tag der mündlichen Prüfung:21.07.2008

Max-Planck-Institut für Festkörperforschung, Stuttgart 2008

"Jedem tiefen Naturforscher muss eine Art religiösen Gefühls naheliegen, weil er sich nicht vorzustellen vermag, dass die ungemein feinen Zusammenhänge, die er erschaut, von ihm zum ersten Mal gedacht werden."

Albert Einstein

Für meine Eltern und Eric.

Danksagung

Die vorliegende Dissertation wäre nicht zustande gekommen, wenn ich nicht breite Unterstützung und Hilfe gehabt hätte.

An erster Stelle sei meinem Doktorvater, Herrn Prof. Dr. Dr. h. c. Martin Jansen, herzlichst gedankt für das Anvertrauen der Themenstellung, die ständige Unterstützung, Diskussionsbereitschaft und das stetige wohlwollende Entgegenkommen.

Herrn Prof. Dr. Thomas Schleid danke ich für die Bereitschaft, den Mitbericht anzufertigen und Herrn Prof. Dr. Helmut Bertagnolli für den Vorsitz bei der mündlichen Doktorprüfung.

Ein großes Dankeschön geht an Herrn Dr. Dieter Fischer für die Betreuung der Arbeit, die Einarbeitung, die stetige Unterstützung und Hilfsbereitschaft sowie für das geduldige "Kämpfen" durch die Korrekturen dieser Arbeit.

An dieser Stelle möchte ich auch Herrn Christian Eckert für seine tatkräftige und zuverlässige technische Hilfestellung danken.

Weiterhin danke ich Herrn Prof. Dr. J. Christian Schön, Herrn Dr. Ž. Čančarević und Herrn Ilya Pentin für die gute Zusammenarbeit.

Mein Dank richtet sich auch an Herrn Prof. Dr. Robert E. Dinnebier für die Übergabe der interessanten Themenstellung der Doppelsalze und die ständige Unterstützung bei der Durchführung und Auswertung.

Frau Eva-Maria Peters möchte ich danken für die EDX-Analysen, Frau Marie Luise Schreiber für die ICP-OES Analysen, Herrn Dr. Christian Oberndorfer, Herrn Klaus Hertel und Frau Dr. Houvia Kabbour für die Durchführung der DTA/TG/MS-Messungen.

Ebenso bedanke ich mich bei Herrn Wolfgang König und bei Frau Marie Luise Schreiber für die IR-Aufnahmen. Herrn Dr. Clemes Ulrich, Herrn Dr. Armin Schulz und Herrn Mohammed Bakr danke ich herzlich für ihr freundliches Entgegenkommen und die Durchführung der Raman-Messungen. Bei dem Labor Pascher möchte ich mich für die freundliche und zügige Durchführung der Elementanalysen bedanken.

Für die Synchrotronmessungen bedanke ich mich bei Herrn Dr. Kunihisa Sugimoto und bei Herrn Prof. Dr. Robert E. Dinnebier. Mein Dank richtet sich auch an Frau Gabriele Götz für die Durchführung von Röntgenpulveraufnahmen.

Frau Sabine Prill-Diemer, Frau Dr. Hanne Nuss, Herrn Claus Mühle, Frau Kerstin Schunke, Herrn Michael Fischer, Herrn Moritz Stahl, Frau Güliz Cakmak, Herrn Dr. Bernd Hinrichsen möchte ich danken für die freundliche Unterstützung im Labor.

Der Elektronikabteilung, der Glastechnik, der Mechanikwerkstatt und dem Tieftemperaturservice sei besonders gedankt für die zügigen Reparaturen und die freundliche Auftragserfüllung.

Den Herren Dr. Aswin Verhoeven, Dr. Jürgen Nuss und Dr. Ulrich Wedig möchte ich danken für die Hilfestellung bei Computerproblemen. Herrn Sefan Ghedia danke ich für die Korrektur des englischen Textes.

Herrn Dr. Manuel Santoro danke ich für das gute Büroklima und den gesamten Kollegen in den Laboren für den Austausch von Labor- und Glasgeräten.

Bei Herrn Dr. Hermann Schier bedanke ich mich für die Literaturrecherche und bei dem Team der Bibliothek für die zügige Beschaffung der Literatur. Ebenso danke ich den gesamten Mitgliedern der Abteilung Jansen für das sehr gute Arbeitsklima, was zum Gelingen dieser Arbeit auch beigetragen hat.

Herrn Prof. Dr. Josué Mendes Filho und Herrn Prof. Dr. José Sasaki von der Bundesuniversität von Ceará in Brasilien danke ich für das Interesse an meiner Arbeit und für die Unterstützung während des Schreibens.

Ein ganz besonderer Dank sei an meine Eltern und Schwiegereltern, an meine Schwester Nicole sowie an meinen Schwager Johannes gerichtet für ihr Verständnis und ihre Aufmunterungen.

Schließlich möchte ich mich bei meinem Mann Eric bedanken, für die unentwegte liebevolle Unterstützung an meiner Seite, für sein Interesse an der Arbeit, seine Geduld und Zuversicht.

Ebenso sei all denen ein Dankeschön ausgesprochen, die nicht namentlich erwähnt wurden, aber zum Gelingen dieser Arbeit beigetragen haben.

Inhaltsverzeichnis

1.	Einleitung1		
2.	Abstra	5	
I A	LLGEMI	EINER TEIL	11
3.	Appar	aturen und Arbeitstechniken	11
	3.1	Vakuum-Schutzgasanlage	11
	3.2	Handschuhkasten	13
	3.3	Eintiegel-Bedampfungsanlage	14
	3.4	Thermische Behandlung ternärer Probengemenge	17
4.	Analys	semethoden	
	4.1	Röntgendiffraktometrie	
	4.2	Synchrotronmessungen	19
	4.3	Infrarot- und Ramanspektroskopie	20
	4.4	Energiedispersive Röntgenanalyse	21
	4.5	Elementanalyse mittels ICP-OES	21
	4.6	Thermische Analyse	22
5.	Verwe	endete Rechenprogramme	

II SPEZIELLER TEIL			IL		
6.	Mehrt	tiegelbedamp	ofungsanlage	24	
	6.1	Aufbau de	r Kammer		
	6.2	Durchführ	ung der Bedampfungsexperimente		
	6.3	Verwende	te Substanzen		
	6.4	Nukleation	n und Schichtwachstum		
	6.5	Verwende	te Substrate		
7.	Tiefte	mperaturabs	scheidung von Alkalimetallhalogeniden		
	7.1	Einleitung			
	7.2	Das Syster	m CsCl/KCl		
		7.2.1	Einleitung		
		7.2.2	Abscheidungen der Ausgangsverbindungen CsCl	und KCl	
		7.2.3	Abscheidungen von CsCl/KCl-Gemengen		
		7.2.4	Diskussion der Ergebnisse		
		7.2.5	Zusammenfassung		
	7.3	Das Syster	m CsCl/NaCl		
		7.3.1	Einleitung		
		7.3.2	Abscheidungen von CsCl/NaCl-Gemengen		
		7.3.3	Diskussion der Ergebnisse	64	
		7.3.4	Zusammenfassung		
	7.4	Das Syster	m LiBr		
		7.4.1	Einleitung		
		7.4.2	Abscheidung von LiBr	71	
		7.4.3	Ergebnisse und Diskussion	72	
		7.4.4	Zusammenfassung		

7.5	Das System	n CsBr/LiBr	79
	7.5.1	Einleitung	79
	7.5.2	Abscheidungen von CsBr/LiBr-Gemengen	83
	7.5.3	Ergebnisse	83
	7.5.4	Diskussion und Zusammenfassung	90
7.6	Die System	ne NaI/LiI und NaBr/LiBr	91
	7.6.1	Einleitung	91
	7.6.2	Abscheidungen der Ausgangsverbindungen LiI, NaI un	ıd
		NaBr	94
	7.6.3	Abscheidung von Nal/Lil und NaBr/LiBr-Gemengen	96
	7.6.4	Diskussion der Ergebnisse	101
	7.6.5	Zusammenfassung	102
7.7	Das System	n LiBr/H ₂ O	103
	7.7.1	Einleitung	103
	7.7.2	Abscheidung von LiBr	104
	7.7.3	Ergebnisse	104
	7.7.4	Diskussion und Zusammenfassung	106

8. Untersuchungen fester Gemenge ternärer Alkalimetallhalogenid-

Verbindungen107				
8.1	Einleitung		107	
8.2	2 Die Systeme LiX/RbX mit X = I, Br, Cl		108	
	8.2.1	Einleitung	108	
	8.2.2	Synthese	113	
	8.2.3	Ergebnisse	115	
	8.2.4	Diskussion	126	
	8.2.5	Zusammenfassung	128	

	8.3	Die Systeme LiX/CsX mit X = I, Br, Cl 1		
		8.3.1	Einleitung	
		8.3.2	Synthese	
		8.3.3	Ergebnisse	136
		8.3.4	Diskussion	148
		8.3.5	Zusammenfassung	150
9.	[Mg(H	H ₂ O) ₆]RbCl ₃	und [Mg(H ₂ O) ₆]CsCl ₃	151
	9.1	Einleitung	5	
	9.2	Synthese.		
	9.3	Thermisch	ne und Röntgenographische Untersuchungen	
	9.4	Ergebniss	e und Diskussion	
	9.5	Zusamme	nfassung	
ш	Zusammenfassung und Diskussion			169
Liter	aturver	zeichnis		175
A	Anha	ng		

1. Einleitung

Das Hauptanliegen der Chemie besteht in der Synthese und Charakterisierung neuer Verbindungen. Zur systematischen Vorgehensweise ist es von großem Interesse sowohl existenzfähige Verbindungen vorherzusagen wie auch Reaktionswege für ihre gezielte Synthese zu entwickeln. Blickt man auf die Molekülchemie, so stellt man fest, dass hier bereits beeindruckende Entwicklungen, wie z.B. in der Kohlenstoffchemie, stattgefunden haben [1–4]. Ganz anders ist die Situation in der Festkörperchemie. Hier steht man noch am Anfang auf dem Weg zur rationalen Syntheseplanung.

Im Gegensatz zu der Molekülchemie, ist es bisher in der Festkörperchemie noch nicht gelungen, anhand einer verallgemeinerbaren Vorgehensweise unbekannte Feststoffe mit einer bestimmten Zusammensetzung, Struktur oder Eigenschaft gezielt zu entwickeln. Natürlich liegen empirische Regeln vor, wie z.B. die Radienquotientenregel [5–7], die Valenzelektronenkonzentrations-Regel [8, 9], Paulings kristallchemische Regeln [7, 10] oder die Analyse der partiellen Madelung-Energien [11], mit deren Hilfe die Kristallstruktur kontrolliert und analysiert werden kann. Dennoch erscheint es nahezu unmöglich, allein aus diesen Regeln dreidimensionale Strukturen einer hypothetischen Verbindung abzuleiten [12].

Durch den Einsatz leistungsfähiger Computer werden in der heutigen Zeit Lösungsansätze für die Entwicklung realistischer Syntheseziele erkennbar. Man bedient sich dabei der Untersuchung der Hyperfläche der potentiellen Energie oder Gibbs-Enthalpie [13] des chemischen Systems. Aus physikalischer Sicht entspricht eine kinetisch stabile Verbindung einem lokalen Minimum jener Energiehyperfläche [13]. Die Umgebung der Minima mit energetischen und/oder entropischen Barrieren stellt die unausweichliche Bedingung für die Stabilität der Struktur dar, welche einen Zerfall oder eine Umwandlung in eine andere Struktur innerhalb einer (temperaturabhängigen) "Überlebenszeit" $\tau(T)$ [13] nicht möglich macht.

Da der direkte Lösungsweg über die Schrödinger-Gleichung für die Berechnung der energetischen Minima nicht durchführbar ist, wurde eine stufenartige Herangehensweise entwickelt [13]. Diese besteht darin, die Strukturkandidaten zunächst nicht exakt zu bestimmen. Diese Methode führte direkt zu dem modularen Ansatz, welcher darin Anfangskonfiguration der globalen Optimierungen durch besteht. die eine Zufallsverteilung neutraler Atome in einer Simulationszelle zu erzeugen. Hierbei entspricht das Volumen der Zelle ungefähr dem Zehnfachen des Volumens aller beteiligten Atome. Anschließend werden die erhaltenen Strukturkandidaten auf deren thermodynamische und kinetische Stabilität hin untersucht werden. Die vielversprechendsten unter den Kandidaten werden darauffolgend durch detaillierte und zeitaufwendige Algorithmen verfeinert [13].

Da es das vorrangige Ziel ist, die Energielandschaft möglichst detailliert zu erkunden, d.h. möglichst viele lokale Minima (kinetisch stabile Strukturen) zu erfassen, werden ausgewählte Systeme sehr ausführlich untersucht [13]. Dies trifft für binäre und ternäre Alkalimetallhalogenidverbindungen zu. Die Resultate zu den erst genannten zeigen eine Übereinstimmung der gefundenen Minima mit den entweder experimentell beobachteten oder z.B. der mit der Radienquotientenregel übereinstimmenden Struktur [13]. Bei den Optimierungen wurde eine Reihe an weiteren Strukturkandidaten gefunden, die lokalen Minima der Energiehyperfläche entsprechen. Dazu gehören z.B. für Natriumchlorid zum einen die NiAs-Struktur, welche erstmals von Martin und Corbett [14] als ein Monohalogenid (LaI) experimentell gefunden wurde und zum anderen die 5-5-Variante, welche aus trigonal-bipyramidaler Koordination von Natrium und Chlor besteht. Wenn man auf die ternären Verbindungen der Alkalimetallhalogenide übergeht, so ergeben die durchgeführten Optimierungen ebenso neue metastabile Strukturen.

Um der experimentellen Erkundung der Energielandschaft, d.h. der Realisierung der Strukturen nahezukommen, müssen zwei Bedingungen beachtet werden: (i) die Erhöhung der Beweglichkeit der Teilchen im festen Aggregatzustand und (ii) die Erzielung einer möglichst guten Durchmischung der Edukte [13, 15–19]. Eine Mindestanforderung stellt die Detektion der metastabilen Zustände innerhalb der Zeitauflösung der Beobachtungssonden dar. In anderen Worten, muss die Umwandlungs- bzw. Reaktionsgeschwindigkeit zum Erreichen des thermodynamischen Gleichgewichts in messbaren Grössenordnung liegen [10, 20]. Da man die Elementarprozesse — die lokalen Platzwechsel — der Diffusion im Festkörper nicht wesentlich beeinflussen kann, konzentriert man sich auf die Reduzierung der Transportlängen [12]. Dies geschieht, indem die Edukte in disperser Verteilung hergestellt werden.

Für die experimentelle Umsetzung wurde ein Aufdampfverfahren entwickelt, in dem die gewünschten Komponenten in einer UHV-Präparationskammer unabhängig voneinander in die Gasphase überführt und in statistischer Verteilung auf ein Substrat abgeschieden werden. Der gewählte Weg zur Erzeugung disperser Ausgangsgemengen ist bei den traditionellen Physical-Vapour-Deposition(PVD)-Methoden [21, 22] und der layer-bylayer deposition Technik [23] einzuordnen. In der letztgenannten sind bereits eindrucksvolle neuartige Schichtstrukturen synthetisiert worden [24-29], wobei besondere Aufmerksamkeit der Keimbildung und -wachstum gewidmet wurde [30, 31]. Betrachtet man die Ergebnisse genauer, so wird deutlich, dass die Selektion der tatsächlich gebildeten Produktphasen durch die Keimbildungsgeschwindigkeit gesteuert wird. Nach der Ostwaldschen bzw. Vollmerschen Regel kristallisiert bei hohen Übersättigungen zunächst die Modifikation mit der geringsten Dichte aus [32]. Einfluss auf die Keimbildung kann durch Variation von Temperatur, Druck und Übersättigung genommen werden. Diese experimentellen Parameter müssen sinnvoll eingeschränkt werden. Ein weiteres Element zur Steuerung der Kristallisation liegt in dem "Animpfen", z.B. durch eine spezifische Substratoberfläche, deren Gitterparameter und – symmetrie mit denjenigen der Zielverbindung übereinstimmt. Trotz dieser auf der heterogenen Keimbildung beruhenden Methode, bleibt das eigentliche Ziel die Kontrolle der homogenen Keimbildung mit Hilfe der äußeren Bedingungen (Temperatur, Druck und Übersättigung), damit die Zielstruktur die kritische Keimbildung am schnellsten erreicht und überschritten wird.

Als zweite Synthesemethode kam die thermische Behandlung von ausgewählten ternären Alkalimetallhalogeniden im Röhrenofen bei einer Temperatur kapp unterhalb des Schmelzpunktes des jeweiligen Eutektikums mit einem anschließenden Quench zum Einsatz. Des Weiteren wurden Proben direkt aus der Schmelze abgeschreckt und anschließend einer Temperung bei einer Temperatur knapp unterhalb des Schmelzpunktes des jeweiligen Eutektikums unterzogen. Auf diesem Wege sollte es möglich sein, über einen amorphen Übergangszustand zu einer neuen metastabilen Phase zu gelangen. Im Mittelpunkt dieser Dissertation steht somit die Synthesewege zur Erkundung der Energielandschaft voranzubringen und neue vorhergesagte Verbindungen der Alkalimetallhalogenide zu stabilisieren. Wie erwähnt, soll dies zum einen durch Abscheidungen der Edukte aus der Gasphase auf ein Substrat in einer UHV-Präparationskammer geschehen und zum anderen durch die thermische Behandlung der Edukte über einen bestimmten Zeitraum im Röhrenofen. Dabei sollen die genannten Parameter sinnvoll gewählt werden.

Als drittes, etwas untergeordnetes Thema werden die Doppelsalze ausgewählter Alkalimetallhallogenide auf Basis der Karnallitstruktur temperaturabhängig untersucht.

2. Abstract

This work presents the synthesis and characterization of binary and ternary alkali and alkali earth metal halides in the framework of the so-called "rational synthesis planning" in the solid state chemistry. Furthermore, double salts of selected alkali-metal halides and magnesium halides on the basis of the carnallite structure are examined.

Multi-crucible vacuum chamber and low-temperature deposition of alkali-metal halides

In the first part of the present work a newly developed 'Low-Temperature Deposition' technique is employed. The presented experiments with alkali-metal halides should validate the predictions of new metastable phases. In the investigations, a novel experimental technique for the separation of the different gaseous phase components onto a cooled substrate in an ultra high vacuum chamber was used. The so-called 'Low-Temperature Deposition' technique is further developed in the present work. The construction of a multi-crucible vacuum chamber enabled, for the first time, separate vaporization of different components into the gas phase. The equipment consists of the following structural elements:

- Two self-made resistance heaters (stenan crucible, molybdenum conductor), thermocouple and *Eurotherm* temperature controller;
- Escutcheon (tantalum);
- Cooling device manually positionable through a manipulator; which can be used with both liquid nitrogen and helium;
- Mass spectrometer with device-specific auxiliary software for the continuous monitoring of one mass number and visualization of the spectrum over several mass numbers (up to M = 100); data recording possible;
- Additional integration of a Cryo pump system; improvement of the final pressure of the ultra high vacuum chamber from $2^{\cdot} 10^{-8}$ mbar to $5^{\cdot} 10^{-9}$ mbar.

In order to demonstrate the efficiency of the improved technique, the systems KCl/CsCl and NaCl/CsCl are investigated on the basis of the experimental works developed by Queisser [33]. In the case of the CsCl/KCl sample with 36 at% KCl, a four-phase mixture is observed at 100 °C. On the other hand, the simultaneous low-temperature depositions on the CsCl/NaCl system yield, at $T_{\rm S} = -196$ °C, X-ray amorphous samples, which transforms to the α -CsCl structure for values of substrate temperature higher than -100 °C. This finding is independent of the atomic percentage of NaCl (16 at%, 20 at%, 28 at% or 68 at%). The influence of the temperature of the substrate on the crystallization of the sample was investigated. The results of the experiments show that large condensation temperature values (-20 °C) are required for the crystallization of α - and β -CsCl. In agreement with the literature, no formation of mixed crystals is observed.

For the stabilization of metastable phases special emphasis was given to the alkali-metal halides whose ratio of cation/anion radii lies at the boundary between two structure types. The investigations of the present work focused mainly on the influence of the temperature, pressure and oversaturation on the homogeneous seed formation on the substrate surface. The influence of the substrate on the seed formation was also considered. The most frequently used substrate is Sapphire (single crystal, orientation (0001) as well as in particular cases (11–20)). Lithium niobate (single crystal, orientation (0001)) and polycrystalline copper were also employed. It is within the scope of the present work to investigate whether the substrate has an effect on the crystal structure of the deposited sample.

The system LiBr

The successful stabilization of a new metastable modification of LiBr is presented. This metastable wurtzit modification of LiBr ($P6_3mc$ (Nr. 186) with a = 4,1509(5) Å and c = 6,6502(2) Å) is obtained for $T_{\text{Tiegel}} = 440$ °C and $T_{\text{S}} = -50$ °C as a single phase. This structure appears stable between -100 °C und 0 °C and is obtained regardless of which substrate is used. With increase in temperature a phase transition to the cubic rock salt structure is observed, which is completed at 0 °C.

The system LiBr/CsBr

The low-temperature depositions of CsBr and LiBr onto a substrate at $T_S = -196$ °C as well as -100 °C reveal that the X-ray amorphous samples transforms firstly in α -CsBr, and that crystallization of CsLiBr₂ and of the component in excess is achieved only for a substrate temperature of 100 °C, and 30 °C respectively. This can be understood through the lower lattice energy of cesium bromide as compared to lithium bromide, which implies a lower crystallization temperature for the former compound.

It is interesting to note that the mutual influence of the coexisting bonds is strong enough to inhibit the crystallization of the respective low-temperature modifications. Even an increase in the condensation temperature up to -20 °C leads to X-ray amorphous samples. In the literature, this is explained on the basis of the assembly of lattice deformations in comparable systems [33].

The systems NaI/LiI and NaBr/LiBr

In these systems the order of the crystallization of the components depends also on the respective lattice energies. At -196 °C LiBr (highest value of lattice energy) appears X-ray amorphous, whereas LiI and NaBr (intermediate values) exhibit broad peaks, and NaI (lowest value) appears with the highest crystallinity. A low solubility of 10 at% NaI in LiI is observed from the experiments on the systems LiI/NaI. Whereas LiI/NaI appears crystalline at -196 °C due to the lower lattice energy of NaI, the experiments with LiBr/NaBr at this substrate temperature yield X-ray amorphous samples. This can be understood through the high value of lattice energy of LiBr. Furthermore a low solubility of LiBr in NaBr was observed in the experiments.

The system LiBr/H₂O

The results presented here suggest that, analogous to the system LiI/H_2O , in the system $LiBr/H_2O$ the still unknown phases $LiBr\cdot 3H_2O$ and $LiBr\cdot 2H_2O$ are also observed. Due to the reflection-rich X-ray powder pattern and the insufficient crystallinity of the samples, it was not possible to obtain a successful structure solution. The measured OH-band in the Raman spectrum of the LiBr system confirms that hydrates were effectively present in the samples.

Discussion

The experiments show that the substrate plays only a subordinate role in the crystallization of the samples. The main influence on the crystallization was exerted by the temperature, pressure and oversaturation. A relation between the crystallization behavior of the deposited components and their lattice energy could be established. For further developments of the ultra high vacuum chamber more possibilities for the connection of future amplifications, e.g. separate layer thickness measuring for each substance, are intended. Further, the deposition of the substances with a laser is the subject of further work. In this kind of experiment, the substances are located in the form of a tablet on a rotating target holder.

In conclusion, in the present work it is shown that the newly developed technique allows new metastable structures to be found.

Investigations on solid ternary alkali-metal halides

Besides the above-mensioned experiments, in the third part of the present work investigations of solid state reactions of ternary alkali-metal halides through thermal treatment in a furnace were also performed. For this purpose two different methods were applied. The first method (u-SMP) consists of the thermal treatment of the mixtures at a temperature shortly under the melting point of the eutectic. In the second method the thermal treatment is also performed, however the mixtures are firstly transferred into the melt. After quenching of the samples, these are analyzed on the X-ray diffractometer.

The X-ray powder patterns of the systems LiI/RbI and LiCI/RbCl show a reproducible reflex alignment, which could be a new phase. In the case of LiI/RbI the indexing of the reflexes lead to a monoclinic cell with a = 17,053 Å, b = 7,662 Å, c = 9,895 Å, $\beta = 95,09^{\circ}$, whose volume coincides with that of RbLiI₂ with Z = 8. However the indexing of the LiCl/RbCl pattern leads to an orthorhombic cell with a = 9,950 Å, b = 8,801 Å, c = 8,249 Å, which has the volume of RbLiCl₂ with Z = 8.

Unlike the described systems LiI/RbI and LiCl/RbCl, only the known reflections are observed in the LiBr/RbBr patterns. This is also obtained for the system LiI/CsI, the pattern of which displays the reflections of LiI, CsI and Cs₂Li₃I₅ independently of the

composition. In the system LiBr/CsBr the ternary compound CsLiBr₂ is achieved, besides LiBr and CsBr in their cubic structure. However in the system LiCl/CsCl reflection-rich X-ray patterns are observed independent of the temperature and composition of the mixtures. The volume of the indexed monoclinic cell (a = 24,421 Å, b = 4,444 Å, c =15,604 Å, $\beta = 111,134^{\circ}$) suggests LiCsCl₂, with Z = 16. Further the crucible material has an effect on the crystallization. In samples that are annealed in a crucible of tantalum or copper, only a very small amount of the new monoclinic phase is obtained. However, in the case of gold or stainless steal crucibles, a higher amount of the new phase can be observed.

No significant dependence of the crystallographic results on the temperature and the time of heating could be observed in the experiments. Furthermore the crystal structure of the components appears only marginally dependent on the particular synthesis method (u-SMP, o-SMP).

In this manner, the experiments in the present work confirmed the existence of new stable ternary compounds in the systems LiI/RbI, LiCl/RbCl and LiCl/CsCl as predicted from calculations.

Double salts

In the third part of the present work double salts of alkali-metal halides and magnesium halides were experimentally investigated both at room temperature and at high temperatures. The crystal structures of the alkali-metal double salts $[Mg(H_2O)_6]XBr_3(X^+$ = Rb⁺, Cs⁺) were analyzed in dependence on temperature from laboratory and synchrotron X-ray powder diffraction data. At room temperature, both compounds are isostructural to $[Mg(H_2O)_6](NH_4)Br_3(C2/c; Z = 4; a = 9,64128(6) \text{ Å}, b = 9,86531(5) \text{ Å}, c = 13,78613(9) \text{ Å}, \beta = 90,0875(5)^\circ$ for $[Mg(H_2O)_6]RbBr_3; a = 9,82304(7) \text{ Å}, b = 9,98043(6) \text{ Å}, c = 14,0100(1) \text{ Å}, \beta = 90,1430(4)^\circ$ for $[Mg(H_2O)_6]CsBr_3$). At a temperature of T = 358 K, $[Mg(H_2O)_6]RbBr_3$ undergoes a reversible phase transition towards a cubic perovskite type of structure with the $[Mg(H_2O)_6]^{2+}$ octahedron in the cuboctahedral cavity exhibiting 4-fold disorder $(Pm\bar{3}m; a = 6,94198(1) \text{ Å} \text{ at } T = 458 \text{ K})$. In case of $[Mg(H_2O)_6]CsBr_3$ the lattice parameters in dependence on temperature show a

distinct kink at T = 340 K, but no symmetry breaking phase transition occurs before decomposition starts. The hydrogen bonding with respect to the stability of the crystal structures plays the dominant role for the different behavior of the two double salts.

I ALLGEMEINER TEIL

3. Apparaturen und Arbeitstechniken

Dieses Kapitel dient der Beschreibung der verwendeten Apparaturen und Arbeitstechniken. Dabei werden die Funktionsweisen sowie die technischen Details schematisch vorgestellt. Aufgrund der extremen Luft- und Feuchtigkeitsempfindlichkeit der verwendeten Substanzen, wurden diese nach der Schlenktechnik an einer Vakuum-Schutzgasanlage sowie in einem Handschuhkasten gehandhabt. Experimente zur Darstellung neuer Verbindungen erfolgten in einer UHV-Verdampfungsanlage oder mittels thermischer Behandlung in einem Röhrenofen.

3.1 Vakuum – Schutzgasanlage

Sauerstoff- und feuchtigkeitsempfindliche Proben verlangen ein experimentelles Arbeiten unter Luftausschluss. Hierfür wurde eine Vakuum-Schutzgasanlage im Zusammenhang mit der Schlenktechnik eingesetzt (Abb. 3.1). Sie besteht aus einem Schutzgasstrang, aus welchem getrocknetes Argon der Reinheitsstufe 5.0 entnommen wird. Ihr ist eine vierstufige Gasreinigungsanlage vorgeschaltet, in der das Argon nacheinander über Blaugel für die Vortrocknung, gefolgt von Kaliumhydroxid zur Trocknung und Entfernung von sauren Gasen, danach über ein Molsieb (Porengröße 300 μ m) für die Entfernung von Feuchtigkeit und Kohlenwasserstoffen und schließlich über Phosphorpentoxid zur Beseitigung der letzten Feuchtigkeitsspuren des Schutzgases geleitet wird. Bevor das Argon in die Anlage eintritt, wird es zusätzlich noch über einen 1000 K heißen Titanschwamm geleitet, um noch verbleibende Spuren an Sauerstoff, Stickstoff und Wasserstoff in Form von TiN, TiO₂ und TiH_x zu binden.

Daneben besteht diese Anlage aus einem Vakuumstrang, welcher über eine Kühlfalle an eine Drehschieberölpumpe (RV5, Fa. Edwards) angeschlossen ist. Es kann damit ein Endtotaldruck von 2^{-10⁻³} mbar erreicht werden, welcher über ein Pirani-Manometer (Thermovac TR211 KF, Fa. Leybold) überwacht wird.

Apparaturen können über Glaswinkel und Glasspiralen mit dieser Anlage verbunden werden, dies erlaubt eine Evakuierung sowie eine Spülung mit Argon.

Schliffverbindungen werden mit Silikon Hochvakuumfett (Fa. Wacker) abgedichtet. Alle Glasgeräte werden vor der Verwendung sorgfältig unter Vakuum mit einem Erdgasbrenner ausgeheizt, um adsorbierte Feuchtigkeit an den Innenwänden zu entfernen. Daneben der ist möglich, nach Schlenktechnik mittels es Standardumfüllapparaturen oder Oxidationsrohren (Abb. 3.2) Substanzen durch Einschmelzen in Glasampullen mit einem Erdgas-Sauerstoff-Brenner zu portionieren, sowie in Markröhrchen für die Röntgenaufnahmen zu füllen. Werden Apparaturen geöffnet, so erfolgt dies unter ständigen Argongegenstrom.

Abb. 3.1 Schematischer Aufbau der Vakuum-Schutzgasanlage.

Abb. 3.2 Links: Umfüllapparatur (obere Schliffe: NS 29, übrige Schliffe: NS 14,5)

- a) Portionierung der Substanzen durch Einschmelzen in Glasampulle;
- b) Markröhrchen für Röntgenaufnahme;

Rechts: Oxidationsrohr (Länge etwa 25 cm, Durchmesser etwa 3 cm), zum Trocknen der Substanzen.

3.2 Handschuhkasten

Dieses System dient ebenso der Handhabung von luft- und feuchtigkeitsempfindlichen Substanzen, z.B. für das Anfertigen von Presslingen. Zur Verfügung stehen die Handschuhkästen MB 120B, MB 150 und MB 200 (Fa. M. Braun, gefüllt mit Argon der Reinheitsstufe 5.0, Abb. 3.3). Die Substanzen und Gegenstände werden durch ein evakuierbares Schleusensystem in den Kasten hinein befördert. Der Enddruck beträgt dabei 1·10⁻² mbar, welcher durch eine Drehschieberölpumpe (Trivac D4B, Fa. Leybold, Köln) realisiert wird. Die Reinigung des Schutzgases erfolgt durch Umwälzen über ein Molekularsieb und einen Kupferkontakt, dabei wird der Wasser- und der Sauerstoffgehalt ständig von einem Gasanalysator überprüft, welcher stets unter 0,2 ppm für Wasser und unter 0,1 ppm für Sauerstoff liegen soll.

Abb. 3.3 Foto eines Handschuhkastens (MB 120B) für das Lagern und Bearbeiten von sauerstoff- und feuchtigkeitsempfindlichen Substanzen.

3.3 Eintiegel-Bedampfungsanlage

Der schematische Aufbau der Bedampfungsanlage ist in Abbildung 3.4 dargestellt. Das Kernstück bildet die Utrahochvakuum(UHV)-Kammer, bestehend aus Edelstahl. Um Fremdatome auszuschließen, wird unter bestmöglichen Vakuumbedingungen abgeschieden. Dazu befinden sich eine Vorvakuum- (Scrollpumpe SH-100, Fa. Varian, Leini) sowie eine magnetgelagerte Turbomolekularpumpe (340 M, Fa. Leybold Vacuum, Köln) am System. Um das Vakuum weiter zu verbessern, ist ein Kühlschild für flüssigen Stickstoff im Inneren der Kammer eingebaut. Zur Qualitätsüberwachung des Vakuums (2^{10⁻⁸} mbar) dienen sowohl eine Vakuummessröhre (IONIVAC, Fa. Leybold vacuum) als auch ein Massenspektrometer (QME 064, Fa. Balzers), welches den Partialdruck der Restgase angibt. Als Schutzgas zum Spülen der Kammer wird Argon der Reinheitsstufe 5.0 verwendet. Ein Foto der kompletten Anlage zeigt Abbildung 3.5.

Um die Verbindungen im inneren der Kammer in die Gasphase zu überführen, wird ein Verdampfertiegel verwendet (Abb. 3.6). Er befindet sich in der Mitte der Kammer und besteht aus Stenan (d.h. 59 % SiO₂, 35 % Al₂O₃, 0,9 % - 1,6 % Fe₂O₃, bis 0,25 % CaO, bis 0,3 % MgO, bis 3 % TiO, Hoechst CeramTec AG). Dessen Temperatur wird über einen Eurothermregler (2408, Fa. Eutotherm GmbH, Limbach/Lahn) geregelt. Dabei erfolgt die Temperaturmessung mit einem Thermoelement (Typ K) und das Aufheizen des Tiegels über eine widerstandsbeheizte Molybdändrahtwicklung, welche an ein Spannungsgerät (SM 30-100D, Fa. Delta Elektrika, Baden-Baden) angeschlossen ist.

Die Substanz wird auf einem gekühlten Substrat abgeschieden, welches mit Klammern an einem Probenhalter aus Kupfer im Inneren eines Transfersystems (Abb. 3.7) befestigt ist. Dieser Probenhalter ist über einen Manipulator mit Hilfe eines Schrittmotors (XMOT31, MClennan Servo Supplies, Camberly) entlang der x-Richtung, sowie mit dem Schrittmotor (PK268-01B, Vextra, Japan) in y- bzw. z-Richtung bis auf 1/10 mm genau positionierbar.

Die Temperaturregelung des Substrates ist zwischen –250 °C und 400 °C möglich. Dies wird realisiert über einen Thermoregler (Heat-Controller HC 500, Tectra), bei welchem die Temperaturmessung über ein Thermoelement (PT 100) und die Temperatureinstellung über einen Graphitheizer umgeben von Bornitrid im Gegenstrom

zu flüssigen Stickstoff oder Helium erfolgt. Das Transfersystem erlaubt anschließend den problemlosen Transport des Substrates sowohl zum Diffraktometer als auch zum Handschuhkasten.

Abb. 3.4 Schematischer Aufbau der Eintiegel-Bedampfungsanlage.

Abb. 3.5 Foto der Eintiegel-Bedampfungsanlage mit Beschreibung der Bestandteile.

Abb. 3.6 Foto eines Stenan-Verdampfertiegels. TE: Thermoelement, MD: Molybdän-Drahtwicklung.

Abb. 3.7 Schematischer Aufbau des Transfersystems. FG: Fahrgestell, G: Höhenverstellbares Gestell, H: Stromzuführung für Graphitheizer, K: Klammern, MG: Manuelle Winkelpositionierung, MP: Manipulator, MX: Schrittmotor in x-Richtung, MY: Schrittmotor in y-Richtung, MZ: Schrittmotor in z-Richtung, N₂: Stickstoffzu- und abfluss, P: Probenhalter, S: Substrat: SV: Sichtfenster, VM: Vakuummessröhre, VS: Vakuumschieber.

3.4 Thermische Behandlung ternärer Probengemenge

Die Probenvorbereitung erfolgte im Handschuhkasten und bestand aus dem Einwiegen der Ausgangskomponenten in das gewünschte Verhältnis, sowie aus dem Anfertigen von Presslingen ($\emptyset = 6$ mm, Dicke ca. 0,5 cm) des gründlich gemörserten Probengemenges. Dazu wurde eine hydraulische Presse mit einem Druck von 0,8 GPa eingesetzt. Die Presslinge wurden in einen Tiegel mit einem Stopfen fest verschlossen. Es standen Silber-, Edelstahl- und Kupfertiegel sowie Gold- und Tantalampullen zur Verfügung. Aufgrund der hohen Feuchtigkeitsempfindlichkeit der Substanzen wurden diese mit Hilfe der Schlenktechnik weiterhin in Glasampullen an der Vakuum-Schutzgasanlage eingeschmolzen, dabei wurde Duranglas bei Temperaturen bis 500 °C und Quarzglas bei höheren Temperaturen eingesetzt.

Die Temperung der Proben im Röhrenofen bis max. 740 °C erfolgte mit einer Aufheizrate von 50 °C/h. Nach einer thermischen Behandlung über max. zwei Monate wurden die Glasampullen direkt aus dem heißen Ofen auf ein Edelstahlblech gelegt, zerstört und der Tiegelboden in einem Eisbad abgeschreckt. Überreste von Wasser an dem Tiegel wurden anschließend mit einem Tuch entfernt. In ein Röhrchen, welches mit Argon als Schutzgas gefüllt war, wurden die Tiegel eingeschlossen. Danach erfolgte sofort deren Evakuierung in die Schleuse des Handschuhkastens. Eine Variation des Abschreckverfahrens erfolgte, indem statt Eiswasser zum einen eine Mischung aus Lehm und Eiswasser und zum anderen eine 10%-ige NaCl-Lösung verwendet wurde.

4. Analysemethoden

4.1 Röntgen-Pulverdiffraktometrie

Für die röntgenographische Untersuchung pulvriger Proben standen vier Pulver-Diffraktometer zur Verfügung (Tab. 4.1). Mit dem Röntgendiffraktometer vom Typ Stadi P der Firma Stoe & Cie (Darmstadt) mit Debye-Scherrer-Geometrie wurde die Überprüfung der pulvrigen Ausgangssubstanzen bezüglich deren Reinheit durchgeführt. Die Substanzen befanden sich unter Argon in einem Markröhrchen (Quarz- oder Duranglas, $Ø_a = 0.2$ mm oder 0.5 mm, Fa. Hilgenberg) eingeschmolzen. Ein Johannson-Monochromator, welcher aus einem gebogenen Germaniumkristall besteht, dient der Monochromatisierung der Röntgenstrahlung (Cu-K α_1 , $\lambda = 1,54056$ Å). Im Mittelpunkt des Goniometerkreises befindet sich das rotierende Markröhrchen. Zur Detektion dient ein ortsempfindlicher Proportionalzähler (Position Sensitive Detector).Für Präzisionsmessungen stand ein linearer PSD-Detektor zur Verfügung. Elementares Silizium dient dabei als externer Standard für die Korrektur der Messwerte bezüglich des 2θ-Nullpunktes.

Für die Aufnahme von hochaufgelösten Pulverdiffraktogrammen wurde das D8-Advance von Bruker AXS eingesetzt (Cu-K α_1 , Ge(111)-Johanson-Monochromator, Debye-Scherrer Geometrie). Dabei erfolgte die Messung im Transmissionsmodus mit einer Schrittweite von 0,009° 2 Θ . Die Proben befanden sich in einem Markröhrchen (Hilgenberg-Glass Nr. 50, $\emptyset = 0,2$ mm oder 0,3 mm), welches unter Argon gefüllt und luftdicht abgeschmolzen wurde. Mit Hilfe eines Kapillar-Heizgerätes (mri Physikalische Geräte GmbH, Temperaturstabilität <1 K) konnten Hochtemperatur-Aufnahmen durchgeführt werden.

Die auf ein Substrat aufgedampften Schichten, hergestellt in der UHV-Kammer, wurden auf einem Diffraktometer (D8-Advance, Bruker AXS, Karlsruhe) mit Parallelstrahloptik (Göbelspiegel, Cu-K $\alpha_{1,2}$) temperaturabhängig vermessen. Aufgenommen wurden die Diffraktogramme im Reflexionsmodus unter Hochvakuum- (1·10⁻⁷ mbar) oder Inertgasbedingungen. Zur Detektion dient ein Hi-Star-Flächendetektor mit 1024 x 1024 Pixel, durch deren Integration eine Auflösung von $\Delta 2\Theta = 0,02^{\circ}$ möglich ist. Die Röntgenkammer ist zusätzlich zur Absorption von Streustrahlung mit einer Bleiblende versehen, damit wird unter Vakuumbedingungen ab ca. 20° in 2θ eine deutliche Absenkung des Untergrundes erreicht.

Tab. 4.1 Spezifikationen der verwendeten Diffraktometer.	

Gerät, Röntgenstrahlung	Probenpräparation	Detektor
Stoe IPSD: Cu-Ka ₁	Markröhrchen	Bildplatten
$(\lambda = 1,54056 \text{ Å})$	Transmissionsmodus	Winkelbereich ca. 35°
		$\Delta 2\Theta = 0,15^{\circ}$
Stoe IPSD: Cu-Kα ₁	Markröhrchen	Ortsempfindlicher Detektor
$(\lambda = 1,54056 \text{ Å})$	Transmissionsmodus	Winkelbereich 6°
		$\Delta 2\Theta = 0,06^{\circ}$
D8-Bruker AXS: Cu-Kα ₁	Markröhrchen	Ortsempfindlicher Detektor
$(\lambda = 1,54056 \text{ Å})$	Transmissionsmodus	Winkelbereich 6°
		$\Delta 2\Theta = 0,009^{\circ}$
D8- Bruker AXS: Cu-Kα _{1, 2}	Flachpräparat	Hi-Star-Flächendetektor
$(\bar{\lambda} = 1,54243 \text{ Å})$	Reflexionsmodus	$\Delta 2\Theta = 0,02^{\circ}$

4.2 Synchrotronmessungen

Temperaturabhängige Synchrotronaufnahmen wurden an der Beamline SUNY X7B der National Synchrotron Light Source (NSLS, Brookhaven National Laboratoy) durchgeführt. Die Monochromatisierung der Röntgenstrahlung erfolgt an einem Si(111)-Doppelmonochromator. Die Bildplatten (MAR 345) befinden sich senkrecht zum einfallenden Strahl, ca. 170 mm von der Probe entfernt. Die exakte Wellenlänge und die Nullpunktsverschiebung werden mit LaB₆ als externen Standard bestimmt. Die Messung der Probe erfolgt in Glasmarkröhrchen ($\emptyset = 0,3$ mm, Fa. Hilgenberg), die wiederum in einer 0,8 mm Saphirkapillare platziert und in einer Durchflusszelle [34, 35] erwärmt werden. Die Integration der Beugungsringe wird mit dem Programm FIT2C [36, 37] durchgeführt.

4.3 Infrarot- und Ramanspektroskopie

Die Infrarotspektren dienten der Überprüfung der Ausgangssubstanzen nach dem Trocknungsverfahren. Sie wurden an einem FT-IR-Spektrometer (IFS 113v, Fa. Bruker, Karlsruhe) mit Vakuumoptik und Grenzel-Interferometer in einem Bereich von 400 bis 4000 cm⁻¹ mit einer Auflösung von 2 cm⁻¹ aufgezeichnet. Ein Siliziumcarbidglobar dient als Strahlungsquelle, die Detektion erfolgt an einem DTGS-Detektor (<u>d</u>euterated glycerol <u>s</u>ulphate). Die Aufnahme und Auswertung der Messung wird mit dem Programm OPUS-NT [38] durchgeführt.

Um Störungen durch Temperatur, Luft und andere IR-Strahlungsquellen zu vermeiden, wird gegen eine Referenzprobe (reines KBr oder CsI) gemessen.

Aufgrund der Feuchtigkeitsempfindlichkeit der Proben wurde deren Präparation im Handschuhkasten durchgeführt. 1 bis 2 mg des zu untersuchenden Pulvers wurde in ca. 300 mg KBr zugegeben und im Achatmörser innig verrieben. Die Proben wurden in einer hydraulischen Presse mit einem Druck bis 0,8 GPa zu einer transparenten Tablette (\emptyset = 1,3 cm) gepresst und in einem Exikator mit dem Trocknungsmittel Blaugel zum Spektrometer überführt.

Ferner wurden in dieser Arbeit die auf das Substrat aufgedampften Proben mit einem Microscope-Laser-Raman-Spektrometer (Dilor-XY-triple Gitter) charakterisiert. Als Strahlungsquelle dient ein Ar⁺-Kr⁺ gemischter Laser ($\lambda = 541,5$ nm). Der bestrahlte Probenbereich liegt bei 100 µm in Rückstrahlgeometrie. Die Laserleistung auf der Probenoberfläche betrug < 4 mW, um ein Aufheizen der Probe zu vermeiden. Die gestreute Strahlung wird mit einem CCD-Detektor (Auflösung $\Delta v = <5$ cm⁻¹) aufgezeichnet.

4.4 Energiedispersive Röntgenanalyse

Mittels der energiedispersiven Röntgenspektroskopie (EDX) wurde die Elementzusammensetzung anhand der von der Probe emittierten Röntgenstrahlung ermittelt. Die Röntgenphotonen werden von dem S-UTW-Si(Li)-Röntgendetektor (Edax, Taunusstein-Neuhof) aufgenommen. Um Elementanalyse im mikroskopischen Bereich durchführen zu können, ist dieses Spektrometer mit einem Rasterelektronenmikroskop (REM) vom Typ XL30 TMP (Philips Electron Oprics GmbH, Eidhoven) gekoppelt. Für das Auswerten und die Verarbeitung der Daten dient das dazugehörige Programmpaket Phönix.

Die auf ein Substrat abgeschieden Proben können mit Hilfe eines speziellen Transfersystems unter Argonatmosphäre zum Spektrometer überführt werden. Die Fixierung des Substrates in der Spektrometerkammer erfolgt durch eine speziell angefertigte Vorrichtung.

Ebenso wurden Pulver der ternären Alkalimetallhalogenide, nach deren thermischer Behandlung im Röhrenofen, dieser Analyse unterzogen, um deren genaues Verhältnis der enthaltenen Elemente (z.B. Brom, Chlor) festzustellen.

4.5 Elementanalyse mittels ICP-OES

ICP-OES (Inductively Coupled Plasma - Optical Emission Spectrometry) bedient sich der optischen Emissionsspektrometrie mittels induktiv gekoppeltem Plasma. Das ca. 8000 K heiße Argonplasma bewirkt die Anregung der optischen Emission der zu analysierenden Elemente. Die Bestandteile des hier verwendeten ICP-Spektrometers (ARL 3580 B, Fa. ARL) sind Hochfrequenzgenerator, Plasmafackel, Probenzerstäuber und das eigentliche Spektrometer. Die Identifizierung und Quantifizierung erfolgen durch Analyse des Emissionsspektrums. Die Probenvorbereitung bestand aus dem Herunterlösen der Proben von dem Substrat mit bidestillierten Wasser bzw. 1 ml HNO₃ (65%ig) und dem anschließendem Verdünnen auf 25 ml.

4.6 Thermische Analyse

Im Rahmen dieser Arbeit kamen die Thermogravimetrie (TG), welche mit einem Massenspektrometer (MS) für die Analyse der gasförmigen Zersetzungsprodukte gekoppelt ist, und die Differenzthermoanalyse (DTA) zur Anwendung. Die Temperaturdifferenz zwischen der Probe und einem internen Referenzmaterial wird in Abhängigkeit von der Temperatur des Referenzmaterials gemessen.

Die gleichzeitige Aufnahme beider Analysenkurven erfolgte an dem Simultan-Thermo-Analysator (STA 429, Fa. Netzsch, Selb) mit einem Pt-Rh/Pt-Thermoelement und Korund als Referenzmaterial. Die Probenpräparation besteht aus dem Einwiegen von ca. 20 mg der Probensubstanz in einen zylindrischen Korundtiegel (DTA-TG, $Ø_a = 8$ mm, Länge ca. 14 mm) mit Deckel. Da die Proben hygroskopisch sind, erfolgte deren Präparation in dem Handschuhkasten. Der Tiegel wird in einem Glaskolben unter Argon zum Spektrometer überführt. Diese Methoden wurden speziell zur Charakterisierung der Doppelsalze eingesetzt.

5. Verwendete Rechenprogramme

Dieses Kapitel dient der Vorstellung der Programme, welche im Rahmen dieser Arbeit für die Aufnahme und Auswertung von Messdaten zum Einsatz kamen. Für die Durchführung der Rechnungen stand ein Personal Computer vom Typ CAT am Max-Planck-Institut für Festkörperforschung zur Verfügung.

- *Gadds* Gerätesoftware von Bruker um gemessenen Beugungskegel auf dem Flächdetektor über Chi aufzuintegrieren.
- *EVA* [39] Visualisierung der Diffraktogramme und Identifizierung der bekannten Verbindung durch die enthaltene JCPDS-ICDD Datenbank.

Topas, Vers. 3.0 [40] Indizierung, LeBail-Fit [41], Rietveld-Verfeinerung [42]; Die Güte der Profilverfeinerung wird durch folgende Parameter beschrieben:

$$R - p = \sqrt{\frac{\sum |Y_{obs} - Y_{cal}|}{\sum Y_{obs}}} \qquad R - w = \sqrt{\frac{\sum w_m (Y_{obs} - Y_{cal})^2}{\sum w_m Y_{obs}^2}} \qquad R - Bragg = \frac{\sum |I_{obs} - I_{cal}|}{\sum I_{obs}}$$

mit p = Anzahl der verfeinerten Punkte, Y_{obs} = beobachtete Intensität im Punkt, Y_{cal} = berechnete Intensität im Punkt, w = Gewichtsfaktor, I_{obs} = beobachtete integrierte Intensität.

Die Kristallitgröße *L* wird berechnet nach: $L = HW \cdot \cos(2\theta)$, wobei *HW* der Halbwertsbreite und 2θ der Lage des Reflexes entspricht.

WinX^{POW} [43] Auswertung der Diffraktogramme, welche mit dem Diffraktometer Stadi P der Firma Stoe & Cie aufgenommen wurden; Das integrierte Programm Index & Refine erlaubt über die Algorithmen Werner [44], Louër [45] und Visser [46] eine Indizierung der Reflexe. Ebenso ist eine Berechnung der theoretischen Diffraktogramme möglich.

Diamond [47] Programm zur Zeichnung von Molekül- und Kristallstrukturen.

WORD [48] Textverarbeitungsprogramm der Fa. Microsoft.

Microsoft Office Excel [49] Tabellenkalkulationsprogramm der Fa. Microsoft.

II ALLGEMEINER TEIL

6. Mehrtiegelbedampfungsanlage und Systemauswahl

6.1 Aufbau der Kammer

Durch den Aufbau einer Mehrtiegelverdampfungsanlage, wie sie in Abb. 6.1 zu sehen ist, konnten die Nachteile der Eintiegelanlage (Kap. 3.3) insbesondere das getrennte Verdampfen mehrerer Komponenten überwunden werden. Die Anlage bestand aus dem eigentlichen Rezipienten (aus Edelstahl, V = 50 l) mit Bodenflansch und entsprechenden Anschlüssen für Pumpen und Transfersystem.

Eine separate Verdampfung ist aus zwei Stenantiegeln (\emptyset 1 cm, Höhe 2 cm) mit Molybdän-Drahtwicklung möglich, dabei wird die Temperatur, wie bereits im Kap. 3.3 beschrieben, mit Hilfe eines Thermoelementes (Typ K) und eines Eurothermreglers geregelt. Jeder Tiegel ist um 15° geneigt. Die Stromzuführung erfolgt durch das Spannungsgerät (SM 30-100D, Fa. Delta Elektrika, Baden-Baden) mit einem Stromfluss von 5 bis 10 A.

Um einen gut abgegrenzten Probenfleck (\emptyset = ca. 1 cm) auf dem Substrat zu erhalten, sowie eine zu schnelle Verunreinigung der Kammerwände zu vermeiden, wurde ein Abdeckschild aus Tantalblech eingebaut (\emptyset 10 cm, Höhe 4 cm, Abb. 6.2). Ebenso wurde zusätzlich ein Kühlschild zur Verbesserung des Vakuums eingefügt (6 cm x 6 cm x 1 cm), welches manuell über einen Manipulator (DN 63, Fa. MDC, Hayward) positionierbar ist und sowohl mit flüssigem Stickstoff als auch mit Helium betrieben werden kann.

Ein Massenspektrometer Leybold Inficon (C 100M, Fa. Leybold Inficon, New York) für die Restgasanalyse wurde angeschlossen, welches über eine zusätzliche gerätespezifische Software sowohl eine kontinuierliche Überwachung einer Massenzahl, als auch eine Ansicht des Spektrums über mehrere Massenzahlen und die Speicherung der Daten ermöglicht. Vorher erfolgte das Aufnehmen der Messdaten manuell und wurde schriftlich protokolliert. Der Totaldruck wurde weiterhin durch die Vakuummessröhre (IONIVAC, Fa. Leybold vacuum) kontrolliert.
Zum Pumpsystem wurde zusätzlich zu der magnetgelagerten Turbomolekularpumpe (Turbovac 340M, Oerlikon Leybold Vacuum, Köln) eine Cryopumpe (CT8, Fa. CTI-Cryogenics, Santa Clara) eingebaut. Der Enddruck der UHV-Kammer verbesserte sich dadurch von 2⁻ 10⁻⁸ mbar auf 5⁻ 10⁻⁹ mbar. Als Vorvakuumpumpe befindet sich eine Scrollpumpe (15 M3/H, Fa. Normetex, FR) am UHV-System.

Darüber hinaus sind an der Mehrtiegelverdampfungskammer freie Anschlussmöglichkeiten für zukünftige Erweiterungen des UHV-Systems vorgesehen, wie z.B. eine Schichtdickenmesseinrichtung separat für jede Substanz. Des Weiteren steht eine Verdampfung der Substanzen mit einem Laser in Aussicht. Dazu soll sich das Probenmaterial in Form eines Presslings auf einem Targethalter befinden.

Abb. 6.1 Aufbau der Mehrtiegel-UHV-Kammer; CP: Cryopumpe, KS: Kühlschild mit Manipulator, MS: Massenspektrometer, S: Substrat, SF: Sichtfenster, T: Tiegel mit Verdampfungskeule, TP: Turbomolekularpumpe, VM: Vakuummessröhre, VP: Anschluss zur Vorvakuumpumpe.

Abb. 6.2 Blick von oben in die Vakuumkammer.

6.1 Durchführung der Bedampfungsexperimente

Jeder Tiegel wurde zu Beginn bei 500 °C über ca. 3 Stunden in der UHV-Kammer ($p = 2 \cdot 10^{-8}$ mbar) ausgeheizt. Die stark feuchtigkeitsempfindlichen Substanzen wurden zunächst im Schlenkgefäß bei 200 °C über 24 Stunden getrocknet und in eine Glasampulle abgeschmolzen. In der UHV-Kammer erfolgte im Argongegenstrom die Öffnung der Ampulle. Mit einer Tiegelfüllung (ca. 5 mg) konnten fünf bis acht Bedampfungsexperimente durchgeführt werden.

Nach dem Schließen der Kammer wurde zunächst bis zu einem Vorvakuum von $5 \cdot 10^{-3}$ mbar mit Hilfe der ölfreien Schneckenpumpe und anschließend mit der Turbomolekularbzw. der Cryopumpe bis zu einem Ultrahochvakuum von $2 \cdot 10^{-8}$ mbar für mindestens 15 Stunden evakuiert.

Vor jedem Bedampfungsexperiment wurde das Substrat und die Substanzen im Tiegel über 15 h bei 200 °C ausgeheizt. Alle Versuche wurden bei einem Enddruck $< 5^{\circ} 10^{-8}$ mbar durchgeführt. Der bestimmende Anteil im Restgas der Kammer ist durch den Wasserdampfpartialdruck gegeben, welches durch das Einkühlen des Kühlschildes mit flüssigem Stickstoff deutlich erniedrigt werden konnte (Abb. 6.3). Anschließend wurde das Substrat über den Graphitheizer und flüssigem Stickstoff auf Temperaturen zwischen –196 °C und 0 °C eingeregelt. Anschließend erfolgte die Temperatureinregelung der Tiegel. Ist die gewünschte Temperatur erreicht, so kann das Substrat über der Öffnung des Abdeckschildes mit Hilfe der Schrittmotoren (Kap. 3.3) genau positioniert werden. Während der Bedampfung wurde in regelmäßigen Abständen der Prozessdruck, die Restgasanteile, sowie die Tiegel- und Substrattemperatur kontrolliert und protokolliert. Nach entsprechender Bedampfungszeit wurden die Tiegeltemperaturen abgesenkt, das Substrat über das Transfersystem aus der Kammer gefahren und unter Beibehalt von Druck und Temperatur zum Diffrakometer möglichst zügig überführt (ca. 30 Min.). Nachdem das Transfersystem an die Röntgenkammer des Diffraktometers angeschlossen war, wurde die Probe in der Röntgenkammer im Vakuum positioniert. Hierbei konnte zusätzlich ein Kühlschild mit flüssigem Stickstoff eingekühlt werden. Das Substrat wurde kontrolliert mit einer Rate von ca. 2 °C/min aufgeheizt und die Probe temperaturabhängig röntgenographisch vermessen.

Im Folgenden wird der Einfluss der einzelnen Prozessparameter im Detail erläutert. Durch die Tiegeltemperatur erfolgt die Regelung der Verdampfungsrate der Substanz aus dem Tiegel in die Gasphase und schließlich zum Substrat. Die Temperatur wurde so gewählt, dass in der Bedampfungszeit von mehreren Stunden ausreichend Schichtdicke (ca. 100 nm) für die Röntgendiffraktometrie erzeugt wird. Dabei sollte der Dampfdruck der zu verdampfenden Substanz einen Wert von $1 \cdot 10^{-4}$ mbar nicht unterschreiten.

Die Verdampfungsrate und damit die Schichtdicke der Probe ist auch von der Schüttdichte der Tiegelbefüllung abhängig und muss somit bei dem einzelnen Experiment mit berücksichtigt werden. Besonders das erste Experiment nach neuer Tiegelfüllung äußert sich durch eine erhöhte Aufdampfrate der eingefüllten Substanz.

Das Ausgasen des Probenhalters während des Aufheizens in der Röntgenkammer führt hauptsächlich zu einer Abgabe von Wasser (Druckanstieg 10⁻⁸ auf 10⁻⁶ mbar). Daher muss während der gesamten Durchführung der Experimente auf minimale Kondensation von Wasser geachtet werden. Ferner kann durch das zusätzliche Kühlschild in der Röntgenkammer eine Reaktion mit der Probe minimiert werden.

Abb. 6.3 Massenspektrum der UHV-Kammer: a) 15 Stunden evakuiert $p = 2^{\circ} 10^{-8}$ mbar (mit Cryopumpe) b) mit Kühlschild $p = 5^{\circ} 10^{-9}$ mbar.

6.3 Verwendete Substanzen

Das Kriterium, nach welchen geeignete Alkalimetallhalogenide ausgewählt wurden, ist der Radienquotient R(K/A):

$$R(K/A) = r (Kation) / r (Anion), \qquad (Gl. 6.1)$$

wobei *r* dem Radius des Kations bzw. Anions entspricht. Für die Alkalimetallhalogenide werden aus Gl. 6.1 die in Tabelle 6.1 aufgelisteten Werte erhalten.

	F -	Cl -	Br [–]	Ι-
Li ⁺	0,57	0,42	0,39	0,35
Na ⁺	0,77	0,56	0,52	0,46
\mathbf{K}^{+}	0,96	0,76	0,7	0,63
\mathbf{Rb}^+	0,88	0,84	0,78	0,69
\mathbf{Cs}^+	0,8	0,92	0,85	0,76

Tab. 6.1 Radienquotienten der Alkalimetallhalogenide [9].

Somit lassen sich nach geometrischen Überlegungen Ionenverbindungen der Zusammensetzung AB in den CsCl-Strukturtyp ($r_{\rm K}/r_{\rm A} > 0.732$), den Kochsalz- bzw. NiAs-Strukturtyp (0,414 < $r_{\rm K}/r_{\rm A}$ < 0,732) sowie in den Wurtzit- bzw. Zinkblendestrukturtyp ($r_{\rm K}/r_{\rm A} < 0.414$) einteilen [9]. Zur Stabilisierung von metastabilen Phasen lagen diejenigen Alkalimetallhalogenide im Vordergrund, deren Grenzradienquotient genau im Übergangsbereich zwischen zwei Strukturtypen liegt. Dabei lag das Hauptaugenmerk in der vorliegenden Arbeit auf der Beeinflussung der homogenen Keimbildung auf der Substratoberfläche mittels Temperatur, Druck und Übersättigung. Dazu liegt es nahe, die kinetischen und thermodynamischen Eigenschaften der abgeschiedenen Alkalimetallhalogenide auf der Substratoberfläche zu betrachten. Um eine substratinduzierte Keimbildung zu begünstigen, wurde die Beeinflussung des Substrats auf die Keimbildung mit in Betracht gezogen.

6.4 Nukleation und Schichtwachstum

Die Thermodynamik der Ober- und Grenzflächenprozesse ist die grundsätzlich treibende Kraft zur Änderung des Phasenzustandes bzw. der Kristallisationsvorgänge [50], dazu spielt die Kinetik der Oberflächenvorgänge eine fundamentale Rolle, da aufgrund der gewählten Abscheideparameter die Kristallisationsvorgänge sich außerhalb des thermodynamischen Gleichgewichtes befinden. In dieser Arbeit kommen der Einfluss des Stofftransportes von der Verdampferquelle zur Substratoberfläche sowie der strukturelle Einfluss des Substrates auf die Ausrichtung und Morphologie der kristallisierenden Probe eine eher untergeordnete Rolle zu. Die Problematik der thermodynamischen Betrachtungsweise des Schichtwachstums über die Dampfphasenabscheidung wird in dem thermodynamischen Nichtgleichgewicht der ablaufenden Prozesse sowie in den Nukleationsvorgängen im typischerweise atomaren Bereich gesehen.

Die atomaren Einzelprozesse auf der Substratoberfläche zeigt Abb. 6.4. Wie daraus ersichtlich ist, kommt neben der Adsorption (durch Energieabgabe der Atome an das Gitter) und der Desorption (d.h. eine unmittelbare Reflexion der Atome) die Diffusion der thermalisierten Adatome (d.h. die Atome, welche an die Festkörperoberfläche gebunden sind) ein entscheidender Einfluss auf die Keimbildung bzw. Keimwachstum zu. Diese Adatome können so auf der Substratoberfläche zu stabilen Keimen bzw. durch Anlagerung an bereits vorhandene Keime kondensieren. Dabei ist deren Oberflächenbeweglichkeit von der Substrattemperatur, von der kinetischen Energie der auf der Substratoberfläche auftreffenden Atome sowie von der Stärke der Wechselwirkung zwischen den Adatomen abhängig. Um eine Diffusion der Adatome zu ermöglichen, muss ihnen eine Aktivierungsenergie zugeführt werden. Daraus resultiert eine Abfolge von Sprüngen eines Monomers, was zur Keimbildung führen kann. Der Diffusionskoeffizient ist damit zur Sprunghäufigkeit proportional:

$$D = D_0 \cdot exp(-Q/RT), \qquad (Gl. 6.2)$$

wobei T der Temperatur, R der Gaskonstanten, D_0 der Versuchshäufigkeit (Versuchsfrequenz) eines Sprunges, Q der Aktivierungsenergie und der Exponentialausdruck dem Anteil der erfolgreichen Sprünge entspricht.

Allerdings muss erst eine bestimmte Keimgröße (kritischer Keim) überwunden werden, ab dem es für das Aggregat energetisch günstiger ist, weiterzuwachsen als durch Zerfall zu schrumpfen (Abb. 6.5). Keime unterhalb des kritischen Keimradius r^* sind thermodynamisch nicht stabil und werden sich durch Desorption und/oder Diffusionsprozesse wieder auflösen. Hingegen können Keime mit $r > r^*$ durch weiteres Wachstum ihre freie Energie weiter verringern und sind damit thermodynamisch stabil [51]. Der Wert von r^* lässt sich durch Übersättigung und Substrattemperatur beeinflussen. Er verringert sich beispielsweise mit Erhöhung der Adatom-Konzentration und Erniedrigung der Substrattemperatur.

Abb. 6.4. Nukleation und Keimbildung auf Oberflächen. Schematisch gezeigt sind die grundlegenden Prozesse, die zum Keimwachstum beitragen

- (a) Adsorption und Thermalisierung
- (b) Oberflächendiffusion und Desorption
- (c) Bildung von metastabilen Keime
- (d) Bildung von kritischen Keimen
- (e) Ostwald-Reifung
- (f) Adsorption auf Inseln
- (g) Keimwachstum.

Abb. 6.5 Schematisches Diagramm der Freien Energie eines Nukleationskeimes (welche sich in einen Volumenanteil sowie in einen Oberflächenanteil aufspaltet) in Abhängigkeit des Keimradius r. ΔG^* : kritische freie Energie, r^* : kritischer Keimradius.

Aufgrund des unzureichenden Datenmaterials von D_0 für die Alkalimetallhalogenide in dem entsprechenden Temperaturbereich (-180 °C bis 0 °C) werden in der vorliegenden Arbeit hauptsächlich die Sprünge der Adatome für die Keimbildung auf der Substratoberfläche betrachtet, welche durch die Aktivierungsenergie Q aktiviert werden. Aus Tabelle 6.2 lässt sich ein linearer Verlauf von Q mit der Gitterenergie E_g entnehmen. Bedauerlicherweise liegen keine Werte von Q für LiX, X = I, Br in der Literatur vor. Aus diesem Grund wird in dieser Arbeit für die Diskussion der Ergebnisse als Bezugspunkt die Gitterenergie E_g herangezogen.

Tab. 6.2 Gitterenergie E_g , Aktivierungsenergie Q und Diffusionskoeffizient D_0 im Temperaturbereich T ausgewählter Alkalimetallhalogenide. In allen angegebenen Diffusions-Studien wurde die Dünnschichtmethode in Verbindung mit einem radioaktiven Tracer angewandt.

Verbindung	Gitterenergie E_g	Q	D_{θ}	<i>T</i> (K)	Ref.
	(kJ/mol) [52]	(kJ/mol)	(cm^2/s)		
CsBr	634	137	4	688-803	[53]
CsCl	662	150	0,7	738-893	[54]
NaI	707	169	7,0	723-933	[55]
KCl	718	204	61	823-1013	[56]
NaBr	750	191	0,05	723-963	[57]
LiI	760	_	_	_	_
NaCl	789	215	110	723-933	[56]
LiBr	810	_	_	_	_

6.5 Verwendete Substrate

Wie bereits erwähnt, kann auf die Keimbildung auf der Substratoberfläche durch Variation von Temperatur, Druck und Übersättigung Einfluss genommen werden. Ein weiteres Element zur Steuerung der Kristallisation liegt in der substratinduzierten Keimbildung der Edukte auf einer Substratoberfläche. Das am häufigsten benutzte Substrat in der vorliegenden Arbeit ist Saphir (Einkristall 2 cm x 5 cm, mit der Orientierung (0001) sowie in Einzellfällen (11–20), beidseitig epitaktisch-poliert; Fa. Crystec). In Abbildung 6.6 ist die Kristallstruktur von Saphir

dargestellt. Es liegt in der Raumgruppe R3c (Nr. 167) mit den Gitterparametern a = 4,7602(4) Å und c = 12,993(2) Å vor. Dabei befindet sich Aluminium auf der 12c (0, 0, 0,352) und Sauerstoff auf der 18e (0,306, 0, 0,25) Lage [58]. Die Rauhigkeit der Oberfläche wird mit < 1 nm angegeben. Das optische Erscheinungsbild ist transparent.

Daneben wurde Lithiumniobat (Einkristall 2 cm x 5 cm, mit der Orientierung (0001), beidseitig epitaktisch-poliert; Fa. MaTecK GmbH) eingesetzt. Es kristallisiert in der

Raumgruppe R3c (Nr. 161) mit den Gitterparametern a = 5,154(1) Å und c = 13,877(3) Å (Abb. 6.7). Dabei befindet sich Niob auf der 6a (0, 0, 0), Lithium ebenso auf der 6a (0, 0, 0, 277) und Sauerstoff auf der 18b (0,049, 0,344, 0,064) Lage [59]. Die Rauhigkeit der Oberfläche wird mit < 1 nm angegeben.

Als drittes Substrat kam polykristallines Kupfer (2 cm x 5 cm, Fa. Mateck) zum Einsatz. Die prozentuale Abweichung des Substratgitters vom gesuchten Gitter der abgeschiedenen Substanz lässt sich mittels Gitterfehlanpassung bestimmen:

 $(a_{\rm A} - a_{\rm B}) / a_{\rm B}$, wobei *a* die Gitterkonstanten des Gitters A bzw. B entspricht.

Liegt der erhaltene Wert unter 10 %, so kann man von einer ausreichenden substratinduzierten Keimbildung sprechen. In der vorliegenden Arbeit soll untersucht werden, ob das Substrat eine dirigierende Wirkung auf die Kristallstruktur der abgeschiedenen Probe ausübt.

Abb. 6.6 Strukturmodell von (0001)-Saphir.

7. Tieftemperaturabscheidung von Alkalimetallhalogeniden

7.1 Einleitung

Im Kapitel 7 werden die Experimente beschrieben, anhand derer versucht wurde, die mittels des Konzeptes der rationalen Syntheseplanung vorhergesagten Verbindungen der Alkalimetallhalogenide zu synthetisieren. Dies erfolgte durch die Abscheidung der binären Komponenten aus der Gasphase auf ein gekühltes Substrat in einer UHV-Präparationskammer. Anschließend wurden die Proben mittels temperaturabhängiger Röntgenpulverdiffraktometrie charakterisiert.

7.2 Das System CsCl/KCl

7.2.1 Einleitung

erscheint Das Mischkristallsystem CsCl/KCl für die Untersuchung von Phasenübergängen zwischen polymorphen Strukturtypen besonders interessant, da die einzelnen Komponenten in verschiedenen kubischen Gittertypen kristallisieren - CsCl in der CsCl- [60–62] und KCl in der Kochsalzstruktur [61, 63–67]. Seit Anbeginn des letzten Jahrhunderts wurde nach der metastabilen Modifikation von CsCl in der Kochsalz- bzw. KCl in der CsCl-Struktur (bzw. Gemengen beider Komponenten) gesucht [33, 63, 68–73]. Im Zusammenhang mit dem Konzept zur Syntheseplanung in der Festkörperchemie [52] wurden über den Kochsalz- und CsCl-Strukturtyp hinaus weitere existenzfähige Modifikationen für NaCl und CsCl vorhergesagt [12, 74].

Rühl hat die Struktur dünner, abgeschreckt kondensierter Salzschichten mittels Debye-Scherrer-Aufnahmen untersucht, erhielt aber für Tieftemperaturabscheidungen (-250 °C) von reinem CsCl auf einer Aluminiumunterlage nur dessen stabile Struktur α -CsCl [71]. Schulz ist es schliesslich gelungen, durch die Gasphasenabscheidung von CsCl auf bestimmten Einkristallsubstraten bei Raumtemperatur den Kochsalzstrukturtyp mit a = 6,94 Å zu erhalten (β-CsCl) [70]. Blackman und Khan erhielten durch Tieftemperaturabscheidungen von CsCl auf röntgenamorphen Substraten bei –183 °C und anschliessendem Aufheizen auf Raumtemperatur, ebenfalls β-CsCl ab –46 °C mit *a* = 6,923(10) Å [68]. Dem gegenüber synthetisierte West die Hochtemperaturmodifikation von CsCl ebenso im Kochsalzstrukturtyp bei 460 °C (*a* = 7,075 Å) [69].

Auf der anderen Seite erwies sich die experimentelle Realisierung metastabiler Strukturen von reinem KCl bei tiefen Temperaturen als schwierig. Aus der Gasphase abgeschiedene Schichten von KCl auf gekühlte Substrate wurden experimentell von Rühl [71] und Schulz [72] untersucht. Die Autoren erhielten bei einer Substrattemperatur von -250 °C [71] und -183 °C [72] nur die stabile Kochsalzstruktur (α -KCl), unabhängig von dem eingesetzten Substrat. Weir und Permanini [73] ist es schließlich gelungen, KCl in einer Hochdruckpresse, welche aus zwei parallelen Diamantflächen bestand, in der metastabilen CsCl- Hochdruckmodifikation mit a = 3,58 Å bei $p \approx 22$ kbar darzustellen [73].

Das Mischkristallsystem CsCl/KCl wurde mittels Thermischer Analyse studiert [75]. Die Liquidus-Kurve ist in fünf verschiedenen Studien tabellarisiert aufgeführt [76–80]. Alle berichten von einer lückenlosen Mischkristallreihe des Systems bei hohen Temperaturen. Das Phasendiagramm ist in Abbildung 7.2.1 dargestellt. Dabei wurde die Solidus-Kurve bei der Temperatur der kompletten Kristallisation ermittelt. Das berechnete Schmelzpunktminimum liegt bei T = 615 °C und $x_{KCl} = 0,36$. Bemerkenswert sind einige Punkte für die α - β Transformation von CsCl. Sie wurden durch Abkühl- oder Aufwärmkurven und röntgenographischen Untersuchungen [81–83] erhalten. Spätere Messungen durch Hochtemperatur-Röntgendiffraktometrie, DTA sowie Aufheiz- und Abschreckverfahren [83–85], durch thermische Ausdehnung [84] und ionische Leitfähigkeit [86, 87] zeigten, dass die Anwesenheit von KCl diese Transformation von CsCl unterdrückt. Weiterhin konnte aus den Veränderungen des Kristallgitters geschlossen werden, dass CsCl bei Zimmertemperatur einige Prozente KCl lösen kann, während KCl dagegen kein CsCl löst [88]. Für die Untersuchung des Mischkristallsystemes CsCl/KCl bei tiefen Temperaturen fand die Methode der Gasphasenabscheidung auf einer gekühlten Unterlage Anwendung [33]. Für das CsCl/KCl – System erhält man eine lückenlose Mischkristallreihe im Kochsalzstrukturtyp, deren Stabilität von den Konzentrationsverhältnissen der Ausgangssubstanzen sowie der Kondensationstemperatur abhängig ist. Der Wert der Gitterkonstante wurde in Abhängigkeit von der KCl-Konzentration im Mischkristall untersucht [33]. Auf diese Weise kam Queisser zu dem Resultat, dass selbst geringe Prozentsätze an KCl zu der Ausbildung der metastabilen Kochsalzstruktur von CsCl führen und diese eine höhere thermische Stabilität als reines β -CsCl aufweist.

In diesem Kapitel sollen die Versuche von Queisser nachgestellt werden, um die Phasenverhältnisse bei tiefen Temperaturen durch die verbesserte Röntgenpulverdiffraktometrie erneut im Detail zu studieren. Zu Beginn dieses Kapitels erfolgt eine ausführliche Charakterisierung der Ausgangssubstanzen Cäsiumchlorid und Kaliumchlorid. Im Anschluss werden Mischkristalle mit variierter Zusammensetzung durch Tieftemperaturabscheidung auf Saphirsubstrate untersucht.

Abb. 7.2.1 Phasendiagramm CsCl/KCl [89].

7.2.2 Abscheidungen der Ausgangsverbindungen CsCl und KCl

Experimentelle Bedingungen

CsCl (99,999 %, Fluka) und KCl (99,999 %, Fluka) wurden nach gründlichem Mörsern bei 200 °C über 24 h getrocknet und anschließend mit Hilfe der Schlenktechnik in eine Duranglas-Ampulle abgeschmolzen. Diese wurde in der UHV-Kammer im Argon-Gegenstrom direkt geöffnet, und in den zuvor bei 500 °C über 2 h ausgeheizten Tiegel gefüllt. Für beide Komponenten betrug die Temperatur der Verdampfungsquelle $T_{\text{Tiegel}} =$ 430 °C und die Substrattemperatur $T_{\text{S}} = -196$ °C. Zusätzlich ermöglichte der Einsatz von flüssigem Helium ein Bedampfungsexperiment mit CsCl bei $T_{\text{S}} = -250$ °C. Als Substrat kam stets Saphir (0001) zum Einsatz. Die Bedampfungszeit lag bei 3 h für CsCl und 5 h für KCl. Der Prozessdruck der Vakuumkammer betrug 5 10⁻⁸ mbar.

Ergebnisse zu CsCl

Scheidet man Cäsiumchlorid bei einer Substrattemperatur $T_{\rm S} = -250$ °C ab, so erhält man bis -150 °C nahezu röntgenamorphe Proben (Abb. 7.2.2). Diese beginnen sich bei -130°C in den stabilen CsCl-Strukturtyp zu ordnen. Die Strukturverfeinerung über eine Profilanpassung nach Rietveld liefert eine Gitterkonstante a = 4,08(2) Å sowie eine Kristallitgröße L von 8,4 nm. Bei weiterer Temperaturerhöhung des Substrates bis auf Raumtemperatur durchläuft CsCl keine Phasenumwandlung mehr.

Scheidet man CsCl hingegen bei $T_{\rm S} = -196$ °C ab, so erhält man direkt kristalline Proben. Die registrierten Pulverdiffraktogramme zeigen sowohl Reflexe (Abb. 7.2.3) von β -CsCl mit a = 6,82(3) Å (Lit. a = 6,923(10) Å bei -42 °C [70, 72]), als auch von α -CsCl mit a = 4,04(2) Å. Aus der Rietveld-Verfeinerung (Tab. 7.2.1) ergibt sich für α -CsCl (84 wt%) eine Kristallitgröße von L = 11,1 nm, während L = 17,9 nm für β -CsCl (16 wt%) beträgt. Letztere wandelt sich zwischen einer Substrattemperatur von -120 °C und -90 °C in die stabile α -CsCl-Struktur vollständig um. Eine Übersicht der erhaltenen Gitterparameter und Kristallitgrößen aus den Rietveld-Verfeinerungen gibt Tab. 7.2.2 wieder.

Abb. 7.2.2 Röntgenpulveraufnahmen von abgeschiedenem CsCl ($T_s = -250$ °C, Saphir (0001), $T_{\text{Tiegel}} = 430$ °C). Liniendiagramm: α -CsCl.

Abb. 7.2.3 Röntgenpulveraufnahmen von abgeschiedenem CsCl ($T_s = -196$ °C, Saphir (0001), $T_{Tiegel} = 430$ °C). Liniendiagramm: β -CsCl (blau); α -CsCl (grün).

	α-CsCl	β-CsCl	
Gewichts% (wt%)	83,6	16,3	
Raumgruppe (Nr.)	<i>Pm</i> 3 <i>m</i> (221)	Fm3m (225)	
<i>a</i> (Å)	4,04(2)	6,82(2)	
Zellvolumen $V(Å^3)$	63,6	307,3	
Kristallitgröße L (nm)	11,1	17,9	
berechnete Dichte (g/cm ³)	4,4	3,6	
R_{Bragg} ^a	2,6	12,4	
Messtemperatur (°C)	-196		
R_{p} (%) ^a , R_{wp} (%) ^a	$_{2}$ (%) ^a 8,9, 11,8		
Diffraktometer	Diffraktometer D8-Advance (Bruker AXS), (Göbel Spiegel)		
Wellenlänge/λ (Å)	$CuK_{\alpha 1+2}$, 1,54059, 1,54449		
2θ Messbereich (°)	17,5 – 79,5		

Tab. 7.2.1 Kristallographische Daten der Rietveld-Verfeinerung von CsCl (Abscheidung bei Substrattemperatur $T_{\rm S} = -196$ °C).

^a *R_P*, *R_{wp}*, und *R_{Bragg}* definiert in Topas Vers. 3.0, 2006, Bruker AXS [40] (siehe auch Kapitel 5).

Tab. 7.2.2 Übersicht der Ergebnisse aus den Rietveld-Verfeinerungen; Abscheidung von CsCl bei $T_{\rm S} = -196$ °C und Erwärmen auf Raumtemperatur. Gitterkonstante *a* und Kristallitgröße *L* von α-CsCl und β-CsCl in Abhängigkeit von der Substrattemperatur $T_{\rm S}$.

	a-CsCl		β-CsCl	
$T_{\rm S}$ / °C	<i>a</i> / Å	L / nm	<i>a</i> / Å	L / nm
-196	4,04(2)	11,1	6,82(1)	17,9
-150	4,06(5)	11,8	6,85(3)	19,6
-120	4,07(5)	14,1	6,86(2)	18,1
-90	4,08(6)	27,1	-	
-50	4,09(6)	27,1	-	
30	4,12(7)	33,5	-	

Ergebnisse zu KCl

Abscheidungen von Kaliumchlorid bei $T_{\rm S} = -196$ °C ergeben röntgenamorphe Proben (Abb. 7.2.4). Mit Temperaturerhöhung des Substrates setzt ab -100 °C die Kristallisation in den stabilen Kochsalzstrukturtyp ein. Bei weiterer Temperaturerhöhung bis auf Raumtemperatur wird keine Phasenumwandlung beobachtet. Die Verfeinerung nach Rietveld bei Raumtemperatur liefert die Gitterkonstante a = 6,271(3) Å (Lit. a = 6,2788(6) Å [61]) und eine Kristallitgröße *L* von 16,8 nm.

Abb. 7.2.4 Röntgenpulveraufnahmen von abgeschiedenem KCl ($T_s = -196$ °C, Saphir (0001), $T_{\text{Tiegel}} = 430$ °C). Liniendiagramm: α -KCl.

7.2.3 Abscheidungen von CsCl/KCl - Gemengen

Experimentelle Bedingungen

Die Ausgangssubstanzen KCl und CsCl wurden einer Probenvorbereitung unterzogen, wie im Kapitel 7.2.2 bereits beschrieben. Im Handschuhkasten erfolgte die Einwaage von CsCl und KCl in den folgenden Verhältnissen:

Einwaage CsCl : KCl / mg	KCl in Probe / at%
252,5 : 12,4	5
384,8 : 42,6	17
294,6 : 130,4	18

Das Gemenge wurde gut vermischt, anschliessend gleichzeitig aus einem Tiegel ($T_{\text{Tiegel}} = 490 \text{ °C}$) verdampft und auf ein Saphir-Substrat (0001) ($T_{\text{S}} = -196 \text{ °C}$) über 5 Stunden abgeschieden. Der Prozessdruck in der Vakuumkammer betrug 5·10⁻⁸ mbar. Das tatsächliche Verhältnis von CsCl/KCl in den abgeschiedenen Proben wurde mittels energiedispersiver Röntgenanalyse (EDX) bestimmt.

Ferner wurden CsCl und KCl aus *zwei* separaten Tiegeln verdampft. Somit konnte das CsCl/KCl Verhältnis in den Proben leichter und gezielt eingestellt werden. Als Tiegeltemperatur wurde 490 °C für KCl und 430 °C für CsCl gewählt.

Ergebnisse

Abscheidung aus gemeinsamen Verdampfungsquellen

Die Gasphasenabscheidung des Eduktgemenges CsCl/KCl aus einer gemeinsamen Verdampfungsquelle auf ein Saphirsubstrat bei $T_{\rm S} = -196$ °C ergibt neben α -CsCl auch die metastabile Modifikation β -CsCl, welche einen geringen Anteil an KCl (ca. 5 at%, a = 6,77(9) Å) besitzt (Abb. 7.2.5). Mit Erhöhung der Substrattemperatur wandelt sich zwischen -140 °C und -90 °C β -CsCl in α -CsCl (a = 4,11(3) Å) vollständig um, welche bis Raumtemperatur stabil vorliegt und keine weitere Phasenumwandlung durchläuft. Reflexe von KCl konnten im Diffraktogramm bis Raumtemperatur nicht detektiert werden. Die Energiedispersive Röntgenanalyse bestätigt aber das Vorhandensein von 5 at% KCl in der Probe. Das Fehlen der Bragg Reflexe von KCl bei Raumtemperatur ist durch die geringe Menge an KCl und die kleinen Kristallitgrößen in den Proben bedingt.

Erhöht man den Anteil an KCl in der Probe auf 17 at%, so bildet sich zunächt bei $T_{\rm S} =$ -196 °C ein CsCl/KCl Mischkristall in der Kochsalzstruktur mit a = 6,75(3) Å (Kristallitgröße L = 43,3 nm, Abb. 7.2.6). Ab -80 °C beginnt sich α -CsCl aus dem Mischkristall auszuscheiden. Bei weiterer Temperaturerhöhung auf 100 °C sind sowohl die deutliche Abnahme der Reflexintensitäten des Mischkristalls als auch schwache Bragg Reflexe von α -KCl zu beobachten. Erst bei einer Temperatur von 200 °C ist die Zersetzung des Mischkristalls CsCl/KCl komplett abgeschlossen (Abb. 7.2.7). Die Ausgangskomponenten CsCl (90 wt%) und KCl (10 wt%) liegen in ihren stabilen Strukturtypen vor ($a_{\rm CsCl} = 4,11(6)$ Å, $L_{\rm CsCl} = 146,4$ nm, $a_{\rm KCl} = 6,28(4)$ Å, $L_{\rm KCl} = 67,1$ nm). Gleiche Ergebnisse erhält man mit Proben, die einen KCl-Anteil von 18 at% enthalten.

Abb. 7.2.5 Röntgenpulveraufnahmen von abgeschiedenen CsCl/KCl aus *einer* Verdampfungsquelle ($T_{\rm S} = -196$ °C, Saphir (0001), $T_{\rm Tiegel} = 490$ °C); KCl-Gehalt in der Probe beträgt 5 at%. Liniendiagramm: β-CsCl (blau); α-CsCl (grün).

Abb. 7.2.6 Röntgenpulveraufnahmen von abgeschiedenen CsCl/KCl aus *einer* Verdampfungsquelle ($T_{\rm S} = -196$ °C, Saphir (0001), $T_{\rm Tiegel} = 490$ °C); KCl-Gehalt in der Probe beträgt 17 at%. Liniendiagramm: β-CsCl (blau); α-CsCl (grün).

Abb. 7.2.7 Röntgenpulveraufnahmen von abgeschiedenen CsCl/KCl aus *einer* Verdampfungsquelle ($T_{\rm S} = -196$ °C, Saphir (0001), $T_{\rm Tiegel} = 490$ °C); KCl-Gehalt in der Probe beträgt 17 at%. Ausschnitt der Abb. 7.2.6, Liniendiagramm: CsCl/KCl - Mischkristall in der Kochsalzstruktur (blau), α-CsCl (grün), α-KCl (rot).

Abscheidung aus getrennten Verdampfungsquellen

Simultane Abscheidungen von CsCl und KCl, welche getrennt aus zwei unabhängigen Tiegeln auf Saphir bei $T_{\rm S} = -196$ °C verdampft wurden, ergeben röntgenamorphe Proben (siehe Abb 7.2.8). Mit der Substraterwärmung auf -80 °C setzt dann die Kristallisation ein. Ab -50 °C ist eine eindeutige Zuordnung der Bragg Reflexe möglich. Es kristallisieren α -CsCl (a = 4,12(2) Å), ein CsCl/KCl Mischkristall mit a = 6,45(8) Å sowie die metastabile β -CsCl-Modifikation in der Kochsalzstruktur, dessen Gitterkonstante a = 6,87(5) Å ein Vorhandensein geringer Mengen an KCl vermuten läßt (Lit. a = 6,923(10) Å bei -46 °C). Die aus der Rietveld-Verfeinerung erhaltenen Kristallitgrößen betragen L = 9,1 nm (Mischkristall), 12,0 nm (β -CsCl) und 19,1 nm (α -

CsCl). Durch weitere Temperaturerhöhung auf Raumtemperatur läßt sich keine sichtbare Änderung in dem Phasengemenge beobachten.

Mit Temperaturerhöhung auf 100 °C nimmt die Kristallinität von α -CsCl deutlich zu (L = 67,1 nm) und es kristallisiert zusätzlich eine vierte Phase aus: α -KCl (a = 6,33(6) Å). Somit hat sich bei 100 °C der Mischkristall weitgehend umgewandelt. Es ist bemerkenswert, dass hier offensichtlich *vier* verschiedene Phasen im Gleichgewicht zueinander stehen, nämlich α -CsCl, α -KCl, β -CsCl mit ca. 5 at% KCl-Anteil und der Mischkristall CsCl/KCl (30 at% KCl). Die Ergebnisse der Vierphasenanalyse anhand der Rietveld-Verfeinerung sind in Abbildung 7.2.9 und Tabelle 7.2.4 wiedergegeben.

Bei weiterer Temperaturerhöhung der Probe bis auf 200 °C ist die Umwandlung des Mischkristalls in CsCl und KCl komplett abgeschlossen. Beide Ausgangsverbindungen liegen in ihren stabilen Modifikationen ($a_{CsCl} = 4,16(4)$ Å, $L_{CsCl} = 106,3$ nm, $a_{KCl} = 6,34(5)$ Å, $L_{KCl} = 68,9$ nm) vor, deren Gitterparameter temperaturbedingt (200 °C) um 0,05 Å erhöht sind. Die Energiedispersive Röntgenanalyse bestätigt ein Vorhandensein von 36 at% KCl in der Probe.

Abb. 7.2.8 Röntgenpulveraufnahmen von abgeschiedenen CsCl/KCl aus *zwei* unabhängigen Verdampfungsquellen ($T_s = -196$ °C, Saphir (0001); KCl-Gehalt in der Probe beträgt 36 at%. Liniendiagramm: CsCl/KCl Mischkristall (violett), β-CsCl (blau), α-KCl (rot), α-CsCl (grün).

Abb. 7.2.9 Rietveld-Verfeinerung im CsCl/KCl – Gemenge ($T_s = 100$ °C, Saphir (0001), KCl-Gehalt in der Probe beträgt 36 at%). Reflexpositionen: CsCl/KCl Mischkristall (violett), β -CsCl (blau), α -KCl (rot), α -CsCl (grün).

Tab. 7.2.4 Kristallographische Daten und Ergebnisse zur Strukturverfeinerung im CsCl/KCl – Gemenge ($T_{\rm S} = 100$ °C, KCl-Gehalt in der Probe beträgt 36 at%).

	α-CsCl	α-KCl	β -CsCl [*]	Mischkristall CsCl/KCl	
Gewichts% (wt%)	52	20	8	20	
Raumgruppe	<i>Pm</i> 3 <i>m</i>	<i>Fm</i> 3 <i>m</i>	<i>Fm</i> 3 <i>m</i>	<i>Fm</i> 3 <i>m</i>	
a (Å)	4,12(3)	6,33(6)	6,85(5)	6,47(6)	
Zellvolumen V (Å ³)	70,3	254,3	322,7	271,6	
Kristallitgröße L (nm)	67,1	17,1	12,1	13,2	
berechnete Dichte (g/cm ³)	3,9	1,9	3,5	1,8	
R _{Bragg} ^a	2,5	0,5	1,1	2,8	
Messtemperatur (°C)	100				
R_p (%) ^a , R_{wp} (%) ^a	7,0, 8,9				
Diffraktometer	D8-Advance (Bruker), (Göbel Spiegel)				
Wellenlänge/ λ (Å)	CuK _{α1+2} , 1,54059, 1,54449				
2θ Messbereich (°)	17,5 – 79,5				

^a R_P , R_{wp} , und R_{Bragg} definiert in Topas Vers. 3.0, 2006, Bruker AXS [40], siehe Kapitel 5.

* CsCl mit sehr geringem Anteil an KCl (ca. 5 at%).

7.2.4 Diskussion der Ergebnisse

Einfluss der Substrattemperatur auf die Kristallisation

Die Experimente zeigen, dass reines KCl bereits bei -196 °C röntgenamorph vorliegt, während bei reinem CsCl röntgenamorphe Proben nur bei niedrigeren Temperaturen (-250 °C) zu beobachten sind. Dies lässt sich in Analogie zu den Gitterenergien beider Verbindungen verstehen. Bedingt durch die kleinere Gitterenergie von CsCl (-652 kJ/mol) — im Vergleich zu KCl (-718 kJ/mol) — ist der röntgenamorphe Zustand von CsCl nur bei tieferen Temperaturen zu erhalten [56]. Da CsCl den kleineren Wert besitzt, liegt die Annahme nahe, dass damit auch eine geringere Kristallisationstemperatur verbunden ist. Genau dies läßt sich bei den Tieftemperaturabscheidungen beider Verbindungen beobachten, wobei im Falle von CsCl sowohl α - als auch β -CsCl entstehen. Ähnliches wurde in der Literatur [33, 70] bereits erwähnt und mit dem Einbau von Fehlordnungen begründet. Dieser Vorgang geht einher mit der Ausbildung von sehr kleinen Kristallitgrößen: α -CsCl mit 11,1 nm und β -CsCl mit 17,9 nm, was im Einklang steht mit der Aussage von Schulz [70], dass eine Mindestkristallitgröße zwischen 10 und 20 nm vorliegen muss, damit ein Wachstum beider Strukturtypen auf der Substratoberfläche stattfinden kann. Abscheidungen bei einer Kondensationstemperatur $T_{\rm S} = -250$ °C ergeben bei einsetzender Kristallisation ab -130 °C eine Kristallitgröße von nur 6,4 nm.

Einfluss des KCl-Anteiles auf die Struktur der Proben

Der gegenseitige Stabilitätseinfluss der beiden Gittertypen läßt sich bei der Abscheidung von CsCl und KCl aus *zwei* getrennten Verdampfungsquellen und einem atomaren Prozentgehalt an KCl von 36 at% in der Probe besonders deutlich erkennen. Bei $T_s =$ -196 °C erhält man in diesem Fall, wie bei reinem KCl, zunächst röntgenamorphe Proben. Daraus kristallisieren mit Temperaturerhöhung auf -80 °C zwei Mischkristalle im Kochsalztyp. Hingegen zeigen sich die Proben mit einem Anteil von 17 at% KCl bereits bei $T_{\rm S} = -196$ °C kristallin — dem Verhalten von reinem CsCl annähernd. Hierbei bildet sich ein Mischkristall im Kochsalzstrukturtyp. Bei einem sehr geringen Anteil (5 at%) von KCl in der Probe ist das registrierte Pulverdiffraktogramm bei $T_{\rm S} = -196$ °C analog zu dem Diffraktogramm von reinem CsCl. Es wird in diesem Fall, neben α -CsCl, auch β -CsCl erhalten, dessen Gitterkonstante auf einen geringen KCl-Anteil hindeutet.

Abbildung 7.2.10 zeigt die erhaltenen Gitterkonstanten *a* der verschiedenen Gittertypen in Abhängigkeit von der Substrattemperatur T_S für verschiedene Werte der Konzentration an KCl in der Probe. Dabei werden die Ergebnisse für α -CsCl (links), für die Mischkristalle (Mitte) und für α -KCl (rechts) aufgezeigt.

Aus der Abbildung 7.2.10 (Mitte) läßt sich eine erhöhte thermische Stabilität des Mischkristalls im Vergleich zu β-CsCl entnehmen. Dies gilt sowohl für das Experiment mit einer gemeinsamen Verdampfungsquelle (17 at% KCl), als auch für das Experiment mit getrennten Verdampfungsquellen (36 at% KCl). Queisser [33] stellte schon fest, dass ein Vorhandensein der stabilen Kochsalzstruktur von KCl, CsCl befähigt, selbst bei höheren Temperaturen in der Kochsalzmodifikation zu verbleiben, da die Anzahl der KCl-Ionenpaare groß genug ist, um genügend Keime für die Gesamtmenge an CsCl zu liefern.

Abb. 7.2.10 Gitterparameter *a* von α -CsCl (links), Mischkristalle in der metastabilen Kochsalzstruktur (Mitte), sowie von α -KCl (rechts) als Funktion der Substrattemperatur $T_{\rm S}$, für verschiedene Konzentrationen von KCl in der Probe. $\stackrel{\text{rechts}}{}$ Verdampfung von CsCl und KCl aus *zwei* getrennten Verdampfungsquellen – Kristallisation einer zweiten metastabilen Modifikation im Kochsalzstrukturtyp ($\diamond \rightarrow \diamond$); Literatur (\blacktriangle): α -CsCl [61], β -CsCl [68] sowie α -KCl [71, 72]. Mitte: (\ast) entspricht reinem β -CsCl.

Abbildung 7.2.11 zeigt die erhaltenen Strukturtypen der abgeschiedenen CsCl/KCl-Schichten als Funktion der Zusammensetzung und Substrattemperatur. Die Ergebnisse von Queisser [33] sind schwarz und die Resultate aus der vorliegenden Arbeit farbig dargestellt. Die grünen Pfeile (5 at% und 17 at% KCl in der Probe) entsprechen den Experimenten, welche mit *einer* gemeinsamen Verdampfungsquelle für KCl und CsCl durchgeführt wurden. Während die roten Pfeile die Ergebnisse der Verdampfung von KCl und CsCl aus *zwei* getrennten Quellen darstellen.

Mit einer Konzentration von 5 at% KCl in der Probe wird bei $T_{\rm S} = -196$ °C ein erheblicher Anteil (etwa 40 wt%) der Probe in α -CsCl ausgeschieden, der Rest liegt als β -CsCl vor, dessen Gitterkonstante auf einen geringen KCl-Anteil hindeutet — wie von Queisser bei einer Kondensationstemperatur von –20 °C beobachtet [33]. Eine ähnliche Situation ergibt sich im Fall von reinem CsCl (vgl. Abb. 7.2.3).

Auf der anderen Seite, erhält man im Experiment mit 17 at% KCl in der Probe bei $T_{\rm S}$ = -196 °C nur den Mischkristall im Kochsalzstrukturtyp; Bragg Reflexe von α -CsCl sind nicht vorhanden. Dies entspricht der Situation, welche Queisser im Temperaturbereich zwischen -80 °C und 130 °C beobachtete (vgl. Abb. 7.2.11); die aus Abb. 7.2.11 zu

erwartende röntgenamorphe Probe wird nicht erhalten. Für diesen Unterschied sind möglicherweise die unterschiedlichen Kondensationstemperaturen entscheidend. Während die tiefste Kondensationstemperatur in den Experimenten von Queisser $T_S =$ -250 °C betrug, wurden die Experimente der vorliegenden Arbeit mit $T_S = -196$ °C durchgeführt. Wie oben diskutiert, führt möglicherweise die geringere Gitterenergie von CsCl im Vergleich zu KCl bereits bei -196 °C zu kristallinen Proben. Die thermische Stabilität des Mischkristalls zeigt sich im Gegensatz zu der Beobachtung von Queisser viel geringer. Die Umwandlung des Mischkristalls beginnt bereits bei -80 °C.

Im Experiment mit zwei unabhängigen Verdampfungsquellen (Abb. 7.2.11 rot aufgetragen) und einem KCl-Anteil von 36 at% in der Probe, wird der Einfluss der höheren Gitterenergie von KCl gegenüber CsCl deutlich. In diesem Fall erhält man bei $T_{\rm S}$ = -196 °C röntgenamorphe Proben, welche Queisser bei einer Kondensationstemperatur von -250 °C ebenso erhielt. Tatsächlich entspricht dieses Ergebnis der Situation von reinem KCl (vgl. Abb. 7.2.4). Die Mischkristallphase wird erst ab einer Substrattemperatur von $T_{\rm S}$ = -80 °C erhalten — in Übereinstimmung mit Abb. 7.2.11. Allerdings lagen in den Experimenten nicht nur Mischkristalle vor: auch α -CsCl kristallisierte.

Aus der Abscheidung von KCl und CsCl mit einer Konzentration von 36 at% KCl in der Probe ist es weiterhin gelungen, im Gegensatz zu den Ergebnissen von Queisser, *zwei* unterschiedliche Mischkristalle direkt aus der röntgenamorphen Struktur auszukristallieren und bis 100 °C *stabil* zu erhalten (Abb.7.2.10, Mitte; Abb. 7.2.11). Unabhängig von dem Gehalt an KCl waren die Mischkristalle in allen Experimenten bei 200 °C in ihre Ausgangskomponente vollständig zerfallen: genauso wie nach dem Diagramm (Abb. 7.2.11) zu erwarten.

Schliesslich zeigt Abb. 7.2.12 die von Queisser erhaltenen Werte der Gitterkonstante a des Mischkristalls als Funktion der CsCl/KCl - Zusammensetzung bei einer Substrattemperatur von –196 °C. Die in der vorliegenden Arbeit erhaltenen Ergebnisse sind in diese Abbildung farbig hinzugefügt und in Tab. 7.2.8 zusammengestellt. Es ist daraus ersichtlich, dass die Gitterkonstante des Mischkristalls mit zunehmendem Gehalt an KCl, wie erwartet, kleiner wird. Die erhaltenen Werte von a sind in guter Übereinstimmung mit den Werten von Queisser.

Abb. 7.2.11 Strukturtypen der abgeschiedenen CsCl/KCl- Schichten als Funktion der Zusammensetzung und Substrattemperatur. (Ref. [33] schwarz). In dieser Arbeit durchgeführte Experimente sind farbig hervorgehoben: CsCl/KCl aus einer Verdampfungsquelle (grün); KCl und CsCl aus zwei getrennten Verdampfungsquellen (rot). Kondensationstemperatur ist mit einem Kreis, Temperung mit vertikalen Pfeilen dargestellt. Farbige vertikal durchgezogene Linien kennzeichnen Mischkristalle, während gepunktete vertikale Linien röntgenamorphe Proben darstellen. Horizontale Pfeile bezeichnen den Bereich der Kristallisation der Ausgangskomponenten α-KCl bzw. α-CsCl.

Abb. 7.2.12 Gitterkonstante *a* der Mischkristallreihe CsCl/KCl bei $T_{\rm S} = -196$ °C in Abhängigkeit von der Zusammensetzung. Kondensationstemperatur -250 °C (•), Kondensationstemperatur ca. -20 °C (•) und reines β -CsCl am Umwandlungspunkt 445 °C (+) [33]; reines β -CsCl in dünner Schicht bei Raumtemperatur [70] (Δ). **x:** Ergebnisse der vorliegenden Arbeit.

Tab. 7.2.8 Gitterkonstante *a* des CsCl/KCl - Mischkristalls bei $T_s = -196$ °C in Abhängigkeit von der KCl- Konzentration in der Probe, (*) - Abscheidung von CsCl und KCl aus *zwei* getrennten Verdampfungsquellen, bei $T_s = -50$ °C gemessen.

at% KCl	a (Mischkristall) / Å
0	6,82(2)
5	6,77(9)
17	6,75(3)
36*	6,45(8)

7.2.5 Zusammenfassung

In diesem Kapitel wurden Tieftemperaturabscheidungen im Mischkristallsystem CsCl/KCl durchgeführt und die Proben röntgenographisch studiert. Die Ergebnisse aus der Gasphasenabscheidung der Ausgangskomponenten auf ein gekühltes Substrat sind im Einklang mit der Literatur; reines KCl liegt bei –196 °C röntgenamorph vor, während CsCl erst bei tieferen Temperaturen (–250 °C) röntgenamorph zu erhalten ist. Bei –196 °C kristallisiert CsCl in den beiden Modifikationen (α - und β -CsCl).

Die Ergebnisse der simultanen Tieftemperaturabscheidung von CsCl und KCl lassen sich folgendermassen zusammenfassen: Proben mit hohem KCl-Anteil (36 at%) liegen bei -196 °C röntgenamorph vor, bei der Kristallisation entstehen zwei Mischkristalle im Kochsalzstrukturtyp; bei kleinerem KCl-Anteil (17 at%) werden bereits bei -196 °C kristalline Proben erhalten (Mischkristall); schliesslich sind bei einem KCl-Anteil von 5 at% beide Modifikationen α - und β -CsCl zu beobachten, wobei die letztgenannte möglicherweise einen geringen KCl-Anteil besitzt. In allen Experimenten beginnt bereits bei -80 °C die Umwandlung des Mischkristalles in die Komponenten, welche bei 100 °C abgeschlossen ist.

Bei 100 °C tritt α -KCl durch die einsetzende Umwandlung der Mischkristalle in Erscheinung. Somit kann für die CsCl/KCl-Probe mit 36 at% KCl bei 100 °C ein Vierphasengemenge beobachtet werden. Sowohl die thermische Stabilität als auch die Werte des Gitterparameters *a* der Mischkristalle als Funktion der Konzentration von KCl in der Probe stimmen mit den Literaturwerten [33] gut überein.

7.3 Das System CsCl/NaCl

7.3.1 Einleitung

Die erste strukturelle Charakterisierung von Cäsiumchlorid bzw. Natriumchlorid (Kochsalz) erfolgte durch die Arbeiten von Bragg, W.H et al. [90] im Jahr 1913 bzw. von Davey, W.P. et al. 1921 [91]. In der Kochsalzstruktur sind die Natrium- und Chlorid-Ionen wechselseitig oktaedrisch von je 6 Nachbarn umgeben. Es liegt eine kubisch dichte Packung von Chlorid-Ionen vor, deren Oktaederlücken mit Natrium-Ionen besetzt sind. In der Struktur von Cäsiumchlorid ist jedes Chlorid-Ion würfelförmig von 8 Cäsiumionen bzw. jedes Cäsiumion von 8 Chloridionen umgeben. Es bildet sich eine kubisch raumzentrierte Kristallstruktur. Viele Strukturen ionischer Verbindungen der Zusammensetzung AB leiten sich von diesen beiden Strukturtypen ab. Im letzten Jahrhundert wurden einige Versuche unternommen, sowohl NaCl als auch CsCl in anderen Modifikationen zu erhalten. Diese Untersuchungen zeigten, dass Kochsalz metastabil in der CsCl-Struktur bzw. CsCl metastabil im Kochsalztyp unter bestimmten experimentellen Bedingungen zu realisieren sind.

NaCl wandelt sich bei hohen Drücken von p = 20 kbar in die metastabile CsCl-Struktur mit a = 3,36(5) Å um [92, 93]. Ferner führen Tieftemperaturabscheidungen von NaCl auf verschiedenen Substraten stets nur zu der stabilen Modifikation [94]. CsCl, hingegen, kann sowohl bei Raumtemperatur [70] als auch bei tiefen [68] oder hohen [69] Temperaturen metastabil in der Kochsalzstruktur (β -CsCl) kristallisieren.

Daraus ergibt sich unmittelbar die Frage nach den Verhalten des pseudobinären Systems bestehend aus CsCl und NaCl. Es handelt sich hierbei um ein Nichtmischkristallsystem. Die ausgedehnte Mischungslücke dürfte in den stark unterschiedlichen Ionenradien der Komponenten Na⁺ (r = 0.96 Å) und Cs⁺ (r = 1.65 Å) (vgl. r = 1.33 Å von K⁺) begründet sein [33].

Darüber hinaus wurde das Verhalten des Systems CsCl/NaCl bei hohen Temperaturen von Sangster und Pelton untersucht [89]. Das von diesen Autoren erhaltene Phasendiagramm (Abb. 7.3.1) zeigt, dass ein eutektisches System vorliegt. Der eutektische Punkte liegt bei Punkt T = 486 °C und $x_{NaCl} = 0.35$ [95–97]. Dennoch besteht

eine sehr geringe Mischbarkeit von CsCl und NaCl — Fullam gibt sie mit weniger als 1 % an [84]. Darüber hinaus ergaben die Experimente bei hohen Temperaturen, dass α -CsCl sich in seine metastabile Modifikation β -CsCl bei 470 °C umwandelt, unabhängig von dem Vorhandensein von Natriumchlorid in dem Gemenge [84].

Durch Kondensation der Komponenten CsCl und NaCl auf gekühlte Substrate, untersuchte Queisser das System CsCl/NaCl bei tiefen Temperaturen [33]. Anders als bei den Hochtemperaturexperimenten lässt sich β -CsCl nur in einem kleinen Konzentrationsund Temperaturbereich stabilisieren. Bei niedrigeren Substrattemperaturen erhält man röntgenamorphe Proben, die sich mit Temperaturerhöhung in die Ausgangskomponenten α -CsCl und α -NaCl umwandeln.

In diesem Kapitel werden die Versuche von Queisser zu dem Nichtmischkristallsystem CsCl/NaCl nachgestellt. Ziel der Untersuchung ist es, die erhaltenen Phasenverhältnisse des Systems bei tiefen Temperaturen unter Einsatz der Röntgenpulverdiffraktometrie erneut zu studieren.

Abb. 7.3.1 Phasendiagramm CsCl/NaCl, nach Sangster und Pelton [89].

7.3.2 Abscheidungen von CsCl/NaCl - Gemengen

Experimentelle Bedingungen

CsCl (99,999 %, Fluka) und NaCl (99,999 %, Fluka) wurden nach gründlichem Mörsern bei 200 °C für 24 h getrocknet und anschliessend im Handschuhkasten in unterschiedlichen Verhältnissen eingewogen (Tab. 7.3.1). Das Gemenge wurde gut durchmischt, anschliessend gleichzeitig aus *einem* Tiegel (Temperatur T_{Tiegel}) verdampft und auf ein Saphirsubstrat (0001) bei $T_{\text{S}} = -196$ °C abgeschieden.

 Tab. 7.3.1
 CsCl/NaCl- Abscheidung (gemeinsame Verdampfungsquelle).

Einwaage / mg	Bedampfungs-	$T_{\text{Tiegel}} / ^{\circ}\text{C}$	<i>T</i> s	NaCl
CsCl : NaCl	dauer / h		/ °C	/ at%
261 : 197	4,0	390	-196	20
1178 : 175	4,5	450	-196	16

Ferner wurden die beiden Ausgangskomponenten CsCl und NaCl aus *zwei* separaten Verdampfungsquellen ebenso auf ein gekühltes Saphirsubstrat (0001) abgeschieden, um so das Konzentrationsverhältnis in der Probe gezielt einzustellen. Die gewählten Tiegelbzw. Substrattemperaturen werden in Tab. 7.3.2 aufgelistet.

Bedampfungs- dauer / h	T _{Tiegel} CsCl/NaCl / °C	<i>T</i> s ∕ °C	NaCl / at%
5,0	430 / 530	-196	28
5,0	420 / 540	-196	68
5,0	420 / 540	-20	73

Tab. 7.3.2 CsCl/NaCl- Abscheidung (separate Verdampfungsquellen).

Der Prozessdruck in der Vakuumkammer betrug 5[·]10⁻⁸ mbar. Der in den Tabellen aufgelistete atomare Prozentgehalt von NaCl in der Probe wurde mittels energiedispersiver Röntgenanalyse (EDX) bestimmt.

Ergebnisse

Die simultane Gasphasenabscheidungen von CsCl/NaCl – Gemengen aus *einer* gemeinsamen Verdampfungsquelle mit $T_{\text{Tiegel}} = 390$ °C oder $T_{\text{Tiegel}} = 450$ °C auf ein gekühltes Saphirsubstrat mit $T_{\text{S}} = -196$ °C ergeben röntgenamorphe Proben (Abb. 7.3.2). Diese beginnen sich bei -100 °C in α -CsCl zu ordnen. Bei einer Temperaturerhöhung bis auf -40 °C sind einzelne intensitätsschwache Zusatzreflexe ($2\theta = 25,8^\circ$, $2\theta = 42,5^\circ$) erkennbar, die nicht zugeordnet werden konnten. Bei weiterer Erhöhung der Substrattemperatur bis auf 100 °C durchläuft α -CsCl keine weitere Phasenumwandlung mehr. Bragg Reflexe von NaCl sind nicht messbar. Die Gitterkonstanten und Kristallitgrößen von α -CsCl, die aus den Rietveld-Verfeinerungen erhalten wurden, sind in Tab. 7.3.3 aufgelistet. Die energiedispersive Röntgenanalyse bestätigt einen Anteil von 20 at% NaCl in der Probe bei $T_{\text{Tiegel}} = 390$ °C, sowie 16 at% bei $T_{\text{Tiegel}} = 450$ °C. Die Werte der Gitterkonstanten sind innerhalb der dritten Standardabweichung gleich.

Bei den Abscheidungen von CsCl/NaCl aus *zwei* separaten Verdampfungsquellen auf ein Saphirsubstrat mit $T_S = -196$ °C erhält man ebenfalls röntgenamorphe Proben. Diese kristallisieren ab $T_S = -70$ °C als α -CsCl, welches bis $T_S = 200$ °C stabil vorliegt (Abb. 7.3.3). Bragg Reflexe von NaCl sind bei dieser Substrattemperatur sehr schwach messbar. Tabelle 7.3.4 zeigt die aus den Rietveld-Verfeinerungen erhaltenen Gitterkonstanten und Kristallitgrößen. Die Werte der Gitterkonstanten sind ebenso innerhalb der dritten Standardabweichung gleich. Die energiedispersive Röntgenanalyse bestätigt einen Anteil von 28 at% NaCl in der Probe bei T_{Tiegel} (NaCl) = 530 °C, sowie 68 at% bei T_{Tiegel} (NaCl) = 540 °C.

Die Pulverdiffraktogramme von Proben, welche bei einer Substrattemperatur von $T_{\rm S}$ = -20 °C abgeschieden wurden, zeigen neben α -CsCl bereits schwache Reflexe von β -CsCl (Abb. 7.3.4). Die Reflexe beider Modifikationen nehmen bei Aufwärmen bis

Raumtemperatur an Intensität zu, wobei der amorphe Anteil (Untergrund) gleichzeitig abnimmt. Die Ergebnisse der Rietveld-Verfeinerung sind in Abb. 7.3.5 und in Tab. 7.3.5 dargestellt. Im Einklang mit der Literatur weist β -CsCl ein um 20 % vergrößertes Zellvolumen im Vergleich zu α -CsCl auf.

Bei einer Substrattemperatur von 100 °C ist β -CsCl vollständig in α -CsCl umgewandelt. Erst bei einer $T_S = 200$ °C sind schwache Reflexe von NaCl zu erkennen (a = 5,67(2) Å, L = 4,6 nm, 20 wt%). Die energiedispersive Röntgenanalyse bestätigt einen Anteil von 73 at% NaCl in der Probe.

Abb. 7.3.2 Röntgenpulveraufnahmen von abgeschiedenem CsCl/NaCl aus *einer* Verdampfungsquelle ($T_{\rm S} = -196$ °C, Saphir (0001), $T_{\rm Tiegel} = 390$ °C); der NaCl-Gehalt in der Probe beträgt 20 at%. Liniendiagramm: α -CsCl.
Tab. 7.3.3 Gitterkonstante *a* und Kristallitgröße *L* von α -CsCl in Abhängigkeit von der Substrattemperatur *T*_S. Abscheidung von CsCl/NaCl aus *einer* gemeinsamer Verdampfungsquelle, bei *T*_S = -196 °C. Der NaCl-Gehalt in der Probe beträgt 20 at% (links) bzw. 16 at% (rechts).

	$T_{\rm S}$ / °C	<i>a</i> / Å	L / nm		$T_{\rm S}$ / °C	<i>a /</i> Å	<i>L</i> / nm	
	-70	4,107(2)	35,4		-100	4,06(2)	14,8	_
	-40	4,112(2)	36,0		-50	4,088(4)	19,7	
	0	4,115(2)	36,3		0	4,100(4)	20,8	
	30	4,115(1)	36,8		30	4,108(3)	22,3	
	100	4,1274(3)	42,0		100	4,124(2)	37,8	
Intensität / a.u.			30 2-The	40 eta / G	Grad	50		200°C 100°C 30°C -100°C -196°C

Abb. 7.3.3 Röntgenpulveraufnahmen von abgeschiedenen CsCl/NaCl aus *zwei* unabhängigen Verdampfungsquellen ($T_{\rm S} = -196$ °C, Saphir (0001)); der NaCl-Gehalt in der Probe beträgt 28 at%. Liniendiagramm: α -NaCl (blau), α -CsCl (grün).

Tab. 7.3.4 Gitterkonstante *a* und Kristallitgröße *L* von α -CsCl in Abhängigkeit von der Substrattemperatur $T_{\rm S}$. Abscheidung von CsCl/NaCl aus *zwei* getrennten Verdampfungsquellen, bei $T_{\rm S} = -196$ °C. Der NaCl-Gehalt in der Probe beträgt 28 at% (links) bzw. 68 at% (rechts). α -NaCl (*).

$T_{\rm S}$ / °C	<i>a /</i> Å	<i>L</i> / nm	$T_{\rm S}$ / °C	<i>a /</i> Å	<i>L</i> / nm
-100	4,102(4)	18,2	-100	4,087(4)	31,0
30	4,113(4)	21,5	30	4,116(4)	33,1
100	4,132(2)	42,7	100	4,134(2)	38,8
200	4,154(2)	63,4		5,67(3)*	17,4 [*] (11 wt%)
	5,682(2)*	11,8 [*] (7 wt%)			

Abb. 7.3.4 Röntgenpulveraufnahmen von abgeschiedenem CsCl/NaCl aus *zwei* unabhängigen Verdampfungsquellen ($T_{\rm S} = -20$ °C, Saphir (0001)); Der NaCl-Gehalt in der Probe beträgt 73 at%. Liniendiagramm: α -NaCl (blau), α -CsCl (grün), β -CsCl (rot).

Abb. 7.3.5 Graph der Rietveld-Verfeinerung einer CsCl/NaCl – Abscheidung (Messtemperatur = 30 °C, Saphir (0001), der NaCl-Gehalt in der Probe beträgt 73 at%). Reflexpositionen: β -CsCl (rot), α -CsCl (grün).

Tab. 7.3.5 Kristallographische Daten und Ergebnisse zur Strukturverfeinerung im CsCl/NaCl – Gemenge ($T_s = 30$ °C, NaCl-Gehalt in der Probe beträgt 73 at%).

	α-CsCl	β-CsCl	
Gewichts% (wt%)	84,7	16,3	
Raumgruppe (Nr.)	$Pm\overline{3}m$ (221)	<i>Fm</i> 3 <i>m</i> (225)	
<i>a</i> (Å)	$4,112(2)^{a}$	$6,91(5)^{b}$	
Zellvolumen $V(Å^3)$	69,5	330,0	
Kristallitgröße L (nm)	89,5	16,3	
berechnete Dichte (g/cm ³)	4,1	3,4	
R_{Bragg}^{c}	8,0	2,4	
Bevorzugte Orientierung ^d	(001): $k_{00} = 1$, $k_{41} = 1,45$	4, $k_{61} = 0,232$, $k_{81} = -0,053$	
Messtemperatur (°C)	30		
$R_p(\%)^{\rm c}, \tilde{R}_{wp}(\%)^{\rm c}$	7,7, 10,8		
Diffraktometer	D8-Advance (Bruker AXS), (Göbel Spiegel)		
Wellenlänge/ λ (Å)	CuK _{α1+2} , 1,54059, 1,54449		
2θ Messbereich (°)	11,3 - 63,5		

^a Lit. a = 4,1150(4) Å [61]. ^b Lit. a = 6,923(10) Å bei -46 °C [68]. ^c R_P , R_{wp} , und R_{Bragg} sowie ^d Spherical Harmonics Funktion für die bevorzugte Orientierung definiert in Topas Vers. 3.0, 2006, Bruker AXS [40], siehe Kapitel 5.

7.3.3 Diskussion der Ergebnisse

Die Ergebnisse der im Kapitel 7.2 beschriebenen Tieftemperaturabscheidungen von reinem CsCl bei $T_{\rm S} = -196$ °C zeigten, dass bereits bei dieser Temperatur beide Modifikationen α - und β -CsCl nebeneinander kristallin vorliegen, während unterhalb dieser Temperatur amorphe Proben erhalten werden. Die Ergebnisse in diesem Kapitel zeigen, dass simultane Abscheidungen von CsCl und NaCl dagegen bei -196 °C nicht zu kristallinen Proben führen, sondern röntgenamorphe Proben (Abb. 7.3.2 und Abb. 7.3.3) erhalten werden. Dies lässt sich anhand der unterschiedlichen Gitterenergien von CsCl und NaCl verstehen (Tab. 6.2). Da die Gitterenergie von NaCl höher (-789 kJ/mol) ist als die von CsCl (-652 kJ/mol), benötigt es im Vergleich zu CsCl eine höhere Temperatur für die Kristallisation, d.h. $T_{\rm S} = -196$ °C ist für die Kristallisation von NaCl nicht ausreichend hoch. Das Vorhandensein von NaCl in den CsCl/NaCl- Proben scheint die

Kristallisation von CsCl bei tiefen Temperaturen zu unterdrücken, so dass β -CsCl in diesem Fall nicht auftreten kann [33]. Erst nach einer Temperaturerhöhung auf etwa $T_{\rm S} = -100$ °C findet die Kristallisation von CsCl in α -CsCl statt.

Dennoch kann eine Kristallisation von β -CsCl in NaCl/CsCl-Gemengen erreicht werden, wenn eine höhere Substrattemperatur während der Abscheidung gewählt wird. So zeigen die Röntgenpulveraufnahmen der simultanen Abscheidung von NaCl und CsCl auf ein Substrat mit $T_S = -20$ °C und einem NaCl-Gehalt von 73 at% in der Probe die Anwesenheit sowohl von α - als auch von β -CsCl an. Die höhere Substrattemperatur ermöglicht die Kristallisation beider CsCl-Modifikationen. Hingegen wird aus den röntgenamorphen Proben bei einer Substrattemperatur $T_S = -196$ °C während des Aufwärmens auf -100 °C, wie bereits oben erwähnt, nur α -CsCl erhalten. Diese Beobachtungen, welche mit denjenigen von Queisser übereinstimmen, lassen sich mit der verschiedenen thermischen Beweglichkeit der Gitterbausteine auf der Substratoberfläche erklären [33]. Ähnliches wurde in der Literatur [33] bereits erwähnt und mit erhöhter Fehlordnung begründet.

Die erhaltene Gitterkonstante für β -CsCl nach der Rietveld-Strukturanalyse, a = 6,84(2)Å, zeigt, dass es hier im Gegensatz zu dem System CsCl/KCl (Kapitel 7.2, vgl. Abb. 7.2.6) zu keiner CsCl/NaCl Mischkristallbildung kommt. Auffällig ist, dass keine Bragg Reflexe von NaCl in den Röntgenpulverdiffraktogrammen mit 16 at%, 20 at% NaCl bzw. ab 28 at% NaCl nur schwach erkennbar sind. Dies lässt sich u.a. durch kleine Kristallitgrößen (Reflexverbreiterung) und die geringen Mengen dieser Komponente in den Proben verstehen.

Einen Überblick des Phasenbestandes der abgeschiedenen CsCl/NaCl-Schichten als Funktion der Zusammensetzung und Substrattemperatur zeigt Abbildung 7.3.6. Die Ergebnisse von Queisser sind schwarz eingetragen, während die Resultate der vorliegenden Arbeit farbig dargestellt sind. Die grünen Pfeile entsprechen den Experimenten, welche mit *einer* gemeinsamen Verdampfungsquelle durchgeführt wurden, während die roten Pfeile den Experimenten mit getrennten Verdampfungsquellen für die Ausgangskomponenten NaCl und CsCl entsprechen.

Wie nach dem Diagramm ersichtlich, erhält man im Einklang mit den Ergebnissen von Queisser bei einer Konzentration von 16 at% oder 20 at% NaCl bei einer Abscheidetemperatur von $T_{\rm S} = -196$ °C röntgenamorphe Proben, welche sich ab ca. -100 °C in die α -CsCl Modifikation bzw. bei 28 at% und 68 at% ebenso in NaCl ordnen. Bei einem Gehalt von 68 at% NaCl wird bei der Abscheidetemperatur von -196 °C nicht das nach Queiser zu erwartende gestörte NaCl-Gitter erhalten, sondern ebenfalls röntgenamorphe Proben, welche sich ab ca. -100 °C in α -CsCl ordnen. Interessanterweise werden bei $T_{\rm S} = -20$ °C mit 73 at% NaCl, sowohl α -CsCl als auch β -CsCl erhalten. Trotz des hohen Gehaltes an NaCl in der Probe wird in diesem Fall das nach dem Diagramm von Queisser erwartete gestörte NaCl-Gitter nicht erhalten.

Abb. 7.3.6 Phasenbestand der abgeschiedenen CsCl/NaCl- Schichten als Funktion der Zusammensetzung und Substrattemperatur (Ref. [33] schwarz). In dieser Arbeit durchgeführte Experimente sind farbig hervorgehoben: NaCl/CsCl aus *einer* Verdampfungsquelle (grün); NaCl und CsCl aus *zwei* getrennten Verdampfungsquellen (rot). Kondensationstemperatur ist mit einem Kreis, Temperung mit vertikalen Pfeilen dargestellt. Farbige vertikal durchgezogene Linien kennzeichnen β -CsCl, während gepunktete vertikale Linien röntgenamorphe Proben darstellen. Horizontale Pfeile bezeichnen den Bereich der Kristallisation der Ausgangskomponenten α -NaCl und α -CsCl.

7.3.4 Zusammenfassung

In diesem Kapitel wurden simultane Tieftemperaturabscheidungen im CsCl/NaCl-System durchgeführt und die Proben röntgenographisch studiert. Unabhängig von dem atomaren Prozentgehalt an NaCl (16 at%, 20 at%, 28 at% oder 68 at%) werden bei $T_{\rm S} = -196$ °C röntgenamorphe Proben erhalten, welche sich ab -100 °C in α -CsCl ordnen. Der Einfluss der Substrattemperatur auf die Kristallisation der Proben wurde untersucht. Die Experimente zeigen, dass höhere Kondensationstemperaturen (-20 °C) für die Kristallisation von α - und β -CsCl nötig sind. In Übereinstimmung mit der Literatur, wurde keine Mischkristallbildung beobachtet.

7.4 Das System LiBr

7.4.1 Einleitung

Allgemein lassen sich Ionenverbindungen der Zusammensetzung AB nach den realisierten Kordinationezahlen in drei Gruppen von Strukturen einteilen: (i) in den CsCl-Strukturtyp, (ii) den Kochsalz- bzw. NiAs-Strukturtyp sowie (iii) in den Wurtzit bzw. Zinkblendetyp. Welche Koordinationszahlen in Erscheinung treten, bestimmt das Verhältnis zwischen dem Radius des Kations, $r_{\rm K}$, und des Anions, $r_{\rm A}$. Geometrische Überlegungen zeigen, dass man für derartige Ionenverbindungen den Kochsalztyp erhält, wenn der Radienquotient $r_{\rm K}/r_{\rm A}$ zwischen 0,414 und 0,732 liegt [9]. Wird allerdings der elektrostatische Anteil der Gitterenergie als Kriterium herangezogen, so sollte der Wechsel von der Kochsalz- zur Wurtzitstruktur bei $r_{\rm K}/r_{\rm A} \approx 0,3$ statt bei 0,414 eintreten. So gesehen fällt LiBr ($r_{\rm K}/r_{\rm A} = 0,39$) in den Stabilitätsbereich des Kochsaltstrukturtyps, stellt aber einen Grenzfall dar. Ähnlich ist die Situation bei Lithiumiodid, welches trotz seines noch geringeren Radienquotientes $r_{\rm K}/r_{\rm A} = 0,35$ ebenso im Kochsalzstrukturtyp kristallisiert. Die Darstellung von LiI in der hexagonalen metastabilen Wurtzit-Struktur (in dünnen Schichten) gelang erstmals Rühl bei tiefen Temperaturen (-250 °C) und später Wassermann et al. bei Raumtemperatur [71, 98]. Einen endgültigen Beweis der Existenz von LiI in der Wurtzit-Struktur ergab sich aus Tieftemperaturabscheidungen von LiI bei -196 ° C und anschließender Rietveld-Analyse von Röntgenpulverdiffraktogrammen [99]. Fischer et al. fanden bereits bei der Kondensation breite Reflexe der metastabilen hexagonalen β -Modifikation, welche im Temperaturbereich zwischen -100 °C und 0 °C schmaler werden. Bei Raumtemperatur lag schließlich die α- Modifikation im Kochsalzstrukturtyp vor. Die Autoren untersuchten ebenso das System LiBr/LiI. Dabei wurden LiI und LiBr direkt aus der Gasphase auf ein Substrat bei einer Kondensationstemperatur von -196 °C abgeschieden. Die Proben wurden während des Aufwärmens des Substrates bis auf Raumtemperatur röntgenographisch untersucht. Interessanterweise führten die simultanen Abscheidungen von LiBr und LiI bei tiefen Temperaturen zu LiBr_{1-x}I_x (0,25 $\leq x \leq 0.8$) Mischkristallen, welche ebenfalls die Wurtzit-Struktur und zudem eine erhöhte thermische Stabilität bis 80°C aufwiesen [99]. Die Extrapolation der Gitterkonstanten a und c der hexagonalen Struktur in Abhängigkeit des Molenbruchs x_{Li} gegen $x_{Li} = 0$, führte zu der Vorhersage der Gitterkonstanten von reinem LiBr in der niederkoordinierten Struktur [99]. Experimentell hingegen wurde reines LiBr bisher nur in der Kochsalzstruktur gefunden [71, 100–104].

Weitere Hinweise auf die Existenz von LiI und LiBr im Wurtzit-Strukturtyp ergaben sich im Zusammenhang mit dem Konzept zur Syntheseplanung in der Festkörperchemie [20]. Aus den Nachoptimierungen auf der Basis von ab-initio Rechnungen stellten sich die Zinkblende oder die Wurtzitstruktur als eine gute Alternative zur Kochsalzstruktur für LiI und LiBr heraus (Abb. 7.4.1) [105, 106].

Mit dem Ziel der experimentellen Validierung der Berechnungen sollten die vorhergesagte neue Modifikation von LiBr auf dem Wege der Tieftemperaturabscheidung synthetisiert werden. Dazu sollte der präparative Parameterraum (Tiegel- und Kondensationstemperatur) im Bereich von 420 °C bis 470 °C bzw. –196 °C bis 0 °C bearbeitet werden. Hierfür werden Abscheidungen von LiBr

bei unterschiedlichen Kondensationstemperaturen durchgeführt und die Proben während des Aufwärmens des Substrates röntgenographisch untersucht.

Abb. 7.4.1 E(V) Kurven unterschiedlicher Strukturkandidaten von LiBr, welche nach globaler Erkundung der dazugehörigen Energielandschaft gefunden wurden. Den Berechnungen folgte eine lokale Optimierung jeder polymorphen Modifikation auf abinitio Ebene [105, 106].

7.4.2 Abscheidungen von LiBr

Lithiumbromid (99,999 %, Aldrich) wurde zunächst bei 200 °C über 48 h getrocknet, und anschliessend bei einer konstanten Tiegeltemperatur von $T_{\text{Tiegel}} = 380$ °C bzw. $T_{\text{Tiegel}} =$ 460 °C auf ein gekühltes Saphirsubstrat ((0001) orientiert) mit $T_{\text{S}} = -196$ °C über 5 Stunden abgeschieden. Weiterhin wurden Experimente mit höheren Substrat- und unterschiedlichen Tiegeltemperaturen durchgeführt. Einen Überblick dieser Experimente gibt Abb. 7.4.2. Bei allen Experimenten lag die Bedampfungsdauer zwischen 3 und 5 Stunden. Darüber hinaus wurden Abscheidungen auf Saphir mit einer Orientierung (11–20), auf polykristallines Kupfer (Mateck) sowie auf Lithiumniobat (001) (epitaktisch poliert, TBL-Kelpin) mit $T_{\text{S}} = -50$ °C und $T_{\text{Tiegel}} = 460$ °C über 5 h durchgeführt. Der Prozessdruck in der Vakuumkammer während der Experimente belief sich auf < 5·10⁻⁸ mbar.

Die Röntgenpulveraufnahmen erfolgten an einem θ/θ -Röntgendiffraktometer (D8-Advance, Bruker AXS, CuK_a) in der Röntgenvakummkammer (ca. 5·10⁻⁷ mbar) in Reflexion. Röntgenmessungen über die gesamte Probenfläche bestätigen sehr geringe örtliche Schwankungen im Bereich von 8%. Für das Indizieren sowie für die Rietveld-Strukturverfeinerung wurde das Programm Topas (Vers. 3.0, 2006, Bruker AXS) verwendet. Als interner Standard wurde α -LiBr eingesetzt. Dazu wurde die Gitterkonstante von α -LiBr bei Raumtemperatur in einem unabhängigen Experiment (0,2 mm Kapillare am D8-Bruker AXS, Debey-Scherrer-Geometrie, Cu-K_{α 1}-Strahlung, Si-Standard, 25°C) neu bestimmt: a = 5,4972(1) Å (Lit. 5,506(8) Å [107]).

Abb. 7.4.2 Experimentelles Parameterfeld der Abscheidungen von LiBr auf Saphir (0001) bei konstanter Substrattemperatur $T_{\rm S}$ und Tiegeltemperatur $T_{\rm Tiegel}$.

7.4.3 Ergebnisse und Diskussion

Bei Abscheidungen von LiBr mit $T_{\text{Tiegel}} = 380 \text{ °C}$ auf ein Saphirsubstrat (0001) mit $T_{\text{S}} = -196 \text{ °C}$ erhält man röntgenamorphe Proben, welche sich ab -80 °C in α -LiBr ordnen und bis Raumtemperatur keine weitere Phasenumwandlung durchlaufen (Abb. 7.4.3). Mit erhöhter Tiegeltemperatur $T_{\text{Tiegel}} = 460 \text{ °C}$ wird bei der Kondensationstemperatur ($T_{\text{S}} = -196 \text{ °C}$) bereits α -LiBr erhalten, welches während des Aufheizens auf Raumtemperatur unverändert erhalten bleibt.

Bei höherer Substrattemperatur während der Abscheidung wird jedoch in einem Temperaturfenster um $T_{\rm S} = -50$ °C vorzugsweise eine neue polymorphe Modifikation erhalten, β -LiBr. In Abbildung 7.4.4 ist der Gehalt an β -LiBr — welcher jeweils aus der Rietveld-Verfeinerung der β/α -Verhältnisse (wt%) von kristallinen LiBr Proben erhalten wurde — als Funktion der Kondensationstemperatur $T_{\rm S}$ und der Tiegeltemperatur $T_{\rm Tiegel}$

dargestellt. Wie aus dieser Abbildung hervorgeht, wird bei $T_{\text{Tiegel}} = 440 \text{ °C}$ und $T_{\text{S}} = -50 \text{ °C} \beta$ -LiBr erhalten. Während des Aufheizens des Substrates auf Raumtemperatur wird ein Phasenübergang in die Kochsalzstruktur beobachtet (Abb. 7.4.5).

Weiterhin geht aus Abb. 7.4.4 hervor, dass der Anteil von β -LiBr in dem α -LiBr/ β -LiBr-Phasengemenge bei der Kondensation stark von den experimentellen Parametern $T_{\rm S}$ und $T_{\rm Tiegel}$ abhängt. Es ist ersichtlich, dass bei einer anderen Substrattemperatur als -50 °C oder einer Tiegeltemperatur von 440 °C, der Anteil des β -Polymorphs in der Mischung α -LiBr/ β -LiBr abnimmt. Schließlich kristallisiert sowohl bei $T_{\rm S} = -100$ °C als auch bei $T_{\rm S} = 0$ °C nur der kubische Strukturtyp aus^a. Abbildung 7.4.6 zeigt eine Zusammenstellung der registrierten Pulverdiffraktogramme der abgeschiedenen Proben bei Kondensationstemperaturen $T_{\rm S}$ zwischen -196 °C und 0 °C ($T_{\rm Tiegel} = 460$ °C).

Die Abscheidungen von LiBr auf Saphir (11–20), Lithiumniobat (001) und polykristallinen Kupfer mit $T_{\rm S} = -50$ °C und $T_{\rm Tiegel} = 460$ °C zeigen, dass die gleichen Ergebnisse, wie sie in Abb. 7.4.4 aufgeführt sind, erhalten werden, also substratunabhängig sind.

^a Bei $T_{\text{Tiegel}} = 440^{\circ}\text{C}$ und $T_{\text{S}} = -100^{\circ}\text{C}$ wird 3 wt% β -LiBr erhalten.

Abb. 7.4.3 Röntgenpulveraufnahmen von abgeschiedenem LiBr (Saphir (0001), $T_S = -196$ °C). Liniendiagramm: α -LiBr.

Abb. 7.4.4 Gehalt an β -LiBr, erhalten aus der Rietveld-Verfeinerung des β/α -Verhältnisses in kristallinen LiBr Proben, als Funktion der Substrat- und Tiegeltemperatur während der Abscheidung.

Abb. 7.4.5 Röntgenpulveraufnahmen von abgeschiedenem LiBr (Saphir (0001), $T_s = -50$ °C). Liniendiagramm: β -LiBr.

Abb. 7.4.6 Röntgenpulveraufnahmen von abgeschiedenem LiBr bei unterschiedlicher Kondensationstemperatur –196 °C, –100 °C, –50 °C, –20 °C, 0 °C (von unten, Textur vorhanden, $T_{\text{Tiegel}} = 460$ °C); Liniendiagramm: β -LiBr.

Kristallographische Ergebnisse zu β-LiBr

Die Röntgenpulverdiffraktogramme von β-LiBr wurden auf Basis einer hexagonalen Einheitszelle indiziert mit a = 4,1509(5) Å und c = 6,6502(2) Å. Der Graph sowie die kristallographischen Ergebnisse der Rietveld-Verfeinerung ist in Abb. 7.4.7 bzw. in Tab. 7.4.1 aufgeführt. Diese Ergebnisse der Rietveld-Verfeinerung bestätigten den Wurtzit-Strukturtyp ($P6_3mc$, Nr. 186). Bei der Verfeinerung wurden die texturbedingten berücksichtigt, eine Intensitätsabweichungen mit welche für derartige Präparationstechnik nicht ungewöhnlich sind. Die Rietveld-Verfeinerung im NiAs Strukturtyp führte nur zu ungenügenden Ergebnissen. Die Größe der experimentell erhaltenen hexagonalen Zelle stimmt mit den abgeschätzten Gitterkonstanten a = 4.13 Å und c = 6,67 Å für β -LiBr (25 °C), wie sie nach der Extrapolation der Gitterkonstanten der Mischkristallreihe LiBr_{1-x}I_x gegen x = 0 erhalten wurden [99], gut überein. Darüber hinaus ergaben Berechnungen auf ab-initio Ebene die Gitterkonstanten a = 4,29 Å and c = 6,84 Å für LiBr im Wurtzitstrukturtyp [105]. Der Grund für die zu hoch berechneten Werte liegt in der generellen Überschätzung dieser Werte durch die angewandte ab-initio Methode [108].

Abb. 7.4.7 Rietveld-Verfeinerung von β -LiBr im Wurtzit-Strukturtyp. ($T_{\text{Tiegel}} = 440 \text{ °C}$, Saphir (0001), $T_{\text{S}} = -50 \text{ °C}$); Reflexpositionen: β -LiBr, Strukturdaten sind in Tab. 7.4.1 aufgelistet.

Messtemperatur (°C)	-50
Summenformel	LiBr
Raumgruppe (Nr.)	$P6_3mc$ (186)
Kristallsystem	hexagonal
Zellparameter (Å)	a = 4,1509(5)
-	c = 6,6502(2)
Zellvolumen $V(Å^3)$	99,23(5)
Formeleinheiten Z	2
Molgewicht (g/mol)	86,8
berechnete Dichte (g/cm ³)	2,91
Diffraktometer	D8-Advance (Bruker AXS), (Göbel Spiegel)
Wellenlänge/ λ (Å)	1,54059, 1,54449
2θ Messbereich (°)	17,5 – 79,5
Reflexanzahl	19
Li - Position	(2b) 1/3, 2/3, 0
Br - Position	(2b) 1/3, 2/3, 0,379(1)
B _{eq}	8,1(2)
bevorzugte Orientierung	(001): 0,405
$R_p (\%)^{\mathrm{a}}$	5,6
$\overline{R_{wp}}$ (%) ^a	8,1
R_{Bragg} (%) ^a	2,5

Tab. 7.4.1 Kristallographische Daten der Rietveld-Verfeinerung von β-LiBr.

^a R_P , R_{wp} , R_{Bragg} und March-Dollase Funktion für die bevorzugte Orientierung wie definiert in *Topas Vers.* 3.0, Bruker AXS [40].

Die Kristallstruktur von LiBr im Wurtzitstrukturtyp ist in Abb. 7.4.8 illustriert. Die tetraedrische Koordination von Li ist mit einem Koordinationspolyeder hervorgehoben. Die Kation-Anion-Abstände (2,52 Å bzw. 2,53 Å) in dem β -Polymorph sind ca. 8 % kürzer als in α -LiBr (2,75 Å [107]). Diese Situation lässt sich mit dem Verhältnis der interatomaren Abstände in ZnO, welche in der tetraedrischen Modifikation um etwa 7 % kleiner sind als im oktaedrischen ZnO [109], gut vergleichen. Während des Überganges von β -LiBr in das kubische α -LiBr nimmt das Zellvolumen um 20 % ab. Eine solche Verkleinerung des Zellvolumens ist typisch für metastabile Modifikationen und beträgt für LiI 18 % [110].

Abb. 7.4.8 Kristallstruktur von LiBr im Wurtzitstrukturtyp; Strukturdaten in sind in Tab. 7.4.1 aufgelistet; Li (weiss), Br (grün), Koordinationstetraeder (schwarz).

Einfluss von $T_{\rm S}$ *und* $T_{\rm Tiegel}$ *auf die Bildung von* β *-LiBr*

Die experimentell ermittelten Bildungsbedingungen von β -LiBr sind nicht einfach nachvollziehbar. Sie müssen offensichtlich Nichtgleichgewichtsphänomenen zugeschrieben werden, welche mit den sonst selektiven Schritten der Keimbildung und – wachstum verbunden sind. Allgemein beginnen in den Vorstufen der Kristallisation aus einer dynamischen Population an subkritischen Keimen diejenigen Keime weiter zu wachsen, welche als erstes die kritische Größe, und somit Stabilität, erreicht haben. Aus unseren Experimenten lässt sich etwa folgender Ablauf annehmen. Bei mittleren Substrattemperaturen findet lokale Keimbildung statt, jedoch scheinen die Keime für die verschiedenen Strukturen nicht im dynamischen Gleichgewicht zu stehen und sind daher nicht dem üblichen Selektionsprozess unterworfen. Stattdessen beginnen sie zu wachsen, wobei das Wachstum von der Gasphase genährt wird. Es gibt dabei zwei konkurrierende Einflussfaktoren, welche die Struktur der sich bildenden Keime bestimmen. Diese sind Temperatur und eine Zugspannung, die aus der Verkleinerung des Volumens während der Umwandlung der amorphen Abscheidung in den kristallinen Zustand resultiert. Die Erhöhung der thermischen Aktivierung begünstigt die Bildung der Struktur im globalen Minimum, d.h. der Kochsalzstruktur, während der negative Druck eine Kristallisation der polymorphen Modifikation mit geringerer Dichte, d.h. der Wurtzit- Struktur, fördert. Im Einklang dieser Überlegungen wird oberhalb von 0 °C nur α -LiBr erhalten.

7.4.5 Zusammenfassung

Durch die Anwendung der Tieftemperaturabscheidung konnte eine neue mit rechnerischen Methoden vorhergesagte metastabile Wurtzit-Modifikation von LiBr synthetisiert werden ($P6_3mc$ (Nr. 186) mit a = 4,1509(5) Å und c = 6,6502(2) Å, welche bei $T_{\text{Tiegel}} = 440$ °C und $T_{\text{S}} = -50$ °C phasenrein erhalten wurde. Diese Struktur zeigt sich zwischen -100 °C und 0 °C stabil und wird substratunabhängig erhalten. Mit Temperaturerhöhung wird ein Phasenübergang in die kubische Kochsalzmodifikation beobachtet, welche bei 0 °C abgeschlossen ist.

7.5 Das System CsBr/LiBr

7.5.1 Einleitung

Lithiumbromid kristallisiert in der Kochsalzstruktur und wurde erstmals 1922 von E. Posnjak et al. strukturell charakterisiert (a = 5,50 Å) [103]. Cäsiumbromid hingegen kristallisiert in der Cäsiumchloridstruktur und wurde erstmals 1922 von W. P. Davey röntgenographisch untersucht (a = 4,296 Å) [111]. Beide Verbindungen kommen bei tiefen Temperaturen in niederkoordinierten Strukturtypen vor, d.h. β -LiBr im Wurzitstrukturtyp (a = 4,1509(5) Å, c = 6,6502(2) Å [99]), wie im Kapitel 7.4 diskutiert, und β -CsBr in der Kochsalzstruktur (a = 7,235 Å, T = -140 °C bis -115 °C [68]).

Das Phasendiagramm des Systems LiBr/CsBr bei hohen Temperaturen, wie es in Abb. 7.5.1 dargestellt ist, wurde von Sangster und Pelton ermittelt [89]. Die Liquidus-Kurve wurde in zwei Studien mittels thermischer und visual-polythermischer Methoden untersucht [112, 113]. In beiden Arbeiten fanden die Autoren einen genau definierten Bruch in der Liquiduskurve bei $x_{\text{LiBr}} = 0,5$ und T = 300 °C [112] bzw. 315 °C [113], der auf ein Peritektikum hindeutet. Das Eutektikum wurde bei einer Temperatur von 274 °C [112–114] erhalten. Gaebell und Meyer ist es gelungen, eine ternäre Verbindung in diesem System, CsLiBr₂, durch langsames Abkühlen aus der Schmelze darzustellen [115]. Sie kristallisiert tetragonal in der Raumgruppe *P4/nmm* (Nr. 129) mit *a* = 5,1870(5) Å und *c* = 9,924(1) Å [115]. Hierbei ist Lithium fünffach mit Brom in Form einer tetragonalen Pyramide koordiniert, während Cäsium von neun Bromatomen umgeben ist.

Existenzfähige Strukturen für das System CsBr/LiBr bei tiefen Temperaturen und deren Bildungsenthalpien $\Delta_f H$ wurden von Pentin et al. durch Berechnungen von Tieftemperaturphasendiagrammen ermittelt (Abb. 7.5.1 unten) [116]. Es wurden von diesen Autoren, neben der Verbindung CsLiBr₂, sechs weitere Strukturkandidaten (Tab. 7.5.1) für das System CsBr/LiBr vorhergesagt, wobei drei davon stabil in Bezug auf die binären Verbindungen CsBr und LiBr sind. Die berechneten Strukturdaten sind in Ref. [116] aufgelistet.

Ausgehend von diesen Berechnungen sollte mittels der Tieftemperaturabscheidung versucht werden, neue ternäre Verbindungen im System CsBr/LiBr darzustellen und röntgenographisch zu charakterisieren.

System	Kristallsystem	Raumgruppe (Nr.)
Cs ₃ LiBr ₄	orthorhombisch	<i>C</i> 222 ₁ (20)
Cs ₂ LiBr ₃	monoklin	<i>C</i> 2/ <i>m</i> (12)
$Cs_3Li_2Br_5$	monoklin	<i>Cm</i> (8)
Cs ₂ Li ₃ Br ₅	monoklin	<i>C</i> 2/ <i>m</i> (12)
CsLi ₂ Br ₃	orthorhombisch	<i>Immm</i> (71)
CsLi ₃ Br ₄	orthorhombisch	$Pmc2_1$ (26)

Abb. 7.5.1 Oben: Phasendiagramm CsBr/LiBr [89]; vorhergesagte stabile Phasen (schwarze Linie); vorhergesagte stabile Phasen in Bezug auf die binären Verbindungen LiBr und CsBr (grüne Linie); vorhergesagte metastabile Phasen in Bezug auf die binären Verbindungen (blaue Linie). Unten: Berechnete Reaktionsenthalpien für die Zersetzung in die Komponenten LiBr und CsBr bei 0 K; Ergebnisse aus zwei unterschiedlichen Rechenmethoden (blaue Kreise bzw. rote Dreiecke) [116].

7.5.2 Abscheidung von CsBr/LiBr - Gemengen

Experimentelle Bedingungen

CsBr (99,999 %, Fluka) und LiBr (99,999 %, Fluka) wurden bei 200 °C über 24 Stunden getrocknet und anschliessend aus zwei separaten Tiegeln auf ein gekühltes Substrat (Saphir (0001)) abgeschieden. Die gewählten Tiegel- und Substrattemperaturen sind in Tabelle 7.5.2 aufgelistet. Die Bedampfungsdauer betrug 5 Stunden. Der Prozessdruck in der Vakuumkammer während der Bedampfung belief sich auf < $5\cdot10^{-8}$ mbar. Der Gehalt an Lithium und Cäsium in den Proben wurde mittels ICP-OES bestimmt.

 Tab. 7.5.2 Experimentelle Parameter der CsBr/LiBr-Abscheidungen.

T_{Tiegel} CsBr/LiBr / °C	Cs:Li /%	$T_{\rm S}$ / °C
480/460	70:30	-196
470/450	30:70	-100
480/460	55 : 45	-20

7.5.3 Ergebnisse

Aus den Abscheidungen von CsBr und LiBr ($T_{\text{Tiegel}} = 480 \,^{\circ}\text{C}$ (CsBr) bzw. 460 $^{\circ}\text{C}$ (LiBr)) bei $T_{\text{S}} = -196 \,^{\circ}\text{C}$ werden röntgenamorphe Proben erhalten (Abb. 7.5.2). Diese ordnen sich ab $-50 \,^{\circ}\text{C}$ in α -CsBr (Kristallitgröße L = 11,3 nm, siehe Tab. 7.5.3). Mit Erhöhung der Substrattemperatur auf Raumtemperatur nehmen die Reflexe von α -CsBr an Intensität zu, der amorphe Anteil (siehe Untergrund) bleibt allerdings weiterhin bestehen. Erst bei $T_{\text{S}} = 100 \,^{\circ}\text{C}$ kristallisiert CsLiBr₂ (58 wt%) neben α -CsBr (41 wt%). Der Graph der Rietveld-Verfeinerung ist in Abb. 7.5.3 dargestellt. Es sind texturbedingte Intensitätsabweichungen festzustellen, welche für eine derartige Präparationstechnik nicht ungewöhnlich sind. Die kristallographischen Ergebnisse sind in Tab. 7.5.4 aufgelistet. Abscheidungen von CsBr und LiBr ($T_{\text{Tiegel}} = 470 \text{ °C}$ (CsBr) / 450 °C (LiBr)) auf ein Saphir-Substrat bei $T_{\text{S}} = -100 \text{ °C}$ ergeben ebenfalls röntgenamorphe Proben (Abb. 7.5.4). Mit Erhöhung der Substrattemperatur auf 30 °C setzt die Kristallisation ein, allerdings ist eine Rietveld-Verfeinerung durch den starken amorphen Anteil erschwert. Erst bei $T_{\text{S}} = 100 \text{ °C}$ hat eine deutlich bessere Kristallisation stattgefunden. Es lassen sich die drei bekannten Phasen CsLiBr₂ (46 wt%), α -CsBr (17 wt%), und α -LiBr (36 wt%) zuordnen, wobei noch einzelne intensitätsschwache Zusatzreflexe sowie texturbedingte Intensitätsschwankungen vorhanden sind. Die Ergebnisse der Rietveld-Verfeinerung sind in Tab. 7.5.5 bzw. der Graph in Abb. 7.5.5 aufgeführt.

Die Abscheidungen von CsBr und LiBr ($T_{\text{Tiegel}} = 480 \text{ °C}$ (CsBr) bzw. 460 °C (LiBr)) bei $T_{\text{S}} = -20 \text{ °C}$ führen ebenfalls zu röntgenamorphen Proben (Abb. 7.5.6). Allerdings erst bei $T_{\text{S}} = 80 \text{ °C}$ ordnen sich diese vollständig in CsLiBr₂. Mit weiterer Temperaturerhöhung des Substrates auf 150 °C erfolgt keine weitere Phasenumwandlung. Den Graph der Rietveld-Verfeinerung zeigt Abb. 7.5.7. Der Zusatzreflex bei $2\Theta = 27^{\circ}$ bleibt unklar. Bei der Verfeinerung wurden die texturbedingten Intensitätsabweichungen mit berücksichtigt. Die kristallographischen Daten und Ergebnisse sind in Tabelle 7.5.6 zusammengestellt.

Abb. 7.5.2 Röntgenpulveraufnahmen von abgeschiedenem CsBr/LiBr ($T_{\rm S} = -196$ °C, Saphir (0001)). Liniendiagramm: α -CsBr (grün), CsLiBr₂ (schwarz).

Tab. 7.5.3 Ergebnisse aus den Rietveld-Verfeinerungen: Gitterkonstante *a* und Kristallitgröße *L* von α-CsBr in Abhängigkeit von der Substrattemperatur *T*_S. Abscheidung von CsBr bei $T_S = -196$ °C und Erwärmen auf Raumtemperatur.

$T_{\rm S}$ / °C	<i>a</i> / Å	<i>L</i> / nm
-50°C	4,20(2)	11,3
-20°C	4,21(1)	13,4
30°C	4,275(7)	17,9

Abb. 7.5.3 Rietveld-Verfeinerung einer CsBr/LiBr – Abscheidung ($T_s = -196$ °C, Messtemperatur beträgt 100 °C). Reflexpositionen: LiCsBr₂ (schwarz), α -CsBr (grün).

Tab. 7.5.4	Kristallographische	Daten und Ergebnisse	e zur Strukturverfeine	rung im

	α-CsBr	CsLiBr ₂
Gewichts% (wt%)	47	53
Raumgruppe (Nr.)	<i>Pm</i> 3 <i>m</i> (221)	<i>P</i> 4/ <i>n m m</i> (129)
Zellparameter (Å),	$a = 4,277(2)^{a}$	$a = 5,161(3)^{\mathrm{b}}, c = 9,881(7)^{\mathrm{b}}$
Zellvolumen $V(Å^3)$	78,2	263,3
Kristallitgröße L (nm)	36,3	71,0
berechnete Dichte (g/cm ³)	4,5	3,8
R_{Bragg} ^c	2,7	3,8
Temperatur (°C)	100	
$R_{p}(\%)^{c}, R_{wp}(\%)^{c}$	7,3, 10,5	
Diffraktometer D8-Ac	dvance (Bruker AXS), (G	köbel Spiegel)
Wellenlänge λ (Å)	1,54059, 1,54449	
2θ Messbereich (°)	11,2 - 79,5	

CsBr/LiBr – Gemenge (Messtemperatur 100 °C, Abscheidung bei –196 °C).

^a Lit. a = 4,2812(4) Å bei Raumtemperatur [61]. ^b Lit. a = 5,1870(5) Å und c = 9,924(1) Å [115].

^c R_P , R_{wp} , und R_{Bragg} definiert in *Topas Vers. 3.0* [40].

Abb. 7.5.4 Röntgenpulveraufnahmen von abgeschiedenem CsBr/LiBr ($T_s = -100$ °C, Saphir (0001)). Liniendiagramm: CsLiBr₂ (schwarz), α -CsBr (grün), α -LiBr (blau).

Abb. 7.5.5 Rietveld-Verfeinerung einer CsBr/LiBr – Abscheidung ($T_s = -100$ °C, Messtemperatur beträgt 100 °C). Reflexpositionen: LiCsBr₂ (schwarz), α -CsBr (grün), α -LiBr (blau).

	α-CsBr	α-LiBr CsLiH	Br ₂	
Gewichts% (wt%)	17	36	46	
Raumgruppe	Pm3m	Fm3m	<i>P</i> 4/ <i>n m m</i>	
Zellparameter (Å),	$a = 4,304(6)^{a}$	$a = 5,506(5)^{b}$	$a = 5,195(7)^{c}, c = 9,93(1)^{c}$	
Zellvolumen $V(Å^3)$	79,8	166,9	268,2	
Kristallitgröße L (nm)	31,1	52,9	78,0	
berechnete Dichte (g/cm ³)	4,4	3,4	3,7	
R _{Bragg} ^d	1,8	3,9	3,2	
Temperatur (°C)	100			
$R_p (\%)^{\rm d}, R_{wp} (\%)^{\rm d}$	5,7, 7,9			
Diffraktometer	D8-Advance (Bruker AXS), (Göbel Spiegel)			
Wellenlänge $\lambda(\text{\AA})$	1,54059, 1,544	149		
2θ Messbereich (°)	11 2 - 79 5			

Kristallographische Daten und Ergebnisse zur Strukturverfeinerung im Tab. 7.5.5 CsBr/LiBr – Gemenge (Abscheidung bei -100°C, Messtemperatur beträgt 100 °C).

^a Lit. a = 4,2812(4) Å bei Raumtemperatur [61]. ^b Lit. a = 5,508 Å bei Raumtemperatur [107]. ^c Lit. a = 5,1870(5) Å und c = 9,924(1) Å [115]. ^d R_P , R_{wp} , und R_{Bragg} definiert in *Topas Vers. 3.0*, 2006, Bruker AXS [40], siehe Kapitel 5.

Saphir (0001)). Liniendiagramm: CsLiBr₂ (schwarz).

Abb. 7.5.7 Rietveld-Verfeinerung einer CsBr/LiBr – Abscheidung ($T_s = -20$ °C, Messtemperatur beträgt 150 °C). Reflexpositionen: LiCsBr₂ (schwarz).

Tab. 7.5.6 Kristallographische Daten und Ergebnisse zur Strukturverfeinerung im CsBr/LiBr – Gemenge (Abscheidung bei –20°C, Messtemperatur beträgt 150 °C).

^a Lit. a = 5,1870(5) Å und c = 9,924(1) Å [115]. ^b R_P , R_{wp} , und R_{Bragg} definiert in *Topas Vers. 3.0*, 2006, Bruker AXS [40], siehe Kapitel 5.

7.5.4 Diskussion und Zusammenfassung

Da Cäsiumbromid den kleineren Wert der Gitterenergie gegenüber Lithiumbromid aufweist (Tab. 6.2), liegt die Vermutung nahe, dass damit auch eine geringere Kristallisationstemperatur verbunden ist. Genau dies läßt sich an den Ergebnissen aus der Tieftemperaturabscheidung von CsBr und LiBr auf ein Substrat mit $T_{\rm S} = -196$ °C sowie -100 °C beobachten: Die röntgenamorphen Proben ordnen sich zuerst in α -CsBr (Abb. 7.5.2 und Abb. 7.5.4); schließlich erhält man ab einer Substrattemperatur von 100 °C bzw. 30 °C CsLiBr₂ und die Überschußkomponente.

Im Falle der Abscheidung von LiBr/CsBr auf das Substrat mit einer Temperatur von -20 °C und einem nahezu äquimolarem Verhältnis der Komponenten in der Probe, liegen die Proben bei Raumtemperatur noch röntgenamorph vor. Es kann angenommen werden, dass die gegenseitige Beeinflussung der beiden Salze in diesem Experiment am stärksten ist, da die beiden Komponenten in gleichen Anteilen in der Probe vorhanden sind. Die starke Textur von CsLiBr₂ als reine Phase bei einer Substrattemperatur von 80 °C ist präparationsbedingt. Es wird weiterhin vermutet, dass CsBr zwischen 30 °C und 80 °C kristallisiert und daher nicht beobachtet werden konnte.

Interessant erscheint es, dass die gegenseitige Beeinflussung der nebeneinander vorliegenden Verbindungen so stark ist, dass die Kristallisation der jeweiligen Tieftemperaturmodifikationen unterdrückt wird. Selbst eine Erhöhung der Kondensationstemperatur auf –20 °C führt zu röntgenamorphen Proben. Dies wird in ähnlichen Systemen in der Literatur mit dem Einbau von Gitterstörungen begründet [33]. Dennoch konnten keine neuen ternären Verbindungen synthetisiert werden.

7.6 Die Systeme Nal/Lil und NaBr/LiBr

7.6.1 Einleitung

In Anlehnung die Untersuchungen zur Darstellung von metastabilen Modifikationen in den Systemen LiI und LiBr wurden auch die Systeme NaI/LiI und NaBr/LiBr näher studiert. Experimentelle Untersuchungen der Ausgangskomponenten beider Systeme, d.h. LiI, LiBr, NaI und NaBr, ergaben bei Raumtemperatur stets den Kochsalzstrukturtyp: α -LiI [99, 107], α -LiBr [107], α -NaI [107, 117] und α -NaBr [107, 118]. Metastabile Strukturen sind für LiI [99] und LiBr [119] bei tiefen Temperaturen bekannt. Dabei handelt es sich jeweils um die Wurtzit-Modifikation.

Interessant erscheint nun ein Vergleich der Systeme Nal/LiI und NaBr/LiBr hinsichtlich deren thermischer Stabilitäten bzw. deren Kristallisation in Form von Mischkristallen. Für Nal/Lil ist eine kontinuierliche Mischkristallreihe für hohe und tiefe Temperaturen bekannt (Abb. 7.6.1). Eine Studie gibt das Minimum der Liquiduskurve bei T = 430 °C und $x_{\text{NaI}} = 0,1$ an [120]. Für die Soliduskurve liegen hingegen keine Angaben vor. Für das System NaBr/LiBr sind die Daten zur Definition der Liquiduskurve in zwei Studien veröffentlicht [121, 122], wobei Abkühlkurven in Ref. [121] bzw. visual-polythermale Methoden in Ref. 122] eingesetzt wurden (Abb. 7.6.2 oben). Die Autoren fanden Unterbrechungen der Liquiduskurve, die einem Peritektikum gleichen. Allerdings gibt es bisher keine Angaben über experimentell realisierte Verbindungen. Zudem zeigt die Liquiduskurve ein scharfes Minimum bei T = 510 °C ($x_{\text{NaBr}} = 0,26$). Die Soliduskurve wurde von Kellner bei der Temperatur der kompletten Kristallisation ermittelt [122]. Bugaenko et al. [123] untersuchten diese mittels Röntgenpulverdiffraktometrie an gekühlten festen Proben. Beide Gruppen schlussfolgerten, dass es sich um ein Mischkristallsystem bei hohen Temperaturen handelt. Bei Raumtemperatur hingegen, kommt es nach Bugaenko et al. zu einer Entmischung (Abb. 7.6.2 unten). Darüber hinaus bestätigten Rechnungen auf ab initio Ebene ebenso die Mischungslücke im NaBr/LiBr-System bei tiefen Temperaturen [124].

In diesem Kapitel werden diese Systeme durch simultane Tieftemperaturabscheidungen von LiI/NaI bzw. NaBr/LiBr auf gekühlte Substrate röntgenographisch studiert. Zu Beginn erfolgt die Abscheidung der reinen Komponenten auf ein gekühltes Substrat und deren röntgenographische Charakterisierung.

Abb. 7.6.1 Phasendiagramm von NaI/LiI [89].

Abb.7.6.2 Phasendiagramm NaBr/LiBr bei hohen Temperaturen (oben) und bei tiefen Temperaturen (unten) [89].

7.6.2 Abscheidungen der Ausgangsverbindungen Lil, Nal und NaBr

Experimentelle Bedingungen

LiI (99,999 %, Fluka), NaI (99,999 %, Fluka) und NaBr (99,999%, Fluka) wurden nach dem Mörsern und dem Trocknen bei 200 °C mit T_{Tiegel} (LiI) = 400 °C, T_{Tiegel} (NaI) = 410 °C und T_{Tiegel} (NaBr) = 420°C über 5 Stunden auf ein Saphirsubstrat (0001) mit T_{S} = -196 °C abgeschieden. Darüberhinaus erfolgte eine Abscheidung von NaI mit $T_{\text{Tiegel}} =$ 410 °C auf ein Lithiumniobat-Substrat (001) mit $T_{\rm S} = -196$ °C über eine Dauer von 5 Stunden. Während der Experimente betrug der Prozessdruck in der Vakuumkammer < $2 \cdot 10^{-8}$ mbar. Abscheidungen von LiBr sind bereits im vorangegangenen Kapitel 7.4 erläutert worden.

Ergebnisse

Die Abscheidung von LiI auf einem Saphirsubstrat (0001) zeigt bei $T_{\rm S} = -196$ °C breite Bragg Reflexe von β -LiI (a = 4,49(2) Å^a, c = 7,29(3) Å^a, L = 4,0 nm, Abb. 7.6.3). Mit Temperaturerhöhung nimmt die Kristallinität von β -LiI zu (L = 19,2 nm). Dabei beginnt die Umwandlung von β -LiI in α -LiI, welche bei Raumtemperatur vollständig abgeschlossen ist ($a = 6,034(2) \text{ Å}^{b}$, L = 102,2 nm).

Die Röntgenpulveraufnahmen von abgeschiedenem NaI auf Saphir (0001) bei $T_{\rm S} = -196$ °C zeigen bereits bei dieser Temperatur α -NaI (a = 6.39(2) Å^c, L = 10.2 nm), welches bis Raumtemperatur keine Phasenumwandlung durchläuft (a = 6,476(3) Å^c, L = 15,6 nm) (Abb. 7.6.4). Abscheidungen auf das Lithiumniobat-Substrat (001) führen zu den gleichen Beobachtungen.

Aus der Abscheidung von NaBr auf ein Saphirsubstrat (0001) bei -196 °C erhält man breite Bragg Reflexe von α -NaBr (a = 5,95(3) Å^d, L = 6,3 nm, Abb. 7.6.5). Während des Aufheizens des Substrates auf Raumtemperatur treten keine neuen Phasen auf (a =5,975(5) Å^d, L = 15,9 nm).

^a Lit. β-LiI *a* = 4,514 (1) Å, *c* = 7,311 (1) Å [99]. ^b Lit. α-LiI *a* = 6,0257(3) Å [99]. ^c Lit. α-NaI *a* = 6,479 Å [117]. ^d Lit. α-NaBr *a* = 5,9738(7) Å [118].

Abb. 7.6.3 Röntgenpulveraufnahmen von abgeschiedenem LiI ($T_s = -196$ °C, Saphir (0001), $T_{Tiegel} = 400$ °C). Liniendiagramm: α -LiI (rot), β -LiI (blau).

Abb. 7.6.4 Röntgenpulveraufnahmen von abgeschiedenem NaI ($T_{\rm S} = -196$ °C, Saphir (0001), $T_{\rm Tiegel} = 410$ °C). Liniendiagramm: α -NaI (rot).

Abb. 7.6.5 Röntgenpulveraufnahmen von abgeschiedenem NaBr ($T_{\rm S} = -196$ °C, Saphir (0001), $T_{\rm Tiegel} = 420$ °C). Liniendiagramm: α -NaBr (rot).

7.6.3 Abscheidungen von NaI/LiI und NaBr/LiBr - Gemengen

Experimentelle Bedingungen

Die Ausgangskomponenten LiI und NaI sowie LiBr und NaBr wurden nach dem Trocknen bei 200 °C und gründlichem Mörsern in separate Tiegel gefüllt und auf ein Saphirsubstrat (0001) bei $T_{\rm S} = -196$ °C über 5 Stunden abgeschieden. Dabei betrugen die gewählten Tiegeltemperaturen: LiI = 430 °C, NaI = 415 °C, LiBr = 370 °C und NaBr = 430 °C bzw. 400°C. Der Prozessdruck in der Vakuumkammer während der Experimente belief sich auf < $2 \cdot 10^{-8}$ mbar.
Ergebnisse

Aus der Abscheidung des Eduktgemenges NaI/LiI mit $T_{\text{Tiegel}}(\text{LiI}) = 430$ °C und $T_{\text{Tiegel}}(\text{NaI}) = 415$ °C auf ein Saphirsubstrat bei $T_{\text{S}} = -196$ °C erhält man breite Bragg Reflexe von α -LiI (a = 6,14(2) Å, L = 3,1 nm) und α -NaI (a = 6,38(2) Å, L = 16,2 nm) (Abb. 7.6.6). Mit Temperaturerhöhung des Substrates auf Raumtemperatur ist keine Phasenumwandlung zu beobachten (Rietveld-Verfeinerung: Graph in Abb. 7.6.7 und kristallographische Ergebnisse in Tab. 7.6.1). Bei $T_{\text{S}} = -30$ °C wird ein Zusatzreflex beobachtet. Dieser stammt sehr wahrscheinlich von einer geringen Verunreinigung durch LiI · H₂O.

Aus der Abscheidung von NaBr/LiBr mit $T_{\text{Tiegel}}(\text{LiBr}) = 370 \,^{\circ}\text{C}$ und $T_{\text{Tiegel}}(\text{NaBr}) = 430 \,^{\circ}\text{C}$ auf ein Saphirsubstrat mit $T_{\text{S}} = -196 \,^{\circ}\text{C}$ wird eine röntgenamorphe Probe erhalten (Abb. 7.6.8), welche sich ab $-130 \,^{\circ}\text{C}$ in α -NaBr ($a = 5,92(4) \,^{\circ}\text{A}$) mit einer sehr geringen Kristallitgröße ($L = 3,3 \,\text{nm}$) ordnet. Mit weiterer Temperaturerhöhung des Substrates kristallisiert ab $-80 \,^{\circ}\text{C} \,^{\circ}\text{C} \,^{\circ}\text{LiBr}$ ($a = 5,46(3) \,^{\circ}\text{A}$, $L = 9,1 \,\text{nm}$). Eine Phasenumwandlung wird mit Temperaturerhöhung des Substrates bis auf 120°C nicht beobachtet. Die Ergebnisse der Rietveld-Verfeinerung sind in Tab. 7.6.2 aufgelistet bzw. der Graph in Abb. 7.6.9 aufgezeigt. Darüber hinaus bestätigt die ICP-OES Analyse ein Verhältnis Li : Na von 1:3 in der Probe.

In dem zweiten Experiment mit einer niedrigeren Tiegeltemperatur für NaBr (400°C) wird das gleiche Kristallisationsverhalten der Probe beobachtet. Das Phasenverhältnis LiBr : NaBr beträgt bei Raumtemperatur 88 wt% : 12 wt% mit $a_{\text{LiBr}} = 5,503(3)$ Å, $L_{\text{LiBr}} = 74,5$ nm und $a_{\text{NaBr}} = 5,924(3)$ Å, $L_{\text{NaBr}} = 16,3$ nm.

Abb. 7.6.6 Röntgenpulveraufnahmen vom abgeschiedenen NaI/LiI – Gemenge ($T_s = -196$ °C, Saphir (0001)). Liniendiagramm: α -NaI (schwarz), α -LiI (rot).

Abb. 7.6.7 Graph der Rietveld-Verfeinerung einer NaI/LiI – Abscheidung ($T = 30^{\circ}$ C). Liniendiagramm: α -NaI (schwarz), α -LiI (rot).

	α-LiI [*]	α-NaI
Gewichts% (wt%)	71	29
Raumgruppe	Fm ³ m	Fm3m
<i>a (</i> Å)	$6,074(3)^{a}$	6,479(5) ^b
Zellvolumen $V(Å^3)$	224,2	272,0
Kristallitgröße L (nm)	52,6	32,0
berechnete Dichte (g/cm ³)	3,9	3,6
$R_{\rm Bragg}^{\rm c}$	4,2	4,8
Messtemperatur (°C)	30	
$R_{\rm p}(\%)^{\rm c}, R_{\rm wp}(\%)^{\rm c}$	11,9, 16,2	
Diffraktometer D8-Ad	lvance (Bruk	ter AXS), (Göbel Spiegel)
Wellenlänge/ λ (Å)	$CuK_{\alpha 1+2}, 1,$	54059, 1,54449
2θ Messbereich (°)	17,5 - 85,5	

Tab. 7.6.1 Ergebnisse zur Strukturverfeinerung im NaI/LiI – Gemenge ($T = 30^{\circ}$ C).

^a Lit. a = 6,0257(3) Å [99]. ^b Lit. a = 6,479 Å [117]. ^c R_P , R_{wp} , und R_{Bragg} definiert in Topas Vers. 3.0, 2006, Bruker AXS [40], siehe Kapitel 5. * α-LiI mit NaI-Anteil (ca. 10 at%).

Abb. 7.6.8 Röntgenpulveraufnahmen vom abgeschiedenen NaBr/LiBr – Gemenge ($T_{\rm S}$ = -196 °C, Saphir (0001)). Liniendiagramm: α -LiBr (rot), α -NaBr (schwarz).

Abb. 7.6.9 Graph der Rietveld-Verfeinerung einer NaBr/LiBr – Abscheidung ($T = 120^{\circ}$ C). Liniendiagramm: α -LiBr (rot), α -NaBr (schwarz).

	α-LiBr	α-NaBr [*]
Gewichts% (wt%)	30	70
Raumgruppe	$Fm\overline{3}m$	$Fm\overline{3}m$
<i>a</i> (Å)	$5,534(6)^{a}$	$5,919(5)^{b}$
Zellvolumen $V(Å^3)$	169,5	207.4
Kristallitgröße L (nm)	37,9	46,9
berechnete Dichte (g/cm ³)	3,4	3,6
R _{Bragg} ^c	1,7	3,1
Messtemperatur (°C)	120	
$R_{p}(\%)^{c}, R_{wp}(\%)^{c}$	6,3, 8,4	
Diffraktometer D8-Ac	lvance (Bruk	ker), (Göbel Spiegel)
Wellenlänge/ λ (Å)	$CuK_{\alpha 1+2}, 1,$	54059, 1,54449
2θ Messbereich (°)	11,2 - 82,0	

Tab. 7.6.2 Ergebnisse zur Strukturverfeinerung im NaBr/LiBr – Gemenge ($T = 120^{\circ}$ C).

^a Lit. a = 5,4975(3) Å [119]. ^b Lit. a = 5,9738(7) Å [118]. ^c R_P , R_{wp} , und R_{Bragg} definiert in Topas Vers. 3.0, 2006, Bruker AXS [40, siehe Kapitel 5. * α -NaBr mit LiBr-Anteil (ca. 20 at%).

7.6.4 Diskussion der Ergebnisse

Betrachtet man zunächst die Abscheidungen der reinen Ausgangskomponenten LiI, LiBr, NaI und NaBr bei einer Kondensationstemperatur von -196 °C, so kann eine Abhängigkeit der Kristallisation von der jeweiligen Gitterenergie festgestellt werden. LiBr mit der höchsten Gitterenergie (-810 kJ/mol) liegt bei $T_{\rm S} = -196$ °C röntgenamorph vor, da es für die Kristallisation eine höhere Temperatur benötigt. LiI (-760 kJ/mol) und NaBr (-750 kJ/mol) weisen hingegen eine geringere Gitterenergie auf (vgl. Tab. 6.2). Deren Pulverdiffraktogramme zeigen bei -196 °C breite Bragg Reflexe ($L_{\beta-LiI} = 4,0$ nm und $L_{\alpha-NaBr} = 6,3$ nm) auf. Unter den vier Verbindungen, liegt NaI mit der geringsten Gitterenergie (-707 kJ/mol) vor und demzufolge mit der höchsten Kristallinität bei -196 °C.

Aus den Ergebnissen der Experimente in den Systemen NaI/LiI- und NaBr/LiBr ist die Abhängigkeit der Kristallinität der Proben bei –196 °C von der Gitterenergie der Systeme ebenso erkennbar. NaBr/LiBr liegt aufgrund der hohen Gitterenergie von LiBr bei –196 °C röntgenamorph vor. Mit Temperaturerhöhung des Substrates auf -130 °C ordnet sich die röntgenamorphe Probe zuerst in NaBr, da es unter den zwei Komponenten (NaBr, LiBr) die kleinste Gitterenergie aufweist. Hingegen liegt das NaI/LiI-Gemenge bei –196 °C, aufgrund der geringeren Gitterenergie von NaI, bereist kristallin in den jeweiligen α -Strukturen vor. Die Ergebnisse der Abscheidungen im System NaI/LiI zeigen, dass die Anwesenheit von NaI die Bildung von β -LiI unterdrückt und die Ausbildung der stabilen Kochsalzstruktur von LiI begünstigt.

Vergleicht man die Gitterkonstanten der einzelnen Komponenten in beiden Systemen bei Raumtemperatur mit den Literaturwerten, so wird im System NaI/LiI eine höhere Gitterkonstante von α -LiI festgestellt (a = 6,074(3) Å, $a_{Lit} = 6,0257(3)$ Å [99]). Daraus lässt sich eine geringe Löslichkeit von ca. 10 at% NaI in der Probe ableiten.

In dem System LiBr/NaBr wird eine kleinere Gitterkonstante von NaBr in beiden Experimenten (a = 5,884(4) Å, a = 5,924(3) Å) im Vergleich zu dem Literaturwert (a = 5,9738(7) Å [118]) beobachtet. Aus diesem Grund liegt die Vermutung nahe, dass ca. 20

bzw. 10 at% LiBr gelöst sind (Abb. 7.6.10). Demnach scheint NaBr in der Lage zu sein, geringe Mengen von LiBr lösen zu können, während LiBr kein NaBr löst.

Abb. 7.6.10 Gitterkonstante *a* bei 30 °C in Abhängigkeit von der Zusammensetzung. Literatur (♦) α-NaBr [118], α-LiBr [119]. Ergebnisse der vorliegenden Arbeit (▲).

7.6.5 Zusammenfassung

In diesem Kapitel werden die Systeme NaI/LiI durch und NaBr/LiBr Tieftemperaturabscheidungen untersucht. Die Abscheidungen der Ausgangskomponenten auf ein gekühltes Substrat sind im Einklang mit der Literatur; Lil liegt bei -196 °C röntgenamorph mit angedeuteter metastabiler Wurtzit-Modifikation, LiBr röntgenamorph, NaI und NaBr hingegen in der stabilen Kochsalzstruktur. Aus den Abscheidungen von NaI/LiI bei $T_{\rm S} = -196$ °C werden bis Raumtemperatur die α -Strukturen erhalten. Aus der Gitterkonstante von LiI wird ein Vorhandensein von ca. 10 at% NaI geschlossen. Abscheidungen von NaBr/LiBr hingegen ergeben α-NaBr erst ab -130 °C; unter dieser Temperatur werden in diesem System röntgenamorphe Proben erhalten. Bei Raumtemperatur lässt sich aus der Gitterkonstante von NaBr ein Vorhandensein von ca. 10 at% bzw. 20 at% LiBr vermuten.

7.7. Das System LiBr/H₂O

7.7.1 Einleitung

Aus der Literatur sind bereits aus Einkristall- und Pulverdaten die Kristallstrukturen der Monohydrate von Lithiumchlorid [125, 126] und Lithiumbromid [125] bekannt. Diese Verbindungen kristallisieren während des Abkühlens einer gesättigten wässrigen Lösung bei T < 33 °C isotyp in der Raumgruppe *Cmcm*, d.h. mit a = 7,5835(2) Å, b = 7,6807(2)Å, c = 7,6235(2) Å für LiCl·H₂O bzw. mit a = 8,0615(1) Å, b = 7,9944(1) Å, c = 7,9461(1) Å für LiBr·H₂O [125]. Die der beiden Hydrate lässt sich gemäß X(H₂O)Lin₂ (X = Cl, Br) von der Perowskitstruktur ableiten. Dabei sind weder die Wassermoleküle noch die Li⁺- Kationen fehlgeordnet. Als Ursache dafür wird die starke Fixierung der Wassermoleküle aufgrund des geringen Raumes gesehen [125].

eine Phasenumwandlung in den ideal kubischen Anti-Perowskit (Pm3m, a = 4,027(2) Å) statt [127]. Neutronenbeugungsexperimente an der deuterierten Verbindung bestätigten die Umwandlungstemperatur von LiBr·D₂O und die Fixierung der Wassermoleküle in diesem Monohydrat [128, 129]. Diese Hochtemperaturphase ist isotyp zu LiI·H₂O (Pm3m, a = 4,296 Å) [130]. Für LiI ist neben dem Monohydrat auch das Trihydrat bekannt, welches hexagonal in der Raumgruppe $P6_3mc$ (a = 7,456 Å, c = 5,46 Å) kristallisiert [69, 131].

Oberhalb von 33 °C findet beim Lithiumbromid-Monohydrat nach Weiss et al.

In diesem Kapitel wird das Verhalten des Systems LiBr/H₂O bei tiefen Temperaturen studiert. Hierfür erfolgen Gasphasenabscheidungen von LiBr auf gekühlte Substrate. Anschließend werden die erhaltenen Proben temperaturabhängig röntgenographisch untersucht.

7.7.2 Abscheidungen von LiBr

LiBr (99,999 %, Aldrich) wurde nach gründlichem Mörsern bei 200 °C getrocknet und anschließend bei konstanter Tiegeltemperatur $T_{\text{Tiegel}} = 370$ °C auf ein gekühltes Saphirsubstrat (0001) mit $T_{\text{S}} = -196$ °C über 5 Stunden abgeschieden. Der Prozessdruck in der Vakuumkammer während der Experimente belief sich auf < 2 $\cdot 10^{-8}$ mbar.

Für diese Versuche wurde sowohl die Cryopumpe an der Prozesskammer abgeschaltet als auch das Kühlschild in der Röntgenkammer nicht mit Stickstoff eingekühlt. Somit war ein um ca. zwei Größenordnungen erhöhter Partialdampfdruck von Wassers in der Restgasatmosphäre vorhanden.

Darüber hinaus wurde LiBr mit $T_{\text{Tiegel}} = 420 \text{ °C}$ auf ein polykristallines Kupfersubstrat (Mateck) mit $T_{\text{S}} = -196 \text{ °C}$ über 5 h abgeschieden. Die Probe wurde am Röntgendiffraktometer bis auf -90 °C aufgeheizt, anschließend erneut auf -196 °C abgekühlt und das Ramanspektrum bei dieser Temperatur aufgenommen. Der Restgasdruck während der Ramanmessung betrug < $8 \cdot 10^{-6}$ mbar. Gerätetechnische Einzelheiten des verwendeten Raman-Spektrometers sind in Kapitel 4.3 erläutert.

7.7.3 Ergebnisse

Aus den Abscheidungen von LiBr auf ein Saphirsubstrat mit $T_{\rm S} = -196$ °C erhält man zunächst röntgenamorphe Proben. Ab einer Substrattemperatur von -90 °C setzt die Kristallisation ein, wobei reflexreiche Pulverdiffraktogramme erhalten werden (Abb. 7.7.1), welche keiner bekannten Struktur zuordbar sind. Mit Erhöhung der Substrattemperatur auf -70 °C tritt eine Phasenumwandlung auf. Die neuen Bragg Reflexe lassen sich ebenfalls keiner bekannten Struktur zuordnen. Ab $T_{\rm S} = -25$ °C erfolgt eine weitere Umwandlung in das bekannte Lithiumbromidmonohydrat in der orthorhombischen Tieftemperaturmodifikation (a = 7,977(8) Å, b = 8,036(6) Å, c = 7,971(5) Å, L = 10,4 nm). Mit weiterer Erhöhung der Substrattemperatur auf 0 °C wird schließlich wasserfreies α -LiBr erhalten (a = 5,482(4) Å, L = 49,9 nm). Von einer kristallinen (bis auf -90 °C erwärmten) Probe wurde bei -196 °C ein Ramanspektrum aufgenommen (Abb. 7.7.2). Dieses Spektrum zeigt eine deutliche Bande bei 1600 cm⁻¹, die wir der OH-Streckschwingung zuordnen [132]. Der hohe amorphe Anteil (siehe Untergrund) wird von dem Glas verursacht, welches die Probe umgibt.

Abb. 7.7.1 Röntgenpulveraufnahmen von abgeschiedenem "LiBr" ($T_S = -196$ °C, Saphir (0001)). Liniendiagramm: α -LiBr (rot), LiBr·H₂O (blau).

Abb. 7.7.2 Ramanspektrum von abgeschiedenem LiBr ($T_{\rm S} = -196$ °C, Saphir (0001), p < $8 \cdot 10^{-6}$ mbar). Der Pfeil signalisiert die OH- Mode bei 1600 cm⁻¹ [132].

7.7.4 Diskussion und Zusammenfassung

Unveröffentlichte Ergebnisse von Fischer et al. aus Abscheidungen von Lithiumiodid auf ein Saphir-Substrat bei $T_{\rm S}$ = -196 °C zeigten bei ebenfalls leicht erhöhten Wasserdampfpartialdruck ab -90 °C das Auftreten von Lithiumiodid-Trihydrat, welches sich bei ca. -70 °C in eine noch unbekannte Verbindung umwandelt (möglicherweise Lithiumiodid-Dihydrat) [133]. Dieses wandelt sich dann ab ca. -30 °C in das Lithiumiodid-Monohydrat um. Die hier gezeigten Ergebnisse legen den Schluss nahe, dass es sich hier in Analogie zu dem LiI/H2O-System ebenfalls um die unbekannten Phasen LiBr·3H₂O bzw. LiBr·2H₂O handelt. Wegen der reflexreichen Pulverdiffraktogramme und der unzureichenden Kristallinität der Proben schlugen jedoch Versuche einer Strukturlösung fehl. Dass es sich tatsächlich um Hydrate handelt, wird durch die gemessene OH-Bande im Ramanspektrum des Systems LiBr (vgl. Abb. 7.7.2) bestätigt.

8. Untersuchungen fester Gemenge ternärer Alkalimetallhalogenid-Verbindungen

8.1 Einleitung

In Verbindung mit dem Konzept der Syntheseplanung in der anorganischen Festkörperchemie, haben Pentin et al. Phasendiagramme bei tiefen Temperaturen für die ternären Systeme der Alkalimetalhalogenide auf ab-initio Ebene ohne experimentelle Informationen berechnet [116, 134–137]. Über die globale Erkundung der Energielandschaft wurden für eine Reihe verschiedener Zusammensetzungen in den Systemen

-	NaCl – LiCl, NaBr – LiBr, NaCl – KCl	[134]
-	$MBr_{x}I_{1-x}$ ($0 \le x \ge 1$), $M = Li$, Na, K, Rb, Cs	[135]
-	KBr - NaBr, KX - RbX, LiX - RbX, X = Cl, Br	[136]
-	CsX - LiX, X = F, Cl, Br I	[116]
-	LiI – RbI	[137]

neue thermodynamisch stabile und metastabile Phasen vorhergesagt und die entsprechenden Bildungsenthalpien, $\Delta_f H$, berechnet.

Die Aufgabe in diesem Teil der Arbeit besteht in der experimentellen Erkundung der Phasendiagramme der ternären Systeme LiX/RbX sowie LiX/CsX (X = I, Br, Cl), mit dem Ziel durch die Synthese neuer stabiler und metastabiler Phasen, das Konzept der Syntheseplanung (die Erkundung der Energielandschaft über den Konfigurationsraum einer Verbindung) experimentell zu bestätigen.

8.2 Die Systeme LiX/RbX mit X = I, Br, Cl

8.2.1 Einleitung

Die Ausgangsverbindungen LiI [99], LiBr [119], LiCl [138] sowie RbI [61], RbBr [61] und RbCl [61] liegen bei Raumtemperatur in der Kochsalzstruktur (Fm3m, Nr. 225) vor. LiI [99] und LiBr [119] existieren zusätzlich metastabil in der Wurzit-Struktur ($P6_3mc$, Nr. 186) [119], während RbX, X = I, Br und Cl, sowohl bei tiefen Temperaturen als auch bei hohen Drücken metastabil in der Cäsiumchorid-Struktur (Pm3m, Nr. 221) vorliegen können [73, 139].

Das Phasendiagramm des Systems LiI/RbI, aufgestellt von Sangster und Pelton [89], ist in Abbildung 8.2.1 dargestellt. Die Liquiduskurve wurde von Sridhar et al. [140] anhand der Methode der Abkühlkurven bestimmt. Diese Autoren berichteten von einem Eutektikum bei T = 252 °C, $x_{RbI} = 0,38$ sowie von einem Peritektikum bei T = 260 °C, $x_{RbI} = 0,43$. Sridhar et al. nahmen an, dass es sich bei dem Peritektikum um die Verbindung LiRbI₂ handelt. Dies konnte bisher jedoch nicht experimentell bestätigt werden. Hingegen gelang es Pentin et al. im System LiI/RbI existenzfähige metastabile Strukturkandidaten mit der Zusammensetzung von 1:1 (LiRbI₂) und 1:2 (LiRb₃I₄) auf der Basis von ab-initio Berechnungen vorauszusagen (Tab. 8.2.1 [137]). Die Ergebnisse aus den Berechnungen der Reaktionsenthalpien für die Zersetzung in die binären Komponenten LiI und RbI bei 0 K sind in Abb. 8.2.1 unten aufgeführt.

Ein ähnliches Verhalten wird in dem System LiBr/RbBr (Abb. 8.2.2) beobachtet. Die Untersuchung der Liquiduskurve erfolgte hier mittels thermischer Analyse [141, 142]. Das Eutektikum wird bei T = 259 °C, $x_{RbBr} = 0,41$ und das Peritektikum bei T = 271 °C, $x_{RbBr} = 0,45$ angegeben [89]. Gaebell et al. haben eine ternäre Verbindung in diesem System, RbLiBr₂, isoliert und mittels Röntgenpulverdiffraktometrie zu charakterisiert [115]. RbLiBr₂ kristallisiert orthorhombisch in der Raumgruppe *Ccmm* (Nr. 63) mit a = 15,120(5) Å, b = 4,364(2) Å und c = 7,654(2) Å. Berechnungen auf ab-initio Ebene im

System LiBr/RbBr [136] sagen existenzfähige Verbindungen mit der Zusammensetzung von 1:2 (LiRb₂Br₃) und 1:3 (LiRb₃Br₄) voraus (Tab. 8.2.1). Die Ergebnisse aus den Berechnungen der Reaktionsenthalpien für die Zersetzung in die binären Komponenten LiBr und RbBr bei 0 K sind in Abb. 8.2.2 unten aufgeführt.

Ebenso werden im Phasendiagramm des Systems LiCl/RbCl (Abb. 8.2.3) sowohl ein Eutektikum als auch ein Peritektikum beobachtet. Die Liquiduskurve dieses Systems wurde mit Hilfe von Abkühl- und Aufheizkurven [77, 143] sowie mittels visualpolythermalen Methoden [76, 97, 144] bestimmt. Das Eutektikum wird bei $T = 318 \pm 5$ °C, $x_{RbCl} = 0.41$ und das Peritektikum bei $T = 323 \pm 4$ °C, $x_{RbCl} = 0.46$ angegeben [77, 144]. Keitel studierte dünne Schichten von LiCl/RbCl optisch und erhielt eine Verbindung, die der Autor einer einer Verbindung LiRbCl₂ zuordnete [77]. Eine Strukturaufklärung wurde von Keitel jedoch nicht gegeben. Erst Gaebell et al. ist es die von Keitel erhaltene Verbindung zu isolieren und mittels gelungen. Röntgenpulverdiffraktometrie zu charakterisieren [145]. Die Autoren ermittelten für die Verbindung RbLiCl₂ eine orthorhombische Kristallstruktur (*Cmcm* mit a = 14,413(3) Å, b = 4,1257(8) Å und c = 7,209(1) Å). Berechnungen auf ab-initio Ebene sagen eine weitere existenzfähige Verbindung mit der Zusammensetzung LiCl/RbCl von 1:3 (LiRb₃Cl₄) voraus (Tab. 8.2.1) [136]. Die Ergebnisse aus den Berechnungen der Reaktionsenthalpien für die Zersetzung in die binären Komponenten LiCl und RbCl bei 0 K sind in Abb. 8.2.3 unten aufgeführt.

Abb. 8.2.1 Phasendiagramm von LiI/RbI, nach Sangster und Pelton [89].

Abb. 8.2.2 Phasendiagramm von LiBr/RbBr (oben) [89]. Berechnete Reaktionsenthalpien für die Zersetzung in die Komponenten LiBr und RbBr bei 0 K (unten); Ergebnisse aus zwei unterschiedlichen Rechenmethoden (blaue Kreise, rote Dreiecke) [136]. Strichdiagramm: stabile Phasen (schwarz); metastabile Phasen, welche stabil in Bezug auf die binären Verbindungen LiBr und RbBr sind (grün); Phasen, welche metastabil in Bezug auf die binären Ausgangsverbindungen LiBr und RbBr sind (blau) [136].

Abb. 8.2.3 Phasendiagramm von LiCl/RbCl (oben) [89]. Berechnete Reaktionsenthalpien für die Zersetzung in die Komponenten LiCl und RbCl bei 0 K (unten); Ergebnisse aus zwei unterschiedlichen Rechenmethoden (blaue Kreise, rote Dreiecke) [136]. Strichdiagramm: stabile Phasen (schwarz); metastabile Phasen, welche stabil in Bezug auf die binären Verbindungen LiCl und RbCl sind (grün); Phasen, welche metastabil in Bezug auf die binären Ausgangsverbindungen LiCl und RbCl sind (blau) [136].

Tab. 8.2.1 Existenzfähige Strukturkandidaten aus ab-initio Berechnungen im SystemLiI/RbI [137], LiBr/RbBr [136] und LiCl/RbCl [136].

System	Raumgruppe (Nr.)	Gitterkonstanten				
		<i>a</i> / Å	b/Å	<i>c</i> / Å	β / °	
LiRbI ₂	$Cmc2_1$ (36)	4,980	17,012	9,013	90	
LiRb ₃ I ₄	$Cmc2_1$ (36)	15,011	15,181	7,656	90	
LiRb ₂ Br ₃	$Cmc2_1$ (36)	4,604(7)	15,945(8)	8,081(6)	90	
LiRb ₃ Br ₄	$P2_{1}(4)$	7,188(8)	7,220(8)	14,238(6)	90,448(9)	
LiRb ₃ Cl ₄	<i>Pm</i> (6)	6,963(8)	9,456(7)	4,749(2)	85,587(9)	

8.2.2 Synthese

Die Ausgangssubstanzen LiX und RbX, X = I, Br, Cl (99,999 %, Aldrich) wurden zunächst im Schlenkgefäß bei 200 °C ($p = 10^{-3}$ mbar) über 24 Stunden getrocknet. Anschließend für die Reinheitskontrolle der kamen Substanzen die Röntgenpulverdiffraktometrie (Stoe IPSD: Cu-K α_1 , $\lambda = 1,54056$ Å, 0,3 mm Markröhrchen) und die IR-Spektroskopie zum Einsatz. Im Handschuhkasten erfolgte die Einwaage der Gemenge in unterschiedlichen Verhältnissen (Tab. 8.2.2 – 8.2.4), das Pressen der innig vermengten Pulver zu einer Tablette ($\emptyset = 6 \text{ mm}$) mit Hilfe einer hydraulischen Presse mit einem Druck bis 0,8 GPa, sowie das Einschließen der Tabletten in einen Silbertiegel mit Stopfen. Wegen der hohen Feuchtigkeitsempfindlichkeit der Substanzen wurden die Tiegel zusätzlich mit Hilfe der Schlenktechnik in Glasampullen eingeschmolzen. Dabei wurde Duranglas bis 500 °C und Quarzglas bei höheren Temperaturen eingesetzt.

Zwei unterschiedliche Methoden wurden für die Synthese der ternären Verbindungen angewandt. Die erste Methode (u-SMP) beinhaltet die thermische Behandlung der Gemenge bei einer Temperatur knapp unter dem Schmelzpunkt des Eutektikums im jeweiligen System. Die zweite Methode (o-SMP) hingegen sieht erst eine Überführung der Gemenge in die Schmelze und danach die thermische Behandlung der Gemenge bei einer Temperatur knapp unter dem Schmelzpunkt des jeweiligen Eutektikums vor. Nach dem Abschreckverfahren der Proben, wie bereits im Kapitel 3.5 erläutert, erfolgte deren röntgenographische Untersuchung.

Tab. 8.2.2 Experimentelle Bedingungen zum System LiI/RbI (a), LiBr/RbBr (b) und LiCl/RbCl (c). T entspricht der Temperatur des Röhrenofens und t der Zeitdauer der thermischen Behandlung.

(a)

Nr.	Einwaage / mg	Verhältnis	T / °C	<i>t /</i> h	Synthesemethode
	LiI : RbI	LiI : RbI			
1	106,1 : 66,7	1:1	200	720	u-SMP
2	46,8 : 139,9	1:2	200	720	u-SMP
3	105,8 : 66,9	1:1	200	1440	u-SMP
4	46,6 : 139,7	1:2	200	1440	u-SMP
5	106,3 : 66,3	1:1	230	2160	u-SMP
6	33,4 : 159,2	1:3	230	2880	u-SMP

Nr.	Einwaage / mg	Verhältnis	$T / ^{\circ}\mathrm{C}$	<i>t /</i> h	Synthesemethode
	LiBr : RbBr	LiBr : RbBr			-
1	28,9 : 110,2	1:2	240	720	u-SMP
2	21,7 : 125,2	1:3	240	720	u-SMP
3	28,7 : 110,5	1:2	240	1440	u-SMP
4	21,4 : 125,5	1:3	240	1440	u-SMP

(c)

Nr.	Einwaage / mg	Verhältnis	$T / ^{\circ}\mathrm{C}$	<i>t /</i> h	Synthesemethode
	LiCl : RbCl	LiCl : RbCl			
1	60,9 : 93,1	2:1	260	720	u-SMP
2	29,6 : 157,2	1:2	260	720	u-SMP
3	95,3 : 90,6	3:1	290	2160	u-SMP
4	21,1 : 181,3	1:3	290	2160	u-SMP
5	60,8 : 93,2	2:1	260	720	o-SMP, $T = 740^{\circ}$ C
6	29,7 : 157,0	1:2	260	720	o-SMP, $T = 740^{\circ}$ C
7	95,4 : 90,5	3:1	290	1440	o-SMP, $T = 740^{\circ}$ C
8	21,3 : 181,4	1:3	290	1440	o-SMP, $T = 740^{\circ}$ C

8.2.3 Ergebnisse

Die Experimente im System LiI/RbI ergeben nach einer thermischen Behandlung über 720 Stunden röntgenamorphe Proben. Mit Verlängerung von *t* auf 1440, 2160 bzw. 2880 h werden sehr reflexreiche Pulverdiffraktogramme erhalten (Abb. 8.2.4, Abb. 8.2.5). Aus Abbildung 8.2.5 ist ebenso ersichtlich, dass ein Aufheizen der Probe (LiI/RbI = 1:1, T = 230 °C, t = 2160 h) auf 100 °C lediglich zu einem verstärkten Auskristallisieren von RbI führt.

Die Zusatzreflexe lassen sich mit Hilfe des Programmes TOPAS [40] monoklin indizieren. Die LeBail-Anpassung [41] des Röntgendiffraktogrammes der Probe LiI/RbI = 1:1 (T = 230 °C, t = 2160 h) führte zu den Zellparametern a = 16,742(8) Å, b =7,653(3) Å, c = 9,687(4) Å und $\beta = 94,92(4)$ °. Aus dem resultierenden Zellvolumen von 1236,7 Å³ lässt sich die Formel RbLiI₂ mit Z = 8 ableiten. Der Graph der LeBail-Anpassung ist in Abb. 8.2.6 dargestellt. Die erhaltenen bzw. berechneten Reflexlagen sind im Anhang (A1) aufgelistet. Einen Überblick der Ergebnisse aus den LeBail-Anpassungen aller Versuche gibt Tab. 8.2.5 wieder. Für die Überschusskomponenten RbI bzw. LiI wurde eine Rietveld-Verfeinerung durchgeführt. Wie daraus erkennbar ist, liegt LiI nur in den Proben mit einer Zusammensetzung von LiI/RbI = 1:1 neben der monoklinen Phase kristallin vor. Mit der Verschiebung der Einwaage Li/RbI auf 1:2 bzw. 1:3 ist neben der monoklinen Phase nur RbI als Überschusskomponente vorhanden.

Abb. 8.2.4 Röntgenpulveraufnahmen von LiI/RbI-Gemengen. (Messtemperatur beträgt 30 °C); Versuch Nummern 3 (schwarz), 4 (rot) und 6 (grün) (vgl. Tab. 8.2.1); Liniendiagramm: LiI (rot), RbI (blau).

Abb. 8.2.5 Röntgenpulveraufnahmen von einem LiI/RbI-Gemenge (Verhältnis 1:1, Versuch Nummer 5, T = 230 °C, t = 2160 h). Messtemperatur beträgt 30 °C (schwarz) und 100 °C (grün); Liniendiagramm: LiI (rot), RbI (blau).

Abb. 8.2.6 LeBail-Anpassung der indizierten monoklinen Zelle an das registrierte Röntgenpulverdiffraktogramm des LiI/RbI-Gemenges (Verhältnis 1:1, Versuch Nummer 5, vgl. Tab. 8.2.2, Messtemperatur beträgt 30 °C). Reflexpositionen: LiI (rot), RbI (blau), monokline Phase (grün).

LiI/RbI	1:1	1:1	1:2	1:3
Versuch Nummer	Nr.3	Nr.5	Nr.4	Nr.6
RbI Gewichts% (wt%) a (Å) ^a L (nm) R_{Bragg}^{c}	90,5 7,344(2) 174,7 0,8	94,5 7,340(2) 104,8 0,4	100 7,34(2) 181,0 4,0	100,0 7,33(1) 143,3 0,9
LiI Gewichts% (wt%) a (Å) ^b L (nm) R_{Bragg}^{c}	9,5 6,023(6) 110,4 0,2	5,4 6,035(5) 101,8 0,5	- - -	- - -
hkl-Phase - monoklin Zellparameter a (Å) b (Å) c (Å) β (°) Zellvolumen V (Å ³) Kristallitgröße L (nm) R_{Bragg} °	16,851(9) 7,580(4) 9,720(4) 95,02(2) 1236,6 110,4 0,2	16,742(8) 7,653(3) 9,687(4) 94,92(4) 1236,7 84,6 0,4	17,108(8) 7,713(4) 9,838(5) 95,38(3) 1292,6 236,1 1,4	17,513(1) 7,704(3) 10,338(4) 95,04(2) 1389,6 130,0 1,5
$R_{p} (\%)^{c}$ $R_{wp} (\%)^{c}$ Diffraktometer Wellenlänge λ (Å) 2θ Messbereich (°)	4,7 6,4 D8-Advanc 1,54059, 1,5 17,3 – 88,3	4,4 6,3 e (Bruker AXS 54449	6,9 10,5), (Göbel Spieg	6,1 9,6 el)

Tab. 8.2.5 Gitterkonstanten der indizierten monoklinen Zelle nach LeBail-Anpassungder LiI/RbI-Röntgendiffraktogramme.

^a Lit. a = 7,3291(7) Å [61]; ^b Lit. a = 6,0257(3) Å [99]; ^c R_P, R_{wp}, und R_{Bragg} definiert in Topas Vers. 3.0 [40].

Die registrierten Pulverdiffraktogramme der LiBr/RbBr-Gemengen sind in Abb. 8.2.7 dargestellt. Es ist daraus ersichtlich, dass neben der Überschusskomponente RbBr die ternäre Verbindung RbLiBr₂ kristallisiert, welche in den Proben mit dem Verhältnis LiBr/RbBr von 1:3 wesentlich kristalliner vorliegt. Der Graph der Rietveld-Verfeinerungen beider Röntgenpulveraufnahmen ist in den Abbildungen 8.2.8 bzw. 8.2.9 dargestellt. Texturbedingte Intensitätsabweichungen sind zu verzeichnen. Die entsprechenden kristallographischen Ergebnisse sind in den Tabellen 8.2.4 bzw. 8.2.5 aufgeführt. Die Resultate zeigen, dass bei einem Verhältnis LiBr/RbBr von 1:3 die Ausgangssubstanzen vollständig zu der ternären Verbindung RbLiBr₂ kristallisiert sind und lediglich RbBr als Überschusskomponente vorliegt. Hingegen werden bei dem Verhältnis von 1:2 nur 19 wt% RbLiBr₂ erhalten. Der Rest liegt als LiBr und RbBr nebeneinander in der jeweiligen kubischen Kristallstruktur vor. Weiterhin ist bemerkenswert der Unterschied der Kristallitgrößen der Komponenten in beiden Gemengen. Während sich die Werte in der Probe mit LiBr/RbBr = 1:2 (vgl. Tab. 8.2.3) in dem Bereich zwischen 40 nm und 90 nm befinden, können in der Probe mit LiBr/RbBr = 1:3 Kristallitgrössen zwischen 140 nm bis 160 nm festgestellt werden.

Abb. 8.2.7 Röntgenpulveraufnahmen von LiBr/RbBr-Gemengen. Verhältnis 1:3 (schwarz) und 1:2 (rot), (Messtemperatur beträgt 30 °C); Liniendiagramm: RbBr (blau), LiBr (rot), RbLiBr₂ (grün).

Abb. 8.2.8: Rietveld-Verfeinerung im LiBr/RbBr-Gemenge (Verhältnis 1:2, Messtemperatur beträgt 30 °C). Texturbedingte Intensitätsabweichungen vorhanden. Reflexpositionen: RbBr (blau), LiBr (rot), RbLiBr₂ (grün).

Tab. 8.2.4 Kristallographische Daten und Ergebnisse zur Strukturverfeinerung imLiBr/RbBr – Gemenge (Verhältnis 1:2).

	RbLiBr ₂	LiBr	RbBr		
Gewichts% (wt%)	19	28	53		
Raumgruppe (Nr.)	<i>Ccmm</i> (63)	Fm3m (225)	Fm3m (225)		
Zellparameter (Å)	$a = 15,122(6)^{a}$	$a = 5,526(3)^{b}$	$a = 6,929(2)^{c}$		
	$b = 4,37(1)^{a}, c = 7,73(2)^{a}$) ^a			
Zellvolumen $V(\text{\AA}^3)$	520,2	171,1	337,4		
Kristallitgröße L (nm)	38,1	56,0	87,0		
berechnete Dichte (g/cm ³)	3,2	3,4	3,3		
R_{Bragg}^{d}	4,1	1,9	7,9		
Temperatur (°C)	30				
$R_p(\%)^{\rm d}, R_{wp}(\%)^{\rm d}$	12,0, 16,3				
Diffraktometer	D8-Advance (Bruker AXS), (Göbel Spiegel)				
Wellenlänge λ (Å)	1,54059, 1,54449				
20 Messbereich (°)	11,2-63,5				

^a Lit. a = 15,120(5) Å, b = 4,364(2) Å, c = 7,654(2) Å [115]; ^b Lit. a = 5,4972(1) Å [119]; ^c Lit. a = 6,8768(7) Å [61]; ^d R_P , R_{wp} , und R_{Bragg} definiert in *Topas Vers. 3.0* [40].

Abb. 8.2.9: Rietveld-Verfeinerung im LiBr/RbBr-Gemenge (Verhältnis 1:3, Messtemperatur beträgt 30 °C). Texturbedingte Intensitätsabweichungen vorhanden. Reflexpositionen: RbBr (blau), RbLiBr₂ (grün).

Tab. 8.2.5 Kristallographische Daten und Ergebnisse zur Strukturverfeinerung im LiBr/RbBr – Gemenge (Verhältnis 1:3).

	RbLiBr ₂	RbBr		
Gewichts% (wt%)	54	46		
Raumgruppe (Nr.)	<i>Ccmm</i> (63)	$Fm\overline{3}m$ (225)		
Zellparameter (Å)	$a = 15,13(2)^{a}$	$a = 6,907(4)^{b}$		
	$b = 4,371(4)^{a}, c = 7,670(6)^{a}$			
Zellvolumen $V(Å^3)$	507,5	329,5		
Kristallitgröße L (nm)	136,1	159,2		
berechnete Dichte (g/cm ³)	3,3	3,3		
R_{Bragg}^{c}	5,7	7,5		
Temperatur (°C)	30			
$R_{p}(\%)^{c}, R_{wp}(\%)^{c}$	11,8, 15,5			
Diffraktometer	D8-Advance (Bruker AXS), (Göbel Spiegel)			
Wellenlänge λ (Å)	1,54059, 1,54449			
2θ Messbereich (°)	11,2 - 83,5			

^a Lit. a = 15,120(5) Å, b = 4,364(2) Å, c = 7,654(2) Å [115]; ^b Lit. a = 6,8768(7) Å [61]; ^c R_P , R_{wp} , und R_{Bragg} definiert in *Topas Vers.* 3.0 [40].

In dem System LiCl/RbCl erhält man sowohl für eine Zusammensetzung LiCl/CsCl von 2:1 als auch von 1:2 über beide Synthesemethoden nach einer thermischen Behandlung der Gemenge über t = 720 h röntgenamorphe Proben. Eine Verlängerung der thermischen Behandlung auf t = 1440 h bzw. 2160 h oder ein Verschieben der Einwaage LiCl/RbCl auf 3:1 bzw. 1:3 führt zu der Kristallisation der ternären Verbindung RbLiCl₂ neben der jeweiligen Überschusskomponente LiCl bzw. RbCl (Abb. 8.2.10 und Abb. 8.2.11). In jedem Pulverdiffraktogramm werden Zusatzreflexe beobachtet, welche sich mit Hilfe des Programmes TOPAS [40] orthorhombisch indizieren lassen. Aus der LeBail-Anpassung [41] des registrierten Röntgendiffraktogrammes der Probe LiCl/RbCl = 1: 3 (o-SMP) (T= 290 °C, t = 1440 h) werden folgende Zellparameter erhalten: a = 9,922(7) Å, b =8,823(5) Å, c = 8,233(4) Å. Aus dem resultierenden Zellvolumen von 720,9 Å³ lässt sich die Formel RbLiCl₂ mit Z = 8 ableiten. Der Graph der LeBail-Anpassung ist in Abb. 8.2.12 dargestellt. Die erhaltenen bzw. berechneten Reflexlagen sind im Anhang (A2) aufgelistet. Einen Überblick der Ergebnisse aus den LeBail-Anpassungen aller Versuche gibt Tab. 8.2.6 wieder. Daneben ist eine Rietveld-Verfeinerung der Verbindungen RbCl, LiCl und RbLiCl₂ durchgeführt worden. Es kristallisierte die ternäre Verbindung stets mit einem Anteil von ca. 70 wt% sowie die jeweilige Überschußkomponente mit einem Anteil von ca. 30 wt%. Die Kristallitgrößen befinden sich zwischen 50 nm und 100 nm. Dies gilt auch für die angepasste orthorhombische Phase. Diese weist ebenso verkleinerte Gitterparameter auf, wenn LiCl als Überschusskomponente vorliegt.

Abb. 8.2.10 Röntgenpulveraufnahmen von LiCl/RbCl-Gemengen im Verhältnis 3:1 (blau) und 1:3 (rot); (Messtemperatur beträgt 30 °C, Synthesemethode **u-SMP**, t = 2160 h); Zusatzreflexe (Stern); Liniendiagramm: RbCl (blau), LiCl (rot), RbLiCl₂ (schwarz).

Abb. 8.2.11 Röntgenpulveraufnahmen von LiCl/RbCl-Gemengen im Verhältnis 3:1 (grün) und 1:3 (schwarz); (Messtemperatur beträgt 30 °C, Synthesemethode **o-SMP**, t = 1440 h); Zusatzreflexe (Stern); Liniendiagramm: RbCl (blau), LiCl (rot), RbLiCl₂ (schwarz).

Abb. 8.2.12 LeBail-Anpassung der indizierten orthorhombischen Zelle an das registrierte Röntgenpulverdiffraktogramm des LiCl/RbCl-Gemenges (Verhältnis 1:3, Synthesemethode o-SMP, Versuch Nummer 8, vgl. Tab. 8.2.3, Messtemperatur beträgt 30 °C). Reflexpositionen: RbCl (blau), RbLiCl₂ (schwarz), orthorhombische Phase (grün).

LiCl/RbCl	1:3_u-SMP	1:3_o-SMP	3:1_u-SMP	3:1_o-SMP
Versuch Nummer	Nr.4	Nr.8	Nr.3	Nr.7
RbCl Gewichts% (wt%) a (Å) ^a L (nm) R_{Bragg}^{d}	23,6 6,586(2) 97,8 2,4	28,2 6,588(2) 66,5 1,4	- - -	- - -
LiCl Gewichts% (wt%) a (Å) ^b L (nm) R_{Bragg}^{d}	- - -	- - -	36,2 5,133(1) 71,5 4,4	29,8 5,137(3) 48,4 2,0
RbLiCl ₂ Gewichts% (wt%) a (Å) ^c b (Å) ^c c (Å) ^c L (nm) R_{Bragg}^{d}	76,4 14,386(8) 4,123(2) 7,203(5) 68,5 6,7	71,8 14,39(1) 4,128(4) 7,208(6) 42,0 5,4	63,8 14,391(7) 4,123(2) 7,196(4) 63,2 7,4	70,1 14,39(1) 4,127(2) 7,207(4) 58,1 5,5
hkl-Phase – ortho. Zellparameter a (Å) b (Å) c (Å) Zellvolumen V (Å ³) Kristallitgröße L (nm) R_{Bragg}^{d}	9,919(6) 8,819(5) 8,233(3) 720,3 79,2 1,1	9,922(7) 8,823(5) 8,233(4) 720,9 60,7 0,8	9,662(7) 8,741(6) 8,315(4) 702,2 62,3 0,8	9,900(4) 8,824(5) 8,216(5) 717,8 60,6 0,7
$R_{p} (\%)^{d}$ $R_{wp} (\%)^{d}$ Diffraktometer D8-A Wellenlänge λ (Å) 2θ Messbereich (°)	6,3 9,0 dvance (Bruke 1,54059, 1,5 14,5 – 89,5	5,7 7,8 r AXS), (Göbe 4449	6,4 9,1 l Spiegel)	6,1 9,6

Tab. 8.2.6 Gitterkonstanten der orthorhomischen Zelle nach LeBail-Anpassung der

 LiCl/RbCl-Röntgendiffraktogramme.

^a Lit. a = 6,5790(7) Å [61]; ^b Lit. a = 5,12952(4) Å [138]; ^c Lit. a = 14,413(3) Å, b = 4,1257(8) Å, c = 7,209(1) Å [145]; ^d R_P , R_{wp} , und R_{Bragg} definiert in *Topas Vers. 3.0* [40].

8.2.4 Diskussion

Im den Systemen LiX/CsX (X = I, Br, Cl) werden unabhängig von der Zusammensetzung der Gemenge sowie unabhängig von der Temperatur des Röhrenofens bei einem Zeitraum von 720 h amorphe Proben erhalten. Dies deutet auf eine Zerlegung der Ausgangskomponenten und auf einen unzureichenden Zeitraum für eine neue Kristallisation hin. Erst mit Verlängerung der Zeitdauer auf 1440 h wird unabhängig von der Zusammensetzung der Gemenge und der Temperatur der thermischen Behandlung eine scharfe Reflexanordnung erhalten.

Die Röntgenpulveraufnahmen der in den Systemen LiI/RbI und LiCl/RbCl erhaltenen Proben zeigen eine reproduzierbare Reflexanordnung, welche einer neuen Phase entsprechen könnte. Im Falle von LiI/RbI führte die Indizierung der Zusatzreflexe, die Bragg-Reflexe von LiI und RbI ausgeschlossen, zu einer monoklinen Zelle (a = 17,0(3)Å, b = 7,66(6) Å, c = 9,8(3) Å, $\beta = 95,0(5)^{\circ}$), deren Volumen auf RbLiI₂ mit Z = 8hindeutet. Bei gegebener Zusammensetzung der Gemenge (LiI/RbI = 1:1) wird kein Einfluss der Temperatur und der Verlängerung der Zeitdauer von 1440 h auf 2160 h auf die Kristallisation der monoklinen Phase beobachtet. Verschiebt man aber die Einwaage in Richtung RbI, so wird eine Vergrößerung der Zellparameter erhalten. Jedoch erfolgt keine komplette Umsetzung von LiI und RbI. Die Überschusskomponente RbI bleibt erhalten. Dies bekräftigt die Vermutung, dass es sich um die Verbindung RbLiI₂ handelt. Bemerkenswert erscheint, dass hier keine isotype Verbindung zu Cs₂Li₃I₅ [146] vorliegt.

Die Röntgenpulveraufnahmen der in dem System LiCl/RbCl erhaltenen Proben zeigen ebenso eine reproduzierbare Reflexanordnung, welche einer neuen Phase entsprechen könnte. Aus der Indizierung der Zusatzreflexe, die Bragg-Reflexe der Ausgangsverbindungen und von RbLiCl₂ ausgenommen, wurde eine orthorhombische Zelle ($a = (9,851 \pm 0,126)$ Å, $b = (8,801 \pm 0,041)$ Å, $c = (8,249 \pm 0,044)$ Å) erhalten. Das Zellvolumen lässt ebenso auf RbLiCl₂ mit Z = 8 schließen. Im Gegensatz zu dem System LiI/RbI ist im LiCl/RbCl-System die ternäre Verbindung RbLiCl₂ mit Z = 4 bekannt [145]. Es besteht zwischen beiden Zellen jedoch keine Ähnlichkeit. Die neue orthorhombische Phase und die Ausgangsverbindungen LiCl bzw. RbCl werden in allen vier Experimenten mit Kristallitgrößen zwischen 40 nm und 90 nm erhalten, was auf ein gleichmäßiges Kristallwachstum hindeutet. Im Gegensatz dazu, befinden sich im System LiI/RbI die Kristallitgrößen von LiI und RbI im Bereich zwischen 100 nm und 180 nm. Wonach ein stärkeres Kristallwachstum stattgefunden hat.

Neben dieser orthorhombischen Phase werden unabhängig von der Einwaage die ternäre Verbindung RbLiCl₂ und die jeweilige Überschußkomponente erhalten. Die Zellparameter dieser bekannten Strukturen weichen nur geringfügig von den Literaturwerten ab (0,01 % bis 1,9 %). Folglich ist deren Kristallisation unabhängig von der Zusammensetzung der Gemenge. Dies wird auch bekräftigt durch die gleichmäßig verteilten Kristallitgrößen (48 nm bis 97 nm).

Betrachtet man die Zellparameter der angepassten indizierten Zelle in beiden Systemen, in so lässt sich eine Schwankung Abhängigkeit von den jeweiligen Überschusskomponenten feststellen. Die Gitterparameter weisen einen kleineren Wert auf, wenn LiX als Überschußkomponente bzw. einen vergrößerten, wenn RbX als Überschusskomponente im Gemenge vorliegt. Dies spricht für eine Randlöslichkeit nach beiden Seiten und steht im Einklang mit dem kleineren Ionenradius von Li⁺ gegenüber von Rb^+ .

Betrachtet man den Einfluss der weiteren Versuchsparameter *T* und *t* im System LiI/RbI (Versuch Nummer 3 und 5), so sind keine Abhängigkeiten der kristallographischen Ergebnisse von diesen experimentellen Bedingungen feststellbar. Vergleicht man die Experimente in dem System LiCl/RbCl, welche mittels unterschiedlicher Synthesemethode (u-SMP, o-SMP) durchgeführt wurden, so sind ebenso keine Hinweise auf einen Einfluss derer auf die Kristallstruktur der Komponenten erkennbar.

Somit kann die Voraussage der Existenzfähigkeit neuer ternärer Verbindungen in den Systemen LiI/RbI bzw. LiCl/RbCl aus den Berechnungen als gestützt angesehen werden.

Anders als bei den beschriebenen Systemen LiI/RbI bzw. LiCl/RbCl, treten in den Röntgenpulveraufnahmen der LiBr/RbBr-Reaktionsprodukte keine Zusatzreflexe auf. Somit sind keine Hinweise auf eine neue Phase im System LiBr/RbBr aufgetreten. Die ternäre Verbindung RbLiBr₂ wird unabhängig von dem Verhältnis der Komponenten in den Gemengen erhalten. Bemerkenswert erscheint, dass bei einem Verhältnis von 1:2 LiBr und RbBr nicht vollständig zu RbLiBr₂ kristallisieren, sondern nebeneinander vorliegen. Hingegen reagieren bei einem Verhältnis von 1:3 die Ausgangskomponenten vollständig zu RbLiBr₂, sodass ausschließlich RbBr als Überschusskomponente vorhanden ist.

8.2.5 Zusammenfassung

In diesem Kapitel werden die ternären Systeme LiX/RbX mit X = Br, Cl, I mittels thermischer Behandlung dargestellt und röntgenographisch charakterisiert.

In allen drei Systemen werden nach einer thermischen Behandlung von 720 h röntgenamorphe Proben erhalten. Erst eine Verlängerung der Zeitdauer auf 1440 h führt zu einer Kristallisation.

Die Röntgenpulveraufnahmen der in dem System LiI/RbI erhaltenen Proben zeigen eine Reflexanordnung, deren Indizierung zu einer monoklinen Zelle ($a = (17,053 \pm 0,342)$ Å, $b = (7,662 \pm 0,061)$ Å, $c = (9,895 \pm 0,301)$ Å, $\beta = (95,09 \pm 0,580)^{\circ}$) führt, deren Volumen auf RbLiI₂ mit Z = 8 hindeutet. Bei gegebener Zusammensetzung der Gemenge (LiI/RbI = 1:1) Aus der Indizierung der Röntgenpulveraufnahmen der in dem System LiCl/RbCl erhaltenen Proben wird eine orthorhombische Zelle ($a = (9,851 \pm 0,126)$ Å, $b = (8,801 \pm 0,041)$ Å, $c = (8,249 \pm 0,044)$ Å) erhalten. Das Zellvolumen lässt ebenso auf RbLiCl₂ mit Z = 8 schließen. Neben dieser orthorhombischen Phase werden unabhängig von der Einwaage die ternäre Verbindung RbLiCl₂ und die jeweilige Überschußkomponente erhalten. Ein Einfluss der Temperatur sowie der Synthesemethode auf die Kristallisation wird nicht beobachtet.

Im LiBr/RbBr-System hingegen wird die bekannte ternäre Verbindung RbLiBr₂ erhalten. Bei einer Einwaage LiBr/RbBr von 1:2 kristallisieren LiBr und RbBr, während bei 1:3 nur RbBr als Überschusskomponente vorliegt.

8.2 Die Systeme LiX/CsX mit X = I, Br, Cl

8.3.1 Einleitung

Die Ausgangsverbindungen Lithiumiodid [99], Lithiumbromid [119] und Lithiumchlorid [139] liegen bei Raumtemperatur in der Kochsalzstruktur (Fm3m, Nr. 225) bzw. Cäsiumiodid [147], Cäsiumbromid [61] und Cäsiumchlorid [61] in der Cäsiumchlorid-Struktur (Pm3m, Nr. 221) vor. Bei tiefen Temperaturen existiert für LiI und LiBr zusätzlich eine metastabile Modifikation: β -LiI [99] und β -LiBr [119] in der Wurzit-Struktur ($P6_3mc$, Nr.186). Während die Cäsiumhalogenide bei tiefen Temperaturen metastabil in der Kochsalzstruktur vorliegen können [68].

Das Phasendiagramm des Systems LiI/CsI, aufgestellt von Sangster und Pelton, ist in Abb. 8.3.1 dargestellt. Es existiert ein Eutektikum bei T = 217 °C, $x_{LiI} = 0,66$ [89]. In diesem System ist eine ternäre Verbindung, Cs₂Li₃I₅, bekannt. Dieses erste Inter-Alkalijodid wurde von Meyer et al. durch langsames Abkühlen mit 2 °/h aus der Schmelze erhalten (Tantalampulle, 300 °C). Die farblosen Einkristalle wurden mittels Guinier-Aufnahmen untersucht und die Kristallstruktur aufgeklärt [146]. Die Autoren ermittelten die Raumgruppe C2/m (Nr. 12) mit a = 16,668(6) Å, b = 4,721(1) Å, c =10,987(4) Å und $\beta = 115,73(3)$ °. In der Struktur ist Cs⁺ zwar wie in CsI von acht Γ umgeben, doch ist das Koordinationspolyeder ein doppelt-überkapptes trigonales Prisma. Li⁺ tritt teils tetraedrisch, teils oktaedrisch von Γ umgeben auf.

Metastabile Verbindungen im System LiI/CsI mit einer Zusammensetzung von LiI/CsI = 3:1 (Li₃CsI₄) und 1:2 (LiCs₂I₃) wurden durch Berechnungen von Phasendiagrammen bei tiefen Temperaturen, vorausgesagt (Tab. 8.3.1) [116]. Des Weiteren sind die Ergebnisse aus den Berechnungen der Reaktionsenthalpien für die Zersetzung in die binären Komponenten LiI und CsI bei 0 K in Abb. 8.3.1 (unten) aufgeführt.

Im System LiBr/CsBr wird hingegen sowohl ein Eutektikum bei T = 274 °C, $x_{\text{LiBr}} = 0,613$ als auch ein Peritektikum bei T = 311 °C, $x_{\text{LiBr}} = 0,510$ aus thermischer Analyse und visual-polythermischen Methoden erhalten (Abb. 8.3.2) [113, 144]. Weiterhin ist in dem

System eine ternäre Verbindung, CsLiBr₂ bekannt, welche von Gaebell et al. [148] durch langsames Abkühlen (2 °/h) aus der Schmelze erhalten wurde (400 °C, Glasampulle). Die Einkristalle wurden mittels Guinier-Simon-Aufnahmen untersucht und die Kristallstruktur aufgeklärt. Die Autoren bestimmten die Raumgruppe *P4/nmm* (Nr. 129) mit den Gitterkonstanten a = 5,1870(5) Å und c = 9,924(1) Å. Die Kristallstruktur ist ausgezeichnet durch fünffach koordinierte Li⁺-Ionen (tetragonale Pyramide) und neunfach koordinierte Cs⁺-Ionen.

Darüber hinaus sagen ab-initio Berechnungen metastabile Verbindungen mit der Zusammensetzung CsBr/LiBr = 1:2 (CsLi₂Br₃) und 2:1 (Cs₂LiBr₃) voraus (Tab. 8.3.1) [116].

Ebenso wurde im System LiCl/CsCl sowohl ein Eutektikum als auch ein Peritektikum bestimmt [144, 148, 149]. Die Untersuchung der Liquiduskurve erfolgte mittels Abkühlkurven mit und ohne visualer Beobachtung sowie durch visual-polythermale Methoden. Das Eutektikum liegt bei T = 327 °C, $x_{\text{LiCl}} = 0.584$ sowie das Peritektikum bei T = 382 °C, $x_{\text{LiCl}} = 0,440$ [89]. Weiterhin ist eine ternäre Verbindung bekannt, CsLiCl₂, welche von Koreng aus Aufheizkurven und durch mikroskopische Untersuchungen der festen Schmelze erhalten wurde [148]. Gaebell et al. ist es gelungen, Einkristalle dieser Verbindung während des langsamen Abkühlens der Schmelze (2 °/h) zu erhalten (350 °C, Glasampulle), diese mittels Guinier-Simon-Aufnahmen zu untersuchen und deren Kristallstruktur aufzuklären [145]. Die Autoren erhielten die Raumgruppe P4/nmm (Nr. 129) mit a = 4,9235(9) Å und c = 9,500(3) Å. Die Struktur der ternären Verbindung, CsLiCl₂, ist durch eine tetragonale pyramidale Koordination der Li⁺-Ionen gegenüber den Cl⁻-Ionen ausgezeichnet. Hingegen ist Cs⁺ gegenüber Cl⁻ über ein dreifach überkapptes Prisma koordiniert. Des Weiteren werden mit Hilfe von ab-initio Berechnungen metastabile Verbindungen mit der Zusammensetzung LiCl/CsCl = 2:1 (CsLi₂Cl₃) und 1:2(Cs₂LiCl₃) vorausgesagt (Tab. 8.3.1) [116].

Abb. 8.3.1 Phasendiagramm von LiI/ CsI (oben) [89]; Berechnete Reaktionsenthalpien für die Zersetzung in die Komponenten LiI und CsI bei 0 K (unten); Ergebnisse aus zwei unterschiedlichen Rechenmethoden (blaue Kreise, rote Dreiecke); stabile Phasen (schwarze Linien); metastabile Phasen (grüne Linien) [116].

Abb. 8.3.2 Phasendiagramm von LiBr/CsBr (oben) [89]; Berechnete Reaktionsenthalpien für die Zersetzung in die Komponenten LiBr und CsBr bei 0 K (unten); Ergebnisse aus zwei unterschiedlichen Rechenmethoden (blaue Kreise, rote Dreiecke); stabile Phasen (schwarze Linien); metastabile Phasen, welche stabil in Bezug auf die binären Verbindungen LiBr und CsBr sind (grüne Linien); Phasen, welche metastabil in Bezug auf die binären Ausgangsverbindungen LiBr und CsBr sind (blaue Linien) [116].

Abb. 8.3.3 Phasendiagramm von LiCl/CsCl (oben) [89]; Berechnete Reaktionsenthalpien für die Zersetzung in die Komponenten LiCl und CsCl bei 0 K (unten); Ergebnisse aus zwei unterschiedlichen Rechenmethoden (blaue Kreise, rote Dreiecke); stabile Phasen (schwarze Linien); Phasen, welche metastabil in Bezug auf die binären Ausgangsverbindungen LiBr und CsBr sind (blaue Linien) [116].

System	Raumgruppe (Nr.)	Gitter	Gitterkonstanten		
		<i>a /</i> Å	b/Å	<i>c</i> / Å	β / °
CsLi ₃ I ₄	<i>Pm</i> (6)	11,30	4,94	12,60	86,57
Cs ₂ LiI ₃	$Cmc2_1$ (36)	5,05	27,65	9,37	90
CsLi ₂ Br ₃	<i>Immm</i> (71)	4,71	6,04	14,53	90
Cs ₂ LiBr ₃	<i>C</i> 2/ <i>m</i> (8)	25,88	4,76	8,56	91,32
CsLi ₂ Cl ₃	<i>Immm</i> (71)	5,58	4,65	12,85	90
Cs ₂ LiCl ₃	<i>Cmcm</i> (63)	4,47	24,62	8,00	90

Tab.8.3.1 Existenzfähige Verbindungen mit Strukturvorschlag aus ab-initioBerechnungen im System LiI/CsI [116], LiBr/CsBr [116] sowie LiCl/CsCl [136].

8.3.2 Synthese

Die Ausgangssubstanzen LiX und CsX, X = I, Br, Cl (99,999 %, Aldrich) wurden einer Probenvorbereitung unterzogen, wie bereits im Kapitel 8.2.2 erläutert. Im Handschuhkasten erfolgte dann die Einwaage der Gemenge in unterschiedlichen Verhältnissen (siehe Tab. 8.3.2), das anschließende Pressen des gut gemörserten Gemenges zu einer Tablette ($\emptyset = 6$ mm, p = 0,8 GPa), sowie das Einschließen der Tablette in einen Tiegel. Als Tiegelmaterialien standen Silber, Kupfer und Edelstahl, sowie als Ampullenmaterial Gold und Tantal zu Verfügung. Die Tiegel wurden anschließend mit einem Stopfen verschlossen bzw. die Ampullen verschweißt. Zusätzlich erfolgte ein Einschmelzen der Tiegel bzw. Ampullen in eine Duran-Glasampulle mit Hilfe der Schlenktechnik. Die Proben wurden über einen Zeitraum t bis zu 2160 h (Tab. 8.3.2) bei einer Temperatur T knapp unter dem Schmelzpunkt des Eutektikums des jeweiligen Systems getempert, abgeschreckt (vgl. Kap. 3.4) und röntgenographisch untersucht.

Tab. 8.3.2 Experimentelle Bedingungen für die Systeme LiI/CsI (a), LiBr/CsBr (b) und LiCl/CsCl (c). *T*: Temperatur des Röhrenofens, *t*: Zeitraum der thermischen Behandlung.

a)	LiI : CsI	Einwaage / mg	Tiegelmaterial	T∕°C	<i>t</i> / h
		LiI : CsI			
	3:1	187,4 : 87,6	Silber	180	2160
	3:2	82,2 : 105,2	Silber	180	2160
	1:1	68,5 : 131,5	Silber	180	2160
	2:3	54,8 : 157,8	Silber	180	2160
	1:3	27,4 : 157,8	Silber	180	2160
	3:1 3:2 1:1 2:3 1:3	187,4 : 87,6 82,2 : 105,2 68,5 : 131,5 54,8 : 157,8 27,4 : 157,8	Silber Silber Silber Silber Silber	180 180 180 180 180	2160 2160 2160 2160 2160

b)	LiBr : CsBr	Einwaage / mg LiBr · CsBr	Tiegelmaterial	<i>T</i> / °C	<i>t</i> / h
	3:1	104.2 : 84.3	Silber	240	1440
	2:1	86,8 : 105,9	Silber	240	1440
	1:2	28,9 : 141,3	Silber	280	1440
	1:3	21,7 : 158,3	Silber	280	1440

	<u>`</u>
C	• •
•	
_	
	-

LiCl : CsCl	Einwaage / mg	Tiegelmaterial	$T / ^{\circ}\mathrm{C}$	<i>t</i> / h
	LiCl : CsCl			
3:1	95,5 : 126,6	Silber	300	720
2:1	78,2 : 168,8	Silber	270	720
3:2	113,7 : 203,1	Silber	290	720
3:1	95,1 : 126,3	Silber	300	1440
2:1	78,7 : 168,4	Silber	270	1440
3:2	113,3 : 203,8	Silber	290	1440
3:1	95,7 : 126,7	Gold	290	1440
3:1	95,4 : 126,5	Tantal	290	1440
3:1	95,6 : 126,4	Kupfer	290	1440
3:1	95,4 : 126,3	Edelstahl	290	1440

8.3.3 Ergebnisse

Die registrierten Pulverdiffraktogramme der Proben im Lil/CsI-System sind in der 8.3.4 dargestellt. Es ist daraus ersichtlich, neben Abbildung dass den Ausgangskomponenten LiI bzw. CsI, auch die ternäre Verbindung Cs₂Li₃I₅ erhalten wird. Um die genaue Zusammensetzung der Gemenge zu untersuchen, wurde eine Rietveld-Verfeinerung aller aufgenommenen Röntgendiffraktogramme durchgeführt. Die Ergebnisse sind in Tab. 8.3.3. aufgelistet. Die erhaltenen Mittelwerte der Zellparameter über alle Proben lauten für LiI a = 6,049(3) Å, für CsI a = 4,584(5) Å sowie für Cs₂Li₃I₅ a = 16,7(5) Å, b = 4,6(1) Å, c = 10,98(7) Å und $\beta = 116,5(7)^{\circ}$. Aus den großen Schwankungen der Gitterparameter von Cs₂Li₃I₅ lässt sich eine Phasenbreite vermuten. Aus dem erhöhten Wert von a_{LiI} im Vergleich zu dem Literaturwert (0,3 %), ist ein Einbau von ca. 1,5 % CsI in LiI anzunehmen. Hingegen stimmt der Zellparameter von CsI gut mit der Literatur überein. Bemerkenswert erscheint der hohe Wert der Kristallitgröße von CsI bei einer Einwaage LiI/CsI von 1:3. Der Aus der Tabelle ist ebenso zu entnehmen, dass unabhängig von der Zusammensetzung CsI nicht vollständig umgesetzt wird, während LiI bei einer Einwaage LiI/CsI von 2:3 bzw. 1:3 sich vollständig umsetzten lässt. Der größte Anteil der ternären Verbindung, Cs₂Li₃I₅, wird bei einer Einwaage von LiI/CsI = 1:1 beobachtet. Den Graph der Rietveld-Verfeinerung dieser Probe zeigt Abb. 8.3.5. Wie daraus ersichtlich ist, sind zwischen dem berechneten und gemessenen Reflexprofil texturbedingte Intensitätsabweichungen zu verzeichnen.

Die Röntgenpulveraufnahmen im System LiBr/CsBr sind in Abb. 8.3.6 aufgezeigt. Wie daraus zu entnehmen ist, wird neben den Ausgangskomponenten die ternäre Verbindung CsLiBr₂ erhalten. Weiterhin liegen Schwankungen hinsichtlich Kristallinität der Komponenten und der Umsetzung von LiBr und CsBr vor. Um dies genau zu untersuchen, wurden Rietveld-Verfeinerungen aller Pulverdiffraktogramme durchgeführt. Die Tabelle 8.3.4 listet die erhaltenen Ergebnisse und kristallographischen Daten auf. Die Mittelwerte der Zellparameter über alle Proben lauten für LiBr a = 5,45(4) Å, für CsBr a = 4,291(5) Å und für CsLiBr₂ a = 5,18(1) Å, c = 9,91(1) Å. Die Kristallitgrößen treten in einem ähnlichen Bereich auf wie im System LiI/CsI. Jedoch tritt die ternäre Verbindung

CsLiBr₂ in einem niedrigeren Niveau gegenüber der ternären Verbindung Li₃Cs₂I₅ im System LiI/CsI auf. Den Graph der Rietveld-Verfeinerung der Probe mit einer Zusammensetzung von 3:1 zeigt Abb. 8.3.7. Wie daraus ersichtlich ist, sind zwischen dem berechneten und gemessenen Reflexprofil texturbedingte Intensitätsabweichungen vorhanden.

Abb. 8.3.4 Röntgenpulveraufnahmen von LiI/CsI-Gemengen im Verhältnis 3:1 (schwarz), 3:2 (blau), 1:1 (pink), 2:3 (grün) und 1:3 (orange). Liniendiagramm: LiI (rot), CsI (blau), Cs₂Li₃I₅ (grün).

LiI:CsI	3:1	3:2	1:1	2:3	1:3	
LiI (wt%)	55	40	19	_	_	
$a / Å^{a}$	6,041(2)	6,042(9)	6,064(8)	_	_	
L / nm	35,3	43,6	90,6	_	_	
${R_{Bragg}}^d$	2,2	3,0	1,7	_	_	
CsI (wt%)	12	13	7	45	73	
a / Å ^b	4,578(4)	4,581(8)	4,589(6)	4,584(8)	4,588(3)	
L / nm	82,6	91,1	60,0	70,0	146,4	
\mathbf{R}_{Bragg}^{d}	2,4	2,5	1,6	0,7	3,9	
Li ₃ Cs ₂ I ₅ (wt%)	32	47	74	55	26	
a / Å ^c	17,45(6)	17,28(6)	16,74(3)	16,14(1)	16,28(9)	
b / Å ^c	4,74(1)	4,78(1)	4,754(7)	4,50(2)	4,50(1)	
<i>c</i> / Å ^c	10,92(3)	10,90(3)	11,01(2)	11,05(8)	11,05(4)	
β / ° °	117,65(2)	119,0(2)	115,9(1)	115,5(5)	114,61(4)	
L / nm	47,0	61,3	83,9	88,1	43,9	
${\sf R}_{Bragg}^{ \ \ d}$	11,2	12,6	5,6	10,9	18,9	
R_p (%) ^d	11,3	14,4	10,6	8,2	15,1	
R_{wp} (%) ^d	15,6	19,0	16,5	13,2	21,2	

Tab. 8.3.3 Kristallographische Ergebnisse der Rietveld-Verfeinerung der LiI/CsI – Gemengen.

DiffraktometerD8-Advance (Bruker AXS), (Göbel Spiegel)Wellenlänge λ (Å)1,54059, 1,54449 2θ Messbereich (°)11,5 - 88,5a Lit. a = 6,0257(3) Å [99]; ^b Lit. a = 4,56772(2) Å [147]; ^c Lit. a = 16,668(6) Å, b = 4,721(1) Å, c =

^a Lit. a = 6,0257(3) Å [99]; ^b Lit. a = 4,56772(2) Å [147]; ^c Lit. a = 16,668(6) Å, b = 4,721(1) Å, c = 10,987(4) Å, $\beta = 115,73(3)^{\circ}$ [146]; ^d R_P , R_{wp} , und R_{Bragg} definiert in Topas Vers. 3.0, 2006, Bruker AXS [40], siehe Kapitel 5.

Abb. 8.3.5 Rietveld-Verfeinerung des LiI/CsI – Gemenges (Einwaage beträgt 1:1). Reflexpositionen: LiI (rot), CsI (blau), Cs₂Li₃I₅ (grün).

Abb. 8.3.6 Röntgenpulveraufnahmen von LiBr/CsBr im Verhältnis 3:1 (pink), 2:1 (grün), 1:2 (rot) und 1:3 (schwarz). Liniendiagramm: LiBr (rot), CsBr (blau), CsLiBr₂ (grün).

-					
LiBr:CsBr	3:1	2:1	1:2	1:3	
LiBr (wt%)	62	70	11	15	
$a / \text{Å}^{a}$	5,493(4)	5,507(1)	5,495(2)	5,496(2)	
L / nm	64,4	118,2	86,4	67,2	
R_{Bragg}^{d}	6,3	18,1	11,2	7,3	
CsBr (wt%)	22	23	66	67	
$a / Å^{b}$	4,297(7)	4,285(1)	4,2912(8)	4,2925(8)	
<i>L</i> / nm	16,0	66,1	68,2	56,5	
R_{Bragg}^{d}	11,2	13,0	6,2	13,8	
CsLiBr ₂ (wt%)	16	7	22	18	
a / Å ^c	5,1776(9)	5,203(4)	5,176(1)	5,184(1)	
c / Å ^c	9,917(1)	9,932(6)	9,894(3)	9,899(3)	
L / nm	40,2	95,1	74,1	59,5	
R_{Bragg}^{d}	3,6	5,3	1,8	1,3	
$R_p(\%)^{\mathrm{d}}$	15,8	19,1	12,2	11,9	
R_{wp} (%) ^d	21,1	26,5	17,7	17,6	
Messtemperatur (°C)	30				
Diffraktometer	D8-Advance	(Bruker AXS),	(Göbel Spiegel)	
Wellenlänge/λ (Å)	$CuK_{\alpha 1+2}, 1, 54$	4059, 1,54449			
2θ Messbereich (°)	11,5 - 65,5				

Tab. 8.3.4 Kristallographische Ergebnisse der Rietveld-Verfeinerung in LiBr/CsBr -Gemengen.

^a Lit. a = 5,4972(1) Å [119]; ^b Lit. a = 4,2812(4) Å [61]; ^c Lit. a = 5,1870(5) Å, c = 9,924(1) Å [148]; ^d R_P , R_{wp} , und R_{Bragg} definiert in Topas Vers. 3.0, 2006, Bruker AXS [40], siehe Kapitel 5.

 2θ Messbereich (°)

Abb. 8.3.7 Rietveld-Verfeinerung im LiBr/CsBr – Gemenge (Einwaage beträgt 3:1). Reflexpositionen: LiBr (rot), CsBr (blau), CsLiBr₂ (grün).

Die Röntgenpulveraufnahmen der Proben im System LiCl/CsCl, bei denen die Dauer der thermischen Behandlung nur 720 Stunden betrug, zeigen einen röntgenamorphen Zustand der Proben (Abb. 8.3.8). Erst nach 1440 h Temperung weisen die registrierten Pulverdiffraktogramme Reflexe auf (Abb. 8.3.9). Die erhaltenen Reflexanordnungen können jedoch, bis auf LiCl in der Probe mit einer Zusammensetzung von 3:1, keiner bekannten Phase zugeordnet werden. Da in der Probe mit einer Einwaage von LiCl/CsCl = 3:2 die beste Umsetzung erfolgte, wurde von dieser Probe ein hochaufgelöstes Röntgenpulverdiffraktogramm an dem D8-Röntgendiffraktometer (Bruker-AXS, 0,2 mm Glaskapillare) aufgenommen (Abb. 8.3.10). Die erhaltene Reflexanordnung lässt sich mit Hilfe des Programms TOPAS [40] monoklin indizieren. Eine LeBail-Anpassung [41] (Abb. 8.3.10) führt zu den Gitterparametern a = 24,416(5) Å, b = 4,478(1) Å, c = 15,592(3) Å und $\beta = 110,85(2)^{\circ}$ (Tab. 8.3.5). Die erhaltenen bzw. berechneten

Reflexlagen sind im Anhang (A3) aufgelistet. Eine LeBail-Anpassung der monoklinen Phase wurde ebenso für die aufgenommenen Röntgendiffraktogramme (vgl. Abb. 8.3.9) durchgeführt. Die Ergebnisse sind in Tab. 8.3.6 aufgelistet. Eine Übereinstimmung der Zellparameter wird mit der folgender Streuung erhalten: $a \pm 0.026$ Å, $b \pm 0.008$ Å, $c \pm 0.00$ 0,025 Å und $\beta = 0,145^{\circ}$. Die Kristallitgrössen der Komponenten liegen im gleichen Bereich vor. Eine Ausnahme bilden LiCl und CsCl in dem Gemenge mit einer Zusammensetzung LiCl/CsCl von 3:2. Wie aus der Tabelle ebenso ersichtlich ist, liegt bei einer Einwaage von LiCl/CsCl = 3:1 eine komplette Umsetzung von CsCl vor. Aus diesem Grund wurden Experimente mit dieser Zusammensetzung in verschiedenen Tiegelmaterialien (Gold, Tantal, Kupfer, Edelstahl) durchgeführt, um den Einfluss des Tiegelmaterials auf die Kristallisation zu untersuchen. Die erhaltenen Röntgenpulveraufnahmen sind in Abb. 8.3.11 dargestellt. Es ist daraus ersichtlich, dass die Proben, welche in Kupfertiegeln und Tantalampullen thermisch behandelt wurden, hauptsächlich ein Vorhandensein der Ausgangskomponenten LiCl und CsCl in ihrer kubischen Struktur aufweisen. Hingegen erfolgt eine wesentlich stärkere Umsetzung der Komponenten in den Proben, welche in Goldampullen und Edelstahltiegeln getempert wurden. Eine LeBail-Anpassung der monoklinen Zelle bzw. eine Rietveld-Verfeinerung von LiCl bzw. CsCl aller Proben ist durchgeführt worden. Die erhaltenen Ergebnisse sind in Tab. 8.3.7. aufgelistet. Wie aus dieser Tabelle ersichtlich ist, erfolgt eine komplette Umsetzung von LiCl nur in den Goldampullen und in den Edelstahltiegeln. Die Zellparameter der monoklinen Phase stimmen mit den Proben im Silbertiegel (Tab. 8.3.5) überein. Die Werte streuen im folgenden Bereich: $a \pm 0,117$ Å, $b \pm 0,025$ Å, $c \pm 0,029$ Å und $\beta \pm 0.47^{\circ}$. Die Intensitätsabfolge der monoklinen Phase weicht texturbedingt in allen registrierten Röntgenpulverdiffraktogrammen voneinander ab.

Abb. 8.3.8 Röntgenpulveraufnahmen von LiCl/CsCl-Gemengen im Verhältnis 3:1 (grün), 2:1 (rot) und 3:2 (schwarz) nach thermischer Behandlung von 720 h.

Abb. 8.3.9 Röntgenpulveraufnahmen von LiCl/CsCl-Gemengen im Verhältnis 3:1 (grün), 2:1 (rot) und 3:2 (schwarz); Liniendiagramm: LiCl (rot), CsCl (blau), CsLiCl₂ (grün).

Abb. 8.3.10 LeBail-Anpassung der indizierten monoklinen Zelle an das registrierte Röntgenpulverdiffraktogramm des LiCl/CsCl-Gemenges (Verhältnis 3:2, Messtemperatur beträgt 30 °C). Reflexpositionen: LiCl (rot), CsCl (blau), monokline Phase (schwarz).

Tab. 8.3.5 Ergebnisse der Rietveld-Verfeinerung von LiCl und CsCl sowie der LeBail-Anpassung der monoklinen Phase (Einwaage LiCl/CsCl = 3:2, Messtemperatur beträgt $30 \degree$ C).

	LiCl	CsCl	hkl-Phase - monoklin
Zellparameter / Å	5,107(4) ^a	4,1225(9) ^b	a = 24,416(5) b = 4,478(1) c = 15,592(3) $\beta = 110,85(2)^{\circ}$
Zellvolumen $V(Å^3)$	132,4	70,1	1593,3
Kristallitgröße L (nm)	161,3	39,3	33,4
R_{Bragg} ^c	10,1	2,3	0,5
$R_{p} (\%)^{c}$ $R_{wp} (\%)^{c}$ Diffraktometer Wellenlänge λ (Å) 2θ Messbereich (°)	7,3 11,5 D8-Advance 1,54059 14,0 - 100,0	(Bruker AXS)	

^a Lit. a = 4,1150(4) Å [61]; ^b Lit. a = 5,12952(4) Å [138]; ^c R_P , R_{wp} , und R_{Bragg} definiert in Topas Vers. 3.0, 2006, Bruker AXS [40], siehe Kapitel 5.

Gemenge (messtemperate	ii ootiugi so c	<i>J</i> .		
LiCl/CsCl	3:2	2:1	3:1	
CsCl				
a (Å) ^a	4,11(1)	4,13(3)	-	
<i>L</i> (nm)	107,6	34,2	-	
R_{Bragg}^{c}	1,7	0,7	-	
LiCl				
a (Å) ^b	5,15(8)	5,14(4)	5,181(1)	
L (nm)	181,4	32,8	56,4	
R_{Bragg}^{c}	10,1	0,9	0,6	
hkl-Phase - monoklin				
Zellparameter <i>a</i> (Å)	24,48(8)	24,53(1)	24,518(7)	
b(Å)	4,44(1)	4,430(3)	4,447(1)	
c (Å)	15,61(5)	15,658(9)	15,623(3)	
β (°)	111,6(1)	111,37(3)	111,64(1)	
Zellvolumen $V(Å^3)$	1578,8	1585,3	1583,5	
Kristallitgröße L (nm)	45,3	39,3	33,4	
R_{Bragg} ^c	1,2	1,8	0,5	
$R_p(\%)^{\rm c}$	5,8	3,7	2,1	
R_{wp} (%) ^c	10,8	6,2	3,2	
Diffraktometer	D8-Advance	e (Bruker AXS), (Göbel Spiegel)	
Wellenlänge λ (Å)	1,54059, 1,	54449	/	
2θ Messbereich (°)	17,3 - 88,3			

Tab. 8.3.6 Ergebnisse der Rietveld-Verfeinerung von LiCl und CsCl sowie der LeBail-Anpassung der monoklinen Phase bei verschiedenen Zusammensetzung der LiCl/CsCl-Gemenge (Messtemperatur beträgt 30 °C)

^a Lit. a = 4,1150(4) Å [61]; ^b Lit. a = 5,12952(4) Å [138]; ^c R_P , R_{wp} , und R_{Bragg} definiert in Topas Vers. 3.0, 2006, Bruker AXS [40], siehe Kapitel 5.

Abb. 8.3.11 Röntgenpulveraufnahmen von LiCl/CsCl im Verhältnis 3:1 in Kupfer-(grün) bzw. Edelstahltiegel (blau), in Gold- (schwarz) bzw. Tantalampulle (rot); Liniendiagramm: LiCl (rot), CsCl (blau), CsLiCl₂ (grün).

Tab. 8.3.7	Ergeb	nisse der Riet	veld-Ve	rfeine	erung von LiCl und Cs	sCl sowie de	r LeBa	ail-
Anpassung	der	monoklinen	Phase	der	LiCl/CsCl-Gemenge	(Einwaage	3:1)	in
verschiedenen Tiegelmaterialien (Messtemperatur beträgt 30 °C).								

Tiegelmaterial	Gold	Tantal	Kupfer	Edelstahl
CsCl				
$a(\text{\AA})^{a}$	-	4.1072(9)	4.113(1)	-
L (nm)	-	68.5	67.8	-
R_{Bragg}^{c}	-	0,7	0,2	-
LiCl				
$a (\text{\AA})^{b}$	5,126(7)	5,129(1)	5,136(1)	5,129(4)
L (nm)	54,3	198,2	203,9	92,6
R_{Bragg}^{c}	0,8	0,9	0,3	1,1
hkl-Phase - monoklin				
Zellparameter a (Å)	24,291(7)	-	-	24,35(2)
<i>b</i> (Å)	4,457(1)	-	-	4,408(3)
<i>c</i> (Å)	15,577(5)	-	-	15,57(1)
β (°)	111,11(1)	-	-	110,7
Zellvolumen $V(Å^3)$	1573,4	-	-	1564,4
Kristallitgröße L (nm)	75,3	-	- 96,9	
R_{Bragg} ^c	0,9	-	-	1,5
R_p (%) ^c	4,9	2,2	2,6	7,2
R_{wp} (%) ^c	8,1	3,3	4,1	11,6
Diffraktometer D8	-Advance (Bruke	er AXS), (Göb	el Spiegel)	
Wellenlänge λ (Å)	1,54059, 1,5	54449		
2θ Messbereich (°)	17,3 - 63,5			

^a Lit. a = 4,1150(4) Å [61]; ^b a = 5,12952(4) Å [139]; ^c R_P , R_{wp} , und R_{Bragg} definiert in Topas Vers. 3.0, 2006, Bruker AXS [40], siehe Kapitel 5.

8.3.4 Diskussion

Im System LiCl/CsCl werden unabhängig von der Zusammensetzung der Gemenge sowie von der Temperatur der thermischen Behandlung bei einer Zeitdauer über 720 h amorphe Proben erhalten. Dies deutet auf einen Abbau der Ausgangskomponenten und auf einen unzureichenden Zeitraum für eine neue Kristallisation hin. Erst mit Verlängerung der Zeit der thermischen Behandlung werden Reflexe im Röntgendiffraktogramm beobachtet. Die Indizierung der Reflexe führt zu einer monoklinen Zelle mit einem Volumen von 1593 Å³. Vergleicht man diese mit den Volumina von LiCl bzw. CsCl, so kann auf LiCsCl₂ mit Z = 16 geschlossen werden. Bemerkenswert erscheint es, dass die bekannte ternäre Verbindung CsLiCl₂ mit Z = 4 [145] nicht erhalten wird. Es besteht die Frage, ob es sich hier um eine neue Modifikation oder um eine Überstruktur handelt. Eine Strukturlösung ist bisher nicht gelungen. Betrachtet man den Einfluss der Zusammensetzung der Gemenge auf die Kristallisation weiter, so lässt sich bei einer Zusammensetzung LiCl/CsCl von 3:1 neben der Überschusskomponente LiCl die monokline Phase beobachten. Hingegen erhält man in den Proben mit LiCl/CsCl = 3:2 und 2:1, neben den beiden Komponenten, CsCl.

Im System LiI/CsI wird unabhängig von der Einwaage neben den Ausgangskomponenten die bekannte Verbindung Cs₂Li₃I₅ erhalten, welche bei einer Zusammensetzung von 1:1 mit größtem Anteil vorliegt. Mit Zunahme des Anteiles von LiI in der Probe erfolgt eine geringfügigere Umsetzung der Komponenten, sodass LiI und CsI in größeren Mengen in ihrer kubischen Struktur erhalten werden. Wesentliche Unterschiede zwischen den Proben mit einer Einwaage LiI/CsI von 3:1 bzw. 3:2 werden nicht beobachtet. Zusammenfassend lässt sich sagen, dass mit Erhöhung der LiI-Einwaage in der Probe der LiI-Anteil in dem Produktgemenge steigt. Ebenso befindet sich mehr CsI im Produktgemenge, wenn die Einwaage von CsI zunimmt. Weiterhin weisen die Proben mit CsI als Überschusskomponente kein Vorhandensein von LiI auf. Im System LiBr/CsBr erhält man, neben den Ausgangskomponenten LiBr und CsBr, die bekannte ternäre Verbindung CsLiBr₂. Dieses Ergebnis zeigt sich ebenso abhängig von der Einwaage. Allerdings hängt der Anteil der ternären Verbindung CsLiBr₂ in dem LiBr/CsBr-Gemenge von der Einwaage LiBr/CsBr ab. Liegt CsBr als Überschusskomponente vor, so wird ein größerer Anteil von CsLiBr₂ im Gegensatz zu den Proben mit LiBr als Überschusskomponente erhalten.

Neben der Zusammensetzung der Gemenge wurde auch die Temperatur der thermischen Behandlung um 20 °C bis 30 °C bei den Systemen LiBr/CsBr und LiCl/CsCl variiert. Eine Abhängigkeit des Kristallwachstums konnte jedoch nicht beobachtet werden. Betrachtet man die Gitterkonstanten der Komponenten so können ebenso keine Abhängigkeiten von der Temperatur festgestellt werden. Hingegen erweisen sich die Zellparameter abhängig von der Zusammensetzung der Gemenge. Vergleicht man die Zellparameter der ternären Verbindung Cs₂Li₃I₅ in dem LiI/CsI-Gemenge, so wird die beste Übereinstimmung mit den Literaturwerten bei einer Einwaage von 1:1 erhalten. Die prozentuale Abweichung beträgt zwischen 0,14 % und 0,4 %. Mit der Erhöhung von LiI bzw. CsI in dem Gemenge werden Abweichungen der Gitterparameter von Cs₂Li₃I₅ bis zu 4,7 % erhalten. Folglich scheinen LiI und CsI in der Lage zu sein, die Gitterparameter der ternären Verbindung zu beeinflussen, sodass es zu leichten Verzerrungen der Kristallstruktur und zu einer Phasenbreite kommt. Auf der anderen Seite stehen die Gitterparameter der Verbindung CsLiBr₂ in den LiBr/CsBr-Gemengen im Einklang mit der Literatur und sind unabhängig von der Einwaage. Im System LiCl/CsCl weisen die erhöhten Zellparameter von LiCl auf einen Einbau von ca. 3 % CsI hin.

Erstaunlicherweise befinden sich die Kristllitgrößen aller Komponenten in den Systemen LiX/CsX (X = I, Br, Cl) in dem Bereich zwischen 35 nm und 100 nm. Daraus lässt sich ein gleichmäßiges Wachstum der unterschiedlichen Verbindungen ableiten. Eine Ausnahme stellt CsI mit 146 nm bei einer Einwaage LiI/CsI von 1:3 dar. Die trifft ebenso für LiCl (161 nm) in dem Gemenge mit einer Zusammensetzung LiBr/CsBr von 3:2 zu.

Weiterhin wurde der Einfluss des Tiegelmaterials auf die Kristallisation in dem System LiCl/CsCl untersucht und eine dirigierende Wirkung beobachtet. Die Pulverdiffraktogramme der Proben in Gold- und Kupfertiegeln unterscheiden sich von denen in Tantalampullen und Edelstahltiegeln durch eine deutliche Umsetzung in die neue monokline Phase. Demnach scheint das Tiegelmaterial einen dirigierenden Einfluss auf die Umsetzung der Komponenten auszuüben. Die Metrik der monoklinen Zelle stimmt mit der in den Proben, welche in Silbertiegel getempert wurden, überein. Die geringe Abweichung der Gitterkonstanten weißt darauf hin, dass die Tiegelmaterialien Gold und Edelstahl keinen Einfluss auf die Zellparameter der monoklinen Phase nehmen.

8.3.5 Zusammenfassung

In diesem Kapitel wurde das thermische Verhalten der ternären Systeme LiX/CsX mit X =Br, Cl, I untersucht und die Proben röntgenographisch charakterisiert. Die Ergebnisse zeigen, dass die Proben der Systeme LiX/CsX mit X = Br, I die bekannten ternären Verbindungen LiCsBr₂ und Cs₂Li₃I₅ kristallisieren. Lediglich die Umsetzungsmenge der Komponenten variiert. Bei einer Zusammensetzung LiI/CsI von 1:1 bzw. LiBr/CsBr von 1:2 wird der größte Anteil erreicht. Im System LiBr/CsBr wird kein Einfluss der Temperatur der thermischen Behandlung auf die Kristallisation beobachtet. In den Röntgenpulveraufnahmen im System LiCl/CsCl werden nach 720 h röntgenamorphe nach 1440 h erhält man kristalline Proben erhalten. Erst Proben. Die Röntgenpulveraufnahmen weisen unabhängig von der Temperatur und der Zusammensetzung Reflexanordnungen auf, welche keiner bekannten Phase zuordbar sind. Die Indizierung des hochaufgelösten Pulverdiffraktogrammes führt zu einer monoklinen Zelle (a = 24,416(5) Å, b = 4,478(1) Å, c = 15,592(3) Å und β = 110,85(2)°), deren Volumen auf CsLiCl₂ mit Z = 16 schließen lässt. Der höchste Anteil wird mit einer Einwaage LiCl/CsCl von 3:1 erreicht. Jedoch zeigt sich dieser Anteil abhängig von dem Tiegelmaterial. In Tantalampullen und Kupfertiegeln tritt keine Umsetzung der Komponenten ein, während in Goldampullen sowie in Edelstahl- und Silbertiegeln der Anteil der neuen monoklinen Phase deutlich erhalten wird.

9. $[Mg(H_2O)_6]RbBr_3$ und $[Mg(H_2O)_6]CsBr_3$

9.1 Einleitung

Dieser Abschnitt der Arbeit befasst sich mit der Darstellung von Alkalimetallhalogenid-Magnesiumhalogenid Doppelsalzen. Ein Doppelsalz liegt vor, wenn zwei oder mehr Salze aus Lösungen oder Schmelzen in einem einfachen stöchiometrischen Verhältnis unter Bildung eines besonderen Kristallgitters kristallisieren, welches die Ionen beider Salze enthält (gegebenenfalls auch als Mischkristall). Dabei setzen sich die chemischen und physikalischen Eigenschaften in wässriger Lösung additiv aus den Eigenschaften der Komponenten zusammen. Salze dieser Art, die im kristallisierten Zustand eine eigene Kristallstruktur ausbilden und somit einheitliche Verbindungen darstellen, nennt man Doppelsalze.

Das bekannteste Doppelsalz der Alkalimetalle mit Magnesium ist unter dem Namen Carnallit $[Mg(H_2O)_6]KCl_3$ bekannt [150, 151]. Es entsteht während der letzten Phase der Verdunstung von Meereswasser oder Binnenseen. Dieses Mineral wurde nach dem preußischen Bergbauingenieur Rudolph von Carnall (1804 – 1874) benannt, welcher es 1856 als erster in der Lagerstätte Stassfurt (Sachenanhalt, Deutschland) entdeckte. Carnallit wird heute als Düngemittel und als Quelle für Kalium und Magnesium genutzt.

Die Kristallstruktur der Carnallite (Raumgruppe *Pnma*) wurde von Fischer [152] aufgeklärt und später von Schlemper et al. [153] weiter verfeinert. Die Anordnung der Atome entspricht der hexagonalen BaTiO₃-Struktur von ABC₃ Verbindungen [154], mit isolierten $[Mg(H_2O)_6]^{2+}$ Oktaedern, welche die kuboktaedrischen Löcher eines 3-dim. Netzwerkes von $[KCl_6]^{5-}$ -Oktaedern besetzen. Im Gegensatz zu der kubischen Perowskit-Struktur, bei der alle Oktaeder eckenverknüpft vorliegen, sind in der Carnallit-Struktur 2/3 der $[KCl_6]^{5-}$ -Oktaeder über Flächen verknüpft. Daraus resultiert eine sogenannten 6*H*-Perowskit-Struktur, welche eine $(hcc)_2$ - Struktursequenz aufweist: 2/3 der Schichten sind kubisch dicht gepackt, während 1/3 der Schichten hexagonal gepackt vorliegen.

Der Austausch von K⁺ mit (NH₄)⁺ [155, 156], Rb⁺ [157] oder Cs⁺ [158] Ionen führt zu Verbindungen, welche chemisch ähnlich zu den Carnalliten sind, aber strukturell dem kubischen Perowskit zugeordnet werden. Die ursprüngliche vorgeschlagene Raumgruppe *P*1 für [Mg(H₂O)₆]RbCl₃ und [Mg(H₂O)₆](NH₄)Cl₃ wurde später von Marsh in *C*2/*c* korrigiert [159, 160].

Um die Existenz von zwei unterschiedlichen Strukturtypen für ähnliche Verbindungen zu erklären, schlug Waizumi [158] einen Toleranzfaktor t [161] vor, welcher analog zu dem Goldschmidtfaktor ist und die Struktur der Carnallite (hexagonale BaTiO₃ – Struktur) von anderen Alkalichlorid – Magnesiumchlorid Doppelsalzen (kubischer BaTiO₃ – Strukturtyp) abtrennt:

$$t=\frac{r_A+r_C}{\sqrt{2}(r_B+r_c)},$$

wobei r_A dem Ionenradius von $[Mg(H_2O)_6]^{2+}$, r_B dem Ionenradius der Alkalikationen (bzw. von (NH₄)) und r_C dem Ionenradius der Anionen entspricht.

Für die Doppelsalze mit Cl⁻ als Anion erhält man für *t*: 1,04 (K⁺), 1,00 (Rb⁺), 0,95 (Cs⁺) und 0,97 (NH₄⁺). Die Bildung der kubischen Perowskit-Struktur tritt bei Toleranzfaktoren zwischen 0,80 und 1,00 ein [162]. Für Werte von t > 1,00 wird die Bildung der hexagonalen BaTiO₃–Struktur bevorzugt (z. B. [Mg(H₂O)₆]KCl₃), während für Toleranzfaktoren < 0,80 die Ilmenitstruktur (FeTiO₃) gebildet wird. Ursprünglich wurde nur über Gitterparameter für analoge Verbindungen mit Brom als Anion berichtet [163].

Seitdem die thermische Hydrolyse von hydratisierten Magnesium ein wichtiger Prozess ist, welcher in verschiedenen Industriezweigen angewandt wird, sind die $[Mg(H_2O)_6]XY_3$ Doppelsalze ($X^+ = Cs^+$, Rb⁺, NH₄⁺; $Y^- = Cl^-$, Br⁻) zum Gegenstand von thermoanalytischen Untersuchungen geworden. Das Ziel besteht in der Ermittlung der einzelnen Hochtemperaturphasen und der verschiedenen Zersetzungsprodukte [157, 164– 172]. Im Falle von $[Mg(H_2O)_6]RbBr_3$ wurde einen kleiner Peak in der Temperaturdifferenzkurve um T = 407 K beobachtet, welche für $[Mg(H_2O)_6]CsBr_3$ nicht vorhanden ist und auf die Existenz einer Hochtemperaturphase von $[Mg(H_2O)_6]RbBr_3$ hindeutet. Um diesen Effekt aufzuklären, wurde die Kristallstruktur von $[Mg(H_2O)_6]RbBr_3$ bzw. von $[Mg(H_2O)_6]CsBr_3$ in Abhängigkeit von der Temperatur untersucht.

Abb. 9.1 Carnallitstruktur [Mg(H₂O)₆]KCl₃

9.2 Synthese

Zu Beginn wurde die Reinheit der Ausgangsverbindungen MgBr₂ (99,999 %, Fluka), RbBr (99,999 %, Aldrich) und CsBr (99,999 %, Fluka) mittels Röntgenpulverdiffraktometrie (0,3 mm Markröhrchen Fa. Hilgenberg, Stoe IPSD: Cu-K α_1) kontrolliert. Die Pulver wurden anschließend im Handschuhkasten in die entsprechenden Verhältnisse eingewogen:

 $[Mg(H_2O)_6]RbBr_3$: MgBr_2 = 92,05 mg, RbBr = 82,3 mg $[Mg(H_2O)_6]CsBr_3$: MgBr_2 = 92,05 mg, CsBr = 106,0 mg.

Auf einem Magnetrührer wurde 40 ml bidestilliertes Wasser in einem offenen Becherglas an Luft zunächst auf 70 °C erwärmt. Darin wurde das gut gemörserte Probengemenge unter ständigem Rühren aufgelöst. Durch eine sehr langsame Verdampfung des Wassers (über drei Tage) bei 50 °C wurde die Kristallisation erreicht.

9.3. Thermische und Röntgenographische Untersuchungen

Thermische Analyse

Für die simultane Differenzthermoanalyse (DTA) und Thermogravimetrie (TG) wurden 20 mg der Probe in dem Handschuhkasten eingewogen und unter Argon vermessen. Es wurde mit 10 °C/min von 25 °C bis 500 °C aufgeheizt.

Synchrotronmessung

In-situ Röntgenaufnahmen von $[Mg(H_2O)_6]RbBr_3$ wurden an der Beamline SUNY X7B am National Synchrotron Light Source, Brookhaven National Laboratory aufgenommen $(\lambda = 0.9210(1) \text{ Å})$. $[Mg(H_2O)_6]RbBr_3$ wurde mit einer Aufheizrate von 1,67 K/min von 298 K bis 598 K aufgeheizt. Eine Aufnahmezeit von 100 Sekunden wurde gewählt, abhängig von der Sättigungsintensität der Image Plate. Zusammen mit einer Auslesezeit von 80 s führte dies zu einer Aufheizrate von 5 K/scan. Für die Integration der Vollkreis-Röntgenpulverdiffraktogramme wurde das Programm FIT2D [173, 174] verwendet.

Röntgenstrukturanalyse

Hochaufgelöste Röntgenpulveraufnahmen von $[Mg(H_2O)_6]RbBr_3$ und $[Mg(H_2O)_6]CsBr_3$ wurden bei verschiedenen Temperaturen am Röntgenpulverdiffraktometer (D8, Bruker, Cu-K- α_1) mit Debye-Scherrer-Geometrie aufgenommen. Dabei befanden sich die Proben in Borosilikat-Glasmarkröhrchen (Ø 0,3 mm, Hilgenberg Nr. 50). Während der Messungen bei erhöhten Temperaturen wurde ein wassergekühlter Heizer (mri Physikalische Geräte GmbH) mit einer Temperaturstabilität von < 1 K verwendet.

Die Röntgenpulverdiffraktogramme bei Raumtemperatur für $[Mg(H_2O)_6]RbBr_3$ und $[Mg(H_2O)_6]CsBr_3$ wurden mit einer Schrittweite von 0,009° 2 Θ von 10,0 – 80,0° 2 Θ über 51 Minuten aufgenommen. Während das Hochtemperatur-Phasendiagramm für $[Mg(H_2O)_6]RbBr_3$ bei T = 423 K mit einer Schrittweite von 0,009° 2 Θ von 10,0 – 90,0° 2 Θ über 3 h aufgenommen wurde.

Für die Strukturbestimmung und die Strukturverfeinerung für $[Mg(H_2O)_6]RbBr_3$ und $[Mg(H_2O)_6]CsBr_3$ bei Raumtemperatur kam das Programm TOPAS 4.0 (Bruker-AXS) zum Einsatz. Dabei dienten als Startwerte für die Zellparameter und für die Raumgruppe die Werte aus der Arbeit von Emons [163], während als Startwerte für die Atomkoordinaten die Werte der isotypen Verbindung $[Mg(H_2O)_6](NH_4)Br_3$ übernommen wurden [156].

Das Reflexprofil und die genauen Gitterparameter wurden nach der Methode von LeBail [41] mit Hilfe des "Fundamental parameter (FP) approach" von TOPAS [40] verfeinert. Für die Indizierung des Röntgenpulverdiffraktogramms der Hochtemperaturphase von $[Mg(H_2O)_6]RbBr_3$ bei T = 423 K wurde das Programm TOPASI (Bruker-AXS) verwendet.

9.4. Ergebnisse und Diskussion

Die Temperaturdifferenzkurve von [Mg(H₂O)₆]RbBr₃ zeigt im Einklang mit der Literatur bei T = 407 K einen kleinen Peak, welche für [Mg(H₂O)₆]CsBr₃ nicht vorhanden ist und den Grund für Untersuchungen der Raum- und Hochtemperaturstruktur von $[Mg(H_2O)_6]RbBr_3$ und $[Mg(H_2O)_6]CsBr_3$ liefert (Abb. 9.2, Abb. 9.3). Die *in-situ* temperaturabhängige Röntgenaufnahme mit Synchrotronstrahlung von [Mg(H₂O)₆]RbBr₃ gibt Aufschluss über die Phasenumwandlung dieses Doppelsalzes (Abb. 9.4). Durch die hochaufgelöste Aufnahme des Röntgendiffraktogrammes an dem D8-Röntgendiffraktometer bei Raumtemperatur und bei 295 K konnten die beiden unterschiedlichen Strukturen gelöst und eine Rietveld-Verfeinerung durchgeführt werden (Abb. 9.5, Abb. 9.6). Die kristallographischen Ergebnisse sind in Tab. 9.1, die Atomkoordinaten in Tab. 9.2 und die ausgewählten interatomare Abstände in Tab. 9.3 aufgelistet. Der Graph der Rietveld-Verfeinerung von [Mg(H₂O)₆]CsBr₃ bei Raumtemperatur ist in Abb. 9.5 dargestellt. Die dazugehörigen kristallographischen Ergebnisse sind in Tab. 9.1 aufgelistet.

Abb. 9.2 TG und DTA von [Mg(H₂O)₆]CsBr₃.

Abb. 9.3 TG und DTA von [Mg(H₂O)₆]RbBr₃.

Abb. 9.4. 3-dim. Darstellung des temperaturaufgelösten Röntgenpulverdiffraktogramms von [Mg(H₂O)₆]RbBr₃.

Abb. 9.5 Röntgenpulverdiffrakogramm von $[Mg(H_2O)_6]RbBr_3$ (oben) und $[Mg(H_2O)_6]CsBr_3$ (unten) bei T = 295 K. Gezeigt werden die gemessenen Werte (Vierecke), die Reflexprofile der Rietveld-Verfeinerung (Linie a) und die Differenzkurve zwischen gemessenem und berechneten Profil (Linie b). Die Intensitäten im hohen 2Θ - Bereich wurden um den Faktor 5 vergrößert. Spuren von RbBr und CsBr sind als zweite Phase einbezogen.

Abb. 9.6 Röntgenpulverdiffrakogramm von $[Mg(H_2O)_6]RbBr_3$ bei T = 465 K. Gezeigt werden die gemessenen Werte (Vierecke), die Reflexprofile der Rietveld-Verfeinerung (Linie a) und die Differenzkurve zwischen gemessenem und berechneten Profil (Linie b). Die Intensitäten im hohen 2Θ - Bereich wurden um den Faktor 5 vergrößert. Spuren von RbBr sind als zweite Phase einbezogen.

Verbindung	[Mg(H ₂ O) ₆]RbBr ₃	[Mg(H ₂ O) ₆]RbBr ₃	[Mg(H ₂ O) ₆]CsBr ₃
Temperatur (K)	295	465	295
Molgewicht (g/mol)	454,582	454,582	502,017
		_	
Raumgruppe (Nr.)	<i>C</i> 2/ <i>c</i> (15)	$Pm\overline{3}m$ (221)	<i>C</i> 2/ <i>c</i> (15)
Z	4	1	4
<i>a</i> (Å)	9,6412(6)	6,9419(1)	9,8230(7)
<i>b</i> (Å)	9,8653(5)	-	9,9804(6)
<i>c</i> (Å)	13,7861(9)	-	14,010(1)
β (°)	90,087(5)	-	90,143(4)
$V(\text{\AA}^3)$	1311,26(1)	334,53(1)	1373,51(2)
berechnete Dichte (g/cm^3)	2,257(1)	2,211(1)	2,384(1)
Wellenlänge (Å)	1,54059	1,54059	1,54059
$R_p\left(\% ight)^*$	4,9	8,9	4,1
R_{wp} (%) [*]	6,4	11,5	5,3
R-F ² *	4,5	3,0	1,8
2θ - Messbereich	5,0-105,0	5,0-90,0	5,0-125,0

Tab. 9.1 Kristallographische Daten und Ergebnisse der Rietveld-Verfeinerung von $[Mg(H_2O)_6]XBr_3$ Doppelsalzen ($X^+ = Rb^+, Cs^+$).

* R_p , R_{wp} , und R-F² wie in TOPAS (Bruker AXS) definiert [40].

Tab. 9.2 Atomkoordinaten $(\cdot 10^{-4} \text{ Å})$ and isotrope Temperaturfaktoren (Å^2) für $[Mg(H_2O)_6]XBr_3(X^+ = Rb^+, Cs^+).$

Atom	(Position)	X	У	Z	Beq
Br1	(4 <i>b</i>)	5000	0	5000	2,74
Br2	(8 <i>f</i>)	2514,2(33)	7420,2(20)	7489,1(28)	2,74
Mg	(4 <i>a</i>)	5000	5000	5000	2,74
Rb	(4 <i>e</i>)	5000	-32,1(35)	7500	2,74
O1	(8 <i>f</i>)	4080,9(62)	6830,0(59)	5390,5(57)	2,74
O2	(8 <i>f</i>)	3182,9(60)	3965,4(62)	54979,(60)	2,74
03	(8 <i>f</i>)	4134,5(54)	5132,(10)	3606,1(43)	2,74

[Mg(H₂O)₆]RbBr₃ bei 295 K

[Mg(H₂O)₆]RbBr₃ bei 465 K

Aton	n (site)	X	У	Z	Beq
Br	(3 <i>d</i>)	5000	0	0	4,01
Mg	(1 <i>b</i>)	5000	5000	5000	4,01
Rb	(1 <i>a</i>)	0	0	0	4,01
0	(24 <i>m</i>)	4142,5(60)	4142,5(60)	2216,7(61)	4,01

[Mg(H₂O)₆]CsBr₃ bei 295 K

Atom	(site)	X	У	Z	Beq
Br1	(4 <i>b</i>)	5000	0	5000	2,62
Br2	(8 <i>f</i>)	2592,2(39)	7461,8(48)	7474,7(37)	2,62
Mg	(4 <i>a</i>)	5000	5000	5000	2,62
Cs	(4 <i>e</i>)	5000	66,1(36)	7500	2,62
O1	(8 <i>f</i>)	4127,7(98)	6808,7(98)	5417,5(88)	2,62
O2	(8 <i>f</i>)	3230,(10)	4032,(10)	5536,3(88)	2,62
03	(8 <i>f</i>)	4089,1(83)	5375,(11)	3613,5(64)	2,62

Abstand / Å	[Mg(H ₂ O) ₆]RbBr ₃ 295K	[Mg(H ₂ O) ₆]RbBr ₃ 465 K	[Mg(H ₂ O) ₆]CsBr ₃ 295K
X-Br	3,425(4)-3,473(4)	3,471(1)	3,49(5)-3,51(5)
Mg-O	2,081(6)-2,141(6)	2,108(4)	2,08(10)-2,17(9)
Br-O (min)	3,237(9)-3,33(8)	3,315(4)	3,11(11)-3,56(5)
Winkel	[Mg(H ₂ O) ₆]RbBr ₃ 295K	[Mg(H ₂ O) ₆]RbBr ₃ 465 K	[Mg(H ₂ O) ₆]CsBr ₃ 295K
O-Mg-O	89,0(2)-91,0(2) 180,0	85,4(2)-94,6(2) 180,0	86,6(4)-93,8(4) 180,0

Tab. 9.3 Auswahl von interatomaren Abständen und Winkeln in $[Mg(H_2O)_6]XBr_3$ Doppelsalzen ($X^+ = Rb^+, Cs^+$).

Die erhaltene Kristallstruktur von $[Mg(H_2O)_6]XBr_3$, $X^+ = [Rb^+, Cs^+]$, bei Raumtemperatur gehört in die Gruppe der Perowskite und ist isotyp zu $[Mg(H_2O)_6](NH_4)Cl_3$ [156]. Die Kristallstruktur besteht aus einem pseudokubischen 3-dim. Netzwerk aus eckenverknüpften regelmäßigen XBr_6 Oktaedern (Abb. 9.7). Die $[Mg(OH_2)_6]^{2+}$ Oktaeder sind geordnet und weisen abwechselnd zwei unterschiedliche Orientierungen entlang der c-Achse auf.

Aufgrund der monoklinen Fehlordnung ist die pseudokuboktaedrische Lücke von 12 Bromionen mit einem interatomaren Br-Br-Abstand von 4,81 Å bis 4,93 Å leicht fehlgeordnet. Das Netzwerk aus Br····H-O Wasserstoffbrückenbindungen spielt für die Stabilität der Kristallstruktur von [Mg(H₂O)₆]RbBr₃ und [Mg(H₂O)₆]CsBr₃ eine wichtige Rolle. Da die Position der Wasserstoffatome nicht direkt aus dem verfügbaren röntgenographischen Datenmaterial erhalten werden kann, ist es dennoch möglich deren ungefähren Wert von den Br-O Abständen (Tab. 9.3) abzuleiten. Typische Br···H Abstände liegen in dem Bereich zwischen 2,3 Å und 2,68 Å [175–177]. Zusammen mit der zu erwarteten O-H Bindungslänge von 1,0 Å, resultiert ein maximaler Br-O Abstand von 3,68 Å, welcher eine Wasserstoffbrückenbindung von jedem Wasserstoffatom bestätigt (Abb. 9.8). Unerwarteterweise liegen die kürzesten O-Br Abstände bei [Mg(H₂O)₆]CsBr₃ vor, was somit eine stärkere Wasserstoffbrückenbindung erklärt.

 $[Mg(H_2O)_6]RbBr_3$ durchläuft einen Phasenübergang erster Ordnung bei ca. T = 358 K in einer geöffneten Kapillare (ca. T = 408 K in einem geschlossenem System [166]), was

mit einer Änderung der Raumgruppe von C2/c nach Pm3m verbunden ist. Die Hochtemperaturkristallstruktur ist somit isostrukturell zu dem kubischen Perowskit-Strukturtyp. Die kuboktaedrische Lücke ist nun geordnet und mit $[Mg(OH_2)_6]^{2+}$ Oktaedern im Zentrum besetzt. Ohne die Wasserstoffbrückenbindungen würde die erwartete Lage der Sauerstoffatome 1/2 1/2 z betragen und somit zu dem Zentrum der Vierecke aus Bromatomen zeigen, was zu einem ungünstig langen Abstand der Wasserstoffbrücken führt. Stattdessen wurde die Position der Sauerstoffatome bei *xxz* ermittelt, wodurch eine vierzählige gleichmäßig ausgedehnte Fehlordnung der $[Mg(OH_2)_6]^{2+}$ Oktaeder resultiert. Die vier unterschiedlichen Orientierungen der $[Mg(OH_2)_6]^{2+}$ Oktaeder schließen diejenigen von der Raumtemperaturphase, sowie deren um 180° um die 1/2 1/2 z-Achse rotierte Gegenstücke ein (Abb. 9.7).

Die Transformationsmatrix von der Tief- zur Hochtemperaturphase von $[Mg(H_2O)_6]RbBr_3 lautet \begin{pmatrix} 1/2 & 1/2 & 0 \\ -1/2 & 1/2 & 0 \\ 0 & 0 & 1/2 \end{pmatrix} + \begin{pmatrix} 1/2 \\ 0 \\ 1/4 \end{pmatrix}.$ Von der Abbildung 9.7 kann die

folgende mögliche Transformationssequenz abgeleitet werden: $C2/c \rightarrow Cmcm \rightarrow Cmmm$ $(c^2=1/2c) \rightarrow P4/mmm \rightarrow Pm3m$. Im Gegensatz zu dem Rubidiumanalogon, zeigt $[Mg(H_2O)_6]CsBr_3$ keine eindeutige Symmetrieumwandlung vor dem Beginn der Zersetzung. Beide Verbindungen weisen eine starke anisotrope thermische Ausdehnung der Gitterparameter auf (Abb. 9.9, Abb. 9.10). Dies ist durch die Relaxation des oktaedrischen Alkalibromid-Gitters und die Reorientierung der $[Mg(OH_2)_6]^{2+}$ Oktaeder verständlich. Im Fall von $[Mg(H_2O)_6]RbBr_3$ vollzieht sich ein Sprung des Zellvolumens bei der Temperatur, bei welcher die Phasenumwandlung stattfindet. Hingegen ist für $[Mg(H_2O)_6]CsBr_3$ ein Wendepunkt bei ähnlicher Temperatur sichtbar, wodurch eine Phasenumwandlung zweiter Ordnung unter Beibehalt der monoklinen Raumgruppe und der beiden unterschiedlichen Orientierungen der $[Mg(OH_2)_6]^{2+}$ Oktaeder nahe liegt. Es ist interessant zu bemerken, dass vor der Phasenumwandlung von $[Mg(H_2O)_6]RbBr_3$ und dem Wendepunkt von $[Mg(H_2O)_6]CsBr_3$ die kristallographische *b*-Achse bei beiden Verbindungen kontrahiert, bevor sie beginnt, sich mit einem geringeren Anstieg wieder auszudehnen. Dieses Phänomen kann der Ausdehnung des Alkalibromid-Gitters zugeschrieben werden, welches eintritt, bevor die gleichmäßige Ausweitung beginnt. Man kann nur vermuten, warum $[Mg(H_2O)_6]CsBr_3$ im Gegensatz zu $[Mg(H_2O)_6]RbBr_3$ vor der Zersetzung keine Phasenumwandlung in Richtung kubischer Symmetrie zeigt. Eine mögliche Erklärung wären die stärkeren Wasserstoffbrückenbindungen für $[Mg(H_2O)_6]CsBr_3$, wodurch eine Reorietierung der $[Mg(OH_2)_6]^{2+}$ Oktaeder verhindert wird.

Für die Hochtemperaturphase von [Mg(H₂O)₆]RbBr₃ lassen sich verschiedene mögliche Gründe für die kristallographisch erhaltenen Fehlordnungen finden: I) Die $[Mg(OH_2)_6]^{2+}$ Oktaeder sind reich an eingefrorenen Lagen (statische Fehlordnung) oder an Sprüngen zwischen den vier möglichen Orientierungen (dynamische Fehlordnung); II) Der relativ große Unterschied der Übergangstemperatur zwischen geöffnetem und geschlossenen System fördert die Möglichkeit der Bildung von H₂O-Defekten, welche in der Lage sind, zwischen Lagen zu springen; oder III) die Wassermoleküle sind auf Zwischengitterplätzen verteilt. Aus den kristallographischen Ergebnissen und der Tatsache, dass Wasserstoffbrückenbindungen ebenso in der Hochtemperaturphase von [Mg(H₂O)₆]RbBr₃ vorhanden sind, liegt die Vermutung nahe, dass die statistische Fehlordnung der $[Mg(OH_2)_6]^{2+}$ Oktaeder die wahrscheinlichste Erklärung ist. Eine andere $\left[Mg(OH_2)_6\right]^{2+}$ Oktaeder Kristallstruktur, bei welcher orientierte Fehlordnung der beobachtet wird, ist $[Mg(H_2O)_6]SeO_3 \cdot 1,5H_2O$ [178].

Abb. 9.7. Vergleich der Packung der Raumtemperatur- (T = 295 K; Projektionsebene: c bzw. b, von links nach rechts) und der Hochtemperaturphase (T = 465 K; Projektionsebene: c-Achse bzw. [110], von links nach rechts) von [Mg(H₂O)₆]RbBr₃.

Abb. 9.8 Br-O Abstände als Indikatoren für die Br···H-O Wasserstoffbrückenbindungen bei der Raumtemperatur- (T = 295 K, rechts) und der Hochtemperaturphase (T = 465 K, links) von [Mg(H₂O)₆]RbBr₃.

Abb. 9.9. Verlauf der relativen Gitterkonstanten bzw. des relativen Zellvolumens (oben) und Synchrotronaufnahme (unten) von $[Mg(H_2O)_6]RbBr_3$ als Funktion der Temperatur (T = 298 K bis T = 410 K, 1,67 K/min).

Abb. 9.10. Verlauf der relativen Gitterparameter bzw. des relativen Zellvolumens von $[Mg(H_2O)_6]CsBr_3$ als Funktion der Temperatur (T = 298 K bis T = 453 K, 1 K/s).

Im Einklang mit dem Toleranzfaktor *t* existieren weitere bekannte Vertreter der Alkalibromide, welche in der Perowskitstruktur (z.B. CsBrCa₃ [178]) oder in der Anti-Perowskit-Struktur (z.B. Rb₃BrO [179]) kristallisieren. Die Hochtemperaturphase von $[Mg(H_2O)_6]RbBr_3$ ist das erste Mitglied aus der Familie der Doppelsalze, welches eine kubische Perowskitstruktur mit großen zentralen kuboktaedrischen Hohlräumen aufweist, welche mit fehlgeordneten $[Mg(OH_2)_6]^{2+}$ Oktaeder besetzt sind.

9.5 Zusammenfassung

Die Kristallstrukturen der Alkalimetall-Doppelsalze $[Mg(H_2O)_6]XBr_3$ (X⁺ = Rb⁺, Cs⁺) wurden temperaturabhängig von einem Labor- und Synchrotronpulverdiffraktometer vermessen. Bei Raumtemperatur sind beide Kristallstrukturen isostrukturell zu $[Mg(H_2O)_6](NH_4)Br_3$. Die Raumgruppe ist C2/c mit den folgenden Gitterparametern für $[Mg(H_2O)_6]RbBr_3$: a = 9,64128(6) Å, b = 9,86531(5) Å, c = 13,78613(9) Å, $\beta =$ $90,0875(5)^{\circ}$ und für [Mg(H₂O)₆]CsBr₃: a = 9,82304(7) Å, b = 9,98043(6) Å, c =14,0100(1) Å, $\beta = 90,1430(4)^{\circ}$. Bei einer Temperatur von T = 358 K durchläuft [Mg(H₂O)₆]RbBr₃ eine reversible Phasenumwandlung in den kubischen Perovskit-Strukturtyp (Pm3m), welcher $[Mg(H_2O)_6]^{2+}$ Oktaeder in der kuboktaedrischen Lücke mit vierfacher Fehlordnung aufweist. Die Gitterkonstante bei T = 458 K beträgt 6,94198(1) Å. Im Falle von [Mg(H₂O)₆]CsBr₃ zeigen die Gitterparameter in Abhängigkeit von der Temperatur einen Knick bei T = 340 K, aber keine Phasenumwandlung wird erhalten, bevor die Zersetzung der Verbindung beginnt. Der Einfluss der Wasserstoffbrückenbindungen auf die Stabilität der Kristallstruktur erweist sich als Grund für die unterschiedlichen Verhalten beider Verbindungen mit Temperaturerhöhung. Die stärkeren Wasserstoffbrückenbindungen in [Mg(H₂O)₆]CsBr₃ im Gegensatz zu [Mg(H₂O)₆]RbBr₃ können als die Ursache für das Ausbleiben der Phasenumwandlung für $[Mg(H_2O)_6]CsBr_3$ bei hohen Temperaturen gesehen werden.
III Zusammenfassung und Diskussion

Mehrtiegelbedampfungsanlage und Tieftemperaturabscheidungen von Alkalimetallhalogeniden

Einen ersten thematischen Schwerpunkt bildeten Experimente, anhand derer versucht wurde, die mittels des Konzeptes der rationalen Syntheseplanung vorhergesagten Verbindungen der Alkalimetallhalogenide zu synthetisieren. Die Grundlage dieser Untersuchungen bildete ein neuartiges Verfahren für die Abscheidung der Komponenten aus der Gasphase auf ein gekühltes Substrat in einer UHV-Präparationskammer, das im Rahmen dieser Arbeit weiterentwickelt wurde. Der Aufbau einer Mehrtiegelverdampfungsanlage erlaubt das erstmals getrennte Verdampfen mehrerer Komponenten in die Gasphase. Die Anlage besteht aus den folgenden Bauteilen:

- Zwei Stenantiegel mit Molybdän-Drahtwicklung, Thermoelement und Eurothermregler;
- Abdeckschild aus Tantalblech;
- Kühlschild, manuell über einen Manipulator positionierbar; sowohl mit flüssigem Stickstoff als auch mit Helium befüllbar;
- Massenspektrometer mit zusätzlicher gerätespezifischer Software für kontinuierliche Überwachung einer Massenzahl und eine Ansicht des Spektrums über mehrere Massenzahlen (bis M = 100); Speicherung der Daten möglich;
- Zusätzlicher Einbau einer Cryopumpe; Verbesserung des Enddruckes der UHV-Kammer von 2⁻ 10⁻⁸ mbar auf 5⁻ 10⁻⁹ mbar.

Die Leistungsfähigkeit des verbesserten Verfahrens wird am Beispiel der Systeme KCl/CsCl und NaCl/CsCl in Anlehnung an die Arbeit von Queisser [13] demonstriert. Für die CsCl/KCl-Probe mit 36 at% KCl wird bei 100 °C ein Vierphasengemenge beobachtet. Aus den simultanen Tieftemperaturabscheidungen im CsCl/NaCl-System werden unabhängig von dem atomaren Prozentgehalt an NaCl (16 at%, 20 at%, 28 at% oder 68 at%) bei $T_{\rm S} = -196$ °C röntgenamorphe Proben erhalten, welche sich ab -100 °C

in α -CsCl ordnen. Der Einfluss der Substrattemperatur auf die Kristallisation der Proben wurde untersucht. Die Experimente zeigen, dass höhere Kondensationstemperaturen (–20 °C) für die Kristallisation von α - und β -CsCl nötig sind. In Übereinstimmung mit der Literatur, wird keine Mischkristallbildung beobachtet.

Zur Stabilisierung von metastabilen Phasen lagen diejenigen Alkalimetallhalogenide im Vordergrund, deren Radienquotient genau im Übergangsbereich zwischen zwei Strukturtypen liegt. Dabei lag das Hauptaugenmerk in der vorliegenden Arbeit auf der Beeinflussung der homogenen Keimbildung auf der Substratoberfläche mittels Temperatur, Druck und Übersättigung. Um eine substratinduzierte Keimbildung zu begünstigen, wurde die Beeinflussung des Substrats auf die Keimbildung mit in Betracht gezogen. Das am häufigsten benutzte Substrat ist Saphir (Einkristall, mit der Orientierung (0001) sowie in Einzellfällen (11–20)). Daneben wurde Lithiumniobat (Einkristall mit der Orientierung (0001)) und polykristallines Kupfer eingesetzt. In der vorliegenden Arbeit soll untersucht werden, ob das Substrat eine dirigierende Wirkung auf die Kristallstruktur der abgeschiedenen Probe ausübt.

Das System LiBr

Die erfolgreiche Stabilisierung einer neuen metastabilen Modifikation von LiBr wird vorgestellt. Diese metastabile Wurtzit-Modifikation von LiBr ($P6_3mc$ (Nr. 186) mit a = 4,1509(5) Å und c = 6,6502(2) Å) wird bei $T_{\text{Tiegel}} = 440$ °C und $T_{\text{S}} = -50$ °C phasenrein erhalten. Diese Struktur zeigt sich zwischen -100 °C und 0 °C stabil und wird substratunabhängig erhalten. Mit Temperaturerhöhung wird ein Phasenübergang in die kubische Kochsalzmodifikation beobachtet, welche bei 0 °C abgeschlossen ist.

Das System LiBr/CsBr

Die Tieftemperaturabscheidungen von CsBr und LiBr auf ein Substrat mit $T_{\rm S} = -196$ °C sowie -100 °C zeigen, dass die röntgenamorphen Proben zuerst in α -CsBr ordnen und erst ab einer Substrattemperatur von 100 °C bzw. 30 °C CsLiBr₂ und die jeweilige Überschußkomponente kristallisiert. Dies lässt sich aus der kleineren Gitterenergie von

Cäsiumbromid gegenüber Lithiumbromid verstehen, womit eine geringere Kristallisationstemperatur einhergeht.

Interessant erscheint es, dass die gegenseitige Beeinflussung der nebeneinander vorliegenden Verbindungen so stark ist, dass die Kristallisation der jeweiligen Tieftemperaturmodifikationen unterdrückt wird. Selbst eine Erhöhung der Kondensationstemperatur auf –20 °C führt zu röntgenamorphen Proben. Dies wird in ähnlichen Systemen in der Literatur mit dem Einbau von Gitterstörungen begründet [13].

Die Systeme Nal/LiI und NaBr/LiBr

Auch hier kann eine Abhängigkeit der Reihenfolge der Kristallisation der Komponenten von der jeweiligen Gitterenergie festgestellt werden. LiBr mit dem höchsten Wert an Gitterenergie liegt bei –196 °C röntgenamorph vor, während LiI und NaBr mit den mittleren Werten mit breiten Reflexen vorliegen und NaI mit dem geringsten Wert mit der höchsten Kristallinität bei –196 °C auftritt. Aus den Abscheidungen des Systems LiI/NaI kann eine geringe Löslichkeit von 10 at% NaI in LiI festgestellt werden. Während LiI/NaI bei –196 °C aufgrund des geringeren Wertes von NaI kristallin vorliegt, zeigen die Abscheidungen von LiBr/NaBr bei dieser Substrattemperatur röntgenamorphe Proben. Dies lässt sich aus dem hohen Gitterenergiewert von LiBr verstehen. Darüber hinaus wurde in den Experimenten eine geringe Löslichkeit von LiBr in NaBr beobachtet.

Das System LiBr/H₂O

Die hier gezeigten Ergebnisse legen den Schluss nahe, dass es sich in Analogie zu dem LiI/H₂O-System auch in dem System LiBr/H₂O die noch unbekannten Phasen LiBr \cdot 3H₂O bzw. LiBr \cdot 2H₂O handelt. Wegen der reflexreichen Pulverdiffraktogramme und der unzureichenden Kristallinität der Proben schlugen Versuche einer erfolgreichen Strukturlösung fehl. Dass es sich tatsächlich um Hydrate handelt, wird durch die gemessene OH-Bande im Ramanspektrum des Systems LiBr bestätigt.

Diskussion

Es wurde beobachtet, dass von dem Substrat nur eine untergeordnete Wirkung des Substrates auf die Kristallisation der Proben vorhanden ist. Einfluss auf die Kristallisation wurde somit hauptsächlich mittels Temperatur, Druck und Übersättigung genommen. Es konnte ein Zusammenhang des Kristallisationsverhaltens der abgeschiedenen Komponente von deren Gitterenergie hergestellt werden.

Für die Weiterentwicklung der sind UHV-Anlage der an freie Mehrtiegelverdampfungskammer Anschlussmöglichkeiten für zukünftige **UHV-Systems** Erweiterungen des vorgesehen, wie z.B. eine Schichtdickenmesseinrichtung separat für jede Substanz. Des Weiteren steht eine Verdampfung der Substanzen mit einem Laser in Aussicht. Dazu soll sich das Probenmaterial in Form eines Presslings auf einem Targethalter befinden.

Insgesamt wurde in dieser Arbeit gezeigt, dass mit dem neu entwickelten Verfahren ein Zugang zu neuen Verbindung möglich ist.

Untersuchungen fester Gemenge ternärer Alkalimetallhalogenid – Verbindungen

Neben den oben genannten Versuchen bildeten Experimente zur Festkörperreaktion ternärer Alkalimetallhallogenide mittels thermischer Behandlung im Röhrenofen einen weiteren Schwerpunkt dieser Arbeit. Dabei wurden zwei unterschiedliche Methoden angewandt. Die erste Methode (u-SMP) beinhaltet die thermische Behandlung der Gemenge bei einer Temperatur knapp unter dem Schmelzpunkt des Eutektikums im jeweiligen System. Die zweite Methode (o-SMP) hingegen sieht erst eine Überführung der Gemenge in die Schmelze und danach die thermische Behandlung der Gemenge bei einer Temperatur knapp unter dem Schmelzpunkt des jeweiligen Eutektikums vor. Nach dem Abschreckverfahren der Proben, erfolgte deren röntgenographische Untersuchung. Die Röntgenpulveraufnahmen der Systeme LiI/RbI und LiCl/RbCl zeigen eine

reproduzierbare Reflexanordnung, welche einer neuen Phase entsprechen könnte. Im Falle von LiI/RbI führte die Indizierung der Reflexe zu einer monoklinen Zelle mit a =

17,053 Å, b = 7,662 Å, c = 9,895 Å, $\beta = 95,09^{\circ}$, deren Volumen auf RbLiI₂ mit Z = 8 hindeutet. Hingegen erhält man aus der Indizierung der Zusatzreflexe in den LiCl/RbCl-Röntgendiffraktogrammen eine orthorhombische Zelle mit a = 9,950 Å, b = 8,801 Å, c = 8,249 Å, deren Zellvolumen ebenso auf RbLiCl₂ mit Z = 8 schließen lässt.

Anders als bei den beschriebenen Systemen LiI/RbI bzw. LiCl/RbCl, treten in den Röntgenpulveraufnahmen der LiBr/RbBr-Gemenge keine Zusatzreflexe auf. Dies gilt auch für das System LiI/CsI, welches unabhängig von der Einwaage neben den Ausgangskomponenten die Verbindung Cs₂Li₃I₅ aufzeigt. Im System LiBr/CsBr wird ebenso unabhängig von der Einwaage neben den Ausgangskomponenten LiBr und CsBr die ternäre Verbindung CsLiBr₂ erhalten.

Im System LiCl/CsCl hingegen werden unabhängig von der Zusammensetzung der Gemenge sowie von der Temperatur der thermischen Behandlung sehr reflexreiche Pulverdiffraktogramme erhalten. Das Volumen der indizierten monoklinen Zelle (a = 24,421 Å, b = 4,444 Å, c = 15,604 Å, $\beta = 111,134^{\circ}$) lässt auf LiCsCl₂ mit Z = 16 schliessen. Weiterhin scheint das Tiegelmaterial einen dirigierenden Einfluss auf die Kristallisation auszuüben. In Tantalampullen und Kupfertiegeln wird nur ein sehr geringer Anteil der neuen monoklinen Phase beobachtet, während in Goldampullen und Edelstahl- bzw. Silbertiegeln eine deutlich größerer Anteil dieser Phase erhalten wird.

Betrachtet man den Einfluss der weiteren Versuchsparameter Temperatur und Zeitraum in allen Experimenten, so sind keine signifikanten Abhängigkeiten der kristallographischen Ergebnisse von diesen experimentellen Bedingungen feststellbar. Vergleicht man die Experimente mit unterschiedlichen Synthesemethoden (u-SMP, o-SMP), so sind ebenso nur marginale Hinweise auf einen Einfluss derer auf die Kristallstruktur der Komponenten erkennbar.

Somit kann die Vermutung der Existenzfähigkeit neuer ternären Verbindungen in den Systemen LiI/RbI, LiCl/RbCl sowie LiCl/CsCl aus den Berechnungen weiter gestärkt werden.

Doppelsalze

Als dritter Schwerpunkt dieser Arbeit stand die Untersuchung der Kristallstrukturen von Alkalimetallhalogenid-Magnesiumhalogenid Doppelsalzen bei Raumtemperatur, sowie deren Verhalten bei Temperaturerhöhung. Die Kristallstrukturen der Alkalimetall-Doppelsalze $[Mg(H_2O)_6]XBr_3$ ($X^+ = Rb^+$, Cs^+) wurden temperaturabhängig von einem Labor- und Synchrotronpulverdiffraktometer vermessen. Die Raumgruppe ist C2/c mit den folgenden Gitterparametern für [Mg(H₂O)₆]RbBr₃: a = 9,64128(6) Å, b = 9,86531(5)Å, c = 13,78613(9) Å, $\beta = 90,0875(5)^{\circ}$ und für [Mg(H₂O)₆]CsBr₃: a = 9,82304(7) Å, b =9,98043(6) Å, c = 14,0100(1) Å, $\beta = 90,1430(4)^{\circ}$. Bei einer Temperatur von T = 358 K durchläuft [Mg(H₂O)₆]RbBr₃ eine reversible Phasenumwandlung in den kubischen Perovskit-Strukturtyp (Pm3m), welcher $[Mg(H_2O)_6]^{2+}$ Oktaeder in der kuboktaedrischen Lücke mit vierfacher Fehlordnung aufweist. Die Gitterkonstante bei T = 458 K beträgt 6,94198(1) Å. Im Falle von $[Mg(H_2O)_6]CsBr_3$ zeigen die Gitterparameter in Abhängigkeit von der Temperatur einen Knick bei T = 340 K, aber keine Phasenumwandlung wird erhalten, bevor die Zersetzung der Verbindung beginnt. Der Einfluss der Wasserstoffbrückenbindungen auf die Stabilität der Kristallstruktur erweist sich als Grund für die unterschiedlichen Verhalten beider Verbindungen mit Temperaturerhöhung. Die stärkeren Wasserstoffbrückenbindungen in [Mg(H₂O)₆]CsBr₃ im Gegensatz zu [Mg(H₂O)₆]RbBr₃ können als die Ursache für das Ausbleiben der Phasenumwandlung für $[Mg(H_2O)_6]CsBr_3$ bei hohen Temperaturen gesehen werden.

Literaturverzeichnis

- [1] E. Hjelt, *Geschichte der Organischen Chemie*, Vieweg Verlag, Braunschweig 1916.
- [2] E. J. Corey, Angew. Chem. 1991, 103, 469; Angew. Chem. Int. Ed. 1991, 30, 455.
- [3] E. J. Corey, *Pure Appl. Chem.* **1967**, *14*, 19.
- [4] I. Ugi, J. Bauer, K. Bley, A. Dengler, A. Dietz, E. Fountain, B. Gruber, R. Herges, M. Knauer, K. Reitsam, N. Stein, *Angew. Chem.* 1993, 105, 210; *Angew. Chem. Int. Ed.* 1971, 10, 43.
- [5] V. M. Goldschmidt, Skrift Nor. Vidensk. Akad. Kl. 1: Mat. Naturvidensk. Kl. 1926, I (Mat.-Naturv. Kl.).
- [6] A. R. West, Solid State Chemistry and its Applications, Wiley, New York, 1984.
- [7] L. Pauling, *The Nature of the Chemical Bond*, Cornell Universität Ithaca, 1960;
 Die Natur der Chemischen Bindung, Verlag Chemie, Weinheim, 1968.
- [8] W. Hume-Rothery, J. Inst. Met. 1926, 35, 295.
- [9] U. Müller, Anorganische Strukturchemie 2004, 4. Auflage, Teubner Verlag, Wiesbaden, S. 336.
- [10] I. D. Brown, R. D. Shannon, Acta Crystallogr. A, 1973, 29, 266.
- [11] R. Hoppe, Adv. Fluorine Chem. 1970, 6, 387.
- [12] M. Jansen, Angew. Chem. 2002, 114, 3896; Angew. Chem. Int. Ed. 2002, 41, 3746.
- [13] J. C. Schön, M. Jansen, Angew. Chem. 1996, 108, 1358; Angew. Chem. Int. Ed. 1996, 35, 1286.
- [14] L. D. Landau, E. M. Lifshitz, *Statistical Physics, Part 1*, 3. Auflage, Verlag Pergamon, New York, 1985.
- [15] R. Dronskowski, R. Hoffmann, Adv. Mat. 1992, 4, 514.
- [16] M. Jansen, Abh. Rheinisch Westfael. Akad. Wiss. 1996, N 341.
- [17] J. Buttet, Z. Phys. D 1986, 3, 155.
- [18] A. W. Castleman, R. G. Keesee, *Chem. Rev.* **1986**, *86*, 589.
- [19] W. Darmgaard Kristensen, E. J. Jensen, R. M. J. Cotterill, J. Chem. Phys. 1974, 60, 4161.

- [20] R. Duhlev, I. D. Brown, C. Balarew, J. Solid State Chem. 1991, 95, 39.
- [21] H. Mayer, in Ergebnisse der Hochvakuumtechnik und der Physik dünner Schichten, Vol. II (Hrsg. M. Auwärter), Wiss. Verlagsges., Stuttgart, **1971**, 221.
- [22] M. A. Hermann, H. Sitter in *Molecular Beam Epitaxy, Vol. 7*, Springer, Berlin, 1996.
- [23] J. M. Jensen, A. B. Oelkers, R. Toivola, D. C. Johnson, J. W. Elam, S. M. George, *Chem. Mater.* 2002, 14, 2276.
- [24] T. Novet, J. M. McConnell, D. C. Johnson, Chem. Mater. 1992, 4, 473.
- [25] L. Fister, X. M. Li, J. M. McConnell, T. Novet, D. C. Johnson, J. Vac. Sci. Technol. 1993, 11, 3014.
- [26] M. Noh, J. Thiel, D. C. Johnson, Science 1995, 270, 1181.
- [27] M. Noh, J. Thiel, D. C. Johnson, Angew. Chem. 1996, 108, 2805; Angew. Chem. Int. Ed. Engl. 1996, 35, 2666.
- [28] T. A. Hughes, S. D. Kevan, D. E. Cox, D. C. Johnson, J. Am. Chem. Soc. 2000, 122, 8910.
- [29] J. R. Williams, M. Johnson, D. C. Johnson, J. Am. Chem. Soc. 2001, 123, 1645.
- [30] L. Fister, T. Novet, C. A. Grant, D. C. Johnson, *Adv. Synth. React. Solids*, 1994, 2, 155.
- [31] T. Novet, D. C. Johnson, L. Fister, Adv. Chem. Ser. 1995, 245, 425.
- [32] H. Remy, Lehrbuch der Anorganischen Chemie, Akad. Verlagsges. Leipzig, 1965.
- [33] H. J. Queisser, Z. f. Physik 1958, 152, 507.
- [34] J. B. Parise, C. L. Cahill, Y. J. Lee, *Can. Mineral.* 2000, *38*, 777.
- [35] P. J. Chupas, M. F. Circolo, J. C. Hanson, C. P. Grey, J. Am. Chem. Soc. 2001, 123, 1694.
- [36] A. P. Hammersley, *FIT2D*, Vers. 9.129, ESRF Internal Report ESRF98HA01T.
- [37] A. P. Hammersley, S. O. Svenson, M. Hanfland, D. Hauserman, *High Pressure Res.* 1996, 14, 235.
- [38] *OPUS*, Version 2.03; Bruker Optik **1999**.
- [39] EVA version 9.0, SOCABIM, 1996–2003; J. Ian Ianford, D. Louër, Rep. Prog. Phys. 1996, 59, 131.

- [40] Coelho, A. A., Topas, General Profile and Structure Analysis Software for Powder Diffraction Data, Vers. 3.0, Bruker AXS GmbH, Karlsruhe, Germany 2006.
- [41] A. Le Bail, H. Duroy, J. L. Fourquet, Mater. Res. Bull. 1988, 23, 447.
- [42] H. M. Rietveld, J. Appl. Cryst. 1969, 2, 65.
- [43] *WinX^{POW}*, Version 1.02, STOE & CIE, 1998.
- [44] P.-E. Werner, L. Erikson, M. Westdahl, J. Appl. Cryst. 1985, 18, 367.
- [45] D. Louër, M. Louër, J. Appl. Cryst. 1972, 5, 271.
- [46] J. W. Visser, J. Appl. Cryst. 1969, 2, 89.
- [47] *Daimond*, Version 3.1, Klaus Brandenburg, Crystal Impact GbR, Bonn, 2005.
- [48] *Microsoft Word*, Part of Microsoft Standard Edition 2003.
- [49] *Microsoft Excel 2003*, Part of Microsoft Standard Edition 2003.
- [50] E. Machlin, *The Relationsships Between Thin Film Processing and Structure*, Materials Science in Microelectronics, Giro Press, New York, **1995**.
- [51] K. Reichelt, in 17. IFF Ferienkurs: Dünne Schichten und Schichtsysteme 1986, KFA, Jülich.
- [52] W. J. Moor, *Grundlagen der Physikalischen Chemie* 1990, Walter De Gruyter Verlag, Berlin New York, S. 819.
- [53] D. W. Lynch, *Phys. Rev.* **1969**, *118*, 468.
- [54] J. F. Laurent, J. Bénard, J. Phys. Chem. Solids 1957, 3, 7.
- [55] F. Bénière, D. Kostopoulos, K. V. Reddy, J. Phys. Chem. Solids 1980, 41, 727.
- [56] M. Bénière, F. Bénière, M. Chemla, J. Chim. Phys. Phys. Chim. Biol. 1970, 67, 1312.
- [57] H. W. Schamp, E. Katz, *Phys. Rev.* **1954**, *94*, 828.
- [58] S. Pillet, M. Souhassou, C. Lecomte, K. Schwarz, P. Blaha, M. Rerat, A. Lichanot, P. Roversi, *Acta Crystallogr.* 2001, 57, 290.
- Y. Nakanishi, H. Mizota, Y. Ito, M. Takano, S. Fukao, S. Yoshikado, K. Ohyama,
 K. Yamada, S. Fukushima, *Physica Scripta* 2006, *73*, 471.
- [60] P. Cortona, *Phys. Rev.* 3.B **1992**, 46, 2008.
- [61] M. Ahtee, Annales Acad. Sci. Fenn. A6 1969, 313, 1.
- [62] W. P. Davey, F. G. Wick, *Phys. Rev.* **1921**, *17*, 403.

- [63] D. Walker, P. K. Verma, L. M. D. Cranswick, R. L. Jones, S. M. Clark, S. Buhre, *Am. Min.* 2004, 89, 204.
- [64] E. Wagner, Annalen der Physik 1916, 49, 625.
- [65] H. Ott, Zeitschrift für Kristallographie, Kristallgeometrie, Kristallphysik, Kristallchemie **1929**, 63, 222.
- [66] W. T. Barrett, W. E. Wallace, J. Am. Chem. Soc. 1954, 76, 366.
- [67] A. Trzesowska, R. Kruszynski, *Theochem.* 2005, 714, 175.
- [68] M. Blackman, I. H. Khan, *Proc. Phys. Soc. London* **1961**, *77*, 471.
- [69] C. D. West, Zeitschrift für Kristallgeographie, Kristallgeometrie, Kristallphysik, Kristallchemie **1934**, 88, 94.
- [70] L. G. Schulz, Acta Crystallogr. 1951, 4, 487.
- [71] W. Rühl, Z. f. Phys. 1956, 143, 591.
- [72] J. Schulz, J. Chem. Phys. 1949, 11, 1153.
- [73] C. E. Weir, G. J. Piermarini, J. Research of the National Bureau of Standards, Section A. Physics and Chemistry **1964**, 68, 105.
- [74] Ž. Čančarević, Prediction of not-yet-synthesized solids at extreme pressures, and the development of algorithms for local optimization on ab-initio level, Dissertation am Max-Planck-Institut für Festkörperforschung, Stuttgart 2006.
- [75] Gmelin, Handbuch der anorganischen Chemie, Cs, 1938, Berlin, S. 254.
- [76] S. Zhemchuzhnyi, F. Rambach, Z. Anorg. Chem. 1910, 65, 403.
- [77] H. Keitel, Neues Jahrb. Mineral. Geol. Paläontol. Abh. Abt. 52A 1925, 378.
- [78] O. S. Dombrovskaya, Zh. Obshch. Khim. 1933, 3, 1017.
- [79] I. V. Vasil'kova, A. I. Efimov, L. V. Ryazantseva, A. V. Storonkin, Russ, J. Inorg. Chem 1977, 51, 480.
- [80] I. I. Il'yasov, A. G. Bergman, Russ, J. Inorg. Chem 1962, 7, 355.
- [81] J. D. Weyand, Diss. Abstr. Int. B 32 1972, 7014.
- [82] S. S. Batsanov, V. P. Bokarev, I. Kh. Moroz, Russ. J. Inorg. Chem. 1981, 26, 1557.
- [83] M. Nataranja, K. J. Rao, C. N. R. Rao, *Trans. Faraday Soc.* **1970**, *66*, 2497.
- [84] H. T. Fullam, Mater. Res. Bull. 1972, 7, 289.
- [85] K. J. Rao, G. V. S. Rao, C. N. R. Rao, *Trans. Faraday Soc.* **1967**, *63*, 1013.

- [86] J. Arends, H. Nijbör, *Phys. Status Solidi* **1968**, *26*, 537.
- [87] H. Weijma, J. Arends, *Phys. Status Solidi* **1969**, *35*, 205.
- [88] R. J. Havighurst, E. Mack. und F.C. Blake, J. Am. Chem. Soc. 1925, 40, 47.
- [89] J. Sangster, A. D. Pelton, J. Phys. Chem. Ref. Data 1987, Vol. 16, Nr. 3.
- [90] W. H. Bragg, W. L. Bragg, Z. Anorg. Allg. Chem. 1915, 90, 167.
- [91] W. P. Davey, F. G. Wick, Z. Phys. Chem. B 1929, 3, 209.
- [92] V. V. Evdokimova, L. F. Verashchagin, *Fizika Tverdogo Tela* 1962, 4, 1965.
- [93] Q. Johnson, *Science* **1966**, *153*, 3734.
- [94] Gmelin, Handbuch der anorg. Chem., Verlag Chemie GmbH, Na, 1973.
- [95] R. G. Samuseva, V. E. Plyushchev, Russ. J. Inorg. Chem. 1961, 6, 1092.
- [96] S. Zhemchuzhnyi, F. Rambach, Z. Anorg. Chem. 1910, 65, 403.
- [97] I. G. Murgulescu, S. Sternberg, Z. Phys. Chem. 1962, 219, 114.
- [98] B. Wassermann, W. Höhnle, T. P. Martin, Solid State Commun. 1988, 65, 561.
- [99] D. Fischer, A. Müller, M. Jansen, Z. Anorg. Allg. Chem. 2004, 630, 2697.
- [100] L. Royer, Bl. Soc. Min. 1928, 51, 7.
- [101] W. Heintze, Z. Krist. 1937, 250, 241.
- [102] L. Krastanow, I. N. Stranski, Z. Krist. 1938, 99, 444.
- [103] E. Posnjak, R.W.G. Wyckoff, J. of the Washington Academy of Sciences 1922, 12, 248
- [104] H. Ott, Zeitschrift für Kristallographie, Kristallgeometrie, Kristallphysik, Kristallchemie **1929**, 63, 222.
- [105] Ž. Čančarević, J. C. Schön, M. Jansen, Chem. Asian J. 2008, 3, 561.
- [106] Determination of the structure candidates be semilocal gradient-dependent function DFT calculation (Becke-PWGGA), Li with all electron basis set (AEBS) and Br with effective-core-pseudopotential ECP basis set (PPBS).
- [107] G. J. Finch, S. Fordham, Proceedings of the Physical Society, London 1936, 48, 85.
- [108] Ž. Čančarević, J. C. Schön, D. Fischer, M. Jansen, *Mater. Sci. Forum* 2005, 494, 61.
- [109] O. Yu. Gorbenko, S. V. Samoilenkov, I. E. Graboy, A. R. Kaul, *Chem. Mat.* 2002, 14, 4026.

- [110] D. Fischer, M. Jansen, J. Am. Chem. Soc. 2002, 124, 3488.
- [111] W.P. Davey, *Phys. Rev.* **1922**, *19*, 538.
- [112] I. I. Il'yasov, K. I. Iskandarov, M. Davranov, R. N. Berdieva, *Zh. Neorg. Khim.* 1975, 20, 250.
- [113] V. E. Plyushchev, R. G. Samuseva, Russ. J. Inorg. Chem. 1964, 9, 1177.
- [114] D. S. Lesnykh, E. P. Garmatina, Zh. Neorg. Khim. 1967, 12, 1307.
- [115] H. C. Gaebell, G. Meyer, Z. Anorg. Allg. Chem. 1984, 513, 15.
- [116] I. V. Pentin, J. C. Schön, M. Jansen, Solid State Sci. 2007, doi: 10.1016/j.solidstate sciences.2007.06.001.
- [117] H.E. Swanson, W. P. Davey, National Bureau of Standards 1955, 539, 31.
- [118] J. E. Nickels, M. A. Fineman, W. E. Wallace, Journal of Physical Chemistry 1949, 53, 625.
- [119] Y. Liebold-Ribeiro, D. Fischer, M. Jansen, Angew. Chem. 2008, 120, 4500; Angew. Chem. Int. Ed. 2008, 47, 4428.
- [120] H. Ohno, K. Furukawa, J. Nucl. Mater. 1977, 64, 37.
- [121] A. S. Arabadzhan, A. G. Bergman, Russ. J. Inorg. Chem. 1962, 7, 1152.
- [122] G. Kellner, Z. Anorg. Allg. Chem. 1917, 99, 137.
- [123] V. V. Bugaenko, R. V. Chernov, Yu. P. Krasan, Ukr. Khim. Zh. Russ. Ed. 1977, 43, 1215.
- [124] J. C. Schön, I. V. Pentin, M. Jansen, Phys. Chem. Chem. Phys. 2006, 8, 1778.
- [125] A. Hoennerscheid, J. Nuss, C. Muehle, M. Jansen, Z. Anorg. Allg. Chem. 2003, 629, 312.
- [126] H. W. Lerner, M. Boöte, Acta Crystallogr. E, Structure Reports Online 2003, 59, 20.
- [127] E. Weiss, H. Hensel, H. Kühr, *Chem. Ber.* **1969**, *102*, 632.
- [128] C. Eilbracht, W. Kockelmann, D. Hohlwein, H. Jacobs, *Physica B* 1997, 234, 48.
- [129] C. Eilbracht, *Dissertation*, Univ. Dortmund 1997.
- [130] E. Weiss, Z. Anorg. Allg. Chem. 1965, 341, 203.
- [131] S. B. Hendricks, Amer. J. Sci. 1928, 15, 403.
- [132] K. Schäfer, C. Synowietz, Taschenbuch f
 ür Chemiker und Physiker, Bd. III, Springer Verlag, 1970.

- [133] D.Fischer, U. Müller, M. Jansen, unpublished.
- [134] J. C. Schön, I. V. Pentin, M. Jansen, Phys. Chem. Chem. Phys. 2006, 8, 1778.
- [135] J. C. Schön, I. V. Pentin, M. Jansen, J. Phys. Chem. B 2007, 111, 3943.
- [136] I. V. Pentin, J. C. Schön, M. Jansen, J. Chem. Phys. 2007, 126, 12.
- [137] I. V. Pentin, J. C. Schön, M. Jansen, unpublished.
- [138] A. F. Levin'sh, M. E. Straumanis, K. Karlsons, Z. Phys. Chem. B 1938, 40, 146.
- [139] L. H. Adams, B. L. Davis, Proceedings of the National Academy of Sciences, U.S.A. 1962, 48, 983.
- [140] R. Sridhar, C. E. Johnson, E. J. Cairns, J. Chem. Eng. Data 1970, 15, 244.
- [141] S. D. Gromakov, L. M. Gromakov, Zh. Fiz. Khim. 1953, 27, 1545.
- [142] G. Flor, C. Margheritis, C. Sinistri, J. Chem. Eng. Data 1979, 24, 361.
- [143] I I. Ilyasov, K. I. Iskandarov, Yu. G. Litvinov. Russ. J. Inorg. Chem. 1976, 21, 473.
- [144] T. W. Richards, W. B. Meldrum, J. Am. Chem. Soc. 1917, 39, 1816.
- [145] H. C. Gaebell, G. Meyer, R. Hoppe, Mater. Res. Bull. 1983, 18, 429.
- [146] G. Meyer, H. C. Gaebell, *Mater. Res. Bull.* 1983, 18, 1353.
- [147] I. V. Aleksandrov, A. F. Goncharov, I. N. Makarenko, S. M. Stishov, *Phys. Rev. B* 1991, 43, 6194.
- [148] E. Korreng, Z. Anorg. Chem. 1915, 91, 194.
- [149] E. P. Dergunov, Zh. Fiz. Khim 1951, 25, 584.
- [150] C. E. Harvie, J. H. Weare, L. A. Hardie, H. P. Eugster, Science 1980, 208, 498.
- [151] T. K. Lowenstein, R. J. Spencer, P. Zhang, Science 1989, 245, 1090.
- [152] W. Fischer, Neues Jahrb. Mineral. Monatsh. 1973, 1973, 100.
- [153] E. O. Schlemper, P. K. Sen Gupta, T. Zoltai, Am. Mineral. 1985, 70, 1309.
- [154] R. D. Burbank, H. T. Evans, *Acta Crystallogr.* **1948**, *1*, 330.
- [155] M. Nakayasu, Y. Suzukawa, W. Kobayashi, Denki Kagaku Oyobi Kogvo Butsuri Kagaku 1983, 51, 419.
- [156] X. Solans, M. Font-Altaba, M. Aquilo, J. Solans, M. V. Domenech, Acta Crystallogr. 1983, 39, 1488.
- [157] K. Waizumi, H. Masuda, H. Ohtaki, K. A. Burkov, M. Y. Scripkin, Acta Crystallogr. 1992, 48, 218.

- [158] K. Waizumi, H. Masuda, H. Ohtaki, M. Y. Scripkin, K. A. Burkov, *Am. Mineral.* 1991, 76, 1884.
- [159] R. E. Marsh, Acta Crystallogr. C 1992, 48, 218.
- [160] R. E. Marsh, Acta Crystallogr. C 1992, 48, 972.
- [161] V. M. Goldschmidt, Skrifter utgitt av det Norske Videnskaps-Akademi i Oslo 1: Matematisk-Naturvidenskapelig Klasse 1926, 1926, 1.
- [162] A. F. Wells, Structural inorganic chemistry, 5th ed., Clarendon Press, Oxford 1984, 1096.
- [163] H.-H. Emons, P. Brand, T. Pohl, K. Köhnke, Z. Anorg. Allg. Chem. 1988, 563, 180.
- [164] H.-H. Emons, R. Naumann, T. Pohl, V. Voigt, J. Thermal Analysis 1984, 29, 571.
- [165] H.-H. Emons, H. Voigt, T. Pohl, R. Naumann, *Thermochimica Acta* **1987**, *121*, 151.
- [166] H.-H. Emons, H. Voigt, R. Naumann, T. Pohl, J. Thermal Analysis 1991, 37, 1605.
- [167] S. Shoval, S. Yariv, Y. Kirsh, H. Peled, *Thermochimica Acta* 1986, 109, 207.
- [168] S. Shoval, S. Yariv, *Thermichimica Acta* 1985, 92, 819.
- [169] S. Shoval, S. Yariv, Y. Kirsh, *Thermochimica Acta* 1988, 133, 263.
- [170] Y. Kirsh, S. Shoval, S. Yariv, *Thermochimica Acta* 1989, 148, 197.
- [171] R. Naumann, H.-H. Emons, T. Pohl, *Thermochimica Acta* 1985, 92, 673.
- [172] P. A. Agron, W. R. Busing, Acta Crystallogr. C 1985, 41, 8.
- [173] A. P. Hammersley, *FIT2D*, Vers. 9.129, ESRF Internal Report ESRF98HA01T.
- [174] A. P. Hammersley, S. O. Svenson, M. Hanfland, D. Hauserman, *High Pressure Res.* 1996, 14, 235.
- [175] C. V. Depree, E. W. Ainscough, A. M. Brodie, G. J. Gainsford, C. Lensink, Acta Crystallogr. C 2000, 56, 17.
- [176] W. Mikenda, J. Mol. Struc. 1986, 147, 1.
- [177] L. Sieroń, M. Bukowska-Strzyżewska, Acta Crystallogr. C 1997, 53, 296.
- [178] G. Schilling, G. Meyer, Z. Anorg. Allg. Chem. 1996, 622, 759.
- [179] C. Feldmann, M. Jansen, Z. Anorg. Allg. Chem. 1995, 621, 1907.

A Anhang

A1 Indizierung für LiI/RbI-Gemenge (1:1): hkl-Werte, berechnete und erhaltene Reflexlagen (2 θ), sowie die beobachtete Reflexintensitäten.

h k	x I	2θ (obs.)	2θ (calc.)	I (obs.)	0	2	2	29.73193	29.732	0.54	1	2	3	37.091	37.0911	0.36
1 1	1	15.92546	15,9255	0.00	0	1	3	29.90425	29.9043	2.46	2	-2	-3	37.18811	37.1881	0.96
-3 () 1	17.51617	17.5162	0.00	1	-2	-2	29.91892	29.919	3.89	5	2	1	37.35902	37.3591	0.03
2 -1	-1	17.65427	17.6543	0.01	1	-1	-3	29.94342	29.9435	7.11	7	0	0	37.36143	37.3615	0.05
0 0) 2	18 21587	18 2159	0.19	3	2	1	30.18467	30.1847	2.59	6	-1	-2	37.42537	37.4254	0.25
-1 () 2	18 51107	18 5111	0.71	2	0	3	30.36747	30.3675	0.00	-2	0	4	37.52859	37.5286	9.01
2 1	1	18 59872	18 5987	0.12	1	2	2	30.50286	30.5029	0.00	-7	0	1	37.69573	37.6958	1.92
3 () 1	18.92576	18,9258	0.85	-3	0	3	30.5602	30.5602	3.45	4	2	2	37.71136	37.7114	2.97
1 () 2	19.41527	19.4153	0.62	1	1	3	30.81494	30.815	8.96	1	0	4	37.79332	37.7934	0.52
3 1	0	19.62143	19.6215	1.50	-5	0	2	30.90454	30.9046	0.00	2	-3	-1	37.82912	37.8292	1.71
-2 () 2	20.23786	20.2379	1.35	2	-1	-3	30.9292	30.9292	0.00	2	3	1	38.30567	38.3057	1.07
3 -1	-1	21.05285	21.0529	1.10	2	-2	-2	31.04812	31.0482	0.00	4	1	3	38.32753	38.3276	0.33
4 () 0	21.09204	21.0921	0.00	5	1	1	31.13001	31.1301	2.51	6	0	2	38.39399	38.3941	0.04
0 1	2	21.64254	21.6426	0.00	4	1	2	31.54277	31.5428	3.37	5	-1	-3	38.61025	38.6103	0.07
2 () 2	21.87359	21.8736	13.20	4	2	0	31.62773	31.6278	0.00	2	2	3	38.62294	38.623	0.07
1 -1	-2	21.89331	21.8933	2.01	6	0	0	31.86895	31.869	3.24	1	-1	-4	38.73023	38.7303	0.10
-4 () 1	22.24052	22.2405	0.09	2	2	2	32.16938	32.1694	7.66	3	-2	-3	38.77922	38.7793	0.08
3 1	1	22.24749	22.2475	0.07	-6	0	1	32.38997	32.39	0.86	0	1	4	38.81632	38.8164	0.07
1 1	2	22.66829	22.6683	0.16	4	-2	-1	32.42726	32.4273	2.93	3	3	0	38.84264	38.8427	0.05
-3 () 2	23.08965	23 0897	0.44	2	1	3	32.60363	32.6037	4.61	-3	0	4	38.99132	38.9914	0.18
0 2	2 0	23 29661	23 2966	0.00	3	-1	-3	32.78452	32.7846	1.68	5	-2	-2	39.05933	39.0594	1.48
2 -1		23 38161	23.2900	0.00	3	-2	-2	33.03243	33.0325	0.77	7	1	0	39.24565	39.2457	1.03
4 () 1	23.30101	23.3010	0.00	3	0	3	33.06857	33.0686	0.46	7	0	1	39.34702	39.3471	0.19
1 2	, i	23,89597	23.896	0.00	5	-1	-2	33.10809	33.1081	0.37	2	-1	-4	39.40602	39.4061	0.14
4 1	0	23.09397	23.090	38.00	-4	0	3	33.31843	33.3185	1.14	2	0	4	39.4178	39.4179	0.13
2 1	2	24 82075	24.1222	7 42	4	2	1	33.50721	33.5073	3.17	7	-1	-1	39.56643	39.5665	0.28
0 2	2 1	25.04966	25.0497	2.90	5	0	2	33.65571	33.6558	8.96	3	-3	-1	39.62914	39.6292	0.63
4 -1	1	25 14699	25 147	0.06	6	0	1	34.00007	34.0001	0.11	1	1	4	39.66013	39.6602	1.02
3 () 2	25 24296	25 243	3.91	6	1	0	34.01662	34.0167	6.75	6	2	0	39.84973	39.8498	1.58
1 -2	2 -1	25 43996	25.44	14 70	6	-1	-1	34.50881	34.5089	28.50	0	3	2	39.96451	39.9646	0.51
2 2	2 0	25 61483	25 6149	1.21	3	2	2	34.61605	34.6161	2.48	1	-3	-2	40.10908	40.1091	0.04
1 2	2 1	25 77985	25 7799	0.00	3	1	3	35.15119	35.1512	5.40	6	1	2	40.23727	40.2373	0.06
3 -1	-2	25.90629	25.9063	2.06	0	3	0	35.2584	35.2584	0.06	5	0	3	40.24141	40.2415	0.05
5 () 0	26.4507	26.4507	0.49	4	-1	-3	35.3881	35.3881	2.31	6	-2	-1	40.28023	40.2803	0.34
4 1	1	26.49619	26.4962	23.10	-6	0	2	35.45926	35.4593	0.78	-7	0	2	40.30094	40.301	1.09
-4 () 2	26.72878	26.7288	33.90	5	2	0	35.53233	35.5324	0.09	3	3	1	40.31521	40.3153	0.78
2 -2	2 -1	26.90524	26.9053	5.36	1	3	0	35.67189	35.6719	0.06	1	3	2	40.56303	40.5631	4.05
-5 () 1	27.22715	27.2272	2.32	5	1	2	35.70818	35.7082	0.28	-6	0	3	40.57304	40.5731	3.08
0 () 3	27.47126	27.4713	0.00	4	-2	-2	35.74594	35.746	1.59	3	-1	-4	40.81195	40.812	0.95
-1 () 3	27.51359	27,5136	0.01	6	1	1	36.03534	36.0354	5.63	3	2	3	40.84444	40.8445	0.56
2 2	2 1	27.54748	27.5475	8.72	5	-2	-1	36.13115	36.1312	10.00	2	-3	-2	40.99022	40.9903	0.17
3 1	2	27.85596	27.856	3.22	0	2	3	36.32092	36.321	6.36	4	-2	-3	41.05317	41.0532	0.61
3 2	2 0	28.26289	28.2629	4.57	1	-2	-3	36.35389	36.3539	3.50	-4	0	4	41.14398	41.144	3.05
1 () 3	28.45292	28.453	0.00	4	0	3	36.40316	36.4032	1.76	7	1	1	41.15451	41.1546	3.18
-2 () 3	28.57573	28.5758	12.60	0	3	1	36.48348	36.4835	1.14	2	1	4	41.22271	41.2228	3.07
5 () 1	28.7914	28.7915	6.55	-5	0	3	36.69849	36.6985	0.89	5	2	2	41.33572	41.3358	2.71
5 1	0	28.96267	28.9627	0.50	1	-3	-1	36.76251	36.7626	0.58	4	3	0	41.44768	41.4477	3.68
4 -1	-2	29.21868	29.2187	1.17	-1	0	4	36.82375	36.8238	0.37	6	2	1	41.62515	41.6252	0.37
4 () 2	29.234	29.2341	0.60	2	3	0	36.88824	36.8883	0.20	3	0	4	41.71434	41.7144	0.37
3 -2	2 -1	29.29619	29.2962	0.07	0	0	4	36.91361	36.9137	0.17	2	3	2	41.87825	41.8783	16.90
5 -1	-1	29.67853	29.6786	1.64	1	3	1	37.00729	37.0073	0.13	5	1	3	42.01696	42.017	3.33

7 -1 -2	42.07441	42.0745	0.63	1 0	5	47.45362	47.4537	0.08	1 -4	-2	51.52732	51.5274	1.97
4 -3 -1	42.08425	42.0843	0.64	5 -3	-2	47.57837	47.5784	0.37	4 3	3	51.58024	51.5803	1.47
6 -1 -3	42.33712	42.3372	32.20	0 4	0	47.63284	47.6329	0.55	8 -2	-2	51.6194	51.6195	1.90
3 -3 -2	42.57018	42.5702	21.00	4 -2	-4	47.81487	47.8149	3.09	34	1	51.69711	51.6972	3.56
6 -2 -2	42.86168	42.8617	0.86	1 4	0	47.95672	47.9568	1.31	5-3	-3	51.80438	51.8044	0.94
4 -1 -4	42.88879	42.8888	0.35	5 0	4	47.99322	47.9933	1.22	60	4	51.82757	51.8277	0.49
8 0 0	42.9445	42.9446	0.01	1 -1	-5	48.03898	48.039	1.52	1 -3	-4	51.8997	51.8998	0.00
4 3 1	42.95378	42.9538	0.02	-3 0	5	48.06171	48.0618	2.00	14	2	51.90166	51.9017	0.00
-8 0 1	43.13523	43.1353	0.00	0 1	5	48.21004	48.2101	6.46	91	1	51.9477	51.9478	0.00
7 0 2	43.38456	43.3846	0.00	63	0	48.25513	48.2552	3.15	0 3	4	51.96819	51.9683	0.00
3 1 4	43.44048	43.4406	0.00	3 2	4	48.32217	48.3223	0.92	-5 0	5	52.10952	52.1096	0.00
4 2 3	43.66983	43.6699	4.16	2 -1	-5	48.51122	48.5113	0.03	9 -1	-2	52,16349	52,1636	0.00
3 3 2	43.85756	43.8576	4.64	8 0	2	48.5943	48.5944	0.37	2 -4	-2	52.25533	52.2554	0.00
-5 0 4	43.90411	43.9042	0.01	0 4	1	48.59706	48.5971	0.22	7 3	0	52.31063	52.3107	0.00
5 -2 -3	43 92395	43 924	0.00	6 -3	-1	48 62545	48 6255	0.74	7 -1	-4	52,41913	52,4192	3 57
1 -2 -4	44 03192	44 032	0.00	9.0	0	48 63678	48 6369	1 48	2 -3	-4	52.41915	52 439	2 30
0 2 4	44 10943	44 1095	10.10	-9 0	1	48 71231	48 7124	4 56	3 1	5	52 44771	52 4478	1.97
6 0 3	14.10545	11.1095	10.10	- 5 0 6 1	1	48 7621	48 7622	4.50	73	1	52.56752	52.4470	0.53
7 2 0	44.40552	44.4066	0.18	1 4	-4	40.7021	40.7022	4.02 2.05	1 2	-1	52,50752	52.5070	0.55
1 2 0	44.49032	44.4900	0.18	1 -4	-1	40.0100	40.0107	2.95	1 -2	-5	52.39209	52.3920	0.78
4 0 4	44.59948	44.5996	0.00	2 0	5	48.91222	48.9123	1.47	44	0	52.63557	52.0550	0.45
5 3 0	44.61233	44.6124	0.00	24	0	48.91865	48.918/	1.56	1 3	4	52.64272	52.6428	0.55
8 1 0	44.63219	44.6323	0.00	14	I r	49.01351	49.0136	2.73	02	5	52.75287	52.7529	0.95
2 -2 -4	44.64135	44.6414	0.00	11	5	49.01934	49.0194	2.82	24	2	52.99483	52.9949	1.62
7 -2 -1	44.78633	44.7864	0.38	7 0	3	49.06957	49.0697	2.56	2 -2	-5	53.0351	53.0352	2.59
4 -3 -2	44.78928	44.7893	0.25	3 3	3	49.11255	49.1126	3.25	63	2	53.1075	53.1076	5.26
8 -1 -1	44.81718	44.8172	0.58	4 -3	-3	49.29325	49.2933	0.06	4 -4	-1	53.16718	53.1672	7.09
8 0 1	44.82779	44.8279	0.57	8 2	0	49.42191	49.422	2.17	6 -2	-4	53.2704	53.2705	5.23
-7 0 3	44.84728	44.8473	0.46	-8 0	3	49.45643	49.4565	5.87	6 1	4	53.29839	53.2985	5.45
1 2 4	44.87107	44.8711	0.36	5 3	2	49.53829	49.5384	3.36	1 2	5	53.51185	53.5119	2.92
7 1 2	45.05909	45.0592	0.00	5 1	4	49.5461	49.5462	2.64	4 0	5	53.54819	53.5483	3.02
5 -3 -1	45.10929	45.1094	0.00	8 -2	-1	49.59309	49.5932	2.66	3 -3	-4	53.57299	53.5731	3.78
0 3 3	45.26738	45.2674	1.66	3 -1	-5	49.61298	49.613	2.45	3 -4	-2	53.5749	53.575	3.88
1 -3 -3	45.29488	45.2949	4.48	2 -4	-1	49.67177	49.6718	1.11	73	1	53.85171	53.8518	4.26
-8 0 2	45.37911	45.3792	6.80	63	1	49.78979	49.7899	1.52	4 4	1	53.89792	53.898	3.29
6 2 2	45.39394	45.394	6.19	-4 0	5	49.80214	49.8022	1.78	2 3	4	53.90731	53.9074	1.41
5 -1 -4	45.56347	45.5635	19.70	7 2	2	49.81711	49.8172	2.81	8 0	3	53.9503	53.9504	1.53
1 3 3	45.91172	45.9118	5.67	2 4	1	50.05611	50.0562	3.97	52	4	54.00686	54.007	0.57
3 -2 -4	45.9161	45.9161	3.23	8 1	2	50.13329	50.1334	0.17	90	2	54.01039	54.0105	0.66
2 -3 -3	45.99329	45.9933	0.21	9 1	0	50.17479	50.1749	0.04	3 -2	-5	54.06977	54.0698	1.41
6 1 3	46.12873	46.1288	1.90	9 -1	-1	50.24861	50.2487	0.01	-9 0	3	54.36014	54.3602	3.29
5 3 1	46.13703	46.1371	2.25	5 -2	-4	50.28486	50.2849	0.01	7 0	1	54.43938	54.4395	12.90
7 2 1	46.22804	46.2281	3.80	2 1	5	50.44401	50.4441	0.00	10 0	0	54.45995	54.46	0.28
4 1 4	46.23915	46.2392	3.55	90	1	50.44913	50.4492	0.00	53	3	54.55746	54.5575	0.18
2 2 4	46.2902	46.2903	2.84	3 4	0	50.49144	50.4915	0.00	8 2	2	54.55957	54.5597	0.19
4 3 2	46.43402	46.4341	1.40	7 1	3	50.59784	50.5979	0.00	92	0	54.59867	54.5988	0.18
-1 0 5	46.44841	46.4485	1.18	-9 0	2	50.66948	50.6696	0.05	7-3	-2	54.60468	54.6047	0.63
8 1 1	46.46115	46.4612	0.65	6 2	3	50.81009	50.8102	1.16	34	2	54.66286	54.6629	0.55
7 -1 -3	46.4801	46.4802	0.41	6 -3	-2	50.86977	50.8698	1.17	9-2	-1	54.66824	54.6683	1.58
0 0 5	46.6239	46.624	0.01	4 2	4	50.91282	50.9129	1.02	6-3	-3	54.82088	54.8209	3.79
-2 0 5	46.93278	46.9328	0.27	-7 0	4	50.93046	50.9305	0.78	2 2	5	54.85243	54.8525	1.65
8 -1 -2	46.99752	46.9976	0.31	3 0	5	50.95963	50.9597	0.82	-6 0	5	54.93507	54.9351	1.37
5 2 3	47.01561	47.0157	0.36	8 -1	-3	50.97617	50.9762	0.64	4 1	5	54.98689	54.987	0.28
7 -2 -2	47.06819	47,0683	0.37	8 2	1	51,11946	51.1196	1.67	7.2	3	54,99752	54.9976	0.31
-6 0 4	47.18999	47 19	0.36	3 -4	-1	51.13327	51.1333	1.44	-8 0	4	55.06951	55.0696	0.30
2 3 3	47,20652	47 2066	0.36	7 -2	-3	51 13712	51 1372	2.30	4 -3	-4	55 27658	55 2766	1 47
6 -2 -3	47 30876	47 3088	0.00	A _1	_5	51 31/12	51 3144	8 44	5 A	0	55 30575	55 3058	1. 1 /
3_3 3	47 33052	47 3306	0.09	0 4	2	51 40844	51 4085	6.53	2 4 2 1	-3	55 3516	55 3547	3 17
<u>ر- ر- ر</u>	JU. JUJJJJ	-1.5570	0.00	04	2	51.40044	51.4005	0.55	0-2	5	55.5540	55.5547	5.17
									I				

8 1	3	55.38187	55.382	2.60	-4	0	6	59.15331	59.1534	3.23	11 0	2	61.87284	61.8729	2.88
91	2	55.4409	55.441	2.45	4	2	5	59.16175	59.1618	3.40	1 -2	-6	61.90438	61.9045	3.48
4 -4	-2	55.457	55.4571	4.12	3	4	3	59.20971	59.2098	2.37	8 1	4	61.95615	61.9563	2.86
4 -2	-5	55.67413	55.6742	4.93	4	-4	-3	59.36882	59.3689	2.27	-8 0	5	61.96044	61.9605	2.13
5 -4	-1	55,73102	55,7311	11.90	7	0	3	59.53736	59.5374	2.61	74	0	62.04991	62.05	2.52
3 3	4	55 7345	55 7346	6.01	8	2	3	59 53868	59 5388	10.10	5 2	5	62.06171	62 0618	2 20
9_1	-3	55 78458	55 7847	6.27	-9	0	4	59 56725	59 5673	1.03	3 1	6	62 10685	62 107	1.87
10 1	1	55 96746	55 8675	7.75	- 5	4	т 2	50 59495	50 5840	1.05		6	62 1218	62 1210	1.07
0 4	-1	55.00240	55.0025	12.70	0	4	2	50 50505	50 5052	0.04		4	62 1640	62.1519	1.90
10 1	5	55.00002	55.0007	9.67	9	2	2	50 (2110	50 (212	1.21	2 -4	-4	02.1049	02.105	1.72
10 1	2	55.00200	55.0020	0.07	10	-5	-5	50 (2420	59.0515	1.21	11 0	1	62.17921	02.1795	1.45
1 -4	-3	55.89022	55.8905	14.80	10	0	2	59.03438	59.6545	1.04	8 - 3	-3	62.18/28	62.18/4	1.55
7 0	4	56.05013	56.0502	11.90	0	3	5	59.77869	59.7788	0.91	2 -2	-0	62.22019	62.2203	1.28
/ 0	2	56.1653	56.1654	10.90	6	4	1	59.8069	59.807	1.10	/ -4	-1	62.28019	62.2803	1.48
10 0	1	56.22572	56.2258	0.66	9	-2	-3	59.92334	59.9234	0.98	14	4	62.34766	62.3477	1.33
92	1	56.27325	56.2734	0.55	10	-2	-1	59.99777	59.9979	1.80	2-5	-1	62.37243	62.3725	1.32
6 -1	-5	56.34975	56.3498	0.65	10	2	0	60.01709	60.0172	3.33	5 -1	-6	62.46005	62.4601	1.33
14	3	56.42088	56.421	0.81	2	-3	-5	60.03884	60.0389	2.47	4 -3	-5	62.48465	62.4847	1.40
-1 0	6	56.46305	56.4631	1.32	6	0	5	60.15997	60.1601	1.31	2 5	1	62.70358	62.7037	1.50
9 -2	-2	56.47762	56.4777	1.31	2	1	6	60.23439	60.2345	1.15	64	2	62.76523	62.7653	4.04
8 -1	-4	56.48195	56.482	1.10	6	-3	-4	60.25594	60.256	1.44	1 2	6	62.89906	62.8992	4.78
2 -4	-3	56.49123	56.4913	1.12	- 11	0	1	60.33598	60.3361	0.98	93	1	63.04311	63.0432	4.44
54	1	56.61528	56.6154	1.19	11	0	0	60.43972	60.4398	1.89	3 -2	-6	63.07454	63.0746	2.38
5 0	5	56.62952	56.6296	0.43	9	1	3	60.45716	60.4573	2.68	3 5	0	63.07971	63.0798	1.94
0 0	6	56.70366	56.7037	0.50	6	-2	-5	60.46375	60.4638	2.04	4 0	6	63.17908	63.1792	2.14
7 -2	-4	56.71987	56.7199	0.77	1	3	5	60.47892	60.479	0.98	3 -4	-4	63.18441	63.1845	1.83
8 3	0	56.73097	56.7311	1.00	4	-1	-6	60.50418	60.5042	0.93	11 -1	-2	63.18909	63.1892	1.93
3 2	5	56.74696	56.7471	1.01	8	-2	-4	60.59025	60.5903	0.96	9-3	-2	63.23386	63.234	1.84
-2 0	6	56.79713	56.7972	1.07	8	0	4	60.62459	60.6247	0.94	8 -1	-5	63.27565	63.2757	1.73
4 4	2	56.87199	56.8721	1.78	0	5	0	60.63076	60.6308	0.81	74	1	63.43587	63.436	2.00
8 -3	-1	56.88653	56.8866	1.36	6	-4	-2	60.76405	60.7641	1.65	7 -3	-4	63.46015	63.4602	1.77
7 3	2	57.09029	57.0904	1.36	3	0	6	60.77722	60.7773	2.00	3 3	5	63.48547	63.4856	1.92
7 1	4	57.44665	57.4468	12.40	10	-1	-3	60.88305	60.8831	2.07	11 1	1	63.49185	63.492	1.58
1 0	6	57.51426	57.5143	6.70	1	5	0	60.90568	60.9058	2.47	7 -2	-5	63.57988	63.5799	1.40
5 -3	-4	57.51639	57.5165	0.68	9	-1	-4	60.91254	60.9126	3.50	-6 0	6	63.6162	63.6163	1.28
2 4	3	57.54209	57.5422	0.30	5	3	4	60.9367	60.9368	0.50	3 -5	-1	63.63627	63.6364	1.45
6 2	4	57.55431	57.5544	0.26	10	1	2	60.97878	60.9789	0.41	0 5	2	63.8756	63.8757	1.24
10 -1	-2	57.55999	57.5601	0.15	3	-3	-5	60.99494	60.995	0.43	1 -5	-2	63.97914	63.9792	2.22
10 1	1	57.61946	57.6196	0.08	-5	0	6	61.13487	61.1349	0.33	5 4	3	64.0741	64.0742	3.28
3 -4	-3	57.65782	57.6579	0.14	4	4	3	61.39685	61.3969	0.60	7 0	5	64.10424	64.1044	3.72
-3 0	6	57.6994	57.6995	0.19	8	3	2	61.44883	61,4489	0.37	7 -4	-2	64.11688	64.117	8.50
5 -2	-5	57.81709	57.8172	0.33	0	5	1	61.45118	61.4513	18.10	3 5	1	64.12714	64.1272	1.09
1 -1	-6	57.85308	57.8532	1.21	9	3	0	61,4851	61,4852	8.34	2 2	6	64.19528	64.1954	1.69
5 -4	-2	57.86586	57.8659	1.20	6	1	5	61.49747	61,4976	4.07	63	4	64.24097	64.2411	2.27
6 3	3	57.9959	57.996	1.58	7	2	4	61.51445	61.5146	5.32	1 5	2	64.30566	64.3057	3.29
5 1	5	58.01697	58.0171	2.80	9	-3	-1	61 54964	61 5497	4 24	6 -4	-3	64.31288	64.313	3.40
4 3	4	58.08981	58.0899	2.87	5	-4	-3	61 59699	61 5971	4 48	7 0	4	64.39931	64.3994	3.57
2 -1	-6	58.18201	58.1821	2.65	10	-2	-2	61 62316	61 6233	4.67	92	3	64.41012	64.4102	2.55
-7 0	5	58.23207	58.2321	3.03	10	-2	-2	61 64051	61 6406	5.90	4 -2	-6	64.45547	64.4556	1.27
8 3	1	58.27884	58.2789	1.22	11	-1	-1	61 67121	61 6713	6.17	4 1	6	64.48034	64.4805	0.94
7 -3	-3	58.29499	58.2951	0.40	10	-1 2	-1	61 68021	61 6803	5.69	5 -3	-5	64.48731	64.4874	0.78
64	0	58.45709	58.4572	0.29	10		1	61 68219	61 6922	5 31	10 0	3	64.52912	64.5293	0.72
8 -3	-2	58.73684	58.7369	0.36	2	-4	-4	61 72041	61 7207	J.JI 1 21	2 -5	-2	64.61487	64.615	0.85
6 -4	-1	58.78167	58.7817	18.90	2	5	5	61 72611	61 7262	4.31	4 -4	-4	64.72663	64.7267	0.99
2 0	6	58.87978	58.8799	19.30	2	2	4	01.72011	61.7702	4.23	10 -2	-3	64.8211	64.8212	1.35
1 1	6	58.88836	58.8885	9.47	11	4	4	61 77262	01./435	4.88	9 -2	-4	64.84956	64.8496	3.07
3 -1	-6	59.07079	59.0709	4.53		1	0	01.//362	01.//3/	4.48	6 -1	-6	64.91267	64.9127	4.70
90	3	59.10564	59.1058	4.49		2	1	01.80/33	01.8074	3.89	4 5	0	64.94807	64.9482	3.77
-					7	3	3	61.85535	61.8555	4.07		-			
					•										

11 0		3	64.98284	64.9829	1.62	-3	0	7	67.95496	67.9551	7.73	4 0	5	70.60008	70.6002	2.85
3 4		4	65.14327	65.1434	1.59	7 3	3	4	67.97419	67.9743	2.29	6 1	6	70.62859	70.6287	2.54
2 5		2	65.2636	65.2637	1.85	10 -	3	-2	68.07728	68.0774	0.58	2 4	5	70.66483	70.6649	2.02
7 1		5	65.39548	65.3956	1.80	1	0	7	68.10323	68.1033	0.88	2 1	7	70.6695	70.6696	2.41
62		5	65.41454	65.4147	1.98	10	3	1	68.13138	68.1315	0.67	4 0	3	70.70522	70.7053	1.45
11 0		2	65.47948	65.4796	7.03	1 -	1	-7	68.25343	68.2535	0.59	93	3	70.73039	70.7305	1.27
90		4	65,52994	65.5301	11.40	4	2	6	68.30454	68.3047	0.99	10 0	4	70.75968	70,7598	1.74
11 -2	-	1	65.58247	65.5826	6.19	1	5	3	68.30628	68.3064	0.90	4 -3	-6	70.77374	70,7738	1.08
11 2		0	65.68149	65.6816	1.89	12	0	1	68.33876	68.3389	1.32	74	3	70.79062	70,7907	0.69
10 -1	_	4	65.68744	65.6875	1.86	1 -	.3	-6	68.3441	68.3442	2.15	11 -1	-4	70.7974	70.7975	0.71
4 3		5	65.75097	65.7511	2.03	2 -	.5	-3	68.36936	68.3695	8.18	3 5	3	70.82502	70.8251	0.52
3 -5	_	2	65 77454	65 7746	1 32	- 8	0	5	68 43752	68 4377	6 36	-5 0	7	70 95639	70.9565	0.55
10 1		3	65 81592	65 816	1.15	2	.1	_7	68 47454	68 4746	5.44	4 -5	-3	70.96979	70.9509	0.99
8 2		4	65 85799	65 8581	1.08	5	5	1	68 48067	68 4808	1.70	5 2	6	71.07713	71.0772	0.80
3 2		6	66 00378	66 0039	1.68	5	3	5	68 49345	68 4936	1.70	8-4	-3	71 10075	71.1008	1.32
8 /		0	66 05280	66 053	1.66	0	1	7	68 54842	68 5485	1.14	0 - 7	-5	71 10847	71 1086	1.52
5 0		6	66 05714	66 0573	1.67	0	3	6	68 56002	68 5601	0.00	10 3	-3	71 12326	71 1234	1.17
1 5		1	66 05082	66 0599	2.45	2	3	6	68 64307	68 6441	1.14	0 3	-5	71.12320	71.1234	3.47
0		5	66 08050	66 0807	2.45		5	-0 2	68 71124	68 7112	1.14	5 5	-+ 2	71 16652	71.1500	2.44
-9 0		2	66 10612	66 1062	2.26	1	3	2	68 72242	68 7005	1.40	9 1	2	71.2076	71.1000	5.60
0 2		3 2	66 15029	66 1504	2.20	1 - 6	-4 -2	-5	68 72457	68 7247	1.55	0 -1 10 -2	-0	71.2070	71.2077	3.00
9 3		2	00.13928	00.1394	2.50	0 -	·2 4	-0	68.72437	08.7247	1.09	10 5	2	71.21100	71.2116	4.77
8 -4	-	-1	66.19526	66.1954	0.99	10	4	2	08.85905	68.8592	1.54	30	,	71.24704	71.2472	1./1
11 -1	-	5	66.265	66.2651	1.32	12 -	-1	-2	69.06527	69.0654	1.65	65	1	/1.36895	/1.3691	1.05
5 -2	-	0	66.34558	66.3457	1.08	2 -	4	-5 -	69.10019	69.1003	1.92	4 -4	-5	/1.3/891	/1.3/9	0.98
74		2	66.38188	66.382	1.00		2	5	69.19399	69.1941	1.74	12 -2	-1	/1.43638	/1.4365	0.94
7 0		1	66.42884	66.429	1.04	-4	0	7	69.20663	69.2067	1.34	11 1	3	71.4646	71.4647	0.98
9-3	-	3	66.46899	66.4691	1.97	3 -	-1	-7	69.20946	69.2095	1.62	12 0	2	71.5699	71.5701	1.03
10 -3	-	1	66.53924	66.5393	2.51	1	3	6	69.28947	69.2896	1.93	7 -2	-6	71.5722	71.5723	1.50
10 3		0	66.55748	66.5576	2.47	6 -	4	-4	69.30161	69.3017	3.43	12 2	0	71.60892	71.609	1.75
-7 0		6	66.5693	66.5694	2.43	2	5	3	69.31458	69.3147	17.20	63	5	71.69127	71.6914	1.85
12 0		0	66.60726	66.6074	2.12	1	1	7	69.35645	69.3566	4.79	10 -1	-5	71.83363	71.8337	4.89
3 5		2	66.73755	66.7376	1.62	6	0	6	69.38585	69.386	11.00	11 -3	-1	71.85215	71.8523	5.17
11 1		2	66.7567	66.7568	1.57	3 -	.5	-3	69.41898	69.4191	2.37	94	1	71.90207	71.9022	1.66
5 -4	-	4	66.77267	66.7727	2.33	2	0	7	69.42708	69.4272	1.97	12 -1	-3	71.938	71.9381	1.36
9 1		4	66.80665	66.8068	2.71	3 -	3	-6	69.45652	69.4566	2.06	11 3	0	71.94704	71.9472	0.99
6 -3	-	5	66.97945	66.9795	2.57	10 -	-2	-4	69.47803	69.4781	1.47	1 -2	-7	71.97968	71.9798	0.71
-1 0		7	66.99046	66.9905	4.50	1	4	5	69.50866	69.5088	1.64	10 1	4	71.99207	71.9922	2.92
11 -2	-	2	67.05173	67.0518	4.31	11	0	4	69.55598	69.5561	1.73	9 -4	-2	72.08101	72.0811	8.67
8 -3	-	4	67.09905	67.0991	2.79	12	1	1	69.59	69.5901	1.50	8 3	4	72.11625	72.1164	9.52
8 -2	-	5	67.13564	67.1357	2.90	10	2	3	69.60306	69.6032	1.83	5 -1	-7	72.18737	72.1875	2.09
64		3	67.21327	67.2134	1.93	5 -	5	-2	69.60684	69.6069	2.22	2 -2	-7	72.19569	72.1958	0.15
0 0		7	67.28812	67.2882	1.62	8	1	5	69.68794	69.6881	1.88	6 -5	-2	72.24399	72.2441	0.00
4 4		4	67.29967	67.2998	1.54	5	4	4	69.93429	69.9344	2.23	3 3	6	72.25606	72.2562	0.00
55		0	67.30944	67.3095	1.23	7 -	3	-5	69.93799	69.9381	2.48	0 2	7	72.26788	72.268	0.00
5 1		6	67.32877	67.3289	1.25	-8	0	6	69.96935	69.9694	2.21	7 -4	-4	72.29343	72.2935	0.00
11 2		1	67.34525	67.3454	1.09	3 -	4	-5	69.98849	69.9886	1.88	3 4	5	72.31721	72.3173	0.00
9 -1	-	5	67.36091	67.361	0.79	11 -	2	-3	70.04028	70.0404	2.21	3 1	7	72.47597	72.4761	0.00
4 -5	-	2	67.44429	67.4444	1.02	6	5	0	70.14178	70.1419	2.30	5 -3	-6	72.58405	72.5841	0.00
8 4		1	67.47367	67.4738	1.13	11	0	3	70.2283	70.2285	2.08	7 0	1	72.75323	72.7534	0.00
7 -4	-	3	67.48855	67.4886	0.99	8	4	2	70.41132	70.4114	4.71	12 -2	-2	72.7731	72.7732	0.00
5 -5	-	1	67.68888	67.689	1.03	6 -	5	-1	70.43612	70.4362	3.03	12 1	2	72.79659	72.7967	0.00
12 -1	-	1	67.69696	67.6971	1.26	9	4	0	70.44514	70.4453	2.65	4 5	3	72.82465	72.8248	0.00
7 0		2	67.80953	67.8096	1.81	4 -	1	-7	70.4508	70.4509	1.90	3 -2	-7	72.91411	72.9142	0.00
1 -5	-	3	67.83115	67.8312	2.06	9 -	4	-1	70.50533	70.5054	1.69	13 0	0	73.00133	73.0015	0.00
7 -1	-	6	67.83612	67.8362	1.86	11	2	2	70.51933	70.5195	2.12	5 -5	-3	73.00864	73.0087	33.20
12 1		0	67.87373	67.8739	3.28	2	3	6	70.52518	70.5253	3.27	64	4	73.0277	73.0278	8.18
8 -4	-	2	67.89583	67.8959	3.94	9	2	4	70.56802	70.5682	4.67	1 2	7	73.05789	73.058	3.22

1 -5 -4	73.08702	73.0871	3.70	6 -4 -5	75.61813	75.6182	1.73	3 -4 -	6 77.98076	77.9809	24.70
0 5 4	73.14336	73.1435	4.22	1 6 1	75.62721	75.6273	1.73	6 -2 -	7 78.01405	78.0141	10.20
7 0 6	73.14529	73.1454	6.85	10 2 4	75.64075	75.6409	1.78	1 -3 -	7 78.02754	78.0277	8.89
9 0 5	73.14674	73.1469	4.11	10 3 3	75.72305	75.7232	1.61	8 0	6 78.0437	78.0438	3.66
-6 0 7	73.1898	73.1899	2.73	8 -4 -4	75.7318	75.7319	1.63	2 -6 -	2 78.20021	78.2003	6.71
5 -4 -5	73.25977	73.2599	3.15	5 -2 -7	75.8325	75.8326	1.61	-1 0	8 78.21515	78.2153	5.37
11 -3 -2	73.26252	73.2626	2.55	-7 0 7	75.8925	75.8926	1.52	10 0	5 78.2318	78.232	2.40
12 2 1	73.2864	73.2865	1.73	4 -5 -4	75.90711	75.9072	1.49	65	3 78.23728	78.2374	2.45
8 -3 -5	73.34321	73.3433	1.65	13 1 1	75.94983	75.95	1.79	0 3	7 78.30779	78.3079	4.18
8 2 5	73.38224	73.3824	1.14	3 2 7	76.11593	76.1161	1.78	4 5	4 78.31866	78.3188	3.40
7 5 0	73.42565	73.4258	1.22	2 -6 -1	76.14213	76.1422	1.72	-2 0	8 78.35004	78.3502	4.05
2 -5 -4	73.53166	73.5318	1.24	11 -3 -3	76.14612	76.1462	1.64	4 2	7 78.36521	78.3653	2.77
11 3 1	73.54485	73.545	1.21	12 0 3	76.22443	76.2246	1.89	7 -4 -	5 78.44205	78.4421	3.38
4 0 7	73.54855	73.5487	1.99	12 -1 -4	76.24738	76.2475	2.03	85	1 78.48264	78.4828	2.58
7 -5 -1	73.638	73.6381	1.81	3 5 4	76.29591	76.296	2.05	7 -5 -	3 78.49666	78.4968	5.36
154	73.70026	73.7004	2.26	507	76.31741	76.3176	2.39	46	0 78.50799	78.5081	3.54
-906	73.79759	73.7977	2.59	11 0 4	76.32171	76.3219	2.55	8 1	6 78.51791	78.5181	4.11
13 -1 -1	73.97211	73.9722	2.69	12 2 2	76.43094	76.4311	2.35	0 0	8 78.57015	78.5703	4.36
7 0 2	74.00408	74.0042	1.55	2 6 1	76.44457	76.4447	3.42	9 - 2 -	6 78.60912	78.6092	3.62
6 5 2	74.08598	74.0861	1.31	744	76.56475	76.5649	4.30	12 -3 -	2 78.79945	78,7996	2.25
4 -2 -7	74 12923	74 1293	2.22	11 3 2	76.61012	76 6103	3 27	13 -2 -	2 78 81143	78 8116	2.02
13 1 0	74 21865	74 2188	1.79	934	76.65731	76.6575	3.41	8-5-	2 78 88093	78 881	1 43
6 2 6	74 30344	74 3036	3.97	10 -4 -2	76.66302	76.6631	2.90	3 - 3 -	7 78 93677	78 9369	1.13
2 2 7	74 34353	74 3437	4.62	10 -4 -2	76.68793	76 688	3.24	4-6	1 78 94034	78.9404	0.94
7 1 6	74.34333	74.3437	10.20	10 4 1	76 71461	76.000	2.80	3 0	8 78 07/11/	78.07/2	1.48
0 1 5	74.30172	74.3633	5.14	8 0 3	76 72601	76 727	2.89	-3 0	6 70.00552	70.0056	1.40
5 I J	74.30317	74.3033	4.70	3 6 0	76.72091	76 7999	2.54	2 4	7 70.05262	79.0050	1.00
0 -1 -7	74.40397	74.4001	4.79	1 4 6	76.01751	76.0176	5.04	-0 0	7 70.07682	79.0327	2.12
4 4 5	74.45519	74.4555	5.07	5 4 5	77.06005	77.0602	6.24	12 1	7 79.07083	70 1229	2.15
2 5 4	74.40007	74.409	5.07	545	77.00005	77.0002	5.00	15 1	2 79.15505	79.1556	2.90
3 - 5 - 4	74.4739	74.474	5.38	/ -1 -/	77.1026	77.0937	5.09	94	5 79.20265	79.2028	5.84
0 6 0	74.56007	74.5602	3.36	046	//.1236	77.1471	3.25	10 -1 -	6 /9.2349	79.235	4.88
12 0 1	74.70695	74.7071	2.23	850	77.14703	77.1471	2.88	4-4-	0 79.24431	79.2444	8.11
	74.74271	74.7429	1.70	5 5 6	//.151	77.1015	2.75	3 -0 -	2 19.21355	79.2737	3.71
254	74.7535	74.7536	1.70	9-3-5	77.00270	//.1815	3.08	12 3	1 79.29951	79.2997	2.46
4 1 /	74.76252	/4./62/	1.58	2 -4 -6	77.20378	77.2039	3.16	8 0	1 /9.35558	/9.355/	1.67
8 4 3	74.78951	74.7896	1.86	8 -5 -1	77.28052	77.2806	5.39	8 3	5 79.39294	79.3931	1.58
160	74.80882	74.8089	2.92	3 -6 -1	77.29919	77.2993	4.86	1 -1 -	8 79.40564	79.4058	1.15
942	74.83987	74.84	1.96	806	77.32361	77.3238	17.40	1 0	8 79.41325	79.4134	1.10
8 - 2 - 6	74.87103	74.8711	2.20	12 1 3	77.42385	77.424	13.20	10 1	5 79.42221	79.4224	0.95
6 -3 -6	74.87423	74.8743	4.72	752	77.45562	77.4557	5.45	13 2	1 79.53564	79.5358	1.11
9 -1 -6	75.01009	75.0102	4.92	12 -3 -1	77.4997	77.4998	5.96	4 6	1 79.53852	79.5386	2.18
6 0 4	75.04189	75.042	2.22	5 1 7	77.51639	77.5165	0.97	2 -1 -	8 79.53999	79.5401	2.12
11 2 3	75.12312	75.1233	3.34	0 6 2	77.51915	77.5193	2.75	6 0	7 79.54237	79.5425	1.24
9 -4 -3	75.13351	75.1336	3.60	11 1 4	77.52067	77.5208	0.10	10 -4 -	3 79.58041	79.5805	1.57
10 -4 -1	75.20016	75.2003	1.89	13 -2 -1	77.58696	77.5871	0.26	9 -4 -	4 79.60661	79.6067	1.20
13 -1 -2	75.21538	75.2155	1.72	1 -6 -2	77.61438	77.6145	0.00	1 -5 -	5 79.66266	79.6628	0.71
10 4 0	75.21747	75.2176	1.40	7 -3 -6	77.63161	77.6317	0.00	10 4	2 79.66547	79.6656	0.93
5 5 3	75.29956	75.2997	1.29	12 3 0	77.66727	77.6674	0.00	14 0	0 79.67142	79.6716	0.84
0 6 1	75.30348	75.3036	1.29	3 6 1	77.7506	77.7507	0.00	0 1	8 79.75921	79.7593	0.80
7 3 5	75.32759	75.3277	3.01	146	77.82087	77.821	0.00	0 5	5 79.79211	79.7922	0.84
7 -5 -2	75.33934	75.3394	3.70	5 -5 -4	77.82271	77.8228	0.03	12 -2 -	4 79.82923	79.8293	1.16
1 -6 -1	75.47549	75.4756	3.10	13 2 0	77.82963	77.8298	0.00	2 -5 -	5 80.02073	80.0208	0.86
10 -2 -5	75.48524	75.4849	2.91	1 6 2	77.91504	77.9151	0.03	-4 0	8 80.08438	80.0845	1.07
6 -5 -3	75.52169	75.5218	1.74	13 -1 -3	77.92393	77.9241	0.00	4 -3 -	7 80.12172	80.1218	1.31
2 6 0	75.55333	75.5534	1.48	13 0 2	77.94203	77.9422	14.00	64	5 80.12733	80.1275	1.23
12 -2 -3	75.58768	75.5878	1.64	7 2 6	77.97048	77.9706	2.00	3 -1 -	8 80.16162	80.1617	0.58
10 -3 -4	75.60214	75.6022	1.69	925	77.97191	77.9721	10.60	36	2 80.16942	80.1695	0.49
								l			

6 -5 -4	80.21186	80.212	0.47	13 -1 -4	82.05766	82.0578	1.49	4 3 7	84.27466	84.2748	1.25
8 -1 -7	80.23981	80.2399	0.87	3 3 7	82.06525	82.0654	2.00	5 6 2	84.34083	84.341	1.25
11 -2 -5	80.2641	80.2642	0.39	8 2 6	82.07285	82.073	1.38	14 2 0	84.38965	84.3898	1.27
11 -4 -1	80.28239	80.2825	0.92	4 -5 -5	82.19135	82.1915	1.53	7 1 7	84.3923	84.3925	1.16
636	80.29183	80.292	1.94	12 0 4	82.2394	82.2396	2.01	11 -4 -3	84.44687	84.447	1.16
2 3 7	80.33099	80.3311	7.09	12 3 2	82.37411	82.3743	2.18	9 - 3 - 6	84.51482	84.5149	1.01
11 4 0	80 37389	80 374	3 49	3 0 8	82 547	82 5472	2.07	6 6 1	84 53345	84 5336	0.98
1 5 5	80 40849	80.4086	2.18	13 0 3	82 55403	82 5542	1.08	14 0 2	84 64764	84 6478	1.07
11 2 4	80.45245	80.4080	1.52		02.55405	02.5542	1.00	12 2 2	84 71 400	04.0470 94.7140	1.07
5 0 2	00.45545	80.4330	1.32	2 0 3	82.38033	82.5807	1.24	13 - 5 - 2	04.71409	04.7142	1.40
502	00.49855	00.4965	1.44		82.02090	82.0211	1.57	4 -2 -0	04.790	04./901	1.29
8 4 4	80.5371	80.5373	1.04	-907	82.66341	82.6635	1.08	408	84.82804	84.8282	1.50
14 -1 -1	80.54164	80.5418	0.85	13 2 2	82.6823	82.6825	1.08	11 1 5	84.88086	84.8811	1.62
1 1 8	80.5991	80.5992	0.43	3-6-3	82.68506	82.6852	1.19	11 4 2	84.89978	84.8999	2.31
7 -2 -7	80.6647	80.6648	0.31	951	82.69224	82.6924	4.43	6 -1 -8	84.91793	84.918	2.21
3 4 6	80.67202	80.6722	0.26	11 0 6	82.70806	82.7082	2.19	944	84.94587	84.946	1.17
5 6 0	80.70337	80.7035	0.26	10 -2 -6	82.78255	82.7827	3.18	4 5 5	85.14799	85.1481	1.05
6 1 7	80.72775	80.7279	0.25	4 4 6	82.81449	82.8146	4.09	14 -2 -2	85.20757	85.2077	1.11
2 0 8	80.74053	80.7407	0.25	5 -1 -8	82.8547	82.8548	0.21	6 -6 -2	85.36797	85.3681	1.34
4 0 5	80.75014	80.7503	0.86	5 -6 -2	82.86243	82.8625	0.00	13 3 1	85.42805	85.4282	2.35
5 5 4	80.81315	80.8133	0.67	9 -5 -2	82.86377	82.8639	0.50	2 2 8	85.44733	85.4475	2.40
4 -6 -2	80.82948	80.8296	3.06	1 -2 -8	82.95164	82.9518	7.26	12 -2 -5	85.45686	85.457	3.80
8 -3 -6	80.84651	80.8466	3.25	10 2 5	82.96806	82.9682	4.81	9 -4 -5	85.45818	85.4583	2.95
14 1 0	80.85634	80.8565	2.38	7 -5 -4	83.06754	83.0677	11.50	8 5 3	85.47335	85.4735	2.55
3 -5 -5	80.86473	80.8648	3.47	2 -2 -8	83.08472	83.0848	12.00	9 5 2	85.5221	85.5223	2.25
5 0 4	80.87672	80.8768	2.96	5 0 3	83.08584	83.086	5.57	13 -2 -4	85.58219	85.5823	2.03
5 -4 -6	80.98874	80.9888	1.09	3 5 5	83.09036	83.0905	8.63	12 -3 -4	85.71775	85.7179	2.35
12 2 3	80.99102	80.9912	1.28	916	83.0972	83.0974	6.36	12 -4 -1	85.76963	85.7698	2.19
5 -6 -1	81.05841	81.0585	0.66	6 -4 -6	83.20826	83.2084	5.23	9 -5 -3	85.80653	85.8067	2.66
5 2 7	81.08247	81.0826	0.67	7 0 7	83.21758	83.2178	2.79	14 1 2	85.81954	85.8197	8.07
11 2 4	81.0867	81.0869	0.68	0 2 8	83.30191	83.302	3.10	10 -5 -1	85.87113	85.8713	3.69
11 3 3	81.09306	81.0932	0.49	660	83.36835	83.3685	3.56	10 5 0	85.88791	85.8881	2.40
0 6 3	81.17191	81.172	0.59	12 1 4	83.41647	83.4166	3.88	7 -4 -6	85.89878	85.8989	1.91
1 -6 -3	81.19169	81.1918	0.73	13 -3 -1	83.50913	83.5093	3.43	4 6 3	85.92347	85.9236	2.31
8 5 2	81.26745	81.2676	1.04	6 -6 -1	83.64724	83.6474	6.97	12 4 0	85.93371	85.9339	2.23
950	81.29968	81.2998	1.93	745	83.64928	83.6494	8.36	4 1 8	85.99964	85.9998	1.65
9 -5 -1	81.35706	81.3572	1.06	3 -2 -8	83.70072	83.7008	5.29	5 -6 -3	86.09978	86.0999	1.87
14 0 1	81.44172	81.4419	2.37	11 0 5	83.70719	83.7074	3.22	14 2 1	86.14193	86.1421	1.96
10 -3 -5	81.44743	81.4475	2.71	3 1 8	83.7233	83.7234	5.40	11 -3 -5	86.14716	86.1473	1.45
13 -2 -3	81.48534	81.4855	2.94	13 1 3	83.7303	83.7305	5.10	1 -6 -4	86.17491	86.175	1.19
2 5 5	81.5092	81.5093	2.01	-6 0 8	83.74434	83.7444	4.26	0 6 4	86.22894	86.2291	1.82
12 -3 -3	81.54774	81.5479	1.96	13 3 0	83.74771	83.7479	2.44	6 -5 -5	86.27657	86.2767	1.98
10 3 4	81.59971	81.5999	1.77	654	83.77309	83.7732	2.51	-7 0 8	86.28538	86.2855	1.97
7 5 3	81.62924	81.6294	1.75	8 -2 -7	83.77824	83.7783	3.13	1 -4 -7	86.28672	86.2868	2.21
1 6 3	81.63743	81.6376	1.69	9 -1 -7	83.83942	83.8395	6.01	7 0 1	86.29816	86.2983	2.35
11 -4 -2	81.64482	81.645	1.77	11 -1 -6	83.88396	83.8841	4.72	5 -2 -8	86.37428	86.3744	2.43
-5 0 8	81.67612	81.6762	2.20	7 3 6	83.88625	83.8864	1.73	8 -5 -4	86.38692	86.387	2.32
14 -1 -2	81.68045	81.6806	2.05	935	83.88764	83.8878	1.43	7 0 5	86.4185	86.4186	2.45
2 -6 -3	81.69669	81.6968	2.16	10 -4 -4	83.91662	83.9167	1.43	2 -4 -7	86.49268	86.4928	2.41
8 -4 -5	81.72293	81.723	1.88	6 -3 -7	83.9291	83.9292	1.07	760	86.49986	86.5	2.38
5 -3 -7	81.78751	81.7876	1.15	5 -5 -5	83.99645	83.9966	1.06	7 -3 -7	86.54303	86.5431	1.52
5 6 1	81.80128	81.8014	1.26	3 6 3	84.01627	84.0164	1.06	0 4 7	86.56155	86.5617	0.99
11 4 1	81.91821	81.9184	1.06	10 4 3	84.0344	84.0346	1.02	2 -6 -4	86.60167	86.6018	0.98
906	81.91928	81.9195	1.31	14 -2 -1	84.07751	84.0777	1.06	926	86.61542	86.6156	1.07
2 1 8	81.92188	81.922	1.09	1 2 8	84.13448	84.1346	0.89	15 0 0	86.68291	86.6831	0.93
8 -5 -3	81.92542	81.9255	1.15	4 -6 -3	84.15379	84.1539	1.02	7 -6 -1	86.70385	86.704	1.14
12 -1 -5	81.93147	81.9316	1.22	14 -1 -3	84.26085	84.261	0.94	4 0 7	86.72582	86.7259	1.16
4 6 2	82.0181	82.0182	1.23	627	84.26209	84.2623	1.19	1 6 4	86.76369	86.7638	1.08

12	3	3	86.86571	86.8659	2.03
12	2	4	86.93298	86.9332	1.90
10	0	6	86.9437	86.9439	2.10
5	3	7	86.95617	86.9563	2.13
11	3	4	86.96036	86.9605	1.92
12	-4	-2	87.04419	87.0443	1.88
4	0	4	87.09782	87.098	1.96
6	6	2	87.1348	87.1349	1.90
3	-4	-7	87.17909	87.1792	1.63
7	5	4	87.19693	87.1971	1.62
3	2	8	87.23827	87.2384	1.42
13	2	3	87.24525	87.2454	1.17
10	-5	-2	87 29264	87 2928	1 43
1	4	-7	87 31674	87 3169	1.154
10	5	1	87 3429	87 3431	3 29
20	0	7	87 34537	87 3456	2.01
4	0	2	87 25146	87.3450	2.01
4	0	2	07.35140	07.3510	2.05
9	-2	-7	87.35384	87.354	2.07
13	-3	-3	87.35488	87.355	1.61
11	-2	-6	87.39818	87.3983	0.83
7	-1	-8	87.45497	87.4551	1.21
15	-1	-1	87.46775	87.4679	1.39
3	-6	-4	87.50862	87.5087	1.72
12	4	1	87.53568	87.5359	2.67
1	-5	-6	87.54065	87.5408	2.47
5	0	8	87.58122	87.5814	2.09
13	-1	-5	87.58794	87.5881	0.95
8	4	5	87.62758	87.6278	1.49
5	5	5	87.67966	87.6798	0.23
7	6	1	87.73347	87.7336	0.59
0	5	6	87.74165	87.7418	0.05
14	-2	-3	87.77338	87.7735	0.07
2	6	4	87.77842	87.7786	0.22
4	0	6	87.80446	87.8046	0.04
2	-5	-6	87.81988	87.82	0.04
15	1	0	87.85209	87.8523	0.08
10	-1	-7	87.89497	87.8951	0.05
7	2	7	87.90429	87.9045	0.26
8	3	6	87.93684	87.937	0.09
10	1	6	88.11264	88.1128	0.25
14	-1	-4	88.26664	88.2668	3.80
5	6	3	88.30625	88.3064	1.79
7	-6	-2	88.34475	88.3449	4.77
11	2	5	88.39096	88.3912	8.34
1	5	6	88 42269	88 4228	8 76
6	-2	-8	88 4279	88 428	5.81
15	0	1	88 50429	88 5045	6.85
6	4	6	88 5120	88 5131	5 55
8	1	7	88 51308	88 5142	6.09
15	1	2	88 52007	88 5202	2 75
13 2	-1 6	-2	00.32007	00.3202	3.13
0	-0	-5	68.5215	00.5214	4.42
13	3	2	88.54119	88.5414	4.08
2	4	7	88.55151	88.5517	4.56
13	0	4	88.55462	88.5548	26.00
3	-5	-6	88.57908	88.5792	1.27
10	-3	-6	88.64068	88.6408	5.25
11	-4	-4	88.67228	88.6724	1.23

5	1	8	88.74967	88.7498	1.93
1	-3	-8	88.80849	88.8086	0.25

h	k	1	20 (obs.)	2θ (calc.)	I (obs.)		3 2	3	0	41.03173	41.0351	0.24	3	1	4	53.40207	53.4061	0.97
1	1	0	13 41748	13 4185	3 66	4	4	2	0	41.7383	41.7421	0.30	1	5	1	53.88721	53.8911	0.00
1	0	1	13 9653	13 9664	6.87		2	3	2	41.87656	41.8796	0.03	4	2	3	53.93929	53.9438	0.00
0	1	1	14 70363	14 7046	0.09		1 4	4	0	41.92107	41.924	0.01	1	4	3	54.08994	54.0937	0.00
1	1	1	17 21529	17 2165	12.30	() 4	4	1	42.38665	42.3895	0.26	0	3	4	54.35754	54.3612	0.06
2	0	0	17.86332	17 865	0.01	4	4 (0	2	42.51156	42.5154	0.13	3	4	2	54.71632	54.7206	1.67
0	2	0	20 11078	20 1121	0.30		3	3	1	42.53704	42.5405	0.35	2	5	0	55.19916	55.2033	0.91
2	1	0	20.52025	20.5221	0.02		3 (0	3	42.77904	42.7824	0.00	1	3	4	55.20282	55.2066	0.77
2	0	1	20.82023	20.8221	0.18		2	2	3	42.83883	42.8419	0.05	5	2	2	55.40999	55.4151	0.28
0	0	2	21.56874	21.5701	0.03	4	4	2	1	43.22351	43.2274	0.73	6	0	0	55.51999	55.5257	1.52
1	2	0	22.0014	22.0331	0.05		1 4	4	1	43.4012	43.4042	0.34	4	4	0	55.71692	55.7216	0.06
0	2	1	22.05157	22.0551	0.01	4	1	1	2	43.78856	43.7924	1.10	0	0	5	55.781	55.7847	0.91
2	1	1	22.05011	22.0510	27.30	() (0	4	43.95304	43.9559	2.08	5	3	0	55.83971	55.8449	8.21
1	0	2	23.21540	23.2134	20.50		3	1	3	44.0498	44.0532	1.71	2	5	1	56.4118	56.416	2.22
1	1	2	22.27542	23.377	0.11		2	4	0	44.93495	44.9383	0.43	6	1	0	56.57287	56.5786	0.09
1	1	2	25.65194	23.6334	0.11		1 (0	4	44.93921	44.9422	0.21	3	2	4	56.60087	56.6052	0.12
1	2	1	24.30737	24.3093	5.26) :	3	3	45.14902	45.152	0.14	2	4	3	56.60843	56.6126	0.17
1	1	2	25.48708	25.4888	5.20)	1	4	45.19741	45.2003	0.60	1	0	5	56.61204	56.6159	0.15
3	0	0	26.9339	26.9365	29.30		5 (0	0	45.67772	45.6823	23.20	0	5	2	56.7076	56.7116	0.30
2	2	0	27.02347	27.0256	180.00		1	3	3	46.11502	46.1182	0.00	6	0	1	56.72809	56.7338	0.62
2	0	2	28.1436	28.1457	1.15		1	1	4	46 16261	46 1657	0.01	0	1	5	56 83069	56 8345	1.15
3	1	0	28.80234	28.805	0.00		, ,	4	1	46 33795	46 3414	0.18	4	4	1	56 92227	56 9271	0.50
3	0	1	29.07033	29.073	0.00			4	2	46 67818	46 6814	0.37	5	3	1	57 04335	57.0486	0.29
2	2	1	29.15384	29.1561	0.04		3	3	2	46.81758	46 8213	0.02	5	0	3	57 23857	57 2437	2 24
0	2	2	29.65658	29.6585	0.04		, . 5	1	0	46 8861	46 8907	0.40	1	5	2	57 52988	57 534	5 65
2	1	2	29.94264	29.9449	1.05		5 1	0	1	47.06347	47.0681	0.11	1	1	5	57 65184	57 6558	0.79
0	3	0	30.3657	30.3677	0.20		, , 1 ·	2 2	1 2	47.00347	47.0001	0.83	2	3	1	57 68888	57 603	0.79
3	1	1	30.81997	30.8227	0.00		г. 1.	2 1	2	47.43400	47.439	3.36	6	1	1	57 76654	57.095	1.10
1	2	2	31.02366	31.0258	15.90		2	+ 2	2	47.02011	47.0234	14.00	4	0	1	58 10212	58 1060	2.31
1	3	0	31.70511	31.7073	0.02	,	, . , .	2 0	1	47.70050	47.704	37.80	5	1	3	58 27118	58 2764	1.43
0	3	1	32.29475	32.2969	0.03		4	2	4	47.00101	47.005	2 50	2	1	5	50.05044	50.0626	0.00
0	0	3	32.60039	32.6024	0.64		+ . =	5 1	1	47.95440	47.9580	5.50	2	2	2	50 17424	50 1701	0.00
1	3	1	33.56506	33.5674	48.00) .	ו ר	1	40.24312	40.2490	0.05	4	3	3	50 21410	50.210	0.03
3	2	0	33.84378	33.8467	0.03		, , , ,	2	4	48.78104	48.7845	0.00	4	1	4	59.21419	59.219	0.57
1	0	3	33.86051	33.8627	0.00		٤. م	3	3	48.92420	48.9278	0.70	3	2	0	59.30524	59.3099	2.82
0	1	3	34.1872	34.1894	0.02		1 . 4 .	1	4	48.90970	48.9732	0.15	0	2	0 5	59.03881	59.0048	1.42
3	0	2	34.76408	34.767	0.02	4	+ . 4 .	3	1	49.2/150	49.2758	0.89	0	2	2	59.90818	59.9125	0.86
2	2	2	34.83527	34.8378	0.22	-	+ (-	4	3	49.4876	49.4918	0.27	2	5	2	59.95349	59.958	0.42
1	1	3	35.39742	35.3997	0.00		, .	4	0	49.63551	49.6394	0.06	2	1	2	60.07236	60.0766	0.06
2	3	0	35.45144	35.4541	0.00			2	4	49.69276	49.6961	0.84	6	0	2	60.25796	60.2639	0.00
3	2	1	35.60465	35.6077	0.01			4	2	50.36561	50.3693	0.00	4	4	2	60.44497	60.45	0.00
4	0	0	36.18025	36.1838	0.01). 1	1	0	50.37770	50.3826	0.00	5	2	1	60.464//	00.4095	0.00
3	1	2	36.26747	36.2705	0.01	-	ł .	1	3	50.62673	50.631	0.00	5	3	2	60.56162	60.56/1	0.00
2	3	1	37.14577	37.1485	0.02	-	5 4 -	4	1	50.93939	50.9434	0.25	3	4	3	60.65307	60.6578	0.00
2	0	3	37.4165	37.4192	1.96) (0	2	51.04788	51.0527	3.96		2	5	60.70313	60.7073	0.00
0	3	2	37.55264	37.5551	0.39) :	2	1	51.66799	51.6729	0.28	6	2	1	60.81425	60.8203	0.48
4	1	0	37.63458	37.6382	0.00	() :	5	0	51.76162	51.7653	0.96	6	1	2	61.25886	61.2649	7.85
4	0	1	37.84642	37.85	0.35		;	1	2	52.16221	52.1671	0.81	5	2	3	61.30338	61.3089	2.53
0	2	3	38.60387	38.6064	87.40		3 (υ	4	52.30641	52.3104	1.03	0	4	4	61.57376	61.5781	1.75
1	3	2	38.67149	38.6741	62.50		2 1	2	4	52.35774	52.3615	1.16	3	3	4	61.68915	61.6939	2.95
2	1	3	38.83116	38.8339	0.00			5	0	52.63558	52.6393	4.84	4	2	4	62.21842	62.2235	1.99
4	1	1	39.24793	39.2516	0.00) :	5	1	53.02769	53.0314	1.23	1	4	4	62.35611	62.3605	0.42
1	2	3	39.69763	39.7003	1.51	4	ŧ :	3	2	53.13314	53.1376	0.09	0	5	3	62.52359	62.528	2.51
3	2	2	40.48849	40.4917	0.02	() 4	4	3	53.23267	53.2363	0.19	5	4	0	62.94718	62.9529	7.33
0	4	0	40.87683	40.8796	0.09		3	3	3	53.35931	53.3634	0.39	3	0	5	63.00664	63.0114	1.55

A2 Indizierung für LiCl/RbCl-Gemenge (1:3): hkl-Werte, berechnete und erhaltene Reflexlagen (2 θ), sowie die beobachtete Reflexintensitäten.

2	2	5	63.05223	63.0568	5.59	6	4	0	71.20175	71.2086	0.00	7	2	3	78.99367	79.0017	2.83
0	6	0	63.17507	63.1797	13.60	2	0	6	71.24114	71.2464	0.00	4	6	2	79.14017	79.147	0.62
1	5	3	63.29922	63.3038	0.03	0	4	5	71.42923	71.4344	0.02	2	7	1	79.19907	79.2054	0.83
3	5	2	63.86794	63.873	0.62	5	5	0	71.48045	71.4869	0.12	3	6	3	79.32462	79.3311	0.46
1	6	0	63.94628	63.951	0.19	3	3	5	71.5363	71.5418	0.55	6	5	0	79.33576	79.3434	0.56
3	1	5	63.98256	63.9874	0.49	0	2	6	72.0116	72.0167	0.00	2	3	6	79.37371	79.3798	0.96
5	4	1	64.06788	64.0737	0.74	4	2	5	72.02808	72.034	0.00	0	7	2	79.45026	79.4564	0.82
6	2	2	64.20673	64.213	0.52	1	4	5	72.15617	72.1614	0.09	0	5	5	79.55496	79.561	0.74
0	6	1	64.29357	64.2983	0.66	2	1	6	72.161	72.1663	0.14	4	0	6	79.80733	79.8139	0.14
6	3	0	64.6	64.6063	0.00	6	4	1	72.25801	72.265	1.03	5	4	4	79.93761	79.9448	0.58
2	4	4	64.67084	64.6756	0.00	5	5	1	72.53504	72.5416	1.36	0	6	4	80.14387	80.15	0.93
4	5	0	64.77979	64.7852	0.14	5	4	3	72.70687	72.7133	0.05	1	7	2	80.15189	80.1582	0.87
0	3	5	64.83832	64.8428	0.76	1	2	6	72.73616	72.7414	0.36	1	5	5	80.25637	80.2625	0.31
1	6	1	65.05753	65.0623	0.49	0	6	3	72.91953	72.925	2.02	8	2	0	80.34676	80.3557	0.32
5	0	4	65.25362	65.2594	1.01	2	5	4	73.10406	73.1096	1.08	6	5	1	80.35474	80.3625	0.58
2	5	3	65,5956	65.6005	0.98	6	0	4	73.37972	73.3867	1.46	7	4	0	80.47038	80.4787	0.47
1	3	5	65,59891	65.6035	0.79	4	4	4	73.54926	73.5554	0.57	6	4	3	80.52103	80.5287	0.77
6	3	1	65 70534	65 7117	0.12	1	6	3	73 64056	73 6461	0.71	4	1	6	80 69348	80 7002	1 35
7	0	0	65 83038	65 8374	0.06	5	3	4	73 6551	73 6616	1.04	5	5	3	80 78864	80 7959	0.05
, 4	5	1	65 88353	65 8891	0.02	7	2	2	73 83252	73 8401	1.03	1	6	4	80 84403	80 8503	0.02
6	0	3	65 88513	65 8915	0.02	3	6	2	74 17067	74 1767	0.79	8	0	2	80 87247	80 8814	0.21
4	4	3	66.06307	66 0686	0.00	7	3	0	74 20146	74 2092	0.17	8	2	1	81 36269	81 3717	0.00
т 5	т 3	3	66 17411	66 18	0.00	6	3	3	74.25337	74.2604	0.29	5	6	0	81 37543	81 3820	0.00
5	1	4	66 21162	66 2174	0.05	6	1	4	74.23337	74.2004	0.29	5	2	4	81.373 4 3	81.3629	0.00
2	6	4	66 22058	66 2256	0.40	2	1	-	74.20902	74 2255	0.50	7	1	1	81.44000 81.48506	81.4478	0.00
2	1	0	66 78412	66 7012	1.24		4	2	74.31960	74.3233	0.39	1	4	1	81.40390	01.4944	0.01
1 6	1	2	66 92946	66 8440	0.12	4	5	5	74.42210	74.4204	0.55	4	с 7	4	81.00459 81.68247	81.6002	0.19
2	1	5	00.83840	66 960	0.12	5	0	5	74.03133	74.0371	0.01	0	1	2	01.00547	81.0905	0.15
3	2	5	00.80388	00.809	0.13	2	0	5	74.80750	74.8741	0.01	8	1	2	81./5594	81.705	0.27
/	0	1	66.92513	66.9322	0.01	2	2	6	74.89342	/4.899	0.01	0	0	2	81.82362	81.8297	0.58
4	3	4	67.0524	67.0579	0.18	4	6	0	75.02309	75.0295	1.13	2	7	2	82.24831	82.255	0.45
2	6	1	67.32204	67.3272	0.17	7	3	1	75.24123	75.249	1.13	2	5	5	82.3522	82.3587	0.26
5	4	2	67.36936	67.3754	0.58	0	7	0	75.33826	75.344	1.20	5	6	1	82.3886	82.3961	0.46
0	6	2	67.58929	67.5943	0.57	6	4	2	75.39143	75.3987	0.57	1	0	1	82.52066	82.5269	0.01
2	3	5	67.85419	67.8592	0.04	7	0	3	75.41074	75.4185	1.48	7	0	4	82.56808	82.5765	0.00
7	1	1	67.87114	67.8783	0.09	5	5	2	75.66415	75.671	2.83	6	0	5	82.61845	82.6263	0.00
0	0	6	68.29703	68.3018	0.01	3	1	6	75.75422	75.7601	0.34	3	7	1	82.69588	82.7028	0.00
4	0	5	68.3139	68.3194	0.01	5	1	5	75.77039	75.777	0.62	0	1	7	82.70499	82.7112	0.00
1	6	2	68.33427	68.3394	0.01	2	6	3	75.78828	75.7942	1.00	0	4	6	82.76651	82.7728	0.00
3	4	4	68.43499	68.4403	0.60	1	7	0	76.05091	76.0568	0.62	4	4	5	82.7823	82.7893	0.00
6	3	2	68.96659	68.9732	1.61	4	6	1	76.05891	76.0654	3.71	3	3	6	82.86884	82.8755	0.00
1	0	6	69.03837	69.0432	1.27	7	1	3	76.31137	76.3192	2.33	5	3	5	82.88464	82.892	0.03
5	2	4	69.04517	69.0512	0.99	0	7	1	76.37264	76.3785	1.60	2	6	4	82.93671	82.9433	0.21
4	5	2	69.14061	69.1464	0.43	0	3	6	76.54913	76.5547	0.96	4	2	6	83.33937	83.3464	1.67
0	1	6	69.23399	69.2388	0.06	4	3	5	76.56525	76.5716	1.18	6	5	2	83.39462	83.4027	0.61
4	1	5	69.25075	69.2564	0.18	3	5	4	76.68095	76.6871	2.27	1	1	7	83.40064	83.4069	0.08
3	5	3	69.3344	69.3399	1.35	8	0	0	76.78208	76.7906	1.13	7	3	3	83.41342	83.422	0.05
7	2	0	69.60632	69.6136	0.10	6	2	4	76.99377	77.0011	0.00	7	1	4	83.44797	83.4565	0.12
6	2	3	69.6596	69.6663	4.19	1	7	1	77.08214	77.0881	0.00	1	4	6	83.46207	83.4685	0.06
3	6	0	69.95271	69.9583	6.01	1	3	6	77.25813	77.2638	0.00	6	1	5	83.49825	83.5062	1.35
1	1	6	69.97073	69.9757	13.80	8	1	0	77.67757	77.6862	1.93	4	6	3	84.21024	84.2176	3.15
7	0	2	70.15868	70.166	0.27	8	0	1	77.81026	77.8189	0.43	8	2	2	84.39544	84.4048	1.58
0	5	4	70.19357	70.1987	0.16	3	4	5	77.87733	77.8835	2.28	0	7	3	84.51641	84.5231	0.17
2	6	2	70.54697	70.5524	0.19	2	7	0	78.17619	78.1824	2.84	7	4	2	84.51791	84.5266	1.11
7	2	1	70.67276	70.6801	0.31	7	3	2	78.33244	78.3405	0.97	2	0	7	84.60555	84.6121	0.23
1	5	4	70.92587	70.9311	0.24	3	2	6	78.44233	78.4485	0.88	8	3	0	84.75172	84.7611	2.15
3	6	1	71.01686	71.0226	0.02	5	2	5	78.45833	78.4652	1.75	1	7	3	85.20974	85.2166	0.00
7	1	2	71.08447	71.0918	0.00	8	1	1	78.70229	78.711	3.78	0	2	7	85.33955	85.346	0.02
						l											

5	6	2	85.41508	85.423	0.04	4	3	6	87.72044	87.728	0.86	7	4	3	89.54128	89.5506	0.49
2	1	7	85.48218	85.4888	0.05	5	5	4	87.84879	87.8568	3.18	5	2	6	89.56925	89.5774	0.36
2	4	6	85.5434	85.5502	0.16	3	0	7	88.06587	88.0731	0.07	0	8	1	89.60081	89.6082	0.48
3	7	2	85.72068	85.7279	2.34	2	2	7	88.10652	88.1135	0.24	9	0	1	89.64126	89.6519	0.64
8	3	1	85.75818	85.7677	0.16	7	5	0	88.37408	88.3833	0.20	0	3	7	89.71138	89.7184	2.10
3	5	5	85.82391	85.831	0.03	6	5	3	88.42405	88.4327	0.07	1	6	5	89.90997	89.9173	7.95
8	0	3	85.9226	85.932	0.00	0	8	0	88.59768	88.605	0.04						
1	2	7	86.03207	86.0387	0.00	9	0	0	88.63813	88.6487	0.26						
5	0	6	86.07283	86.0805	0.01	8	3	2	88.77097	88.7808	2.47						
7	2	4	86.07919	86.088	0.02	3	1	7	88.93951	88.9468	0.24						
6	2	5	86.12926	86.1375	2.46	3	4	6	89.00055	89.008	0.02						
3	6	4	86.40495	86.4122	2.66	6	6	0	89.00389	89.0127	0.03						
4	7	0	86.54436	86.552	1.41	5	4	5	89.01623	89.0244	0.01						
8	1	3	86.79771	86.8073	2.07	0	6	5	89.21941	89.2266	1.52						
5	1	6	86.9478	86.9556	3.75	1	8	0	89.28834	89.2958	0.54						
2	7	3	87.28593	87.2932	4.19	7	5	1	89.37729	89.3866	2.29						
4	7	1	87.54871	87.5565	0.28	8	2	3	89.41938	89.4293	0.40						
6	4	4	87.58452	87.593	1.27	9	1	0	89.51159	89.5222	0.52						
						I											

A3	Indizierung	für	LiCl/CsCl-Gemenge	(3:2):	hkl-Werte,	berechnete	und	erhaltene
Refle	xlagen (2 θ), s	owie	die beobachtete Refle	xintens	itäten.			

h	k	1	20 (obs.)	20 (calc.)	I (obs.)	3	-1	-1	22.72793	22.7298	0.00	0	1	3	27.06061	27.0621	0.00
0	0	2	12.13842	12.1385	1.70	-2	0	4	22.81149	22.8127	0.00	-6	0	4	27.18865	27.1908	0.00
-3	0	2	13.49833	13.4994	0.60	1	-1	-2	22.88658	22.8885	0.00	4	1	1	27.30206	27.3027	0.00
1	0	2	14.00386	14.0035	0.65	2	1	1	22.92154	22.9228	0.00	7	0	0	27.33947	27.3386	28.90
-4	0	1	14.50988	14.5102	0.03	4	0	2	22.95147	22.9502	0.00	5	-1	-2	27.51366	27.5157	36.80
3	0	1	14.92377	14.923	0.08	-3	0	4	22.99271	22.9943	0.00	4	-1	-3	27.80339	27.8058	0.00
4	0	0	15.52219	15.5217	0.01	3	1	0	23.02796	23.0294	0.00	5	1	0	27.89078	27.8917	133.00
-4	0	2	15.94972	15.9508	0.00	2	-1	-2	23.1438	23.1459	0.00	4	0	3	28.02756	28.0262	0.00
2	0	2	16.59304	16.5923	0.09	0	1	2	23.29619	23.2978	0.00	3	1	2	28.02945	28.0301	0.00
-2	0	3	17.09325	17.0943	0.03	-1	0	4	23.29843	23.2991	0.00	2	0	4	28.22251	28.2218	13.20
-1	0	3	17.2459	17.2465	0.01	6	0	0	23.37389	23.3732	1.60	1	1	3	28.28264	28.2838	0.00
-3	0	3	17.81394	17.8153	0.45	-4	0	4	23.8277	23.8295	47.50	-3	0	5	28.61289	28.6146	0.01
-5	0	1	18.171	18.1712	0.23	-6	0	3	24.02299	24.0246	11.50	-2	0	5	28.76933	28.7706	0.26
0	0	3	18.25065	18.2508	2.12	3	-1	-2	24.04765	24.0498	3.90	-4	0	5	28.99914	29.0012	10.20
4	0	1	18.59961	18.5986	0.03	1	1	2	24.34085	24.3422	0.00	-8	0	2	29.25918	29.2598	0.00
-5	0	2	18.90262	18.9036	24.50	0	0	4	24.41578	24.416	0.04	5	-1	-3	29.34759	29.3501	0.00
-4	0	3	19.31347	19.315	0.01	4	-1	-1	24.64146	24.6431	0.00	-1	0	5	29.46055	29.4613	97.70
5	0	0	19.43652	19.4359	0.01	3	1	1	24.89245	24.8934	0.01	-7	0	4	29.53678	29.5389	0.00
3	0	2	19.63098	19.63	0.03	3	0	3	25.00053	24.9995	2.61	-8	0	1	29.67449	29.6743	6.61
0	1	0	19.80855	19.8104	1.76	-5	0	4	25.25536	25.2574	0.45	6	-1	-1	29.72368	29.725	0.00
1	0	3	19.98355	19.9833	15.50	4	1	0	25.26317	25.2643	4.45	6	-1	-2	29.8986	29.9005	33.80
1	1	0	20.19044	20.1922	0.01	4	-1	-2	25.5335	25.5356	0.35	-5	0	5	29.90888	29.9112	66.20
1	-1	-1	20.69044	20.6924	0.00	-7	0	2	25.64038	25.6411	0.02	2	1	3	29.98491	29.9856	0.08
0	1	1	20.73292	20.7347	0.01	-7	0	1	25.77563	25.7755	0.01	5	1	1	30.05524	30.0556	0.10
2	1	0	21.29674	21.2984	0.01	2	1	2	25.94853	25.9495	0.02	6	0	2	30.10848	30.1068	4.69
2	-1	-1	21.37641	21.3783	16.60	1	0	4	26.08752	26.0873	0.00	7	0	1	30.12647	30.125	0.16
-5	0	3	21.43507	21.4367	24.80	6	0	1	26.2211	26.2198	29.20	-8	0	3	30.13959	30.141	0.10
1	1	1	21.4997	21.5013	84.60	2	-1	-3	26.27782	26.2799	0.08	2	-1	-4	30.38845	30.3906	5.55
-6	0	1	21.9368	21.9368	52.80	1	-1	-3	26.37943	26.3813	13.00	4	1	2	30.49588	30.4961	0.00
-6	0	2	22.16841	22.1693	0.00	5	0	2	26.46125	26.4598	0.04	3	-1	-4	30.52758	30.53	5.40
2	0	3	22.2823	22.2816	31.90	3	-1	-3	26.76193	26.7643	0.00	0	0	5	30.6536	30.6539	17.00
5	0	1	22.37492	22.3738	0.00	-7	0	3	26.95371	26.9552	2.64	3	0	4	30.73357	30.7325	0.00
						5	-1	-1	27.00584	27.0073	1.96	1	-1	-4	30.76333	30.7651	0.00
						I											

6	1	0	30.82172	30.8224	0.22	5	1	3	37.30595	37.3056	0.00	8	0	3	42.02938	42.0328	0.64
4	-1	-4	31.17451	31.1772	0.02	6	-1	-5	37.318	37.3212	0.00	3	1	5	42.05916	42.0591	2.25
5	0	3	31.28659	31.2849	60.70	8	1	0	37.35062	37.3508	10.70	2	-2	-2	42.09692	42.1009	0.26
-6	0	5	31.30066	31.3032	0.74	-7	0	6	37.45454	37.4576	13.20	-1	0	7	42.12931	42.1302	0.40
6	-1	-3	31.32717	31.3296	0.01	-10	0	1	37.6393	37.6388	23.30	10	-1	-2	42.15343	42.1547	0.24
8	0	0	31.33872	31.3378	12.20	8	0	2	37.71323	37.7112	0.27	10	0	1	42.18023	42.1783	1.41
0	1	4	31 63572	31 6371	5 74	-9	0	5	37 81466	37 8174	0.06	0	2	2	42,18647	42 1902	4 00
3	1	3	32 09869	32 099	0.00	9	0	1	38 10419	38 1025	0.81	5	0	- 5	42 29133	42 2895	11.60
0	0	4	32.07007	22.000	45.20		1	1	28 10854	28 1114	0.00	0	1	6	42.20150	42.2000	16.50
-0	0	-	22.21936	22.2213	45.20	0	-1	-4	20 17670	20 1776	0.00		0	7	42.30139	42.3020	0.01
1	1	3	32.29655	32.2962	1.25	1	1	2	20.21442	20.2122	0.00	-/	1	2	42.55056	42.30	1.20
5	-1	-4	32.30176	32.3046	0.07	/	0	3	38.31443	38.3123	0.24	10	-1	-3	42.30894	42.3709	1.50
7	-1	-2	32.61004	32.6118	57.00	-10	0	4	38.34566	38.3477	33.90	3	-2	-2	42.63382	42.6379	1.01
7	-1	-1	32.71874	32.7198	2.13	1	0	6	38.62462	38.6245	50.50	7	-1	-6	42.72098	42.7247	0.22
1	1	4	32.97021	32.9712	0.55	9	-1	-2	38.77798	38.7794	8.57	1	2	2	42.81094	42.8145	0.38
-9	0	2	32.9918	32.9923	0.13	7	-1	-5	38.88958	38.8929	25.90	10	-1	-1	42.88668	42.8872	0.00
6	1	1	33.07825	33.0784	0.08	-8	0	6	39.20468	39.2079	0.00	3	0	6	42.90235	42.9013	0.00
-7	0	5	33.12009	33.1228	0.04	9	-1	-3	39.23961	39.2418	0.04	8	1	2	42.95303	42.9521	0.00
5	1	2	33.27299	33.2729	2.25	4	1	4	39.26208	39.2618	7.57	4	-2	-1	42.994	42.9978	31.60
-9	0	3	33.52165	33.523	23.20	9	-1	-1	39.33336	39.334	6.56	9	-1	-5	43.04411	43.0475	1.17
4	0	4	33.54739	33.5459	0.00	4	0	5	39.37976	39.3783	0.27	3	2	1	43.14796	43.1513	14.60
-9	0	1	33.629	33.6286	0.00	10	0	0	39.46229	39.4611	0.28	9	1	1	43.3044	43.3035	8.93
7	-1	-3	33.67427	33.6766	0.00	7	1	2	39.53917	39.5385	11.50	4	2	0	43.37723	43.3807	14.90
7	0	2	33.86433	33.8625	0.00	8	1	1	39.73452	39.7341	1.84	0	0	7	43.43788	43.4383	9.12
6	-1	-4	33.86662	33.8695	0.00	6	0	4	39.86974	39.8676	3.13	7	1	3	43.49366	43.4926	0.98
7	1	0	33.9904	33.9908	85.50	2	1	5	39.95402	39.9544	6.11	10	-1	-4	43.5218	43.5245	0.03
8	0	1	34.08733	34.0857	0.00	3	-1	-6	40.10658	40.1091	0.00	4	-2	-2	43.5458	43.5499	0.02
2	0	5	34.33744	34.3368	0.00	4	-1	-6	40.16938	40.1723	0.45	-11	0	5	43.59494	43.5977	0.01
-3	0	6	34.51102	34.5128	0.00	0	2	0	40.24217	40.2461	1.66	-10	0	6	43.66997	43.6734	0.42
4	1	3	34.55806	34.558	0.06	6	1	3	40.2963	40.2956	12.40	-8	0	7	43.73336	43.737	0.00
-4	0	6	34.58241	34.5846	0.00	1	2	0	40.44393	40.4478	0.40	1	1	6	43.77332	43.7741	0.01
2	1	4	34.71973	34.7203	28.30	2	-1	-6	40.44801	40.4502	0.46	2	2	2	43.8068	43.8101	0.02
6	0	3	34.72658	34.7246	0.01	-4	0	7	40.46384	40.4662	16.30	2	-2	-3	44.01579	44.0198	0.26
-2	0	6	34.89871	34.9001	6.16	-10	0	5	40.5891	40.5919	9.30	1	-2	-3	44.0806	44.0845	0.07
3	-1	-5	35.04459	35.0471	1.17	2	0	6	40.60952	40.6089	1.37	8	-1	-6	44.29751	44.3013	11.40
-5	0	6	35.11044	35.113	0.00	-3	0	7	40.6256	40.6275	0.00	3	-2	-3	44.326	44.3302	0.00
-9	0	4	35.17194	35.174	0.00	5	-1	-6	40.63487	40.6381	0.00	4	1	5	44.45605	44.4556	0.00
2	-1	-5	35,17517	35,1773	0.00	9	-1	-4	40.6892	40.692	32.90	5	-2	-1	44.48362	44,4873	17.40
-8	0	5	35 30945	35 3122	0.00	-5	0	7	40 70375	40 7065	0.00	0	2	3	44 51914	44 5228	0.00
4	-1	-5	35 36741	35 3702	0.00	1	-2	-1	40 71237	40 7163	25.60	-12	0	3	44 52538	44 5263	0.00
9	0	0	35 37753	35 3764	0.00	-11	0	2	40.73528	40.7353	15 30	10	1	0	44 53083	44 5306	0.34
8	1	2	35 58551	35 5871	12.40	-11	2	1	40.73520	40.7302	0.10	10	2	1	44.67622	44.5500	0.07
1	-1	-2	35 73244	35 7333	0.00	8	1	5	40.81075	40.7372	0.12	12	0	2	44.07022	14.0795	2 73
-1	1	5	25 75492	25 7566	0.00	0	-1	-5	40.81075	40.8141	2.19	-12	2	2	44.73307	44.7557	0.01
1	-1	-5	25 81002	25 8210	0.00	2	1	0	40.87098	40.671	0.22	5	-2	-2	44.01439	44.0100	0.01
/	-1	-4	25.02511	25.026	1.50	2	2	1	41.04427	41.046	0.55	0	1	4	44.90047	44.6994	0.50
8	-1	-1	35.93511	35.936	1.58	2	-2	-1	41.08839	41.0923	30.50	4	-2	-3	45.00509	45.0094	0.09
-6	0	6	36.07761	36.0805	21.50	1	2	1	41.15691	41.1606	0.00	5	2	0	45.06279	45.066	1.66
5	-1	-5	36.13307	36.1361	0.43	-2	0	7	41.1851	41.1865	0.00	1	0	7	45.08568	45.0856	14.10
6	1	2	36.30202	36.3017	0.29	-9	0	6	41.28902	41.2924	0.07	3	2	2	45.15456	45.1576	38.40
7	1	1	36.31727	36.3171	4.78	-6	0	7	41.33954	41.3426	0.07	-12	0	4	45.22577	45.2276	0.53
8	-1	-3	36.32839	36.3307	7.23	6	-1	-6	41.49183	41.4953	0.01	1	2	3	45.32282	45.3262	0.00
5	0	4	36.60686	36.6051	1.77	9	0	2	41.64761	41.6454	0.06	6	0	5	45.41642	45.4142	0.00
3	0	5	36.7146	36.7135	0.00	-11	0	4	41.70517	41.7071	0.62	4	-1	-7	45.4408	45.4438	0.00
0	1	5	36.76514	36.7664	0.00	3	-2	-1	41.85461	41.8585	0.74	-9	0	7	45.44415	45.448	0.00
-10	0	2	36.8202	36.8205	0.00	1	-2	-2	41.94669	41.9506	0.02	4	0	6	45.46799	45.4665	0.00
3	1	4	36.83329	36.8334	0.00	5	1	4	41.96305	41.9624	8.65	10	-1	-5	45.55492	45.5583	0.00
0	0	6	36.98603	36.9864	0.02	2	2	1	41.96704	41.9706	13.00	2	1	6	45.57353	45.5739	1.79
-10	0	3	37.06136	37.0626	17.50	3	2	0	42.02912	42.027	4.34	3	-1	-7	45.58818	45.5908	1.04

5	-1	-7	45.65944	45.6627	1.74	5	2	2	48.81011	48.8126	0.01	10	-1	-7	51.90882	51.9133	0.00
10	0	2	45.66512	45.6891	2.63	-13	0	2	48.81593	48.8159	0.02	13	0	0	52.06604	52.0644	0.00
-12	0	1	45.84088	45.8401	0.75	-13	0	4	48.89107	48.8928	0.60	2	-1	-8	52.07284	52.0751	0.00
9	0	3	45.85923	45.8566	0.02	7	-2	-3	49.10357	49.1078	14.50	7	-1	-8	52.13902	52.1433	31.40
5	-2	-3	46.04024	46.0445	2.13	12	-1	-3	49.17355	49.1753	1.56	8	0	5	52.21474	52.2118	1.34
2	-1	-7	46.09884	46.101	1.10	-12	0	6	49.1918	49,1952	0.21	12	1	0	52.22428	52.2236	1.22
9	-1	-6	46 19384	46 1978	0.79	6	-2	-4	49 24486	49 2495	0.60	-13	0	6	52 28095	52 2843	8 80
6	1	7	46.24004	46 2437	2 20	3	0	7	40 20022	40 2802	0.00	12	0	7	52.20055	52.2015	6.41
6	-1	-7	46 20724	46 2007	1.00	7	2	0	40.22601	40.22992	1.52	14	0	2	52.51154	52.5150	4.06
11	-2	-1	40.29724	40.3007	1.99	12	2	0	49.33001	49.5500	1.52	-14	0	3	52.45501	52.4505	4.90
-11	0	0	40.31377	40.3172	11.00	12	-1	-2	49.30004	49.3075	1.10	8	-2	-4	52.45807	52.4055	0.83
11	0	1	46.3205	46.3185	0.01	1	1	7	49.69331	49.6941	0.83	1	2	5	52.51181	52.5148	24.70
6	-2	-2	46.41741	46.4213	0.87	4	2	3	49.75612	49.7586	16.70	5	1	6	52.67242	52.6714	0.03
2	2	3	46.47685	46.4799	0.13	-11	0	7	49.75888	49.7629	0.29	-14	0	4	52.69115	52.6928	0.01
9	1	2	46.52197	46.5208	0.25	11	0	2	49.76707	49.7645	0.38	-5	0	9	52.79643	52.7995	0.00
5	2	1	46.52536	46.5282	0.19	10	0	3	49.79782	49.795	15.70	13	-1	-3	52.81389	52.8155	41.70
11	-1	-4	46.5747	46.5773	1.03	12	-1	-4	49.82344	49.826	0.01	-6	0	9	52.9545	52.958	2.43
-4	0	8	46.59572	46.5982	1.49	2	2	4	49.87641	49.8793	36.10	-4	0	9	52.96597	52.9686	33.60
-5	0	8	46.61009	46.613	0.00	6	1	5	50.00063	49.9994	0.00	9	-2	-2	52.98176	52.9852	16.50
2	-2	-4	46.75604	46.7601	0.35	9	-1	-7	50.02641	50.0308	2.12	1	-1	-8	53.04669	53.0484	0.00
-12	0	5	46.80281	46.8055	1.75	0	0	8	50.03799	50.0385	0.01	7	-2	-5	53.06936	53.0743	5.66
4	2	2	46.83071	46.8335	0.00	-13	0	1	50.0435	50.0426	13.70	7	1	5	53.09886	53.0972	6.35
3	-2	-4	46.85278	46.8571	0.00	4	1	6	50.04859	50.048	2.53	8	-1	-8	53.13812	53.1426	2.33
8	1	3	46 8719	46 8706	0.00	3	-2	-5	50 11894	50 1233	0.01	13	-1	-2	53 17947	53 1802	2.96
8	0	4	46 89464	46 892	0.09	-9	0	8	50 16051	50.1647	0.01	13	-1	-4	53 25013	53 2525	3 38
3	0	8	46.03001	46.0410	0.02	13	0	5	50.100091	50.1047	0.03	0	2	3	53 34481	53 3488	0.48
-5	1	7	40.93991	46.0652	0.02	-15	2	5	50.21674	50.1955	0.03	1	-2	-5	52 26252	52 2647	2.26
ſ	-1	-/	40.90559	40.9055	0.20	10	-2	-5	50.221074	50.2208	0.05	4	2	4	52 41977	52 4217	0.02
-0	0	8	46.98278	46.9861	11.60	10	1	2	50.23196	50.2305	0.01	9	-2	-1	53.418//	53.4217	0.03
10	1	1	47.01033	47.0095	4.96	4	-2	-5	50.36105	50.3656	8.42	-7	0	9	53.43815	53.4421	43.30
1	-2	-4	47.01726	47.0211	9.34	12	-1	-1	50.39557	50.3957	3.57	-3	0	9	53.46094	53.4631	11.20
2	0	7	47.04547	47.0449	0.18	9	1	3	50.41265	50.411	0.00	12	-1	-6	53.53305	53.537	0.03
6	2	0	47.05811	47.0611	1.92	8	-2	-2	50.52522	50.5289	0.00	7	2	2	53.58141	53.5832	0.11
5	1	5	47.11234	47.1115	0.09	9	0	4	50.62284	50.6199	0.38	3	1	7	53.62569	53.6255	0.30
7	-1	-7	47.17227	47.1762	3.58	1	-2	-5	50.65301	50.6568	0.00	2	0	8	53.66584	53.6653	0.17
4	-2	-4	47.30581	47.3102	0.35	7	-2	-4	50.70153	50.7062	6.52	8	2	1	53.73611	53.7381	18.40
6	-2	-3	47.41346	47.4177	0.31	8	-2	-1	50.78939	50.7925	0.01	-14	0	5	53.74422	53.7467	8.07
-10	0	7	47.46157	47.4655	0.96	11	-1	-6	50.83626	50.8403	0.04	-11	0	8	53.83419	53.8388	15.10
0	2	4	47.63194	47.6355	0.18	11	1	1	50.84253	50.8414	6.96	11	0	3	53.84367	53.8406	6.22
-2	0	8	47.63672	47.6383	0.42	5	-2	-5	50.93953	50.9443	0.00	2	2	5	53.91034	53.913	4.50
3	1	6	47.67423	47.6741	4.14	6	2	2	51.06798	51.0701	0.00	12	0	2	53.95766	53.9549	0.23
-7	0	8	47.70736	47.711	4.43	7	2	1	51.07958	51.0819	0.00	3	-2	-6	54.03167	54.036	2.46
12	0	0	47.79834	47.7968	36.10	8	-2	-3	51.08805	51.0922	26.50	11	-1	-7	54.06721	54.0718	1.09
3	2	3	47 9619	47 9647	3 60	4	-1	-8	51 09934	51 1025	2.73	11	1	2	54 07494	54 0732	3 22
7	-	4	48 04608	48 0447	0.07	5	-1	-8	51 11276	51 1163	15 50	4	_2	-6	54.08167	54.0863	0.91
5	2	4	48 10743	48 112	0.52	12	1	5	51 20274	51 206	15.30	10	1	3	54 10302	54 102	0.10
0	-2	-4	40.10745	40.112	0.52	12	-1	-5	51.29274	51 2007	15.50	10	1	2	54.10392	54.102	0.10
0 2	1	1	40.10/0/	40.0740	0.39	0	1	0	51.502	51.2997	0.00	0	2	3	54.16265	54.1840	0.14
5	0	6	48.27615	48.2742	0.14	8	1	4	51.37854	51.3768	40.10	-8	0	9	54.24135	54.2456	16.00
11	-1	-5	48.31285	48.3162	0.26	3	-1	-8	51.42085	51.4235	0.00	-2	0	9	54.27518	54.2768	0.07
7	-2	-2	48.32929	48.3331	0.07	0	2	5	51.42151	51.4249	0.00	2	-2	-6	54.30393	54.308	0.00
10	-1	-6	48.38213	48.3861	0.01	6	-1	-8	51.46092	51.4648	12.10	-14	0	1	54.32412	54.3231	0.15
7	-2	-1	48.40779	48.4111	0.00	3	2	4	51.47371	51.4762	0.10	0	1	8	54.33044	54.3317	40.00
-13	0	3	48.42684	48.4277	40.60	2	1	7	51.51952	51.5198	0.18	13	-1	-1	54.33563	54.3356	0.17
8	-1	-7	48.44069	48.4449	13.50	1	0	8	51.70824	51.7082	0.00	9	-1	-8	54.44605	54.4508	14.40
1	2	4	48.5899	48.5931	0.01	4	0	7	51.79488	51.7934	0.00	5	-2	-6	54.45335	54.4582	8.37
6	2	1	48.66836	48.6709	0.03	5	2	3	51.83698	51.8391	0.00	13	-1	-5	54.4748	54.478	0.44
-1	0	8	48.67466	48.6757	0.22	6	-2	-5	51.84627	51.8511	0.21	10	0	4	54.48306	54.4798	0.02
7	0	5	48.73018	48.7276	0.64	-10	0	8	51.85447	51.8589	0.07	9	-2	-4	54.49684	54.5014	0.13
-8	0	8	48.77194	48.7759	0.25	8	2	0	51.87142	51.874	0.00	7	0	6	54.5262	54.5235	0.00

5	0	7	54.53747	54.5355	0.00	8	0	6	57.93462	57.9352	0.04	15	-1	-4	60.59362	60.5958	78.20
8	-2	-5	54.59425	54.5993	0.00	6	2	4	57.93882	57.9369	1.84	7	0	7	60.66753	60.6647	25.80
9	2	0	54.64256	54.6448	0.00	11	1	3	57.93908	57.9402	16.50	-16	0	4	60.68105	60.6824	6.64
12	1	1	54.79652	54.7952	0.00	12	0	3	57.99892	57.9956	0.00	0	2	7	60.69615	60.6994	0.03
13	0	1	54.82183	54.8194	0.00	12	1	2	58.0477	58.0458	37.80	10	-1	-9	60.73241	60.7378	0.00
9	1	4	54.88268	54.8806	0.00	-14	0	7	58,10162	58,1058	36.00	-16	0	3	60.78233	60.7828	0.04
1	-2	-6	54 8952	54 8989	0.00	13	0	2	58 24351	58 2405	18 40	0	1	9	60 78487	60 7861	0.00
13	0	7	55 00827	55 1024	0.00	8	1	0	58 31813	58 323	0.15	11	2	5	60.8201	60.8251	0.00
-15	2	ć	55 14006	55 1474	12.00	2	-1	->	59 2504	59 2527	0.15	15	-2	-5	60.85006	60.8251	10.50
0	-2	-0	55.14220	55.14/4	15.90	2	-1	-9	50.5504	50.3321	1.77	10	0	0	00.85000	00.846	19.50
-9	0	9	55.35465	55.3592	0.00	4	0	8	58.30/30	58.3058	1.//	10	-2	-0	60.87938	60.8849	1.80
-1	0	9	55.39914	55.4003	0.01	4	-2	-7	58.38988	58.3946	1.66	8	-2	-7	60.9295	60.9352	9.67
5	2	4	55.5236	55.5236	10.10	14	-1	-1	58.39707	58.3968	55.00	-9	0	10	60.97623	60.9812	8.30
6	1	6	55.52507	55.5253	1.70	-11	0	9	58.46203	58.4671	4.14	5	0	8	61.07784	61.0758	16.00
-14	0	6	55.56353	55.5669	2.14	11	0	4	58.47263	58.4691	0.97	-2	0	10	61.133	61.1348	1.11
3	2	5	55.60159	55.6038	26.60	10	-2	-5	58.4854	58.4904	0.95	15	-1	-2	61.19557	61.196	0.41
10	-2	-2	55.67816	55.6814	0.27	2	2	6	58.50098	58.5035	2.41	-14	0	8	61.30429	61.3092	5.22
0	2	6	55.79864	55.8019	35.50	3	-2	-7	58.51326	58.5177	4.19	-15	0	7	61.30814	61.3123	7.26
10	-2	-3	55.85347	55.855	4.79	1	0	9	58.52645	58.5265	8.46	-16	0	5	61.31237	61.3147	14.10
9	0	5	55.85824	55.8574	0.00	10	1	4	58.54869	58.5463	2.32	15	-1	-5	61.39148	61.3945	0.09
3	0	8	55.8915	55.8905	16.20	5	-2	-7	58.57296	58.578	9.95	6	1	7	61.43645	61.4349	0.48
1	1	8	55.90987	55.9106	2.30	-13	0	8	58.57565	58.5805	4.19	9	0	6	61.51794	61.5145	0.00
4	1	7	55.99199	55.9913	0.00	7	1	6	58.58985	58.588	1.97	12	-2	-3	61.55854	61.5622	41.10
10	-1	-8	56.04848	56.0534	10.10	5	1	7	58.60061	58.5995	1.76	-16	0	2	61.61407	61.6136	0.02
-12	0	8	56.08049	56.0852	0.00	-15	0	1	58.69233	58.6911	1.80	12	-2	-2	61.72482	61.7277	6.01
7	-2	-6	56.1406	56.1459	0.00	13	1	1	58.87204	58.8705	1.75	8	1	6	61.8542	61.852	3.39
13	1	0	56.24912	56.2483	38.40	2	-2	-7	58.9419	58.9459	2.13	12	1	3	61.91601	61.9135	0.02
10	-2	-1	56.27608	56.2787	0.00	9	-2	-6	59.02184	59.0273	4.21	1	2	7	62.00663	62.0094	6.92
8	2	2	56.33039	56.3319	0.03	-15	0	6	59.02695	59.0302	0.28	14	-1	-7	62.01474	62.0194	0.10
8	1	5	56 39021	56 3882	0.00	6	-2	-7	59.06073	59.066	3 95	12	-2	-4	62 11906	62 1234	1 59
9	-2	-5	56.40499	56.41	0.02	13	-1	-7	59.13609	59.1408	6.84	0	3	0	62.1297	62,1361	13.50
13	-1	-6	56 4 5304	56 457	4 64	14	0	1	59 20081	59 1982	5.08	-10	0	10	62 14225	62 1475	19.00
12	-1	-7	56 48207	56 4867	0.72	-6	0	10	59 23613	59 2399	2.86	13	1	2	62.15117	62.149	0.08
-15	0	3	56 55266	56 5532	11.70	-5	0	10	59 25893	59 2622	1 40	13	0	3	62 26901	62 2654	0.05
14	-1	-3	56 59986	56 6013	32.60	9	2	2	59 2984	59 2996	2 13	4	1	8	62 27028	62 2695	0.04
9	2	1	56 61853	56 6203	0.12	11	_2	-4	59 3429	59 3473	10.80	6	2	5	62.27020	62.2093	0.88
15	0	1	56 62128	56 6228	0.00	0	-2	-7	50 3811	50 3862	31.40	1	2	0	62.27232	62.2734	10.00
-15	0	4	56 76605	56 7700	1.59	9	-1	-9	50 42264	50 4254	0.20		2	7	62.27734	62.2005	0.11
-10	0	9	56.70005	50.7709	1.36	1	-1	-9	50,51,001	59.4254	0.50	9	-2	-1	02.29404	62.3003	0.11
10	2	3	56 70729	56,9019	4.21	-/	1	10	50,50004	50 50 40	52.00	4	2	10	02.31363	02.5155	10.20
10	-2	-4	56.79728	56.8018	5.84	14	-1	-0	59.58084	59.5848	52.00	-1	0	10	62.34157	62.3428	10.50
0	0	9	56.82076	56.8214	38.10	-4	0	10	59.58511	59.5879	13.80	11	-1	-9	62.30135	62.307	2.84
14	-1	-4	50.84257	50.8448	7.55	8	2	3	59.59412	59.5952	0.09		1	4	62.37155	62.3089	0.26
5	-1	-9	56.9426	56.9463	0.07	10	0	5	59.65392	59.6504	0.01	1	1	9	62.42334	62.4241	1.65
1	2	6	57.00451	57.0074	0.11	1	-2	-7	59.67173	59.6754	0.01	13	-1	-8	62.47068	62.4735	12.60
6	-1	-9	57.09285	57.097	0.34	10	2	1	59.71132	59.7128	2.48	10	2	2	62.47267	62.476	14.60
4	-1	-9	57.10376	57.107	0.01	5	2	5	59.79776	59.7992	0.71	1	-3	-1	62.47443	62.4808	0.08
14	-1	-2	57.12244	57.123	0.18	7	-2	-7	59.84858	59.8541	1.97	0	3	1	62.49136	62.4977	0.17
-15	0	2	57.24886	57.2485	0.02	9	1	5	59.86278	59.8604	14.80	15	-1	-1	62.58297	62.5825	8.97
8	-2	-6	57.43789	57.4433	8.53	3	1	8	59.89462	59.8944	2.08	12	0	4	62.59296	62.5892	0.40
-15	0	5	57.45294	57.4553	0.03	12	-1	-8	60.07553	60.0808	2.93	12	-2	-1	62.61456	62.6168	13.40
6	0	7	57.49977	57.4974	43.30	-8	0	10	60.09867	60.1033	2.76	9	2	3	62.62938	62.6301	0.73
7	-1	-9	57.55292	57.5574	0.00	-3	0	10	60.21165	60.2139	27.80	-13	0	9	62.65191	62.6574	1.97
4	2	5	57.56935	57.5712	47.80	3	2	6	60.27513	60.2772	1.39	-16	0	6	62.6633	62.6665	0.62
3	-1	-9	57.57462	57.5774	2.84	14	1	0	60.39389	60.3928	0.02	2	3	0	62.71909	62.7254	25.70
10	2	0	57.63141	57.6335	21.30	-12	0	9	60.42852	60.4338	0.00	3	0	9	62.73432	62.7333	3.32
2	1	8	57.7697	57.7699	74.50	2	0	9	60.50217	60.5017	1.27	2	-3	-1	62.75171	62.7581	0.78
14	-1	-5	57.84435	57.8475	0.02	15	-1	-3	60.52785	60.5291	0.01	1	3	1	62.80238	62.8087	1.57
11	-1	-8	57.93005	57.9315	0.02	7	2	4	60.59214	60.5931	0.01	15	-1	-6	62.90514	62.909	7.02

11	-2	-6	62.9975	63.0031	5.41	1	-3	-3	65.00666	65.0131	0.07	16	-1	-1	66.8999	66.8992	3.40
11	2	1	63.00296	63.0041	5.24	8	-2	-8	65.01515	65.0212	0.33	5	3	1	66.90952	66.9152	0.07
14	1	1	63.07261	63.0708	2.85	13	-2	-2	65.05166	65.0544	17.00	-9	0	11	67.00375	67.0091	2.53
6	-1	-10	63.10664	63.111	3.97	14	-1	-8	65.10302	65.1084	8.54	2	-3	-4	67.09171	67.0983	0.48
5	-1	-10	63.12862	63.1325	1.04	15	-1	-7	65.10674	65.1114	1.62	6	2	6	67.13656	67.1361	3.11
-16	0	1	63 1 5 9 4 9	63 1581	0.73	16	-1	-5	65 11083	65 1137	26.70	15	0	2	67 13959	67 1373	4 44
4	_2	-8	63 22663	63 2315	1.54	13	-2	-4	65 11405	65 1182	13 50	4	3	2	67 15079	67 1518	0.41
-	-2	-0	62 22005	62 2425	0.20	14	-2		65 11070	65 1254	2.05	7	0	0	67 15474	67 1564	2 22
2	-2	-0	(2.22101	(2.2074	9.59	-14	0	2	65 12206	65 1202	2.05		2	0	07.15474	(7.1304	10.00
- 3	-3	-1	63.32101	63.3274	0.60	-1/	0	3	65.13206	65.1323	0.77	3	-3	-4	67.16826	67.175	10.00
7	-1	-10	63.37724	63.382	0.39	3	-3	-3	65.19529	65.202	0.01	-3	0	11	67.2292	67.2317	5.63
1	-3	-2	63.38982	63.3963	5.39	4	0	9	65.21057	65.2091	0.12	-13	0	10	67.27928	67.2853	0.15
12	-2	-5	63.39532	63.4003	0.85	10	0	6	65.27135	65.2675	2.30	1	-3	-4	67.29858	67.305	12.20
2	3	1	63.40503	63.4112	1.05	-12	0	10	65.3035	65.307	0.08	11	-1	-10	67.31562	67.3217	0.41
4	-1	-10	63.44299	63.4464	1.14	9	1	6	65.30966	65.3093	13.10	11	1	5	67.32692	67.3238	0.69
3	3	0	63.45148	63.4577	0.90	5	-3	-1	65.31673	65.323	0.01	6	3	0	67.33098	67.3368	0.78
8	2	4	63.47023	63.4708	3.40	-17	0	5	65.32207	65.3243	0.05	15	1	1	67.40519	67.4032	2.12
2	-3	-2	63.50224	63.5066	3.44	0	3	3	65.34413	65.3504	3.37	-16	0	8	67.41514	67.4201	0.58
3	-2	-8	63.50718	63.5088	0.32	12	-2	-6	65.36415	65.3697	8.11	1	2	8	67.48118	67.4839	1.02
10	1	5	63.50933	63.5116	21.70	16	0	0	65.39059	65.3884	0.01	4	-3	-4	67.52774	67.5347	5.82
6	-2	-8	63.54218	63.5477	11.00	16	-1	-2	65.40268	65.4029	0.10	0	1	10	67.54908	67.5504	5.56
0	3	2	63.56936	63.5757	0.35	3	2	7	65.44614	65.448	0.30	4	2	7	67.55481	67.5562	0.35
-11	0	10	63,5879	63,5935	0.36	4	3	1	65.46542	65.4713	20.30	9	0	7	67.58292	67.5792	0.82
2	2	7	63 59339	63 5957	0.15	5	-3	-2	65 57246	65 579	0.00	2	0	10	67 59762	67 5972	0.66
15	0	1	63 68016	63 6774	3.22	1	0	10	65 58361	65 5837	6.78	10	2	8	67 60549	67 612	2.67
15	0	10	62 02025	62 820	0.28	1	2	2	65 72000	65 7269	1.22	10	-2	-0	67 61242	67 6202	0.29
0	0	10	63.62655	03.829	0.28	4	-5	-5	65.72009	05.7208	1.25	10	-5	-5	07.01342	67.6202	0.56
3	-3	-2	63.90579	63.9123	0.20	5	3	0	65.76485	65.7708	0.01	12	0	5	67.69707	67.6929	0.19
10	-2	-7	63.93406	63.9401	10.40	-6	0	11	65.83445	65.8385	0.00	6	1	8	67.72564	67.7239	19.50
8	-1	-10	63.93835	63.9435	0.25	3	3	2	65.83614	65.8419	0.00	-17	0	1	67.73911	67.7376	0.42
6	0	8	64.01015	64.0077	0.72	11	-2	-7	65.83747	65.8436	0.00	8	1	7	67.74551	67.743	0.36
8	0	7	64.03061	64.0274	0.07	11	2	2	65.84433	65.8449	0.60	13	2	0	67.7856	67.7869	0.24
1	3	2	64.03952	64.0457	0.02	10	2	3	65.87006	65.8704	0.01	0	3	4	67.78757	67.7938	0.56
3	-1	-10	64.04738	64.0503	0.10	10	-1	-10	65.91396	65.9198	19.00	-15	0	9	67.82167	67.8274	3.82
2	-2	-8	64.07784	64.0819	0.08	-7	0	11	65.93962	65.9441	0.38	8	2	5	67.91235	67.9126	0.34
7	-2	-8	64.13589	64.1417	0.09	1	3	3	65.96702	65.9731	0.57	5	0	9	67.92049	67.9185	0.46
4	-3	-1	64.17804	64.1844	0.07	-5	0	11	66.01543	66.0189	13.80	-10	0	11	67.95602	67.9617	1.08
12	2	0	64.21072	64.2122	0.28	13	1	3	66.03673	66.034	0.41	15	-1	-8	67.96244	67.9679	1.65
-15	0	8	64.25389	64.2588	0.05	0	2	8	66.07125	66.0744	0.57	13	-2	-6	67.96884	67.9744	1.81
12	-1	-9	64.25674	64.2626	0.08	13	-2	-1	66.07587	66.0779	21.80	12	-2	-7	67.99494	68.0011	1.61
3	3	1	64.29479	64.3008	0.31	-17	0	2	66.09222	66.0916	0.60	3	3	3	68.05135	68.0569	0.82
2	1	9	64.32787	64.3281	0.02	1	-1	-10	66.10701	66.1089	0.28	14	-2	-3	68.10089	68.1042	2.83
4	3	0	64 46906	64 4752	3.81	9	-2	-8	66 17404	66 1803	0.06	5	-3	-4	68 16796	68 175	1.11
7	1	7	64 48758	64 4855	11.50	13	-2	-5	66 19962	66 2045	0.28	-2	0	11	68 25449	68 2564	2 25
16	1	1	64 50063	64 5026	33.80	8	-2	11	66 33023	66 3351	1.00	16	0	1	68 2737	68 2707	1.00
10	-1	-4	64.50749	64.5020	2.12	-0	1	11	00.33023	00.5551	2.46	10	0	1	(9.20720	68.2014	2.67
4	-5	-2	64.59748	64.5990	2.15	12	1	4	00.5500	00.3470	2.40	-1/	0	/	60.29729	08.3014	2.07
16	-1	-3	64.59848	64.604	0.59	14	1	2	66.39002	66.38/6	1.00	14	-2	-4	68.31941	68.3235	3.02
5	2	6	64.60465	64.6058	3.00	13	-1	-9	66.40772	66.4137	2.84	7	-3	-2	68.34608	68.3525	1.66
15	1	0	64.66393	64.6627	7.69	16	-1	-6	66.41877	66.4226	2.66	16	-1	-7	68.40431	68.409	0.96
-16	0	7	64.70846	64.7126	0.47	-17	0	6	66.46912	66.4723	0.85	5	-2	-9	68.40956	68.4149	2.97
13	-2	-3	64.72923	64.7327	1.79	-4	0	11	66.48134	66.4843	0.33	6	-2	-9	68.54504	68.5508	0.66
9	-1	-10	64.78586	64.7913	0.08	12	2	1	66.48604	66.4869	2.53	4	-2	-9	68.55487	68.5598	2.34
2	3	2	64.79686	64.8029	2.82	5	-3	-3	66.52781	66.5346	0.42	1	3	4	68.55579	68.5617	0.53
-17	0	4	64.87389	64.8751	1.39	9	2	4	66.56283	66.5631	0.75	17	-1	-4	68.5652	68.5671	0.48
5	1	8	64.88406	64.8828	1.72	14	0	3	66.66246	66.6586	1.13	14	-2	-2	68.57173	68.5743	0.78
1	-2	-8	64.93447	64.9381	1.73	6	-3	-1	66.72977	66.7359	0.97	6	3	1	68.61904	68.6245	0.61
2	-1	-10	64.93739	64.9398	1.29	6	-3	-2	66.8244	66.8309	2.77	5	3	2	68.73343	68.7388	0.13
2	-3	-3	64.95693	64.9635	0.59	13	0	4	66.84919	66.8451	0.49	14	-1	-9	68.80441	68.8105	0.48
7	2	5	64.9805	64.9811	0.37	2	3	3	66.87125	66.8771	0.41	17	-1	-3	68.81635	68.8173	0.82

4	1	9	68.89275	68.892	0.72	9	-2	-9	70.62097	70.6276	3.64	-7	0	12	72.72637	72.7311	0.76
10	1	6	68.9519	68.9488	0.66	9	-1	-11	70.64008	70.6459	1.45	11	-1	-11	72.7683	72.7749	6.62
7	-2	-9	68.96053	68.9666	10.90	1	-2	-9	70.65978	70.6634	1.45	-6	0	12	72.77834	72.7772	0.29
7	-3	-3	68.97074	68.9775	5.13	-12	0	11	70.67445	70.6808	7.38	11	1	6	72.78067	72.7826	4.25
3	-2	-9	68.98015	68.9847	1.88	-18	0	2	70.69697	70.6962	2.02	18	-1	-4	72.79303	72.7948	1.92
12	-1	-10	68.9832	68.9895	2.65	-16	0	9	70.74946	70.7552	1.60	8	3	1	72.80312	72.8081	0.55
17	-1	-5	69.00127	69.0041	53.60	15	1	2	70.77264	70.7699	1.02	8	2	6	72.88998	72.8899	1.60
16	1	0	69.06796	69.0665	2.59	-17	0	8	70.78224	70.7852	1.89	1	0	11	72.93562	72.9358	0.35
6	-3	-4	69.08524	69.0923	1.63	7	1	8	70.78743	70.7872	3.84	12	2	3	72.94701	72,9467	0.27
2	2	8	69 15664	69 1589	1 29	14	-2	-6	70 80327	70 8088	0.91	-8	0	12	72.94781	72,9531	3.03
-	3	0	69 15919	69 1648	4 24	6	0	9	70.85609	70.8535	1 18	2	3		72 95028	72 9558	0.59
11	0	11	60 18166	60 1877	11.10	3	1	11	70.8601	70.8632	0.40	17	0	1	72.99020	72.9930	21.20
11	0	6	60 10/20	60 1001	2 22	0	-1	-11	70.86852	70.8746	8.88	14	2	7	73.03814	73 0444	0.03
11	0	4	60 20602	60 208	1.07	12	1	10	70.00802	70.0156	0.00	14	-2	-1	72.05288	73.0444	0.05
-10	2	-	60 22422	60 220	2.42	2	-1	-10	70.90898	70.9150	0.64	19	-5	-0	72.06504	73.0599	2.70
14	-2	10	60 25500	60 2567	0.12	16	1	+ 0	71.0416	71.0471	2.20	14	-1	10	72.00594	72.0026	0.02
1	1	10	09.23388	09.2307	0.12	10	-1	-0 5	71.0410	71.0471	2.50	14	-1	-10	73.06364	73.0920	0.03
11	-2	-0	69.30183	09.3085	29.50	9	2	5	71.00089	71.0007	2.20	4	-5	-0	73.0932	75.1024	0.05
11	2	3	69.31002	69.31	19.70	3	2	8	/1.09	71.0918	8.22	-5	0	12	73.10351	73.1073	0.40
12	2	2	69.40845	69.4087	0.01	0	0	11	71.11409	71.1149	0.25	1	-1	-11	73.13041	73.1324	15.10
-18	0	5	69.485/3	69.4878	1.55	15	0	3	/1.19099	/1.1869	0.06	13	2	2	/3.16414	/3.1641	16.80
6	-1	-11	69.50017	69.5047	29.50	9	1	7	71.20541	71.2025	14.00	6	3	3	73.18086	73.1856	0.02
4	3	3	69.50086	69.5062	0.76	5	3	3	71.21293	71.218	0.00	18	-1	-3	73.19001	73.1908	1.38
-14	0	10	69.50605	69.5123	0.00	2	1	10	71.21977	71.22	2.49	4	2	8	73.2742	73.2755	15.30
-1	0	11	69.55157	69.5529	0.02	6	-3	-5	71.22065	71.228	0.01	2	-3	-6	73.28349	73.2859	0.35
2	3	4	69.59894	69.6046	0.01	8	3	0	71.24155	71.2457	0.93	12	0	6	73.29048	73.2902	0.26
7	-1	-11	69.60262	69.6076	1.62	14	0	4	71.25013	71.247	0.00	11	-2	-9	73.35839	73.3655	0.20
-18	0	3	69.61244	69.6126	0.14	12	-2	-8	71.25551	71.2623	0.96	11	2	4	73.36782	73.3673	7.06
8	-2	-9	69.65373	69.6601	0.02	12	1	5	71.31689	71.3134	0.01	5	-3	-6	73.41027	73.4177	2.30
5	-1	-11	69.67646	69.6805	3.35	10	0	7	71.32243	71.3183	1.30	3	1	10	73.43375	73.4334	1.00
2	-2	-9	69.68301	69.6871	0.50	17	-1	-1	71.35796	71.3571	1.20	-9	0	12	73.4417	73.4474	0.61
14	-2	-1	69.7254	69.7272	16.10	15	-1	-9	71.4386	71.4448	0.05	9	-3	-4	73.4472	73.4543	11.50
17	-1	-2	69.75129	69.7513	0.24	5	1	9	71.53513	71.5338	2.97	13	-2	-8	73.4595	73.4664	6.95
3	-3	-5	69.79702	69.8039	0.15	14	2	0	71.54709	71.5481	0.63	8	-3	-5	73.52996	73.5375	0.22
3	0	10	69.86131	69.8603	1.41	10	-1	-11	71.56985	71.5761	3.21	15	-2	-1	73.5634	73.5649	0.16
10	2	4	69.8631	69.863	9.29	15	-2	-3	71.66991	71.673	0.95	9	3	0	73.57102	73.5762	0.24
2	-3	-5	69.87703	69.8837	0.49	15	-2	-4	71.73024	71.7342	0.31	17	1	0	73.61832	73.6166	0.52
7	2	6	69.90051	69.9008	11.60	8	-3	-4	71.73065	71.7378	0.40	-19	0	4	73.69103	73.692	0.54
5	2	7	69.91028	69.9113	0.11	1	3	5	71.77503	71.772	2.98	-4	0	12	73.70046	73.7037	2.94
8	-1	-11	69.98325	69.9887	0.36	16	0	2	71.77573	71.7809	3.44	1	-3	-6	73.78606	73.7925	1.78
4	-3	-5	69.99522	70.0023	16.90	10	-2	-9	71.8576	71.864	0.35	-19	0	5	73.81108	73.8131	0.10
17	0	0	70.04973	70.0473	0.07	16	1	1	71.88029	71.878	3.49	15	-2	-6	73.86177	73.8673	7.22
17	-1	-6	70.11865	70.1224	10.30	17	-1	-7	71.90335	71.908	3.00	-17	0	9	73.89793	73.9038	24.00
8	-3	-2	70.12987	70.1341	17.40	13	0	5	71.95248	71.9479	0.45	6	-3	-6	73.99676	74.0044	0.42
4	-1	-11	70.13056	70.1362	0.62	-15	0	10	71.97582	71.9823	0.62	18	-1	-6	74.00587	74.0092	7.15
13	2	1	70.15714	70.1577	8.24	-18	0	7	72.07343	72.0775	0.41	7	0	9	74.01224	74.0173	0.05
1	-3	-5	70.23481	70.2412	10.60	9	-3	-2	72.16841	72.1746	0.66	14	2	1	74.01704	74.0546	9.78
7	-3	-4	70.27469	70.2818	0.09	7	-3	-5	72.24191	72.2494	2.65	6	-2	-10	74.0486	74.0562	0.03
14	1	3	70.30717	70.3041	2.82	15	-2	-2	72.28322	72.2856	3.22	9	0	8	74.06005	74.0623	0.16
8	-3	-1	70.34695	70.3528	0.07	4	0	10	72.36697	72.3654	3.56	8	1	8	74.06501	74.0745	9.27
13	-2	-7	70.39758	70.4038	4.56	-13	0	11	72.42794	72.4346	3.89	-10	0	12	74.20599	74.2121	0.03
-18	0	6	70.44518	70.4483	14.50	-18	0	1	72.4474	72.4456	17.60	12	-1	-11	74.23065	74.2375	0.31
5	-3	-5	70.47056	70.4778	2.19	15	-2	-5	72.46352	72.4683	2.31	18	-1	-2	74.25274	74.2526	0.01
13	1	4	70.4893	70.486	0.55	9	-3	-3	72.47338	72.4801	0.94	7	-2	-10	74.29974	74.3061	8.27
8	0	8	70.50551	70.5021	1.97	4	3	4	72.48829	72.4934	2.11	16	-1	-9	74.30421	74.3105	6.89
6	3	2	70.57645	70.5815	1.45	6	2	7	72.50493	72.5054	3.26	5	3	4	74.32278	74.3275	0.05
7	3	1	70.58602	70.5912	13.10	9	-3	-1	72.53562	72.5413	4.53	17	-1	-8	74.33636	74.3419	0.06
8	-3	-3	70.593	70.5997	3.20	7	3	2	72.67262	72.6775	3.13	-18	0	8	74.35309	74.3581	0.03

4	-2	-10	74.3608	74.3659	21.60	10	3	0	76.1421	76.1471	0.71	11	2	5	77.99699	77.996	0.04
3	3	5	74.38958	74.3948	4.99	16	-2	-2	76.18848	76.1906	3.74	5	3	5	78.04141	78.0459	0.07
6	1	9	74.40878	74.4069	10.10	7	-1	-12	76.24529	76.2506	3.68	3	-1	-12	78.0566	78.0599	10.80
10	2	5	74.42243	74.4219	13.60	6	-1	-12	76.29639	76.3012	1.54	15	2	1	78.07083	78.0709	7.38
-14	0	11	74.43594	74.4428	1.78	14	0	5	76.37604	76.3711	0.70	6	0	10	78.08307	78.0804	0.40
10	-3	-2	74.4552	74.4613	8.64	6	3	4	76.40982	76.4142	1.23	19	-1	-6	78.08588	78.0895	0.04
0	3	6	74 55853	74 5646	8 16	1	1	11	76 45103	76 4519	1.98	7	-3	-7	78 08632	78 0944	0.02
-3	0	12	74 56677	74 5694	6.26	8	-1	-12	76 46302	76 4688	1.70	-13	0	12	78.08902	78.0963	0.79
10	0	6	74 5065	74.5005	0.20	17	-1	-12	76 51225	76 5008	0.77	10	0	0	78 12062	78 1247	0.02
-19	2	2	74.5905	74.5995	0.58	17	1	12	76.52220	76.5402	0.77	-19	1	10	78.12903	70.1347	0.05
10	-5	-5	74.00558	74.0122	0.01	-12	0	12	70.33329	76.5402	2.15	10	-1	-10	78.20665	78.2008	0.17
0	1	11	/4.6618/	/4.6633	11.40	1/	0	2	/6.55994	/6.5559	3.47	0	2	10	/8.20665	78.2098	0.10
-16	0	10	74.68242	/4.689	1.31	5	-1	-12	/6.61615	76.6205	7.92	-20	0	5	/8.31033	78.3122	0.26
15	1	3	74.73732	74.7339	0.49	10	-2	-10	76.66768	76.6751	1.36	18	1	0	78.33146	78.3295	0.08
14	1	4	74.79535	74.7917	0.28	-15	0	11	76.69308	76.7002	1.02	-20	0	4	78.34135	78.3422	6.68
8	-2	-10	74.82141	74.8281	3.12	13	2	3	76.78289	76.7822	6.62	6	2	8	78.3734	78.3737	0.61
18	0	0	74.8457	74.8431	0.43	12	1	6	76.80006	76.7962	1.03	8	2	7	78.39218	78.3918	2.69
7	-3	-6	74.85233	74.8601	2.74	4	-3	-7	76.80374	76.8111	0.86	3	3	6	78.46382	78.4688	2.44
10	1	7	74.8663	74.8629	0.76	1	-2	-10	76.84888	76.8526	0.92	2	1	11	78.49353	78.4938	1.40
3	-2	-10	74.92292	74.9276	0.26	10	-3	-5	76.88733	76.895	3.02	5	1	10	78.59072	78.5893	4.91
10	-3	-1	74.96894	74.9745	0.44	2	3	6	76.90097	76.9064	0.79	15	-2	-8	78.59722	78.6043	0.71
2	0	11	75.01012	75.0098	2.73	3	-3	-7	76.91171	76.9188	1.31	11	-1	-12	78.7179	78.725	0.10
8	3	2	75.01572	75.0203	0.93	9	-1	-12	76.94884	76.9551	0.98	11	1	7	78.73137	78.7275	40.90
9	-3	-5	75.08001	75.0876	0.55	5	-3	-7	76.964	76.9716	1.54	7	3	4	78.7451	78.7486	23.10
5	0	10	75.1087	75.1066	0.18	11	-3	-3	76.98439	76.9909	2.03	0	3	7	78.83752	78.8436	3.49
12	-2	-9	75.11797	75.1253	0.90	12	2	4	77.0777	77.0768	1.99	19	-1	-2	78.92266	78.9223	0.84
2	2	9	75.18426	75.1864	0.22	-1	0	12	77.09412	77.0956	6.10	-20	0	6	78.93269	78.9356	3.82
-11	0	12	75.2377	75.2442	0.57	14	2	2	77.11475	77.1144	2.70	11	3	0	78.95127	78.9554	2.56
11	0	7	75.25136	75.2468	0.24	13	-2	-9	77.13139	77.1389	1.56	10	-3	-6	79.00047	79.0086	17.10
9	3	1	75.26424	75.269	0.40	16	-2	-6	77.14177	77.1473	9.97	16	-2	-7	79.0154	79.0217	2.25
16	1	2	75.31128	75.3083	0.44	19	-1	-4	77.19421	77,1958	0.38	-20	0	3	79.02553	79.0253	8.17
7	2	7	75.33321	75,3333	0.68	3	2	9	77.2065	77.2073	0.40	8	-3	-7	79.04509	79.0534	2.98
16	-2	-4	75 34539	75 3492	0.54	-18	0	9	77 26512	77 2711	0.06	17	-2	-4	79 16783	79 1715	0.12
7	3	3	75 39866	75 4031	0.58	2	-3	-7	77 28757	77 2943	0.14	2	-1	-12	79 1731	79 1758	0.64
10	-3	-4	75 41868	75 4258	0.42	-19	0	1	77 30396	77 302	0.00	-16	0	11	79 19543	79 2028	0.40
16	-2	_3	75.43669	75 4397	1 31	19	-1	-5	77 31238	77 315	34.50	15	1	4	79 28097	79.2020	0.40
10	-2	-5 2	75 44533	75 4443	0.09	3	-1	-5	77 33258	77 3316	0.00	16	1	3	79.34161	70 3370	0.24
12	1	5	75 19196	75 491	0.42	0	2	6	77.35250	77.3510	2.26	10	0	7	79.34101	70 2714	0.40
15	1	5	75.46460	75.401	0.42	9	-5	-0	77.2071	77.2025	0.12	12	0	/	79.37037	79.3714	0.09
15	2	10	75.49777	75.4965	0.07	0	2	9	77.20106	77.2009	0.12	14	-2	-9	79.39404	79.4025	0.78
15	-1	-10	75.50778	75.5147	0.84	0	-3	-/	77.39190	77.3998	0.08	1/	-2	-3	79.40597	79.4088	0.41
1	3	0	75.59798	75.0037	0.08	17	-1	-9	77.59787	77.4043	0.10	4	2	9	79.47845	79.4796	0.00
18	-1	-/	/5.00300	75.0085	0.07	/	1	9	77.51041	77.508	0.07	19	-1	-/	79.50929	79.5139	0.52
9	-2	-10	/5.61163	/5.618/	4.50	9	1	8	//.55/49	//.5543	0.19	10	2	6	/9.53458	/9.5336	0.42
-2	0	12	75.69922	75.7013	0.72	13	0	6	77.56805	77.563	2.55	12	-2	-10	79.56429	79.5722	0.66
5	2	8	75.70338	75.7042	0.60	16	-2	-1	77.59449	77.5958	0.97	17	-2	-5	79.58144	79.586	0.57
2	-2	-10	75.75322	75.7574	17.00	9	3	2	77.60103	77.6053	0.02	12	-3	-3	79.60627	79.6127	0.60
15	0	4	75.80854	75.8038	1.24	-17	0	10	77.62199	77.6287	31.70	16	2	0	79.64474	79.6453	29.80
16	0	3	75.87001	75.8656	1.56	11	-3	-4	77.64021	77.6473	1.64	12	-3	-2	79.755	79.7608	1.35
4	1	10	75.89205	75.8912	0.21	10	-1	-12	77.7012	77.7079	1.88	19	0	0	79.80054	79.7977	5.46
14	-2	-8	75.90806	75.9151	9.71	19	-1	-3	77.73228	77.7329	0.05	1	2	10	79.82323	79.8259	1.21
15	-2	-7	75.91154	75.9179	6.98	10	0	8	77.81997	77.8156	0.82	14	1	5	79.84109	79.8369	45.60
16	-2	-5	75.91537	75.92	0.23	18	-1	-8	77.84609	77.8517	1.20	4	0	11	79.89949	79.8979	2.64
13	-1	-11	75.95197	75.9592	1.06	8	3	3	77.86163	77.8658	0.20	-14	0	12	79.90131	79.9089	1.55
18	-1	-1	75.97109	75.97	0.87	18	0	1	77.87302	77.8695	2.94	-7	0	13	79.92175	79.9269	0.08
8	-3	-6	75.97386	75.9818	1.10	14	-1	-11	77.9277	77.9352	1.46	-8	0	13	79.98872	79.9944	8.32
-19	0	7	76.03991	76.0439	4.99	1	-3	-7	77.93012	77.9365	2.85	12	-1	-12	79.99638	80.0038	8.04
4	3	5	76.08812	76.093	0.07	10	3	1	77.96507	77.9695	4.44	1	3	7	80.00745	80.0131	2.03
9	2	6	76.10139	76.1009	6.97	11	-2	-10	77.98633	77.994	0.84	17	1	2	80.02269	80.0194	1.37

6	-2	-11	80.05544	80.0617	1.78
12	-3	-4	80.10828	80.1153	0.75
-6	0	13	80.12002	80.1246	0.88
7	-2	-11	80.15288	80.1596	2.52
15	-1	-11	80.15418	80.1619	9.85
-20	0	7	80.20434	80.2083	9.82
5	-2	-11	80.22314	80.2289	7.56
6	3	5	80.24586	80.25	5.70
9	-3	-7	80.26591	80.2744	7.29
4	3	6	80.28315	80.2878	5.00
17	-2	-2	80.29436	80.2963	1.34
-9	0	13	80.32079	80.3269	0.43
-20	0	2	80.35844	80.3572	0.19
10	3	2	80.42593	80.4299	1.54
8	-2	-11	80.51524	80.5223	0.10
16	0	4	80.54173	80.5366	0.08
1	-1	-12	80.55038	80.5525	0.11
12	-3	-1	80.55359	80.5588	24.80
9	3	3	80.56693	80.5707	0.22
-5	0	13	80.58306	80.5871	3.95
17	-2	-6	80.64425	80.6497	3.17

Aus dieser Arbeit hervorgegangene Publikationen

Y. Liebold-Ribeiro, D. Fischer, M. Jansen, *Experimental substantiation of the "energy landscape concept" for solids: Synthesis of a new modification of lithium bromide*, Angewandte Chemie **2008**, *120*, 4500–4503; Angewandte Chemie Int. Edition **2008**, *47*, 4428–4431; auch highlighted in Nature Chemistry Published online 16 May **2008** doi:10.1038/nchem.12; ,News and Views'-Artikel von David C. Johnson in Nature **2008**, *454*, 174-175.

R. Dinnebier, Y. Liebold-Ribeiro, M. Jansen, *The low and high temperature crystal structures of* $[Mg(H_2O)_6]XBr_3$ *double salts* ($X^+ = Rb^+$, Cs^+), Zeitschrift für Anorganische und Allgemeine Chemie. **2008**, *im Druck*.

Posterbeitrag:

Y. Liebold-Ribeiro, <u>D. Fischer</u>, Ž. Čančarević, J. C. Schön, and M. Jansen; *Experimental* substantiation of the "energy landscape concept" for solids: - Synthesis of a new modification of lithium bromide – 14. Vortragstagung der Fachgruppe Festkörperchemie und Materialforschung, Bayreuth, 24.-26. Sept. 2008

Lebenslauf

Name:	Liebold Ribeiro, Yvonne
Geburtsdatum:	06.12.1980
Geburtsort	Plauen
Familienstand	verheiratet
Schulausbildung	
1987 – 1992	Grund- und Realschule in Jocketa
1992 – 1999	Lessing-Gymnasium in Plauen
1999 – 2000	Freiwilliges Soziales Jahr: Diakonie Sozialstation in Plauen
Studium	
09/2000 - 09/2004	Studium der Angewandten Naturwissenschaft an der TU- Bergakademie Freiberg, Vertiefungsfächer: Umweltanalytik- und Umweltsystemanalyse sowie Stoffe der Mikroelektronik Studienarbeit am Institut für Physikalische Chemie bei Prof. Dr. G. Wolf mit dem Thema: " <i>Charakterisierung</i> <i>eines Fluid-Chipkalorimeters</i> "
10/2004 – 09/2005	Diplomarbeit am Institut für Biomedizinische Technik der ETH-Zürich bei Prof. Dr. P. Niederer mit dem Thema: "Quantitative Untersuchung von biologischem Gewebe mit Frequency-domain Nahinfrarot-spektroskopie:Entwicklung eines Versuchsaufbaus auf Basis einer 3D TOF-Kamera"
Seit 01/2006	Promotion am Max-Planck-Institut für Festkörperforschung in Stuttgart bei Prof. Dr. Dr. h.c. M. Jansen mit dem Thema: "Ein neuer Beitrag zur Synthese und Charakterisierung binärer/ternärer Alkali- und Erdalkalimetallhalogenide sowie einzelner Hydrate"

Hiermit erkläre ich Eides Statt, dass ich die vorliegende Arbeit unter Verwendung der angegebenen Hilfsmittel selbstständig angefertigt und bisher noch keinen Promotionsversuch unternommen habe.

Stuttgart, im Juni 2008

Yvonne Liebold Ribeiro

Der höchte Lohn für unsere Bemühungen ist nicht das, was wir dafür bekommen, sondern das, was wir dadurch werden.

John Ruskin