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Introduction

The quantum Hall effect (QHE) is a transport phenomena occurring in two-dimensional electron

or hole system (2DES or 2DHS) under high magnetic field. It corresponds to quantized Hall

resistance plateaus appearing simultaneously with zero longitudinal resistances. The value of

the Hall resistance plateau in the integer quantum Hall effect (IQHE) ish/(e2 · i) with i =

{1, 2 . . .}. It was firstly discovered by Klaus von Klitzing in 1980 [1, 2] who was honored by

the Nobel prize in 1985. Later a second Nobel prize was given to D.C. Tsui, H.L. Störmer and

R.B. Laughlin for the discovery of the fractional quantum Hall effect [3–7]. The value of the

Hall resistance plateau in the fractional quantum Hall effect ish/(e2 · f) wheref is a fractional

number. In metrology, quantized Hall resistance plateaus are measured in order to define the

standard resistanceRK−90 = 25812.807 Ω -called the conventional von Klitzing constant.

After twenty-five years and several books on the topic [8–11], the quantum Hall effect is still

the subject of intensive research (we can cite for instance the Bose-Einstein condensation in

2DES bilayer [12–17], the non-abelian 5/2 state [18], or the unconventional QHE in graphene

sheet [19]). Over these years, several microscopic pictures have been suggested to explain the

quantized Hall resistance. Important progresses on this field have been done in our group via

the local probing of the Hall potential profiles by scanning force microscopy [20,21]. Following

these local measurements, a description of the quantum Hall effect has been proposed in which

the screening of the electrostatic potential plays a fundamental role. In this picture, the non

dissipative current is carried by incompressible strips (IS) which separate compressible strips

(CS) with different electrochemical potential. An incompressible strip is a region in which

the Fermi energy is located inside the energy gap (the electron density is constant and the

electrostatic potential is changing) whereas a compressible strip occurs if the Fermi energy is

pinning inside a Landau level (the electron density is changing and the electrostatic potential

is screening). Recent self-consistent calculations of R. Gerhardtset al. [22–24] support such

description of the quantum Hall effect in terms of compressible and incompressible strips.

The following PhD work demonstrates that the model based on compressible and incompress-

ible strips accounts also for the adiabatic transport features observed on high mobility samples

in the quantum Hall regime. Usually presented in the literature with the edge state picture, such

features are the disappearance of peaks in the Shubnikov-de Haas oscillations, the extension

of quantum Hall plateaus to lower magnetic fields and the existence of non-local resistances.

The following research will show that in adiabatic situations, compressible regions with anun-
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usualdifference of electrochemical potential are found to coexist along the same edge due to an

insulator-like incompressible strip in between and due to the lack of impurities scattering. The

insulator properties of incompressible strips in front of the alloyed ohmic contacts are found to

be anisotropic with a dependency on the orientation of the contact borderline with respect to the

crystal direction.

The thesis is organized as following: The physics of 2DES is the topic of thefirst chapter

in which the quantum Hall effect and different microscopic pictures for its explanation are

reviewed. The scanning force microscope as a local voltage probe to microscopically study the

QHE is described with the experimental setup inchapter 2. Chapter 3offers some basics on

the adiabatic transport in term of the edge state picture. The magneto-transport and scanning

probe measurements on four-terminal Hall bars with a high mobility 2DES (about130 m2/V s)

are shown inchapter 4and5, respectively. As afinal chapter, the presentation of an adiabatic

transport model based on compressible and incompressible strips with different width at the

contact borderline depending on the heterostructure orientation on the crystal is introduced to

explain our complete measurements.
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1. Two-dimensional electron system
(2DES) in high magnetic fields

This chapter summarizes the basic properties of a two-dimensional electron system (2DES).

After a brief presentation of its properties at zero magnetic field, the electrical transport through

2DES at low and high magnetic field is discussed. A major part of the chapter is then dedicated

to the integer quantum Hall effect (IQHE). At the beginning, the bulk picture and the edge state

picture which are generally used to describe IQHE are introduced. Later on, recent experimen-

tal [1–3] and theoretical works [4–6] in the group of Klaus von Klitzing are discussed in detail.

Those works suggests a microscopic picture of the integer quantum Hall effect based on com-

pressible and incompressible strips. In this PhD thesis, we will use this strip picture to explain

our experimental results.
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1.1. 2DES EMBEDDED IN ALGAAS/GAAS HETEROSTRUCTURE 3

1.1. 2DES embedded in AlGaAs/GaAs heterostructure

In the quantum Hall effect community, the 2DES is usually obtained fromAlxGa1−xAs/GaAs

heterostructures. Such III-V material is preferred to the silicon MOSFET due to its higher

electron mobility. A typical layer sequence to create 2DES based onAlxGa1−xAs/GaAs is

shown in Fig. 1.1(a). By using molecular beam epitaxy (MBE), the sharp interface between

the AlGaAs and GaAs is realized with perfect crystal quality. Due to a conduction band offset

between AlGaAs and GaAs, the AlGaAs layer doped with silicon atoms gives electrons to the

GaAs layer. These electrons are trapped at the heterojunction since Si+ ions create an attractive

triangular shaped confinement potential (Fig. 1.1(b-c)). The electrons in this potential well can

freely move in the plane parallel to the interface (x andy directions). Their eigenfunctions are

Figure 1.1.:a) Layer sequence of anAlxGa1−xAs/GaAs heterostructure.b) Bending of the

conduction band minimum and valence band maximum at the junction between the AlGaAs

layer and the GaAs layer. A triangle-shaped potential well is formed.c) At respectively low

electron density, the electrons at the interface create a 2DES (Figure taken from E. Ahlswede

PhD thesis [3]).
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MAGNETIC FIELDS

plane waves with a wave vector~k. In z direction a quantization of the energy occurs due to the

spatial confinement. The energy spectrum ink-space is therefore described by

ε(i, kx, ky) = εz
i +

h̄2k2
x

2m∗ +
h̄2k2

y

2m∗ (1.1)

wherem∗ ≈ 0.067m0 is the effective electron mass in GaAs. The integer numberi =

{0, 1, 2 . . .} labels the eigenenergy values inz direction. These quantized levels define the

subband minimumi. At low temperature and for low electron density, all electrons occupy the

first subbandεz
0 - a two-dimensional electrons system (2DES) is formed (see Fig. 1.1 (c)). Such

systems have been investigated for several decades and its properties have motivated a lot of

interests [7]. One specificity of 2DES, it is its density of states at zero magnetic field which is

constant and equal to

D(ε) = D0 =
m∗

πh̄2 . (1.2)

It follows that the Fermi energy, given by

εF =
πh̄2

m∗ ns , (1.3)

linearly depends on the sheet electron densityns. For typical 2DES with a density around few

1015 m−2, this energyεF is in between4 and20 meV.

1.2. Classical magneto-transport

In magnetic field, 2DES shows interesting transport properties recorded via resistance measure-

ments. Performed at low field, these magneto-resistances (MR) allow to extract the relevant

electrical properties of the system i.e. the densityns and the mobilityµ of the charge carriers.

The Hall bar geometry presented in the inset of figure 1.2 is a typical setup for transport mea-

surement. The current is applied in between the terminals1 and4. The longitudinal resistance

Rxx = Vxx/Inet = R14,23 is measured with two contacts located at the same edge (contact2 and

3) which probe the longitudinal potential drop. The Hall resistanceRxy = Vxy/Inet = R14,26

is recorded with voltage probing contacts located at two opposite mesa edges (contact2 and6).

The interest on these magneto-resistances comes from their relation to the microscopic electri-

cal properties of the 2DES. This link is usually derived by using the classical equation of motion

for a Drude electron - an electron of representative mean properties,

m∗dvD

dt
+
m∗

τ
vD = −e[E + (vD ×B)] , (1.4)

i The subband separationεz
i+1 − εz

i is in the order of10 to 20 meV.
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wherevD denotes the drift velocity of the Drude electron,B= (0, 0, B) the magnetic field,

E= (Ex, Ey, 0) the applied electric field. In stationary condition, the first termm∗dvD/dt is

Figure 1.2.: Typical magneto-transport curves: Classical magneto-resistance at low magnetic

field and the integer quantum Hall effect at high field [8]. Inset: Hall bar geometry used for

measuring the Hall resistanceRxy = Vxy/Inet = R14,26 and the longitudinal resistanceRxx =

Vxx/Inet = R14,23.
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zero. By replacingvD with j= −ensvD, the equation (1.4) can be rewritten asj = σ̃E, i.e.

(
jx

jy

)
=

ensµ

1 + (µB)2

(
1 µB

−µB 1

)(
Ex

Ey

)
(1.5)

with µ = eτ/m∗ the electron mobility andτ the average scattering time. In magnetic field, the

conductivityσ̃ is not a scalar number but a tensor of rank two. The mobility and the density of

charge carriers are linked to the microscopic Drude parametersτ andm∗ by the equation (1.5).

They can also be related to the longitudinal and Hall resistance [9]. From the symmetry (σxx =

σyy andσxy = −σyx), the inversion of the conductivity into resistivity is given by(
ρxx ρxy

−ρxy ρxx

)
=

1

σ2
xx + σ2

xy

(
σxx σxy

−σxy σxx

)
.

A linear relation between the Hall resistance and the magnetic field follows:

Rxy = ρxy =
B

ens

. (1.6)

This linear dependency with respect to the magnetic field is in agreement with the measurement

of the Hall resistance at low field as shown in figure 1.2. The curveRxy(B) is inversely propor-

tional to the electron density and the fit of the slope allows to extract the electron density value

ns. From the Drude model, the longitudinal resistance is constant over the low field range,

Rxx =
L

W
ρxx =

L

W

1

ensµ
, (1.7)

and the measurement of this resistance aroundB = 0 gives the electron mobilityµ. The

equations (1.6) and (1.7) will be used to extract the electron density and mobility of our 2DES

(see section 4.1.4).

1.3. The quantum Hall effect (QHE)

In high magnetic fieldB and at low temperature, the 2DES magneto-resistance (MR) shows

deviations from the classical MR. Instead of a linear behavior with respect toB, the Hall resis-

tanceRxy shows some plateaus around certain magnetic field values. These plateaus are equal

to a quantized resistance ofh/(e2 · i) with i = {1, 2 . . .}. Simultaneously the longitudinal resis-

tanceRxx goes to zero (see Fig. 1.2). The precise quantization of the Hall resistance combined

with the vanishing of the longitudinal resistance are the two transport phenomena named as

quantum Hall effect (QHE). Similar transport features [10–14] occur at higher magnetic field
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with a value of quantization corresponding toh/(e2 · f) wheref is a fractional number. This

transport is called fractional quantum Hall effect (FQHE)ii .

The special feature of the QHE is the fact that a quantized Hall resistance does not depend on

the sample geometries and materials. This resistance is only related to two universal constants:

e andh. In his original work, Klaus von Klitzing proposed to use the quantum Hall effect to

precisely determine the value of the fine structure constantα = e2/h · (µ0 · c/2). Since the Hall

plateau resistance is measured with very high accuracy, the valueRK−90 = 25812.807 Ω - called

the conventional von Klitzing constantRK−90, has been selected as the standard of resistance

starting since 1990. Several descriptions of the phenomena have been proposed based on either

bulk localization or edge states or recently on compressible and incompressible strips [15–17].

Although all of them start from the Landau level discretization of the energy spectrum in high

magnetic field (section 1.4), the microscopic picture of these model is drastically different.

1.4. Landau level quantization in high magnetic field

In high magnetic field (few Telsa), the field opens gaps in the energy spectrum and reveals

the quantum Hall effect in the transport measurements. To determine this energy discretiza-

tion, a quantum treatment of homogeneous 2DES is performed by solving of the single-particle

Schr̈odinger equation [
(p̂ + eA)2

2m∗ + eV (x, y)

]
ψ(x, y) = εψ(x, y). (1.8)

The homogeneous magnetic fieldB is included in the equation through the vector potential

A, formulated in Landau gaugeiii asA= (−By, 0, 0). The functionψ(x, y) is the eigenwave

function iv of a single electron andV (x, y) is the sum of the Hartree-Fock and confinement

potential due to the finite size of the system. ForV (x, y) = 0 and after introducing the Landau

gauge symmetry, the Schrödinger equation is rewritten as

1

2m∗

[
(p̂x − eBy)2 + p̂2

y

]
ψ(x, y) = εψ(x, y). (1.9)

Since the Hamiltonian does not contain the operatorx̂, the operator̂px commutes with the

Hamiltonian - i.e. [Ĥ, p̂x] = 0, and the problem is separable in two independent subspaces

for x andy. The wave functionψ(x, y) is therefore splitted asψ(x, y) = χk(x) ⊗ ϕn(y) with

ii In this PhD thesis, the temperature of our cryogenic scanning force microscope being limited toT ≈ 1 K, the

local potential is exclusively measured in the integer quantum Hall regime.
iii The choice of the gauge depends on the symmetry. In systems with rotational symmetry (quantum dots with

circular confinement or devices with isotropic electron-electron interaction), it is better to use a cylindric gauge.
iv The total single particle wave function is given byψ(x, y) ⊗ Ψ(z) with Ψ(z) the wave function related to the

confinement inz direction.



8
CHAPTER 1. TWO-DIMENSIONAL ELECTRON SYSTEM (2DES) IN HIGH

MAGNETIC FIELDS

χk(x) = eikxx/
√
Lx due to thex-invariance in periodic conditions. The operatorp̂x andp̂y in

thex- andy-subspace are expressed byp̂x = −ih̄∂/∂x andp̂y = −ih̄∂/∂y. It follows,

1

2m∗

[
(h̄kx − eBy)2 − h̄2∂2/∂y2

]
ϕn(y) = εnϕn(y). (1.10)

This equation (1.10) describes a harmonic oscillator iny-direction[
− h̄2

2m∗
∂2

∂y2
+

1

2
m∗ω2

c · (y − Y )2

]
ϕn(y) = εnϕn(y) (1.11)

with a cyclotron frequencyωc = eB/m∗ and a center coordinateY = −l2B · ky (the parame-

ter lB =
√
h̄/eB is the magnetic lengthv). The equidistant eigenvaluesεn of this harmonic

oscillator are

εn = h̄ωc

(
n+

1

2

)
, n = {0, 1, 2 . . .}. (1.12)

The equation (1.12) shows how 2DES energy spectrum is quantized due to the magnetic field.

The effect is well pronounced in GaAs due to its very small effective massvi. Finally to obtain

the complete expression of the single electron energy, a Zeeman term related to the electron

spins has to be added to this quantized energy spectrum and to the subband energyε0
z:

εn,s = ε0
z + h̄ωc(n+

1

2
) + sg∗µBB with s = ±1

2
. (1.13)

From the quantization of the energy spectrum, the 2DES density of states which is constant

at zero magnetic field (see equation (1.2)), becomes discretized at high field:

D(ε) = nL

∑
n,s

δ(ε− εn,s) (1.14)

with nL the spin-resolved Landau level degeneracy given by

nL = h̄ωcD0 =
e

h
B . (1.15)

In magnetic field it is convenient to describe the properties of the 2DES by a filling factorν.

This dimensionless parameter is defined as the number of occupied Landau levels at a specific

value of magnetic field and for a certain electron concentration:

ν ≡ ns

nL

=
h

eB
· ns . (1.16)

The filling factor tells how many magnetic flux quantaΦ0 = h/e are present for each electron

of Ns electrons contained inside an area ofLx · Ly size crossed by a total magnetic flux of

Φ = BLxLy:

ν ≡ h

eB
· ns =

nsLxLy

BLxLye/h
=

Ns

Φ/Φ0

. (1.17)

v For example atB = 1 T, lB ∼ 26 nm and atB = 10 T, lB ∼ 8 nm. This length gives an idea on the spatial

extension of the wave function since its radius isRn = lB
√

2n+ 1.
vi For the GaAs material, the cyclotron energyh̄ωc changes as1.75 meV/T.
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1.5. Effect of electric field on the Landau levels

The effect of an electric fieldE can be included to the Landau level quantization due to magnetic

field. Treatement of the electric field is relevant in electronic transport since it determines the

current density. For instance if a homogeneous Hall electric fieldE = −dV (y)/dy exists in the

y direction, equation (1.10) leads to[
(h̄kx − eBy)2 − h̄2∂2/∂y2

2m∗ − eEy

]
ϕn(y) = εnϕn(y). (1.18)

The eigenvalues of the system are shifted to

εn = h̄ωc

(
n+

1

2

)
− m∗E2

2B2
+ eY · E, (1.19)

and the energy of the Landau levels are not anymore constant in they direction but proportional

to the center coordinateY . In this situation, Landau levels are tilted along this direction. Each

electron in the new eigenstate system{χk(x)⊗ϕn(y)} expressed as{|n, kx〉} has a drift velocity

due to~E:

vD =
1

m∗ 〈n, kx |(−ih̄∇+ eA)x|n, kx〉 =
1

m∗ 〈n, kx |−ih̄∂/∂x− eBy|n, kx〉 =
E

B
, (1.20)

which is independent of the state. As all electrons behave in the same way, the current density

jx may be written asjx = −ensvD. Using equation (1.20), the current density depends on the

variation of the electrostatic field with a weight which is related to the local occupancy of the

Landau levels:

jx = −ens
−1

B

∂V (y)

∂y
= −ν e

2

h

∂V (y)

∂y
= ν

e2

h
E. (1.21)

In the special case of a homogeneous electric field, the current distribution is uniform. In high

magnetic field, it may happen that∂V (y)/∂y changes along they-direction and the distribution

of current becomes inhomogeneous (see section 1.8).

1.6. Bulk and edge model for the QHE

1.6.1. Bulk picture

The bulk description of the QHE starts from the necessity to include a certain disorder to un-

derstand why broad plateaus in the Hall resistance appear. The bulk model is based on the

existence of extended and localized states in the infinite 2DES [18]. The extended state has

a finite amplitude at every point in the sample whereas the localized state has a finite ampli-

tude in only a small region of the sample [19]. AtB = 0 andT = 0, the scaling theory of
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localization [20] predicts the absence of extended states in disordered 2DES : all electrons are

diffused by the impurities, interfere and become localized in regard to scaling theory [21]. With

a longitudinal conductivityσxx = 0 driven by the electron mobility at the Fermi energy, the

system is an Anderson insulator. In high magnetic field, the situation is slightly different since

the 2DES density of state is quantized in Landau levels - i.e. only certain cyclotron orbits are

allowed (see section 1.4) and localization is dominated by the quantum hopping of cyclotron

motions. Impurities, defects and inhomogeneities contribute to random potential fluctuations

which lead to the broadening of the DOS around each of these Landau levels. The variation

of magnetic field modifies the Landau level occupancynL(B) (equation (1.15)) and the gap

Figure 1.3.:a) Broadening Landau levels atν = 2. The states at the Fermi level are all localized.

b) At ν = 2.5, there is an extended state which carries current due to the percolation path.
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energyh̄ωc = h̄eB/m∗. If the magnetic field is decreased, the Fermi energy changes from a

gap region atν = 2 to a high density of states area such asν = 2.5. By percolation, an extended

state exists atν = 2.5 which goes from one boundary of the sample to the other (Fig. 1.3(b)).

At contrary, electrons with an energy in the tail of the Landau level describe a close trajectory

around close equipotential line (Fig. 1.3(a)). They are localized. In consequence, the impuri-

ties decrease the number of states which may carry the current. The net current is nevertheless

conserved since the density current near impurities increases due to the potential gradient. In

average, the excess current carried by extended state compensates the lack of state due to the

localization [22]. A plateau appears in the quantum Hall regime since the localized states are

filled up without changing the extended state, i.e. without changing the conductance [23] when

the density increases or the magnetic field decreases. These localized states may be seen as

a reservoir which allows the Fermi energy to stay inside the Landau gap and far away from

extended state.

1.6.2. Edge state picture

Another description of the QHE is based on the edge states picture elaborated by Marcus

Büttiker [24–26]. Before explaining what is the edge state, it is necessary to start with the main

idea of his transport model. It is not a linear response theory based on Kubo-formulavii but it

follows the Landauer approachviii in which the conduction is treated in terms of transmission

vii The transport theory was first described via built up current due to an applied electric field. Its formalism is

based on linear response and Kubo formulas. By applying a difference of voltage to the sample, an electric field

is created which induces a current density inside the conductor:j(r) =
∫
dr′σ(r, r′) · E(r′). This equation

gives a proportional relation (an approximation of the linear response) expressed via a functionσ(r, r′). For

a system invariant by translation,j = σ · E with σ = V −1
∫
drdr′σ(r, r′). The conductivity,σ appears as

an intrinsic property of the sample which does not depend on the position of the voltage carrying contacts or

the sample geometry. This conductivity should not be confused with the conductanceG which is the measured

quantity in experiments.
viii R. Landauer introduced a new conductance theory for close systems. The applied current is kept constant and

creates local electric fields inside the sample. His theory has the advantage that it can be easily adapted to the

quantum theory and its interference effects since the Landauer approach is based on a probability of transmitted

and reflected electron (analogy with optic wave propagation). The resistance is due to the local electrostatic

potential induced by scattering events under neutrality condition. In the presence of current transport, electrons

are accumulated on one side of a scatter whereas a lack of electron appears on the other side. A dipole is formed

and a local resistance is associated to the potential change around the impurities. A simple consideration

gives [27–29]:

R =
πh̄

e2
R

T
. (1.22)

The debat concerning theR/T or 1/T expression of the resistance is well explained in the book of Imry [30]

(see also [31, 32]). To summarize, both equations are in principle valid, but it is the matters of the measuring

configurations:R4pts = πh̄
e2

R
T is for a four-terminal resistance whileR2pts = πh̄

e2
1
T = πh̄

e2

(
1 + R

T

)
= R4pts +
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and reflection of electron.

Marcus B̈uttikker extends the Landauer approach to open systems by inserting contact ter-

minals [33]. The source contact injects charges (Inet) to the conductor and the sink contact

removes charges (−Inet) from it. The voltage probes carry no net current (Inet = 0). The elec-

trons of a terminalj distributed inside one-dimensional channelsNj have a certain probability

Tji to go from terminalj to i, and a probabilityRjj to be reflected. Through the set of equations

Ij =
e

h

[
(Nj −Rjj) · µj −

∑
i6=j

Tji · µi

]
, (1.23)

for each contactj, it is possible to calculate all the chemical potentialsµj and to obtain all the

resistanceRij,kl = (Vk − Vl)/e · Inet. In this particular case, the current is applied between the

terminali andj, and the voltagesVk andVl are probed betweenk andl.

In the quantum Hall regime, the channels are edge states which are associated in the classi-

cal view to the center of the electron skipping orbit in magnetic field. What is meant by edge

states ? In high magnetic field, the density of state is quantized in Landau levels (LLs) which

bend up at the mesa edges due to the potential confinement (see Fig. 1.4(b)). Around bulk in-

teger filling factors, the Fermi energy lies inside the gap of the bulk area but it crosses the LLs

at the mesa edges. At these intersections, extended statesix exist at the Fermi level which con-

nects one terminal to the other with probabilityTij = 1 in the conventional QHE (Fig. 1.4(a)).

Due to different sign of the slope of the energy distribution, the direction for the drift velocity

is opposite at the two edges (see arrows location in Fig. 1.4(a)). The spatial separation of the

conductive channels with the insulation bulk in between suppresses the backscattering from one

edge of the mesa to the opposite one. States with different direction of electron propagation are

decoupled. Voltage probing contacts located at the same edge own the same chemical poten-

tial defined either by the injecting or the sinking contact depending on the magnetic field sign

(the skipping orbit effect). Under such a condition the longitudinal resistance is zero and the

Hall resistance is quantized with a value proportional toh/e2 and inversely proportional to the

number of Landau level.

With his edge state picture, M. Büttiker describes open systems by including contacts and

explains the quantum Hall effect by assuming no backscattering. This picture is a simple sin-

gle particle picture which does not include electron-electron interaction and does not describe

microscopically the QHE even if its formalism is proper. The limitation of this description is

marked by its author [34]:

”The above discussion cannot be used to find the current densities inside the sam-

ple: like true charge densities are found only with the help of Poisson’s equations,

2Rcontact includes the contact resistanceRcontact = πh̄
2e2 and corresponds to a two-terminal resistance.

ix These extended states should not be confused with the extended state of the bulk picture corresponding to a

percolation path at half integer filling factors.
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Figure 1.4.:a) Hall bar atν = 2 with two edge states on each side of the mesa.b) Energy

spectrum in a cross-section view showing the Landau levels bending at the mesa edges.

the true current distribution must be found from a self-consistent analysis [35, 36]

(which determines the Hall potential).”

M. Büttikeret al., Physica E 35, p. 33 (2003).

The approach proposed by S. Komiyama and H. Hirai [36] includes only at the first order the

effect of the electrostatic potential inside the edge state picture.

1.7. Compressible and incompressible strips in the

depletion region of a 2DES

1.7.1. Electrostatic model from Chklovskii, Shklovski, and

Glazman (CSG)

All the pictures presented in the previous sections omit an important ingredient: the electro-

static screening of the potential due to the electron-electron interaction. This effect is known

to change drastically the microscopic properties of the 2DES by avoiding large variation of

the electron density. First theoretical works from S. Luryi [37] and A.L. Efros [38] on in-

homogeneous 2DES bulk show that the screening at high magnetic field splits the 2DES into
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compressible and incompressible regions due to the Landau gap in the density of states. The

compressible region is a region with a high density of states at the Fermi energy which allows

a redistribution of the electrons and induces a perfect screening of the electrostatic potential.

The incompressible region behaves like an insulator with the Fermi energy inside the energy

gap and therefore with poor screening propertiesx . At the edges of Hall bar, screening ef-

fect of the electrostatic potential has specially to be included otherwise the electron density in

high magnetic field will have an unrealistic step-like profile with a largeB-dependent dipole

charges. Such unrealistic situation comes from the edge state picture and it is illustrated at

ν = 2 in figure 1.5(b) and (c). The electron density at the mesa edges jumps from2nL to nL

due to the potential confinement since only one Landau level is left when the second Landau

level cross the constant electrochemical potentialµelch = µch(ns) − eVconf . To go from one

Landau level to the second one, the electrons should give a large chemical potential energy of

h̄ωc. C.W.J. Beenakker [39] and A.M. Chang [40] applied qualitatively the compressible and

incompressible picture of S. Luryi and A.L. Efros to the edge state picture of M. Büttiker. They

associated the extended edge states to compressible strips separated in between by incompress-

ible strips. The description of the edges in terms of these compressible and incompressible

strips was similar for the two authors but their interpretations concerning the current flow were

drastically diverge. C.W.J. Beenakker assumed that the current is flowing inside the compress-

ible strips. On the other side, A.M. Chang argued that the compressible strips cannot carry a

net current due to the perfect screening of the electrostatic potential inside these strips, only the

incompressible strips in which∇V 6= 0 propagate current.

In 1992, Chklovskii, Shklovski and Glazman (CSG) analytically and quantitatively calculate

the electron density and the electrostatic potential of a 2DES confined by split gates [41]. Their

electrostatic approach, which includes the non linear screening effect occurring at high magnetic

field, describes one 2DES edgexi with its inhomogeneous electron density [42]. They used a

one dimensional model for the 2DES and the screening is assumed to be perfect - i.e.V = 0 if

the 2DES is present. In the first step, they determine the electron density profilens(y) atB = 0

by solving the electrostatic Laplace equation with defined boundary conditions:V (y) = Vg at

the gate position (y < −l) andV (y) = 0 at the 2DES position (y > l). Fory > l, the electron

x The screening length defined by

λs =
4πε0ε
e2

∂µch

∂ns
, (1.24)

is a relevant parameter to describe these two different regions:λs is zero for compressible region (perfect

screening i.e. metal-like behavior) but infinite for incompressible region (insulator-like).
xi Later, the model is extended to the gate-confined narrow channel [42]. The treatment of both edges is important

to analyze the current distribution.
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density profile at one edge has a half-domelike shape ifT = 0 andB = 0:

ns(y) = n0 ·

√
y − l

y + l
. (1.25)

n0 is the density of the homogeneous positive background charges and2l the electron depletion

length at the mesa edge. The smooth electron density profilens(y) atB = 0 will determine

the position of the incompressible strips in high magnetic field since such profile is nearly

conserved at high magnetic field (the Landau gap is assumed to bring small perturbation). The

results for the potential and electron density at the mesa edge are shown in figure 1.5 (e) and

(f). Far away from the edge in the bulk region, the 2DES is compressible with two and half

levels occupied (ν = 2.5): the electron density changes smoothly and the potential is flat since

Figure 1.5.: Single particle picture versus electrostatic approach (adapted from [41]).a-c)Edge

state picture. Under high magnetic field extended edge states conduct current at the mesa edge

(a). These states are located at the crossing between the Landau levels and the Fermi energy

(b). The density profile is step-like (c).d-f) Self-consistent picture. The 2DES edge consists of

compressible (CS) and incompressible strips (IS) (d). The potential is flat inside CS and varies

in IS (e). Smooth electron density profile with flat region at the IS position (f).
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there is no confinement potential (Vconf = 0). Coming closer to the edge, confinement potential

is present (Vconf 6= 0) and the electron density for energetically reason prefers to stay quantized

at ns = 2nL for a certain width. The confinement is therefore not screened and the energy

of the Landau level increases. This increasing occurs until the higher Landau level (number

two in the picture) reaches the electrochemical potential level. At this stage, the electronic

state at the Fermi level becomes again compressible: the potential of confinement is perfectly

screened. The electron density starts to decrease until a new incompressible region is recovered,

i.e. ns = nL.

Chklovskii, Shklovski and Glazman quantitatively calculated the position of thepth incom-

pressible strip via the equationn(yp) = p · nL. They obtained

yp = l · ν
2 + p2

ν2 − p2
. (1.26)

They also shows that the width of the incompressible stripsap are much narrower than the

compressible ones. The width of thepth incompressible strip is given by

a2
p =

16εε0h̄ωc

πe2
·
(

dns

dyy=yp

)−1

. (1.27)

For strips in between two spin splitting Landau levels,h̄ωc has to be replaced byg∗µBB. Fol-

lowing this equation, a smooth variation of potentialdns/dy will give a broad incompressible

strip. This result will be used in the last chapter 6 of this PhD thesis.

1.7.2. Self-consistent approach

The approach of Chklovskii, Shklovski and Glazman is an electrostatic calculation which does

not include the electrochemical equilibrium condition and the effect of finite temperature. More-

over this approach fails to determine the current distribution. Further theoretical works have

been done in these directions by R.R. Gerhardts and coworkers [4, 5, 43–45]. For instance, K.

Lier and R.R. Gerhardts [44] proposed a numerical but quantitative self-consistent calculation.

They keep the CSG electrostatic approach to obtain the potential profile (analytic treatment of

the Poisson equation gives the potential seen by the 2DES in term of a certain electron density

ns). However they used the local Thomas Fermi approximation to self-consistently determine

the density in thermal equilibrium:

nTFA
s (y) =

∫
dεD(ε)f(ε− µelch − e · V (y)) . (1.28)

At T = 0, the Fermi-Dirac distribution isf(ε− µelch − e · V (y)) = θ(εF − ε+ e · V (y)) and at

B = 0, the density of states isD(ε) = D0θ(ε). It follows:

nTFA
s (y) = D0[εF + e · V (y)]θ(εF + e · V (y)) . (1.29)
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The magnetic field is then included via the DOS:

D(ε) =
1

πl2B

∞∑
n=0

θ

(
ε− h̄ωc(n+

1

2
)

)
. (1.30)

Results of K. Lier and R.R. Gerhardts does not show a large quantitative difference from CSG

calculation but the existence of compressible and incompressible strips naturally appears. By

avoiding the assumption of a perfect screening, the 2DES starts where the potential energy

crosses the electrochemical potential energy level as it should be in equilibrium conditionxii . In

consequence, the determination of the compressible and incompressible strip’s position is rele-

vant. Their approach allows also to include temperature effect: the potential inside compressible

strip is not zero but linearly varies by an amount ofkBT while the width of incompressible strips

is thinner under finite temperature and broader if the temperature goes to zeroxiii .

1.8. Scanning Force Microscopy gives Hall potential

distribution

A cryogenic (1.4 K) scanning force microscope working at high magnetic field (Fig. 1.6(a)) has

already demonstrated its ability to provide the Hall potential profiles of 2DES embedded few

tens of nanometers below the surface [1–3, 46–49]. The measurement of potential variation

allows us to obtain a microscopic picture of the integer quantum Hall effect. For the integer

quantum Hall effect developed inside a50 m2/Vs mobility Hall bar, the Hall potential linearly

varies across the sample width (profile I). Such a linear profile is similar to a classical Hall

regime. Entering the Hall plateau from high magnetic fields, the profile type II is found for

the filling factors betweenν = 1.96 and ν = 2.04. In this profile, the potential variation

is exclusively distributed in the bulk. Aboveν = 2.04 (profile III), the Hall potential shows

an equal drop at the two edges of the mesa. The potential is flat in the mesa bulk with an

intermediate value, however it starts to show a slope with increasing filling factor.

Figure 1.7 shows the Hall potential distribution for a broader magnetic field range covering

several integer filling factors. The color scale illustrates the strength of the Hall potential: blue

for low and red for high potential. The plots of the Hall and longitudinal resistance are added

to provide a direct comparison between the macroscopic transport and the microscopic infor-

mation obtained from the local potential distribution. A clear correspondence between trans-

port and potential distribution is visible since the same Hall potential profiles are recovered at

around each integer filling factor. In addition, the three different profiles shown in figure 1.6(b)

are found for each interval between two integer filling factors.

xii Indeed the depletion length2l is calculated from the equalityV (2l) = εF.
xiii The width converges to the CSG value.
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The location of Hall potential drops have been compared with the position of incompressible

strips. The position of these drops corresponds to the position of the innermost incompressible

strips (see Fig. 1.7(b)). As a consequence, the bias current which is driven by the potential

gradient is expected to flow without dissipation along innermost incompressible strips. For

the profile I, the bias current flows with an uniform distribution like in the classical Hall ef-

fect. For the profile II, the non dissipative current has a complex distribution inside the bulk

area, which strongly depends on the scan position and magnetic field. For the profile III, the

non dissipative current are equally distributed at the incompressible strips located at the edges.

The figure 1.7(b) also shows how the innermost incompressible strip located at the mesa edges

becomes the incompressible bulk when the center of the Hall plateau is approached (see sec-

tion 1.9 for complement information). Further measurements performed close to the contact

areas (see Fig. 1.8) reveal that the slope of the potential associated to the presence of the inner-

most incompressible strip is maintained along the borderline between 2DES and ohmic contacts

which act as potential probes. Such voltage distribution clearly visible atν = 2 (Fig. 1.8(a)) is

the result from a regular electron depletion in front of ohmic contacts [2].

Figure 1.6.: Adapted from the PhD thesis of E. Ahlswede [3].a) Sketch of the scanning force

microscope above a 2DES Hall bar.b) Cross-section of the Hall potential distribution across a

10µm wide Hall bar with a mobility of50 m2/Vs. Each plotted line is obtained at a different

filling factor. Three types of Hall potential profile are visible (see text).
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Figure 1.7.: Adapted from the PhD work of E. Ahlswede [3].a) Hall potential profiles at

various magnetic fields for a50 m2/Vs mobility Hall bar of 15µm width. The Hall potential is

high (red) at the lower mesa edge (y = 0) and low (blue) at the upper edge (y = 15). Together

with the color plot of the potential distribution, the Hall and longitudinal resistance (Rxx and

Rxy respectively) are added. The arrows represent the distribution of the biased current through

the sample: for the profile III the non dissipative current is located at the mesa edge and for the

profile II (i.e. for filling factor around the integer value) this current spread inside the bulk.b)

Fit from equation (1.26) of the position of the innermost incompressible strips.
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Figure 1.8.: Hall potential distribution atν = 2 (a) andν = 2.1 (b) in a four-terminal Hall bar

with a mobility of 50 m2/Vs. The incompressible strips (see the variation of the potential) are

not transmitted into the voltage probing contacts. Adapted from E. Ahlswede PhD thesis [2].
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Following the self-consistent approach, A. Siddiki [6] was able to simulate the Hall potential

as shown in Fig. 1.9. Its calculated distribution is similar to what we describe in the section 1.8.

To recover the three different profiles and the current distribution, the width of the wave func-

tion is included in a quasi-Hartree approximation. Errors due to Thomas-Fermi approximation

are avoided. Non-local effects on the conductivity along incompressible strips are also simu-

lated by a spatially averaging procedure [4]. This process allows to calculate the Hall and the

longitudinal resistance as continuous functions of the magnetic field. The incompressible strips

with perfect insulating properties appear to exist only at certain magnetic field intervals. In

these intervals, the Hall resistance is found to be quantized. The simulation clearly shows how

the QHE results from the possibility of the current to flow without dissipation inside incom-

pressible strips. Note that from this theory, it is not necessary to include disorder. The disorder

only broadens the Hall plateau in the higher magnetic field direction.

Figure 1.9.: Hall potential calculation adapted from A. Siddiki PhD thesis [6].a) Color plot of

scaled Hall potential.b) Cross-section view of the scaled Hall potential for selected values of

magnetic field B.
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1.9. The present microscopic picture of QHE

A picture of the QHE based on compressible and incompressible strips follows from the self-

consistent theory and experiment shown in the previous sections [17]. The present section

describes the distribution of these strips along the four-terminal Hall bar as a function of the

filling factor. Their evolution due to the change of the magnetic field is treated via the presen-

tation of three situations with different bulk filling factorsxiv: ν = 3, ν = 2.5 andν = 2 (see

Fig. 1.10). All compressible areas are drawn with a gray color which symbolizes an arbitrary

fixed electrochemical potential in the equilibrium situation (the electrochemical potential is the

same everywhere). Depending on the electron density variation, compressible and incompress-

ible strips follow the shape of the Hall bar boundaries. As shown in figure 1.8, the strips do not

enter to the contacts since the electron density at this area is lower than that at the bulk areaxv.

For integer filling factorν = 2 andν = 3, the bulk is mainly incompressible (white) with a

constant electron density. Compressible droplets in the incompressible bulk are also added in

order to include disorder and its associated fluctuations of potential. When the average value of

the bulk filling factor reachesν = 2.5, the bulk becomes compressible (gray) with a flat density

profile (see the cross section of the electron density shown at the right side in Fig. 1.10(b)).

Closer to the mesa border the drop of the electron density associated to the potential confinement

induces an alternate of compressible and incompressible strips. Each time the electron density

corresponds to an integer number of completely filled Landau level, an incompressible strip

exists. For instance in Fig. 1.10(a), two incompressible strips (white lines) on each mesa border

and one large incompressible bulk (white area in the mesa center) corresponds toν = 3. Note

that the self-consistent theory of R.R. Gerhardts et al. predicted that the inner compressible

strips are too thin to survive a spatially averaging procedures mimicing a finite extension of the

wavefunction.

By increasing the magnetic field (i.e. decreasing the bulk filling factor) the cyclotron gap

between Landau levels is enlarged and the degeneracy of these energy levels is enhanced. The

redistribution of the charges in this new energy profile drives the evolution of the compressible

and incompressible areas. Fromν = 3 to 2.5, the bulk transits from an insulator-like incom-

pressible phase with the Fermi energy in the Landau gap to a metal-like compressible phase

with the Fermi energy inside the Landau level. The thickness of the strips at the two mesa

edges get broader (see Fig. 1.10(b)).

xiv The bulk filling factorν refers to the measured bulk density of the Hall bar.
xv Such a regular electron depletion at the interface between the 2DES and the alloyed contacts might be explained

by a difference of work-function between the metallic contact and the 2DES.
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Figure 1.10.:a-c)Qualitative picture showing the distribution of the incompressible (white) and

compressible (gray) strips in 2DES in a four-terminal Hall bar forν = 3 to ν = 2. The schemat-

ics on the right side depict the corresponding cross-section of the electron density profiles along

the sample’s width.



24 BIBLIOGRAPHY

1.10. Conclusion

The microscopic description of the quantum Hall effect has changed the last years thanks to

local Hall potential probing [17]. With perfect agreement with self-consistent calculations, the

measurements have triggered a microscopic picture of the quantum Hall effect which is based on

compressible and incompressible strips instead of the single particle edge states picture. Some

points stay under investigation. For instances, how to include the effect of the electron depletion

in front of alloyed contacts in this self-consistent picture ? What is the effect of the spin on the

strips distributionxvi ? Is it possible and how to adapt the compressible and incompressible

picture to the fractional quantum Hall effect or to its breakdown ? This PhD thesis will focus

on how the compressible and incompressible strips picture explains the observation of adiabatic

transport features in the quantum Hall regime and their corresponding potential distributions.
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[25] M. Büttiker, Phys. Rev. B38, 9375 (1988).

[26] J. Davies,The physics of low dimensional semiconductors(Cambridge University Press,

Cambridge, 1998), Chap. 9.

[27] R. Landauer, IBM J. Res. Develop.1, 233 (1957).

[28] R. Landauer, IBM J. Res. Develop.32, 306 (1988).

[29] R. Landauer, IBM J. Res. Develop.44, 251 (2000).

[30] Y. Imry, Introduction to mesoscopic physics(World Scientific Press, Singapour, 1986).

[31] Y. Imry, in Physics of mesoscopic systems, edited by G. Grinstein and G. Mazenko (World

Scientific, Singapore, 1986), Vol. 45, p. 101.

[32] A. Stone and A. Szafer, IBM J. Res. Develop.32, 384 (1988).
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2. Scanning Force Microscope:
A tool for local Hall potential probing

A Scanning Force Microscope (SFM) is used in this PhD work as a tool sensitive to the electro-

statics [1]. To study the Hall potential distribution in the quantum Hall regime, our SFM has the

specificity to be operated at 1.4 Kelvin and in high magnetic field up to 13 Tesla. The system

is first configured as a SFM in contact mode to spatially located the Hall bar structure on the

sample surface. Afterward, the microscope is switched to non contact mode. The tip away from

the sample surface (around 50 nm) probes the electrostatic potential variations while scanning.

As the two-dimensional electron system is buried few tens of nanometer below the surface, a

certain calibration technique is required to obtain Hall potential profiles.

In this chapter, the principles and the relevant working parameters of scanning microscopy are

reviewed. Different measurement techniques such as contact and non contact mode - including

AM- and FM-detection, are compared in order to understand the calibration technique which is

used to measured the Hall potential in this PhD thesis.
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2.1. The principles of Scanning Probe Microscopy

2.1.1. Scanning Tunneling Microscopy (STM) versus Scanning

Force Microscopy (SFM)

Our goal is to measure microscopic properties of 2DES embedded in an AlGaAs/GaAs het-

erostructure. For this purpose, we will use a local probe integrated inside a scanning probe

microscope (SPM). The SPM technology starts in the 80’s with the invention of the scanning

tunneling microscopei. The STM works on the exponential dependence of the tunneling current

with respect to the distance between a metallic tip and a conductive sample. The tunneling cur-

rent allows either to perform surface topography or to process energy spectroscopy to determine

the local electronic density of states. The STM principle limits its applications to conductive

surfaces. This restricts the measurement to specific sample such as 2DES located at the InAs

surface [4–6]. It is difficult to access the information of 2DES which are buried few tens of

nanometer below non conductive GaAs and AlGaAs layers. The invention of the scanning

force microscope as the atomic force microscope (AFM) by G. Binning, F. Quate and Ch. Ger-

ber in 1986 [7] offers the possibility to perform local measurement on insulators as well. Instead

of the tunneling current, the SFM uses a force-sensing cantilever which probes nano- or even

picoNewton forces between the tip and the sample surface.

2.1.2. Different SFM working modes

Depending on the distance between the sample and the tip, different forces are felt and different

modes of measurement may be operated by SFM: contact, tapping or non-contact mode (see

table 2.1 and Fig. 2.1). These modes are analytically modeled via the description of a cantilever

in term of a loading massmeff attached to a spring (Fig. 2.2). Such mass corresponds to the

inertial properties of the cantilever. The spring constant characterizes its elasticityii .

Mode Force Cantilever state

Contact mode Strong repulsive force Static cantilever

Non Contact mode Weak attractive force Oscillating cantilever

Tapping mode Strong repulsive force Oscillating cantilever

Table 2.1.: Various probed forces allow different SPM modes.

i For the fabrication of the first STM with atomic resolution, Gerd Binning and Heinrich Rohrer shared the Nobel

prize of physics in 1986 [2,3] with the inventor of the scanning electron microscopy (SEM), Ernst Ruska.
ii The elasticity expressed by the Young modulus (E) shows the ability to return to the equilibrium position after

displacement without any deformation.
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Figure 2.1.: Force versus tip-to-sample distance. Adapted from the Practical Guide of SPM

edited by Park Scientific Instruments.

Figure 2.2.: A mass attached to a spring is a conventional model to describe the dynamics of a

cantilever. The spring constantk and the loading massmeff are associated to the massM and

to the elasticityE of the cantilever, respectively.
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2.1.2.1. Contact mode and tapping mode

In contact mode, the tip is in direct contact with the sample. An interatomic repulsive force

of few nanoNewtons bends the cantilever’s end with respect to the initial positionz(0). The

new positionz(t) = z(0)− F/k is determined by the balance between the force of contact and

the elastic reaction of the cantilever defined by the spring coefficientk. During the scanning,

the bending induced by the force is kept constant via a feedback loop which regulates either

the position of the sample or the position of cantilever’s foot attached to a piezotube. This

adjustment is recorded as the topographic signal. Due to the flexibility of the cantilever, the

tip or the sample surface is not damagediii . In our work, the contact mode is used to find the

position of the Hall bars on the sample’s surface.

Another technique is thetapping modeor amplitude modulation atomic force microscopy

(AM-AFM) which is commercially applied to obtain surface topology. This technique is a

dynamical AFM mode where the tip periodically touches the surface to limit damages. The

cantilever is brought to oscillations very close to the surface with a high amplitude. A feedback

loop drives the cantilever at a constant oscillation amplitude by continuously adjusting the dis-

tance between the sample and the cantilever. The distance variation offers a topographical map

of the surface. In spite of its advantages, the tapping mode cannot be used in our system since

the technique requires a cantilever with large spring constant to avoid the snap to the surface

whereas our force detection need a soft cantilever.

2.1.2.2. Non contact mode

To probe only the contribution of the large range electrostatic force, thenon contact mode

has to be used. The cantilever dynamics in this mode may also be treated with the spring

model. We start with free oscillations of a cantilever damped by the Helium gas environment.

In consequence, there is no contribution from the sample in this particular case. The role of the

environment on the oscillating motion is introduced to the dynamic equation via the addition of

a friction force with viscous properties. In our system which contains helium exchange gas, the

Reynolds number is much smaller than one and the friction force is taken as linear with respect

to the speed:~Fvisc = −b · ~v (b as the phenomenological drag coefficient). The quality factorQ

which depends on the damping mechanisms acting on the cantilever parameterizes this effect.

The bending of the cantileverz(t) follows

z̈(t) + 2γ · ż(t) + w2
0 · [z(t)− z(0)] = 0 (2.1)

iii To achieve best sensitivity, soft cantilevers characterized by a very small spring constant are usually used. They

gives the highest deflection and therefore the maximum ratio cantilever deflection/force. For a contact force

being in the order of nanoNewton, a spring constant of 0.1 N/m offers a detectable cantilever bending of few

nanometers.
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with w2
0 = k/meff the fundamental natural frequency andγ = b/2m the damping coefficient.

Such equation corresponds to a harmonic oscillator with damped oscillations due to the dissi-

pation of its energy in the environment. Three different regimes are distinguishable depending

of the value ofw0 compared toγ: periodic (γ << w0), pseudo-periodic (γ < w0) or ape-

riodic (γ ≥ w0). In the pseudo-periodic regime, the equation gives the damped oscillation

z(t) = z0 · cos(w · t + φ0) e
−γ·t with w =

√
w2

0 − γ2 = w0 ·
√

1− 1/4Q . The environment

has then two effects: (1) shift the resonance frequency by a term which depends on the quality

factor Q and (2) damp the oscillations on a time scale given byγ.

To compensate the dissipative effect, the cantilever is mechanically forced to oscillate at

a constant amplitude via a time dependent oscillating force,F (t) = F · cos(w exc · t). The

dynamical equation becomes:

z̈(t) + 2γ · ż(t) + w2
0 · [z(t)− z(0)] = F · cos(w exc t) . (2.2)

The answer of the cantilever isz(t) = A(wexc) · cos(wexc t + φ) with a phase shift ofφ and an

amplitude given by

A(wexc) =
F

k
· Q√

Q2 ·
[
1− (wexc/w0)

2]2 + (wexc/w0)
2
. (2.3)

The amplitude is maximum atwexc = w0·
√

1− 1/2Q2 = wres which is the resonance frequency

of the system. The amplitude value at the resonance is then

A(wres) =
F

k
· Q√

1−
(

w res

w0

)2
. (2.4)

In vacuum or under helium exchange gasiv, the quality factor is very high. As a consequence

wres/w0 � 1 and the development of the amplitude becomes in the first order directly pro-

portional to the force strength and to the quality factor:A(wres) ∼ F · Q/k. In our system,

the cantilever oscillations are in fact not excited by an oscillating force but stimulated at its

foot by the motion of the piezoelectrical tube with an amplitudea. The cantilever’s answer is

nethertheless similar:A(wres) ∼ a ·Q.

The cantilever tip feels a gradient of electrostatic force if it oscillates few tens of nanometer

above the surface. This gradient will shift the resonance frequency. The reason of this effect is

simple. For an inhomogeneous force in height, Taylor series gives

F (z(t)) = F (z(0)) +
∂ F

∂ z(t)
· [z(t)− z(0)] + . . .

iv We remind that our cantilever is located in chamber with low pressure (10−3 mbar).
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The first term is a static force which simply induces a correction to the equilibrium position

whereas the second term resembles a change of the effective spring constant. This can be seen

by

[z(t)− z(0)] · k0 = F (z(0)) +
∂ F

∂ z(t)
· [z(t)− z(0)] ,

[z(t)− z(0)] ·
(
k0 −

∂ F

∂ z(t)

)
= F (z(0)) ,

[z(t)− z(0)] · keff = F (z(0)) .

It follows thatkeff = k0−∂ F/∂ z(t) and the resonance frequency is changed fromw2
0 = k/meff

tow2
eff = keff/meff . During the scanning, this change of the resonance frequency due to the force

gradient∂ F/∂ z(t) is

∆w = weff − w0 = w0 ·

√1− ∂ F/∂ z(t)

k0

− 1

 ' −w0 · ∂ F/∂ z(t)
2 k0

. (2.5)

In the present PhD work, the frequency shift is recorded via a slope detection in the phase

signal. This signal is used as an information concerning the gradient of the electrostatic force.

Frequency Modulation-AFM technique will also be possible to directly measure the frequency

shift. Such technique has the advantage to separate the dissipation effect from the frequency

shift and to avoid the time delay found in AM-AFMv.

v In the Amplitude Modulation-AFM, the answer to the change of the tip-sample interaction is not instantaneous

and depends on theQ factor on the time scaleτ ' 2Q/f0. In vacuum, this time scale can be very large. The

FM-AFM solves this problem since it is by a factor2Q faster (τ ' 1/f0).
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2.2. Local probing of the Hall potential by SFM

2.2.1. General description of Scanning Force Microscope

Local probe working at low temperature and in high magnetic fields is needed to locally study

the electronic properties of 2DES in the quantum Hall regime. Peter Weitz developed in our lab-

oratory a homemade scanning force microscope incorporated inside a vacuum chamber where

Figure 2.3.: Sketch of the cryogenic scanning force microscope built in the von Klitzing group.

Adapted from P. Weitz PhD work [8].
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exchange gas is added for better cooling. The system operates at 1.4 Kelvin and in magnetic

field up to 13 Tesla [1]. There are only few systems which can operate under these extreme

environments. The head of the microscope is shown in figure 2.3. It is integrated in a Macor

frame vi which has a diameter of47 mm space in order to fit inside the variable temperature

insert of an OxfordHe4 cryostat. The local probe is a metalized tip located on a piezoresistive

cantilever. This cantilever is attached to piezoelectric tubes which performz correction and scan

the tip over a20×20 µm2 area. At the end of the tube, a piezoelectrical plate allows to excite the

cantilever to its resonance frequency. The sample is positioned below the tip via the integration

of a piezoelectric table moving over several millimeters. For controlling the SFM and acquir-

ing the data, an electronic from Omicron company is used. The resonance frequency shift of

the piezoelectric cantilever is measured via the unbalanced voltage of a Wheatstone bridge and

additional hardware serves to do the feedback loop (further information can be found in [8]).

2.2.2. Piezoresistive silicon cantilever as a force detector

Local probing via SFM is based on the resonance frequency shift of a cantilever by a force

gradient. The force gradient is measured either via an extrinsicvii or an intrinsic system. The ex-

trinsic detection is easy to realized in air or in liquid. Simple to adjust, the optical method with

laser interferometry or beam-bounce is usually used in commercial AFM [9]. The challenge to

process several tips at the same time, to scan large samples or to work in extreme environment

conditions encourage to apply intrinsic detection which are based on the changes of the physi-

cal property of the cantilever - i.e. its piezoresitivityi or its piezoelectricityii . For instance our

scanning force microscope is working at low temperature and a detection based on a piezore-

sistive cantilever instead of the conventional laser beam detection [10–13] has been installed.

This system has the advantage to cancel the difficulty to align a laser beam inside the cryostat.

vi Macor material has the advantage to be non magnetic, easily to be structured and it has a small thermal expen-

sion coefficient.
vii The detection device may be a STM which probes the tunneling current through the conductive backside of

the cantilever, a metallic plate which measures the change of capacitance between the plate and the cantilever,

a fiber optic which records the interference produced by the optical cavity formed by the distance between

the cantilever and the end of the fiber, or a laser beam reflected to a photosensitive detector. Tunneling tip,

optic fiber and plate capacitor have to be integrated close to the cantilever tip. This close spacing limits the

oscillations amplitude and the scanning over a large area.
i Piezoresitivity is a physical property of certain materials changing their electrical resistance when a stress is

applied to them. Piezoelectric quartz tuning fork is used for dynamics AFM since it is very stable over time and

over temperature variations and it has very low dissipation. Its main problem is the large size. Piezoelectric

sensors with higher piezoelectric coefficient than quartz (such as ZnO) was thought to overcome this size

problem. Unfortunately, those materials show high internal dissipation and high frequency instability.
ii Piezoelectricity is the physical property of certain materials to build an electrical field when a stress is applied

to them.
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In addition, it avoids light source on our studied semiconductor samples which are extremely

disturbed by light. Our piezoresistive cantilever is a siliconviii cantilever with a highly doped

layer using as a conductive current path (hatched area in Fig. 2.4). The silicon cantilever is

asymmetrically doped on one surface (Fig. 2.5(c)) to assume a net resistance change due to the

piezoresistive effect during the cantilever bending. This change is measured via a Wheatstone

bridge. A Wheatstone bridge is an electrical circuit made from four resistance which allows

very sensitive measurement of resistance variation (the schematic is presented in Fig. 2.4). If

the equal current which flows through the two branches of the circuit is detuned due to different

resistances between the two branches, a potential appears at the bridge corners and informs on

a resistance variation.

Figure 2.4.: Schematic of a SFM detection system based on a piezoresistive cantilever. The

piezoresistive element is integrated to a Wheatstone bridge. Adapted from M. Tortonese [10].

viii The materials in which the cantilever are made varies with the application. For its physical properties (Young

modulus, density, hardness) and for micromachinery reason, the cantilevers are often built from silicon nitride

or single crystal silicon. Oxidation process produces very sharp tip with very high aspect ratio when the silicon

dioxide SiO2 is removed by HF solution. Diamond tip is also produced for scratching process and carbon

nanotube tips for high resolution measurements.



2.2. LOCAL PROBING OF THE HALL POTENTIAL BY SFM 37

2.2.3. The objective of tip metalization

The silicon piezoresistive cantilever has to be metalized since a magnetic field has a strong

effect on the silicon but few effect on metalized tip. The tip can also be grounded and used

as reference potential. Figure 2.5(a) represents the schematic of its package with the ceramic

holder. The free standing cantilever and the static cantilever used as a reference resistance

are integrated in a conductive circuit which forms the Wheatstone bridge. The spread of an

insulating polyamide layer allows to evaporate gold/palladium without creating electrical short

cut. Nevertheless the metalization of the tip brings other disturbances. For an electrostatic point

of view, the metalized cantilever located above semiconductor surface can be treated as plate

capacitor (Fig. 2.6). The metallic tip and the 2DES are the two plates of the capacitor. These

Figure 2.5.:a) Ceramic plate on which the electrical circuit containing the cantilevers is in-

tegrated. Insulating polyamide layer (blue) protects the electrical circuit from the evaporated

AuPd thin layer used to ground the tip.b) Zoom in the freestanding cantilever tip.c) Cross

section of silicon cantilever system after metalization.
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Figure 2.6.:a) Metallic tip and semiconductor sample with different work functions.b) If the tip

and the sample are electrically connected, the difference of work function between the metallic

tip and the semiconductor induced an electrical field.c) The electric field is compensated by a

biased voltage.

plates being electrically connected (see Fig.2.6(b)), a charges transfer due to the difference of

work functions between the tip and the sample induces a local electric field. Such electric field

may partly deplete the 2DES. DC voltage is applied to compensate for it (Fig.2.6(c)).

2.2.4. Tip approaching with an AC voltage excitation

Tip and sample mounted on piezoelectric tube and table respectively are inserted inside the VTI

of the cryostat. After reached to1.4 K, a series of high voltage ramp is applied to the piezo-

electric tableix in order to move the sample step by step near the tip. This approach stops if the

static piezoelectric cantilever creates a voltage at the Wheatstone bridge which corresponds to

a cantilever bending by a force of10 nN. Before the approach, the voltage offset of the Wheat-

stone bridge is adjusted to zero by adding parallel resistances and capacitances to the circuit.

To avoid tip crash, the Wheatstone bridge is electrically excited at few hundred millivolts with

a very fast signal at110 kHz (see fig 2.7(a)). The bending of the cantilever will modulate this

ix The poor efficiency of the piezoelectrical properties at low temperature forces to use high voltage.
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Figure 2.7.: Detection system with a Wheatstone bridge.a) AC configuration for tip approach-

ing. The resistance around2 kΩ correspond to a piezoresistive cantilever.b) DC configuration

for potential measurement.

signal by few microvoltsx. When the tip touches the sample surface, topography is performed

in contact mode and the tip is positioned above the Hall bar. The position adjustment is rather

large since the cooling process and setup installation usually misaligns the tip and the mesa by

few tens of micrometers.

x To be detected the signal is first amplified with a low noise preamplifier and recorded via lock-in technique.
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2.2.5. Compensation of the work function difference via an applied

DC voltage

The next step is to compensate the difference of work function between the metallic tip and the

semiconductor sample by applying a DC voltageVDC between tip metallization and 2DES. It

avoids that the difference of work functions - named contact potential difference, depletes the

2DES. To find the correct DC voltage, Kelvin probe technique is used (see appendix B). The

setup is switched to non contact mode with a DC voltage applied to the Wheatstone bridge (see

Fig.2.7(b)). The amplitude versus excitation frequency is measured for different DC voltage

Figure 2.8.: Kelvin probe measurement to access to the voltage point contact. The frequency

spectrum is measured for different biased voltage between the tip and the 2DES. Adapted from

E. Ahlswede [14].
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applied between the grounded tip and the 2DES (see different vertical curves in Fig. 2.8). On

one hand, the resonance frequencies for differentVDC show a quadratic dependency with re-

spect to the bias voltage. On the other hand, the maximum of the amplitude obtained at the

resonance frequency changes linearly with the voltage and has a minimum at the voltage which

corresponds to the contact potential difference (see the inset of the figure 2.8). Typically found

around−100 mV, this voltage is applied to the 2DES during the Hall potential measurement in

order to avoid electron depletion. Different to the minimum of frequency shift located around

−200 mV, such voltage value is a good working point since a small variation of potential corre-

sponds to a measureable variation of frequency shift.

2.2.6. The calibration technique to measure Hall potential profiles

Our measurements need to be only sensitive to the long range electrostatic force. For this

purpose, the SFM tip is scanned in non contact mode around50 nm above the surface. Nev-

ertheless, the potential of 2DES being located few tens of nanometer below the heterostruture

surface cannot be measured directly. Surface charges might interfere. A calibration technique

is used to remove this disturbing contribution. The Wheatstone bridge in this case is in DC

configuration (Fig 2.7(b)). To understand the principle of the calibration technique, we first

describe a model for the electrostatic force. The system tip/vacuum gap/2DES is seen in first

order like a capacitor in which some charges are added in between. Precisely, three different

contributions to the electrostatic energy are expected:

- A capacitor termCt,s(z) coming from the voltage difference between the tip and the

sample.

- Trapped charges at the surface of the sample.

- Charges in the donor layer.

These contributions create an electrical field at the tip surface and induce charges on the tip via

image effect. The electrostatic energy is written as:

W (z) ∝ 1

2
Ct,s(z) · 4φ2

t,s +Qt(z) · 4φt,s +Wion(z) (2.6)

with

4φt,s = φ2DES − φtip = Vt,s + µch
2DES/e− µch

tip/e = Vt,s + ∆µch
t,s/e

and

Vt,s = VDC + VAC · sin(wm · t) .

φtip andφ2DES are tip and 2DES electrostatic potential respectively.Qt(z) is the total charge

image on the tip due to the donor layer and surface charges.Wion(z) is the energy due to the
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interaction of the donors and the surface charges. Both of them contain ax−y dependency since

they correspond to local event in the space area of the scanning measurement. The electrostatic

Figure 2.9.: a) SFM above a 2DES Hall bar. The electrical connections correspond to the

calibration technique configuration (see text).b) Example of potential measurements: absolute

data with the switch onα or β, and normalized data corresponding to the ratioβ/α. Adapted

from E. Ahlswede [14].
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force

F (z) =
∂W

∂z
∝ ∂z Ct,s(z) · [Vt,s +4µch

t,s/e]
2 + ∂z Qt(z) · [Vt,s +4µch

t,s/e] + ∂z Wion(z)

induces a shift of the frequency (see equation 2.5) measured by lock-in modulation detection at

wm = 2π · 3.4 Hz xi:

4ω ∝ ∂z Fw(z) ∝
{
∂2

z Ct,s(z) · [VDC +4µch
t,s/e] + ∂z Q

2
t (z)

}
· VAC(x, y) . (2.7)

In a first time, the scan is processed with only one contact atVt,s = VDC + VAC · sin(wm · t) via

the switch inβ position (Fig. 2.9(a)). Current is flowing through the 2DES and Hall potential is

built. The frequency shift is

4βω ∝
{
∂2

z Ct,s(z) · [VDC +4µch
t,s/e] + ∂z Q

2
t (z)

}
· VAC(x, y) . (2.8)

To remove the term in the bracket of the equation 2.8, the potential is probed at the same scan

line but with two contacts atVt,s = VDC + VAC · sin(wm · t). In this configuration, the switch

is at theα position. There is no current, the system is in equilibrium. The shift of frequency

corresponds to a constant distribution of modulation amplitudeVAC weighted by same spatial

unwanted contributions:

4αω ∝
{
∂2

z Ct,s(z) · [VDC +4µch
t,s/e] + ∂z Q

2
t (z)

}
· VAC . (2.9)

By doing the ratioTrace(β)/Trace(α) = VAC(x, y)/VAC of these two signals, it becomes

possible to access to the normalized Hall potential and to remove the unwanted contributions.

2.2.7. Electrostatic potential from the electrochemical potential

The SFM measurements record the change of electrostatic potential with respect to an equilib-

rium situation. The model presented in this PhD dissertation is based on the electrochemical

potentialµelch. For the qualitative point of view, these two quantities have the same spatial de-

pendency. Figure 2.10 illustrates this idea. The first draw displays the spatial dependency of the

energy spectrum along the Hall bar width for a bulk filling factor atν = 2.5 (Fig. 2.10(a)). The

black lines correspond to the Landau levels and they bent up at the mesa’s boundaries due to

the potential of confinement. The Landau levels are flat at the metallic-like compressible strips

whereas they display a variation at the position of the incompressible strips. In equilibrium, all

the compressible strips have the same electrochemical potential. When a voltage is applied to

the contacts at the extremities of the Hall bar, the electrochemical potential of the compressible

strips situated at its edges follows either the low (blue)µelch of the grounded contact or the

xi Due to the lock-in detection, only the term onwm in the force should be kept. The excitationVAC applied to

the 2DES is around15 mV. Lower excitation values give the same potential profiles with larger noise.
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Figure 2.10.: a) Landau level energy atν = 2.5 and for equilibrium situation.b) Out of

equilibrium case when a voltage V is applied at the mesa’s boundaries. One mesa’s edge follows

the lower energy (blue) whereas the other edge has higher energy (red).c) The Landau level

inside the bulk of the Hall bar is balanced to an averaged energy (green). Potential drops (yellow

and light blue) occur at the mesa edges.d) Hall potential energy.

high (red)µelch of the voltage excited contact (Fig. 2.10(b)). The metallic-like bulk also adjusts

its electrochemical potential to an intermediate constant value (green in Fig. 2.10(c)). Due to

their metallic behavior, the variation of potential is screened at these compressible strips and

the electrostatic potential is constant similar to the electrochemical potential (Fig. 2.10(d)). In

consequence, the drop of potential presented in the figure 2.10(c) only happens at the position

where the electrochemical potential changes (yellow and light blue in Fig. 2.10(c)).
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3. Adiabatic transport features
in the Quantum Hall regime

The mean free pathlmfp of charge carriers is used to characterize a conductor. Depending on its

value with respect to the spatial lengthL of the conductor, one distinguishes between diffusive

(lmfp � L) and ballistic (lmfp � L) regime. For a two-dimensional electron system (2DES)

under high magnetic field, a third category has been introduced - named as adiabatic transport

regime. Typical adiabatic transport features are the disappearance of peaks in the Shubnikov-

de Haas oscillations, the extension of quantum Hall plateaus to lower magnetic fields and the

existence of non-local resistances. The main idea of adiabatic transport is reviewed in this

chapter and its experimental signatures are described. In the literature, the adiabatic transport

regime is usually described as a non-equilibration of the chemical potentials between adjacent

edge states running in parallel along the mesa edge. In the further course of my PhD thesis, this

description has to be adapted due to my and previous scanning probe results. The more recent

microscopic picture in terms on compressible and incompressible edge strips will be applied.

Including the contribution from the electrostatic potential, this picture uses the electrochemical

potential instead of the chemical potential. To emphasize, this chapter uses the term ”chemical

potential” since it is the language presented in Büttiker work. In retrospect – due to our scanning

probe results – it requires another description based on the electrochemical potential which is

later presented in Chapter 6.



48
CHAPTER 3. ADIABATIC TRANSPORT FEATURES

IN THE QUANTUM HALL REGIME

Contents
3.1. Review of the adiabatic transport . . . . . . . . . . . . . . . . . . . . . . 49

3.1.1. Adiabatic transport as a maintained local non equilibrium between

edge states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .49

3.1.2. Current carrying contacts showing internal reflection . . . . . . . . .51

3.1.3. Non equilibrium situation probed by non ideal contact . . . . . . . .52

3.1.4. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .53

3.2. Previous experiments showing adiabatic transport features . . . . . . . .54

3.2.1. Anomalous quantum Hall plateaus . . . . . . . . . . . . . . . . . . .54

3.2.2. Non local resistance . . . . . . . . . . . . . . . . . . . . . . . . . .56

3.2.3. Disappearance of Shubnikov-de Haas peaks . . . . . . . . . . . . . .58

3.2.4. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .59

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60



3.1. REVIEW OF THE ADIABATIC TRANSPORT 49

3.1. Review of the adiabatic transport within the edge

state picture

3.1.1. Adiabatic transport as a maintained local non equilibrium

between edge states

Under magnetic field, the energy spectrum of 2DES is discretized in Landau levels which are

bended up at the mesa’s edges by the potential confinement. So-called edge states are formed

at these mesa’s edges where the Fermi level and the different Landau levels are crossing. Each

of the edge states is an one-dimensional extended state which connects the contact terminals of

the Hall bar. This number of edge states close to each edge is equal to the bulk filling factor,

ν = nel · φ0/B. The microscopic picture of the quantum Hall effect (QHE) introduced by

Marcus B̈uttiker is described in terms of such states (see [1] and chapter 1). In this picture,

the source (drain) contact acts as a reservoir of charges which fills (empties) the edge states

with respect to chemical potential of the contact. Biasing the sample with a net currentInet, the

contacts adjust the value of their chemical potentials in order to fulfill the fixed current condition

(later on, in a self-consistent picture, the description in term of electrochemical potential is

preferred since it includes the contribution of the electrostatic potential).

In the edge states picture of the usual QHE, each edge statei is transmitted through the Hall

bar and through the contacts with a probability of one (Ti = 1). It follows that states located at

the same mesa edge have the same chemical potential over the complete length of the Hall bar.

Figure 3.1(a) illustrates this case at filling factorν = 2 for a two-terminal device (the four states

are represented by colored lines). For the magnetic field sign depicted in this figure, the states in

the left border of the mesa have a low (blue) chemical potentialµ ch defined by the drain contact

2. The states in the right side have a high (red) chemical potentialµ ch defined by the source

contact 1. The chemical potential of states located at the same mesa edge is equal between each

other since states are equilibrated. The chemical potential difference∆µ ch
i of the ith Landau

level from the left edge to the right one is therefore independent ofi: ∆µ ch
i = ∆µ ch. Due to

the high chemical potential in the right edge, more electrons are propagating from contact1 to

contact2 than vice versa on the left edge. The net currentIi carried by each edge statei is

Ii = e2/h ·∆µ ch
i . The biased currentInet is equally distributed between all the edge states since

∆µ ch
i = ∆µ ch. It follows:

Inet =
ν∑

i=1

Ii =
ν∑

i=1

( e
h
·∆µ ch

i

)
= ν · e

h
·∆µ ch.

The total conductanceG = Inet/U is quantized andG = Inet · e/∆µ ch = ν · e2/h.

Inhomogeneity inside the sample (intrinsic phenomena) or external gate electrodes (extrinsic

effect) locally change the electron density. Under such a condition, channel might be reflected.
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Its transmission probability becomes different from one (Ti 6= 1). For instance, the depletion

induced by a gate electrode in figures 3.1(b) and (c) fully reflects the innermost channel, i.e.

T2 = 0. As a consequence, the outermost edge state on the right edge carries all the current

by an increasing of its chemical potential as depicted in figure 3.1(c) via a change of color

from red to lila. This new distribution of the chemical potential shows a strong non equilibrium

locating at the right border of the mesa. In high mobility 2DES, such a non equilibrium may be

maintained over several tens of micrometer since elastic and inelastic phonon-scattering rates

are weak [2]. The maintaining of local non equilibrium between adjacent edge states as drawn

in figure 3.1(b) is namedadiabatic transport regime.

For samples with low electron mobility, the local difference of chemical potential between

adjacent edge states are equilibrated by a large number of scattering events. Equal chemical

potential is rapidly recovered. This situation is depicted in figure 3.1(c) in which the higher

chemical potential represented by a lila color transits to a lower chemical potential (red color).

Figure 3.1.:a) Edge states picture of the QHE atν = 2 in a 2DES mesa under a fixed current.

On the same border of the mesa the two edge states have identical chemical potential: low

(blue)µch on the left border and high (red)µch on the right border.b) The inner edge state

being reflected by a gate electrode named g, the outer edge state carries all the current via a

higherµch (lila) on the right side. The local non equilibrium is maintained along the complete

sample length and the transport regime is adiabatic.c) Scattering events disturb the local non

equilibrium in lower mobility 2DES.



3.1. REVIEW OF THE ADIABATIC TRANSPORT 51

3.1.2. Current carrying contacts showing internal reflection

Besides electron density inhomogeneities, the contacts to the 2DES might not work ideally and

might cause reflections of edge states. This was pointed out by Marcus Büttiker [3]:

”Contacts that are made by alloying provide another possibility of contacts with

internal reflection. It is possible that the metallic diffusion occurs not deep enough

to reach the edge of the two-dimensional electron gas. Entrance and exit of the

carriers occurs effectively then through a tunneling barrier. Another possibility

is that the two-dimensional electron gas is reached but not near the edge of the

sample. In such a situation, the contact again is reached only by tunneling or Mott

hopping.”

M. Büttiker, Semimetal and Semiconductor 35, p. 244 (1992)

Current injection via non-ideal contacts is expected in all experiment. One question arises: does

this affect the measured magneto-resistance values ? Figure 3.2 schematically illustrates such

an arrangement which was qualitatively described by M. Büttiker [4] and later quantitatively by

S. Komiyamaet al. [5]. The left (L) and right (R) current carrying contacts inject a fixed net

currentInet in the mesa. This induces a difference of chemical potentialsµL andµR between

these two contacts. Contacts are metallic and own a continuum of states which have a probabil-

ity to fill the ν edge channels of the 2DES (multiples lila and light blue arrows). Due to internal

reflection at the contact area, the edge states might be differently occupied. For instance in

figure 3.2, the inner state of the top edge is not filled by the left contact. To fulfill the current

conservation,µL andµR are respectively higher and lower than expected (lila and light blue

instead of red and dark blue). Such a non equilibrium of chemical potential is transmitted to

the edge and smeared out either by equilibration processes along the mesa or by the presence

of ideal contacts. The later case is illustrated in figure 3.2. Ideal contacts equilibrate the chemi-

cal potential distribution and give an averaging chemical potentialµA or µB, respectively. The

net current becomes equally distributed in between theν channels since each channel has their

states occupied untilµA for the top edge orµB for the bottom edge. Even if the current carrying

contacts performed selective injection, ideal probing contacts along the mesa edges will assume

the usual Hall resistance value:

RH =
UH

Inet

=
µA − µB

e · Inet

=
h

e2
· ν−1.

In conclusion, the non equilibrium population of the edge states due to the backscattering at

the contact interface is not relevant for the quantum Hall effect if scattering between the edge

states due to probing contacts or impurities restore equal chemical potential.
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Figure 3.2.:a) Edge states distribution atν = 2 in a Hall bar having ideal voltage probing

contacts. The current injection is done via contacts with internal reflection.b) Bended Landau

levels with the chemical potential distribution at different spatial positions. The edge states at

one edge are in non equilibrium or in equilibrium.

3.1.3. Non equilibrium situation probed by non ideal contact

Does the adiabatic transport shows no effect on the measured Hall resistance as it seems from

the previous discussion ? If the injected edge states are in equilibrium, an ideal or non ideal

voltage probing contact does not change the situation (see figure 3.3 a,b). On the other hand

with an injecting edge states in non-equilibrium: an ideal contact equilibrates (c), whereas a

non-ideal contact does not (d). Let assume for the latter case, that the injected edge states carry

different fractionfi of the bias currentInet - i.e. fi 6= ν−1. The Hall resistance given by [6]

RHall =
∆µch/e

Inet

=
h

e2
·
∑ν

i Ti · fi∑ν
i Ti

. (3.1)

shows anomalous values due to an adiabatic situation. On the contrary, in equilibrium each state

carries the same fraction of currentfi = ν−1 and the Hall resistanceRHall = h
e2 · ν−1 shows the
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quantization at the proper integer filling factor whenever the contact has some internal reflection

or not, i.e. whenever
∑ν

i Ti 6= ν or
∑ν

i Ti = ν.

3.1.4. Summary

In the edge state picture, the adiabatic transport is the maintaining of a chemical potential

difference between edge states locating at the same edge of the Hall bar. Such non equilib-

rium corresponds to an unbalanced distribution of the net current between edge channels. The

magneto-resistances are not affected by this non equilibrium until the Hall bar implements suf-

ficient scattering between the edge states on the way of source and drain, or until ideal contacts

at the edges guarantee an equilibration of the chemical potential.

Figure 3.3.: Effect of a voltage probing contact on injected edge states.a) Edge states are

injected in equilibrium, i.e. all the edge states carry the same fractionfi of current. This is not

changed by an ideal(a) or non-ideal contact(b). If edge states are injected in non-equilibrium,

either these states are equilibrated inside the contact and the averaged chemical potential is

restored (redµch in (c)), or the perfect reflection of the inner statei = 1 with low µch induces a

chemical potential change (lilaµch in (d)).
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3.2. Previous experiments showing adiabatic transport

features

In the 90’s, several research groups performed measurements in order to study the adiabatic

transport. In the following, some of those experiments are presented to illustrate three different

features which are interpreted as the effect of an adiabatic transport: the extension of quantum

Hall plateaus to lower magnetic fields, the existence of non local resistance and the disappear-

ance of Shubnikov-de Haas peaks.

3.2.1. Anomalous quantum Hall plateaus

In the anomalous quantum Hall effect, the quantization of the Hall resistance depends on the

number of detected channels rather than the number of Landau levels in the bulk (see previous

section 3.1.3). To perform selective edge state reflection (Fig 3.4(b)), B.W. Alphenaaret al. [7]

used quantum point contacts (QPCs). In their measurement setup shown in figure 3.4(a), the

QPCs defined by gate electrodes are separated by a distance of around hundred of micronsi.

The Hall resistanceRH = R34,52 measured without (solid line) and with (dashed line) applied

voltage to the gate electrodes is shown in figure 3.4(c). Without depletion by gate electrodes,

the contacts behave like ideal probes and the Hall resistance displays the normal quantum Hall

effect. When the QPCs are switched on to selectively detect only the outermost edge state,

the contact area becomes non ideal and the quantum Hall resistance corresponding to a non

spin resolved filling factorN = 1 (i.e. RH = h/2e) instead ofN = 2 (i.e. RH = h/4e) is

measured: the Hall plateauN = 1 is extended to low magnetic fields. This result was explained

by the special behavior of the innermost edge channel which remains strongly decoupled and

stays in non equilibrium over a macroscopic distance (more than80µm). It was surprising for

B.W. Alphenaaret al. since non equilibrium was not expected to exist over a distance of the

order of the length of the mean free path when the separation between the edge states is not

much larger than the magnetic length

i Such technique was first introduced by B.J. van Weeset al. [8] who had a ballistic micrometer structure of two

QCPs separated by only1.5µm.
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Figure 3.4.: Hall resistance measurement with non-ideal probes (adapted from B.W. Alphenaar

et al. [7]). a) 2DES structure with gate electrodes in front of contacts 1, 2 and 3.b) Selec-

tive current injection and voltage probing by applying a voltage to the gate electrodes. At the

injection (1), the current is exclusively carried by the outermost edge state due to selectively

carrier filling. After few microns, the unbalanced distribution of current between theN − 1

edge channels is resorbed, except for the innermost one which stays decoupled and carries

nearly no current (2). At the voltage probes, the channels are also selectively detected.c) Hall

resistance measured without and with applied gates voltage (solid and dotted line respectively).

In the latter case, the transport curve is extended to lower magnetic fields and a large plateau

corresponding toN = 1 appears.
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3.2.2. Non local resistance

Further features observed on high mobility ungated mesa (Fig. 3.5(a)) were also explained via

the assumption of an adiabatic transport. For instance, at a certain value of magnetic field,

McEuenet al. [9] found a voltage difference between contacts, although these contacts are

located far away from the current injecting and sinking contacts (Fig. 3.5(b)). In their device,

a non local resistanceR37,28 (or R37,48) is observed if the current is injected via the contacts 3

and 7, and the voltage is probed by the contacts 2 and 8 ( or 4 and 6). Following the results

of B.W. Alphenaaret al. [7] by assuming an adiabatic regime, the transport data is fitted with

a network model in which the conductor is divided in different sections (Fig. 3.5(c)). Each

section is splitted in two current paths (Fig. 3.5(d) and (e)): theN − 1 edge channels which

are perfectly transmitted and the decoupled bulk channel. The transmission probability of the

bulk channelTj depends on the disorder and on the magnetic field value. If the longitudinal

resistivity associated to the bulk channel is zero, this channel is perfectly transmitted (Tj = 1).

Otherwise, similar to a barrier (yellow rectangular in Fig. 3.5(c) or (d)), the bulk channel is

reflected. In this latter situation,Tj 6= 1 depends on the mesa geometry. In agreement with their

data, the fit of McEuenet al. shows that non equilibrium between edge and bulk currents gives

rise to non-local and geometry-dependent behavior of the magneto-resistances.
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Figure 3.5.: Decoupled network model adapted from McEuenet al. [9]. a) Geometry of their

millimeter size Hall bar.b) Measured Hall and non local resistances.c) Model of the Hall bar

separated in different sections. The yellow regions correspond to barrier that only backscatters

theNth channel.d) Focus on one particular section namedj. The edge channel are perfectly

transmitted whereas the bulk channel might be reflected (Rj). e) Illustration of the perfect

decoupling, i.e. edge and bulk are treated separately.
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3.2.3. Disappearance of Shubnikov-de Haas peaks

The model of McEuenet al. [9, 10] was further elaborated by S. Komiyamaet al. [11–13]

who have also observed non local resistance (see the second frame in Fig. 3.6(a)). In this

part, we will focus on another observation that they did on the longitudinal resistance which

has been related to an adiabatic transport phenomena (see the first frame in Fig. 3.6(a)). At

the dissipative regime of the QHE, they found that some peaks of the SdH oscillations start to

disappearii . The authors associate this phenomena to an adiabatic transport since an increasing

of the current (or temperature) -which destroys local non equilibrium- restores these peaks

and moreover simultaneously decreases the non local resistance. They propose to model their

system in the same way as McEuenet al. by assuming a decoupling between the edge and the

bulk. In additions, they point out that a bulk decoupling with its backscattering will create a

difference of chemical potential between edge and bulk states at the mesa boundariesx = 0

andx = L: µN−1 = µL 6= µN or µ
′
N−1 = µ

′
R 6= µ

′
N in Fig. 3.6(b). In order to recover the same

edge and bulk chemical potential, they have introduced additional reflections at the boundaries

ii The disappearance of SdH peaks are also observed by other research groups [14–16].

Figure 3.6.: Adapted from S. Komiyamaet al. [12]. a) Magneto-transport measurements on

ungated Hall bar.b) Distribution of the chemical potential inside a model which assumes a

decoupling between bulk and edge.
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which are different from the internal reflection of a non ideal contact. Our understanding will

propose a physical reason to such boundaries reflection (see last chapter of this thesis).

3.2.4. Conclusion

Several transport features such as the extension of quantum Hall plateaus to low magnetic fields,

the existence of a non local resistance and the disappearance of Shubnikov-de Haas peaks have

been explained by the assumption of adiabatic transport. Occurring at high magnetic field and

in high mobility 2DES, the adiabatic transport is characterized in the edge state picture by a de-

coupling between edge channels. The decoupling allows to conserve over macroscopic distance

a local non equilibrium of the chemical potential at the same mesa edge. The characteristic equi-

libration length has been intensively studied at the Max-Planck-Institute by G. Müller et al.[17]

from the experimental side and by Prof. R.R. Gerhardts from the theoretical side.

Two techniques have been used to create adiabatic transport. The first one, working at inte-

ger filling factors, selectively populates and detects edge channels via quantum point contacts

(QPCs) defined by external gate electrodes (Fig. 3.7(a)). The second technique relies on the

intrinsic properties of high mobility 2DES at the transition regime of the quantum Hall effect

(Fig. 3.7(b)) in which bulk and edge are decoupled from each other. For local potential probing,

the latter technique has the relevant advantage to avoid the disturbance due to a large voltage

which would be applied to the gate electrode of QPCs. For this reason, we use the second

technique in our voltage probing experiment as it will be described in the next chapters.

Figure 3.7.: Two different measurement setups which produce adiabatic transport (adapted from

Woodside et al.[18]). a) At the integer filling factor of the QHE, the edge states are reflected by

gate electrodes.b) At the dissipative regime of the QHE, the bulk and edge states are decoupled

due to the intrinsic properties of the sample.
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4. Magneto-resistance measurements
showing adiabatic transport features

Adiabatic transport features in the quantum Hall regime are studied in two-dimensional electron

systems (2DES) embedded in an AlGaAs/GaAs heterostructure. Hall bars with relatively high

mobility and an asymmetrical four-terminal shape are especially investigated. After a brief

presentation of the 2DES parameters and the recipe for its contacting, a set of various transport

configurations performed on the four-terminal Hall bar are reported in the present chapter. Each

of these configurations uses different pairs of current carrying contacts. The results highlight

the crucial role played by the orientation of the Hall bar relative to the crystal orientation of the

heterostructure.
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4.1. 2DES and geometrical Hall bars parameters

4.1.1. Layer sequence of the AlGaAs/GaAs heterostructure

Two-dimensional electron system studied in this PhD work lies in an epitaxial grown Al-

GaAs/GaAs heterostucture (wafer number 102396) which was provided by the group of Werner

Wegscheideri from the Walter Schottky Institute. AlGaAs/GaAs interface of this wafer is lo-

cated 60 nm below the surface. At low temperature, electrons coming from silicon donors are

accumulated at the interface and they remain confined in a triangular potential [1]. Due to the

low electron concentration and the strong confinement, a 2DES is formed (Fig. 4.1 and inset).

i Now at the university of Regensburg.

Figure 4.1.: Layer sequence of AlGaAs/GaAs heterostructure used in this PhD work. The 2DES

lies about 60 nm below the heterostruture surface. For visibility reason the thick GaAs substrate

and buffer layers are not in the proper scale.Insert: Minimum conduction band energy (ε) in

the direction of the crystal growth. Electrons are trapped at the AlGaAs/GaAs interface by the

triangular shaped confinement.
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In this wafer, undoped AlGaAs layer with a thickness of 20 nm is grown to separate the 2DES

from the Si-doped AlGaAs layer. Since silicon donors with their positive charges are source

of electron scattering, such separation between electron and donors achieves a high electron

mobility. A GaAs cap layer at the top of the heterostructure is also added in order to prevent

the oxidation of the AlGaAs layer. At the bottom a superlattice of ten AlGaAs/GaAs bilayers

suppresses the in-diffusion of wafer impurities. Van der Pauw measurement atT = 4 K reveals

a carriers mobility of160 m2/V s and an electron density of3.6× 10 15 m−2 [2,3] in this wafer.

4.1.2. Hall bar geometries

Hall bar structures are designed by photolithography and wet chemical etching into the het-

erostructure described in the previous section 4.1.1. The detail of their geometry are depicted in

Fig. 4.2. Their width is10µm and their length is58µm (such micrometers size is later required

to perform local potential probing since the microscope has a scanning area limited to20µm

by 20µm). There are two kinds of structures, either with six terminals or four terminals. The

six-terminal mesa has two contacts on each side of the Hall bar whereas the four-terminal mesa

has two contacts on a single side.

Figure 4.2.: Hall bars with six and four contacts. The AlGaAs/GaAs mesa is etched from the

heterostructure (boundaries in blue). NiGeAu contact is alloyed (light blue color). 2DES is

remained in the blue area. CrAu pads (red color) are deposited on the top of the contacts to fa-

cilitate bonding. The structures have 10µm width, 58µm length between the contacts 1 and 4,

and 22µm between the contacts 2 and 3. The contacts 1 and 4 have a borderline with the 2DES

of 10µm and the contacts 2,3, 5 and 6 have an interface length of 4µm.
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4.1.3. Recipe to fabricate ohmic contact

The contacts to the 2DES are made by following the recipe of Ulf Graumannet al. [4] (see

Fig. 4.3) : layers of Au (107.2 nm), Ge (52.8 nm) and Ni (40 nm) are evaporated on the mesa

structure and alloyed at400 ◦C during 50 seconds. CrAu pads are added at the end of the contact

fabrication to facilitate the bonding to the sample.

To characterize contact’s quality, the contact’s resistance is extracted via transmission line

measurement (TLM) [4–12]. In this method, line structures are fabricated with contacts located

at different distances from each other (see Fig. 4.4(a)). I-V characteristics are measured between

pairs of contacts in order to determine for every contact pair the two-terminal resistance. This

resistance –named also total resistance– has three distinguished contributions as expressed in

the following equation:

RTotal(l) ' 2 ·RC +Rwires +
ρS · l
WC

. (4.1)

RC is the resistance of one contact,Rwires is the wire resistance of the measurement setup

andRS = ρS · l/WC is the resistance from the 2DES. The set of the two-terminal resistance

are plotted versus the corresponding distance between contacts. The two first contributions

are not related to the lengthl, only the 2DES resistance does. Therefore the plot of the total

resistance versus the distancel between contacts should display a linear curve (see Fig. 4.4(b)).

By subtracting the wiring resistance and by extrapolating this curve to a virtual zero distance

separation, the contact resistanceRC is isolated from the other contributions.

Figure 4.3.: Thin layers of Au, Ge and Ni are evaporated on the AlGaAs/GaAs surface. After

heating, the metal mixes with the underlying heterostructure leading to a straight interface lie

between the alloyed metal and the 2DES.
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Our TLM experimental results are presented in figure 4.5(b) for a10µm wide mesa aligned

in [011] or [01-1] crystal direction of the heterostructure (see Fig. 4.5(a)). Three different

samples A, B and C are tested. All these samples are made from the same heterostructure and

contact recipe (see section 4.1.4 and 4.1.3). The 2DES located below the contact is suppressed

by the NiAuGe contact material. In consequence the contact resistance does not depend on the

contact area but it scales linearly with the inverse of the borderline’s length between the contact

and the 2DES. It will be expressed asΩ ·mm. From these measurements, the contact resistance

are found to be ohmic, low resistive and anisotropic:(0.8± 0.2) Ω ·mm if the transmission

line is oriented in [01-1] direction of the heterostructure and(0.5± 0.02) Ω ·mm in the [011]

direction. Such anisotropy was already reported by M. Kamadaet al. [11] and U. Graumannet

al. [4]. M. Kamadaet al. find a ratio of 1 to 7 between the contact resistance in [011] direc-

tion and the contact resistance in [01-1] direction. The other authors [4] report an anisotropy

which might be even much more pronounced with an infinite contact resistance in [01-1] direc-

tion although the contact in [011] direction is low resistive. In order to avoid this anisotropy,

finger-like contact shape can be used instead of a straight line interface (compared Fig. 4.6(a) to

Fig. 4.6(b)). Anisotropy in our contact resistances being low, the contact geometry in this work

is intentionally designed in the photolithography mask with a straight line between the contact

and the 2DES rather than a finger-like geometry. Later on, in high magnetic field, anisotropy

Figure 4.4.:a) Setup of transmission line measurement with contacts at different distances from

each other.b) Expected linear behavior of two-terminal resistance with respect to the contact

distancel.
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Figure 4.5.: Transmission Line Measurements (TLM) atT = 1.4 K performed by Yvonne

Boose under my supervision.(a) [011] and [01-1] crystal direction are used.(b) Total resistance

versus contact distancel. Three different samples A, B and C are tested. Each point of this

plot corresponds to a linear fit of two-terminal I-V characteristic showing ohmic behavior. An

anisotropy of the contact resistance between the two orientations is visible: TLMs show lower

contact resistance in [011] direction than in [01-1] direction. The sample A presents broader

error bars because the data are averaged over three different cooling processes. A horizontal

error bar can be added to account for the uncertainty related to the distance between contacts

(∆l ≈ 0.4µm).

will nevertheless be relevant in our measurements. Finally, as the slope of the TLM curve is

proportional toρS/WC, the sheet resistivity of the 2DES might be extracted from transmission

line measurement. WithW = 10µm andρS/WC ' 1550 Ω/µm in [011] direction, the sheet

resistivityρS is evaluated toρS ' 15 Ω/2.

4.1.4. Parameters of the 2DES determined at low magnetic field

At low magnetic field, magneto-resistance measurements of structured Hall bars inform on the

2DES sheet densityns and on its carrier mobilityµ (see section 1.2). The six-terminal Hall

bar is the most adequate for these purposes since the transversal and longitudinal voltage drops

are accessible in a simple geometrical way. Measurements are performed via the injection of
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Figure 4.6.: Schematics of NiAuGe contact to the 2DES with CrAu layer on the top in order to

attach gold bonding wires.(a) To assume low contact resistance in the hard contacting [01-1]

direction, finger-like interface might be used which owns a borderline with certain fractions

oriented in [011] direction and in [01-1] direction.(b) Contact with straight line borderline as

used in this PhD work.

net currentI to the contacts 1 and 4. The voltage drop is probed between contacts 2 and 6 in

the case of Hall resistance, or between 2 and 3 in the case of longitudinal resistance. Measured

Hall resistanceR14,26 = V26/I and longitudinal resistanceR14,23 = V23/I are presented in the

figure 4.7(b). SinceR14,26 = ρxy = B/(ns · e), the linear slope of the classical Hall resistance

gives the sheet densityns:

ns =

(
e · dR14,26

dB

)−1

.

This sheet density is found to have a value ofns = 3.6 × 10 15 m−2. Depending on cooling

processes,ns value can have a change of 5 %. The carriers mobility is calculated with the

Drude model from the longitudinal resistanceR14,23 = ρxx · L/W around zero magnetic field:

µ = [ns · e · ρxx(B ' 0)]−1 .
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In Fig. 4.7,R14,23(B ' 0) = 36 Ω which means a sheet resistivity ofρxx = 13.8 Ω/2 and

therefore a carrier mobility of130 m2/V s. The value is consistent with the one found with

transmission line measurement in section 4.1.3.

Further parameters of the 2DES can be obtained from the density and the mobility. For

instance the Fermi velocityvF = h̄
√

2πns/meff and the scattering timeτ = (µ ·meff)/e. Fermi

velocity and scattering time give the mean free pathlmfp = vF · τ = 12 µm. This mean free

path compared to the sample size allows to estimate the type of transport occurring at zero

magnetic field: either diffusive or ballistic. In our sample, the transport is quasi-ballistic at

B=0 sinceW ≤ lmfp ≤ L. The scattering time informs also on whichB range the quantum

effects start to be relevant: Landau levels and its associated SdH oscillations appear when the

cyclotron orbit completes a full circular trajectory without being disturbed by a scattering event,

i.e. ω−1
c � τ (or B � µ−1). In figure 4.7, the SdH oscillations start atB = 400 mT. At

this field, h̄ ωc = 0.7 meV andω−1
c (= 1 ps) � τ(= 48 ps). The measured value of the

sheet density is used as the reference number to calculate the Landau level filling factorν (see

section 1.4). Following the equationν = φ0 ·ns ·B−1 with φ0 = h/e = 4.1357 ·10−15 m2 · T, at

each magnetic field value corresponds a precise Landau level filling factorν for a fixed electron

densityns. In our 2DES,B ν · ν ' 14.5 T andν = 1 corresponds toB ν=1 = 14.5 T.

Figure 4.7.: Hall and longitudinal resistances in six-terminal Hall bar.a) Setup configuration

with current carrying contacts 1 and 4.b) At low B, the Hall resistance varies linearly and the

longitudinal resistance has three different types of transport regime (see Appendix D).
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All parameters of our 2DES are summarized in the table 4.1.

parameter ns EF vF λF µ τ lmfp

value 3.6 · 1015 m−2 12.8 meV 2.5 · 105m/s 42 nm 127m2/V s 48 ps 12µm

Table 4.1.: Various parameters of the two-dimensional electron system used in this work.

4.2. Magneto-transport measurements

The next part presents transport measurements performed on four- and six-terminal Hall bars.

The transport is driven with a100 nA fixed current. A lock-in is used as a function generator to

apply a1 V excitation at13.43 Hz through a 0.01 % calibrated10 MΩ resistance in series with

the sample. The input of the lock-in detects the difference of voltage at this frequency.

4.2.1. Comparison of the transport in six- and four-terminal Hall

bar

After the same cooling process atT = 1.4 K, the magneto-resistances of the six-terminal Hall

bar are compared to the magneto-resistances of the asymmetrical four-terminal Hall bar. In

both cases, the current is injected via the contacts 1 and 4 (see mesa drawn in figure 4.8(a)).

At magnetic fields corresponding to an integer filling factor, the usual quantum Hall effect

is observed in the six-terminal Hall bar: the Hall resistanceRSix
14,26 has plateaus with quantized

values and the longitudinal resistanceRSix
14,23 is simultaneously null (orange and light blue curves

in Fig. 4.8). For the four-terminal Hall bar, Shubnikov-de Haas peaks (SdH) in betweenν = 2

andν = 3 (or ν = 4 andν = 5) are not present in the longitudinal resistanceR Four
14,23 (dark

blue) although they are visible in the six-terminal Hall bar. Such disappearance is reviewed in

the literature as an adiabatic effect due to a non equilibrium situation between edge and bulk

states (see section 3.2.3). The measurement of the two-terminal resistancesR Four
14,14 also shows

anomaly. Hall plateaus are located at lower magnetic field values. For example, the plateau

corresponding toν = 2 is measured aroundν ' 3. Both features - disappearance of SdH peaks

and deviation of Hall plateau, are an intrinsic effect since no external electrode gate is added

to the sample. Furthermore these effects are generic since similar results are obtained on other

small and high mobility Hall bars contacted with a straight interface between the alloyed metal

and the 2DES (see section 4.3).
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Figure 4.8.: Comparison between magneto-resistances measured atT = 1.4 K in a six- and

four-terminal Hall bar.a) Setup configuration. The current is injected in both Hall bars via

contacts 1 and 4 and the longitudinal resistance is measured with the contacts 2 and 3.b)

Transport results. Aroundν = 2.5, a plateau in the two-terminal resistanceRFour
14,14 (red curve)

is visible which is not present in the Hall resistanceRSix
14,26 (orange curve). Simultaneously, SdH

peaks are suppressed in the longitudinal resistanceRFour
14,23 (dark blue curve).
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4.2.2. Four-terminal Hall bar measured in four different

configurations

The disappearance of some SdH peaks and the deviation of the Hall plateaus in the total resis-

tance encourage to characterize in detail the four-terminal Hall bar. The purpose of this section

is to present four configurations (Fig. 4.9) which were used to perform transport in the four-

terminal Hall bar. Each of these configurations (a)-(d) has different current carrying contacts.

These contacts allow to measure different two- and four-terminal resistances:

(a) Current injection via contacts 1 and 4 with a borderline between the contact and the 2DES

oriented perpendicularly to the [01-1] direction of the heterostructure. The longitudinal

resistance is obtained by measuring the voltage drop between the contacts 2 and 3.

(b) Current injection via contacts 2 and 3 with a borderline oriented perpendicularly to the [011]

direction. A four-terminal resistance is measured via recording the voltage drop between

Figure 4.9.: Four configurations used to measure magneto-resistances in the four-terminal Hall

bar. The total two-terminal resistances are measured via the contacts labeled with a red number.

The four-terminal measurement uses in addition the contacts labeled with a blue color.a)

Configuration with current carrying contacts 1 and 4 which gives the longitudinal resistance

R14,23. b) Configuration with current carrying contacts 2 and 3 which allow to extract the

resistanceR14,23 with the character of a longitudinal resistance.c) Γ-like shape configuration to

obtain the atypical Hall resistanceR24,13. d) Probing of the non local resistanceR12,34.
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the contacts 1 and 4. This geometry is special since a C-like shape for the current path

is obtained instead of the usual I-like shape used in the case (a). Nevertheless this four-

terminal resistanceR14,23 owns the properties of a longitudinal resistance.

(c) Current injection via contacts 1 and 3. The voltage is probed in between contacts 2 and

4. This arrangement allows to measure a kind of Hall resistance since the voltage drop is

probed between two opposite mesa edges where in between the current passes by. Differ-

ent from the usual cross-like arrangement, this measurement is called as an atypical Hall

resistance.

(d) Current injection via the contacts 1 and 2. The voltage is probed with the contacts 3 and 4.

The value ofR12,34 is denoted as non local resistance.
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4.2.2.1. Current injected in [01-1] direction

The first measurement corresponds to the arrangement which was compared to the six-terminal

Hall bar (see section 4.2.2). It is plotted in figure 4.10(b) for the two magnetic field orientations.

The magneto-resistances display similar curves for positive and negative magnetic field. The

plateaus corresponding to an even filling factor are not present in the two-terminal resistance

R14,14 (red curve). In addition, the plateaus related to an odd filling factor are found at lower

magnetic fields: the plateau with its value ofh/2e2 ≈ 12.9k Ω appears aroundν = 3 instead

of ν = 2. The offset of resistanceR offset ≈ 400 Ω above the quantized resistance is due to the

two contact resistances (2×80 Ω) and to the two wire resistances (2×130 Ω). As expected, this

offset is close to the zero field resistance. Concerning the longitudinal resistance (blue curve),

some of the peaks in the SdH oscillations are absent. It is visible in betweenν = 2 andν = 3

where the longitudinal resistance stays zero, or in betweenν = 4 andν = 5 where the vanishing

is also visible.

Figure 4.10.:a-b) Same measurement data presented in figure 4.8 but for positive and negative

magnetic field. The plateaus of the total resistanceR14,14 are found at lower magnetic fields than

expected. In the longitudinal resistanceR23,14, the SdH peaks disappear in betweenν = 2 and

3, and in betweenν = 4 and5.



4.2. MAGNETO-TRANSPORT MEASUREMENTS 77

4.2.2.2. Current injected in [011] direction

The contacts used to inject the current and to probe the voltage in the previous configuration

are now interchanged. In this new setup, the current carrying contacts 2 and 3 own a border-

line with the 2DES oriented perpendicular to the [011] orientation of the heterostructure. In

the previous configuration, the borderline was perpendicular to the [01-1] direction. The two

terminal-resistanceR23,23 shows plateaus at the expected integer bulk filling factor: for example,

the Hall plateau with resistanceh/2e2 appears atν = 2 as it is expected fromh/νe2 (red curve

in Fig. 4.11(b)). The four-terminal resistance measured via the voltage difference between the

contacts 1 and 4 presents the characteristic of a longitudinal resistance. The same disappearance

of SdH peaks as in the previous configuration is found.

Figure 4.11.:a) The current carrying contacts are the contacts 2 and 3.b) The plateaus of the

total resistanceR23,23 are located at the expected filling factor corresponding to the averaged

bulk density. In the resistanceR23,14 which has the character of a longitudinal resistance, the

Subnikov-de Haas peaks are absent in betweenν = 2 and 3, and in betweenν = 4 and5.

4.2.2.3. Atypical Hall configuration

In the third setup –named atypical Hall resistance measurement, the current is injected via the

contacts 2 and 4, and the Hall voltage is recorded via the contacts 1 and 3 (Fig. 4.12(a)). The

Hall plateaus in the two-terminal resistanceR24,24 shown a similar deviation as in the configu-

ration with current injection via contacts 1 and 4 (compared red curves in Fig. 4.12(b) and in
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Fig. 4.10(b)). The Hall resistanceR24,13 is different in positive and in negative magnetic field

(dark blue curve). An unexpected broad plateau appears for negative magnetic field between

ν = 3 andν = 2. It is not present for positive magnetic field.

Figure 4.12.: a) Atypical Hall configuration.b) The plateaus inR24,24 are deviated to lower

filling factor whereas the Hall resistanceR24,13 shows an asymmetrical behavior with respect to

the magnetic field direction: for negative magnetic field, an unexpected broad plateau is found

in betweenν = 3 andν = 2 which is not visible at positiveB. This asymmetry persists at

higher filling factors.

4.2.2.4. Non local configuration

In the last configuration, the current is injected via the contacts 1 and 2. The potential is probed

at the contacts 3 and 4 (Fig. 4.13(a)). The voltage is measured away from the current trajectory

expected at zero magnetic field. This configuration corresponds to the measurement of a non

local resistance. In the figure 4.13(b), the two-terminal resistanceR12,12 (red) is deviating from

the expectation. The non local resistanceR12,34 (green) is null at positiveB but it does not stay

null below−0.7 T.
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Figure 4.13.:a) The four-terminal resistanceR12,34 is obtained by probing the voltage between

the contacts 3 and 4 located away from the current injecting contacts 1 and 2 (non-local config-

uration). b) The plateaus of the total resistanceR12,12 are found at lower magnetic fields. The

value ofR12,34 is null at positive magnetic field. Near−0.7 Tesla, a non local resistance starts

to appear at negativeB.

4.2.3. First summary

The measurements performed in the four-terminal Hall bar correspond to adiabatic transport

features described in the previous chapter 3. All four-terminal resistances show adiabatic trans-

port, i.e. the disappearance of SdH peaks, a non local resistance and the deviation of Hall

plateaus. The two-terminal resistance reveals also an anomalous Hall effect if at least one

contact is oriented with its borderline perpendicularly to the [01-1] direction of the heterostruc-

ture (red curves in Fig. 4.10(b), 4.12(b), 4.13(b)). Only the two-terminal resistance with cur-

rent injection in [011] direction does not present deviation in its Hall plateaus (red curve in

Fig. 4.11(b)). Such results advertise that the transport is anisotropic with respect to the crystal

orientation as it is with the contact resistance (section 4.1.3).
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4.3. Further magneto-transport measurements

4.3.1. Magneto-resistance on Hall bars oriented by 90 ◦ to each

other

To confirm the presence of transport which is anisotropic with respect to the crystal orientation

of the heterostructure, two similar Hall bar structures oriented by90 ◦ to each other are prepared

on the same wafer and on the same cooling sample (see pictures in figure 4.14). The transport

are performed in a dilution fridge at 26 mKii . The two-terminal resistances are measured by a

ii This very low temperature is nevertheless not important.

Figure 4.14.: Two-terminal measurements for Hall bar oriented in [011] or [01-1] direction of

the heterostructure. If the current is injected and ejected along [011], the plateaus in the two-

terminal resistanceRij,ij appears at lowerB (case (a) and (b)). In the other case, the resistances

show Hall plateaus at the expected bulk filling factors (case (c) and (d)).
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current injected either via the contacts 1 and 4 (cases (b) and (d)) or via the contacts 2 and 3

(cases (a) and (c)). If the current is injected and ejected in [011] crystal direction of the het-

erostructure (curves (c) and (d)), the two-terminal resistance gives the expected quantification.

At contrary, the curves (c) and (d) with the current injected and ejected in [01-1] direction dis-

play a deviation in the plateaus position to lowerB. Turning the Hall bar with respect to the

Figure 4.15.: Two-terminal and atypical Hall resistance for Hall bars oriented by90 ◦ to each

other. In both cases, the two-terminal resistance (orange or light blue) is deviated to lower

magnetic field, whereas the Hall resistance (red or dark blue) shows different curves depending

on the magnetic field sign. Broad Hall plateau aroundν = 2.5 or aroundν = 3.1 is visible only

for negativeB.
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crystal axis is in conclusion not equivalent for the two-terminal measurements. These results

confirm the importance of the crystal orientation. The next step is to investigate if the adiabatic

features exist in these two Hall bars. For this purpose, atypical Hall resistance is performed on

both mesas oriented by90 ◦ to each other. The results are plotted in figure 4.15. Both atypical

Hall resistancesR24,13 (dark blue and red) are different in positive and negative magnetic field.

The Hall plateaus atν = 2 are also broaden and deviate to lower negativeB. In conclusion,

adiabatic features are present as they were found in the transport measurements of the previous

sample (section 4.2.2.3).

4.3.2. Five-terminal Hall bars

Hall bars owning three contacts along the mesa edge are also tested (Fig. 4.16(a)).All contact

junctions have10µm width. In this new geometry, adiabatic properties are still visible: the

SdH peaks betweenν = 2 andν = 3 disappear in the longitudinal resistanceR15,24 (light blue)

and the Hall resistanceR14,25 (dark blue) is asymmetrical with respect to the magnetic field sign

(see broad plateau between−5 and−8 Tesla in figure 4.16(b)). These features are similar to the

ones observed and described in section 4.2. The results prove that the length (10 µm or4 µm) or

Figure 4.16.:a) Five-terminal Hall bar in two different measurement setup.b) The SdH peak

at ν = 2.5 is missing in the longitudinal resistanceR15,24 (light blue) and the Hall resistance

R14,25 (dark blue) is different in positive and negative magnetic field.
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the number of contact borderline is irrelevant if the borderlines of these voltage probing contacts

are oriented perpendicular to the [01-1] crystal direction of the heterostructure.

4.4. Conclusion

Adiabatic transport features as the disappearance of SdH peaks or non local resistance have

been observed in four-terminal Hall bars with micrometers size and high mobility 2DES. Dif-

ferent samples with various mesa geometries and orientations relatively to the heterostructure

crystal have been tested. The result demonstrates that the adiabatic behavior is generic. The

two-terminal measurements also indicate that IQHE at the right filling factors is only obtained

if both source and drain contacts have their borderlines oriented perpendicularly to the [011]

direction of the heterostructure. Such anisotropic behavior has the same tendency as the contact

resistance. Indeed, contact resistance is higher if its borderline is perpendicular to the [01-1] di-

rection of the heterostructure. In the edge state picture, this deviation of the Hall plateaus in the

two-terminal resistance would be considered as a reflection of one edge state at the contact since

the position of the Hall plateaus is deviated from nearly one filling factor:R2pts = h/(ν− 1)e2.

Nevertheless all the contacts used in this work are strictly ohmic at zero magnetic field and

low resistive as proved by transmission line measurement. In order to determine the micro-

scopic origin of these deviations, the four-terminal Hall bar showing adiabatic features will be

characterized in the next chapter via local Hall potential probing.
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5. Local probing of the Hall potential
in the adiabatic regime

Adiabatic transport features as disappearance of Shubnikov-de Haas peaks or non local resis-

tance are generically obtained with a high mobility four-terminal Hall bar of micrometer size

(chapter 4). Such features are explained in the literature via the assumption of a non equili-

bration between adjacent edge states with different chemical potentials (chapter 3). A recent

description of the integer quantum Hall effect in terms of metal-like compressible strip and

insulator-like incompressible strip has been possible via the probing of the local Hall potential

(section 1.7.2). Similar measurements on our higher mobility samples should allow to develop

a microscopic description of the adiabatic regime in terms of these strips.

The following chapter presents the local probing of the Hall potential for the four configu-

rations presented in the previous chapter: current injection and ejection in [011] direction or

[01-1], atypical Hall resistance and non local transport. For these four configurations, the deter-

mination of Hall potential via scanning force microscopyi should allow a better understanding

of the special transport features as the disappearance of SdH peaks, the appearance of non local

resistance, or the asymmetry of the Hall resistance with respect to the magnetic field sign.

i The same cryogenic scanning force microscope as Peter Weitz [1] and Erik Ahlswede [2] is used to measure the

potential distribution.
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5.1. Potential distribution of the four measurement

configurations showing adiabatic transport

features

The four configurations studied by transport measurements in the previous chapter are reviewed

via local probing of their potential distributions. The transport experiments were made by driven

a fixed current (100 nA). The current is obtained via a 1 Volt AC voltage excitation at13.43 Hz

applied to a 10 MΩ resistance. For the local probing technique, a15 mV AC voltage excitation

at 3.43 Hz is applied. Therefore, the terminology will change from ”applied current to the

contact...” to ”applied voltage to the contact...”. The physics stays nevertheless the same. At

such high voltage, the magnitude of the net current is still small and the system stays in the linear

regime. Measurements of the potential profiles for a1 mV voltage excitation give the same

distribution. This statement was verified in the configuration presented in the section 5.1.2.

The signal being more noisily, the voltage probing are obtained in higher voltage excitation in

order to increase the ratio signal/noise. All the measurements have been done two times with

the voltage excitation applied to either one or the other contact. The result of the potential

distribution for one case to the other corresponding only to an inversion between low and high

potential. For simplicity, only one case is shown in the following.

5.1.1. Configuration with voltage applied via contacts with a

borderline perpendicular to [011]

The Hall bar is oriented with its length in the [01-1] crystal direction. The borderline between

the contacts 2 and 3 is therefore aligned perpendicularly to the [011] direction. The voltage

excitation is applied to the contact 2, and the contact 3 is at the ground potential. The measured

Hall potential distribution is shown in figure 5.1 for positive and negative magnetic field. The

result is qualitatively similar to E. Ahlswede data obtained in middle mobility samples [3]. On

an interval between two integer filling factors, three types of Hall potential profiles are distin-

guishable: a linear potential drop, two equal potential drops at the opposite mesa edges and

a drop in the bulk area (see section 1.8). The inversion of the magnetic field orientation just

exchanges the potential polarity between the two mesa edges: low (high) voltage for the upper

edge and high (low) voltage for the lower edge at positive (negative) magnetic field (see Appen-

dix C for explanation). A quantitative difference compared to the measurement of E. Ahlswede

is the shift to lower value of the filling factor at which the different profiles appear. In both case,

the determination of the filling factor is always done via transport measurement performed at

the same cooling down as the potential probing. An explanation for the shift may be due to the

high mobility of the sample (see the work of A. Siddiki [4]).
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Figure 5.1.: Local Hall potential measured at different magnetic fields in a four-terminal Hall

bar in which the voltage excitation is applied between the contacts 2 and 3. The scan line is

oriented in the10 µm width direction of the mesa and located between the contacts 2 and 3. For

all magnetic field, the Hall potential distribution along the width of the sample shows henceforth

the same behavior at the two mesa border. For instance close toν = 2 the potential have an

equal drop at the two edges.

5.1.2. Configuration with voltage applied contacts with a

borderline perpendicular to [01-1]

The figure 5.2 corresponds to the situation in which the voltage excitation is applied to the

contact 1, and the contact 4 is grounded. This situation presents transport with a quantization

of the two-terminal resistance at an unexpected filling factor (Fig 4.10). For the Hall potential

distribution, a clear change is found compared to the previous configuration. Between the bulk

filling factor ν = 2 andν = 3, a drop from a high potential (red color) to a low potential

(blue color) occurs only at the lower mesa edge without voltage probing contacts. Such drop

associated to one innermost incompressible strip is interpreted as a direct probing of a robust non



5.1. POTENTIAL DISTRIBUTION FOR ADIABATIC TRANSPORT FEATURES 89

Figure 5.2.: Same experiment as in Fig 5.1 but the voltage excitation is now applied to the

contacts 1 and 4. The distribution of the Hall potential for the positive magnetic field is similar

compared to the distribution at negative magnetic field. Only the potential magnitude is inverted.

Outstanding fact: the Hall potential drop appears only at one mesa edge betweenν = 2 and

ν = 3.

equilibrium situation between compressible regions with different electrochemical potentialsii .

The conservation of this single drop has been continuously measured along a large distance of

20µm and it is expected to be maintained along the complete length of the Hall bar (see next

chapter).

ii The SFM measurements record the electrostatic potential variation in non-equilibrium (with current flow) rela-

tively to the equilibrium situation (without current). The potential variation follows the electrochemical poten-

tial since the electron density varies few.
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M.T. Woodsideet al. [5] has locally probed by scanning force microscopy such single po-

tential drop at one mesa edge (Fig 5.3(a)). In their case, the non equilibrium situation was

extrinsically produced by a gate electrode located on the Hall bar surface (Fig 5.3(b)). The gate

electrode charged negatively produces non equilibrium at one mesa edge. Otherwise the poten-

tial profile is flat over the complete mesa width if the gate is not polarized. The two different

situations are visible at the lower part of the figure 5.3(c) which shows a zoom of the poten-

tial result at one of the mesa’s edges. In the work of M.T. Woodsideet al., no comparison to

transport measurement is reported.

Figure 5.3.:a) Setup of the scanning force microscope to locally measure the Hall potential.b)

Schematic of the gated mesa. Edge states picture showing the reflection of the innermost edge

state.c) Results of the measured potential profiles with and without negative polarity applied to

the gate electrode. Adapted from Woodsideet al. [5].
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5.1.3. Atypical Hall configuration

The voltage excitation is applied to the contact 2, and the contact 4 is grounded. In this config-

uration, the four-terminal resistanceR24,13 corresponds to an atypical Hall resistance which is

asymmetric with respect to the magnetic field orientation (Fig 4.12). The potential distribution

reproduces this asymmetry: the figure 5.4 shows that Hall potential is completely different at

positive and at negative magnetic field. The positive case is similar to the distribution of the po-

tential when the voltage excitation is applied between contacts 1 and 4 (Fig 5.2). In contrary, the

negative case is similar to the configuration in which the voltage excitation is applied between

contacts 2 and 3 (Fig 5.1).

Figure 5.4.: Potential probing in the atypical Hall configuration. The contacts 2 and 4 are used

to applied the voltage excitation. Potential results at positive and negative magnetic field are

different. ForB > 0, the drops of the Hall potential in betweenν = 2 andν = 3 equally occur

at the two Hall bar edges. ForB < 0, a single drop is present at a distance aroundy = 0.5 µm

of the lower border.
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5.1.4. Non local configuration

The last studied configuration is the one related to the measurement of a non local resistance.

In this configuration the excitation is applied at the left side of the Hall bar (contacts 1 and 2).

As in the transport measurement of the section 4.13, the potential distribution is asymmetrical

with respect to the magnetic field orientation. For positive magnetic field sign in which no

local resistance was observed, the potential remains low (blue). At negative magnetic field, the

potential shows a close coexistence of a high (red) and low (blue) potential value which is visible

at the lower edge (y ≈ 1µm). The measurement of a such distribution is a direct observation

of local non equilibrium situation. At the upper mesa edge (y = 10µm), the potential has only

a high value.

Figure 5.5.: Local potential measurement in a non local configuration with an excitation voltage

in between the contacts 1 and 2. The potential profiles are absolutely different for the two signs

of the magnetic field like in Fig. 5.4. The potential stays at low value (blue) for the positive

magnetic field. At negative magnetic field in between2 < ν < 3, a high potential (red)

followed by a low potential (blue) is present at one edge. The other edge has a high potential.
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5.2. Potential distribution in front of voltage probing

contacts

Further potential measurements have been done close to the contact 4 in the atypical Hall con-

figuration. We focus to the situation in which the voltage excitation is applied to the contact

1, and the contact 3 is grounded. The probing area has a rectangular shape of10µm × 3µm.

For safety reason, the scan is starting200 nm away from the metallic contact. The figure 5.6

shows thisx− y potential mapping for a positive and a negative magnetic field corrresponding

to ν = 2.2. The potential distribution for these two field orientations are different. At nega-

tive magnetic field, the potential has a high value (yellow/red) along the mesa border and the

bulk has a low potential (blue). At positive field, this variation is less pronounced with a mean

potential value which is lower. In both cases, the potential variation is located at mesa border.

It is important to notice that such variation is present even along the line interface close to the

contact.

In order to observe the different bulk potential with respect to the magnetic field value, the

potential distribution is recorded for four positive magnetic fields corresponding to the bulk

Figure 5.6.:x−y potential profiles close to the contact 4 atν = 2.2 for a positive and a negative

magnetic field. The electric setup has a similar configuration as the atypical Hall resistance

measurement presented in the section 4.2.2.3.
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filling factor ν = 2.2, 2.1, 1.9 and1.6 (Fig. 5.7). Atν = 2.2, the bulk potential shows lower

value which increases if the magnetic field is increased toν = 2.1. Then the potential at the

scan area get a high value everywhere ifν = 1.9 is attained. It starts to decrease atν = 1.6.

This data obtained near the contact shows that the innermost incompressible strips (located

by the drop of the potential) move to the bulk center region when the magnetic field is increased.

Figure 5.7.:x − y mapping of the potential distribution in front of the contact 4 for a negative

magnetic field at different bulk filling factorν.
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It is visible by looking at the main potential variation in the x-direction which is closer to the

borderline of the contact atν = 2.2 than atν = 2.1. It is not possible to continuously follow

the movement of the incompressible strips with the figure 5.7 since the figure only shows four

different filling factors. Figure 5.8 replies to this problem by presenting the potential distribution

along a trace at1.5µm distance away from the contact as function of the magnetic field. Similar

as in figure 5.7, we see how the potential value of the bulk mesa changes from low value at

ν = 2.2 or2.1 to high value atν = 1.9. We can also observe that the transition from a situation

with potential variation to a situation with flat potential distribution is very sharp and located

aroundν = 2. At the scan line position corresponding tox = 1.5µm, on one hand, there is

no potential drop - i.e. no incompressible strip, just belowν = 2. On the other hand, potential

drops are present at the two mesa’edges just aboveν = 2.

Figure 5.8.: Evolution of the potential profile with respect to the magnetic field. The line scan

is recorded1.5µm away from the borderline of the contact 4.
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5.3. Potential profiles near the current sinking contact

Area close to the current injecting and sinking contacts has been studied in high magnetic field

by different techniques such as Helium fountain effect [6] or cyclotron emission [7]. The results

show strong local energy dissipation - named hot spot, which appears at one corner of these

contacts (see figure 5.9). The location of the hot spot - either at the upper or lower contact

corner, change with the magnetic field sign.

Figure 5.9.: Cyclotron emission measurements in the IQHE showing the position of the local

dissipation in a macroscopic Hall bar (adapted from K. Ikushimaet al. [7]). The four con-

figurations correspond to different polarities and magnetic field orientations. Clear spots of

dissipation are visible at opposite contact corners.

Hot spots positions are well understood from the calculation of the potential distribution

under classical magnetic field. Potential inside the Drude model has its equipotential lines which

converge to one contact corner (see J.H. Davies book [8]). Being expressed by the product~E ·~j
with ~E the local electric field and~j the density of current, the dissipation is maximum and no

zero at this corner.

With our cryogenic scanning force microscope, it is possible to investigate the equipoten-

tial convergence at such area and therefore to observe hot spots. The result of the potential

distribution measurements in front of a current sinking contact is presented in figure 5.10. It

corresponds to the configuration in which the contacts 1 is used to inject current and the contact

4 is connected to ground (as presented in figure 5.2, this configuration corresponds to a single

drop inside the Hall potential profiles). The scan area is a rectangle of10µm times3µm located

200 nm near the contact 4. The bulk filling factor isν = 2.
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Figure 5.10.: Hall potential mapping near the grounding contact 4 atν = 2 for negative and

positive magnetic field. The scanned area is a rectangle of10µm times3µm. The equipotential

line converge to the upper or lower contact corner depending on the magnetic field orientation.

At negative magnetic field and away from the contact 4 (defined in Fig 5.10 asx ≈ 0µm),

the potential has a low (blue) value at the upper edge (y ≈ 10µm) and a high (red) value at

the lower edge (y ≈ 0µm). Coming closer to the contact 4 (x ≈ 3µm), the equipotential

lines (same color) converge to the lower corner and the interface line between the contact and

the 2DES owns a low potential as it should be from the boundary conditions (we remind that

the contact 4 is at ground potential). For positive magnetic field, the situation is opposite (see

Appendix C): the equipotential lines converge to the upper corner. These results demonstrate

that the dissipation occurs in the 2DES and not inside the metallic contact.

The figure 5.11 present similar results for four different values of negative magnetic field.

The gradient of potential (contrast of color) is maximum at integer filling factors. Therefore

dissipation is maximum in the quantum Hall regime.
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Figure 5.11.: Evolution of the potential distribution near the grounded contact 4 with negative

magnetic field.
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6. The adiabatic regime described
in terms of compressible and

incompressible strips

The adiabatic regime is usually described within the single particle edge state picture. However,

previous measurements of the potential landscape in the quantum Hall regime [1] enforce us to

use the picture of compressible and incompressible strips (denoted as CSs and ISs). We know

that in front of an ohmic contact an electron depletion occurs - with the consequence that CSs

and ISs are even running in parallel to the interface between alloyed metal and 2DES [2]. This

should be the base to explain our data in this chapter. Nevertheless it turns out that it is not

enough: different insulating properties for the incompressible strips depending on the orienta-

tion of the metal/2DES interface line relatively to the crystal orientation of the heterostructure

have to be assumed to explain our full set of data.

The chapter is organized in the following way: first, our qualitative model is described via

the configuration in which the current carrying contacts are 1 and 4 (the borderline with the

2DES is oriented perpendicular to the [01-1] crystal direction). This configuration will prove

that the innermost incompressible strip is decoupled from these contacts. The non local resis-

tance configuration is then illustrated. It shows how the ISs are equilibrated either in contact 2

or in contact 3. These two configurations clearly justify the assumption about the anisotropic

insulating behavior of incompressible strips in front of contact oriented in different crystal ori-

entations. The model depicted for the atypical Hall configuration in which the current is injected

by the contacts 1 and 3, explains the asymmetry of this resistance with respect to the magnetic

field sign and the existence of large plateaus. The last configuration -contacts 2 and 3 as inject-

ing contacts, is included for completeness. Further situations are presented which also stress

the powerful predictability of the model.
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6.1. Elaboration of a qualitative model

6.1.1. Anisotropy in the insulating properties of incompressible

strips along the contact borderline

Potential profiles obtained in the configuration with current injecting contacts 1 and 4 (sec-

tion 5.1.2) is used for elaborating a qualitative model of the adiabatic transport. Atν = 3, this

model splits the 2DES in three compressible and incompressible strips at each mesa edges. As

observed by E. Ahlswede (Fig. 1.8) and by myself (Fig. 5.6), these strips follow the shape of

the Hall bar by running along ohmic contacts and mesa edges (section 1.9). To fit with our mea-

surements, the innermost incompressible strip has to produce a decoupling of the outermost

compressible strip in front of contacts 1 and 4, and it should let in balance the compressible

strips in front of the contacts 2 and 3.

Two situations are depicted and compared in figure 6.1 in order to justify such an anisotropy.

In the first situation - named “coupling without anisotropy” (Fig. 6.1 (a) to (d)), the innermost

incompressible strip owns the same thickness in front of all contacts. This strip is thin enough

to perform a good coupling between different compressible strips. In the second situation (“de-

coupling with anisotropy”, Fig 6.1 (e) to (h)), the innermost incompressible strip is represented

with a thin thickness in front of contacts 2 and 3, and a large one in front of contacts 1 and

4. The large thickness is at the origin of a perfect decoupling between compressible regions.

Difference of strips thickness is due to the assumption of different electron density profilesi:

either the density profile is assumed to be smooth if the interface line to the contact is perpen-

dicular to the [01-1] heterostructure crystal direction (contacts 1 and 4), or it is sharp for the

[011] direction (contacts 2 and 3).

The anisotropy in the electron density was already expected at zero magnetic field from the

measurement of the contact resistances: higher resistance was found in the [01-1] heterostruc-

ture direction than in [011] direction (see section 4.1.3). In addition, the two-terminal magneto-

transport measurements in high magnetic field displayed similar anisotropy: the Hall plateau of

the two terminal resistance is expended to lower magnetic field if at least one of the contacts 1

or 4 is used to inject or to sink the applied current (see section 4.2.3). It is not the case if only

the contacts 2 and 3 with a borderline perpendicular to the [011] direction of the heterostructure

are used.

i The relation between thickness and density variation is expressed via the equation 1.27.
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In figure 6.1 (a) and (e), the 2DES is depicted in the equilibrium situation. All the strips have

the same electrochemical potentials (symbolized by a gray color). A difference of DC voltageii

is applied between the contacts 1 and 4 which produces a current flow through the Hall bar.

The new distribution of the electrochemical potentialµ elch and the related potential landscape

under non equilibrium situation is shown in figure 6.1 (a) to (d) and (e) to (h) via different levels

of color: blue for lowµ elch, red for highµ elch and orange (red+red+blue) or green (red+blue)

for intermediateµ elch. The time evolution of the electrochemical potential is the following. In

front of the contacts 1 and 4 (Fig. 6.1 (b) and (f)), the two innermost compressible strips adjust

first their electrochemical potential with respect to the attached contacts: highµ elch strips (red)

in front of contact 1 and lowµ elch strips (blue) close to the contact 2. These two CSs get

the same electrochemical potential since the insulator-like outermost IS is too thin to perform

a significant decoupling (even if its insulating behavior is negligible, this IS is shown in the

figures to point out the value of the filling factor). In Fig. 6.1(f), the innermost CS is isolated

(gray color) due to the large thickness of the innermost IS in front of the contacts 1 and 4.

It is not the case in figure 6.1(b). Under current flow, the evolution of the electrochemical

potential into the sample depends on the magnetic field sign which assigns the direction of

the skipping orbit. With a negative B as chosen in figure 6.1, the electrochemical potential of

the compressible strips is propagated in anti-clockwise direction. The highµ elch of the CSs

connected to the contact 1 and the lowµ elch of the CSs linked to the contact 2 are transmitted

in the direction of the contact 3 (Fig. 6.1(c) and (g)). In the case of ”anisotropy”, the inner and

outer CSs keep their own electrochemical potential close to the contacts 1 and 4 since a large

incompressible strip isolates them. The lack of scattering in high mobility sample allows also to

keep this different of electrochemical potential along the complete mesa length. It follows that

a strong and local non equilibrium persist along the complete Hall Bar (adiabatic regime). Such

non equilibrium was probed by scanning force microscopy as shown in the previous chapter 5

or in Fig. 6.2. Under high magnetic field, the distortion of the electric field at the opposite

corners of the current injecting and sinking contacts induces some hot spots (yellow quarters of

ii In the transport measurements, a net current was driven whereas in the potential probing an AC voltage was ap-

plied. Henceforth a DC voltage is used to draw the model. This difference is not relevant and the configurations

are considered as equivalent.

Figure 6.1.: Model showing the time evolution of the electrochemical potential distribution at

ν = 3. The voltage difference in the four-terminal Hall bar is applied between contacts 1 and 4.

a-d) The innermost incompressible strip has the same little thickness in front of all the contacts.

Equilibration of the electrochemical potentials occurs.e-h) The thickness of the innermost

incompressible strip is thinner close to contacts 2 and 3. With a larger thickness close to the

contacts 1 and 4, the innermost IS stay decoupled from these contacts.
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circle in the figures 6.1(d)-(e)) corresponding to spot of energy dissipation (section 5.3). This

dissipation obviously does not modify the decoupling of the innermost IS in front of contacts
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1 and 4. Finally, two distinguishable profiles appear (Fig. 6.1(d) and (h)). Only the case (h)

with the anisotropy reproduces the large potential drop measured at one mesa edge. The case

(d) predicts unobserved drops of the Hall potential equally distributed at the two edges of the

Hall bar.

The model in similar configuration as Fig. 6.1 is displayed for negative and for positive

magnetic fields in Fig. 6.2. The measured potential profile atν = 3 is also shown in order to

compare it to the model. A clear similarity is visible between the distribution of electrochemical

potential given by the model and the measured Hall potential (the scanning line is oriented in

the width direction of the mesa and located between the contacts 2 and 3). At negative (positive)

magnetic field, the model exhibits between the contacts 2 and 3 a large single drop (rise) in the

Hall potential located exclusively at the edge of the mesa owing no voltage probing contacts. It

is in agreement with the measured potential profile shown at the bottom of the figure 6.2. Such

Figure 6.2.: Comparison between model and potential measurements in the setup with current

injected in [01-1] direction (contacts 1 and 4).
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distribution of potential only happens if the innermost compressible strip is decoupled from the

contact 1 (4) in negative (positive) magnetic field. Such decoupling has to be include at both

contacts 1 and 4.

6.1.2. Model in the non local resistance configuration

Compared to the previous section, the model is now elaborated in the non local resistance

configuration - i.e. the voltage excitation is applied between the contacts 1 and 2. The situations

without and with anisotropy of the strip thickness are presented in figure 6.3 at negative negative

magnetic field (ν = 3). In the first situation (Fig. 6.3(a) to (d)), the CSs close to the contacts 1,

2, 3 and 4 are coupled whereas the innermost CS in front of the contact 1 and 4 stays decoupled

in the second situation (Fig. 6.3(e) to (h)). Different electrochemical potential distributions

follow as shown in Fig. 6.3(d) and (h):

- Without anisotropy, the contacts 3 and 4 have the same electrochemical potential (red) and

no potential drop is predicted on the right side of the Hall bar. In consequence, no resistance

R12,34 is expected. This prediction is in contradiction with the measured Hall potential pro-

files which show potential drops (see data in Fig. 6.4) and with the transport measurements

which give a no local resistance (see section 4.2.2.4).

- With anisotropy, the model depicted a change at the scan line position from high to lowµ elch

and again to highµ elch. This landscape is precisely the result obtained with the scanning

force measurements (see Fig. 6.4).

The model in non local resistance configuration reinforces our anisotropic assumption since

only the anisotropic case (d) properly describes the measurements. In addition, the model and

the Hall potential measurements agree for positive and for negative magnetic field (Fig. 6.4).

The non local configuration shows also that equilibration has to be included in front of the

contact 3 ( or in front of the contact 2 if the voltage excitation is applied between the contacts

3 and 4). Energy dissipation - like hot spot, is expected near such contact where low and high

electrochemical potential are equilibrated (transition to orange color in figure 6.4).

Some comments concerning the origin of non local resistance can be done from the model: at

negative magnetic field,R12,34 is non zero since a gradient of electrochemical potential between

the contacts 1 and 2 gives different potential at the contacts 3 and 4 (labeled respectively by

orange and red colors). This resistance is called ”non local” in the way that the contact 3 probes

the outermost compressible strip which has an electrochemical potential value determined by

the insulating properties of the innermost incompressible strip located far away in front of the

contact 1. The voltage probed at one side of the Hall bar drastically depends on the more or

less good equilibration occurring at the other side. The voltage measurement extracts global

behavior and the definition of a local resistivity becomes not adequate.
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Figure 6.3.: Model atν = 3 in the case of the non local setup. Situation without (a-d) and with

(e-h) strip thickness anisotropy are illustrated.a/e)Equilibrium situation.b/f) Voltage applied

to contacts 1 and 2. The connected compressible strips follow the electrochemical potential

of these contacts.c/g) Propagation of the electrochemical potential along the edges into the

sample. The direction is given by the magnetic field sign.d/h) Final potential distribution.

Figure 6.4.: Comparison between model and potential measurements in the non local configu-

ration. In front of contact 3 at negative magnetic field, equilibration and dissipation occur.
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Concerning the current path for negativeB, the potential drop is different in one mesa edge

compared to the other edge. It follows a net non equilibrium current flowing on the mesa side

where the contacts 3 and 4 are located. It is surprising since the classical current path occurring

at zero magnetic field would show no net current in this area. In positive magnetic field, the

situation is easier: the two potential probing contacts feel the same electrochemical potential

and the voltage drops between contacts 3 and 4 is therefore null. The electrochemical potential

is the same everywhere in this part of the Hall bar and out of equilibrium current is not present.

6.1.3. Model for the atypical Hall configuration

The model is now developed with a high electrochemical potential at the contact 2 and a low

electrochemical potential applied to the contact 4. The situation is equivalent to the atypical

Figure 6.5.: Comparison between model and potential measurements in the atypical Hall con-

figuration.
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Hall transport configuration shown in section 4.2.2.3 (the current carrying contacts are just dif-

ferent). Thin incompressible strips in front of the contact 3 allows the equilibration of all the

compressible strips present in this contact arm. The results give different potential distribution

in negative and in positive magnetic field as it is measured in the Hall potential measurements

(Fig. 6.5). In negative magnetic field, the expected Hall resistance is recovered since the equili-

bration between edge and bulk (or innermost compressible strip) occurs in front of the voltage

probing contact 3. In positive magnetic field atν = 3, only the incompressible strip corre-

sponding to the local filling factorν = 2 located at the bottom edge carries current. The voltage

probe 1 measures low potential and the voltage probe 3 measures a high potential. This un-

balanced situation will stay untilν = 2. It follows that the atypical Hall resistanceR 24,13 is

constant on the complete magnetic field range betweenν = 3 andν = 2 as it was measured via

the observation of a large plateau in the magneto-transport of the atypical Hall resistanceR 24,13

(see section 4.2.2.3).

In an atypical Hall configuration, potential profile was measured close to the voltage probing

contact 4. The result can be compared to the model. The figure 6.6 shows the results at filling

factorν = 2 and atν = 2.2. The SFM scans an area of3 µm large over the10 µm mesa widthiii .

The similarity between the model and the potential measurement confirms the existence of a

strong decoupling between bulk and edge in front of this contact. Atν = 2.2, the measurement

attests that the voltage probing contact is linked to a high potential (red) at the edges whereas

the bulk has a lower potential (blue). In between these two regions, a large area (around1 µm

thick) shows a gradient of potential - i.e. a large incompressible strip. Atν = 2, the potential

profile has a high potential (red) everywhere in the contact arm because the region with lower

potential is moved much more inside the center of the Hall bar (see section 1.9).

iii To protect the tip from possible collisions, a safety distance of 0.2µm is maintained between tip and contact.
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Figure 6.6.: Comparison between model predictions and probed potential in front of the voltage

probing contact 4 in the case of the atypical Hall setup.a) At ν = 2.2, the bulk is compressible

with low µelch (blue) and decoupled from the contacts 1 and 4 by a large incompressible strip.

Such situation is measured by scanning force microscopy: Hall potential stays at high magni-

tude in front of the contact 4 and along the edges, whereas the area more inside the mesa has

lower potential.b) At ν = 2, the bulk is incompressible (white) and the strips with highµelch

moves in direction of the mesa center. Only the high potential is present and probed close to the

contact 4.
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6.1.4. Model for current injecting contacts 2 and 3

For completeness, the figure 6.7 presents the model prediction atν = 3 when contacts 2 and

3 own a difference of electrochemical potential. The borderline of these contacts is oriented

perpendicularly to the [011] direction of the heterostructure, in consequence the present con-

figuration is not sensitive to the decoupling of the innermost incompressible strip in front of

the contact 1 and 4. As observed with the scanning force measurements in our high mobility

sample, the model predicts on one edge of the Hall bar a high potential (red) defined by the elec-

Figure 6.7.: Comparison between model and potential measurements in the setup with current

injected in [011] direction via contact 2 and 3.
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trochemical potential of the contact 2, whereas the potential in the other edge follows the low

electrochemical potential (blue) of the contact 3 (see potential data betweenν = 2 andν = 3

in figure 6.7). Such locally equilibrated distribution of electrochemical potential at the same

mesa edge is usually observed in lower mobility samples [2] since the insulating properties of

the incompressible strips being less efficient, the adiabatic conditions are not fulfilled.
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6.2. Further confirmations of the anisotropy via other

configurations

6.2.1. Comparison of the Hall potential distribution for different

mesa alignments on the heterostructure crystal

In the previous section, we have presented a model in which the incompressible width is as-

sumed to be larger in front of contacts 1 and 4 than in front of contacts 2 and 3. To confirm this

effect of the Hall bar orientation on the transport measurement, the magneto-resistance were

measured with mesa either oriented to [011] or to [01-1] direction of the heterostructure crystal

(see Fig. 6.8). If the model is plotted for these two configurations in the case of the positive and

negative magnetic field, it becomes possible to clarify the measured transport features. Results

are displayed in the figure 6.9 in which the incompressible strips have larger thickness in front

of contacts with borderline perpendicularly to the [01-1] direction than in front of the other

contacts.

Figure 6.8.: Same as Fig. 4.15 showing two-terminal and atypical Hall resistances in Hall bars

oriented by90 ◦ to each other.
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If the length of the Hall bar is aligned in the [011] direction or in the [01-1] direction of the

heterostructure, the atypical Hall magneto-resistance predicted by the model will be different in

positive and in negative magnetic fields as measured in the transport (red and dark blue curves in

Fig. 6.8). For the mesa in the [01-1] direction, the model gives high (red) and intermediate (yel-

low) µ elch at the voltage probing contacts for negative magnetic fields (Fig. 6.9(a)). For positive

magnetic fields, these electrochemical potentials are high (red) and low (blue) (Fig. 6.9(b)). For

Figure 6.9.: Potential distribution for two different orientations of the mesa with respect to the

heterostructure at positive ((b) and (d)) and at negative ((a) and (c)) magnetic fields. The setup

measurement corresponds to the atypical Hall configuration.
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the mesa aligned in the [011] direction, the model gives a low (blue) and intermediate (orange)

µ elch at the voltage probing contacts for negative magnetic fields (Fig. 6.9(c)) versus blue and

red at positive magnetic fields (Fig. 6.9(d)).

Finally, the model predicts similar atypical Hall resistances for the configuration (b) and (d)

in figure 6.9 but different resistances in the case (a) and (c). These results are also observed in

the transport measurements since at positive magnetic field Hall plateaus occur at the expected

filling factors for the two crystal orientations, whereas at the negative magnetic field they are

deviated to lower magnetic field (compared in Fig. 6.8 red and dark blue curves at positive and

at negativeB).

6.2.2. Voltage distribution for six- versus four-terminal Hall bar

The magneto-transport changes between a six- and four-terminal Hall bar (see Fig. 6.10 and

comments in section 4.2.1). The reason is simply pointed out by our model. The presence

of contacts at the two mesa edges in the case of the six-terminal Hall bar modifies the overall

potential distribution compared to the four-terminal situation. The latter case which shows

Figure 6.10.: Magneto-resistances measured at 1.4 K in a six- and a four-terminal Hall bar.
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Figure 6.11.: Electrochemical potential in a four and six-terminal Hall bar atν = 3 andν = 2.5.

a single potential drop has already been treated in the previous section and consequently no

further comments will be done for the configurations (a) and (b) in Fig. 6.11 (they are just

represented here for comparison). In the six-terminal Hall bar atν = 3, the contacts 6 and 3

equilibrate the difference of electrochemical potential between the compressible strips since the

incompressible strips in front of them are thin and own a low insulating properties (Fig. 6.11(c)).

The contacts 2 and 3 (or 5 and 6) have then the same electrochemical potential, and longitudinal

resistances measured with these voltage probes should show zero resistance. Atν = 2.5, the

existence of the contact 6 or 5 introduces a mixing between the bulk and the mesa edge. All the

contacts get different electrochemical potentials and the longitudinal resistances are therefore

not zero anymore. This corresponds to the usual dissipative regime of the IQHE transition.
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6.3. Conclusion

Including adiabatic and anisotropic effects, the model presented in this chapter explains qual-

itatively well our experimental results. The origin of this success can be summarized in the

following way. If the interface line of the metal-2DES contact is perpendicular to [01-1] di-

rection, a relatively wide region of reduced carrier density close to the contact is deduced from

our experiments. Such reduction leads in high magnetic field to a wide incompressible strip

separating electrically the contact and the outer boundary of the 2DES from the bulk region

of the 2DES. Since the resistance for a 2DES in strong magnetic fields is proportional to the

backscattering of the charges across the width of the device, finite resistance is only expected

if both boundaries of the device (upper and lower boundaries) couple to the inner compressible

part of the 2DES. This coupling can be established by contacts with a borderline perpendicu-

lar to [011]. The phenomena is intrinsic and related to the regular electron depletion in front

of contacts. We stress that such depletion is generic and appears for all contacted 2DES. The

phenomena in this work is more pronounced or more sensitive due to the small dimensions of

the Hall bar structures.
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Conclusion and Outlook

The local potential distribution of high mobility 2DES embedded in GaAs-AlGaAs heterostruc-

ture has been measured under quantum Hall conditions. These measurements performed via

cryogenic scanning force microscopy brought information concerning the microscopic expla-

nation of adiabatic transport features. These adiabatic features are the disappearance of peaks

in the Shubnikov-de Haas oscillations, the extension of quantum Hall plateaus to lower mag-

netic fields and the existence of non-local resistances. As for the usual quantum Hall effect, the

present PhD thesis demonstrates that the description based on compressible and incompress-

ible strips is able to explain the magnetotransport results. For instance, the observation of a

huge potential drop only located at one border of the mesa is a direct proof of unusual poten-

tial distributions under adiabatic transport conditions. In the compressible and incompressible

picture, this drop is interpreted as a large difference of electrochemical potential between two

compressible areas separated by an incompressible strip owing good insulating properties. Due

to the high mobility and small size of the Hall bar, such non equilibrium survives along the

complete length of the sample and determines the transport features.

The present PhD work shows that incompressible strips appear in front of alloyed ohmic

contact and that they have different insulating properties depending on the orientation. These

incompressible strips are broader -so more insulating- if they are located close to contact with

an interface perpendicular to the [01-1] direction than if they are in front of contact with an

interface parallel to the [01-1] direction. This finding gives a physical meaning to the term

”non ideal contact” in the case of low resistive and ohmic contacts. The picture corrects and

completes the following statement found in the litterature:

”Thus our theory of edge states suggests a quite satisfactory explanation of ex-

perimental observations of the anomalous QHE with so-called nonideal contacts,

which probe only some edge channels. In the same experiment, the usual ”bulk”

QHE was observed while using standard probes. There is a significant difference in

the physics of ”bulk” and anomalous QHE’s. Quantization of the Hall resistance

in the former case is due to the localization of the bulk electron states. Quantiza-

tion observed with nonideal probes occurs at different values of magnetic field and

is due to the lack of equilibration. This effect is not a macroscopic one (it should

vanish in sufficient long samples) and usually the quantization is not as good as in
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the ”bulk” QHE. While the disorder is crucial for the observation of the bulk effect,

it may destroy the anomalous QHE.”

D.B. Chklovskii, B.I. Shklovskii and L.I. Glazman, Phys. Rev. Lett. 46, p. 4026

(1992)

Finally our results advertise that every 2DES is inhomogeneous. A 2DES is never a flat dis-

tribution of electron but it owns border with gradient of electron density even in front of metal

contacts. Any measurement and complete theory should include the effect of what it is called

by V. Shikin as ”regular inhomogeneities” at the edges of the mesa and in front of contacts [1].

Indeed, such gradient of density determines the insulator properties of the incompressible strips

in high magnetic field and therefore the transport (it might also influence the transport mea-

surement in the case of a zero magnetic field). Explanation of other recent experiments might

need to include this effect of density gradient. For instance, W. Panet al. [2, 3] explained their

transport data with two different electron density areas. It can be that their unintentional vari-

ation of electron density is located near the contacts as in our case. Concerning the crystal

direction anisotropy, M. Lillyet al. [4] found anisotropic behavior in their magneto-transport

measurements in high Landau levels. They interpreted their results due to some anisotropy in

the 2DES bulk . Since their anisotropy has the same dependence on the crystal orientation as

ours, we can wonder if the anisotropy of the regular inhomogeneities in front of contact could

be a possible explanation for the origin of this effect. To conlude this part, the present PhD

work has strongly highlighted the role of the contact interface. Only few articles are published

on this field even though the research community pays tremendous attempts on investigations

of transport through 2DES. The reason is that fabrication of reliable contacts is difficult. There

are still several open questions on this topic which are mandatory for the scientific community,

especially a microscopic understanding of the interface between alloyed contacts and 2DES.

Concerning the cryogenic scanning force microscopy in high magnetic field, the two next

challenges are the potential probing in the fractional quantum Hall effect (FQHE) and at the

breakdown of the quantum Hall effect - i.e. under high current bias or at high temperature. For

the fractional quantum Hall effect, our group is building a similar scanning force system but lo-

cated inside a3He-4He dilution fridge. The limited space of a dilution insert makes the project

a technical challenge. Adiabatic transport was also observed in the FQHE - the understanding

might be based on our results. For the breakdown of the quantum Hall effect, some measure-

ments toward the breakdown were already obtained by E. Ahlswede [5] but the interpretation

of this data was a rather difficult issue. Further investigations are needed and especially close

to the contact where the breakdown is believed to start [6].

Local probe technique is definitely an important tool to provide microscopic picture of trans-

port phenomena. Such measurements should be encouraged. Recently the quantum Hall effect
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has been observed in graphene [7]. Such a single sheet of carbon should facilitate the local

investigations of the QHE since graphen gives a 2DES which is directly electrically accessible.
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[2] W. Pan, J. Xia, H. Sẗormer, and D. Tsui, Phys. Rev. Lett.95, 066808 (2005).

[3] R. Ilan, N. Cooper, and A. Stern, Cond-mat 0601614 (2006).

[4] M. Lilly, K. Cooper, J. Eisenstein, L. Pfeiffer, and K. West, Phys. Rev. Lett.82, 394 (1999).

[5] E. Ahlswede, Potential- und Stromverteilung beim Quantum-Hall-Effekt bestimmt mittels

Rasterkraftmikroskopie, PhD thesis, Max-Planck-Institut für Festk̈orperforschung / Univer-

sity of Stuttgart (2002).

[6] S. Komiyama, Y. Kawaguchi, T. Osada, and Y. Shiraki, Phys. Rev. Lett.77, 558 (1996).

[7] K. Novoselov, E. McCann, S. V. Morozov, V. I. Fal’ko, M. I. Katsnelson, U. Zeitler, D.

Jiang, F. Schedin, and A. K. Geim, Nat. Phys.2, 177 (2006).





A. The CSG electrostatic model

This appendix presents some elements of the Chklovskii, Shklovski, and Glazman (CSG) elec-

trostatic model [1]. It follows the lecture of Prof. R.R. Gerhardts entitledStatic screnning in

low-dimensional electron systems(see also [2]).

Chklovskii, Shklovskii, and Glazman analytically and quantitatively calculate the electron

density and the electrostatic potential of a 2DES defined by split gates. Their electrostatic ap-

proach which includes the non linear screening effect occurring at high magnetic field describes

the 2DES edges with its inhomogeneous electron density. The system is shown in figure A.1(a).

The 2DES is located at a distanceh from the surface at the junction of the AlGaAs layer and

GaAs layer. These layers respectively have a dielectrics constant ofκ< andκ>. The 2DES has

a spatial extension in they direction defined via two gates electrodes at the sample surfacei.

These gates, separated from each other byW � h, are negatively polarized in order to deplete

the 2DES below them. The 2DES densityns(y) is due to some donor charges (“plus” sign in the

draw) which have a constant densityn0. The whole system is neutral and speciallyns(y) = n0

far away from the mesa edge. The determination of the electron density and potential distri-

bution is in principle a 3D problem. The invariance of the 2DES in thex direction and the

assumptionii that all the donor charges and the potential electrodes are located inz = 0 allow to

treat the electrostatic problem as one dimensional (Fig A.1(b)). The screening is also assumed

to be perfect - i.e. there is no gradient of the electrostatic potential energy∇U(y, z) = 0 if the

2DES is present.

The first step is to solve the Laplace equation atz < 0 andz > 0. For this purpose, the

properties of the analytic functionF (y + iz) is used with

U(y, z) = −e · φ(y, z) = ImF(ζ) and ζ = y + iz. (A.1)

The functionsIm F(y + iz) have the advantage to be a class of functions which are solutions

of the Laplace equation∂2
yU(y, z) + ∂2

zU(y, z) = 0 since∂U/∂y = Im dF/dζ and∂U/∂z =

i In their article, Chklovskii, Shklovski and Glazman present the problem in the half-plan of the 2DES. It may

be extended to the complete plan.
ii This assumption is justified by the value of the electrostatic characteristic lengthd ≤ 200 nm which is much

higher than the gate/2DES distance or the donor/2DES distance (in the order of60 nm). This electrostatic

length is characteristic to the electron depletion at the edge.
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Re dF/dζ. The functionF (ζ) is determined by the surface charge and the boundary conditions
U(y, 0) = Ug if y < 0 ,

κ>
∂U

∂z
(y, 0+)− κ<

∂U

∂z
(y, 0−) = 4πe2n0 if 0 < y < d ,

U(y, 0) = 0 if y > d .

These boundary conditions are written in a different way in order to simplify the resolution of

the electrostatic problem. The potential energy is separated in two parts:U = U1 + U2. The

first part includes all the effect of the gates potential whereas the effect of the interface charges

are added in the second part. The boundary conditions becomes
U1(y, 0) = Ug if y < 0 ,

∂U1(y, z)

∂z

∣∣∣∣
z→+0

= 0 if 0 < y < d ,

U1(y, 0) = 0 if y > d .

and


U2(y, 0) = 0 if y < 0 ,

∂U2(y, z)

∂z

∣∣∣∣
z→+0

= r0 if 0 < y < d ,

U2(y, 0) = 0 if y > d ,

with the usual 2D screening lengthr0 = 4πe2n0/(κ< + κ<).

To obtain an analytic solution, CSG assume the perfect screening of the potential by the

2DES -i.e.U(y, 0) = 0 if y > d. After resolution of the electrostatic equation via the analytic

Figure A.1.:a) Schematic of an AlGaAs/GaAs heterostruture.b) CSG model as a 1D system.

c) Draw showing the potential and charge density distribution.
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properties ofF (ζ) (not detailed here), the dependency of the energy potentialU with respect to

y is

U = U1 + U2 =
Ug

π

[
π

2
− arcsin

(
2y

d
− 1

)]
− r0

√
y · (d− y). (A.2)

In the limit wherey → d:

U =

[
2Ug

π
− r0 · d

]√
1− y

d
. (A.3)

The smooth connection of the potential aty = d supposes2Ug/π = r0d with 2πe2n0/κ̃ =

εF/a0, κ̃ = (κ< +κ>)/2 anda0 the screening lengthiii . Such condition determines the value of

the depletion lengthd: d/a0 = 2Ug/πεF .

The electron density profilesns(y) atT = 0 andB = 0 is calculated from the equation

2πe2

κ̃
· [n0 − ns(y)] = Re F′(y + i0+) = r0

(
1−

√
y − d

y

)
. (A.4)

By including the definitionr0 = 4πe2n0/(κ< + κ<), it follows iv for y > d:

ns(y) = n0 ·
√

1− d/y . (A.5)

This electron densityns(y) is the starting point to treat the perturbation effect of high magnetic

field in 2DES. Nevertheless it does not respect the constant electrochemical potential present in

equilibrium condition (see the works of R.R. Gerhardtset al. as [2]).
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iii a0 = κ̃h̄2/2me2 ≈ 5nm for κ̃ = 12.4 as in GaAs.
iv In the CSG notation,ns(y) = n0 ·

√
y′−l
y′+l since the gate is stopped aty′ = −l instead ofy = 0 and the 2DES

starts aty′ = l, not aty = d. To find this form from the equation A.5 ,2l should be replaced byd after

translating the center of they-axis by−l.





B. Methods to measure the
electrostatic potential of 2DES

To extract the 2DES electrostatic potential, several types of methods can be derived from the

analytic formulas of the cantilever dynamics. Following the PhD work of Peter Weitz [1], this

appendix proposes a list of these methods. It will appear that to obtain the Hall potential of

the 2DES without the contribution of the surface charges and buried donors, technique named

calibration method is needed. Such technique used during my Ph-D work is presented in the

chapter 2.

B.1. Direct measurement of the electrostatic force

The first method to probe the 2DES Hall potential consists to measure directly the electrostatic

force. The cantilever is approached to the surface without oscillating - i.e. in a static way.

The derivative terms in the second Newton law of motion are zero. The equation of movement

becomes:k · z = F which means that the electrostatic force may be measured via the cantilever

bendingi. Using the model of the electrostatic force proposed in the section 2.2.6, the motion is

described by

k · z =
1

2

∂Ct,s

∂z
· φ2

2DEG +
∂Qt

∂z
· φ2DEG +

∂Wion

∂z
(B.1)

with φ2DEG = VDC + ∆µch
t,s/e andφtip = 0 (the tip is grounded).VDC corresponds to the DC

voltage applied between the metallic tip and the 2DESii .

iThis bending being controlled by the spring constant of the cantilever, a soft cantilever should be used in order

to get the largest bending from the smallest force.
ii A voltage source which supplies a voltageVDC between two electrodes of different materials defines a differ-

ence in the electrochemical potentialµelch = µch − e · φ. This voltage corresponds to a difference of potential

electrostatic if the two electrodes are from the same material -i.e. if they have the same chemical potential.
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If this equation is rearranged as following,

k · z =
1

2

∂Ct,s

∂z
·
(
φ2

2DEG + 2
∂Qt/∂z

∂Ct,s/∂z
· φ2DEG

)
+
∂Wion

∂z

k · z =
1

2

∂Ct,s

∂z
·

[(
φ2DEG +

∂Qt/∂z

∂Ct,s/∂z

)2

−
(
∂Qt/∂z

∂Ct,s/∂z

)2
]

+
∂Wion

∂z

k · z =
1

2

∂Ct,s

∂z
·
(
VDC + ∆µch

t,s/e+
∂Qt/∂z

∂Ct,s/∂z

)2

− 1

2

(∂Qt/∂z)
2

∂Ct,s/∂z
+
∂Wion

∂z

the bendingz shows a parabolic behavior with respect to the applied voltageVDC . By changing

the DC voltage, the maximum of the curvez versusVDC is reached forVDC = −∆µch
t,s/e −

∂zQt/∂zCt,s. Due to the existence of the term∂Qt/∂z in doped heterostructure, it’s not possible

to access the difference of the chemical potential∆µch
t,s and therefore the 2DES electrostatic

potentialφ2DEG = VDC + ∆µch
t,s/e.

B.2. Differential measurement of the electrostatic force

In other technique, an AC voltage modulation is applied to the 2DES. The voltage modulation

induces a tip oscillation which depends on the 2DES potential. This technique known as Kelvin

probe force microscopy (KPFM) is communally used to evaluate the doping density profiles or

to measure the contact potential difference (CPD). The effect of the electrostatic forceF on the

cantilever tip is expressed by the equation

F = m
d2z

dt2
+ b

dz

dt
+ k · z

The electrostatic force has the following form:

F =
1

2

∂Ct,s

∂z
·
(
VDC + VAC sinwt+ ∆µch

t,s/e
)2

+
∂Qt

∂z
·
(
VDC + VAC sinwt+ ∆µch

t,s/e
)
+
∂Wion

∂z
.

After expending and regrouping, three contributions appears:F = Fstatic + F2w + Fw with

Fstatic =
1

2

∂Ct,s

∂z
· [(VDC + ∆µch

t,s/e)
2 + V 2

AC ] +
∂Q

∂z
· (VDC + ∆µch

t,s/e) +
∂Wion

∂z

Fw =

[
∂Ct,s

∂z
· (VDC + ∆µch

t,s/e) +
∂Qt

∂z

]
· VAC sinwt

F2w = −1

4

∂Ct,s

∂z
· V 2

AC cos 2wt

The term with aw dependency is detected via lock-in detection. If working at the resonance

frequencywr, the amplitude of the oscillations is given by

A =
Q

k
· Fwr =

Q

k
·
[
∂Ct,s

∂z
· (VDC + ∆µch

t,s/e) +
∂Qt

∂z

]
· VAC sinwt .
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From the linear behavior of the amplitudeA versusVDC , it is possible in principle to reach

∆µch
t,s/e (i.e. φ2DEG). In doped heterostructures, this method suffers from the same problem as

the direct measurement of the force: a term coming from theQt charges contributes with the

difference of chemical potential.

B.3. Probing the gradient of the electrostatic force

Another measurement process is to keep the tip oscillate around few tens of nanometer above

the surface and to probe the resonance frequency shift. An inhomogeneous force with differ-

ent values with respect to the distancez induces a resonance frequency shift due to the force

gradient. This effect is illustrated via Taylor series in the case of a smooth force variation:

F (z(t)) = F (z(0)) +
∂ F

∂ z(t)
· [z(t)− z(0)] + . . .

The first term induces a weak correction to the equilibrium position whereas the second term is

view as an effective spring constant. By rewriting the equation:

[z(t)− z(0)] · k0 = F (z(0)) +
∂ F

∂ z(t)
· [z(t)− z(0)]

[z(t)− z(0)] ·
(
k0 −

∂ F

∂ z(t)

)
= F (z(0))

[z(t)− z(0)] · keff = F (z(0))

it follows: keff = k0 − ∂ F/∂ z(t) The resonance frequency is changed fromw2
0 = k/meff to

w2
eff = keff/meff . The shift of the resonance frequency,

∆w = weff − w0

=
−w0

2k0

· ∂ F/∂ z(t)

=
−w0

2k0

·
(

1

2

∂2Ct,s

∂z2
· φ2

2DEG +
∂2Qt

∂z2
· φ2DEG +

∂2Wion

∂z2

)
shows a spatial dependency which is in the second order ofCt,s,Qt andWion.
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C. Hall potential distribution for
voltage excitation and/or magnetic
field sign permutation

The figure C.1 represents a model to illustrate the effect of inverting the voltage polarity and/or

magnetic field orientation on the potential distribution. This model being depicted atν = 3, the

2DES is separated in three incompressible area (white color) and three compressible area (blue

for low electrochemical potential and red for high electrochemical potential). The contacts 2

and 3 are used to induce a current flow by fixing a difference of voltage between them. The

voltage excitation is either applied to the contact 2 in the figures C.1(a) or to the contact 3

in the figures C.1(b). In the first case (a), the compressible strips with the lowµelch (blue)

provided from the contact 3 are located at the upper edge of the mesa and the compressible

strips with highµelch (red) are at the other edge if the magnetic field is perpendicular out of

the page. To reversed magnetic field (i.e. coming in the page), the position of the low and

high electrochemical potential is interchanged due to the opposite direction of the skipping

orbit propagationi. In the second case (b), the distribution ofµelch is reversed in comparison

to the case (a) since the voltage polarity of the contact 2 and 3 have been permuted. Similar

distribution ofµelch (or Hall potential) is therefore obtained if both the voltage polarity and the

magnetic field orientation are changed. It is illustrated in figure C.1 in the case ofν = 3 but it

is still valid for all the filling factors (local Hall potential probing confirms this statement - see

figure C.2).

i The magnetic field determines the direction of the skipping orbit which changes with its sign.
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AND/OR MAGNETIC FIELD SIGN PERMUTATION

Figure C.1.: Model of the electrochemical potential distributionµelch for two voltage polarities

and magnetic field orientations. The voltage excitation is at contact 2 in(a) and at contact 3 in

(b). By exchanging the voltage polarity, the sameµelch distribution is restored if the sign of the

magnetic field is also inverted.
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Figure C.2.: Measured distribution of the Hall potential for two voltage polarities and for pos-

itive and negative magnetic fields. The voltage excitation is at contact 2 in(a) and at contact 3

in (b). By exchanging the voltage polarity, the same Hall voltage distribution results if the sign

of the magnetic field is also inverted.

The figure C.2 containing our potential measurements is organized in the same way as the pre-

vious figure C.1 in order to facilitate the comparison: first, in the case (a), the voltage is applied

to contact 2, then in case (b) the contact 3 performs the voltage excitation. The correspondence

with theµelch distribution as described above is clearly visible. For instance, the Hall potential

distribution for the voltage excitation applied to the contact 2 at negative (positive) magnetic

fields is similar as the situation in which the voltage excitation is performed via the contact 3 at

positive (negative) magnetic fields.





D. Corrections to the Drude
longitudinal resistance

At low magnetic field (few milliTelsa), the longitudinal resistance measured in our high mobil-

ity 2DES presents some magnetic field dependency (see figure D.1). Such deviation from the

Drude formulaσxx = e2nsτ/m
∗ may correspond to three sources of correction:

1. The memory effect[1–4]. By moving and probing the space, the electron remembers

when it comes back to the origin if it had suffered scattering at this point. This classical

effect induces a strong modification of the magnetoresistance which is negative in the case

of short range scattering (like in anti-dots systems) or positive in the case of long range

scattering (like in a smooth random magnetic field). Such classical effect is enhanced by

magnetic field since the skipping orbit increases the back-trajectories. At higher magnetic

field, the Shubnikov-de Haas oscillations destroy it.

2. The weak localization[5]. The weak localization is a quantum interference effect. The

interferences of closed electron trajectory with itself (the Diffusion term) and with its

time reversal trajectory (the Cooperon term) increase the probability to find the electron

at the origin and therefore increase the resistance. Such effect is small (around 3% of

the magnetoresistance) and it is located on a narrow range of magnetic field since the

magnetic field destroys the time reversal symmetry. The weak localization is also very

sensitive to the temperature as all interference phenomena.

3. The electron-electron interaction[5]. The Drude model does not include the inelastic

electron-electron scattering. In the diffusive regime (kBT << h̄τ ), A. Houghtonet al.[6]

and S.M. Girvinet al.[7] extend to strong magnetic field, the electron-electron correction

to the conductivity formula of B.L. Altshuler and A.G. Aronov [5] obtained for zero

magnetic field. Recently, the ballistic case (kBT >> h̄τ ) which concerns high mobility

2DES has been treated by Gornyet al. [8,9]. A negative parabolic magneto-resistance is

found.

In our data presented in the figure D.1, a large peak (20%) is observed around zero magnetic

field. The parameters of the 2DES (see section 4.1.4) corresponding to the ballistic regime,
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we suspect a classical geometric effect such as magnetic focusing at the entrance of the small

contact arms. At larger magnetic field, there is a negative parabolic magnetoresistance which

changes with the temperature.

All the theoretical descriptions consider a homogeneous 2DES. I suspect that the lower den-

sity at the contact interface is the place of a strongest electron-electron interaction. The local

character of a voltage measurement via a voltage probing contact should intensify the relevance

of this gradient of electron density at the contact area. Another electron-electron phenomena

occurring at very high magnetic field is the Wigner crystal (WC) which may be related to similar

border effect by assuming that the WC is formed and probed majoritary near the contact.

Figure D.1.: The longitudinal resistance is measured at different temperatures. Three regimes

exist for different range of magnetic field (see text). This data has been obtained with

Dirk Obergfell and Yvonne Bose.
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E. Description of the tip preparation
and mounting on the setup

This appendix describes how the cantilever tips are prepared and mounted on the measurement

setup.

E.0.1. Tip preparation

The first step of the measurement process is to metallize the silicon piezoresistive cantileveri

since magnetic field has a strong effect on the silicon but few on metal (connected to the ground

potential, the tip is also used as reference potential). This affects the work function difference

and therefore causes an electrostatic force between the metalized tip and the semiconductor

sample. The figure E.1(c) represents the schematic of cantilever-tip packaging with their ce-

ramic holder. The free standing cantilever (Fig E.1(a)) and the static cantilever used as a refer-

ence resistance are integrated in a conductive circuit which forms the Wheatstone bridge. This

circuit inserted in an insulator material (black part in the drawing) is hold by a ceramic plate

which contains two large gold pads. The silicon is asymmetrically doped on one surface of

the cantilever (Fig E.1(b)) to assume a net change of the resistance due to the piezoresistive

effect. The system is then further prepared by us. The tip is metallized in order to contact it

to the ground reference potential. A100 nm thin layer of gold/palladium is evaporated with

an Univex thermal evaporating systemii . To avoid shortcut in the electrical circuit, a thin layer

of polyamide (blue layer in Fig E.1(b-d)) is before brushed over the top part of the aluminum

circuit whereas the bottom part of the circuit is protected by Fixoglue which is removed after

the process. Two thin ceramic plates with a gold layer on the surface are added by gluing them

and serve as a pad for the soldering of the contact wires. Microbonding between the gold pads

and the aluminum circuit is performed (red lines in figure E.1(d)) and contacts are improved by

the adding of a small droplet of silver paste (Fig E.1(d)).

i The cantilevers are bought from Veeco metrology group.
ii This thickness allows to get a homogeneous metallic surface and the palladium avoids the formation of gold

pyramids during the evaporation.
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E.0.2. Tip mounting

After their fabrication, the tip and the sample are mounted on the piezoelectric tube and table

respectively in order to be inserted inside the cryostat. The ceramic plate in which the cantilever

tip is installed are directly screwed to a Macor cube glued at the end of the scanning piezotube.

Three small screws in a triangular geometry guarantee a good mechanical coupling between the

exciter and the cantilever. The electrical connections are done with a conventional soldering

iron.

The sample owning different Hall bar microstructures are glued on a sample holder. The

CrAu contact pads of the Hall bar are then connected to the sample holder via microbonding.

The sample holder is then glued with silver epoxy on the sapphire central tube of the piezotable

which performs thez axis movement. The silver epoxy allows the thermalization between the

piezotable and the sample holder. The piezotable part is screwed to the bottom of the cryostat

insert in the way that the cantilever tip of the detection system is installed above the sample.

Precise positioning of the tip over the Hall bar structure is done with a light microscope. One

millimeter distance between the tip and the sample is kept to safety reason since the thermal

expansion and contraction of the material setup may crash the tip on the surface of the sample

during the cooling process. The head is closed with a vacuum sealing and pump to perform

leakage detection. Few helium gas is added to the chamber to assume a good thermalization via

convection. Finally, the insert is slowly moved inside the VTI of the cryostat and the Helium

circulation is started. After reached1.4 K, the exchange gas in the vacuum chamber is removed

until a pressure of10−2 mbar.
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Figure E.1.:a) Zoom in the freestanding cantilever tip.b) Cut view of the silicon cantilever

system after our metalization preparation. Polyamide layer protects the electrical circuit from

the evaporated AuPd layer.c) Ceramic plate on which the electrical circuit containing the

cantilevers is integrated. Insulating polyamide layer and thin gold layer on ceramic plate are

added. d) Au/Pd thin layer is evaporated in order to connect the tip to the ground potential.

The connections are done by gold microbonding and tin wires. The ceramic plate is hold to the

scanning piezoelectric tube by three screws.





Zusammenfassung

Bei sehr tiefen Temperaturen und hohen Magnetfeldern zeigen zwei-dimensionale Elektronen-

systeme (2DES) den ganzzahligen Quantum-Hall-Effekt. Im Frühjahr 1980 entdeckte Klaus

von Klitzing, dass der Hall-Widerstand - d.h. das Verhältnis zwischen Hall-Spannung und

eingepr̈agtem Strom - quantisierte Werteüber breite Magnetfeldbereiche annimmt. Für diese

wichtige Entdeckung wurde ihm der Nobelpreis für Physik 1985 zuerkannt. Der präzise Wert

für den F̈ullfaktor ν = 1 entspricht der von-Klitzing-KonstanteRK , die alsRK = h/e2 identi-

fiziert wurde. Da die Feinstrukturkonstanteα direkt mit der von-Klitzing-KonstanteRK zusam-

menḧangt, schlug er vor, den Quantum-Hall-Effekt zur genaueren Bestimmung vonα zu be-

nutzen. Unabḧangig davon wird der Quanten-Hall-Effekt wegen seiner hohen Reproduzierbar-

beit und Unabḧangigkeit von der genauen Probengeometrie seit 1990 als internationaler Wider-

standsstandard verwendet.

Mikroskopische Modelle, um dem Quanten-Hall-Effekt zu erklären, wurden sehr kontrovers

diskutiert. In unserer Gruppe konnten P. Weitz und E. Ahlswede mit Hilfe eines Rasterkraft-

mikroskopes die Potentialverteilung in einer Quanten-Hall-Probe basierend auf einer GaAs-

AlGaAs-Heterostruktur mit Erfolg messen. Dieses ortsaufgelöste Bild des Potentials und der

Stromverteilung f̈uhrte zur Entwicklung eines geschlossenes theoretischen Bildes zur Erklärung

des Quanten-Hall-Effekts. An den Rändern eines zweidimensionalen Elektronensystems steigt

in der etwa1µm breiten Verarmungszone die Elektronendichte von Null auf den Wert des

Innern an. Entlang der R̈ander bildet sich eine streifenartige Struktur der Elektronendichte

aus, in der sich die Streifen konstanter Elektronendichte inkompressibel verhalten, diejenigen

variierender Elektronendichte kompressibel. In den kompressiblen Bereichen existieren be-

setzte und unbesetzte Elektronenzustände am Fermi-Niveau, die eine isoenergetische Umbe-

setzung zur elektrischen Abschirmung möglich machen. In den inkompressiblen Bereichen

liegen besetzte Zustände unterhalb der Fermi-Niveaus, unbesetzte oberhalb, sodass dort elek-

trische Felder durch Elektronenumbesetzung nicht abgeschirmt werden können. P. Weitz and

E. Ahlswede entdeckten oberhalb ganzzahliger Landauniveau-Füllfaktoren Abf̈alle der Hall-

Spannung nur an den innersten inkompressiblen Streifen symmetrisch an beiden Rändern. Aus

diesem Umstand konnte geschlossen werden, dass der dissipationfrei Strom in inkompressiblen

Streifen fließt.

In der vorliegenden Arbeit wurde mit dem gleichen Tieftemperatur-Rasterkraftmikroskop

Hall-Potential-Profile in 2DES mit ḧoherer Elektronenbeweglichkeit unter Quanten-Hall-Be-
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dingungen gemessen.Überraschend konnte ich in diesen Proben sogenannte adiabatische Trans-

portpḧanomene beobachten, d.h. zu niedrigen Magnetfeldern verschobene Hall-Plateaus, un-

terdr̈uckte L̈angswidersẗande und das Auftreten von nichtlokalen Magnetowiderständen. Diese

Pḧanomene wurden in der Literatur mit dem Auftreten von einer Nichtgleichgewichtssituation

zwischen Randkan̈alen interpretiert.

Durch systematische Magnetotransport- und rasterkraftmikroskopische Untersuchungen ge-

lang es mir, ein mikroskopische Beschreibung im Rahmen kompressibler und inkompressibler

Streifen zu erhalten. So konnte ich zeigen, dass entlang der einlegierten Metallkontakte eine

elektrostatische Verarmung im 2DES auftritt, die in hohen Magnetfeldern zum Auftreten eines

inkompressiblen Streifen, and damit zu einer Isolation zwischen Rand und Innern des 2DES

führt. Wichtig ist hierbei, dass die Isolationswirkung (wahrscheinlich aufgrund der Breite)

des inkompressiblen Streifens von der Orientierung der Kontakt/2DES-Grenzlinie relativ zur

Kristallorientierung der GaAs/AlGaAs-Heterostruktur abhängt. Erst diese Anisotropie in der

Breite der Streifen erklärt die gemessenen Potentialverteilungen und Magnetotransportmessun-

gen in diversen elektrischen Anordnungen und Hallstruktur-Orientierungen.

Die Arbeit gliedert sich in eine kurze Einführung in zwei-dimensionale Elektronensysteme

und grundlegende Aspekte des Quanten-Hall-Effekts (Kapitel 1) und der Messtechnik (Kapi-

tel 2). Das Kapitel 3 f̈uhrt in den adiabatischen Magnetotransport ein und das vierte Kapitel

präsentiert solche Messungen an meinen Proben. Daran schliesst sich die Darstellung der Po-

tentialmessungen in Kapitel 5 an. Aus diesen wird in Kapitel 6 ein Modell entwickelt, mit

dessen Hilfe auch die Transportmessungen erklärt werden k̈onne.
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Summarize

In this PhD work, the local potential distribution of a high mobility 2DES has been measured un-

der quantum Hall conditions. The 2DES embedded in a GaAs-AlGaAs heterostructure designed

in a small Hall bar geometry shows intrinsic adiabatic transport features. Usually presented

in the literature with the edge state picture, these features are the disappearance of peaks in

the Shubnikov-de Haas oscillations, the extension of quantum Hall plateaus to lower magnetic

fields and the existence of non-local resistances. Our local potential measurements obtained

with a cryogenic scanning force microscope present another microscopic explanation of such

adiabatic transport. The new picture is based on compressible and incompressible strips. An

incompressible strip is a region in which the Fermi energy is located inside the energy gap (the

electron density is constant and the electrostatic potential is changing) whereas a compress-

ible strip occurs if the Fermi energy is pinning inside a Landau level (the electron density is

changing and the electrostatic potential is screening). In previous work, the compressible and

incompressible strips model has been successfully used to describe the quantum Hall effect. The

present work demonstrates that the strips distribution accounts also for the adiabatic transport

features observed on high mobility samples in the quantum Hall regime.

Our research shows that in adiabatic situations, compressible regions with an unusual differ-

ence of electrochemical potential are found to coexist along the same edge due to an insulator-

like incompressible strip in between and due to the lack of impurities scattering. Due to the high

mobility and small size of the Hall bar, such non equilibrium survives along the complete length

of the sample and determines the transport features. The insulator properties of incompressible

strips in front of the alloyed ohmic contacts are found to be anisotropic with a dependency on

the orientation of the contact borderline with respect to the crystal direction. The incompress-

ible strips are broader -so more insulating- if they are located close to contact with an interface

perpendicular to the [01-1] direction than if they are in front of contact with an interface parallel

to the [01-1] direction. This finding gives a physical meaning to the term ”non ideal contact” in

the case of low resistive and ohmic contacts.

Finally our results advertise that every 2DES is inhomogeneous. A 2DES is never a flat

distribution of electron but it owns border with gradient of electron density even in front of

metal contacts. These ”Regular inhomogeneities” at the edges of the mesa and in front of

contacts determines the insulator properties of the incompressible strips in high magnetic field

and therefore the transport.
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