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Abbreviations

ASA atomic sphere approximation
bct body centered tetragonal
bcc body centered cubic
BNT boron nanotube
BS boron sheet
BZ Brillouin zone
CNT carbon nanotube
DFT density functional theory
DFPT density functional perturbation theory
DOS density of states
fcc face centered cubic
FS Fermi surface
GGA generalized gradient approximation
hcp hexagonal closed packed
LDA local density approximation
LMTO linear muffin tin orbital
MT muffin tin
MTO muffin tin orbital
LR linear response
PT perturbation theory
SMTO single muffin tin orbital
TB tight–binding
Tc critical temperature of a superconductor
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Kurzfassung

In dieser Arbeit werden die strukturellen, elektronischen und Schwingungseigen-
schaften der sp-Materialien Bor, Lithium und Aluminium mit Hilfe der Dichtefunk-
tionaltheorie und der Dichtefunktional-Störungstheorie untersucht.

Wir entwickeln eine Theorie zur Beschreibung der Eigenschaften von Bor-
nanoröhrchen, die vor kurzer Zeit erstmalig synthetisiert werden konnten. Unsere
Theorie basiert auf einem Strukturmodell einer einzelnen quasiplanaren Borschicht
(Borlage). Basierend auf den Eigenschaften dieser Borlage zeigen wir einen
neuen Weg auf, der zu einer genauen Kontrolle über die atomare Struktur von
Nanoröhrchen während ihrer Synthese führen könnte. Unsere Ergebnisse legen nahe,
dass dies mit Nanoröhrchen erreicht werden kann, die strukturell abgeleitet sind von
Lagenstrukturen mit anisotropen mechanischen Eigenschaften.

Weiterhin untersuchen wir das Hochdruckverhalten verschiedener Kristallstruk-
turen aus reinem Bor. Im Besonderen betrachten wir Phasen mit geschichteter
atomarer Struktur. Diese bilden eine Familie neuer, hypothetischer Bormaterialien,
die als eine aufgeschichtete Anordnung verschiedener Borlagen verstanden werden
können und metallische Eigenschaften aufweisen. Wir zeigen auf, dass diese Materi-
alien wahrscheinlich bei höherem Druck oder sogar bei Normalbedingungen existieren
und darüber hinaus konventionelle Supraleiter sind. Deshalb haben die geschichteten
Borphasen das Potential, die experimentell beobachtete Hochdruck-Supraleitung zu
erklären.

Weiterhin stellen wir die erste Umsetzung des verallgemeinerten Pseudoatom-
Konzepts von M. A. Ball vor, das wir Enatom nennen. Das Enatom wird mittels
einer Linear-Response-Methode berechnet, und für fcc-Lithium und fcc-Aluminium
bei den Drücken 0, 35 und 50 GPa analysiert. Unter Druck zeigen diese beiden ,,sim-
plen“ Metalle ein unterschiedliches physikalisches Verhalten, welches widerspiegelt,
dass mit ansteigendem Druck der Charakter der Bindungen in Li zunehmend kova-
lenter wird, während dieses in Al jedoch nicht der Fall ist. Diese Ergebnisse zeigen,
dass das Enatom-Konzept ein auf dem Ortsraum basierendes tieferes Verständnis
von Festkörpern, ihrer Schwingungseigenschaften und der Wechselwirkung zwischen
Elektronen und Phononen ermöglichen könnte.
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Abstract

In this thesis density functional theory and density functional perturbation theory are
employed to study structural, electronic, and vibrational properties of sp materials,
in particular boron, lithium, and aluminum.

We develop a theory that describes the properties of the recently discovered boron
nanotubes. Our theory is based on a structure model of a broad boron sheet, being
a single quasiplanar layer of boron. Based on the properties of that boron sheet,
we propose a new route to achieve control over the atomic structure of nanotubes
during their synthesis. Our results show that structure control can be accomplished
by nanotubes which are rolled up from sheets with anisotropic in–plane mechanical
properties.

We further study the high–pressure phase diagram of various bulk structures of
boron. In particular, we investigate layered boron materials, which are a new fam-
ily of hypothetical bulk phases which we regard as stacked arrangement of different
broad boron sheets. These metallic materials are likely to exist at elevated pressures,
or even at ambient conditions, and there are strong indications that they are conven-
tional superconductors. Therefore, layered bulk phases of boron have the potential
to explain the experimentally observed high–pressure superconductivity.

Furthermore, we present the first realization of the generalized pseudoatom con-
cept introduced by Ball, which we call enatom. This enatom is calculated using
numerical linear response methods, and the enatom quantities are analyzed for both
fcc Li and Al at pressures of 0, 35, and 50 GPa. These simple metals show different
physical behaviors under pressure, which reflects the increasing covalency in Li and
its absence in Al. Our results establish a method to construct the enatom, whose po-
tential is to obtain a real–space understanding of solids, their vibrational properties,
and electron–phonon interactions.
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Chapter 1

Introduction

Materials whose valence states consist of s and p electrons only are commonly referred
to as sp materials. Those materials have recently attracted considerable interest in
different fields science. For instance, the discovery of carbon fullerenes [1] and carbon
nanotubes [2], and the existence of stable multilayers or single layers of graphene [3]
have lead to the development new research fields in physics and chemistry. Another
example is the discovery of Tc = 39 K superconductivity in the the simple binary
sp compound MgB2 [4], which was a big surprise for the scientific community and
raised huge interest worldwide. Lithium under high pressure is a further example. At
ambient conditions it is a simple free–electron–like sp metal and a normal conductor.
Under pressure, however, it undergoes several interesting phase transitions [5], and
becomes a superconductor with a pressure dependent Tc reaching up to 20 K at
about 50 GPa [6, 7, 8]. Also elemental boron, a semiconductor at ambient conditions,
transforms to a superconductor under pressure with Tc reaching 11 K at 250 GPa
[9].

In this thesis we present results that are relevant to nanoscience, materials under
high–pressure, superconductivity, and chemistry. We will mainly focus on boron and
study its properties in a general framework. This is exceedingly necessary because
elemental boron is little studied and many fundamental properties such as the phase
diagram, the ground state structure, or its high–pressure behavior are unknown
[10, 11, 12, 13]. Nevertheless, boron is a very fascinating element as it forms bulk
structures of remarkably complexity (three–dimensional networks of B12 icosahedra)
and it has a chemical versatility which is unique among the elements of the periodic
table [14]. This is primarily due to its electron deficient nature [15], i.e., it has four
valence orbitals (one s and three p orbitals) but only three valence electrons. The
usual two–center σ bonds are inefficient to solve the problem of electron deficiency.
Therefore elemental and boron–rich compounds are primarily held together by multi–
center bonds [16, 17, 18], where three or more atomic orbitals belonging to different
atoms combine to give a single lowest–energy state and bond charge is accumulated
around the center of gravity of all atoms involved. The actual bonding in boron
materials is a complex interplay of σ, π, and the dominating multi–center bonds

15
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[18]. However, a proper understanding of the chemical bonding in its bulk structures
going beyond these basic ideas is still lacking.

A surprising development in boron chemistry comes from studies of elemental
clusters, that were found to form sheet–like, quasiplanar structures [19, 20]. In ad-
dition, the first successful synthesis of boron nanotubes was reported [21]. These
discoveries were anticipated by theoretical studies of Boustani and Quandt in the
mid–1990s that culminated in the formulation of a so called Aufbau principle by
Boustani [22]. It is a structural rule that predicts the existence of quasiplanar
(sheets) [23], tubular (nanotubes) [24, 25], convex and spherical (fullerenes) [26]
boron clusters. The Aufbau principle shifted the conventional paradigm that boron
structures are based on B12 icosahedra. However, it is still a very general approach
and the corresponding experimental studies are not very detailed yet. Therefore
questions about the precise atomic structure of boron nanotubes and boron sheets
remain open, and further theories describing their properties are needed.

In this thesis we will try to arrive at a better understanding of these novel nanos-
tructures of boron. We start with the following simple consideration: If we know
that small boron clusters are quasiplanar, we can immediately conclude that boron
nanotubes and boron fullerenes should exist, because a (quasi)planar cluster that is
growing in size tends to remove dangling bonds by forming closed tubular or poly-
hedral modifications. This is completely analogous to carbon, where fullerenes and
nanotubes only grow out of the cluster phase, and are a compromise between the
energy cost for bending the planar carbon cluster, and the energy gain for removing
dangling bonds. As graphene, a broad carbon sheet, is the precursor of carbon nan-
otubes, a broad boron sheet will be the precursor of boron nanotubes. So the missing
link between boron nanotubes and the quasiplanar clusters is a broad boron sheet,
the limiting case of a quasiplanar clusters for an infinite number of atoms. We will
determine the structure and the properties of that broad boron sheet and apply our
findings to the related boron nanotubes in order to predict their basic properties.

The existence of boron nanotubes and the prediction of boron fullerenes might
eventually lead to a new field of research based on boron nanostructures. In some
sense nanoscience (nanotechnology) is a trend opposite to miniaturization. In the
former one tries to build up complex macrostructures and functional units from small
basic elements that are atoms or molecules (bottom-up approach), in the latter one
tries to reduce the size of existing technologies to smaller and smaller sizes (top-down
approach).1 The miniaturization of electronic circuits for example has lead to an ex-
ponential increase in computer power since the 1960s, and the number of transistors
that can be inexpensively placed on an integrated circuit is doubling approximately
every two years (Moore’s ”law” [28]). But this trend will come to an end if the
size of individual transistors (at present around 50 nm) becomes comparable to the

1It is interesting to mention that many ideas of nanoscience go back to Richard Feynman. At the
annual meeting of the American Physical Society on December 29 in 1959, he gave a speech with
the title “There’s Plenty of Room at the Bottom” [27]. With the subtitle “An Invitation to Enter
a New Field of Physics” he asked “Why cannot we write the entire 24 volumes of the Encyclopedia
Brittanica on the head of a pin?”
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atomic size. For future technologies the bottom-up approach of nanoscience obvi-
ously has a large potential. However, its biggest problem is the lack of direct control
over the atomic structure of materials. An example that illustrates the problem of
structure control are carbon nanotubes. Their electronic and mechanical properties
depend strongly on their atomic structure, which is characterized by two parame-
ters: the radius and the chiral angle (chirality) [29]. For the standard synthesis of
carbon nanotubes, one may achieve some control over their radii, but little control
over their chiralities [30, 31, 32], which implies that in general, there is little control
over the properties of the end products of the synthesis. As carbon nanotubes are
either metallic or semiconducting, depending on their radii and chiralities [29], this
poor structure control also implies a poor control over their electronic properties. In
practice, metallic and semiconducting nanotubes are separated by cumbersome trial
and error procedures. Such approaches can hardly be regarded as a “technology”
and there is a strong need for better control over the atomic structure of materi-
als. Our ability to achieve structure control will decide whether nanoscience will
eventually lead to a useful technology. On the atomic scale, however, conventional
industrial techniques are not applicable and entirely new technologies are required.
For that purpose one probably has to rely on chemical or biological self–organization
processes and use specific materials that allow for such processes to actually take
place. Here it would be desirable to link macroscopic quantities that we can control
(e.g. the chemical reaction conditions) to microscopic structural parameters of these
materials (e.g. the radius and chirality of nanotubes). We will illustrate this idea in
more detail in this thesis.

Carbon nanotubes and carbon fullerenes can be related to graphene, which is a
single sheet of graphite. If we consider a broad boron sheet to be the boron analog of
graphene (with respect to their laminar structures), and face that boron nanotubes
exist [21] (and that boron fullerenes were predicted [26, 33, 34]), it is likely that
layered bulk phases similar to graphite may also exist for boron. Such structures
would be quite different from the known bulk phases, that consist of complex three–
dimensional networks of B12 icosahedra. However, the pronounced polymorphism of
elemental boron [35] makes it probable that novel, so far undiscovered phases exist.
If these structures are not stable at ambient conditions, they might be so at high
pressures. We will therefore extend the ideas behind the Boustani Aufbau principle,
which was only developed for elemental clusters, to the bulk domain, and speculate
whether layered bulk phases of boron, a new family of boron bulk materials, may
exist. This is done by constructing layered phases from the broad boron sheet and
by a literature search for boron structures that fall into the class of layered bulk
materials.

In the study of bulk structures, we again note that elemental boron, a semicon-
ductor at ambient conditions, transforms to a superconductor under pressure with
Tc reaching 11 K at 250 GPa [9]. This is interesting with respect to the supercon-
ductivity in MgB2 (Tc = 39 K) [4] and in boron doped diamond (Tc = 4 K) [36].
Although the mechanism driving the superconductivity in boron doped diamond can
be considered as a three dimensional variant of the one in MgB2 [37, 38], the role
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boron plays in the two compounds is quite different and it is not very likely that the
superconductivity in boron under high pressure is based on a similar mechanism.
The biggest problem for explaining the superconductivity in boron is the general
lack of knowledge about its high–pressure phases, and the corresponding crystal
structures are still under debate. Thus the problem of superconductivity merges
with that of studying bulk structures. So far, three different theoretical approaches
were used to determine possible high–pressure phases. One is based on studying the
high–pressure behavior of the common icosahedral bulk structures [39, 40], another
on randomly trying different naive phases such as fcc, bcc, etc. [41, 42, 43], and a
third approach assumes that boron under pressure adopts similar structures than
heavier group-III elements (Al, Ga, In) [44, 45, 46]. We will try a new approach and
study the high–pressure behavior of the layered bulk materials, introduced above.
The latter are constructed from our basic understanding of boron chemistry. We will
test these new phases by determining their thermodynamic stability in comparison
with other bulk phases, and by calculating phonon dispersions to determine their
dynamical stability. Furthermore, we will study the electron–phonon coupling in
the layered structures and see if those effects are responsible for the high–pressure
superconductivity of elemental boron.

The electron–phonon coupling, i.e., the strength of the interactions between elec-
trons and phonons, and the energy dispersion of phonons are commonly calculated
via linear response methods [47, 48, 49]. They provide an efficient way to determine
physical properties of solids that are related to lattices dynamics. However, lin-
ear response methods are usually based on an abstract reciprocal space formulation.
The problem of studying superconductivity in elemental boron under pressure shows
that often a reciprocal space picture of the coupling is not enough. We would like
to have a method that gives a real–space understanding of of a solid, its vibrational
properties, and the electron–phonon interactions. Such a method was proposed in
the 1970s by Ball [50, 51], but never realized in practice. Ball’s method allows
to describe condensed matter as a collection of generalized (pseudo)atoms which
are constructed from the linear response to atomic displacements from equilibrium
positions. Such a pseudoatom, which we will call enatom, consists of a rigid and a de-
formation density (and potential). The rigid part defines a unique decomposition of
the equilibrium density (or potential) into atomic–like but overlapping contributions
that move rigidly, with the nuclear position. The deformation density (potential) de-
scribes how this charge (potential) deforms upon a displacement, and can be viewed
as a backflow. Here, we will provide the first explicit examples of the enatom density
and potential, and study their pressure evolution in lithium and aluminum. At am-
bient pressure both elements are simple free–electron–like sp metals; Li is bcc and a
normal conductor [52], Al is fcc and a superconductor with Tc = 1.2 K [53]. Under
pressure, however, the two systems evolve very differently. The electronic structure
of Al remains that of a free electron-like metal, its superconductivity is suppressed
(with Tc < 0.1 K at 6 GPa [53]), and a structural transition to a hcp phase takes
place only at P > 217 GPa [54]. Li, on the other hand, becomes increasingly co-
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valent,2 it undergoes several phase transitions [5], and becomes a superconductor
with a pressure dependent Tc reaching up to 20 K at about 50 GPa [6, 7, 8]. Lin-
ear response studies have established that such a Tc results from a large increase
of electron–phonon coupling under pressure [55, 56, 57, 58]. We therefore expect
that the enatom of the two systems will display different behaviors under pressure.
Lithium and aluminum thus provide a simple and still interesting starting point for
the study of enatom quantities. Further applications of the enatom method to boron
systems should follow in the future.

All our studies employ density functional theory (DFT) [59, 60] within the frame-
work of the local density approximation (LDA) [60, 61, 62] or the generalized gradient
approximation (GGA) [63, 64, 65]. Experience has shown that these approximations
describe ground state properties (e.g. total energies, charge densities, etc.) quite
well, but they do not correctly describe, for example, orbital energies, band gaps
in semiconductors and insulators, excited states, localized d or f electrons, strong
electronic correlations, or long–ranged interactions as van der Waals forces or interac-
tions via Hydrogen bonds [66, 67]. However, all of those failures are unimportant for
the questions we would like to answer, as the rather delocalized sp electrons are well
described by the LDA or the GGA. DFT provides a parameter–free quantum me-
chanical (first principles) description of materials that allows us to determine many
material properties. This will enable us to study the atomic structure, the band
structure, the chemical bonding, the phase diagram, and mechanical and thermody-
namic properties of the spmaterials in consideration. Phonon energy dispersions and
electron–phonon couplings are calculated via density functional perturbation theory
(linear response) because this approach is a lot more efficient than a direct (frozen–
phonon) DFT calculation [47]. All theoretical methods that are used throughout
this thesis will be described in chapter 2.

In chapter 3 we study broad sheets, nanotubes, and layered bulk phases of ele-
mental boron. After a general introduction to our present knowledge about boron,
we use structural optimization methods to establish a simple model for a broad and
stable boron sheet. We then analyze its properties and show how these results may
be used to predict the structure, stability, electronic and mechanical properties of
boron nanotubes. Our findings will define a consistent picture of boron sheets and
boron nanotubes, which unifies former studies on these materials in the framework
of a generalized theory. Then the high–pressure behavior, the structure, the stabil-
ity, and the electron–phonon coupling of three layered bulk phases are studied. We
show that such structures are likely to exist at elevated pressures or even at ambient
conditions, and that there are strong indications that they could be conventional su-
perconductors. Furthermore, by analyzing the similarities of the chemical bonding
in the common icosahedral and the new layered phases of boron, we were able to
define a generalized picture of the chemical bonding in elemental boron solids.

In chapter 4 we are concerned with the structure control of nanotubular materials.

2In the case of metals we use the term “covalency” in a loose sense to indicate the appearance
of directional bonds.
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We explain why one has very limited control over the structure of carbon nanotubes
during their synthesis. Then we show that novel classes of nanotubes, which are
related to sheets with anisotropic in–plane mechanical properties (e.g. boron nano-
tubes), could overcome those problems. Our results further suggest that extended
searches for nanotubular materials similar to pure boron might allow for one of the
simplest and most direct ways to achieve structure control.

In chapter 5 we provide the first explicit examples of the enatom density and
potential for fcc lithium and fcc aluminum, at pressures of 0, 35, and 50 GPa. We
analyze the relative importance of the rigid and deformation parts of the density and
the potential, and determine the degree of sphericity of the rigid parts. We further
show that the basic features of the spherical part of the rigid density and potential
can be understood by means of linear screening theory, and we find that the lattice
symmetry determines the structure of the deformation parts of an enatom in fcc Al
and fcc Li.

Finally, a summary of all our results and an outlook will be given in chapter 6.



Chapter 2

Theoretical Methods

In this chapter we want to familiarize the reader with the theoretical methods that
underlie this thesis. This includes the quantum mechanical ab initio methods den-
sity functional theory and density functional perturbation theory, the theoretical
description of periodic solids, the used basis sets, and the physical quantities that
are discussed in the subsequent chapters.

2.1 Introduction

The term ab initio means from first principles. Does that mean that the methods
dealt with in this chapter are able to solve the fundamental equations of quantum
mechanics in their most general from? Not really, as this would exceed the available
computing power of current computers significantly. Even ab initio methods use
approximate variants of quantum mechanics and many simplifications. However,
they are used in such a comprehensive way that the theory is free of undetermined
parameters, except the fundamental physical constants. Therefore, the term ab initio
should rather be understood as without free parameters.

2.2 Hamiltonian

The main object of interest is the following fundamental Hamiltonian for a system
of N electrons and Γ nuclei which is able to describe atoms, molecules, and solids.

Ĥ = Ĥ(r,R) = T̂E + T̂N + ŴEE + ŴEN + ŴNN

= −1

2

N
∑

i=1

∇2
i −

1

2

Γ
∑

α=1

∇2
α

Mα
+

N
∑

i<j

1

|ri − rj |
−

N
∑

i=1

Γ
∑

α=1

Zα

|ri − Rα|

+

Γ
∑

α<β

ZαZβ

|Rα − Rβ|
(2.1)
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Here r = {ri} represents the set of all electronic coordinates (Latin indices) and
R = {Rα} the set of all nuclear coordinates (Greek indices). The nabla operators
∇i and ∇α act on the particle positions ri and Rα, respectively. Mα is the mass
and Zα the atomic number of the nucleus with index α. Now and in the following
we will use atomic units where ~ = e = me = 1.

The different terms in Eq. 2.1 have the following physical meaning: T̂E is the
kinetic energy of the electrons, T̂N is the kinetic energy of the nuclei, ŴEE and
ŴNN represent the electrostatic Coulomb repulsion among electrons and nuclei,
respectively and ŴEN stands for the attractive Coulomb interactions between the
negatively charged electrons and the positively charged nuclei.

As Hamiltonian 2.1 is explicitly time–independent it will be treated with time–
independent quantum theory in the following.

2.3 Approximations

As already mentioned in the introduction, the quantum mechanical system defined
by the Hamiltonian 2.1 is much too complicated to be solved directly. Therefore
we will now describe the approximations that are used to simplify the theoretical
treatment.

2.3.1 Adiabatic Approximation

Fundamentals

A fundamental approximation in molecular and solid state physics is the adiabatic
approximation which is also called the Born-Oppenheimer approximation. It is based
in the physically intuitive picture that electrons and nuclei move on different time
scales due to their big difference in mass. One assumes that the fast electronic degrees
of freedom instantaneously follow the movements of the nuclei. In other words, the
relaxation time of the electronic subsystem is considered to be zero and the electrons
are always in their so called instantaneous ground state. For the electrons, on the
other hand, the nuclear positions are fixed.

Based on the small parameter me/Mα it is possible to set up a perturbation series
where in first order the degrees of freedom of electrons and nuclei are decoupled [68].
The wave function is separated into an electronic part ΨE(r,R) and nuclear part
ΨN (R)

Ψ(r,R) = ΨE(r,R)ΨN (R). (2.2)

The electronic Hamiltonian is

ĤE(r,R) = T̂E(r) + ŴEE(r) + ŴEN(r,R) + ŴNN (R). (2.3)

It follows from eliminating T̂N in Ĥ. The corresponding Schrödinger equation reads

ĤE(r,R)ΨE(r,R) = E(R)ΨE(r,R). (2.4)
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Since the nuclei are rigid for the electrons the nuclear positions R in Eq. 2.4 are fixed
parameters. Now, the nuclear Hamiltonian is

ĤN (R) = T̂N (R) + E(R). (2.5)

Here the energy of the electronic system E(R) is the potential for the nuclei.
Therefore it is also called the interatomic potential (alternative names are Born-
Oppenheimer energy surface or energy landscape). This leads to the descriptive
picture of the nuclei moving in a “glue” of electrons. The latter mediates attractive
forces between the former and thus the chemical bonding. The Schrödinger equation
for the nuclei finally is

ĤN(R)ΨN (R) = ǫ ΨN (R). (2.6)

Ionic Subsystem

Atomic Forces For the calculation of atomic forces the quantum mechanical char-
acter of the nuclear Hamiltonian 2.5 is usually neglected and it is treated classically.
Thus the nuclei are considered to be classical point particles moving in the potential
E(R) and the forces on them are

Fα = −∇α E(Rn). (2.7)

Here Rn is a certain rigid configuration of the nuclei. In the Hellmann–Feynman
theorem [69, 70], this expression is evaluated as

FHF
α = −

〈

ΨE

∣

∣

∣
∇αĤE

∣

∣

∣
ΨE

〉

= −
∫

∇αv(r)ρ(r)dr −∇αŴNN , (2.8)

where all nuclei are in the configuration Rn. Here v(r) is the external potential
(defined below in Eq. 2.17), ρ(r) is the electronic ground state charge density (defined
in Eq. 2.19), and the gradients of v(r) and ŴNN are simple analytical expressions.
Thus to obtain Hellmann–Feynman forces, only the knowledge of the ground state
charge density is necessary.

The Hellmann-Feynman theorem requires the basis set, representing the elec-
tronic wave functions, to be complete. Incompleteness can lead to significant errors
in the forces [71]. These problems can be circumvented by using for example the
Andersen force theorem [72, 73] which is relatively insensitive to imprecisions in the
wave functions.

Structural Optimization If the forces acting on the atoms (nuclear positions)
are known, it is possible to move them along their Newtonian trajectories until all
forces are zero such that the atoms occupy their equilibrium positions. This would
be the simplest kind of a structural optimization.
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In a structural optimization one starts from a “guessed” initial configuration of
nuclear positions R1 of a certain system and tries to find its isomers RI where all
atomic forces are zero. The isomers are local minima of the potential E(R), i.e.,
minimizers of the system’s total energy. They are defined as

Fα = −∇α E(RI) = 0, α = 1 . . .Γ. (2.9)

So, formally the problem is to find local minima of the potential E(R). This
is a standard problem of optimization and a number of algorithms are known such
as the method of deepest descents or the conjugate–gradients technique [74]. If the
initial configuration R1 is close to a structural optimum, these methods will reliably
find it. However, if R1 is far from an optimum, none of them can guaranty to find
the “right” global minimum or just an unimportant local minimum. In the latter
case the result will strongly depend on the initial configuration R1 and the method
in use.

Vibrational Properties To study vibrations of molecules and solids the inter-
atomic potential E(R) is expanded in a Taylor series about the nuclear equilibrium
positions RI . This is a reasonable approximation in many cases, since the nuclear
displacements are small compared to the interatomic distances. For that purpose
we define the position of nucleus α as Rα = (Rαx, Rαy, Rαz) = RI

α + uα, where uα

is the Cartesian displacement of nucleus α from its equilibrium position RI
α. With

u = {uα} a second–order Taylor expansion reads

E(RI + u) = E(RI) +

Γ
∑

α=1

uα · ∇αE(RI) +
1

2

Γ
∑

α,β=1

∑

µ,ν=x,y,z

∂2E(RI)

∂Rαµ∂Rβν
uαµuβν

= E(RI) + 0 + Ŵharm (2.10)

The constant zeroth order term is the total energy of the undisplaced system and
defines the zero point of our energy scale. As the nuclei are assumed to be in their
equilibrium positions the first order term vanishes due to Eq. 2.9. The second order
term Ŵharm is called the harmonic term and since higher order terms are neglected
here, the approximation is called the harmonic approximation. If the pair (αµ) is
considered as single index the second order coefficients form a 3Γ× 3Γ matrix which
is called the matrix of interatomic force constants or Hesse matrix/Hessian:

Hαµ,βν =
∂2E(RI)

∂Rαµ∂Rβν
= −∂Fαµ

∂Rβν
(2.11)

HHF
αµ,βν =

∫

∂2v(r)

∂Rαµ∂Rβν
ρ(r)dr +

∫

∂v(r)

∂Rαµ

∂ρ(r)

∂Rβν
dr +

∂2ŴNN

∂Rαµ∂Rβν
(2.12)

Hαµ,βν can be obtained in different ways. One is to transform the derivatives in
definition 2.11 into finite differences and then to calculate the interatomic potential
E(R) or the atomic forces Fαµ for all infinitesimally displaced atomic configurations
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Rβν = RI
βν + uβν . For periodic solids this approach is called a frozen phonon cal-

culation (see Sec. 2.4.2). A different approach is given by Eq. 2.12, that is obtained
by differentiating the Hellmann–Feynman forces (Eq. 2.8) with respect to the nu-
clear coordinates [47]. The derivatives of the external potential v(r) and ŴNN are
again simple analytical expressions. Thus obtaining the Hesse matrix HHF

αµ,βν via
the Hellmann–Feynman theorem requires the knowledge of the ground state charge
density ρ(r) as well as its first derivative ∂ρ(r)/∂Rβν with respect to an atomic dis-
placement. Equation 2.12 is not valid in general because the basis set cannot always
considered to be complete. Especially for atom–centered basis sets (see Sec. 2.5.1)
correction terms due to the change of the basis set upon the atomic displacement
have to be added to Eq. 2.12.

It is now convenient to introduce mass–weighted displacements wα =
(wαx, wαy , wαz) =

√
Mαuα, where Mα is the mass of nucleus α. If the wα are

the dynamical variables, the kinetic energy operator for the nuclei and the harmonic
potential become

T̂N = −1

2

Γ
∑

α=1

∑

µ=x,y,z

(

∂

∂wαµ

)2

(2.13)

Ŵharm =
1

2

Γ
∑

α,β=1

∑

µ,ν=x,y,z

H ′
αµ,βν wαµwβν

with: H ′
αµ,βν =

1
√

MαMβ

Hαµ,βν (2.14)

Using the above expansion in the nuclear Hamiltonian 2.5 and treating it classically
yields a system of 3Γ coupled linear second–order equations of motion. They can be
decoupled with a vibrational ansatz for the (mass–weighted) atomic displacements

wαµ = ǫαµ e
iωt, (2.15)

where the ǫαµ are called polarizations. This finally leads to the eigenvalue problem

H ′ǫj = ω2
j ǫj . (2.16)

Solving it yields j = 1 . . . 3Γ eigenvalues ω2
j and eigenvectors ǫj (polarization vec-

tors1) and ωj is the frequency of the vibrational eigenmode j [75, 68].

Electronic Subsystem

Now and in the following paragraphs we will consider the electronic subsystem, de-
fined by Eqs. 2.3 and 2.4, where the nuclear positions R are merely fixed parameters.
Therefore we will simplify our notation and no longer specify R explicitly. The inter-
atomic potential E(R) will be called the total energy E and the constant term ŴNN

1The polarization vectors ǫj are 3Γ-dimensional vectors.
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in Hamiltonian 2.3 will be omitted for convenience. However, it should be kept in
mind that ŴNN is an important contribution to the total energy.

Now the physical picture of the electronic Hamiltonian 2.3 is that ofN interacting
electrons that move in a fixed electrostatic potential generated by Γ nuclei. This
potential can therefore be considered as an external potential

v(r) = −
Γ
∑

α=1

Zα

|r − Rα|
(2.17)

and Eq. 2.3 can be written in its usual form as

ĤE = T̂E + ÛE + ŴEE

= −1

2

N
∑

i=1

∇2
i +

N
∑

i=1

v(ri) +
N
∑

i<j

1

|ri − rj |
(2.18)

where ÛE is the potential operator and Eq. 2.4 simply becomes ĤEΨE = EΨE. In
the following we will only consider ground state properties and E and ΨE only refer
to the ground state of the system.

2.3.2 Density Functional Theory

The origin of density functional theory (DFT) goes back to Thomas and Fermi
[76, 77] and their idea that the electron density

ρ(r) = N
∑

s

∫

ΨE(r, s;x2; . . . ;xN )Ψ∗
E(r, s;x2; . . . ;xN )dx2 . . . dxN (2.19)

contains the essential information about the electronic system in the ground state.
The variable xi = ri, si represents the spatial ri and spin si degrees of freedom
of particle i, and

∫

dx =
∑

s

∫

dr. Equation 2.19 shows the big advantage of that
approach: The ground state of the system is not described by a complicated function
ΨE that depends on 3N spatial degrees of freedom and the spin components, but by
a function ρ that only depends on the three components of the vector r.

Hohenberg-Kohn Theorem

What started off as a conjecture by Thomas and Fermi could be proven later by
Hohenberg and Kohn [59]. Their theorem states that for every given ρ there is at
most one external potential v for which ρ is the ground state density. In short: The
external potential v(r) is a unique function of the ground state density ρ(r); v =
v[ρ].2 The theorem only holds for densities which are “v–representable”. These are
densities that come from antisymmetric N–electron wave functions that are ground
states of Hamiltonian 2.18 with an external potential v (for proofs see [59, 78, 79, 80]);
this implies that the potential v must be able to bind N electrons.

2Potentials that differ by a trivial constant are assumed to be equal here.
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This formulation of the Hohenberg–Kohn theorem allows the ground state to
be degenerate. So one external potential can lead to different ground states with
different electron densities. In contrast, different external potentials can never lead
to the same density. If a degeneracy of the ground state is excluded, the mapping
between v and ρ is one–to–one (except for a constant) and every external potential
can be associated with a single density.

To illustrate this theorem let us consider that Hamiltonian 2.18 is uniquely de-
fined by the number of electrons N and the external potential v(r). Since, according
to the Hohenberg–Kohn theorem, the potential is a function of the density and N
follows from N =

∫

ρ(r)dr the electron density is sufficient to fully determine the
Hamiltonian of a system.

Even if the ground state is degenerate the energy E is the same for the different
ground states ΨE. Therefore it can be expressed as functional of ρ

E = 〈ΨE |ĤE|ΨE〉 = E[ρ] = U [ρ] + T [ρ] +W [ρ]

= U [ρ] + FHK [ρ], (2.20)

where the functionals U , T , and W represent the external potential, the kinetic
energy, and the electron–electron interactions, respectively. FHK [ρ] = T [ρ]+W [ρ] is
the Hohenberg–Kohn density functional which is only defined for “v–representable”
densities (see above). It is a universal functional that only depends on the number
of electrons N . Unfortunately, its is not known explicitly. The external potential is
contained in U [ρ], whose general form is

U [ρ] = 〈ΨE|ÛE |ΨE〉 =

∫

v(r)ρ(r)dr. (2.21)

Kohn–Sham Method

Since the functional FHK is unknown DFT could not be used in practical calculations
in the very beginning. This situation was changed by Kohn and Sham [60]. They
introduced a non–interacting auxiliary system described by the Hamiltonian

Ĥ0
E = −1

2

N
∑

i=1

∇2
i +

N
∑

i=1

v(ri). (2.22)

It is well known from general quantum mechanics how to deal with non–interacting
systems: The antisymmetric wave function Ψ0

E(x1, . . . , xN ) can be expressed as
Slater determinant Ψ0

E = 1√
N !

det[φ1 . . . φN ] of single particle wave functions

φ1(r1), . . . , φN (rN ) called orbitals. Inserting the Slater determinant to Eq. 2.19 yields
for the electron density

ρ(r) =
occ
∑

i

|φi(r)|2, (2.23)
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where the index i represents a complete set of one–particle quantum numbers (in-
cluding spin) and the summation is over the occupied states only. The orbitals φi

and their energies εi follow from the one–particle Schrödinger equation

ĥ0φi =

(

−1

2
∇2 + v(r)

)

φi = εiφi. (2.24)

Furthermore, for a non–interacting system the Hohenberg–Kohn functional F 0
HK is

known, since it only consists of the kinetic energy

T 0[ρ] =

occ
∑

i

〈φi| −
1

2
∇2|φi〉. (2.25)

Now the actual trick of Kohn and Sham was to implement the functional T 0[ρ],
defined for the interaction–free auxiliary system, into the Hohenberg–Kohn func-
tional FHK of an interacting system the following way:

FHK [ρ] = T [ρ] +W [ρ]

= T 0[ρ] + J [ρ] + Exc[ρ]

with: J [ρ] =
1

2

∫∫

ρ(r)ρ(r′)

|r − r′| drdr
′

Exc[ρ] = T [ρ] +W [ρ] − (T 0[ρ] + J [ρ]) (2.26)

J [ρ] is called the Hartree energy or Coulomb energy and it is known from Hartree–
Fock and Thomas–Fermi theory [79, 78]. It represents the classical electrostatic
repulsion of the electrons. The non–classical interactions are described by the so
called exchange–correlation functional Exc[ρ], which is unknown today and has to
be approximated in practice.

Using functional T 0[ρ] in 2.26 introduces the one–particle orbitals φi to the de-
scription of the interacting system. The orbitals are determined by applying the
Ritz variational principle to the energy functional E[ρ] that is defined in Eqs. 2.20
and 2.26 and the density is given by Eq. 2.23. To ensure the orthonormality of the
orbitals 〈φk|φl〉 = δkl the method of Lagrange multipliers is used:3

δ

δφ∗i

(

E[ρ] −
∑

kl

εkl (〈φk|φl〉 − δkl)

)

= 0. (2.27)

After a unitary transformation that diagonalizes the matrix of Lagrange multipliers

3Furthermore we use δE[ρ]
δφ∗

j
(x)

=
R

dx′ δE[ρ]
δρ(x′)

δρ(x′)
δφ∗

j
(x)

.
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εkl → εi, the orbitals φi and their energies εi are

ĥφi =

(

−1

2
∇2 + veff(r)

)

φi = εiφi

with: veff(r) = v(r) + vH(r) + vxc(r)

vH(r) =

∫

ρ(r′)

|r − r′|dr
′

vxc(r) =
δExc[ρ]

δρ(r)
(2.28)

This is the Kohn–Sham equation, the heart of modern DFT calculations. It is a
non–linear equation since the effective potential veff depends on the charge density
and thus on the orbitals. Therefore it has to be solved self–consistently by iteration.
The total electronic energy is not just the sum of the one–particle energies but

E[ρ] =
occ
∑

i

εi − J [ρ] + Exc[ρ] −
∫

vxc(r)ρ(r)dr. (2.29)

The Kohn-Sham equation 2.28 is equivalent to equation 2.24 for a system of non–
interacting electrons in an external potential v(r) = veff(r). This formal equivalence
is the reason why the wave function of the interacting system can be expressed as
a Slater determinant and the density by Eq. 2.23. In other words, the interacting
system is “mapped” onto an interaction–free auxiliary system. This is done in such
a way that in the ground state the density of the interacting system in the external
potential v(r) is the same as the ground state density of a non–interacting auxiliary
system in the external potential veff(r). So the Kohn-Sham method does actually
not describe the real system of interacting electrons but a system of independent
particles in the auxiliary system. The latter experience the many–body effects only
via the effective potential in an averaged manner. However, the self–consistency
cycle adjusts these particles such that in the ground state their properties are on
the average the same as the ones of the interacting electrons. Therefore, the Kohn–
Sham eigenenergies εi and eigenstates φi (belonging to the particles of the auxiliary
system) do not have a well defined physical meaning. However, they are often used
to estimate the physical one–particle energies and experience has shown that on a
qualitative level a comparison with experiment is indeed possible.

The remaining problem of DFT is to specify the exchange–correlation functional
Exc[ρ]. This is by no means trivial. However, several functionals have been developed
during the last decades. The most common ones belong to the classes of the local
density approximation (LDA) [60, 61, 62] and the generalized gradient approximation
(GGA) [63, 64, 65].

The LDA is related to the Thomas–Fermi theory [76, 77], an early variant of
DFT that provides explicit expressions of density functionals from considering the
homogeneous electron gas. In the LDA the exchange–correlation functional is given
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by

ELDA
xc [ρ] =

∫

exc(ρ(r)) ρ(r)dr, (2.30)

where exc is the exchange–correlation energy per electron of the uniform electron
gas. It can be decomposed into the exchange and correlation energy exc = ex + ec.
The exchange energy is given by ex(ρ) = −Cx ρ1/3, with Cx = 3/4(3/π)1/3 , and
there are no general expression for the correlation energy. For ec one can use, for
example, parameterizations of the correlation energies of the uniform electron gas
determined in quantum Monte Carlo simulations [81, 62]. The approximation is
called local density approximation because the functional depends only upon the
density at the coordinate where the functional is evaluated. Although derived from
the homogeneous electron gas, the LDA gives surprisingly good results for ground
state properties of atoms, molecules, and solids, that have rather inhomogeneous
electron densities. A well known drawback is its tendency to overbind, i.e., the LDA
bond lengths are too small and the binding energies are too big.

A natural way to improve upon the LDA is to take into account the inhomogeneity
of the electron density. In the GGA the exchange–correlation functional does not
only depend on the density but also on the gradient of the density at each point r.
The most general form of the GGA exchange–correlation functional is

EGGA
xc [ρ] =

∫

f(ρ(r),∇ρ(r))dr. (2.31)

A multitude of different realizations of the function f(ρ(r),∇ρ(r)) can be found in
the literature [63, 64, 65]. The GGA significantly improves upon the LDA in many
respects, for example it significantly reduced the above mentioned overbinding.

Experience has shown that both approximations describe ground state properties
(e.g. the total energies E, the charge density ρ(r), etc.) well but do not correctly
describe, for example, one–particle energies, band gaps in semiconductors and in-
sulators, excited states, localized d or f electrons, strong electronic correlations, or
long–ranged interactions as van der Waals forces or interactions via Hydrogen bonds
[66, 67]. However, systems with rather delocalized sp valence electrons, that we are
considering here, are well described by the LDA or the GGA.

2.3.3 Density Functional Perturbation Theory

Perturbation theory (PT) allows to find an approximate solution to a problem which
cannot be solved exactly, by starting from the exact solution of a related problem.
Thus PT allows to calculate physical quantities that are not accessible otherwise.

Sometimes PT is also used to solve a problem more efficiently than alternative
methods could do. This for example is the case in the calculation of vibrational
properties. In Sec. 2.3.1 we described how the Hellmann–Feynman theorem is used
to determine the Hesse matrix (see Eq. 2.12). This approach requires the know-
ledge of the electronic ground state charge density ρ(r) as well as its first derivative
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∂ρ(r)/∂Rβν with respect to an atomic displacement. The former can readily be
obtained from DFT calculations and the latter from density functional perturbation
theory (DFPT), as will be described now.

Let us recall the principles of perturbation theory: We consider an unperturbed
system that is described by the Hamiltonian ĥ(0) and whose ground state φ(0) and
ground state energy ε(0) are known. Now the system is subject to a small perturba-
tion by the potential λ∆v such that ĥ = ĥ(0) + λ∆v, where λ is a small parameter.
Since the perturbation is small we assume that the ground state of ĥ is similar to
φ(0)/ε(0) with some slight corrections. Therefore, the eigenstates φ and energies ε of
ĥ are expressed as a power series in λ: φ =

∑

j λ
jφ(j) and ε =

∑

j λ
jε(j). And the

leading (zeroth order) terms of that power series are φ(0) and ε(0). This ansatz leads
to a set of equations that determine the corrections φ(j)/ε(j) for every order j in λ.
In first order, the changes in the wave function, energy, potential, etc. are linearly
proportional to the magnitude of ∆v. That is why first–order perturbation theory
is also called linear response (LR).

In DFPT the unperturbed system, i.e., the zeroth order, is described by a DFT
Hamiltonian

ĥ(0) = −1

2
∇2 + v

(0)
eff . (2.32)

Its ground state in terms of the orbitals φ
(0)
i and the energies ε

(0)
i is assumed to

be known. The effective potential v
(0)
eff = v(0) + vH(ρ(0)) + vxc(ρ

(0)) is the external
potential v(0), screened by the Hartree and exchange–correlation interactions. The

latter two are explicit functions of the ground state charge density ρ(0) =
∑

i |φ
(0)
i |2.

The perturbing potential ∆v is a correction to v(0)

v = v(0) + λ∆v. (2.33)

So in the spirit of DFT, both are external potentials and are thus subject to screening.
With this in mind we can set up the following first–order perturbation series:

veff = v
(0)
eff + λv

(1)
eff

φi = φ
(0)
i + λφ

(1)
i

εi = ε
(0)
i + λε

(1)
i

ρ = ρ(0) + λρ(1) (2.34)

Inserting this into Eqs. 2.28 and 2.23 leads for the first order in λ:
(

ĥ(0) − ε
(0)
i

)

φ
(1)
i = −

(

v
(1)
eff − ε

(1)
i

)

φ
(0)
i (2.35)

with: v
(1)
eff (r) = ∆v(r) +

∫

ρ(1)(r′)

|r − r′|dr
′ +

∫

δvxc(r)

δρ(r′)
ρ(1)(r′)dr′ (2.36)

and: ρ(1)(r) = 2Re
occ
∑

i

(

φ
(0)
i (x)

)∗
φ

(1)
i (x). (2.37)
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These are the linear response equations. The index i again represents a complete set
of one–particle quantum numbers (including spin) and the summation in Eq. 2.37 is
over the occupied states only. Equation 2.35 is a well–known expression from pertur-
bation theory. In the context of atomic or solid state physics it is called Sternheimer

equation [82]. It determines the first–order change of the Kohn–Sham orbitals φ
(1)
i

and energies ε
(1)
i = 〈φ(0)

i |v(1)
eff |φ(0)

i 〉 due to the screened perturbing potential v
(1)
eff .

Because the linear response of the system depends only on the component of the
perturbation that couple the occupied states with the unoccupied ones [47], Eq. 2.35
is rewritten

(

ĥ(0) − ε
(0)
i

)

φ
(1)
i = −P̂u v

(1)
eff φ

(0)
i

with: P̂u = 1 −
occ
∑

i

|φ(0)
i 〉〈φ(0)

i |. (2.38)

Here P̂u is the projection operator onto the unoccupied–state manifold. Similar to the

unperturbed effective potential v
(0)
eff , its first–order correction v

(1)
eff (Eq. 2.36) contains

a Hartree and an exchange–correlation term that screen the perturbing potential ∆v.
The latter two contributions depend on the first–order change in the charge density
ρ(1). It is defined in Eq. 2.37 as a sum over the occupied states. Here we encounter
the advantage of the DFPT: The linear response of the system due to an external
perturbation can be determined from the knowledge of the occupied states only.
The standard equations of perturbation theory, in turn, involve summations over
unoccupied states which is much more computationally demanding that the present
method.

As the potential v
(1)
eff in Eq. 2.36 depends linearly on ρ(1), and ρ(1) depends linearly

on φ
(1)
i , Eqs. 2.35 to 2.37 can be cast into a generalized linear problem (in contrast to

the Kohn–Sham equations, which are non–linear). Whether this large linear system
is better solved directly (similar to a set of coupled linear equations) or by the self–
consistent solutions of the smaller linear system (Eqs. 2.35 to 2.37) is a matter of
computational strategy [47].

Our original motivation to use DFPT is the calculation of vibrational proper-
ties. In this case the perturbing potential is ∆v = ∂v(0)/∂Rαµ, which is a simple
analytical derivative of the external potential v(0) (defined in Eq. 2.17). Then the
first–order change in the charge density is ∂ρ(0)/∂Rαµ = ρ(1). This quantity and
the unperturbed charge density ρ(0) allow to calculate the Hesse matrix HHF

αµ,βν via
Eq. 2.12 from the Hellman-Feynman theorem, and thus to obtain the vibrational
properties of molecules or solids in the harmonic approximation.

2.4 Periodic Solids

In this thesis density functional theory and density functional perturbation theory
are applied to periodic solids, which are characterized by long–range periodic order.
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This is in contrast to quasi crystalline solids, which are long–range ordered but in
a complicated non–periodic way, or amorphous solids, where long–range order is
absent.

The atomic structure of a periodic solid can be described by a Bravais lattice,
where every unit cell contains one or more basis atoms. A Bravais lattice are all
points R in space with

R = n1a1 + n2a2 + n3a3, ni ∈ Z. (2.39)

The three vectors ai are called primitive vectors. The parallelepiped that is spanned
by them is called primitive unit cell and the vector τα defining the positions of atom
α within the unit cell is called basis vector. Every real space Bravais lattice can be
associated with a dual Bravais lattice of wave vectors called reciprocal lattice

K = m1b1 +m2b2 +m3b3, mj ∈ Z

where: ai · bj = 2πδij . (2.40)

The unit cell of the reciprocal lattice that lies symmetrically around one lattice point
K and contains all points that are closer to K than to any other lattice point is called
first Brillouin zone. For detailed information see [75].

2.4.1 Energy Band Model

The electronic properties of periodic solids are described with the energy band model.
Here we examine the behavior of a system of electrons in a periodic potential

ĥφkn =

(

−1

2
∇2 + veff(r)

)

φkn = εknφkn

with: veff(r) = veff(r + R). (2.41)

The potential veff is called the crystal potential and the lattice vector R is defined
in Eq. 2.39. The crystal potential is generated by the periodic lattice of the nuclei
and also includes the interactions between the electrons as a mean field. Because of
the periodicity of veff , the wave function is

φkn(r) = eik·rukn(r)

with: ukn(r) = ukn(r + R), (2.42)

i.e., φkn is a product of a plane wave and a function ukn that has the periodicity of
the lattice. This is Bloch’s theorem (for proofs see [75]). Equations 2.41 and 2.42
define the energy band model. The energies εkn are called electronic band structure
and the states φkn are called Bloch states, where the band index n and the wave
vector k are quantum numbers.

Using the Bloch state 2.42 in Eq. 2.41 yields a relation that determines the
functions ukn, which obey the periodic boundary condition ukn(r) = ukn(r + R). So
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the Bloch theorem allows to reduce the treatment of an infinite lattice to calculations
of ukn within a single primitive unit cell. Here the wave vector k will merely be a
parameter, and for very k, the periodic boundary condition leads to a set of discrete
energies that are labeled with the band index n. Furthermore, it holds φkn = φ(k+K)n

and εkn = ε(k+K)n [75], where K is a vector of the reciprocal lattice (Eq. 2.40). In
other words, the Bloch states and the band structure are periodic in k. Therefore
the wave vector k can be restricted to within one primitive unit cell of the reciprocal
lattice; this is usually the first Brillouin zone.

Overall, Eq. 2.41 describes a system of independent particles that experience
interactions only via the effective potential veff . It is similar to the non–interacting
auxiliary system in DFT. Therefore the Kohn–Sham equation 2.28 together with the
Bloch relation 2.42 allow to calculate the band structure of a solid.

Band Velocity

The band velocity vkn is defined as the gradient of the band structure εkn with
respect to the wave vector k

vkn = ∇k εkn. (2.43)

It describes the mean velocity of an electron in the state {kn}.

Electronic Density of States

The total electronic density of states of a solid is given by

D(ε) =
∑

kn

δ(ε− εkn). (2.44)

D(ε)dε quantifies the number of electronic states that exist in an energy range of
width dε at the energy ε.

Fermi Energy and Fermi Surface

Since electrons are Fermions, every one–particle state can be occupied by maximally
two electrons of opposite spin. In a solid at absolute zero temperature, all states
starting from the one(s) with the lowest energy up to the Fermi level are occupied.
Therefore the Fermi level or Fermi energy εF is the energy of the highest occupied
electronic state. It is defined by

N = 2

∫ εF

0
D(ε) dε, (2.45)

where N is the number of electrons per primitive unit cell and the factor 2 stems
from spin degeneracy. The Fermi surface is a constant–energy surface in k–space
defined by

εkn = εF. (2.46)



2.4. PERIODIC SOLIDS 35

Brillouin Zone Averages

We are usually considering an infinite solid. In that case the band structure and the
Bloch states are continuous functions in k [75]. And the summation over k–vectors
∑

k in Eq. 2.44 is a short notation for

∑

k

def
=

1

Ω

∫

BZ
dk. (2.47)

Definition 2.47 represents an integral over the first Brillouin zone (or any other prim-
itive unit cell in reciprocal space), normalized by its volume Ω. This is a Brillouin
zone (BZ) average. In this thesis symbolic summation over k–vectors will always
represent a BZ average.

2.4.2 Lattice Vibrations

In Sec. 2.3.1 we described how atomic vibrations are treated in the adiabatic approx-
imation. In a periodic solid the equilibrium position RI

α of an atom is R+τα, where
R is a Bravais lattice vector according to Eq. 2.39 and τα defines the equilibrium
positions of atom α within the unit cell; each unit cell contains Γ atoms (α = 1 . . .Γ).
The position of a displaced atom is then

rα(R) = R + τα + uα(R), (2.48)

and the Cartesian displacement uα(R) of atom α can differ from cell to cell. Now
the Hesse matrix is

Hαµ,βν(Rm,Rn) =
∂2E

∂rαµ(Rm) ∂rβν(Rn)
, (2.49)

where µ, ν = x, y, z are the Cartesian components. Due to the periodicity of the
Bravais lattice, all unit cells are equivalent. Therefore it holds

H(Rm,Rn) = H(Rm − Rn) = H(R). (2.50)

Analogous to Sec. 2.3.1 mass–weighted displacements wα(R) =
√
Mαuα(R) are now

introduced and the kinetic energy and harmonic potential operators become

T̂N = −1

2

∑

R

Γ
∑

α=1

∑

µ=x,y,z

(

∂

∂wαµ(R)

)2

(2.51)

Ŵharm =
1

2

∑

Rm,Rn

Γ
∑

α,β=1

∑

µ,ν=x,y,z

H ′
αµ,βν(Rm − Rn) wαµ(Rm) wβν(Rn)

with: H ′
αµ,βν(R) =

1
√

MαMβ

Hαµ,βν(R). (2.52)
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Inserting these expressions into Hamiltonian 2.5 leads to a set of equations that
couple the movements of the Γ atoms of one unit cell among each other and to the
atoms of all other unit cells. As we are considering an infinite solid the number of
coupled equations is infinite. However, the periodicity of the lattice (Eq. 2.50) can
be used to decouple this system. In the following ansatz for the (mass–weighted)
atomic displacements

wαµ(R) = ǫαµ(q) eiq·R−iω(q)t (2.53)

the dependence of the displacements on the unit cell is represented in the spatial
part of a wave solution and the polarizations ǫαµ and the vibrational frequency ω
depend on the wave vector q. This ansatz leads to an eigenvalue equation (similar
to Eq. 2.16)

D(q)ǫj(q) = ω2
j (q)ǫj(q) (2.54)

for every wave vector q. D(q) is the Fourier transform of the Hesse matrix

Dαµ,βν(q) =
∑

R

e−iq·RH ′
αµ,βν(R) (2.55)

and it is called the dynamical matrix. D is a 3Γ × 3Γ matrix and the polarization
vectors ǫj are 3Γ-dimensional vectors. Solving Eq. 2.54 yields j = 1 . . . 3Γ eigenvalues
ω2

j and eigenvectors ǫj . We find that the wave ansatz 2.53 reduces the infinite number
of equations to 3Γ equations, that have to be solved for every wave vector q. The
dynamical matrix is periodic in reciprocal space and therefore q can be restricted
to within one primitive unit cell of the reciprocal lattice (usually the first Brillouin
zone). Thus q has the same properties as the wave vector k in the energy band
model; they are defined on the same domain.

The function ωj(q) is called phonon dispersion and represents the vibrational
frequency of a eigenmode j with a wave vector q. To obtain ωj(q) we treated
Hamiltonian 2.5 classically. However, a quantum mechanical treatment shows that
the wave solutions according to equation 2.53 can be quantized. The bosonic exci-
tation quanta of these lattice vibrations are called phonons [75, 47, 68].

In the following the phonon dispersion and the polarization vectors will be re-
ferred to as

ωqν = ωj(q)

ǫqν,αµ = [ǫj(q)]αµ (2.56)

where the phonon mode number is j = ν. The matrix of polarizations vectors ǫqν,αµ

represents a transformation from the system of Cartesian coordinates (αµ) to normal
coordinates (qν), which are dynamically independent of one another.
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Phononic Density of States

The phononic density of states is defined analogous to the electronic density of states
(see Eq. 2.44)

F (ω) =
∑

qν

δ(ω − ωqν), (2.57)

where the sum over the wave vector q again represents a Brillouin zone average (see
Sec. 2.4.1).

2.4.3 Electron–Phonon Coupling

Electrons at the Fermi level are sensitive to the time dependence of the lattice vi-
brations. This leads to interactions between electrons and phonons which give rise
to physical phenomena such as electrical and thermal resistivities and superconduc-
tivity.

In Sec. 2.3.3 we treated atomic vibrations as first–order perturbation to the elec-
tronic ground state given by DFT. The perturbing potential was time–independent.
However the interactions of electrons and phonons are time–dependent phenomena
and can be calculated with time–dependent perturbation theory. Its first–order ap-
proximation for a periodic perturbation is the Fermi “golden rule”. Here the central
quantity is the electron–phonon matrix element

gν
(k+q)n′,kn = 〈(k + q)n′|v(1)

eff,qν |kn〉 (2.58)

with: v
(1)
eff,qν =

Γ
∑

α=1

∑

µ=x,y,z

1
√

2Mαωqν

ǫqν,αµ v
(1)
eff,αµ, (2.59)

where v
(1)
eff,αµ is the self–consistent first–order change of the Kohn–Sham potential

(given by Eq. 2.36) due to a perturbation ∆v = ∂v/∂Rαµ, and ǫqν,αµ is the matrix of
polarizations vectors (see Eq. 2.56), and 1/

√

2Mαωqν is called the zero–point phonon
amplitude. Equation 2.59 is a transformation from the Cartesian coordinates of the
displacements to the normal coordinates of the phonon mode (qν) amended by the
zero–point amplitude. The electron–phonon matrix element Eq. 2.58 represents the
transition amplitude for an electron or hole in the band state |kn〉 to be scattered
to the state |(k + q)n′〉 by absorption or emission of a phonon (qν). Its absolute
square is the corresponding transition probability.

This scattering process crucially depends on the density of initial and final states.
If the phonon energies are small compared to the electronic energies it is a good
approximation to assume that only the states at the Fermi level εF contribute to
the electron–phonon interactions. The available phase space for electron or hole
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scattering across the Fermi surface is described by the so called nesting function

χq =
∑

knn′

δ(εkn − εF)δ(ε(k+q)n′ − εF)

=
1

Ω

∑

nn′

∮

L

dLk

|vkn × v(k+q)n′ | . (2.60)

χq can be expressed as closed line integral over the intersections Lk of an undisplaced
FS and one that is displaced by the vector q; vkn is the band velocity defined in
Eq. 2.43. It holds

∑

q χq = [D(εF)]2. From Eq. 2.60 it is further obvious that χq=0

is divergent.

If we now combine the electron–phonon matrix element and the nesting function,
we obtain a quantity βqν that describes how electrons couple to the phonon mode
(qν)

βqν =
∑

knn′

∣

∣

∣
gν
(k+q)n′,kn

∣

∣

∣

2
δ(εkn − εF)δ(ε(k+q)n′ − εF), (2.61)

and that is related to a number of physical quantities that characterize electron–
phonon coupling. The half–width at half–maximum phonon linewidth γqν and the
mode coupling constant λqν are then defined as

γqν = 2π ωqνβqν (2.62)

λqν =
2

D(εF)

βqν

ωqν
. (2.63)

Definition 2.62 is the Fermi “golden rule” [83], and Eq. 2.63 is a phonon mode
decomposition of the electron–phonon coupling constant λ, defined below. As βqν

is inversely proportional to ωqν (see Eq. 2.59, 2.58, and 2.61) it follows that λqν is
inversely proportional to the square of the phonon frequency. So coupling to phonons
with a low–frequency results in a large λqν . The so called Eliashberg spectral function
is defined as

α2F (ω) =
1

D(εF)

∑

qν

βqν δ(ω − ωqν)

=
1

2πD(εF)

∑

qν

γqν

ωqν
δ(ω − ωqν). (2.64)

This function is the central quantity in Midgal–Eliashberg theory [84, 85, 86] that
describes the superconducting state of a solid to high accuracy by field–theoretic
methods. The q–resolved total coupling is obtained by summing over all phonon
modes

λq =
∑

ν

λqν , (2.65)
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and the total electron–phonon coupling constant λ = λtot (also called mass–
enhancement parameter) is the BZ average4 of the λq

λ =
∑

q

λq =
∑

qν

λqν

= 2

∫ ∞

0

α2F (ω)

ω
dω. (2.66)

The second line is an relation between α2F (ω) and λ.

2.4.4 Superconductivity

In some metals the electron–phonon interactions mediate an effective attraction be-
tween electrons at low temperatures. This leads to the formation of bound states of
two electrons – the Cooper pairs. The superconducting state is a macroscopic con-
densate of Cooper pairs and is characterized by exactly zero electrical resistance and
the exclusion of the interior magnetic field (the Meissner effect). The highest tem-
perature at which superconductivity is possible in a certain material (and without
external magnetic fields) is called critical temperature Tc. The pairing mechanism
based on electron–phonon interactions is well understood. If the coupling constant
λ is small the superconducting state can be described with BCS theory, named after
its founders Bardeen, Cooper, and Schrieffer [87, 88]. However, this theory fails if
λ > 0.1 − 0.2 because the electron–phonon interactions are not treated accurately
enough. These problems are overcome in Midgal–Eliashberg theory [84, 85, 86], the
strong–coupling version of the BCS theory. It treats the time–dependent electron–
phonon interactions explicitly and allows to determine the superconducting transi-
tion temperature Tc from the knowledge of the spectral function α2F (ω) (defined
in Eq. 2.64). This involves the solution of two coupled integral equations, which
are called Eliashberg equations [89]. To estimate Tc, however, solving the Eliashberg
equations can often be circumvented as there are approximate equations for Tc that
are based on a few parameters only. For couplings λ < 1 the McMillan equation [90]
provides good estimates for Tc.

Tc =
ωlog

1.2
exp

(

− 1.04(1 + λ)

λ− µ∗(1 + 0.62λ)

)

(2.67)

Here λ is the total electron–phonon coupling constant given by Eq. 2.66, ωlog is a
characteristic frequency defined in Eq. 2.70, and µ∗ is called Coulomb pseudopo-
tential. The latter is an dimensionless empirical parameter of the order 0.1, that
is almost constant for the different materials. It describes the effective Coulomb
repulsion5 felt by the electrons.

4We want to remind the reader that throughout this thesis symbolic summation over k or q

vectors represents BZ averaging (see Sec. 2.4.1).
5In a typical conventional superconductor the Coulomb repulsion between the electrons is signif-

icantly reduced by retardation effects [89].
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The parameter ωlog is a logarithmic moment of the weighting function

g(ω) =
2

λω
α2F (ω), (2.68)

which is normalized to one:
∫∞
0 g(ω)dω = 1. The coupling–weighted phonon mo-

ments are then

ωn =

(
∫ ∞

0
g(ω)ωndω

)
1
n

(2.69)

ωlog = exp

(
∫ ∞

0
g(ω) lnωdω

)

. (2.70)

2.5 Basis Sets

In usual implementations of DFT (and DFPT) the wave functions |φ〉 are expanded
in a basis set {χj} of finite size

|φ〉 =

M
∑

i=1

ci|χi〉. (2.71)

This transforms the Kohn–Sham differential equation (ĥ − ε)|φ〉 = 0 (see Eq. 2.28)
into the matrix equation

(H − εO) · c = 0, (2.72)

where H and O are the Hamiltonian and overlap matrices

Hij = 〈χi|ĥ|χj〉 (2.73)

Oij = 〈χi|χj〉, (2.74)

ε is the eigenenergy, and c = (c1, . . . , cM ) is the vector of the expansion coefficients
ci. Equation 2.72 can be solved numerically with standard methods of linear algebra.
Choosing basis functions that are close to the correct solution, allows to use a small
basis set and reduces the computational costs significantly.

In this thesis two kinds of basis sets were used, which will be introduced now.

2.5.1 Linear Muffin Tin Orbitals

Linear muffin tin orbitals (LMTOs) were developed by O. K. Andersen [91, 92] for
the energy band model (see Sec. 2.4.1) but are not restricted to it. Similar to the
(linear) augmented plain wave method (LAPW/APW) [93, 92] and the method of
Korringa, Kohn, Rostocker (KKR) [94, 95], LMTO is based on the partial wave
approach. Here space is separated into different regions and solutions of Schrödinger
equation in the different regions (the partial waves) are matched at their boundaries.
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Muffin Tin Potential

The muffin tin potential approximation was suggested by Slater [93] in conjuction
with the APW method. It is based on the idea that the primary difference between
the electronic states in an atom and in a solid are the different boundary conditions
and that the corresponding change in the potential is less important. Therefore the
effective one–particle potential veff(r) (the Kohn–Sham potential in Eq. 2.28 or the
crystal potential in Eq. 2.41) is approximated by by a simplified muffin tin (MT)
potential

vMT(r) =

{

v(r) r ≤ S
vMTZ r > S

. (2.75)

For an atom at site R it is spherical symmetric inside an atom–centered sphere of
radius S, called the muffin tin sphere, and has a constant value vMTZ, the muffin
tin zero, between the spheres (the interstitial region). Around the point R we use
spherical coordinates where r = |r− R| and r̂ = (θ, φ) is the angular part of r−R.

A single MT potential is spherical symmetric everywhere in space and therefore
its solutions – let us call them single muffin tin orbitals (SMTOs) – are given by

χSMTO
L (ε, r) = ilYL(r̂)Ψl(ε, r). (2.76)

The angular part is described by spherical harmonics YL(r̂), where the phase factor
il is chosen for convenience, and L = lm represents the quantum numbers of angular
momentum. The radial part Ψl(ε, r) obeys the radial Schrödinger equation6

(

− d2

dr2
+
l(l + 1)

r2
+ v(r) − ε

)

rΨl(ε, r) = 0, (2.77)

and can be found by numerical integration, where it parametrically depends on the
one–particle energy ε. For r > S the potential is constant (vMTZ) and the solutions
of Eq. 2.77,7 called the tail or envelope of the orbital, are spherical Bessel jl and
Neumann functions nl. They describe spherical waves of fixed angular momentum
(quantum number l) with a kinetic energy

κ2 = ε− vMTZ, (2.78)

and κ2 is called the tail energy. Now, for positive tail energies the SMTO is

χSMTO
L (ε, r) = ilYL(r̂)

{

Ψl(ε, r) r ≤ S
κ [nl(κr) − cot(ηl) jl(κr)] r > S

. (2.79)

6In this section we use ~ = 2m = e2/2 = 1, which defines atomic Rydberg units.
7For a constant potential Eq. 2.77 describes the radial part of the Helmholtz equation

(∇2 + κ2)χ(r) = 0.
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For r > S we use a linear combination of jl and nl, because the two are linearly
independent. The prefactor κ (defined in Eq. 2.78) and cot(ηl)

8 are chosen such that
χSMTO

L is continuous and differentiable everywhere in space, i.e., the radial solutions
inside and outside of the MT sphere are matched smoothly at the sphere boundary
r = S. If κ2 is negative, bound states are formed in the MTs and nl has to be
replaced by the spherical Hankel function nl − i jl in Eqs. 2.79 and 2.80.

For a solid the one–particle potential is approximated by a superposition of MT
potentials

veff(r) =
∑

R

vMT(r − R). (2.81)

Now, inside a given MT sphere the radial solution Ψl(ε, r) will overlap with the
tails of the orbitals of neighboring atoms. This effect cannot be represented by the
SMTOs. Furthermore, χSMTO

L can have unbound solutions that are not normaliz-
able. Thus SMTOs are not well suited as basis functions for the electronic structure
problem.

Muffin Tin Orbitals

However, these difficulties can be remedied by adding spherical Bessel function to
the SMTO: χMTO

L = χSMTO
L + κ cot(ηl) jl(κr). A muffin tin orbital (MTO) is then

given by [91]

χMTO
L (ε, r) = ilYL(r̂)

{

Ψl(ε, r) + κ cot(ηl) jl(κr) r ≤ S
κnl(κr) r > S

. (2.82)

The MTO has the desirable properties that it is continuous and differentiable ev-
erywhere in space and normalizable for all values of κ2. Normalization is possible
because the spherical Bessel function jl is regular at the origin, for bigger r it can
compensate the (potentially) divergent part of Ψl(ε, r), and the tail nl is regular for
r → ∞. Furthermore, at a given site R the tail of a neighboring orbital (spheri-
cal Neumann or spherical Hankel function) may be expanded in terms of spherical
Bessel functions jl inside the MT sphere at R. Thus the effect of neighboring atoms
is taken into account when adding jl inside the MT sphere. However, in this way
the MTO is not a solution of the Schrödinger equation inside the MT sphere any-
more. This is only Ψl(ε, r) by virtue of Eq. 2.77. But this property is restored if
the term κ cot(ηl)jl(κr) is exactly canceled out by the sum of the tails of all neigh-
boring atoms. This condition is called tail cancellation and is a central part of the

8

cot(ηl[ε, κ]) =
nl(κr)

jl(κr)
· Dl(ε) − κr n′

l(κr)/nl(κr)

Dl(ε) − κr j′l(κr)/jl(κr)

˛

˛

˛

˛

r=S

with: Dl(ε) =
rΨ′

l(ε, r)

Ψl(ε, r)

˛

˛

˛

˛

r=S

, f ′(r) =
∂f(r)

∂r
(2.80)
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MTO formalism [91]. The tail cancellation equation (not given here, see [96]) is an
alternative to the approach connected to Eq. 2.72.

Because the MTOs depend on the one–particle energies ε the secular equation of
Eq. 2.72

|H(ε) − ε O(ε)| = 0, (2.83)

has a complicated non–linear energy dependence and is hard to solve in practice.

Linear Muffin Tin Orbitals

In order to obtain an efficient method, it would be desirable to construct orbitals
that are energy–independent, i.e., a fixed basis set. To remove the energy depen-
dence of the tails, we now disregard relation 2.78 and consider κ as fixed parameter,
independent of ε. In this way the tails become approximate rather than exact so-
lution of the Schrödinger equation in the interstitials. The energy dependence of
the radial solutions Ψl(ε, r) inside the MT spheres can be expressed as a first–order
Taylor expansion about a fixed energy ενl

Ψl(ε, r) = Ψνl(r) + (ε− ενl) Ψ̇νl(r) + . . .

with: Ψνl(r) = Ψl(ενl, r), Ψ̇νl(r) =
∂Ψl(ε, r)

∂ε

∣

∣

∣

∣

ε=ενl

(2.84)

In other words Ψl(ε, r) is approximated by a linear combination of the energy–
independent function Ψνl(r) and its first energy derivative Ψ̇νl(r). In this way the
wave functions are correct to first order in (ε − ενl) and the energies to (ε − ενl)

3,
due to the variational principle. Ψνl(r) and Ψ̇νl(r) are used to construct a basis for
a particular system, that allows to calculate the states in a certain energy window
around ενl. In practice this window is sufficiently large to span the occupied part of
the valence bands and thus to allow DFT calculations with good accuracy.

To keep the desirable properties of the MTOs (continuity, differentiability, nor-
malizability) we require the LMTOs to have a similar form

χLMTO
L (κ, r) = ilYL(r̂)

{

Ψνl(r) + κ cot(ηl) Jl(κr) r ≤ S
κNl(κr) r > S

, (2.85)

where the spherical Bessel and Neumann functions jl and nl are replaced by aug-
mented spherical Bessel and Neumann functions Jl and Nl. The latter are con-
structed in order to make the LMTO (approximately) energy–independent and or-
thogonal to the core states (such that the eigenvalues of the valence states cannot
erroneously converge to core values). They are

Jl(κr) =

{

−Ψ̇νl(r)/
[

κ ˙cot(ηl[ενl])
]

r ≤ S
jl(κr) r > S

, (2.86)
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NL(κ, r − R) = (2.87)






4π
∑

L′L′′ cLL′L′′ JL′(κ, r − R′) n∗L′′(κ,R − R′)

{

|r− R′| ≤ S
∀ R′ 6= R

nL(κ, r −R) otherwise

with

cLL′L′′ =

∫

YL(r̂)Y ∗
L′(r̂)YL′′(r̂) dr̂ (2.88)

JL(κ, r) = ilYL(r̂)Jl(κr) (2.89)

nL(κ, r) = ilYL(r̂)nl(κr). (2.90)

Equation 2.88 defines the so called Gaunt coefficients cLL′L′′ . For details about the
construction of Jl and Nl see [96].

The LMTO defined above is energy–independent (χ̇LMTO
L (κ, r) = 0) to first order

in (ε− εν). Thus the LMTO secular equation becomes

|H − εO| = 0. (2.91)

The computational cost for solving Eq. 2.91 is orders of magnitude lower than the cost
for solving Eq. 2.83. Furthermore, LMTOs allow to express the electronic structure
problem in terms of a minimal basis set, i.e., one uses only one basis function for
every atomic orbital that is required to describe the free atom. This underlines the
efficiency of the LMTO method and thus its practical importance [92, 97, 96].

In the tight–binding LMTO (TB-LMTO) scheme the long–ranged LMTOs are
transformed (by a unitary transformation) into a tight–binding (TB) representation,
were the orbitals are short–ranged (they vanish beyond second–nearest neighbors)
and Hamilton and overlap integrals have a two–center from. This allows to formulate
a TB theory directly from first principles [98].

Atomic Sphere Approximation

In the atomic sphere approximation (ASA) [99] the volume of the MT spheres is
chosen to be equal to the atomic volume. For closed–packed crystals (e.g. fcc, bcc,
etc.) this leads to a collection of slightly overlapping atomic spheres that are space–
filling. For open structures empty spheres may be introduced in the interstitial region
to simulate a closed–packed system. Because of the absence of an interstitial region
in the ASA, we can conveniently set the tail energy κ2 = 0. This simplifies the
LMTOs because for κ→ 0 the spherical Bessel and Neumann functions are replaced
by their simple asymptotes which are proportional to rl and r−l−1, respectively. The
precision of the ASA can be increased by adding so called combined corrections terms
[100] to the Hamiltonian and overlap matrices.

In this thesis we used the Stuttgart TB-LMTO-ASA program that employs the
TB-LMTO basis set and the ASA.
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Full Potential LMTO

Above we have shown how the MT potential approximation may be used to construct
a fixed basis set of LMTOs tailored individually for each system. However, if accurate
total energies, atomic forces (Eq. 2.7), or interatomic force constants (Eq. 2.11) are
required, the MT potential approximation is not accurate enough and it becomes
necessary to consider the full complexity of the one–particle potential veff(r).

In order to do so the unit cell is divided into non–overlapping MT spheres (that
are at most touching) and the interstitial region, where no empty spheres are used.
The potential and the charge density are expanded in spherical harmonics inside
the MT spheres and in plane waves in the interstitials. Inside the MT spheres the
LMTO basis functions are constructed from the MT potential, which is the spherical
average of the full potential. In order to increase the variational freedom of the wave
functions (and thus to increase the numerical accuracy) the LMTO basis function
are constructed for multiple κ values. Hence the basis set is no longer minimal.

All this is implemented for example in the program Lmtart developed by S. Y.
Savrasov [48].

2.5.2 Plain Waves and Pseudopotentials

Expansion in Plain Waves

If we consider a periodic solid, the wave functions are Bloch states according to
Eq. 2.42. Since the function ukn(r) has the periodicity of the lattice, it can be
represented as discrete Fourier series

ukn(r) =
∑

K

c(k+K)n exp[iK · r], (2.92)

where the vectors K are reciprocal lattice vectors (see Eq. 2.40) and the c(k+K)n are
the expansion coefficients. The Bloch wave function then becomes

φkn(r) =
∑

K

c(k+K)n exp[i(k + K) · r], (2.93)

which is an expansion of φkn(r) in a basis of plane waves. The size of the basis set
is defined by the cutoff energy

1

2
|k + K|2 < Ecutoff . (2.94)

All plane waves with a kinetic energy less than Ecutoff are included in the basis set.
The error induced by the cutoff can be minimized by successively increasing Ecutoff

until the total energy of the system E is converged to the required accuracy. In this
way the basis set can be improved systematically.
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In the basis of plane waves the overlap matrix simply is O(k+K′),(k+K) = δK′,K

and the Hamiltonian matrix becomes

H(k+K′),(k+K) =
〈

exp[i(k + K′) · r]
∣

∣

∣
ĥ(r)

∣

∣

∣
exp[i(k + K) · r]

〉

=
1

2
|k + K|2δK′,K + v(K − K′)

+vH(K − K′) + vxc(K − K′). (2.95)

In H the kinetic energy is diagonal and the external, Hartree, and exchange–
correlation potentials are represented by their Fourier transforms.

Pseudopotentials

In calculations it is practical to split up the basis set into core states and valence
states. All electron levels which are fully occupied with respect to the main quantum
number n, are core states and all partially occupied levels are valence states. If atoms
interact usually only the valence electrons are involved and the core electrons are
inert. Therefore it is an excellent approximation to assume that the core electrons
are the same in isolated atoms, molecules, and solids. This is the so called frozen
core approximation.

A pseudopotential is the sum of the nuclear potential and the (frozen) core states.
And it represents an effective interaction felt by the valence electrons. In this way the
core states are omitted from the basis set and only the valence states are considered
in the actual calculation. This concept was first proposed by Fermi [101].

If plane waves are used as basis set, the pseudopotential approximation is fur-
thermore necessary to keep down the basis set to a manageable size. This is because
the Coulomb potential in v(r) (Eq. 2.17) is divergent at the nuclei, i.e., for r = Rα.
And it causes the valence wave functions to have strong oscillations close to a nu-
cleus, because the kinetic energy increases as the potential tends to minus infinity.
Alternatively it can also be seen as result of the valence states being orthogonal to
the core states, which forces them to have strong oscillations (see [75]). These strong
oscillations have to be represented by high–frequency (high–energy) Fourier compo-
nents in the basis set. This means that a very big cutoff energy and thus a very
big basis set is necessary, which would make calculations computationally expensive.
However, this problem can be overcome by the use of pseudopotentials. Here the
core states screen the nuclear potential such that the divergence is removed, the
oscillations are reduced, and the basis set has a manageable size.

The pseudopotential concept will now be illustrated by the Phillips–Kleinman
construction [102]. Let the core and valence eigenstates of a one–particle Hamiltonian
ĥ0 =

[

−1
2∇2 + v(r)

]

be denoted by |φc〉 and |φv〉, respectively. The indices c and v
each represent the whole set of quantum numbers. We consider the following ansatz
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for |φv〉, known from the method of Orthogonalized Plane Waves (OPW) [103, 75]

|φv〉 = |φps
v 〉 +

∑

c

bcv|φc〉

with: bcv = −〈φc|φps
v 〉. (2.96)

The valence wave function is represented as a sum of a smooth part |φps
v 〉, called the

pseudo wave function, and an oscillating part, resulting from the orthogonalization
of the valence state to the core states: 〈φc|φv〉 = 0. This condition determines
the expansion coefficients bcv. A minor bit of algebra reveals that the pseudo wave
function obeys

(

−1

2
∇2 + v̂ps

)

|φps
v 〉 = εv|φps

v 〉 (2.97)

with: v̂ps = v(r) + v̂nl , v̂nl =
∑

c

(εv − εc)|φc〉〈φc|, (2.98)

where |φc〉〈φc| is the projection operator onto the core states, and εv and εc are the
energies of the valence and core states, respectively. Relation 2.97 is a Schrödinger
equation for the pseudo wave function subject to an effective potential vps – the
pseudopotential. The latter is the sum of the local external potential v(r) in ĥ0 and a
non–local potential v̂nl (see Eq. 2.98). Non–local means that v̂nl does not only depend
on the position r (just like v(r)) but also on other positions that are averaged over
the projection operators. The pseudopotential method has the following properties:
First, it does not alter the valence energy levels, as the pseudo wave function |φps

v 〉 in
Eq. 2.97 has the same energy εv as the valence wave function |φv〉. Second, the pseudo
wave function and the valence wave function differ only close to a core region. At a
certain distance away from the core, specified by the core radius (or cutoff radius)
rc, the core orbitals vanish and |φps

v 〉 and |φv〉 as well as vps and v coincide (see
Eqs. 2.96 and 2.98). Third, since the energy of the valence sates εv is bigger than
the energy of the core states εc, v̂

nl has a positive sign and is thus repulsive. It
can therefore compensate the attraction of the nuclear Coulomb potential in v and
realize the above mentioned screening. Close to a nucleus the pseudopotential vps is
therefore much weaker than the Coulomb potential in v such that the pseudo wave
function |φps

v 〉 is smooth and can easily be expanded in a plane wave basis set. This
construction also explains the remarkable success of the nearly–free electron model
[75] for the description of many metals and semiconductors.

In Eq. 2.98, v̂nl depends on the eigenenergy of the electronic states εv ones wishes
to find. This energy dependence is removed by generalizing the pseudopotentials to

v̂ps = vloc(r) +
∑

lττ ′

Dlττ ′ |βlτ 〉〈βlτ ′ |. (2.99)

Now v̂ps is the pseudopotential of a single ion. It is spherically symmetric and there-
fore parameterized in spherical coordinates (r, θ, φ). vloc(r) is a local potential and
the core projection operators have been replaced by generalized projection operators



48 CHAPTER 2. THEORETICAL METHODS

|βlτ 〉〈βlτ ′ |. There the dependence on the atomic quantum number l and a further
degree of freedom τ are indicated. In practice only one or two projectors are used
in the summation over τ . If only one is used the pseudopotential becomes the one
of Kleinman and Bylander [104]. The potential is said to be separable, i.e., it is split
up into a local part, representing the long–range interactions, and a non–local part
for the short–range interactions. Similar to the core states, the projectors vanish
outside of rc. When these projection operators act on the pseudo wave function, it is
decomposed into components with different angular momentum (quantum number
l). Then each of these l-components “feels” a different non–local potential. Due to
this l–projection, each component can only be orthogonalized to the lower lying core
states of the same angular momentum. That is, the 3s–component of a valence state
can only be orthogonalized to the 2s and 1s states but not to the 2p state. This leads
to problems for elements with 2p, 3d, or 4f valence states because core states of the
same angular momentum do not exist. Thus the respective p, d, and f components
of the pseudopotential are relatively hard and Ecutoff has to be big. However this
problem can be overcome by the use of ultrasoft pseudopotentials, which will be
introduced below.

In practice ab initio pseudopotentials are generated for each element and elec-
tronic reference configuration from suitable parameterizations that are fitted to
atomic all–electron (ae) calculations such that the eigenenergies are correctly re-
produced and the all-electron and pseudo wave functions and potentials coincide for
r > rc. To keep the plane wave cutoff energy Ecutoff low the pseudo wave function
should also be nodeless. Good pseudopotentials are transferable between atomic,
molecular, and solid systems, but they depend on the exchange–correlation func-
tional in use. For good transferability it is necessary that the pseudopotential is
norm–conserving. That means that the pseudo wave function must obey

〈φps
v |φps

v 〉 = 〈φae
v |φae

v 〉. (2.100)

Since the all–electron and the pseudo wave functions are the same for r > rc by
construction, condition 2.100 requires the radial part φps

v (r) to obey for r < rc
∫ rc

0
r2 |φps

v (r)|2 dr =

∫ rc

0
r2 |φae

v (r)|2 dr. (2.101)

This means that in the core region the charge of the all–electron and pseudo wave
functions must be the same for every state v. Norm–conservation automatically leads
to good scattering properties of the pseudopotential, i.e., the two wave functions
coincide not only for the atomic eigenenergies but also for solutions with energies
nearby. This then leads to good transferability.

In Troullier–Martins pseudopotentials [105] not only the norm–conservation is
taken care of but also the smoothness of the pseudo wave function is maximized.
This leads to a further reduction of Ecutoff .

In this thesis ultrasoft pseudopotentials by Vanderbilt were used [106]. Above we
already mentioned that this method allows to generate soft pseudopotentials even
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for the cases of 2p, 3d, and 4f elements, that are usually problematic. Vanderbilt
realized that the condition of norm–conservation requires the pseudopotential to
have a certain hardness. If this constraint is dropped, the potentials can be made
much softer. However, dropping norm–conservation implies that charge density in
the core region is lost. But this “missing” charge density can be taken into account
by redefining the valence charge density to be

ρ(r) =

occ
∑

v

[

|φps
v (r)|2 +

〈

φps
v

∣

∣

∣
K̂nl(r)

∣

∣

∣
φps

v

〉]

. (2.102)

Here the first term is equivalent to Eq. 2.23 and the second term represents the
“missing” valence charge density at the atomic cores and it is called the augmenta-
tion charge. In this way the Vanderbilt pseudopotentials are norm–conserving in a
generalized sense, and it holds

〈φps
v |Ŝ|φps

v 〉 = 〈φae
v |φae

v 〉

with: Ŝ = 1̂ + N̂nl , N̂nl =

∫

K̂nl(r)dr, (2.103)

where Ŝ is the overlap operator. Then the Schrödinger equation for the pseudo wave
function becomes

ĥ|φps
v 〉 = εvŜ|φps

v 〉. (2.104)

Here ĥ is the DFT Hamiltonian as in Eq. 2.28, with the external potential v̂ given
by

v̂(r) =

Γ
∑

α=1

v̂ps(r − Rα), (2.105)

where v̂ps is parameterized as in Eq. 2.99 and the operator K̂nl(r) (in Eqs. 2.102
and 2.103) is expanded in the same set of projection operators as the non–local part
of v̂ps. This formalism significantly reduces the hardness of pseudopotentials and
allows to do plane wave calculations with unprecedented small cutoff energies.

For more information about the pseudopotential method see [107, 108, 109].

2.5.3 Discussion

We will briefly discuss the advantages and drawbacks of the two above described
methods (basis sets) for the studies in this thesis.

The pseudopotential method is based on the frozen–core approximation and
in the actual calculation only the valence states are considered. The latter are
“pseudized” in the core region, i.e. the all–electron and the pseudo wave function
are different. The size of the core region is defined by a fixed core radius rc, that
is chosen to be small enough to produce reliable results for each element at ambi-
ent conditions (at the equilibrium volume), but still big enough to give reasonably
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low plane wave cutoff energies Ecutoff . If such pseudopotentials were used at high
pressures, where the atomic volumes are significantly smaller than the equilibrium
volume, the pseudized core regions would occupy a large percentage of the available
volume and might even overlap. This would certainly lead to highly incorrect results.
Thus at high pressures care must be taken and pseudopotentials with small core radii
rc (and a larger Ecutoff ) should be used. An advantage of the pseudopotential method
is that interatomic forces are easily obtained, making structural optimizations fast
and efficient.

LMTO is an all–electron method that accurately treats both the valence and the
core electrons and is therefore predestined for the study of materials under pressure.
However, the calculation of interatomic forces is relatively expensive in LMTO (at
least in the Lmtart program that we used [48]). This makes structural optimizations
difficult.

Parts of our studies will require structural optimizations to be performed in
materials at high pressures. In these cases we will combine the two methods and do
the basic optimizations with the pseudopotential method and the calculations of the
physical properties with the full potential LMTO method.



Chapter 3

Novel Phases of Elemental

Boron

3.1 Introduction

The picture on elementary boron chemistry has changed significantly during the last
ten years. The conventional paradigm that boron structures are based on B12 icosa-
hedra was shifted by a so called Aufbau principle, formulated by Ihsan Boustani [22].
It is a very general structural rule that predicts the existence of quasiplanar (sheets),
tubular (nanotubes), and spherical (fullerenes) boron clusters. Some of these predic-
tions have already be confirmed, as small quasiplanar clusters and nanotubes were
found in experiments [19, 21]. However, the Aufbau principle is very general and
the experimental studies are not very detailed yet. Therefore questions about the
precise atomic structure of boron nanotubes (BNTs) and boron sheets (BSs) remain
open and theories describing their properties are needed. A general introduction to
elemental boron will be given in Sec. 3.2.

Carbon nanotubes [2] are a structural paradigm for all nanotubular materials
and they can be seen as tubular modifications of graphene, which can be constructed
geometrically by cutting a rectangular piece out of a single graphene sheet and rolling
it up to form a tube. Almost all properties of carbon nanotubes can be derived from
the properties of a single graphene sheet, which means that a profound understanding
of graphite is the key to understand the basic properties of carbon nanotubes. The
same relation holds for broad BSs1 and BNTs: understanding the structure and the
properties of broad BSs will be crucial for our understanding of the basic properties
of BNTs.

At the moment in which we carried out the studies contained in this chapter,
no systematic studies of boron nanotubes and broad BS existed, and different struc-
ture models could be found in the literature. Our findings in sections 3.3 and 3.4,

1We want to point out the distinction between the relatively small quasiplanar clusters that were
found experimentally, and which are strongly influenced by finite size effects, and broad (infinite)
boron sheets where these effects are unimportant. Both are called “boron sheets” in the literature.
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which build on on previous work [110], define a consistent picture of boron sheets
and boron nanotubes, and they unify former studies on these materials into one
generalized theory. Using ab initio structural optimization methods for solid state
systems we could finally discriminate among different structure models for layered
boron compounds and establish a simple model for a broad and stable BS. After a
detailed description of this search process, we will analyze the properties of the most
stable structure model. Then we will show how these results may be used to explain
the structure, the stability, the electronic and mechanical properties of BNTs.

In section 3.5 we will turn our attention to bulk boron systems. The discovery
of high–pressure superconductivity in elemental boron in the year 2001 [9] has put
boron into the focus of experimental and theoretical groups worldwide. So far, the
basic mechanism behind superconductivity is not understood. The main difficulty is
our rudimentarily knowledge about high–pressure phases of boron. As boron tends
to from multiple allotropes it is very likely that further unknown phases exist. We
therefore extended the ideas behind the Boustani Aufbau principle, which was only
developed for elemental clusters, to the bulk domain, and ask whether layered bulk
phases, similar to graphite, may also exist for boron. Our study will try to given an
answer to the following questions: What do such layered bulk structures look like?
What is their stability in comparison to other bulk phases? Are these phases dynam-
ically stable and if so, are they responsible for the high–pressure superconductivity
of elemental boron?

Our results will show that novel metallic bulk phases of boron, different from
the known icosahedral phases, are likely to exist at elevated pressures or even at
ambient conditions, and that there are strong indications that these phases could
be conventional superconductors with considerable high superconducting transition
temperatures.

3.2 Fundamentals and Methods

3.2.1 Boron Chemistry

Boron is the fifth element in the periodic table. The atomic ground state configu-
ration is 1s22s22p1. As the s-p promotion energy is only 3.58 eV (carbon 4.18 eV)
boron favors sp hybridization. Similar to carbon, it forms directed covalent bonds
but it is more flexible in their orientation and bond length. Typical boron-boron
bond lengths are between 1.6 and 1.85 Å, typical coordination numbers are between
4 and 7.

We will see in Sec. 3.2.2 that elemental boron and boron–rich solids form struc-
tures of remarkable complexity. To understand the complex behavior of boron it
is important to note that it falls into the class of the so called electron deficient
elements. These are elements that have more valence orbitals than valence electrons
[15]. In case of pure boron this means that the valence shell of boron has four or-
bitals (s, px, py, pz) but only three electrons. So in the second row of the periodic
table lithium, beryllium, and boron are electron deficient but carbon, the fourth el-
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ement, is not. It has just as many valence electrons as valence orbitals and therefore
it will primarily form directed covalent bonds, with coordination numbers not higher
than four (three in graphite and four in diamond). For electron deficient elements
Pauling postulated three empirical rules [15]:

1. The ligancy2 of an electron deficient atom is higher than the number of valence
electrons and even higher than the number of valence orbitals.

2. Electron deficient atoms cause adjacent atoms to increase their ligancies to
values greater than the orbital number.

3. Typical electron deficient materials are metallic.

Let us illustrate these rules in the case of boron. The first rule is readily checked if we
look at the preferred coordination of boron in its elemental bulk phases in Fig. 3.1(a),
which is six, i.e., higher than the number of valence electrons and higher than the
number of valence orbitals. As mentioned above, boron can occupy a spectrum of
coordination numbers ranging from 4 to 7, but the most stable is always six. To
verify the second rule let us notice that carbon can reach coordination numbers
of five or even six if it is surrounded by electron deficient atoms (like Li or B).
These structures are usually three-dimensional, e.g. CLi6, ortho-C2B10H12, etc. but
there are also planar compounds, as shown theoretically by von Ragué Schleyer et
al. [111, 112]. These findings may be astonishing at first glance but they are in full
agreement with Pauling’s second rule. The third rule seems to be violated for boron,
as all known bulk phases are semiconducting (see Sec. 3.2.2). But, as we will show
in Secs. 3.3, 3.4 and 3.5, modifications related to planar or quasiplanar boron are
always metallic.

In materials where boron is not the dominating atomic species it usually acts as
electron acceptor and forms sp2 or sp3 bonds. An example are the metal diborides of
composition MB2 where, in a local chemical picture, the metal atom (M) transfers its
valence electrons to boron, which then becomes isoelectronic to carbon in graphite
and forms a planar or puckered sp2 honeycomb lattice.

If the boron content of a compound rises further, like in the higher metal borides
MB4, MB6, or MB12, the electron transfer from the metal atoms will be insufficient
to overcome the electron deficiency of all boron atoms if we think in terms of usual
two-center sp bonding, i.e. two atoms sharing two electrons. But an efficient way of
sharing the electrons in that situation are three-center two-electron bonds. A three–
center bond derives from a situation in which three atomic orbitals, each associated
with different atoms, can be combined to give a single lowest energy molecular or-
bital. Two electrons are then shared by three atoms and the bonding is mediated
by charge density that is accumulated in the center of a triangle formed by three
atoms.3 This picture can be generalized for n–center bonding. The associated bonds
are called multi–center bonds [16, 17, 118]. Generally, the bonding in elemental and

2The term ligancy means the coordination number.
3In a two–center bond the charge density is accumulated along a line connecting two atoms.
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phase AB Natom SG LP ρ color

α-rhomb. R-12 12 R3̄m (166) a = 5.064 Å 2.46 red and
α = 58.10◦ [113] translucent

β-rhomb. R-105 106.7 R3̄m (166) a = 10.14 Å 2.33 shiny gray
α = 65.21◦ [114]

α-tetra. T-50 50 P42/nnm (134) a = 8.75 Å 2.31 black
c = 5.06 Å [115]

β-tetra. T-192 189.9 P43 (78) a = 10.14 Å 2.36 red
c = 14.17 Å [116]

Table 3.1: The most common phases of elemental boron and their properties. The
T-50 phase is not generally accepted as real allotrope of pure boron (see text). AB
is a traditional abbreviation according to [35], Natom is the mean number of atoms
per unit cell, SG is the space group, the number in parenthesis is the space group
number according to Ref. [117], and LP are the lattice parameters, and ρ is the
density in g/cm3.

boron-rich materials is a complex “mixture” of two-center and three–center bonds.
Both are of covalent type but three–center bonds are less localized.

In elemental boron and boron–rich materials the boron atoms form three–
dimensional networks of polyhedra (i.e., B12 cubo-octahedra in MB12, octahedra
in MB6, icosahedra in elemental boron) or fragments of polyhedra in which trian-
gular faces prevail4 and which are stabilized by foreign atoms sitting at interstitial
sites. The triangular B-B-B faces are a consequence of three–center bonds, which
are a crucial concept to understand the bonding in these materials.

All elemental bulk modifications are based on a three–dimensional framework of
slightly distorted B12 icosahedra. A regular icosahedron is a polyhedron with 12
vertices, 20 equilateral triangular faces, and 30 edges (see Fig. 3.1(b)). The icosahe-
dra are strongly bound to each other, and an “inverse umbrella” coordination with
a pentagonal pyramid as coordination polyhedron (see Fig. 3.1(a)) is the preferred
atomic coordination within the bulk. Furthermore, any B12 icosahedral network
is always stabilized by the introduction of foreign atoms, even in trace amounts.
They either complete the coordination of boron or provide electrons to stabilize the
electronic structure. Because of this strong affinity of boron to other elements it is
difficult to obtain it in elemental forms.

3.2.2 Elemental Bulk Phases

Elemental boron does not exist in nature. After an extraction from minerals like
borax (Na2B4O7 · 10 H2O or Na2B4O5(OH)4 · 8 H2O) or ulexite (NaCaB5O9 · 8
H2O) it can occur in different forms.

Although glassy and amorphous states of elemental boron were known before, the

4A polyhedron whose faces are only equilateral triangles is called a deltahedron.
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(a) (b) (c)

Figure 3.1: (a) The preferred “inverse umbrella” coordination of boron in bulk phases
[120]. (b) A B12 icosahedron [26]. (c) The crystal structure of α-rhombohedral boron;
the arrow points at the inter-icosahedral bond, indicating that this crystal is not a
molecular solid [121].

Figure 3.2: The unit cell of α-tetragonal boron contains 50 atoms [122].

first crystalline phase was reported in 1943 by Laubengayer et al. [119]. At least 15
further phases were reported until the mid 1970s [35]. But today only three of them
are generally accepted as true polymorphs: the α-rhombohedral, β-rhombohedral,
and β-tetragonal phase. The other presumed modifications are likely to be boron-
rich phases instead of real elemental ones. Table 3.1 lists some of the basic properties
of the most common phases.

The simplest phase is the α-rhombohedral one (R-12), where slightly distorted
boron icosahedra are centered on the vertices of a rhombohedral unit cell (see
Fig.3.1(c)).5 The icosahedra are bound to each other via two and three-center bonds.

The first elemental phase that was reported is α-tetragonal (T-50) boron [119].

5The rhombohedral angle of the R-12 phase is αrh = 58.1◦ (see Tab. 3.1). Note that an angle of
60◦ would be equivalent to a fcc lattice.
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(a) (b)

(c) (d) (e)

Figure 3.3: The structure of β-rhombohedral boron. (a) The distribution of icosa-
hedra on a face of the rhombohedral unit cell [123]. (b) The positions of icosahedra
(big white balls) within the unit cell (not all icosahedra on the faces of the unit cell
are shown). Along the long diagonal (dashed line) a B28-B-B28 arrangement filles
the interstitial. The B28 subunit is formed by three fused icosahedra [124]. (c) A B84

superunit [125]. (d) The B84 units are centered on the vertices of the rhombohedral
unit cell and the interstitial is filled with a B10-B-B10 arrangement [39]. (e) The
connection of neighboring B84 units and neighboring icosahedra along the edge of
the unit cell [126]. In (d) and (e) many internal bonds have been omitted for clarity.

It was also discussed by Linus Pauling is in famous book “The nature of the chemical
bond” [15]. The 50 atoms unit cell is shown in Fig. 3.2. It contains 4 icosahedra
and 2 additional 4-fold coordinates atoms at the corners and center of the unit cell.
The icosahedra are strongly linked to each other via 2-center bonds only. Today
there are strong doubts about the existence of T-50 boron. According to the careful
experimental work of Amberger et al. [127, 128] the B50 crystals reported before
were B50C2 or B50N2, i.e., a boron network stabilized by small amounts of foreign
atoms. This is also in agreement with theoretical calculations [129, 120] that show
that T-50 boron has too few electrons to reach a stable configuration.

As shown in Fig. 3.3(a) the β-rhombohedral modification (R-105) has icosahedra
at the vertices and also half-way between two vertices of the rhombohedral unit
cell. The interstitial space is filled with a B28-B-B28 chain, where the B28 unit is
formed by three fused icosahedra (see Fig. 3.3(b)). The structure of R-105 boron
can alternatively be based on the B84 superunit, shown in Figure 3.3(c). It consists
of a central B12 icosahedron where each of the 12 atoms is radially connected to a B6
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unit via the preferred coordination (see Fig. 3.1(a)): B84 = B12 + 12 B6. The outer
atoms of this arrangement form a bucky ball (fullerene), a polyhedron consisting of
12 pentagons and 20 hexagons,6 whose pentagons are already part of neighboring
icosahedra (see Fig. 3.3(e)). These B84 units are centered on the vertices of the
rhombohedral unit cell (see Fig. 3.3(d)). Now three pentagonal pyramidal B6 units
of the above mentioned interstitial B28 unit are already part of the B84 superunit, and
therefore the interstitial chain is reduced to B10-B-B10 in this second representation.

In β-tetragonal boron (T-192) the icosahedra are arranged in “stacked” linear
chains as shown in Fig. 3.4. This B12-skeleton leaves huge interstitial voids which
are filled with four B21 units (not shown in the figure). They are built from two
icosahedra sharing a common triangular face. In total the unit cell contains eight
B12, four B21 units, and 16 interstitial B sites. All of them are strongly bound to
each other via two-center bonds.

The above phases (except R-12) are characterized by some degree of intrinsic
disorder: in Tab. 3.1 the average number of atoms per unit cell of the β-crystalline
modifications is non-integer. This stems from a few partially occupied atomic sites.
These sites are occupied by boron atoms not in all but only in some unit cells of
the crystal. As shown by Slack et al. [114], the occupancies of these sites depend
only weakly on the preparation method and are indeed intrinsic to the phase. These
partially occupied sites are mainly interstitial atoms that do not belong to the B12-
skeleton of the structures. Electronic structure calculations of the R-105 and T-50
phases using 105 and 50 atoms per unit cell, respectively, show that the structures
are short of electrons to completely fill the conduction band [120]. Thus these phases
are stabilized by electron doping via foreign atoms or partial occupied sites.

General Properties

All known bulk modifications of boron are extremely hard semiconductors. The
Mohs hardness7 of the R-105 modification is 9.3 [132], the one of diamond is 10.
Boron-rich solids are generally among the hardest materials known. The hardness
is probably mediated by the extremely strong three-dimensional framework of B12

icosahedra. All phases have very high melting temperatures (Tm = 2335◦C ± 35◦C
for R-105 boron [10]), a low density (see Tab. 3.1),8 and a small reactivity at room
temperature. Furthermore, due to the big neutron scattering cross section of the
10B isotope, boron is used as neutron absorber in nuclear reactions and in neutron
capture therapy9, an anti–cancer therapy.

6Note that an ideal bucky ball has icosahedral symmetry just like the enclosed icosahedron.
However, the actual structures are less symmetric (space group R3̄m).

7The Mohs scale of mineral hardness characterizes the scratch resistance of various minerals
through the ability of a harder material to scratch a softer material [130, 131].

8Due to its low density and high melting temperature boron is used as thermal protection shield
for spaceships and in nuclear fusion experiments.

9In boron neutron capture therapy the patient is given an infusion that contains boron and which
collects in tumor cells. The patient then receives radiation therapy with neutrons. The tumor cells
are killed by the thermal energy that is released in the nuclear reaction 10B + n → 11B∗ → 7Li +
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(a)

(b)

Figure 3.4: The arrangement of icosahedra within the unit cell of β-tetragonal boron
[116]. (a) shows a xy projection of the unit cell (dashed-lined box) and (b) a per-
spective view. The boron skeleton is an arrangement of parallel chains of B12 units
located in xy planes. Each plane is separated from the other by c/4.
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The thermodynamic properties of boron are highly unknown. Neither there is an
experimentally determined phase diagram nor is the ground state structure known.
This can be attributed to the complicated polymorphism of boron and the difficulties
in preparing pure boron. It is experimentally known that R-12 boron is thermally
unstable above 1200◦C and that above 1500◦C R-105 is stable up to the melting
point Tm. Between 1000 and 1500◦C different crystalline forms can be grown.

In a series of theoretical papers Masago, Shirai, and Katayama-Yoshida [124,
133, 134, 10] studied the relative stability of α- and β-rhombohedral boron. They
considered the effects of disorder in R-105 boron, phonons, and thermal volume
expansion and found that α-boron is the thermodynamically stable phase at low
temperatures and high-pressures. Very recently, van Setten et al. [135] and Widom
et al. [136] theoretically refined the crystal structure of R-105. They employed the
structural degrees of freedom that are connected with the partially occupied sites.
Their “improved” R-105 phases are lower in free energy than R-12 and appear to be
the thermodynamical ground state at low temperatures and ambient pressure. The
contradictory results of the different authors show that there is demand for further
studies.

It is theoretically and experimentally established that R-12 is stiffer than R-105
(the bulk modulus is slightly bigger, i.e., ∼ 220 GPa for R-12 and ∼ 200 GPa for
R-105). This can be explained [124] by the fact that R-12 is denser than R-105
(see Table 3.1). The high density of R-12 also explains why it appears to be stable
at high pressure. It that sense R-12 boron can be called mechanically stable, while
R-105 is thermodynamically stable [134].

In α-rhombohedral boron (and also in the other phases) the bonds within the
icosahedra (intraicosahedral) are longer than the ones between them (intericosahe-
dral); 1.75-1.80 Å vs. 1.67 Å, respectively [113].10 The question, which of these
bonds is the stronger one, is a long lasting debate among boron researchers. Follow-
ing a general rule of chemistry, the intericosahedral bonds should be stronger because
they are shorter. Intuitively one would further expect the intraicosahedral bonds,
which are mainly of three-center character, to be weaker than the intericosahedral
ones, which are common σ bonds of two-center character. Thus R-12 boron seems
to have stronger bonds between the icosahedral units than within them. Therefore
R-12 boron was entitled an inverted-molecular solid [137]. This picture is probably
right, as shown recently by works of Nelmes et al. [138] and Shirai et al. [124], but
it is also contested by Fujimori et al. [121] and Lazzari et al. [139].

Due to the slight distortion of the icosahedra, and the resulting spectrum of in-
traicosahedral bond lengths, the charge density within an icosahedron is distributed
asymmetrically. Garcia and Cohen have attributed the existence of ionicity to asym-
metries of the charge density distribution [140]. According to He et al. [141] this
viewpoint is indeed true for α-rhombohedral boron, which is the first material where
ionicity is found in chemical bonds between atoms of the same type.

4He.
10In this discussion we exclude the intericosahedral three-center bonds in α-rhombohedral boron.
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(a) (b)

Figure 3.5: The two building blocks of the Aufbau principle: (a) the pentagonal B6

pyramid, and (b) the hexagonal B7 pyramid [22].

Eremets et al. [9] performed electrical conductivity measurements under pressures
up to 250 GPa and discovered that R-105 boron transforms from a nonmetal to a
superconductor at P = 160 GPa, with Tc = 5 K at 175 GPa and 11.2 K at 250 GPa.
They also observed steps in the conductivity at 30, 110, and 170 GPa, possibly
indicating phase transitions (or measurement problems). The superconductivity is
not theoretically understood, so far. This is primarily due to almost unknown high-
pressure behavior of boron.

3.2.3 Clusters, Nanostructures, and the Aufbau Principle

Until the mid–1990s elemental boron was thought of only in terms of the icosahedral
bulk structures. Although the chemistry of boron was known to be complicated, little
attention had been payed on pure boron materials and very little was known about
boron clusters. This situation was changed by Boustani et al. Inspired by the work
of Andersen et al. [142, 143], who experimentally studied small boron clusters, they
started in 1994 [144] to systematically study boron structures, beginning from the
smallest cluster up to an infinite number of boron atoms [145, 146]. This theoretical
work led to the development of a so called Aufbau principle [22] – an empirical rule
that predicts the morphology of stable boron clusters.

The Aufbau Principle

The Aufbau principle states that stable boron clusters can be constructed from two
basic units only: a pentagonal pyramidal B6 and a hexagonal pyramidal B7 unit,
which are allowed to interpenetrate. These units are shown in Fig. 3.5.

Combinations of these elements lead to four topological classes of stable boron
clusters: quasiplanar [23], tubular [24, 25], convex and spherical [26, 33]. Further-
more, a quasicrystalline modification based on α-rhombohedral boron was predicted
by studying elliptical clusters in Ref. [147, 148]. Quasiplanar, convex, and tubular
clusters are formed by combinations of hexagonal pyramidal B7 units, as illustrated
in Fig. 3.6. Combinations of B6 and B7 elements lead to convex and spherical clus-
ters (boron fullerenes), as shown in Fig. 3.7.11 Usually, those structures are not
atomically smooth, but their surfaces are puckered (dimpled).

11Closed tubular and spherical boron hydride (borane) clusters were independently studied also
by Lipscomb et al. [149, 150, 151, 152], Jemmis et al. [153], and others [154]. But none of them
considered elemental boron.



3.2. FUNDAMENTALS AND METHODS 61

Figure 3.6: The Aufbau principle employing only B7 units generates (left) quasipla-
nar and (right) convex layers that eventually form nanotubes [22].

(a) B12 (b) B32 (c) B42 (d) B92

Figure 3.7: Spherical boron clusters [26, 33].
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At the time of their prediction none of these structures were known in nature.
Nevertheless, extensive numerical studies of many groups (see [155] and references
therein) supported the findings of Boustani et al. In 2003 and 2004 the existence
of quasiplanar boron clusters [19] and boron nanotubes [21] was experimentally
confirmed. Beyond that new materials in the form of boron nanorods/nanowires
[156, 157, 158], nanobelts/nanoribbons [159, 160] were found by experiment, thus
opening the gates for a new field of boron based nanomaterials.

Chemistry and Stability

The basic chemistry behind the Aufbau principle is in full agreement with the general
discussion in Sec. 3.2.1. The B6 unit is a simple realization of the preferred bulk
coordination, shown in Fig. 3.1(a). The Aufbau principle itself is a realization of the
chemical observation that boron-boron bonds are primarily of three-center character,
forming B-B-B triangles, and that the coordination number ideally lies between five
and seven.

The B12 cluster in Fig. 3.7(a) is built from 12 inter-penetrating pentagonal pyra-
midal B6 units. It fulfills the Aufbau principle and therefore all icosahedral bulk
structures do so. But it is known since a long time that a neutral B12 cluster alone
is unstable [129, 17]; in the bulk however the B12 units are stabilized by intericosa-
hedral bonds. For small boron clusters (including B12) it turns out that quasiplanar
morphologies are the most stable configurations [22, 26]. The cluster electrons can be
divided into the ones that mediate the in-plane bonding of the cluster skeleton, and
delocalized π-electrons that stabilize the quasiplanar shape [23].12 Chemists showed
that the concept of aromaticity can be applied to these clusters which explains their
unusual stability [161, 19, 162, 155].

From the knowledge that small boron clusters are quasiplanar one can immedi-
ately conclude that boron nanotubes and boron fullerenes should exist, because a
growing quasiplanar boron cluster tends to remove dangling bonds by forming closed
tubular or polyhedral modifications. This is completely analogous to carbon, where
fullerenes and nanotubes only grow out of the cluster phase and are a compromise
between the energy cost for bending the planar cluster and the energy gain for re-
moving dangling bonds. Therefore, with growing cluster size tubular and spherical
clusters will become more stable than quasiplanar ones. And indeed, Kiran et al. [20]
reported the B20 cluster to be the planar-to-tubular transition point, and Szwacki et
al. [33] theoretically determined the B80 cluster to be the smallest spherical cluster
(boron fullerene).

This shows that the picture on elementary boron chemistry has changed signif-
icantly during the last ten years. The conventional paradigm that boron structures
are based on B12 icosahedra was expanded by the Aufbau principle. And an inter-

12In fact, the main difference between the much-studied boron hydrides (boranes) and elemental
boron clusters is the occurrence of delocalized π-electrons. In boranes these electrons are “pinned” by
the terminating hydrogen bonds leading to the preference of polyhedral (deltahedral) morphologies
instead of (quasi)planar ones.
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esting new field of research ranging from cluster chemistry, nanoscience, solid state
physics to basic research on superconductivity has emerged and is going to expand
further.

3.2.4 Computational Details

As showed in the last sections, elemental boron has a complicated and rather versatile
chemistry and many aspects are not understood, so far. Therefore the only reliable
theoretical tools, which may allow for a proper description of boron chemistry, are
first principles calculations. The details of the computations that are presented in
this chapter will be described now.

In order to carry out structural optimizations of boron sheets (BSs), boron nan-
otubes (BNTs), and layered bulk structures in Secs. 3.3, 3.4, and 3.5 we used the
Vasp package, version 4.4.6 [163, 164]. The latter is an ab initio code based on
density functional theory [60] – using plane wave basis sets to model solid materi-
als, surfaces, or clusters [165]. For the simulations of BSs and BNTs, the electronic
correlations were treated within the local–density approximation (LDA) using the
Perdew–Zunger form of the Ceperley–Alder exchange–correlation functional [62, 81].
For the bulk simulations in Sec. 3.5 we used the generalized gradient approximation
(GGA) functional “Perdew-Wang 91” [166]. The ionic cores of the system were ap-
proximated by ultrasoft pseudopotentials [106] supplied by Kresse and Hafner [167].
The k–space integrations were carried out using the method of Methfessel and Pax-
ton [168] in first order, with a smearing width of 0.3 eV. The cutoff energy for the
expansion of the electronic wave functions in terms of plane waves was 257.1 eV for
the relaxation runs, and 321.4 eV for a final static calculation of the total energy.
The total energies were converged such that changes in the total energies were less
than 10−4 eV.

With the help of the Vasp program, one can determine interatomic forces, which
may be used to relax the different degrees of freedom for a given unit cell. Eventu-
ally one will detect some atomic configurations, which correspond to (local) minima
on the total energy landscape. In order to carry out those extensive structure opti-
mizations in a effective way, we employed a conjugate gradient algorithm [165], and
we allowed all of the atomic coordinates to relax, as well as all but one lattice pa-
rameter. This rigid lattice parameter fixes the interlayer separation for BS and the
intertubular distance for BNTs at 6.4 Å, which effectively makes them stand-alone
objects. For the bulk systems we optimized all lattice parameters.

The cohesive energies given in Tables 3.3 and 3.4 were calculated from

Ecoh = Ebind/n. (3.1)

Ebind is the the atomic binding energy per unit cell and n is the number of atoms
per unit cell. Therefore in our definition Ecoh will be a positive number.

For band structures and the analysis of Fermi surfaces of BSs in Secs. 3.3.2 and
3.3.3 we used the Stuttgart TB-LMTO-ASA package, version 4.7, which is a
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density functional theory [60] based code using short range [98] linearized muffin-
tin orbitals [92] within the atomic spheres approximation (ASA). It allows static
calculations of the electronic properties for periodic systems. We used the non-spin
polarized LDA exchange-correlation functional of von Barth and Hedin [61] and a
k-mesh of 30 x 30 x 3.

Charge densities or electron localization functions (ELFs) [169] were calculated
either with Vasp or TB-LMTO-ASA. Isocontour plots which are frequently used
in this chapter are qualitative in character, and therefore the results of both codes
are essentially the same.

The bulk structures discussed in Sec. 3.5 were reexamined with the full-potential
LMTO (FP–LMTO) density-functional code Lmtart developed by S. Y. Savrasov
[48, 92], version 6.8. We employed a triple–κ sp basis set13 and represented the
charge densities and the potentials by spherical harmonics up to l = 6 inside non-
overlapping muffin–tin spheres and by plane waves between the spheres. The plane
wave cutoff energies, which are determined automatically in Lmtart 6.8, are given
in Tab. 3.2. The k–space integration was performed with the improved tetrahedron
method [170, 171] and electronic correlations were treated with the “Perdew-Wang
96” GGA exchange-correlation functional [172]. The total energies were converged
until changes were less than 10−6 Ry.

For the calculation of total energies and atomic forces (Vasp and Lmtart) the
sizes of the k–point meshes were individually converged for different systems, such
that changes in the total energy were reduced to less than 3 meV/atom; they are
given in Tab. 3.2. In the course of a structural optimization all interatomic forces
were reduced to less than 0.04 eV/Å.

The optimizations of the bulk systems were first done with Vasp and then re-
peated with Lmtart. We did that to take advantage of the automated optimization
methods implemented in Vasp and because all–electron methods like FP–LMTO are
more accurate at high pressures (small atomic volumes) than standard pseudopoten-
tial implementations. The structural differences between Vasp and Lmtart for the
lattice parameters were less than 1%; internal parameters (atomic positions) were
corrected by about 2%. Since the overall agreement between the two methods is
good in Sec. 3.5, we mainly present the results obtained with Lmtart which are:
structural details, the T = 0 phase diagram, the electronic and phononic structure,
and the electron-phonon coupling.

The phonon frequencies and the electron–phonon linewidths were calculated via
linear response/density functional perturbation theory (DFPT) as implemented in
Lmtart [49] using the same numerical parameters for the electronic system as de-
scribed above. The k–point meshes for the representation of the induced charge den-
sities were the same as the ones used for the total energy calculations (see Tab. 3.2).
This ensured that the phonon frequencies were converged within 2 meV. The sizes of
the phonon q–point meshes will be discussed later on. The k–meshes, representing

13The inclusion of 3d states into the basis set had no influence on the band structure. The orbital
characters of the tails of the basis function on neighboring atoms are taken into account up to l = 6.
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Phase k–mesh V (Å3/atom) ELmtart
cut (Ry)

BSs 6 x 6 x 4 – –
zigzag BNTs 1 x 1 x 15 – –
armchair BNTs 1 x 1 x 10 – –
fcc 20 x 20 x 20 4.00 – 8.00 284 – 179
R–12 8 x 8 x 8 4.00 – 8.20 470 – 339
α–Ga 12 x 12 x 12 3.75 – 6.75 543 – 360
Immm 8 x 12 x 4 4.00 – 8.50 534 – 375
Fmmm 10 x 10 x 10 4.40 – 8.25 414 – 295

Table 3.2: Sizes of k–point meshes used in Vasp and Lmtart and plane wave cutoff
energies in Lmtart. The different models for boron sheets (BSs) are discussed in
Sec. 3.3, free–standing zigzag and armchair boron nanotubes (BNTs) in Sec. 3.4, all
other phases are bulk structures and are considered in Sec. 3.5. The cutoff energy in
Lmtart affects the representation of charge densities and potentials in the interstitial
region, however it has no influence on the basis set. As ELmtart

cut depends on the
atomic volume V the minimal and maximal volumes that were considered are given
in the third column and the corresponding cutoff energies in the last column.

the electronic structure of the non–perturbed system in the linear response calcu-
lations, were 483, 48 × 72 × 24, and 403 for boron in the α–Ga structure, Immm,
and Fmmm, respectively. Integrations over the Brillouin zone in k– and q–space
were again carried out using the tetrahedron method [170, 171]. The induced charge
densities were converged until the root mean square changes were less than 10−6.

For data processing and visualization the programs Matlab, Maple, Xm-

Grace, XCrysDen [173], and OpenOffice were used. The symmetries of the
crystal structures as well as the symmetries of the phonon modes were determined
by the ISOTROPY package [174].

3.3 Broad Sheets

In this section we will employ first principles simulations to find structure models of
broad boron sheets (BSs). A broad sheet is the boron analog of a single graphene
sheet. Furthermore, it is the precursor of boron nanotubes, similar to graphene
being the precursor of carbon nanotubes (CNTs). Up to now, a broad BS could
not be found in experiment; so far only the existence of small quasiplanar boron
clusters [19] and boron nanotubes (BNTs) [21] is experimentally supported. But the
missing link between the two systems must be the broad BS, which is quasi implied
by the existence of BNTs (see Sec. 3.2.3). A detailed knowledge of the properties of
a broad BS will be essential to understand the properties of BNTs. After a detailed
description of the search process, we will analyze the properties of the most stable
structure model.

At the moment in which we carried out the studies contained in this chapter,
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Figure 3.8: Top view of a quasiplanar boron sheet. In a planar projection the atoms
form an almost perfect triangular lattice. The basic structural unit is a hexagonal
pyramidal B7 cluster, as suggested by the Aufbau principle [22] (see text).

we became aware of an interesting work by Evans et al., [175] who consider three
BS models and five BNTs of small tube radii, and the work of Cabria et al. [176]
who study two BS models and three BNTs. Although our results are certainly based
on a more extensive search for stable BS and BNTs, our findings for the stable
BS are, from a structural and energetic point of view, in excellent agreement with
these authors. Thus the present structure model could independently be confirmed
by three different groups. However, Lau et al. [177] have recently reported about
structures for BS and BNTs, which are very different from the structure models of
Evans et al. and Cabria et al., but the present study is in clear favor of the latter.

3.3.1 Finding Structure Models

Following the Aufbau principle (see Sec. 3.2.3) a BS is basically a quasiplanar ar-
rangement of hexagonal pyramidal B7 units. A planar projection of such a system
will always form a nearly triangular lattice (see Fig. 3.8). However, the out of plane
modulation (i.e., the puckering) remains unspecified by the Aufbau principle. The
latter has to be determined using ab initio structural optimizations, after setting up
a suitable supercell that will allow for a systematic generation of various periodic
puckering schemes.

The versatile chemistry of boron is reflected by a complicated energy landscape,
which is full of local minima. Therefore the standard optimization techniques like
the conjugate gradients method used in this study are most likely to find local
minima, rather than global minima. Therefore we examined the energy landscape
quite carefully by performing many optimization runs, which started from quite
diverse initial configurations.

The basic puckering schemes were taken from the structures of B22, B32, and B46

clusters, which are described in Ref. [23]. We repeated the puckering periodically in
a triangular supercell containing 16 atoms (see Figs. 3.9(b)-3.9(d)), and optimized
the resulting structures.14 For the sake of comparison we also examined a planar
BS (see Fig. 3.9(a)). The planar boron sheet (a) occupies a local minimum on the

14The initial in-plane boron-boron distance was 1.6 Å.
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Figure 3.9: Different structure models for broad boron sheets. Each supercell (thin
lines) contains 16 atoms. (a) A planar sheet is metastable. (b) Up and down puck-
ering seems to be the most stable modulation. Structures (c) and (d) are unstable.
Models (b), (c), and (d) are periodic repetitions of structural motives taken from
B22, B46, and B32 clusters, described in Ref. [23].

energy landscape with a cohesive energy of 6.76 eV/atom. However, small out-
of-plane elongations of individual atoms immediately cause a puckering of the BS.
This was confirmed by shifting one atom 0.1, 0.2, and 0.4 Å out of plane and re-
optimizing the resulting structures. Thus model (a) turns out to be metastable (as
also pointed out in Refs. [175] and [176]); any thermal vibration would lead to a
permanent deformation of a planar boron sheet. Models (c) and (d) are completely
unstable, and they both relax to structure (b). In order to scan the energy landscape
for other candidate structures we took sheet (a) and shifted each of the 16 atoms out
of the plane, employing a random elongation ∆z between +0.4 and −0.4 Å. Those
structures were re-optimized as before. It turns out that 8 out of 11 optimizations
led to model (b), while the remaining three runs resulted in a metastable kinked
structure with a cohesive energy of 6.86 eV/atom (not shown).

The fact that models (c) and (d) as well as 8 out of 11 randomly puckered sheets
would relax to model (b) means that structure (b) defines a rather pronounced
minimum on the energy landscape. The high structural stability of model (b) is
confirmed by its high cohesive energy of 6.94 eV/atom, which is the highest cohesive
energy of all BSs that we found. We thus conclude that the most suitable structure
model for a broad BS will be (b), being 0.18 eV/atom more stable (0.21 and 0.26
eV/atom in Refs. [176] and [175], respectively) than an unrealistic planar BS. The
puckering itself seems to be an important mechanism to stabilize the BS [176], which
will be examined in more detail in Sec. 3.3.3.
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Sheet (a) Planar (b) Puckered

Lattice type Triangular (2D) Orthorhombic (3D)
Lattice param. (Å) A = 1.69 A = 2.82

B = 1.60
C = arbitrary

Primitive vectors a1 = A(
√

3
2 ,

1
2) a1 = A(1, 0, 0)

a2 = A(
√

3
2 ,−1

2) a2 = B(0, 1, 0)
a3 = C(0, 0, 1)

Atoms/unit cell 1 2

Atomic pos. (Å) R1 = (0, 0) R1 = (0, 0, 0)
R2 = (1

2A,
1
2B, 0.82)

Bond lengths (Å) aB−B = 1.69 aσ
B−B = 1.60

adiagonal
B−B = 1.82

Ecoh (eV) 6.76 6.94

Elastic modulus Cx = Cy = 0.75 Cx = 0.42
(TPa) Cy = 0.87

Table 3.3: Detailed LDA description of the optimized lattice structures of the planar
(a) and puckered (b) boron sheets (see Figs. 3.9 and 3.11), their cohesive energies
Ecoh (Eq. (3.1)), elastic moduli Cx = C11 and Cy = C22 obtained after stretching a
sheet along the Cartesian x or y direction (Eqs. (3.2) and (3.3)), and bond lengths

(adiagonal
B−B = a1−2

B−B is the bond length between atom 1 and 2, and aσ
B−B = a1−1

B−B =

a2−2
B−B = B is the bond length between two equivalent atoms in different unit cells).

In order determine the lattice structures of (a) and (b) we performed LDA cal-
culations, where we would fix the unit cell of each system for a series of Cartesian
lattice constants A or B, whereas all of the internal (atomic) degrees of freedom
were allowed to relax. The resulting total energies for a given set of lattice constants
were fitted to polynomial curves E(A) and E(B), from which we determined the
equilibrium properties of the systems. The results are summarized in Table 3.3. The
elastic constants Cx = C11 and Cy = C22 may be interpreted as a first approximation
to a macroscopic Young’s modulus. They were calculated as follows:

Cx =
A0

Bh

(

∂2E(A)

∂A2

)

A0

, (3.2)

Cy =
B0

Ah

(

∂2E(B)

∂B2

)

B0

, (3.3)

h is the height of the BS, and it was defined as h = ∆z+2RvdW; ∆z is the puckering
height of the sheet and RvdW is the van der Waals radius.15 A0 and B0 are the
equilibrium lattice constants.

15The definition of h looks somewhat arbitrary, as a different definition for h or different van der
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Figure 3.10: Properties of a planar boron sheet: (a) The two-dimensional band
structure. (b) Black lines indicate the triangular unit cells, black spheres are boron
atoms, and the orange (gray) contours show the electron localization function (ELF)
at contours of 0.7. We observe a simple network of two- and three-center bonds.

3.3.2 The Planar Boron Sheet

The optimized planar model (a) seems to form a triangular lattice with one atom
per unit cell and a single lattice constant A, which is in the range of a typical boron-
boron bond length A = aB−B = 1.69 Å (see Fig. 3.10(b)). But within the accuracy of
the given methods, we cannot really decide whether the lattice structure is perfectly
triangular or slightly less symmetric. Assuming perfect triangular symmetry the two
elastic moduli Cx and Cy are equal, and they are surprisingly big: Cy = Cy ≈ 750
GPa, which is comparable to the ones in graphene (≈ 1 TPa). So even if the planar
BS is metastable compared to other model boron sheets, it nevertheless has an
extraordinary high stiffness. The electronic charge density is nearly uniform in the
interstitial region, and the band structure (see Fig. 3.10(a)) is similar to the band
structure of a free electron gas. These results seem to indicate some metallic bonding,
as pointed out by Evans et al. [175], but such a picture cannot really account for the
planarity and the high elastic modulus of this BS. A different qualitative picture of

Waals radii will certainly alter the values for the elastic moduli. But in a test calculation for a single
graphite sheet, where we used ∆z = 0 (no puckering) and RC

vdW = 1.7 Å, we found C11 = C22 to
be 1.08 TPa, in excellent agreement with the literature values of C11 = 1.06 TPa [29]. For boron
we would used RB

vdW = 1.7 Å and ∆z = 0.82 (see below and Table 3.3). Thus for model (a) we find
that h = 3.4 Å, whereas for model (b) we find that h = 4.22 Å.
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Figure 3.11: The orthorhombic unit cell of model (b) with two basis atoms (see
Table 3.3). In a xy-projection atom 1 is located at the corners of a rectangular unit
cell, while atom 2 is located at the center of the unit cell. Along the z direction the
boron atoms will generate a simple up and down puckering, with puckering heights
around ∆z = 0.82 Å.

the chemical bonding is obtained after looking at the electron localization function
[169] (ELF) in Fig. 3.10(b). Here we observe a simple network of two- and three-
center bonds being less localized (ELF ≈ 0.7) than typical σ bonds (ELF ≈ 0.9),
which are absent here. Thus the planar BS seems to be held together predominantly
by multi–center bonds similar to the ones found in pure boron compounds. The
chemical understanding of these bonds is still very limited. We think that, despite
of its apparent metastability, model (a) could be an ideal theoretical tool to extend
our present understanding of the nature of multi–center bonding in boron.

3.3.3 The Puckered Boron Sheet

In Fig. 3.11 we show the unit cell of model (b). It consists of two basis atoms,
and its planar projection is almost triangular. It is common to describe such a
system with a face centered rectangular unit cell with lattice constants A and B. For
A/B =

√
3 = 1.732 a planar projection of the system would be triangular. In our case

A/B = 1.76, which is a small, but noticeable departure from triangular symmetry.
Due to a puckering of ∆z = 0.82 Å, such a system can best be described using a
three-dimensional orthorhombic unit cell. The corresponding lattice parameters and
bond lengths can be found in Table 3.3.

In the following we will analyze the properties of model (b), which turns out to
be the most stable structure for broad BS. Mind that from now on, whenever we
write ’boron sheet’ (BS), we will only refer to model (b).

In order to compare the BS with a known boron structure we also calculated the
cohesive energy of α–rhombohedral boron, which turns out to be 7.51 eV/atom. This
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Figure 3.12: Orange (gray): charge density contours of the boron sheet (model (b))
at 0.9 e/Å3. One observes parallel linear chains of sp hybridized σ bonds lying along
the armchair direction.

gives an energetic difference of 0.57 eV/atom (0.58 and 0.57 eV/atom in Refs. [175]
and [176], respectively), which is huge, but one has to take into account that we are
comparing a single boron sheet with a bulk reference structure.

Mechanical Properties and Bonding

The elastic modulus of model (b) strongly depends on the stretching directions. In
Table 3.3 we roughly find that Cy ≈ 2Cx. How can one explain those rather obvious
anisotropies?

To this end, let us have a look at the charge density of the BS (see Fig. 3.12).
We clearly observe some parallel linear chains of σ bonds lying along the armchair
direction. Their bond length is aσ

B−B = 1.60 Å. At lower densities (ρ < 0.7 e/Å3, not
displayed) a largely homogeneous distribution with a rather complex shape appears,
which may be assigned to multi–center bonding typical for boron materials. An
analysis of the electron localization function [169] (ELF) leads to similar results,
such that we obtain the following preliminary picture of the bonding: on a first level
the sheet is held together by homogeneous multi–center bonds, but on a second level
there are strong σ bonds lying only along the armchair direction.

Due to the strong σ bonds, any stretching of the BS along the armchair (=
y) direction will be much harder than a similar stretching along its zigzag (= x)
direction, where only the slightly weaker multi–center bonds are involved. These
results are quite different from the results obtained by Evans et al., who conjecture
that the σ bonds are strong but soft [175]. But here we clearly observe that the σ
bonds are strong and stiff. However other basic findings of Evans et al. are in good
agreement with our results for planar and puckered BSs.

In general the elastic moduli involved are quite high; the stiffness of the σ bonds
along the armchair direction is comparable to the stiffness of a graphene sheet.
Furthermore the broken triangular symmetry of the BS’s 2D lattice structure is
another direct consequence of anisotropic bond properties.

Evans et al. also found that BNTs of different chiralities have different stiffnesses
[175]. This can be confirmed by our bonding picture, although our results suggest
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Figure 3.13: The band structure of the model BS. The fatness of the bands indicates
their sp character, and it shows that the σ bonds in Fig. 3.12 must be of sp type.
The Fermi energy EF lies at E = 0, G is the Γ point. The position of the special
points is given in Fig. 3.14.

that zigzag BNTs should be somewhat stiffer than armchair BNTs, while Evans
et al. noted the opposite (the armchair and zigzag direction are swapped in their
and our treatment, see Sec. 3.4.1). We thus conclude that the relation between the
microscopic elastic modulus and the macroscopic Young’s modulus must be rather
complicated in the case of BS and BNTs.

Electronic Properties

The two-dimensional band structure of the BS EBS(kx, ky) is plotted in Fig. 3.13
along lines of symmetry. The BS is metallic, as there are two bands crossing the
Fermi energy, which is in perfect agreement with earlier studies of BSs [178, 179].

In order to find out about the hybridization of the σ bonds, we plotted the
corresponding amount of s and py character indicated by the fatness of the bands.16

We do not find individual dispersions of s or p bands, and the lowest lying bands show
dispersions which share s and py character. That means they are bands consisting
of sp hybridized orbitals:

|spa〉 =
1√
2
(|s〉 + |py〉)

|spb〉 =
1√
2
(|s〉 − |py〉).

16The orientation of the px, py, and pz orbitals coincides with the orientation of the coordinate
systems in Figs. 3.11 and 3.12.
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Figure 3.14: The two-dimensional Fermi surface of the boron sheet within the first
Brillouin zone. It consists of two contours in red (black) and yellow (gray), which
correspond to the two bands crossing the Fermi energy in Fig. 3.13.

The directional coincidence of the py orbitals with the σ bonds in Fig. 3.12 identifies
them to be of sp type. The strength of the σ bonds originates from the fact that the
bands lie 5 to 15 eV below the Fermi energy.

The physical picture behind this multi–center bonding seems to be more compli-
cated and it is still under investigation. So far we tried to analyze the multi–center
bonds using a first nearest neighbor tight–binding model, which comprises the re-
maining px and pz orbitals as basis states. But it turned out that this treatment can
only partially reproduce the conduction bands in Fig. 3.13. Thus a larger basis set
is needed.

In Sec. 3.3.1 we indicated that the puckering has a stabilizing effect for the BS.
Now we are in a good position to explain this observation: any flattening of the BS
would cause px orbitals to interfere with the σ bonds and eventually destroy them.
And indeed, the analysis of the charge density and ELF of the planar BS in Sec. 3.3.2
showed that there are no σ bonds involved, but only multi–center bonds.

Finally we want to show the two–dimensional Fermi surface EF = EBS(kx, ky)
of the BS in Fig. 3.14. It obviously consists of two contours, which are dispersed
throughout the Brillouin zone. This clearly shows the metallic properties of the BS.

3.3.4 Summary

In this section we studied a number of different structure models for broad boron
sheets (BSs). All of them are metallic, and we found that for a 16 atom supercell,
the model with a simple up-and-down puckering will be the most stable one. Large
quasiplanar boron clusters with a similar structure (B22 [23], B48 [178], and B96 [148])
were already reported before. Now they may be understood as a first indication
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Figure 3.15: The triangular (t), the rectangular (r), and the honeycomb-derived (h)
primitive cells that are used to characterize boron nanotubes. They contain one, two,
and three atoms, respectively. Only the rectangular cell may properly describe the
puckering of the boron sheet (indicated by black and gray atoms in the background).

for the onset of periodicity in finite layered boron systems, and thus they are an
independent confirmation of the current structure model.

A flat BS has a rather high stiffness, and the structure seems to be held together
primarily by multi–center bonds (see Sec. 3.3.2). Although the sheet is less stable
than previously known bulk phases of boron, as shown here and elsewhere [175, 176],
the model sheet could be the ideal theoretical tool for studying complex multi–center
bonds.

After describing the lattice structure of the stable BS, we have analyzed its band
structure, the corresponding charge densities, and the electron localization function.
This would lead to the following preliminary picture of the chemical bonding: on
the one hand the sheet is held together by homogeneous multi–center bonds, on
the other hand there are linear sp hybridized σ bonds exclusively lying along the
armchair direction of the sheet. The existence of sp hybridization in quasiplanar BS
is somewhat surprising given the fact that earlier studies would always claim sp2

hybridization. The rather anisotropic bond properties of the sheets lead to different
elastic moduli Cx and Cy for stretching the BS in the x and in the y direction.
Furthermore puckering of the BS, which breaks the triangular symmetry, may be
understood as a key mechanism to stabilize the sp σ bonds. Our results indicate
that the sheet analyzed in this study is the boron analog of a single graphene sheet,
a possible precursor of boron nanotubes (BNTs), and we wonder whether broad BSs
might exist in nature.

3.4 Nanotubes

In the last section we determined a realistic model structure for a broad boron sheet
being the boron analog of graphene. This model will be used now to predict the
structure, the stability, the electronic and mechanical properties of BNTs. However,
our first task will be to define a suitable classification scheme for BNTs based on the
symmetry of the BS.
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3.4.1 The Mathematical Description of Ideal Boron Nanotubes

Wrapping Vector

The geometrical construction of BNTs from a BS is similar to the construction of
carbon nanotubes from a graphene sheet [29]: The basic tubular structure of BNTs
is characterized by a wrapping vector W that defines one side of a rectangle. The
second side T , being perpendicular to W , is chosen such that the rectangle can be
periodically repeated along T (see Fig. 3.16). This rectangular patch is rolled up
to a cylinder such that W becomes the circumference of the nanotube with radius
R = |W |/2π. We will call any BNT, whose structure may be described by such a
construction, an ideal boron nanotube.

Due to the fact that a proper structure model for BS was missing for a long time,
there is some confusion in the literature about a proper reference lattice structure.
In the work of Cabria et al. [176] and in earlier works by us [180, 179] (which is
in full analogy to the construction of carbon nanotubes) the BNTs are related to a
honeycomb lattice and the wrapping vector W h is defined as

W h = (n,m) = nah
1 +mah

2 , (3.4)

ah
1,2 are the primitive vectors of a honeycomb lattice and n,m are integers. Here each

unit cell has one additional atom at the center of the honeycombs, thus consisting
of three rather than two atoms (see Fig. 3.15). Gindulyte et al. [25], Evans et al.
[175], and Leys et al. [181] relate their BNTs to the simple triangular lattice, which
only has one atom per unit cell:

W t = (i, j) = iat
1 + jat

2, (3.5)

at
1,2 are the primitive vectors of a triangular lattice, and i, j are integers. W h and

W t can be transformed into each other by using17

(n,m) 7→ (i, j) = (n+ 2m, n−m), (3.6)

(i, j) 7→ (n,m) =
1

3
(i+ 2j, i− j). (3.7)

From Fig. 3.15 we see that the two definitions are based on primitive vectors which
have different orientations.18 This leads to the rather unsatisfactory situation that
armchair and zigzag directions are swapped in the two descriptions (see Table 3.4 for
example). Cabria et al. found that all (n, 0) zigzag and all (2n, 2n) armchair BNTs
have puckered surfaces, while the (2n + 1, 2n + 1) armchair tubes shall be smooth
due to the fact that an odd number of boron rows along the tube surfaces does not
allow for the formation of the simple up and down puckering [176]. We think that

17These relations are obtained from: ah
1 = at

1 + at
2 and ah

2 = 2at
1 − at

2.
18For the plot in Fig. 3.15 we used A =

√
3B. This induces triangular symmetry into a rectangular

lattice, and the primitive vectors are ah
1 = ar

1 =
√

3B(1, 0), ah
2 =

√
3B( 1

2
, 1

2

√
3), and at

1 = B(
√

3
2

, 1
2
),

at
2 = B(

√
3

2
,− 1

2
).
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Figure 3.16: The geometrical construction of an ideal boron nanotube from a boron
sheet: the red (gray) area is cut and rolled up such that W r will become the cir-
cumference of the nanotube. O is the origin, W r is the wrapping vector, T is the
translational vector, θ is the chiral angle measured with respect to the zigzag direc-
tion, a1,2 are the primitive vectors of the underlying rectangular lattice, and A and
B are the lattice constants (see text). The puckering of the boron sheet is indicated
by black and gray atoms shown in the background. The zigzag and the armchair
directions are perpendicular to each other. This figure corresponds to W r = (5,3)
and A/B =

√
3, which implies T = (−1, 5).

these results are not an intrinsic property of BNTs, but rather a consequence of an
unsuitable reference lattice system that is unable to properly describe the puckering
of the boron sheet, see Fig. 3.15. Furthermore, the puckering breaks the hexagonal
symmetry underlying the honeycomb and the triangular lattices.

Therefore we think that all of these descriptions are inappropriate to classify
BNTs. On the basis of the current BS model we would like to put forward a dif-
ferent way of describing BNTs, based on a rectangular lattice underlying the two-
dimensional structure of the BS.

We define the wrapping vector W r as

W r = (k, l) = kar
1 + lar

2, (3.8)

k, l are integers, and ar
1 = A(1, 0) and ar

2 = B(0, 1) are the primitive vectors of the
rectangular lattice (see Figs. 3.15 and 3.11); A and B are the lattice constants from
Table 3.3. In analogy to the Dresselhaus construction for carbon nanotubes [29],
we define the chiral angle θ as the angle between the vectors W r and ar

1, i.e., θ is
measured with respect to the zigzag direction that coincides with ar

1 (see Fig. 3.16).
The categorization of BNTs will be different from other classification schemes

because the reduced symmetry of a BS increases the number of possible types of
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nanotubes. The range for the chiral angle is 0◦ ≤ θ ≤ 90◦ and for the chiral indices
(k, l) we find that k, l ≥ 0. Zigzag BNTs correspond to θ = 0◦ and (k, l) = (k, 0),
and armchair BNTs correspond to θ = 90◦ and (k, l) = (0, l).19

W h and W t cannot directly be converted to W r, as they are defined for lattices
with different symmetries. For the achiral types, one can use the following analogies
(examples are listed Table 3.4)

zigzag: (k, 0)r ↔ (k, 0)h (3.9)

↔ (k, k)t,

armchair: (0, l)r ↔ (l/3, l/3)h

↔ (l, 0)t.

Translational Vector

The tubular unit cell of an ideal BNT, being the red (gray) area in Fig. 3.16, may be
defined properly by a wrapping vector W r (Eq. (3.8)) and the so-called translational
vector T , which is perpendicular to W r:

T = (t1, t2) = t1a
r
1 + t2a

r
2, (3.10)

t1 =

{

−numerator(f) : k 6= 0
1 : k = 0

t2 =

{

denominator(f) : k 6= 0
0 : k = 0

f = reduce

(

lB2

kA2

)

.

t1, t2 are integers and reduce (r) should indicate that the fraction r must be reduced
before determining its numerator and denominator.

Let us consider the length of the translational vector T . For the achiral BNTs
|T | is particularly small: for all (k, 0) zigzag types we have T = (0, 1), and for
(0, l) armchair BNTs T = (1, 0). For the chiral types T depends on the ratio
B2/A2 (see the last line of Eq. (3.10)). Using A = 2.819 and B = 1.602 we obtain
reduce (B2/A2) = 2566404/7946761. Therefore the coefficients t1 and t2 are really
huge numbers, which means that |T | becomes macroscopically large. For A and
B chosen as above, the estimated length of T for all chiral BNTs will be in the
mm range. Imposing some additional symmetry constraints by relating the lattice
constants will immediately remedy this problem. For example after choosing A =√

3B, fraction(B2/A2) = 1/3, i.e., |T | will be reduced to just a few lattice constants

19Restricting the chiral angle θ to that range implies that for chiral nanotubes the indices (k, l)
actually specify an enantiomeric pair (optical isomers), i.e., nanotubes that are mirror images of each
other. These enantiomers have opposite chiralities (right-handed versus left-handed) and different
line group symmetries [182, 183]. This non–unique classification is in analogy to the classification
of CNTs.
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(this case was used to generate Figs. 3.16 and 3.17). Quite obviously the chiral BNTs
the specific ratio B2/A2 determines the length of the translational vector.

Note that boron compounds usually have a whole set of different B–B bond
lengths, which means that boron does not necessarily favor highly symmetric ar-
rangements. The bond lengths are more flexible than for typical covalent elements
like carbon, and the lattice constants A and B of the BS cannot be seen as fixed
parameters; they will have slightly different values in BNTs. Furthermore, the bro-
ken planar triangular symmetry of the BS is rather typical for boron, and we should
expect that for ideal chiral BNTs, even with different values of A and B, the trans-
lational vector might still be rather huge.

To summarize: any departure from the triangular symmetry in the BS will create
chiral BNTs, which have macroscopically large translational vectors, and achiral
types, where |T | is of the order of the lattice constants. Thus achiral BNTs (armchair
and zigzag) have a one-dimensional translational symmetry along the tube’s axis,
which is not present in chiral BNTs. For the latter it might be better to think in
terms of helical (chiral) symmetries only. Therefore we predict the existence of helical
currents in ideal chiral BNTs. Such currents could lead to very interesting physical
effects such as strong magnetic fields [184] and self-inductance effects leading to an
inductive reactance [185] of chiral BNTs.

Band Structure

Within the limit of big nanotube radii, where curvature effects are small, one may
derive the one-dimensional band structure of an ideal BNT Eµ(k′) by a zone-folding
technique [29], starting from the two-dimensional band structure of a BS EBS(kx, ky).
The zone-folding is usually based on the translation symmetry of nanotubes along
their axis. However, given the absence of translational symmetry in ideal chiral
BNTs, we have to base our zone-folding theory on the helical symmetry of BNTs
[186, 187].

Figure 3.17 illustrates that besides constructing a BNT by repeating a tubular
unit cell one can also build a nanotube by repeating a helical unit cell along a spiral
winding around the surface of the tube. The direction of this spiral is given by
the helical vector H [186, 187] (in Ref. [29] it is called the symmetry vector R).
Uncoiled into a plane, this vector defines the direction of a translational symmetry
(see Eq. (3.11) and thereafter). The helical unit cell is specified by H and the vector
K ⊥ H. Furthermore, we define a vector L ‖ H, such that W r = (k, l) = K + L

(see Fig. 3.17).

The helical wave functions are restricted by the following criteria:

Ψµk′(r + H) = Ψµk′(r) exp(ik′|H|), (3.11)

Ψµk′(r + W r) = Ψµk′(r). (3.12)

Equation (3.11) defines a one-dimensional Bloch state with −π/|H| < k′ < π/|H|
and imposes the condition that k′ has to be parallel to the reciprocal lattice vector
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Figure 3.17: Two different ways of “building up” a nanotube: the tubular unit cell
in light gray (see also Fig. 3.16) is repeated along the nanotube’s axis, which lies
parallel to T . The helical unit cell in red (dark gray) is translated along spirals
(represented by the dotted lines) on the surface of the nanotube; it is defined by
the helical vector H and vector K. It holds that W r = K + L. Here H = (0, 1),
K = (2, 0) and L = (0, 9), and therefore W r = (2, 9). The length of T = (−3, 2)
was artificially reduced by choosing A/B =

√
3.

related to H. Equation (3.12) is the tubular boundary condition. In order to
construct the helical wave functions Ψµk′ we use the wave functions of the BS ΨBS

k
(r)

which have the Bloch property:

ΨBS
k (r + R) = exp(ik · R)ΨBS

k (r), (3.13)

where R is a vector of the Bravais lattice formed by ar
1 and ar

2. Since the vectors
H and W r are elements of the same Bravais lattice, Eq. (3.11) will automatically
be satisfied, and Eq. (3.12) together with Eq. (3.13) will yield

1 = exp [i(k · W r)] . (3.14)

In order to proceed, we now choose a direction for H, which may be any Bravais
lattice vector.20 By choosing H = T we recover the case of a tubular unit cell, as
described above and in Ref. [29]. But in order to make the calculation as simple as
possible we assign H = ar

2 = (0, 1). Then it follows that K = (k, 0) and L = (0, l)
(see Fig. 3.17). As H ‖ y we have to choose k′ = ky. After inserting Eq. (3.14) into

20In the most general case the zone-folded band structure of ideal BNTs is given by Eµ(k′) =
EBS(k′GH /|GH | + µGK ), with GH and GK being the reciprocal lattice vectors of H and K ,
respectively, −π/|H | < k′ < π/|H |, µ = 0, . . . , N − 1, and N = |H × K |/|ar

1 × ar
2| [29].
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EBS(kx, ky) we finally obtain the zone-folded band structure of ideal (k, l) (k 6= 0)
BNTs as

E(k,l)
µ (k′) = EBS

(

2π

kA
µ− lB

kA
k′, k′

)

, (3.15)

− π

B
< k′ <

π

B
,

µ = 0, · · · , k − 1

Equation (3.15) will break down for (0, l) armchair BNTs, due to a chiral index
k = 0. But as mentioned before, we are free to change the direction of H, and in
such a case we use H = ar

1 = (1, 0) and have k′ = kx. We then obtain

E(0,l)
µ (k′) = EBS

(

k′,
µ

l

2π

B

)

, (3.16)

− π

A
< k′ <

π

A
,

µ = 0, · · · , l − 1

To decide whether a certain ideal BNT is metallic or not we can zone–fold the
BS’s Fermi surface given in Fig. 3.14. We did so and found that all ideal BNTs are
indeed metallic, irrespective of their radius and chiral angle. The only ideal BNTs
that are not metallic are the (0,1) and the (0,2) types. But these structures have a
very small radius and are thus highly unrealistic and we can safely rule them out, as
they are not even covered by the Aufbau principle [22].

3.4.2 Real Boron Nanotubes

After defining a classification scheme for BNTs and analyzing the basic properties of
ideal BNTs in the preceeding section, we will now simulate BNTs and try to figure
out whether there is a relation between the ideal BNTs, derived theoretically from
the model BS, and real BNTs. Similar to the BSs, the basic structure of BNTs is
given by the Aufbau Principle (see Sec. 3.2.3) but the surface puckering remains
unspecified and has to be determined using ab initio simulations.

Therefor we started from a series of initial structures with smooth surfaces, which
were optimized in a triangular BNT bundle (rope). Here the strong tube-tube in-
teractions (see Sec. 3.4.2) distort the surfaces and naturally induce some puckering.
The energy of this configuration is Erope

coh . In order to simulate free–standing (indi-
vidual) BNTs we then increased the intertubular distance to 6.4 Å, and optimized
those configurations while keeping the intertubular distances fixed. The energy here
is Eind

coh (Erope
coh and Eind

coh are defined after Eq. (3.1)). Note that such an approach does
not impose any surface puckering which is solely found in the numerical simulations.
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(k, l) (n, m)/(i, j) n Isom. Cj aaxial
B−B adiagonal

B−B acircumferential
B−B R̄ ± ∆R Eind

coh Erope
coh − Eind

coh

(9,0) (9, 0)/(9, 9) 18 α C3 1.61σ 1.77,1.83,1.86 3.86 ± 1.09 6.93 +0.07
β C1 1.61σ 1.67 − 1.87 6.92
γ C3 1.61σ 1.81,1.82 3.83 ± 0.51 6.91 +0.04
δ C9 1.61σ 1.83 4.17 ± 0.39 6.83
ǫ C3 1.64σ 1.67,1.81 4.39 ± 0.29 6.78

(10,0) (10, 0)/(10, 10) 20 α C2 1.60σ 1.79,1.81,1.82,1.87 3.84 ± 1.97 6.91 +0.01
β C2 1.61σ 1.82,1.83,1.84 4.08 ± 1.18 6.90 +0.07
γ C10 1.61σ 1.83 4.60 ± 0.41 6.85

(12,0) (12, 0)/(12, 12) 24 α C6 1.61σ 1.73,1.83,1.85 5.05 ± 0.65 6.90 +0.02
β C12 1.61σ 1.82 5.48 ± 0.41 6.87 +0.05

(0,12) (4, 4)/(12, 0) 24 α C6 1.69 1.59σ ,1.69,1.85 2.64 ± 0.68 6.68 +0.3

(0,18) (6, 6)/(18, 0) 36 α C6 1.70,1.74 1.56σ ,1.60σ ,1.71,1.75 4.48 ± 0.57 6.74 +0.27
β C18 1.75 1.53σ ,1.76 4.74 ± 0.34 6.72

(0,24) (8, 8)/(24, 0) 48 α C6 1.74,1.75 1.54σ,i,1.57σ,i,1.64σ,o,1.72,1.74 5.99 ± 0.58 6.81 +0.3

Table 3.4: Structural data and energies of different isomers of free–standing boron nanotubes: (k, l), (n,m), (i, j): different
chiral indices for the same tube type (see Sec. 3.4.1); n: number of atoms per unit cell; Isom.: label of isomer; Cj: rotational

symmetry; aaxial
B−B, adiagonal

B−B , acircumferential
B−B : boron-boron bond lengths in axial, diagonal and circumferential direction of a

nanotube, the superscript σ indicates that this bond is a σ bond, superscripts σ, i and σ, o refer to inner and outer rings,
respectively; R̄ ± ∆R: mean radius of a nanotube (Eq. (3.17)) and maximal radial variation (Eq. (3.18)); Eind

coh: cohesive
energy of a free–standing (individual) nanotube (Eq. (3.1)); Erope

coh − Eind
coh: this energy is gained when the same nanotube is

arranged in a bundle (rope). All energies are given in eV/atom and all lengths are given in Å.
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All free–standing BNTs are shown in Figs. 3.18, 3.19, and 3.22 and the structural
data and energies are collected in Table 3.4. Apart from their bond lengths and
rotational symmetries we also listed the geometrical mean radius of each tube R̄, as
well as the maximal radial variation ∆R, defined as:

R̄ =
Rmin +Rmax

2
, (3.17)

∆R = Rmax − R̄ = R̄−Rmin, (3.18)

where Rmin and Rmax are the distances of the innermost and the outermost atoms
from the center of the nanotube, respectively.

For many (k, l) BNTs we found more than just one isomer. Therefore each BNT
was also given a Greek index which labels different isomers. The latter were ordered
according to their cohesive energies, i.e., (k, l)α will denote the most stable isomer,
(k, l)β would be less stable, and so on.

Free Standing Nanotubes vs Nanotube Ropes

In Table 3.4 the “inter-tubular energy” Erope
coh − Eind

coh is the energetic difference be-
tween a free–standing BNT and its bundled counterpart. One can see that it varies
significantly from tube to tube. The intertubular energy seems to depend quite
strongly on the structure type, the relative orientations of adjacent tubes in a rope,
and on the specific type of surface puckering. Furthermore, the intertubular distance
in different bundles, which was defined as the minimal separation between two apex
atoms on adjacent nanotubes, varies between 1.7 and 3.5 Å.

It is obvious that the tube–tube interaction in BNT bundles (ropes) is completely
different from what is known from carbon nanotubes, where the intertubular inter-
action is of van der Waals type. The latter is certainly much weaker, independent
of the various structure types, and the intertubular distances are always around 3.4
Å. BNTs on the other hand may have covalent intertubular bonds [180, 188], and
this leads to a sizeable intertubular bonding energy that depends quite strongly on
structural details.

It is interesting to note that the intertubular energy of (0, l) BNTs (armchair
types) is significantly higher than for (k, 0) BNTs (zigzag). Below we will try to give
an explanation for this rather complex bonding scenario.

At this point, it is worth noting that the original motivation for this work was a
recent study by ourselves, where we reported bundled zigzag BNTs that were some-
what constricted [180] (we define the concept of constriction at the end of Sec. 3.4.2).
We conjectured that this constriction would most likely be caused by the arrange-
ment of the tubes in a bundle, where the tube-tube interactions will force the tubes to
have geometrical shapes different from free–standing BNTs. The free–standing coun-
terparts of the constricted (9,0)C and (10,0)C BNTs from Ref. [180] are the (9,0)α21

isomer in Fig. 3.18 and (10,0)β in Fig. 3.19. To our surprise the constriction did not

21For the (9,0)α BNT the intertubular distance was increased to only 4 Å.
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Figure 3.18: The cross sections of different isomers of a free–standing (9,0) zigzag
boron nanotube. The big spheres represent the upper atoms and the small ones the
lower atoms (with respect to the direction of the tube axis). The α and γ isomers
are the free–standing counterparts of the (9,0)C and (9,0)B tubes in Ref. [180],
respectively.

disappear after isolating the tube. And even after substantially deforming the (9,0)α
structure by homogeneous shrinking, by blowing it up, or by randomly elongating
atoms out of their equilibrium position with a maximum amplitude of 0.3 Å, the
free–standing (9,0)α BNTs always relaxed to their constricted forms. This finding
is in clear contrast to our previous hypothesis, and it raises the important question
where those constrictions finally come from. We will try to give an answer to this
question in Sec. 3.4.3.

The Structure of Free Standing Boron Nanotubes

Zigzag Nanotubes For zigzag BNTs we found various isomers. Any zigzag BNT
may be seen as a BS that was rolled up along its zigzag direction (see Fig. 3.12
or 3.16). Thus the linear chains of σ bonds will lie along its axial direction and
they will remain straight. These basic bonding properties were typical for all zigzag
BNT that we studied so far. We just show two typical examples in Fig. 3.20. Here
the bond length of the σ bonds is quite similar to the bond length in the BS, as
aσ

B−B = aaxial
B−B = 1.61 Å (the only exception we found was (9,0)ǫ).

The tubes (9,0)δ, (10,0)γ, and (12,0)β are ideal BNTs, which denotes the fact
that they were initially constructed by a “cut and paste” procedure described in
Sec. 3.4.1, and then re–optimized using ab initio methods. Their structure is highly
symmetric and we find two bond lengths, which are almost identical to the bond
length in the BS. The puckering height ∆z = 2∆R ≈ 0.8 is also quite similar to the
BS.

However, an ideal BNT does not seem to be the ground state of a real zigzag
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Figure 3.19: Cross-sectional view of various isomers of free–standing (10,0) and (12,0)
zigzag boron nanotubes. Again the big spheres mark the upper atoms and the small
ones mark the lower atoms. The (10,0)α and (10,0)β isomers are free–standing
counterparts of the (10,0)B and (10,0)C structures in Ref. [180], respectively.

BNT, and we found less symmetric isomers that were higher in cohesive energy. It
should be noted that zigzag tubes with a smooth surface were not considered here
because their cohesive energies are significantly lower than those of puckered BNTs.
As an example for the complex shape of zigzag BNTs one may study (9,0)ǫ, which
is the least stable isomer of all zigzag BNTs. (9,0)ǫ has a hexagonal cross section,
which probably caused by its placement into a triangular supercell. Its facets may be
seen as parts of a flat BS, whereas the corner pieces are parts of a puckered BS. From
Fig. 3.20 we notice that the σ bonds along the sides are slightly more delocalized than
the ones located at the corners. This means that any flattening would destabilize
the sigma bonds, and the whole tube is highly metastable. (A similar but square-like
structure was found by Evans et al. [175], which they labeled (i, j) = (6, 6), but we
think that this structure is highly metastable as well.) Thus the question will no
longer be if zigzag BNTs are puckered, but how they are puckered.

The cross sections of the isomers with a high cohesive energy may be built from
three basic structure elements that are shown in Fig. 3.21. The three-atomic struc-
ture element is directly related to the puckering of the BS (compare Fig. 3.12)
whereas the four- and five-atomic elements are just special combinations of three-
atomic structure elements. We see that the structure of zigzag BNTs is strongly
related to the local structure of the puckered BS, but their general cross-sectional
geometries seem to be more complicated and less symmetric than in the case of an
ideal BNT. This loss of symmetry can also be extracted from the spectrum of diago-
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Figure 3.20: Zigzag boron nanotubes and the presence of straight σ bonds along
their axial direction, which are indicated by orange (gray) charge density contours
at 0.9 e/Å3. Due to a lack of stiff σ bonds along the circumferential direction, this
type of nanotube might not be stable.
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Figure 3.21: Three basic structure elements. The cross sections of the most stable
zigzag boron nanotubes in Figs. 3.18 and 3.19 may be composed of these elements
only.

nal bond lengths, which are associated with multi-center bonds. Rather than being
equal to adiagonal

B−B of the BS (see Table 3.3) those bond lengths span a whole range

adiagonal
B−B ≈ 1.7 − 1.9 Å.

Some of the most interesting structures are (9,0)α, (9,0)β, and (10,0)α, which
have cross sections that are far from being circular. Nonetheless they exhibit high
cohesive energies. Because of the observed unusual shapes of zigzag BNTs we assume
that the multi-center bonds obviously possess a high directional flexibility, but at
the same time they are also very stiff (Cx = 0.42 TPa in Table 3.3). Therefore it
seems as if these bonds have some joint-like properties, i.e., they are easy to turn,
but hard to tear.

In the following we will call a zigzag BNT constricted, if it is composed of several
five-atomic structure elements like the (9,0)α and the (10,0)β isomers in our work.
A constricted zigzag BNT was also found by Evans et al. [175], where it is labeled
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Figure 3.22: Top and side view of various free standing armchair boron nanotubes
and the presence of σ bonds, which are indicated by orange (gray) charge density
contours at 0.95 e/Å3. All armchair nanotubes have bent σ bonds along the circum-
ferential direction, which basically generate the strain energies of the tubes. The
black bar on the right indicates the height of a supercell in axial direction that was
used for our simulations; for esthetical reasons we actually displayed three identical
units cells.

as a (i, j) = (8, 8) nanotube, and it corresponds to our (10,0)β structure without the
two horizontal three-atomic elements.

Armchair Nanotubes When rolling up a BS along its armchair direction, the
puckered sheet (see Fig. 3.12) will be transformed into a tube that has inner and
outer rings, and the σ bonds will lie along its circumferential direction. On the outer
rings the length of the σ bonds will be increased and on the inner rings their length
will be reduced. In Fig. 3.22 we see that for three systems discussed in this study,
the σ bonds do really lie along the circumferential direction, and for the (0,18) and
(0,24) systems an inner and an outer ring can clearly be identified.

In contrast to zigzag BNTs we did not find several isomers for the armchair types.
Furthermore, we just discuss one ideal BNT, which is the (0,18)β isomer. In analogy
to zigzag BNTs, we found that this ideal BNT corresponds to a local energetic
minimum, and the (0,18)α isomer of lower symmetry is 0.02 eV/atom more stable.22

The latter has σ bonds solely along the inner rings, where the bond lengths are 1.56
and 1.60 Å. Along the outer ring, where the B-B distances (1.71 and 1.75 Å) are

22The C6 symmetry of all α isomers is probably not an intrinsic property, but rather caused by
the fact that they were simulated in a triangular supercell.
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significantly longer, the curvature effect has destroyed the σ bonds.23

The (0,24) system has similar properties, but here the curvature is smaller, and
there are six additional weak σ bonds along the outer rings with a bond length of
1.64 Å. For even larger radii we expect the outer rings of armchair BNTs to develop
σ bonds between every single atom.

The radius of the (0,12) BNT is quite small, which makes it extremely difficult
for the structure to align its σ bonds. We see that this tube possesses a different
geometry, and even along the stiffer rings there are six instead of 12 σ bonds. It is
obvious that for armchair BNTs with smaller and smaller radii, the curvature effect
will successively destroy the circumferential σ bonds. For the smallest possible BNTs
we should find no σ bonds at all, and the surface of the tube will become smooth.
This agrees with earlier studies by ourselves [24, 178] and with the work of Evans
et al. [175], where some armchair BNTs of small radii were studied and found to be
smooth.

Any destruction of circumferential σ bonds within armchair BNTs of small radii
will release electrons that can alter their chemical properties. In Sec. 3.4.2 we
observed that the intertubular energy for armchair BNT ropes is much higher than for
zigzag BNT ropes. Now a possible explanation would be that the released electrons
in armchair BNTs induce an enhanced reactivity. In a rope of BNTs, this enhanced
reactivity will lead to strong intertubular bonding for armchair BNTs of small radii.
In zigzag BNTs the reactivity is lower, as a maximum number of σ bonds can always
be achieved, due to the fact that curvature effects will not be able to weaken the
axial σ bonds. Therefore we hypothesize that small sized armchair BNTs will have
a higher reactivity than zigzag BNTs, and that this reactivity will further decrease
with increasing radii.

This reactivity, which leads to the formation of intertubular bonds in BNT ropes,
could be very useful when trying to embed BNTs into polymers [175], where strong
chemical bonds between the nanotubes and the polymer matrix are needed in order
to improve the mechanical properties of the composite.

To summarize, we have seen that real BNTs have striking similarities to ideal
BNTs, which are derived from the puckered BS found in Sec. 3.3. This firmly
establishes that the puckered BS is the precursor of BNTs. However, ideal and real
BNTs differ in two points: real BNTs are less symmetric than ideal ones and the
zigzag types can be constricted.

3.4.3 Strain Energy

Let us now compare the cohesive energy of every BNT (Eind
coh from Table 3.4) with

the cohesive energy of the puckered BS (EBS
coh from Table 3.3). This energy difference

23The diagonal bond lengths adiagonal
B−B (which connect the inner and the outer rings) are always

shorter compared to the BS (compare Tables 3.3 and 3.4); we found them to be in the range
adiagonal
B−B ≈ 1.69 − 1.75 Å.
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will be called strain energy:

Estrain(k, l) = EBS
coh − Eind

coh(k, l). (3.19)

It is the amount of energy that is needed to roll up a BS into a BNT. The microscopic
origin of the strain energy in nanotubes are bent σ bonds along the circumferential
direction of the tubes. These bonds have a strong tendency to jump back into a
straight orientation, which generates a tension that may thus be quantified by the
strain energy of the systems. Such a tension will stabilize the tubular shape, or to
put it more clearly: it will make the nanotube round.

The strain energies of different (k, l) BNTs as a function of their mean radii
(Eq. (3.17)) are plotted in Fig. 3.23. For the sake of comparison we also show the
universal strain energy curve for carbon nanotubes. We call it universal because the
strain energy only depends on the radius, but not on the chiral angle (chirality) of
the nanotubes: EC

strain = EC
strain(R).

As the BNTs are all puckered, there is some variability in the proper choice of
a mean tubular radius. Since the strain energy is related to the position of the σ
bonds, it makes sense to define the mean radius of armchair BNTs as

R̄σ =
Rmin

σ +Rmax
σ

2
. (3.20)

Here Rmin
σ and Rmax

σ are the distances of the innermost and the outermost atoms
sharing σ bonds, which is measured from the center of the nanotube.

Boustani et al. [179] studied the elasticity of armchair BNTs with a tight-binding
method and reported a typical strain energy curve lying below the one of carbon
nanotubes.24 Now, using an ab initio method, we also found that armchair BNTs
have strain energy, but the latter is higher than for carbon nanotubes.

Different ideal zigzag BNTs in Fig. 3.23 have rather low strain energies. Here
none of the σ bonds has to be bent, and the strain energy should be caused by
the multi-center bonds. But those ideal BNTs are metastable, and isomers of lower
symmetry have higher cohesive energies. Thus for the zigzag α isomers no strain
energy curve may be plotted. They are more or less isoenergetic. It seems that
zigzag BNTs can release some or all of their strain energy by lowering their symmetry
and undergo internal deformations (see also Ref. [175]), possibly mediated by the
joint-like properties of the multi-center bonds.

In summary we see that the strain energy in BNTs is mainly caused by bent σ
bonds lying entirely (armchair) or only partially (chiral BNTs) along the circumfer-
ential direction. The multi-center bonds are always present, but they seem to have
no serious influence. The apparent absence of strain energy in zigzag BNTs is caused
by the fact that the linear σ bonds lie along the axial direction, only. But without
smoothing bonding strains, the zigzag tubes are free to take a multitude of cross-
sectional morphologies. This explains the number of different isomers that we found
for (9,0), (10,0), and (12,0) zigzag BNTs and their bizarre shapes. The constriction

24In Ref. [179] smooth BNTs and a flat BS were compared.
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Figure 3.23: The strain energy of α isomers as a function of the mean radius R̄
(Eq. (3.17)); for armchair boron nanotubes we used R̄σ (Eq. (3.20)). In orange
(gray) we show the universal strain energy curve for carbon nanotubes (2); the
energy obviously depends on their radii, but not on their chiral angles. For armchair
boron nanotubes (3) we find a similar curve, but those boron tubes have more strain
energy. For zigzag boron nanotubes (△) we cannot really plot a strain energy curve,
as different nanotubes of different radii are almost isoenergetic. Ideal zigzag boron
nanotubes (©) have less strain energy than their armchair counterparts, but they
are metastable.

of zigzag BNT, first reported in Ref. [180], is a clear consequence of the absence
of strained bonds within zigzag BNTs. Armchair BNTs, which are geometrically
stabilized by their strain energy, do not seem to have this kind of isomerism.

Chiral BNTs may be pictured as a certain combination of structural elements
from armchair and zigzag tubes characterized by a chiral angle. Therefore we suppose
that there will be a separate strain energy curve for every chiral angle lying between
the armchair and the zigzag curves. The strain energies themselves will depend on
the radii and on the chiral angle of a BNT: EB

strain = EB
strain(R, θ). This seems to

be a unique property among all nanotubular materials reported so far. A profound
analysis of strain energies in nanotubes will be given in Chapter 4.

But it remains open whether the strain energy of zigzag BNT will be completely
absent, or just significantly smaller than for armchair BNTs. The present results
are in favor of the former hypothesis. As carbon nanotubes with large diameters
(and very small strain energies) are susceptible to a structural collapse [189, 190], it
is possible that without a significant amount of strain energy the zigzag nanotubes
could be geometrically unstable. Given some thermal fluctuations or applied strain
they might collapse just like big diameter carbon nanotubes.

Finally we want to point out that the constriction of zigzag BNTs could be an
important intermediate mechanism during the collapse of a zigzag BNT. It might
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allow for the formation of B12 icosahedra, which are the basic building blocks of
all previously known bulk boron structures. The five-atomic element (see Fig. 3.21)
forms part of an imaginary zigzag 6-ring, similar to the six apex atoms of a B12

icosahedron, as seen along each of its threefold axes. [180]

3.4.4 Summary

Generating BNTs from the BSs by a “cut–and–paste” procedure will generate ideal
BNTs (see Sec. 3.4.1). Because the underlying two-dimensional lattice structure is
rectangular rather than triangular or hexagonal, it follows that the chiral angle θ
ranges from 0◦ to 90◦ (θ = 0◦: zigzag, θ = 90◦: armchair), and that chiral BNTs
do not have an axial translational symmetry. We therefore predict the existence
of helical currents in ideal chiral BNTs. Furthermore we presented a band theory
for ideal BNTs, employing their helical symmetry, and showed that all ideal BNTs
are metallic, irrespective of their radius and chiral angle. BNTs could therefore be
perfect nanowires, superior to carbon nanotubes.

In an independent study of armchair and zigzag BNTs we found that ideal BNTs
are not the ground state of BNTs, and we identified structures of lower symmetry,
which are higher in cohesive energy. The symmetries of real BNTs still remain to be
determined, and the ideal BNTs may be seen as close approximants to real BNTs.

We also found that all BNTs, except small radius armchair types, have puckered
surfaces as well as σ bonds along the armchair direction of the primitive lattice. The
existence and mutual orientation of these σ bonds is crucial for our understanding of
the basic mechanical and energetic properties of BNTs because the strain energy of
the tube is mainly generated by bending those σ bonds. The multi-center bonds seem
to have no effect on the strain energy. They are likely to have joint-like properties
(they are easy to turn but hard to tear), which allows for a certain flexibility of
these bonds, and any bonding strain could immediately be released through internal
relaxations [175].

We showed that armchair BNTs, where the σ bonds lie along the circumferential
direction, have rather high strain energies, whereas zigzag BNTs, where the σ bonds
will lie along their axial directions, have nearly vanishing strain energies. Thus BNTs
have a strain energy that depends on the nanotube’s radius R as well as on the chiral
angle θ: EB

strain = EB
strain(R, θ). We suppose that there is an individual strain energy

curve for every chiral angle lying between the armchair and the zigzag curves. This
is a unique property among all nanotubular materials reported so far.

The rather low strain energies in zigzag BNTs lead to a whole bunch of possible
structural isomers, as a nanotube without any significant amount of strain energy
will not be able to maintain a circular cross section. This can lead to a certain
constriction of zigzag BNTs [180], and we even hypothesize that zigzag BNTs could
be too unstable to really exist out in nature.

Armchair BNTs on the other hand are geometrically stabilized by their strain
energies, but for armchair BNTs of rather small radii, the BNTs are unable to
maintain a puckered structure necessary to align the circumferential σ bonds. In
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agreement with earlier studies [24, 178, 175] we expect them to flatten out and build
up a smooth surface. Furthermore, we hypothesize an enhanced reactivity of small
radius armchair BNTs in comparison to zigzag BNTs, which could be useful for
embedding BNTs into polymers [175].

3.5 Layered Bulk Phases

So far we have shown that the boron sheet (BS) described in Sec. 3.3.3 can be used
to predict the structure, the stability, the electronic, and the mechanical properties
of boron nanotubes. Although it has not been observed in experiment yet, one
might still wonder whether the BS has some further significance beyond its relation
to boron nanotubes. Such a sheet will of course not exist as an isolated object –
multiple sheets will pile up and form stacked bulk arrangements. Further questions
are then: How does such a layered bulk structure look like (Sec. 3.5.2)? What is its
stability in comparison with other bulk phases (Sec. 3.5.3)? Is it dynamically stable
and if yes, is it responsible for the high-pressure superconductivity of elemental boron
(Sec. 3.5.4)?

In this section we will connect the study of layered bulk phases with a general
study of high-pressure boron and its high-pressure superconductivity.

3.5.1 Introduction: High Pressure and Superconductivity

The discovery of high-pressure superconductivity in elemental boron [9] has put
boron into the focus of several experimental and theoretical groups. So far, the
superconductivity is not theoretically understood. The main difficulties are that the
high-pressure phases of boron are only rudimentarily known (see Sec. 3.2.2) and that
the complex crystal structures complicate the theoretical treatment.

Experimental Studies

Up to now, there are only a few studies of high-pressure boron. The most prominent
one is by Eremets et al. [9]. They performed electrical conductivity measurements
under pressures up to 250 GPa and discovered that β–rhombohedral boron trans-
forms from a semiconductor to a superconductor at P = 160 GPa, with Tc = 5 K at
175 GPa and 11.2 K at 250 GPa. The electrical resistance as function of pressure
reduced almost continously from 0 to 160 GPa and stayed constant beyond 160 GPa
(close to the minimum electrical conductivity). Kinks in the resistance at 30, 110,
and 170 GPa could indicate phase transitions or some measurement problems.

Gerlich et al. [191] measured the sound velocities of the R–105 allotrope and
found that the bulk and shear moduli are 205 GPa and 203 GPa, respectively. The
equation of state of R–12 and R–105 boron was measured by Nelmes et al. [11]
up to 5 and 10 GPa, respectively. They determined the the bulk modulus of β-
(185 GPa) and α-rhombohedral boron (224 GPa) using neutron diffraction and x-
ray diffraction, respectively. A phase transition from the β-rhombohedral (R–105)
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to the β-tetragonal (T-192) phase was reported by Ma et al. [12] at P = 10 GPa
and T > 2000 K using x-ray diffraction measurements up to pressures of 30 GPa.
They conjecture that β-tetragonal boron might be the stable phase at both high
temperature and at high pressure. Furthermore they determined the bulk modulus
of β-rhombohedral boron to be 205 GPa. Sanz et al. [13] determined the equation
of state of β-rhombohedral boron up to P = 100 GPa (the bulk modulus is 210
GPa). Under hydrostatic condition they found that β-rhombohedral boron is stable
up to 100 GPa and a transition to an amorphous state occurs at higher pressures.
Under non-hydrostatic condition however they observed the formation of a different
rhombohedral phase at lower pressures.

The partially contradictory results of different groups indicate that there is no
clear picture of the high pressure phases, phase diagram, and properties of boron.
Especially the very interesting superconducting phase has not been experimentally
identified, so far.

Theoretical Studies

Mailhiot et al. [41] performed the first theoretical study of high-pressure phases of
boron using LDA-DFT. They studied the R–12 and several closed packed structures.
Among them they find R–12 → bct → fcc phase transitions at 210 and 360 GPa,
respectively. This study was also the first time where metallic phases of elemental
boron were proposed, as R–12 is semiconducting and the other phases are metallic.
They also report the pressure induced reduction of the band gap in R–12. This
effect was explored in detail by Zhao et al. [39], who found that the band gap of the
R–12 phase decreases continously to zero until 140 GPa (in good agreement with
the experimental onset of metalicity at 160 GPa, though it was observed in the R–
105 phase) and that upon further compression the density of states (DOS) increases
significantly. They found the R–12 → bct phase transition to occur at 270 GPa
and no further phase transition up to 400 GPa. The discrepancy of the transition
pressures can be attributed to the different exchange-correlation functionals used by
Mailhiot (LDA) and Zhao (GGA).

Based on band structure calculations and the rigid-muffin-tin approximation Pa-
paconstantopoulos et al. [42] explain the high-pressure superconductivity of boron
to be based on an electron-phonon mechanism in the fcc phase. But later on it
was shown by Bose et al. [43] that the fcc phase is not dynamically stable at the
relevant pressures, but only at pressures exceeding ∼360 GPa. They further found
that bct boron is dynamically stable at lower pressures but would result in much
higher Tc than what is experimentally observed and, opposite to the experimental
observations, Tc would decrease with pressure. Thus both the fcc and the bct phases
cannot account for the superconductivity in the experimentally observed range, but
given the fcc or bct phases could be synthesized at high pressures, they would exhibit
superconducting transition temperatures ranging from 50 to 100 K.

An important step forward towards the understanding of high-pressure boron
was a study by Häussermann et al. [44] who investigated the relative stabilities
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of R–12, bct, fcc, and boron in the α–gallium structure (α–Ga) using DFT-GGA.
They showed that α–Ga is metallic and thermodynamically more stable than bct
and predict the phase transitions R–12 → α–Ga → fcc at 74 GPa and ∼ 800 GPa,
respectively. Similar results were found by Segal and Arias [45], although they did
not optimize internal parameters of the structures and therefore found α–Ga to be
semiconducting. Besides Häussermann et al. show that the most stable phase of
boron at different pressures is always the one that maximized the degree of sp hy-
bridization. These findings were further elaborated by Ma et al. [46] who calculated
the phonon dispersions and the electron-phonon linewidths of boron in the α–Ga
structure as a function of pressure. They found that it is dynamically stable at high
pressures and exhibits electron-phonon coupling to high frequency phonons. The ob-
served increase of Tc with pressure is also consistent with their results. Hence boron
in the α–Ga structure is the first real candidate to account for the high-pressure
superconductivity.

A different viewpoint is brought into play by Calandra et al. [40]. They studied
the dynamical properties of icosahedral B12C2 and found the following: if a (usually
semiconducting) icosahedral network is hole doped such that the Fermi level is shifted
down into the valence band, a Tc ranging from 20 to 40 K can be expected. This is
caused by electron-phonon coupling to high-frequency phonons that primarily involve
the icosahedral units. As the band gap of R–12, and probably also R–105, closes at
high pressures [39], similar electron-phonon coupling might be expected in elemental
boron. The structure that is responsible for the high-pressure superconductivity
could therefore also be a common phase of elemental boron.

3.5.2 Crystal Structures and Chemical Bonding

As demonstrated above, the main difficulty in interpreting the superconducting data
is closely related to the problem of determining the crystal structure. Hence before
solving the problem of understanding the coupling mechanism for superconductiv-
ity, one has first to solve the problem of determining the crystal structure. As all
candidate phases are still under debate and elemental boron tends to from multiple
allotropes it is not unlikely that further unknown phases exist. Therefore, in the
following we will study five phases: fcc, the α–rhombohedral (R–12) phase, boron in
the α–Ga structure, a new Immm structure, derived from the boron sheet in Sec. 3.3,
and a Fmmm structure, proposed by Boustani et al. [179]. The crystallographic data
of these phases are listed in Tab. 3.5. R–12, boron in the α–Ga structure, and fcc
were found in the theoretical literature to be thermodynamically stable within dif-
ferent pressure ranges (see above and [44, 45]). The high-pressure properties of the
Immm and Fmmm phases are considered here for the first time.

Icosahedral Phases

The icosahedral bulk phases of boron were described in detail in Sec. 3.2.2. Their
fundamental building block is the B12 icosahedron, where each of the 12 atoms is
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Phase Natom Space Group Primitive Vectors Wyckoff Positions

fcc 1/4 Fm3̄m (225) a1 = a/2(0, 1, 1) 4a: B1 = (0, 0, 0)
a2 = a/2(1, 0, 1)
a3 = a/2(1, 1, 0)

R–12 12 R3̄m (166) a1 = (a/(2
√

3),−a/2, c/3) 6h: B1 = (x1, x1, z1)

a2 = (a/(2
√

3), a/2, c/3) 6h: B2 = (x2, x2, z2)

a3 = (−a/
√

3, 0, c/3)

α–Ga 4/8 Cmca (64) a1 = 1/2(a,−b, 0) 8f: B1 = (0, y, z)
a2 = 1/2(a, b, 0)
a3 = (0, 0, c)

Immm 2/4 Immm (71) a1 = 1/2(−a, b, c) 4e: B1 = (0, 0, z)
a2 = 1/2(a,−b, c)
a3 = 1/2(a, b,−c)

Fmmm 4/16 Fmmm (69) a1 = 1/2(0, b, c) 8f: B1 = 1/4(1, 1, 1)
a2 = 1/2(a, 0, c) 8g: B2 = (1/2, 1/2, z)
a3 = 1/2(a, b, 0)

Table 3.5: Crystal structures (phases) of elemental boron that were considered in
this study; the abbreviated names for the phases are defined in Sec. 3.5.2. Natom is
the number of atoms per primitive (first number) and conventional (second number)
unit cell. Only one number is given if both are the same. For the space groups,
the number in parenthesis is defined in Ref. [117]. The Wyckoff positions are given
in units of the conventional lattice vectors (for the R–12 phase the conventional
cell does not exist and the Wyckoff position are defined in units of the primitive
translations).

in the preferred “inverse umbrella” bulk coordination (see Fig. 3.1(a)), i.e., it has 5
bonds within the icosahedron (intraicosahedral) and one external bond to another
icosahedron (intericosahedral). The intraicosahedral bonds are primarily of three–
center character, making up the triangular network of the icosahedron, whereas the
external bonds are normal two–center σ bonds.25 Within the σ bonds the charge
density is more highly concentrated and more localized than within the three-center
bonds. Therefore the charge density distribution ρ(r) and the electron localization
function ELF(r) [169] can be used to detect these bonds. Furthermore the interi-
cosahedral σ bond length is usually the shortest; e.g., our DFT–GGA calculations
of R–12 yield (in perfect agreement with the experiment [113]) ainter

BB = 1.67 and
aintra

BB = 1.74−1.80. Below we will use these three indicators to qualitatively analyze
the bonding of the layered bulk structures.

Although the experimental study of Eremets et al. [9] was based on β–
rhombohedral boron (R–105), we are not able to do calculations of that phase because
a system size of 105 atoms per unit cell (see Sec. 3.2.2) cannot be handled by the

25In this discussion we exclude the intericosahedral three–center bonds that are only present in
α–rhombohedral boron.
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Figure 3.24: The Immm structure which is derived from the puckered boron sheet
of Sec. 3.3.3. (a) Repeated conventional unit cells (green lines) illustrate the atomic
arrangement. (b) Brown charge density contours at 0.9 e/Å3 show the presence of
σ bonds between the two layers A and B. No σ bonds are found within the layers.
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Figure 3.25: The Fmmm structure proposed by Boustani et al. [179] at P = 0 GPa.
(a) The crystal structure in the conventional unit cell (green lines). (b) The brown
features are charge density contours at 0.9 e/Å3 that show inter-layer σ-bonds.

Lmtart program. Therefore we consider the R–12 phase as a representative of the
icosahedral phases.

From Single Sheets to Bulk Layers

In Sec. 3.3 we discussed single boron sheets (BSs) and found that the puckered
BS of Sec. 3.3.3 is a viable structure and considered it to be the boron analog of
a single graphite sheet. If we transfer this model to the bulk domain, the first
question is: How will multiple sheets pile up? To answer it we constructed a number
of bulk models from the puckered BS and optimized their structures. This ruled
out the majority of the models and only one candidate structure remained, which
is shown in Fig. 3.24. It has the space group Immm (the lattice system is body–
centered orthorhombic) and therefore we will call this phase Immm in the following.
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Figure 3.26: The structure of α–gallium is often visualized as 1212... stacking of
planar yz-layers which contain distorted hexagons. The layers have been colored red
(1), green (2), and blue (1). (a) Three conventional unit cells (green boxes) of boron
in the α–gallium structure. (b) A different way of looking at the structure is to think
of it as a stacking of puckered triangular xz-layers (A and B layers), bound to each
other via σ bonds (shown as brown charge density contours at 0.9 e/Å3).

However, all of the calculations below were done in the simple orthorhombic setting
of the conventional unit cell (space group Pmmm, number 47), which is also shown
in Fig. 3.24. The structure can be considered as ABAB... stacking of the puckered
triangular BS from Sec. 3.3.3 but there are no sp σ bonds within the layers anymore,
instead one finds σ bonds of bond length ainter

BB = 1.71 Å between the layers (see
Fig. 3.24(b)); thus the chemical bonding in the Immm phase and in the isolated
BS is different. Each atom is 7-fold coordinated, having six bonds within one layer
(intralayer) and one σ bond that binds to another layer (interlayer). This way each
atom is close to the preferred “inverse umbrella” bulk coordination.

Another model of a layered bulk phase of elemental boron was obtained by Bous-
tani et al. [179] by periodizing the structure of a double–layer B32 cluster [23]. The
structurally optimized system is shown in Fig. 3.25. Its space group is Fmmm (the
lattice system is face–centered orthorhombic) and again we will use this to name the
structure. The unit cell contains two symmetry inequivalent atoms (see Tab. 3.5);
the atoms at the 8g Wyckoff positions are four–fold intralayer and one–fold inter-
layer coordinated and the atoms in the 8f Wyckoff positions have six intralayer bonds
only. In this atomic arrangement none of the atoms is close to the preferred “in-
verse umbrella” bulk coordination. Furthermore, each layer has atypical square–like
“windows”.26 The charge density contours in Fig. 3.25 show that σ bonds are again
only present as interlayer bonds (ainter

BB = 1.69 Å).

In Fig. 3.26 we show boron in the α–Ga structure (orthorhombic base-centered).
There are two ways of looking at this phase. One would be to imagine it as stacking of

26The reader might notice the relatively huge cage–like holes that emerge between the layers. This
way the boron skeleton is reminiscent of the polyhedral networks in the metal borides like MB12.
One might wonder whether transition metal atoms would fit into that holes and possibly stabilize
the structure.
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planar yz–layers which contain distorted hexagons. But this picture greatly neglects
that the primary bonding is between atoms within puckered triangular xz–layers,
where each B atom is six-fold coordinated. A 7th bond of each atom is between two of
these layers and also here it is a σ bond of length ainter

BB = 1.74 Å (see Fig. 3.26(b)).
In this arrangement each atom is close to the preferred “inverse umbrella” bulk
coordination.27

These three structures are very similar. We call them layered because all boron
atoms are primarily coordinated within puckered layers (the intralayer coordination
is six for most of the atoms and the interlayer coordination is one at maximum).
Analysis of the charge density, the ELF, and the bond lengths (see Tab. 3.7) reveal
very similar bonding for all three structures: There are three-center bonds within
the layers and two–center σ bonds between them. This is akin to the bonding in
the icosahedral allotropes, as described above. Thus the bonding scheme of boron
bulk phases may be generalized as follows: A three-center bonded triangular
network of atoms forms basic units (icosahedra or quasiplanar layers) that
are interconnected via σ bonds. A further similarity between the icosahedral and
the layered modifications is that all atoms of the α–Ga structure and the Immm phase
are close to the preferred “inverse umbrella” bulk coordination. The difference is that
the coordination polyhedron is a pentagonal pyramid in the case of an icosahedron
and a hexagonal pyramid for the layers (see Sec. 3.2.1).

Above we have qualitatively shown that the chemical bonding in the bulk layers
and in the icosahedral phases is quite similar. So could layered allotropes of elemental
boron be a viable possibility? To find that out we will now calculate the T = 0 K
phase diagram and study the dynamical properties of these new structures.

3.5.3 Phase Diagram at T = 0 K

To judge the stabilities of the new hypothetical phases Immm and Fmmm with re-
spect to the thermodynamically most stable phases R–12, boron in the α–Ga struc-
ture, and fcc, we calculated their enthalpies H as function of pressure P . Therefor,
we first determined the energy–volume curves of the phases (see Fig. 3.27(a)). In
our treatment the volume is the independent variable. So for a set of fixed atomic
volumes we fully optimized28 each structure and calculated the total energy. These
data points were fitted to the formula

E(V ) = c1 + c2V
−1/3 + c3V

−2/3 + c4V
−1, (3.21)

proposed by Teter et al. [192]. It fits better to E(V ) curves that have a large volume
range than the usual Birch–Murnaghan equation [193] and we see in Fig. 3.27(a)
that the quality of the fit is indeed excellent. The pressure, as in Fig. 3.27(b), is

27It is interesting to note that the structure of α–Ga is equivalent to the one of black phosphorus,
although the chemical bonding is fundamentally different.

28A full optimization means that all lattice parameters as well as all atomic positions are opti-
mized.
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Figure 3.27: The equation of state of the five structures that were investigated.
(a) Calculated total energies as function of volume. The circles are calculated data
points and the lines are fits according to Eq. 3.21. (b) Atomic volume as function of
pressure determined from an inversion of Eq. 3.22. (c) The enthalpies of the phases
(Eq. 3.23) as function of pressure relative to R–12 (zero line). The phase with the
lowest enthalpy is the most stable one. Consequently, we find the phase transitions
R–12 → α–Ga → fcc at 43 GPa and 619 GPa, respectively. The dashed line is the
relative enthalpy of R–105 determined from literature values of E0 [134], V0, B0, B

′
0

[13] (see text).
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Phase fcc R–12 α–Ga Immm Fmmm

V0 (Å3/atom) 5.903 7.288 6.432 6.758 7.703
E0 (eV/atom) 1.176 0.000 0.192 0.327 0.197
B0 (GPa) 267 214 262 230 208
B′

0 3.72 3.46 3.37 3.38 2.77

Table 3.6: The calculated equilibrium data for all structures. V0 is the atomic
volume, E0 is the binding energy per atom relative to the energy of the R–12 phase,
B0 is the bulk modulus, and B′

0 the pressure derivative of the bulk modulus. All
values are taken at P = 0 GPa.

then determined from

P (V ) = −∂E(V )

∂V
, (3.22)

and the enthalpy is given by

H = E + PV. (3.23)

In Fig. 3.27(c) we present the enthalpies of the considered phases relative to R-12.
At zero temperature and at a given pressure the thermodynamically most favorable
phase is the one with the lowest enthalpy. In agreement with earlier studies [44, 45]
we find that with increasing pressure (up to 800 GPa) the phase transitions R–12 →
α–Ga → fcc occur. The bct phase, studied by Mailhiot et al., Bose et al., and others
[41, 43], is thermodynamically less stable than α–Ga over the whole range of pres-
sures. That is why we do not consider the bct phase here. The transition pressures
are 43 and 619 GPa, respectively. The pseudopotential DFT–GGA calculations of
Häussermann et al. [44] obtained transition pressures of 74 GPa and 790 GPa, which
qualitatively agrees with our results.

The equilibrium properties of the allotropes, which are the atomic volume V0,
the atomic energy E0, the bulk modulus B0, and the pressure derivative of the bulk
modulus B′

0, are given in Table 3.6. The values were extracted from the E(V ) fits
according to equation 3.21.29 Literature values for R–12 are V0 = 7.341 Å3/atom,
B0 = 213 GPa (x–ray measurements [11]), and B′

0 = 3.5 (DFT–LDA calculations
[13]) which agree very well with our results. The alpha–Ga phase was studied by Ma
et al. [46] with pseudopotential calculations (V0 = 6.240 Å3/atom, B0 = 265 GPa
and B′

0 = 3.26). Our FP–LMTO results, including the structural parameters given
in Tab. 3.7, agree well with theirs.

An analysis of the two contributions E(P ) and PV (P ) to the enthalpy as function
of pressure reveals that for P 6= 0 the PV term is dominating and thus primarily
drives the different phase transitions.

29The equilibrium condition P = 0 applied to Eqn. 3.22 defines the atomic volume V0 and
the atomic energy E0 as the minimum of a E(V ) curve. The bulk modulus is given by B0 =
−V0(∂P/∂V )V0

, and the pressure derivative of the bulk modulus is B′
0 = (∂B/∂P )P=0.
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The fcc phase has the smallest volume at all pressures (see V (P ) in Fig. 3.27(b)).
Therefore P · V (P ) increases the least under compression and this lowers the rela-
tive enthalpy more as compared to the other structures. This is clearly visible in
Fig. 3.27(c) where the negative slope of fcc is the steepest of all phases. But its high
atomic energy at equilibrium (1.176 eV/atom with respect to R–12, see Tab. 3.6)
prevents it from being thermodynamically favorable until 619 GPa. The opposite
case is R–12, which has big atomic volumes at all pressures, causing the PV term
to increase the most among the phases. This quickly overcomes its low equilibrium
energy and makes R–12 unfavorable at high pressures. The Fmmm structure is simi-
lar, but at high pressures it can lower its atomic volume more than the other phases.
Nevertheless it possesses a rather high energy there (see Fig. 3.27(a)), so the PV
term alone cannot stabilize the phase. At ambient conditions boron in the α–Ga
structure and the Immm phase have relatively low energies and atomic volumes that
are intermediate between R-12 and fcc. This combination causes them to have low
relative enthalpies within an intermediate pressure range. So at high pressures below
600 GPa layered phases of boron are thermodynamically favorable. This is the most
striking result of our phase diagram analysis.

For qualitative comparison we also show the relative enthalpy of β–rhombohedral
boron (R–105) in Fig. 3.27(c). The curve was determined by inserting recent lit-
erature values of E0 (calculated [134]), V0, B0, B

′
0 (measured [13]) into a Birch–

Murnaghan equation of state [193]. As already discussed in Sec. 3.2.2 we see that
R–105 is less stable than R–12 and that its instability increases further under com-
pression. This is likely to be caused by its high atomic volume of V0 = 7.685
Å3/atom.

Overall the phase diagram can be summarized as follows: At low pressures (P <
100 GPa) the icosahedral phases are stable, at extreme pressures (P > 600 GPa)
fcc is present and in the intermediate range the α–Ga structure, a layered phase of
elemental boron, is thermodynamically favorable.

How do these theoretical results compare to the high–pressure experiments dis-
cussed in Section 3.5.1? First of all it is important to note that that majority of
the experiments use the metastable R–105 as starting material [11, 9, 12, 13] and
not R–12, which is difficult to obtain in good quality (the only study that uses R–12
is the one by Nelmes et al. [11]). In the phase diagram the R–105 curve intersects
with α–Ga at 23 GPa and with Immm at 67 GPa. So below 100 GPa one could
expect up to three different phase transitions. But within that pressure range, at
room temperature and under hydrostatic conditions R–105 was found to be stable
[13]. These experimental findings do not mean that R–12, α–Ga, and Immm are not
thermodynamically more favorable, it only means that in practice R–105 is a very
stable structure and the theoretical phase transitions do not necessarily take place in
the experiment. To support this point further let us consider that even at ambient
conditions boron does not tend to occupy the ground state structure, instead several
metastable phases (as described in Sec. 3.2.2) can exists. This is the reason why the
thermodynamic ground state is unknown up to now. So the pronounced polymor-
phism of boron makes it quite difficult to relate our theoretical phase diagram to the
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Phase α–Ga Immm Fmmm
Pressure (GPa) 0 210 0 210 0 210

V /V0 1.000 0.667 1.000 0.646 1.000 0.605

a (Å) 2.934 2.580 2.775 2.314 3.404 2.956
b (Å) 5.313 4.651 1.865 1.624 5.339 5.103
c (Å) 3.259 2.824 5.155 4.584 6.652 4.849

y 0.154 0.157 – – – –
z 0.090 0.086 0.169 0.170 0.127 0.153

ainter
BB (Å) 1.74 1.54 1.71 1.51 1.69 1.48

1.80 1.59 1.87 1.61 1.70 1.48
aintra

BB (Å) 1.88 1.63 1.88 1.62 1.78 1.55
1.92 1.66 – – 2.36 1.75

Table 3.7: Structural data for the three phases that were examined in detail at P = 0
and P = 210 GPa. The equilibrium volume V0 is given in Tab. 3.6. a, b, c are the
lattice constants and y and z are the internal parameters as defined in Tab. 3.5. ainter

BB

is the bond length between two layers (interlayer) and aintra
BB are the bond lengths

within the triangular layers (intralayer). All parameters correspond to theoretical
energy minima, obtained from structural optimizations. The independent variable
in our calculations is the atomic volume V (not the pressure).

experiment.

Let us further note that all phases that we consider are metallic except the semi-
conducting R–12 and R–105. Consequently, the theoretical R–12/R–105 → α–Ga
transition below 50 GPa (see Fig. 3.27(c)) would correspond to a semiconductor–
metal transformation. However, experimentally such a transformation was not re-
ported below 160 GPa [9] and there is only one theoretical transition pressure that
falls into that range: It is the R–12 → Immm transformation at 134 GPa. This
poses the Immm phase as a candidate to explain the superconductivity of boron
under high pressure.

3.5.4 Electronic Structure, Phononic Structure, and Superconduc-

tivity

The primary outcome of the phase diagram study in the last section is, that within
a pressure range of 100 GPa < P < 600 GPa the α–Ga structure, a layered phase of
elemental boron, is thermodynamically favorable. This is exactly the range where
superconductivity in boron was observed and that is why the layered phases are
likely to be responsible for this effect.

This section is dedicated to the study of electronic and vibrational properties of
α–Ga, Immm, and Fmmm in connection with superconductivity. We will consider
two pressures: P=0 and P=210 GPa. The second one was chosen to lie well within
the range where superconductivity was experimentally observed. Moreover, the dy-



102 CHAPTER 3. NOVEL PHASES OF ELEMENTAL BORON

namical stability of the layered structures still has to be shown before they can be
considered as high–pressure allotropes of boron. The structural parameters of the
three phases are given in Tab. 3.7. They were obtained by geometry optimizations
as described in Sec. 3.2.4.

Icosahedral Phases

Before we study the layered allotropes let us briefly discuss results on R–12 and
R–105 and their possible implications for the high–pressure superconductivity.

Measurements by Eremets et al. [9] showed that R–105 transforms from a semi-
conductor at P=0 to a (bad) metal at P=160 GPa; the electrical resistance conti-
nously reduces with pressure until 160 GPa and stays constant beyond that point.
The continuous reduction of the resistance is consistent with the theoretical finding
that the band gap in R–12 gradually reduces under compression [41, 39, 44] until it
finally closes at about 140 GPa [39].30 Our calculations on R–12 clearly confirm that
trend. A similar behavior was found in R–105 [39] although no precise determination
of the metalization pressure exists, yet. Calandra et al. [40] studied the dynamical
properties of icosahedral B12C2 and found the following: if a (usually semiconduct-
ing) icosahedral network is hole doped such that the Fermi level is shifted down into
the valence band, a Tc ranging from 20 to 40 K can be expected. As compression
of elemental boron also leads to a metalization, similar electron-phonon coupling
could be expected, if the electronic structure at the Fermi level is similar in the two
cases. So there are strong indications that a common phase of elemental boron, just
as R–12 or R–105, could be responsible for the high-pressure superconductivity. A
study of the electron–phonon coupling in compressed R–12 or R–105 is beyond the
scope of this work but should surely be addressed in the future.

The α–Gallium Structure

Boron in the the α–Ga structure was first shown to be thermodynamically favorable
at high–pressures by Häussermann et al. [44] and Segal et al. [45]. It was then studied
in detail by Ma et al. [46] who calculated structural, electronic, and vibrational
properties, as well as the electron–phonon coupling as function of pressure with
pseudopotential DFT-GGA calculations. They found that it is is always metallic,
dynamically stable at high pressures, and exhibits electron-phonon coupling to high
frequency phonons. The observed increase of Tc with pressure is also consistent
with their work. Their results at P = 215 GPa compare very well with ours at
P = 210 GPa concerning the structure (see Tab. 3.7), density of states (DOS),
band structure, and phonon dispersion.31 We also obtained good agreement for

30Note that DFT usually underestimates band gaps. His shifts the theoretical metalization point
to lower pressures.

31The Z−T and Γ−Y directions in Ma et al. [46] and our band structures and phonon dispersion
plots are different because they chose the points T = T2 and Y = Y2 to be in the second Brillouin
zone, while in our plots T = T1 and Y = Y1 are in the first Brillouin zone.
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Figure 3.28: The electronic density of states (DOS) of boron in the α–Ga structure
at P = 0 and P = 210 GPa. The Fermi energy εF is set equal to zero.

the linewidth dispersion, except along the Γ-Z direction; the discrepancies will be
discussed below.

Electronic Structure The electronic density of states (DOS) and the band struc-
tures at the two pressures are given in Figs. 3.28 and 3.29. The two plots reflect the
typical pressure broadening of the band structure which is caused by the reduction of
the interatomic distances. But besides that there is surprisingly little pressure evolu-
tion. At the Fermi level the DOS has a global minimum, which can be an indication
of structural stability. Its magnitude is reduced with pressure, i.e., D(εF ) = 0.040
and 0.027 states/eV/atom at P = 0 and 210 GPa, respectively. The value of D(εF )
is very small indicating that boron in the α–Gallium structure is a semimetal and
that its Fermi surface (FS), as shown in Fig. 3.30, has relatively small volume. This
has some technical implications, as a small (and also flat in our case) FS needs a very
fine k–point sampling in the Brillouin zone in order to resolve its highly localized
features. Later on we will see that this issue leads to some convergence problems for
the calculation of phonon linewidths. The orbital character of the band structure
in Fig. 3.29 indicates that s states are primarily present in the lowest two bands,
where they hybridize with p states (visible for example along the Z − T or S − R
directions). Overall the bands are dispersed throughout the different directions of
the Brillouin zone (BZ) showing that the electronic system is fully three-dimensional
and that boron in the α–Gallium structure is layered only in a geometrical sense (see
Sec. 3.5.2). At the Fermi level we primarily find p states except at 0 GPa, where
along the T − Y direction there is some s character right at εF; at 210 GPa this
band is shifted to higher energies. While generally the bands are dispersive in all
directions, the FS only exits in a small area around the ky − kz plane. Similar to
the whole band structure it exhibits surprisingly little pressure evolution. It consists
of a big part centered around the Γ point that is hole-like and parts around the
Y point and tubular features that are electron-like. To understand the results on
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Figure 3.29: The band structures of boron in the α–Ga structure at P = 0 GPa and
P = 210 GPa. The width of the bands is proportional to their orbital character; red
correspond to s and green to p character. The Fermi energy is set equal to zero (blue
line). The position of the special points within the first Brillouin zone is shown in
Fig. 3.30.
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Figure 3.30: The Fermi surfaces of boron in the α–Ga structure at (a) P = 0 GPa
and (b) P = 210 GPa within the first Brillouin zone (black lines). The position of
the special points that are used in the band structure plots in Figs. 3.29 and 3.31
are also shown.

electron–phonon coupling, that will be discussed below, let us consider the nesting
of the FS. The so called nesting function

χq =
∑

knn′

δ(εkn − εF)δ(εk+qn′ − εF) ∝
∑

nn′

∮

L

dLk

|vkn × vk+qn′ |

quantifies the available phase space for electron scattering across the FS (see also
Eq. 2.60). It is the closed line integral over the intersections Lk of an undisplaced FS
and one that is displaced by the vector q; vkn is the Fermi velocity. In our case χq

will be non–zero only for q vectors close to and within the qy − qz plane, because the
flat shape of the FS restricts possible intersections to that region. At 210 GPa the
band structure at εF has a flat band along Γ–Z. This is reflected in the central part
of the FS being extremely thin and flat along that direction and the Fermi velocity is
also lowest there (not shown). χq will have big values for q vectors along Γ–Z, close
to Γ, because the flat part of the displaced FS will strongly overlap with the flat
part of the undisplaced one and the small and also parallel Fermi velocity vectors
will further enhance χq. This effect is akin to the strong nesting of the cylindrical
FS sheets of MgB2 for q vectors along the Γ−A (qz) direction [194, 195]. At 0 GPa
this flat band is shifted up in energy (relative to the Fermi level) and the FS is also
not completely flat along Γ–Z. Consequently we do not find enhanced FS nesting
along Γ–Z anymore. The features around the Y point, which looked like “half a
disk” at 210 GPa, have a star-like morphology at 0 GPa, i.e., it is more extended
along Y − T . The upper and lower bulges along that direction are the only parts
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mode Γ+
2 Γ−

2 Γ−
1 Γ+

1 Γ+
3 Γ−

4 Γ+
3 Γ+

4 Γ+
1

mode B1g B1u Au Ag B3g B2u B3g B2g Ag

activity R IR - R R IR R R R
ωΓν (0) 39 51 71 81 82 101 104 109 120
ωΓν (210) 99 66 128 124 137 165 162 181 183

Table 3.8: The optical Γ point phonon frequencies ωΓν of boron in the α–Ga structure
at 0 and 210 GPa in meV, their symmetries (first row: convention of Miller and Love
[196], second row: spectroscopic labels) and spectroscopic activity (R = Raman
active, IR = infrared active).

of the FS that have s character. There will be considerable nesting between these
bulges and the central part of the FS for q vectors close to Y , because these parts
are equal in size and nearly parallel resulting in collinear Fermi velocities that make
the integrand in Eq. 2.60 singular. To summarize, the FS nesting function χq has a
very sharp q dependence, it is non–zero only for q vectors close to and within the
qy − qz plane, at 0 GPa it peaks in the vicinity of the Y point, and at 210 GPa along
Γ–Z, close to Γ.

Phononic Structure The phonon dispersions along directions in the qy−qz plane
are given in Fig. 3.31 for P = 0 and 210 GPa. At both pressures we do not find any
imaginary frequencies which shows that boron in the α–Ga structure is dynamically
stable over a broad pressure range. In contrast to the electronic bands the phonon
dispersion exhibits a strong pressure evolution. This is also visible in phonon density
of states F (ω) in the right-hand panels of Fig. 3.31 which, in addition to the usual
pressure broadening, exhibits clear changes of its shape.

The phononic structure was calculated on a 43 and subsequently on a 63 q–point
mesh and is relatively well represented on the 63 mesh, i.e., F (ω) is not smooth
but the position and size of basic features are not changed when going from 43

to 63. The latter mesh was used to make Fig. 3.31, where there are only four
data points along each special line in Fig. 3.31. The spline-interpolated connections
between the points have been found by analyzing the phonon eigenmodes and their
symmetry. The phonon symmetry labels that are given at the special points and
along selected special lines in Fig. 3.31 are the q/k–point irreducible representations
according to the convention of Miller and Love [196]. For example the acoustic
modes at the Γ point have the symmetries Γ−

3 , Γ−
2 , and Γ−

4 , or the low frequency
mode at the Y point at 0 GPa has the symmetry Y −

3 . The usual spectroscopic
labels (point group irreducible representations) at the Γ point are given in Tab. 3.8
for the optical frequencies together with their Raman and infrared activity. The table
indicates that many modes are Raman active and that Raman scattering could be
used to experimentally identify the α–Ga structure at high pressures and to verify
our calculations.
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Figure 3.31: Phonons and electron–phonon coupling of boron in the α–Ga structure
at 0 GPa and 210 GPa. Left–hand panels: Phonon dispersion ω(q). The area of
the red circles is proportional to the mode coupling constant λqν . The symmetry of
the phonons is given at special points/lines. Right–hand panels: phonon density of
states F (ω) (black line) and Eliashberg Function α2F (ω) (red and blue lines).
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(b) P = 210 GPa

Figure 3.32: Phonon modes with strong electron–phonon coupling of boron in the
α–Ga structure at (a) 0 GPa and (b) 210 GPa. The black arrows on top of the
equilibrium structure indicate the atomic displacement pattern. The repeated green
lined boxes are the phonon commensurate conventional supercells. For Γ and Y point
phonons the cells are identical to the conventional unit cells as shown in Fig. 3.26,
for the Z1 phonon the cell is twice as big (and only one cell is shown).
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Pressure q–mesh ωlog ω1 ω2 λ Tc (µ∗ = 0.13) Tc (µ∗ = 0.20)

0 43 342 440 553 1.06 22.7 15.2
63 382 467 571 0.60 6.1 1.9

210 43 1162 1289 1393 0.22 0.0 0.0
63 1039 1208 1358 0.53 9.7 1.9

Table 3.9: Parameters of the Eliashberg function α2F (ω) and Tc of boron in the
α–Ga structure evaluated on different q–meshes. The pressure is in GPa and Tc

and the coupling–weighted phonon moments ωlog, ω1, ω2 are in K. λ is the total
coupling constant and Tc is estimated using the McMillan equation (Eq. 2.67) with
two different values for the Coulomb pseudopotential µ∗. All quantities are defined
in Secs. 2.4.3 and 2.4.4.

Electron–Phonon Coupling Phonon modes that couple to electrons are indi-
cated in Fig. 3.31, where the area of the red circles is proportional to the mode
coupling constant λqν (see Eq. 2.63). In the right-hand panels of the same figure
the Eliashberg function α2F (ω) (see Eq. 2.64) is plotted in red. In the discussion
above we found that the nesting function χq is non–zero only for q vectors close to
and within the qy − qz plane. This is due to the flat shape of the FS. Consequently
the mode coupling constants (and the phonon linewidths) will be zero outside that
region. Thus the shape of the FS gives rise to electron–phonon coupling that is
confined to phonons within (or close to) the qy − qz plane of the BZ. Therefore, in
Fig. 3.31, we only plot the phonon dispersion along directions that are within that
plane. Different parameters that characterize α2F (ω), calculated on the two q–point
meshes that were considered, are given in Tab. 3.9. While at the two pressures
the coupling–weighted phonon moments ωlog, ω1, ω2 are converged to within ±12%,
±6%, and ±3%, respectively, the total coupling constants λ change significantly and
show that the convergence with respect to the q-mesh is not sufficient. The very
sharp q–dependence of the FS nesting function χq makes it necessary to sample
q–space very accurately in order to describe the system correctly. This effect was
encountered for many systems before, for example in compressed lithium [56, 57].

P = 210 GPa At P = 210 GPa the only contributions to electron–phonon
coupling within the BZ come from phonons along Γ−Z (Λ direction) and Γ−Y (∆
direction), where λq =

∑

ν λqν ∼ 1. But most of all there is very strong coupling
to all phonons of Λ1 symmetry close to the Gamma point (the big red dots along
Λ), i.e., in a very small area of q-space. This can again be traced back the the FS
nesting that is very strong in that region (see discussion above). On the 63 q-mesh
(used to make Fig. 3.31) the point q = (0, 0, 1/6) is the only one that falls into that
region, while on the 43 mesh this region is not sampled at all. This explains why
λ increases that strongly upon refining the q-mesh (see Tab. 3.9). The four strong
peaks in α2F (ω) all come from that single q–point. If this point is excluded, as done
in the blue line in the lower right part of Fig. 3.31, the peaks disappear and the total
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coupling is only 0.15. This would actually be too small to induce superconductivity.
In a calculation on a 123 q-mesh along Λ only, we found that the linewidths of
the three strongly coupling optical Λ1 modes increase the more we come close to Γ
and the one of the acoustic mode decreases. The decreasing coupling of the latter
mode is physically reasonable as coupling to an acoustic mode at the Γ point is not
possible. In the theoretical framework that we are using, we are unfortunately not
able to determine the Γ point couplings, since the nesting function is singular there
and Eq. 2.61 is ill-defined,32 but it is very likely that electron-phonon coupling is
strongest there. At the zone center the three strongly coupling optical Λ1 phonons
become two Raman active Γ+

1 (Ag) modes and one infrared active Γ−
2 (B1u) mode

(see Tab. 3.8). Their displacement patterns are shown in Fig. 3.32(b). All modes
correspond to intralayer distortions: The y elongations in Γ−

2 leave the interplanar
distance fixed and the low and high frequency Γ+

1 modes corresponds to distortions
along z and y, respectively.

We conclude that any significant contributions to electron–phonon coupling in
boron in the α–Ga structure come from Γ point and Λ phonons that are close to Γ.
In order to make quantitative statements about superconductivity this very small
region of q–space must be sampled very carefully by q–meshes much finer than 63.

The linewidths that we obtained in the strongly coupling region have extreme
values: At q = (0, 0, 1/6) and (0, 0, 1/12) the linewidths of the two high frequency
Λ1 phonons are γ6 = 25 and 36 meV and γ12 = 58 and 117 meV, respectively. As
these values are about 20−60% of the actual phonon frequency, it would imply that
the nearly free particle picture for the phonons breaks down. This is quite unlikely.
Therefore we checked the convergence with respect to the k-mesh representing the
electronic structure of the equilibrium system in the linear response calculations
(used to determine the electron-phonon matrix elements and the FS nesting func-
tion). All calculations on boron in the α–Ga structure were done on a 483 k–mesh,
which is the very best we could technically do with Lmtart. On that mesh the
linewidths are usually converged better than 15%, which is not accurate but accept-
able, but they are not at all converged in the region of very strong coupling, where
the relative error reaches up to 75%. We conclude that the extreme linewidths are
numerical artefacts of an improper representation of the electronic structure that is
unable to resolve the very strong FS nesting along Λ. Thus in order to make reliable
statements about electron–phonon coupling in boron in the α–Ga structure it is not
only necessary to increase the precision in q–space but also in k–space. As these
calculations are very expensive, we have to postpone them to the future. However,
the numerical problems that we encounter here are not new and the slow convergence
of the FS nesting function with respect to the k–point sampling for regions of very
strong nesting is a problem that might also be overcome by analytical treatments
(see Kong et al. [194] or Dolgov et al. [195]).

Finally, let us compare our results at P = 210 GPa with the ones by Ma et al. [46]

32We checked that the usual Γ point divergence of the nesting function limq→0 χq = ∞ (see
Sec. 2.4.3) is not responsible for the increase of the linewidths.
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at 215 GPa. As mentioned above, we obtained excellent agreement for the structural,
electronic and phononic properties but we have some disagreement concerning the
results on electron–phonon coupling. First, in the Eliashberg functions only the
positions of the two high–frequency peaks agree, whereas the overall shapes are
quite different. Second, the order of magnitude of our linewidths at P = 210 GPa
compares well with the values Ma et al. give at 160 GPa, but we find very strong
differences along Γ−Z. The source of the disagreement is clearly that our linewidths,
determined by using the unbiased tetrahedron method, are not converged along that
direction, but it is either not clear whether their linewidths are converged (which were
calculated with a smearing method). Third, at the zone center the low frequency
optical phonon mode that couples strongly is Γ−

2 (B1u) in our calculations, while Ma
et al. find that it is Γ+

2 (B1g). Furthermore, they only use a 4× 3× 4 q-mesh, which
we showed to be too coarse to provide reasonable results for α2F (ω) and λ.

To summarize, neither the study of Ma et al. nor our study can decide whether
boron in the α–Ga structure is responsible for the measured Tc = 9 K superconduc-
tivity of elemental boron at P = 210 GPa. This is due to the sharp q–dependence of
the FS nesting function that requires very fine sampling of the phonon and electron
BZs and none of this was achieved so far. Nevertheless, the qualitative picture of
Ma et al. can be verified by our analysis and the values for Tc in Tab. 3.9 show that
the strong electron–phonon coupling to Γ point and Λ phonons (close to Γ) should
lead to a measurable superconductivity.

P = 0 GPa It is very interesting that boron in the α–Ga structure is dynam-
ically stable even at P = 0. As its cohesive energy is 0.19 eV higher than the one of
R–12 or 0.16 eV higher than R–105 we predict that this phase is stable at ambient
conditions.33 Furthermore, Fig. 3.31 reveals that there are much more strongly cou-
pling phonons than at 210 GPa and within the qy − qz plane almost every phonon
has λq ≥ 1. This explains why we find much more softened34 phonon branches at
P = 0 than at 210 GPa and why the pressure evolution of the phononic structure is
relatively strong. Due to the disappearance of the flat electronic band at εF along
the Γ − Z direction, the FS nesting is not extreme anymore and the coupling there
is as strong as in the rest of the qy − qz plane.

The system exhibits large coupling to a strongly softened optical branch (H2,
Y −

3 , ∆4 in Fig. 3.31) in an area close to the Y –point, which is highest at Y and
decreases the more we get away from Y . This again can be ascribed to the FS nesting
as discussed above. This effect generates the broad plateau in α2F (ω) in the low
frequency range between 20 and 50 meV. At the Y point ωY −

3
= 16 meV, γY −

3
= 2.2

meV, and λY −
3

= 33.3, i.e., the linewidth is about 14% of the frequency. However,

all linewidths are smaller than 4 meV and we assume that they are converged with

33Mind that the difference in cohesive energy between the two forms of carbon, graphite and
diamond, is 0.2 eV [197], i.e., it is even bigger than here.

34The frequency of so called softened phonons is reduced due to strong electron–phonon interac-
tions. This phonon softening is a manifestation of the interaction–induced renormalization of the
quasiparticle energies (phonon frequencies).
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respect to the k–point sampling (again, we used a 483 k–mesh). As λ scales with
1/ω2 (see Eq. 2.63), the small phonon frequency is the mathematical reason why
lambda is so big. The atomic displacement pattern of the Y −

3 mode is shown in
Fig. 3.32(a). Again it corresponds to intralayer distortions that leave the interplanar
distance fixed. It is interesting that the very strong coupling (and softening) to the
Y −

3 phonon is reduced with pressure. At 210 GPa no significant coupling exists
anymore.

The peak in α2F (ω) at ω = 79 meV is caused by two degenerate Z1 phonons
with λZ1 = 2.5 and γZ1 = 3.9 meV. The latter is the biggest linewidth at P = 0 and
γZ1/ωZ1 is only 5%. Figure 3.32(a) shows the atomic elongations that correspond to
these Z1 modes. They are again intralayer distortions, the interlayer distance is not
fixed now and primarily undergoes bond rotations.

At both pressures we have seen that the phonon modes that couple strongly to
electrons are associated with distortions that do not necessarily involve stretching of
the interlayer σ bonds, e.g., Y −

3 and Γ−
2 leave it fixed. We therefore do not find any

significant similarities between the mechanism of electron–phonon coupling in boron
in the α–Ga structure and in MgB2.

Overall we observe a drastic change in electron–phonon coupling at the two con-
sidered pressures. This drastic change is also visible in the two Eliashberg functions
α2F (ω) in Fig. 3.31, whose shapes are totally different. While at P = 210 the cou-
pling is confined to a very small region in q–space (which requires very accurate BZ
sampling), at 0 GPa the coupling is strong in the whole qy − qz plane and varies
weakly with q. We therefore believe that the q–mesh of 63 is representative for
this system and the the values given in Tab. 3.9 are good estimates for λ and Tc.
The relatively big jump in λ when changing from 43 to 63 q sampling is caused by
overweighting the contributions of the Y point on the 43-mesh. To summarize, we
predict that boron the α–Ga structure is likely to exist at ambient conditions where
it would be a Tc = 2 to 6 K conventional superconductor.

The Immm Structure

All calculations of the Immm structure were done in the simple orthorhombic setting
of the conventional unit cell (space group Pmmm).

The electronic densities of states (DOS) and band structures at P = 0 and
210 GPa are shown in Fig. 3.33 and 3.34, respectively. Besides the broadening
of the bands we again observe relatively little pressure evolution in the electronic
structure. As in boron in the α–Ga structure, the states at εF primarily have p
character but there are more states at the Fermi level now, i.e., D(εF ) = 0.137 and
0.097 states/eV/atom at P = 0 and 210 GPa, respectively. And again the bands
are dispersive along the different directions of the Brillouin zone (BZ) showing that
the electronic system is fully three-dimensional and that the Immm structure is
layered only in a geometrical sense (see Sec. 3.5.2). At P = 0 there is one band
along Γ − Y and along S −X1 that touches εF in a hole-like fashion. At 210 GPa
the dispersion of four bands is totally flat near εF and along S − R. Two bands
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Figure 3.33: The electronic density of states (DOS) of the Immm structure at P = 0
and P = 210 GPa. The Fermi energy εF is set equal to zero.

��

���

�

�

��

���

���

���

��

��

��

� �� 	 
�	 � 
 �
�

� �� 	 
�	 � 
 �
�



�

�

�

��

���

���

���

��

��

��
��������� �����������

�
�
��
�
�
��
��
�

Figure 3.34: The band structures of the Immm structure at P = 0 GPa and P =
210 GPa. The width of the bands is proportional to their orbital character; red
correspond to s and green to p character. The Fermi energy is set equal to zero
(blue line). The position of the special points within the first Brillouin zone is shown
in Fig. 3.36.
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Figure 3.35: Phonons of boron in the Immm structure at 0 GPa and 210 GPa. Left–
hand panels: Phonon dispersion ω(q) along lines of symmetry. Negative frequencies
represent imaginary frequencies. Right–hand panels: phonon density of states F (ω).
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Figure 3.36: The fist Brillouin zone of the Immm structure and the position of the
special points (black dots) and the selected directions (orange) for the band structure
plots in Figs. 3.34 and 3.35.
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Figure 3.37: The Eliashberg function α2F (ω) of boron in the Immm structure at 0
GPa, evaluated on different q and k meshes.
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have p character and are exactly at the Fermi level, while the other two have s
character and are slightly higher in energy. These flat bands cause the DOS to jump
at εF . Such a peak can be sign of a structural instability. And indeed a look at
the phonon dispersion in Fig. 3.35 shows that at 210 GPa one (transverse) acoustic
phonon brach along Γ− Y is imaginary.35 Thus the Immm structure is dynamically
unstable at that pressure. At 0 GPa we only find a single imaginary frequency in the
phonon BZ. It is a transverse acoustic mode at the point q = (1/8, 0, 0) along Γ−X.
This point-like instability could indicate that a superstructure, modulated by the
vector q = (1/8, 0, 0), is lower in energy (more stable) than the current structure.
Such a system would contain 32 atoms per conventional unit cell. Comparing the two
pressures we see that different phonon branches are imaginary. This strongly suggest
that at an intermediate pressure there will be no imaginary frequencies anymore and
the Immm structure might be fully stable. Besides the usual pressure hardening the
phonon dispersions exhibit a very strong pressure evolution. This is clearly visible
in the phonon DOS in the right–hand part of Fig. 3.35 whose overall shape is very
different at the two pressures and the phononic band gap at P = 0 and about
100 meV is closed at the second pressure. The phonon DOS also indicates that the
number of imaginary modes is very small in both cases. We conclude that the Immm
structure appears to be close to a stable structure and further investigations have to
be done.

The phononic structure was calculated on a 4 × 6 × 2 and subsequently on a
8 × 6 × 4 q–point mesh and is well represented on the latter one, i.e., the functions
F (ω) evaluated on both meshes agree qualitatively. The finer mesh was used to
generate Fig. 3.35 and the spline-interpolated connections between the individual
data points (black dots) have been found by analyzing the phonon eigenmodes.

Since the Immm structure is dynamically unstable at the two pressures, we do
not study the electron–phonon coupling in detail but rather present general results
of the P = 0 case. The Eliashberg functions in Fig. 3.37 were evaluated on different
q–point and k–point meshes. The k–meshes represent the electronic structure of
the unperturbed system in the linear response calculations, this includes the all–
important Fermi surface and the nesting function. In general, the convergence of
α2F (ω) is reasonable, except in the high–frequency end where the different numerical
parameters lead to varying results. The strong electron–phonon coupling to high–
frequency modes involves relatively big phonon linewidths reaching up to 21 meV.
But again we face the problem that the linewidths are not converged with respect to
the k–point sampling. When changing the k–mesh from 32× 48× 16 to 48× 72× 24
individual linewidths were corrected by up to several hundred percent and only very
few modes were converged better than 15%. However the BZ averaging seems to
cancel out many of these huge errors and, except for the high–frequency range,
α2F (ω) seems to be reasonably converged. The values in Tab. 3.10 are calculated
from α2F (ω) and show that a superconducting transition temperature of 7 to 16

35On the 8 × 6 × 4 q–mesh only the points q = (0, 1/6, 0), (0, 1/3, 0), and (1/8, 1/3, 0) have one

imaginary frequency.
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q–mesh ωlog ω1 ω2 λ Tc (µ∗ = 0.13) Tc (µ∗ = 0.20)

4 × 6 × 2 764 821 877 0.70 20.5 9.0
8 × 6 × 4 677 755 827 0.68 16.2 6.6

Table 3.10: Parameters of the Eliashberg function α2F (ω) and Tc of the Immm
structure at P = 0 GPa, evaluated on different q–meshes (the k–mesh is 48×72×24).
Tc and the coupling–weighted phonon moments ωlog, ω1, ω2 are in K. λ is the total
coupling constant and Tc is estimated using the McMillan equation (Eq. 2.67) with
two different values for the Coulomb pseudopotential µ∗. All quantities are defined
in Secs. 2.4.3 and 2.4.4.
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Figure 3.38: The (a) electronic and (b) phononic density of states (DOS) of boron
in the Fmmm structure at P = 0 and P = 210 GPa. The Fermi energy εF in (a) is
set to zero. Negative frequencies in (b) represent imaginary frequencies.

K can be expected. The above described numerical inaccuracies are not likely to
dramatically alter this fundamental result.

To summarize, boron in the Immm structure is dynamically unstable at P = 0
and 210 GPa. But as different phonon breaches are imaginary in the two cases, we
expect the phase to be stable at intermediate pressures. At P = 0 we only find a
single imaginary frequency throughout the BZ. This could indicate that a modulated
superstructure is actually stable. Ignoring the instability at ambient conditions the
system would be a 7 to 16 K conventional superconductor. The present results are
already quite promising and and further investigations on the Immm phase should
be done.

The Fmmm Structure

The electron and phonon DOS36 of boron in the Fmmm structure are given in
Fig. 3.38. The system would be metallic both at 0 and 210 GPa but a look at
the phonons shows that the phase is dynamically unstable as there are a significant
number of imaginary frequencies. This strong instability at both pressures indicates

36The phonon DOS was evaluated on a 53 q–mesh.
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that the Fmmm structure can be ruled out as a possible allotrope of elemental boron
at ambient and at high pressures.

Its instability can be explained by a violation of a basic structural rule for ele-
mental boron. That is, the Fmmm phase is the only one of the three layered phases
under consideration where the atoms are not close to the preferred “inverse um-
brella” bulk coordination. This was discussed in detail in Sec. 3.5.2. Furthermore,
Immm is thermodynamically unfavored as shown in Sec. 3.5.3.

3.5.5 Summary

In section 3.5 we studied different bulk phases of elemental boron: fcc, α–
rhombohedral, α–Ga, Immm, and Fmmm. All of them are metallic, except α–
rhombohedral boron which is a semiconductor at ambient conditions. The phases
α–Ga, Immm, and Fmmm were studied in detail. We called them “layered” be-
cause the boron atoms are primarily coordinated within quasiplanar layers and have
at most one bond connecting two of these layers. The Immm phase is a simple
ABAB. . . stacking of the boron sheet studied in Sec. 3.3.3 and Fmmm was proposed
by Boustani et al. [179]. Both systems can be seen as an extension of the Boustani
Aufbau principle (introduced in Sec. 3.2.1) to the bulk domain.

Within the quasiplanar layers the atoms are held together by three–center bonds,
and between them by two–center σ bonds. We showed that boron can reach its
preferred “inverse umbrella” bulk coordination in the α–Ga and Immm structures
where the basic bonding is akin to the one in the icosahedral phases. This allows to
define the following generalized picture of the chemical bonding in boron solids: A
three-center bonded triangular network of boron atoms forms basic units (icosahedra
or quasiplanar layers) that are interconnected via σ bonds.

A calculation of the T = 0 K phase diagram of the five considered phases showed
that the layered structures α–Ga and Immm are thermodynamically favorable at
pressures between 100 and 600 GPa. This is exactly the range where high–pressure
superconductivity was experimentally observed. Below 100 GPa the common icosa-
hedral phases are favored and above 600 GPa closed packed systems are stable. In
agreement with earlier studies we found that with increasing pressure (up to 800
GPa) the phase R–12, α–Ga, and fcc are thermodynamically most favored, with
theoretical phase transitions occurring at 43 and 619 GPa, respectively.

Because of their potential to explain the high–pressure superconductivity of ele-
mental boron the electronic and phononic structure as well as the electron–phonon
coupling of the layered phases were studied in detail.

The electronic band structures of boron in the α–Ga structure and the Immm
phase exhibit very little pressure evolution, except the usual pressure broadening.
The states at the Fermi surfaces primarily have p–orbital character and the bands
are fully three-dimensional, which shows that both structures are “layered” only in
a geometrical sense.

Boron in the α–Ga structure is dynamically stable at the two considered pressures
P = 0 and 210 GPa. As its Fermi surface only exits in a small area around the ky−kz
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plane of the electron Brillouin zone electron–phonon coupling is restricted to phonons
within the qy − qz plane of the phonon Brillouin zone. At 210 GPa any significant
contributions to electron–phonon coupling come from a very small region of q–space,
i.e., the Γ point and the Γ − Z directions close to Γ. But neither this nor an earlier
study [46] can decide whether boron in the α–Ga structure is responsible for the
measured Tc = 9 K superconductivity of elemental boron at P = 210 GPa. This is
due to the sharp q–dependence of the Fermi surface nesting function that requires
very fine sampling of the phonon and electron Brillouin zones and none of this was
achieved so far. Nevertheless, both studies show that the strong electron–phonon
coupling at 210 GPa should lead to a measurable superconductivity. At P = 0 GPa
we found strong electron–phonon coupling within the whole qy − qz plane of the
phonon Brillouin zone and particularly strong coupling to a Y −

3 optical phonon (at
the Y point). In contrast to the 210 GPa case the numerical parameters seem to
be converged and we predict that boron in the α–Ga structure could not only be
stable at ambient conditions but also a Tc = 2 to 6 K conventional superconductor.
Finally, our study showed that the electron–phonon coupling at the two considered
pressures is drastically different.

Boron in the Immm structure is not dynamically stable at P = 0 and 210 GPa.
But as different phonon branches are imaginary in the two cases, we expect the phase
to be stable at intermediate pressures. At P = 0 we only find a single imaginary
frequency throughout the BZ. This could indicate that a modulated superstructure
is actually stable. Ignoring the instability at ambient conditions the system would
be a 7 to 16 K conventional superconductor. The present results are already quite
promising and and further investigations on the Immm phase should be done.

The Fmmm structure it thermodynamically unfavored and dynamically unstable.
It can therefore be ruled out as a possible allotrope of elemental boron at ambient
and high pressures. Its instability can be explained by an unfavorable coordination
of the boron atoms and its relatively big atomic volume.

3.6 Summary and Conclusions

This chapter was dedicated to the study of novel phases of elemental boron. Our
approach was based on the Boustani Aufbau principle that was introduced in Sec. 3.2.
The Aufbau principle is very general scheme that predicts several classes of novel
boron materials going far beyond the known icosahedral phases. Sections 3.3 and
3.4 studied boron sheets and boron nanotubes and Sec. 3.5 attempted to extend the
ideas of Aufbau principle to the bulk domain.

First, we examined a number of different structure models for broad boron sheets
(BSs) in Sec. 3.3. All of them are metallic, and we found that for a 16 atom supercell,
the model with a simple up–and–down puckering is be the most stable one. Its
chemical bonding can be put into the following preliminary picture: on the one
hand the sheet is held together by homogeneous multi-center bonds, on the other
hand there are linear sp hybridized σ bonds exclusively lying along the armchair
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direction of the sheet. The rather anisotropic bond properties of the sheets lead
to different elastic moduli Cx and Cy for stretching the BS in the x and in the y
direction. Furthermore puckering of the BS may be understood as a key mechanism
to stabilize the sp σ bonds. Our results indicate that the sheet analyzed in this
study is the boron analog of a single graphene sheet, a possible precursor of boron
nanotubes (BNTs).

Constructing BNTs from the BSs by a “cut–and–paste” procedure will generate
ideal BNTs. Because the underlying two-dimensional lattice structure is rectangular
rather than triangular or hexagonal, it follows that the chiral angle θ ranges from 0◦

to 90◦ (θ = 0◦: zigzag, θ = 90◦: armchair), and that chiral BNTs do not have an axial
translational symmetry. We therefore predict the existence of helical currents in ideal
chiral BNTs. Furthermore we presented a band theory for ideal BNTs, employing
their helical symmetry, and showed that all ideal BNTs are metallic, irrespective of
their radius and chiral angle. BNTs could therefore be perfect nanowires, superior
to carbon nanotubes.

In an independent study of armchair and zigzag BNTs we found that ideal BNTs
do not represent the ground state of BNTs, and we identified structures of lower sym-
metry, which are higher in cohesive energy. The symmetries of real BNTs still remain
to be determined, and the ideal BNTs may be seen as rather close approximants to
real BNTs. We also found that all BNTs, except small radius armchair types, have
puckered surfaces, and σ bonds along the armchair direction of the primitive lattice.
The existence and mutual orientation of these σ bonds is crucial to understand the
basic mechanical and energetic properties of BNTs because the strain energy of the
tube is mainly generated by bending those σ bonds. The multi-center bonds seem to
have no real effect on the strain energy. They are likely to have joint-like properties
(they are easy to turn but hard to tear), which allows for a certain flexibility of
these bonds, and any bonding strain could immediately be released through internal
relaxations. We showed that armchair BNTs, where the σ bonds lie along the cir-
cumferential direction, will have rather high strain energies, whereas zigzag BNTs,
where the σ bonds will lie along their axial directions, will have nearly vanishing
strain energies. Thus BNTs have a strain energy that depends on the nanotube’s
radius R as well as on the chiral angle θ: EB

strain = EB
strain(R, θ). We suppose that

there is an individual strain energy curve for every chiral angle lying between the
armchair and the zigzag curves. This is a unique property among all nanotubular
materials reported so far. The rather low strain energies in zigzag BNTs lead to a
whole bunch of possible structural isomers, as a nanotube without any significant
amount of strain energy will not be able to maintain a circular cross section. This
can lead to a certain constriction of zigzag BNTs, and we even hypothesize that
zigzag BNTs could be too unstable to really exist out in nature. Armchair BNTs on
the other hand are geometrically stabilized by their strain energies, but for armchair
BNTs of rather small radii, the BNTs are unable to maintain a puckered structure
necessary to align the circumferential σ bonds. In agreement with earlier studies we
expect them to flatten out and build up a smooth surface. Furthermore, we hypoth-
esize an enhanced reactivity of small radius armchair BNTs in comparison to zigzag
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BNTs, which could be useful for embedding BNTs into polymers.
The above findings define a consistent picture of boron sheets and boron nan-

otubes and unify former studies on these materials into a generalized theory. How-
ever, while writing up this thesis the field of boron nanomaterials has evolved further.
Szwacki et al. [33] proposed a model for a particularly stable spherical cluster (boron
fullerene) and based on our theory and this fullerene model Tang et al. [198] and
Yang et al. [199] proposed improved models for boron sheets and boron nanotubes.
Overall the field has received considerable attention in the media as recent articles
in scientific newspapers [200, 201, 202, 203, 204, 205] reveal.

In Sec. 3.5 we extended the ideas of the Boustani Aufbau principle to the bulk
domain and asked whether layered bulk phases, similar to graphite, may also exist
for boron. Our study then tried to approach the following questions: What do such
layered bulk structures look like? What is their stability in comparison with other
bulk phases? Are they dynamically stable and if yes, are they responsible for the
high–pressure superconductivity of elemental boron?

In order to approach these question we studied different bulk phases: fcc, α–
rhombohedral, α–gallium, Immm, and Fmmm. All of them are metallic, except α–
rhombohedral boron which is a semiconductor at ambient conditions. The phases α–
Ga, Immm, and Fmmm were studied in detail. We called them “layered” because the
boron atoms are primarily coordinated within quasiplanar layers and have at most
one bond connecting two of these layers. The Immm phase is a simple ABAB. . .
stacking of the broad boron sheet described above and Fmmm was proposed by
Boustani et al.

Within the quasiplanar layers the atoms are held together by three–center bonds,
and between them by two–center σ bonds. We showed that boron can reach its
preferred “inverse umbrella” bulk coordination in the α–Ga and Immm structures
where the basic bonding is akin to the one in the icosahedral phases. This allowed to
define the following generalized picture of the chemical bonding in boron solids: A
three-center bonded triangular network of boron atoms forms basic units (icosahedra
or quasiplanar layers) that are interconnected via σ bonds.

A calculation of the T = 0 K phase diagram of the five considered phases showed
that the layered α–Ga structure is thermodynamically favorable at pressures between
100 and 600 GPa. This is exactly the range where high–pressure superconductivity
was experimentally observed. Below 100 GPa the common icosahedral phases are
favored and above 600 GPa fcc boron is stable. In agreement with earlier studies we
found that with increasing pressure (up to 800 GPa) the phase R–12, α–Ga, and fcc
are thermodynamically most favored, with theoretical phase transitions occurring at
43 and 619 GPa, respectively.

Because of their potential to explain the high–pressure superconductivity of ele-
mental boron the electronic and phononic structure as well as the electron–phonon
coupling of the layered phases were studied in detail.

The states at the Fermi surfaces primarily have p–orbital character and the elec-
tronic band structures of boron in the α–Ga structure and the Immm phase are
fully three-dimensional, which shows that both structures are “layered” only in a
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geometrical sense.
Boron in the α–Ga structure is dynamically stable at the two considered pressures

P = 0 and 210 GPa. As its Fermi surface only exits in a small area around the ky−kz

plane of the electron Brillouin zone electron–phonon coupling is restricted to phonons
within the qy − qz plane of the phonon Brillouin zone. At 210 GPa any significant
contributions to electron–phonon coupling come from a very small region of q–space,
i.e., the Γ point and the Γ − Z directions close to Γ. But neither this nor an earlier
study [46] can decide whether boron in the α–Ga structure is responsible for the
measured Tc = 9 K superconductivity of elemental boron at P = 210 GPa. This is
due to the sharp q–dependence of the Fermi surface nesting function that requires
very fine sampling of the phonon and electron Brillouin zones and none of this was
achieved so far. Nevertheless, both studies show that the strong electron–phonon
coupling at 210 GPa should lead to a measurable superconductivity. At P = 0 GPa
we found strong electron–phonon coupling within the whole qy − qz plane of the
phonon Brillouin zone and particularly strong coupling to a Y −

3 optical phonon (at
the Y point). In contrast to the 210 GPa case the numerical parameters seem to
be converged and we predict that boron in the α–Ga structure is not only stable at
ambient conditions but also a Tc = 2 to 6 K conventional superconductor.

Boron in the Immm structure is dynamically unstable at P = 0 and 210 GPa. But
we expect the phase to be stable at intermediate pressures. Stability might also be
achieved at P = 0 by a modulated superstructure. At ambient conditions the system
would be a 7 to 16 K conventional superconductor if we ignore the slight instability.
The present results are already quite promising and and further investigations on
the Immm phase should be done.

The Fmmm structure is thermodynamically unfavored and dynamically unstable.
It can therefore be ruled out as a possible allotrope of elemental boron at ambient
and high pressures.

We conclude that novel metallic bulk phases of boron, different from the known
icosahedral phases, are likely to exist at elevated pressures or even at ambient condi-
tions. Furthermore, there are strong indications that these phases are conventional
superconductors with considerable high superconducting transition temperatures.
However, the present results are not able to unravel the origin of the experimentally
reported high–pressure superconductivity in elemental boron.

3.7 Outlook

Our findings in Secs. 3.3 and 3.4 led to a consistent picture of boron sheets and boron
nanotubes and unified former studies on these materials into a generalized theory.
At present the field of boron nanomaterials is evolving rapidly. Our results on the
bulk systems in Sec. 3.5 only partially allow to draw a generalized picture and raise
some further questions.

• The electronic structure and the chemical bonding of the elemental phases of
boron should be analyzed in more detail. Multi–center bonding is a very inter-
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esting phenomenon which was hardly ever studied in bulk systems and simple
orbital–based descriptions are needed. Furthermore, the subtile interplay be-
tween two–center and three–center bonding in elemental boron, which leads to
complex crystal structures and novel nanostructures, lacks proper understand-
ing and poses many questions to theory.

• There are several indications that a common phase of elemental boron, just as
R–12 or R–105, could also be responsible for the observed high-pressure su-
perconductivity. Therefore, studying electron–phonon coupling in compressed
icosahedral phases should be addressed.

• In order to put the yet qualitative results for boron in the α–Ga structure at
high–pressure to a quantitative level the q–point sampling should be refined.

• The slow convergence of the FS nesting function with respect to the k–point
sampling for regions of very strong nesting, appears to be a severe problem.
We encountered this for the Immm and the α–Ga structure in the form of
unconverged electron–phonon linewidths. As the morphology of the FS is not
simple, it is not clear whether analytical treatments are viable here.

• The pressure dependence of the electron–phonon coupling and the supercon-
ducting transition temperature should be studied in more detail by considering
more pressure points (atomic volumes) for all systems.

• The Immm structure is dynamically unstable at P = 0 and 210 GPa. But it
appears to be close to points of stability. Therefore, a superstructure or inter-
mediate pressures should be considered to stabilize the phase. Furthermore,
the geometrical connections between the very stable α–Ga and the Immm
structure could be studied.
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Chapter 4

Structure Control of Nanotubes

The success of future nanotechnologies will strongly depend on our ability to control
the structure of materials on the atomic scale. For carbon nanotubes it turns out
that one of their structural parameters – the chirality – may not be controlled during
synthesis. In this chapter we explain the basic reason for this defect and show
that novel classes of nanotubes, which are related to sheets with anisotropic in–
plane mechanical properties (e.g. boron nanotubes, see Chapter 3), could actually
overcome these problems. Our results further suggest that extended searches for
nanotubular materials similar to pure boron might allow for one of the simplest and
most direct ways to achieve structure control within nanotechnology.

4.1 Introduction

Carbon nanotubes (CNTs) [2] are certainly the most prominent member of a whole
family of nanotubular materials with technologically interesting properties like WS2

[206], BN [207, 208] or the recently discovered pure boron nanotubes [24, 25, 21]. In
general the electronic and mechanical properties of single walled nanotubes depend
quite strongly on their structure, which may be characterized by two parameters:
the radius R and the chiral angle θ (chirality). One usually encodes R and θ by two
integers (n,m) referring to the basis vectors of the underlying primitive lattice [29].
Unfortunately, it turns out that for the standard synthesis of CNTs one may achieve
some control over their radii [31, 30, 32, 209], but little control over their chiralities,
which implies that in general, there is little control over the properties of the end
products of the synthesis. As CNTs may be either metallic or semiconducting,
depending on their radii and chiralities [29], this poor structure control will also imply
a rather poor control over the electronic properties of CNTs. And for nanotubular
systems other than carbon, we are not necessarily facing a better situation.
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4.2 Strain Energy

The strain energy of a nanotube is defined as

Estrain = Esheet −ENT(R, θ), (4.1)

where Esheet and ENT are the cohesive energies [75] of the sheet and the tube,
respectively. Estrain can be understood in the following ways: it quantifies

1. the difference in cohesive/total energy among different (R, θ) nanotubes,

2. the deformation (curvature) energy per atom, which is necessary to roll up a
single sheet into a nanotube of certain radius R and chiral angle θ, and

3. it is is a measure of the mechanical tension of a nanotube. This tension sta-
bilizes the tubular shape (it makes the tube round), and it is also responsible
for radial breathing mode vibrations.

4.2.1 Carbon Nanotubes

For CNTs the strain energy refers to a graphene sheet and, as shown in Fig. 4.1(a)
and discussed in textbooks [210, 29], the strain energy effectively depends on the
radius R, but not on the chirality: Estrain = Estrain(R) = C/R2 (in Fig. 4.1(a) C
= 2.178 eV Å2). This radial dependence is easy to understand: the radius is just a
measure for the curvature of a CNT, and the smaller the radius is the more energy
is needed to bent a graphene sheet. But why is the strain energy independent of chi-
rality? This behavior may be attributed to the nearly isotropic in-plane mechanical
properties of the graphene sheet, as quantified by its elastic moduli for stretching
and bending. For example, the elastic constants C11 and C22 are the same, due to
a hexagonal symmetry of the honeycomb lattice [29]. Therefore, when stretching a
graphene sheet along different in-plane lattice directions, one will observe the same
stiffness. From a chemical point of view this mechanical isotropy is caused by a
hexagonal network of stiff sp2 σ bonds, as shown in Fig. 4.2(a). Thus when rolling
up a graphene sheet along different in-plane directions (chiral angles) to form various
nanotubes with similar radii, this process will require similar deformation energies.
Therefore Estrain will be independent of the chirality of the CNT. This mechanical
behavior is analogous to a simple sheet of paper that is rolled up to form a tube.
This process will require little energy for big radii, and it is becoming more and more
costly with decreasing radii. But due to the isotropic in-plane mechanical properties
of the paper sheet, the energy needed to roll up a paper tube is independent of the
roll up direction (chiral angle). A similar behavior is also known for BN, BC3 [211],
or MoS2 [212] nanotubes.
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Figure 4.1: Calculated strain energies for different (n,m) carbon nanotubes (carbon
NT) and (k, l) boron nanotubes (BNT) (see Chapter 3). (a) The strain energies
of carbon nanotubes with different chiral angles can be described by a single curve
(orange/grey), which is just a function of the tubular radius. Armchair (0,m) and
zigzag (n, 0) boron nanotubes instead have two distinct strain energy curves (black).
(b) The black curves for armchair and zigzag boron nanotubes are taken from (a),
while the orange (grey) curves illustrate other chiral angles θ. The blue, horizontal
line shows that the reaction conditions of the synthesis define a certain energy range
for the resulting nanotubes, and the vertical line indicates how, e.g., template ma-
terials limit the radii of the nanotubes. Where both lines intersect nanotubes with
similar radii and chiralities could be synthesized (see text).



128 CHAPTER 4. STRUCTURE CONTROL OF NANOTUBES

(a)

�
��
�
�
�
��

������

(b)

�
��
�
�
�
��

������

Figure 4.2: Sigma bonds in (a) graphite and (b) boron sheets. The black balls and
sticks in (a) and (b) represent the atomic lattice. The orange (grey) charge density
contours at (a) 1.8 and (b) 0.9 e/Å3 show the presence of sp2 and sp type σ bonds,
respectively.

4.2.2 Boron Nanotubes

In Chapter 3 we found that the lattice structure of a boron sheet is rectangular rather
than hexagonal, and therefore the chiral angle θ of BNTs ranges from 0◦ to 90◦, in
contrast to 0◦ to 30◦ known for CNTs. Thus BNTs and CNTs relate to reference
lattices of different symmetry, and therefore one has to use different chiral indices
for CNTs and BNTs. In the following we use (n,m) for CNTs and (k, l) for BNTs.
Furthermore, the boron sheet has anisotropic in-plane mechanical properties, where
the ratio between the elastic constants C11 and C22 was calculated to be C22/C11 ∼ 2,
(see Chapter 3: C11 = 420 GPa, C22 = 870 GPa). Fig. 4.2(b) shows that the boron
sheet has parallel linear chains of stiff sp σ bonds lying along the sheet’s armchair
direction, whereas along the zigzag direction, one finds softer bonds of three center
character [213] (not shown in Fig. Fig. 4.2(b)). Therefore, stretching the sheet
along its armchair direction (involving C22) will be much harder than stretching it
along its zigzag direction (involving C11). Similarly, bending the sheet along the
armchair direction, which involves bending of rather stiff σ bonds, will take more
energy (strain energy) than bending the BNTs along their zigzag direction, where
no σ bonds will be affected. This is quite evident from Fig. 4.1(a), where we show
that armchair BNTs have high strain energies, whereas zigzag BNTs have nearly
vanishing strain energies. Thus the strain energies of BNTs depend on their radii
and their chiral angles: Estrain = Estrain(R, θ). For the whole range of chiral angles
(0◦ < θ < 90◦) we expect individual strain energy curves located between both
extremes, as illustrated in Fig. 4.1(b). Thus the boron sheet will basically behave
like a piece of cloth that is reinforced along one direction with parallel chains of
stiffeners (the σ bonds). Bending the cloth along the lines of stiffeners (armchair
direction) takes significantly more energy than bending the cloth perpendicular to
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Figure 4.3: The distribution of nanotube radii as reported by Iijima et al. [30]. The
distribution forms a well peaked bell-shaped curve that can be shifted or broadened
by the specific reaction conditions of the synthesis.

it (zigzag direction).

In Chapter 3 we further predicted that BNTs are always metallic, independent
of their radii and chiralies. The Fermi surface of the boron sheet has some well
pronounced contours in the 2D Brillouin zone (see Fig. 3.14), and backfolding of
the Fermi surface into the 1D Brillouin zone of a BNT is possible for any radius
and any chirality. For graphene, on the other hand, the Fermi surface just exists
at the K points of the Brillouin zone, and backfolding of these special points into
the 1D Brillouin zone of a (n,m) CNT is possible, but only if (n −m) turns out to
be a multiple of 3 [29]. Thus for CNTs their electronic properties (semiconducting
versus metallic) vary quite strongly with radius and chiral angle, but their energies
are independent of chirality. BNTs are just the opposite, in the sense that their
electronic properties will not depend on the structure type, but their total energies
actually do.

4.3 Structure Control

The spectrum of nanotube radii obtained during a synthesis of CNTs (see Fig.4.3)
will depend on the specific reaction conditions (temperature, pressure, catalyst, reac-
tion gas, etc.), and it can be shifted and/or broadened by changing these conditions.
Nevertheless, the CNT chiralities remain random and rather uncontrollable. This
was demonstrated by Iijima et al., Bethune et al., and Journet et al. [30, 31, 32],
who were all synthesizing single-walled CNTs using the arc-discharge method, but
due to different reaction conditions, they reported different mean diameters of 1.0,
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1.2, and 1.4 nm, respectively. Furthermore they note that the chiral angles vary
quite strongly for a given tube diameter. These observations can be explained if
we assume that the reaction conditions of the synthesis primarily influence the total
energy of the synthesized nanotubes. In other words the reaction conditions will
determine a certain energy range for the resulting nanotubes, and by virtue of the
E = E(R) dependence of CNTs (see Fig. 4.1(a)) this energy range fixes a certain
range of radii, but leaves the chirality totally unspecified. In contrast to this, the
energies of nanotubes like BNTs, which are derived from a sheet with anisotropic
in-plane mechanical properties, will strongly depend on their chiralities and radii
E = E(R, θ), and the reaction conditions will influence both structural parameters.
Such a behavior might ultimately allow for better structure control among nan-
otubular materials, because now the different chiral angles should be energetically
separable and thus experimentally accessible.

As for the radii of the nanotubes, the former may be controlled by growing the
nanotubes out of porous materials with well defined pore sizes [21, 209]. And their
energies (strain energies) may be controlled by tuning the reaction conditions. Thus
after limiting the ranges of radii and strain energies, it should be possible to actually
synthesize a rather narrow range of nanotubes with similar radii and chiralities (see
Fig. 4.1(b)), or even one specific type of nanotube, only.

4.4 Summary

In summary, we have proposed a different route to achieve control over the structure
of nanotubes. By analyzing the unfavorable case of CNTs, we have shown that
the current inability to control the chirality of nanotubes is caused by isotropic in-
plane mechanical properties of the related graphene sheets, leading to isoenergetic
nanotubes with similar radius, but a whole range of different chiral angles. This
“degeneracy” is lifted for nanotubes that are derived from a reference sheet with
anisotropic in-plane mechanical properties. As demonstrated for the case of BNTs,
this anisotropy will make the different chiral angles energetically separable, and
this should be experimentally accessible. Generally speaking, it might actually pay
to supplement current efforts to achieve a higher degree of structural control over
nanotubular materials by a systematic search for nanotubular systems, which are
related to sheets with anisotropic in-plane mechanical properties. Short segments
of such materials may then serve as templates to handle less controllable materials
such as CNTs, where the template will impress radius and chirality through stable
intramolecular heterojunctions, as shown in [214].



Chapter 5

The Enatom Method

5.1 Introduction

The idea to describe condensed matter as a collection of (generalized) atoms dates
back to to the ancient Greek atomists1 and remains a powerful concept in modern
solid state physics, reflected in site-based models, atomic orbital computational ap-
proaches, and a resurgence of interest in Wannier functions. A different starting
point for the description of solids is the homogeneous electron gas, where the atomic
nature is ignored at first and brought in later to account for the reality of a real
solid. These are the two traditional viewpoints of condensed matter physics.

The first example how the total density n(r) and the total electronic potential
v(r) of a solid can be separated into atomic contributions was provided by the neutral
pseudoatom concept of Ziman [216]. In the limit of weak pseudopotentials, this
approach describes a nearly–free–electron solid by overlapping atomic contributions.
It is however strongly restricted by the limitation to weak pseudopotentials, which
applies only to the alkali metals and may not give satisfactory results even there.
The auxiliary neutral atom by Dagens is defined on the basis of a change in density
(with zero net charge) that is induced by a screened potential in jellium [217]. This
approach was inspired by density functional theory and solved numerically for Li
and Na, but the author did not address the overlapping of such entities. In the
work of Streitenberger a generalized pseudoatom model is introduced which extends
the pseudoatom concept of Ziman to inhomogeneous electron–ion systems for simple
metals [218]. The model is based on linear–response theory in the density functional
framework and it is applied to a metal surface.

5.1.1 Theoretical Background

Three decades ago Ball introduced a generalized pseudoatom density decomposition
concept that applies to any solid [50, 51]. It is this specification that we follow in
this chapter. The development of the broad pseudoatom concept and the terminol-

1Often ascribed to Democritus, ca. 430 B.C. See, for example [215]
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ogy (pseudoatom; auxiliary neutral atom; generalized pseudoatom; quasi-atom) has
a long history, and the term pseudoatom also means ‘atom described by a pseu-
dopotential’ and ‘phantom atom to tie off dangling bonds’, as well as many other
applications, as a literature search will readily reveal. It will therefore be useful to
introduce unambiguous language in the following: instead of using the generalized
pseudoatom terminology of Ball we introduce the term enatom.2 It should be clari-
fied that Ball’s pseudoatom has nothing to do with any pseudopotential (a common
use of the term).

For any reference position of atoms, the (vector) first-order change in charge den-
sity upon displacing one atom at Rj from its equilibrium position R0

j , i.e., the linear
response to displacement, can be separated into its irrotational and divergenceless
components

∂n(r)

∂Rj
≡ ∇jn(r) (5.1)

= −∇ρj(r − Ro
j) + ∇× Bj(r − Ro

j);

here n(r) is the charge density of the system. An immediate result is a pair of
remarkable sum rules [50]. (i) The lattice sum of the rigid density3 ρj(r−Ro

j) gives
an exact decomposition of the crystal charge density into atomic contributions:

∑

j

ρj(r − Ro
j) = n(r). (5.2)

(ii) The lattice sum of the deformation density (or “backflow”) ∇ × Bj(r − Ro
j)

vanishes identically:

∑

j

∇× Bj(r − Ro
j) = 0. (5.3)

This strong constraint reflects that this nonrigid density is a cooperative effect of
neighboring atoms, which nevertheless can be broken down uniquely into individual
atomic contributions. Clearly atoms that are equivalent by symmetry have identical
ρj and Bj; an elemental solid with one atom per primitive cell only has one of each.

This cooperative origin (a solid state effect) of the deformation density can be
understood by considering that an atom, embedded in a jellium background, would
have no deformation density. In fact, if the density is n(r) when the atom is at the
origin, then by translational symmetry the density is n(r − Rj) when the atom is
located at Rj . Therefore ∇jn(r) = −∇ρj(r) and there is no nonrigid contribution.
Furthermore, within standard treatments (such as the local density approximation)
ρj(r) is spherical, because the atom is embedded in an isotropic environment. Thus
the deformation density and the anisotropy of the rigid density arise solely from

2Greek: ‘en’ denotes within or inside; ‘atom’ denotes indivisible part. Therefore ‘enatom’ con-
notes the indivisible part inside a system.

3Our definition of the rigid part ρ is predominantly positive [like n(r)] and differs in sign from
the convention of Ball [50].
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the inhomogeneity of the system, i.e., by neighboring atoms. The other extreme is
represented by a covalent solid, which is held together by strong directional bonds.
The rigid density will be highly non-spherical, and the deformation density will be
comparatively large, reflecting the fact that when an atom moves its bonding is
disrupted.

To first order in displacements from the reference point δRj = Rj−Ro
j (typically

the equilibrium lattice), the density is given by [50]

n(r; {Rj}) =
∑

j

[ρj(r − Ro
j − δRj) (5.4)

+δRj · ∇ × Bj(r − Ro
j)].

The quantity inside the sum is the enatom of atom j and moves rigidly with the
nucleus to first order. (The ~Ro

j in the argument of ~Bj can be replaced by ~Rj without
changing the expression to first order.) Analogous decomposition and sum rules
apply to the potential v(r) [219]:

v(r; {Rj}) =
∑

j

[Vj(r − Ro
j − δRj) (5.5)

+δRj · ∇ × Wj(r − Ro
j)].

Since ρ,B and V,W are first order quantities, the changes in density and potential4

can be related by linear response theory [219]. The deformation arises only from
off-diagonal components of the dielectric matrix ε(q + G,q + G′), i.e., deviation of
ε(r, r′) from the ε(r − r′) form.

Equation (5.4) allows for a transparent interpretation of the quantities ρj and
∇ × Bj . The total charge density n(r; {Rj}) of a system of displaced atoms is
constructed from the charge densities ρj(r − Ro

j − δRj) that move rigidly with the
atoms upon displacement, plus a second part ∇ × Bj(r − Ro

j) that describes how
the charge density deforms due to nuclear displacement.

It is important to keep in mind that, although the rigid enatom density (potential)
is a specified decomposition of the crystal analog, it does not arise simply from
screening of the pseudopotential (which is the case in weak pseudopotential theory).
It is intrinsically a dynamically determined quantity, involving only linear response.
Specifically, the enatom potential arises from a screened displaced (pseudo)potential

∇jv = ε−1∇jvps, (5.6)

while the enatom density arises from the linear change in wave functions (see also
Eq. 2.37)

∇jn = 2

(

2Re
occ
∑

kn

ψ∗
kn∇jψkn

)

. (5.7)

4The fields B and W are only defined up to a gauge transformation: B → B + ∇φ leads to
the same physical deformation density for any scalar ‘potential’ φ. Nevertheless, it makes sense to
specify B and W uniquely (up to a constant) by requiring it to be divergenceless. The Helmholtz
prescription provides this divergenceless field [219].
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which can be obtained from first-order perturbation theory. (The first factor of 2 is
for spin.)

A related quantity is the atomic deformation potential ∇jǫkn (change in any band

energy due to displacement of the atom at ~Rj), given from perturbation theory by

∇jǫkn = 〈kn|∇jv|kn〉 (5.8)

in terms of enatom quantities. Khan and Allen showed the relation of this defor-
mation potential to electron-phonon matrix elements [220]. Resurgent interest in
electron-phonon coupled superconductivity has led to the suggestion by Moussa and
Cohen that this quantity may provide insight into strong coupling [221].

Although Ball was the first to introduce the enatom decomposition and begin
to make use of it, the importance of ∇jn(r) had been recognized earlier. Sham
emphasized its essence in the formulation of lattice dynamics, related it to the shift
in potential by the density response function [222], and related its integral to effective
charges. Its application to ionic insulators was extended by Martin, who showed that
the enatom dipole and quadrupole moments are the fundamental atomic entities that
underlie piezoelectricity [223].

As powerful as the enatom concept is (see discussion below), very little use has
been made of it. Falter and collaborators have adopted a related quasi-ion idea for
sublattices of multiatom compounds, and used linear response theory (or models)
to evaluate sublattice charges for Si [224, 225, 226]. Ball and Srivastava calculated
some aspects of the rigid and deformation parts of the density in Ge and GaAs from
bond-stretch distortions [227, 228]. No calculation of single enatom quantities yet
exist for any material.

5.1.2 Physical Motivation

The enatom concept will be particularly important in studying and understanding
phonons and electron-phonon coupling, which requires only information arising from
an infinitesimal displacement of atoms (thus, linear response). Current implemen-
tations of linear response theory calculate the first-order change in potential due to
a given phonon, and use periodicity and Bloch’s theorem to reduce the calculation
to a unit cell, which is still time-consuming. This linear response problem must be
solved separately for each phonon momentum q. Using the enatom concept and
linear superposition, it is necessary only to calculate the enatom density and poten-
tial once (for each inequivalent atom in the primitive cell) and perform elementary
integrals requiring only linearly superimposed, overlapping enatom potentials to cal-
culate the phonon frequencies. (We are concerned here only with metals; Ball has
shown that insulators with long-range potentials require extra considerations [51].)
The electron-phonon matrix elements are even easier, as they can be reduced to
calculating the matrix elements of the enatom potential of each inequivalent atom
only. This might not be quite as easy as it sounds, because the enatom may in some
cases have to be calculated out to a distance of several shells of neighbors to obtain
convergence of the integrals. We postpone the phonon problem to future work.
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For a first detailed application of this enatom concept to enhance understanding
of bonding and electron-phonon coupling, we choose the simple metals Li and Al.
Lithium has attracted interest due to the recent discovery that, in spite of being a
simple free-electron-like metal that is not superconducting above 100 µK at ambient
pressure [52], it displays high Tc ≈ 15-17 K in the 30-40 GPa range [6, 7, 8], and Tc =
20 K has been reported [6] around 50 GPa. This discovery made Li the best supercon-
ducting elemental metal (now equaled by yttrium [229] and apparently surpassed by
calcium [230]). The evolution of the electronic structure and electron-ion scattering
within the rigid muffin-tin approximation is well studied [231, 232]. Application of
microscopic superconductivity theory, with phonon frequencies and electron-phonon
matrix elements calculated using linear response methods [55, 56, 57, 58], has es-
tablished that this remarkable Tc results from strong increase of electron-phonon
coupling under pressure. The one aspect of the electron-phonon behavior in Li that
is not yet understood [57] is the strong branch dependence of electron-phonon matrix
elements. Application of enatom techniques promises to be an ideal way to approach
the remaining questions.

Aluminum is the simplest trivalent metal, with Tc = 1.2 K at ambient pressure;
superconductivity is suppressed with pressure, with Tc < 0.1 K at 6 GPa [53]. Under
pressure the electronic structure of Al remains that of a free electron-like metal, and a
structural transition to a hcp phase takes place only at P > 217 GPa [54]. Li, on the
other hand, becomes more and more covalent and undergoes several phase transitions
[5]. In the case of metals we use the term “covalency” in a loose sense to indicate
the appearance of directional bonds. The vibrational and electronic properties of the
two systems also display important differences. While the electronic structure, Fermi
surface and vibrational spectrum of Al follow a completely normal trend (i.e., the
band dispersion becomes steeper, the Fermi surface is virtually unchanged and the
phonon spectrum is hardened), in fcc Li the Fermi surface evolves from a typical s-like
sphere into a multiply-connected (Cu-like) shape, with necks extending through the
L points, reflecting the increase in p character. In the phonon spectrum, structural
instabilities appear around 35 GPa along the Γ − K line, due to the strong e-ph
coupling of some selected phonon modes, whose wave vector q connects the necks
on the Fermi surface [55, 56]. We therefore expect that also the enatom of the two
systems will display different behaviors under pressure.

5.2 Computational Details

The enatom could be computed by evaluating the linear response of a system to
the displacement of a single atom, that is, the dielectric response ǫ(r, r′) ↔ ǫ(q +
G,q + G′). While this may be a viable approach, it is demanding and tedious and
we use another method that requires only minor additional codes. Our approach is
to let the computer do the linear response for us, by choosing a supercell, displacing
one atom (taken to be at the origin), and obtaining the linear changes ∇jn(r) and
∇jv(r) by finite differences. Using cubic symmetry, displacement in a single direction
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P V/V0 a n0 N(0) lTF EF kF

Li 0 1.00 7.98 0.79 3.41 1.13 0.27 0.52
35a 0.52 6.41 1.52 2.58 1.02 0.30 0.55
50 0.44 6.05 1.81 2.39 0.98 0.29 0.54

Al 0 1.00 7.50 2.85 2.61 0.91 0.83 0.91
35 0.77 6.89 3.67 1.96 0.87 0.97 0.98
50 0.73 6.75 3.90 1.85 0.86 1.01 1.00

Table 5.1: Structural and electronic properties of fcc Li and Al as a function of
pressure. Except for the calculated pressure (P ), which is in GPa, all the quantities
are expressed in atomic units. V0 is the theoretical equilibrium volume, a is the
fcc lattice constant, n0 is the mean density of electrons in 10−2el/a−3

B ; N(0) is the
density of states at the Fermi level in states/(spin Ry atom), lTF is the Thomas-
Fermi screening length, EF is the Fermi energy (the occupied bandwidth), and kF

is the Fermi momentum.
aHere a is the experimental lattice constant at 35 GPa; our theoretical pressure is
30 GPa.

is sufficient to obtain the full vector changes. The enatom components (rigid and
deformation) are then obtained using the Helmholtz decomposition of a vector field
into its irrotational and divergenceless parts [219].

We obtained the enatom for fcc Li and fcc Al at atomic volumes corresponding
to 0, 35, and 50 GPa pressure. We used a cubic supercell of lattice constant A=3a
(lattice constants are listed in Table 5.1), which contained 4×33=108 atoms. The
enatom is represented as a Fourier series in the supercell. For the jellium calculations
we set a single Li or Al atom into cubic supercells whose lattice constants correspond
to the P=35 GPa cases. The mean electronic density was made equal to the related
crystalline systems and a homogeneous positive jellium background provided charge
neutrality.

For the self consistent density functional calculations we employed the PWSCF
code [233] and Troullier-Martins [105] norm conserving LDA pseudopotentials and
a plane wave cutoff energy of 20 Ry for both Li and Al. For the k-space integration
in the primitive fcc unit cell we used a (18)3 Monkhorst-Pack grid [234], with a
cold–smearing parameter of 0.04 Ry [235]. With these parameters, we obtained a
convergence of 0.2 mRy in the total energy and of 0.2 GPa for the pressure at 35 GPa
for both systems. For the large cubic supercell, we used a 23 Monkhorst-Pack mesh,
yielding four points in the irreducible Brillouin zone, and the same cold-smearing
parameter of 0.04 Ry. With this choice, the total energy (pressure) calculated in
the supercell equals that of the original fcc lattice within 0.1 mRy and 0.1 GPa,
respectively. The pressure was calculated from a Birch-Murnagham fit of the LDA
E versus V curve.5

5To test the applicability of the pseudopotential method to high pressures, we calculated the
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Figure 5.1: Comparison of the magnitude of the rigid (top) and deformation parts
(bottom) in the first oder change of the density (Eq. (5.1)) of Li at 35 GPa and
a jellium model. The plot is taken along a [110] direction through the atom. The
magnitude of |∇×B| in jellium is three orders of magnitude smaller than in Li, and
therefore invisible on the scale of the plot.

In Table 5.1 we summarize the most relevant properties of Al and Li as a function
of pressure. Since the independent variable in our calculations is the volume of the
unit cell, we also include a column showing the relative volume change. We notice
that the lattice constant of Li decreases very rapidly with pressure, as signaled also
by the very small bulk modulus. At P = 30 GPa, the unit cell volume of Li is already
one half of its P = 0 value. For comparison, the volume of Al at 50 GPa is 73% of
its zero pressure value.

5.3 Results and Discussion

As a test of our numerical approach we checked that the sum rules of Eqs. (5.2) and
(5.3) were almost perfectly fulfilled. For the jellium enatom the deformation part
should be exactly zero, as discussed in Sec. 5.1.1. The deformation is not identically

energy versus volume relation for the two systems and fitted it to a Birch-Murnagham equation, to
extract the equilibrium volume (V0) and the bulk modulus at zero pressure (B0) and its derivative
at zero pressure (B′

0). For Lithium we obtained : V0 = 127.16 (aB)3, B0 = 14.9 GPa, B′
0 = 3.33.

For Al we obtained: V0 = 105.3 (aB)3, B0 = 82.7 GPa, B′
0 = 4.2, in reasonable agreement with the

experimental values (V0 = 111.2, B0 = 72.7 GPa, B′
0 = 4.3) [236]
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Figure 5.2: Evolution of the rigidity factor R (Eq. (5.10)) of the enatom for Li and
Al as a function of pressure. The difference is the decrease in rigidity with pressure
in Li, which is magnified somewhat by Li’s larger compressibility.

zero for our jellium enatom due to supercell effects. These effects are however very
minor, viz. the maximum of the jellium deformation density is 500 times smaller
than the maximum of the Li crystal deformation density.

5.3.1 Rigid and Deformation Part

In Fig. 5.1 we show the magnitudes of the vector fields ∇ρ and ∇ × B along a
[110] direction. The rigid parts for fcc Li and the Li-in-jellium model have the same
magnitude and overall shape, while the deformation parts are very different. For Li
|∇ × B| is approximately one order of magnitude smaller than |∇ρ|. This behavior
reflects a general trend expected in simple metals: the deformation part is much
smaller than the rigid, nevertheless it is quite insightful, as we demonstrate below.

To quantify the strength of the fields we are considering in a more precise way,
we define the magnitude M[A] of a scalar or vector field A(r) as the root mean
square

M[A] =

√

1

Ω

∫

Ω
d3r [A(r)]2, (5.9)

where Ω is the volume of the supercell. The relative importance of ∇ρ and ∇ × B

in Eq. (5.1) can be quantified by defining a rigidity factor as

R =
M[∇ρ]

M[∇× B]
. (5.10)

This ratio is one measure of how rigidly the enatom density (or potential, defined
analogously) follows the nucleus. For the perfect jellium enatom M[∇×B] = 0 and
the rigidity factor would diverge. But because of the already mentioned supercell
effects, we obtain R ∼ 3000 (1400) for the density and R ∼ 2500 (1500) for the
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potential of jellium Li (Al), which demonstrates again that the supercell effects are
indeed small.

In the actual compounds, for the charge, R has similar values at zero pressure
but decreases by a factor of 3 between 0 and 50 GPa in Li, whereas it is unchanging
in Al, as shown in Fig. 5.2. For the potential, R is almost a factor of 2 smaller
in Li than in Al at zero pressure, and again decreases with pressure while that for
Al remains constant. This very different behavior in two simple metals is further
confirmation that Li is increasing in covalency with pressure, while Al is not. The
large values of R for the potential reflects the fact that the change in potential (e.g.
due to phonons) is dominated by a rigid part, which provides justification for a rigid
screened ion or the rigid muffin tin potential approximation [237].

5.3.2 Rigid Part

Decomposition in Lattice Harmonics

To define the degree of sphericity of the rigid density ρ and potential V these scalar
functions can be expanded in lattice harmonics of full cubic symmetry, identified
with angular variation L=0, 4, 6, 8...:

ρ(r) =
∑

L

fL(r)KL(r̂) (5.11)

where KL is the kubic harmonic [238] built from spherical harmonics of angular
momentum L (see Ref. [239]), fL are the radial expansion coefficients, and r = |r|.
In our case the functions KL are normalized according to

∫

(KL)2dΩ = 4π, which
ensures that the first radial expansion term is equivalent to the spherical average,
i.e., f0(r) = 1/(4π)

∫

ρ(r)dΩ.

In Fig. 5.3 we display the L > 0 radial expansion coefficients at 35 GPa, relative
to the (obviously much larger) spherical part. The ideal jellium enatom is perfectly
spherical and thus contains f0 only (see Sec. 5.1.1). The decomposition of our su-
percell jellium model reveals small L > 0 terms, due to small supercell effects. The
magnitudes of fL for Li and Al are comparable to the supercell effects in the jellium
enatoms, as the supercell boundary is approached. Therefore we conclude that the
lattice harmonic coefficients f4, f6, f8 are meaningful only within a radius of ∼ A/3.

While the general characteristics and relative signs of the L > 0 terms are quite
different in Li and Al, in most cases their maximum is only ∼ 1% or less of the
maximum of f0, for both density and potential. The only exception is the L = 8
lattice harmonic in the density of Li, which is surprisingly large around the nearest
neighbor distance 4.5 aB . This anisotropy reflects the ‘cooperative’ influence of
neighboring atoms in determining the enatom character. The relative size of the
L = 8 peak grows from 8% to 16% of the maximum of f0 from 0 to 50 GPa.
With increasing covalency in Li under pressure not only f8 but all non-spherical
contributions to the rigid density increase; this effect cannot be seen in Al.
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Figure 5.3: A kubic harmonic decomposition of the rigid parts ρ and V of the
enatoms of (a) Li and (b) Al at 35 GPa. The radial expansion coefficients fL are
defined in Eq. (5.11).
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For the enatom potentials, the non-spherical terms are small enough in fcc Li and
Al at all volumes studied that the enatom potentials can be considered effectively
spherical, as is the common assumption in simple metals.[99]

Effects of Screening

Figures 5.4 and 5.5 show the rigid parts of density and potential and their pressure
evolution. From linear screening theory we know the spherical part of the induced
change in charge density ∆n(r) for a simple metal will have long-range (but rapidly
decaying) Friedel oscillations. Our approach reproduces the long-range oscillations
according to

∆n(r) ∼ cos(2kF r)/r
3. (5.12)

with reasonable agreement (see insets in Figs. 5.4 and 5.5); they should be important
primarily for describing long-range force constants. The corresponding oscillations
of the enatom potential are not expected to be as important, and we confirm this
expectation, as the oscillations visible in the inset in the lower panel of Fig. 5.4(a)
are indeed very small.

In the lower panels of Fig. 5.4 we also see that the screening in the solid causes the
enatom potentials to be significantly more short ranged than the atomic potentials.
Furthermore, the enatom potential is less attractive by 0.7 to 0.9 Ry in these atoms.
The gradients, which determine electron-phonon matrix elements, do not seem to
differ greatly. Note that the pseudopotential we have used is non-local, and in the
plots only the local (ℓ = 2) component is shown. The total potential will include
the ℓ = 0, 1 nonlocal parts, which are non-vanishing only within the core radius
(rcore ≃ 2 aB) and move rigidly.

To understand this screening better we compare the rigid enatom potential V
with the Thomas-Fermi potential

VTF(r) = −Q
val

r
· e−r/lTF , (5.13)

where Qval = eZval is the total charge of the valence electrons and lTF is the
Thomas-Fermi screening length calculated from the mean valence density6 (given
in Table 5.1). For both systems and all pressures we find good agreement for the
long range behavior, confirming that the system is still dominated by homogeneous
electron-gas screening. The electronic density of Al is higher than the one of Li and
therefore the screening is stronger. As a consequence the effective potential in Al is
more localized than the one of Li. The agreement with linear screening is better for
Al than for Li, further supporting the deviation of Li from the homogeneous electron
density picture.

6Thomas-Fermi screening length: lTF = 1/2(π/3n0)
1/6, n0 is the mean electronic valence density

in atomic units (see Table 5.1).
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Figure 5.4: Radial plots of the rigid parts of density and (local, l = 2) potential
for (a) Li and (b) Al, both at 35 GPa. We show the isolated atom, the enatom,
the enatom of a jellium model, and, only in the lower panels, the Thomas-Fermi
potential. The plots show the spherical parts f0 of these quantities. On the radial
direction the eight nearest neighbors are located at (a) 4.53, (b) 4.87 aB, the six next
nearest neighbors are at (a) 6.41, (b) 6.89 aB and the edge of the supercell is at (a)
13.59, (b) 14.62 aB , illustrating the very small overlap from neighboring supercells.
In the inset we show a blow-up of the tail region, where the Friedel oscillations of
the charge are clearly visible (see also inset in Fig. 5.5).
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Rigid Density and Rigid Potential

The spherical average f0(r) of the rigid enatom density ρ contains a charge equal to
the valence, which is compared to a valence density for the isolated atom in Fig. 5.4,
and also with the corresponding enatom in jellium of the appropriate density. Note
first that, while in a pseudopotential calculation the density (potential) inside the
core radius does not have much physical meaning, changes within the core radius
will still be useful probes of the enatom character.

The enatom density and potential are both more localized than in the isolated
atom. This difference can be attributed to two effects.
(i) The density in the tail region is screened in the solid, making the effective potential
more short ranged and causing charge to move inward. As a result the peak value
around 2 aB increases.
(ii) There is also charge that moves outwards from the core region, causing the peak
value to increase further but also to move outwards.

The tail is very similar in jellium and in the solid (a consequence of similar
Thomas-Fermi screening), but in the core region and around the maximum the den-
sities are different. The jellium enatom density becomes negative near the nucleus,
with the amount of negative density in the core region being about 1% of the va-
lence, for both the Li and Al jellium models. Thus this region does not contain a
significant amount of negative density, but it still causes some charge to move away
from the core. As a result the peak value of the jellium enatom is slightly higher
and further out than the one of the crystal enatom. (Note: in actual supercell cal-
culations there is never any negative density, as the negative dip is compensated by
tails of neighboring atoms.)

Evolution under Pressure

The pressure evolution of the rigid enatom density and potential are compared on
an absolute length scale in Fig. 5.5. Here we can identify aspects of the same two
effects as described in the preceding section. Under pressure the enhanced elec-
tronic screening makes the effective potentials more short ranged, and results in the
screened charge moving inward (effect (i)). For Al the increasing pressure causes
first a decrease of the extent of rigid density around 4 aB (see inset) and second, an
increase of the peak value around 2 aB of about 12% from 0 to 50 GPa. For Al the
potential change with pressure is negligible.

Effect (i) (screening) has a stronger influence in Li than in Al because, first, the
density is lower so screening is less, and second, the relative volume change is larger.
The peak value increases by more than 1/3 from 0 to 50 GPa.

But here we also find effect (ii) which causes a small amount of charge to move
away from the core and leads to an outward shift of the peak position in the rigid
density from 1.9 aB (P=0) to 2.1 aB (50 GPa). The shift of charge is indicated more
clearly in Fig. 5.6, where the integrated charge is shown for Li.

The pressure evolution of the enatom potential is characterized by a decrease
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Figure 5.5: The pressure evolution of the rigid part of the enatom in (a) Li and
(b) Al, plotted along the [110] direction. The dotted line represents the difference
between the quantities calculated at P=35 GPa and those at P=0. Under pressure,
the enatom density increases at its peak (at 1.5-2 aB), and the local (l = 2) potential
becomes less attractive due to the increased screening.
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Figure 5.6: Integrated spherical density Q(r) = 4π
∫ r
0 r

′2f0(r
′)dr′ for Li at 0, 35, and

50 GPa. The density is shown in Fig. 5.5. For r > 2 aB the shift in density inward
with pressure is evident, although there is little difference between 35 and 50 GPa.
For r < 2 aB a small amount of charge is also shifted outward.

in attraction at small r, from -1.78 Ry (P=0) to -1.60 Ry (50 GPa) in Li. This
decrease is fairly uniform over the region out to 3.2-3.5 aB beyond which it becomes
negligible. In Al the decrease in attraction between P=0 and P=50 GPa is only 2%.
For 35 and 50 GPa the rigid density of the Li enatom is negative inside 1 aB , but the
amount of negative density contained within that region is less than 1% compared
to the total valence charge, and does not even show up in the plot of the integrated
charge in Fig. 5.6.

5.3.3 Deformation part

In general the vector fields B and W (Eqs. (5.4) and (5.5)) that describe the de-
formation parts of density and potential have similar morphologies that reflect the
symmetry of the lattice. B or W form symmetry related “donut”swirls centered
at different distances along lines connecting the central atom and first (1nn) and
second (2nn) nearest neighbors, i.e., the crystal axes (see Fig. 5.7(a), where only
swirls around the 2nn are visible). The swirls associated with the 1nn and 2nn have
opposite rotational directions. The derived fields ∇× B or ∇× W are large at the
centers of the swirls of B or W (see Fig. 5.7(c)), and they are primarily directed
radially.

It is informative also to view these fields in planes as done in Fig. 5.7(b) or
Fig. 5.7(d), where the precise position and spatial extent of their features can be
judged. It can be seen, for example, that the donuts pictured in Fig. 5.7(a) are
nearly centered on the 2nn Li sites and that W is oriented perpendicular to the
plane, pointing either towards the viewer (vectors visible) or in the opposite direction
(vectors not visible). As only the fields ∇×B or ∇×W are involved in the calculation
of physical properties (see Eqs. (5.1), (5.4), and (5.5)), we will focus our attention
on them. A comparison of the deformation parts of density and potential for two
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Figure 5.7: The deformation part of the local potential of Li at P = 35 GPa. (Left-
hand panels) Three dimension isocontour graphs of the magnitude, with arrows
indicating the direction; (right-hand panels) contour plots in the (001) plane. (a)
and (b) show the vector field W , (c) and (d) ∇×W . The dark green (dark gray) balls
represent the position of the central atom and the nearest and next nearest neighbors
within the supercell, which is displayed as black boundary box. The orange (light
gray) isocontours in (a) and (c) indicate |W | = 3.5×10−3 and |∇×W | = 4.8×10−3,
respectively. The black arrows are field vectors that are located on the isocontours.
(b) and (d) indicate the magnitude of the vector fields within xy-planes that are
indicated as black-lined squares in the 3D graphs. Superimposed is a mesh of yellow
(light gray) field vectors which are located within the plane.
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different pressures, for both Li and Al, is given in Figs. 5.8 and 5.9.

Deformation Part of the Density

In Li at P=0 the maxima of the charge deformation ∇ × B, shown in Fig. 5.8,
are strongly localized around the nearest neighbors. Under pressure these maxima
are pulled inward. The direction of the field determines the sign of the charge
deformation. For Li in Fig. 5.8 δR · ∇×B (see Eq. (5.4)) is positive for δR ‖ [100],
so there is a ‘charge transfer’ from behind the displaced atom, to in front of it. Such
charge distribution reflects a displacement-induced dipolar moment described by the
deformation (and which will be screened locally in a metal). At ±45◦ (at the 1nn
sites, in fact) there is a depletion of charge, with a corresponding increase at ±135◦

(on the 1nn behind the displaced atom). In Al the pattern is similar, but the sign
is reversed and the maxima are nearer the nucleus. These differences will affect
their dynamical properties differently; this influence may be significant in Li and is
probably not in Al as it remains more free-electron-like.

Under pressure, the magnitude of M[∇ × B] in Li increases quite significantly,
being 2.8 × 10−5 at P=0 and increasing by an order of magnitude at 50 GPa. This
change, consistent with increased covalency, is the cause of the large drop of the
rigidity factor in Fig. 5.2. The pressure evolution in Al is marginal: M[∇ × B] is
1.9 × 10−4 at P=0 and increase by only 30% at 50 GPa.

Deformation Part of the Potential

The potential deformation in Li undergoes a surprisingly large pressure evolution,
reflected in the shape, magnitude M, and extent of ∇×W . M[∇×W ] is 4.4×10−4

at P=0 and increases by over a factor of 4 by 50 GPa. The contour plot of Fig. 5.9
shows the change from P = 0 to 35 GPa. Starting with a small deformation located
on the 1nn, maxima in the deformation grow in substantial regions including the
2nn.

For Al, ∇ × W has its maxima along the cubic axes, and much closer to the
nucleus. As for the charge deformation, ∇× W has the opposite sign compared to
Li, and its change with pressure is minor.

Given the simple shape of the deformation term ∇×W , it is easy to understand
its effect on the total change in the potential (Eq. (5.5)). δR · ∇ × W gives an
additional dipolar-type contribution, adding to the main change of potential ∇jv
which has a dipolar form arising from displacement of the (nearly spherical) rigid
potential.

The pressure evolution of the rigidity factor for the potential in Li (see Fig. 5.2)
shows that at 50 GPa the deformation part contributes about 2% to the total change
in potential ∇jv (for Al this contribution is negligible). For materials with lower
rigidity the deformation part might give substantial contributions to ∇jv, large
enough to affect its scattering properties or the strength of electron-phonon cou-
pling.
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Figure 5.8: 2D graphs (see Fig. 5.7) of the deformation part of the charge density
∇×B for Li and Al for 0 and 35 GPa. Li undergoes a significant pressure evolution
arising in the shape and the magnitude of ∇× B. Al in turn changes only slightly.
For the meaning of the symbols see Fig. 5.7.
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Additional to the figures shown in this chapter we provide several color graphs,
showing examples of enatom quantities for Li in 3D and 2D views, in appendix A.

5.4 Summary and Outlook

In this chapter we have provided a numerical linear response approach, and the first
explicit examples, of the enatom (the generalized pseudoatom introduced by Ball
[50]) density and potential for Li and Al, at pressures of 0, 35, and 50 GPa. The
enatom consists of a rigid and a deformation density (and potential). The rigid part
defines a unique decomposition of the equilibrium density (potential) into atomic–
like but overlapping contributions that, to first order, move rigidly with the nuclear
position. The deformation density (potential) describes how this charge (potential)
deforms, and it can be viewed as a backflow, or (depending on its shape) as a
mechanism that transfers charge from one side of the displaced atom to the other.
The enatom quantities were obtained from supercell finite–difference calculations,
demonstrating that this approach provides a feasible numerical treatment.

A rigidity factor R was introduced to quantify the relative importance of the
rigid and deformation parts of the enatom. It characterizes how rigidly the charge
(or potential) moves upon displacement. The rigidity factor is expected to be small
for covalent materials whose bonding is strongly direction-dependent, and large for
metals that lack such a strong bonding [50]. It has been shown recently that Li
becomes more covalent under pressure [56, 57] and the different components of the
Li enatom have confirmed this trend. Aluminum, on the other hand, remains quite
free-electron like up to 50 GPa. Both behaviors are clearly reflected in the pressure
evolution of the rigidity factor of both the density and the potential: R decreases by
a factor of 3− 4 in Li but stays almost constant in Al. Moreover, the rigidity of the
potential is approximately one order of magnitude bigger than for the density. This
rigidity supports the picture of a rigid potential shift with displacement in both Li
and Al. Therefore, the rigidity factor R may become a useful tool for quantifying a
“generalized covalency” of a system, even in the case of metals.

By kubic harmonic decomposition of the rigid enatom, we have shown that in Li
and Al the potentials are effectively spherical, supporting spherical approximations
in rigid–atom models of electron–phonon coupling. Non–spherical contributions in
the rigid density become larger as Li becomes more covalent under pressure. For
aluminum, changes are much smaller.

The basic features of the spherical part of the rigid density and potential can be
understood by means of linear screening theory. First, the localization of the rigid
enatom potential is a result of free electron-like (Thomas-Fermi) screening, showing
that the mean radius of Al is smaller than the one of Li. Second, the tails of the
rigid densities exhibit rapidly decaying Friedel oscillations.

Another finding is that the rigid enatom density is more localized than the density
of an isolated atom. This is a result of two effects. (i) The density in the tail region
is screened in the solid, making the effective potential more short ranged and causing



150 CHAPTER 5. THE ENATOM METHOD

����������	�
���� ���������	�������

����������	�����������������	�
����

Figure 5.9: 2D graphs (see Fig. 5.7) of the deformation part of the (local) potential
∇ × W for Li and Al for 0 and 35 GPa. Plots (a),(b) and (c),(d) share the same
color bar, respectively. Lithium undergoes a significant change with pressure, while
aluminum remains almost unchanged. For the meaning of the symbols see Fig. 5.7.
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charge to move inward. (ii) There is also charge that moves outwards from the core
region, which is an effect of the potential being less deep than in the free atom. This
second effect is small compared to the first one. Both effects also cause an increase
of localization of the rigid enatom density when the pressure is increased.

The pressure evolution of the deformation part of the enatom is quite significant
in Li, but small in Al. The basic morphological features of the deformation parts
are the same in Al and in Li as well as in the density and in the potential, but their
position, sign, and relative magnitude are different. Such a behavior confirms the
expectation that the lattice symmetry determines the character of the deformation
of the enatom, at least in nearly free electron metals.

We conclude that the numerical procedures presented above provide a viable
route to determine enatom quantities. As the enatom is intrinsically a dynamically
determined quantity (involving linear response), it allows for the calculation of dy-
namical properties such as phonon dispersions and electron–phonon matrix elements.
The method thus provides a real–space picture of solids and their dynamical prop-
erties, which could contribute to a deeper understanding of the physical properties
of materials. We foresee the important application of the method in the electron-
phonon problem and the study of strongly coupled elemental metals and compounds.
For further applications, our method ought to be generalized to systems with many
atoms per unit cell and with non–cubic symmetry. As our understanding of the
enatom is still at an early stage, studies of non–metals, i.e., covalent or ionic mate-
rials, should be carried out in the future.
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Chapter 6

Summary and Outlook

This thesis is dedicated to the theoretical study of sp materials, in particular boron,
lithium, and aluminum. We employ density functional theory (DFT) and density
functional perturbation theory (linear response) within the framework of the local
density approximation (LDA) or the generalized gradient approximation (GGA).
Those approximations are well suited for the description of sp materials and allow
us to calculate a variety of material properties. All theoretical methods are described
in chapter 2.

The basic motivation of this thesis is to improve our understanding of the prop-
erties of materials that are based on elemental boron. We are interested in elemental
boron because it has a fascinating chemical and structural complexity, it is little
studied and many fundamental properties are still unknown. The main body of
this thesis is presented in chapter 3, where we study different structural, electronic,
mechanical, thermodynamic, and vibrational properties, the chemical bonding, and
electron–phonon interactions of multiple nanomaterials and bulk phases of boron.

The starting point of our studies is the Boustani Aufbau principle (see intro-
duction or Sec. 3.2.3). It is a very general scheme that predicts the existence of
quasiplanar (sheets), tubular (nanotubes), convex and spherical (fullerenes) boron
clusters. The Aufbau principle is based on extensive numerical studies of small boron
clusters, employing quantum chemical methods like DFT. After these predictions,
it was experimentally found that small boron clusters indeed from sheet–like, quasi-
planar structures [19, 20] and also boron nanotubes (BNTs) were synthesized [21].
These experiments confirm the validity of the Boustani Aufbau principle and also
show the predictive power of DFT. At the same time they open the door to a new
field of science based on boron nanostructures. However, the Aufbau principle is
a very general approach and the corresponding experimental studies are not very
detailed yet. Therefore questions about the precise atomic structure of boron nan-
otubes and boron sheets remain open, and further theories describing their properties
are needed.

We provide such a theory in chapter 3. It is based on the fact that much of the
physics of carbon fullerenes and carbon nanotubes can be understood in terms of

153
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graphene, a broad carbon sheet. Therefore graphene can be considered as the pre-
cursor of carbon fullerenes and carbon nanotubes. The existence of BNTs raises the
question if such a broad sheet also exists for boron. This sheet would be the limiting
case of the experimentally observed quasiplanar clusters for an infinite number of
atoms, and the precursor of BNTs. The experimental verification of the Boustani
Aufbau principle has shown that for boron materials DFT is a reliable tool, being
able to predict new materials. We therefore use DFT to determine the structure and
the properties of that broad boron sheet (BS), that is considered here for the first
time. We then apply our findings to the related boron nanotubes in order to predict
their basic properties. Before, BNTs and BSs were mainly studied in the context of
the Boustani Aufbau principle as finite sized clusters [23, 24, 179, 110]. Our findings
in chapter 3 unify the results of these former studies into a generalized theory of BSs
and BNTs.

To determine the structure of the BS, we examine a number of different structure
models. By DFT simulations we find that a sheet with a triangular boron lattice and
a simple up–and–down puckering is the most stable one and is very likely to be the
precursor of BNTs (see Fig. 3.12 on page 71). At the moment in which we carried
out these studies the same BS structure was found by two other groups [175, 176].
This independently confirms the present structure model and underlines the scientific
interest in boron based materials. This metallic BS is the cental structure of chapter
3. The sheet is held together by homogeneous multi–center bonds and by linear sp
hybridized σ bonds exclusively lying along the armchair direction of the sheet. The
anisotropic bond properties of the sheet lead to different elastic moduli Cx and Cy

for stretching the BS in the x and in the y direction. Furthermore, puckering of the
BS can be understood as a key mechanism to stabilize the sp σ bonds.

We then study ideal BNTs, that are constructed from this BS by a “cut–and–
paste” procedure. We predict the existence of helical currents in ideal chiral BNTs,
which means that chiral BNTs are nanocoils. Furthermore, we show that all ideal
BNTs are metallic, irrespective of their structure. BNTs could therefore be perfect
nanowires. However, we find that ideal BNTs do not represent the ground state of
BNTs, and we identify structures of lower symmetry (we called them real BNTs),
which are higher in cohesive energy. We show that real BNTs have strain energies
that depend on the nanotube’s radius as well as on the chiral angle. This is a unique
property among all nanotubular materials reported so far, and the implications of
this finding were further explored in chapter 4.

We conclude that our findings in chapter 3 define a consistent picture of BSs
and BNTs and unify former studies on these materials [23, 24, 179, 110] into a
generalized theory. Independent of us other groups also studied BSs and BNTs
[175, 176, 177, 240]. However, our study (published in Refs. [180, 241]) is by far
the most extensive one in the field. While writing up this thesis the field of boron
nanomaterials has evolved further. Szwacki et al. [33] proposed a model for a par-
ticularly stable spherical cluster (boron fullerene) and based on this model Tang et
al. [198] and Yang et al. [199] revised our theory of BSs and BNTs. Overall the
field has received considerable attention in the media as recent articles in scientific



155

newspapers reveal [200, 201, 202, 203, 204, 205].
One of the main predictions of our theory of BNTs is that the strain energy of

BNTs is a function of the nanotube’s radius and chirality. In chapter 4 we examine
this finding in detail and propose a new route to achieve control over the atomic
structure of nanotubes during their synthesis. By analyzing the unfavorable case
of carbon nanotubes, we show that our current inability to control their chirality is
caused by isotropic in–plane mechanical properties of the related graphene sheets,
leading to isoenergetic nanotubes with similar radius, but a whole range of different
chiral angles. This “degeneracy” is lifted for nanotubes that are derived from a
reference sheet with anisotropic in–plane mechanical properties. As demonstrated for
the case of BNTs, this anisotropy will make the different chiral angles energetically
separable. And this should be experimentally accessible during the synthesis process.
Thus, in order to achieve a higher degree of structural control over nanotubular
materials, we propose that one should systematically search for nanotubes which
are related to sheets with anisotropic in–plane mechanical properties. The results of
chapter 4 were published in Ref. [242].

In the first parts of chapter 3 we show that a broad boron sheet can be used
to predict structural, electronic, and mechanical properties of boron nanotubes. Al-
though it has not been observed in experiment yet, one might still wonder whether
the BS has some further significance beyond its relation to boron nanotubes. Similar
to carbon, where a stacking of many graphene layers generates the crystal structure
of graphite, a stacking of BSs would constitute layered boron bulk materials. The
pronounced polymorphism [35] and the unknown phase diagram [10] of elemental
boron makes it quite probable that novel, so far undiscovered phases exist. If these
structures are not stable at ambient conditions, they might be so at high pressures.

To find out whether such layered bulk phases exist, the three structures Immm,
Fmmm, and α–Ga are examined in the remaining parts of chapter 3. The Immm
phases is constructed as a stacking of the BS, discussed above, and is considered
here for the first time. The Fmmm phase was proposed by Boustani et al. [179], who
were the first to study layered bulk phases of boron. The phase α–Ga is boron in
the α–gallium structure [44, 45, 46], and we find that it falls into the class of layered
materials. In these three structures each boron atom is primarily coordinated within
a quasiplanar layer, where the bonding is of three–center type, and it has at most
one (two–center) σ bond between two layers. Furthermore, all these structures have
metallic properties. Because the three phases have a similar structure and the same
basic bonding pattern, they constitute a new family of (hypothetical) layered boron
bulk materials. The existence of this family of boron structures is postulated here
for the first time.

From a structural viewpoint the layered systems are very different from the com-
mon bulk phases, that consist of complex three–dimensional networks of B12 icosa-
hedra. However, we find that the chemical bonding is quite similar in the icosahedral
and layered phases. These similarities support the existence of layered boron phases,
and allow us to formulate the following generalized picture of the chemical bonding
in elemental boron solids: A three-center bonded triangular network of boron atoms
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forms basic units (icosahedra or quasiplanar layers) that are interconnected via σ
bonds. Our generalization could be the starting point for a deeper understanding of
chemical bonding in boron solids.

In the study of bulk structures, we note that elemental boron, a semiconduc-
tor at ambient conditions, transforms to a superconductor under pressure [9]. The
biggest problem for explaining the superconductivity in boron is the general lack of
knowledge about its high–pressure phases, and the corresponding crystal structures
are unclear. Therefore, the problem of superconductivity merges with that of study-
ing bulk structures under pressure. So far, three different theoretical approaches
were used to determine possible high–pressure phases. One is based on studying the
high–pressure behavior of the common icosahedral bulk structures [39, 40], another
on randomly trying different naive phases such as fcc, bcc, etc. [41, 42, 43], and
a third approach assumes that boron under pressure adopts similar structures than
heavier group-III elements (Al, Ga, In) [44, 45, 46]. Up to now, however, the problem
was not definitely solved. We approach the problem of high–pressure boron from a
different side and study the layered bulk phases, which are derived from our insights
about the chemical bonding in boron solids.

In order to judge the thermodynamic stability of the three layered systems we
compare them with α–rhombohedral boron (R–12) and face–centered cubic (fcc)
boron and calculate the T = 0 K phase diagram. R–12 is the simplest icosahedral
phase and fcc is a simple closed packed structure. The phase diagram shows that
between about 100 and 600 GPa α–Ga is the thermodynamically most favorable
structure, and between about 150 and 300 GPa both α–Ga and Immm are favorable.
The latter is exactly the pressure range where boron was experimentally found to be
superconducting. These results indicate that layered bulk materials of boron could
exist and that they are prominent candidates to explain the superconductivity in
boron.

Therefore we study the electronic and phononic structure, as well as the electron–
phonon coupling of the three layered phases in detail. The corresponding electronic
band structures are fully three-dimensional, which shows that the phases are “lay-
ered” only in a geometrical sense. Boron in the α–Ga structure is dynamically stable
at P = 0 and 210 GPa (all phonon frequencies are real). This finally is the strongest
indication that layered bulk phases of boron can exist. At P = 0 GPa we predict
that α–Ga is a Tc = 2 to 6 K conventional superconductor, and at 210 GPa strong
electron–phonon coupling should lead to a measurable superconductivity. Boron
in the Immm structure is dynamically unstable at P = 0 and 210 GPa (there are
imaginary phonon frequencies). Nevertheless, we expect the phase to be stable at
intermediate pressures or in a modulated superstructure at 0 GPa. At ambient con-
ditions the system would be a 7 to 16 K conventional superconductor if we ignore the
slight instability. The Fmmm structure is thermodynamically unfavorable and dy-
namically unstable. It can therefore be ruled out as a possible allotrope of elemental
boron at ambient and high pressures.

In summary, we show that the three layered bulk phases exhibit chemical bonding
patterns which are typical for boron solids, that α–Ga and Immm are thermodynam-
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ically favorable under pressure, and that α–Ga is dynamically stable at P = 0 and
210 GPa. We thus conclude that novel layered bulk phases of boron are likely to exist
at elevated pressures or even at ambient conditions. Furthermore, there are strong
indications that these layered phases are conventional superconductors. However,
our present results are not able to unravel the origin of the experimentally reported
high–pressure superconductivity in elemental boron.

To further improve our understanding of the layered boron bulk phases and
to investigate their possible relation to the experimentally observed high–pressure
superconductivity, future studies should stabilize the Immm phase by studying a
superstructure or intermediate pressures, determine the pressure dependence of the
electron–phonon coupling of the layered phases in more detail by considering more
pressure points (atomic volumes), and put the yet qualitative results for the electron–
phonon coupling in α–Ga at 210 GPa to a quantitative level. Furthermore, there
are several indications that a common icosahedral structure of boron, just as α–
rhombohedral boron, could also be responsible for the observed high-pressure super-
conductivity. Therefore, studying electron–phonon coupling in compressed icosahe-
dral phases should be addressed. In general, the electronic structure and the chemical
bonding of the elemental phases of boron ought to be analyzed in more detail and
simple orbital–based descriptions should be developed.

For our studies of the layered bulk phases and the superconductivity in boron,
linear response calculations (in the framework of density functional perturbation
theory [47, 48, 49]) have proven to be an efficient way to determine dynamical prop-
erties of solids. However these methods are usually based on an abstract reciprocal
space formulation and do not allow us to gain a direct understanding of the rela-
tions between structure, bonding, phonons and electron–phonon coupling. A method
that provides a real–space picture of of a solid, its vibrational properties, and the
electron–phonon interactions was proposed in the 1970s by M. A. Ball [50, 51], but
never applied. It allows to describe condensed matter as a collection of generalized
pseudoatoms, which we call enatoms.

In chapter 5 we present the first realization of this method. We develop a tech-
nique to construct the enatom, provide the first explicit examples of enatom quan-
tities and analyze their properties. Rather than starting from boron, which is quite
complex, we first apply the enatom method to the simple systems fcc lithium and fcc
aluminum. These simple metals show different physical behaviors under pressure,
which reflects the increasing covalency in Li and its absence in Al. The pressure
evolution of the different components of the enatoms of Li and Al clearly reflect this
trend. The results of chapter 5 were published in Ref. [243].

For further applications, our method should be generalized to systems with many
atoms per unit cell and with non–cubic symmetry. Our understanding of the enatom
is still at an early stage and studies of non–metals, i.e., covalent or ionic materials,
must follow. In a further step dynamical properties such as phonon dispersions and
electron–phonon matrix elements ought to be calculated. Finally, we would like
to apply the enatom method to boron and study the relation between structure,
bonding, and the dynamical properties in its various structures.
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Chapter 7

Zusammenfassung und Ausblick

Die vorliegende Arbeit widmet sich dem theoretischen Studium von sp-Materialien.
Im Besonderen werden Bor, Lithium und Aluminium untersucht. Zur theoretischen
Beschreibung werden die Dichtefunktionaltheorie (DFT) und die Dichtefunktional-
Störungstheorie (Linear-Response) mit der lokalen Dichtenäherung (LDA) oder der
verallgemeinerten Gradientenkorrektur (GGA) verwendet. Diese Näherungen eignen
sich hervorragend zur Beschreibung von sp-Materialien und ermöglichen es, eine
Vielzahl von Materialeigenschaften zu berechnen. Die theoretischen Methoden sind
im Kapitel 2 beschrieben.

Die Hauptmotivation dieser Arbeit ist es, das physikalische und chemische
Verständnis von Materialien zu verbessern, die aus reinem Bor bestehen. Wir in-
teressieren uns für reines Bor weil es eine faszinierende, chemische und strukturelle
Komplexität aufweist, bisher wenig erforscht worden ist und weil viele grundlegende
Eigenschaften von Bormaterialien noch unbekannt sind. Der Hauptteil dieser Arbeit
besteht aus Kapitel 3, in dem wir strukturelle, elektronische, mechanische und ther-
modynamische Eigenschaften, die chemische Bindung, die Schwingungseigenschaften
und die Elektron-Phonon-Wechselwirkung verschiedener nanostrukturierter und fes-
ter Phasen untersuchen.

Der Ausgangspunkt unserer Studien ist das Aufbauprinzip von I. Boustani (siehe
Kapitel ,,Introduction“, Abschnitt 3.2.3 oder Referenz [22]). Hierbei handelt es sich
um ein allgemeines Strukturprinzip, dass die Existenz von quasiplanaren (Schichten,
Lagen), röhrenförmigen (Nanoröhrchen), konvexen und kugelförmigen (Fullerene)
Borclustern vorhersagt. Das Aufbauprinzip fundiert auf umfangreichen Computer-
simulationen kleiner Borcluster mit quantenchemischen Methoden wie der DFT.
Zum Teil wurden diese Vorhersagen bereits experimentell bestätigt. Zum Beispiel
sind kleine Borcluster in der Tat quasiplanar [19, 20] und auch Bornanoröhrchen
konnten synthetisiert werden [21]. Diese Experimente validieren das Boustanische
Aufbauprinzip und verdeutlichen die Vorhersagekraft der DFT. Gleichzeitig öffnen
sie die Tür zu einem neuen Teilgebiet der Wissenschaft, das sich mit Bornanostruk-
turen beschäftigt. Das Aufbauprinzip ist jedoch sehr allgemein und die erwähnten
experimentellen Studien sind noch nicht sehr detailliert. Deshalb gibt es noch of-
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fene Fragen über die genaue atomare Struktur der Bornanoröhrchen (BNR) und der
quasiplanaren Borcluster und es werden Theorien gebraucht, die ihre physikalischen
Eigenschaften beschreiben.

In Kapitel 3 stellen wir eine solche Theorie vor. Sie basiert auf der Tatsache,
dass ein Großteil der Eigenschaften von Kohlenstoffnanoröhrchen und Kohlenstoff-
fullerenen aus den Eigenschaften von Graphen, einer ausgedehnten, monoatomaren
Kohlenstofflage, abgeleitet werden können. In diesem Sinne kann Graphen als der
Präkursor von Kohlenstofffullerenen und Kohlenstoffnanoröhrchen verstanden wer-
den. Die Existenz von BNR wirft die Frage auf, ob ausgedehnte, laminare Struk-
turen auch für Bor existieren. Eine solche Borlage (BL) würde der Grenzfall der
experimentell beobachteten kleinen quasiplanaren Cluster für eine unendliche An-
zahl von Atomen und gleichzeitig der Präkursor der BNR sein. Die experimentellen
Bestätigungen des Boustanischen Aufbauprinzips zeigen, dass DFT ein zuverlässiges
Werkzeug zur Vorhersage von Bormaterialien ist. Wir verwenden deshalb ebenfalls
DFT, um die Struktur und die Eigenschaften dieser BL zu bestimmen, die hier zum
ersten mal betrachtet wurde. Unsere Ergebnisse wenden wir dann auf die davon
abgeleiteten BNR an und bestimmen ihre grundlegenden Eigenschaften. In früheren
Studien zu diesem Thema wurden BNR hauptsächlich im Zusammenhang mit dem
Aufbauprinzip als Cluster mit endlicher Größe betrachtet [23, 24, 179, 110]. Unsere
Ergebnisse in Kapitel 3 vereinheitlichen diese früheren Studien in einer verallgemei-
nerten Theorie der Borlagen und BNR.

Um die Struktur der BL zu bestimmen, betrachten wir verschiedene Struktur-
modelle und finden durch DFT-Simulationen ein besonders stabiles Lagenmodell,
welches höchstwahrscheinlich der Präkursor der BNR ist. In dieser BL bilden die
Atome ein nichtplanares Dreiecksgitter, bei dem sie nach einem einfachen Hoch-
und-Runter-Prinzip aus der Ebene ausgelenkt sind (siehe Abb. 3.12 auf Seite 71).
Unabhängig von uns wurde die selbe BL von zwei weiteren Autorengruppen ge-
funden [175, 176]. Das bestätigt unser Strukturmodell und unterstreicht das wis-
senschaftliche Interesse an Bornanomaterialien. Diese metallische BL ist das zentrale
Element von Kapitel 3. Die Lage wird zusammengehalten von homogenen Mehrzen-
trenbindungen und von linearen sp-hybridisierten σ-Bindungen, die ausschließlich
entlang der sogenannten ,,Armchair“-Richtung der BL liegen. Die anisotropen
Bindungseigenschaften der BL führen zu unterschiedlichen elastischen Moduli Cx

und Cy für Dehnungen der Lage entlang der kartesischen x- und y-Richtungen.
Außerdem kann die nichtplanare Oberflächenmodulation als ein Mechanismus ver-
standen werden, der die sp-σ-Bindungen stabilisiert.

Danach betrachten wir ideale BNR, welche aus der BL durch ,,Ausschneiden“
und ,,Aufrollen“ konstruiert werden. Wir sagen die Existenz von helikalen Strömen
in idealen, chiralen BNR vorher, was bedeutet, dass chirale BNR nanoskopische
Spulen sind. Weiterhin zeigen wir, dass alle idealen BNR metallische Eigenschaften
haben, die unabhängig von ihrer Struktur sind. BNR könnten deshalb ideale Nano-
drähte sein. Es stellt sich jedoch heraus, dass ideale BNR nicht der geometrische
Grundzustand der BNR sind und dass Strukturen existieren, die trotz geringerer
Symmetrie eine höhere Bindungsenergie haben. Diese BNR nennen wir reale BNR.
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Wir zeigen, dass die Spannungsenergie eines realen BNR sowohl von seinem Ra-
dius als auch von seiner Chiralität abhängt. Diese Eigenschaft scheint einzigartig
unter den bisher bekannten Nanoröhrchen zu sein, da normalerweise die Spannungs-
energie nur vom Radius abhängt. Die Bedeutung dieses Ergebnisses wird in Kapitel
4 genauer analysiert.

Wir schlussfolgern, dass die Ergebnisse aus Kapitel 3 zu einem stimmigen Bild
der BL und BNR führen, welches frühere Studien [23, 24, 179, 110] unter dem Dach
einer verallgemeinerten Theorie vereinigt. Unabhängig von uns haben auch anderen
Gruppen an BL und BNR gearbeitet [175, 176, 177, 240]. Jedoch ist unsere Studie
(veröffentlicht in den Referenzen [180, 241]) die umfangreichste, die es momentan
gibt. Während diese Arbeit geschrieben wurde, hat sich das Forschungsgebiet der
Bornanomaterialien weiterentwickelt. Szwacki et al. [33] veröffentlichten ein Modell
eines besonders stabilen kugelförmigen Clusters (Borfulleren) und darauf basierend
überarbeiteten Tang et al. [198] und Yang et al. [199] unsere Theorie von BL und
BNR. Insgesamt hat das Forschungsgebiet eine spürbare mediale Aufmerksamkeit
erhalten, wie kürzlich erschienene Artikel in wissenschaftlichen Zeitungen zeigen [200,
201, 202, 203, 204, 205].

Eine der Hauptvorhersagen unserer BNR-Theorie ist, dass die Spannungsenergie
eines BNR sowohl von seinem Radius als auch von seiner Chiralität abhängt. In
Kapitel 4 untersuchen wir dieses Resultat genauer und schlagen einen neuartigen
Weg vor, der zur Kontrolle über die atomare Struktur von Nanoröhrchen während
der Synthese führen könnte. Durch eine Analyse von Kohlenstoffnanoröhrchen zeigen
wir, dass die momentane Unfähigkeit, ihre Chiralität experimentell zu kontrollieren,
auf die Isotropie der innerplanaren mechanischen Eigenschaften der verwandten
Graphenlagen zurückzuführen ist. Dies führt dazu, dass Nanoröhrchen mit ganz
verschiedenen Chiralitäten, aber ähnlichen Radien, die selbe Gesamtenergie haben.
Bei Nanoröhrchen, die von Lagenstrukturen abgeleitet sind, die anisotrope inner-
planare mechanischen Eigenschaften haben, ist diese ,,Entartung“ aufgehoben. Wie
wir für den Fall der BNR demonstrieren, erzeugt diese Anisotropie Nanoröhrchen,
deren Gesamtenergien sowohl vom Radius als auch von der Chiralität abhängen. Da
die Gesamtenergie eines Nanoröhrchens über die Wahl der Reaktionsbedingungen
während der Synthese experimentell kontrollierbar ist, sollten somit auch die zwei
Strukturparameter Radius und Chiralität experimentell zugänglich sein. Um eine
bessere Kontrolle über die atomare Struktur von Nanoröhrchen zu erreichen, schla-
gen wir deshalb vor, dass systematisch nach Nanoröhrchen gesucht werden sollte,
die strukturell von Lagenstrukturen mit anisotropen innerplanaren mechanischen
Eigenschaften abgeleitet sind. Die Ergebnisse von Kapitel 4 wurden in Referenz
[242] veröffentlicht.

In den ersten Abschnitten des Kapitels 3 verwenden wir unser Modell der BL, um
strukturelle, elektronische und mechanische Eigenschaften von BNR vorherzusagen.
Obwohl diese BL experimentell noch nicht beobachtet wurde, mag man sich trotzdem
fragen, ob der BL eine weitere Bedeutung zukommt. Ähnlich wie bei Kohlenstoff,
wo eine Aufschichtung vieler Graphenlagen die Grafitstruktur bildet, würde die Auf-
schichtung vieler BL neuartige Borphasen mit geschichteter Struktur erzeugen. Der
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starke Polymorphismus [35] und das unbekannte Phasendiagramm [10] von reinem
Bor machen es sehr wahrscheinlich, dass neuartige, bisher unbekannte Phasen ex-
istieren. Sollten diese Phasen bei Normalbedingungen nicht stabil sein, so könnten
sie dies eventuell unter Hochdruck sein.

Um herauszufinden, ob derartige geschichteter Borphasen existieren, werden die
drei Strukturen Immm, Fmmm und α-Ga im verbleibenden Teil des Kapitels 3 un-
tersucht. Die Immm-Struktur ist als Aufschichtung der BL konstruiert und wird hier
zum ersten Mal untersucht. Die Fmmm-Struktur wurde von Boustani et al. [179]
vorgeschlagen, welche vor uns die ersten Autoren waren, die jemals geschichtete
Borphasen betrachtet haben. Die α-Ga-Phase ist Bor in der α-Gallium-Struktur
[44, 45, 46], welche auch zur Klasse der geschichteten Materialien gezählt werden
kann. In diesen drei Strukturen ist jedes Boratom primär innerhalb einer quasi-
planaren Schicht koordiniert, wobei die Bindungen vom Mehrzentrentyp sind, und
es hat maximal eine (Zweizentren) σ-Bindung zwischen zwei solcher Schichten. Wei-
terhin besitzen diese Strukturen metallische Eigenschaften. Da diese drei Phasen
eine ähnliche Struktur und das selbe chemische Bindungsmuster haben, bilden sie
eine Familie neuartiger (hypothetischer) Bormaterialien mit geschichteter Struktur.
Die Existenz diese Materialfamilie wird in der vorliegenden Arbeit zum ersten Mal
postuliert.

Strukturell gesehen sind die geschichteten Systeme sehr verschieden von den
bekannten festen Borphasen, welche relativ komplizierte, dreidimensionale Netz-
werken von B12-Ikosaedern bilden. Die chemische Bindung ist jedoch sehr ähnlich in
den geschichteten und den ikosaedrischen Phasen. Diese Ähnlichkeiten unterstützen
die Existenz der geschichteten Borphasen und erlauben uns folgendes verallgemein-
ertes Bild der chemischen Bindung in festen Borphasen zu formulieren: Ein trian-
guläres Netzwerk aus Boratomen, das von Mehrzentrenbindungen zusammengehal-
ten wird, erzeugt Grundeinheiten (Ikosaeder oder quasiplanare Lagen), welche un-
tereinander über Zweizentren-σ-Bindungen vernetzt sind. Diese Verallgemeinerung
könnte der Ausgangspunkt eines tieferen Verständnisses der chemischen Bindung
von festen Borphasen sein.

In der Betrachtung von festen Borphasen merken wir an, dass Bor unter Nor-
malbedingungen ein Halbleiter ist, dieses jedoch unter sehr hohem Druck zu einem
Supraleiter wird [9]. Das größte Problem bei der Erklärung dieses Phänomens
ist die Unkenntnis der Bor-Hochdruckphasen, so dass nicht einmal bekannt ist,
in welcher Kristallstruktur es supraleitet. Somit ist die Frage nach dem Mecha-
nismus der Supraleitung direkt mit dem Studium von Kristallstrukturen unter
Hochdruck verbunden. Bisher wurden drei theoretische Ansätze verfolgt, um
mögliche Hochdruckphasen zu ermitteln. Ein Ansatz basiert auf dem Studium der
bekannten ikosaedrischen Phasen [39, 40], ein anderer darauf, verschiedene naive
Phasen wie fcc, bcc, etc. auszuprobieren [41, 42, 43] und ein dritter Ansatz geht
davon aus, dass Bor unter Hochdruck ähnliche Strukturen annimmt wie schwerere
Elemente der dritten Hauptgruppe (Al, Ga, In) [44, 45, 46]. Bis jetzt wurde das Pro-
blem jedoch noch nicht zufriedenstellend gelöst. Wir nähern uns dem Problem der
Hochdruck-Supraleitung von einer anderen Seite und untersuchen die geschichteten
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Borphasen, die wir aus unseren Erkenntnissen über die grundlegende Struktur der
chemischen Bindung abgeleitet haben.

Um die thermodynamische Stabilität der drei geschichteten Strukturen zu
beurteilen, vergleichen wir sie mit α-rhomboedrischem (R-12) und kubisch
flächenzentriertem (fcc) Bor und berechnen das Phasendiagramm bei T=0 K.
R-12 ist die einfachste ikosaedrische Phase und fcc ist eine einfache, dicht gepackte
Struktur. Das Phasendiagram zeigt, dass α–Ga zwischen 100 und 600 GPa die
thermodynamisch stabilste Struktur ist und dass zwischen 150 und 300 GPa sowohl
α–Ga als auch Immm thermodynamisch favorisiert werden. Das letzte Intervall
entspricht genau dem Druckbereich in dem Bor supraleitend ist. Diese Ergeb-
nisse zeigen, dass die geschichteten Borphasen existieren könnten und außerdem
hervorragende Kandidaten sind, die Supraleitung zu erklären.

Aus diesem Grund untersuchen wir die elektronische und phononische Struktur
sowie die Elektron-Phonon-Wechselwirkung in den drei geschichteten Phasen. Die
entsprechenden elektronischen Bandstrukturen sind vollkommen dreidimensional.
Das bedeutet, dass diese Systeme nur in einem geometrischen Sinne als geschichtet
angesehen werden können. Bor in der α-Ga-Struktur ist dynamisch stabil bei
P=0 und 210 GPa (alle Phononenfrequenzen sind reel). Dies ist letztendlich der
stärkste Hinweis darauf, dass die hier behandelten geschichteten Phasen existieren
können. Bei P=0 GPa sagen wir vorher, dass α–Ga ein konventioneller Supraleiter
ist mit einer kritischen Temperatur von Tc=2 bis 6 K. Bei 210 GPa sollten starke
Elektron-Phonon-Wechselwirkungen zu einer messbaren Supraleitung führen. Bor
in der Immm-Struktur ist dynamisch instabil bei P=0 und 210 GPa (es gibt ver-
einzelt imaginäre Phononenfrequenzen). Jedoch erwarten wir, dass die Phase bei
einem dazwischenliegenden Druck oder in einer modulierten Struktur bei P=0 sta-
bil ist. Bei P=0 wäre das System ein Tc=7 bis 16 K konventioneller Supraleiter,
wenn man die in der Tat geringfügige strukturelle Instabilität vernachlässigt. Die
Fmmm-Struktur ist thermodynamisch nicht favorisiert und außerdem bei Normalbe-
dingungen und unter Hochdruck dynamisch instabil. Sie kann deshalb als mögliches
Borallotrop ausgeschlossen werden.

Zusammenfassend haben wir gezeigt, dass die drei geschichteten Phasen Immm,
Fmmm und α-Ga chemische Bindungsmuster zeigen, die sehr typisch für Borkristall-
strukturen sind, dass α–Ga und Immm unter Hochdruck thermodynamisch fa-
vorisiert werden und dass α–Ga bei P=0 und 210 GPa dynamisch stabil ist. Wir
schlussfolgern, dass es wahrscheinlich ist, dass neuartige, geschichtete Borphasen
unter Hochdruck oder sogar unter Normalbedingungen existieren. Weiterhin gibt
es starke Anzeichen dafür, dass diese Phasen konventionelle Supraleiter sind. Un-
sere Ergebnisse können momentan jedoch noch nicht die Ursache der experimentell
beobachteten Hochdruck-Supraleitung aufdecken.

Um das physikalisch-chemische Verständnis der geschichteten Borphasen weiter
zu vertiefen und ihre mögliche Beziehung zu der beobachteten Hochdruck-
Supraleitung zu klären, sollten zukünftige Studien versuchen, die Immm-Phase struk-
turell zu stabilisieren, die Druckabhängigkeit der Elektron-Phonon-Wechselwirkung
der geschichteten Phasen durch die Betrachtung von mehr als zwei Drücken genauer
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zu ermitteln, und die bisher noch qualitativen Ergebnisse für die Elektron-Phonon-
Wechselwirkungen in α–Ga bei 210 GPa auf eine quantitative Ebene zu stellen.
Außerdem gibt es verschiedene Indikationen, dass eine der bekannten ikosaedrischen
Phasen, wie z.B. α-rhomboedrisches Bor, für die Hochdruck-Supraleitung verant-
wortlich sein könnte. Deshalb sollte die Elektron-Phonon-Wechselwirkung in den
ikosaedrischen Phasen untersucht werden. Im Allgemeinen sollte die elektronische
Struktur und die Struktur der chemischen Bindung der reinen Borphasen genauer
analysiert werden und einfache, auf dem Orbitalbild basierende Beschreibungen ent-
wickelt werden.

Für die Untersuchungen der geschichteten Phasen und der Supraleitung in
Bor haben sich Linear-Response-Rechnungen (innerhalb der Dichtefunktional-
Störungstheorie [47, 48, 49]) als eine effiziente Art erwiesen, um dynamische Eigen-
schaften von Festkörpern zu berechnen. Diese Methoden beruhen jedoch auf einer
abstrakten, auf dem reziproken Raum basierenden Beschreibung und erlauben uns
nicht ein direktes Verständnis der Beziehungen herzustellen, die zwischen der Struk-
tur, der chemischen Bindung, der Phononenstruktur und der Elektron-Phonon-
Wechselwirkung existieren. Eine Methode, die eine auf dem Ortsraum basierende
Beschreibung eines Festkörpers, seiner Vibrationseigenschaften und der Elektron-
Phonon-Wechselwirkung bietet, wurde in den 70er Jahren von M. A. Ball [50, 51]
entwickelt, bisher jedoch niemals angewandt. Sie erlaubt es, einen Festkörper als
Anordnung von verallgemeinerten Pseudoatomen, welche wir Enatome nennen, zu
beschreiben.

In Kapitel 5 stellen wir die erste Umsetzung dieser Methode vor. Wir entwi-
ckeln ein Technik, das Enatom zu konstruieren, zeigen die ersten expliziten Beispiele
von Enatomgrößen und analysieren ihre Eigenschaften. Statt mit Bor zu begin-
nen, welches relativ kompliziert ist, wenden wir die Enatommethode vorerst auf die
einfachen Systeme fcc-Lithium und fcc-Aluminium an. Unter Druck zeigen diese
beiden ,,simplen“ Metalle ein unterschiedliches physikalisches Verhalten, welches
darin begründet liegt, dass mit ansteigendem Druck der Charakter der Bindun-
gen in Li zunehmend kovalenter wird, während dieses in Al jedoch nicht der Fall
ist. Die Druckentwicklung der verschiedenen Komponenten des Enatoms von Li und
Al spiegeln deutlich diesen Trend wider. Die Ergebnisse von Kapitel 5 wurden in
Referenz [243] veröffentlicht.

Für weitere Anwendungen sollte unsere Umsetzung der Enatommethode für Sys-
teme mit vielen Atomen pro Einheitszelle und mit nichtkubischer Symmetrie ver-
allgemeinert werden. Unser Verständnis der Enatomgrößen ist noch relativ be-
grenzt und Studien von Nichtmetallen, wie kovalenten und ionischen Materialien,
sollten folgen. Ein weiterer Schritt wäre die Berechnung von gitterdynamischen
Eigenschaften, wie Phononendispersionen und Elektron-Phonon-Matrixelementen.
Schließlich möchten wir die Enatommethode auf Bor anwenden und die Beziehungen
zwischen der Struktur, der Bindung und den dynamischen Eigenschaften in seinen
verschiedenen Strukturen untersuchen.



Appendix A

Enatom Quantities

The enatom method was introduced in chapter 5. This appendix shows examples of
enatom quantities for lithium in 3D and 2D views. These are

• the rigid part of the enatom in lithium at P = 35 GPa,

• the deformation part of the enatom in lithium at P = 35 GPa,

• the pressure evolution of the enatom density in lithium,

• the pressure evolution of the enatom potential in lithium.
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