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Chapter 1

Introduction

1.1 Interplay of the phase transformations and the
microstructure of solids

This thesis is concerned with the interplay of the kinetics of solid-state phase
transformations and the microstructure of materials: The kinetics of phase
transformations depend on the parent microstructure and the resulting, pro-
duct microstructure depends on the kinetics of the phase transformation.
These interactions are investigated by the example of nucleation-and-growth,
solid state transformations in elemental metals; in particular allotropic and
recrystallisation transformations. In the analysis, kinetic models and meso-
scopic simulations are employed.

Many industrially important materials undergo (desired) phase trans-
formations in their manufacturing process, during which the microstruc-
ture which existed before the transformation (the parent microstructure) is
deliberately replaced, partly or fully, by a new microstructure (the product
microstructure). For engineering materials, this is often achieved by subject-
ing the material to a certain time-temperature program, i.e. a heat treatment,
but also mechanical (e.g. hot or cold deformation) or chemical processes
(e.g. metal-gas reactions) can be employed. Since the microstructure largely
determines many important structural and functional properties of materi-
als, phase transformations can be employed to taylor existing materials and
to design new ones [1]. Well-known examples include the austenite�ferrite
transformation in steels, precipitation transformations in aluminium-based
light alloys and nickel-based superalloys, which all have an enormous influ-
ence on the mechanical properties, as well as the improvement of the mag-
netic properties of electrical steel by controlled deformation and subsequent
recrystallisation1.

1In the context of this thesis, recrystallisation is classified as a phase transformation. Using a nar-
row definition of the term “phase”, it could be argued that the material before and after recrys-
tallisation is in the same phase. However, without doubt there exists a recrystallisation front
at which the physical properties of the material change abruptly. Hence in a broader defin-
ition of the term “phase”, the deformed and recrystallised do not belong to the same phase.
Moreover, recrystallisation occurs via the processes of nucleation, growth and impingement

11



Chapter 1 Introduction

Figure 1.1: A schematic illustration of the relationship between microstruc-
ture and phase transformation kinetics. Mean-field kinetic mod-
els only address how the (experimentally accessible) transforma-
tion kinetics follows from the transformation mechanism, while
mesoscopic simulations are able to take into account the influ-
ence of the parent microstructure and to predict the product mi-
crostructure. The way in which the product microstructure de-
termines materials properties is beyond the scope of this thesis.

In order to employ phase transformations to influence the properties of
materials, several steps are required. Firstly, a detailed knowledge about
the thermodynamics and kinetics of the phase transformation is necessary
to understand how a change in process parameters, e.g. the annealing tem-
perature and time, influences the phase transformation, in particular the
phase-transformation kinetics. Secondly, it must be established how the
phase transformation controls the product microstructure and, thirdly, how
the product microstructure affects the properties of the material. This thesis
will be concerned with the first two of these steps. The relationship between
parent microstructure, phase-transformation kinetics, product microstruc-
ture and material properties is shown schematically in figure 1.1.

1.1.1 Step 1: Modelling the phase-transformation mechanism

The driving force for phase transformations, i.e. its thermodynamics derives
from the difference of the Gibbs energies of the parent and the product
phase. In the case of allotropic transformations in elemental metals, the

and therefore can be described with the same modelling and simulation approaches as phase
transformations.
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1.1 Interplay of the phase transformations and the microstructure of solids

driving force and its temperature dependence are usually known or can
be determined from experiments. The kinetics of a phase transformation
involves the time dependence of the (volume) fraction transformed2, f (t).
The kind of phase transformation which is the subject of this thesis pro-
ceeds by nucleation of the product phase in the matrix of parent phase and
by subsequent growth of product-phase grains until they impinge onto each
other. The laws governing each of these three concurrent processes consti-
tute the “mechanism” of the phase transformation. This includes the rate
at which new nuclei are formed and their spatial distribution, the shape of
the growing grains, the connection between the driving force for the trans-
formation and the velocity of the interphase boundaries, and the mode of
impingement, i.e. whether a product grain is slowed down gradually when
approaching another product grain, e.g. by overlap of diffusion fields, or
whether a product grain continues to grow at unchanged rate until it makes
contact with a neighbouring, growing product grain.

In general, nucleation, growth and impingement all depend on the par-
ent microstructure existing before the phase transformation. In some cases,
the parent microstructure can be assumed to be entirely homogeneous, so
that the nucleation and growth rates are identical everywhere in a speci-
men. In other cases, more common in solids, however, the inhomogeneous
nature of the parent microstructure strongly influences the transformation
mechanism. If, for example, nucleation takes place on defects in the parent
microstructure, such as grain boundaries, the nuclei are inhomogeneously
distributed. This influences both the nucleation rate and the impingement.
Similarly, if the driving force of the transformation is inhomogeneous in
the parent microstructure, the growth rate varies from location to location.
Therefore, the transformation mechanism and the parent microstructure to-
gether determine the phase transformation kinetics (see schematic in fig-
ure 1.1).

When the phase-transformation mechanism is formulated as a quantit-
ative kinetic model, the transformed fraction as a function of time and tem-
perature can be calculated, given a set of process parameters (e.g. the time-
temperature program) and material parameters (e.g. the interface mobil-
ity) [2]. This is not a trivial procedure, since the constituting equations,
e.g. the interface migration rate, are given for an individual grain while
the transformed fraction, a scalar quantity, represents an average over all

2In the case of non-isothermal transformations, also the temperature is time-dependent, T(t),
which in turn influences the thermodynamics and kinetics of the transformation, i.e. the trans-
formed fraction, f [T(t)]. Note that t and T are no independent variables (state variables) for
the transformed fraction [1].

13



Chapter 1 Introduction

product grains of a specimen, which interact with each other by impinge-
ment. This problem can be overcome by employing a mean-field approach:
the interaction of growing grains with the surrounding grains by impinge-
ment is replaced by the interaction of each grain with a mean field, i.e. the
mean value of the transformed fraction in the whole specimen. Under some
special conditions (including a spatially random distribution of nuclei and
equi-axed, isotropic growth of grains; see section 1.2.1), this allows an ex-
act analytical description of the transformation kinetics. The course of the
transformed fraction over time thus obtained can then be compared directly
with experimental results. If model prediction and measurement match, it
can be stated with some confidence (but not with certainty; see the next sec-
tion) that the mechanisms assumed in the construction of the kinetic model
indeed operate during the phase transformation under consideration.

Mean-field models have severe limitations. They are only exactly valid if
the parent microstructure is assumed to be a structureless continuum into
which the product phase grows, thereby implying that the nucleation prob-
ability and the driving force (and therefore the nucleation and growth rates)
are equal at each location in the parent microstructure. Even though exten-
sions of these models are available which partially alleviate this limitation
(see section 1.2.2), the treatment of the impingement problem is not exact in
these cases. In circumstances where the mean-field approaches fail, there is
no flexible and comprehensive approach available to treat impingement of
growing grains and thus to derive kinetic models for phase transformations.
However, in these cases mesoscopic simulations can be employed (see what
follows).

1.1.2 Step 2: Predicting the product microstructure

Mean-field kinetic models only yield very limited information3 about the
product microstructure, even though assumptions about the number and
shape of product grains are made in their derivation. This information is
essential if the properties of materials are to be optimised.

Moreover, if the identification of the operating mechanism of a phase
transformation relies solely on the comparison of the kinetic model with ex-
perimentally determined kinetics, it is possible that wrong conclusions are
drawn, in particular in cases of relatively low driving force (cf. chapter 6
of this thesis). Therefore, it is important to obtain agreement between the
(product) microstructure predicted by a phase transformation mechanism

3The average grain size and higher moments of the grain-size distribution such as the variance
are accessible [3, 4].
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1.1 Interplay of the phase transformations and the microstructure of solids

and the experimentally observed microstructure. If the mechanism of the
transformation is not properly identified or if some approximations made
in the construction of the kinetic model, e.g. for the impingement equation
(see section 1.2.2), are are not validated, it is possible that kinetic paramet-
ers inferred from model fits to experimentally determined transformation
kinetics yield erroneous results. Therefore, it is important to compare both
the predicted kinetics and the predicted microstructure with experimental
results.

The restrictions of mean-field models can be lifted by employing meso-
scopic simulations. Hereby, the impingement of grains is carried out ex-
plicitly in discretised time and space and the transformed fraction results
simply from averaging over all discrete volume elements (called “voxels” in
the case of three-dimensional simulations). The growth of grains is treated
either by applying “global rules”, i.e. by prescribing a shape and a growth
rate for each grain, or by applying “local rules”, i.e. by treating the migra-
tion of interfaces voxel-per-voxel (see section 1.3). Such simulations offer
full information about the microstructure, e.g. the grain-size distribution, at
all stages of the phase transformation, which is essential for the prediction of
material properties. Additionally, they allow to take into account the influ-
ence of spatially non-random distributions of nuclei, of an inhomogeneous
driving force etc., and thereby allow to describe a wide range of different
transformation mechanisms.

1.1.3 Scope of the thesis

In this thesis, three different aspects of the interaction of the microstruc-
ture of a material undergoing a phase transformation and the corresponding
transformation kinetics are dealt with.

I. For a given kinetic model of a phase transformation, the influence of
varied material parameters and process parameters on the resulting
product microstructure is investigated (chapter 2).

II. For a given kinetic model of a phase transformation, the influence of
varied parent microstructure on the parent→product kinetics is invest-
igated (chapters 3, 4 and 5).

III. By comparing the simulated kinetics and product microstructure with
experimental results, the suitability of specific models to describe the
kinetics of a phase transformation is investigated (chapters 6, 7 and 8).

15



Chapter 1 Introduction

All work presented in this thesis is restricted to (heterogeneous) solid-
state phase transformations which transform the entirety of the parent mi-
crostructure into a new microstructure via the nucleation and growth of
product-phase grains and subsequent impingement of the grains onto each
other. This means that, e.g. precipitation reactions, where impingement of
diffusion fields plays an important role, or spinodal de-mixing transforma-
tions, are beyond the scope of this thesis. All transformations are assumed
to proceed with “interface-controlled growth”, i.e. for the migration of in-
terfaces during the transformation, the rate-controlling process is the jump
of atoms through the interface from the parent phase to the product phase.
Phase transformations which proceed according to these criteria include e.g.
the allotropic transformations in elemental materials and recrystallisation.

1.2 Kinetic models

1.2.1 The classical JMAK and JMAK-like models; the modular
approach

The classical JMAK model (and JMAK-like models) for phase transforma-
tion kinetics go back to works in the 1930s by Kolmogorov, Avrami, Johnson
and Mehl [5–7]. They are mean-field models which all assume homogen-
eous (spatially random) nucleation in the bulk of the parent phase [1, 8].
This allows to relate the real transformed (volume) fraction of a specimen,
f , with the hypothetical, so-called extended transformed fraction, xe, which
is defined as the volume fraction of all growing grains if they could each
nucleate and grow in an infinitely large parent phase in the absence of other
(growing) nuclei. For the case of randomly dispersed nuclei which grow
isotropically, the real transformed (volume) fraction can be related to the
extended transformed fraction according to

d f = (1 − f )dxe. (1.1)

After integration, this becomes

f = 1 − exp(−xe). (1.2)

In other words, the increase in transformed fraction, d f , can be calculated
by considering the “interaction” of the increase of the extended transformed
fraction, dxe, (which can be calculated by treating each growing grain in-
dividually) with the “mean field” of all other grains, i.e. the transformed
fraction, f .
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1.2 Kinetic models

The classical JMAK equation pertains to isothermal transformations and
is valid only if a high driving force prevails and only for a limited set of
nucleation and growth mechanisms (in addition to the conditions holding
for Eq. (1.1)) [1]. By substitution of the specific expression of xe in Eq. (1.2),
the JMAK model leads to an equation of the type

f (t) = 1 − exp(−ktn), (1.3)

where k = k0 exp(−Qeff/RT) is the rate constant which depends on the
transformation temperature T via the effective, overall activation energy
Qeff and n is the Avrami, or growth exponent. Therefore, if a phase trans-
formation kinetics obeys a JMAK model, plotting the transformed fraction
as ln(− ln(1− f )) versus ln(t) in a so-called “double-logarithmic plot”, yields
a straight line with the slope n.

In the JMAK model, the pre-exponential factor k0, the effective activation
energy Qeff and the growth exponent n are constant during the entire phase
transformation. In JMAK-like models, Eq. (1.3) still holds, but k0, Qeff and n
are time or temperature dependent.

Without restrictions on the time/temperature dependencies of the nuc-
leation and growth rates and for arbitrary annealing treatments, the trans-
formed fraction can be calculated in the framework of the modular kinetic
model (MKM) approach [8], as follows.

The extended transformed fraction as function of time, t, and temperat-
ure T, where T can depend on t in case of non-isothermal transformations,
can be calculated straightforwardly by integrating the extended volume of
grains nucleated at a certain time τ, denoted by Ye(τ, t), times the nucle-
ation rate per unit volume prevailing in the specimen at that time, ṄV(T(τ))
, with respect to the nucleation time τ

xe(t) =
∫ t

0
ṄV(T(τ))Ye(τ, t)dτ. (1.4)

Adopting the case of isotropically growing grains, the extended radius of
one grain, Re(τ, t), can be obtained by integrating its growth rate/interface
velocity from the time of nucleation, τ, until the current time, t. The exten-
ded volume of one grain can then be calculated by taking the radius to the
d-th power (for d-dimensional growth) and by multiplying with an appro-
priate shape factor g (= 4/3π for growing spheres):

Yex(τ, t) = g [Rex(τ, t)]d = g
[∫ t

τ
v(T(t′))dt′

]d
. (1.5)
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Chapter 1 Introduction

Note that this last equation only holds for interface-controlled (linear) growth,
which is the only growth mode considered in this thesis. Adopting addi-
tionally the case of random nucleation, the transformed fraction can be cal-
culated from Eqs. (1.2), (1.4) and (1.5), provided the nucleation and growth
rate of product-phase grains are known.

1.2.2 Beyond JMAK models; the case of non-random nucleation

Often, it is not possible to describe experimentally determined phase trans-
formation kinetics with models of the type presented above, or a fit of the
model to the experimental data yields physically unrealistic values. Dis-
crepancies between experimental results and JMAK-like models are usually
attributed to a breakdown of one of the model assumptions, e.g. isokinetic
behaviour, hard impingement or a random spatial distribution of nucleation
sites.

One part of this thesis is focused on the influence of the parent micro-
structure on the parent→product kinetics; in particular on the influence of
spatially non-random nucleation. For the modelling of this siituation, it was
suggested [8–10] to modify Eq. (1.1) to take into account the “strength” of
impingement. Two different modifications were proposed, namely

d f = (1 − f )ξdxe (1.6)

and
d f = (1 − f ε)dxe. (1.7)

In these equations, ξ and ε are impingement parameters which do not have
an a priori physical meaning. For both parameters, as compared to “random
nucleation” (and isotropic growth), a value larger than one leads to stronger
impingement and a value smaller than one leads to weaker impingement.
These impingement equations can be incorporated in the MKM approach.

A more physical model for the description of a specific case of non-random
nucleation, namely the nucleation on parent-phase grain boundaries, was
developed by Cahn [11]. In this approach, parent-phase grain boundar-
ies are approximated as planes which are randomly distributed in space.
Nucleation takes place randomly on these planes and growth of product
grains occurs isotropically into both adjacent parent “grains”. The impinge-
ment problem is rendered tractable by approximating it as a combination
of two separate impingement processes: First, the (lateral) impingement of
grains originating from one grain boundary is addressed. Since nucleation
occurs randomly on grain boundaries, this can be done using Eq. (1.1). After
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having accounted for the impingement of grains originated from one grain
boundary, the effect of impingement of product phase grains growing from
all grain boundaries is treated next. Because the grain boundaries are as-
sumed to be randomly distributed in space, the volume of all grains nucle-
ated on one grain boundary can be treated as the extended volume in this
second impingement problem. Again, an equation analogous to Eq. (1.1) is
applied and the total transformed volume fraction is obtained.

In contrast to Eqs. (1.6) and (1.7), which are of empirical nature, this
last impingement model has a physical background. Nevertheless, the as-
sumption of randomly distributed planes as parent grain-boundaries in this
model may not be a valid approximation for nucleation on a realistic grain-
boundary network. This question is addressed in chapter 4.

1.3 Mesoscopic simulation methods

Phase transformations can be simulated with a variety of techniques. At
the atomistic level, simulation methods such as molecular statics, molecular
dynamics, kinetic Monte Carlo or the crystal phase-field method are used
to investigate the migration of short interface segments over a short period
of time. Atomistic simulations are briefly touched upon in chapter 5, where
the results of previously published kinetic Monte Carlo simulations of the
fcc-bcc phase transformation in pure iron are reviewed.

Simulation techniques which operate at a length scale above that of indi-
vidual atoms, but below that of entire workpieces are called mesoscopic
simulations. They are designed to capture the microstructural develop-
ment of materials during various processes, e.g. phase transformations or
grain growth, and are therefore applicable to the subject of this thesis. Vari-
ous mesoscopic simulation algorithms are available, including geometric al-
gorithms [12–14], (Potts-) Monte Carlo algorithms [15], Cellular Automata
algorithms [16, 17], and phase-field algoritms [18].

Geometric algorithms are most closely connected with kinetic models. They
need the nucleation rate, the growth rate and the shape of the growing
grains (usually assumed to be spherical) as input values, thereby adopting
“global rules” for the simulation. Nucleation and growth are carried out in
discretised space and time. For each time step, the number of nuclei which
should be formed is calculated from the nucleation rate and the radius of the
grains (in the absence impingement) is calculated from the growth rate. Im-
pingement is treated by not allowing grains to grow further once they touch
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R (t , )e n+1 1t

R (t , )e n+1 2t

Figure 1.2: Schematic illustration of a growth step in a geometric simula-
tion. Two different grains are shown which grow as circles (in
this two-dimensional schematic). Their radius in the previous
time step is shown as dashed line and their radius in the current
time step is shown as full line. Note that some pixels could have
been transformed by both grains at the emerging grain bound-
ary; they are assigned to the grain which reaches them first.

transformed cells

untransformed cells

active cells

Figure 1.3: Schematic illustration of a Cellular Automaton growth step. At
the interface between transformed and untransformed mater-
ial, it is checked for each cell at the interface between trans-
formed and untransformed regions (the “active” cells) whether
the transformation front can advance into the neighbouring cells.
One of the active cells and the neighbouring transformed cells,
which could cause the active cell to become transformed (ar-
rows), are highlighted.
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each other (see figure 1.2). Geometric simulations are computationally very
efficient, since, dependent on the instantaneous growth rate, a grain can
grow across many pixels in one time step. If the algorithm is adapted for
parallel execution on a multi-processor computer, it is possible to simulate
the nucleation and growth of about 50 000 grains in a simulation cube con-
sisting of 6003 voxels in approximately 10 minutes on a modern worksta-
tion with 6 CPUs. The symmetry of the lattice used for the spatial discret-
isation cannot introduce propagating errors into the simulations, since the
geometry of the growing grains is given by the global transformation rules.

However, geometric simulations are also the least flexible of the algorithms
mentioned above. Since the shape of the growing grains is a part of the sim-
ulation algorithm, they cannot deal e.g. with local variations in the growth
rate of grains. Geometric simulations are best suited to determine the micro-
structure resulting from a phase transformation for which a kinetic model
has been established (see chapter 2). Additionally, they can be used to study
the influence of a spatially non-random distribution of nuclei on the phase
transformation kinetics and microstructural development (see chapters 3
and 4).

Cellular Automata algorithms and (Potts-) Monte Carlo algorithms are re-
lated simulation methods which operate with local rules describing what
is happening at a lattice point of the simulation cube (transformation or
not) only on the basis of its current state and the state of the neighbouring
lattice points (see figure 1.3). While in Cellular Automata, each lattice point
(“cell”) is checked once at each time step, the lattice points are visited in ran-
dom order in Monte Carlo simulations. In both methods, the simulation can
be sped up by only considering untransformed, “active” cells at the inter-
face between transformed and untransformed regions. The switching rules
determining whether an active cell should be transformed or not in a cer-
tain time step can be deterministic or probabilistic ones in both simulation
methods. In this thesis, Cellular Automata simulations with deterministic
switching rules will be employed. They are more computationally intensive
than geometric simulations, since (on average) it takes several time steps for
the transformation front to advance by one cell (i.e. generally several time
steps elapse from the time at which a cell becomes active until the time at
which an active cell is transformed) . This is the case because the time step
must be chosen small enough to minimise the influence of the symmetry of
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the lattice used for the spatial discretisation4. One simulation consisting of
about 1 000 grains growing in a simulation cube of 4503 voxel lasts approx-
imately 90 minutes, running on a single CPU.

Cellular Automata simulations offer the possibility to include a growth
rate which varies locally, e.g. by varying the driving force of the phase
transformation from cell to cell. Therefore, anisotropic growth can be in-
vestigated with such simulations. In this thesis, they are used to study the
kinetics and microstructural development of the recrystallisation of pure
copper (see chapter 7).

Phase-field simulations formulate the growth of grains in a framework of
partial differential equations as the temporal evolution of the location-de-
pendent transformed fraction (the “phase field”). They are computationally
intensive, but allow to flexibly treat phase transformations which involve
the interaction of several externally applied fields (e.g. a temperature and
a stress field) and the phase field. Additionally, they are well suited for the
simulation of diffusion-controlled phase transformations, such as the solidi-
fication of alloys or precipitation transformations, where the phase field and
the concentration field (i.e. the location-dependent concentration) interact
during the transformation, but they do not offer advantages in the simula-
tion of the kind of interface-controlled transformations (lacking long-range
diffusion) considered in this thesis.

1.4 Investigated phase transformations

Three different phase transformations are investigated in this thesis and
compared with the results of kinetic models and mesoscopic simulations:

Fcc�bcc transformation in pure iron. In a certain range of cooling rates,
the austenite (fcc)�ferrite (bcc) transformation in pure iron occurs as a mas-
sive transformation. This means that it is an interface-controlled transform-
ation, controlled by uncorrelated atomic jumps across the interface, in which
no specific crystallographic orientation relationship is preferred between
parent and product phases. The results of atomistic simulations on the mi-
grating fcc/bcc interface are briefly reviewed in this thesis (see chapter 5).

4The influence of the discretising lattice is strongest if only the first neighbour shell is used in
the decision whether a cell transforms or not. If second- and third-nearest neighbours are
included, the grains grow almost unaffected by the lattice symmetry
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Recrystallisation of pure copper. This transformation occurs upon anneal-
ing of cold-worked copper by migration of high-angle grain boundaries.
Both the experimentally determined kinetics and the product microstruc-
ture are analysed. The influence of the inhomogeneous driving force (i.e.
the stored energy due to cold working) and the influence of the orientation
relationship between deformed matrix and recrystallised grains on the nuc-
leation and the growth mechanisms are investigated using Cellular Auto-
mata simulations (see chapters 6 and 7).

Fcc�hcp transformation in pure cobalt. This martensitic (also interface-
controlled) transformation, in this case involving correlated atomic jumps
across the interface, relating two close-packed crystal structures occurs via
the ordered glide of Shockley partial dislocations. Since the partial disloca-
tions cannot cross high-angle grain boundaries, the parent microstructure
plays an important role in the kinetics of this phase transformation. The
influence of repeated cycling on the phase-transformation kinetics is invest-
igated and a kinetic model is developed (see chapter 8).

1.5 Organisation of the thesis

The thesis consists of several parts. In the first part, (chapter 2), geometric
simulations are employed to investigate how changing parameters of the
kinetic model and of the temperature program influence the microstructure,
in particular the grain-size distribution. The algorithm used in the geomet-
ric simulations is described and then applied to phase transformations from
a supersaturated matrix upon isochronal heating and cooling.

The next part (chapters 3 and 4) deals with phase transformations in which
nucleation occurs spatially non-randomly on grain-boundaries in the par-
ent microstructure. The influence of the parent microstructure, namely the
mean parent grain size and the parent grain-size distribution, as well as the
influence of the parent→product kinetics, is investigated using geometric
simulations. A new modification to kinetic models for grain-boundary nuc-
leated phase transformations is proposed which can be reliably used to infer
kinetic parameters from experimentally determined phase transformation
kinetics.

In chapter 5, the results of chapters 2–4 are summarised and discussed in
the context of previously published atomistic simulation results concerning
the mobility of the fcc/bcc-interface during the massive austenite-to-ferrite
transformation in pure iron.
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In the next part, (chapter 6 and 7), the recrystallisation of pure copper is in-
vestigated by experiments and simulations. The kinetics of recrystallisation
is recorded using differential scanning calorimetry and the microstructural
development during recrystallisation is characterised by electron backscat-
ter diffraction. The experimental findings are contrasted with the results
of geometric simulations (chapter 6). The influence of an inhomogeneous
deformed state (before recrystallisation) and thus local variations in growth
rate on recrystallisation kinetics and microstructural development are ex-
amined using Cellular Automata simulations and compared with experi-
mental results (chapter 7).

In the last part (chapter 8), the allotropic hcp/fcc phase transformation
in pure cobalt is investigated by X-ray diffraction and differential scanning
calorimetry. The influence of the parent microstructure on the transforma-
tion kinetics is discussed and a suitable kinetic model to describe the kinet-
ics is developed.
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Chapter 2

Predicting microstructures from phase
transformation kinetics: The case of isochronal
heating and cooling from a supersaturated matrix

2.1 Introduction

Phase transformations play a key role in the manufacturing process of many
materials. They have a great influence on the microstructure and hence on
the properties of the material. A detailed knowledge about the mechan-
isms of phase transformations is therefore necessary to design new mater-
ials and to optimize their properties (for a recent example, see Ref. [19]).
This knowledge can be obtained by observing and analysing the kinetics
of the concerned phase transformation. Often it is attempted to describe
the kinetics of (nucleation-and-growth) solid-state transformations by the
classical model by Johnson, Mehl, Avrami and Kolmogorov (JMAK) that
describes the nucleation and subsequent growth of a product phase in the
matrix of the parent phase until the whole parent phase is transformed [5–7].
The JMAK model holds only under severe constraints; extension to more
complex nucleation, growth and impingement modes as well as arbitrary
temperature-time programs is provided by the modular kinetic model de-
scribed in Ref. [8].

The kinetic parameters of the transformation model are usually determ-
ined by fitting the degree of transformation as calculated by the model to the
experimentally determined time-temperature dependence of the degree of
transformation (for a recent example, see Ref. [20]). Once the kinetic para-
meters are known, the kinetic model can be used to derive a much more
detailed picture of the evolving microstructure than that provided by the
transformed fraction, which is a single number. This can be done in vari-
ous ways. Already the first authors who treated phase transformation kin-
etics rigorously were concerned with determining average grain sizes and
grain-size distributions (GSDs) from kinetic models applied to isothermal
transformations [7, 21]. Meijering [3] and Gilbert [4] calculated the first
and second moments of several geometric properties (e.g. grain volume,
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Chapter 2 Predicting microstructures from phase transformation kinetics

grain surface) of microstructures, again resulting from isothermal trans-
formations, with nuclei that are uniformly distributed in space and that are
either already present at the beginning of the transformation (a situation
termed either “pre-existing nuclei”, “site saturation” or “cell model”) or that
form with constant nucleation rate per unit volume of untransformed ma-
terial (“continuous nucleation” or “Johnson-Mehl-model”). Generally, it is
possible to simulate the microstructure evolving during a phase transforma-
tion by taking into account the geometrical assumptions made in the kinetic
model and applying one of several established simulation schemes as de-
scribed in section 2.2.1.

The purpose of this chapter is to explore the microstructures, as reflected
in grain-size distributions, resulting from nonisothermally conducted phase
transformations. It will be shown that large differences occur between the
microstructures resulting from transformations upon (isochronal) heating
and from transformations upon (isochronal) cooling. After a short over-
view of methods for microstructure simulation and analysis (section 2.2.1),
the method used in this work is presented (section 2.2.2). Subsequently,
it is applied to the cases of transformations during isochronal heating and
cooling (sections 2.3.1 and 2.3.2). Finally, a general discussion of the ob-
served results is given and different methods for analysing the obtained
microstructures are compared (section 2.3.3).

2.2 Modelling of Grain-Size Distributions

2.2.1 Methods for Microstructure Simulation

The average grain volume, ⟨V⟩, of a microstructure is given by the inverse
of the average number of grains per unit volume (the grain density, ρgrains)

⟨V⟩ = ρ−1
grains. (2.1)

In the case of site saturation, the grain density is equal to the number of nuc-
lei per unit volume present at the beginning of the transformation. For con-
tinuous nucleation and generally for all models in which nucleation takes
place during the transformation, however, nuclei can only form in regions
that are still untransformed, so that the nucleation rate, Ṅ(t), i.e. the number
of nuclei that form per unit time and per unit volume, must be multiplied by
the untransformed fraction (1 − f (t)) and integrated over the whole trans-
formation time to yield the final density of nuclei and thus, product grains:

ρgrains =
∫ ∞

0
Ṅ(t)(1 − f (t))dt. (2.2)
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In the case of constant nucleation rate, Ṅ, and constant (linear and isotropic)
growth rate, v, as could occur during isothermal transformations, equation
(2.2) can be evaluated to [3, 7]

ρgrains = 0.8960
(

Ṅ/v
)3/4 . (2.3)

For simple nucleation and growth models, grain-size distributions can be
calculated analytically. In the case of site saturation, for example, the result-
ing microstructure is called Voronoi-tessellation and its GSD (the probability
p of finding a grain of normalised volume between y = V/⟨V⟩ and y + dy)
is described by the Kiang conjecture [22] (see also Figure 2.3 in section 2.2.3)

p(y) =
cc

Γ(c)
(y)c−1 exp(−cy), (2.4)

where Γ is the Gamma-function and c is a constant. This conjecture was ana-
lytically proven to be correct for the one-dimensional case (c = 2), but for
the three-dimensional case the value of c = 5.586 could only be determined
by Monte-Carlo simulations [23, 24]. This specific GSD does not depend
on the time or temperature dependency of the growth rate and is therefore
identical for transformations upon isochronal heating, isochronal cooling
and upon isothermal annealing.

To find analytical descriptions for GSDs resulting from more complicated
nucleation and growth mechanisms is very difficult [24, 25] and generally
impossible. However, a numerical approach is usually possible by casting a
phase-transformation model in the form of an iterative algorithm that sim-
ulates nucleation, growth and impingement of grains on a discretised lat-
tice following certain rules. Such calculations were done in the past using
Monte Carlo algorithms [15,26], cellular automata [16,17] as well as geomet-
ric models [12–14, 27]. While the former two classes of models operate with
local rules describing what is happening at a lattice point (transformation
or not) only on the basis of its current state and the state of the neighbour-
ing lattice points, the latter class of models uses “global” rules to decide if
a lattice point should transform or not. These global rules are given by the
nucleation and growth rate prevailing in the sample at a given time (and
temperature). These nucleation and growth rates can be taken from an un-
derlying kinetic model.

There are two main advantages of global growth models over local growth
models: First, their computational efficiency is better. In local growth mod-
els, the duration of one time step must be less than the time that the interface
between transformed and untransformed material needs to move over the
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width of one voxel in order to avoid discretisation errors. In global growth
models, the time step can be much larger than this without introducing a
propagating error into the simulation, since the position of the interface is
calculated independent of the used lattice. Second, the symmetry of the lat-
tice used for the spatial discretisation cannot introduce propagating errors
into simulations based on a global growth model, since the geometry of the
growing grains is given by global rules.

Geometric models have been used in the past to simulate the microstruc-
ture resulting from various nucleation and growth modes, in particular for
isothermal transformation (i.e. for constant nucleation and growth rates),
see Ref. [12] for an early example, and for isochronal heating transforma-
tions, see Ref. [28] for a recent example.

It should be noted that for all transformations which can be correctly de-
scribed by the kind of kinetic model used here, the presented geometrical
method is able to predict the final microstructure of the material. The us-
age of more sophisticated (and more laborious) simulation methods, e.g.
the phase field method, does not provide significant additional insight and
is therefore not necessary in the present context.

2.2.2 Method employed

In the present work, a geometric algorithm is employed to simulate three-di-
mensional microstructures resulting from transformations of a supersatur-
ated parent phase. The global transformation rules are given by a modular
kinetic model [8] for the underlying phase transformation kinetics.

Each simulation run begins by calculating the kinetics, i.e. the depend-
ency of the transformed fraction on time, f (t), or temperature, f (T). Note
that temperature and time are in general no state variables for the trans-
formation: f = F(T(t)) [29]. All simulations in this chapter were per-
formed either isochronally (heating/cooling rate Φ = const.) or isotherm-
ally (Φ = 0), so that the temperature as a function of time is given by

T(t) = T0 + Φt, (2.5)

with the starting temperature (or the isothermal temperature) T0. Therefore,
the degree of transformation can always be expressed as f (t) because for an
isochronally conducted annealing, a change in time prescribes a change in
temperature according to equation (2.5). Two modes of nucleation are con-
sidered in this chapter: site saturation and continuous nucleation. In the
case of site saturation, all nuclei exist from the beginning of the transform-
ation (i.e. pre-existing nuclei) and no nucleation takes place while growth
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occurs. In the case of continuous nucleation, nuclei form during the phase
transformation with a certain rate per unit volume of untransformed mater-
ial. This continuous nucleation rate is constant for isothermal transforma-
tions, but not for nonisothermal transformations. An Arrhenius-type tem-
perature dependency is assumed in this chapter for both the nucleation rate
and the interface velocity of growing grains v(t). This (usual) assumption
implies that the chemical driving force is large and does not influence the
kinetics [2, 8]. This holds for example for the interface controlled austenite-
ferrite transformation in ultralow-carbon steel [30] or the crystallisation of
amorphous alloys [31, 32]. Thus:

Ṅ(t) = N0 exp
(
− QN

kBT(t)

)
and v(t) = v0 exp

(
− QG

kBT(t)

)
(2.6)

with kB as the Boltzmann constant, N0 and v0 as pre-exponential factors and
QG and QN as the activation energies for nucleation and growth (interface
movement), respectively.

The radius of an isotropically growing grain, if unhindered by impinge-
ment, the so-called “extended radius” of a specific grain, Re(τ, t), is given
by integrating the interface velocity with respect to time from the nucleation
time τ of the grain considered until the current time t:

Re(τ, t) =
∫ t

τ
v(t′)dt′ (2.7)

For interface-controlled growth, the interface velocity v is only dependent
on the temperature [cf. equation (2.6)]. The “extended volume” of a grain,
Ye(τ, t), is accordingly defined as the volume of the sphere with radius Re.
The extended transformed fraction, Xe(t), can now be obtained by multiply-
ing the extended volume for grains nucleated at certain times τ with the
nucleation rate at that time and integrating with respect to the nucleation
time from zero to the current time (and dividing by the sample volume,
Vtot, which is taken as constant).

xe(t) =
1

Vtot

∫ t

0
Ṅ(τ)Ye(τ, t)dτ. (2.8)

Finally, assuming impingement according to randomly dispersed nuclei, the
transformed fraction is given by

f (t) = 1 − exp(−xe(t)), (2.9)

which, in case of isothermal transformations, leads to the well-known JMAK-
equation. For a “JMAK”-equation in the case of nonisothermal transforma-
tions, see Ref. [8, 29].
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In the computer program, f (t) is calculated by numerical integration of
the integrals in equations (2.7) and (2.8) employing an efficient algorithm
specifically developed for this problem [8]. The quantities necessary for
the microstructure simulation, i.e. the nucleation rate per unit volume of
untransformed material, Ṅ(t), and the extended grain radius, Re(τ, t), are
calculated and stored.

It must be stressed that the presented method is by no means restricted
to the nucleation and growth mechanisms considered here; other time, tem-
perature or grain-radius dependencies of the interface velocity and other
nucleation laws could be used without modifications to the algorithm. The
chosen nucleation and growth mechanisms serve merely to illustrate the
differences of typical GSDs that can be expected to result from phase trans-
formations upon heating and cooling.

The microstructural evolution is simulated next. The transforming spe-
cimen is modelled as a cube with periodic boundary conditions applied
in all three dimensions. The specimen is divided into cubic voxels that
all carry the number “0” (the untransformed state) at the beginning of the
transformation. For each discrete time step ∆t, it is calculated how many
nuclei emerge according to the nucleation rate given by equation (2.6) and
a corresponding number of nucleation sites are chosen randomly from the
whole specimen. If the voxel at a designated nucleation site is still in the
untransformed state, nucleation is carried out there by assigning a unique
grain number to the voxel (thereby changing it to the transformed state)
and recording its position and nucleation time. Subsequently, growth of all
product grains takes place as follows. For each grain of known nucleation
time τi (which is always smaller than the current time t), the extended ra-
dius Re(τi, t) is looked up and all voxels lying within a sphere of this radius
around the nucleus voxel of the grain are determined. All of those voxels
that are still untransformed and that lie within the Re-sphere of only the
considered growing grain are assigned the grain number. For all of those
voxels that are still untransformed and that lie within the Re-spheres of sev-
eral growing grains, it is checked to which of the growing grains such a
voxel should be assigned by calculating two distances for each of the grow-
ing grains. First, the distance between the centre of the concerned voxel and
the centre of the nucleus voxel, Rvoxel−nucleus, is determined. Then, the dif-
ference ∆R between Re(τi, t) and Rvoxel−nucleus is calculated. The voxel is
then assigned to the grain with the highest value of ∆R. Omitting this com-
parison of ∆R-values and assigning the voxel randomly to one of the grow-
ing grains in whose Re-spheres it lies, leads to a “rough” interface between
grains and an artificially high number of one- or two-voxel-wide grains, but
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otherwise does not affect the accuracy of the simulated grain-size distribu-
tions.

The thus simulated three-dimensional microstructure is analysed to de-
termine the grain-size distribution. It is also possible to extract further
information from the simulated microstructure, like the number of grain
edges per grain or the total grain-boundary area. However, the discussion
in this chapter is restricted to grain-size distributions as a sensitive, albeit
not unique means to characterise the microstructure. Three measures for
grain size are employed in this work: DV , DA and DL, as follows.

The value of the volume-weighted size of a grain, DV , is defined by the
the diameter of the sphere with the same volume V as the grain:

DV =

(
6V
π

)1/3
. (2.10)

The volume-weighted GSD is calculated by summing the number of voxels
carrying the same grain number and applying equation (2.10) and is rep-
resented as function of the normalised grain size DV/D⟨V⟩. The volume-
weighted size of a grain of average volume, D⟨V⟩, can be calculated by sub-
stituting the average grain volume ⟨V⟩ given by equation (2.1) into equation
(2.10).

The area-weighted grain size, DA, is determined by the diameter of the
circle with the same area A as the surface occupied by the grain in a planar
cross section through the specimen

DA =

(
4A
π

)1/2
. (2.11)

The area-weighted GSD is calculated by making several cross sections in
several directions perpendicular to each other through the specimen and
determining the surface occupied by the grains in all these cross sections.
It is expressed as function of the normalised grain size DA/D⟨A⟩ with D⟨A⟩
corresponding to the average grain area ⟨A⟩ in all cross sections.

Finally, the line-weighted grain size DL is determined by a line-intercept
method according to [33], where the width spanned by grains along straight
lines through the specimen (“intercept lengths”) is measured. The GSD is
obtained by drawing many lines in directions perpendicular to each other
through the sample and measuring the resulting intercept lengths. It is rep-
resented as function of the normalised grain size DL/D⟨L⟩ with D⟨L⟩ corres-
ponding to the average intercept length.
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Table 2.1: Parameters determining the numerical precision which were used
in all simulations.

voxels per simulation cube edge 600
time steps (integration of equations (2.7) and (2.8)) 10 000

time steps (microstructural evolution) 100
desired number of grains (Ngrains) 50 000

2.2.3 Simulation Parameters and Validation of the Algorithm

The input parameters governing the numerical precision of the simulation
that are used in this work have been gathered in Table 2.1. In order that the
same statistical precision and the same precision of the space and time dis-
cretisation is obtained for all combinations of kinetic parameters, the simu-
lations should pertain to the same number of product grains, irrespective of
the average grain size (that depends on the kinetic parameters and applied
transformation conditions as heating or cooling rate). The value of the grain
density (for completed transformation), ρgrains, is given by equation (2.2)
and is known in advance of the microstructure simulation. For a fixed de-
sired number of grains, Ngrains, in the simulation, the necessary edge length
of the simulation cube Lspecimen can therefore be calculated by

Lspecimen =

(
Ngrains

ρgrains

)1/3

. (2.12)

Thus, Ngrains can be used as an input parameter of the simulation instead of
Lspecimen, as desired.

Several parameters describing the kinetics of the transformation were
held constant in all presented calculations; they are given in Table 2.2. The
parameters were chosen to be physically reasonable for typical interface-
controlled phase transformations (see [8]), but for the current work their
values can be conceived as arbitrary because this work does not aim to re-
produce one specific phase transformation; moreover (almost) all results
are presented as normalised quantities. Figure 2.1 shows examples of the
microstructure resulting from simulations. In Figure 2.1 a) and b), results
of isothermal annealing (pre-existing nuclei and continuous nucleation, re-
spectively) are shown while the microstructures in Figure 2.1 c) and d) result
for isochronal heating and continuous nucleation (ratio of activation ener-
gies for nucleation and growth QG/QN = 0.01 and 100, respectively).
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Table 2.2: Parameters determining the transformation kinetics which were
used in all simulations. For the relevance of the numerical values,
see text.

growth mode interface-controlled and isotropic
growth geometry spherical

N0 1020 m−3s−1

v0 1010 m s−1

T0 (heating) 0 K
T0 (cooling and isothermal) 700 K

Φ (10, 0, -10) Ks−1

The algorithm can be validated by comparing the transformed fraction
calculated according to equation (2.9) with the transformed fraction determ-
ined in the simulation as the fraction of transformed voxels as a function of
time. Examples of thus obtained results are presented in Figure 2.2. The
agreement is excellent.

The grain-size distribution obtained from a simulation with pre-existing
nuclei can be compared with that predictred by the Kiang conjecture (2.4):
see Figure 2.3. Good agreement occurs. It has also been verified that the
current model, applied to isothermal transformations gives results compat-
ible with [3, 4, 12, 13, 27]. In particular, in agreement with [27], it was found
that the GSD resulting from isothermal transformations, if represented as
function of normalised grain size [cf. equation (2.10)], is independent of the
used input parameters such as transformation temperature, activation en-
ergies and pre-exponential factors. In the following, the focus is on noniso-
thermal transformations.

2.3 Results and Discussion

2.3.1 Isochronal Heating

The only input parameter that has an influence on the normalised GSD is
the ratio of the activation energies of nucleation and growth, in agreement
with recent results [28]. Parameters such as heating rate, pre-exponential
factors or the absolute values of QG and QN (for a fixed value of QG/QN)
influence the average grain size but not the GSDs as expressed as function
of normalised grain size. The change of the (volume-weighted) GSDs upon
varying QG/QN is shown in Figure 2.4.
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Chapter 2 Predicting microstructures from phase transformation kinetics

Figure 2.1: Example microstructures generated by the simulation algorithm
(cf. the grain-size distributions in Figure 2.4): a) generated us-
ing pre-existing nuclei; b) generated using a constant nucleation
rate (both isothermal annealing); c) generated during isochronal
heating with continuous nucleation and a ratio of activation en-
ergies QG/QN = 0.01 (see section 2.3.1); d) as before but with
QG/QN = 100 . Shown, for all cases, is only a small part of a
typical simulation cube.
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Figure 2.2: Transformed fraction as function of temperature for transforma-
tions upon cooling (at −10 Ks−1) with the continuous nucleation
mode for various ratios of the activation energies for growth and
nucleation, QG and QN. The symbols are the results of micro-
structure simulations (only every third symbol has been plotted
to improve legibility), while the solid lines have been obtained
by numerically integrating equation (2.9).

For low ratios QG/QN, the simulated microstructure consists of many
small grains (that nucleated late) and only few large grains (that nucleated
early). If the activation energies for nucleation and growth are equal, i.e.
QG/QN = 1, a broad distribution with approximately equal numbers of
large and small grains results. When QG/QN is increased further, the GSD
becomes narrow and exhibits a sharp maximum at large grain sizes (i.e.
many grains nucleated early). These results can be understood as follows.

Upon heating from 0 K, the rates for nucleation and growth are initially
both zero. With rising temperature, the process with the lower activation
energy first achieves rates significantly larger than zero. If this is the nuc-
leation process (i.e. QG/QN > 1), nuclei are formed, but they cannot grow
because the growth rate is still negligibly small. As the temperature contin-
ues to rise, growth eventually becomes significant. All nuclei formed so far
then begin to grow simultaneously while nucleation continues. This leads to
a grain-size distribution skewed to small grain sizes, i.e. a GSD with many
large grains and few small grains. This distribution is very similar to the
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Chapter 2 Predicting microstructures from phase transformation kinetics

Figure 2.3: Grain-volume distribution of a microstructure resulting from an
isothermal transformation with pre-existing nuclei (site satura-
tion). Symbols represent the results of one simulation run and
the solid line has been computed according to the Kiang conjec-
ture (2.4)

narrow one observed for transformations with pre-existing nuclei5 (shown
as dashed line in Figure 2.4). If, however, growth is the process with the
lower activation energy (i.e. QG/QN < 1), nothing happens at low tem-
peratures because there are no nuclei present that could grow. Upon further
heating, the first few nuclei that form can grow relatively rapidly. This leads
to a GSD skewed to large grain sizes, i.e. a GSD with many small and a few
large grains.

If both activation energies are equal (i.e. QG/QN = 1), the ratio of nuc-
leation rate and growth rate does not depend on temperature, i.e. it re-
mains constant throughout the transformation. This leads to a GSD which
is isomorphous with a distribution obtained by isothermal transformations
(shown with a thick solid line in Figure 2.4).

5Note that the GSD obtained upon heating for QG/QN > 1 will never entirely coincide with the
GSD for site saturation, because, even though a large number of nuclei begins to grow at the
same time, as for site saturation, here nucleation continues at a high rate during the “growth
stage” of the transformation, different from site saturation.
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2.3 Results and Discussion

Figure 2.4: GSDs for transformations (continuous nucleation) upon iso-
chronal heating as function of the ratio of the activation ener-
gies for growth and nucleation, QG and QN. The GSDs for iso-
thermal transformation (continuous nucleation, solid line) and
transformation with site saturation (dashed line) are shown as
well. For used parameters, see Table 2.2 .

2.3.2 Isochronal Cooling

Upon cooling, the transformation starts at a temperature above 0 K, so nuc-
leation and growth rates [cf. equation (2.6)] are nonzero at the beginning
of the simulated transformations. Because of the exponential nature of the
equations (2.6), the nucleation and growth rates are monotonically increas-
ing with temperature and hence there is no “natural” starting temperature.
Instead, a starting temperature must be chosen artificially. For the simula-
tions of transformations upon heating, the natural starting temperature is
0 K (cf. section 2.3.1). Note that in the current model, the chemical driving
force is large and therefore does not influence the kinetics, although its value
may depend on temperature [see discussion above equation (2.6)]. For all
simulations during cooling presented here, a starting temperature of 700 K
was chosen.

In strong contrast with transformations upon heating, the cooling rate
and the absolute values of the activation energies of nucleation and growth
pronouncedly influence the GSDs resulting from transformations upon cool-
ing. This partly is a trivial effect: For a fixed starting temperature, on the one
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Figure 2.5: GSDs for transformations (continuous nucleation) upon iso-
chronal cooling as function of the ratio of the activation ener-
gies for growth and nucleation, QG and QN. The GSDs for iso-
thermal transformation (continuous nucleation, solid line) and
transformation with site saturation (dashed line) are shown as
well. The frequencies of the distribution for the site saturation
case have been multiplied by 1/2 to improve comparability. For
used parameters, see Table 2.2.

hand, absolute values of the activation energies can be chosen “too large”
so that only a sluggish transformation can be initiated, and because nucle-
ation and growth rates decrease further during cooling, the transformation
will not be able to complete (or to start at all). On the other hand, for “too
small” absolute values of the activation energies, the transformation runs to
completion in extremely short time, making the transformation effectively
an isothermal one. Therefore, the following discussion is based on a con-
sideration of only ratios of activation energies; absolute values of the activ-
ation energies were chosen such that the transformations can be compared
for QG/QN varying over several orders of magnitude. The corresponding
procedure was devised as follows.

1. T0 and Φ are fixed.

2. For each ratio of the activation energies QG/QN, the absolute values
of QG and QN are set to very small initial values.

3. The absolute values of QG and QN are increased by multiplication
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2.3 Results and Discussion

with a certain factor until the reaction is not able to complete any more
upon cooling.

4. Steps 2. and 3. are repeated several times, thereby improving the
choice of initial activation energy values and reducing the multiplica-
tion factor in each consecutive iteration.

The results obtained on this basis are independent of the cooling rate. They
are shown in Figures 2.5 and 2.6.

The simulations for transformations upon cooling lead to results strik-
ingly different from those obtained for heating, for otherwise identical con-
ditions (Tables 2.1 and 2.2). For cooling, large values of QG/QN lead to
GSDs with their (less pronounced) maximum at small (normalised) grain
sizes, whereas for small values of QG/QN GSDs are obtained with their
maximum at large (normalised) grain sizes.

Upon cooling, the process with the higher activation energy ceases first.
If this is nucleation (i.e. QG/QN < 1), all grains nucleated so far continue to
grow which leads to a GSD of rather large grains of similar size (see Fig-
ure 2.5). This situation is similar to site saturation (pre-existing nuclei):
very many nuclei are formed at the beginning of the transformation and
subsequently grow simultaneously. Indeed, the GSDs for small values of
QG/QN (Figure 2.5) are similar to the GSD for a transformation with pre-
existing nuclei (but never fully approach it, cf. footnote 1). The nucleation
rate at the end of the transformation has fallen to less than a tenth of its
value at the beginning of the transformation (see Figure 2.6), whereas the
growth rate is almost constant during the whole course of the transforma-
tion (quasi-isothermal growth).

If the activation energy for growth is higher and growth ceases first while
nucleation continues, the reaction could only complete by filling up un-
transformed space with new non-growing nuclei, which is highly unlikely
to succeed before the temperature drops to values making also further nuc-
leation impossible. Therefore, transformations with QG/QN > 1 can only
complete if the absolute value of QG is low enough, so that growth is pos-
sible over the whole course of the transformation. This implies that the ab-
solute value of QN is even lower than QG; evidently, for (very) low values
of QN, quasi-isothermal nucleation occurs (see Figure 2.6).

If QG/QN = 1, the temperature dependencies of the nucleation and
growth rate are the same, both rates decrease by the same amount during
the transformation and hence the data points for v(T) and Ṅ(T) coincide
(see Figure 2.6 and cf. the results in Figures 2.4 and 2.5 for QG/QN = 1).
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Figure 2.6: For transformations upon isochronal cooling, the ratio of the rates
of growth at the beginning and at the end of the transformation,
v(Tend)/v(T0), (◦) and the ratio of the rates of nucleation at the
beginning and at the end of the transformation, Ṅ(Tend)/Ṅ(T0),
(+), both as function of the ratio of the activation energies of
growth and nucleation, QG/QN.

2.3.3 Discussion

In this chapter, the focus is on transformations occurring in a distinctly su-
persaturated matrix, implying that nucleation and growth rates can be de-
scribed by equation (2.6). Such transformations occur in practice upon heat-
ing from a quenched-in metastable state or, departing from an equilibrium
state, upon cooling or heating (passing a phase-equilibrium temperature) so
quickly that significant transformation only occurs at a temperature where
the chemical driving force for the transformation has become large (cases
of undercooling or superheating) In all cases in which the values for the
nucleation and growth rates are finite (i.e. larger than zero) at the start tem-
perature of the transformation, a similar discussion as in section 2.3.2 for
transformations upon cooling can be given.

If the chemical driving force is not large (e.g. upon slowly passing a phase-
equilibrium temperature from an equilibrium state), its influence on phase
transformation kinetcs is not negligible any more and equation (2.6) is not
applicable. Then, the start temperature of the transformation (and of a sim-
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by the line-intercept method.

ulation thereof) is the phase-equilibrium temperature.
The results presented in this chapter have relevance for phase transform-

ations in commercially interesting materials as these often take place em-
ploying cooling rates such that a large supersaturation drives the transform-
ation.

The GSDs resulting from transformations upon cooling for three differ-
ent ratios of growth and nucleation activation energies have been presented
in three different ways in Figure 2.7: The histograms for volume-weighted
grain size [cf. equation (2.10)], for area-weighted grain size [cf. equation
(2.11)] and for line-weighted grain size are shown in Figures 2.7 a), b) and
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Chapter 2 Predicting microstructures from phase transformation kinetics

c), respectively. The differences between the three GSDs caused by vary-
ing QG/QN is pronounced for the volume-weighted grain size, whereas
the GSDs for the line-weighted grain size differ in a minor way. This is
the case because, mathematically, the GSDs in c) are the product of fold-
ing the grain-volume distribution with the distribution that results for the
line-weighted grain size of a single grain (of typical shape) [34]. Therefore,
the GSDs in Figure 2.7 c) are smeared versions of the GSDs in Figure 2.7
a). The easy-to-apply line-intercept method is widely used but appears to
be not sensitive enough to reveal the dependence of the phase transform-
ation kinetics on the value of the ratio of activation energies of nucleation
and growth. The volume-weighted GSD can only be obtained experiment-
ally by laborious methods (e.g. using serial cross-sectioning) but evidently
provides the preferred means to expose the kinetic mechanisms of the un-
derlying phase transformation. On the other hand, distinction of different
nucleation modes may already be possible by considering GSDs for line-
weighted grain size: for example, site saturation leads to a characteristically
narrow GSD much different from the broad GSD resulting from transform-
ations with continuous nucleation (cf. Figures 2.4 and 2.5).

2.4 Conclusions

• The microstructure resulting from both isothermally and nonisotherm-
ally conducted phase transformations, controlled by specific nucle-
ation, growth and impingement modes, can be simulated realistically
on the basis of global rules derived from an analytical or numerical
phase-transformation model.

• The grain-size distributions (GSDs), once expressed as function of the
normalised grain size, can be characterised in particular by the ratio
of the activation energy for growth and the activation energy for nuc-
leation.

• The microstructures derived for transformations upon cooling and
heating differ strikingly: When the ratio of activation energies of growth
and nucleation is increased, the GSDs resulting for transformations
upon heating show a shift of the most frequent grain size (the GSD
maximum) from small to large size values. For transformations upon
cooling, the opposite behaviour is observed: The most frequent grain
size decreases when the ratio of activation energies of growth and nuc-
leation increases. The GSD maximum is less pronounced in the case
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of cooling than in the case of heating.

• The GSD differences upon heating and cooling are direct consequences
of the temperature dependencies of the nucleation and growth rates:
For transformations upon heating, both rates are virtually nil at the be-
ginning and subsequently increase (with different rates), whereas for
transformations upon cooling, both rates have finite (different) val-
ues at the beginning of the phase transformation and subsequently
decrease, becoming virtually nil at different stages of transformation.

• The GSD for the volume-weighted grain size is best suited to exhibit
the effect of variable ratio of the nucleation and growth activation en-
ergies on the phase transformation kinetics; the (smeared) GSD for
line-weighted grain size may still be capable to expose the effect of
differences in nucleation mechanisms.
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Chapter 3

Simulation of the kinetics of grain-boundary
nucleated phase transformations

3.1 Introduction

For nucleation-and-growth phase transformations, the assumption of ho-
mogeneous (i.e. spatially random) nucleation, even though often used in
modelling, does not hold in many cases. Nucleation often occurs hetero-
geneously on container walls or on microstructural features of the parent
phase like inclusions or defects, such as grain boundaries. This should be
reflected in the modelling of phase transformations, since mean-field kin-
etic models are usually derived assuming homogeneous nucleation. This
chapter is concerned with an investigation of the kinetics of phase trans-
formations and the resulting microstructure, by means of geometric simu-
lations, if nucleation occurs on grain boundaries of the parent phase.

First, kinetic models for random nucleation and for grain-boundary nuc-
leation are briefly discussed, then the simulation method is described and
finally, the influence of the main factors on the kinetics and resulting micro-
structure are discussed.

3.2 Kinetic Models

Nucleation-and-growth phase transformations with random, bulk nucle-
ation can be modelled with mean-field kinetic models which go back to
works by Johnson, Mehl, Avrami and Kolmogorov [5–7] (see also Ref. [8]
for a recent review). These “JMAK-like” models all have in common that
the assumption of a spatially random arrangement of nuclei allows to relate
the real transformed (volume) fraction of a specimen, f , with the hypothet-
ical, so-called extended fraction, f ex, which is defined as the volume fraction
of all growing grains if they could grow without impingement (i.e. if they
could grow “through” each other). Thus:

d f = (1 − f )dxe. (3.1)
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Chapter 3 Simulation of the kinetics of GBN phase transformations

The calculation of the extended transformed fraction can be done straight-
forwardly if specific models for nucleation and growth are adopted; i.e. the
nucleation rate per unit volume of untransformed material, ṄV , and the
growth rate v must be known. Additionally, the dimensionality, d, of the
growth and the shape of the growing grains (expressed by the shape factor
g) need to be known, as well as whether linear or parabolic growth pre-
vails [expressed by the exponent m, which equals 1 for linear (e.g. interface-
controlled) and 2 for parabolic (e.g. diffusion-controlled) growth]:

xe(t) =
∫ t

0
ṄV(τ)g

(∫ t

τ
v(t′)dt′

)d/m
dτ, (3.2)

where ṄV(τ) refers to the grains nucleated at time τ, which grow with velo-
city v from time τ until the current time t. equation 1 cannot be used if nuc-
leation occurs on grain boundaries. Cahn [11] proposed a model for nuc-
leation on grain boundaries by approximating grain boundaries as planes
which are randomly distributed in space. Since nucleation is supposed to
occur randomly on these planes, the impingement of growing grains on
planes can be described, in analogy to equation 1, by

dO = (1 − O)dOe, (3.3)

where O denotes the transformed area fraction on a plane (parallel to or
on a grain boundary), and Oe the corresponding extended area fraction.
Likewise, since planes are randomly distributed, the impingement of ma-
terial growing from different planes can be described by equation 1. For such
a model of grain-boundary nucleation, the nucleation rate needs to be ex-
pressed per unit area of grain boundary, ṄO; the grain boundary area per
unit volume is denoted by SGB

V . For a detailed description of the model, see
Refs. [2,11]. In the case of linear growth of spherical product grains, Cahn’s
model is given by

f (t) = 1 − exp
{
−SGB

V

∫ +∞

−∞

[
1 − exp

(
−
∫ t

0
π(v2(t − τ)

2 − y2)ṄO(τ)dτ

)]
dy
}

(3.4)

The assumption of randomly distributed planes in this grain-boundary
nucleation model may not be a valid approximation of a realistic grain-
boundary network.
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3.3 Simulation Method

3.3 Simulation Method

The method to simulate the kinetics of phase transformations and the result-
ing microstructure which is used in this work can be called geometric sim-
ulation method [12]. The corresponding algorithm discretises time in time
steps and space in voxels (on a three-dimensional, cubic grid); see Ref. [35].
It needs input values for the nucleation and growth rate prevailing in the
simulated specimen. For each time step, the number of nuclei that should
emerge according to the nucleation rate is determined and as many nucle-
ation positions are chosen; either randomly in the whole specimen or from a
list of available nucleation sites (see below). For each nucleus, be it formed
in the current or in a previous time step, the radius that the grain, originat-
ing from this nucleus, would have without interaction with other grains is
determined by integrating the growth rate from the time of nucleation until
the current time. Within a sphere of this radius around each nucleation po-
sition, it is checked for each voxel if it has already been transformed. If this
is the case, transformation cannot take place. If the voxel is untransformed
yet, it is transformed now and is assigned to the considered nucleus/grain.
This algorithm thus corresponds to the assumption of hard impingement.

If nucleation doesn’t occur randomly in the whole specimen, a list of per-
mitted nucleation sites needs to be generated. In the simulations compat-
ible with the assumptions of Cahn’s model for grain-boundary nucleation,
this is realised by generating randomly a certain number of planes cutting
the simulation cube and by determining the voxels that are cut by each
plane. For simulations using more realistic grain-boundary arrangements,
two simulations are performed: First, a simulation with nuclei randomly
distributed in the bulk is done and the microstructure (denoted “parent mi-
crostructure”) resulting from this simulation is then used in a second sim-
ulation to investigate the effect of grain-boundary nucleation. A voxel of
the parent microstructure is defined to be a grain-boundary site and hence a
valid nucleation position in the second simulation (“parent→product trans-
formation”) if it has exactly two different grains in its neighbourhood (of 26
surrounding voxels).

In all simulations, interface-controlled (i.e. linear) growth is assumed.
Nucleation is assumed to occur continuously in the untransformed volume
(with one exception, where pre-existing nuclei are assumed). The temperat-
ure is either held constant during the transformation (i.e. isothermal anneal-
ing) or increased at a constant rate (i.e. isochronal annealing). Arrhenius-
dependencies are assumed for the nucleation and growth rates with the ac-
tivation energies QN and QG for nucleation and growth, respectively.
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Figure 3.1: The results of simulations with random nucleation on randomly
distributed planes for varied ratio SGB

V /ṄO (values indicated in
the figures). a) The transformed fraction as a function of time
(symbols) together with the predictions of Cahn’s model (solid
lines) and a JMAK-like model (dash-dot line). b) The resulting
grain-size distributions. c) The radial distribution function of
nucleation positions.

3.4 Simulation Results

Influence of the GB area density. The influence of the grain boundary
area density is revealed by the results shown in Figure 3.1 a) together with
the predictions of Cahn’s model (equations 1, 3 and 4) and a JMAK-like
model (based on spatially random nucleation; equations 1 and 2) for the
corresponding input parameters. Since SGB

V and ṄO have opposing effects
on the kinetics, the ratio SGB

V /ṄO was varied while keeping the value of
SGB

V × ṄO = ṄV constant. This ensures that the JMAK-like model predicts
the same kinetics for all simulations. For all input parameters, the simula-
tions agree well with the predictions of Cahn’s model.

For high values of the ratio SGB
V /ṄO, the simulated phase transformation

kinetics (as well as the prediction of Cahn’s model) become identical to the
prediction of the JMAK-like model; the smaller the ratio SGB

V /ṄO is, the

48



3.4 Simulation Results

slower the transformation and the larger the deviation from the prediction
of the JMAK-like model becomes. The grain-size distributions resulting for
the same set of simulations are shown in Figure 3.1 b). The smaller the
ratio SGB

V /ṄO is, the broader the product grain-size distribution gets and
the more its maximum moves towards small grain sizes.

Influence of the parent microstructure. Departing from various parent
microstructures, the transformation was carried out using the same parent→
product kinetics (isothermal transformations). By adjusting the length scale
of the simulated parent microstructure, it was ensured that all simulations
pertain to the same grain boundary area density.

The grain-size distributions of all employed parent microstructures are
shown in Figure 3.2 a), including the (extreme) grain-size distribution that
results if the space between randomly distributed planes is filled up and
defined as grains. The resulting simulated kinetics are shown in Figure 3.2
b), together with the predictions by Cahn’s model and the JMAK-like model.
All simulated kinetics lie in between these two extremes. Only the results of
the simulation with nucleation on grain boundaries of a parent microstruc-
ture, the grain-size distribution of which is very broad and has its maximum
at small grain sizes, comes close to the prediction by Cahn’s model. Gener-
ally, the broader the parent grain-size distribution is, the more the simulated
kinetics deviates from the prediction of the JMAK-like model.

The grain-size distributions of the product microstructures are shown in
Figure 3.2 c). They differ distinctly from the grain-size distribution that is
obtained for a simulation with random nucleation in the bulk. The shape
of the parent grain-size distribution doesn’t have a strong influence on the
product grain-size distribution.

Influence of the parent→product kinetics. The results of the simula-
tions for varied parent→product kinetics (parent microstructure generated
by an isothermal transformation) are shown in a plot of the simulated trans-
formed fraction versus the transformed fraction according to the JMAK-like
model (Figure 3.3 a). Thus, any deviation from the diagonal in Figure 3.3 a)
means a deviation from the kinetics according to the JMAK-like model. The
normalised cumulative number of nuclei/grains, as generated in the simu-
lation, has been plotted as function of the simulated transformed fraction in
Figure 3.3 b). By comparing Figures. 3.3 a) and 3.3 b) it follows that the sim-
ulated kinetics deviate most from JMAK if the nucleation predominantly or
entirely takes place at the beginning of the transformation.
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Figure 3.2: a) The grain-size distributions of parent microstructures for sub-
sequent simulations. All were derived using the assumption of
spatially random nucleation, but varying the parent kinetics. b)
The resulting simulated parent→product kinetics. For all cal-
culations, the same constant nucleation and growth rates were
assumed. c) The resulting grain-size distributions of the product
microstructure.

3.5 Discussion

The radial distribution function of nucleation sites, RDF(r), represents the
probability of finding one nucleus at a certain distance, r, from another nuc-
leus. It equals one for all r for a random arrangement of nuclei (ignoring
the size of a nucleus). The RDFs for the simulations presented in Figure 3.1
are shown in Figure 3.1 c). It can be seen that even for high ratios SGB

V /ṄO,
where the simulated kinetics coincide with the JMAK-like model, the RDF
does not equal one for all r. This can be understood as follows. In the
simulations, a constant nucleation rate per untransformed unit volume is
assumed throughout the transformation. However, after the specimen has
partially transformed, nuclei can only form in untransformed regions and
hence can only occur at a certain minimum distance from the, already exist-
ing, nuclei. Therefore, a negative correlation between nucleation positions
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Figure 3.3: The results of simulations using the same product microstructure
(derived using a constant nucleation and growth rate) and final
number of nuclei, but varying the parent→product kinetics. a)
Simulated transformed fraction as function of the transformed
fraction predikted by the JMAK-like model and b) normalised
cumulative number of nuclei/grains during the simulation as
function of simulated transformed fraction.

occurs, indicated by an RDF smaller than one at small distances between
pairs of nuclei. A truly random arrangement can only be realised by ad-
opting pre-existing nuclei (i.e. all nuclei are present before the onset of tran-
formation). For decreasing ratios of SGB

V /ṄO (and the same nucleation rate
ṄV , see above), the same number of nuclei must form on a more and more
restricted grain-boundary area and therefore nuclei are more likely to ap-
pear close to each other. This positive correlation of nucleation positions is
exhibited in Figure 3.1 c) and is the reason for the retardation of the trans-
formation kinetics as observed (Figure 3.1 a): The closer to each other nuclei
form, the sooner they impinge which leads to slow transformation kinetics
and a high number of small grains.

A similar reasoning can be used to explain that transformations nucle-
ating on parent microstructures with a broad grain-size distribution with
many small grains are relatively slow (Figure 3.2): Small parent grains lead
to many nuclei which are close to each other and impinge early in the trans-
formation. Moreover, for such parent microstructures, the last part of the
transformation is further slowed down because there are a number of very
large parent grains (which can be transformed only by product grains nuc-
leated at grain boundaries of these grains).
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Chapter 3 Simulation of the kinetics of GBN phase transformations

If a substantial part of the nucleation occurs late during the transforma-
tion, the negative correlation of nucleation positions, as a consequence of
the necessity that nucleation can only occur in untransformed regions, and
the positive correlation of nucleation positions, due to their confinement to
the remaining, unoccupied parent grain-boundary area, compensate each
other partly, so the deviation from JMAK-like kinetics in such a case is not
as strong as for pre-existing nuclei (see Figure 3.3).

3.6 Conclusions

The kinetics of grain-boundary nucleated phase transformations and the
resulting grain-size distributions were analysed by means of gemometrical
simulations and compared with a JMAK-like model (assuming spatially
random nucleation) and Cahn’s model for grain-boundary nucleation. If
the grain size of the parent microstructure is smaller than the grain size of
the product microstructure (i.e. the ratio SGB

V /ṄO is large), the kinetics and
resulting microstructure is identical to results obtained assuming spatially
random nucleation. If SGB

V /ṄO is small, JMAK-like models and Cahn’s
model for grain-boundary nucleated transformations give upper and lower
bounds for the development of the transformed fraction; both models can-
not describe the simulated kinetics correctly. The transformation kinetics
is most strongly influenced by grain-boundary nucleation if i ) the parent
microstructure has a broad grain-size distribution with many small grains
and ii ) if nucleation takes place predominantly at the beginning of the trans-
formation.
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Chapter 4

The kinetics of grain-boundary nucleated phase
transformations: Simulations and modelling

4.1 Introduction

In the design of new materials and the optimisation of existing ones, phase
transformations are of great importance, since, to a large extent, they con-
trol the microstructure and hence the properties of the material. Therefore,
it is desirable to know the mechanisms and the kinetics of phase transform-
ations [1]. Often, it is attempted to extract the kinetic parameters relev-
ant to a phase transformation, as, for example, the activation energies of
the nucleation and growth processes, from experimental data gained by ob-
serving the overall kinetics of the transformation [8,36]. Experimental tech-
niques used include differential scanning calorimetry, dilatometry and X-
ray diffraction. To infer kinetic parameters from experimental data, a kinetic
model for the observed transformation must be adopted and fitted to the
data. The kinetics of (nucleation-and-growth) solid-state transformations
is most often described by the classical model by Johnson, Mehl, Avrami
and Kolmogorov (JMAK) that treats the nucleation and subsequent growth
of a product phase in the matrix of the parent phase until the whole par-
ent phase is transformed [5–7]. The JMAK model holds only under severe
constraints (see section 4.2); numerous extensions of the JMAK model are
available in the literature, e.g. to incorporate the influence of a distribution
of growth rates in a specimen [37] or to treat the kinetics of several simul-
taneous phase transformations [38]. For extensions to complex nucleation,
growth and impingement modes, as well as arbitrary temperature-time pro-
grams, the modular kinetic model (MKM) approach described in Ref. [8] is
particularly suitable. The present paper is focused on interface-controlled
transformations during isothermal annealing and isochronal heating.

Fitting of kinetic models to experimentally determined data often fails,
and this failure is usually attributed to the breakdown of one or several of
the assumptions made in the derivation of the kinetic model. Such often
made assumptions are a homogeneous, infinitely large specimen, isotropic
growth of the product phase and homogeneous, i.e. spatially random nucle-
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Chapter 4 Modelling of the kinetics of GBN phase transformations

ation of product grains (For some examples out of a large body of literature,
see Refs. [39–41]). Especially the last assumption is often violated: perfectly
homogeneous nucleation is rarely observed in nature. Instead, nucleation
often takes place on container walls or on microstructural features of the
parent phase as inclusions or defects, in particular grain boundaries [2].
Heterogeneous nucleation, as on grain boundaries, becomes the more im-
portant the lower the driving force of the transformation is.

Several approaches are possible to describe the kinetics of grain-boundary
nucleated phase transformations. First, within the framework of the MKM,
impingement corrections different from the classical JMAK impingement
equation can be used. Secondly, Cahn introduced a model in which parent-
grain boundaries are described as randomly oriented planes. Both approa-
ches are dealt with in this chapter. Recently, another approach, based on the
time-cone method, which was first applied to the problem of non-random
nucleation by Cahn [42], was developed [43, 44]: Using the methods of stat-
istical geometry, the kinetics of a phase transformation can be calculated if
expressions for the (position-dependent) extended fraction can be derived
which subsequently have to be integrated. This approach is cumbersome
to apply in practice. Therefore, the present paper focuses on the MKM and
Cahn models and extensions of the latter, which can be easily implemented
without additional assumptions about the parent microstructure.

Using mesoscopic simulations, the influence of the spatial arrangement
of nuclei on the phase-transformation kinetics can be investigated, while
keeping all kinetic parameters, like the nucleation and growth rate, con-
stant. Such simulations are therefore useful to decide which kinetic models
are suitable to describe phase transformations exhibiting non-random nuc-
leation.

Grain-boundary nucleated phase transformations were simulated in the
past by a number of researchers using cellular automata or geometric al-
gorithms [45–50]. With one exception (Ref. [49]), all these simulations were
performed only in two dimensions. The parent microstructures ranged from
simple arrangements such as a set of parallel lines as grain boundaries to
parent microstructures generated by simulations with homogeneous nucle-
ation assuming pre-existing nuclei or continuous nucleation. For the parent
→product kinetics, site saturation (at t = 0, i.e. pre-existing nuclei) was
usually assumed. Neither the influence of the parent grain-size distribu-
tion, nor the influence of the various types of parent→product kinetics was
studied systematically in these investigations.

In this chapter, the kinetics of phase transformations which occur by nuc-
leation on grain boundaries of the parent microstructure are revealed and
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analysed by geometric simulations. Next, mesoscopic kinetic models are
fitted to such simulated transformation-kinetics data. The available kin-
etic models which have been modified or specifically developed to describe
grain-boundary nucleated phase transformations are presented in section 4.2.
The employed simulation method is described in section 4.3. The results of
the simulations and the results of fitting the above mentioned mesoscopic
kinetic models to the simulated kinetics are presented and evaluated in sec-
tion 4.4. Finally, the findings are discussed and resulting recommendations
for the kinetic modelling of grain-boundary nucleated phase transforma-
tions are given in section 4.5.

4.2 Kinetic Models

4.2.1 Random nucleation

The classical JMAK model and extensions thereof are mean-field models
which all assume homogeneous (spatially random) nucleation in the bulk of
the parent phase [1, 8]. This allows to relate the real transformed (volume)
fraction of a specimen, f , with the hypothetical, so-called extended trans-
formed fraction, xe, which is defined as the volume fraction of all grow-
ing grains if they could each nucleate and grow in an infinitely large par-
ent phase in the absence of other (growing) nuclei. Thus, for the case of
randomly dispersed nuclei which grow isotropically, the real transformed
(volume) fraction can be related to the extended transformed fraction ac-
cording to

d f = (1 − f )dxe. (4.1)

After integration, this becomes

f = 1 − exp(−xe). (4.2)

The classical JMAK equation, that results by substitution of the appropriate
expression of xe in equation (4.2), pertains to isothermal transformations
and is valid only if a high driving force prevails and only for a limited set
of nucleation and growth mechanisms (in addition to the conditions hold-
ing for equation (4.1)). Instead, the transformed fraction can be calculated
in the framework of the MKM approach for arbitrary time/temperature de-
pendencies of the nucleation and growth rates and arbitrary annealing treat-
ments, as follows.

The extended transformed fraction as function of time, t, and temperat-
ure T, where T can depend on t in case of non-isothermal transformations,
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Chapter 4 Modelling of the kinetics of GBN phase transformations

can be calculated straightforwardly by integrating the extended volume of
grains nucleated at a certain time τ, denoted by Ye(τ, t), times the nucle-
ation rate per unit volume prevailing in the specimen at that time, ṄV(T(τ))
, with respect to the nucleation time τ

xe(t) =
∫ t

0
ṄV(T(τ))Ye(τ, t)dτ. (4.3)

Adopting the case of isotropically growing grains, the extended radius of
one grain, Re(τ, t), can be obtained by integrating its growth rate/interface
velocity from the time of nucleation, τ, until the current time, t. The exten-
ded volume of one grain can then be calculated by taking the radius to the
d-th power (for d-dimensional growth) and by multiplying with an appro-
priate shape factor g (= 4/3π for growing spheres):

Yex(τ, t) = g [Rex(τ, t)]d = g
[∫ t

τ
v(T(t′))dt′

]d
. (4.4)

Note that this equation only holds for interface-controlled (linear) growth,
which is the only growth mode considered in this thesis (For diffusion-
controlled growth, the extended radius is calculated by taking the square
root of the integrated interface velocity). Adopting additionally the case of
random nucleation, the transformed fraction can be calculated from equa-
tions (4.1)-(4.4), provided the nucleation and growth rate of product-phase
grains are known. Only if the specific, additional constraints of isothermal
annealing and pre-existing nuclei or continuous nucleation are satisfied, the
classical JMAK equation is recovered.

The above variant of the MKM approach with the same impingement
correction as in the classical JMAK model (cf. equation (4.1)) will be called
“MKM+rnd model”, where “rnd” indicates “random nucleation” in the fol-
lowing.

4.2.2 Grain-boundary nucleation

If nuclei are not randomly distributed in the specimen, equation (4.1) does
not hold any more, since the extended transformed fraction now varies spa-
tially and cannot be approximated by a mean value any more [43]. If nuc-
leus positions are positively correlated (clustered), i.e. if it is more likely
than average to find a nucleus in the vicinity of another one, impingement
is stronger than as described by equation (4.1), and the transformation will
take longer to finish as predicted by the MKM+rnd model. This situation
is for example realised if nucleation takes place on grain boundaries of the
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parent microstructure. On the other hand, if nuclei are negatively correl-
ated, e.g. if they are arranged on a regular grid or if there is a certain exclu-
sion region around each nucleus in which no further nucleation can occur,
impingement will be weaker than described by equation (4.1) and the reac-
tion will finish faster than as predicted by the MKM+rnd model [51, 52]. It
was therefore suggested [8–10, 40, 53] to modify equation (4.1) to take into
account the “strength” of impingement. Two different modifications were
proposed, namely using the impingement parameter ξ [8–10, 40, 53, 54],

d f = (1 − f )ξdxe, (4.5)

and using the impingement parameter ϵ [8, 31],

d f = (1 − f ε)dxe. (4.6)

The impingement parameters ξ and ϵ do not have an a priori physical mean-
ing, even though they have been interpreted in the past in terms of e.g.
anisotropic growth, non-random nucleation and the Gibbs-Thompson ef-
fect [8, 31, 40]. For both parameters, as compared to “random nucleation”,
a value larger than one leads to stronger impingement and a value smal-
ler than one leads to weaker impingement. For ξ = ε = 1, the MKM+rnd
model is recovered. For ξ = 2, the so-called Austin-Rickett equation [55]
results. The kinetic models using the MKM approach employing the above
impingement equations will be referred to as “MKM+ξ” and “MKM+ε”
models.

A more physical model for the description of non-random nucleation was
developed by Cahn [11]. In this approach, parent-phase grain boundaries
are approximated as planes which are randomly distributed in space. Nuc-
leation takes place randomly on these planes and growth of product grains
occurs isotropically into both adjacent parent “grains”6. The impingement
problem is rendered tractable by approximating it as a combination of two
separate impingement processes: First, the (lateral) impingement of grains
originating from one grain boundary is addressed. Since nucleation occurs
randomly on grain boundaries, this can be done using equation (4.1). Con-
sider a planar grain boundary, a collection of spherical grains nucleated
on this grain boundary, and a “probe plane” which is parallel to the grain
boundary plane and a distance y away from it. At time t, the area of inter-
section of a grain, nucleated at time τ, with the probe plane is given by

Oe(t, τ, y) = π
(

v(t − τ)2 − y2
)

. (4.7)

6Cahn’s approach is in principle able to treat nucleation on triple lines and vertices of grain
boundaries; the discussion in this chapter is focused on grain-boundary (plane) nucleation.
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This is an extended area, because impingement with the other grains nucle-
ated on the considered grain boundary is not taken into account yet. Ana-
logous to equation (4.3), the extended area fraction of all grains nucleated
on the considered grain boundary, for the probe plane considered, can be
calculated by multiplying with the nucleation rate and integrating over all
nucleation times τ from zero to the current time

xe,O(t, y) =
∫ t

0
Oe(t, τ, y)ṄO(T(τ))dτ (4.8)

Here, ṄO(τ) is the (temperature-dependent) nucleation rate per unit area
of (parent) grain boundary. It can be transformed to the nucleation rate
per unit volume (as used in equation (4.3)) by multiplication with the par-
ent grain-boundary area per unit volume, SGB

V . Thus: ṄV = ṄOSGB
V . The

transformed area fraction on the probe plane can be obtained by applying
equation (4.2):

fO(t, y) = 1 − exp (−xe,O(t, y)) . (4.9)

Integration over all distances y of the probe plane yields the total volume
fraction of all grains originated from one grain boundary

f one GB(t) =
∫ +∞

−∞
fO(t, y)dy. (4.10)

After thus having accounted for the impingement of grains originated
from one grain boundary (per unit area of this grain boundary), the effect of
impingement of product phase grains growing from all grain boundaries is
treated next. Because the grain boundaries are assumed to be randomly dis-
tributed in space, the volume of all grains nucleated on one grain boundary
is multiplied by the grain-boundary area per unit volume, SGB

V , and treated
as the extended volume in this second impingement problem: f one GBSGB

V ≡
xall GBs

e . Again an equation analogous to equation (4.1)/equation (4.2) is ap-
plied and finally, the total transformed volume fraction is obtained as

d f = (1 − f )dxall GBs
e or f = 1 − exp

(
−xall GBs

e

)
. (4.11)

In contrast to equations (4.5) and (4.6), which are of empirical nature,
this impingement model has a physical background. Nevertheless, the as-
sumption of randomly distributed planes as parent grain-boundaries in this
model may not be a valid approximation for nucleation on a realistic grain-
boundary network. Against this background, it appears reasonable to modify
Cahn’s model in a way similar to the prescriptions of equations (4.5) and
(4.6). If random nucleation on grain boundaries can still be assumed, the
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modification must be applied only to equation (4.11), concerned with the
impingement of product phase regions from different grain boundaries. Equa-
tion (4.11) thus becomes

d f = (1 − f )ξ dxall GBs
e (4.12)

or
d f = (1 − f ε)dxall GBs

e (4.13)

In the following, these models will be referred to as “Cahn+ξ” and “Cahn+ε”,
respectively.

4.2.3 Kinetic parameters

In the simulations, the temperature is either held constant during the trans-
formation (isothermal annealing) or increased at a constant rate (isochronal
heating). This complies with many practical cases of phase-transformation
analysis. Thus, time and temperature are always connected by

T(t) = T0 + Φt, (4.14)

where T0 is either the isothermal annealing temperature (with Φ = 0) or Φ
is the heating rate and T0 is the start temperature.

The nucleation modes considered are “site saturation” (pre-existing nuc-
lei of number density N∗

V or N∗
O) and “continuous nucleation” with a con-

stant nucleation rate (in the untransformed material). In the latter case, the
temperature (and thus, via equation (4.14), time) dependence of the nucle-
ation rate is given by an Arrhenius equation (implying a large driving force
for the transformation7),

ṄV(T(t)) or ṄO(T(t)) = N0 exp
(
− QN

kBT(t)

)
, (4.15)

where QN is the activation energy for nucleation (a genuine constant), kB the
Boltzmann constant and N0 a pre-exponential factor. N0 has the dimension
time−1length−3 for homogeneous nucleation and time−1length−2 for grain-
boundary nucleation.

In all simulations, interface-controlled growth of spherical grains has been
adopted. The temperature dependence of the growth rate is expressed by
(again implying a large driving force)

v(T(t)) = v0 exp
(
− QG

kBT(t)

)
, (4.16)

7Equations (4.15) and (4.16) imply that the absolute value of the Gibbs energy difference of the
product and parent phases is large as compared to kBT.
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where QG is the activation energy for growth and v0 is a pre-exponential
factor.

4.3 Geometric Simulations

4.3.1 Simulation Principle

Geometric simulation can be used to study the evolving microstructure res-
ulting from phase transformations, provided the nucleation rate and the
growth geometry and rate are known. After its introduction [12], this type
of simulation has since been used e.g. to describe recrystallisation [14, 56],
crystallisation of amorphous silicon [27] and the spinel-olivine phase trans-
formation [57].

The details of the algorithms used in this work both to generate the par-
ent microstructure (point 2. in section 4.3.2) and to simulate the phase-
transformation kinetics with nucleation on grain-boundaries have been de-
scribed elsewhere [35]; to facilitate understanding of this chapter only a syn-
opsis of the main features is given here: The program uses discretised time
(time steps) and space (voxels on a three-dimensional, cubic grid). For each
time step it is determined how many nuclei are formed according to the nuc-
leation rate. A corresponding number of positions for nucleation are chosen
either randomly in the whole specimen or from a list of available nucleation
sites (see below). If the voxel at the chosen position is still untransformed,
the nucleation is performed by transforming the voxel and recording the
nucleation time and successful position. Next, the radius to which the ex-
isting grains have grown from their nucleation time until the current time is
looked up (Rex(τ, t), cf. equation (4.4)) for all existing nuclei/grains. Each
voxel in a sphere of radius Rex(τ, t) around the nucleation position of a con-
sidered product grain is then transformed, unless it has already been trans-
formed by another grain in a previous time step (i.e. hard impingement is
accounted for). Finally, the transformed fraction for the time step concerned
is calculated. Next, the time is advanced one time step and the procedure
described is repeated, etc., until the whole specimen has fully transformed.

In order to simulate phase-transformations with nucleation on parent-
phase grain boundaries, the following two-step procedure was adopted.
First, the parent microstructure is generated and a list of voxels lying on
parent-phase grain boundaries is compiled. A voxel is considered to lie on
a grain boundary if it has exactly two different grains in its neighbourhood
(of 26 surrounding voxels). Secondly, the list is used in the simulation of

60



4.4 Results and evaluation

phase-transformation kinetics with grain-boundary nucleation, for the de-
termination of possible nucleation positions.

4.3.2 Construction of the parent microstructure

Parent microstructures were generated in three different ways:

1. By randomly placing planes in the simulation cube. This corresponds
to the assumptions in Cahn’s kinetic model. Any contiguous volume
between the placed grain-boundary planes is conceived as as a grain.

2. By performing a geometric simulation with homogeneous nucleation.
The temperature program (isothermal annealing or isochronal heat-
ing), the nucleation mode (pre-existing nuclei or continuous nucle-
ation) as well as the kinetic parameters (activation energies for nuc-
leation and growth) were varied in order to obtain a large number of
different parent grain-size distributions.

3. By performing a Monte-Carlo simulation of normal grain growth. Start-
ing from a microstructure of one-voxel sized grains, a standard Monte-
Carlo algorithm [58, 59] was used to simulate grain coarsening until
the grain-size distribution, normalised with respect to the mean grain
size, had become stationary.

Normalised grain-size distributions of all parent microstructures applied
in this work are presented in Figure 4.1. The grain size is hereby defined as
the diameter of a sphere, D, with the same volume as a grain, and normal-
ised with respect to the diameter of a sphere with mean grain volume D⟨V⟩.
It can be seen that a wide variety of parent grain-size distributions was con-
sidered, ranging from very sharp monomodal distributions (generated by
a transformation with pre-existing nuclei) to skewed, broad distributions
with many small and few very large grains (generated by a transformation
during heating with continuous nucleation and QG/QN = 0.01 and qualit-
atively similar to randomly placed planes) and to distributions similar to a
normal distribution (generated by normal grain growth simulations).

4.4 Results and evaluation

First, the simulated kinetics are directly compared with the kinetics as pre-
dicted by the MKM+rnd model (impingement as in the classical JMAK model)
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Figure 4.1: The normalized grain-size distributions of parent microstruc-
tures used in subsequent simulations of phase-transformation
kinetics with nucleation on grain boundaries. Ratios QG/QN de-
note simulations of parent microstructure using continuous nuc-
leation during isochronal heating with the given value for the
ratio of the nucleation and growth activation energies.

and Cahn’s model using the same values for the kinetic parameters (sec-
tion 4.4.1). Then, adopting the simulated kinetics as “experimental find-
ing”, the kinetic models (cf. section 4.2) are fitted to the “experimental”
data. This leads to fitted values for one or more kinetic parameters which
are subsequently compared with the “true” parameters, i.e. the ones that
were used as input parameters of the simulations (section 4.4.2–4.4.5).

All fits were performed using the Nelder-Mead simplex algorithm as im-
plemented in the MATLAB language using the simulation inputs as start
values for the fit. The mean squared error, MSE, which is used as an indic-
ator of the quality of the model fit, is the average squared difference between
simulated and model kinetics at each of the n time steps (typically n ≈ 100-
150 per simulation)

MSE =
1
n

n

∑
i
( fmodel,i − fsim,i)

2. (4.17)

The difference between the value determined by fitting and the input value
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of a kinetic parameter Z is reported as the relative error

∆Z/Zinput =
Zbest fit − Zinput

Zinput
. (4.18)

4.4.1 General assessment of model appropriateness

The transformed fraction as function of time of grain-boundary nucleated
(GBN) transformations, as simulated and as calculated according to the
MKM+rnd model (i.e. impingement as in the classical JMAK model) and
the Cahn model, is shown in Figure 4.2 a). The parent microstructure in this
case was generated by a simulation on the basis of (homogeneous) continu-
ous nucleation upon isothermal annealing. The subsequent GBN transform-
ation proceeded on the basis of pre-existing nuclei upon isothermal anneal-
ing. The MKM+rnd model (i.e. assuming random nucleation) overestimates
the transformed fraction: impingement for GBN transformations is more
severe than for transformations with random nucleation, since the probabil-
ity of finding two nuclei close together (on a grain boundary) is higher than
finding two nuclei close together after random distribution. Also Cahn’s
model fails to correctly describe the simulated kinetics: it underestimates
the transformed fraction. Randomly distributed planes often intersect each
other at small angles, which in the simulation leads to nucleation posi-
tions which are very close to each other. In reality, such grain-boundary
arrangements are unstable, since local equilibrium of interface tensions at
grain-boundary edges and corners (usually) prevents very small dihedral
angles [60]. Hence, impingement in Cahn’s model is stronger than in (sim-
ulated) reality.

Next, the results of fitting of the MKM+rnd, MKM+ξ and MKM+ε mod-
els as well as the Cahn, Cahn+ξ and Cahn+ε models (cf. section 4.2) to the
simulated kinetics are considered; examples are shown in Figure 4.2 b). For
all MKM models, the nucleus density, N∗

V , and, where appropriate, the im-
pingement parameter (cf. section 4.2.3), were used as fit parameters. Fitting
the growth rate v at the same time does not lead to an improvement of the
fit quality, since the two parameters cannot be varied independently for iso-
thermal transformations [8]. For the Cahn models, the nucleus density, N∗

O,
the growth rate, v, and, where appropriate, the impingement parameter,
were used as fit parameters. Hence, the Cahn model incorporates one addi-
tional fit parameter. The corresponding differences between input (“real”)
values and the best-fit values of the kinetic parameters, as obtained for the
above mentioned kinetic models, have been compiled in Table 4.1.
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Clearly, the MKM+rnd model is unable to correctly describe the simu-
lated kinetics. Cahn’s model does produce a reasonably good fit, but the val-
ues for the nucleus density and the growth rate obtained by fitting Cahn’s
model are erroneous: they differ 72% and 42%, respectively, from the “real”
values (see Table 4.1). The MKM+ε model cannot correctly describe the sim-
ulated data. If ξ is used as impingement parameter for the MKM approach,
a reasonably good fit is obtained. The modified Cahn models produce good
fits upon incorporation of either one of both impingement parameters.

Fit results for other parent microstructures and various parent→product
kinetics (as described in section 4.2.3) are similar to the ones shown here:
In all cases, the MKM model incorporating the impingement parameter ξ

and the modified Cahn model are best suited to model the simulated data.
In the following, these three models will be considered. Additionally, the
original Cahn model is included in this comparison, recognising that this
model provides a reasonable fit albeit for erroneous values of the kinetic
parameters.

Table 4.1: The results of fitting various kinetic models to simulated phase-
transformation kinetics. For the fit parameters v and N∗, the error
relative to the input values of the simulation is given (cf. equa-
tion (4.18)). For the impingement parameters ξ and ε, the best-fit
values are shown. Additionally, the quality of the fit is quantified
by the mean squared error MSE (cf. equation (4.17)).

Model: MKM+rnd Cahn MKM + ε MKM + ξ Cahn + ε Cahn+ ξ

∆N∗/N∗
input −61% −72% > 1000% 22% 117% −20%

∆v/vinput – 42% – – 23% 5%
ξ – – – 2.11 – 0.75
ε – – 5 × 10−5 – 2.56 –

MSE × 104 57.6 1.3 21.1 2.8 0.19 0.05

4.4.2 Role of the ratio of the parent and product grain sizes

If all nuclei are present at the beginning of a GBN transformation, the volume
density of product nuclei, N∗

V , follows from the nucleus density per unit
area of parent phase grain boundaries, N∗

O, and the parent phase grain
boundary area density SGB

V : N∗
V = N∗

OSGB
V (cf. section 4.2.2). Hence, the

same nucleus density per unit volume, and thus the same number of product
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Figure 4.2: a) The simulated transformed fraction ( f , symbols) for a phase
transformation with nucleation on the grain boundaries of a par-
ent microstructure generated by a simulation on the basis of con-
tinuous nucleation upon isothermal annealing. The simulated
GBN phase transformation proceeded with pre-existing nuclei
upon isothermal annealing. The predictions of the MKM+rnd
model and the Cahn model for the same values of the kinetic
parameters are shown as well (solid and dashed lines). b) Vari-
ous kinetic models fitted to the same simulated degree of trans-
formation data. Note that the curves have been shifted vertically,
along the f -axis for clarity.

grains8, can be obtained by an infinite number of different combinations
of N∗

O and SGB
V , including a low nucleus density per unit grain-boundary

area and a high grain boundary density and a high nucleus density per unit
grain-boundary area and a low grain-boundary area density.

The results of simulations illustrating the influence of varying the ratio
SGB

V /N∗
O are shown in Figure 4.3. The parent microstructure was generated

using continuous nucleation upon isothermal annealing; the parent→product,
GBN phase-transformation kinetics was simulated on the basis of pre-existing
nuclei upon isothermal annealing. The results can be discussed as follows.

For a high ratio SGB
V /N∗

O, the nuclei are spatially quasi-randomly distrib-
uted, since there are only very few product nuclei per parent grain. There-
fore, the observed kinetics is well approximated by the one predicted for

8Note that this only holds strictly for the case of pre-existing nuclei. For continuous nucleation,
employing the same nucleation rate ṄV , but varying the ratio SGB

V /ṄO does not lead to the
exactly same number of product grains, because the geometry of impingement differs with
varied SGB

V /ṄO even though the nucleation rate per unit volume is identical.
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Chapter 4 Modelling of the kinetics of GBN phase transformations

random nucleation, i.e. the MKM+rnd model (in this case, the MKM+rnd
model is equal to the classical JMAK model). For such a completed trans-
formation, the parent-phase grain size is about as large as the product grain
size or even significantly smaller and hence Dparent

⟨V⟩ /Dproduct
⟨V⟩ ≤ 1. If the ra-

tio SGB
V /N∗

O is low, nucleation will be spatially highly non-random. There-
fore, in this case, the observed kinetics deviates strongly from the MKM+rnd
model prediction. Now, the parent-phase grain size is much larger than the
product grain size (Dparent

⟨V⟩ /Dproduct
⟨V⟩ > 1). This behaviour is revealed in

Figure 4.3 a), where the ratio SGB
V /N∗

O is varied while keeping N∗
V (and v)

constant.
Even though Cahn’s model exhibits an increasing deviation from the MKM

+rnd model (=classical JMAK model) with a decreasing ratio SGB
V /N∗

O, it
underestimates significantly the transformed fraction. Both models, the
MKM+rnd model and the Cahn model only provide correct descriptions
of phase-transformation kinetics for the case of a high ratio SGB

V /N∗
O, i.e. for

quasi-random nucleation (cf. Figure 4.3 a)).
Model fits of the MKM+ξ model, the Cahn+ξ model and the Cahn+ε

model to the simulated data are presented in Figure 4.3 c), d) and e). Each
“real” simulated curve was fitted individually, using the impingement para-
meter (ξ or ε) as only fit parameter (For all other kinetic parameters, the in-
put values of the simulations were used). The MKM+ξ model can only cor-
rectly describe the simulated kinetics for moderate deviation from random-
nucleation behaviour (i.e. for large values of SGB

V /N∗
O). The best-fit value

of ξ (see Figure 4.3 b)) increases about linearly with the ratio of parent to
product microstructure grain size. The modified Cahn models provide good
fits for the whole range of SGB

V /N∗
O. The best-fit values of ξ and ε are nearly

the same for each of the individual fits; if all curves are fitted simultan-
eously, the best values are ξ = 0.69 and ε = 1.47, respectively. Note that the
modified Cahn model using ξ realises a better fit than the one using ε.

4.4.3 Role of the parent microstructure

Next, the parent microstructure was varied (pre-existing nuclei, continu-
ous nucleation for variable QG/QN, normal grain growth; see Figure 4.1 in
section 4.3.2) while adopting the same parent→product GBN kinetics: pre-
existing nuclei during isothermal annealing. By appropriate adjusting of
the grain size of the simulated parent microstructure, it was ensured that all
simulations pertain to the same (parent) grain-boundary area density.

The resulting GBN transformation kinetics are shown in Figure 4.4 a). All
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Figure 4.3: a) Results of a series of simulations of GBN phase-transformation
kinetics for various values of the ratio SGB

V /N∗
O (symbols) to-

gether with the predictions by the MKM+rnd model (solid lines)
and the Cahn model (dashed lines); the resulting values for the
ratio of the mean grain sizes of the parent and product micro-
structures have been indicated in the figure. For all simulations,
N∗

V = N∗
OSGB

V was constant. b) The best-fit values of the impinge-
ment parameters ξ and ε when fitting the kinetic models indic-
ated to the simulated data using the impingement parameter as
only fit parameter. The corresponding model fits are shown in c)
MKM+ξ, in d) Cahn+ξ and in e) Cahn+ε.

simulated results for variable parent microstructure lie in between the pre-
diction of the MKM+rnd model and the Cahn model. Generally, the broader
the parent grain-size distribution is, the more the simulated kinetics devi-
ates from the prediction of the MKM+rnd model. The simulation for a par-
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Chapter 4 Modelling of the kinetics of GBN phase transformations

ent microstructure with a broad grain-size distribution with (few) very large
and many small grains comes close to the prediction by Cahn’s model (i.e.,
the assumption of randomly distributed planes as parent microstructure).

The best-fit values for the impingement parameter and the relative er-
ror in the fit parameters (equation (4.18)) and the MSE for the whole fitted
curve (equation (4.17)), as averages for all fits for every model, are shown in
Figure 4.4 b). The used fit parameters are the density of pre-existing nuclei,
N∗

V or N∗
O, and, where appropriate, the growth rate v and the impingement

parameter (ξ or ε). Even though the relative error of the fitted parameters
is small for the MKM+ξ model, the quality of its fits is lower than those for
the modified Cahn models (cf. the MSE values shown in Figure 4.4 b). The
unmodified Cahn model, even though it shows a reasonably good quality of
fit, leads to very large errors for the values of the fitted kinetic parameters.
The modified Cahn model using ε produces very good fits, however shows
a very large spread for (and thus errors in) the values of the fitted kinetic
parameters. In particular, the impingement parameter ε varies widely if the
parent microstructure is changed. The modified Cahn model using ξ shows
the best quality of fit and the fitted kinetic parameters show only a moderate
spread around the true values.

4.4.4 Role of the type of GBN transformation kinetics

The influence of the variation of the parent→product GBN transformation
kinetics was investigated, for the same parent microstructure, by varying
the nucleation mode and type of annealing. Thus, (i), the cases of pre-
existing nuclei and continuous nucleation, both during isothermal anneal-
ing, were considered, and (ii) the case of continuous nucleation during iso-
chronal heating was investigated for various ratios of the activation en-
ergies of growth and nucleation, QG/QN, namely QG/QN = 0.01 (most
nucleation near the end of the transformation), QG/QN = 1 (equivalent
to isothermal annealing9) and QG/QN = 5 (most nucleation at the be-
ginning of the transformation, approaching the case of pre-existing nuc-
lei [35]). In all simulations, the nucleation rate was adjusted such that the
same final number of product grains and hence the same value for the ra-
tio Dparent

⟨V⟩ /Dproduct
⟨V⟩ resulted. The parent microstructure was generated by

adopting continuous nucleation upon isothermal annealing.

9If the activation energies for nucleation and growth are identical, then the nucleation and
growth rates increase at the same pace with rising temperature. Then, upon non-isothermal
annealing, the same microstructure as for isothermal annealing results [35].
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Figure 4.4: a) The transformed fraction as function of time for the same
parent→product kinetics, but variable parent microstructure as
described in section 4.3.2 together with the transformed fraction
as predicted by the MKM+rnd model (dotted line) and the Cahn
model (dashed line). b) The mean best-fit values for the impinge-
ment parameters and the relative errors in the fit parameters
(equation (4.18)) and the MSE (equation (4.17))) for the fitting
of four different models. The fit parameters are the nucleation
density, N∗, and, where appropriate, the pre-exponential para-
meter of the growth rate, v0, and the impingement parameter (ξ
or ε). The error bars shown for the impingement parameters and
the relative errors comprise the whole range of obtained best-fit
values for all simulations.

The influence of grain-boundary nucleation (i.e. the deviation from ran-
dom nucleation as described by the MKM+rnd model) is found to be strong-
est for transformation kinetics in which most (or all) nuclei are formed at the
very beginning of the transformation (see Figure 4.5 a). This can be under-
stood by considering that in transformations where a substantial amount
of nucleation occurs late in the transformation, new nuclei can only form
in untransformed regions and hence occur only at a certain minimum dis-
tance from the, already existing, nuclei. This leads to a negative correlation
between nucleation positions for phase transformations simulated on the
basis of continuous nucleation [61].

The simulated transformation curves were fitted using the pre-exponential
factors N0 and v0 (cf. equations (4.15) and (4.16)) as fit parameters. For pre-
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Chapter 4 Modelling of the kinetics of GBN phase transformations

existing nuclei, N∗ ≡ N0. For the activation energies for nucleation and
growth, QG and QN, the input values of the simulations were used. The
quality of the best-fit values for the kinetic parameters can be judged con-
sidering Figure 4.5 b). The MKM+ξ model and the unmodified and mod-
ified Cahn model are able to describe the simulated kinetics well. The fit
quality is lower for the MKM+ξ model than for the modified Cahn models,
however the error in the fitted kinetic parameters is small. The unmodified
Cahn model produces a large error in the fitted kinetic parameters and the
modified Cahn model using ε leads to a large variation in the values for the
fitted kinetic parameters. As indicated by its MSE value, the best fit is ob-
tained with the modified Cahn model using ξ. It also produces small errors
in, and a low spread of the values for the fitted kinetic parameters.

4.4.5 Simultaneous fitting of kinetic models to a set of
non-isothermal transformation runs

In practice, models are fitted to experimental data in the absence of ad-
vance knowledge of values of kinetic parameters as activation energies,
pre-exponential factors etc. Usually, a series of experiments at different iso-
thermal holding temperatures or with different heating/cooling rates is per-
formed and the kinetic transformation model is fitted simultaneously to all
experimental results in order to determine values for the kinetic parameters,
in particular for the activation energies of nucleation and growth (results of
kinetic model fitting to individual transformation experiments are usually
unreliable; i.e. the fitting is “insensitive” to changes in the kinetic paramet-
ers to be fitted) [8].

If the values of the activation energies of nucleation and growth differ,
then the final number of product grains depends on the employed heat-
ing rate (cf. footnote 9 in section 4.4.4). If the activation energy for nucle-
ation is smaller than for the activation energy for growth, as in the simu-
lations performed here, nucleation can take place upon heating already at
temperatures at which growth is negligibly slow (cf. equations (4.15) and
(4.16)). Changing the heating rate changes the time spent in this temperat-
ure range and therefore the final number of product grains. It was shown
in section 4.4.2 that it is not possible to describe a set of transformation kin-
etics data pertaining to different ratios of the grain sizes Dparent

⟨V⟩ /Dproduct
⟨V⟩

with the MKM+ξ model using a common value of the impingement para-
meter ξ (cf. Figure 4.3 b). Therefore, the desired fitting of the kinetic model
to simultaneously all transformation runs of a set of different heating rates,
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Figure 4.5: a) The simulated transformed fraction as function of the
transformed fraction predicted by the MKM+rnd model for
simulations using the same parent microstructure but vari-
ous parent→product kinetics (non-isothermal), together with
the transformed fraction as predicted by the corresponding
MKM+rnd model (dotted line) and the Cahn model (dashed
line). b) The mean best-fit values for the impingement paramet-
ers and the relative errors in the fit parameters (equation (4.18))
and the MSE (equation (4.17)) for the fitting of four different
models. The fit parameters are the pre-exponential factors for
nucleation, N0, and, where appropriate, for the growth rate, v0

and the impingement parameter (ξ or ε). The error bars shown
for the impingement parameters and the relative errors comprise
the whole range of obtained best-fit values for all simulations.

in order to obtain reliable values for the activation energies for nucleation
and growth, is unlikely to be successful using the MKM+ξ model.

Results obtained by simulating GBN transformation kinetics adopting
continuous nucleation (with QG/QN = 3), departing from a parent micro-
structure generated by continuous nucleation upon isothermal annealing,
are shown for isochronal annealing at various heating rates in Figure 4.6,
together with the fitted transformation curves according to the MKM+ξ,
Cahn and Cahn+ξ models. The values of the fitted kinetic parameters, QG,
QN and the impingement parameter, have been gathered in Table 4.2.

As expected, a simultaneous fit to all simulated GBN transformation curves
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Chapter 4 Modelling of the kinetics of GBN phase transformations

at different heating rates is not well possible for the MKM+ξ model (see
Figure 4.6 a)); the fitted values of the activation energies QG and QN differ
strongly from the input values of the simulations. The quality of the fits and
of the values of the fitted kinetic parameters as obtained for the modified
and unmodified Cahn models is very much better, in particular in case of
the modified Cahn model using ξ as impingement parameter (see Figure 4.6
b) and c) and Table 4.2).
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Figure 4.6: Transformed fraction as function of temperature for a series of
simulations of grain-boundary nucleated transformation kinet-
ics (symbols) with identical kinetic parameters (continuous nuc-
leation; QG/QN = 3), but variable heating rate (indicated in the
figure) with corresponding model fits (lines). The fit parameters
are the activation energies QG and QN and, where appropriate,
the impingement parameter ξ; all curves were fitted simultan-
eously. The fitted models are a) MKM+ξ, b) Cahn and c) Cahn+ξ.

4.5 General discussion

The simulations of GBN phase transformations show that neither the MKM
+rnd model (impingement as in the classical JMAK model) nor the Cahn
model correctly describes the kinetics of such phase transformations when
using the same kinetic parameters as in the simulations. Both models de-
part from “random” nucleation behaviour which is generally incompatible
with grain-boundary nucleated transformations. It has been shown that in-
corporating the non-random nature of the nucleation process in the kinetic
model leads to a good description of the transformation kinetics, in partic-
ular by the MKM+ξ and Cahn+ξ models.
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Table 4.2: The results of fitting various kinetic models to, simultaneously,
a set of simulated phase-transformation runs at different heat-
ing rates. For the fit parameters QG and QN, the relative error,
with respect to the input values of the simulation, is given (equa-
tion (4.18)). For the impingement parameters ξ and ε, the best-fit
values are shown. The quality of the overall fit is quantified by
the mean squared error MSE (equation (4.17)).

Model fit: MKM+ ξ Cahn Cahn + ξ Cahn + ε

∆QG/QG,input 23% −1% < 1% < 1%
∆QN/QN,input −158% 5% < 1% −1%

ξ 2.84 – 0.71 –
ε – – – 1.39

MSE × 103 50.6 7.1 0.6 1.1

Since there is no physical background for the use of both impingement
parameters ξ and ϵ, neither of them can be judged to be “better” or “worse”
by criteria other than their ability to correctly describe experimentally ob-
served kinetics. The present work indicates that the MKM+ϵ and the Cahn+ϵ

models are both not suitable to model grain-boundary nucleated phase trans-
formations.

The MKM+ξ model, using the ξ impingement parameter, only produces
good fits if the deviation from random nucleation is not too large. The
best-fit values obtained, however, are in good agreement with the “real”
values, even if the transformation curves are not very well described. In
this model, the value of the impingement parameter ξ depends on the ratio
Dparent
⟨V⟩ /Dproduct

⟨V⟩ (see Figure 4.3). Therefore, a simultaneous fit to a series
of simulated grain-boundary nucleation transformation runs with varied
heating rates (and continuous nucleation) leads to erroneous results for the
fitted kinetic parameters.

The here proposed modified Cahn model using the impingement para-
meter ξ (Cahn+ξ model) can correctly describe the simulated time-depen-
dence of the transformed fraction for all considered parent grain-size distri-
butions and parent→ product GBN transformation kinetics and the values
of the fitted kinetic parameters show the smallest deviations from the in-
put values of the simulations. For a given parent microstructure, the best-fit
value of ξ is constant for all ratios Dparent

⟨V⟩ /Dproduct
⟨V⟩ and all parent→product

kinetics. Therefore, transformation curves recorded at various heating rates
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Chapter 4 Modelling of the kinetics of GBN phase transformations

can be successfully fitted simultaneously.
From these considerations, it can be concluded that the here proposed

modified Cahn model, using the impingement parameter ξ, is best suited to
model the kinetics of GBN phase transformations.

Evidently, this outcome is consistent with the recognition that in the ori-
ginal Cahn model and in the here proposed modified Cahn model, grain-
boundary nucleation is specifically modelled (i.e. accounted for), whereas
the MKM+ξ model is a general kinetic model for transformation kinetics in
case of non-random nucleation, not specifically dedicated to grain-boundary
nucleation as nucleation mode.

However, before favouring application of the Cahn+ξ model to practical
cases, it should be realised that the Cahn model needs one additional para-
meter (as compared the the MKM+ξ model), namely the grain-boundary
area density of the parent phase. In the here presented model fits, it was
assumed that the value for this parameter is known. In practice, it can be
obtained in the fitting procedure or experimentally by stereological meth-
ods, especially in case of transformations for which the parent phase can be
examined, i.e. transformations during heating or from a (e.g. quenched-in)
supersaturated state which is stable at room temperature. This is not pos-
sible for transformations occurring upon cooling from a high-temperature
phase. In this latter case, data on the final number of product grains can
be incorporated in the fit procedure as an additional constraint in order to
improve the fit quality [36].

4.6 Conclusions

• The MKM+rnd model (impingement as in the classical JMAK model
and identical to the classical JMAK model upon isothermal anneal-
ing) is unable to describe the kinetics of grain-boundary nucleated phase
transformations: it overestimates the transformed fraction and cannot
be fitted successfully to simulated transformation curves.

• The modular kinetic model incorporating the impingement parameter
ξ, MKM+ξ, can well describe the simulated kinetics, provided the de-
viation from random nucleation is not too strong and provided each
simulated transformation curve is fitted individually.

• The Cahn model underestimates pronouncedly the transformed frac-
tion in reality. Using kinetic parameters as fit parameters, reason-
able fits are possible, however the values of the kinetic parameters
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obtained by such fits deviate strongly from the “real” values.

• The here proposed modified Cahn+ξ model can well describe grain-
boundary nucleated transformation kinetics with small deviations of
the fitted kinetic parameters from “real” values (i.e. simulation in-
puts); for the same parent grain-size distribution, the same value for
the impingement parameter ξ results for a wide range of values for
the ratio of the parent and product grain sizes, Dparent

⟨V⟩ /Dproduct
⟨V⟩ .

• It is therefore recommended to use the Cahn+ξ model when attempt-
ing to infer values for kinetic parameters from experimentally determ-
ined grain-boundary nucleated phase transformation kinetics. If the
deviation from random-nucleation behaviour is not too large, also the
MKM+ξ model is suitable for this task. The MKM+ξ model, as an
advantage, requires one less kinetic parameter (to be used as fit para-
meter or to be determined in advance).
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Chapter 5

Kinetics of interface-controlled phase
transformations: atomistic and mesoscopic
simulations

5.1 Introduction

In many classes of materials, the microstructure and thus many properties
are determined (tuned) by invoking phase transformations during the man-
ufacturing process. Therefore it is important to gain knowledge not only
about the stable or metastable phases prevailing under certain conditions
(i.e. understanding the thermodynamics of the system under consideration),
but also about the kinetics (i.e. the time and temperature dependencies) of
the reactions which lead to them. The study of phase transformation kinet-
ics has been undertaken for many decades [2].

Even though the general characteristics of many phase transformations
are known since a long time, there are numerous open questions on issues of
cardinal importance. This pertains to diffusion-controlled phase transform-
ations, where the interplay of partitioning elements and the moving inter-
phase boundary is still only partially understood [62, 63], and also holds
for interface-controlled transformations, where the interface mobilities are
largely determined in an empirical manner [64].

In the last years, computer simulations have become an indispensable
tool to study phase transformation kinetics. On the atomistic length scale,
they provide a detailed look at the movement of individual atoms at and
across a moving interface, which is experimentally not possible. On the
mesoscopic length scale, they lead to a predictive description of the micro-
structural development of materials. On the basis of such simulations, a
link can be made between experimentally observed transformation kinetics
and the resulting microstructure.

This chapter intends to give an overview over of recent research results
of our group concerning computer simulation of interface-controlled phase
transformations. After a short introduction to the essence of the modular
phase transformation kinetics model (section 5.2), work on atomistic sim-
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ulation of interface movement by kinetic Monte Carlo simulations will be
highlighted (section 5.3). It will be shown how material properties like the
activation energy for interface movement can be understood through these
simulations. Subsequently, work on mesoscopic microstructure simulations
will be presented (section 5.4). It will be explained how the microstruc-
ture under control of a given kinetic model can vary depending on the path
followed in time-temperature space. Additionally, the ability of these meso-
scopic simulations to expose the effects of non-random nucleation will be
demonstrated.

5.2 The modular model for transformation kinetics

The kinetics of nucleation-and-growth phase transformations is usually de-
scribed within the framework of Johnson-Mehl-Avrami-Kolmogorov (JMAK)
type equations, which hold only for a very limited set of transformation
conditions and nucleation and growth models. An extension of this ap-
proach incorporating arbitrary time-temperature dependencies and com-
plex nucleation and growth mechanisms is provided by the Modular Kinetic
Model (MKM) approach; see Refs. [1,8]. For a most recent application to an
interface-controlled, martensitic phase transformation, see Ref. [65].

The geometric simulations to be discussed in section 5.4 depart from an
underlying kinetic model. To this end, the MKM approach can be well em-
ployed. Therefore, it will be briefly introduced in this section.

The basic concept of both the JMAK model and the MKM is to first cal-
culate the so-called extended transformed volume, which is the volume of
grains if they could each nucleate and grow in an infinitely large parent
phase in the absence of other (growing) nuclei, leading to the exended trans-
formed fraction, xe, and then to apply an impingement correction equation
to arrive at the transformed volume fraction, f . In the JMAK model, nuclei
are assumed to be randomly dispersed and to grow isotropically. In this
case, the impingement correction equation can be obtained by integrating

d f = (1 − f )dxe, (5.1a)

which leads to10

f = 1 − exp(−xe). (5.1b)
10In the JMAK model, the transformation is assumed to proceed isothermally and the only al-

lowed nucleation models are “site saturation” (at t = 0) and “countinuous nucleation”.
Then, equation (5.1) becomes the well-known result f = 1 − exp(−ktn) with constants k
and n. Models which also describe nonisothermal transformations and depart from a wide
range of nucleation models, but retain the assumption of randomly dispersed nuclei grow-
ing isotropically, are termed JMAK-like models. In these models, equation (5.1) becomes
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5.2 The modular model for transformation kinetics

Since it is often found that, especially for late stages, phase transforma-
tions cannot be well described by the impingement equation given above,
modifications to equation (5.1b) have been proposed [1, 8]:

d f = (1 − f )ξdxe with ξ > 0 (5.2a)

or
d f = (1 − f ε)dxe with ε > 0 (5.2b)

in particular in case of anisotropic growth and non-random nucleus dis-
tribution, respectively. The impingement parameters ξ and ε hereby don’t
have a clear physical meaning. However, it will be shown that their usage is
beneficial if kinetic parameters have to be extracted from experimental data
(see section 5.4.3).

In the MKM, separate models for nucleation, growth and impingement
can be employed in any combination (e.g. for impingement, equation (5.1) or
(5.2a) or (5.2b) or . . . can be used) and arbitrary time-temperature programs
can be described. The extended transformed volume fraction, xe, which is
the extended transformed volume divided by the specimen volume, is given
by

xe(t) =
∫ t

0

(
ṄV(τ)

(
g
∫ t

τ
v(t′)dt′

)d/m
)

dτ (5.3)

with ṄV as the nucleation rate per unit volume, v as the interface velocity
and g as a particle-geometry factor (g = 4/3π for growing spheres; g = 1
for growing cubes). If grains are assumed to grow in three dimensions,
the dimensionality parameter d equals three and for linear growth (which
prevails for interface-controlled phase transformations) the growth mode
parameter m equals unity. For many nucleation and growth models, the
integrals in equation (5.3) have to be solved numerically.

From equation (5.3), it can be seen that the two main ingredients of the
kinetic model, apart from the impingement equation, are the models for the
nucleation rate and the interface velocity. For nucleation, several models
are available. The simplest ones are pre-existing nuclei (site saturation at
t = 0) and continuous nucleation. For the case of continuous nucleation
(implying a high driving force), the nucleation rate exhibits an Arrhenius-
type temperature dependence

ṄV = N0 exp
(
−QN

RT

)
. (5.4)

f = 1− exp(−k(t)tn(t)) (isothermal transformations) and f = 1− exp(−βn) (isochronal trans-
formations), where β is the so-called path variable [1, 8].
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Chapter 5 Phase-transformation kinetics: atomistic and mesoscopic simulations

Classically, the interface velocity is given by

v(T) = M0 exp
(
−QG

RT

) [
1 − exp

(
∆G
RT

)]
, (5.5)

with −∆G as the driving force of the transformation, and QG as the activ-
ation energy for interface movement (i.e. the activation energy of the inter-
face mobility M = M0 exp(−QG/RT)). ∆G is a thermodynamical material
property which is usually well-known or which can be determined experi-
mentally. The interpretation of QG is complicated (see section 5.3).

After the nucleation and growth modes have been identified and substi-
tuted into equation (5.3), and after substitution of the resulting expression
of xe in the variant of equation (5.1) or (5.2) compatible with the identi-
fied impingement mode, a kinetic model has been obtained which is able to
describe the evolution of the transformed fraction, f , as function of time or
temperature. The choice of models for nucleation, growth and impingement
thus determines the expected phase transformation kinetics. The chosen
model set also determines which microstructure develops as the outcome
of this phase transformation, as will be shown in section 5.4.2 using geo-
metric simulations.

Fitting of model calculated values of f to corresponding experimental
data yields values for the kinetic parameters. Usually, the activation ener-
gies are of main interest. The interpretation of values obtained for these
energies is in many cases not straightforward. In the case of interface-
controlled transformations, they are often compared with the activation en-
ergy for grain-boundary diffusion. The rationale behind this comparison is
that a jump across a boundary between a growing grain and the matrix into
which it is growing, i.e. a jump furthering transformation, should be com-
parable to a jump along this boundary, i.e. a jump effecting grain-boundary
diffusion. However, the values obtained for QG can significantly differ from
experimentally observed activation energies for diffusion. It is therefore in-
teresting to conduct atomistic simulations in order to gain more insight into
the atom-jump processes occurring at and near a moving parent/product
interface (see the next section).

5.3 Atomistic Simulations

5.3.1 Simulation algorithm

Phase-transformation simulations at the length scale of an atom are usu-
ally performed with either Molecular Dynamics algorithms (MD) or kinetic
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5.3 Atomistic Simulations

Monte-Carlo algorithms (kMC). While both methods rely on the availability
of interaction potentials to describe the energy of individual atoms as func-
tion of their position relative to neighbouring atoms, the algorithms which
advance the simulations are quite different. In MD simulations, the traject-
ory of each atom is tracked, whereas kMC simulations only alllow jumps of
atoms between predefined, fixed lattice positions. Therefore, kMC simula-
tions are able to cover larger systems and much longer simulated times than
MD simulations and are thus suitable to simulate phase transformations.

In the work presented here [66–69], kMC simulations were used to ana-
lyse the interface-controlled, allotropic γ (fcc; austenite)→α (bcc; ferrite)
phase transformation in pure iron. In order to describe the transformation
between phases of different crystal structures, a multi-lattice approach can
be taken as follows. Two interpenetrating lattices for the two phases are set
up and are partially filled up such that the resulting (rectangular) bicrystal
consists of several layers of bcc atoms and the remainder of fcc atoms (see
Fig. 5.1). The lattices are oriented with the fcc (111) plane parallel to the
bcc (110) plane and the fcc[112̄] direction parallel to the bcc [001̄] direction.
The area densities of the closest-packed planes in both crystal structures are
made identical and the volume misfit due to transformation is compensated
by shifting the two lattices relative to one another (in a direction perpendic-
ular to the original interface) after a fixed number of simulation steps. The
simulation starts with one partially transformed plane as two-dimensional
nucleus and subsequently the transformation proceeds in a plane-by-plane
fashion.

Early simulations used a simple bond-counting model as interaction po-
tential and a fixed activation energy for all jumps [66]. Later simulations
used the embedded atom method (EAM) [67] and confirmed the earlier con-
clusions, thus demonstrating that even very simple interaction models can
lead to and explain complex behaviour. It is too computationally demand-
ing to calculate the activation energy for each jump using the EAM poten-
tial. Therefore, an artificial neural network can be employed. The activation
energy for each of several thousands of jumps was determined by minim-
ising the energy of neighbouring atoms, during a forced jump of one atom,
using the conjugate gradient method [70]. The neural network was then
trained with such data to calculate the activation energy of a jump on the
basis of the positions of only 14 nearest neighbouring atoms. Details of the
algorithm can be found in [66, 67].
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(a) (b)

Figure 5.1: (a) A small portion of the interface between γ (fcc, light grey)
and α (bcc, dark grey) on one densely-packed layer. The
small spheres indicate unoccupied lattice positions and the large
spheres indicate occupied lattice positions [69]. (b) A larger
portion of the simulated bicrystal showing layers which are en-
tirely filled with bcc/fcc atoms as well as one layer with a two-
dimensional bcc nucleus embedded in fcc atoms. Here, the fcc
atoms are shown in dark grey and the bcc atoms in light grey.
The space between the layers has been made disproportionately
large in order to provide a clearer view [68].

5.3.2 The activation energy for growth

From simulations as described above, values for the interface velocity as a
function of time can be obtained. By fitting equation (5.5) to the simulated
values, a value for the activation energy of γ/α-interface movement in iron
of QG = 0.99 eV is obtained [68] (see Fig. 5.2). When comparing the thus-
determined value for QG with a histogram of activation energies for indi-
vidual jumps (see Fig. 5.3), it follows that only very few atomic jumps have
such a high (or even higher) activation energy. One possible explanation
for this observation would be to assume that the few jumps with high ac-
tivation energies constitute the rate-limiting steps for interface movement.
In order to test this hypothesis, simulations were performed in which all
jumps with activation energies between 0.91 and 1.12 eV were prohibited.
Again, the resulting activation energy for interface movement is approxim-
ately 1.00 eV, thus even lying in the interval of forbidden jumps. Therefore,
it must be concluded that only a series of jumps, involving several atoms,
via unfavourable, intermediate positions, can lead to the observed effect-
ive activation energy. A schematic energy path for such a series of jumps
is shown in Fig. 5.4. For the fcc→bcc transformation to proceed, several
jumps must take place at or near the fcc/bcc interface, which all increase
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5.3 Atomistic Simulations

Figure 5.2: The transformation rate (which is proportional to the interface
velocity, v) as a function of temperature as determined from sim-
ulations. The curve drawn through the simulated data points is a
fit of equation (5.5). The resulting activation energy for interface
migration equals QG = 0.99 eV [68].

the energy of the system (and which all have an individual activation energy
< 0.99 eV) before a new bcc lattice position can be occupied by one atom
and thereby the total energy of the system can be lowered.

5.3.3 Influence of the excess volume in the parent/product
interface on interface migration

At a grain boundary, the density of a material is generally smaller than in
the bulk of the material. The additional, unoccupied volume at the bound-
ary is called excess volume. This excess volume is expected to have a strong
influence on the interface velocity. It can be varied in simulations in two
ways. Firstly, the orientation of the two parts of the bicrystal relative to one
another can be varied. This can be accomplished by rotation of one crys-
tal around an axis perpendicular to the interface between the two crystals
and thereby atom arrangements at the interface are created with a varying
amount of excess volume. Secondly, additional atoms can be inserted at the
interface during the early stages of the simulation. This is possible since
during interface migration, vacancies are formed at the interface by thermal
fluctuations. By filling a predetermined number of such vacancies with ad-
ditional atoms, the excess volume can be reduced.

Simulations in which the amount of excess volume at the interface was
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Figure 5.3: A histogram of the activation energy of the successful (single)
atomic jumps during a kMC simulation using an EAM poten-
tial. Note that only few jumps have an activation energy lar-
ger than the overall activation energy for interface migration,
QG = 0.99 eV (further see text) [68].
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Figure 5.4: Schematic illustration of the path which the system could take
from the initial state (fcc, S1) over several unfavourable states (S2
and S3) to the stable state (bcc, S4). The overall activation energy
of the process is QG, which is larger than the activation energies
of the single atomic jumps to intermediate states. The (negative
of the) difference in Gibbs energy of final and initial states, ∆G,
has been marked.
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5.4 Mesoscopic microstructure simulations

varied by these methods show that an increase in available excess volume
leads, as expected, to a decrease of the interface-migration activation en-
ergy. However, not only the amount of excess volume has an influence on
this activation energy, but in particular its distribution along the interface. If
an atomic arrangement, such as the one in Fig. 5.5d, leads to regions in the
parent/product interface where groups of atoms form (nearly) coherent ar-
rangements, this will impede interface motion even if the amount of excess
volume is considerable.

The activation energy for grain-boundary self diffusion can also be de-
termined from simulations on the basis of the description above. Varying
the excess volume in the parent/product interface has a strong and complex
effect on the activation energy of grain-boundary self diffusion. The corres-
ponding results can be rationalised, recognising that the activation energy
consists of two parts: the activation energy for vacancy formation and the
activation energy for vacancy migration. Depending on the atomic struc-
ture of the interface, especially the activation energy for vacancy formation
varies strongly. It can be concluded that

• the activation energy for grain-boundary self diffusion is always lar-
ger than the activation energy for interface migration11 (cf. the discus-
sion at the end of section 5.2), and

• the exact atomic structure of the interface sensitively influences the
dynamics of phase transformations. Each published study should de-
scribe exactly how the interface was set up, in order to allow compar-
isons of different studies.

5.4 Mesoscopic microstructure simulations

5.4.1 Simulation algorithm

Phase transformations control the eventual microstructure and thus the prop-
erties of many materials. Therefore, it is desirable to be able to predict the
microstructure of a material subjected to a certain heat treatment. Even
though classical kinetic models, such as the JMAK-model described in sec-
tion 5.2, yield average microstructural information, like the average grain

11This finding contrasts with experimental results (see references in [69]). The discrepancy is
likely due to the absence of impurity atoms in the simulations, which can never be entirely
avoided in experiments and which can have a strong influence on the interface-migration
velocity.
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Figure 5.5: The atomic mismatch of γ/α-systems at their interface studied
to identify the influence of excess volume at the interface on the
transformation kinetics. Fcc atoms are shown in light grey and
bcc atoms in dark grey. The arrangements were generated by
rotating one lattice around an axis perpendicular to the interface.
Specific patterns with nearly-coherent regions are visible. Some
of such large nearly-coherent regions have been marked in panel
(d) [69].

size12, they cannot, for example, predict the grain-size distribution. Yet, the
parameters of these models incorporate the data which prescribe number,
shape and growth rate of growing grains and thereby allow simulations of
the microstructural evolution.

There are several algorithms available for simulations of development
of the microstructure. They can be grouped into algorithms which pre-
scribe growth on the level of individual pixels/voxels in discretised space
(“per-pixel/voxel-growth” or “local rules”) and algorithms prescribing the
growth on the level of individual grains (“per-grain-growth” or “global
growth rules”)13. Cellular Automata simulations and Potts Monte-Carlo

12The average grain size can be calculated by ⟨V⟩ = N−1
V =

[∫
ṄV (t)(1 − f (t))dt

]−1, if random
nucleation prevails.

13Nucleation of phase transformations occurs at a length scale much smaller than the length
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simulations (see, e.g. Ref. [17] for a review) belong to the first group. So-
called “Geometric models” or “Avrami simulations” belong to the second
group and have a number of advantages over per-pixel/voxel-growth sim-
ulations: they are less computationally intensive, there is no influence of the
choice of discretised lattice, no propagating errors due to rounding-off prob-
lems and they offer a direct connection with the underlying kinetic model. It
should be noted, however, that this type of algorithm cannot deal with local
variations in the parent microstructure, e.g. in association with a position-
dependent driving force. It is the objective of the work presented in this
section to investigate the microstructure resulting from phase transforma-
tions which obey the specific class of kinetic models presented in section 5.2.
Geometric algorithms are best suited for this task.

Geometric simulations have been in use for several decades (see, e.g.
Refs. [12, 14, 27]). In essence, they adopt the nucleation rate and the grain
radius in extended space from the kinetic model and apply them to a simu-
lation grid. At each time step, the number of nuclei which should emerge is
looked up. The location for these nuclei can be chosen either at random or
be selected from a given list of allowed nucleus positions (see section 5.4.3).
If the voxels at the thus-determined locations are not yet transformed, nuc-
leation is performed by transforming these voxels. Next, for each grain, the
radius in extended space is calculated from their nucleation time, the cur-
rent time and the growth rate (cf. equation (5.5) in section 5.2). All voxels
within a sphere of this radius around the nucleus position are transformed,
if they are still untransformed (i.e. if the grain does not impinge on another,
existing grain). The details of the program used in the work presented here
have been described elsewhere [35].

5.4.2 Prediction of grain-size distributions

The influence of the type of nucleation and various model parameters (e.g.
activation energies; see what follows) on the final microstructure after trans-
formation, as exhibited in particular by the resulting grain-size distribu-
tion (GSD) is considered here [35]. For the present simulations, growth of
randomly nucleated, isotropically growing grains (of (initially, i.e. before
the onset of impingement) spherical shape) into a supersaturated matrix is
assumed, implying that equation (5.1) holds for impingement. Interface-
controlled growth at high supersaturation is assumed so that equation (5.5)

discretisation in a mesoscopic simulation. Therefore, in both classes of algorithms, nuclei are
introduced into the simulation by “switching” a certain number of single voxels, as provided
by a nucleation model, e.g. the one given in equation (5.4), to the transformed state.
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can be approximated by

v(T) = v0 exp
(
−QG

RT

)
. (5.6)

As nucleation models, “pre-existing nuclei” as well as “continuous nucle-
ation” (according to equation (5.4)) are treated.

Examples of resulting microstructures can be seen in Fig. 5.6. Corres-
ponding grain-size distributions are shown in Fig. 5.7. All GSDs are presen-
ted as histograms of the diameter of an equivalent sphere (i.e. a sphere of
volume equal to the volume of the (non-spherical) grain in the simulated
microstructure), DV , normalized by the equivalent diameter of a grain of
average volume, DV/D⟨V⟩.

If pre-existing nuclei are assumed, the resulting GSD is very narrow and
independent of all kinetic parameters14. Specifically, the growth rate (and
thus the temperature prevailing during the transformation) does not influ-
ence the GSD.

Adopting continuous nucleation, the only input parameter which changes
the GSD is the ratio of the activation energies for growth and nucleation,
QG/QN. Note that also the heating/cooling rate applied does not influ-
ence the observed GSDs. The GSDs obtained upon heating and cooling for
various values of the ratio of the activation energies, QG/QN, are shown in
Figs. 5.7 and 5.8, respectively. For comparison, also the GSD resulting from
pre-existing nuclei is shown. It follows that varying the ratio of activation
energies has strikingly different effects on the GSDs obtained upon heating
and upon cooling.

For transformations upon heating, the simulations start at a temperature
of 0 K. This means that, during the simulation, the process with the lower
activation energy will start first. If this is nucleation (QG/QN > 1), many
nuclei are formed before the onset of growth. This situation is similar to a
transformation with pre-existing nuclei and thus the resulting GSD is also
very narrow. If growth has the lower activation energy (QG/QN < 1), no
transformation can occur until the first nuclei appear; once they do appear,
they can grow rapidly, leading to a microstructure with very large grains
taking up a large part of the microstructure and small grains distributed
between these large grains (cf. Figs. 5.7 and 5.6c).

For transformations upon cooling, both nucleation and growth processes
take place already at the very beginning of the transformation. The process

14This is true for the normalised GSDs presented here. The average (not normalised) grain size can
be calculated by ⟨V⟩ = N−1

V for pre-existing nuclei and is influenced by both ṄV and v for
other nucleation models; see footnote 12.
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(a) (b)

(c) (d)

Figure 5.6: Example microstructures resulting from geometric, mesoscopic
simulations, assuming pre-existing nuclei (a) (this result does
not depend on the (time dependence of the) temperature), con-
tinuous nucleation and isothermal transformation (b), continu-
ous nucleation during heating with constant heating rate and an
activation energy ratio QG/QN = 0.01 (c) and QG/QN = 100
(d). See also the corresponding GSDs in Fig. 5.7 [35].
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Figure 5.7: The GSDs resulting from geometric, mesoscopic simulations as-
suming continuous nucleation and a constant heating rate for
various values of the ratio of the activation energies for growth
and nucleation, QG/QN. For comparison, the GSDs for an iso-
thermal transformation and continuous nucleation, as well as for
a simulation assuming pre-existing nuclei (result independent of
the (time dependence of the) temperature), are shown [35].
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Figure 5.8: Analogous to Fig. 5.7, but for transformations at constant cooling
rate [35].
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with the larger activation energy (either nucleation or growth) ceases first.
If this is growth (QG/QN > 1), then the transformation cannot proceed to
completion. Therefore, in the simulations, the absolute values of the activ-
ation energies have been adjusted (lowered) such that the transformation
can complete for each ratio of activation energies. After this adjustment, the
GSDs can be compared (see Fig. 5.8). It can be seen that the range of possible
grain-size distribution shapes is smaller than in the case of transformations
upon heating. Further, the visible trend in shape of the GSD is just the op-
posite of the one observed for the case of heating (cf. Figs. 5.7 and 5.8): The
larger the ratio QG/QN is for the transformation upon cooling, the more the
maximum of the GSD is shifted towards small grain sizes.

It is worth noting that for both heating and cooling, the GSDs with QG/QN
= 1 coincide with the GSD resulting from an isothermal transformation:
Equal activation energies mean that the temperature dependencies of nuc-
leation and growth are identical and thus their relative speeds stay constant,
regardless of the temperature program.

It can be concluded that knowledge about the temperature dependencies
of the nucleation and growth rates during a phase transformation allows to
predict and understand the grain-size distribution resulting from the trans-
formation.

5.4.3 Effects of non-random nucleation

Simulations are not only useful to gather data on the microstructure if the
underlying kinetics is known, but also to simulate the phase transformation
kinetics for circumstances under which JMAK(-like) models (cf. Footnote 10
in section 5.2) are not valid. This is for example the case if nucleation does
not occur randomly in the bulk volume of the parent phase (homogeneous
nucleation), but rather at specific sites, such as parent-phase grain boundar-
ies (heterogeneous nucleation). Nucleation on parent-phase grain boundar-
ies is a quite common phenomenon which is observed for example in pre-
cipitation reactions or massive transformations.

To account for non-random nucleation, a first approach involves modific-
ation of the impingement correction with an empirical impingement para-
meter (see equation (5.2)). This additional fit parameter often allows to fit
experimental data in cases where the transformation kinetics does not com-
ply with the impingement correction equation (5.1).

A less empirical approach was given by Cahn [11]. In his model, parent-
grain boundaries are approximated as randomly distributed planes and nuc-
leation is only allowed on these planes. One additional parameter, namely
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the parent-phase grain-boundary area per unit volume, SGB
V , is then needed

to describe the phase transformation kinetics. Planar grain boundaries are
unrealistic, because they are generally incompatible with (mechanical) equi-
librium at grain grain-boundary junctions/edges. The question then arises
whether approximating grain boundaries as planes will nevertheless lead to
a model which is able to correctly describe experimentally obtained kinetics
of grain-boundary nucleated phase transformations.

Another approach may be based on the so-called time cone formalism [42]
which has been shown to be applicable to phase transformations with cer-
tain non-random nucleus arrangements [43]. However, the application of
the method to grain-boundary nucleation so far has been limited to simple
geometric parent-grain shapes and extending it to more realistic parent-
grain morphologies appears to be non-trivial.

As compared to the above, theoretical, possibilities to treat non-random
nucleation, simulations offer high flexibility to change the nucleus arrange-
ment, almost arbitrarily, once the program has been set up. A two step pro-
cess can be adopted [61,71]. First, a geometric simulation is performed with
randomly distributed nuclei in order to generate a microstructure with a
known GSD. In a second, subsequent simulation, nucleation is only allowed
to occur on the grain boundaries of this parent microstructure. Several para-
meters can then be varied and the resulting kinetics compared with the one
for nuclei randomly distributed in the bulk. The effects observed [61,71] can
be summarised as follows:

• The ratio of the parent-grain boundary density and the number of product
nuclei/grains, SGB

V /NV . The higher this ratio is, the closer the simulated
kinetics follows the course of the transformation pertaining to random
nucleation in the bulk (and the faster the transformation reaches com-
pletion, see Fig. 5.10). Conversely, the lower the ratio is, the sooner the
simulated kinetics deviates from the case of random nucleation (and
the longer it takes for the transformation to reach completion).

• The nucleation mode in the parent→product transformation. The more
nuclei are formed early in the transformation, the stronger the de-
viation of the kinetics from the case of random nucleation is. The
strongest such deviation occurs for the case of pre-existing nuclei.

• The parent grain-size distribution. If this distribution has many small,
but also very large grains, then the resulting kinetics will differ par-
ticularly strongly from the case of random nucleation in the bulk. For
any other, less wide GSD, the deviation will be less pronounced.

92



5.4 Mesoscopic microstructure simulations

All these observations can be understood when taking into account the po-
sitions of nuclei relative to one another (i.e. their position correlation). If
nuclei are formed very close to one another, then impingement will set in
relatively early in the transformation, i.e. earlier than in the case of ran-
domly distributed nuclei. This position correlation occurs if a large number
of nuclei are located on few parent-grain boundaries (the case of a small
ratio SGB

V /NV) or if the parent microstructure features many large grains,
i.e. relatively large regions in which no nucleation can take place. Also,
since nuclei cannot form in already-transformed areas, an ongoing nucle-
ation during transformation diminishes the effect of correlated nucleus po-
sitions as compared to pre-existing nucleation. This last statement does not
only pertain to grain-boundary nucleated phase transformations.

The type of simulations considered here can indicate which kinetic model
(i.e. which one of the above described approaches) is best able to describe
the (simulated) transformation kinetics associated with grain-boundary nuc-
leation. The results of fitting these kinetic models to simulated kinetics are
shown in Fig. 5.9. It is clear that an (unmodified) JMAK model, compatible
with random nucleation (cf. equation (5.1); case A in Fig. 5.9) cannot at all
describe the observed kinetics. The same holds for a MKM model using
impingement with the parameter ε (cf. equation (5.2b); case C). All other
considered models are able to well describe the simulated transformed frac-
tion. If, however, the values of the kinetic parameters as determined from
these fits are compared with the values that were used as input values for
the parameters of the simulation, it is found that Cahn’s model (case B)
yields incorrect fit results. Further analysis (see [71] and Fig. 5.10) reveals
that only if Cahn’s model is modified (extended) with an empirical impinge-
ment parameter, ξ, analogous to equation (5.2b), (case F), correct values for
the kinetic parameters are obtained for all values of SGB

V /NV (see Fig. 5.10a).
As long as the deviation from random nucleation in the bulk is small

(large values of SGB
V /NV), also a MKM model with the impingement para-

meter ξ (case D) yields good results (see Fig. 5.10b).
It can therefore be recommended to use the here proposed modified Cahn

model modified with the impingement parameter ξ when describing ex-
perimentally determined kinetics of grain-boundary nucleated phase trans-
formations. However, the gain in the quality of the fit obtained by using the
Cahn model with the impingement parameter ξ as compared to the MKM
model with the same impingement parameter is obtained at the cost of in-
troducing an additional parameter: the parent grain-boundary density SGB

V ,
the value of which can be determined (preferably) by measurements, before
the transformation, or by adopting it as an additional fit parameter in the
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data analysis.
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Figure 5.9: The simulated transformed fraction for a grain-boundary nuc-
leated phase transformation (symbols) together with model fits
for various kinetic models (lines). The results for the individual
cases have been shifted vertically with respect to each other to
improve legibility. A: JMAK model, B: Cahn’s model, C: MKM
model using the impingement parameter ε, D: MKM model us-
ing the impingement parameter ξ, E: modified Cahn model us-
ing the impingement parameter ε, and F: modified Cahn model
using the impingement parameter ξ [71].

5.5 Conclusions

• In the analysis of phase-transformation kinetics, computer simula-
tions can provide an atomistic interpretation of the mesoscopic kinetic
parameters.

• Atomistic simulations expose the atom movements at a migrating inter-
face which are not (yet) retrievable experimentally in a statistically as-
sured manner. Thereby, the atomic configuration of an interface and
in particular the excess volume at the interface are shown to play an
important role in determining the phase-transformation kinetics.

• Mesoscopic simulations can be used to determine the (evolution of
the) microstructure resulting from a specified transformation kinetics.
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Figure 5.10: Simulation results (symbols) for a series of simulations for vari-
ous parent grain-boundary densities, SGB

V , together with model
fits (lines) of the MKM model (a) and the modified Cahn model
(b), both using the impingement parameter ξ (equation (5.2b).
The comparison shows that the modified Cahn model is suit-
able to describe the simulated phase transformation kinetics in
all cases, while the MKM model can only be utilised for modest
deviations from random nucleation [71].

Therefore, a powerful tool to validate a kinetic model is provided by
comparing the predicted, simulated microstructure (e.g. as exhibited
by a grain-size distribution) with the experimental observation.

• Simulations allow a full determination of phase transformation kinet-
ics, at circumstances for which no analytic expressions for the trans-
formation kinetics are available. With this information, empirical mod-
els can be validated and calibrated.

95





Chapter 6

The kinetics of and the microstructure induced by
the recrystallisation of copper

6.1 Introduction

Recrystallisation of deformed materials is a process of high technological
importance and has therefore been studied intensively for many decades
[60,72,73]. Even though the kinetics of the recrystallisation process is easily
accessible through hardness measurements, metallographic or calorimetric
measurements, its interpretation is a matter of on-going debate [60].

Simple models, e.g. based on the assumption that all nuclei15 are present
at the beginning of the process and that the velocity of the interfaces between
deformed and recrystallised material is constant (at constant temperature),
were unable to correctly describe both the observed kinetics and the micro-
structure after recrystallisation. Kinetic models have been proposed which
are able to describe the experimentally determined recrystallisation kinetics,
e.g. by assuming that there exists a distribution of growth rates during re-
crystallisation [37]. However the assumptions made in such models need to
be validated. One way to validate kinetic models is to compare the accord-
ingly predicted microstructure, i.e. the grain morphology and/or the grain-
size distribution and/or the texture after completed recrystallisation, with
the experimentally determined microstructure. The microstructure which
follows the adoption of a certain kinetic model can be determined by carry-
ing out a mesoscopic simulation.

Conversely, also models have been proposed which are able to describe
experimentally observed microstructural parameters as the grain-area dis-
tribution, e.g. by assuming that the nucleation rate accelerates during re-
crystallisation [76]. They can be validated by comparing the recrystallisa-
tion kinetics as predicted by mesoscopic simulations on the basis of these

15It must be recognised that nucleation in recrystallisation is not the outcome of a fluctuation
phenomenon as in heterogeneous phase transformations. Instead, the “nuclei” are already
present in the deformed material (as subgrains [60]) and can become “activated” subject to
instability criteria [60,74,75]. Nevertheless, the moment a (sub-) grain starts to grow is denoted
"nucleation".
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models with experiments.
Recent recrystallisation models use data on the microstructure of the ma-

terial in the deformed state to calculate the nucleation rate (see, e.g. [77]) or
the growth rate of recrystallising grains (see, e.g. [78–80]). To this end, in-
formations about e.g. the subgrain-size distribution, the stored energy dis-
tribution, the texture or the misorientation-angle distribution are required
as input values. Against this background, the deformed microstructure
must be characterised in detail. This is done in this study by electron backs-
catter diffraction (EBSD) measurements of deformed, unrecrystallised spe-
cimens.

To the authors’ knowledge, there are only a few studies available in the
literature which present combined experimental data sets, i.e. both kinet-
ics and microstructural change for the same recrystallising material. In this
study, differential scanning calorimetry (DSC) and EBSD measurements of
the static16 recrystallisation of pure copper have been conducted. The im-
portance of taking into account informations about both the kinetics of re-
crystallisation and the microstructural development during recrystallisation
has been illustrated in this work by mesoscopic simulations.

This paper is organised as follows. First, a concise overview of previously
published work on the recrystallisation of pure copper is presented in sec-
tion 6.2. Subsequently, the specimen preparation, the experimental meth-
ods and the employed simulation method are described in section 6.3. The
calorimetry and microscopy results are presented in section 6.4. The kinet-
ics and microstructure results are discussed, compared with each other and
with the results of mesoscopic simulations in section 6.5.

6.2 Literature survey

6.2.1 Kinetics

Data on the kinetics of recrystallisation can be obtained with a variety of
experimental methods. A summary of literature results for the recrystallisa-
tion kinetics of pure copper has been given in Table 6.1, including indication
of the experimental method used for the kinetic analysis.

For isothermal measurements, the overall, effective activation energy, Qeff,
can be determined from a plot of ln(∆t) versus T−1

iso , where ln(t f ′′ − t f ′ ) =
ln(∆t) is the logarithm of the time elapsed between two certain fixed frac-
tions recrystallised, f ′ and f ′′, and T−1

iso is the inverse of the measurement
16I.e. recrystallisation which occurs during annealing after deformation, and not (dynamically)

during deformation.
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temperature. In this work, the time elapsed from the beginning of the meas-
urements is employed (i.e. the first test fraction recrystallised is chosen to
be f ′ = 0). For isochronal measurements, the overall, effective activation
energy can be determined by applying a Kissinger-like analysis, i.e. a plot
of ln(T2

f ′/Φ) versus T−1
f ′ , where Tf ′ is the temperature at which a certain

fixed value of the transformed fraction, f ′, is reached and Φ is the heating
rate [1, 8].

Evidently, the reported values for the effective activation energy vary
widely (see table 6.1). The largest reported activation energy is approxim-
ately three times higher than the smallest one. If, on the one hand, all recrys-
tallisation nuclei are present at t = 0, the activation energy determined rep-
resents an activation energy of growth. If, on the other hand, nucleation oc-
curs (also) during the recrystallisation, then the reported activation energy
is an effective one and the determination of its separate components, the
activation energy for nucleation and the activation energy of growth, may
be cumbersome (see section 9.6.12 in Ref. [1]). To the authors’ knowledge,
no such analysis has been performed for the recrystallisation of copper until
now. Interpretations of the values obtained for Qeff have been attempted in
terms of the nucleation mechanism, a distribution of activation energies or
impurity content (see references in table 6.1).

For isothermal measurements, the recrystallised fraction, f , is often presen-
ted as a “double-logarithmic plot” of ln(− ln(1 − f )) vs. ln(t), also called
“JMAK plot”. The last designation is motivated by the occurrence of straight
lines in such plots if the kinetics can be described by the classical JMAK kin-
etic model [1, 8], i.e. if the kinetics obey an equation of the type

f (t) = 1 − exp(−ktn), (6.1)

where k is a rate constant and n is the growth exponent, also called Avrami-
exponent, i.e. the slope of the straight line possibly observed in the double-
logarithmic plot17. A deviation from straight-line behaviour in the plot dis-
cussed, which is often observed (see Table 6.1), means that the kinetics can-
not be described by the classical JMAK model. Equation (6.1) only holds
under specific circumstances [1, 8], such as spatially randomly distributed
nuclei, specific nucleation modes (pre-existing nuclei or continuous nucle-
ation) and isotropic growth (see also section 10.2.2 in Ref. [1] for a listing

17The growth exponent n can also be determined from isochronally (i.e. with constant heating
rate) conducted experiments. To this end, an appropriately adapted variant of the JMAK
equation has to be applied and then n is the negative of the slope of the straight line possibly
observed in a plot of ln(− ln(1 − f )) versus ln Φ (with Φ as the heating rate). See section
9.6.15.5 in Ref. [1].
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of the assumptions made in this approach). Thus, nonlinear behaviour in
double-logarithmic plots can have widely varying causes (see below).

The experimentally observed slopes in the double-logarithmic plots range
from below unity to more than four (see table 6.1). Within the framework
of the JMAK model, the value of the slope, n, allows to draw conclusions
concerning the nucleation and growth mechanisms. Assuming that the
recrystallised grains grow isotropically and with a constant rate at con-
stant temperature (i.e. “linear growth”, usually compatible with interface-
controlled growth, occurs), the nucleation mode can be deduced from the
slope: A value of three indicates that all nuclei are present at the beginning
of the transformation (“pre-existing nuclei”, i.e. “site saturation at t = 0")
while a value of four indicates a constant nucleation rate (”continuous nuc-
leation“) [8]; for a recent example of this type of deduction, see Ref. [81].
Exponents smaller than three are incompatible with ”linear growth“, i.e. a
constant growth rate at constant temperature. Only a combination of pre-
existing nuclei and a decreasing growth rate at constant temperature leads
to such low values of n. Indeed, decreasing growth rates have been ob-
served experimentally [82–84].

At late stages of recrystallisation, the recrystallisation rate drops, causing
the slope in the double-logarithmic plot to decrease. This behaviour cannot
be explained by a growth rate which is continuously decreasing exponen-
tially with time [60], since this would lower the slope in double-logarithmic
plots for the whole recrystallisation, and not only for late stages. It was
found experimentally that not all recrystallising grains exhibit the same
growth rate. There exists a distribution of growth rates in a specimen [84]
and grains with a specific crystallographic orientation with respect to the
specimen frame of reference were observed to grow faster than other grains
[83]. A distribution of growth rates can explain the observed drop in the
slope, n, of double-logarithmic plots at late stages [37]. Also other explan-
ations for the observed decrease of n must be considered, e.g. non-random
nucleation or anisotropic growth of recrystallised grains (see section 6.5).

For isothermal measurements, if the growth rate of recrystallising grains
is assumed to be constant or to decrease with time, a slope in the double-
logarithmic plot larger than four (see table 6.1) can only be explained with
accelerating nucleation during recrystallisation. It has been observed that
new grains nucleate “autocatalytically” at the interface between deformed
and recrystallised material [85–87], which leads to a nucleation rate which
increases with time in the initial stage of recrystallisation.

From the above discussion on the large spread in the observed recrys-
tallisation kinetics of copper, it can be concluded that the prevailing time-
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dependences of the nucleation and growth rates in the recrystallisation ap-
pear to strongly depend on the specimen preparation (the mode of deform-
ation), possibly also on specimen purity and the temperature program (iso-
thermal or isochronal).

Finally, it is remarked here that a comparison of various different experi-
mental techniques, including calorimetric ones, to investigate recrystallisa-
tion kinetics has shown very good agreement of the results obtained for the
recrystallisation kinetics by application of these methods [88]. It can there-
fore be excluded that a substantial amount of recovery takes place during
recrystallisation, since recovery would affect the heat signal, and thus the
apparent recrystallised fraction, as measured by calorimetry, but not the
recrystallised fraction as measured by direct characterisation of the micro-
structure.

6.2.2 Microstructure

The grain-area distribution (GAD) as measured in a cross-section of fcc me-
tals after completed recrystallisation is usually said to be of log-normal type
[60]. To the authors’ knowledge, no grain-area distributions of recrystal-
lised pure copper are available in the literature. It has been remarked that
the grain-area distribution is very broad: the largest observed linear inter-
cept lengths between grain boundaries in the cross sections of specimens
were approximately four times larger than the mean intercept length [83].
More information is available for aluminium alloys, where log-normal dis-
tributions were indeed commonly found [56, 76]. The GADs obtained from
simulations of recrystallisation of fcc metals are usually much narrower than
these experimentally observed GADs (see e.g. Refs. [79, 99]).

The driving force for grain-boundary migration in recrystallisation is as-
cribed to the difference in stored energy in front of and behind the moving
boundary. However, also reduction of grain-boundary area (i.e. coarsen-
ing/normal grain growth) is a driving force for boundary migration and
thus, overlap of the recrystallisation and grain-coarsening processes can in
principle influence the GAD. Monte Carlo simulations in which both driv-
ing forces were taken into account lead to a kink in the double-logarithmic
plots of the simulated (isothermal) recrystallisation kinetics which was at-
tributed to coarsening during recrystallisation and which kink vanished if
the grain-boundary energy, and thereby the driving force for coarsening,
was decreased [100]. Since the driving force for recrystallisation in strongly-
deformed metals is several orders of magnitude larger than the driving force
for coarsening [60], grain growth during recrystallisation only plays a mar-
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ginal role, if at all, in the recrystallisation of such materials (see also sec-
tion 6.4.2).

6.3 Experimental details and simulation method

6.3.1 Specimen preparation

High-purity copper was supplied by Alfa Aesar (Karlsruhe, Germany) as
a rod with a purity of 99.999 at.-% (metals basis). From this rod, cylinders
of 10 mm height were cut and rolled in a laboratory rolling mill with the
rolling direction perpendicular to the cylinder axis to a sheet of thickness
0.5 mm with a reduction in thickness of 0.5 mm per pass (leading to a rolling
reduction of 95%). The “cylinder” was rotated around the cylinder axis
(i.e. around an axis perpendicular to the resulting sheet surface) between
successive passes to yield a homogeneous deformation and approximately
equiaxed grains. Between passes, the material was cooled in ice water to
prevent dynamic recrystallisation. Disc-shaped specimens with a diameter
of 4.5 mm were punched out of the rolled sheet and the resulting specimens
were lightly ground in order to produce a flat surface. The deformed spe-
cimens were stored at 193 K (−80◦C) to avoid room-temperature recovery
and recrystallisation.

Before each measurement, the specimens were annealed (in a DSC ap-
paratus; cf. section 6.3.2) at 383 K (110◦C) for 10 min. Both DSC and EBSD
measurements showed that no recrystallisation takes place during this pre-
treatment. Since recovery is a process with an exponentially declining rate
at constant temperature [60], the pre-treatment ensures that the main por-
tion of the stored energy of the specimen which can be released by recovery
has already been released before any further, recrystallisation experiments
are conducted. Moreover, it has been shown that prior annealing treatments
have no strong influence on the kinetics of the subsequent recrystallisation
kinetics (see discussion and references in [100]).

For EBSD measurements (cf. section 6.3.3), employed to characterise states
of partial and complete recrystallisation, specimens were annealed in an
oil bath at 413 K (140◦C) for various times between 6 and 22 min and sub-
sequently quenched in ice water. The partially recrystallised specimens
were stored at 193 K (−80◦C) until further examination.
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6.3.2 Calorimetry

Enthalpy changes upon recrystallisation were recorded using a PerkinElmer
Pyris 1 power-compensated DSC. The temperature measurement was cal-
ibrated using literature values for the melting temperature of pure zinc,
lead and indium and the heat-flux signal was calibrated using the melt-
ing enthalpies of lead and indium. The specimens were encapsulated in
aluminium pans prior to the measurements. All experiments were per-
formed isothermally, where the specimens were heated to the desired tem-
perature with the highest possible heating rate of the device (approximately
200 K/min). After completion of the observed heat effect, the specimens
were cooled down to room temperature.

Since there is only very little heat released during recrystallisation and
the device therefore operates close to its limit of resolution, special care was
given to the determination of the base line. Usually, the base line for the
measurement of an irreversible process is provided by a repetition of the
measurement (second run), during which no heat flux from the specimen
is observed. However, the first and second run of typical measurements
(see figure 6.1 a) do not coincide at the beginning of the measurement, i.e.
before the onset of the recrystallisation, as they should. Also the first and
second runs of already-recrystallised, inert specimens (cf. figure 6.1 a) do
not coincide, i.e. the second run is "flatter" and the recorded heat flux ap-
proaches zero sooner after reaching the measurement temperature than in
the first run. Therefore, the difference between the first and the second runs
must stem from e.g. a variable contact between the pan and the surface of
the heating chamber in the DSC.

For a large number of measurements with inert specimens at various tem-
peratures (see figure 6.1 a), it was found that the apparent heat effect as
measured in the first run (= the base line for the DSC scan recorded for the
deformed, recrystallising specimen) can be well described by

d∆H
dt

= C1 exp
(

t
C2

)
+ C3t + C4, (6.2)

where d∆H/dt represents the negative of the observed heat flux, t denotes
the time elapsed since the measurement temperature has been reached, and
the four Ci are constants. Fitting of the constants Ci simultaneously to all
measurements of the first run of inert specimens, even for the same meas-
urement temperature, was not well possible for a single set of Ci values.
Therefore, base lines for the recrystallisation runs were constructed for each
measurement individually by fitting equation (6.2) to the parts of the DSC
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Figure 6.1: a) The heat flux signal of a DSC device for the first and second
runs of a deformed and an inert copper specimen at 408 K
(135◦C). b) The heat flux of the first run of the same deformed
specimen as in panel a) together with the fitted base line accord-
ing to equation 6.2. All curves in panels a) and b) were shifted
vertically to zero heat flux at the end of the measurements.

signal before and after recrystallisation (figure 6.1 b). Adopting this proced-
ure, well-reproducible results for the recrystallised fraction as function of
time, f (t), were obtained.

Since recovery is a process with an exponentially-declining heat release,
in principle it cannot be excluded that the adoption of an exponentially-
declining function for the base line masks some heat release possibly due to
concurrent recovery [101]. However, a comparison of the first measurement
runs of a deformed and an inert specimen (cf. figure 6.1) shows that the
amount of heat release by recovery, if there is any at all, must be small (see
also the discussion at the end of section 6.2.1 and see section 6.3.1).

6.3.3 EBSD

Specimens for EBSD characterisation were prepared by removing the sur-
face layer of the specimens by grinding and subsequent polishing. All EBSD
scans were performed in the surface plane. The measurements were per-
formed with a Zeiss Leo 438VP scanning electron microscope with an EDAX
TSL EBSD measurement system. After each measurement, a “cleanup pro-
cedure” of the measured data file was employed in which grains smaller
than four pixels are removed and the adjacent grains are enlarged accord-
ingly until they impinge on each other.

105



Chapter 6 Recrystallisation of copper: experimental evidence

Many twin boundaries, coherent and incoherent, were observed in the
microstructure. It is not clear whether the observed twinned parts of copper
crystals are induced as growth faults of growing recrystallised grains [102,
103] or whether they nucleate autocatalytically, at the migrating boundary
between deformed and recrystallised material [85, 87, 93]. In each of both
cases, they do not originate by separate nucleation events, but develop from
an already-existing recrystallised grain. It is therefore reasonable to group
all adjacent crystal parts in twin orientation into one grain, as was done in
the present study.

The spread of grain-area size observed in fully recrystallised specimens
is very large. Therefore it was impossible to correctly determine both the
number of very large and very small grains simultaneously from a single
EBSD measurement: If the step size of the EBSD scan is large, small grains
consist of only very few pixels and then are deleted by the cleanup proced-
ure. If the step size is small, the number of pixels necessary to capture a
statistically significant number of large grains becomes prohibitively large.
The cumulative grain-area distributions of the same specimen, as determ-
ined for various step sizes, are shown in figure 6.2. The grain areas observed
in these measurements range from 100 µm2 to 105 µm2. It follows from fig-
ure 6.2 that the smallest employed step size is still not small enough to re-
solve the smallest grains in the microstructure. For measurements of en-
tirely recrystallised specimens, a step size of ∆x = 1 µm was chosen. With
this step size, the smallest grains cannot be resolved, however the overall
shape of the grain-area distribution is correctly captured.

On the basis of the EBSD measurements, it is possible to distinguish the
recrystallised parts from the unrecrystallised parts of a specimen which was
quenched to room temperature after partial recrystallisation. To this end,
the average so-called image-quality index18 of all pixels belonging to a grain
can be used19 [104]. Partially recrystallised specimens exhibit a bimodal dis-
tribution of the average grain-image quality: see figure 6.3, which shows the
corresponding histogram for a specimen which has recrystallised to 67%.
Hence, a threshold value can be chosen in order to distinguish recrystallised
grains (high grain-image quality) and unrecrystallised grains (low grain-
image quality). There is some overlap between the two constituents (peaks)
of the distribution (cf. figure 6.3) and therefore some grains will be classified

18The image quality is a measure of the quality of the backscatter electron diffraction pattern of
the material corresponding to one pixel.

19It is also possible to use the average orientation spread in a grain to distinguish between recrys-
tallised and unrecrystallised parts of the specimen. In the present study, both methods have
been shown to lead to the same results.
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incorrectly as recrystallised even though they are unrecrystallised grains,
and vice versa. However, the overlap is not large, the vice-versa nature
causes compensation and therefore the error thus made in the classification
is small. The majority of the grains for which classification is ambiguous are
small grains. Therefore, the GADs determined from EBSD scans are least re-
liable for small grain areas. Small differences in specimen preparation bring
about different average values of the grain-image quality for different spe-
cimens, so that the threshold must be and was chosen separately for each
specimen.

EBSD scans of partially recrystallised specimens provide quantitative val-
ues for various parameters characterising the (partially) recrystallised mi-
crostructure. Firstly, the grain-area distribution can be determined. For
small fractions recrystallised, only few grains are recorded and therefore
the corresponding grain-area distributions are not very reliable. Further,
the area fraction recrystallised (which equals the volume fraction recrys-
tallised, f ) as well as the number of grains per unit area, NA, can be de-
termined. It should be noted that NA, the number of grains per unit area
in a two-dimensional cross section of a specimen, is not equal to the num-
ber of grains per unit volume of the specimen, NV , which latter value can
generally only be determined from three-dimensional measurements. NV
can only be determined straightforwardly from NA if it is assumed that all
grains are spherical [86,105], an assumption which does not hold for recrys-
tallising copper (cf. the figures in section 6.4.2) and generally not in case of
anisotropic recrystallisation-front velocities. Finally, the area of the interface
between recrystallised and unrecrystallised material per unit volume, SV ,
can be determined. It is calculated from SV = 2NL, where NL is the number
of times a straight line randomly drawn on the cross section traverses from
an unrecrystallised to a recrystallised grain (and vice versa), divided by the
length of the line [105]. Due to the discrete nature of the EBSD measure-
ments, this method is sensitive to measurement artefacts (e.g. apparent one-
pixel grains if the probe line “touches” a grain with a rough grain boundary
at an acute angle).

6.3.4 Simulations

Kinetic models make assumptions about the nucleation and growth (and
impingement) mechanisms. On the basis of such a (mesoscopic) kinetic
model, simulation methods can be devised to determine the resulting mi-
crostructure. To this end, so-called geometric simulations are particularly
efficacious [35]. In these simulations, grains are assumed to grow as spheres
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Figure 6.2: The cumulative logarithmic grain-area distribution (GAD) of
a fully recrystallised (at 413 K (140◦C)) specimen measured by
EBSD scans with variable scan step size ∆x (in µm, indicated in
the figure). The individual measurements, each with a differ-
ent step size, are shown in grey lines, for only those grain-area
ranges that could practically be covered (see text). From these
measurements, the combined GAD (black) is assembled as the
composite of the GADs as determined for each ∆x in the grain-
area intervals as indicated by the vertical dashed lines.

with nucleation and growth rates prescribed by an underlying kinetic model.
Nucleation, growth and impingement of spheres is carried out in discretised
space and time. The simulated microstructure after completed recrystallisa-
tion can be analysed in the same way as done for the experimental results.

In this article, geometric simulations are employed to assess whether the
microstructure as predicted by a specific kinetic model matches with the
experimentally determined microstructure. In particular, grain-area distri-
butions as determined experimentally and as generated by simulations are
compared. The algorithm used for these simulations is described in detail
in Ref. [35].
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Figure 6.3: A histogram of the average grain-image quality index of a par-
tially recrystallised (at Tiso = 413 K (140◦C); f = 0.67) specimen
as determined by an EBSD measurement. All grains with image
qualities below the dashed line are considered as unrecrystal-
lised (deformed) while all grains with a higher image quality are
considered as recrystallised.

6.4 Results and evaluation

6.4.1 Calorimetry

The difference between the recorded heat flux signal and the constructed
base line was determined (as described in section 6.3.2 [cf. equation (6.2)]).
Thus the released heat due to only the recrystallisation (−∆HReX with HReX
as enthalpy) has been obtained. The determination of the recrystallised frac-
tion, f , as function of t then is straightforward. If ∆HReX,tot represents the
total enthalpy change of recrystallisation (the area under the d∆H/dt vs. t
curve), it follows:

d(∆H)

dt
= ∆HReX,tot

(
d f
dt

)
(6.3)

and f as a function of t follows by stepwise application of equation (6.3).
The resulting course of the recrystallised fraction as a function of time is
shown for various isothermal annealing temperatures in figure 6.4.

If the recrystallisation kinetics can be described by the classical JMAK
model, a straight line arises by representation of the experimental results
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Figure 6.4: The recrystallised fraction, f , determined by isothermal DSC, as
function of time at various temperatures.

in the double-logarithmic plot: ln(− ln(1 − f )) vs. ln(t) (cf. equation (6.1)
in section 6.2.1). As follows from figure 6.5 a), straight lines of slope three
(i.e. n = 3) can be well fitted to the first half of the data points (i.e. to about
f ≈ 0.6) of each run. For f > 0.6, the slope decreases until the end of
the recrystallisation. These results are more or less in line with literature
results: slopes (=values of the growth exponent, n) between 0.8 and 4.6 were
observed and a decrease of the slope in the late stage of recrystallisation
was often found (see section 6.2.1). Evidently, the classical JMAK model
provides an imperfect description of the recrystallisation kinetics.

Independent of the adoption of a specific kinetic model, a value for the
effective activation energy, Qeff, can be determined from a set isothermal
annealing runs [1,29]. In a plot of the logarithm of the time elapsed between
two fixed fractions transformed, ln(∆t)), versus the inverse of the isothermal
annealing temperature, T−1

iso , the effective activation energy, Qeff, can be de-
termined as the slope of the resulting straight line (cf. section 6.2.1). Here,
the time elapsed from the beginning of the measurements ( f ′ = 0) until
various fixed fractions recrystallised, f ′′, was employed. The value thus de-
termined for Qeff decreases from 112 to 110 kJ mol−1 for f ′′ changing from
0.2 to 0.8 (see figure 6.5 b). This result for Qeff is within the large range of
the values found in the literature. (see Table 6.1).
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Figure 6.5: a) The double-logarithmic plots of the rerystallised fraction, f , as
determined from isothermal DSC runs at various temperatures
(cf. figure 6.4). The dashed lines of slope three were fitted to the
first half of the recrystallisation curves. b) A plot of ln(∆t) vs.
T−1

iso used to determine the effective activation energy of the re-
crystallisation, for various values of the recrystallised fraction,
f ′′. For all curves, f ′ = 0 was chosen (see section 6.2.1 and
Ref. [1]).

6.4.2 EBSD

The recrystallised fraction as determined from the EBSD scans (according
to the method described in section 6.3.3) is shown in figure 6.6 (data points)
for the recrystallisation at Tiso = 413 K (140◦C). The error bars included in
figure 6.6 for the EBSD data points result from different choice of threshold
values for the image-quality index to separate the fractions of recrystallised
material and unrecrystallised material in a partially recrystallised specimen.
The full line drawn in the figure represents the recrystallised fraction as de-
termined by DSC for an identically conducted experiment. The DSC curve
was shifted by one minute to shorter times in order to obtain the best match
with the EBSD data. This small correction is a consequence of recrystal-
lisation already beginning during the heating up to the measurement tem-
perature in the isothermal DSC experiments, whereas specimens used for
EBSD analysis practically immediately reached the annealing temperature
in the oil-bath annealings performed. It follows that the degrees of trans-
formation as determined by DSC and EBSD agree very well. Thereby, the
base-line construction applied in the DSC measurement (cf. section 6.3.2) is

111



Chapter 6 Recrystallisation of copper: experimental evidence

validated. The result also indicates that there is no substantial amount of re-
covery occurring during the recrystallisation, because if this were the case, a
deviation of the DSC measurements (which capture the heat release due to
recovery) from the EBSD measurements (which are insensitive to recovery)
would be observed (see also the discussion at the end of section 6.2.1 and
see sections 6.3.1 and 6.3.2).
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0.4
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t/min

f
EBSD measurements

DSC measurement

Figure 6.6: The transformed fraction as determined from EBSD measure-
ments for recrystallisation at Tiso = 413 K (140◦C) (data points),
as function of time. The error bars indicated for the data points
result from choosing different image-quality thresholds in the
analysis of the EBSD measurements (cf. section 6.3.3). The full
line represents the recrystallised fraction as determined by DSC
for an identically conducted experiment. The DSC curve is shif-
ted by one minute to shorter times to obtain the best match with
the EBSD results.

A grain-orientation map of a deformed (and recovered) specimen is shown
in figure 6.7 a). The different colours denote the surface normal in the crys-
tal frame of reference. Orientation gradients (different shades of the same
colour) are visible within grains (and subgrains). The grain boundaries de-
termined from the measurement are shown in figure 6.7 b). Low-angle grain
boundaries (misorientation angles of adjacent pixels 5◦ < ω < 15◦ 20) are
shown in grey and high-angle grain boundaries (ω > 15◦) are shown in

20If the misorientation between two pixels is smaller than five degrees, the pixels are considered
to belong to the same grain.
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black. The mean subgrain diameter is approximately 3 µm. The correspond-
ing image-quality map of the EBSD scan is shown in figure 6.7 c). The sub-
grain structure within grains is revealed by the relatively low image quality
of pixels (appearing relatively dark) on the subgrain boundaries.

A similar analysis for a partially recrystallised specimen is shown in fig-
ure 6.8 a). Here, the grain-orientation map is shown with the image-quality
map superimposed in the same figure. Bright grains (i.e. grains with a high
average image quality) are recrystallising grains growing into the surround-
ing deformed matrix. All growing grains comprise parts in orientations
due to (multiple) twinning. This can be seen by comparing figure 6.8 a)
with figure 6.8 b) where all parts of a recrystallised grain in twin orienta-
tion relationships with adjacent parts in the same recrystallised grain have
been given the same colour. The boundary between recrystallised and un-
recrystallised material is irregular and not flat as it would be expected for
an isotropic growth rate: protrusions and retrusions can be observed.

The EBSD scan for a fully recrystallised microstructure is depicted in fig-
ure 6.9. The grain-orientation map is shown with the image-quality map
superimposed in figure 6.9 a). For the same area as in figure 6.9 a), only the
grain boundaries are shown in figure 6.9 b): high-angle grain boundaries are
shown as black lines; twin boundaries (coherent and incoherent) are shown
in grey. There are almost no small-angle grain boundaries (misorientation
angle 5◦ < ω < 15◦; shown in red). Most of the grains are irregularly-
shaped. Very large as well as very small grains occur in the microstructure.

The evolution of the grain-area distribution of recrystallised grains with
ongoing recrystallisation is presented in figure 6.10, where histograms of
the logarithm of recrystallised grain areas are shown for various partially
and one fully recrystallised specimen. For the first histograms, the number
of recrystallised grains and hence the accuracy are not very good, but it is
clear that already at low transformed fractions there are large recrystallised
grains in the microstructure. The shape of the grain-area distribution re-
mains more or less unchanged from f = 0.67 onwards. For a process with
pre-existing nuclei (as often assumed in the modelling of recrystallisation,
see e.g. Refs. [79, 80]), it would be expected that the grain-area distribution
is more narrow at the beginning and broadens only later as a consequence
of impingement.

The observed microstructure could also be affected by processes other
than recrystallisation, namely by grain growth after recrystallisation. This
can be excluded by the comparison of the microstructures of a specimen
which was quenched to room temperature immediately after the end of the
observed heat effect in the DSC scan and of a specimen which was held at
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a) b)

c) d)

Figure 6.7: a) The grain-orientation map of a deformed specimen. The col-
ours indicate the surface normal in the crystal frame of reference
(see colour legend in the standard stereological “triangle” on the
right). b) The grain boundaries determined from the measure-
ment. Low-angle grain boundaries (5◦ < ω < 15◦) are shown
in grey and high-angle grain boundaries (ω > 15◦) are shown in
black. c) The image-quality map of the same specimen (bright:
high image quality, dark: low image quality).
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a) b)

Figure 6.8: An EBSD scan of a specimen partially recrystallised at Tiso =
413 K (140◦C). a) The grain-orientation map (colours, see the le-
gend in figure 6.7) with the image-quality map superimposed in
the same image: regions of low image quality (unrecrystallised
areas) are dark, while regions of high image quality (recrystal-
lised grains) are bright. b) The same EBSD scan, with all grains
below the image quality threshold marked in black. All parts of
recrystallised grains in twin orientation relationships with adja-
cent parts in the same recrystallised grain have been given the
same colour. Evidently, many twin grain boundaries occur in-
side the recrystallised grains.

the recrystallisation temperature of 413 K (140◦C) for one additional hour
after the end of the observed heat effect. The GADs of the two specimens
were identical within the experimental accuracy; in particular, a large num-
ber of very small grains (which should vanish rapidly during coarsening)
was still present after the annealing treatment.

The number of observable recrystallised grains in the EBSD scans per
unit area, NA, has been plotted versus the recrystallised fraction in fig-
ure 6.11 a) The corresponding results of mesoscopic simulations (see sec-
tion 6.3.4), assuming either pre-existing nuclei or continuous nucleation, i.e.
with a constant nucleation rate at constant temperature per (unrecrystal-
lised) unit volume, have been presented in the same figure. In both sim-
ulations, a constant, isotropic growth rate was employed. The number of
recrystallised grains per unit area was normalised by the number of recrys-
tallised grains per unit area observed in the fully recrystallised specimen.
The experimental data show that the number of observable grains increases
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a) b)

Figure 6.9: An EBSD scan of a specimen fully recrystallised at Tiso = 413 K
(140◦C). a) The grain-orientation map (colours, see the legend
in figure 6.7) with the image-quality map superimposed in the
same image: regions of low image quality (unrecrystallised
areas) are dark, while regions of high image quality (recrystal-
lised grains) are bright. b) The grain-boundary types observed:
low-angle grain boundaries (ω < 15◦, marked in red; see ar-
rows), twin boundaries (coherent and incoherent, grey) and gen-
eral high-angle grain boundaries (ω > 15◦, black).

relatively slowly in the beginning, and increases rapidly towards the end of
the recrystallisation. This is in contrast with the results from both simula-
tions, which show a rapidly increasing number of grains in the beginning,
followed by a slower increase towards the end of the recrystallisation.

The recrystallised/unrecrystallised interface area per unit volume (see
procedure described at the end of section 6.3.3) as function of the recrys-
tallised fraction is shown in figure 6.11 b)21. The maximum of the experi-
mental data in this plot occurs at a slightly higher transformed fraction than
as predicted by the simulations assuming pre-existing nuclei or continuous
nucleation. This means that a relatively large unimpinged surface area un-
recrystallised/recrystallised is present relatively late in the experimentally
observed recrystallisation. Such a situation could, for example, be due to a
high nucleation rate at late stages of the recrystallisation (since small grains

21This plot and its analysis is referred to by some authors as the microstructural path method
[82, 106].
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Figure 6.10: The logarithmic grain-area distributions of recrystallised grains
as determined by EBSD measurements for partially and fully
recrystallised specimens at Tiso = 413 K (140◦C).

have a higher surface-to-volume ratio than large grains), or due to the irreg-
ular shape of the grains (leading to a higher surface-to-volume ratio than
for regularly shaped grains).

The surface-normal inverse pole figures of a deformed specimen and an
of an entirely recrystallised specimen, as obtained from the EBSD measure-
ments, are presented in figure 6.12. The surface-normal inverse pole figure
of the deformed specimen is typical for fcc metals deformed under uniaxial
compression, and not for rolled fcc metals [107]. This is a consequence of
the rotation of the copper specimen around the sheet normal after each pass
during rolling (cf. section 6.3.1). The texture of the recrystallised specimen
does not match the texture expected for cold-rolled and recrystallised fcc
materials, i.e. it does not exhibit a strong cube texture with many {100}-
planes parallel to the specimen surface [60, 107]. Instead, many grains with
{111}-planes parallel to the specimen surface are found.

A single (inverse) pole figure only contains incomplete information about
the texture of a specimen. The orientation-distribution function, which con-
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Figure 6.11: a) The normalised number of recrystallised grains per unit area
as a function of time and b) the (unimpinged) recrystallisation
front area per unit volume as function of the recrystallised frac-
tion (at Tiso = 413 K (140◦C)). Experimental results from EBSD
measurements are shown (data points). The error bars result
from choosing different image-quality thresholds in the ana-
lysis of the EBSD measurements. The corresponding results
from mesoscopic simulations, assuming either pre-existing nuc-
lei (solid line) or a constant nucleation rate (dashed line) and,
for both cases of nucleation, a constant, isotropic growth rate,
are shown as well.

tains the full information about the texture of a specimen, is also available
from EBSD measurements and can thus be used as input data in mesoscopic
simulations (see what follows).

The mobility of the moving interface recrystallised/unrecrystallised is
strongly dependent on the misorientation angle of the growing grain with
respect to the surrounding deformed matrix. Hence, to set up simulations
with realistic misorientation-angle distributions, knowledge of (even; see
above) the ODF of the deformed and recrystallised material is insufficient
[108], since no information about the position of the grains in the speci-
men is contained in such data. However, from the EBSD measurements,
misorientation-angle distributions can be obtained. Such results for both
deformed specimens and fully recrystallised specimens are shown in fig-
ure 6.13. In the deformed state, many low-angle grain boundaries are present.
This results from the formation of subgrains (with low-angle subgrain bound-
aries consisting of arrays of dislocations) during recovery. The misorientation-
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a) b)

Figure 6.12: The surface-normal inverse pole Figure for the specimen sur-
face (rolling plane) as obtained by EBSD of a) a deformed spe-
cimen (cf. section 6.3.1) and b) a specimen fully recrystallised
at Tiso = 413 K (140◦C). The values given for the levels of the
iso-frequency contours shown have been indicated in the top
left of the panels as i×random, where “random” pertains to the
frequency level in the absence of preferred orientation and with
i as the number indicated.

angle distribution of the recrystallised specimen follows closely the Mack-
enzie distribution [109] which represents the case of randomly oriented grains
of cubic material. Hence, even though the texture of the fully-recrystallised
specimen (see figure 6.12) is not random, the spatial distribution of the
grains in the specimen is random and therefore no clustering of misorienta-
tion angles can be observed.

6.5 General Discussion

Adopting a JMAK-model description for isothermal recrystallisation, the
slope of a double-logarithmic plot equals the growth exponent, n, which de-
pends on the nucleation and growth modes. The likely mode of growth is
“interface controlled” and the dimensionality of the growth is three (grains
grow in all three dimensions, i.e. in an equiaxed fashion). For this growth
mode and pre-existing nuclei (site saturation), the growth exponent equals
three; for this growth mode and continuous nucleation (constant nucleation
rate at constant temperature), the growth exponent equals four [8]. The
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Figure 6.13: The misorientation-angle distribution functions for neighbour-
ing grains of a deformed specimen (dashed line) and of a fully
recrystallised specimen (solid line, without twin boundaries)
obtained by EBSD. The Mackenzie distribution, i.e. the case of
randomly oriented grains of cubic material, is also shown.

experimental results indicate n = 3 for f < 0.6 (figure 6.5). Hence, this
discussion would lead to the conclusion that all nuclei are present at the be-
ginning of the recrystallisation and that the observed value for the effective
activation energy represents the activation energy of growth, i.e. in this case
the activation energy of the mobility of the recrystallisation front. How-
ever, the microstructural results presented in this paper show that such an
interpretation, as based only on calorimetric data, is unjustified (see what
follows).

The grain-area distribution expected for the case of pre-existing nuclei
and, as assumed in JMAK kinetics, isotropic growth is much narrower than
the one observed experimentally. This follows from figure 6.14, where the
GAD of figure 6.10 has been replotted together with corresponding results
of simulations, including simulations according to JMAK kinetics with pre-
existing nuclei.

A wide grain-area distribution skewed towards large grains, as observed
experimentally, can be generated if nucleation continues during recrystal-
lisation, e.g. if, for isothermal recrystallisation, continuous nucleation, or
even an accelerating nucleation rate during recrystallisation is assumed [35,
76]. Also the experimental result for NA( f ), which shows a steep increase
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in the number of nuclei per unit area in a cross section towards the end of
recrystallisation (figure 6.11 a), could be explained with an accelerating nuc-
leation rate. Adoption of any model with ongoing nucleation would, how-
ever, lead to a growth exponent larger than three, which is not observed
(figure 6.5 a). Moreover, such models are still JMAK-like models which
would lead to straight lines in double-logarithmic plots (cf. Ref. [8]) and
thus cannot describe the experimentally observed departure from JMAK-
like behaviour in the late stages of recrystallisation (figure 6.5 a).

The above consideration indicates that additional effects must be taken
into account to reconcile kinetics and microstructural observations.

Decreasing growth rate. An accelerating nucleation rate together with a
decreasing growth rate could likely explain the broad grain-size distribution
(cf. Ref. [76]) and the observed slope of three in the double-logarithmic plot.
However, even an exponentially decreasing growth rate leads to a straight
line in the double-logarithmic plot (see section 6.2.1 and the discussion in
Ref. [60]). Therefore, the observed kinetics cannot be described with such a
model.

Non-random nucleation. Nuclei which are spatially inhomogeneously dis-
tributed, e.g. along grain boundaries in the parent microstructure, cannot be
described with JMAK-like models and show a decreasing slope in double-
logarithmic plots [11]. Nucleation in recrystallisation is known to occur
preferentially in regions of high misorientation gradients, i.e. at grain bound-
aries in the deformed microstructure [60,75]. However, there is no evidence
that the observed kinetics are due to non-random nucleation in the present
experiments: Grain-boundary nucleation, as compared to random nucle-
ation, only affects transformation kinetics and the final microstructure no-
ticeably if there are many more product nuclei than parent grains, i.e. if the
nuclei saturate the parent-grain boundaries [11,61,71]. In that case, a string-
of-pearl pattern of grains along parent-grain boundaries would be visible in
partially recrystallised specimens. Since this is not the case (see figure 6.8),
it is unlikely that non-random nucleation is responsible for the observed
kinetics.

Inhomogeneous growth rate. Another possible reason for the observed de-
parture from JMAK kinetics is an inhomogeneous growth rate [100]. As-
suming that all stored energy is released during recrystallisation, the in-
terface velocity of a migrating recrystallisation front depends on the local
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driving force, i.e. the energy stored in the deformed matrix before the front,
and the mobility of the interface, which strongly depends on the misorient-
ation between deformed matrix and recrystallised grain [110]. Therefore,
it is clear that the front velocity may change from location to location (and
also the (average) front velocity may change as function of time).

In order to incorporate inhomogeneous growth rates in a simple model
for the recrystallisation kinetics, it was assumed that there is a distribution
of growth rates (i.e. each grain has its own, constant growth rate) instead
of a common growth rate for all grains. Assuming a normal distribution of
growth rates and pre-existing nuclei, it was found possible to fit the exper-
imentally observed kinetics reasonably well (a simultaneous fit to all iso-
thermal runs; see figure 6.15). However, the GADs resulting from corres-
ponding simulations do not match the experimentally observed ones (see
figure 6.14). So, although the recrystallisation kinetics can be described by
this model (which is an improvement as compared to the JMAK model), the
microstructure resulting from the recrystallisation is described imperfectly.
It follows that any future testing of kinetic models for recrystallisation re-
quires satisfactory descriptions of both the kinetics and the microstructure.

The occurrence of a significant variation in growth rate of recrystallising
grains was ascribed above to a relatively large variation in driving force
and microstructure in the deformed specimen. Such effects are much more
pronounced for recrystallisation than for heterogeneous phase transforma-
tions: The driving force for recrystallisation is much smaller than for phase
transformations [1, 110]. Even though fluctuations e.g. in the driving force
may occur from location to location in the specimen for massive or precip-
itation transformations, the relative changes are small and the driving force
can be approximately taken as constant. In recrystallisation, on the other
hand, fluctuations in the small driving force may even lead to some regions
not taking part in the recrystallisation at all.

The above discussed results indicate the necessity to develop models which
explicitly take into account the inhomogeneous nature of the deformed mi-
crostructure before recrystallisation and which incorporate realistic, “phys-
ical” models for the nucleation rate and the recrystallisation-front velocity,
which models should be tested against experimental data for both the kin-
etics and the microstructural development.

Mesoscopic simulations are best suited to investigate such models. They
can take experimental information about the deformed microstructure as in-
put and allow the comparison of simulated kinetics and microstructure with
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Figure 6.14: The GAD of a fully recrystallised specimen as determined by
EBSD together with predictions by various simulations. Solid
line: assuming pre-existing nuclei and a uniform growth rate;
dotted line: assuming a constant nucleation rate and a uniform
growth rate; dashed line: assuming pre-existing nuclei and a
distribution of growth rates.
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Figure 6.15: a) The transformed fraction as a function of time determined
by DSC measurements (data points), see figure 6.4 b) together
with the result of fitting a kinetic model simultaneously to all
isothermal runs, assuming pre-existing nuclei and a normal dis-
tribution of growth rates. b) A double-logarithmic plot of the
same data.
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experimental data such as those presented in this work. Therefore, Cellu-
lar Automata simulations will be employed in a forthcoming article [111]
to simulate recrystallisation departing from an inhomogeneous deformed
state.

6.6 Conclusions

6.6.1 Recrystallisation of copper

• The kinetics determined for the static recrystallisation of strongly de-
formed copper by DSC and EBSD agree very well.

• The growth exponent equals three up to a fraction recrystallised of 0.6
and subsequently decreases. The recrystallisation kinetics cannot be
described by a JMAK-like kinetic model.

• The grain-area distribution of recrystallised grains is very wide and
includes very large grains already in early stages of the recrystallisa-
tion. After complete recrystallisation, it spans at least five orders of
magnitude of grain area (100 − 105 µm).

• The number of recrystallised grains per unit area observable in speci-
men cross sections increases slowly in early stages and and quickly in
late stages. This observation suggests that new recrystallised grains
are formed not only at the beginning, but continuously during the re-
crystallisation.

• The grains in the fully recrystallised microstructure each consist of
several parts sharing a twin orientation relationship. The grain bound-
aries are strongly curved and have an irregular shape. Although the
recrystallised microstructure reveals a distinct texture, the misorienta-
tion-angle distribution for neighbouring grains is identical to the one
expected for randomly oriented grains.

• The experimental data on the kinetics and the microstructure cannot
be reconciled by neither a nucleation continuing (or even accelerat-
ing) during recrystallisation, nor a growth rate decreasing during re-
crystallisation, nor a spatially non-random nucleation and also not by
a combination of these. A spatially varying growth rate, as a con-
sequence of intrinsic microstructural inhomogeneity, is identified as
the key to understand both the kinetics and the resulting microstruc-
ture of recrystallisation.
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6.6.2 Recrystallisation in general

• A viable model for the recrystallisation kinetics should be able to de-
scribe both the dependency of the recrystallised fraction on time and/or
temperature and the microstructural development; e.g. as exhibited
by the grain-area distribution. An acceptable fit of a JMAK(-like) or
other model to only the fraction recrystallised as function of time or
temperature is possible in many cases without that the generated mi-
crostructure can be predicted reliably. This invalidates a considerable
body of conclusions presented in previous works.

• On the one hand, models pertaining to a decreasing growth rate and/or
accelerating nucleation rate predict microstructures with broad grain-
area distributions, potentially as broad as the observed ones, but are
not able to describe the observed recrystallisation kinetics.

• On the other hand, a model pertaining to pre-existing nuclei and a
distribution of (constant) growth rates can explain the observed re-
crystallisation kinetics, but the predicted microstructure (grain-area
distribution) does not comply with experimental results.

• Models which incorporate the inhomogeneous nature of the deformed
microstructure, and thus the variation from location to location of the
driving force and the recrystallisation-front mobility, may correctly
describe both the observed recrystallisation kinetics and the extraordin-
arily wide grain-area distribution. Such models can be implemented
in mesoscopic simulations.
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Chapter 7

Interplay of kinetics and microstructure in the
recrystallisation of pure copper: comparing
mesoscopic simulations and experiments

7.1 Introduction

Already some of the earliest works on mesoscopic microstructure simula-
tion have treated the process of recrystallisation in metals [12, 76, 112]. This
can be understood as a consequence of the great technological importance
of recrystallisation and the recognition that the usually applied simple re-
crystallisation models fail to correctly describe both the experimentally ob-
served kinetics and the resulting microstructure.

In particular, two experimental results could not be conclusively explained
yet and thus give rise to enduring interest in recrystallisation: Firstly, the
kinetics of (isothermal) recrystallisation show a time dependence which can-
not be explained with simple Johnson-Mehl-Avrami-Kolmogorov (JMAK)-
models [5–7] based on a constant growth rate of recrystallised grains [83]:
In so-called double-logarithmic plots of ln(− ln(1 − f )) versus ln(t), with
f being the fraction recrystallised and t being the time elapsed since the
start of the recrystallisation, a straight line results if the recrystallisation can
be described by the classical JMAK model (for a discussion of JMAK(-like)
models, see Ref. [1]). The frequently observed deviation from a straight line
towards the end of the recrystallisation has been interpreted as a result of a
decreasing growth rate of recrystallised grains [60, 87]. Secondly, the grain-
size distributions of the microstructures generated by physically conceiv-
able models considered in computer simulations are (so far) consistently
and distinctly narrower than the ones observed experimentally [79, 99].

Even though broad grain-size distributions can of course always be gen-
erated by devising arbitrary nucleation and growth models in computer
simulations [56, 76], the question arises what the physical background of
such nucleation and growth models could be, if there is any. In more re-
cent recrystallisation models, the nucleation and growth rates are defined
dependent on the deformed microstructure at the onset of recrystallisation
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(see, e.g., Refs. [60,75,77,79]). The reason for the decreasing growth rate (see
above) is then believed to originate from the inhomogeneity of the deformed
microstructure, in which, during the annealing, new nuclei are forming and
into which the recrystallising grains are growing.

In recrystallisation simulations departing from an inhomogeneous, de-
formed microstructure, it is very important to describe this microstructure,
i.e. the start configuration of the simulation, as accurately as possible. Most
published works on the simulation of recrystallisation which do investig-
ate the influence of the deformed microstructure on recrystallisation depart
from a lightly deformed microstructure (true strain ε < 1), which is incom-
patible with practical recrystallisation processes. Such a microstructure usu-
ally consists of subgrains/dislocation cells22, delineated by low-angle grain
boundaries, within the deformed, original grains, delineated by high-angle
grain boundaries, which are still visible. In corresponding simulations, de-
formed grains are either assumed to have a homogeneous stored energy
and no subgrain structure [78, 79], or a stored energy gradient is artificially
generated inside the grains [113], or the grains contain a subgrain struc-
ture [114], or information about the deformed microstructure and stored
energy are taken from crystal-plasticity FEM simulations [115–117]. In all
these cases, high-angle boundaries (which provide the migrating recrystal-
lisation fronts) are only present at the original grain boundaries, so that nuc-
lei emerge along these original grain boundaries and not randomly through-
out the microstructure.

Simulations of strongly deformed metals have been scarcely performed.
In strongly deformed metals (true strain ε > 1), the original grain morpho-
logy is not well detectable any more and the assumption that the microstruc-
ture consists of well-defined subgrains (sharing low-angle grain boundar-
ies) within large grains (delineated by high-angle grain boundaries) is un-
tenable [60]. In EBSD experiments, low-angle and high-angle boundaries
were found between microstructural features which were only a few micro-
meters wide [118] (Features of this size are typically subgrains and, in case
of lightly deformed microstructures, are expected to be separated by only
low-angle grain boundaries).

It is desirable to directly use such an experimentally observed, strongly
deformed microstructure as start configuration of simulations. However,

22The small features in deformed microstructures with dislocations forming more or less well-
defined walls and relatively dislocation-free interiors are referred to as subgrains or disloca-
tion cells in the literature. To avoid confusion between the “cells” in a deformed microstruc-
ture and the “cells” in a cellular automaton simulation, the term “subgrains” will be used for
the former throughout this paper.
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the simulations in which EBSD measurements of such microstructures were
used for this purpose [80] have been restricted to two dimensions until now.
In the current project, three-dimensional simulations of recrystallisation in
such strongly deformed metals have been performed.

The kinetics and the microstructure of the recrystallisation of metals were
simulated in the past using geometrical simulations, [12, 56, 119], phase-
field simulations [114,117], vertex dynamics simulations [120], Potts Monte-
Carlo simulations [78, 80, 100] and cellular automata [16, 17, 121, 122]. Espe-
cially the latter two methods offer a high flexibility in the possible mod-
els which can be employed to describe nucleation and boundary migration
(i.e. growth) during recrystallisation and are less computationally expensive
than phase-field simulations.

In this paper, the kinetics and the resulting microstructure of copper which
has been strongly deformed by cold-rolling (ε = 3) have been investigated
by comparison of the results of cellular automata simulations with experi-
mental data. Informations about the microstructure of the deformed mater-
ial were taken from a comprehensive data set on the the recrystallisation of
pure copper presented elsewhere [118].

It is attempted to reconcile the experimentally observed kinetics and the
(resulting) microstructure by applying three different approaches. Firstly,
it is investigated whether anisotropic growth, due to an interface velocity
which depends on the misorientation between the recrystallising grains and
the deformed matrix, can lead to the observed decreasing growth rate, and
to (non-spherical grains corresponding with) a broad grain-size distribu-
tion. Secondly, it is investigated if ongoing nucleation during recrystallisa-
tion can broaden the grain-size distribution enough to explain the exper-
imental findings. Thirdly, the effect of subgrain-energy distributions, i.e.
an inhomogeneously distributed stored energy, leading to a distribution of
growth rates, is considered.

7.2 Experimental results

This section provides a brief summary of our recent experimental results
on the recrystallisation of copper [118], which are essential for the under-
standing of the present paper. The kinetics of the recrystallisation of pure
copper which has been strongly deformed by cold rolling (ε = 3) was invest-
igated upon isothermal annealing using differential scanning calorimetry
(DSC). The microstructure, as reflected in grain-size parameter distributions
and the image-quality index, was characterised in the deformed, partially
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recrystallised and fully recrystallised states by orientation imaging micro-
scopy using electron backscatter diffraction (EBSD) [118].

Deformed microstructure. The original grain morphology before rolling is
not clearly visible any more in the deformed (and recovered) specimens.
A distinction between small original grains and deformation-induced sub-
grains within original grains cannot be made. The majority of grain bound-
aries are high-angle grain boundaries (misorientation angle23 ω > 15◦), but
the misorientation-angle distribution shows a higher number of low-angle
grain boundaries (LAGB) than expected for randomly oriented (sub-)grains
(cf. also Figure 7.6 in section 7.5.1, where the misorientation-angle distribu-
tion of a deformed specimen is shown). The average area of the (sub-)grains
in the microstructure is approximately 3µm2.

Kinetics. In a double-logarithmic plot of the fraction recrystallised as func-
tion of time, a straight line with slope three results for all annealing temper-
atures, up to a recrystallised fraction, f , of approximately 0.6. For f > 0.6,
the slope of the plot, the so-called JMAK-exponent, drops slightly (cf. Fig-
ure 7.5 in section 7.5.1). There is no recovery taking place during recrystal-
lisation as follows from the coincidence of the DSC and EBSD data for the
fraction recrystallised.

Observed number of grains per unit area. The number of grains which
can be observed in a cross section rises only slowly at the beginning of the
recrystallisation, but increases faster towards the end of the recrystallisation
(cf. Figure 7.9 in section 7.5.2).

Recrystallised microstructure. The recrystallised microstructure includes
many twins, however all grains sharing twin orientation relationships were
counted as one grain since they develop from an already-existing recrys-
tallised grain. The grain boundaries between recrystallised grains are not
smooth, but strongly curved/ irregular.

Final grain-area distribution. The grain-area distribution after completed
recrystallisation is extremely broad: it spans at least five orders of mag-
nitude (the smallest grains could not be resolved with the employed res-

23The difference in crystallographic orientation of two (adjacent) otherwise identical crystals can
always be described as a rotation around a specific axis.
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olution) and has its maximum at small grain areas (cf. Figure 7.4 in sec-
tion 7.5.1).

7.3 Employed nucleation and growth models

7.3.1 “Nucleation”

“Nucleation” in recrystallisation is not a fluctuation phenomenon like in
(solid-solid) phase transformations. Instead, the “nuclei” are already present
in the deformed material in the form of subgrains which can become “ac-
tivated” or “supercritical”, i.e. become “nuclei”, if certain instability criteria
are (all) fulfilled [1, 60, 74, 75]:

1. The boundary curvature must be (become) below a critical value (i.e.
the subgrain radius must be larger than the critical radius, r∗),

2. there must be (develop) a mobile (i.e. high-angle ) grain boundary as
part of the subgrain boundary and

3. there must be (arise) a driving force for movement of the recrystallisa-
tion front (i.e. a difference between the stored energies at both sides
of the migrating recrystallisation front).

Subgrains may fulfill these conditions already after deformation. Then one
speaks of “pre-existing nuclei” or “site saturation (at t = 0)” [8].

The above listed conditions determining which subgrains are supercrit-
ical, may be a function of heat treatment time/temperature: (normal) sub-
grain coarsening can occur upon increasing time in isothermal experiments
and upon increasing temperature in isochronal experiments and thereby
subgrains adjacent to a high-angle grain-boundary can reach a size larger
than the critical radius for “nucleation” in the course of ongoing recrys-
tallisation (therefore, recrystallisation can be considered as “discontinuous
subgrain coarsening”)24.

Recently, a quantitative model for “nucleation” in recrystallisation has
been developed based on the mechanism of subgrains becoming supercritial

24A different model for “discontinuous subgrain coarsening” assumes that the subgrain-size
criterion is fulfilled for most subgrains but that they only have immobile, low-angle grain
boundaries with their neighbours. Normal subgrain growth then leads to a situation in which
individual subgrains can obtain mobile, high-angle grain boundaries with their neighbours,
e.g. by continuous merging of low-angle grain boundaries [1, 60] and then start to grow, i.e.
coarsen discontinuously [123].
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upon (normal) coarsening [77]. The critical subgrain radius for nucleation
is given by [60]

r∗ =
2γHAGB
−∆G

, (7.1)

where γHAGB is the boundary energy of the high-angle grain boundary cre-
ated/ extended during “nucleation” and −∆G is the driving force for re-
crystallisation, i.e. the stored energy in the deformed microstructure. Un-
der the assumption that the stored energy of the deformed, parent micro-
structure is mainly located in the subgrain boundaries, equation (7.1) can be
rewritten as [1, 60]

r∗ =
4
3
⟨rsubgrain⟩

γHAGB
γsubgrain

, (7.2)

where ⟨rsubgrain⟩ is the average subgrain radius in the grain into which
the new “nucleus” is growing and γsubgrain is the boundary energy of a
subgrain boundary. During subgrain coarsening, obviously ⟨rsubgrain⟩ in-
creases, but since γsubgrain increases at the same time (the misorientation
angle at the subgrain boundary increases during subgrain coarsening), the
critical radius can be considered to stay about constant during subgrain
coarsening. This implies that only very little of the deformation energy is re-
leased during subgrain coarsening (i.e. no significant recovery takes place),
which is in agreement with experimental findings for materials with low- to
medium-stacking fault energies such as copper [60, 88, 118].

Subgrain coarsening follows a power-law behaviour [60], so that the av-
erage subgrain radius, ⟨r⟩, can be expressed as

⟨r⟩β − ⟨r⟩β
0 = kt, (7.3)

using the initial average subgrain radius ⟨r⟩0, the subgrain-growth expo-
nent β (set to β = 3 in this work25) and the subgrain-growth constant k.
This equation can also be expressed as time dependence of the average sub-
grain radius normalised with respect to the critical subgrain radius, χ(t),

χ(t) = ⟨r⟩(t)/r∗ =
(
⟨r⟩β

0 + kt
)1/β

/r∗. (7.4)

Thus, subgrains become supercritical if their normalised subgrain radius,
χ(t), is larger than unity.

25A range of values from β = 2 to 5 has been observed experimentally [60]. A sensitivity study
concerning this parameter has been performed in this work and it was found that a variation
of the value of β in this range does not qualitatively change the simulation results and thereby
the conclusions drawn.
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The spatial distribution of nuclei (random or non-random) can influence
the kinetics and final microstructure of recrystallisation. When nuclei are
arranged spatially non-randomly, e.g. along high-angle grain boundaries of
the deformed material or as a consequence of the presence of non-randomly
distributed, nucleation-stimulating second-phase particles, then the slope
of a double-logarithmic plot of the recrystallised fraction as function of time
(the JMAK exponent) decreases to a value of one towards the end of the
transformation and the maximum of the resulting grain-size distribution is
shifted towards smaller grain sizes [11, 41, 61, 84, 118]. However, the influ-
ence of non-random nucleation on the recrystallisation kinetics and the final
microstructure will only be significant (if detectable at all) if the departure
from a random nucleus arrangement is pronounced [71]. A strongly non-
random arrangement of nuclei would be visible in partially recrystallised
specimens [82]. Since no such distinctive departure from random nucle-
ation could be observed during the recrystallisation of strongly deformed
copper [118] (cf. also the discussion in Ref. [100]), non-random nucleation
is not considered in the present recrystallisation model.

7.3.2 Growth

In early recrystallisation models, the interface velocity of a recrystallisation
front, i.e. the growth rate of the recrystallising grains, was assumed to be
constant. This assumption cannot be upheld in the light of experimental res-
ults. The slope of double-logarithmic plots (the JMAK exponent) was often
found to be smaller than three, the lowest possible value compatible with
a constant growth rate and any nucleation model. Particularly, the slope
was often found to be decreasing towards the end of the recrystallisation.
Microscopy studies also suggest a growth rate decreasing with progressing
recrystallisation [83, 84, 87]. Against this background, a time dependence of
the form v = const. × t−d has often been assumed for the growth rate, v,
with the exponent d ranging from 0.4 to 1 [60].

This model for the growth rate v is unsatisfactory, because it cannot ex-
plain the observed decrease in the JMAK exponent towards the end of the
recrystallisation, apart from the empirical character of a relation for v as dis-
cussed. The decrease of the growth rate can be discussed as follows:

Classically, the velocity of a recrystallisation front is described by the
product of the driving force for recrystallisation, −∆G, and the mobility
of the migrating boundary, M

v = M(−∆G). (7.5)
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A decrease of the interface velocity can thus originate from a decrease of the
grain-boundary/ recrystallisation-front mobility or from a decrease of the
driving force.

The driving force for recrystallisation is the deformation energy stored
in the initial microstructure. The driving force can be reduced by recovery.
Such recovery can be excluded during the recrystallisation of pure copper
(see the last section). If the stored energy is not distributed homogeneously
in the deformed microstructure, it is possible that the average driving force,
and hence the average interface velocity, decreases with time, since the re-
gions with a high driving force recrystallise first26.

The possible inhomogeneity in driving force on the length scale of the
specimen cannot be very pronounced, because experimental techniques meas-
uring the released enthalpy of the entire specimen (calorimetry) and tech-
niques measuring the recrystallised area fraction of a small part of the speci-
men (such as EBSD) yield approximately the same results for the recrystal-
lised fraction [88, 118]. However, on the length scale of subgrains, inhomo-
geneities in driving force may exist. Such small-scale inhomogeneities of the
growth rate do not strongly influence the recrystallisation kinetics, but can
change the shape of the recrystallising (growing) grains and hence have an
influence on the grain-area distribution (GAD) after recrystallisation [83].

A decreasing growth rate may also be caused by a decreasing (average)
interface mobility. The mobility is known to depend on the misorientation
angle describing the misfit of the growing, recrystallising grain and the de-
formed, adjacent matrix into which the growth of recrystallised material
occurs. Low-angle grain boundaries (LAGB) are virtually immobile. All
high-angle grain boundaries (HAGB) have approximately the same mobil-
ity, with the exception of certain high-mobility high-angle grain boundaries
(HMGB), e.g. the Σ7 (40◦⟨111⟩) grain boundaries in copper [60]27.

When a recrystallising grain encounters a subgrain in the deformed mat-
rix with respect to which it has a low misorientation, then a LAGB is gener-
ated. Since this newly formed boundary segment has a very low mobility,

26Note that this explanation for a decreasing (average) interface velocity during recrystallisation
only applies if the regions with high and low deformation energy are spatially distributed
randomly in the specimen and if the length scale of the stored-energy inhomogeneity is of
the same order of magnitude as the size of the recrystallising grains. If it is (much) smaller,
each recrystallising grain sweeps through (very) many regions of different stored energy and
thus the average interface velocity is constant throughout the recrystallisation (see also the
discussion in Ref. [99])

27It has also been argued that the crystal-lattice orientation with respect to the specimen frame
of reference, and not the misorientation between recrystallising grain and deformed matrix,
is responsible for the high growth rate of certain grains [83], i.e. grains belonging to certain
texture components have an inherently higher growth rate.
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Figure 7.1: a) The two subgrain-size distributions used in the simulations,
presented as logarithmic distributions of the normalised sub-
grain areas visible in a two-dimensional cross section. The sub-
grain structures were generated by geometric simulations with
varied input parameters [35]. The narrow SGSD corresponds
with a Voronoi-tessellation as subgrain microstructure. b) The
subgrain-energy distributions (i.e. the number of subgrains with
a certain deformation energy per unit volume) employed in the
simulations, normalised by the average subgrain energy per unit
volume. The distributions resulting for subgrain energies pro-
portional to the subgrain surface areas correspond with the as-
sumption that all of the deformation energy in the deformed
structure is stored in the subgrain boundaries.

the growth of the concerned recrystallising grain is slowed down. If a grain
shares LAGBs with all neighbouring (deformed) subgrains, it is almost com-
pletely prevented from further growth. This situation is termed “orientation
pinning” [83]. If it occurs for a significant fraction of recrystallising grains,
orientation pinning may be responsible for the observed decrease of the av-
erage growth rate of recrystallised grains in an advanced stage of the pro-
cess.

7.4 Simulation method

7.4.1 Setup of the deformed microstructure

In lightly deformed metals, the original grain structure is still clearly visible
after deformation. Inside these grains, a subgrain structure has developed
which can be revealed by, e.g. EBSD measurements. In the present study
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(pertaining to practical cases of recrystallisation), the deformation was so
severe that the original grain structure could not be discerned well any
more; it could not be established if a crystallite was a subgrain/cell (in a
grain; see footnote 22 in section 7.1) or a small grain (as separate entity).
Therefore, the deformed microstructure in the simulations was described
on the basis of subgrains only.

The subgrain microstructure was generated by a geometrical simulation28

(see Ref. [35] for a description of the algorithm). By changing the para-
meters of this simulation, it was possible to generate the desired average
subgrain size and subgrain-size distribution (SGSD). In this paper, two dif-
ferent subgrain microstructures were considered: (i) a Voronoi tessellation
[35,124], corresponding with a narrow, rather symmetric (with respect to the
median) SGSD and (ii) a microstructure consisting of few large and many
small grains, corresponding with a very broad and skewed SGSD (see Fig-
ure 7.1 a). These two microstructures will be referred to, by the shape of
their SGSD, as “narrow” and “broad”, respectively.

In order to investigate the misorientation dependence of the interface mo-
bility during recrystallisation with a close relation to reality, it is important
that the experimentally obtained texture and the misorientation distribution
(MOD) are adopted in the setup of the deformed microstructure. To do so,
a Monte Carlo algorithm can be used [108], as follows.

Using the rejection sampling technique [70], this algorithm first assigns
orientations to all subgrains such that the orientation distribution function
(ODF) of the subgrains corresponds with the experimentally determined
one. The location of the subgrains is not taken into account in this step.
Next, two subgrains are chosen at random and it is checked whether ex-
changing the orientations of these two subgrains would bring the MOD
of the entire subgrain ensemble “closer” to the desired, experimentally de-
termined MOD (hereby, the “distance” of the two (binned) distributions is
given by the sum of the squared differences of the numbers in each class of
the histograms). Only if this is the case, the exchange is performed. Then,
the next pair of subgrains is picked, etc. until a satisfactory match of the
simulated MOD and the experimental MOD is obtained. Since grain ori-
entations are exchanged in the algorithm and no new orientations are in-
troduced, the ODF remains constant during this process. Hence, the thus
resulting ODF and MOD of the simulated deformed microstructure are vir-
tually indistinguishable from the experimentally determined ones (see Fig-
ure 7.6 in section 7.5.1).

28Note that the geometrical simulation is used here merely to create a space-filling structure and
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a)
no MOD: I-B

b)
MOD: I-G

c)

Figure 7.2: The subgrain structure used as start configuration for the simula-
tions investigating misorientation-dependent mobilities. High-
angle grain boundaries (ω > 15◦) are shown in grey and low-
angle grain boundaries (ω ≤ 15◦) are shown in black. a) If the
subgrains orientations are chosen randomly and b) if the sub-
grain orientations are chosen according the the experimentally
obtained ODF and arranged according to the experimentally ob-
tained MOD. c) The grain boundaries in a cold-rolled copper spe-
cimen as determined by an EBSD measurement [118]. HAGBs
are shown in black and LAGBs are shown in grey.

The effect of this procedure is exhibited in Figure 7.2, where the subgrain
microstructure is shown before application of this algorithm (Figure 7.2 a:
random distributions of subgrain orientations; i.e. random ODF and ran-
dom MOD) and after application of this algorithm (Figure 7.2 b: ODF and
MOD equal to the experimentally determined ones). The subgrain-boundary
character is indicated by the colour of the boundaries: LAGBs are shown in

not to physically model the development of subgrains.
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grey and HAGBs are shown in black.

In the simulations, the subgrain microstructure has been set up (i) with
a random ODF and a random MOD, or (ii) with a random ODF but with a
MOD corresponding with the experimental one (i.e. only the second part of
the above described algorithm is applied), or (iii) with an ODF correspond-
ing to the experimentally determined one and with a random MOD (i.e.
only the first part of the above described algorithm is applied), or (iv) with
both the experimental ODF and the experimental MOD taken into account
(i.e. the entire algorithm described above is applied).

The ODF and the MOD together do not define a microstructure unam-
biguously. Even though the ODF and the MOD of the microstructure gen-
erated by the Monte Carlo algorithm are identical to the experimentally ob-
tained distributions (cf. Figure 7.6 a), the appearance of the thus simulated
microstructure is different from reality as represented by EBSD measure-
ments (cf. Figures 7.2 b) and c)): both the subgrain-size distribution and the
spatial arrangement of LAGBs and HAGBs differs.

The driving force for recrystallisation is the stored energy in the deformed
microstructure. This stored energy can either be uniformly distributed in
the deformed microstructure or the stored energy per unit volume can vary
from subgrain to subgrain. For the latter case, the deformation energy per
unit volume of the subgrains can either be obtained from a certain, adopted,
deformation-energy distribution, e.g. from the gaussian distribution, or the
deformation energy per unit volume of a subgrain can be connected to the
subgrain size. If it is assumed that the stored energy is contained mainly in
the dislocations forming the subgrain boundaries [114,123], then the energy
of a subgrain, G, should be proportional to its surface area, O, (i.e. G ∝ O ∝
V2/3, with V as the subgrain volume). The stored energy per unit volume
within a certain subgrain, GV = G/V, is then proportional to V−1/3.

Subgrain-energy distributions (SGEDs, pertaining to the number of grains
with a certain stored energy per unit volume) corresponding with these
cases (uniform subgrain energy, gaussian SGED and subgrain-energy pro-
portional to the subgrain surface area) are shown in Figure 7.1 b). In the
simulations, the normalised stored energy per unit volume, i.e. GV/⟨GV⟩,
is used so that in all cases the same average stored energy per unit volume
is employed. The broadest SGED corresponds with the case of subgrain
energy proportional to the subgrain surface area and a broad SGSD.
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7.4.2 Cellular automaton algorithm

For the present simulations of recrystallisation, a cellular automaton sim-
ilar to the one used by Bos et al. [122] was employed. It is a fully determ-
inistic automaton in which the cells29 are arranged on a cubic lattice with
periodic boundary conditions. Each subgrain/grain comprises a number of
such cells. Unrecrystallised cells which lie at the boundary between already
recrystallised and unrecrystallised regions are called “active cells”, because,
different from recrystallised cells and unrecrystallised cells at a distance
from the recrystallisation front, they are in principle able to recrystallise in
the current time step. A list of active cells is compiled and kept updated
throughout the simulation. This ensures that only a small fraction of all
cells needs to be considered in each time step.

For each time step, it is first checked if there are subgrains (additionally
to the already growing subgrains) which (now) fulfill the nucleation cri-
teria. If this is the case, the nucleation for this subgrain is carried out (see
section 7.4.3). Next, the list of active cells is updated. In the subsequent
growth step, it is checked for each active cell whether the recrystallisation
front should be advanced to include the cell under consideration (see sec-
tion 7.4.4). If this is the case, the recrystallisation front is advanced accord-
ingly. Finally, at the end of the time step, the following quantities are up-
dated: the fraction of the total stored energy of the microstructure which
has been released so far, fH

30, the volume fraction of the microstructure
which has been recrystallised, fV , the number of recrystallising grains (=
the number of recrystallisation nuclei) per unit volume, NV , and the num-
ber of recrystallising grains per unit area visible in a two-dimensional cross
section of the microstructure, NA.

After 99% of the initially stored energy has been released (i.e. fH > 0.99),
the automaton is stopped. The small amount of still unrecrystallised regions
are assumed to be subject to insufficient driving force for recrystallisation.
This corresponds to the experimental procedure in Ref. [118], in which spe-
cimens were cooled to room temperature after no further heat release could
be detected in the calorimetric measurements.

29Not to be confused with the subgrains/cells of the simulated and real microstructures; see
footnote 22 in section 7.1.

30The stored energy, which is the driving force(−∆G) of the recrystallisation can be taken as
approximately equal to the enthalpy released (−∆H) during recrystallisation [2].
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7.4.3 Nucleation

Nucleation of recrystallisation occurs when subgrains become “supercrit-
ical”. This can either occur by artificially defining a fixed number of sub-
grains as supercritical before the beginning of the simulation (as holds for
the simulations described in section 7.5.1), or according to a certain nucle-
ation condition, to be applied at each time step of the the simulation (as
holds for the simulations described in section 7.5.2; see what follows).

A subgrain becomes supercritical if it is larger than the critical radius, r∗

(see section 7.3.1). The critical radius depends on the driving force for re-
crystallisation (see equation (7.1)). Since in the simulations, a recrystallising
nucleus/grain is assumed to have zero (deformation) energy, the driving
force is equal to the (deformation) energy stored in the neighbouring unre-
crystallised subgrain(s). Even though this deformation-energy difference is
not uniform throughout the specimen in some of the simulations, an aver-
age, constant, value for the critical radius is assumed in each simulation (see
also the discussion below equation (7.2)).

During subgrain coarsening, the criterion to decide if a particular sub-
grain i becomes a recrystallisation nucleus can be expressed as

ri(t) > r∗ or χ(t) =
ri(t)

r∗
> 1, (7.6)

where χ is the dimensionless, normalised critical subgrain size and ri(t) is
the radius of the considered subgrain.

In order to avoid dealing with the computationally costly explicit simula-
tion of subgrain coarsening during ongoing recrystallisation in the simula-
tion, the subgrains retain their initial size, but, instead, the critical subgrain
size, r∗, is (artificially, i.e. for the purpose of computational efficiency in the
simulation only) decreased with time and the criterion for nucleation thus
becomes

χ(t) =
ri

r∗(t)
> 1. (7.7)

Therefore, the same time dependence of χ(t) is realised even though the mi-
crostructure (and hence, the radius ri of each subgrain) remains unchanged.
The microstructure developing upon recrystallisation, as described by the
normalised grain-size distribution, then is independent of χ(t) being given
by equation (7.6) or equation (7.7).

When a subgrain becomes supercritical, all cells inside the subgrain are
instantaneously regarded as recrystallised by setting their deformation en-
ergy to zero and by adding this energy to the heat released by the recrystal-
lisation. This means that the nuclei in such simulations are not of negligible
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size, as is assumed in JMAK(-like) kinetic models [1]. Hence, if the kin-
etics of the recrystallisation is to be analysed using the double-logarithmic
plots (JMAK plots; cf. section 7.1), this nonzero nucleus size must be ac-
counted for. If all nuclei have the same size and grow at the same rate, this
can be done by calculating the time which it (hypothetically) would have
taken the nuclei to grow from negligible size until the size which they have
when nucleation occurs, and then shifting the simulation start time (the zero
point of the time scale) to an earlier time by this amount [125]. If this cor-
rection is not applied, erroneous JMAK plots and erroneous results for the
JMAK-exponent result. This is exhibited by simulations pertaining to a ho-
mogeneous deformation energy in the deformed microstructure: without
correction, they do not lead to straight lines in double-logarithmic plots (as
would be expected). After applying the correction, the straight-line beha-
viour and the correct value of the JMAK-exponent is obtained.

In the present simulations, the focus is on recrystallisation in the presence
of a distribution of subgrain size and therefore recrystallisation-nucleus size
and also of a distribution of growth rates. Therefore, in view of the cor-
rection discussed above, the (hypothetical) start time can only be given as
average value of all recrystallisation nuclei31. This leads to deviations from
straight-line behaviour in the double-logarithmic plots in the early stages
of the recrystallisation. The slope of the double-logarithmic plots in these
early stages is therefore considered to be slightly unreliable.

The number of nuclei at the beginning of the simulation is chosen (by ad-
justing the value of the critical radius, r∗) such, that the size ratio between
subgrains in the deformed state and grains in the recrystallised state corres-
ponds roughly to the ratio found in experiments. For the considered case
of recrystallisation of copper, this means that there are approximately 325
times more subgrains in the deformed state than grains in the recrystallised
state (ca. 100 000 vs. ca. 300 for the simulations). Note that for simula-
tions involving ongoing nucleation, the number of recrystallised grains also
is approximately equal to 300 in the first time step, but increases during the
simulation.

7.4.4 Growth

Growth is executed via the active cells, i.e. the cells with at least one adjacent
(via face, edge or corner of the cell) recrystallised cell in their neighbourhood
of 26 cells (cubic grid). Consider the moment at which a particular cell i in

31Note that the average size of the recrystallisation nuclei is larger than the average subgrain size,
since (only) the large (ri > r∗) subgrains act as recrystallisation nuclei.
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the simulation cube is reached by the recrystallisation front coming from
a nearby nucleus, i.e. the time at which it becomes recrystallised. At this
time, its “growth length”, li, i.e. the the distance the recrystallisation front
has travelled from the newly recrystallised cell i towards the adjacent unre-
crystallised (active) cells, is zero. At each subsequent time step, the growth
length of this cell, li(t), is calculated by

li(t) = li(t − ∆t) + vi∆t, (7.8)

where li(t − ∆t) is the growth length of this cell i at the previous time step,
vi is the local recrystallisation-front velocity at the position of cell i and ∆t is
the time step length of the simulation. Next, it is determined for each active
cell next to cell i whether the growth length of cell i is equal to or larger
than the distance between cell i and the active cell considered, i.e. whether
the recrystallisation front coming from the recrystallised cell i has reached
any (unrecrystallised) active cells yet. If this is the case, the corresponding
active cell, j, becomes a recrystallised cell. Then, at this moment in time, the
growth length of cell j, lj is zero and the local recrystalisation-front velocity
at the position of cell j, vj, is calculated, etc.

The local interface velocity, v, depends on (i) the mobility of the migrat-
ing recrystallisation front, which depends on the misorientation angle, ω,
between the considered growing, recrystallised grain and the unrecrystal-
lised subgrain into which it is growing, and (ii) on the driving force for in-
terface migration, which is provided by the deformation-energy difference
between the deformed and the recrystallised grain.

In the simulations, the stored energy of recrystallised grains is set to zero.
Thus, the local driving force for recrystallisation is given by the stored en-
ergy of the (deformed) unrecrystallised subgrain considered.

In the simulations, the (misorientation-dependent) interface mobility, M(ω),
is assumed to be different for low-angle grain boundaries (LAGBs; grain
boundaries with misorientation angle ω ≤ 15◦), general high-angle grain
boundaries (HAGBs; grain boundaries with misorientation angle ω > 15◦)
and (for copper) high-mobility high-angle grain boundaries (HMGBs; grain
boundaries with misorientation angle ω = 40◦ with ⟨111⟩ rotation axis; see
footnote 23 in section 7.2). LAGBs are assumed to have a mobility which
is 100 times smaller than the mobility of a general HAGB, MHAGB, and
the HMGBs are assumed to have a mobility 10 times larger than a general

142



7.5 Results

HAGB [60, 79]:

M(ω) =


0.01MHAGB if ω ≤ 15◦ (LAGB),

MHAGB if ω > 15◦ (HAGB),

10MHAGB for 40◦⟨111⟩ boundaries (HMGB).

(7.9)

This simple model for grain boundary mobility is capable of capturing the
main effects of variable grain-boundary mobility on the recrystallisation
kinetics and the resulting microstructure (see section 7.6).

In the simulations, the mobility can (i) be set as identical for all grain
boundaries ( denoted “M ̸= M(ω)” in Table 7.1), or (ii) can be different
for LAGBs and HAGBs (first two lines of equation (7.9; denoted “M(ω)”
in Table 7.1; in this case HMGBs are assumed to have the same mobility as
HAGBs), or (iii) can be different for LAGBs, HAGBs and HMGBs (denoted
“M(ω) + HMGBs” in Table 7.1).

7.5 Results

7.5.1 Growth kinetics: anisotropic growth due to
misorientation-dependent grain-boundary mobility

In order to investigate the influence that a misorientation-dependent grain-
boundary mobility has on the recrystallisation kinetics and the final micro-
structure, a series of simulations (denoted I-A to I-G) was performed. The
employed simulation parameters have been summarised in Table 7.1. In
these simulations, the nuclei were present already at the beginning of the
recrystallisation (pre-existing nuclei; site saturation at t = 0), the parent mi-
crostructure had a narrow SGSD (cf. Figure 7.1 a) and all subgrains had the
same stored (deformation) energy per unit volume.

As a reference, a simulation with constant, i.e. misorientation-independent
grain-boundary mobility was performed first (I-A). As expected, the result-
ing microstructure (Figure 7.3 a) is very similar to a Voronoi tessellation
(cf. the nearly straight grain-boundary segments between triple lines (triple
points in the depicted cross section)) and the corresponding GAD (shown in
black in Figure 7.4) is narrow and includes only few very small grain areas.
After correcting for the non-negligible nucleus size (cf. section 7.4.4), the
slope of the double-logarithmic plot (the JMAK-exponent; cf. section 7.1) for
the recrystallised fraction equals three (see Figure 7.5 a), as expected [2, 8].

Next, the mobility was made to depend on the misorientation between
the growing recrystallised grains and the adjacent part of the parent mi-
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Table 7.1: Simulation parameters employed in the set of simulations invest-
igating misorientation-dependent grain-boundary mobilities, all
pertaining to pre-existing nuclei. M ̸= M(ω) means a sim-
ulation with misorientation-independent grain-boundary mobil-
ities, M(ω) means simulations in which LAGBs have a lower
mobility than HAGBs and M(ω)+HMGB means a simulation in
which LAGBs have a lower mobility than HAGBs and addition-
ally 40◦⟨111⟩ grain boundaries, HMGBs, have a very high mo-
bility. In the last three columns, it is specified whether the ex-
perimentally determined distributions were used as input for the
misorientation-distribution of the deformed microstructure (“def.
MOD”), the orientation-distribution function of the deformed mi-
crostructure (“def. ODF”) and the orientation-distribution func-
tion of the recrystallisation nuclei (“nucl. ODF”), respectively, or
whether the (mis)orientations were chosen randomly.

Simulation Mobility def. MOD def. ODF nucl. ODF
I-A M ̸= M(ω) random random random
I-B M(ω) random random random
I-C M(ω) exp. random random
I-D M(ω) exp. exp. random
I-E M(ω) exp. exp. exp.
I-F M(ω) random exp. exp.
I-G M(ω)+HMGBs exp. exp. exp.

crostructure as described in section 7.4.4. For the simulations I-B to I-F,
only LAGB (low mobility) and HAGB (100 times higher mobility) were con-
sidered. In the simulation I-G, additionally HMGB (40◦⟨111⟩; highest mo-
bility) were considered (see Table 7.1). The subgrain orientations were set
up randomly in simulation I-B. In simulation I-C, they were set up in com-
pliance with the experimentally determined MOD of the deformed copper
specimen; in simulation I-F they were set up in compliance with the ex-
perimentally determined ODF of the deformed copper specimen; and in
simulation I-D, -E and -G, they were set up in compliance with both the ex-
perimentally determined MOD and the experimentally determined ODF of
the deformed copper specimen. For the present case of pre-existing nuclei,
the orientations of the recrystallisation nuclei were chosen either randomly
(I-B, -C and -D) or according to the experimentally determined ODF of the
fully recrystallised copper specimen (I-E, -F and -G).
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a)
M 6= M(ω): I-A

b) M(ω): I-G

Figure 7.3: The fully recrystallised microstructures, shown as two-
dimensional cross sections through the three-dimensional
simulation cube, after two simulations from the set of sim-
ulations investigating the role of misorientation-dependent
grain-boundary mobilities. The grain-boundaries after re-
crystallisation are shown in black and the original subgrain
boundaries (of the deformed microstructure) are shown in
grey. a) For a simulation with constant, misorientation-
independent grain-boundary mobilities and b) for a simulation
with misorientation-dependent grain-boundary mobilities
incorporating the experimentally obtained ODF and the exper-
imentally obtained MOD of the deformed state and using the
experimentally obtained ODF of the recrystallisation nuclei.

The MOD of the subgrains in the deformed state is shown in Figure 7.6.
For the simulations I-C and I-G (Figures 7.6 a) and c), respectively), the
MOD was made equal to the experimentally determined MOD (cf. section
7.4.1). For simulation I-F, where compatibility with only the experimentally
determined ODF of the deformed microstructure was assumed, the result-
ing MOD of the subgrain microstructure shows a very small deviation from
the Mackenzie distribution, which is the MOD expected for randomly ori-
ented material with cubic crystal symmetry [109]. For the simulations I-A
and I-B (not shown in Figure 7.6), in which compatibility with neither the
experimentally observed ODF nor the experimentally observed MOD was
imposed, the MOD of the subgrain microstructure is equal to the Mackenzie
distribution, as expected.

The simulations demonstrate that the kinetics of the recrystallisation are
not influenced significantly by the misorientation-dependent mobility (see
Figure 7.5 a): All simulations lead to a straight line with slope three in the
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Figure 7.4: The resulting (logarithmic) grain-area distributions for the set
of simulations investigating misorientation-dependent mobilit-
ies (simulations I-B to I-G). The result of the reference simulation
(i.e. with constant, misorientation-independent grain-boundary
mobilities; I-A) is shown in black and the experimentally ob-
tained GAD of cold rolled and recrystallised copper [118] is
shown with a dashed line.

double-logarithmic plot. Therefore, the deviation from straight-line beha-
viour observed experimentally cannot be ascribed to the misorientation de-
pendence of the grain-boundary mobility and thus not to anisotropic growth.

For the case of a misorientation-dependent grain-boundary mobility, the
number of recrystallised grains per unit area as function of the recrystallised
fraction (Figure 7.5 b) shows a slightly different course than for the case of
a misorientation-independent grain-boundary mobility (involving isotropic
growth; cf. the reference simulation I-A): the rate at which recrystallising
grains become visible in a cross section increases towards the end of the
recrystallisation for the cases of misorientation-dependent grain-boundary
mobilities. This phenomenon generally agrees with the experimental obser-
vation; however, the simulated and experimental curves do not agree well
in the beginning stage of the recrystallisation.

Although the GAD after completed recrystallisation shows an increased
relative amount of small grains in case of a misorientation-dependent grain-
boundary mobility, as holds much stronger for the experimental result, the
main part of the GAD is similar to the GAD for the case of a misorientation-
independent grain-boundary mobility, in striking disagreement with the ex-
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Figure 7.5: Kinetic results for the set of simulations investigating
misorientation-dependent grain-boundary mobilities. a) The
simulated kinetics (lines) shown as double-logarithmic plots
(JMAK-plots) together with experimental results (symbols) and
b) the normalised number of recrystallised grains per unit area
observable in a two-dimensional cross-section through the three
dimensional simulation cube as function of the recrystallised
volume fraction (lines) together with experimental results (sym-
bols). The result of the reference simulation (i.e. pertaining to a
constant, misorientation-independent grain-boundary mobility;
I-A) is shown in black.

perimental result (see Figure 7.4). Comparing the microstructure obtained
from the reference simulation (I-A, Figure 7.3a) with a simulation with mis-
orientation-dependent mobility (I-G, Figure 7.3b), it is clear that in the latter
case there are numerous small grains or protrusions on the grain boundaries
of larger grains, mostly only as large as one subgrain in the deformed state.
These former subgrains have/had a small misorientation angle with the sur-
rounding grains and were therefore not swept by the recrystallisation front,
but left unrecrystallised. They were either recrystallised later by another
grain (leading to protrusions along grain boundaries) or remained unre-
crystallised even at the end of the simulation (leading to small, independent
grains). This explains the increased relative amount of small grains in the
GADs obtained for misorientation-dependent grain-boundary mobilities as
compared to the case of a misorientation-independent grain-boundary mo-
bility. The extent of such frequency increase at small grain areas in the GAD
depends on the orientations of the subgrains and the recrystallised grains
(i.e. their ODFs) as well as on their spatial arrangement.

From the results and their above discussion it can be concluded that as-
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signing, in the simulation, orientations to the subgrains in the deformed
state and the recrystallising grains according to the experimentally observed
ODF and MOD for the deformed state and the ODF for the recrystallised
state does not suffice to generate by simulation a deformed microstruc-
ture which, upon recrystallisation with a misorientation-dependent mobil-
ity, leads to a recrystallised microstructure compatible with the experimental
observation.

The misorientation distributions of the microstructures in the deformed
state (i.e. pertaining to the misorientation angle between adjacent subgrains
before the recrystallisation simulation) and in the fully recrystallised state
(i.e. pertaining to the misorientation angle between adjacent recrystallised
grains after the recrystallisation simulation) are shown in Figure 7.6 for three
example simulations. Additionally, the distribution of the misorientation
angle between recrystallised grains and adjacent deformed subgrains dur-
ing recrystallisation is shown. This MOD was calculated for all pairs of de-
formed subgrains and adjacent recrystallised grains which occurred during
the simulation, i.e. at all stages during recrystallisation. This latter MOD
reflects the distribution of local interface mobilities occurring during the
simulated recrystallisation. For none of the performed simulations, this
MOD (representing an average for the entire recrystallisation process) de-
viates strongly from a random (Mackenzie) distribution: neither a relatively
large number of low-mobility grain boundaries (LAGBs) nor a relatively
large number of high-mobility grain boundaries (HMGBs) is formed during
recrystallisation (but see next paragraph). As a consequence, the recrys-
tallisation kinetics does not differ from the reference simulation (isotropic
growth).

Interestingly, the MOD of the fully recrystallised microstructure is not
fully identical to the Mackenzie distribution if the experimentally observed
ODF for the recrystallisation nuclei/grains is adopted in the simulations
(see Figures 7.6 b) and c); simulations I-F and I-G), but rather shows a rel-
atively high number of LAGBs and also a relatively high number of grain
boundaries with misorientation angle ω > 50◦ (see, especially, Figure 7.6 b)).
This is different from the experimental results, where the MOD for the fully
recrystallised specimens is almost perfectly identical to the Mackenzie dis-
tribution [118].
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Figure 7.6: The misorientation distributions of the simulated microstruc-
tures in the deformed state (i.e. pertaining to the misorienta-
tion angle between adjacent subgrains before the recrystallisation
simulation: black, solid lines), in the fully recrystallised state
(i.e. pertaining to the misorientation angle between adjacent re-
crystallised grains after the recrystallisation simulation: black,
dashed line) and between adjacent recrystallised grains and the
deformed subgrains during recrystallisation (i.e. pertaining to
the misorientation angle between adjacent unrecrystalised sub-
grains and recrystallised grains during the recrystallisation sim-
ulation (see text): grey, solid line). For comparison, the Mack-
enzie distribution for randomly oriented cubes is shown as well
(grey, dashed line). a) For a simulation incorporating (only) the
experimentally obtained MOD of deformed subgrains, b) incor-
porating the experimentally obtained ODFs for the deformed
subgrains and the recrystallised grains and c) incorporating the
MOD of deformed subgrains and both ODFs in a simulation in-
cluding high-mobility grain boundaries.
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7.5.2 Influence of the subgrain-size distribution, the
subgrain-energy distribution and the nucleation model

In order to investigate the effect of ongoing nucleation on the GAD as ob-
served after recrystallisation, a set of simulations with two different nuc-
leation modes was carried out: Firstly, simulations were performed with
pre-existing nuclei (subgrain-growth constant k = 0; cf. sec. 7.3.1)) and,
secondly, with ongoing nucleation (subgrain-growth constant k > 0). In the
case of ongoing nucleation, the subgrain-growth constant, k, was chosen
high enough to induce a clear difference with the results of simulations
without ongoing nucleation, but small enough to assure that the recrystal-
lisation proceeded predominantly by growth of recrystallised grains and
not by nucleation of new grains.

The rate at which subgrains become recrystallisation nuclei not only de-
pends on the kinetics of subgrain coarsening, but also on the subgrain-size
distribution (SGSD). Therefore, two different SGSDs were employed; a nar-
row one and a broad one (see Figure 7.1 a).

Ongoing nucleation is expected to lead to a JMAK-exponent larger than
(the experimentally observed value of) three (see [2, 8] and section 7.2).
Then, to realise a decreasing growth rate for individual recrystallising grains
as recrystallisation proceeds, as observed experimentally (see section 7.3.2),
a mechanism is needed to slow down the growth rate as the recrystallisation
proceeds. For this purpose, a distribution of subgrain (deformation) ener-
gies per unit volume was introduced (see section 7.4.1). For comparison,
also simulations with a homogeneous (deformation) energy in all subgrains
were performed.

The employed parameters for all simulations, coded II-A to II-L, have
been gathered in Table 7.2. In all simulations, the grain-boundary mobilities
were taken as misorientation-independent. The simulations II-A and II-G
(both pertaining to cases of pre-existing nuclei and a uniform SGED, but
different SGSDs) serve as reference simulations. Identical results for the
recrystallisation kinetics and the resulting microstructure are obtained for
both cases, since for the case of pre-existing nuclei and a uniform SGED, the
SGSD does not influence the outcome of the simulation.

The double-logarithmic plots for simulations pertaining to a narrow and
a broad SGSD are presented in Figures 7.7 a) and b), respectively. Except
for the two reference simulations, II-A and -G, all simulations led to curves
with a slope larger than three. The slope is larger for simulations with on-
going nucleation (II-B, -D, -F and II-H, -J, -L) than for simulations with pre-
existing nuclei (II-C, -E and II-I, K), as expected (see section 7.2). However,
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Table 7.2: Simulation parameters employed in the set of simulations invest-
igating the effects of subgrain-energy distributions and ongoing
nucleation. “SGSD” denotes the employed subgrain-size distribu-
tion (see Figure 7.1 a), “SGED” denotes the employed subgrain-
energy distribution (none, gaussian distribution or subgrain en-
ergy proportional to the subgrain surface area, see Figure 7.1 b)
and "SG coarsening" denotes the nucleation model (k = 0: pre-
existing nuclei, k > 0: ongoing nucleation).

Simulation SGSD SGED SG coarsening
II-A narrow G = const. k = 0
II-B narrow G = const. k > 0
II-C narrow gaussian k = 0
II-D narrow gaussian k > 0
II-E narrow G ∝ O k = 0
II-F narrow G ∝ O k > 0
II-G broad G = const. k = 0
II-H broad G = const. k > 0
II-I broad gaussian k = 0
II-J broad gaussian k > 0
II-K broad G ∝ O k = 0
II-L broad G ∝ O k > 0

a decrease of the slope upon continued recrystallisation, as observed exper-
imentally, is not revealed by any of the simulations.

Note that for these plots, the fraction of released energy was used to de-
termine a value for f , denoted by fH , instead of the recrystallised volume
fraction, which leads to a value for f denoted by fV . The two quantities
are not identical for simulations involving a distribution of subgrain (de-
formation) energies. For the determination of the degree of transformation
(fraction recrystallised), the fraction of released enthalpy was used since this
quantity is measured in the calorimetric experiments used for comparison.
In the experiments (see section 7.2), the results for fV and fH are identical
within experimental accuracy. This imposes a limit on the width of the
SGED which can be employed in the simulations: If the SGED becomes very
broad, fV and fH differ strongly and the simulations cannot be reconciled
with the experimental results.

The number of recrystallised grains is plotted in Figure 7.8 as function
of the recrystallised fraction. All simulations start with (approximately)
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Figure 7.7: The results of the set of simulations investigating the effects of
SGEDs and ongoing nucleation. The simulated kinetics (lines)
are shown as double-logarithmic plots together with experi-
mental results (symbols). The fraction of the released heat was
used to produce the plots and the curves were shifted horizont-
ally to facilitate comparison. a) The results of simulations em-
ploying a narrow SGSD and b) the results of simulations em-
ploying a broad, skewed SGSD.
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Figure 7.8: The number of recrystallisation nuclei in simulations with ongo-
ing nucleation as a function of the recrystallised volume fraction.
For comparison, the number of nuclei in simulations pertaining
to pre-existing nuclei is shown as dashed line.
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the same number of pre-existing nuclei. For simulations pertaining to pre-
existing nuclei, the number of nuclei remains constant during the recrystal-
lisation, whereas it increases for simulations pertaining to ongoing nucle-
ation. Despite identical subgrain coarsening kinetics, the nucleation rate is
different for simulations using a narrow and a broad SGSD. This is expected,
since subgrain coarsening, leading to more and more subgrains becoming
larger than the critical subgrain radius/size, leads to different numbers of
new (i.e. additional) nuclei for different SGSDs (cf. Figure 7.1 a). (Note that
in the simulations, ongoing nucleation is realised by a reduction of the crit-
ical subgrain size; cf. section 7.4.3).

The influence of the SGED on the number of recrystalising grains is much
less pronounced than the influence of the SGSD (cf. Figure 7.8 and Table 7.2).
In the present simulations, the SGED does not influence the subgrain coarsen-
ing kinetics and hence it could be expected that the nucleation rate should
be entirely independent of the SGED. However, since the SGED does in-
fluence the driving force of the recrystallisation and hence the growth rate
of recrystallising grains, it exerts a modest influence on the number of re-
crystallising grains: if recrystallisation is slow, subgrain coarsening remains
significant and therefore more nuclei can emerge before recrystallisation is
completed than if recrystallisation is fast.

The difference between the simulations is not very pronounced if the
normalised number of recrystallised grains observable in a cross section,
NA/NA,final, is considered (see Figure 7.9). The simulations pertaining to
ongoing nucleation (Figure 7.9 b) are slightly more similar to the experi-
mental observations than the simulations pertaining to pre-existing nuclei
(Figure 7.9 a). However, for both nucleation modes, the simulated results in
case of inhomogeneously distributed deformation energy (especially sim-
ulation II-C, -I, -K, -D, -J and -L) deviate more from the experimental val-
ues than the results of the simulations with the same deformation energy
for all subgrains (II-A, -G, -B and -H). The simulations in which the sub-
grain energy is proportional to the subgrain surface area (II-K and -L) show
the strongest difference with the reference simulations and the experimental
results.

For these latter cases, where the subgrain energy is proportional to the
subgrain surface area (II-K and -L), the number of grains visible in a cross
section even decreases slightly towards the very end of the recrystallisation,
a behaviour which is opposite to the experimentally observed marked in-
crease towards the end of the recrystallisation. This decrease of the number
of visible grains at the completion of recrystallisation in simulations II-K
and II-l can be understood as follows. In a partially recrystallised micro-
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Figure 7.9: The normalised number of recrystallised grains per unit area ob-
servable in a two-dimensional cross-section through the three
dimensional simulation cube as function of the recrystallised
volume fraction (lines) for the set of simulations investigating
SGEDs and the nucleation mode. For comparison, experimental
results (symbols) are shown as well. The results of the reference
simulations (cf. Table 7.2) are shown in black. a) Simulations
pertaining to pre-existing nuclei and b) simulations pertaining
to ongoing nucleation.

structure, the irregular shape of some grains leads to the observation of sev-
eral grains in a two dimensional cross section, which are only seemingly
separate grains, i.e. which are in reality connected underneath/above the
cross-sectional plane. During the final stage of the recrystallisation, the
grain shapes become less irregular and thus the phenomenon described
causes the observed number of grains in a cross section to decrease. The
corresponding microstructure after completed recrystallisation (II-J; see Fig-
ure 7.11 d) shows many curved grain boundaries, but not many grains
which are only seemingly separate grains, which would be presented as
relatively small grains in the GAD of the fully recrystallised simulated mi-
crostructure.

The GADs after completed recrystallisation are shown in Figure 7.10. All
simulations pertaining to pre-existing nuclei lead to very similar GADs,
showing a bimodal shape as observed also for the simulations described
in the previous section (Figure 7.4). The SGSD and the SGED do not have
a strong influence on the shape of the GADs. Simulations pertaining to on-
going nucleation obviously lead to a larger number of recrystallised grains
and hence to a lower average grain area. The main peak of the GAD is not
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Figure 7.10: The (logarithmic) grain-area distributions after completed re-
crystallisation for the set of simulations investigating SGEDs
and the nucleation mode. The results of the reference simu-
lations (see Figure 7.9) are shown in black. a) Simulations per-
taining to pre-existing nuclei and b) simulations pertaining to
ongoing nucleation.

significantly broadened.
Yet, despite the similarity of the GADs, the corresponding microstruc-

tures are quite different in appearance. Five example microstructures are
shown in Figure 7.11 together with the experimentally determined one. The
difference in the resulting microstructures for the cases of pre-existing grains
and ongoing nucleation can be observed by comparing Figure 7.11 c) and
Figure 7.11 d). The grains produced by the simulation pertaining to ongo-
ing nucleation are overall much smaller than the grains produced by the
simulation pertaining to pre-existing nuclei.

The simulations with non-uniform subgrain energy (Figures 7.11 b) to
e)) lead to microstructures with small grains inside recrystallised grains,
whereas for the reference simulation with a uniform subgrain energy (Fig-
ure 7.11 a), small grains can only be seen in between recrystallised grains (in
space which was still unrecrystallised at the end of the simulation; marked
by arrows in the figure). These small grains inside larger, recrystallised
grains are (parts of) unrecrystallised subgrains which have only a very low
(deformation) energy and hence offer almost no driving force for recrystal-
lisation.

The SGSD does not have a strong influence on the appearance of the mi-
crostructures (cf. Figures 7.11 b) and c)).

In particular the grain boundaries produced by the simulations with non-
uniform subgrain energy are somewhat curved (Figures 7.11 b) to e), whereas
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a) narrow SGSD, G = const., k > 0 b) narrow SGSD, G gaussian, k = 0

II-C

c) broad SGSD, G gaussian, k = 0 d) broad SGSD, G gaussian, k > 0

II-I II-J

e) broad SGSD, G ∝ O, k = 0 f) experimental

II-K

Figure 7.11: a)–e) The fully recrystallised microstructures for some simula-
tions from the set of simulations investigating SGEDs and on-
going nucleation. The grain-boundaries after recrystallisation
are shown in black and the original subgrain boundaries (of the
deformed microstructure) are shown in grey. The simulation
parameters have been indicated above the panels and the sim-
ulation number (see Table 7.2) have been indicated in the pan-
els. f) Experimental result for recrystallised pure copper [118].
General HAGB are shown in black and twin grain boundaries
are shown in grey.
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the grain boundaries resulting from simulations with uniform subgrain en-
ergy are more or less flat (Figure 7.11 a). However, compared with the exper-
imentally determined microstructure (Figure 7.11 f), the shape of the grains
in the simulated microstructures pertaining to non-uniform subgrain ener-
gies is more regular.

7.6 Concluding Discussion

None of the simulations performed in this study produced a microstructure
compatible with experimental results for severely deformed copper. Some
simulations led to microstructures composed of grains with curved grain
boundaries similar in appearance to experimentally observed grains, but
the simulations did not produce the monomodal, broad GAD as observed
experimentally. Instead, bimodal GADs resulted (see Figures 7.4 and 7.10).

Since the subgrains in the initial, deformed microstructure are much smal-
ler than most grains in the final, recrystallised microstructure, one recrystal-
lising grain sweeps through many subgrains in the course of the recrystal-
lisation. Therefore, a migrating grain boundary (recrystallisation front) will
be subjected to many, successive misorientations. If, for example, a subgrain
with small misorientation with respect to the growing grain is encountered,
the interface mobility is reduced at only the corresponding, small portion
of the moving recrystallisation front. The grain will grow around the unfa-
vourably oriented subgrain and a small, as yet unrecrystallised grain is left
behind in the wake of the recrystallisation front. This leads to the observed
bimodal nature of the GAD and not to a monomodal, broad GAD.

Also the experimentally determined kinetics could not be reproduced.
Instead of a JMAK-exponent decreasing with progressing recrystallisation,
the simulations showed either a constant or an increasing JMAK-exponent
(cf. Figures 7.5 and 7.7). Neither (i) a misorientation-dependent interface
mobility, nor (ii) a SGED did lead to a slowing down of the average growth
rate towards the end of the recrystallisation, as is experimentally observed
[118]:

Ad (i) The misorientation dependency of the grain-boundary mobilities
has an only small impact on both recrystallisation kinetics and microstruc-
ture, because there are only few LAGBs and HMGBs, as compared to the
dominating HAGBs, present between growing recrystallising grains and
the deformed matrix during the simulated recrystallisation (only approx-
imately 6% of all boundaries are LAGBs, cf. Figure 7.6). Even if a recrystal-
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lised, growing grain encounters a subgrain of the deformed microstructure
with which it has such a special orientation relationship (leading either to
a very low (LAGB) or a very high (HMGB) grain-boundary mobility), this
orientation relationship, and thus its effect on the recrystallisation kinetics,
is lost once the recrystallising grain has grown around (low mobility LAGB)
or has swept through (high mobility HMGB) the subgrain concerned.

Ad (ii) The influence of a distribution of subgrain (deformation) energy on
the recrystallisation kinetics is not very strong. It was expected that the sub-
grains with the highest energy would recrystallise first, thereby reducing
the average (deformation) energy of the not yet recrystallised subgrains,
which would cause a decrease of the recrystallisation rate towards the end
of the recrystallisation. It may be suggested that this phenomenon could
not manifest itself due to the spatially random distribution of the subgrain-
deformation energies. Making the SGED broader would increase its effect
on the recrystallisation kinetics. However, in this case, a marked discrep-
ancy between the two measures for the recrystallised fraction, fV and fH
should occur (cf. the discussion in section 7.5.2), which was not observed
experimentally.

As the grain-boundary migration rate is proportional to both the mobility
and the driving force (cf. section 7.3.2), a similar discussion as given above
for the effect of a misorientation distribution on the GAD can be given for
the effect of a SGED on the GAD: the sizes of subgrains and recrystallised
grains are very different and thus, if a low-energy subgrain is encountered
by a growing recrystallised grain, the as yet unrecrystallised subgrain is left
behind in the wake of the recrystallisation front. Thus the presence of a
SGED yields a bimodal GAD as well.

The experimentally observed, broad GAD after completed recrystallisa-
tion could possibly be better reproduced by simulations departing from a
subgrain structure with a very broad size distribution, including grains in
the deformed state which are larger than the smallest grains in the recrys-
tallised state (cf. the experimental results shown in Figure 7.2 c and the
discussion above). Such simulations are the subject of future work.

Alternatively, ongoing nucleation could in principle produce such broad
GADs. Indeed, the simulations with ongoing nucleation did show a broader
GAD than the ones pertaining to pre-existing nuclei. A broad GAD with
few large and many small grains (as experimentally observed) is obtained
if a large number of nuclei is generated at the end of the process (i.e. if
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the nucleation rate accelerates during the recrystallisation). With the current
nucleation model, this situation could not be attained, since the subgrain-
coarsening rate, which governs the nucleation rate, decreases with time. More-
over, the JMAK-exponent of the simulations pertaining to ongoing nucle-
ation is higher than the experimentally observed ones: Models with a nuc-
leation rate increasing during the recrystallisation will likely produce an
even higher JMAK-exponent which may even increase with progressing re-
crystallisation, contrary to experimental observation.

The inadequacy of the models used in the simulations to reproduce both
the experimentally observed kinetics and the experimentally observed mi-
crostructure implies that more detailed knowledge of the initial deformed
microstructure is required. In the present article, the parent microstructure
was taken into account by making the simulated subgrain structure in the
initial, deformed state compatible with the experimentally obtained ODF
and MOD and by assigning a certain SGSD and SGED. For future work it is
therefore suggested to measure, spatially resolved, the crystal orientations
and stored energies of an entire deformed specimen with a technique such
as three-dimensional EBSD and to use this information as start configura-
tion for recrystallisation simulations; thereby taking into account not only
the size and orientation distributions of subgrains, but also their spatial ar-
rangement.

7.7 Conclusions

Departing from an initial, deformed microstructure generated by geomet-
ric simulation, the kinetics and the resulting microstructure of the recrys-
tallisation of pure copper have been simulated using a cellular automaton.
The simulation results have been compared with previously published ex-
perimental data for strongly deformed, cold-rolled copper. The simulation
procedure used in this work conceives the initial microstructure as an ag-
glomerate of subgrains/cells, whose orientation and (partial information on
their) spatial arrangement were determined according to the experimentally
determined orientation-distribution function and/or the experimentally de-
termined misorientation-angle distribution.

• When the grain-boundary mobilities in the simulation are made to
depend on the misorientation, a higher number of small grains in the
fully recrystallised microstructure results as compared to simulations
with misorientation-independent grain-boundary mobilities. How-
ever, the occurrence of misorientation-dependent grain-boundary mo-
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bilities does not influence the recrystallisation kinetics significantly.
The grain-area distribution becomes bimodal with many small grain
areas corresponding to (the size of) former subgrains left behind be-
cause of a low angle of misorientation with the local recrystallisation
front, and many larger grain areas corresponding to the size of recrys-
tallised grains as obtained in simulations with misorientation-inde-
pendent grain-boundary mobilities.

• The introduction of an inhomogeneously distributed deformation en-
ergy, by varying the subgrain-size distribution and the subgrain-energy
distribution as employed in the setup of the initial microstructure, also
(see above) leads to a higher, as compared to simulations with a ho-
mogeneous deformation energy, number of small grains left behind
because of their (locally) low deformation energy, thereby inducing
a bimodal grain-area distribution, and to curved grain boundaries in
the fully recrystallised microstructure. The recrystallisation kinetics is
not significantly influenced.

• Ongoing nucleation increases the JMAK-exponent determined from
the recrystallisation kinetics to a value larger than three, but did not
significantly influence the fully recrystallised microstructure.

• The simulations could not reproduce the experimentally observed kin-
etics, i.e. a JMAK-exponent of initial value three which decreases to-
wards the end of the recrystallisation. The simulated JMAK-exponent
is either equal to three for the entire process (for simulations pertain-
ing to misorientation-dependent mobilities) or becomes even larger
than three (for simulations pertaining to ongoing nucleation).

• To realise matching of the simulated and measured microstructures,
employing, in particular, a broad, preferably experimentally determ-
ined subgrain-size distribution appears imperative for the setup of the
initial, deformed microstructure . Additionally, informations about
the ODF, MOD and the stored-energy distribution in the deformed
microstructure should be taken into account.
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Chapter 8

Kinetics of the allotropic hcp-fcc phase
transformation in cobalt

8.1 Introduction

Pure cobalt exhibits an allotropic phase transformation at the equilibrium
temperature T0 (at constant pressure) with the hcp modification as low tem-
perature phase and the fcc modification as high temperature phase. This
allotropic transformation shows characteristics of a martensitic transform-
ation [126, 127]: the transformation needs no diffusion and composition
change, has a distinct athermal nucleation nature leading to spontaneous
initiation of the reaction upon reaching the “martensite” start temperature
MS upon cooling or the “austenite” start temperature AS upon heating.

Many studies on the mechanism and microstructural evolution associ-
ated with the allotropic phase transformation in Co have been performed
(e.g. see Refs. [126, 128]), providing controversial or inconclusive results
on a number of aspects: The equilibrium temperature and its uncertainty
as given in Ref. 4, T0 = 690 ± 7 K (at 1 atm), covers the range of most
of the available literature data [127, 129–131], based on calculations or de-
termined experimentally, taken as average of the “austenite” and ‘martens-
ite” start temperatures, measured by X ray diffractometry, magnetometry,
dilatometry or calorimetry. Values for the martensite start temperature MS
range from 692 K to 661 K and for the austenite start temperature AS range
from 694 K to 720 K [127, 132, 133]. The difference between the start temper-
atures for the fcc→hcp transformation (MS temperature) and the hcp→fcc
transformation (AS temperature) is called (here) “temperature hysteresis”.
Values for the enthalpy of transformation, ∆Hhcp� f cc, range from 377 to
464 J mol−1 [126, 127, 129–131] and some studies indicate differences upon
heating and cooling [133, 134]. The diversity of these results appears to
depend on the specimen shape (thin layer [128, 135, 136], powder [137–
139], sheet [133, 134, 140, 141] and rod [126, 132, 137, 138]), the specimen
size [133, 134], the state of stress [132, 139] and the (type of) thermal treat-
ment [126, 132–135, 137–140, 142].

It appears that depending on the initial microstructure and experimental
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conditions (as heating/cooling rate) a significant number of hcp↔fcc trans-
formation cycles must be passed through in order to establish reproducible
characteristics of the hcp�fcc transformation (see Refs. [126, 127, 133, 134,
138, 143] and, in particular, results of this study presented in section 8.4).
This may contribute to the discrepancies apparent from the literature cited
above.

A full, quantitative, description of the kinetics of the allotropic transform-
ation in Co was not presented until now. The present work for the first time
provides such a model description of the allotropic, martensitic transforma-
tion kinetics of Co, departing from a general modular model of phase trans-
formation kinetics composed of separate modes of nucleation, growth and
impingement [8, 144], thereby incorporating an athermal nucleation mode
as proposed in Ref. [143], interface controlled growth and anisotropic im-
pingement. This approach was recently applied successfully by our group
to the polymorphic transformation of Laves phases [145].

The present chapter focuses on the hcp→fcc phase transformation us-
ing “stabilized” specimens (i.e. after a number of preceding transformation
cycles). Isochronal annealing experiments in a fixed temperature range us-
ing Differential Scanning Calorimetry, DSC, were performed. The result-
ing enthalpy changes as function of time and heating rate were interpreted
quantitatively using the modular phase transformation model.

8.2 Theoretical Background of Transformation Kinetics

Solid state phase transformations can take place as soon as the hitherto ex-
isting phase is not stable anymore; i.e. a thermodynamic driving force can be
indicated. Such a phase transformation can be realized in different ways. In
general a phase transformation can be subdivided into three (overlapping)
steps: nucleation, growth and impingement. This type of modular approach
has been described in [144, 146] (see, especially, the review in Ref. [8]) and
has been applied successfully to a variety of phase transformations: crystal-
lization of amorphous metal alloys [31, 147–151], the austenite-ferrite trans-
formation in Fe-based alloys [152–154] and the polytypic transformations of
Laves phases [145].

Assuming, hypothetically, that each individual product particle, eman-
ating from a successful nucleation process, grows into an infinitely large
parent phase, in the absence of other product particles, the so-called exten-
ded volume, Ve, given by the sum of the volumes of all these (hypothetical)
particles, can be calculated. In a second step the extended transformed frac-
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tion, xe(= Ve/VS; with VS as the volume of the specimen), has to be cor-
rected for (hard) impingement to obtain the real transformed fraction, f , by
adopting a certain impingement mode. In the following, after discussing the
hcp�fcc transformation mechanism, nucleation, growth and impingement
modes relevant for the hcp↔fcc transformation are indicated briefly.

8.2.1 The hcp�fcc Transformation Mechanism

The dislocation (line) energy of a so called perfect dislocation can be reduced
by dissociation into two Shockley partial dislocations inducing a stacking
fault (SF) in between both partials, with the stacking fault energy (SFE) σ.
The width of the dissociated partial dislocations is given by the balance of
the elastic repulsion force, forcing the dissociation, and the stacking fault
energy, σ, opposing the dissociation: dissociated (perfect) dislocations are a
basic component of the microstructure [155].

The transformation of an fcc (ABCABC. . . stacking sequence) into an hcp
(ABABAB. . . stacking sequence) crystal structure, and vice versa, can be real-
ized by the motion of Shockley partial (SP) dislocations, with Burgers vec-
tors, of type 1/6⟨112̄⟩, on every second closest packed plane [135, 143].

This process can be called “ordered glide” as an ordered array of Shockley
partials is required for the phase transformation. So this ordered array of x
partials transforms a region of thickness 2x closest packed layers. The trans-
formation fcc→hcp occurs by dissociation of the perfect dislocations and
the transformation hcp→fcc by association of the SPs (see Figure 8.1). Stud-
ies of the microstructural evolution upon thermal (transformation) cycling
showed that such ordered dislocation arrangements evolve indeed [135],
establishing, by the “back and forth” movement of the same partial dis-
locations, the reversible hcp�fcc transformation with preservation of the
orientation, in the specimen frame of reference, of the hcp and fcc crystals,
as validated for Co [126].

Each SP can be associated with one of six Burgers vectors of type 1/6⟨112̄⟩
on a closest packed plane leading, upon glide of the SP, to a microscopic
shear of the lattice (see top part in Figure 8.2). This shear can be nullified
(no add up of microscopic to macroscopic shear) by the summation of a set
of three successive dislocations in the ordered array of SPs, with Burgers
vectors such that

−→
b 1 +

−→
b 2 +

−→
b 3 = 0 (see bottom left part in Figure 8.2). If

−→
b 1 +

−→
b 2 +

−→
b 3 ̸= 0, macroscopic shear evolves32 (see bottom right part in

32Note that for polymorphic Laves phase transformations such macroscopic shear is impossible
because of the glide of synchro Shockley partial dislocation dipoles [145].
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Figure 8.1: Schematic view of an hcp nucleus (ABABAB. . . stacking se-
quence) developing in an fcc matrix (ABCABC. . . stacking se-
quence) by dissociation of three perfect dislocations in fcc. Left:
Array of three perfect dislocations in the fcc Co phase (before
dissociation); right: two arrays each consisting of three Shockley
partial dislocations; the two arrays build up two particles con-
sisting of the hcp phase, each particle having a volume determ-
ined by the grain size D, the height of the defect structure (de-
pending on the number of Shockley partial dislocations within
the array) and half of the separation distance, 2r, realised by
glide of the Shockley partial dislocations.
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Figure 8.2: Stacking sequence of an fcc crystal lattice (top). The black arrows
indicate possible Burgers vectors available for the glide process
of Shockley partial dislocations upon the fcc→hcp transforma-
tion. Bottom left: Burgers vectors of Shockley partial disloca-
tions in every second closest packed plane oriented such that
for three successive Shockley partials (i.e. comprising a stack of
six closest packed planes) . No macroscopic shear occurs. Bot-
tom right: Shockley partial dislocations, gliding on every second
closest packed plane with the same Burgers vector. This leads to
macroscopic shear.

Figure 8.2 where the extreme case, all SPs have same
−→
b , is shown). How-

ever, it is usually assumed [141,156] that microscopic shear cancels out over
short distances and therefore the contribution of macroscopic shear to the
phase transformation (kinetics) is considered to be negligible here.

Irrespective of the micro-/macroscopic shear discussed above, the allo-
tropic transformation in cobalt is associated with a macroscopic distortion
due to the change of the atomic distances. This macroscopic distortion for
the fcc→hcp transformation is +0.021% parallel to and 0.242% perpendicu-
lar to the closest packed plane [141].

The hcp crystal lattice has only one closest packed set of {0001} planes;
the fcc crystal lattice has four equivalent sets of closest packed {111} planes.
Upon thermal cycling the dislocation structure is (re)arranged, from any
initial state, such, that only one single set of {111} f cc planes is active and
parallel to {0001}hcp (further see section 8.6.1).
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Figure 8.3: Ordered arrays of Shockley partial dislocations gliding through
an fcc Co crystal leaving behind the hcp Co structure (see also
Figure 8.1).

8.2.2 Nucleation

The thermodynamic model for nucleation must be compatible with the mech-
anism for the hcp�fcc transformation by glide of an ordered array of Shock-
ley partial dislocations (cf. section 8.2.1). The model presented here is de-
rived from an earlier description of nucleation of the martensitic fcc→hcp
transformation in metals by dissociation of perfect dislocations [143].

Consider the periodically arranged array of perfect dislocations in an fcc
crystal as shown in Figure 8.1 and Figure 8.3. The fcc�hcp phase transform-
ation is performed by glide of the periodically arranged Shockley partial
dislocations through the crystal lattice (see section 8.2.1)

Initiation of an fcc→hcp transformation requires dissociation of the ar-
ray of perfect dislocations into two arrays of Shockley partial dislocations.
The region in between these two arrays can be described as a stacking faul-
ted region (with reference to the parent structure) or as transformed region
(exhibiting the product, hcp crystal structure). As long as fcc is the stable
phase, the dissociation is limited by the relatively high energy (with ref-
erence to the parent phase) of the faulted structure lying between the two
arrays of Shockley partial dislocations. This is no longer the case if the hcp
phase becomes the stable phase, i.e. by passing the hcp-fcc phase equilib-
rium temperature T0 upon (isochronal) cooling from the fcc phase field.

The region between the two separated arrays of Shockley partial dislo-
cations can be considered as two second-phase (hcp) particles each having
the volume V and the interfacial area S. The total Gibbs energy change ∆G
associated with the formation of this second phase particle can be given as:

∆G = V(∆Gch
V + Estr

V ) + Sσ (8.1)
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where ∆Gch
V (= ∆Gch

m /Vm; ∆Gch
m is the chemical Gibbs energy difference

per mole of atoms between product phase and parent phase and Vm is the
molar volume) is the chemical Gibbs energy difference between product
phase and parent phase per unit volume, Estr

V ) (= Estr
m /Vm) ; = Estr

m is
the elastic strain energy per mole of atoms) is the elastic strain energy per
unit volume and σ is the particle/matrix interface energy per unit area.
For small overheating/undercooling, i.e. in the vicinity of the equilibrium
phase-transformation temperature T0, the chemical Gibbs-energy change
per mole of atoms = ∆Gch

m can be approximately given as:

∆Gch
m ≈

∆Hhcp� f cc

T0
(T − T0) =

∆Hhcp↔ f cc

T0
∆T (8.2)

with ∆Hhcp� f cc as the molar enthalpy of transformation ( fcc→hcp: ∆H <
0, hcp→fcc: ∆H > 0) and ∆T as the undercooling/overheating. The molar
chemical Gibbs energy change ∆Gch

m corresponds to the chemical driving
force for the transformation and, as evident from equation (8.2), it changes
its sign at T0. The elastic strain energy per unit volume, Estr

V , cannot be neg-
lected since the product and the parent phases have unequal molar volumes
(see section 8.5).

The volume of a product phase particle is given by

V =
n
2

c · n · D (8.3)

with nc/2 as the height/size of the nucleus; n/2 is the number of disloca-
tions within the array of dislocations oriented perpendicular to the stacking
direction (cf. Figure 8.1 and Figure 8.3; n is the number of closed packed
layers in the stack considered and c is the distance between adjacent dislo-
cations in the array parallel to the c-axis (chcp = 0.40686 nm, c f cc = (2/3)

√
3

a f cc = 0.40931 nm [157]), 2r is the separation distance of the partial disloca-
tions (r is the distance passed by one array of Shockley partial dislocations)
and D is the grain size of the parent crystal (cf. Figure 8.1).

The newly created interfacial area S of one particle is given by the top
and the bottom side and the front and the rear side of the product-phase
particle (as shown in Figure 8.1). Because D ≥ nc/2, the interfacial area S is
approximately given by the top and bottom sides and thus:

S ≈ 2rD (8.4)

It follows from equations (8.1), (8.3) and (8.4):

∆GA ≡ ∆G
rD

= n
c

2Vm
(∆Gch

m + Estr
m ) + 2σ (8.5)
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Chapter 8 Kinetics of the allotropic hcp-fcc phase transformation in cobalt

The term ∆G/rD corresponds to the energy difference between the product
phase/ particle and parent phase per unit area top/bottom interface, ∆GA.
Note that both the volume chemical energy term as well as the interface
energy term scale with r.

Evidently, a critical size (a critical value of r) does not occur (cf. equa-
tion (8.5)): The transformation can take place “spontaneously”, i.e. without
overcoming an energy barrier by thermal activation, provided that the en-
ergy difference between the product phase (lying in between the dissociated
dislocation arrays) and parent phase per unit area, ∆GA, becomes negative,
e.g. by a change of temperature (cf. equations (8.2) and (8.5)). Hence, the
product phase particles develop by athermal nucleation.

The interfacial term 2σ in equation (8.5) is independent of the height nc/2
of the possibly operating dislocation array, whereas the chemical Gibbs en-
ergy change for operation of the same dislocation array nc∆Gch

m /2Vm in-
creases with n. For a fixed value of n the energy difference per unit area
top/bottom interface, ∆GA, equals zero at a finite value of undercooling,
∆T = T0 − T, for the fcc→hcp transformation (or rather overheating, ∆T =
T0 − T, for the hcp→fcc transformation). A distribution of heights of the ar-
rays of dislocations (corresponding with a varying number of closed packed
layers, n, in the stack considered) is supposed to exist in the fcc crystal. It
follows from equation (8.5) that the larger the height of the dislocation ar-
ray, i.e. the larger n, the lower the required undercooling in order that this
dislocation array starts to produce by glide a product phase (hcp) particle.
In other words, the nucleation event can be described as a kind of site satur-
ation at each temperature, where dislocation arrays of specific height start
to operate.

At a given undercooling, ∆T(t) = T0 − T(t), the critical (minimal) value
of n, i.e. n∗, indicating the minimal height of the dislocation array for real-
ising by glide the fcc→hcp transformation, satisfies (see equations (8.2) and
(8.5)):

n∗(∆T(t)) = − 2σ

c
2Vm

(
∆Hhcp� f cc

T0
(T − T0) + Estr

m

) (8.6)

Depending on the values of the parameters at the right hand side of equa-
tion (8.6), as σ, ∆H and Estr

m , a minimum number of stacked dislocations
can be designated from n∗ in order to obtain a stable nucleus that can grow.
For example, considering the hcp→fcc transformation above T0 = 690 K,
if ∆Hhcp� f cc = 501 J mol−1, σ = 10 mJ m−2 [140], Estr

m = 0.838 J m2, it
follows n∗ = 32 at T = 720 K and n∗ = 24 at T = 730 K. Upon decreasing
temperature more and more dislocation arrays of decreasing height can be-
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8.2 Theoretical Background of Transformation Kinetics

come active. From experimental data for the martensitic transformation in
Fe 30.2 wt% Ni, it was proposed that the cumulative number of operating
dislocation arrays, N(n∗(∆T(t))), obeys the empirical function [158]:

N (n∗(∆T(t))) = Ntot exp (−n∗(∆T(t))) (8.7)

with Ntot as the total number of pre-existing Shockley partial dislocation ar-
rays of variable height per unit volume. The total number of preexisting SP
arrays of variable height can be (over)estimated by approximating the grain
volume by D3 and recognizing that D/c represents the number of disloca-
tions covering a height D. Hence, Ntot = 2 · (D/c)/D3 = 2/cD2 taking into
account that every perfect dislocation by dissociation contributes to the de-
velopment of two nuclei (see Figure 8.1). This estimation is rough as at the
begin of the transformation the number of SPs in a nucleus is larger than
one. However, the values of the fit parameters of the transformation model
do not depend strongly on the value of Ntot (see section 8.5). The above
treatment focussed on the fcc→hcp transformation occurring upon cooling.
A parallel treatment holds for the hcp→fcc transformation occurring upon
heating.

8.2.3 Interface-controlled growth

When an ordered array of Shockley partial dislocations glides through the
crystal (as shown in Figure 8.1 and Figure 8.3) the product phase particle
grows. The dimensionality of the growth is one, i.e. the product phase
particle grows in one of the three possible ⟨112̄⟩ directions oriented per-
pendicular to the c-axis (cf. Figure 8.2). There is no composition change
from parent to product phase in an allotropic phase transformation and thus
the growth is controlled by atomic (jump) processes in the direct vicinity of
the interface: interface-controlled growth. The height of a product phase
particle which starts to grow at time τ is given by n∗(∆T(τ)) · c/2 (cf. Fig-
ure 8.1). Hence, at time t the volume Y(τ, t) of a product phase particle,
which starts to grow at time τ, is given by (see Figure 8.1, equations (8.3)
and (8.6))

Yi(τ, t) = D
n∗(∆T(τ))

2
cr(T(t)) = D

n∗(∆T(τ))
c

∫ t

τ
vdt′ (8.8)

with v as the interface/Shockley partial dislocation-glide velocity. For small
undercooling or overheating the growth velocity v is given by

v(T(t)) = M(−∆Gm(T(t))) = M0 exp
(
− Q

RT(t)

)
(−∆Gm(T(t))) (8.9)
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where M is the temperature dependent interface mobility, M0 is the pre
exponential factor for growth and Q denotes the activation energy for growth.
The net driving force ∆Gm(T(t)) which is given as a molar quantity [8]
amounts to (cf. equations (8.1) and (8.5)):

∆Gm(T(t)) =
∆G

rDn∗(∆T(t)) c
2Vm

= ∆Gch
m (T(t))+Estr

m (T(t))+
2σ

n∗(∆T(t)) c
2Vm

(8.10)

8.2.4 Extended Fraction, Transformed Fraction and Impingement

Adopting an appropriate impingement mode, the real transformed fraction
fmodel(T(t)) can be calculated from the extended transformed fraction xe
(cf. beginning of section 8.2). In the case of anisotropic growth, which per-
tains to the allotropic phase transformation considered here (one dimen-
sional growth; cf. section 8.2.3), the (hard) impingement process can be phe-
nomenologically described by the following equation [8]:

d f
dxe

= (1 − f )ξ (8.11)

where ξ is a measure for the degree of anisotropic impingement. Integration
of equation (8.11) for the case ξ > 1 yields:

f = 1 − [1 + (ξ − 1)xe]
− 1

ξ−1 (8.12)

8.3 Experimental

8.3.1 Alloy Production

The cobalt rod with a diameter of 5 mm used in this study was obtained in
the hammered, not annealed state from Alfa Aesar (Karlsruhe, Germany)
and has a purity of 99.995 at.%. Disc shaped specimens were produced by
cutting pieces with a thickness of 750µm. Both sides of the specimen discs
were prepared by grinding with SiC-paper and subsequently polishing us-
ing diamond paste down to 0.25µm such that all specimens have approx-
imately the same mass of about 100 mg. All specimens were cleaned ultra-
sonically in isopropyl. After the calorimetrical heat treatment the specimen
discs were ground and polished again as mentioned above in order to re-
duce inhomogeneities of the surface as necessary for XRD and LM analysis.
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8.3.2 Differential Scanning Calorimetry

The isochronal annealing was carried out with a power-compensated Dif-
ferential Scanning Calorimeter (DSC) Pyris Diamond by Perkin Elmer. The
temperature was calibrated using the melting temperature of zinc (Tm =
692.15 K [159]) measured for each heating rate used. Aluminum was used
as pan material for both the specimen and reference container. Specimens
of approximately the same mass were used in order to provide similar heat
capacities. Pure argon gas with a constant flow was used as protective gas
atmosphere. A measurement with empty pans served for determination of
the baseline.

For each measurement in the temperature range from 523 K to 893 K at a
heating rate varying from 10 K min−1 to 40 K min−1 a new specimen was
used. In order to establish a microstructural reference state (see section 8.4),
each specimen used for the kinetic analysis, was initially exposed to 60 iso-
chronal transformation cycles with a cooling/heating rate of ±50 K min−1

in a temperature range from 523 K to 893 K. The microstructure and phase
composition of the specimens in the initial state and after the 1st, 2nd, 3rd,
10th, 20th, 40th and 60th isochronal transformation cycles were analyzed by
LM and XRD.

For the calculation of the cumulative enthalpy ∆H(T(t)), as function of
temperature (time), the heat signal d∆H(T(t))/dt was integrated for cu-
mulative times. Previous to this integration, it is necessary to perform a
baseline correction. This was done by subtracting the above mentioned DSC
signal recorded with empty pans from the DSC signal recorded with the Co
specimen for each heating rate [159]. This implies that the heat capacities
of both phases are the same in the temperature region of the transforma-
tion, as holds for cobalt. The transformed fraction fexp(T(t)) as function of
temperature then is given by:

fexp(T(t)) =
∆H(T(t))
∆Hhcp� f cc

(8.13)

where the total transformation enthalpy ∆Hhcp� f cc was obtained by in-
tegration of the baseline corrected DSC signal over the entire temperature
range of the transformation.

8.3.3 X-Ray Diffraction

XRD was employed for phase analysis and to characterize the crystalline
imperfection upon thermal cycling. The X-ray diffraction measurements
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Chapter 8 Kinetics of the allotropic hcp-fcc phase transformation in cobalt

were performed with Mo Kα radiation employing a Bruker D8 Discover
diffractometer operating in parallel-beam geometry equipped with an X-ray
lens in the incident beam, a parallel-plate collimator in the diffracted beam
and an energy-dispersive detector. The 2θ-range of 15◦ - 45◦ was measured
with a step size of 0.015◦ and counting time per step of 10 s.

8.3.4 Light Microscopy

The surface of the specimen discs before and after the 1st, 2nd, 3rd, 10th,
20th, 40th and 60th transformation cycles and of specimens used for the
kinetic analysis were analysed using a Zeiss Axiophot light optical micro-
scope. For that purpose the polished specimen discs were etched for 2–7 s
using a fresh etching solution (14.3 vol.% H20, 14.3 vol.% CH3COOH, 57.1
vol. % HCl and 14.3 vol.% HNO3).

8.4 Results and Evaluation

A baseline corrected isochronal DSC-Scan of Co at a heating rate of 20 K min−1

showing a heat signal associated with the hcp→fcc transformation is presen-
ted in Figure 8.4. Tonset denotes the peak onset temperature, Tpeak is the peak
maximum temperature and ∆Hhcp� f cc is the enthalpy of transformation (>
0 for the endothermic hcp→fcc transformation) given by the (hatched) area
enclosed by the DSC signal and the baseline (dashed).

In order to characterize the hcp→fcc transformation behaviour and the
microstructural evolution upon thermal cycling of initially heavily deformed
Co, the change of the DSC heat signal (characterized by the parameters in-
dicated above), XRD diffractograms and the change of the grain size were
recorded as a function of the number of transformation cycles experienced
(one cycle is hcp→fcc followed by fcc→hcp). Results are presented in Fig-
ure 8.5.

The variation of the parameters Tonset, Tpeak and ∆Hhcp� f cc for the hcp→fcc
transformation (see Figure 8.4) is shown in Figure 8.5a as a function of the
number of transformation cycles at a heating rate of 50 K min−1 between
523 K and 893 K. Starting from the heavily deformed initial state, the para-
meters Tonset, Tpeak and ∆Hhcp� f cc decrease from the 1st to the 2nd trans-
formation cycle from 736.3 K, 746.9 K and 406 J mol−1 to 717.1 K, 735.6 K
and 385 J mol−1, followed by an increase between the 2nd and 3rd trans-
formation cycle to 721.9 K, 738.7 K and 452 J mol−1, respectively. After the
3rd transformation cycle Tonset and Tpeak pass through modest local maxima
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Figure 8.4: Heat signal corresponding to the endothermic hcp→fcc trans-
formation in Co (after 61st cycles) obtained upon isochronal
heating at a rate of 20 K min−1

of about 722.3 K and 739.0 K, respectively. Eventually Tonset and Tpeak ap-
proach asymptotically equilibrium values of about 735.7±0.2 K (average of
the last 40 transformation cycles) and about 726.5±0.2 K (average of the last
20 transformation cycle), respectively.

The total transformation enthalpy, ∆Hhcp� f cc, shows a steep increase from
the 2nd to the 4th transformation cycle and approaches an equilibrium value
after about 20 transformation cycles of about 500±3 J mol−1 (average of the
last 40 transformation cycles). The small values of ∆Hhcp� f cc observed
in the first cycles suggest that the specimen only experiences a fractional
hcp→fcc transformation during the first cycles.

XRD measurements of Co specimens at room temperature in the initial
state and after the 1st, 2nd and 3rd transformation cycles (inset in Figure 8.5b)
reveal 111 and 002 reflexes of the fcc Co phase after (only) the 1st and 2nd
transformation cycle (Cards 89 4308 for hcp Co and 15 0806 for fcc Co of
the powder diffraction file [160], were used for phase identification). In the
initial state, after the 3rd transformation cycle and during further cycling
no fcc Bragg peaks could be detected. These XRD results support the above
interpretation of the ∆Hhcp� f cc changes during cycling.

Hence, the amount of hcp and fcc Co at room temperature after a specific
number of transformation cycles can be deduced from the enthalpy data ad-
opting direct proportionality of ∆Hhcp� f cc with the amount of hcp present
before the hcp→fcc transformation takes place. The thus determined frac-
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tional amounts of hcp and fcc phase at room temperature are shown in Fig-
ure 8.5b as function of the number of transformation cycles. The amount
of fcc Co at room temperature reaches a maximum of about 25 % after two
transformation cycles followed by a decrease towards nil reached at about
the 5th transformation cycle.

The full width at half maximum (FWHM) was calculated for the 100, 002,
101, 102 110 and 103 reflexes of hcp Co. The FWHM results as obtained for
the initial state and after the 1st, 2nd, 3rd, 10th, 20th, 40th and 60th trans-
formation cycles are presented in Figure 8.5c as function of the correspond-
ing transformation cycle number. For all reflexes a steep decrease can be
observed from the values corresponding to the initial state to the values ob-
tained after the 2nd/3rd transformation cycle. This decrease can be ascribed
to a reduction of lattice defects in the initially heavily deformed state upon
annealing (recovery), grain growth and transformation cycling. For all re-
flexes the FWHM and thus the defect structure remains about constant after
the 3rd transformation cycle.

The change of the mean grain size, D, as determined by LM, is shown
in Figure 8.5d as function of the number of transformation cycles. It was
not possible to measure the grain size of Co in the initial stage because the
etched microstructure did not allow a clear identification of grain boundar-
ies: the highly deformed initial state leads to an uncontrollable etching pro-
cess. The grain size increases upon thermal cycling from initially less than
10µm to about 87±5µm after the 40th cycle and remains constant thereafter.

It has been concluded from the above results that, to assure the same ini-
tial state for each experiment used for kinetic analysis, each such specimen
will be subjected to 60 transformation cycles before a kinetic analysis is per-
formed. Important morphological characteristics are revealed by LM from
the specimen surfaces, as shown for the 10th, 40th and 60th transforma-
tion cycles in Figures. 6a c. After the 10th cycle (Figure 8.6a) the etching
suggests an underlying transformation structure exhibiting different, spe-
cific orientations of martensite plates within a Co grain. After the 40th cycle
(Figure 8.6b) the etching suggests that only a single specific orientation is as-
sociated with the martensitic transformation experienced by a grain. After
the 60th transformation cycle no such etch effect is observed (cf. Figure 8.10
and its discussion in section 8.6.1).
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Figure 8.5: Results of DSC, XRD and LM analysis as function of the num-
ber of transformation cycles. (a) Tonset, Tpeak and ∆Hhcp� f cc at
a heating rate of 50 K min−1, (b) phase fraction as deduced from
the enthalpy data in (a) (see text); inset: 111 and 002 reflexes of
fcc phase and 002 reflexes of hcp phase before and after the 1st,
2nd and 3rd cycles, (c) FWHM of selected XRD reflexes as indic-
ated and (d) grain size.
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Figure 8.6: Light optical micrographs of the etched microstructure of the
surface of Co specimens after the (a) 10th, (b) 40th and (c)
60th transformation cycle performed in the DSC at a rate of
±50 K min−1 in the temperature range from 523 K to 893 K. The
etched microstructure suggests (see the arrows) that upon pro-
longed annealing the number of types of glide planes operating
during the martensitic transformation (the fcc→hcp experienced
in the cooling part of the transformation cycle) in a single grain
is reduced to one (see text and section 8.6.1).
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Figure 8.7: Isochronal baseline corrected DSC scans for Co (after 60 trans-
formation cycles) at various heating rates as indicated.

8.5 Analysis of the Transformation Kinetics

Baseline corrected isochronal DSC scans for the allotropic hcp→fcc (upon
heating) and fcc→hcp (upon cooling) transformations in Co measured at
heating/cooling rates in the range from 10 K min−1 to 40 K min−1 are presen-
ted in Figure 8.7. The enthalpy of transformation for the hcp→fcc trans-
formation (upon heating; independent of heating rate) is about +501±7
J mol−1 and for the fcc→hcp transformation (upon cooling; independent of
cooling rate) about 512±13 J mol−1, i.e. within the experimental accuracy
the hcp→fcc and fcc→hcp transformations exhibit the same absolute value
for the enthalpy of transformation.

The cooling curves in Figure 8.7, i.e. for the fcc→hcp transformation, have
been included for the sake of completeness. Whereas the start temperature
for the fcc→hcp transformation (upon cooling) clearly depends on the cool-
ing rate applied, this is much less the case (if at all) for the dependence
of the start temperature of the hcp→fcc transformation (upon heating) on
heating rate (see Figure 8.7). In both cases, i.e. for the transformation upon
cooling and the transformation upon heating, a cooling/heating rate inde-
pendent start temperature is expected in view of the athermal value of the
nucleation process (see section 8.2.2). It must be noted, that no temperat-
ure calibration of the DSC for the cooling part of the cycle is possible and
that the DSC signal during cooling is smeared distinctly, as is well known
for power compensated DSCs [159]. Therefore, the cooling-rate dependence
of the start temperature of the transformation upon cooling has to be con-
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Figure 8.8: The experimental transformation rate d fexp/dT as function of
the transformed fraction for the hcp→fcc transformation for
various heating rates. The plots show maxima at positions left
with respect to the position f = 1 − 1/e, indicating an aniso-
tropic impingement mode [161].

sidered as an artifact from the measurement and the cooling curves cannot
be used for kinetic analysis.

The kinetic analysis of the allotropic hcp→fcc transformation of Co was
performed applying the modular phase transformation model in the form
as described in section 8.2.

The experimental transformation rates d fex/dT(d fex/dT = 1/Φd fexp/dt)
have been plotted in Figure 8.8 as function of the transformed fraction
fexp(T(t)) for the different heating rates. The corresponding curves for
the experimentally determined transformed fractions fexp(T(t)) (see section
8.3.2, equation (8.13)) are shown in Figure 8.9 as function of temperature
T(t). Evidently, the maximum transformation rate occurs at fexp < 1 − 1/e.
This is a strong indication for anisotropic growth [161] as expected for the
hcp�fcc transformation in Co (cf. sections 8.2.2 and 8.2.3). The impinge-
ment mode for anisotropic growth (introduced in section 8.2.4) has thus
been used in the kinetic model of the phase transformation.

The kinetic model parameters σ, Q and ξ were determined by numerically
fitting of the model to simultaneously all isochronal heating runs obtained
for various heating rates in the range from 10 K min−1 to 40 K min−1. The
mean square error (MSE) between the calculated (calc) and experimental
(exp) transformed fraction curves was minimized by varying the fit para-
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Figure 8.9: Isochronal DSC curves (symbols) and model fit (simultaneously
to all runs) using the modular phase transformation model (σ, Q
and ξ as fit parameters) for the allotropic phase transformation
hcp→fcc of Co.

meters using a multidimensional unconstrained nonlinear minimization fit-
ting routine [162] as implemented in MATLAB for each ith of the applied
heating rates

MSE =
N

∑
i=1

(
exp − calc

exp

)
2 (8.14)

The results of the fitting as described above are shown in Figure 8.9 (experi-
mental data: symbols; fit: lines) and Table 1 (i.e. the values thus determined
for σ, Q and ξ).

Values used for the constants in the model have (also) been given in Table
1. The total number of pre existing dislocations Ntot within a grain of mean
size D = 87±5µm was calculated as described in section 8.2.2 as 6.5 · 1017

m−3. The total enthalpy of transformation was taken as ∆Hhcp� f cc = 501±7
J mol−1, as determined experimentally (cf. section 8.4). The strain energy
contribution expressed as Estr

m , corresponding with the macroscopic distor-
tion discussed in sections 8.2.1 and 8.2.2, was estimated according to [143] at
about 0.838 J mol−1 under the assumption of linear elasticity and coherency
(full elastic accommodation of volume misfit).

It is supposed that dislocation glide is rate controlled by thermal activa-
tion as it generally holds for materials with metallic bonding type. In pure
metals it is assumed that the atomic structure within the closest packed glide
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8.6 Discussion

plane represents a weak lattice resistance. The mobility of these dislocations
is thus determined by thermal fluctuations characterized by an activation
energy Q [164].

The temperature-independent dislocation/interface velocity v0 was es-
timated by using the well-known (empirical) expression for the pre-exponen-
tial factor for lattice-resistance controlled glide of dislocations in metals (i.e.
rate limited by weak discrete obstacles) (as validated for a wide range of
metals [163]), which reads γ̇ = v0ρmb = 106 s−1 with ρm as the disloca-
tion density and b as the Burgers vector taken equal to 1/2

√
2a f cc with

a f cc = 0.35447 nm [157]. The density of mobile dislocations can be estim-
ated according to [163] as 1013 m−2 lying in the range of values expected for
fcc and hcp metals. The thus obtained value for v0 is about 400 m s−1. Thus
the mobility M0 = v0/RT [8] was assessed at 4.3 m mol J−1 min−1, adopt-
ing a mean value for the temperature T = 700 K. Note that the temperature
dependence of M0 is small in comparison to the temperature dependence
of the exponential term in M (see equation (8.9)) and thus the temperature
dependence of M0 can be neglected.

The influence of a variation of the constant parameters Ntot, T0 and M0
on the fit parameters, as indicated by Ntot = 6.5 · 1017±1 m−3, T0 = 690±1 K
and M0 = 4.3 · 100±1, yielded variations of σ and Q as indicated in Table 1;
the impingement parameter ξ is not influenced.

8.6 Discussion

8.6.1 Preceding transformation cycles

Each Co specimen used for kinetic analysis was subjected to a number of 60
preceding transformation cycles to assure similar starting conditions (same
microstructure) and full transformation (see section 8.4). The phenomenon
can be interpreted as that the preceding transformation cycles are needed
to stabilize the dislocation configuration (cf. section 8.2.1) in the specimen
that carries the forward (hcp→fcc) and backward (fcc→hcp) transforma-
tions. The initially incomplete transformation can partly be ascribed to
the relatively strong interaction of the (partial) dislocations with the grain
boundaries: upon increasing grain size during cycling (see Figure 8.5d) rel-
atively more dislocations become available for establishing the transforma-
tion [126, 127, 133].

During the first transformation cycles the transformations occur in con-
junction with recovery, possible (local) recrystallisation and grain growth in
order to reduce the stored plastic deformation and grain boundary surface.
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This leads to changes of the (initially disarranged) dislocation structure. A
further complication is that after a first hcp→fcc transformation upon heat-
ing, that then, upon subsequent cooling, a completely reverse formation
of hcp Co requires glide of SPs on the closest packed {111} f cc planes ly-
ing parallel to the previous {0001}hcp planes. However, at least initially
SPs may be available as well on {111} f cc planes not parallel to the former
{0001}hcp plane and thus the original hcp grain microstructure is not re-
established (Note the variously orientated hcp Co martensite “plates” in a
single grain in Figure 8.6a). As a consequence, this reasoning provides a fur-
ther reason (see above) why the transformation cannot run to completion in
such a grain; a small amount of parent phase is retained (see Figure 8.5b and
its inset).

The above described transformation behaviour for the first transforma-
tion cycles is compatible with the DSC results. The decrease of Tonset and
Tpeak found for the 2nd transformation cycle can be understood such that
during the first complete hcp�fcc cycle the disordered dislocation struc-
ture of the initial state evolves into a more ordered (in the sense of the dis-
cussion in section 8.2.1) dislocation structure, thereby facilitating the trans-
formation: less overheating is required (see section 8.2.2).

Prolonged thermal cycling leads to an increase of the thickness of the
martensite “plates” (Figure 8.6b), i.e. the height of the operating disloca-
tion array increases, and a single glide variant appears to become dominant
(cf. Figure 8.6b and c) [133, 135].

The above discussion leads to a summarizing schematic presentation of
the evolving dislocation structure in a grain during hcp�fcc (thermal) cyc-
ling as presented in Figure 8.10.

8.6.2 Kinetics

The evaluation of the kinetics of the allotropic hcp→fcc phase transforma-
tion in Co performed in section 8.5 demonstrates that this transformation
can be well described as governed by the activation of pre existing nuc-
lei (stacked dislocation sequences) and thermally activated interface con-
trolled growth subjected to anisotropic impingement. The resulting values
for the fit parameters σ, Q and ξ agree well with data provided by theory
and experiment (see what follows). The investigation of dislocation nodes
(the extension of a dislocation node depends amongst others on the stack-
ing fault energy produced by the node) in pure Co [140] and Fe Cr Ni al-
loys [165] yielded stacking fault energy values from 5 to 10 mJ m−2. This
agrees very well with the here determined value for the interface (= stack-
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Figure 8.10: Schematic presentation of the dislocation structure develop-
ment in Co upon hcp�fcc (thermal) cycling. (a) The initial state
represents (severely deformed) hcp Co as formed by dissoci-
ation of arrays of perfect dislocations and subsequent “ordered”
glide of SPs on every second closest packed {111} plane in
the parent fcc Co. The whole grain could not transform to
hcp Co because of blocking of the growing martensite “plates”
growing by “ordered” glide of arrays of SPs; each stack of
SPs glides along one of the four equivalent types of {111} f cc
planes. (b) + (c) Upon continued thermal cycling the height
of the (remaining, active) stacks of arrays of (partial) disloca-
tions (perpendicular to {0001}hcp/{111} f cc planes) increases,
due to pick up of neighbouring dislocations, pushing aside un-
favourably oriented smaller dislocation stacks, e. g. by limiting
the associated SP glide, and by even driving them back (in as-
sociated form) into the grain boundaries (as illustrated in the
figure; cf. (a) and (c)). (d) + (e) Eventually, upon prolonged
thermal cycling, a dislocation structure emerges that realizes
the hcp�fcc transformation on the basis of (ideally) one single
stack of ordered perfect dislocations (in fcc) = 2 parallel stacks
of ordered Shockley partial dislocations (in hcp) implying that
only one (instead of, maximally, four; see (a) + (b)) glide plane
system operates within a single grain, e. g. (111) f cc ∥ (0001)hcp,
[1̄10] f cc ∥ [1̄01̄0]hcp.
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ing fault) energy resulting from model fitting of the transformation kinetics
yielding σ = 6.7±0.4 mJ m−1.

The ratio of the activation energy for diffusion and the activation energy
for dislocation glide controlled by lattice resistance is for metals about 7
[163]. The activation energy for self diffusion of Co is QCo = 270 kJ mol−1

[127]. Indeed, 1/7QCo ≈ 38 kJ mol−1 which is well compatible with the here
determined value of the activation energy for growth, Q = 33±15 kJ mol−1,
thereby validating the applied concept of growth controlled by dislocation
glide.

8.7 Conclusions

• Extensive thermal cycling of Co in a fixed temperature range is ne-
cessary to establish full reversibility of the allotropic hcp�fcc phase
transformation (i.e. reaching constant values of Tonset, Tpeak and
∆Hhcp� f cc). During thermal cycling stabilization of the dislocation
structure is established such that in a single grain the hcp�fcc trans-
formation is established by (ideally) only one single stack of ordered
perfect dislocations (in fcc) = 2 parallel stacks of ordered Shockley par-
tial dislocations (in hcp), implying that only one (of the maximally
four) glide plane types operates within a single grain.

• The kinetics of the transformation can be well described on the basis
of a modular transformation model adopting an athermal nucleation
mode and an anisotropic interface controlled growth mode.

• Results obtained for the fit parameters σ (= 6.7±0.4 mJ m−2) and Q
(= 33±15 kJ mol−1) are well compatible with the interpretation of the
product/parent interface as a stacking fault and of the growth process
as realized by thermally activated glide of Shockley partial disloca-
tions.
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Chapter 9

Summary

9.1 Summary in the English language

In this thesis, the interplay of phase transformation kinetics and the micro-
structure of materials is investigated. During a phase transformation, the
parent microstructure is replaced by the product microstructure according
to a specific phase transformation mechanism. Three different aspects of
the interaction between microstructure and phase-transformation kinetics
are considered. Firstly, the microstructure resulting from phase transform-
ations with a known mechanism is investigated. Secondly, the influence of
the parent microstructure on the resulting phase-transformation kinetics is
studied. Thirdly, a combined knowledge about the product microstructure
and the phase-transformation kinetics is used to identify suitable models
for a specific phase transformation.

Several heterogeneous, nucleation-and-growth phase transformations in
elemental metals are considered in this thesis, which all pertain to interface-
controlled growth (i.e. growth without long-range diffusion).

The kinetics of such phase transformations can be modelled by employ-
ing mean-field approaches. The most widely used models of this type, the
classical Johnson-Mehl-Avrami-Kolmogorov (JMAK) model and JMAK-like
models, are only valid under certain circumstances, including a spatially
random arrangement of nuclei and a homogeneous growth rate in the entire
specimen. Within the framework of the modular kinetic model approach,
empirical impingement equations are available which allow an approxim-
ate description of the transformation kinetics for phase transformations in
which the above-stated restrictions are violated. Therefore, they broaden
the range of treatable phase transformation mechanisms. For the special
case of phase transformations for which nucleation occurs on parent-phase
grain boundaries, a more “physical” model due to Cahn is available.

Without recourse to a kinetic model, the kinetics and the resulting micro-
structure of phase transformations can be simulated using various meso-
scopic simulation algorithms. In the present thesis, geometrical simulations,
which model the growth of product grains on the basis of global growth
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rules, as well as Cellular Automata simulations, which model the growth of
product grains on the basis of local growth rules, are employed.

In chapter 2, the microstructures resulting from nucleation-and-growth
phase transformations occurring under various time-temperature programs
are simulated and analysed. The transformation kinetics is described by
a modular kinetic model and informations from this model are used to
provide “global” rules for application in a geometric algorithm to simulate
the microstructure. The microstructures for heating and cooling transform-
ations, in particular as revealed by the grain-size distributions, differ dis-
tinctly as a consequence of the different temperature-dependencies of the
nucleation and growth rates. The differences in grain-size distributions on
the basis of volume-weighted, area-weighted and line-intercept grain sizes
are discussed in the light of their sensitivity for revealing the kinetics of the
underlying phase transformation.

In the chapters 3 and 4, the kinetics of phase transformations for which
nucleation occurs on parent-microstructure grain boundaries, and the res-
ulting microstructures, are investigated by means of geometric simulations.
The influences of parent microstructure grain-boundary area density, parent
grain-size distribution and parent→product kinetics are analysed.

In chapter 3, the simulated kinetics are compared with predictions from
two kinetic models, namely a model proposed for spatially random nuc-
leation and a model proposed for grain-boundary nucleation. It is found
that the simulated transformed fraction as function of time lies in between
the two model predictions for all investigated parent microstructures and
parent→product kinetics.

In chapter 4, several mesoscopic kinetic models are investigated with
respect to their ability to describe the simulated transformation kinetics,
namely

• the classical JMAK model (i.e. assuming random nucleation),

• previously proposed empirical extensions of the JMAK model in the
framework of the modular kinetic model approach,

• the Cahn model (assuming nucleation on randomly distributed planes),
and

• a new, here proposed empirical extension of the Cahn model.

None of the models exactly predicts the real phase transformation kinet-
ics. The classical JMAK model is unable to describe the simulated grain-
boundary nucleated transformation kinetics. The Cahn model leads to er-
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roneous results upon fitting to simulated transformation curves. It is con-
cluded that the here proposed modified Cahn model is best suited to infer
correct values of kinetic material parameters from experimentally obtained
data about the kinetics of grain-boundary nucleated phase transformations.

Chapter 5 provides a summary of chapters 2–4. Additionally, results of
recently published research on atomistic (kinetic Monte Carlo) simulations
are reviewed. In particular, the atomic (jump) processes occurring during
interface movement in the massive austenite→ferrite phase transformation
in pure iron are discussed.

In the chapters 6 and 7, the kinetics and the resulting microstructure of
the static recrystallisation of pure copper are investigated by experiments
and by mesoscopic simulations.

In chapter 6, the kinetics of the recrystallisation is investigated by differ-
ential scanning calorimetry (DSC). The associated microstructural change
is characterised by electron backscatter diffraction imaging (EBSD), by ana-
lysing deformed specimens before recrystallisation and specimens after par-
tial recrystallisation and after completed recrystallisation. The experimental
results acquired by the two methods are compared with each other and dis-
cussed in the context of the available body of literature results. The observed
kinetics deviate from JMAK-like behaviour. The observed grain-area distri-
bution is unusually broad and skewed towards large grains. Comparison
with mesoscopic, geometric simulations shows that previously proposed
(simple) models fail to correctly describe the microstructure resulting from
recrystallisation, although they can successfully model the recrystallisation
kinetics. It is concluded that the experimental results on both the kinet-
ics and the microstructure can be reconciled employing a recrystallisation
model incorporating ongoing (i.e. beyond time t = 0) nucleation and ac-
counting for the inhomogeneous nature of the deformed material.

In chapter 7, the kinetics and microstructure of the recrystallisation were
investigated on the basis of a comparison of mesoscopic, cellular automata
simulations with experimental data from the previous chapter. Physical
models for the nucleation rate and the growth rate of recrystallised grains
were employed which require experimentally obtained informations about
the deformed state as input. The orientation-distribution function and the
misorientation-angle distribution for neighbouring grains of deformed spe-
cimens were used to set up the microstructure serving as start configura-
tion for the simulations. The influence of a subgrain-size distribution, of an
ongoing nucleation during recrystallisation, of an inhomogeneously distrib-
uted stored energy in the deformed state and of a misorientation-dependent
interface mobility were investigated. The simulated microstructures after
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recrystallisation exhibit a bimodal grain-size distribution instead of the very
broad, monomodal grain-size distribution found in the experiments. It is ar-
gued that spatially resolved determination of crystal (subgrain) orientation
and (deformation) energy is necessary to arrive at realistic descriptions of
both the recrystallisation kinetics and the microstructure after completed
recrystallisation.

In chapter 8, the allotropic, martensitic phase transformation hcp�fcc in
cobalt is investigated by DSC upon isochronal annealing at heating rates
in the range from 10 K min−1 to 40 K min−1. The microstructural evolu-
tion is traced by light optical microscopy (LM) and X ray diffractometry
(XRD). The kinetics of the phase transformation from hcp to fcc Co upon
isochronal annealing is described on the basis of a modular phase trans-
formation model. Appropriate model descriptions for athermal nucleation
and thermally activated, anisotropic, interface-controlled growth tailored to
the martensitic phase transformation of Co are implemented into the modu-
lar model. Fitting of this kinetic model to simultaneously all isochronal DSC
runs yields values for the energy of the interface separating the hcp and fcc
Co phase and the activation energy for growth.

9.2 Zusammenfassung in der deutschen Sprache

In dieser Arbeit wird das Wechselspiel zwischen der Phasenumwandlungs-
kinetik und dem Gefüge von Materialien untersucht. Während einer Pha-
senumwandlung wird das Ausgangsgefüge eines Materials durch das re-
sultierende Gefüge gemäß dem vorliegenden Phasenumwandlungsmecha-
nismus ersetzt. Es werden drei verschiedene Aspekte der Wechselwirkung
zwischen Gefüge und Umwandlungskinetik betrachtet. Erstens wird das
Gefüge ermittelt, das aus Phasenumwandlungen mit bekanntem Mechanis-
mus resultiert. Zweitens wird der Einfluss des Ausgangsgefüges auf die re-
sultierende Phasenumwandlungskinetik untersucht. Drittens werden Kennt-
nisse sowohl über das resultierende Gefüge als auch der Umwandlungski-
netik benutzt, um geeignete kinetische Modelle für eine bestimmte Phasen-
umwandlung zu identifizieren.

Die Diskussion in dieser Arbeit ist beschränkt auf heterogene Keimbild-
ungs- und -wachstumsumwandlungen in reinen Metallen, die grenzflächen-
kontrolliert, d.h. ohne langreichweitige Diffusion, ablaufen.

Die Kinetik von Phasenumwandlungen kann mit Hilfe eines mean-field-
Ansatzes modelliert werden. Die bekanntesten Vertreter dieses Modelltyps,
das klassische Johnson-Mehl-Avrami-Kolmogorov (JMAK) -Modell sowie
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die JMAK-artigen Modelle, gelten nur für bestimmte Umwandlungsmecha-
nismen. Unter anderem müssen die Keime räumlich zufällig in einer Probe
verteilt sein und die vorliegende Wachstumsrate muss überall in der Probe
identisch sein. Im Rahmen des modularen Modellansatzes sind empirische
Zusammenstoß-Gleichungen verfügbar, die Näherungslösungen für Fälle
darstellen, in denen gegen die eben genannten Beschränkungen verstossen
wird. Für den Spezialfall der Keimbildung auf Korngrenzen im Ausgangs-
gefüge (d.h. einer räumlich nicht-zufälligen Keimbildung) ist ein “physika-
lischeres” Modell nach Cahn verfügbar.

Ohne sich auf ein bestimmtes kinetisches Modell zu beziehen können die
Phasenumwandlungskinetik und das resultierende Gefüge mit Hilfe von
mesoskopischen Simulationen ermittelt werden. In der vorliegenden Ar-
beit werden geometrische Simulationen, die mit globalen Transformations-
regeln operieren, sowie Zelluläre-Automaten-Simulationen, die mit lokalen
Transformationsregeln operieren, verwendet.

In Kapitel 2 wird das Gefüge, das sich aufgrund bestimmter Keimbild-
ungs- und -wachstumsphasenumwandlungen ergibt, simuliert und analy-
siert. Die Umwandlungskinetik folgt dabei einem modularen Modell, des-
sen Bestandteile auch die “globalen” Transformationsregeln einer geome-
trischen Simulationsmethode darstellen. Die Gefüge, inbesondere die Korn-
größenverteilungen, die sich aufgrund von Phasenumwandlungen während
des Aufheizens und während des Abkühlens einer Probe ergeben, unter-
scheiden sich drastisch, da Keimbildungs- und -wachstumsrate unterschied-
liche Temperaturabhängigkeiten aufweisen. Die Unterschiede zwischen Korn-
volumenverteilungen, Kornflächenverteilungen und Sehnenlängenverteilun-
gen werden verglichen und ihre Eignung zur Analyse der zugrundeliegen-
den Phasenumwandlungskinetik wird diskutiert.

In Kapitel 3 und 4 wird die Kinetik von Phasenumwandlungen, deren
Keimbildung auf den Korngrenzen der Ausgangsphase stattfindet, sowie
das resultierende Gefüge, mit Hilfe von geometrischen Simulationen uner-
sucht. Die Einflüsse der Korngrenzenflächendichte des Ausgangsgefüges,
der Korngrößenverteilung des Ausgangsgefüges, sowie der eigentlichen Pha-
senumwandlungskinetik werden untersucht.

In Kapitel 3 wird die simulierte Umwandlungskinetik mit den Vorher-
sagen zweier kinetischer Modelle verglichen; einerseits mit einem Modell
das für räumlich zufällig verteilte Keime entwickelt wurde und anderer-
seits mit einem Modell, das für Korngrenzenkeimbildung entwickelt wur-
de. Für alle untersuchte Ausgangsgefüge und Kinetiken liegt der simulierte
Verlauf des Umwandlungsgrades zwischen diesen beiden Modellvorhersa-
gen. Das Maximum der Korngrössenverteilung des resultierenden Gefüges
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verschiebt sich zu umso kleineren Korngrößen, je ausgeprägter der Einfluss
der Korngrenzenkeimbildung wird.

In Kapitel 4 wird untersucht, inwiefern verschiedene kinetische Modelle
geeignet sind, um die Kinetik von Phasenumwandlungen, deren Keimbil-
dung auf den Korngrenzen der Ausgangsphase stattfindet, zu beschreiben.
Behandelt werden

• das JMAK-Modell, das von zufällig verteilten Keimen ausgeht,

• empirische Erweiterungen des JMAK-Modells, die im Rahmen des
modularen kinetischen Modell-Ansatzes entwickelt wurden,

• das Cahn-Modell, das Keimbildung auf zufällig verteilten Ebenen be-
handelt, sowie

• eine neue empirische Erweiterung des Cahn-Modells.

Keines dieser Modelle kann die tatsächliche Umwandlungskinetik exakt
vorhersagen. Das JMAK-Modell kann mit keiner der möglichen Parameter-
kombinationen die simulierte Umwandlungskinetik beschreiben. Das Cahn-
Modell kann die Kinetik zwar beschreiben, liefert aber fehlerhafte, d.h. von
den Input-Werten der Simulation abweichende Werte für die durch die Mo-
dellanpassung ermittelten kinetischen Parameter. Die neu vorgeschlagene
Erweiterung des Cahn-Modells ist am besten geeignet um zuverlässig Ma-
terialparameter durch Modellanpassungen an experimentell ermittelte Pha-
senumwandlungskinetiken, deren Keimbildung auf Korngrenzen des Aus-
gangsgefüges stattfindet, zu bestimmen.

Kapitel 5 stellt eine Zusammenfassung der Kapitel 2–4 dar. Darüber hin-
aus werden Literaturdaten von atomistischen Simulationen der massiven
Austenit→Ferrit-Umwandlung in reinem Eisen besprochen. Insbesondere
wird diskutiert welchen Einfluss die atomaren Sprungprozesse an der Pha-
sengrenzfläche auf die Mobilität der Grenzfläche haben.

In Kapitel 6 wird die Kinetik der Rekristallisation von reinem Kupfer
mit Hilfe von isothermer Differential-Scanning-Kalorimetrie (DSC) unter-
sucht. Die dabei stattfindende Gefügeentwicklung wird mittels Elektronen-
Rückstreu-Beugung (EBSD) verfolgt. Es werden verformte Proben vor der
Rekristallisation, teilweise rekristallisierte Proben sowie vollständig rekris-
tallisierte Proben untersucht. Die experimentellen Daten, die mit den beiden
Methoden gewonnen wurden, werden miteinander verglichen und sie wer-
den gemeinsam mit vorhandenen Literaturdaten diskutiert. Die beobachte-
te Rekristallisationskinetik zeigt Abweichungen von JMAK-artigem Verhal-
ten. Die ermittelte Kornflächenverteilung ist ungewöhnlich breit und asym-
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metrisch (mit einem Maximum bei kleinen Kornflächen). Vergleiche mit me-
soskopischen, geometrischen Simulationen zeigen, dass bekannte (einfache)
Modelle das aus der Rekristallisation resultierende Gefüge nicht korrekt be-
schreiben können, obwohl sie die Rekristallisationskinetik korrekt wieder-
geben. Es wird geschlossen dass die experimentellen Daten bezüglich der
Rekristallisationskinetik und des resultierenden Gefüges nur dann zusa-
mengeführt werden können, wenn ein Rekristallisationsmodell aufgestellt
wird, das anhaltende Keimbildung (d.h. auch nach Beginn der Rekristallisa-
tion) beinhaltet sowie das die Inhomogenität des Ausgangsgefüges berück-
sichtigt.

In Kapitel 7 wird die Kinetik und das resultierende Gefüge der Rekristal-
lisation von reinem Kupfer mit Hilfe von Zellulären-Automaten-Simulatio-
nen untersucht, sowie mit den experimentellen Daten des vorherigen Ka-
pitels verglichen. Die eingesetzten “physikalischen” Modelle für die Keim-
bildungs- und -wachstumsrate der rekristallisierten Körner benötigen expe-
rimentelle Daten über das Ausgangsgefüge als Input. Die kristallographi-
sche Orientierungsverteilungsfunktion sowie die Misorientierungswinkel-
verteilung werden verwendet um das Ausgangsgefüge der Simulationen
zu konstruieren. Der Einfluss von während der Rekristallisation anhalten-
der Keimbildung, von einer (räumlich) inhomogen verteilten Verformungs-
energie, sowie von einer Misorientierungswinkelabhängigen Grenzflächen-
mobilität werden untersucht. Die simulierten resultierenden Gefüge nach
erfolgter Rekristallisation zeigen eine bimodale Korngrößenverteilung an-
statt der experimentell beobachteten breiten monomodalen Verteilung. Es
wird argumentiert dass eine ortsaufgelöste Kenntnis der Kristall- (Subkorn-
) orientierungen und der Verformungsenergien notwendig ist, um zu einer
realistischen Beschreibung sowohl der Rekristallisationskinetik als auch des
resultierenden Gefüges nach vollständiger Rekristallisation zu gelangen.

In Kapitel 8 wird die allotrope martensitische Phasenumwandlung zwi-
schen der hexagonal dichtestgepackten (hdp) und der kubisch dichtestge-
packten (kfz) Kristallstruktur in reinem Kobalt untersucht. DSC-Experimente
während isochronem Heizen mit Heizraten von 10 K min−1 bis 40 K min−1

werden durchgeführt. Die Entwicklung des Gefüges wird mittels Lichtmi-
kroskopie und Röntgebeugung verfolgt. Die Kinetik der hdp→kfz Phasen-
umwandlung wird im Rahmen des modularen kinetischen Modell-Ansatzes
beschrieben. Dabei werden für die Beschreibung der martensitischen Um-
wandlung geeignete Modellbeschreibungen für athermale Keimbildung so-
wie thermisch aktiviertes, anisotropes und grenzflächenkontrolliertes Wachs-
tum angepasst und in den modularen Ansatz integriert. Aus der simulta-
nen Anpassung des Modells an experimentell (kalorimetrisch) ermittelte
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Phasenumwandlungskinetiken (bei verschiedenen Heizraten) werden die
Grenzflächenenergie zwischen hexagonalem und kubischem Kobalt, sowie
die Wachstumsaktivierungsenergie erhalten.
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