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Der erste Trunk aus dem Becher der Naturwissenschaft macht
atheistisch, aber auf dem Grund des Bechers wartet Gott.
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Abbreviations, symbols and physical
constants

2DES two-dimensional electronsystem
2DEG two-dimensional electrongas
τ scattering time
e electron charge
m electron mass
m∗ effective electron mass
ne electron density
E electric field strength
B magnetic field strength
ei=x,y,z unit vector in x,y,z direction
p momentum
ωc cyclotron frequency
Ec cyclotron energy
σ conductivity
σ0 specific conductivity
G conductance
G0 conductance at B=0
Γ level broadening
ρ resistivity
GaAs gallium arsenide
AlAs aluminum arsenide
AlGaAs aluminum gallium arsenide
Rxx longitudinal resistance
Rxy transversal resistance
RH Hall resistance
µ mobility
DOS density of states
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Φ total electron wave function
A magnetic flux
εi confinement energy of the i-th level
kB Boltzmann constant
ν filling factor
νT total filling factor
EF Fermi level
vF Fermi velocity
λ wave length
QHE quantized Hall effect
IQHE integer quantized Hall effect
FQHE fractional quantized Hall effect
MBE Molecular Beam Epitaxy
| ↑〉, | ↓〉 spin-up, spin-down wave function
∆SAS symmetric-antisymmetric energy gap
EC Coulomb energy
Einter interlayer energy
Eintra intralayer energy
d interlayer spacing
lB magnetic length
∆ activation energy gap (of a QHE)
BCS Bardeen-Cooper-Schrieffer model
BEC Bose-Einstein condensate
EZ Zeeman energy
QHF quantum Hall ferromagnetism
KT Kosterlitz-Thouless (transition)
TKT Kosterlitz-Thouless transition temperature
ρs pseudospin stiffness
B⊥ perpendicular magnetic field
B‖ parallel magnetic field
Ic critical current
DC direct current
AC alternating current
ξ coherence length
λJ Josephson length
It tunneling current
IEX excitonic counterflow current
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IQP quasi-particle current
Ld size of coherent domain
ε dielectric constant
LC inductor-capacitor circuit
HB Hall bar
CR Corbino ring
I-V current voltage (characteristic)
Idrive current flowing through the drive layer
Idrag current flowing through the drag layer
IS layer symmetric current
IAS layer antisymmetric current
Itotal total current
AR Andreev-reflection
Iin current measured at the inner edge
Iout current measured at the outer edge
NDR negative differential resistance
IR current detected using a shunt resistance
IGND current flowing to the ground
ITU interlayer tunneling current
Icir circular current
Vinteredge intralyer voltage between the outer and inner edge of a Corbino ring device
FFP Fronius-Fischer-Ploog etching method
MOCVD Metal-Oxide Chemical Vapor Deposition
LT-GaAs low temperature GaAs
PMMA Poly(methyl methacrylate)
He3 helium-III
He4 helium-IV





Chapter 1

Introduction

The revolution of physics from the classical to quantum mechanical view angle, ignited by a
number of discoveries from the past century such as the photoelectric effect by Heinrich Hertz
as well as the quantum hypothesis by Max Planck, has continued to flourish in the second half of
the 20th century. One of the most intensively studied topics is the phenomenon of spontaneous
symmetry breaking, which is present in both particle physics and condensed matter physics. In
particle physics, the most prominent example is the mechanism leading to the prediction of a
gauge boson called Higgs boson, which should give the exchange bosons for the weak inter-
action, the W and Z bosons, their mass. In condensed matter physics, a similar spontaneous
symmetry breaking is observed in ferromagnetism and superconductivity. When a ferromagnet
is cooled down to below its Curie temperature, the magnetic moments are aligned giving rise to
a finite magnetization and the rotational symmetry to any axis perpendicular to the direction of
magnetization is spontaneously broken. In superconductivity, similar effect occurs when a col-
lective field breaks the electromagnetic gauge symmetry and gives rise to the superconducting
energy gap.

There is also another type of symmetry breaking which leads to formation of energy gaps. In
two-dimensional charge systems, the most prominent effect is the quantized Hall effect which
arises due to the breaking of time-reversal symmetry: the Lorentz-force acting on traveling
charge carriers turns the cyclotron orbit in two different directions under time-reversal. Fur-
ther examples include topological insulators, the quantum Spin Hall effect and the anticipated
quantum anomalous Hall effect.

Strikingly, spontaneous symmetry breaking can also lead to an effect which combines some
of the effects above: in closely spaced double quantum well systems, interlayer coherence can be
induced when adjusting the Coulomb interaction within each layer to be similar to that between
the two layers. This can be done by controlling the magnetic field, the charge carrier density in
both layers as well as by the distance between the layers. At the state, in which both quantum
wells exhibit a filling factor of 1

2
, a quantum Hall state of the combined filling factor νT =
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1 is formed. In terms of the pseudospin, a which layer degree of freedom assigned to each
electron in the bilayers, the pseudospin vectors are aligned in the system’s ground state, forming
a pseudospin quantum Hall ferromagnet. Since the quantum wells are half-filled, occupied and
vacant states can also be thought as indirect conduction band excitons which are condensed
into a BCS-like condensate giving rise to a Josephson-like interlayer tunneling up to a critical
current, strongly resembling the Josephson junctions of conventional superconductors.

In this work, phenomena concerning the critical currents, both out of plane and in the plane,
are studied in double-well structures. After this introductive chapter, the rest of this thesis is
structured as follows:

• Chap. 2 introduces the physics of two-dimensional electron systems (2DES) and the in-
teger quantum Hall effect. Starting with the classical Drude model, the edge state picture
will be discussed in detail under the light of Landau quantization. It will be extended by
distinguishing between the compressible and the incompressible strips of a 2DEG, which
results in different Hall potential distribution of a single quantum Hall plateau. This chap-
ter is terminated with the fractional quantum Hall effect.

• Chap. 3 gives an introduction to the underlying theory of the ground state as well as
low energy excited states of the νT = 1 bilayer state. Three types of ground state wave
functions, which are mathematically equivalent, will be presented. In the low energy ex-
citations, the concept of merons will be introduced. Finally, different types of transport
including the interlayer tunneling, in-plane transport and excitonic counterflow will be
discussed.

• Chap. 4 opens the experimental part of this thesis and deals with the interplay between
the quantum Hall breakdown and the Josephson-like interlayer tunneling. Three Hall bar
samples which only differ in their interlayer spacing will be presented in terms of their
critical Josephson currents. Two of them will be further investigated in order to clarify the
role of in-plane transport in the interlayer tunneling.

• Chap. 5 uses Corbino ring devices to study the transport in different configurations. In
particular, interlayer tunneling at different edges of one Corbino sample will be compa-
red in order to study the effect of edge and area. Furthermore, two Josephson interlayer
currents will be applied simultaneously to investigate the interplay between these two
circuits which are separated.

• Chap. 6 presents two measurement setups to study the excitonic counterflow at νT = 1:
series and drag counterflow. For series counterflow, one Corbino sample is used while
two Corbino samples are used for the drag counterflow, from which one sample will be
tilted in order to introduce a parallel magnetic field component on the 2DES.



13

These chapters are followed by a summarizing chapter which also points at existing questi-
ons and further possibilities to complete the understanding of this topic. Three appendices are
provided for interested readers to know about the materials and fabrication procedures used in
this work in more details.

The results from this thesis can be partially found in the following publication:

• X. Huang, W. Dietsche, M. Hauser, and K. von Klitzing, Coupling of Josephson Currents
in Quantum Hall Bilayers, Phys. Rev. Lett. 109, 156802 (2012)





Chapter 2

Quantum Hall Effects

2.1 Integer Quantum Hall Effect

2.1.1 Transport in Electromagnetic Fields

The transport phenomena of electrons in two-dimensional systems are complex and will be
approached starting with classical models. The Drude model gives both reasonable results for
the classical Hall effect and useful information for the quantized case. Hence, it will be explai-
ned as an introduction into the physics of the QHE in the following. Then, in addition to the
quantization of energy of motion perpendicular to the plane of the 2DES, the electronic states
are quantized into discrete levels at high magnetic fields. This quantization greatly affects the
charge transport.

Drude Model

A typical conductor with a rectangular geometry with length L, width W and thickness d, is
shown in Fig. 2.1. In the Drude model, electrons are treated as quasi-free massive particles with
vanishing size. Interactions between electrons and the crystal environment such as scattering
processes with charged impurities, crystal defects as well as phonons are included through the
scattering time τ , a phenomenological quantity which denotes the average time between two
collisions of an electron with the above mentioned scattering centers. Electron-electron interac-
tions are not taken into account.

By applying this model to an electron with charge −e and effective mass m∗ in a conductor
with electron density ne, the equation of motion in a uniform electric field E = Eex and a
uniform magnetic field B = Bez can be written in the following form

F =

(
dp
dt

)
scattering

+

(
dp
dt

)
fields

=
mv
τ
− e (E + v× B) (2.1)
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Fig. 2.1: Typical Hall bar sample with length L and width W. Upper panel: at va-
nishing magnetic fields, the equipotential lines point in the direction perpendicular
to current; lower panel: at sufficiently large magnetic fields (i.e. in the quantum
regime characterized by ωcτ � 1), the equipotential lines point in the direction
parallel to current and merge at the hot spots.

which yields under the equilibrium condition d
dt
〈v〉 = 0 a solution in matrix form

 Ex

Ey

 =

 m/eτ −B
B m/eτ

 vx

vy

 . (2.2)

Using the cyclotron frequency ωc = eB
m∗

1, together with the specific conductivity σ0 = e2neτ
m∗

and the current density j = e〈v〉ne, Eq. 2.2 can be rewritten in the form of the Ohm’s law E = ρj
with the resistivity tensor2 ρ

 Ex

Ey

 = σ−1
0

 1 −ωcτ
ωcτ 1


︸ ︷︷ ︸

≡ρ

 jx

jy

 . (2.3)

The x-component of the electric field drives a steady current in the x direction along the strip and
a y-component of E must appear to balance the Lorentz force on the electron. In this equilibri-
um, the current can only flow in the x-direction, hence jy = 0. Matrix multiplication therefore
yields

Ey =
1

nee
Bjx ≡ RHBjx, (2.4)

1For the simplified case, i.e. the Fermi surface is assumed to be a sphere, the cyclotron mass is approximately
equal to the effective mass. This is valid for GaAs.

2Under matrix inversion ρ = σ−1, one can also formulate the Ohm’s law j = σE using the conductivity tensor

σ = σ0

[
1

1+ω2
cτ

2
ωcτ

1+ω2
cτ

2

− ωcτ
1+ω2

cτ
2

1
1+ω2

cτ
2

]
.
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which means that the transverse electric field is proportional to the current applied in the lon-
gitudinal direction and the perpendicular magnetic field via a coefficient called Hall constant.
Experimentally, the Hall constant can be determined using the Hall bar geometry by measuring
the dependence of the transverse resistance Rxy on the magnetic field, since

Rxy =
VH
I

= RHB. (2.5)

Eq. 2.4 and Eq. 2.5 give the two-dimensional electron density

ne =
IB

VHe
. (2.6)

On the other hand, the measurement of the longitudinal resistance gives

Rxx =
VL
I

=
L

W
ρxx =

L

neeµW
. (2.7)

Here, µ = eτ
m∗ is the mobility of the electron in the conductor and can be calculated from Eq.

2.7. For the case ωcτ � 1, one has σxx = 1
σ0

= 1
ρxx

and σxy = −σ2
0ρyx. However, this does not

hold for ωcτ � 1, where

σxx →
σ0

(ωcτ)2 =
(
ene
B

)2 1

σ0

∝ ρxx (2.8)

σxy = −ρ−1
yx =

ene
B

(2.9)

Large magnetic fields also lead to the change in the distribution of the equipotential lines. At
low or zero magnetic field, as shown in the upper panel of Fig. 2.1, the equipotential lines align
in the direction perpendicular to the current flow. At high magnetic fields, the electron trajectory
is determined rather by the magnetic field than by the electric field between source and drain,
which in the case of finite sample width leads to a large Hall voltage. Thus jy = 0 can no longer
be assumed for the whole sample when solving the equation of motion. The equipotential lines
in this case will look like illustrated in the lower panel of Fig. 2.1. Almost all the equipotential
lines merge together and become dense at the corners of the sample called hot spots, which have
been experimentally observed [1]. In this case, the source-drain voltage becomes equal to the
Hall voltage (UH = USD).

Corbino Effect

The classical Hall effect has been not only observed in a rectangular or topologically equivalent
devices, but also in a conductor with a disk geometry. Fig. 2.2 illusrates such a device. Without
magnetic field, a voltage difference between the two edges leads to a pure radial current. In
presence of a magnetic field perpendicular to the plane of the disk, the Lorentz force will bend
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the electron trajectory to form spiral paths before the electrons reach the drain side. When the
magnetic field is strong enough (ωcτ �1), almost no radial current flows anymore between the
two edges but a circular current is assumed to flow within the disk which is associated with
the Hall constant via Eq. 2.5 [2]. While in a rectangular (Hall bar) device the resistivity can
be measured, a Corbino disk provides information about the conductivity in the longitudinal
direction, σxx, thus a complementary method to study the magnetotransport.

Fig. 2.2: The Corbino effect in a conductor with disk geometry. Applying a bias
voltage between the two edges will give rise to a circulating current (red) when a
perpendicular magnetic field is applied.

2.1.2 Quantized Hall Resistances

In two-dimensional systems, when probing the longitudinal resistivity of a Hall bar under varied
magnetic field and low temperatures, one can observe resistivity minima which go down to
almost zero and are separated by finite magneto resistance. The finite magneto resistance is
known as the Shubnikov-de Haas oscillation while the resistivity minima, which coincide with
the quantized transversal (Hall) resistance, is characteristic of the quantum Hall effect. In the
following, the physical origin of the quantization of Hall resistance–the Landau quantization,
will be explained. This will be extended by the effects of disorder-induced localization as well
as electron-electron interaction. Finally, a brief introduction will be given on the breakdown of
the integer quantum Hall effect.

Landau Quantization

In order to study the effects of high magnetic fields on the electron transport in a 2D system, it is
essential to calculate the electronic density of states (DOS) under such a magnetic field quantum
mechanically. When electrons are brought into a 2DES–heterostructures or quantum wells, their
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motion is confined in the growth direction, which leads to a case similar to the particle in a box,
as shown in Fig. 2.3.

Fig. 2.3: Particle in a box with a finite wall height. The wave functions correspond
to the subbands’ confinement energies.

The Schrödinger-equation for an electron in a 2DES in an external magnetic field B = ∇×A
is

ĤΦ =

− h̄2

2m∗

(
∇− eA

ih̄

)2
Φ = EΦ (2.10)

For a perpendicular magnetic field B = Bez, the vector potential A can be written using the
Landau gauge as A = (0, Bx, 0). It is intuitive to separate the motion along the z axis from that
within the xy plane, which yields the following electronic wave function

Φ(x, y, z) = ζ(x, y)ξ(z) (2.11)

Eq. 2.10 can thus be separated into an equation concerning the z motion and a second one con-
cerning the xy motion. Taking into account the boundary conditions for the z motion under the
assumption of infinite barrier potentials, i.e. ξz=0 = ξz=d = 0, the solution to the Schrödin-
ger equation for the z-motion are the standing waves in this direction with quantized energy
eigenvalues (subbands)

εi =
h̄2π2i2

2m∗d2
(2.12)

Here, i denotes the index of the confinement energy level. At low temperatures, the electron
motion is nearly completely quenched along the z direction due to the large distance between
the Fermi level and the second subband relative to the thermal energy given by kBT 1. This

1For a GaAs quantum well with m∗ =0.067m0 (m0 is the mass of a free electron) and a width of 10 nm, the
energy distance between the ground state and the second subband corresponds to a temperature of nearly 2000 K.
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gives rise to a 2DES even though the quantum well is non-ideal by having a finite thickness.
With the Landau gauge, the wave function for the xy motion can be written in the form

ζ(x, y) = e−ikyyψ(x). (2.13)

Under the substitution x0 ≡ h̄ky
eB

, Eq. 2.13 transforms the Schrödinger equation for x and y into
a one-dimensional Schrödinger equation

− h̄2

2m∗
∂2ψ(x)

∂x2
+
m∗

2
ω2
c (x− x0)2 ψ(x) = Eψ(x). (2.14)

This is the Schrödinger equation of a one-dimensional harmonic oscillator in which the potential
is centered at x0, which can be solved by a product of Hermitian polynomials and an exponential
function as ansatz. The eigenvalues of Eq. 2.14 are the so-called Landau levels

εj = h̄ωc

(
j +

1

2

)
(2.15)

with j as the quantum number of the Landau levels2. This means that the DOS in a 2D system
under the magnetic field is no longer constant but discrete. The total energy of an electron is
thus

Ei,j =
h̄2π2i2

2m∗d2
+ h̄ωc

(
j +

1

2

)
. (2.16)

Each Landau level can accommodate a certain number of electrons per unit area, which is equal
to the number of magnetic flux quanta φ0 = h

e
per unit area

n =
B

φ0

=
eB

h
. (2.17)

Without taking the Zeeman-splitting into account, the filling factor ν, which is defined as the
number of fully occupied Landau levels, can be expressed as

ν =
ne
n

=
neh

eB
. (2.18)

Microscopic Picture

Soon after the quantized Hall effect was discovered by K. von Klitzing in 1980, efforts have
been made to develop a theory to understand this effect. Büttiker et al. found that a model
involving transport channels at the edges of a sample can elegantly explain the quantized Hall
resistances [3]. This model takes into account that the Landau quantization leads to discrete
energetic levels in the bulk. Such as illustrated in Fig. 2.4 b), such energy levels are bent at

2The Zeeman splitting due to electron spin isn’t taken into account.
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the sample edges and the number of current carrying edge channels corresponds to the number
of fully occupied Landau levels in the bulk. It can be shown that one can elegantly reach the
quantized values of Hall resistance in the frame of this picture.

Nevertheless, the edge channel picture is not reflecting any microscopic detail of the quan-
tum Hall effect. In particular, it does not take into account how the Hall potential is distributed
inside the 2DES. Hence, details about the current distribution within and beyond the quantum
Hall plateaus is not discernable using this simplified picture.

In order to understand the quantized Hall effect at a microscopic level, local measurements
deploying a scanning probe microscope (SPM) have been carried out to study the chemical
potential of the 2DES at QHE [4]. From these measurements, it is concluded that the Hall
potential distribution across the sample width (along the transversal axis) varies significantly,
depending on the exact filling factor. In the mean time, the plateau values of the quantized Hall
resistances remain unaffected (Fig. 2.5 a)). It is claimed that this effect is a consequence of
the existence of compressible and incompressible strips running along the edges of the 2DES,
which are predicted in several theoretical works [5] [6] [7].

The compressible/incompressible strips theory will be briefly explained in the following.
Generally speaking, it takes not only the chemical potential but also the electrostatic potential,
hence the electrochemical potential, into account. It is based on the assumption that the electro-
chemical potential, µelch(r) = −eφ(r) + µch(r), is constant through the entire 2DES. Fig. 2.4
(d)-(e) shows the result of self-consistent calculation of the chemical, electrostatic potential as
well as the density distribution in the vicinity of the edge of a 2DES. Compared to the result
of single electron edge picture, shown in (a)-(c), the self-consistent result yields two alternating
strips: the metal-like compressible and the insulator-like incompressible strips. The simplified
physical explanation for the formation of such strips is that the electron density would rather
undergo a gradual increase and then remain constant, thereby paying a small amount of che-
mical energy, than jumping abruptly which costs a considerable amount of electrostatic energy.
In the incompressible region, the Landau levels below the Fermi energy are fully filled and
the electrons cannot rearrange themselves to screen the electrostatic potential variations. As
consequence, there is no conductivity in the direction of an electric field. In the compressible
region, the Landau levels below the Fermi energy are only partially filled. Hence, the electrons
can rearrange themselves at the Fermi energy, thus are able to screen any electrostatic potential
variations, resulting in a flat electrostatic potential.

Now it will be shown that the quantized Hall resistances can be understood in the framework
of the compressible/incompressible strips. Under the Hall condition which has been elaborated
in Sec. 2.1.1, one has the relation

Ex(x) = ρH(x)jy(x). (2.19)
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Fig. 2.4: Compressible and incompressible strips. (a-c) shows the single particle
edge channel picture with corresponding Landau levels and density profile. (d-
e) shows the result by taking both the chemical and electrostatic potential into
account. In (d), the compressible strips are the dashed area and the incompressible
strips are the blank area. From [5].
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Here, ρH(x) = B
en(x)

. Apparently, this relations hold even without the Landau quantization.
Taking the two-dimensionality of the electronic system into account, one has to consider the
Landau quantization. It is crucial to stress that according to the compressible/incompressible
strips theory, the incompressible region has an integer filling factor since here the Fermi level
lies between two Landau levels, whilst in the compressible region the Fermi level lies at a
partially filled Landau level [8] [9]. From Eq. 2.17 from the previous section, we know the
relation between the carrier density and the filling factor. Furthermore, the current should flow
completely in the innermost incompressible strip [8] [9]. Therefore, the filling factor in such
region is an integer which is denoted ν and one can write

ρH(x) =
h

νe2
. (2.20)

Combining all the three statements (Hall condition, Landau quantization, current carried by the
innermost incompressible strip), one obtains for the total imposed current in a Hall bar with
width 2d

I =
∫ d

−d
jy(x) dx =

∫ d

−d

Ex(x)

ρH(x)
dx (2.21)

so that

⇒ UH =
∫ d

−d
Ex(x) dx = ρH(x)I =

h

νe2
I. (2.22)

Besides giving the correct quantized Hall resistances, there are two other important featu-
res about the compressible/incompressible strips theory. The first feature is that it identifies the
innermost incompressible strip as the current carrying region in the sample. This is the micros-
copical reason of the exact quantization of Hall resistance. The incompressible strips, in which
the Landau levels below the Fermi energy are fully filled, can conduct a Hall current, i.e. a cur-
rent flowing in the longitudinal direction which is induced by a Hall voltage. In fact, only the
incompressible strips are carrying the Hall current. This is because if the compressible strips
would also contribute to current, one would expect a voltage drop in the longitudinal directi-
on in the vicinity of QHE. The reason for this is that in the compressible strips, the Landau
levels below the Fermi energy are partially filled and provide states in which electrons can be
scattered. In other words, the Hall potential drops across the innermost incompressible strip.

The second feature is that it clarifies why both the longitudinal and the Hall traces are not
perfectly symmetric around the center of each filling factor. This has to do with the different
dominating transport mechanisms in the two magnetic field regions within one quantized Hall
state. In Fig. 2.5 b), the evolution of the compressible and incompressible landscape within
the 2DES over a quantum Hall plateau is illustrated. At the lower magnetic field side of a
quantum Hall plateau, the current carrying incompressible strips are located at the sample edge
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while these strips are extended over the sample width at the higher magnetic field side. In
the latter case, a bulk current is flowing through a single incompressible strip which include
compressible droplets. The asymmetry is a consequence of the difference in the role of disorder.
In the following, the role of disorder will be elaborated.

Extended and Localized States

In the previous calculations, the quantized Hall resistances have been obtained for a clean sy-
stem. This is consistent with the compressible/incompressible strips theory that even in an abso-
lutely clean system, electron-electron interaction will lead to strip formation at the sample edges
and finally the quantized Hall resistances. In reality, however, 2DES samples contain defects
which can be treated as disorder potentials. In fact, such defects are supportive for the quan-
tum Hall effect, since disorder increases the width of quantum Hall plateau. Disorder potentials
will lead to local potential fluctuations followed by the Landau levels and the incompressible
strip will then include compressible islands [10], while the quantized Hall resistances remain
unaffected.

Such defects can also have strong impacts on the density of states in a 2DES. The Landau
levels in the bulk can no longer be pictured as sharp lines such as in Fig. 2.4 b), but are smeared
out. Fig. 2.6 shows such broadened Landau level consisting of two types of states: the extended
states close to the center of the Landau levels and the localized states in the tails. The Hall
current is carried by the extended states below EF . In the incompressible strips, the Landau
levels below the Fermi energy are fully filled. This means that the preceding calculation of
the quantized Hall resistances in the frame of the compressible/incompressible strips theory is
only valid for non-ideal systems, when the Fermi energy lies within the localized states in the
incompressible region of the sample.

2.1.3 Current-Induced Breakdown of the IQHE

Shortly after the discovery of the quantum Hall effects, the physical limits of the QHEs have
attracted strong interest. Besides its potential for basic research, studying the QHE at elevated
currents is also crucial as for high precision measurements, the sample current should be as high
as possible, without exceeding its critical limit. At such a critical current, it has been observed
that the longitudinal and Hall resistances, ρxx and ρxy, start to deviate from their low current
values. In particular, ρxx increases suddenly to the order of h/e2 once the sample current exceeds
a certain limit. This phenomenon, shown in Fig. 2.7, is called the breakdown of QHE.

Two aspects have been found to play an important role in the breakdown of QHE: the current
distribution and the dependence of the breakdown current on the sample width. For a long time,
it was believed that at QHE breakdown, current is confined at the sample edges. However, mea-
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Fig. 2.5: Scanning probe microscopy (SPM) measurement of Hall potential. In a),
the Hall potential profile is shown as a function of the sample width. Entering any
integer quantum Hall state from the lower magnetic field side, the Hall potential
changes mainly at the edges of the sample. Approaching the higher field end of
the quantum Hall plateau, the Hall potential drops across the entire sample edge.
On the left corner, theoretical estimation of the center of incompressible strips is
shown as black curves. This two regimes are discussed in b), where it is shown
that on the lower magnetic field side, the Hall current is carried by incompressible
strips at the edges, while in the higher magnetic field side the entire bulk of the
sample is incompressible, but disorder induced compressible puddles can form
and strongly vary the local Hall potential. Modified from [10]
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Fig. 2.6: Landau quantization of a spinless 2DES. Taking the disorder potentials
into account, the Landau levels can no longer be represented by sharp lines but
strips with a finite width known as extended states which are broadended by the
localized states.

surements utilizing a scanning force microscope have shown that the formation of compressible-
incompressible strips continue to exist even in the onset of breakdown of QHE [12]. Depending
on the exact magnetic field or filling factor, the incompressible strips are confined at the edges
or established along the bulk. This result suggests that the QHE breakdown is not primarily an
edge or bulk effect, but depends on sample properties and geometry. The width dependence of
the breakdown current can be approached using a percolative model which takes density fluc-
tuations due to inhomogeneities in the doping layer into account. Such inhomogeneities can be
described by a characteristic length called inhomogeneity length lin. It has been shown that the
breakdown current IBD increases monotonically with the sample width w [13] [14]. The exact
dependency on the width depends on the range of fluctuations in the 2DES. For short-range
fluctuations (lin � w), the percolation paths are densely distributed and leads to a linear de-
pendence of the breakdown current Ic on the sample width w [11]. For long-range fluctuations
of the order of the sample width, a sublinear dependence is seen, which is attributed to more
effective screening of short-range fluctuations by illumination or by increasing the mobility.

Up to date, no conclusive model is known which describes the underlying mechanism of
the breakdown of QHE. There are, nonetheless, a number of proposed mechanisms, including
quasi-elastic inter-Landau level scattering (Quills) and the hot electron model. The Quills model
successfully describes breakdown of QHE in samples with small width (1∼10 µm). Within such
a small width, the current distribution is assumed to be homogeneous. At high input currents,
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Fig. 2.7: Breakdown of quantum Hall effect characterized by a sudden increase of
the longitudinal resistance at a sufficiently large longitudinal current. The dashed
line is magnified by 5e5. From [11].

the electric field along the transversal direction, or Hall field, becomes so large that the Landau
levels are bended. This enables scattering processes where electrons are scattered from the
highest occupied into the lowest unoccupied Landau level. The breakdown currents observed
in such samples are usually very large and the breakdown curves often rather sharp, which
is associated with an avalanche-type multiplication of excited carriers after injection into a
constriction [15].

The hot electron model mainly describes the hysteresis effect when up- and back-sweeping
the current [16]. The current dependence of the electron temperature which has a S-shape is
shown to be responsible for the hysteretic effect. This S-shape originates from the balancing
between energy gain of electrons due to electric field and energy loss (such as due to Quills-
mechanism or phonon emission) [16]. Such competing effects will lead to instability in the
electron temperature and finally to the hysteresis in the breakdown currents.
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2.2 Fractional Quantum Hall Effect

In the previous section, only integer filling factors have been discussed. As a matter of fact, the
quantum Hall effect has also been observed at fractional filling factors [17]. Nevertheless, the
latter effect is of very different origin compared with its integer counterpart.

The main difference between the fractional and the integer quantum Hall effects lies in the
role of electron-electron interaction. In the IQHE, each Landau level is fully filled, so that no
vacant states are available. The electrons therefore cannot reduce their Coulomb energy by ad-
justing their spatial distribution, so that the ground state wave functions are given by the Slater-
determinant wave functions. In the FQHE, vacant states are available within the unfilled Landau
level, so that the electrons interact with each other strongly to reduce the Coulomb energy while
maintaining their kinetic energy. Here, the Coulomb energy is the only relevant energy scale
since the cyclotron energy is frozen. Theoretically, neither an exact analytical solution nor a
perturbative one is conceivable: the former one due to the large number of particles in the many
body system while the latter one due to the Coulomb-energy being the only relevant energy sca-
le, since the kinetic energy is frozen at sufficiently high magnetic fields and low temperatures.
One thus has to approach the wave function in a different way.

Laughlin et al. postulated a wave function, which gives the exact ground state wave function
for the odd denominator fractional quantum Hall states at filling factor 1

q
(q is an odd integer)

Ψ1/(q) =
∏
j<k

(zj − zk)q exp
[
−eB

4h̄

∑
l

|zl|2
]
. (2.23)

The product term indicates the Coulomb energy between two electrons as the relevant ener-
gy scale: the probability density goes to zero whenever two electrons approach each other. The
Coulomb energy can be minimized by avoiding such case.

Jain et al. came up with an idea of mapping the electron-electron interaction into even
number of magnetic flux quanta carried by each electron, thus making the strongly interacting
electrons into weakly interacting quasi-particles, the so-called composite fermions [18]. If 2p
is the number of magnetic flux quanta (vortices) bound to composite fermion (also called the
vorticity or the vortex charge of the composite fermion), n is the density of the 2DES, one can
then write the effective magnetic field experienced by the composite fermions as

B∗ = B − 2pnφ0, (2.24)

where φ0 = h/e is the elementary quantum of a magnetic flux. Electrons at filling factor ν are
thus converted into composite fermions at an effective filling factor of ν∗ given by

ν =
ν∗

2pν∗ ± 1
. (2.25)
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This means that fractional quantum Hall states for electrons can be understood as integer quan-
tum Hall states for composite fermions. This is best reflected by comparing the SdH traces of
IQHE and FQHE, as shown in Fig. 2.8.

Under suppression of the spin, the unnomalized microscopic many body wave function for
fractional states is written as

Ψν = Φν∗
∏
j<k

(zj − zk)2p , (2.26)

where Φν∗ denotes the Slater-determinant wave function of non-interacting electrons at the
corresponding filling factor ν∗. The product term contains the entire concept of composite fer-
mions: each factor means that an electron excecutes a closed path around a second electron,
thereby generating a phase of 2p×2π. Since a closed loop around a unit vortex generates a pha-
se of 2π, this means that each electron sees 2p vortices on another electron. In fact, the reduction
of Coulomb energy can also be understood by attaching vortices to electrons: the wave function
2.26 keeps the electrons apart more effectively than by merely satisfying the Pauli principle1.
In other words, the Coulomb energy is effectively used to creat the vortices, so that only a small
amount of it is left for the resulting composite particles.

The fractional filling factor of 1
2

doesn’t exhibit any quantum Hall state, which can be ex-
plained by the composite fermion picture: this fraction in the view of electrons is playing the
role of B = 0 for composite fermions. This means that at this filling factor, one has a Fermi sea
of composite fermions, which is similar to the electron Fermi sea, except that the former is spin
polarized.

Eq. 2.26 yields fairly accurate yet non-exact results for the ground state wave function.
Both the Laughlin’s wave function and the composite fermion picture are, however, only

able to explain the odd denominator fractional states. Exotic fractional states with even deno-
minator, such as ν = 5

2
, have also been observed [20], whose origin is still under discussion.

1The probability that two electrons will approach each other within a distance of r is proportional to r2(2p+1)

in the current case, while in the other case it is proportional to r2.
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Fig. 2.8: Comparing IQHE (top panel) and FQHE (bottom panel). The two red
curves, showing the respective Shubnikov-de Haas oscillations, are remarkably
similar which is consistent with the composite fermion picture of the fractional
filling factors. Modified from [19]



Chapter 3

Bilayer Quantum Hall State at νT =1

The study of correlated electron systems in low dimensions continues to be important for con-
densed matter physics nowadays. This has been driven by the emergence of both high Tc super-
conductors and the fractional quantum Hall effect in the last decades: while strongly correlated
2DES on a lattice are important for the former system in which weak coupling between the
superconducting planes is believed to be crucial for the correlation, the latter provides a frame
to study the correlation in continuum 2DES. Recently, other systems such as graphene, topolo-
gical insulators and 2D systems embedded in oxide-based interfaces have also attracted strong
interest in terms of correlated charge systems.

Early work has anticipated that in presence of strong magnetic fields, interlayer correlati-
ons in multilayer systems can lead to fractional quantum Hall states [21]. With the advances of
crystal growth techniques such as molecular beam epitaxy (MBE), high quality heterostructu-
res have become available which allows studying such interlayer correlations. One of the most
prominent states in this category is the νT = 1 bilayer quantum Hall state, which is both expe-
rimentally and theoretically well established as being a correlated state governed by intra- and
interlayer Coulomb interactions.

In this chapter, electron bilayer systems will first be introduced, followed by a discussion
about the νT = 1 quantum Hall state being a correlated state. The theoretical models descri-
bing the ground state and finally its low energy excitations in the pseudospin picture will be
presented. This is followed by an introduction to three types of transport experiments as well as
theoretical models explaining the critical tunneling current.

3.1 Electron Bilayer Systems

A bilayer system can be formed either by confining electrons into two separate layers, or by
confining them into two different edges of a wide quantum well. In both cases, the layer sepa-
ration can be as small as 100 Å and much smaller than the average distance between electrons
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within each layer. In this chapter and throughout this work, it will be focused on the first case,
which is schematically shown in Fig. 3.1. When the two layers, being symmetrically doped with
electrons resulting in the same densities nT = nB

1, are spaced by a sufficiently large distan-
ce, their wave functions donot overlap resulting in a system of two individual quantum wells.
On the other hand, if the two layers are brought into close proximity, their wave functions can
overlap, which allows the electrons to tunnel back and forth between the layers. If the wave
functions | ↑〉 and | ↓〉 denote the eigenfunctions for the upper and lower layers, respectively,
the superposition of the wave functions can thus be written as

Fig. 3.1: Schematic profile of the conduction band edge in a double quantum well
system. The dashed lines indicate the energy splitting between the symmetric and
antisymmetric state in the limit of strong interlayer coupling.

Ψ = u| ↑〉+ v| ↓〉, |u|2 + |v|2 = 1. (3.1)

Similar to any other two level system, which undergoes hybridization and form new energy
levels, this interlayer interaction can also lead to a gap between two hybridized energy levels:
the symmetric state with lower energy and the antisymmetric state with higher energy. In the
ground state, the electrons will reside in the lower energy symmetric state with u = v = 1√

2
.

1From now on, if not specified, all discussions are based on the symmetrically doped case.
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The entire system will behave like a monolayer system with an extra degree of freedom, which
manifests itself as an extra splitting. The new energy gap is called the ∆SAS gap. Intrinsically, it
depends on both the layer spacing and the height of the energetic barrier between the quantum
wells and can vary between zero and many hundreds of Kelvins, depending on the sample. This
splitting can thus be much larger or smaller than the Coulomb interaction between the layers,
EC ∝ e2/d.

The state described above is called the strong tunneling bilayer system, which is referring
to the size of the energy gap ∆SAS . The larger this energy gap, the more efficient electrons
will reside in the lower lying state, thus the more strongly the two layers are coupled. Under
application of a perpendicular magnetic fieldB, extra quantum Hall states are visible due to this
energy gap. The activation energy of these extra quantum Hall states are in the same energy scale
as ∆SAS . Since this energy gap does not involve electron-electron interaction, it is also referred
to as the single electron bare tunneling amplitude or tunnel coupling strength. In the following,
a different case is going to be introduced, in which interlayer tunneling does not require such
a strong coupling between the layers, resulting in an energy gap which has a highly collective
nature.

3.2 Correlated νT = 1 State in Weakly Coupled Bilayers

Two energy scales are essential at B > 0: the Coulomb energy between electrons within each
quantum well, Eintra ∝ l−1

B , where lB is the magnetic length which is equal to the cyclotron
radius of the lowest Landau level, and the Coulomb energy between the layers, Einter ∝ d−1.
The ratio between these two energies is thus proportional to the d/lB, which indicates the rela-
tive strength of these two interactions. When the two layers are separated so that ∆SAS � EC ,
one would expect no interlayer coupling in the single electron picture. In the special case of
νupper = νlower = 1

2
and d/lB > 2, one effectively has two non-interacting Fermi seas. Each

Fermi sea exhibits no quantum Hall effect. This is demonstrated by the blue trace of Fig. 3.2
a), where a longitudinal current is applied only through the upper layer while the longitudinal
resistance is measured for this layer. However, as can be seen from Fig. 3.2 b), when the effec-
tive layer spacing d/lB is set to a value that is smaller than 2, spontaneous interlayer coherence
leads to the observation of a bilayer quantum Hall state at a total filling factor of one, or νT = 1.
Such a quantum Hall effect is clearly visible in the red trace of Fig. 3.2 a), where a longitu-
dinal current is applied through both layers simultaneously while the longitudinal resistance is
measured for both layers.

There are several arguments why this νT = 1 bilayer quantum Hall state is due to correla-
tion. First is that this state survives at arbitrarily weak single particle tunneling amplitude, i.g.
∆SAS → 0 [24]. A second argument is that if the excitation gap ∆ of the νT = 1 state would be
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Fig. 3.2: Correlated νT = 1 state in bilayers. (a): Longitudinal resistance of a
monolayer (blue trace) and bilayer (red trace) systems. Quantum Hall effect of
νT = 1 can be observed in the bilayer systems. Ohmic contacts in the monolayer
case are connecting only one layer, while they connect both layers in the bilayer
case. (b): Phase diagram of the νT = 1 quantum Hall effect with parameters d/lB
and ∆SAS . The data points at the lower left corner of the panel are evident that
QHE is also observable in the weak tunneling regime. (a) from [22]. (b) modified
from [23].
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from single particle origin, the activation energy of the νT = 1 state would also be on the scale
of ∆. This is not the case as dissipation already levels off as the temperature is corresponding
to 0.1∆. This has been observed in both double layer and wide quantum wells and is consi-
stent with a thermally induced collapse of a collective order. The third argument for a correlated
state is that the excitation gap has been observed to drop significantly at small parallel magnetic
fields, which is explained by a phase shift contributed by a horizontal magnetic flux in presence
of vertical loop current paths. Since the number of flux quanta needed to wind the phase by
a certain value is fix, the size of magnetic field at which such a drop of energy gap occurs is
inversely proportional to the size of the vertical loop. SmallB‖ would thus correspond to a large
coherent length in the system.

Since its discovery, this νT = 1 quantum Hall state has attracted significant attention both
in experiments and theory. In the following, different theoretical models developed in order to
describe the ground state of the νT = 1 effect will be introduced, which are mathematically
identical but reflecting different physical aspects of the same system.

3.2.1 νT = 1 Ground State

(111) State

As shown in 2.2, Laughlin have developed a wave function to describe the fractional quantum
Hall states. Using Eq. 2.23 and taking the electron spin into account, Halperin et al. have applied
the generalized Laughlin wave function to describe the coincidence states between two Landau
levels. Similarly, one can also adapt this approach to formulate the ground state wave function
of νT = 1. Under q = 1, this yields the following wave function

Ψ111 =
∏
i<j

(zi − zj)
∏
i<j

(wi − wj)
∏
i<j

(zi − wj) e
− 1

4l2
B

∑
i
|zi|2

e
− 1

4l2
B

∑
i
|wi|2

. (3.2)

Similar to the Laughlin wave function, this so-called Halperin-111 wave function also mini-
mizes the Coulomb interaction energy by spatially redistributing the electrons. The only diffe-
rence is that in the case of bilayer, one has not only to minimize Eintra but also Einter. From Eq.
3.2 one finds that the probability amplitude |Ψ|2 vanishes not only whenever two electrons ap-
proach each other within each quantum well, but also when they try to be located directly above
each other. From the Halperin-111 wave function, one knows that the energy scale relevant in
describing the νT = 1 quantum Hall state is the Coulomb interaction between the electrons.

Excitonic BCS-Superfluidity

The Halperin-111 wave function can also be rewritten in a different form [25] [26] [24]
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Ψ =
∏
k

[
1√
2

(
1 + eiϕc†k,↓ck,↑

)]
|ψ↑〉, |ψ↑〉 ≡

∏
k

c†k,↑|0〉. (3.3)

This is realized under particle-hole transformation. The form of Eq. 3.3 strongly resembles
the ground state wave function postulated by Bardeen, Cooper and Schrieffer for superconduc-
tors [27]. The only difference is that in the BCS wave function describing the superconductivity,
electrons are bound to electrons forming bosons which undergo condensation at low temperatu-
res, whilst in the current case of bilayers, electrons are bound to holes forming excitons under-
going a condensation1. Thus, the half filled Landau levels can be thought of being half filled by
electrons coupled to the holes from the adjacent layer. This is shown in Fig. 3.3. Similar to the
phonon-coupled electrons in Cooper pairs, electrons and holes in the excitonic condensate also
have opposite wave vectors, resulting in all excitons possessing the k = 0 state, which does not
violate Pauli principle since excitons are bosons.

Fig. 3.3: Illustration of bilayer excitons. Each layer exhibiting filling factor of 1/2

is half-filled with electrons (solid circles) and holes (empty circles). The interlayer
coherence at νT = 1 can be shown as given by formation of bound electron-hole
pairs or bilayer excitons. Note that the ordering of charge carriers is not strictly
given at this quantum Hall state.

The νT = 1 quantum Hall state can thus be viewed as a BCS-condensate of excitons. The
existence of Bose-Einstein-condensate of excitons has been predicted back in the 1960s [31].
For a long time, its experimental realization using optical pumping technique has yielded no
conclusive result, mostly due to the short lifetime of excitons with electron residing in the
conduction band and hole in the valence band [32]. Recently, High et al. reported coherence
length of indirect excitons of the order of 30 µm thus much larger than in a classical gas,
indicating a condensate [33]. On the contrary, bilayer excitons are electron and hole pairs, from
which both constituents reside in the conduction band. Such indirect excitons have a lifetime
that is infinite.

1Besides considering the νT = 1 state as an excitonic condensate, there also exist an alternative model which
uses the term composite bosons [28] [29] [30]. Such composite bosons are formed by electrons coupling to a single
magnetic flux quantum.
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Pseudospin Ferromagnet

In the case of monolayer ν = 1 state, the wave function is written as a product of the Laughlin
wave function and a spin wave function

Ψ =
∏
i<j

(zi − zj) e
1

4l2
B

∑
i
|zi|2
| ↑↑↑ ... ↑〉. (3.4)

In its ground state, the monolayer filling factor ν = 1 shows spontaneous magnetizati-
on which exists even at vanishing Zeeman energy EZ → 0. All the spins align themselves
in the direction of the external magnetic field and form a quantum Hall ferromagnet (QHF).
The exchange interaction in traditional ferromagnetic materials such as Fe exceeds orders of
magnitudes of the dipole-dipole interaction energy, which tends to align the spins in opposite
directions. Similarly, the Coulomb exchange energy is the relevant energy scale for QHF.

For the case of νT = 1 bilayer state, one can map the Halperin-(111) wave function into

Ψ =
∏
i<j

(zi − zj) e
1

4l2
B

∑
i
|zi|2
| →→→ ...→〉, | →〉 ≡ u| ↑〉+ eiϕv| ↓〉. (3.5)

Apparently, the only difference between Eq. 3.4 and Eq. 3.5 lies in the orientation of the spin,
or pseudospin for the latter case. The pseudospin denotes the which layer degree of freedom of
an electron: an up-pseudospin means an electron residing in the upper and a down-pseudospin
in the lower layer. The coefficients u and v suffy the normalization condition |u|2 + |v|2 = 1.
In this picture, one can assign a pseudospin vector S(r) to each spatial position in the bilayer
system. Each pseudospin has an out of plane component Sz given by the polar angle θ. The
expectation value of this Sz is proportional to the difference between probability of an electron
residing in the upper and the lower layer, 〈Sz〉 ∝ |u|2 − |v|2, thus it represents the density
imbalance between the layers and the charge conjugate to the phase ϕ, the latter defining the
projection of S to the xy plane. Fig. 3.4 illustrates such a generic pseudospin which has an out
of plane component.

It might not be obvious why the projection angle of the pseudospin vector to the xy plane
is exactly the phase angle in Eq. 3.5: the Pauli spin matrix can be calculated here for the pseu-
dospin which yields 〈σx〉 = cosϕ and 〈σy〉 = sinϕ. The physical meaning of this pseudospin
picture is similar to that of the monolayer QHF: if one assumes that the real spins are frozen
at νT = 1, Eq. 3.5 describes the electron wave function completely. Due to Pauli principle,
electrons will minimize their exchange energy by aligning their pseudospins. In ground state, in
which the two layers are density balanced, S lies in the xy plane and points in the same direction
throughout the entire bilayer system. Hence, one has a pseudospin quantum Hall ferromagnet
due to this spontaneous pseudospin magnetization. In transition from the excited state to the
ground state, the system thus undergoes a spontaneous symmetry breaking: in the disordered
phase, the in-plane component of the pseudospin is averaged out throughout the bilayer; in the
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Fig. 3.4: Illustration of a pseudospin (red arrow) with an out of plane component
Sz given by the polar angle θ. The azimuthal angle ϕ gives the direction of the
pseudospin in the xy plane.

ordered phase, the pseudospin chooses any value of 0 < ϕ < 2π, which breaks the rotational
symmetry. This spontaneous symmetry breaking is the reason for the formation of the νT = 1

quantum Hall state.
As pointed out earlier, both the pseudospin ferromagnet and the BCS excitonic condensate

pictures can be deduced from the Halperin-(111) wave function. They are thus naturally related.
This becomes clear in terms of the phase angle ϕ, which appears in both wave functions Eq. 3.3
and Eq. 3.5. In the BCS condensate of Cooper-pairs forming conventional superconductors, this
phase angle describes the superposition coefficients for having and not having a Cooper pair in
a given location in space; in the excitonic condensate forming the νT = 1 state, the phase angle
describes the superposition coefficients for having and not having an exciton in a given location
in space. Both phase angles are constant in space in the ground state. In other words, one has
to pay an energy penalty for varying the phase angle spatially: in case of BCS superconductor,
∇ϕ(r) results in a charge current, which tries to equalize the phase by charge transfer (Joseph-
son effect). Analogously, such a phase gradient in the νT = 1 excitonic condensate leads to a
neutral flow of excitons, thereby constituting a pseudospin current

J =
2ρs
h̄
∇ϕ, (3.6)

where ρs denotes the pseudospin stiffness due to loss in exchange energy while tilting the pseu-
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dospin.
The pseudospin wave function might remind one of Eq. 3.1 in the strongly coupled limit.

The only difference is that one has no braiding of two states in the weakly coupled limit since
the wave functions of the two layers donot overlap in the absence of tunneling. It is the sym-
metry breaking that leads to the (fractional) quantum Hall effect, rather than a hybridization of
wave functions. This difference also leads to the different low energy excitations which will be
elaborated in the following section.

3.2.2 Low Energy Excitations

At the monolayer ν = 1 state, the lowest excited states are given by spin textures called skyr-
mions. Since the Landau level is fully filled, one has a uniform charge density and the Pauli
principle prohibits any excitation in which spin flip is not involved [34]. Similarly, in a bilayer
system which contains disorders (i.e. due to inhomogeneities of the doping), topological defects
called merons can also exist as pseudospin textures at the νT = 1 state [24]. As demonstrated
by Fig. 3.5, the local pseudospin tilts by±2π at infinity, while in the core region the pseudospin
points either up or down in relative to the xy plane. At sufficiently low temperatures, merons are
bound vortice-antivortice pairs which can be characterized by vorticity (±1) and charge (±1

2
).

Thus they are also called bound meron-antimeron pairs, which are charge-neutral and have
zero vorticity. The inner energy of bound meron-antimeron pairs is lower than that of free me-
rons/antimerons, whose energy scales with E ∝ |∇ϕ|2 by giving rise to a pseudospin gradient,
thus disturbing the order parameter ϕ(r). They are favored by the ground state since lowering
the inner energy is more effective for minimizing the total free energy at low temperatures than
increasing the entropy. At high temperatures, on the other hand, it is more effective to increase
the entropy, thus the merons are unpaired. The transition from the state in which merons are
paired to the one with free merons is a generic phase transition called Kosterlitz-Thouless (KT)
transition.

The KT transition describes a quantum mechanical phase transition in two-dimensional sy-
stems from a high-temperature disordered phase with the exponential decay in correlation to a
low-temperature quasi-ordered phase. It is a phase transition of infinite order and has a finite
transition temperature TKT . For bilayer systems, this transition temperature is anticipated at the
order of the pseudospin stiffness ρs ∼ 0.5 K. So far, experimental proof is still missing. On-
ce observed, it would be the first quantum Hall state to exhibit a phase transition at non-zero
temperature.

According to the Goldstone theorem, a spontaneous breaking of a continuous symmetry
will lead to gapless collective modes called Goldstone bosons, which are massless and linearly
dispersed. In the case of ferromagnetism, such Goldstone-bosons exist in the form of spin os-
cillations or magnons. Analogously, pseudospin waves can also exist in the νT = 1 pseudospin
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Fig. 3.5: A meron-antimeron pair in the ground state of νT = 1. The arrows
illustrate the pseudospins, which point in a certain direction except in the region
confined by the meron-antimeron pair (enclosed in red dashed lines). Taken from
[24].

quantum Hall ferromagnet. At zero interlayer tunneling, the Goldstone mode is believed to ha-
ve a zero pseudospin wave vector at zero energy. A finite but small tunneling leads to a finite
energy gap thus the formation of quantum Hall effect. An in-plane magnetic field component
B‖ can couple to the wave vector q according to

q = eB‖d/h̄ (3.7)

and induce a resonance at an interlayer bias which corresponds to the energy of the Goldstone
bosons

eV ∗ = h̄

√
ρs
Γ

e

h̄︸ ︷︷ ︸
:=u

q. (3.8)
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Such linear dispersion has been observed by Spielman et al. [35]. Fig. 3.6 shows their result,
from which a pseudospin velocity of u = 14 km/s has been deduced [36].

Fig. 3.6: Resonance peaks (red dots) in interlayer tunneling under parallel magne-
tic field. The resonance voltage evolves nearly linearly as a function of magnetic
field [35]. Based on this result, Hyart et al. have deduced a pseudospin wave ve-
locity of 14 km/s [36].

3.3 Transport at the νT = 1 State

Transport is a powerful tool to extract deep-lying properties of low dimensional charge systems.
In the case of νT = 1 state, the double quantum wells geometry of the bilayers enables study-
ing transport in three different configurations: longitudinal transport, interlayer tunneling and
excitonic counterflow. Fig. 3.7 illustrates all three configurations. In the following, all three
configurations will be described.

Longitudinal Transport

In the longitudinal (or in-plane1) transport, current is applied to one or both layers through the
sample plane. The current here is carried by quasi-particle excitations. These are, in analogy
to quasi-particles in BCS-superconductors outside the superconducting gap, individual charge
carriers which are not bound to form excitons. This quasi-particle current is associated with

1In the rest of this work, if not further specified, in-plane is equivalent to longitudinal.
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Fig. 3.7: Three different transport configurations for bilayers at νT = 1. In in-
plane transport (upper), an external current is applied through one or both layers;
in interlayer tunneling (middle), current is applied between the layers; in excitonic
counterflow (lower), current flows through both layers in opposite directions.

the quantum Hall effect observed at νT = 1, leading to the vanishingly small longitudinal
resistance shown in Fig. 3.2 a). There also exists an alternative form of in-plane transport which
demonstrates the coherence between the layers. Fig. 3.8 shows the Coulomb drag effect [37]
[38]: longitudinal current is applied to one layer while the longitudinal and Hall resistances
are measured in both layers separately. The upper (drive) layer exhibits quantum Hall effect at
several filling factors. The lower (drag) layer only exhibits quantum Hall effect at the total filling
factor of one, at which both layers show a minimum in the longitudinal resistance accompanied
by a Hall resistance corresponding to filling factor of one.

Interlayer Tunneling and Josephson Effect

One of the most important quantum phenomena in low dimensional charge systems is the tun-
neling of particles through an energetic barrier, which is classically not permeable. In super-
conductivity, a junction consisting of two superconductors separated by a thin insulating barrier
or weak link, known as the Josephson junction, exhibits a supercurrent that flows between the
superconductors not due to any bias voltage difference but due to the phase difference between
the two superconductors [39]. This phenomenon is described by the DC Josephson equation
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Fig. 3.8: Coulomb drag measurement in bilayers, with each ohmic contact
connecting only one layer. External current is applied to flow through the upper
layer. The longitudinal (upper panel) and Hall (lower panel) resistances are mea-
sured for the upper (solid curves) and lower (dashed curves) layer. At νT = 1, the
Hall resistance of both layers shows quantized value corresponding to filling fac-
tor one and the longitudinal resistance of both layers shows a minimum. Modified
from [38].
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I = Icsinφ. (3.9)

Here, the supercurrent is carried by Cooper pairs–two electrons bound to each other due
to attractive interactions mediated by electron-phonon interactions [27]1. Josephson’s second
prediction, that a fix voltage difference across the junction results in a phase difference that is
linear in time and the supercurrent is an AC current, is summarized as

dφ

dt
= 2eV (t)/h̄. (3.10)

Shortly after the confirmation of the DC Josephson effect, the AC supercurrent was observed
under microwave irradiation [41]: steps are formed at dc bias voltages which correspond to an
integer number of flux quanta in the barrier.

A similar tunneling configuration can be realized in bilayers at νT = 1, when probing the
current tunneling between the two quantum wells. An enhanced tunnel conductance as shown in
Fig. 3.9 is observable about zero bias voltage up to a critical current [42] [43]. Due to this asto-
nishing resemblance to the well established Josephson effect in conventional superconductors–
charge carriers tunnel between two charge systems coupled by a barrier, the latter tunneling is
referred to as a Josephson-like interlayer tunneling1.

However, there exist some differences between the superconductor Josephson junctions and
the νT = 1 bilayers: phase coherence already exists in each of the two superconductors before
they are brought into contact, whilst the interlayer phase coherence is not established until the
two quantum wells are brought into a weak tunneling system at νT = 1. The consequence is that
in the former case, one speaks about the phase difference between the two BCS-condensates,
whilst in the latter one the phase of the excitonic condensate (or the phase angle in the pseudo-
spin space) is the phase difference in the tunneling at the same time.

Furthermore, the νT = 1 vertical tunneling current is not a supercurrent carried by the
coupled electron-hole pairs, as Cooper pairs for superconductors, but a pure electron current.
Strictly speaking, the true bilayer Josephson junction can be realized in a horizontal tunneling
geometry depicted in Fig. 3.10 [45].

In terms of experimental observations, a significant difference is that in the νT = 1 bilayer
tunneling, the tunneling peak as well as width are finite. Numerous theoretical works have
discussed the origin of dissipation in the νT = 1 interlayer tunneling. While some models
argue that the anticipated DC Josephson effect is destroyed by disorder in form of vortex fields
(merons) [46], others claim that what one observes in the bilayers is a variant form of the true

1The idea that such pairs of charged particles can tunnel through a barrier which is non-superconducting faced
immense challenge at the beginning, even by some most prominent solid state physicists of that time including J.
Bardeen (see [40] and references therein).

1For simplicity, this effect will be referred as Josephson effect in the following.
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Fig. 3.9: Interlayer tunnel conductance at νT = 1 compared to zero magnetic
field. Here, the two-terminal conductance is enhanced by a factor of 20 about
V=0. Nevertheless, its height and width remain finite. Modified from [44].

DC Josephson effect with flux flow [47]. Some models point out that the non-occurrence of the
DC Josephson effect is due to disorder in form of spatial inhomogeneities [48]. Moreover, as
long as tunneling is not perfectly vertical, the before-mentioned quasi-particle current flowing
in the plane can also be the source of dissipation by coupling to the merons. At present, no
conclusive model has been found which can explain the dissipation.

Excitonic Counterflow

The supercurrent observed in conventional Josephson junctions is carried by paired electrons.
This current is driven by the gradient of phase between the two superconductors, as Eq. 3.10
describes. A similar type of flow has been anticipated by theoretical models also for the νT = 1

bilayers. The difference is that in the latter case, the superflow is carried by electron-hole pairs,
instead of electron-electron pairs. This results in a charge-neutral flow of excitons. The first
experimental demonstration of such a counterflow is shown in Fig. 3.11 [49] [50]. A longitudi-
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Fig. 3.10: Horizontal tunneling geometry proposed by Park et al. Two individu-
al bilayer condensates are linked by a tunnel barrier in serial. In the case when
the Josephson tunneling between the layers is suppressed, one has a pure coun-
terflow current between the two bilayer systems. This would demonstrate a true
bilayer equivalent of conventional Josephson junctions in BCS-superconductors.
Modified from [45].

nal current is applied to one layer, before it is redirected to the other layer via a loop resistor.
Hence, the current flows in opposite directions through both layers. The resulting magneto-
transport traces exhibit both vanishing longitudinal and Hall resistances in either layer. Thus,
the resistivity tensor of the 2DES is zero. This is viewed as an evidence of the theoretical picture
of excitonic superfluidity in semiconductor systems.

3.4 Critical Josephson Current at νT = 1

Besides the observation of a strongly enhanced interlayer tunneling conductance at νT = 1, a
critical interlayer current has been also found in both the tunneling [43] [52] and counterflow
configurations [51]. Several models have been proposed to explain the occurrence of such a
critical current and its parameter space. All of these models use the pseudospin picture and
differ mainly in terms of whether the sample is a clean excitonic superfluid or a disordered one
as well as whether the pseudospin vortex field is static of dynamic. Most of the models assume
the bilayer to be in the realistic regime of ξ � λJ . Here, ξ denotes the system’s coherence
length and describes the length scale over which the interlayer phase coherence is maintained.
λJ ∝ (ρs/∆SAS) is the Josephson length, the length scale which the excitonic tunneling current
can penetrate into the condensate after being injected from the contacts1.

MacDonald et al. have proposed a theory which assumes a clean system [54]. In this theory,
the interlayer current enters and leaves the condensate at the hot spot corners and there exists
a small region close to the hot spots, in which tunneling is negligible but the pseudospins are

1There is also a further theory from Fil et al. which assumes λJ ≤ ξ and assigns the dissipation to Josephson
vortices, i.e. vortices that are perpendicular to the 2DES plane [53]. However, the critical current predicted from
this theory is much larger than the experimentally observed one.
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Fig. 3.11: Magneto-transport in which current is injected into the lower layer
and redirected to the upper layer via a loop resistor, resulting in a counterflowi-
ng current. At the νT = 1 state, both the longitudinal (red curve) and the Hall
(blue curve) resistances are almost zero, indicating the existence of an excitonic
condensate. Modified from [51].

twisted as counterflow takes place. This model makes a more detailed assumption of the total
counterflow current as consisting of a quasi-particle component and an exciton component. Wi-
thin this small (yellow) region shown in Fig. 3.12, the quasi-particle component is converted
into the exciton component by the pseudospin transfer torque. In the center of the sample, there
exists an interplay between the exciton counterflow and the interlayer tunneling current, where
the latter acts as a sink for the former current. The critical current is characterized by the maxi-
mal tunneling current when the order parameter φ remains static. Depending on the size of the
Josephson length λJ which depends directly on the bare tunneling amplitude ∆SAS , the criti-
cal current is found in this model to scale differently with parameters such as area and ∆SAS:
small ∆SAS or large λJ tends to equilibrate the phase angle φ over large area of the sample
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and coherent tunneling can even be present over the entire sample area, which is qualitatively
consistent with the experimentally observed areal dependence of the critical current [52]. To the
contrary, large ∆SAS or small λJ will lead to small tunneling region which can be restricted to
the hot spot corners. In this case the critical current does not depend on the sample area any-
more. Nevertheless, in all regimes from this model, the predicted critical currents are orders of
magnitude smaller than the experimentally observed ones. This is explained by taking disorder
into account.

Fig. 3.12: The spin-transfer torque model proposed by MacDonald et al. to ex-
plain the critical interlayer current in a clean νT = 1 system. At the hot spot cor-
ners (yellow region), the injected quasi-particle counterflow current is converted
into an exciton counterflow, leading to local twisting of pseudospins. In the center
region of the system, tunneling acts as a sink for the supercurrent. Critical current
is reached when the order parameter, in this case the pseudospin orientation φ,
becomes dynamic. From [54].

Eastham et al. have proposed a disorder theory which involves static vortex fields [55]. This
means that the disorder-induced vortices (or merons) are pinned. In this model, the occurrence
of criticality is accounted for by depinning process, which is due to the charge current injected
at the contacts on the edge of the sample. This charge current is normally carried by quasi-
particles, which can only flow through the edge channels1. However, the model predicts an
areal dependence of the critical current. This intriguing result is explained by a self-organizing
mechanism: in the bilayer groundstate, the excitonic quasi-superfluid consists of coherent (and
ferromagnetic) domains of size Ld ∼

λ2J
ξ

for a two-dimensional system, separated by incoherent
regions where the disorder is present. Injecting tunneling current from one end to the opposite

1Theoreticians often use edge channel as a generalizing term for the current carrying strips at the νT = 1 state.
In reality, these channels should be provided by the incompressible strips described in Sec. 2.1.2.
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end of a sample (typically a Hall bar) means injecting a counterflow current which enforces a
twisting of the pseudospin compared to equilibrium, thereby giving rise to a finite tunneling
current locally. Since the energy cost to twist the pseudospins inside the ferromagnetic domains
is too high, the system favors a uniform rotation of pseudospin at the boundary to increase the
tunneling current. This process introduces counterflow current further towards the bulk and con-
tinues until the tunneling current has saturated at the boundary. The critical current is reached
when the tunneling current saturates over all the sample area. Therefore, this model predicts a
critical current to scale with the number of coherent domains as

Ic ∼
eρs
h̄

A

L2
d

. (3.11)

Recently, Hyart et al. have proposed a theory including dynamic vortex fields [36]. To the
contrary of static vortex fields introduced in the previous model, the dynamics is caused by
hopping of thermally activated merons from one puddle to another, which leads to fluctuations
of vortex fields. The interlayer tunneling current can interact with such vortex fields, giving rise
to a pseudospin correlation that is no longer infinite in time, but decays within a correlation
time besides a correlation length. Within their model, the correlation (or coherence) length is
estimated to be ∼150 nm for typical wafers used in the measurements, in good agreement with
other theories [46]. It predicts the interlayer coherent tunneling to exist all over the sample plane,
which is enabled by counterflow currents between the coherent islands leading to equilibration
of the superfluid phase all over the sample. Thus, the critical current should naturally depend on
the area of the sample. In addition, it also predicts a quadratic dependence of the critical current
on the single-particle tunneling amplitude ∆SAS , as seen in

Ic ∼
e

h̄

ξ2L2

ρs

∆2
SAS

l4B
. (3.12)

The exact mechanism of interaction between the current and the vortex fields is not well
known. Nonetheless, this model predicts an intrinsic tunneling resistance due to such interac-
tion, which seems to be consistent with existing measurements which all show a conductance
with finite width and peak height. Another feature of this theory is that the νT = 1 state remains
unaffected when the injected interlayer current exceeds the critical current, which is consistent
to the experimental observation [51]. This is also consistent to the theoretical limit of ∆SAS

going to zero: in that limit, no Josephson-like tunneling can be experimentally observed, while
the spontaneously broken symmetry persists.





Chapter 4

Quantum Hall Breakdown in Interlayer
Tunneling

The Josephson-like interlayer tunneling in quantum Hall bilayers at the νT = 1 state has been
introduced in Sec. 3.3. To our knowledge, this coherent tunneling phenomenon has been stu-
died excessively in samples with relatively large barrier thickness, ranging from 10 nm to 12
nm. This has the consequence that the interlayer tunneling strength in those samples was re-
latively weak, i.e. about 10 µK ∼ 100 µK [42] [43]. Furthermore, the correlation between the
Josephson tunneling and the longitudinal (in-plane) transport has not been discussed so far. In
this chapter, we extend the samples to inclulde barrier thickness decreased to 8 nm, with dra-
matically increased coherent tunneling at νT = 1. Experimental results including three Hall bar
samples will be compared. These samples share the same geometry as shown in Fig. 4.1, but
differ in their barrier thickness. The data will be discussed, followed by conclusions at the end.

4.1 Measurement Results

In this section, interlayer and longitudinal transport measurements which involve three Hall
bar bilayer samples with different barrier thicknesses will be shown. In all measurements, the
electron densities of the layers have been balanced and a corresponding magnetic field has been
applied so that the νT = 1 state is well established at a sample temperature of ≤15 mK1. The
measurements were performed using standard DC sources and preamplifiers.

1In the following of this work, if not further specified, all the temperatures are referring to the mixing chamber
temperature read from a Cernox temperature sensor close to the sample position.
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Fig. 4.1: Sample structure of all Hall bar samples used in this work. The length
of the active region (marked by red dashed line), i.e. the region covered by the
global front and back gates defining the area of νT = 1, is 880 µm and its width
80 µm. Details to sample fabrication see Sec. B.1.

Interlayer Tunneling with varied Barrier Thickness

Fig. 4.2 summarizes the interlayer tunneling in three Hall bar samples, which have the same
mesa geometry (as shown in Fig. 4.1) and only differ in the barrier thickness. The three samples
are labeled HB-12 from wafer #82018, HB-10 from wafer #81653 and HB-8 from wafer
#81981. The barrier thickness in these three wafers is 8 nm, 10 nm and 12 nm, respectively,
which are indicated by the numbers in their labels. The details about sample fabrication and low
temperature measurement techniques are summarized in App. B. As shown in (a), the interlayer
current is injected from one end of the first layer and taken out from the opposite end of the
second layer. Here, the current is measured by dividing the voltage drop across a resistor of
1 MΩ (not shown). The DC voltage source itself is connected to an RC-filter with an inner
resistance of 1 MΩ (not shown). The circuit resistance is thus 2 MΩ.

The four terminal tunneling I-V characteristics are shown in (c) with the same voltage scale
but different current scales. Both the up and down sweeps are shown in all three samples. Sam-
ple HB-12 and HB-8 exhibit similar results to those reported earlier. At d/lB ∼ 1.45, the critical
current of sample HB-12 is about 2.3 pA in each direction, while at a similar d/lB value sample
HB-10 has a critical current of 1.5 nA in each direction, hence three orders of magnitude larger.
The zero bias interlayer resistance of sample HB-12 is about 10 MΩ, which is also three orders
of magnitude larger than that of sample HB-10 (∼10 kΩ). Furthermore, sample HB-10 exhibits
jumps after reaching its critical current. Sample HB-8 shows a critical current of 25 nA in each
direction at d/lB ∼ 1.68. After reaching the critical current, the current does not decrease as is
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the case in the other two samples. Instead, it continues to increase and flattens at even higher
interlayer voltages. No jumps is seen here beyond the critical current. Its interlayer resistance at
zero bias is about 1 kΩ.

Longitudinal Transport vs. Interlayer Tunneling

The barrier thickness in bilayers has a strong effect on the interlayer resistance and the size
of the critical current at νT = 1. Hence, the effect of (longitudinal) transport in the plane
will be different since the ratio between the sheet resistance of each layer and the tunneling
resistance will vary. Here, we show in-plane transport and interlayer tunneling measurements
on two samples: HB-10 and HB-8.

Fig. 4.3 shows tunneling and longitudinal transport in sample HB-10. At νT = 1, the d/lB
ratio is set to 1.66. In (a), the inset shows that the interlayer tunneling current is driven across the
sample plane. The tunneling I-V curve includes both up and down sweeps and exhibits a critical
current of 0.5 nA and an interlayer resistance of 50 kΩ. Figures (b) and (c) show the in-plane
transport in the upper and lower layer, respectively. One observes a critical behavior in both
curves: below a current of 10 nA in both directions, the longitudinal voltage remains relatively
small, whilst above this value the voltage increases dramatically. The slope of each I-V curve
within the critical regime gives the longitudinal resistance of each layer. Being qualitatively
the same, both layers show difference in their longitudinal resistances: the upper layer has a
resistance of 10 kΩ, while that of the lower layer is about a factor of 3 larger.

Fig. 4.4 summarizes the interlayer tunneling and in-plane transport in sample HB-10 at four
different d/lB values, from 1.42 to 1.66. In each panel, the black curve shows the interlayer
tunneling, while the red and blue curves show the transport in the upper and lower layer, re-
spectively. As the main graphs show, the critical tunneling current increases with decreasing
d/lB, consistent with reported measurements [43]. Moreover, in all cases, the critical tunneling
current is significantly smaller than the critical current in the plane, as shown by the insets.
Besides the slope of the tunneling I-V curve, the slope of the I-V curves of in-plane transport
also increases with decreasing d/lB ratio. At d/lB =1.42, the transport in the upper layer shows
some abrupt changes close to the critical current.

Now we turn to sample HB-8 with smaller barrier thickness. In Fig. 4.5, interlayer tunneling
and in-plane I-V characteristics are presented for νT = 1 at d/lB =1.68. In contrast to sample
HB-10, where the tunneling I-V characteristic is largely different from that of the in-plane
transport, all the four panels show similar I-V curves in this case. Most surprisingly, the critical
current observable in all circuit configurations is the same at ∼25 nA.

From the slopes of the I-V curves, one can determine the resistance in each configuration.
The interlayer tunneling resistance is about 1 kΩ and close to the sheet resistance of the upper
layer, which is slightly smaller than that of the lower layer. Both sheet resistances are smaller
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Fig. 4.2: Interlayer tunneling in three Hall bar devices which share the same geo-
metry but differ in barrier thickness. In (a), the tunneling circuit configuration is
shown where tunneling current is passed to flow across the sample plane. The in-
ner resistance of the circuit is 2 MΩ (not shown). In (b), the schematic diagram
of the conduction band of the bilayer is shown. In (c), the I-V characteristics of
samples HB-12 (upper), HB-10 (middle) and HB-8 (lower). The barrier width,
indicated by the label numbers, is varied from 12 nm to 10 nm and 8 nm, re-
spectively. All three curves are shown using the same voltage scale but different
current scales.
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Fig. 4.3: Interlayer tunneling compared with longitudinal transport through the
upper and lower layer in sample HB-10. The effective layer spacing d/lB is set to
1.66 at νT = 1. The insets show the circuit configuration corresponding to each
curve.
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Fig. 4.4: Interlayer tunneling (black) compared with longitudinal transport
through the upper (red) and lower (blue) layer in sample HB-10. The effective
layer spacing d/lB is varied between 1.42 and 1.66. Insets: full traces of in-plane
transport through both layers separately. In all cases, the critical tunneling current
is much smaller than the critical current in in-plane transport.
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compared to the case when the two layers are unseparated, shown in (d).
A summary of the same measurements at different d/lB values is also shown for sample

HB-8 in Fig. 4.6. The behavior seen at d/lB =1.68 is qualitatively reproducible at other d/lB
values: in all panels, the critical current in tunneling is comparable to the critical current in the
plane. The size of the tunneling (black) critical current is the highest at d/lB =1.68, where the
interlayer resistance is the lowest. This seems to indicate that the νT = 1 state is best established
at this d/lB ratio. The upper layer has a lower resistance than the lower layer. The difference
between the two layers becomes clearer at lower d/lB ratios, where the lower layer exhibits an
almost ohmic behavior. The tunneling resistance is between the two sheet resistances except at
d/lB =1.8, where it is slightly smaller than the upper layer sheet resistance.

If one compares the two samples, HB-10 and HB-8, at similar d/lB ratios ∼1.7, they show
significantly different behaviors in interlayer tunneling, since the critical currents in the tun-
neling contact configuration applied differ by a factor of 100. Nevertheless, the behaviors in
transport along the sample plane remain qualitatively similar in both samples. It is remarkable
that the change in barrier width and consequently in the tunnel coupling between the layers
seems to have only a minor effect on the longitudinal transport, while it has a strong effect on
the Josephson-like tunneling.

In order to study the role of longitudinal transport in tunneling, we have measured the inter-
layer tunneling with an alternative contact configuration. In Fig. 4.7, the black curves in (a) and
(b) show the interlayer tunneling using the same contact configuration applied, which is also
depicted in the lower circuit in each panel. The red curves have been obtained when the upper
circuit is used for both samples. In this case, the interlayer current is injected into a contact that
is situated directly above the contact, from which this current is taken out again. The interlayer
voltage is measured with two contacts that are also directly above each other. In sample HB-10,
the two contact configurations result in difference in both the critical current and the interlayer
resistance. The critical current is increased from 1.3 nA to 1.6 nA and the tunneling resistance
decreased from 16 kΩ to 4 kΩ from the lower to the upper configuration. In sample HB-8, the
differences are even much larger. While the change in tunneling resistance is similar to that
in sample HB-10, the critical current is increased to exceed the order of 1 µA, i.e. by a factor
of 50. In addition, the interlayer tunneling using the upper configuration also shows negative
differential resistance when approaching its critical current.

4.2 Data Analysis and Discussion

The results presented in the previous section will be analyzed and discussed here. First, we
focus on the effect of barrier thickness on the interlayer tunneling. Then, we look at the interplay
between the interlayer tunneling and in-plane transport in two samples, HB-10 and HB-8 and
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Fig. 4.5: Interlayer tunneling compared with longitudinal transport through the
upper and lower layer as well as through both layers simultaneously in sample
HB-8. The effective layer spacing d/lB is set to 1.68 at νT = 1. The insets show
the circuit configuration corresponding to each curve. Note that the contacts in the
inset in (d) are connecting both layers.
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Fig. 4.6: Interlayer tunneling (black) compared with longitudinal transport
through the upper (red) and lower (blue) layer in sample HB-8. The effective layer
spacing d/lB is varied between 1.53 and 1.68. In all cases, the critical tunneling
current is comparable to the critical current in in-plane transport.
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Fig. 4.7: Interlayer tunneling characteristics with two different contact configu-
rations in Hall bar device HB-8 ( panel (a)) and HB-10 (panel (b)). The black/red
curves have been obtained when using the lower/upper contact configuration. In
(a), a significant difference in critical current can be observed between the two
contact configurations, whilst there is only a minor difference in (b). Inset of (a):
a gigantic critical current exceeding 1µA is observed in sample HB-8 for the upper
configuration.
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discuss a possible picture of the breakdown of νT = 1 QHE.

Role of Barrier Thickness

At first glance, the three Hall bar samples shown in Fig. 4.2 do not vary largely in their barrier
thickness, which is only 20%∼25%. Nevertheless, the symmetric-antisymmetric energy gap,
∆SAS , changes by a significantly larger factor with such small changes in barrier thickness. The
∆SAS gap is a measure for the strength of tunnel coupling (or tunneling probability) in bilayer
systems. As explained in Sec. 3.3, its value can be determined from the tunneling I-V characte-
ristic at B=0 T. This has been done for both wafers #81653 (10 nm barrier) and #81981 (8 nm
barrier), yielding values of ∼150 µK and ∼1 mK, respectively1. For wafer #82018, the expe-
rimental value of ∆SAS is still missing. However, based on the above mentioned analysis [36],
the gap is estimated to be 1∼10 µK for a similar system.

Among the theoretical models concerning the relation between tunneling critical current Ic
and the ∆SAS gap, the one provided by Hyart et al. [36] claims that Ic scales quadratically in
∆SAS and linearly in the area of the νT = 1 system, i.e. Ic ∝ A ·∆2

SAS . The authors point out
that their model is best applicable to samples with small ∆SAS ≤ 10 µK. This has to do with
the large tunneling resistance associated with a small ∆SAS . When the tunneling resistance is
the dominant resistance in the entire circuit, tunneling can be viewed as homogeneous in the
sample. Nevertheless, the model also works well for samples with ∆SAS ∼ 100 µK. This might
explain the scaling of the observed critical currents Ic in sample HB-12 and HB-10 with the
estimated ∆SAS: Ic increases by a factor of 1000 while ∆SAS increases by a factor of between
10 and 100.

Furthermore, comparing the tunneling I-V characteristics of sample HB-10 and HB-8 at
d/lB ∼1.7 (Fig. 4.3 a) and Fig. 4.5 a)), one also finds that the quadratic dependence on ∆SAS

seems to hold. Here, Ic increases by a factor of 50 while ∆SAS increases by a factor of ∼10.
Nevertheless, it is not known whether this can be taken as evidence that the above mentioned
model extends its applicability to samples with such a large tunneling probability.

The occurrence of jumps beyond reaching the critical current can be explained by bistability.
Fig. 4.8 shows the tunneling current as a function of both the two-terminal and the four-terminal
voltage, taken from sample HB-10 at d/lB =1.42. When the 2-terminal interlayer voltage con-
tinues to increase after I = Ic, it tries to increase the interlayer current. However, I is strongly
suppressed after its critical value, since the bilayer system is now highly ohmic. One thus has to
do with two competing effects. This bistability becomes strong, when the tunneling resistance
is much smaller than the circuit resistance. Fig. 4.8 demonstrates such a case: the tunneling cur-
rent is shown as a function of both the two-terminal and the four-terminal voltage, taken from

1The value for wafer #81653 is obtained from earlier work [56], while the one for wafer #81981 is obtained
using a separate sample within this work.
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sample HB-10 at d/lB =1.42. The slope of curve in (a) corresponds to a circuit resistance of
∼2.5 MΩ, which is much larger than the tunneling resistance of ∼10 kΩ observable from the
slope in (b). For sample HB-8, the tunnel resistance is much larger than the circuit resistance,
which results in a smooth transition after the current has reached its critical value.

Sample HB-8 has an even much smaller tunneling resistance than sample HB-10. Nonet-
heless, its tunneling I-V characteristic does not show any jump or hysteresis between different
sweeps. The reason will become clear in the following.

Interplay between Tunneling and In-Plane Transport

Based on the tunneling contact configuration shown in the inset of Fig. 4.3 a), it is intuitive
to assume that the transport in the longitudinal direction also plays a role in the tunneling.
However, the critical tunneling current in sample HB-10 is an order of magnitude smaller than
in the in-plane transport. This shows that there exists no intrinsic coupling between the tunneling
critical current and the longitudinal critical current.

The slope of the I-V characteristic in Fig. 4.3 b) and c) gives the differential conductance
of the upper and lower layer, respectively. At I∼10 nA, the differential conductance drastically
decreases, which marks an onset of critical behavior. Such a phenomenon is essentially under-
stood as the breakdown of quantum Hall effect. While there exist some pictures in analogy to
the breakdown of QHE breakdown in single quantum wells, the actual mechanism, which leads
to the νT = 1 breakdown, is currently not yet well understood.

The contact configurations in these two measurements are similar to the one used in studying
the Coulomb drag effect at νT = 1, which has been introduced in Sec. 3.3. The Coulomb
drag has been studied in detail theoretically [54]. One can thus apply a picture concerning the
composition of currents in each layer to the in-plane measurements in this chapter. Fig. 4.9
shows a cartoon of this picture. Let us first clarify the terminology: the layer, in which the
current is applied, is denoted the drive layer, while the adjacent layer is the drag layer. The total
current Itotal applied to the drive layer can first flow as a quasi-particle current, which is layer
symmetric.

According to the model of MacDonald et al. [54] introduced in Sec. 3.3, this layer symmetric
current can undergo a conversion into a layer anti-symmetric current, which is a counterflow
current carried by bilayer excitons. Under the assumption, that the current composition does
not change on the onset of dissipation, one can apply this model for a clean system also for the
current case. The current conservation in the drive and drag layers lead to

Idrive = IS,drive + IAS = IQPdrive + IEX = Itotal (4.1)

Idrag = IS,drag − IAS = IQPdrag − IEX = 0. (4.2)
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Fig. 4.8: Interlayer current as a function of the two-terminal voltage in (a) and
four-terminal voltage in (b), measured in sample HB-10 at d/lB =1.42. Bista-
bility leads to the jumps after the critical tunneling current as well as hysteresis
between up and down sweeps. Inset: the effective circuitry with R being the circuit
resistance.

Fig. 4.9: Illustrative explanation of the Coulomb-drag effect: current is only app-
lied in one of the bilayers, while the Hall potential can be detected in both layers.
The total current in both layers can be thought of consisting of two components: a
layer symmetric quasi-particle current and a layer antisymmetric exciton current.



64 CHAPTER 4. QUANTUM HALL BREAKDOWN IN INTERLAYER TUNNELING

Here, IS,drive = IQPdrive is the layer symmetric quasi-particle current in the drive layer and
IS,drag = IQPdrag the same current in the drag layer. IAS = IEX is the layer anti-symmetric
exciton current. Summing up both equations, one yields

Idrive + Idrag = IQPdrive + IQPdrag = Itotal. (4.3)

Within this picture, the total current applied in either case is the sum of the quasi-particle
current flowing in both layers combined. If one takes into account that exciton current flows as a
nearly dissipationless current, one would not expect the exciton current to lead to a breakdown
which usually involves dissipative transport. In this sense, the equal critical current measured
in both layers at the breakdown possibly reflects that indeed the layer symmetric quasi-particle
current leads to breakdown of the νT=1 QHE.

The in-plane transport measurements performed in sample HB-8 essentially confirms the
qualitative picture above. The critical currents in both the upper and lower layers, shown in Fig.
4.5 b) and c), are about 25 nA. Furthermore, in (d), where the two layers are not separated,
one observes also the same in-plane critical current as in the two other measurements. Due to
the charge neutrality of bilayer excitons, one can only detect the quasi-particle current in this
configuration. Hence, the same critical current here as in single layer measurements means that
the same amount of quasi-particle current is required to reach breakdown of the νT = 1 QHE,
which remains the same in all three measurements. The slope in (d) is larger than in (b) and
(c). This might be due to the fact that in the single layer transport one is only measuring the
conductance of one layer, in which both quasi-particle and exciton currents flow. In (d), the
conductance is given only by quasi-particle currents.

The interlayer tunneling in sample HB-8 exhibits the same critical current as in the in-plane
measurements. There can be three explanations: i. due to coupling of the in-plane transport to
the interlayer tunneling; ii. due to coupling of the interlayer tunneling to the in-plane transport;
iii. due to coincidence. If there exists an intrinsic coupling of the in-plane transport to the inter-
layer tunneling, it would be difficult to explain the observations in sample HB-10, since there
the critical longitudinal current is an order of magnitude larger than the critical tunneling cur-
rent. Using the same argument, there can also be no intrinsic coupling of the critical current in
tunneling to that in in-plane transport. If it would be a coincidence, it would also be difficult to
explain that at different d/lB ratios similar observations can be made. Based on the tunneling
contact configuration, in which the tunneling current is forced to flow in the sample plane, it
is more likely that the tunneling critical current observed in sample HB-8 is an effect of the
breakdown.

The results shown in Fig. 4.7 seems to confirm the above assumption. For sample HB-8,
the two tunneling contact configurations result in a significant difference in critical current. If
the tunneling in the lower configuration would be independent on the in-plane transport, but
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consequence of some intrinsic property, one would not expect such a large difference when
switching to the upper one. In other words, we can conclude that the critical tunneling current
observed in Fig. 4.5 and Fig. 4.6 is a consequence that the Josephson-like tunneling is limited by
the breakdown happening in the plane. This is possible because the breakdown current, which is
similar in both samples HB-10 and HB-8, is smaller than the intrinsic critical Josephson current
in sample HB-8, but larger in sample HB-10.

This also means that the difference between the two configurations is essentially that the
lower one involves transport in the plane while the upper one seems not to. Fig. 4.10 illustrates
this in terms of the Andreev reflection (AR) mechanism. The situation in (a) corresponds to the
upper configuration: the interlayer current is injected via the AR process directly, after which the
electron-hole pairs can propagate as an excitonic counterflow inside the sample. To the contrary,
the AR process in (b) takes place, accompanied by a transport current in the plane (indicated
by the blue arrows). The Josephson current is thus forced to flow as a quasi-particle current
along the sample plane. Based on the knowledge that the νT = 1 breakdown is most likely
an effect of the quasi-particle current in the plane, the same quasi-particle current should also
lead to breakdown in the tunneling here. This is consistent to the observation that a much larger
exciton current in sample HB-8 in the second configuration does not lead to any breakdown.

It is also notable that the interlayer resistance in both samples remains finite even when
tunneling essentially does not involve quasi-particle transport in the plane. This result indica-
tes that such a resistance is intrinsic for the tunneling. The source of dissipation leading to a
finite tunneling resistance is still an open question. Nonetheless, theoretical models taking into
account dissipative processes like those introduced in Sec. 3.3 seem to agree that merons in-
teracting with the tunneling current play the central role. In the static vortex field picture, the
merons always remain pinned to the peak or valleys of the disorder potentials, depending on the
sign of charge they carry. It is therefore difficult to explain dissipation even before reaching the
critical current in this picture. In the picture where the vortex field is assumed to by dynamic,
on the other hand, the merons can interact with the tunneling current. More precisely, both the
exciton and the quasi-particle current can mobilize the merons and give rise to an increase of
current. This mechanism might be the origin of the observed intrinsic interlayer resistance.

The critical current exceeding the order of 1 µA in the upper configuration in Fig. 4.7 a) is
intriguing. If one assumes that the estimated ∆SAS is independent on the contact configuration,
this critical tunneling current is larger than expected from the quadratic ∆SAS dependence by
a factor of ∼20. The quadratic correlation comes out from a theory which treats tunneling per-
turbatively. Taking into account that the tunneling resistance is not dominant over the system’s
in-plane resistance anymore, the interlayer voltage distribution in the plane might become inho-
mogeneous and start to play an important role in describing the tunneling current. This feature
is not considered in the perturbative model [36] and it is not expected that it will be suitable
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for samples with such strong tunnel coupling as HB-8. On the other hand, the model provided
by Eastham et al. [55] might explain the size of the critical current. Under application of the
Josephson length λJ =

√
4πl2Bρs/∆SAS [36], Eq. 3.11 can be rewritten as

Ic ∼
eρs
h̄

A

L2
d

=
e · A · ξ2 ·∆2

SAS

16π2 · h̄ · l4B · ρs
. (4.4)

If one uses ∆SAS ∼1 mK and assumes the parameters determined by Hyart et al. [36],
namely a coherence length ξ ∼150 nm and a pseudospin stiffness ρs ∼0.4 K1, one obtains a
critical current of Ic '10 µA, which is in the same order of magnitude as observed. Since this
model does not provide an exact prediction but rather a proportionality, it is difficult to judge
its applicability. Nevertheless, this reasonable matching indicates that the pseudospin vortex
field (or merons) should be static. This is likely to be the case in the absence of a sufficiently
large quasi-particle current. The critical tunneling current of ∼25 nA observed in the other
configuration, however, agrees very well with the quadratic ∆SAS dependence. This might mean
that the merons are mobile in this case, which arises probably due to interaction with the quasi-
particle current.

Fig. 4.10: Schematic demonstration of the Andreev reflection mechanism in the
two contact configurations depicted in the insets of Fig. 4.7. (a): When the source
and drain contacts are situated directly above each other, the charge carriers can
form excitons upon injection into the exciton condensate. (b): When the source
and drain contacts have a horizontal distance, the charge carriers injected into the
condensate form excitons while flowing as a quasi-particle current.

Nevertheless, it should be pointed out that the microscopic details of the interlayer current
in the new configuration are not well-known. In particular, the origin of the negative differential
resistance appearing close to the critical current is not identified. Such an observation is not ma-
de in sample HB-10 with thicker barrier. It is possible that in that case the interlayer resistance is

1The choice of these parameters is based on the excellent matching between the model and multiple independent
experimental data.
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the dominating one whilst in sample HB-8 both interlayer and in-plane resistances are compa-
rable. In the latter situation, the current distribution might be complex and depends on the ratio
between both resistances locally. Comparable observations have been made in superconducting
junctions [57].

Finally, our results of in-plane transport show that the breakdown currents in different samp-
les have similar size, although the tunnel coupling as well as the critical tunneling current largely
differ between them. The detailed mechanism, which leads to dissipation and eventually break-
down of the νT = 1 QHE is not yet understood. Nevertheless, under the light of the interaction
between merons and quasi-particle current, the similar breakdown current can be interpreted as
a consequence of similarity in the disorder potential induced by doping inhomogeneities. The
distribution of disorders might be similar in the two wafers, from which sample HB-10 and
HB-8 are extracted. Theoretically, this disorder potential will give rise to a separation of the
bilayer system into domains, in which the phase coherence is present. The size of such cohe-
rent domains as well as the distance between them should consequently be comparable in both
samples. Hence, if the nature of the interaction itself between the merons and the quasi-particle
current does not change with the lateral structure of the bilayers, one should indeed expect two
comparable breakdown currents.

Similar to the case of single layers, the quasi-particle current is theoretically believed to
flow along the incompressible stripes in the bilayers at νT = 1. Such incompressible strips have,
nonetheless, not yet been verified. If the bilayer breakdown really arises due to the quasi-particle
current, it is likely that a similar mechanism to that underlying the breakdown in single layers
applies here. Important differences would include that the relevant energy gap is no longer the
Landau gap, since the νT = 1 state is not a single particle but a collective state. The relevant gap
will possibly be the thermal activation energy ∆, which is about 100 mK in typical samples.

4.3 Conclusions

The Josephson-like interlayer tunneling has been studied in bilayer systems with Hall bar geo-
metry. Three samples, which share the same horizontal structure but only differ in their barrier
thickness, have been investigated. The barrier thicknesses are 12 nm, 10 nm and 8 nm. Two
tunneling contact configurations were used to study the interlayer tunneling. In the first confi-
guration, the tunneling current is driven to flow across the sample plane. The first two samples
show interlayer tunneling characteristics that are similar to published literature and qualitatively
consistent to the quadratic dependence of the critical current Ic on the symmetric-antisymmetric
energy gap ∆SAS . The critical current of the third sample exhibits also a quadratic ∆SAS de-
pendence. However, jumps of I-V characteristics beyond reaching the critical current do not
occur.
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In order to clarify the role of in-plane transport in the tunneling current, interlayer tun-
neling was compared with in-plane transport in the two samples HB-10 (10 nm barrier) and
HB-8 (8 nm barrier). In both samples, the critical in-plane current, which is associated with the
breakdown of the νT =1 QHE, is the same in both layers. Furthermore, the value of this critical
in-plane current is similar in both samples. This equal critical in-plane current in both layers can
be explained by a picture, which demonstrates that the total amount of quasi-particle current is
the same no matter to which layer an external current is applied. The similar size of breakdown
current in both samples indicates that both samples may have similar disorder potential such as
induced by doping inhomogeneities.

The two samples exhibit large difference when comparing the size of tunneling current in
the above mentioned first configuration with the breakdown current. In sample HB-10, the tun-
neling critical current is an order of magnitude smaller than the breakdown current, whilst in
sample HB-8 the tunneling critical current is exactly the same as the breakdown current. This
difference originates from the relative size of the maximum tunneling current and the breakdown
current in each sample. With the same sample geometry and thus same area, the actual maxi-
mal tunneling current is determined by the tunnel coupling ∆SAS , which is given by the barrier
thickness d. The actual maximal tunneling current can be approached by choosing the second
contact configuration, in which the current contacts are vertically aligned. In such a configura-
tion, the tunneling current is no longer forced to flow in the sample plane. This configuration
results in a gigantic critical current in sample HB-8, which exceeds 1 µA. In sample HB-10, the
critical currents registered in the two contact configurations do not differ significantly. The ac-
tual maximum tunneling current in sample HB-8 is thus considerably larger than the breakdown
current, so that in the first configuration the tunneling is limited by the breakdown current and
in the second configuration it is not. In sample HB-10, the actual maximum tunneling current is
much smaller than the breakdown current, so that in this sample both configurations yield the
same tunneling critical current.

The size of the critical tunneling current of sample HB-8 as well as its microscopic details
in the second contact configuration are still not clarified. Nevertheless, it is possible that this is
caused by a static pseudospin vortex field described by Eastham et al. [55].

Though the quasi-particle current is likely to be the major contributor to the breakdown
of the νT = 1 QHE, the microscopic understanding of the mechanism remains indiscernible.
There exists a picture, which involves the hopping of merons between coherent puddles at large
currents. Measurements of local potentials such as using an single electron transistor (SET)
might be able to shed light on this question.



Chapter 5

Josephson Currents in Corbino Bilayers

In the previous chapter, measurements in bilayer Hall bar samples with different tunnel coupling
strengths ∆SAS have been presented. In this chapter, we will focus on the quasi-Corbino ring
geometry. To the contrary of Hall bars, which only have one single edge, Corbino rings have
two edges: the outer and inner boundaries of the annulus. For a real Corbino ring, each of these
two edges form a single source and drain contact. For the purpose of individually contacting
both layers, however, one needs more than one contact. The quasi-Corbino ring used in this
work, which is depicted in Fig. 5.1, provides two contacts to the inner and three contacts to the
outer edge.

Fig. 5.1: Sample structure of quasi-Corbino ring samples used in this work. The
radius of the outer and inner edge is 0.43 mm and 0.16 mm, respectively. The
active region is the area enclosed by the red dashed circles.

According to the Corbino effect discussed in Sec. 2.1.1, the longitudinal (or radial) conduc-
tance in a Corbino disk vanishes at QHE. This also holds for the νT = 1 state, which means that
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charged quasi-particles are not able to move from one edge of the Corbino ring to the opposite
edge. On the other hand, the charge-neutral electron-hole pairs give rise to an excitonic coun-
terflow in the bulk. Hence, by having two edges, one should be able to separate the excitonic
counterflow from the quasi-particle current.

It has been shown, both in theory and experiments, that both the interlayer tunneling conduc-
tance and the critical tunneling current scale linearly with the sample area [55] [36] [52] [58].
In this chapter, this issue will be studied for Corbino ring samples, whose outer and inner dia-
meters largely differ. Interedge and interlayer transports will be presented here. Furthermore,
our sample geometry enables the application of a second Josephson-like interlayer tunneling
current at the inner edge of the sample, simultaneously to the tunneling current at its outer edge.
In this way, a possible interplay between these two Josephson currents can be studied.

5.1 Interlayer and Interedge Transport

5.1.1 Measurement Results

The very first step is to determine the νT = 1 state by magnetotransport. The inset of Fig. 5.2
shows the setup: an AC voltage is applied between the two edges of sample CR-10 from wafer
#81653, which has a barrier thickness of 10 nm. While a magnetic field perpendicular to the
bilayer plane is swept, the measured current exhibits minima whenever the sample is at a QHE.
The νT = 1 state is established at B=1.7 T, yielding a d/lB ratio of 1.5 at a sample temperature
of ∼12 mK. In this case, interlayer phase coherence is thus well established.

In Fig. 5.3, two I-V characteristics are shown. In (a), the current is applied from the outer
edge to the inner edge of the upper layer while the interedge DC voltage is measured in the
same layer. The current is obtained by dividing the voltage drop across a shunt resistor by
its resistance of 1 MΩ. The result exhibits a linear regime between ±2 mV, giving rise to an
interedge resistance of 1 MΩ. Further increasing the interedge voltage leads to dramatic increase
of the current between the two edges. Similar behavior can be seen in (b), where the current is
not only applied between the two edges, but also between the two layers, with the voltage
measured accordingly. Here, a higher resistance of 2 MΩ is obtained from the linear regime.

Fig. 5.4 shows two interlayer tunneling measurements. Here, the two-terminal interlayer
voltage is applied and correspondingly the interlayer current as well as the four-terminal inter-
layer voltage are measured at the outer (a) and inner (b) edge. Both curves have been obtained
by combining the up and down sweep directions, in both directions starting from zero. Both
configurations result in the typical Josephson-like characteristic as is similar in Hall bar from
Sec. 4.1. Interestingly, the critical currents registered from both edges are nearly identical and
about 8.5 nA in both directions. Furthermore, the interlayer resistance of about 1 kΩ is also sha-
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Fig. 5.2: Magneto-transport measurement of Corbino ring device CR-10 from
wafer #81653. AC current is applied between the outer and inner edge of the
annulus as a function of perpendicular magnetic field. At quantum Hall states, the
Corbino effect leads to zero interedge conductance seen as minima in the transport
trace. νT = 1 state is found at a magnetic field of 1.7 T at balanced layer densites,
giving a d/lB ratio of 1.5.

red by both edges. While these two features are not surprising on their own, they are intriguing
despite a significant length difference of close to a factor of three.

With a sufficient number of ohmic contacts to both layers as well as to both edges of the
Corbino ring, our sample geometry provides the additional possibility of measuring the four-
terminal interlayer voltage at both edges simultaneously while the interlayer current is applied
to one edge. Fig. 5.5 demonstrates such a measurement. Here, the interlayer current is app-
lied at the inner edge and the voltage is measured at both edges simultaneously. In (a), the
Josephson regime of the I-V characteristic, which is already presented in Fig. 5.4 b), is shown
in more details. The interlayer tunneling is almost linear in this regime with a resistance of 1
kΩ. Additional structures to the linear background are also visible. The two voltages measured
simultaneously are plotted against each other in (b). They are nearly identical in the entire Jose-
phson tunneling regime. This result is surprising, since the bulk system between the two edges
is highly insulating. This and other experimental features will be discussed in the next section.
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Fig. 5.3: Interedge transport in Corbino ring device CR-10. Left panel: Intralayer
current is applied between the edges in the upper layer. Right panel: Interlayer cur-
rent is applied between the edges. In both measurements, the conductance within
a voltage of±1.5 mV is small, while it dramatically increases beyond this voltage
regime.

The measurements discussed above have partially been carried out in sample CR-8 from
wafer #81981 with a barrier thickness of 8 nm. The results, shown in Fig. 5.6, show qualitative
similarities to those from sample CR-10. Quantitatively, the interedge measurements shown in
(a) and (b) exhibit a higher voltage value marking the onset of the increase of current between
the two edges compared to the previous sample.

Moreover, the interedge resistance in sample CR-8 is an order of magnitude larger than in
sample CR-10, as indicated by the smaller slope of the I-V curves here. In (c) and (d), one
also observes nearly identical critical currents measured at both the outer and inner edge of the
sample. The critical current exhibits a slight asymmetry in respect to the direction: the positive
critical current is ∼75 nA while the negative one is ∼50 nA. Beyond the critical behavior, both
I-V characteristics show a smooth transition into the regime where the bilayer is highly ohmic.

5.1.2 Data Analysis and Discussion

The results presented in the previous section will be discussed here. First of all, we emphasize
that the interedge resistance in Fig. 5.3 a) is consistent with the minimum in current in magneto-
transport from Fig. 5.2. This means that the two edges are effectively separated for charge
transport. As the voltage between the edges increases to exceed ∼2 mV, a sizable current starts
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Fig. 5.4: Interlayer tunneling in Corbino ring device CR-10. Interlayer current
is applied at the outer (left panel) and inner (right panel) edge, respectively. Both
curves have been created by combining the up and down sweeps starting from
zero interlayer bias voltage. The Josephson-like behavior is observable in both
measurements, which show almost the same critical currents. Note that the ratio
between the outer and inner diameter is 2.7.

to flow. This marks the onset of the νT = 1 QHE breakdown, which is characterized by the
drastic increase of the interedge conductance σxx.

From Sec. 4.2 it is known that the breakdown of the bilayer QHE is most likely induced by
a sufficiently large quasi-particle current. In a Hall bar, the quasi-particle current should flow
along the incompressible strips. In case of a Corbino ring, there can be two types of quasi-
particle current: a circular current flowing perpendicular to the applied electric field across
the ring and a radial current flowing between the edges. At small interedge voltage, the radial
current is small and the quasi-particle current is mainly the circular current. As the breakdown
sets in, it is possible that the Hall angle will no longer remain at 90◦ and the circular current
gradually evolves into a spiral current. This gives rise to a radial component that increases until
the system is completely out of the linear regime.

The Hall resistance at ν = 1 is ∼25 kΩ. Hence, the circular current at a breakdown voltage
of ∼1.5 mV should be the order of 60 nA. This is approximately a factor of 4 larger than
the breakdown current registered in sample HB-10. Taking into account that the width of the
Corbino ring is about 3.5 times as large as that of the Hall bar, this ratio of the critical current
seems reasonable and indicates that the critical current has a sample width dependence. Such
a dependence has been found in single layer systems [11]. Our result thus provides a further
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Fig. 5.5: (a) Interlayer tunneling at the inner edge of sample CR-10. Time depen-
dent process is believed to lead to the finite interlayer resistance [36]. (b) Voltage
measured simultaneously at both edges while tunneling occurs at the inner edge.
Both voltages are almost identical, despite the large layer resistances in the plane.

argument besides Sec. 4.2 that the breakdown of νT = 1 QHE might have a similar origin to
conventional single layer QHEs.

The interlayer tunneling shown in Fig. 5.3 b) can be viewed as consisting of an interlayer
tunneling and interedge transport. Its similarity to (a) shows that in this tunneling configuration
the interedge transport is dominant. If the tunneling part is also of coherent nature such as in
the case of Josephson-like tunneling, one should be able to apply the same tunneling picture as
shown in Fig. 4.10 b) here: the AR-reflected electron-hole pair is spatially separated and needs
to travel between the edges to form bilayer exciton. The resistance difference between (a) and
(b) is, nevertheless, three orders of magnitude larger than the resistance registered from Fig. 5.4,
but similar to the case at zero magnetic field. This strongly indicates that the interlayer tunneling
in such a configuration is most likely not coherent.

The Josephson-like tunneling behavior is only realizable when one uses the contacts at the
same edge for current injection and removal. The interedge tunneling in Fig. 5.3 b) results in
a vanishingly small interlayer current. To the contrary, tunneling at the same edge recovers the
enhanced interlayer conductance at νT = 1 state. This seems to mean that tunneling is only
possible at the edge of the sample. However, the length of the outer edge is larger than that
of the inner edge by a factor of close to three. If tunneling would be an edge phenomena, the
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Fig. 5.6: Interlayer and Interedge transport in Corbino ring device CR-8 from
wafer #81981. Only the up sweep has been included in all measurements. Similar
observations to Fig. 5.3 and Fig. 5.4 can be made here, except that the tunneling
characteristic in both cases is different.
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critical current measured at the outer edge should be about three times the size of the inner
critical current. The result that the two critical currents are nearly identical clearly shows that
tunneling should not be an edge but indeed a bulk phenomenon.

While this finding is consistent with previously published results [58] [52], the identical
critical currents at both the outer and inner edges in a Corbino device tell even more about the
Josephson tunneling in the bilayers. After the tunneling current has been injected into the sam-
ple, the simple picture of current continuity is that the tunneling current has a decay length in
the sample area which is the Josephson length λJ . Within λJ , the tunneling current flows as a
counterflow current horizontally. In clean systems, this length scale is small and tunneling is
nearly confined to the edge. In disordered systems, however, λJ can be so large that it exceeds
the size of the sample. The upper panels of Fig. 5.7 show the current paths for tunneling injec-
tion at both edges. In this picture, our result of equal critical currents indicates that tunneling
takes place across the entire sample area. The two lower panels illustrate the Andreev reflection
process at both edges. At νT = 1 ground state, bilayer excitons are believed to be distributed in
the bulk in equilibrium. Injecting tunneling current can thus be seen as injecting AR-generated
excess excitons into the excitonic condensate. Such excess excitons differ from the ground state
excitons because they can recombine by tunneling. Hence, the maximal injection rate of excess
excitons is also limited by the maximal tunneling current. If the tunneling regions for both edges
would not overlap, it would be difficult to interpret the equal critical currents. Rather, the two
edges share the same bulk and thus the same maximal tunneling current, leading to the same
critical currents observed.

The tunneling configuration used in the current Corbino sample involves a transport in the
plane, as shown in the inset of Fig. 5.4. In Sec. 4.2, it has been shown that in such case, the
tunneling current needs to flow as a quasi-particle current through the sample. This means that
in a Corbino ring system, the tunneling current is coupled to a circularly flowing current in the
plane. The interlayer resistance of 1 kΩ is thus a combination of this circular transport and an
intrinsic tunneling resistance explained in 4.2.

The result that both voltages are equal within the Josephson regime is even more intriguing.
The sheet resistance of each layer is of the order of 1 MΩ, while the tunneling resistance at the
edges is three orders of magnitude smaller. Hence, one would naively expect that the interlayer
voltage measured at the outer edge would be three orders of magnitude smaller than at the inner
edge, simply according to Kirchhof’s law. Instead, tunneling is happening all over the sample
area so that the same current tunnels at the outer as at the inner edge. Since the two resistances
measured at these two edges are equal, the interlayer voltages will naturally be equal. This can
also be understood with help of the counterflow current ICF ∝ t∇ V (r), where the Josephson
relation is already taken into account. In the disorder model [36], the excitonic counterflow is
present in the whole area and equilibrates the phase all over the sample.
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Fig. 5.7: Injection of excess excitons as a modified Andreev reflection at one
edge of a Corbino bilayer system: an injected electron is bound to a hole from
the adjacent layer, which is equal to an electron being removed from this layer.
Excitonic counterflow all over the sample plane gives rise to the equal critical
currents observed in Fig. 5.4.

Now we turn to discuss the sample CR-8 from wafer #81981 with stronger tunnel coupling
(8 nm barrier). The drastic increase of interedge current occurs when the interedge voltage
exceeds 4 mV, as is visible in Fig. 5.6 a), which is larger than the 1.6 mV in sample CR-10
from wafer #81653 with intermediate tunnel coupling (10 nm barrier). Interestingly, the critical
breakdown currents observed in the Hall bar samples HB-8 (8 nm barrier) and HB-10 (10 nm
barrier) are 25 nA and 10 nA, respectively. The ratio between both critical currents is almost
exactly the same as between the critical interedge voltages of the two Corbino ring samples.
This perfect consistency suggests that the breakdown picture should be equally applicable in
the case of interedge transport in Corbino ring samples. Furthermore, the consistently larger
critical current/voltage in wafer #81981 points out that smaller interlayer barrier thickness,
though not having an effect on the in-plane transport as large as in the Josephson-like tunneling,
may lead to a larger energy gap of the νT = 1 state.

The interlayer resistance from the overall resistance in Fig. 5.6 b) is also in the MΩ range as
in the previous Corbino ring sample, suggesting a similar underlying mechanism here. In Fig.
5.6 c-d), almost equal critical currents may also suggest a similar reason as in sample CR-10.
However, taking into account that the actual maximal Josephson-like tunneling current may be
orders of magnitude larger than measured in this contact configuration, it is more likely that
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the equal critical tunneling currents at both edges are a consequence of the in-plane transport.
The interlayer tunneling current can be coupled to a circular current anticipated to exist in
Corbino devices at QHE due to the contact configuration. If the same amount of circular current
is needed for the breakdown of the νT = 1 QHE, the results in sample CR-8 is natural. The
only inconsistency in this regard is that the circular current estimated from the critical interedge
voltage of 4 mV is about 160 nA, which is twice as the size of (positive) critical interlayer
critical current.

5.2 Applying a Second Josephson Tunneling Current

The fact that the excitonic condensate is extended all over the bulk may point at the possibility
of interplay between the two edges in a Corbino ring device. In all existing interlayer tunneling
measurements in the bilayer νT = 1 quantum Hall state, only one single tunneling current has
been applied. By applying a second interlayer current simultaneously might be able to provide
evidences of such an interplay, which has to be mediated by bilayer excitons due to the highly
insulating properties of the bulk for charged quasi-particles. The setup is shown in Fig. 5.8,
where interlayer current is applied at the outer and inner edge while the interlayer voltage is
detected only at the outer edge. Using this setup, one is able to register the interlayer tunneling
characteristic at the outer edge while applying a constant interlayer current at the inner edge.
By varying the second interlayer current, one is able to study how this current influences the
interlayer tunneling at the outer edge, despite the insulating property of the bulk for charged
quasi-particle currents.

5.2.1 Measurement Results

Second Tunneling Current Iin < Ic

Fig. 5.9 shows the result of the above mentioned measurement. Here, the I-V characteristic of
interlayer tunneling at the outer edge is shown, while a constant interlayer current between -8
nA and +8 nA is applied at the inner edge. The positive current direction is defined as positive
charge flowing from the top to the bottom layer. The I-V characteristics have been artificially
shifted along the voltage axis for the sake of clarity. The plotted current is measured on the input
side (close to the voltage source) to the upper layer. The voltage is measured at the outer edge
using separate contacts.

As no tunneling current is applied at the inner edge, the I-V recovers the one shown in Fig.
5.4 a), i.e. symmetric with respect to the voltage axis. As the inner current is increased in the
positive direction, the entire I-V curve at the outer edge shifts downwards by approx. the same
amount as the inner current. Such a shifting can be observed up to an inner current of +8 nA,
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Fig. 5.8: Simultaneously applying two interlayer currents at both edges of a Cor-
bino ring bilayer sample. The outer circuit is shown in green while the inner one is
shown in brown. While detecting the interlayer current and four-terminal voltage
at the outer edge of the sample, a constant second interlayer current Iin can be
applied at the inner edge. By varying Iin, this setup enables to study the interplay
between both edges in the Josephson regime.

which is below the intrinsic critical Josephson current Ic =8.5 nA. In the other current direction,
the evolution is opposite: with increasing inner current in the negative direction, the entire I-V
characteristic at the outer edge shifts upwards by approx. the same amount as the inner current,
up to Iin =-8 nA. At all the applied inner tunneling currents, the interlayer I-V characteristic
measured at the outer edge largely maintains its form. In particular, the current range between
the upper and lower bounds of the interlayer current remains almost the same for all Iin, despite
a slight change of the slope of the curves within the critical currents.

Fig. 5.10 shows the I-V characteristics measured at the outer edge while the inner tunneling
current is varied, this time plotting the output current (close to the ground) from the lower layer.
The I-V curves here are also shifted along the voltage axis for the sake of clarity. The result
is qualitatively similar to Fig. 5.9, except that the current range between the upper and lower
bounds of interlayer current declines in both directions of the inner current with increased Iin.
Similar tilting of the I-V curves to Fig. 5.9 can also be observed here.

At higher Iin > Ic

The situation in which the size of the inner current Iin is further increased is shown in Fig. 5.11
a). Here, the I-V curves are again shifted along the voltage axis for clarity. With Iin up to 16
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Fig. 5.9: Interlayer tunneling I-V characteristics at the outer edge (blue symbols
in the inset) of Corbino ring device CR-10 from wafer #81653 (10 nm barrier),
while applying a second constant tunneling current Iin at the inner edge (black
symbol in the inset). Iin is varied from −8 nA to +8 nA with and increment of 1
nA, thus within the intrinsic critical Josephson current Ic '8.5 nA. The positive
current is defined as flowing from the upper to the lower layer. The plotted current
refers to the input current to the upper layer. All the I-V characteristics have been
artificially offset along the voltage axis for the sake of clarity.

nA in the negative direction, the I-V characteristic at the outer edge maintains its form and the
current range between the upper and lower bounds. In order to apply an inner current which is
larger than the intrinsic critical current Ic of the system, it is necessary to first apply a constant
interlayer current at the outer edge, before a constant interlayer current at the inner edge can be
applied. In this way, the maximal constant inner current can be larger than the intrinsic critical
current Ic by an amount equal to the constant outer current.

At further elevated inner currents, the measurement of outer interlayer tunneling becomes
instable, such that the I-V characteristic at Iin =0 nA is recovered.

In Fig. 5.11 b), the same measurement as shown in Fig. 5.3 b) (black) as well as its modified
form (yellow) are plotted. In the modified case, the interlayer tunneling current across the bulk
is detected while the interlayer circuit at the outer edge is closed, indicated by a yellow switch
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Fig. 5.10: Interlayer tunneling I-V characteristics at the outer edge (red symbols
in the inset) of Corbino ring device CR-10 from wafer #81653 (10 nm barrier) for
Iin at the inner edge (black symbol in the inset). Iin is varied between −8 nA and
+8 nA with an increment of 1 nA. The plotted current refers to the output current
from the lower layer. All the I-V characteristics have been artificially offset along
the voltage axis for the sake of clarity.

in the inset. The data shown in yellow is obtained when the interlayer tunneling is measured
as shown in (a) at Iin =0 nA. The two I-V characteristics strongly overlap in the measurement
range.

5.2.2 Data Analysis and Discussion

From Fig. 5.9 one can clearly see a correlation between the I-V characteristics at the outer
edge and the applied Josephson current at the inner edge. The fact that the inner current is
a Josephson current is justified by its size: Iin < Ic. The vertical shifting of the outer I-V
is always almost exactly the same as the size of the inner current. In all measurements with
Iin >0, the current measured at the outer edge already exceeds the negative value of the system’s
intrinsic critical current, while for Iin <0 the positive value of the intrinsic critical current is
surpassed. Remarkably, the Josephson-like characteristic is well preserved for the measurement
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Fig. 5.11: Interedge coupling at higher Iin. (a) Interlayer tunneling characteri-
stics at the outer edge at higher Iin exceeding the critical tunneling current of 8.5
nA. Iin is varied between −10 nA and −16 nA. Beyond −16 nA, the interlayer
tunneling at the outer edge jumps back to the case at Iin =0 nA, indicating that the
interedge coupling is lost. (b) Interlayer tunneling between the edges with the cir-
cuit switch open (black curve) and closed (yellow curve). In both cases, parasitic
potential differences between the edges lead to a charge current flowing between
them.

at the outer edge in all traces. In particular, this manifests itself in the difference between upper
and lower bounds of the critical currents, which is the same under all applied inner currents
Iin. Furthermore, this is also supported by the overall form of the I-V tunneling within the low
bias region that remains qualitatively the same in all measurements. This shows clearly that
the coherent tunneling continues to take place in the sample in presence of a second Josephson
current.

This type of correlation or interplay between the two edges is truly spectacular, provided
that the two edges are separated for charge current by a highly insulating bulk. As shown in the
previous section, interlayer measurement at either edge results in a low ohmic tunneling device,
whilst it is almost impossible to transport charges between the two edges until the breakdown
of the νT = 1 state sets in. The current result shows, nonetheless, that an electric current at one
edge is able to influence the one at the opposite edge, without going into breakdown.

This phenomenon can be elegantly explained by the picture of excess exciton injection. It is
shown in the previous section, that the injected excitons are able to distribute themselves over
the entire sample area, leading to equal critical currents measured at both edges. Consequently,
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if one injects excess excitons at both edges simultaneously, these excitons should be able to
merge together and interact. Such an interaction depends on the relative polarization of the
excitons between both edges. In the case of the same sign for both inner and outer currents
(i.e. the lower left and upper right branches of Fig. 5.9), the excitons have the same polarities
and can only recombine via tunneling. In this case, the intrinsic maximal Josephson current is
shared by both edges. Consequently, the size of critical current at the outer edge will be reduced
by the same amount of current injected at the inner edge. To the contrary, if the two currents
have opposite signs (i.e. the upper left and lower right branches of Fig. 5.9), the excitons from
both edges are able to compensate themselves directly, which opens up a second channel for
recombination besides tunneling. This leads to an increased critical current at the outer edge.

It is the unique property of polarized excitons that leads to these two different dependencies
of the I-V characteristic at the outer edge on Iin. In conventional superconductors, the Cooper-
pairs are unpolarized. Therefore, when adding up Cooper-pairs through multiple channels, the
critical current of one channel will only be decreased. Bilayer excitons thus possess one more
degree of freedom.

We stress again that the two currents applied at both edges are effectively separated elec-
trically. The fact that they still interact with each other can therefore only be attributed to the
exchange of excess excitons. Our result thus demonstrates, perhaps for the first time, that two
individual electrical currents are coupled by exchanging charge neutral objects.

Not only the input but also the output tunneling current measured at the outer edge shows a
correlation to the inner current, as demonstrated in Fig. 5.10. However, the I-V characteristics
differ from those at the input side. This deviation is best visible in Fig. 5.12, where the critical
currents for both the input and the output interlayer currents at the outer edge are plotted as a
function of Iin. For the input critical currents (shown as blue dots), a linear dependence can be
found upon the inner current. For the output critical currents (shown as red dots), such a linear
dependence is visible when the size of the measured outer edge current is small, as is the case
for | Ic |<8 nA. In these two regions (Iin >0 and Iout >0, as well as Iin <0 and Iout <0),
the input and output critical currents almost overlap each other. As the size of the outer edge
current further increases, the input critical current is larger than the output one and the deviation
between the input and output critical current also increases.

While the deviation of the output current from the input one most likely stems from unavoi-
dable circuit resistances which will be explained in detail further below, this discrepancy might
raise the question whether the correlation between the edges involves exciton physics or rather
due to some trivial hidden link between the edges. At Iin =0 nA, one observes a deviation of
about 1 nA in both current directions when Iout has reached its critical value of 8.5 nA. This
means that, when an interlayer current that is smaller than the system’s intrinsic critical current
is applied at one edge of the Corbino ring, no more than 1 nA out of 8.5 nA is flowing between
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Fig. 5.12: Critical interlayer tunneling current Ic,out in Corbino ring device CR-
10 from wafer #81653 at the outer edge as a function of the interlayer current
Iin simultaneously applied at the inner edge. Both input (blue) and output (red)
critical currents are shown here. As the size of outer current is small (<8 nA),
both input and output critical currents overlap. At higher outer currents, the input
critical current becomes larger than the output one.

the edges. This interedge current flows because the resistance between both edges is not infi-
nite and a sufficiently large potential difference between them can lead to a measurable charge
current. However, this current is carried by charged quasi-particles, not excitons. The critical
output current at the outer edge when applying a constant current of 8 nA in either direction is
about 12 nA, thus larger by the intrinsic critical current by 4 nA. Clearly, this increase is larger
than the interedge charge current of 1 nA. Therefore, it is of solid evidence to state that there
is an exchange of currents between two edges which is not to be attributed to interedge charge
transport.

Another potential candidate for the coupling would be through the in-plane critical current
associated with the breakdown of νT = 1 QHE. The bottle neck in such case would be the
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critical breakdown current in the plane instead of the intrinsic critical Josephson current. Ne-
vertheless, taking into account the critical voltage in Fig. 5.3 of 1.6 mV, the breakdown should
be expected to happen at a current of the order of 30∼50 nA, which is significantly larger than
the observed 8.5 nA. Apparently, this possibility to explain the interaction between the two
edges can be ruled out.

With the above discussions, we are confident to state that the coupling between two bilayer
Josephson currents is indeed enabled by charge neutral interlayer excitons at the νT = 1 state.

Nevertheless, a phase-correlation induced coupling between two Josephson currents as in
the case of Superconducting Quantum Interference Devices (SQUIDs) has not been observed in
bilayer systems. This may be due to the same reason which destroys the Fraunhofer pattern in
tilted magnetic field measurements which yield an envelope function of the anticipated Fraun-
hofer oscillations [59]: the coherence length of roughly 200 nm in current bilayer systems at
νT = 1 state is too small compared to the sample size in the mm range, due to the existence of
merons [36]. It is possible that one needs bilayer samples which have the size of the order of
the coherence length in order to observe such macroscopic coherence.

An intuitive question can be raised, whether there is a limit for the coupling between two
individual bilayer Josephon currents as shown above and if there is, which mechanism is under-
lying this limit. A possible limit could be posed by the critical velocity of the excitons or equi-
valently the critical counterflow current between the two edges: such a critical behavior would
govern the current exchange since the latter is found to be mediated by the excitons. Theoretical
model by Hyart et al. predicts a pseudospin wave velocity in typical bilayer systems such as
the current sample to be u∼14 km/s. This would correspond to a critical Josephson current of
∼ 1 mA if one takes the charge density in the layers as the density of the excitons and their
flux as the one of the compensating electric current. Interlayer measurements under elevated Iin
shown in Fig. 5.11 a) demonstrate a possible way to identify such a critical counterflow current.
This results in a maximal critical inner edge current Iinner,m = −16 nA for the negative current
direction. This value corresponds to a critical exciton velocity of∼ 20cm/s, hence significantly
smaller than the anticipated value. The disappearance of the exciton-mediated coupling under
further increased Iin can therefore hardly be explained by an intrinsic critical velocity of exci-
tons in the condensate. It is more likely that an interedge current resulting from parasitic voltage
between the edges is responsible for this observation.

This becomes clearer when taking the result demonstrated by Fig. 5.11 b) into account.
When closing the switch, the two terminal interlayer bias voltage at the outer edge is identical
to the interlayer voltage between the two edges. Hence, increasing the two terminal voltage at
the outer edge will also affect the transport between the edges. The reasonable comparability
between both curves indicates that almost the same amount of current flows between the ed-
ges, no matter the switch is closed or open. Both measurements show a resistance of 2 MΩ,
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which is the resistance for charge flow between the edges in combination with incoherent tun-
neling. Such a charge current is given by a parasitic voltage building up between the edges.
When the interlayer current at the outer edge is within the system’s intrinsic critical current, the
charge current is small as shown by the yellow curve. When the outer current becomes larger
in presence of an inner current, the two terminal voltage between the edges will also become
sufficiently large to enable a large charge current that eventually is as large as the total input
current. In such case, the exciton-mediated coupling breaks down and the I-V characteristic at
Iin =0 nA is recovered.

Our result thus shows a critical behavior of the counterflow current at Iin ≥16 nA. Nonet-
heless, it is still not clear, why the parasitic effects will show up at all, since recombination of
excess excitons theoretically should be energetically much more favorable since it involves no
or little dissipation due to charge neutrality, compared to dissipative processes of charge flow.

Finally, a few remarks will be made to the I-V characteristics seen in Fig. 5.9 and Fig. 5.10.
One issue is concerning the vertical shifting of the I-V characteristics. Strictly speaking, the
application of Iin does not lead to a vertical shifting of the intrinsic I-V curve without inner
current. The reason is that when the two-terminal voltage at the outer edge is zero, there is no
current flowing at the outer edge despite the inner current. This is shown in Fig. 5.13, where
the current at the outer edge at zero two-terminal interlayer voltage at this edge is plotted as a
function of the inner current. If the I-V curves would be indeed shifted vertically as a function
of Iin, the data point at Vouter,2pt = 0 should also be shifted as the critical currents shown in Fig.
5.12. Since this is not the case, it is most likely that the I-V curves are cut off at one end and
extended at the other end, due to the injected excess excitons from the inner edge.

Hence, the exchange of excitons does not lead to a simple shifting of the Josephson trace.
Rather than that, it leads to the change of the critical currents, both the upper and the lower
bound. This occurs in form of a counterflow current carried by excitons, which can be estimated
by the change of the critical current on the output side at the outer edge1. In Fig. 5.14, the
data points are obtained by substracting the output critical currents at Iin = 0 from the critical
currents measured from Fig. 5.10. Taking into account that the charge current resulting from the
inner current is small (less than 1 nA), Fig. 5.14 gives a well estimated amount of counterflow
current flowing between the edges. For a fixed Iin, the value of counterflow current exchanged
between the two edges also varies, depending on the size of charge current exchanged between
the edges1. The latter current is associated with the two-terminal interlayer voltage between the
two edges, which in our current configuration is equal to the two-terminal interlayer voltage at

1The critical current on the input side at the outer edge is not a good reference here. The reason is that this cur-
rent will include a considerable charge current exchanged between the two edges, when the outer current becomes
sufficiently large.

1More precisely, it depends on the charge current between the upper layer at the outer edge and the lower layer
at the inner edge.
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Fig. 5.13: Interlayer current Iout measured at the outer edge while the two-
terminal voltage V2pt at this edge is zero, as a function of the inner current Iin. All
data points lie almost on the zero current axis.

the outer edge. Hence, the exchange of exciton current is correlated with the size of interlayer
current at the outer edge. The actual counterflow current, or, the exciton-mediated change of
interlayer current, of the system can thus be any value within the area enclosed by the blue and
red points in Fig. 5.14.

As already pointed out earlier, the I-V curves in Fig. 5.9 and Fig. 5.10 exhibit a twisting
effect when an inner current is applied. This twisting increases as Iin increases. Furthermore,
this twisting is anti-clockwise, no matter if a positive or a negative Iin is applied. A quantity
that also increases monotonically with Iin is the difference of the interlayer voltage between
the two edges, as shown in Fig. 5.15. Here, ∆V denotes the difference between the interlayer
voltage at the outer edge and that at the inner edge, i.e. ∆V=Vouter − Vinner. As the size Iin
increases, the maximal value of ∆V increases, indicating that the gradient of the interlayer vol-
tage across the bulk increases. This corresponds to an increasingly inhomogeneous distribution
of the electrical potential in the upper layer, since the lower layer is grounded at both the outer
and the inner edge. Such an inhomogeneity might be able to change the distribution of coherent
and incoherent puddles in the bilayer system, thereby decreasing the coherent area, so that the
coherent tunneling current decreases. The current range between the upper and lower bounds in
Fig. 5.9 decreases slightly at high Iin, which supports this picture. Though the details about the
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Fig. 5.14: Change of critical current ∆I on the output side at the outer edge
as a function of the inner current Iin. Data points obtained by substracting the
intrinsic critical current (measured at Iin =0 nA) from the upper/lower (blue/red)
critical current from Fig. 5.10. For each Iin, the size of exciton counterflow current
exchanged between the two edges is estimated to be in the range between values
marked by the blue and red dots.

puddle distribution is not known, this mechanism might lead to some kind of instability in the
outer circuit and give rise to the observed negative differential resistance.

5.3 Conclusions

In this chapter, bilayer systems with Corbino ring geometry have been studied to reveal a num-
ber of properties regarding the interlayer tunneling as well as the bulk and edge transport.

For the Corbino sample with 10 nm barrier thickness, transport between the two edges leads
to a highly ohmic I-V behavior within a critical voltage of 1.6 mV. Similar behavior is also
observed in the tunneling between the edges, except that in the latter case the resistance is
higher, indicating the tunneling being an incoherent process. Both measurements show that the
two edges are effectively separated by a highly insulating bulk. The Josephson-like interlayer
tunneling is, however, fully recovered when tunneling is measured at either the outer or the inner
edge of the sample. Moreover, both edges exhibit exactly the same critical currents as well as
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Fig. 5.15: The difference of interlayer voltage between the outer and inner edge,
∆V=V1−V2. Each curve is obtained from sweeping the two-terminal voltage V2pt

at the outer edge through the Josephson regime for this edge. This measurement
has been done under several inner current Iin between 0 nA and 6 nA.

tunneling resistance, despite a length difference of close to factor three. This clearly shows
that the Josephson effect in bilayers is not an edge but a bulk phenomenon, consistent with
previously reported results [58] [52]. In addition, the equal critical currents also show that the
interlayer current tunnels over the entire sample area. This is consistent with the observation that
the interlayer voltage measured at both edges are the same while interlayer current is applied
to one edge. In the picture of excess excitons, i.e. excitons injected via an Andreev reflection
like process, the equal critical currents at both edges can be explained by the two edges sharing
the same bulk and thus the maximal Josephson tunneling current, through which the injected
excitons recombine. The bulk is prohibited for charge flow, but perfectly open for excitonic flow.
Tunneling can thus take place all over the sample area and equalize the interlayer phase. This
results in the same interlayer voltage measured at both edges under application of interlayer
current at one edge.

The excitons can be injected into the bulk system through both edges simultaneously. Though
they are charge neutral, excitons from both edges are able to interact, leading to increase or de-
crease of the critical current measured at one edge, while a second interlayer current is applied
to the opposite edge. When the two currents have the same sign, the injected excess excitons
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have the same polarity and can not compensate themselves. Tunneling remains the only possi-
bility of exciton recombination. In this case, the maximal Josephson current is shared by both
edges, thus the critical current at one edge is decreased when increasing the interlayer current at
the other edge. When the two currents have opposite signs, the injected excess excitons have op-
posite polarizations and are able to compensate themselves, thereby opening a second channel
for exciton recombination. This leads to increased critical tunneling current at one edge when
increasing the second current. The two Josephson currents are thus correlated, though the bulk
between the two edges are highly insulating.

This result cannot be explained by a trivial electrical effect of parasitic charge current, since
an increase of critical current at one edge can be observed that is significantly larger than the
maximal charge current between the edges. It cannot be explained by any effect involving in-
plane charge transport associated with the breakdown of νT = 1 QHE either, since such a
breakdown current would be significantly larger than the observed intrinsic critical Josephson
current. Therefore, the exchange of bilayer excitons is the only possible explanation for the
observation of coupled Josephson currents at the two edges. Our result thus shows for the first
time, that two electrical currents, while being fully separated, can be coupled by charge neutral
objects at the νT = 1 bilayer quantum Hall state.

The input and output interlayer currents at one edge deviate when the interlayer current at
the other edge becomes sufficiently large. This can be explained by parasitic voltages building
up between the edges due to the large but finite resistance between the two edges in respect of
charge flow. Measurements at elevated compensating current show that the exciton-mediated
coupling between the edges breaks down at a compensating current exceeding 16 nA, marking
the onset of critical behavior of the excitonic counterflow. Such a breakdown is most likely
a result of the above mentioned parasitic voltage which enables a charge current between the
edges that eventually leaves no space for the excitonic exchange. Why such a parasitic effect,
which generally involves dissipation, can occur in cost of the exciton exchange is, however, still
an open question.

A second open question is the observation that the I-V characteristic of one edge in pre-
sence of a second interlayer current at the opposite edge shows anticlockwise twisting, which
increases with the size of the second current. Negative differential resistance (NDR) can be
seen. While no microscopic explanation is accessible within the current work, it is possible that
the increasing difference between the interlayer voltages at both edges with increasing com-
pensating current might lead to a decrease of the coherent tunneling area, since the electrical
potential distribution in the upper layer might become highly inhomogeneous due to its incre-
ased gradient. This could result in an effective decrease of the tunneling current by increasing
the interlayer voltage, thus the NDR.



Chapter 6

Corbino-Counterflow at the νT = 1 State

One of the most significant features of the νT = 1 bilayer excitonic condensate is that a pseu-
dospin phase gradient in the sample plane gives rise to a charge-neutral counterflowing current,
i.e. bound electron and hole pairs flowing in the same horizontal direction. Theoretically, the
counterflow is described by Eq. 3.6 and believed to flow in the bulk of the bilayer condensate.
Experimentally, the first demonstrations of oppositely flowing currents have used a Hall bar
geometry, which has been described in Sec. 3.3. There, current is applied through one layer
and a loop resistor before it is directed to the second layer. Vanishing longitudinal and Hall
resistance were then taken as signal of a truly dissipationless excitonic counterflowing current.

However, this argument is strictly speaking elusive, since current carried by quasi-particle
excitations would theoretically also able to lead to vanishing longitudinal resistance. Further-
more, it is possible that a charge current I flowing in one layer will increase the electrochemical
potential of the same edge in both layers by ∆µ = h

e2
I in the drag measurement [60]. App-

lying this argument for the counterflow in a Hall bar, the charge current flowing oppositely in
both layers will thus increase the electrochemical potential of both edges by the same amount,
leading to a zero Hall potential. Hence, it is uncertain whether the above mentioned counter-
flow experiments have detected the bulk properties of excitonic counterflow or merely charged
quasi-particle currents. Due to this uncertainty, one needs an alternative which provides securer
access to the bulk condensate. As pointed out earlier, the Corbino ring geometry provides two
edges, thus direct access to the bulk of the bilayer system. In particular, the bulk quasi-particle
current can be neglected at quantum Hall state since the longitudinal conductance vanishes.
This enables the extraction of the excitonic counterflow current.

There are two possibilities for this purpose: series and drag counterflow configurations,
as shown in Fig. 6.1. It has been argued that the series counterflow configuration does not
reach a steady state counterflow since the current might flow through the shunt resistor in a
wrong direction, leading to unequal exciton current flowing in and out from the condensate [61].
However, under tilting of the sample, thus introducing a magnetic field component parallel to
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the sample plane, Finck et al. have demonstrated the possibility of detecting the counterflow
using such a configuration in absence of interlayer tunneling [62].

Fig. 6.1: Two possible circuit configurations for detection of the counterflow cur-
rent in a Corbino ring sample (shown in (a), region enclosed by dashed line is
shown in (b) and (c)). (b): series counterflow configuration, where current is di-
rected through a shunt resistor connected to one edge of the layers; (c): drag coun-
terflow configuration, where current is directed through a shunt resistor connected
across the edges of one layer.

The focus of this chapter lies in measurements in Corbino ring samples performed in both
the series and drag counterflow configurations. While the series counterflow has been carried out
without tilting the sample in magnetic field, the drag configuration with and without a parallel
magnetic field component will be presented.

6.1 Series Counterflow

In the series counterflow configuration, the shunt resistor is circuited to connect the upper and
lower layers at one edge, while the total current is applied at the opposite edge of the sample. In
the following, measurement results in sample CR-10 (10 nm barrier) at νT = 1 will be shown
and discussed.
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6.1.1 Measurement Results

The I-V characteristics measured at the outer edge while the shunt resistor is connected to
the inner edge of the sample are summarized in Fig. 6.2, where V refers to the four-terminal
interlayer voltage. As the shunt resistance R is reduced from infinity to 1 kΩ, the Josephson
regime of the I-V curve remains the same: both the critical current and the interlayer resistance
show no measurable change. To the contrary, the regime beyond the critical currents in both
directions changes drastically with the shunt resistance. At high values for R, the interlayer
current after reaching the critical currents is strongly suppressed. As R is decreased, a current
starts to flow between the layers leading to an increasing slope.

The current flowing through the shunt resistor, denoted as IR, is plotted as a function of the
total current Itotal for the case of R=10 kΩ in Fig. 6.3. In both current directions, IR remains
vanishingly small until the total current reaches its critical value. Afterwards, the current flowing
through the shunt resistor jumps suddenly to about ± 4 nA and increases linearly to the total
current within the measurement range.

6.1.2 Data Analysis and Discussion

There are two features that are special from Fig. 6.2, as the shunt resistance is varied from infini-
ty to 1 kΩ. First of all, the Josephson interlayer tunneling is clearly visible in all measurements,
which is manifested by the zero voltage tunneling associated with almost vanishing resistance
and a critical current. Within the Josephson tunneling, the I-V behavior for all shunt resistances
is the same. Changing the series shunt resistance thus has no effect on the Josephson effect.
Secondly, the I-V behavior beyond reaching the critical currents, i.e. at higher interlayer volta-
ges, changes systematically with the shunt resistance. With infinite or large shunt resistance, as
shown in the two upper panels in Fig. 6.2, the slope is small as the interlayer current is strongly
suppressed after the critical current is reached. At intermediate shunt resistance, shown in the
middle panels, a sizable current begins to flow at higher voltages, which even increases when
the shunt resistance is further decreased in the two lower panels.

In order to understand the differences between the Josephson and the high voltage regimes
when changing the series shunt resistance , the current flowing through the shunt resistor, IR,
needs to be analyzed. Fig. 6.3 shows IR as a function of the total current applied at the outer
edge, Itotal, for the case of R=10 kΩ. IR is completely suppressed when the critical Josephson
current Ic is not reached, while it starts to flow after Ic is exceeded. In Sec. 5.1, it has been
pointed out that the interlayer voltage appearing at one edge of a Corbino ring bilayer excitonic
system due to application of a 2-terminal interlayer voltage can also be measured on the opposite
edge of the sameple. Taking this into account, the current observation is consistent with that
from Fig. 6.2. Within the Josephson regime, the interlayer voltage measured at the outer edge is



94 CHAPTER 6. CORBINO-COUNTERFLOW AT THE νT = 1 STATE

Fig. 6.2: Interlayer tunneling at the outer edge of Corbino ring with a shunt re-
sistor connecting the inner edge. The shunt resistance is varied from 1 kΩ to 100
MΩ. The case without shunt resistance is also shown (black).
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Fig. 6.3: The current flowing through the shunt resistor R, which is connected to
the inner edge of the Corbino sample (inset), is plotted as a function of the total
current measured at the outer edge for R=10 kΩ. At Iouter ≤ Ic, the only a vanis-
hingly small current flows through the loop. Upon the injected current reaching its
critical value, the loop current jumps to a finite value and increases monotonically.

vanishingly small. Therefore, the interlayer voltage at the inner edge will also be small, which
will lead to vanishingly small current flowing through the shunt resistor. Beyond the Josephson
regime, the interlayer voltage suddenly increases, so that a measurable current is able to flow
through the shunt resistor. This results in the jump of IR.

The finite IR is thus responsible for the difference in Fig. 6.2 between different R values,
since the size of IR depends on the size of the shunt resistance. This becomes evident in Fig.
6.4, where the difference between the interlayer current at the outer edge and IR is shown as a
function of the measured interlayer voltage at the outer edge for varied R values. The resulting
I-V characteristics show almost the same behavior in the entire measurement range. Hence,
without the influence of R, the I-V at the outer edge have qualitatively the same behavior, which
means that the shunt resistor mainly affects the IR.

The occurrence of IR needs to be clarified. In particular, it is possible that an excitonic
counterflowing current leads to IR. In order to proof this possibility, we consider the setup
shown in the inset of Fig. 6.5 a), where an additional grounding cable is added to connect the
shunt resistor and the grounding point. The shunt resistance is chosen to be 10 kΩ here. If
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Fig. 6.4: Interlayer tunneling characteristics at the outer edge of sample CR-10
while a shunt resistor is circuited to the inner edge. The current results from the
total current Iouter minus the current detected at the shunt resistor IR. The dash
lines indicate the slope of the regime after the critical current has been exceeded,
while R is varied.

the IR is indeed associated with the excitonic counterflow, i.e. charge carriers moving in both
quantum wells across the loop resistor in opposite directions, it should flow to the grounding
point through the lower layer without resulting in a current detectable along the additional
grounding line. Otherwise, the current will flow directly through the grounding line, since it has
a resistance which is several orders of magnitude smaller than the lower layer.

The left panel in Fig. 6.5 presents two measurements for R=10 kΩ: the red curve shows IR,
which flows through the shunt resistor, while the black curve shows IGND, which is detected
along the additional grounding cable. Both currents are plotted as a function of the total current
Itotal. Before Itotal reaches its critical value of 8 nA, both IR and IGND increase monotonically
but remain small compared to Itotal, while the latter current is slightly larger than the former
one. As Itotal exceeds the critical Josephson current, IR jumps to about 5 nA before it continues
to increase. To the contrary, IGND remains finite and small. This result clearly demonstrates that
IR does not directly flow to the ground, but through the lower layer. Hence, it is evident that a
counterflowing current exists in the bilayer system after the critical Josephson tunneling current
has been exceeded.
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Fig. 6.5: Demonstration of IR being an excitonic current. Left panel: current
flowing through the shunt resistor (IR, shown in red) and current flowing from the
shunt resistor (IGND, shown in black) to the ground are plotted as a function of
the total current injected at the outer edge, for R=10 kΩ. At IOUTER > Icritical,
the loop current is significantly larger than the ground current. Right panel: the
ground current IGND with (orange) and without (green) the shunt resistor.

This phenomenon is intriguing because to the contrary of what is observed in the previous
chapter, adding a shunt resistor in the series counterflow configuration does not lead to an in-
creased critical current1, but starts to flow beyond the Josephson regime. On one hand, this is
somehow self-explaining since in the regime of Itotal ≤ Ic, the voltage difference between the
layers is small on both edges and it can not effectuate a sizable IR. On the other hand, this dis-
crepancy should also be rooted in the fact that a shunt resistor does not provide a second source
of excess excitons, since such a source would require extra small but finite energy input which is
not given here. In the case of a second interlayer current, this energy is provided by the electri-
cal potential difference between the layers at the inner edge, which does not exist in the current
case unless the critical current is exceeded. Nonetheless, the fact that under such circumstances
the counterflow is still possible and even favored by the current compared to simply flowing
through a grounding cable means that one observes a fairly similar effect as Finck et al. [62] in

1The lower panels of Fig. 6.2 show a slight increase of critical current compared to the upper panels. Although
this is not understood yet, it is most likely not due to any counterflow, since the corresponding IR flowing through
the shunt resistor is vanishingly small (see Fig. 6.3).
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their tilted magnetic field measurement. In fact, suppressing the interlayer tunneling by introdu-
cing a parallel magnetic field component seems to not destroy the νT = 1 but effectively only
decrease the size of the system’s critical current. In this sense, the current measurement may be
of exactly the same origin as in the tilted field case: both introducing a parallel magnetic field
and exceeding the critical current suppresses the coherent tunneling, while the counterflow can
still exist. This is consistent with the prediction of Hyart et al. [36] that the critical current is
an intrinsic property of the tunneling but not the νT = 1 state and that exceeding the critical
current does not destroy the coherence of the νT = 1 state.

Before the total current has reached its critical value, both IR and IGND exhibit small but
finite values. The finite IGND can be explained by comparing two cases: interlayer tunneling at
the outer edge with and without a shunt resistor. The right panel of Fig. 6.5 shows that these
two cases yield exactly the same ground current IGND. In the case without shunt resistor the
ground current can only be explained by a parasitic voltage difference between the two contacts
where interlayer current is injected and removed, the same as discussed in Sec. 5.2. Hence,
the same mechanism must also underly the observed ground current when a shunt resistor is
connected to the inner circuit. This result also proofs that IR and IGND are decoupled from each
other. Nonetheless, the small but finite size of IR in the left panel remains a puzzle. Since IR is
decoupled from IGND, the additional grounding cable should pose no influence on IR. Further
measurements are needed to clarify the details concerning this issue.

6.2 Drag Counterflow

In the drag counterflow configuration shown in Fig. 6.1 c), an external current is applied to
the upper (drive) layer while a shunt resistor is circuited to the lower (drag) layer of a bilayer
system. In the following, measurement results using both samples CR-10 (wafer #81653 with
10 nm barrier) and CR-8 (wafer #81981 with 8 nm barrier) will be shown and discussed. In
particular, data of sample CR-8 will be shown in both cases with and without a parallel magnetic
field component.

6.2.1 Measurement Results

Fig. 6.6 b-d) shows the result obtained with sample CR-8, using the setup shown in (a). The
shunt resistance is varied between 1 kΩ and 3 GΩ. In (b), the total current measured at the
input side of the circuit connected to the drive layer is plotted as a function of the voltage
measured across this layer. At high shunt resistance, the I-V characteristic recovers the single
layer transport between the edges, shown in Fig. 5.6 a). Between the critical voltages of about
±4.5 mV, the slope of the I-V curves is high associated with a large sheet resistance. As the



6.2. DRAG COUNTERFLOW 99

shunt resistance is decreased to the kΩ range, the slope between the critical voltages increases
monotonically. This observation is accompanied by an increasing current measured across the
drag layer, Idrag, as shown in (c), when the shunt resistance is decreased. Finally, (d) shows the
difference between the total current Itotal and the drag layer current Idrag: ∆I = Itotal − Idrag.
The resulting current difference takes a similar form for all shunt resistances. Nevertheless,
the critical voltage at which ∆I drastically increases shifts downwards as the shunt resistance
decreases.

The same measurements are performed also in sample CR-10. As Fig. 6.7 shows, the be-
havior here is qualitatively very similar to sample CR-8. The slope of the regime within the
critical interedge voltages increases with decreasing shunt resistance. Furthermore, the slope of
the drag current Idrag as a function of the voltage measured across the drag layer, Vdrag, also
increases with decreasing shunt resistance. Surprisingly, the difference ∆I between Itotal and
Idrag does not change as a function of Vdrive when the shunt resistance is varied, to the contrary
of sample CR-8. Instead, all the curves fall together showing the same critical voltages in Fig.
6.7 d).

It has been shown previously, that a parallel magnetic field can lead to suppressed interlayer
tunneling currents and that the suppression increases with the tilting angle [35]. Further mea-
surements under strong tilted magnetic fields (up to 66◦) have shown that the Coulomb drag
effect, however, remains observable, although the interlayer tunneling is supposed to be com-
pletely suppressed at such an angle [63]. In order to study the influence of parallel magnetic
field on the drag counterflow, the sample was tilted to an angle of 75◦.

Fig. 6.8 a) shows the result of interlayer tunneling at such an angle (red curve), compared to
the tunneling I-V without tilting (blue curve). The latter case exhibits a Josephson-like tunneling
characteristic that is typical for the wafer #81981 (8 nm barrier thickness), with critical currents
in the range of 70 nA. The former case, to the contrary, shows no interlayer tunneling current
at all in the entire measurement range. Fig. 6.8 b-c) show measurement of the current flowing
through the shunt resistor, Idrag (b) and the difference current ∆I (c) between the total current
Itotal (not shown here) and Idrag, as the shunt resistance is varied between 10 kΩ and 3 GΩ.
The data for different shunt resistances clearly overlap in the measurement range. Finite values
of Idrag can be observed when the shunt resistance becomes sufficiently small and the slope of
Idrag as a function of Vdrag increases as R decreases. To the contrary, ∆I as a function of Vdrive
takes the same form for all used shunt resistances.

6.2.2 Data Analysis and Discussion

In the case without tilting the sample, the behaviors in the drag counterflow of the two samples,
CR-8 and CR-10, are qualitatively similar. Both show a change in the total current Itotal as
a function of the drive voltage Vdrive, when the shunt resistance is varied. Here, the slope of
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Fig. 6.6: Drag counterflow (setup shown in (a)) in sample CR-8. (b) the total
current Itotal measured at the input side of current as a function of the voltage
measured between the edges in the drive layer Vdrive. (c) current measured across
the shunt resistor connected to the drag layer Idrag as a function of the voltage
measured across the drag layer Vdrag. (d) The difference between Itotal and Idrag
as a function of Vdrive. All measurements in b-d) are shown for varied shunt resi-
stance.
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Fig. 6.7: Drag counterflow (setup shown in (a)) in sample CR-10. (b) the total
current Itotal measured at the input side of current as a function of the voltage
measured between the edges in the drive layer Vdrive. (c) current measured across
the shunt resistor connected to the drag layer Idrag as a function of the voltage
measured across the drag layer Vdrag. (d) The difference between Itotal and Idrag
as a function of Vdrive. All measurements in (b-d) are shown for varied shunt
resistance.
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Fig. 6.8: Drag counterflow in sample CR-8 under a tilting angle. (a) Interlayer
tunneling without tilting (blue) and under a tilting angle of 75◦. (b) Idrag as a
function of Vdrag for varied shunt resistances between 10 kΩ and 3 GΩ under
the tilt angle. (c) Difference current ∆I as a function of Vdrive for varied shunt
resistances.
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I-V increases with decreasing shunt resistance. The critical behavior at higher Vdrive can be
understood as associated with the breakdown of the quantum Hall effect at νT . The drag current
Idrag as a function of the drive or drag voltage shows similar slopes for both samples as the
shunt resistance is varied. This slope is associated with the total resistance circuited the drag
layer except the sheet resistance of the drag layer, if one takes the drag layer as a battery with
voltage Vdrag. Hence, our result can be interpreted as that the contact resistances are reasonably
similar in both samples. Moreover, the slopes concerning the panels (b) and (c) in each sample
are also similar. This means that the change in Fig. 6.6 b) as well as Fig. 6.7 b) upon changing
the shunt resistance originates from the current measured in Fig. 6.6 c) as well as Fig. 6.7 c),
respectively. Hence, varying the shunt resistance to the drag layer changes the drag current Idrag,
which indirectly changes the total current Itotal.

One can divide the total current Itotal into two components, Idrag and the difference current
∆I:

Itotal = Idrag + ∆I. (6.1)

Without tilting the sample, ∆I takes a similar form in sample CR-8 and CR10, except that
in the former case the critical voltage shifts to lower values when varying the shunt resistance.
Nevertheless, one can state that in all measurements, ∆I reflects typical interedge transport in
a Corbino ring sample at νT = 1 with a vanishing conductance between the critical voltages. In
previous chapters, the increase of current between the edges is attributed to dissipative processes
leading to QHE breakdown. In the case of Hall bar samples, it is the quasi-particle current
carrying charge that is responsible for the breakdown. It is reasonable to attribute the breakdown
in the case of Corbino to the quasi-particle excitations which carry charge from one edge to the
other, so that the longitudinal conductance σxx deviates from zero.

Therefore, it is reasonable to state that the difference current ∆I is carried by quasi-particles.
The origin of the drag current Idrag, on the other hand, is still not clear at this point. It is possible
that it contains the excitonic counterflow which is anticipated also for the drag counterflow con-
figuration, but it might also contain other types of currents. In particular, in the case of strong
tunnel couping such as in sample CR-8, current injected at one edge might tunnel through
the barrier. This tunneling current would then be able to leave the same edge and tunnel back
through the opposite edge after passing the shunt resistor. Hence, if interlayer tunneling is pre-
sent in this configuration, the tunneling current can directly contribute to Idrag. Thus, the role of
tunneling is crucial in order to clarify the nature of Idrag. A measurement, in which interlayer
tunneling is suppressed, will therefore be able to shed some light into this question.

Under a tilt angle of 75◦, tunneling is completely suppressed. Nevertheless, the drag current
can still be clearly observed which is visible from Fig. 6.8 b). Together with the result without
tilting, this shows that a current can flow through the drag layer, independent on the existence of
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interlayer tunneling. Taking into account that there is no electrical connection between the two
layers in this case, our result provides a direct evidence of the excitonic counterflow: currents
flowing oppositely in the layers. Idrag consists at least partially of excitonic current: an electron
injected into the drive will be bound to a hole from the drag layer to form an excess exciton.
Due to charge conservation, an electron has to leave the drag layer, which contributes to the
drag current.

Another feature which can be extracted from the drag counterflow measurements is con-
cerning the role of interlayer tunneling current. Fig. 6.6 d) and Fig. 6.7 d) show fairly similar
dependence of the quasi-particle current ∆I on the drive voltage Vdrive. Nonetheless, in sample
CR-10 with weaker tunnel coupling, ∆I is a constant function of Vdrive, independent on the
shunt resistance, whilst in sample CR-8 with stronger tunnel coupling, the critical point of ∆I

shifts to lower Vdrive with decreasing shunt resistance. Most spectacularly, sample CR-8 reco-
vers the same behavior as CR-10 when tunneling is suppressed, visible in Fig. 6.8 c). All these
results indicate that interlayer tunneling is influencing the correlation between quasi-particle
current and the drive voltage.

This influence can be further visualized by the following diagram: in Fig. 6.9, values of
Vdrive are plotted versus values of Idrag for sample CR-8 in the case without tilting. The data
points have been obtained in the following way: in Fig. 6.6 d), six values of ∆I between 5 nA
and 30 nA are chosen, which give the corresponding values of Vdrive for measurement under
each shunt resistance. The values for Idrag associated with the registered Vdrive values are ex-
tracted from Fig. 6.6 c). For each chosen ∆I , all the data points for varied shunt resistances lie
on the same line. Intriguingly, all the lines exhibit a slope of close to −25 kΩ.

The value of the slope reminds one of the quantized Hall resistance at filling factor one.
Since the bilayer system is in the νT = 1 state, such a resistance value is likely correlated to the
QHE, instead of being incidental. This effect is no longer present, once interlayer tunneling is
suppressed or reduced, either by tilting the sample, or by making the barrier thicker. Interlayer
tunneling thus plays a central role.

In the following, a model will be provided to explain our results obtained from sample CR-8.
The model takes into account three different components which the total current Itotal consists
of: an excitonic counterflowing current IEX , a current carried by charged quasi-particles IQP

as well as an interlayer tunneling current ITU . Fig. 6.10 illustrates these current components as
well as their simplified paths within the bilayer Corbino system.

When the total current (blue arrows) is injected from the outer edge of the drive layer, as
is the case in the experiments, this total current will be removed from the inner edge to the
ground. Within the bilayers, the excitonic counterflow current (brown arrows) can flow from
the outer edge to the inner edge in the drive layer, while an opposite current flows in the drag
layer that is directed through the shunt resistor. The quasi-particle current (green arrow) flows
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Fig. 6.9: Vdrive as a function of Idrag for a given ∆I . For each value of ∆I , the
data point is taken for varied shunt resistance. The slope is −25 kΩ for all traces.

from the outer edge to the inner edge. Finally, the interlayer tunneling current ITU (red arrows)
could flow in the plane, due to the contact configuration in which the source and drain contacts
are on opposite ends of the outer edge. This tunneling current will be withdrawn to the ground
via a backtunneling process at the inner edge. From the previous chapter, we have learnt that
the Josephson effect occurs over all the area where the νT = 1 state is present. Consequently,
the tunneling current should be illustrated all over the bulk strictly. Nevertheless, since the bulk
is insulating as long as νT = 1 is present, the tunneling current should always flow along the
same edge, unless there is a way to circumvent the bulk. This is given when the shunt resistance
is sufficiently small, which leads to a second contribution for the measured Idrag besides the
excitonic counterflow IEX . Eq. 6.2 and Eq. 6.3 summarize the two measured currents:

Itotal = IEX + ITU + IQP (6.2)

Idrag = ITU + IEX . (6.3)

This leads to the difference ∆I between both measured currents:

∆I = Itotal − Idrag = IQP , (6.4)
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Fig. 6.10: Simplified model for the current composition: the total current (blue
arrows) applied at the outer edge of the drive layer consists of an excitonic cur-
rent (brown arrows) flowing oppositely in both layers between the edge, a charge
current (green arrow) carried by quasi-particle excitations as well as a tunneling
current (red arrows). The tunneling current leaves the drive layer at the outer ed-
ge after flowing in the sample plane and flows through the shunt resistor before
flowing to the ground via the inner edge.

which states our reasonable assumption that the difference current is carried by the quasi-
particle excitations.

There is another current which flows due to the voltage between the edges Vdrive. As pointed
out in the previous chapter, a circular current flows in a Corbino ring device at QHE, similarly
to the longitudinal current in a Hall bar device. This circular current is associated with a voltage
drop across the ring, which is the Hall voltage. In the following, this circular current is labeled
as the intrinsic circular current Icir,intrinsic of the system. In addition, the interlayer tunneling
current, when it flows in the sample plane, can also give rise to a Hall voltage contribution.
This is because when the tunneling current is coupled to an in-plane current, it has to flow as a
quasi-particle current along the incompressible strips, as shown in Chap. 4. Due to the contact
configuration and the direction of the magnetic field, Vdrive only takes Hall voltage originating
from the intrinsic part of the circular current. The total voltage between the edges, or the total
Hall voltage, will be the sum of both the intrinsic and tunneling current multiplied by the Hall
resistance at the total filling factor one. Hence, one has the correlations:

Vdrive = Icir,intrinsic ∗RHall (6.5)
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Vinteredge = Vdrive + ITU ∗RHall (6.6)

In the regime far away from the breakdown, i.e. in the low Vinteredge regime, the total cur-
rent Itotal consists almost entirely of the drag current Idrag. As Vinteredge increases, the circular
current can develop a component which flows from one edge to the other. This component is
the quasi-particle current IQP , which increases as the system approaches the QHE breakdown.
In the non-ideal breakdown regime characterized by a steep but not perfectly vertical increase
of the quasi-particle current, IQP is monotonic to Vinteredge.

Within this model, one can simulate the situation shown in Fig. 6.9 by choosing ∆I =

const. This means IQP = const, hence Vinteredge has a fix value denoted by U :

Vdrive = U − ITU ∗RHall (6.7)

=⇒ ITU = −
(

1

RHall

)
∗ Vdrive +

(
U

RHall

)
(6.8)

The slope seen in each measurement of Fig. 6.9 is effectively the result of differentiating
Idrag as a function of Vdrive at constant ∆I . Using Eq. 6.7, this leads to

(
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∂Vdrive

)
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=

∂
(
ITU + IEX

)
∂Vdrive
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= − 1

RHall

+

∂
(
IEX

)
∂Vdrive


∆I=const

. (6.9)

The first term of the result in Eq. 6.9 gives the measured value of about 25 kΩ at νT = 1. If
this model provides the correct picture for our observation in Fig. 6.9, the second term should
be zero. This statement means that the excitonic counterflow current is not a function of the
interedge voltage caused by the intrinsic circular current. This is consistent with the model of
Hyart et al. which suggests that the excitonic counterflow should depend on the difference in in-
terlayer voltage between the two edges, instead of the interlayer voltage or the interedge voltage
alone. This model thus clarifies the role of interlayer tunneling in the series counterflow, which
does not affect the total voltage between the edges, Vinteredge, when tunneling is suppressed by
tilting the magnetic field or making the barrier thickness larger. In the frame of this modelling,
the similar behaviors in Fig. 6.7 d) and Fig. 6.8 c) can be attributed to the absence of interlayer
tunneling current.

Moreover, our measurement also provides for the first time an indirect but quantitative ana-
lysis of the anticipated circular current in a Corbino ring device. Such a circular current has
never been directly detected so far, whilst in the current analysis taking it into account provides
a reasonable explanation of the data.

Two questions still remain open: the slightly smaller slopes in Fig. 6.8 b) as well as the
smaller breakdown voltage in Fig. 6.8 c) compared to the case without tilting (Fig. 6.6 c-d)).



108 CHAPTER 6. CORBINO-COUNTERFLOW AT THE νT = 1 STATE

The first observation might be explained by the higher contact resistances at a significantly
higher total magnetic field of 10.5 T compared to 2.6 T. The second observation might be an
indication for a weakening of the νT = 1 state, since its breakdown occurs at a smaller interedge
voltage, which corresponds to a smaller critical circular current. It is, nonetheless, not clear what
has led to such an attenuation of the excitonic state.

6.3 Conlusions

In this chapter, the two circuit configurations for studying the excitonic counterflow, drag coun-
terflow and series counterflow, are presented.

In the series counterflow experiment, in which sample CR-10 is not tilted, one observes
the well established bilayer Josephson effect. The Josephson currents do not depend on the
shunt resistance circuited to the edge opposite to the one at which interlayer I-V is measured. In
particular, the critical current remains the same at all shunt resistances. No current flows through
the shunt resistor in this range. When the Josephson critical current is exceeded, the tunneling I-
V characteristics exhibit different behaviors depending on the shunt resistance, while the current
flowing through the shunt resistor drastically increases. It can be proven that the latter current
through the shunt resistor is due to the excitonic counterflow which is expected to exist in the
νT = 1 state.

In the drag counterflow, the shunt resistor is circuited to the drag layer, i.e. the layer in which
no external current is applied. In both samples CR-8 and CR-10, a drag current flowing through
the shunt resistor can be detected, when the shunt resistance is sufficiently small. Furthermore,
the difference current, which results from the total current after subtracting the drag current, is
most likely carried by quasi-particle excitations. This quasi-particle current increases drastical-
ly at a sufficiently large voltage across the drive layer, i.e. the layer in which an external current
is applied. Here, there is a difference between both samples: while in the sample CR-10 with
weaker tunnel coupling the critical voltage remains the same for all shunt resistances, it shifts
to lower voltage in sample CR-8 with stronger tunnel coupling while decreasing the shunt resi-
stance. When the values of drag current and drive voltage at constant values of the quasi-particle
current are plotted, the data points one obtains lie on lines with the same slope of 25 kΩ, which
is close to the Hall resistance at filling factor one.

Tilting the sample CR-8 under an angle of 75◦ leads to completely suppressed interlayer tun-
neling current. Intriguingly, the drag current is still detectable although no tunneling is present,
evident of excitonic counterflow. Moreover, the critical voltage of the quasi-particle current do
not shift but have the same value for all shunt resistances. This result recovers the same behavior
as in the case of sample CR-10 without tilting. Using a model which takes into account the role
of interlayer tunneling, one can show that the slope of 25 kΩ is a result of the tunneling giving
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rise to a Hall voltage contribution, besides the Hall voltage associated with the intrinsic circu-
lar current. Our result thus provides the first indirect but quantitative evidence of the circular
current anticipated in a Corbino ring device at QHE.





Chapter 7

Summary

The revolutionary advances of the information technology in the past decades have greatly
changed our daily life. This process was initiated by developments in the physics of condensed
matter, which enabled the industry to manufacture ultrafast circuits smaller and more stable. An
essential element of this process is the dramatic increase of the purity of crystals, which led to
the observation of the two most important effects in semiconducting materials in the past three
decades–the integer and the fractional quantum Hall effect (IQHE and FQHE). Both effects
were observed in ultrathin interfaces between semiconductors or between semiconducting and
metallic layers at high magnetic fields. Such systems are also called two-dimensional electron
gas (2DEG). Two Nobel prizes have been awarded for the discovery of these effects: one went
to Klaus von Klitzing in 1985 and the other to Daniel Tsui, Horst Stoermer and Robert Laughlin
in 1998. Nowadays, the two QHEs can be observed in novel systems such as graphene and oxide
interfaces as well as complex systems out of them.

Another special QHE has also been observed in the course of this development. If two of the
aforementioned 2DEGs are brought to a spacing of few nanometers, while their densities and
the magnetic field are set in such a way that the lowest Landau level in each layer is half filled,
one can observe a QHE with filling factor of one. Intriguingly, one deals here with a correlated
state between the layers, since each individual layer exhibits no QHE at the filling factor of 1

2
.

For this reason, this effect is called the total filling factor one, or νT = 1 QHE.
Theoretically, the ground state of νT = 1 can be described as Bose condensate of inter-

layer excitons, or as spontaneous magnetization of pseudospins. In the first picture, electrons
(occupied states of the lowest Landau level) in one layer are bound to holes (vacancies of the
lowest Landau level) of the adjacent layer and form excitons. Such excitons can condense at
sufficiently low temperatures. In the second picture, the electrons have an extra degree of free-
dom – pseudospin – which describes in which layer they reside. In the ground state of νT = 1,
all the pseudospins are aligned so that a ferromagnetic order can be established.

The most spectacular feature of this effect is that it leads to a strongly enhanced interlayer
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tunneling between the layers compared to the case without magnetic field. This effect prevails
until a critical current is reached, beyond which the interlayer tunneling will be strongly sup-
pressed. Due to its strong similarity to the Josephson effect in conventional superconductors,
the interlayer tunneling at νT = 1 is called a Josephson-like tunneling effect.

The Josephson-like interlayer tunneling in bilayers at νT = 1 QHE has been extensively in-
vestigated, primarily in samples with 10 nm and 12 nm barrier thickness. Such systems show a
symmetric-antisymmetric energy gap, ∆SAS , of up to 100 µK1. The quantity ∆SAS is a measure
of the coupling between the layers and thus the strength of interlayer tunneling. In this work,
we extended the bilayer samples to include a barrier thickness of 8 nm, which has a ∆SAS of
about 1 mK. In this sample, the interlayer tunneling in a configuration, in which the tunneling
current also flows in the plane, has the same critical current as in pure in-plane transport. This
is not the case in a sample with 10 nm barrier, where both critical currents strongly differ. In
particular, the critical current in the plane which is associated with the breakdown of quantum
Hall effect is of similar size to that in the 8 nm sample. Using a contact configuration, in which
the current contacts for tunneling are vertically aligned, we observe a much larger critical cur-
rent in the 8 nm sample. It is larger than the one observed in the 10 nm sample by several orders
of magnitude. From these measurements, we conclude that the critical tunneling current of the
8 nm sample in the first configuration is caused by the breakdown of the νT = 1 QHE. This
breakdown is solely driven by the quasi-particle current. The size of this breakdown current is
primarily independent of the tunnel coupling ∆SAS . Furthermore, the large critical tunneling
current observed in the 8 nm sample does not obey the quadratic dependence on ∆SAS , as pre-
dicted by Hyart et al. [36]. Its size seems to be similar to that predicted by the static vortices
model by Eastham et al. [55].

The area dependence of the critical Josephson current has been discussed in earlier publi-
cations [52] [56]. The conclusions from these works are based on comparison between several
samples with different material properties. In this work, we compare the critical Josephson
currents at two separate edges within a single sample, which is structured in a Corbino ring
geometry. The lengths of the two edges differ substantially. The critical currents measured at
these two edges are, nevertheless, nearly identical. This result confirms that the Josephson tun-
neling in bilayers at νT = 1 is not an edge, but a bulk effect. In addition, it gives also evidence
that tunneling is taking place all over the sample area where interlayer coherence is present.
Using a picture similar to the Andreev-Reflection (AR), applying interlayer tunneling currents
at different edges can be understood as excess excitons being injected through different edges.
Such excess excitons will recombine through tunneling in the bulk. Since both edges share the
same bulk, they show the same critical current.

One can further investigate this phenomenon by applying a second constant Josephson tun-

1The real energy gap can be determined by multiplying the temperature with the Boltzmann constant kB .
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neling current simultaneously to the first one at the opposite edge of the Corbino ring. Possible
interplay between the two edges, or between the two Josephson currents, can be studied in this
way. We observe that the tunneling I-V curve at one edge appears to be shifted vertically by
the same amount of current as applied at the opposite edge. If both currents have the same di-
rection, applying a second current leads to a decrease of the critical value of the first current.
Otherwise, one observes an increase of the first critical Josephson current. Again, one can ap-
ply the AR-like picture to explain these observations: when applying two Josephson currents
with opposite signs, one effectively injects excess excitons with opposite polarizations into the
two edges. These excitons can recombine just by compensating themselves, thus opening up a
second recombination channel in addition to the intrinsic tunneling. If the currents applied at
both edges have the same sign, the injected excitons have the same polarization and have to
recombine by tunneling. Hence, the maximum intrinsic tunneling current is shared by the two
edges. Since the two edges are effectively isolated from each other in the νT = 1 state, our
result provides the first experimental evidence for two separate electrical currents to couple via
exchange of charge-neutral objects–bilayer excitons. Such a coupling prevails up to a second
Josephson current of 16 nA. We attribute the breakdown of the coupling beyond this current
value to parasitic voltages building up between the two edges, since the bulk is not perfectly
insulating.

In the closing chapter of this work, experimental results regarding excitonic counterflow
are shown and discussed. Such a counterflowing current consists of electrons moving in op-
posite directions in the two layers. One thus has a charge-neutral flow of excitons. We again
use Corbino samples for the demonstration of counterflow, since having two edges provides
access to the bulk. Two setups are studied in this work: series counterflow with a shunt resistor
connecting the two layers at one edge of the Corbino ring; and drag counterflow with a shunt
resistor connecting the two edges of one layer. Both setups show clear evidence of excitonic
counterflow: While the series counterflow setup provides direct results, the drag counterflow
setup requires tilting as a control experiment. In the first case, excitonic counterflow can be de-
tected through the shunt resistor after the critical Josephson tunneling current has been reached.
In the latter case, tilting the sample to 75 degrees completely suppresses interlayer tunneling
at νT = 1, which has qualitatively no influence on the excitonic counterflow observed without
tilting. Both results mean that the presence of Josephson tunneling current is not a prerequisite
for the observation of excitonic counterflow. Furthermore, it can be shown in the drag coun-
terflow setup that a Josephson tunneling current possibly contributes a Hall potential (voltage
drop between the edges). Combined with the intrinsic circular current of the system at νT = 1

QHE, this additional Hall potential might contribute to the breakdown of the QHE. This result
might be the first indirect but quantitative analysis of circular currents predicted for the Corbino
geometry at QHE.
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In the outlook, we emphasize that in order to clarify the small yet finite interlayer resistan-
ce associated with the Josephson effect observed in all bilayer samples, local measurements
such as deploying a Single Electron Transistor (SET) could be helpful. In particular, it might
be possible to study the role of merons as well as their anticipated fractional charge of 1

2
e.

Magneto-transport measurements could continue to be important, particularly for comparing
the temperature dependence of the longitudinal current and the excitonic counterflow. Such a
comparison can give insights into the mechanism for the interaction between merons and quasi-
particles as well as between merons and bilayer excitons, which is predicted to be similar by
some models [36]. Finally, the large critical tunneling current exceeding 1 µA should be further
investigated. Last but not least, time dependent measurements should be developed to micros-
copically study the exciton picture as well as the Andreev-Reflection mechanism for the νT = 1

state.



Chapter 8

Deutsche Zusammenfassung

In den letzten Jahrzehnten hat die Revolution der Informationstechnologie die Art und Wei-
se, wie die Menschen leben und arbeiten, drastisch verändert. Dieser Prozess ging einher mit
den Fortschritten in der Physik kondensierter Materie, die es ermöglicht haben, ultraschnelle
Schaltungen extrem klein und stabil herzustellen. Essentiell in diesem Prozess ist die Erhöhung
der Kristallreinheit, auf die die Entdeckung der beiden wichtigsten Effekte in Halbleitersyste-
men der letzten drei Jahrzehnten–der geradzahlige und der fraktionelle quantisierte Hall Effekt
(IQHE und FQHE)–zurückzuführen sind. Beide Effekte wurden in ultradünnen Grenzflächen
zwischen Halbleitern bzw. zwischen Halbleiter und Metall bei hohen Magnetfeldern entdeckt,
weshalb ein solches System zwei-dimensionales Elektronengas (2DEG) genannt wird. Zur Ent-
deckung beider Effekte wurden zwei Nobelpreise vergeben: an Klaus von Klitzing im Jahr 1985
sowie an Daniel Tsui, Horst Störmer und Robert Laughlin im Jahr 1998. Heutzutage lassen sich
die beiden QHEs in neuartigen Systemen wie Graphen und Grenzflächen zwischen Oxiden so-
wie aus diesen zusammengesetzten komplexen Systemen realisieren.

Mitten in dieser Entwicklung ist auch ein besonderer QHE entdeckt worden. Wenn man
zwei oben genannte 2DEGs in einen Abstand von nur wenigen Nanometern zusammenbringt
und die Dichte in den beiden Dünnschichten sowie das Magnetfeld so einstellt, dass jeweils das
niedrigste Landau-Niveau halb gefüllt ist, stellt sich ein QHE mit Füllfaktor eins ein. Erstaun-
licherweise handelt es sich um einen korrelierten Zustand zwischen den Schichten, da jedes
2DEG allein bei Füllfaktor 1

2
keinen QHE aufweist. Daher wird dieser Effekt auch als ein QHE

mit totalem Füllfaktor eins, νT = 1, bezeichnet.
Theoretisch lässt sich der Grundzustand des νT = 1 Effektes sowohl als Bose-Kondensat

von Interlagen-Exzitonen, als auch als spontane Magnetisierung von Pseudospin beschreiben.
Im ersten Bild gehen Elektronen (besetzte Zustände des niedrigsten Landau-Niveaus) in einer
Schicht mit den Löchern (unbesetzte Zustände des niedrigsten Landau-Niveaus) eine exzitoni-
sche Bindung ein, die bei tiefen Temperaturen kondensiert. Im zweiten Bild fügt man jedem
Ladungsträger einen weiteren Freiheitsgrad–Pseudospin–zu, der angibt, in welcher der beiden
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Schichten sich dieser befindet. Im Grundzustand des νT = 1 werden alle Pseudospins ausge-
richtet, so dass ein ferromagnetischer Zustand entsteht.

Das Spektakulärste an diesem Effekt ist der Interlagentunneleffekt, bei dem die Tunnelleit-
fähigkeit zwischen den beiden Schichten um Größenordnungen erhöht wird im Vergleich zum
Tunneln ohne Magnetfeld, wobei es sich beim Letzteren um Tunneln von unkorrelierten Elek-
tronen handelt. Der Tunnelstrom weist darüber hinaus einen kritischen Wert auf, nach dessen
Überschreitung das Interlagentunneln drastisch unterdrückt wird. Aufgrund der starken Ähn-
lichkeiten zum Josephson-Tunneleffekt in konventionellen Supraleitern wird der in Doppella-
gen beobachtete Tunneleffekt als Josephson-like (Josephson-ähnlich) bezeichnet.

Bis zur Entstehung dieser Arbeit wurde der νT = 1 Josephson-Effekt an Doppellagen-
systemen mit Barrierendicke zwischen 10 nm und 12 nm untersucht. Diese Systeme weisen
eine Symmetrie-Antisymmetrie-Energielücke ∆SAS , eine für die Tunnelstärke charateristische
Größe, von bis zu 100 µK auf1. In dieser Arbeit wurden Doppellagenproben mit einer Bar-
rierendicke von 8 nm untersucht, die ein ∆SAS von 1 mK aufweist. Der dadurch verstärkte
Tunneleffekt führt in einer Kontaktgeometrie, in der der Tunnelstrom auch in der Probenebe-
ne fließt, dazu, dass der kritische Strom dem des longitudinalen Transports exakt gleich ist. In
einer Probe mit 10 nm Barrieredicke lassen sich die beiden kritischen Ströme um eine Größen-
ordnung unterscheiden. Der kritische Strom in der Ebene, der mit dem Durchbruch des QHEs
zusammenhängt, ist ähnlich großwie bei der tunnelstärkeren Probe. Eine alternative Kontakt-
geometrie, in der die Kontakte für Stromzu- und -abfuhr genau übereinander liegen, führt zu
einem gigantischen kritischen Josephson-Strom, der um drei Größenordnungen größer ist als
in der 10 nm Probe. Aus diesen Messungen kann man schlußfolgern, dass der Durchbruch von
νT = 1-QHE alleine durch die Quasiteilchen-Ströme verursacht wird. Außerdem hängt die
Größe des Durchbruchstroms primär nicht von ∆SAS ab. Der gigantische kritische Josephson-
Strom scheint nicht mehr der quadratischen ∆SAS-Abhängigkeit aus dem Modell von Hyart et
al. [36] zu gehorchen, könnte jedoch durch ein auf statischen Vortizes beruhendes Modell von
Eastham et al. [55] erklärt werden.

Die Flächenabhängigkeit des kritischen Josephson-Stroms wurde bereits in älteren Arbeiten
gezeigt [56] [52]. Diese Studien basieren jedoch auf Vergleich mit mehreren Proben, die alle
unterschiedliche Materialeigenschaften besitzen. In dieser Arbeit wurde ein Vergleich des kri-
tischen Stroms an zwei Rändern mit deutlich unterschiedlichen Längen in einer einzigen Probe
durchführt. Die daraus resultierenden kritischen Ströme sind nahezu identisch. Dies bestätigt
einerseits, dass der Josephson-Tunneleffekt in Doppellagen bei νT = 1 tatsächlich kein Rand-
sondern ein Flächeneffekt ist, und andererseits dass das Tunneln über der gesamten Fläche statt-
findet, auf der die νT = 1-Kohärenz präsent ist. In einem Bild, welches dem Andreev-Reflektion
aus der Supraleitung ähnlich ist, lässt sich dieses Resultat dadurch veranschaulichen, dass die

1Die tatsächliche Energielücke wird aus Multiplikation mit der Boltzmann-Konstante kB ermittelt.
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an den Rändern injizierten Exzitonen sich über das gesamte Doppellagensystem verteilen, wo-
bei sie durch Tunneln rekombinieren können. Da Tunneln ein Flächeneffekt ist, spielt es keine
Rolle, an welchem Rand man die Exzitonen injiziert.

Dieses Phänomen kann man weiter studieren, indem man neben einem Josephson-Tunnelstrom
einen zweiten Tunnelstrom am gegenüberliegenden Rand des Corbino Rings anlegt. Dabei lässt
sich ein Wechselspiel zwischen den beiden Rändern bzw. zwischen den beiden Josephson-
Strömen beobachten: die an einem Rand der Corbino-Probe gemessene Tunnelkurve verschiebt
sich vertikal um genauso viel wie die Größe des zweiten kontanten Josephson-Stroms. Wenn
beide Ströme dasselbe Vorzeichen haben, verringert sich der kritische Wert des ersten Stroms;
im anderen Fall nimmt dieser zu. Darüber hinaus ändert sich die Form der Tunnelkurve kaum.
Diese Beobachtungenen lassen sich mit dem Austausch von Exzitonen zwischen den Rändern
erklären: bei entgegengesetzten Strömen werden entgegen gesetzt polarisierte Exzitonen an bei-
den Rändern injiziert, die sich aufheben können, was einen zweiten Rekombinationskanal neben
dem intrinsischen Josephson-Tunneln öffnet. Bei gleich polarisierten Exzitonen wird der maxi-
male Tunnelstrom von beiden Rändern bezogen, also sinkt der kritische Strom des einen Ran-
des. Angesichts der Isolatoreigenschaft des Corbino-Volumenmaterials bei νT = 1 zeigt diese
Beobachtung zum ersten Mal, dass zwei elektrisch getrennte Ströme durch Austausch von la-
dungsneutralen Objekten–Exzitonen miteinander wechselwirken können. Dieses Wechselspiel
bleibt bei einem zweiten Josephson-Strom von bis zu 16 nA erhalten. Diese Begrenzung ist auf
einen Ladungsstrom aufgrund eines parasitischen Potentialunterschieds zwischen den Rändern
zurückzuführen.

Abschließend behandelt diese Arbeit den exzitonischen Counterflow, d.h. einen Strom, der
in beiden Lagen in entgegengesetzten Richtungen fließt und deshalb ladungsneutral ist. Dazu
wurden ebenfalls Corbino-Proben verwendet, die zwei Ränder besitzen und somit Zugang zum
Probeninneren ermöglichen. Sowohl bei einer Beschaltungskonfiguration, in der ein externer
Widerstand die Lagen am Innenrand kurzschließt (series counterflow) und ein Tunnelstrom an-
gelegt wird, als auch bei einer anderen Konfiguration, in der ein Strom durch die obere Schicht
und ein externer Widerstand die Ränder der unteren Schicht kurzschließt (drag counterflow),
wurde ein Counterflow beobachtet. Während im ersten Fall ein direkter Nachweis durch ein
zusätzliches Erdungsstück möglich war, musste im letzteren Fall die Probe verkippt eingebaut
werden, um eine Magnetfeldkomponente parallel zur Probenebene einzuführen. Dieses paral-
lele Magnetfeld unterdrückt den Josephson-Effekt vollständig. In beiden Messkonfigurationen
wurde ein Counterflow beobachtet, während der Josephson-Tunneleffekt entweder teilweise
oder ganz unterdrückt war. Dieses Ergebnis bedeutet, dass der νT = 1 Zustand nicht durch den
Josephson-Tunnel charakterisiert wird. Nähere Untersuchungen bzgl. des Quasiteilchen-Stroms
klärten die Rolle des Josephson-Stroms ab: ein Tunnelstrom, der in der Probenebene fließt, führt
zu einer Hallspannung, die mit der intrinsischen, dem Ringstrom entsprechenden Hallspannung
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zusammen zum Durchbruch führt. Dieses Result stellt deshalb auch zum ersten Mal eine indi-
rekte, jedoch quantitative Untersuchung des Ringstroms bei QHE in einer Corbino-Probe dar.

Im Ausblick auf zukünftige Untersuchungen erachten wir lokale Messungen zur Enthüllung
des Meron-Konzeptes für besonders dringlich, da einige Erklärungen, u.a. der endliche Tun-
nelwiderstand bei νT = 1 damit zusammenhängen. Solche Messungen könnten mittels eines
Einzelelektrontransistors (SET) realisiert werden, der zudem über die antizipierte fraktionelle
Meronenladung von 1

2
e Aussagen liefern könnte. Auch normale Transportmessungen könnten

weiterhin interessant sein, um beispielsweise die Temperaturabhängigkeit des longitudinalen
Transportstroms mit der des exzitonischen Stroms zu vergleichen. Manche Modelle vermuten
nämlich, dass sich die Meronen gleichermaßen auf den Transportstrom wie auf den Exziton-
strom wirken [36]. Weitere Messungen an Proben mit 8 nm bzw. noch kleinerer Barrierendicke
könnten hilfreich sein, um den beobachteten Tunnelstrom von über 1 µA näher zu studieren.
Schließlich sind zeitabhängige Messmethoden zu entwickeln, um dem Exziton-Bild im Zusam-
menhang mit der Andreev-Reflektion auf den Grund zu gehen.



Appendix A

Additional Measurements

In this appendix, a few additional measurements will be shown which were not directly the
focus in the previous measurement chapters but are either relevant to the background of those
measurements or contain some phenomena which need to be clarified in future.

In Chap. 5 and Chap. 6, measurements with Corbino ring devices have been performed at
the νT = 1 state. Fig. A.1 shows the full traces of the Coulomb drag in a sample from wafer
#81981 (8 nm barrier). Both the current through the drive layer, as well as the voltages across
the drive and drag layers are plotted. At νT = 1, the current exhibits a minimum while the two
voltages overlap completely and show a maximum. At higher filling factors, a similar effect can
be observed. This effect is not seen in bilayer samples with larger barrier thickness, such as from
wafer #81653. In samples from wafer #81981, to the contrary, this effect occurs whenever the
top and bottom layers exhibit a QHE, no matter at which filling factors.

There exists fundamental difference between the Coulomb drag effect at νT = 1 and the
effects at higher filling factors. The former effect results from the excitonic coupling between
the layers, which is a consequence of the interlayer coherence, whilst the latter one results from
the electrostatic coupling between the layers associated with single particle tunneling. This
difference manifests itself as the much more profound overlap such as at νT = 1 then at other
filling factors.

Tiemann et al. have shown that in a Hall bar bilayer sample, it is possible to detect the Hall
resistance at filling factor one when applying a tunneling current at νT = 1 and measuring
the interlayer voltage with voltage probes situated on separate sides of the tunneling current
[56]. Fig. A.2 shows that such a Hall resistance can also be observed in a Corbino device:
Interlayer current is applied at the outer edge while interlayer voltage is probed according to
a Hall configuration. The value of the resulting slope is close to 26 kΩ. Besides providing a
further evidence of the νT = 1 being a collective bilayer QHE, this result is intriguing since it
occurs despite the hole in the middle of the Corbino ring device [64].

In Chap. 4, interlayer tunneling has been shown in two different contact configurations. For
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Fig. A.1: Coulomb drag in a Corbino ring sample from wafer #81981 (8 nm
barrier) at 20 mK. The d/lB ratio is set to 1.7. Densities are balanced between
both layers. The Coulomb drag effect is clearly seen at νT = 1 at a magnetic field
of 2.45 T. At other integer filling factors, the drag voltage is also close to the drive
voltage, which is due to the strong coupling between the layers resulting in strong
overlap of the wave functions.



121

Fig. A.2: Interlayer tunneling at νT = 1. The contacts at which the interlayer
voltage is probed are situated on opposite sides of the current flow. The resulting
interlayer resistance is close to 26 kΩ, reminiscent of the quantum Hall resistance
at ν = 1.

sample HB-8, the tunneling configuration with source and drain contacts situated directly above
each other exhibits a critical current three orders of magnitude larger than using the previous
configuration enabling an in-plane current. Fig. A.3 shows the full tunneling trace. Surprisingly,
the four-terminal interlayer voltage remains positive at negative source-drain voltage which
leads to a negative interlayer current. This feature and the two minima at about V = −0.2 mV
and I = ±1µA are currently not clear.

So far, the bilayer Josephson tunneling effect has been shown only up to a certain range
of interlayer voltages, but not at even more elevated voltage bias. Fig. A.4 shows for the first
time a more complete interlayer tunneling traces with four-terminal interlayer voltage up to
±4 mV. This is shown for both the total filling factor νT = 1 (red trace) and the single filling
factor ν = 1 (blue trace). The total filling factor is characterized by the zero-bias current,
which does not occur at the single filling factor. In both cases, however, the interlayer current
increases dramatically at higher voltages exceeding 2 mV, in both directions. The exact origin
of such spikes are not known at the moment. Nonetheless, it is likely that this is not due to any
collective many-body interaction, since it occurs for both the single and total filling factors of
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Fig. A.3: Tunneling I-V characteristic of sample HB-8 with the second contact
configuration described in Chap. 4. In the negative current regime, the interlayer
voltage is positive.

one.
In the drag counterflow experiment shown in Chap. 6, the currents have been plotted as a

function of either the drive voltage Vdrive or drag voltage Vdrag. At νT = 1 state, the Coulomb
drag effect leads to equal Hall voltages in both layers of a Hall bar, despite the current only
being applied through the drive layer. It is the same effect that leads to the equal drive and
drag voltages shown in Fig. A.5. In both sample CR-10 (a) and CR-8 (b), Vdrag is plotted as a
function of Vdrive under both a large (3 GΩ) and a small (1 kΩ) shunt resistance. All traces are
lying on the line y = x.
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Fig. A.4: Interlayer I-V characteristics with four-terminal interlayer voltage up to
±4 mV, measured at νT = 1 and ν = 1. Both filling factors show spikes at higher
voltages, which suggests that such spikes are not of a coherent nature. Their origin
is, nonetheless, not known at the moment.
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Fig. A.5: Load geometry in Corbino ring devices CR-10 (a) and CR-8 (b). In
both graphs, the drag voltage (interedge voltage measured in the lower layer) is
plotted versus the drive voltage. Both voltages are almost the same, indicating an
established Coulomb drag effect.



Appendix B

Sample Fabrication and Measurement
Setup

Within this work, bilayer samples based on GaAs have been fabricated. This chapter is dedi-
cated to a description of the sample fabrication, which includes the sample structure and the
fabrication process. Finally, the measurement setup will be introduced.

B.1 Sample Fabrication

The growth of bilayer samples involves the pre-patterning of back gates, overgrowth of bi-
layer structure, etching of the mesa as well of evaporation of metallic ohmic contacts and front
gates. First of all, a wafer with a back gate layer consisting of degenerately doped GaAs is
pre-patterned into global and side back gates by photolithography and chemical wet etching.
The pre-patterned backgate wafer is then cleansed and immediately brought into the chamber
of molecular beam epitaxy (MBE), in which the desired double quantum well structure is over-
grown. Again by means of photolithography and chemical wet etching, the mesa is structured
into Hall bar or Corbino ring geometries. Ohmic contacts and global as well as side front gates
are deposited on to the surface at the end. The contact alloy is also annealed so that it diffuses
into the lower lying double quantum wells.

B.1.1 Sample Structure

Fig. B.1 shows a plan of MBE-overgrowth which has been applied in samples studied in some
previous works [38] [65] and in this work. The double quantum wells, each with a width of 19
nm and separated by a superlattice barrier of typically 10 nm, are buried about 540 nm below
the surface. The reason for the 2DES to be so deep is that a smaller spacer would lead to a higher
electric field between the first doping layer and the upper quantum well, which under the same
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doping would result in a higher charge carrier density. This would have the consequence that a
larger front gate voltage would need to be applied in order to bring the system to a sufficiently
low effective layer separation d/lB. A second reason is that the two quantum wells need to be
density-controlled individually, i.e. the global front/back gate should be responsible for only the
upper/lower layer. A short spacer would increase the sensitivity for the global gates, so that the
voltage difference for controlling the density in only one layer and both layers becomes small
and the identification of depletion becomes more difficult. It might be helpful to have a shallow
spacer for certain purposes, i.g. detection of the chemical potential of the 2DEG, which might
be achievable by lowering the doping concentration at the same time. In order to change the
interlayer coupling strength, the thickness of the insulating barrier between the two quantum
wells can be varied by changing the number of the AlAs/GaAs cycles. Three different cycle
numbers of 4, 5 and 6 have been used for this work, resulting in a barrier thickness of 8 nm, 10
nm and 12 nm. As will be explained in Chap. 4, such small difference in barrier thickness can
lead to large difference in the properties of the νT = 1 state.

Two typical sample geometries used in this work are depicted in Fig. B.2(a) and (b). The
Hall bar geometry (a) has a length of 0.88 mm and a width of 0.08 mm while the Corbino
ring geometry (b) has an inner radius of 0.16 mm and an outer radius of 0.43 mm. The most
important feature of our design that the two quantum wells can be separately contacted. This is
enabled by deploying the FFP technique introduced by Fronius, Fischer and Ploog [66], which
is schematically explained in Fig. B.2(c): after annealing, all ohmic contacts are connected
to both the upper and lower quantum wells. By applying a negative voltage to the side front
gates, the electronic layer in the contact arm directly below these front gates can be depleted,
so that the connection between the upper layer and this contact is cut off. Similarly, a negative
voltage applied to the side back gates can also disconnect the lower layer from specific contacts.
Finally, one also has global front and back gates which are used to vary the electron densities
of the bilayers individually.

B.1.2 Fabrication Process

During the sample fabrication within this work, a number of technological difficulties have
been encountered, in which all the components of the sample were involved. In the following,
a summary about these difficulties as well as their solutions is described.

Backgate

The samples used for this work have differently grown back gate electrodes. For wafer #81653,
the back gate has been grown by MBE while for wafer #81981, the back gate has been grown by
the Metalorganic Chemical Vapor Deposition (MOCVD) technique. While there is no physical
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Fig. B.1: Wafer growth plan of the samples used in this work. The two wafers
differ in the number of AlAs/GaAs superlattice cycles for the interlayer barrier as
well as the spacer superlattice between the second doping layer and the back gate.

difference between the two types of wafers, the surface of the MOCVD wafers seems to be
generally cleaner than the MBE wafers, as can be seen in Fig. B.2. This is possibly due to the
difference in the way how the wafers are grown: in the MOCVD procedure, individual atoms
(Ga or As) are formed via chemical reactions, after which the target atoms are absorbed on the
surface of the substrate forming the desired crystal, while the waste products diffuse away from
the surface. This naturally results in a high material purity. In the MBE procedure, the wafer
purity is controlled mainly by the purity of the material (Ga and As target cells). Provided that
in both procedures, the vacuum quality of the growth chamber is similar, the use of material
of less purity can lead to more defects visible on the surface. During the fabrication of back
gates, while the pre-patterning steps including the surface cleansing immediately before the
MBE-overgrowth of bilayer structures were well controlled, a considerable fraction of the back
gates have shown two major problems: 1. The leakage currents were unacceptably high already
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Fig. B.2: Microscopic pictures of the sample geometries used in this work: (a)
Hall bar device with length 0.88 mm and width 0.08 mm. The back gate wafer
shown here is grown by MBE. (b) Corbino ring device with outer diameter 0.86
mm and inner diameter 0.32 mm. The back gate wafer is grown by MOCVD. (c)
Illustration of the selective depletion technique. After applying negative voltages
to the front and back gates, the left contact is effective only to the lower and the
right contact only to the upper layer.
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within the depletion gate voltage, shown by the red curve in Fig. B.3b. 2. The charge carrier
depletion under gate voltage application did not give clear steps for the side back gates which
should mark the depletion of the two quantum wells. The latter is visible through the blue curve
in Fig. B.3(c). The circuitry for the current biased depletion measurement is sketched in Fig.
B.3(a), where the two-terminal voltage across the 2DES is measured while sweeping the back
gate voltage.

Leakage current between the bilayer and the back gate is usually due to the poor insulating
properties of the spacer between them. There are several ways to improve the insulating, such
as increasing the mole fraction of Al in the superlattice in order to increase the DX center con-
centration or introducing a layer of low temperature (LT-) GaAs. The DX center concentration
usually becomes significant at compositions close to the boundary between direct and indirect
band gap, which is about x = 37% forAlxGa1−xAs. One thus cannot use an Al mole fraction of
more than ∼ 35%. On the other hand, an Al mole fraction which is too small will also sacrifice
the conduction band discontinuity. In current samples, the Al mole fraction is chosen to be 33%

in the AlxGa1−xAs layers. In a modified growth plan which includes a layer of AlGaAs in the
superlattice between the lower doping layer and the back gate, while the overall thickness of
the spacer remains similar to the previously used one. As shown by the red curve in Fig. B.3(b),
the leakage current endurance has been increased to below −1.0V . The second alternative in-
corporating LT-GaAs has not been tried within this work. Since this method is also based on
increasing the defect concentration, it should lead to similar effect as the first method.

The draw back of higher DX-center concentration is that the back gates become hysteretic
when being swept back and forth. DX-centers are known as trapping centers for the charge
carriers, which capture electrons being removed from the lower quantum well under a negative
back gate bias voltage. When reversing the voltage, such electrons remain in the DX-centers
and can only be thermally excited back into the quantum well.

Selective depletion of lower sharpness can have diverse reasons such as high density of
defects in the back gate layer, in the overgrown structure or deviating process parameters. Ho-
wever, some of the fabricated bilayer samples indeed show fairly sharp depletion curves under
negative back gate voltages. This means that the second problem is not a global but a local one.
One of the most obvious local sources of problems is the gluing of samples to the chip carri-
ers. The samples were first glued using a high vacuum grease called Fixogum. This material
is viscous which easily has a rough surface, especially when too much of it is applied when
gluing the samples. Due to the difference in stiffness between the grease and the chip carrier
as well as sample, local stress might occur during the cooling process down to cryogenic tem-
peratures. Although not fully understood on a microscopic basis, it can be anticipated that the
bending of the sample can be compared with defects which might disturb the delocalization
of electron wave functions in the plane. PMMA, a liquid photoresist which is largely used for
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the electron-beam lithographic technique, is used to substitute the vacuum grease. Besides its
enhanced gluing property at reduced thickness which means only a very thin layer is needed
when gluing the sample, its liquid phase at room temperature enables a more homogeneous sur-
face. This results in improved depletion characteristic manifested in sharper steps in the same
two-terminal measurement at liquid helium temperature, shown by the red curve in Fig. B.3(c).

Frontgate

The performance of the fabricated front gates is generally better than the back gates: they are
less leaky, the depletion steps are sharper. However, some of the front gates also pose a problem
depicted in Fig. B.4. Since the deposited front gate layer has a thickness of only 200 nm, much
smaller than the thickness of the etched mesa of over 1 µm, surface roughness especially at the
etched mesa edges easily affects the front gates. Due to the difference of etching anisotropy
concerning the crystallographic directions between different materials, the mesa edge profile
after etching exhibits step-like structures, with rather clear roughness at the positions of the two
doping layers. It has been found that such roughness leads to discontinuity of the front gates
when this stretches across the contact arms, as highlighted in the left panel in Fig. B.4. This
problem can be overcome by tilting the sample during the deposition of front gates.

Ohmic Contact

AuGeNi alloys are the most widely used metal alloy for contacting GaAs-based electron sy-
stems. It was originally chosen because of its low eutectic point (360 ◦C) [67]. After deposition
of the alloy onto the GaAs surface, it is heated up to above the eutectic point, so that it melts and
diffuses into the GaAs. This enables also the gallium to out-diffuse into the gold and the ger-
manium to settle onto gallium vacancies, thereby becoming a donor. Subsequent cooling down
recrystalizes the GaAs and freezes in the dopants and defects. The use of nickel is mainly ai-
med at improving the wetting and enhancing the solubility of GaAs. However, nickel itself can
diffuse effectively and become an acceptor. Therefore, the amount of nickel should generally be
held small.

Typical resistance for the fabricated contacts is about 1.5 kΩ per 100 µm× 100 µm, measu-
red at liquid helium temperature and zero magnetic field. In presence of perpendicular magnetic
field, however, some of the ohmic contacts show almost infinitely high temperature which in-
dicates that they are not conducting. This is shown in the left panel of Fig. B.5 for the contact
labeled B in the right panel. Therefore, something has to happen which changes the conducting
properties of the contacts. Closer analysis has revealed that the problematic contacts share a
property which is already visible under an optical microscope: as the right panels of Fig. B.5
show, contacts whose alloy covers the entire edge of the mesa, like the case of contact A, shows
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Fig. B.3: (a) Two-terminal depletion measurement: voltage across the 2DES is
measured under current-bias while a back voltage is swept in the negative bias
regime. (b) Improvement of the backgate endurance by modifying the superlattice
structure between the second doping layer and the backgate layer. Adding AlGaAs
instead of alternating AlAs and GaAs layers enables application of backgate vol-
tage beyond −1V . (c) Improvement of the depletion effect after using PMMA
instead of vacuum grease.
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Fig. B.4: SEM image of the mesa profile after chemical wet etching. The ed-
ge shows discontinuous layered structures resulting from inhomogeneous etching
rates for different materials. Front gates above such regions, shown in the left
picture, can be broken.

normal resistance under magnetic field, while contacts whose alloy is deposited apart of the
mesa edge with a distance of≥10 µm are almost insulating under the same magnetic field. This
can be caused by the Corbino problem at sufficiently high magnetic fields, where the current
flows around the edge regions of the mesa. Since such regions are normally formed within less
than 5 µm from the edge, one needs to move the alloy further beyond the mesa edge to make
sure that the edges are fully covered.

Fig. B.6 shows the solution to the problematic described above. Magneto-transport curves
are shown for both the top and bottom layers. In the left picture, metal alloy is beyond the mesa
edge for contacts connecting the bottom layer but not covering the mesa edge for those of the
top layer. In the right picture, a modified lithography mask which includes contact structures
enabling the metal alloy to be diffused beyond the mesa edge has been used. The ohmic contacts
for both the top and bottom layers show normal behavior.

B.2 Measurement Setup

Due to the fragility of the νT = 1 quantum Hall state associated with the relatively small
activation energy gap of the order of∼1 K [38], it is crucial to have extremely low temperatures,
in order to approach the ground state of the bilayer system. This is provided by a He3/He4

dilution refrigerator, in which superconducting magnets are embedded. The principle of the
dilution cooling is based on the mixing enthalpy of He3/He4 mixture. As the phase diagram
in Fig. B.7(a) shows, when cooling the He3/He4 mixture below 0.9K, a coexistence of two
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Fig. B.5: Ohmic contacts with different results of alloy evaporation exhibit large
difference in resistance in presence of perpendicular magnetic field: for contact
A, the metal alloy was evaporated across the (right) edge, resulting in a normal
contact resistance (∼50 kΩ); for contact B, the metal alloy was evaporated before
reaching the (left) edge, resulting in an almost infinite resistance.

phases occurs: one phase with a very low He3 fraction and another phase with almost 100% of
He3. At such a low temperature, the He4 becomes a superfluid, which provides an environment
for the He3 atoms as if they are in their gas phase. Therefore, when He3 atoms diffuse from
the concentrated phase into the diluted phase, heat can be absorbed from the environment to
support the quasi-evaporation process. This heat is called the mixing enthalpy, which needs to
be paid or created when mixing two pure chemical substances together. Themodynamically, the
mixing enthalpy for He3/He4 mixture occurs out of two reasons: firstly, He3 atoms are larger
than He4 atoms so that in the diluted phase more van-der-Waal binding can take place between
the two isotopes than between He3 atoms, which saves up energy; secondly, since He3 atoms
are fermions, the Fermi energy in the diluted phase will be lower than in the concentrated phase,
which means more energetic states can be occupied thermally in the diluted phase.

After crossing the phase boundary, as sketched in Fig. B.7b, the He3 atoms in the diluted
phase will need to be pumped away so that further He3 atoms can cross the phase boundary
and the cooling process can be maintained. However, the vapor pressure of He3 is low at low
temperatures. A local heater called Still is therefore used to locally heat up the gas to about 1K
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Fig. B.6: Contact mask has been modified to enable evaporation of metal alloy
across the edge, as shown by the right sketch. All contacts tested with this modi-
fied geometry have shown normal resistance in magnetic field.

to increase the vapor pressure, which is followed by mechanical pumps in the mixing chamber
pumping line. Finally, the He3 is condensed and sent back to the concentrated phase in the
mixing chamber. As the phase diagram tells, there is 6% of He3 in the diluted phase even at
absolute zero temperature. Therefore, nature provides a mixture which theoretically can cool
down to the absolute 0K. However, this is usually limited by the thermal shielding, the heat
exchange efficiency as well as the pumping power of the system. Furthermore, shielding from
high frequency rays as well as proper grounding during the entire measurement procedure (in-
cluding sample loading) have proven crucial for reaching the lowest possible base temperature.
In the dilution refrigerator used for this work, the lowest mixing chamber temperature is typi-
cally ∼ 10mK.

Fig. B.8 explains how the different components are set up for the low temperature mea-
surements involved in this work. The sample is mount in a sample holder and connected to a
switch box via electrically shielded cables. Low noise lock-in amplifiers and preamplifiers are
used for magneto-transport and interlayer tunneling measurements. The read-out is enabled by
digital multimeters. All devices including the sample are grounded to a common ground via the
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Fig. B.7: Working principle of a dilution fridge: (a) Phase diagram of He3/He4

mixture which shows coexistence of aHe3-rich andHe3-poor phase below 0.9K.
(b) He3 flow and heat exchange inside a typical He3/He4 dilution refrigerator.



136 APPENDIX B. SAMPLE FABRICATION AND MEASUREMENT SETUP

Fig. B.8: Schematic illustration of the measurement setup. The He3/He4 dilu-
tion refrigerator with built-in superconducting magnets provides a sample tempe-
rature of down to ∼ 20mK and a magnetic field up to 21.5T . Data are collected
using standard lock-in as well as preamplifiers, which are connected to digital
multimeters. Communication with the computer is realized via GPIB environ-
ment.
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surface of the dilution refrigerator. The data are retrieved via GPIB environment.

B.3 Sample Fabrication Parameters

Fig. B.9: Fabrication parameters for the prepatterning of back gates.

B.4 Wafer Growth Parameters
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Fig. B.10: Fabrication parameters for mesa, ohmic contact and front gates.
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Tab. B.1: Growth parameter of wafer #81653 (upper table) and of wafer #81981 (lower table)

material thickness

GaAs 200 Å
AlGaAs 2000 Å
AlGaAs:Si 400 Å
AlGaAs 2800 Å
GaAs 187 Å
GaAs/AlAs SL 2.8 Å/17 Å × 5
GaAs 190 Å
AlGaAs 3000 Å
AlGaAs:Si 350 Å
AlGaAs 300 Å
GaAs/AlAs 20 Å/20 Å × 82
GaAs 1000 Å

GaAs 200 Å
AlGaAs 2000 Å
AlGaAs:Si 400 Å
AlGaAs 2800 Å
GaAs 187 Å
GaAs/AlAs SL 2.8 Å/17 Å × 4
GaAs 190 Å
AlGaAs 3000 Å
AlGaAs:Si 350 Å
AlGaAs 300 Å
GaAs/AlGaAs 23 Å/80 Å × 30
GaAs/AlAs 10 Å/60 Å × 30
GaAs 1000 Å





Appendix C

Calculation of ∆SAS

There are different ways to calculate the symmetry-antisymmetry gap ∆SAS . One can start from
the energy band diagram and perform the self-consistent numerical calculation [59] [56]. One
can also determine it from the tunneling I/V characteristic at B=0. This method is based on the
assumption that the tunneling conductance at νT = 1 shows a Lorentzian shape according to

G =
I

V
= G0

1

1 + (eV/Γ)2 (C.1)

where

G0 = eρ0A
T 2

h̄

2e

Γ
. (C.2)

The parameters are listed in Tab. C.1.
Hence, if the conductance and its broadening at B=0 are given, one can calculate the tunne-

ling amplitude T and thus ∆SAS . This has been done for the wafer #81981 by using a Corbino
sample, whose tunneling I/V characteristic is shown in Fig. C.1:

The interlayer resistance at V=0 can be determined by the slope of the I-V curve and is
approximately 4 kΩ, which corresponds to a conductance peak of 250 µS. The broadening is

parameter meaning

G conductance
G0 conductance at B=0
Γ broadening at B=0
ρ0 := m∗/πh̄2 density of states
A sample area
T (∆SAS = 2T ) tunneling amplitude

Tab. C.1: Parameters for estimation of ∆SAS .
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Fig. C.1: Interlayer tunneling in a Corbino ring sample CR36 from wafer #81981
at zero magnetic field and a mixing chamber temperature of 20 mK. The densities
of both layers are balanced to 3× 1010cm−2, giving a d/lB ratio of ∼1.7.

about 140 µeV. Using Eq. C.2, the ∆SAS can be determined to 1 mK. The second minimum in
the negative voltage branch is currently unclear.
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