
Dissertation

Renormalization group analysis of

order parameter fluctuations

in fermionic superfluids

Benjamin Obert

Max-Planck-Institut für Festkörperforschung
Stuttgart 2014





Renormalization group analysis of

order parameter fluctuations

in fermionic superfluids

Von der Fakultät Mathematik und Physik der Universität Stuttgart
zur Erlangung der Würde eines Doktors der Naturwissenschaften

(Dr. rer. nat.) genehmigte Abhandlung

Vorgelegt von

Benjamin Obert

aus Bad Saulgau

Hauptberichter: Prof. Dr. Walter Metzner
Mitberichter: Prof. Dr. Alejandro Muramatsu

Tag der mündlichen Prüfung: 10.02.2014

Max-Planck-Institut für Festkörperforschung
Stuttgart 2014





For my family





Abstract

In this work fluctuation effects in two interacting fermion systems exhibiting fermionic
s-wave superfluidity are analyzed with a modern renormalization group method. A de-
scription in terms of a fermion-boson theory allows an investigation of order parameter
fluctuations already on the one-loop level. In the first project a quantum phase transition
between a semimetal and a s-wave superfluid in a Dirac cone model is studied. The in-
terplay between fermions and quantum critical fluctuations close to and at the quantum
critical point at zero and finite temperatures are studied within a coupled fermion-boson
theory. At the quantum critical point non-Fermi liquid and non-Gaussian behaviour
emerge. Close to criticality several quantities as the susceptibility show a power law
behaviour with critical exponents. We find an infinite correlation length in the entire
semimetallic ground state also away from the quantum critical point. In the second
project, the ground state of an s-wave fermionic superfluid is investigated. Here, the mu-
tual interplay between fermions and order parameter fluctuations is studied, especially
the impact of massless Goldstone fluctuations, which occur due to spontaneous breaking
of the continuous U(1)-symmetry. Fermionic gap and bosonic order parameter are dis-
tinguished. Furthermore, the bosonic order parameter is decomposed in transverse and
longitudinal fluctuations. The mixing between transverse and longitudinal fluctuations is
included in our description. Within a simple truncation of the fermion-boson RG flow,
we describe the fermion-boson theory for the first time in a consistent manner. Several
singularities appear due the Goldstone fluctuations, which partially cancel due to sym-
metry. Our RG flow captures the correct infrared asymptotics of the system, where the
collective excitations act as an interacting Bose gas. Lowest order Ward identities and
the massless Goldstone mode are fulfilled in our truncation.





Contents

Table of contents 9

1 Introduction 13
1.1 Introduction and overview . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.2 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2 Method: Functional renormalization group 21
2.1 Introduction and overview . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.2 Derivation of the renormalization group equation . . . . . . . . . . . . . . 23
2.3 Spontaneous symmetry breaking . . . . . . . . . . . . . . . . . . . . . . . . 30

3 Project 1: Superfluid-semimetallic quantum phase transition 33
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.2 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.3 Truncation and parametrization of the effective action . . . . . . . . . . . . 38
3.4 Renormalization group equations . . . . . . . . . . . . . . . . . . . . . . . 41

3.4.1 General flow equations . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.4.2 Rescaled flow equations at zero temperature T = 0 . . . . . . . . . 43
3.4.3 Rescaled flow equations at finite temperatures T > 0 . . . . . . . . 45

3.5 Fermionic particle-particle bubble and correlation decay . . . . . . . . . . . 47
3.5.1 Bare fermionic particle-particle bubble . . . . . . . . . . . . . . . . 47
3.5.2 Diverging correlation length . . . . . . . . . . . . . . . . . . . . . . 51

3.6 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

9



3.6.1 Quantum critical point: T = 0, U = Uqc . . . . . . . . . . . . . . . 57
3.6.2 Semimetallic phase: T = 0, |U | < |Uqc| . . . . . . . . . . . . . . . . 60
3.6.3 Quantum critical region: T > 0, U = Uqc . . . . . . . . . . . . . . . 62

3.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4 Project 2: Low-energy singularities in fermionic superfluids 65
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.2 The model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.3 Truncation and parametrization . . . . . . . . . . . . . . . . . . . . . . . . 71

4.3.1 Symmetric regime . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.3.2 Symmetry-broken regime . . . . . . . . . . . . . . . . . . . . . . . . 75

4.4 RG flow equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
4.4.1 Symmetric regime: Flow equations . . . . . . . . . . . . . . . . . . 79
4.4.2 Symmetry-broken regime: Flow equations . . . . . . . . . . . . . . 84

4.5 Ward identities and Goldstone theorem . . . . . . . . . . . . . . . . . . . . 92
4.5.1 Ward identities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
4.5.2 Goldstone theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.6 Behaviour in the infrared Λ→ 0 . . . . . . . . . . . . . . . . . . . . . . . . 100
4.6.1 Asymptotic behaviour . . . . . . . . . . . . . . . . . . . . . . . . . 100

4.7 Fermionic particle-particle bubble and mean-field flow . . . . . . . . . . . . 104
4.7.1 Fermionic particle-particle bubble . . . . . . . . . . . . . . . . . . . 104
4.7.2 Mean-field flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

4.8 Numerical results in d = 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
4.9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

5 Summary and Outlook 121
5.1 Superfluid-semimetallic quantum phase transition . . . . . . . . . . . . . . 121

5.1.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
5.1.2 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

5.2 Low-energy singularities in fermionic superfluidity . . . . . . . . . . . . . . 124
5.2.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
5.2.2 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

A Derivation of RG equations: Symmetric regime 128
A.1 Ansatz for the effective action . . . . . . . . . . . . . . . . . . . . . . . . . 128
A.2 Matrix representation of the fermionic and bosonic propagator . . . . . . . 129
A.3 Interaction vertices and couplings . . . . . . . . . . . . . . . . . . . . . . . 133

10



A.4 RG equations for couplings . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
A.5 RG equations for the Dirac cone model . . . . . . . . . . . . . . . . . . . . 141

B Derivation of RG equations: SSB regime 145
B.1 Ansatz for the effective action . . . . . . . . . . . . . . . . . . . . . . . . . 146
B.2 Matrix representation of the fermionic and bosonic propagators . . . . . . 147
B.3 Interaction vertices and couplings . . . . . . . . . . . . . . . . . . . . . . . 152
B.4 RG equations of the couplings . . . . . . . . . . . . . . . . . . . . . . . . . 154
B.5 Density of states for bosonic dispersion relation . . . . . . . . . . . . . . . 168

C Ward identities 170
C.1 Ward identities for coupled fermion-boson theory . . . . . . . . . . . . . . 170
C.2 Ward identities in the symmetry-broken phase . . . . . . . . . . . . . . . . 173

Deutsche Zusammenfassung 177

Curriculum vitae 185

Acknowledgements 187

Bibliography 189

11





CHAPTER 1

Introduction

1.1 Introduction and overview

The importance of fluctuations in correlated fermion systems is well-known. Fluctuation
effects lead to deviations compared to the standard mean-field picture. In particular,
massless fluctuations have a drastic impact on the behaviour of the system. In quantum
critical systems massless critical fluctuations lead to a breakdown of the Fermi-liquid
theory accompanied by the appearance of anomalous critical exponents and the emergence
of universality. In charge-neutral superfluid systems spontaneous symmetry breaking
of the continuous charge symmetry occurs and massless Goldstone excitations emerge.
There, the order parameter fluctuations, especially the massless Goldstone fluctuations,
affect strongly the behaviour of the system, and lead to different results compared to the
mean-field theory. To cope with these fascinating physical systems, a plethora of many-
body techniques has been developed during the decades in condensed matter research,
to tackle the many body-problem of interacting Fermi systems. Among other methods,
renormalization group (RG) techniques have been established as valuable tools to analyze
divergencies often caused by massless fluctuations in various physical contexts, ranging
from high-energy physics down to low-temperature condensed matter physics.

In this thesis fluctuation effects in two different interacting fermion systems exhibiting
s-wave superfluidity are analyzed with a modern renormalization group method. The first
project deals with a quantum phase transition between a semimetal and a superfluid in
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1.1 Introduction and overview

a Dirac cone model. Quantum critical fluctuations close to and at the quantum critical
point. The mutual interplay between fermions and critical fluctuations is analyzed with
a coupled fermion-boson functional renormalization group approach. Non-Fermi liquid
and non-Gaussian behaviour emerge. Several quantities, as the correlation length and the
susceptibility, show a power law behaviour close to the quantum critical point. We will
also find an unusual behaviour of the correlation length in the semimetallic ground state.
In the second project, the ground state of a s-wave fermionic superfluid is investigated.
The interplay of fermions and order parameter fluctuation will be analyzed, especially
the spectacular impact of massless Goldstone fluctuations. Here, for the first time a
truncation for the fermion-boson theory is employed that captures the correct infrared
asymptotics of the system. The collective excitations behave as an interacting Bose gas.
Lowest order Ward identities are fulfilled and the linearly dispersing Goldstone mode is
preserved within the truncation. In both projects the RG flow of fermions and bosonic
fluctuations is analyzed by the coupled fermion-boson functional renormalization group
approach, which captures order parameter fluctuations properly already on the one-loop
level. In the rest of the introduction, we give a brief overview over the functional RG
method, followed by an introduction of both research projects.

The functional renormalization group is a further development of the early Wilson
renormalization group theory originally applied to critical phenomena. For his achieve-
ment, Wilson was honoured with the Nobel prize in 1982. It is an ideal tool to analyze
systems where perturbation theory is plagued with divergences. The RG method treats
different energy scales not in one shot but scale after scale. This is implemented by re-
ducing a cutoff during the RG flow in a controlled way. A pedagogical introduction to
the Wilson RG with applications to fermionic systems can be found in Shankar (1991,
1994) and Polchinski (1993). In early days in condensed matter physics, fermionic systems
were only analyzed in one dimension with renormalization group concepts. The renor-
malization group method was applied mainly to purely bosonic theories to describe phase
transitions and critical phenomena in O(N)-models. Then, new formulations of renor-
malization group ideas in terms of the functional flow equations were developed. First
steps towards the functional RG were undertaken by Polchinski (1984), who laid a foun-
dation for simple renormalizability proofs for the ϕ4-theory. Then, Wieczerkowski (1988)
developed the Wick-ordered scheme, which proved to be appropriate for mathematical
estimates, and Wetterich (1993) suggested a formulation of the flow equation in the form
of a one-particle-irreducible (1PI) scheme, which turned out to be the most convenient
for practical calculations.

The heart of the formulation in the 1PI formalism is a flow equation for the regu-
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1.1 Introduction and overview

larized effective action. The regulator introduces a cutoff scale, which is sent to zero in
the infrared limit. The functional RG then smoothly connects the microscopic action in
the ultraviolet limit with the full effective action in the infrared limit, which contains the
entire thermodynamics and correlation functions. The first applications of the functional
renormalization group to correlated Fermi systems were stability analyzes of the two di-
mensional Hubbard model, pioneered by Zanchi and Schulz (1998, 2000), Halboth and
Metzner (2000) and Honerkamp et al. (2001a). By the introduction of an infinitesimal
symmetry breaking field in the bare microscopic action, Salmhofer et al. (2004) paved the
way towards symmetry-breaking in the purely fermionic functional RG approach. They
employed a truncation scheme for the flow, suggested by Katanin (2004), which yields an
exact description of symmetry breaking for mean-field models. Over the years, especially
the attractive Hubbard model served as a prototype model to analyze the functional RG
flow in the context of spontaneous symmetry-breaking. For instance, Gersch et al. (2008)
analyzed the model within the so-called N-patch scheme. Here, three fermionic momenta
are discretized in the Brillouin zone. Recently, this work was extended by Eberlein and
Metzner (2013). They employed a channel-decomposition of the Nambu vertex and cal-
culated the RG flow of its singular dependencies. In that work, the singular dependencies
of the vertex were expressed in terms of two fermionic and one bosonic-like momenta. A
more detailed historical overview on the (functional) renormalization group in fermionic
systems and a broad range of applications can be found in the comprehensive review by
Metzner et al. (2012).

The functional renormalization group for coupled fermion-boson theories was devel-
oped only later. Baier et al. (2004) calculated for the first time a coupled fermion-boson
functional RG flow to analyze antiferromagnetism in the two-dimensional repulsive Hub-
bard model. Friederich et al. (2011) improved this work, by decoupling the Hubbard
interaction not only in a single but in three different channels, and computed a phase
diagram. Other studies focused on the analysis of the ground state of a fermionic super-
fluid, where the particle-particle channel is the most dominant one (Birse et al. (2005),
Krippa (2007), Diehl et al. (2007), Strack et al. (2008), Kopietz et al. (2010)). The ad-
vantage of the coupled fermion-boson RG approach is its ease to analyze the interplay
between fermions and order-parameter fluctuations in rather simple truncations. Only a
small number of couplings parametrizing the effective action is necessary to capture the
essential physics of the investigated models, thus leading to a reduction of the numer-
ical effort compared to the purely fermionic approach. The impact of order parameter
fluctuations is already captured on a one-loop level and their interplay with the fermions
can be tracked in a transparent way. Technically, the fermionic two-particle interaction
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1.1 Introduction and overview

is decoupled by a Hubbard-Stratonovich transformation and bosonic degrees of freedom
are introduced (Popov (1987)). Afterwards, both fermions and bosons are integrated
out step by step under renormalization. Thus, order parameter fluctuations are natu-
rally implemented in this approach. In the context of quantum criticality, such coupled
fermion-boson theories have also been used to analyze the quantum critical fluctuations in
situations where the standard theory for quantum criticality given by the Hertz and Millis
paradigm is not applicable (Löhneysen (2007)). Since then, several works appeared inves-
tigating a fermion-boson system with the functional RG approach. For instance, Strack
et al. (2010) analyzed the impact of quantum critical fluctuations close to a semimetallic-
superfluid quantum phase transition in a Dirac cone model. At the quantum critical point
non-Fermi liquid and non-Gaussian behaviour emerges. In this thesis, we follow that spirit
of the coupled fermion-boson functional RG approach and study the interplay between
fermions and bosonic fluctuations in two different systems with attractively interacting
fermions. First, we will discuss a project, where we extend the previous work by Strack et
al. (2010) and analyze the Dirac cone model, which undergoes a quantum phase transition
between a semimetal and a superfluid. Afterwards, we will present the second project,
where we analyze the impact of order parameter fluctuations, especially the impact of
the massless Goldstone fluctuations on the ground state of an s-wave superfluid. We now
motivate both systems and explain our research goals in the rest of this introduction.

Non-Fermi liquid behaviour occurs in several materials. One example is the strange
metal behaviour above the superconducting dome in the phase diagram of high-Tc cuprates.
There, the resistance shows a linear temperature dependence instead of a quadratic de-
pendence as one would expect from the Landau-Fermi-liquid paradigm. Here, scenar-
ios have been proposed with a hidden quantum critical point under the superconducting
dome, where this quantum critical point is expected to induce the strange metal behaviour
(Moon and Sachdev (2010)). Another material class is given by the heavy-fermion systems
exhibiting a rich phase diagram, where a quantum critical point induces non-Fermi liquid
behaviour close to an ordered (magnetic) phase (for reviews, see Si et al. (2010) and Löh-
neysen et al. (2007)). Hence, quantum criticality is one of the main scenarios to explain
non-Fermi liquid behaviour in itinerant electron systems. In general, criticality is accom-
panied by the phenomenon of universality (Cardy (1996) and Goldenfeld (1992)), where
different systems obey the same universal critical behaviour close to the transition. At a
continuous phase transition order parameter fluctuations become important, and the cor-
relation length diverges. Thermodynamical quantities show a power-law behaviour with
critical exponents, which are related by several scaling laws. As mentioned above, mean-
field approaches are no more appropriate at the transition and more sophisticated methods
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1.1 Introduction and overview

such as the renormalization group have to be applied for treating the critical behaviour of
the transition properly. In contrast to classical critical systems, quantum critical systems
have a quantum critical point at zero temperature, where quantum fluctuations dominate.
The standard description of quantum criticality in Fermi systems is given by the Hertz-
Millis theory (Hertz (1976) and Millis (1993)). Starting from a fermionic microscopic
theory, the fermionic interaction is decoupled by a Hubbard-Stratonovich transformation
and bosonic fields are introduced. Afterwards the fermions are integrated out and an
effective bosonic theory is obtained. Several years ago many systems were found in which
this paradigm for quantum criticality fails, since no local bosonic theory can be found,
due to gapless fermionic excitations in metals (for reviews see Belitz et al. (2005) and Löh-
neysen et al. (2007)). Thus, other approaches for such models were investigated, where
both fermionic and order parameter fluctuations are treated on the same footing within a
coupled fermion-boson theory. First research in that direction was undertaken by Vojta et
al. (2000a, 2000b), Belitz et al. (2001a, 2001b) and Abanov et al. (2003), who investigated
quantum criticality close to an ordered phase of itinerant magnetism. Since then several
models were analyzed with the fermion-boson functional RG method (Gies and Jaeckel
(2004), Gies et al. (2009), Strack et al. (2010) and Scherer et al. (2013)).

In 2010, Strack et al. introduced the Dirac cone model as a prototype model for the
phase transition between a semimetal and a superfluid. Intensive research on semimetal-
lic systems was triggered by the fabrication of graphene sheets by Novoselov and Geim,
which was honoured with the Nobel prize in 2010. The vanishing density of states at
only one point lead to peculiar features of this material in contrast to metals or insula-
tors. The purpose of the work by Strack et al. (2010) was to calculate quantum critical
properties close to a quantum critical point in a semimetal with one Dirac cone. Here the
ordered phase is not an itinerant magnetic phase, but to an s-wave fermionic superfluid
phase. Hence, a simple attractive interaction was proposed, which allows the analysis
of a quantum critical point between a fermionic superfluid and a semimetal in a simple
setup. The Dirac cone model was analyzed in two dimensions at zero temperature in a
simple truncation. Due to the massless fermions in the semimetal, a local expansion in
the bosonic fields is not possible and a fermion-boson RG was employed. The critical
exponent of the susceptibility close to criticality was determined by a numerical solution
of the RG flow. The critical exponent for the correlation length was indirectly deter-
mined by a putative scaling law. At the critical point anomalous dimensions appeared
below three dimensions, signalling non-Fermi liquid and non-Gaussian behaviour. Identi-
cal renormalization factors for the momentum and frequency dependence were assumed,
implying that the Fermi velocity does not renormalize during the flow. At the quantum
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1.1 Introduction and overview

critical point the spectral weight of fermionic quasi-particles disappeared. This result
naturally inspires new questions: What is the scaling behaviour of the susceptibility and
the correlation length at finite temperatures above the quantum critical point, and how
do the momentum and frequency renormalization factors scale in that regime? Can the
critical exponent for the correlation length at zero temperature also be extracted from
a numerical solution of the RG flow as the critical exponent for the susceptibility? Do
the critical exponents fulfill scaling laws? Does the Fermi velocity remain invariant in
a refined ansatz for the fermionic self-energy, if different renormalization factors for the
frequency and momentum dependence are introduced? This thesis gives answers to all
these questions. The results were already published (Obert et al. (2011)).

In our second project, we investigate the ground state of a fermionic superfluid. Su-
perfluidity has a long tradition in condensed matter physics, starting with the discovery
of He4 superfluidity in 1937 by Kapitsa, Allen and Misener. The discovery of fermionic
superfluidity in He3 by Lee, Osheroff and Richardson was honoured with the Nobel prize
in 1996. It turned out that in contrast to conventional superconductors, which exhibit an
s-wave singlet order parameter and are described by BCS-theory from Bardeen, Cooper
and Schrieffer (Nobel prize 1972), the order parameter of He3 exhibits a p-wave-triplet
symmetry (Vollhardt and Wölfle (1990)). The phenomenological Landau liquid theory de-
scribes the system properties in the normal state. Nowadays, also other forms of fermionic
superfluids, especially s-wave superfluidity, can be realized in ultra-cold atoms in optical
lattices (Bloch et al. 2008). Since a few years, experiments with ultra-cold gases allow
the simulation of many-body models and the simulation of the BCS-BEC crossover in
experiments with fermionic atoms where the interaction strength is tuned by a Feshbach
resonance (Bloch et al. (2008)). Systems undergoing that crossover are strongly corre-
lated at the unitary point of the crossover, where fluctuations become particularly impor-
tant. Hence, the theoretical understanding of fluctuation effects in prototype models for
fermionic superfluidity is of high relevance. Continuum models of attractively interacting
fermions and lattice models as the attractive Hubbard model serve as prototype models
for fermionic superfluidity with s-wave singlet pairing. During the years both kinds of
models have been investigated (Griffin et al. (1995)). In contrast to superconductors,
charge-neutral superfluids have a linearly dispersing Goldstone mode due to the absence
of the Anderson-Higgs mechanism (Nobel prize 2013). Phenomena like the BCS-BEC
crossover were analyzed numerically and analytically within these models.

In the framework of the functional RG method several approaches have been applied
to analyze the attractive Hubbard model in two dimensions. Both Gersch et al. (2008)
and Eberlein and Metzner (2013) studied the fermionic RG flow into the broken-symmetry
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phase. Gersch et al. (2008) used the N-patch scheme, while Eberlein and Metzner (2013)
applied a channel-decomposition of the vertex. The merit of these approaches lies in its
unbiased treatment of the pairing, magnetic and density channel. But to capture the
infrared asymptotic behaviour of the longitudinal order parameter fluctuations, terms be-
yond a fermionic one-loop order are required (Eberlein (2013)). Several groups analyzed
fermionic superfluidity in a coupled fermion-boson setup with the functional RG. Birse et
al. (2005) pioneered this route by the introduction of a simple truncation for the fermionic
superfluid. Some years later, the BCS-BEC crossover was analyzed in the superfluid
ground state by Diehl et al. (2007) and Krippa (2007). Flörchinger et al. (2008) addition-
ally considered particle-hole fluctuations in their functional RG study of the BEC-BCS
crossover. Another truncation was investigated by Bartosch et al. (2009), who combined
the Schwinger-Dyson equations and the functional RG flow with Ward identities, and
distinguished between fermionic gap and bosonic order parameter. Strack et al. (2008)
also implemented a coupled fermion-boson functional renormalization group flow for the
ground state of the fermionic superfluid, where they distinguished also the fermionic gap
and bosonic order parameter. As in previous studies they employed a local ansatz for
the bosonic potential. However, in contrast to the previous works they decomposed the
order parameter fluctuations in a longitudinal and transverse direction. They showed
that Goldstone fluctuations lead to a singular behaviour of the longitudinal degrees of
freedom of the fermionic superfluid, as an interacting Bose gas (Castellani et al. (1997),
Pistolesi et al. (2004)). However, the Goldstone theorem and the linear dispersion of the
Goldstone modes had to be implemented by hand. Furthermore, they neglected a linear
frequency dependence in the bosonic effective action, which leads to a mixing between
transverse and longitudinal bosonic fluctuations. Hence, several questions remained open
and inspire fresh research: Is a local ansatz for the bosonic potential justified, as sug-
gested by power counting arguments, or is a non-local bosonic potential necessary for an
appropriate description due to symmetry? Are the fermionic single-particle gap and the
bosonic order parameter linked by a simple connection? Is it possible to find a simple
truncation, where the linearly dispersing massless Goldstone mode is preserved within
a coupled fermion-boson theory? How does the mixing between transverse and bosonic
fluctuations affect the RG flow? What can be said about the fulfillment of Ward identities
within a truncated coupled fermion-boson ansatz? In total, what is a consistent minimal
truncation of the fermion-boson functional RG flow to describe the ground state of an
s-wave fermion superfluid? This thesis answers these questions. The results were already
published (Obert et al. (2013)).

Summing up, this work investigates fluctuation effects in two different interacting
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1.2 Outline

fermion systems with the functional renormalization group in the 1PI-scheme. Quantum
critical fluctuations are studied in the Dirac cone model, which is a prototype model for
a quantum phase transition between a semimetal and a superfluid. Secondly, the im-
pact of order parameter fluctuations is investigated in the ground state of a fermionic
s-wave superfluid, where the attractive Hubbard model serves as a prototype model for
the numerical evaluation of the functional RG flow. The effect of order parameter fluctu-
ations is analyzed in both projects within a coupled fermion-boson renormalization group
approach.

1.2 Outline

The thesis is structured as follows: Chapter 2 provides the derivation of the flow equation
of the fermion-boson functional RG method and its formulation for situations with spon-
taneous symmetry breaking. In Chapter 3 the functional renormalization group is applied
to the Dirac cone model and deals with quantum criticality close to and at the quantum
critical point at zero temperature and finite temperatures in two dimensions. In chapter 4
the ground state of an s-wave fermionic superfluid is investigated and the impact of order
parameter fluctuations is studied. The last chapter, Chapter 5, concludes the thesis with
a summary and an outlook. The appendices present an explicit derivation of the flow
equations presented in Chapter 3 and 4, and the derivation of the Ward identities for a
coupled fermion-boson system.
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CHAPTER 2

Method: Functional renormalization group

Here, we will derive the functional RG equations for a coupled fermion-boson system.
The central result of this chapter is the renormalization group equation for the scale-
dependent effective action, which connects the bare microscopic action in the ultraviolet
limit with the full effective action in the infrared limit. The scale-dependence Λ will be
introduced by a regulator term for both fermions and bosons. We will present functional
RG equations applicable for the symmetric regime Eq. (2.33) and for the symmetry-broken
regime Eq. (2.48).

The chapter is structured as follows: Section 2.1 gives a short overview over the
historical developments and introduces the general concept of the method. Afterwards a
derivation of the functional renormalization group equations for a mixed boson-fermion
theory is presented in section 2.2. Finally, section 2.3 addresses briefly the functional RG
equations in the context of spontaneous symmetry breaking.

2.1 Introduction and overview

In this section, we give a short overview over the historical developments and applications
of the functional renormalization group method. We follow the review article of Metzner et
al. (2012). The functional renormalization group is a further development of Wilson’s RG
idea (Nobel prize 1982). Polchinski (1984) pointed out the first step towards functional
flow equations within the formalism of generating functionals, which was followed by
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the Wick ordered RG scheme, see Wieczerkowski (1988) and the one-particle-irreducible
(1PI)-scheme, see Wetterich (1993). In this work, we are interested in fermionic models,
which we analyze within the 1PI renormalization group scheme.

The heart of the functional renormalization group consists of a flow equation for the
scale-dependent effective action, which connects the microscopic action S[ψ, ψ̄] at scales
Λ = ∞ with the full effective action Γ[ψ, ψ̄] at low scales Λ = 0. Thermodynamical
information as well as correlation functions can be extracted from the effective action.
The scale Λ is introduced through a regulator term, which regularizes low-energy modes
of the theory. For instance, these may be single-particle excitations around the Fermi
surface in a metallic phase.

The regulator is chosen in such a way that the microscopic action matches the scale-
dependent effective action ΓΛ=∞ = S in the ultraviolet limit. The regularization can be
implemented in the form of a multiplicative or an additive regulator, by a smooth or sharp
cutoff, and momentum or frequency regularization. The regulator should not explicitly
break the symmetry of the underlying model. Also other parameters have been used
as cutoffs and flow parameters, for instance temperature, see Honerkamp and Salmhofer
(2001b) as well as interaction, see Honerkamp et al. (2004). Due to the complexity of
the renormalization group equation, several approximation schemes exist. The effective
action is truncated at a certain order by an expansion in fields and gradients, that is
governed by power counting arguments and symmetry reasons. Due to such truncations
conservation laws such as Ward identities are broken or only fulfilled to a certain order,
see Katanin (2004) for a discussion of local Ward identities and Eberlein (2013) for a
discussion of global Ward identities. Hence, they are often implemented by hand, see for
instance Kopietz et al. (2010) and Strack et al. (2008). In these works the Goldstone
theorem in a fermionic superfluid was implemented by hand.

Models of different dimensionalities have been analyzed by the functional RG through-
out the years, from transport in a Luttinger liquid in one dimension, over two dimensional
systems, for instance the attractive and repulsive Hubbard model, up to three and more
dimensional system, as the bosonic O(N) models. A plethora of different physical concepts
have also been studied, e.g. systems with competing instabilities, spontaneous symmetry
breaking, quantum criticality, quantum wires, quantum dots, and more recently transport
in non-equilibrium systems. For a comprehensive review see Metzner et al. (2012).

The purely fermionic functional RG is an unbiased approach, which is ideally suited
to cope with competing order instabilities until one or more channels diverge at the critical
scale. On the other hand, for the interplay between fermions and order parameter fluc-
tuations a coupled fermion-boson RG approach seems to be more appropriate. A mixed
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2.2 Derivation of the renormalization group equation

fermion-boson theory can be obtained from a purely fermionic model by decoupling the
fermionic interaction by a Hubbard-Stratonovich transformation in one or several bosonic
channels, see Popov (1987) and Altand and Simons (2010). In this thesis we will use a
fermion-boson renormalization group approach in the 1PI scheme, where the fermionic
interaction is decoupled in the particle-particle channel. For the regulator a sharp Litim
momentum cutoff (Dirac cone model) and frequency cutoff (fermionic superfluid) will be
applied and a numerical solution of the flow will be presented for two dimensions.

2.2 Derivation of the renormalization group equation

Here, we will derive the functional RG equations for a coupled fermion-boson system.
The central result of this chapter is the flow equation for the scale-dependent effective
action, which connects the bare microscopic action with the full effective action. The scale-
dependence Λ will be included by a regulator term for fermions and bosons. Starting form
the partition function with external source fields, we introduce the generating functionals
for connected Green’s functions and the 1PI vertex functions. Finally, the renormalization
group equation for the scale-dependent effective action is derived. An introduction to the
functional integral formalism, which we use here, can be found in the textbooks of Negele
and Orland (1998) and Zinn-Justin (2002).

The point of departure for our derivation is given by the microscopic action of a
coupled fermion-boson system

S[ψ̃, ϕ̃] = Sψ̃2+ϕ̃2 [ψ̃, ϕ̃] + V [ψ̃, ϕ̃], (2.1)

where ϕ̃Q denotes bosonic (complex-valued) fields and ψ̃K fermionic (Grassmann) fields.1

We will not specify the interaction term V [ψ̃, ϕ̃] here, which typically includes coupling
terms between bosons and fermions. The quadratic part in fermionic and bosonic fields
of this action reads

Sψ̃2+ϕ̃2 [ψ̃, ϕ̃] =
1

2

∫
Q,Q′

ϕ̃QG−1
b (Q,Q′)ϕ̃Q′ +

1

2

∫
K,K′

ψ̃KG−1
f (K,K ′)ψ̃K′ , (2.2)

with the shorthand notation for the integrals
∫
Q,Q′ and

∫
K,K′ depending on the details

of the system. For instance, the variable Q = (q0,q, c) collects bosonic Matsubara fre-

1The fields ψ̃K and ϕ̃Q denote microscopic bosonic and fermionic degrees of freedom over which is
integrated in the path integral formalism. Later, the fields ψK = ⟨ψ̃K⟩ and ϕQ = ⟨ϕ̃Q⟩ are introduced as
averages over these microscopic fields.
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2.2 Derivation of the renormalization group equation

quencies q0, momenta q and and an index c. The latter index distinguishes between the
bosonic field ϕ and its complex-conjugate partner ϕ∗ and we will refer to it as c-index. The
variable K = (k0,k, σ, α, c) collects Matsubara frequencies k0, momenta k, spins σ, bands
α and also a c-index, distinguishing now fermionic fields ψ and their conjugate partners
ψ̄. For illustration, a possible basis in fermionic and bosonic fields in this notation is given
by

ψK =
(
ψk↑, ψk↓, ψ̄k↑, ψ̄k↓

)
, ϕQ =

(
ϕq, ϕ

∗
q

)
, (2.3)

where the variables q = (q0,q) and k = (k0,k) include bosonic and fermionic frequencies
and momenta, respectively.

The bosonic propagator is symmetric G−1
b (Q,Q′) = G−1

b (Q′, Q), while the fermionic
propagator is antisymmetric in its arguments, G−1

f (K,K ′) = −G−1
f (K ′, K). The second

derivative of the bare action with respect to fermionic and bosonic fields yields the bare
boson and fermion propagator

δ2S

δϕ̃Qδϕ̃Q′
= G−1

b (Q,Q′),
δ2S

δψ̃Kδψ̃K′
= −G−1

f (K,K ′). (2.4)

A scale-dependent regulator of the form

∆SΛ[ψ̃, ϕ̃] =
1

2

∫
Q,Q′

ϕ̃QRΛ
b (Q,Q

′)ϕ̃Q′ +
1

2

∫
K,K′

ψ̃KRΛ
f (K,K

′)ψ̃K′ (2.5)

is added to the microscopic action and regularizes both boson and fermion propagators
through the functions RΛ

b (Q,Q
′) and RΛ

f (K,K
′) at low energies through a cutoff Λ. The

partition function with external source field JQ and ηK for bosons and fermions is defined
as

ZΛ[η, J ] =

∫
Dψ̃Dϕ̃ exp

(
−S[ψ̃, ϕ̃]−∆SΛ[ψ̃, ϕ̃] +

∫
Q′
JQ′ϕ̃Q′ +

∫
K′
ηK′ψ̃K′

)
, (2.6)

where J and η denote external bosonic and fermionic source fields. The functional integral
measure Dψ̃ sums over all fermionic degrees of freedom and Dϕ̃ sums over all bosonic
degrees of freedom.

Then, the generating functional for connected correlation functions can be defined as
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2.2 Derivation of the renormalization group equation

the logarithm of the partition function with external source fields

WΛ[η, J ] = lnZΛ[η, J ] (2.7)

= ln

∫
Dψ̃Dϕ̃ exp

(
−S[ψ̃, ϕ̃]−∆SΛ[ψ̃, ϕ̃] +

∫
Q′
JQ′ϕ̃Q′ +

∫
K′
ηK′ψ̃K′

)
. (2.8)

By successively applying functional derivatives with respect to the external bosonic J and
fermionic η source fields correlations of arbitrary order can be calculated. For instance
the expectation values of the bosonic and fermionic field read

ϕQ ≡ ⟨ϕ̃Q⟩ =
δWΛ[η, J ]

δJQ
(2.9)

=
1

ZΛ[η, J ]

∫
Dψ̃Dϕ̃ ϕ̃Q exp

(
−S[ψ̃, ϕ̃]−∆SΛ[ψ̃, ϕ̃] +

∫
Q′
JQ′ϕ̃Q′ +

∫
K′
ηK′ψ̃K′

)
and

ψK ≡ ⟨ψ̃K⟩ =
δWΛ[η, J ]

δηK
(2.10)

=
1

ZΛ[η, J ]

∫
Dψ̃Dϕ̃ ψ̃K exp

(
−S[ψ̃, ϕ̃]−∆SΛ[ψ̃, ϕ̃] +

∫
Q′
JQ′ϕ̃Q′ +

∫
K′
ηK′ψ̃K′

)
.

A second functional derivative with respect to fermionic and bosonic external source fields
leads to the correlation functions

Gb(Q,Q
′) ≡ δ2WΛ[η, J ]

δJQδJQ′
= ⟨ϕ̃Qϕ̃Q′⟩ − ⟨ϕ̃Q⟩⟨ϕ̃Q′⟩, (2.11)

Gf (K,K
′) ≡ δ2WΛ[η, J ]

δηKδηK′
= ⟨ψ̃Kψ̃K′⟩ − ⟨ψ̃K⟩⟨ψ̃K′⟩

for bosons and fermions in the limit of vanishing source fields η and J . The correlation
functions enter the full effective action in the quadratic part. Now we will introduce the
scale-dependent regularized effective action as Legendre transformation of the generating
functional of the connected Green’s function Eq. (2.8)

Γ̃Λ[ψ, ϕ] = −WΛ[η, J ] +

∫
Q′
JQ′ϕQ′ +

∫
K′
ηK′ψK′ , (2.12)

and also the non-regularized effective action as

ΓΛ[ψ, ϕ] = −WΛ[η, J ] +

∫
Q′
JQ′ϕQ′ +

∫
K′
ηK′ψK′ −∆SΛ[ψ, ϕ]. (2.13)
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2.2 Derivation of the renormalization group equation

where the regulator term in its definition ΓΛ = Γ̃Λ−∆SΛ[ψ, ϕ] is added to the regularized
effective action. The effective action is the generating functional for the one-particle-
irreducible (1PI) vertex functions. The corresponding direct and inverse Legendre rela-
tions are

δΓ̃Λ[ψ, ϕ]

δϕQ
= JQ,

δΓ̃Λ[ψ, ϕ]

δψK
= −ηK , (2.14)

δWΛ[η, J ]

δJQ
= ϕQ,

δWΛ[η, J ]

δηK
= ψK , (2.15)

which transform the arguments of the Schwinger functional Eq. (2.8) and the scale-
dependent effective action Eq. (2.12) into each other (η, J)←→ (ψ, ϕ).

Now, we focus on the derivation of the central result of this section: The RG flow
equation for the scale-dependent effective action. To this end, we apply a scale derivative
to the effective action and obtain

d

dΛ
Γ̃Λ[ψ, ϕ] = −∂WΛ[η, J ]

∂Λ
−
∫
Q′

dJQ′

dΛ

δWΛ[η, J ]

δJQ′
−
∫
K′

dηK′

dΛ

δWΛ[η, J ]

δηK′
(2.16)

+

∫
Q′

dJQ′

dΛ
ϕQ′ +

∫
K′

dηK′

dΛ
ψK′ , (2.17)

which reduces to

d

dΛ
Γ̃Λ[ψ, ϕ] = − ∂

∂Λ
WΛ[η, J ] = ⟨∂Λ∆SΛ[ψ, ϕ]⟩ (2.18)

with the Legendre relations Eq. (2.14) and (2.15). The last equation is obtained by
inserting the definition of the Schwinger functional Eq. (2.8). Applying the definition of
the boson and fermion correlation functions yields

d

dΛ
Γ̃Λ[ψ, ϕ] =

1

2

∫
Q,Q′

∂ΛRΛ
b (Q,Q

′)⟨ϕQϕQ′⟩+ 1

2

∫
K,K′

∂ΛRΛ
f (K,K

′)⟨ψKψK′⟩ (2.19)

=
1

2

∫
Q,Q′

∂ΛRΛ
b (Q,Q

′)
δ2WΛ[η, J ]

δJQδJQ′
+

1

2

∫
K,K′

∂ΛRΛ
f (K,K

′)
δ2WΛ[η, J ]

δηKδηK′
(2.20)

+
1

2

∫
Q,Q′

∂ΛRΛ
b (Q,Q

′)⟨ϕQ⟩⟨ϕQ′⟩+ 1

2

∫
K,K′

∂ΛRΛ
f (K,K

′)⟨ψK⟩⟨ψK′⟩
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2.2 Derivation of the renormalization group equation

and finally

d

dΛ
Γ̃Λ[ψ, ϕ] =

1

2

∫
Q,Q′

∂ΛRΛ
b (Q,Q

′)
δ2WΛ[η, J ]

δJQδJQ′
+

1

2

∫
K,K′

∂ΛRΛ
f (K,K

′)
δ2WΛ[η, J ]

δηKδηK′

+ ∂Λ∆SΛ[ψ, ϕ]. (2.21)

Subtracting the regulator term on both sides, one obtains for the flow of the effective
action

d

dΛ
ΓΛ[ψ, ϕ] =

1

2

∫
Q,Q′

∂ΛRΛ
b (Q,Q

′)
δ2WΛ[η, J ]

δJQδJQ′
+

1

2

∫
K,K′

∂ΛRΛ
f (K,K

′)
δ2WΛ[η, J ]

δηKδηK′
. (2.22)

After switching fermionic and bosonic field derivatives δ2WΛ[η,J ]
δηKδηK′

= − δ2WΛ[η,J ]
δηK′δηK

and δ2WΛ[η,J ]
δJQδJQ′

=

δ2WΛ[η,J ]
δJQ′δJQ

, one can use the Trace symbol Tr as shorthand notation for the circular integrals

d

dΛ
ΓΛ[ψ, ϕ] =

∫
Q,Q′

1

2
∂ΛRΛ

b (Q,Q
′)
δ2WΛ[η, J ]

δJQδJQ′
−
∫
K,K′

1

2
∂ΛRΛ

f (K,K
′)
δ2WΛ[η, J ]

δηK′δηK
(2.23)

=
1

2
Tr

[
∂ΛRb

δ2W

δJ2

]
− 1

2
Tr

[
∂ΛRf

δ2W

δη2

]
, (2.24)

where the compact matrix notation

∂ΛRb =
(
∂ΛRΛ

b (Q,Q
′)
)
, ∂ΛRf =

(
∂ΛRΛ

f (K,K
′)
)
, (2.25)

δ2W

δJ2
=
(δ2WΛ[η, J ]

δJQδJQ′

)
,

δ2W

δη2
=
(δ2WΛ[η, J ]

δJKδJK′

)
(2.26)

was introduced with Q and Q′ or K and K ′ denoting rows and columns. We will use
this notation until the end of this section. Later, the scale and field dependence of the
effective action will also be suppressed and we will use the abbreviation Γ = ΓΛ[ψ, ϕ]. In
the next step, the second derivatives of the Schwinger functional are expressed in terms
of the effective action. To this end, one applies functional derivatives with respect to
external source fields to the Legendre relations, see Eq. (2.14) and (2.15) and obtains

δη

δψ

δ2W

δη2
+
δJ

δψ

δ2W

δJδη
= 1,

δη

δϕ

δ2W

δη2
+
δJ

δϕ

δW

δJδη
= 0 (2.27)

and

δη

δψ

δ2W

∂ηδJ
+
δJ

δψ

δ2W

δJδJ
= 0,

δη

δϕ

δ2W

∂ηδJ
+
δJ

δϕ

δ2W

δJδJ
= 1. (2.28)
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2.2 Derivation of the renormalization group equation

In the next step, insertion of the Legendre relations, see Eq. (2.14) and (2.15), results in

− δ
2Γ̃

δψ2

δ2W

δη2
+

δ2Γ̃

δψδϕ

δ2W

δJδη
= 1, − δ2Γ̃

δϕδψ

δ2W

δη2
+
δ2Γ̃

δϕ2

δW

δJδη
= 0 (2.29)

and

− δ
2Γ̃

δψ2

δ2W

∂ηδJ
+

δ2Γ̃

δϕδψ

δ2W

δJδJ
= 0, − δ2Γ̃

δϕδψ

δ2W

δηδJ
+
δ2Γ̃

δϕ2

δ2W

δJ2
= 1, (2.30)

which facilitate the replacement of the second derivatives of the Schwinger functional by
the second derivative of the effective action

δ2W

δη2
= −

(
δ2Γ̃

δψ2

)−1
1− δ2Γ̃

δψδϕ

(
δ2Γ̃

δϕ2

)−1(
δ2Γ̃

δϕδψ

)(
δ2Γ̃

δψ2

)−1
−1

(2.31)

and

δ2W

δJ2
=

(
δ2Γ̃

δϕ2

)−1
1− δ2Γ̃

δϕδψ

(
δ2Γ̃

δψ2

)−1(
δ2Γ̃

δψδϕ

)(
δ2Γ̃

δϕ2

)−1
−1

. (2.32)

Inserting both relations into the flow equation for the effective action we obtain the central
result of this chapter, the functional renormalization group equation for a coupled fermion
and boson theory

d

dΛ
Γ =

1

2
Tr

∂ΛRb

(
δ2Γ̃

δϕ2

)−1
1− δ2Γ̃

δϕδψ

(
δ2Γ̃

δψ2

)−1(
δ2Γ̃

δψδϕ

)(
δ2Γ̃

δϕ2

)−1
−1 (2.33)

+
1

2
Tr

∂ΛRf

(
δ2Γ̃

δψ2

)−1
1− δ2Γ̃

δψδϕ

(
δ2Γ̃

δϕ2

)−1(
δ2Γ̃

δϕδψ

)(
δ2Γ̃

δψ2

)−1
−1 .

This functional RG equation is identical to the equation derived within the superfield
formalism in the review by Metzner et al. (2012), see Eq. (99), by calculating the inverse
of the supermatrix. Another equivalent formulation can be found in Berges et al. (2002).

The right hand side consists of two terms with a similar structure. The first term
contains a scale derivative of the bosonic regulator, while the second one contains a
scale derivative of the fermionic regulator. The scale derivatives of these regulators are
constituent parts of the bosonic and fermionic single-scale propagators, which are defined
in Eq. (2.37) and (2.39) below. The regularized effective action Γ̃ = Γ+∆S only appears on

28



2.2 Derivation of the renormalization group equation

the right hand side of the flow equation, while on the left hand side only the unregularized
effective action appears. When expanding the flow equation, regularized fermionic and
bosonic propagators will appear on the right hand side

Gb(Q,Q′) =

(
δ2Γ̃Λ[ψ, ϕ]

δϕQ̃δϕQ̃′

)−1

Q,Q′

=

(
δ2ΓΛ[ψ, ϕ]

δϕQ̃δϕQ̃′
+RΛ

b (Q̃, Q̃
′)

)−1

Q,Q′

, (2.34)

Gf (K,K ′) = −

(
δ2Γ̃Λ[ψ, ϕ]

δψK̃δψK̃′

)−1

K,K′

= −
(
δ2ΓΛ[ψ, ϕ]

δψK̃δψK̃′
−RΛ

f (K̃, K̃
′)

)−1

K,K′
, (2.35)

where the external indices Q,Q′ and K,K ′ depend on the external indices Q̃, Q̃′ and
K̃, K̃ ′ through a non-trival connection due to the matrix inversion. For clarity reasons
we explicitly write out the internal structure of the inverse matrix. The bosonic regulator
RΛ
b (K,K

′) = RΛ
b (K

′, K) = δ2∆SΛ[ψ,ϕ]
δϕKδϕK′

is symmetric in its argument, whereas the fermionic

regulator RΛ
f (K

′, K) = −RΛ
f (K,K

′) = δ2∆SΛ[ψ,ϕ]
δψKδψK′

has an internal antisymmetric structure.
The so-called single scale propagators are defined as scale derivatives of the fermion and
boson propagators with fixed self-energy

Sf =
∂Gf
∂Λ

∣∣∣
Σ
= − ∂

∂Λ

(
δ2Γ

δψ2
−Rf

)−1

= −
(
δ2Γ

δψ2
−Rf

)−1

∂ΛRf

(
δ2Γ

δψ2
−Rf

)−1

(2.36)

= −Gf (∂ΛRf )Gf , (2.37)

Sb =
∂Gb
∂Λ

∣∣∣
Σ
=

∂

∂Λ

(
δ2Γ

δϕ2
+Rb

)−1

= −
(
δ2Γ

δϕ2
+Rb

)−1

∂ΛRb

(
δ2Γ

δϕ2
+Rb

)−1

(2.38)

= −Gb(∂ΛRb)Gb. (2.39)

Here, we used the shorthand notation Gf = (Gf (K,K ′)) and Gb = (Gb(K,K ′)) for the
fermionic and bosonic propagators. Further, the relation ∂ΛA

−1 = −A−1 (∂ΛA)A
−1 was

applied, which holds for general matrices A with scale-dependent entries.
For an explicit evaluation of the flow equations, the basis for fermionic and bosonic

fields has to be specified. In the case of the first project (Dirac cone model) we will work
in the basis

ψK =
(
ψk+↑, ψk+↓, ψ̄k+↑, ψ̄k+↓, ψk−↑, ψk−↓, ψ̄k−↑, ψ̄k−↓

)
, (2.40)

where the general variable is specified as K = (k, α, σ, c) with fermionic momenta k and
Matsubara frequencies k0 collected in k = (k0,k). The second index of the fermionic fields
denotes a band index α = ± which allocates fermions to the upper and lower Dirac cone,
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2.3 Spontaneous symmetry breaking

and the third index corresponds to the spin σ =↓, ↑. Finally, the fourth index c denotes
the index for conjugated and non-conjugated fermionic fields, ψ̄ and ψ, respectively. In
the case of the second project (fermionic superfluid) there is no band index α and the
basis is

(ψK) =
(
ψk↑, ψk↓, ψ̄k↑, ψ̄k↓

)
, (2.41)

whereK = (k, c, σ). The bosonic degrees of freedom will be described by a complex-valued
field

(ϕQ) =
(
ϕq, ϕ

∗
q

)
(2.42)

in the Dirac cone model and in the symmetric regime of the fermionic superfluid, where
the variable Q = (q, c) collects bosonic momenta q and Matsubara frequencies q0 in
q = (q0,q) and conjugated fields c = ϕ, ϕ∗ in the index c. In the symmetry-broken regime
of the fermionic superfluid, the bosonic field will be decomposed in real-valued transverse
and longitudinal fields

(ϕQ) = (σq, πq) , (2.43)

where now the index Q = (q, c) includes again bosonic momenta and Matsubara frequen-
cies as above, but c = σ, π distinguishes now between longitudinal σ and transverse π
field species.

2.3 Spontaneous symmetry breaking

Here, we derive the flow equations for situations with spontaneous symmetry breaking.
During the flow the bosonic sector of the effective action develops a Mexican hat shape
with degenerate minima. The order parameter in the broken-phase can be defined as
the location of one of those minima. For our discussion we choose a real-valued order
parameter denoted as αΛ, which grows from zero to a finite value α during the renormal-
ization procedure. The value of the order parameter is then determined by the minimum
condition

δΓ[ϕ, ϕ∗]

δϕ

∣∣∣
ϕ=ϕ∗=αΛ

=
δΓ[ϕ, ϕ∗]

δϕ∗

∣∣∣
ϕ=ϕ∗=αΛ

= 0. (2.44)
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2.3 Spontaneous symmetry breaking

Decomposing the bosonic fields

ϕ(x) = αΛ + σ(x) + iπ(x), (2.45)

ϕ∗(x) = αΛ + σ(x)− iπ(x) (2.46)

into longitudinal σ(x) and transverse π(x) fluctuations around the scale-dependent order
parameter αΛ, the corresponding minimum condition for the new effective action in terms
of longitudinal and transverse bosonic fields reads

δΓ[σ + αΛ, π]

δσ

∣∣∣
σ=π=0

= 0. (2.47)

In the next step, the renormalization group equation for situations with a developing
finite order parameter αΛ are derived. The total scale derivative of the scale-dependent
effective action

d

dΛ
ΓΛ[ψ, ψ̄, σ + αΛ, π] =

∂

∂Λ
ΓΛ[ψ, ψ̄, σ + αΛ, π] +

δΓΛ

δσ
[ψ, ψ̄, σ + αΛ, π]

d

dΛ
αΛ (2.48)

has two parts. The first part is given by the expression for the flow equation

∂

∂Λ
Γ =

1

2
Tr

∂ΛRb

(
δ2Γ̃

δϕ2

)−1
1− δ2Γ̃

δϕδψ

(
δ2Γ̃

δψ2

)−1(
δ2Γ̃

δψδϕ

)(
δ2Γ̃

δϕ2

)−1
−1 (2.49)

+
1

2
Tr

∂ΛRf

(
δ2Γ̃

δψ2

)−1
1− δ2Γ̃

δψδϕ

(
δ2Γ̃

δϕ2

)−1(
δ2Γ̃

δϕδψ

)(
δ2Γ̃

δψ2

)−1
−1 ,

which was derived in the previous part. We use the short-hand notation

∂

∂Λ
Γ =

∂

∂Λ
ΓΛ[ψ, ψ̄, σ + α, π], Γ̃ = Γ̃Λ[ψ, ψ̄, σ + α, π]. (2.50)

Here, we work in the basis of longitudinal and transverse bosonic fields ϕ = (σ, π). Hence,
the second derivative of the effective action with respect to bosonic fields is given by

δ2Γ̃Λ[ψ, ψ̄, σ + αΛ, π]

δϕ2
=

(
δ2Γ̃Λ[ψ,ψ̄,σ+αΛ,π]

δσδσ
δ2Γ̃Λ[ψ,ψ̄,σ+αΛ,π]

δσδπ
δ2Γ̃Λ[ψ,ψ̄,σ+αΛ,π]

δπδσ
δ2Γ̃Λ[ψ,ψ̄,σ+αΛ,π]

δπδπ

)
. (2.51)

The second part of the renormalization group equation Eq. (2.48) is proportional to the
flow of the order parameter. The following recipe illustrates how the RG equation is solved
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2.3 Spontaneous symmetry breaking

with an ansatz for the scale-dependent effective action.2 First an ansatz for ΓΛ[ψ, ψ̄, σ +

αΛ, π] is stated. The prefactors of this expansion correspond to couplings parametrizing
the bosonic and fermionic self-energies and interactions, which will renormalize during
the flow. This whole ansatz is then inserted into the flow equations. Functional field
differentiation on both sides of the flow equations leads directly to the flow for bosonic
and fermionic self-energies and other couplings.

The flow of the order parameter can easily be determined by considering the flow of
the minimum of the effective action. Applying a functional derivative with respect to the
longitudinal fields yields

0 =
d

dΛ

δ

δσ
ΓΛ[ψ, ψ̄, σ + αΛ, π]

∣∣∣
σ=π=0

(2.52)

=
δ

δσ

∂

∂Λ
ΓΛ[ψ, ψ̄, σ + αΛ, π]

∣∣∣
σ=π=0

+
dαΛ

dΛ

δ2

δσ2
ΓΛ[ψ, ψ̄, σ + αΛ, π]

∣∣∣
σ=π=0

, (2.53)

which directly leads to

dαΛ

dΛ
= −

(
δ2Γ[ψ, ψ̄, σ + αΛ, π]

δσδσ

)−1

· δ
δσ

∂

∂Λ
ΓΛ[ψ, ψ̄, σ + αΛ, π]

∣∣∣
σ=π=0

. (2.54)

The evolution of the order parameter is determined by bosonic and fermionic tadpole
diagrams. In the following chapters we will apply the functional renormalization group
method to the Dirac cone model and to the fermionic superfluid.

2Apart from the present scheme also other truncation schemes exist, for instance the full potential RG
analysis. There, the full field dependence is taken into account in terms of a local bosonic potential and
only a gradient expansion is applied. We refer to the review by Metzner et al. (2012) and to the work by
Jackubczyk et al. (2009) for further details.
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CHAPTER 3

Project 1: Superfluid-semimetallic quantum phase transition

In this chapter we analyze a quantum phase transition between a superfluid and a
semimetal in the Dirac cone model. We analyze the quantum critical behaviour close
to and at the quantum critical point, which separates both phases, at zero and finite
temperatures. The system is studied within a coupled fermion-boson functional renor-
malization group approach. At the quantum critical point non-Gaussian and non-Fermi
liquid behaviour emerge, due to the appearance of anomalous dimensions. At finite tem-
peratures, close to criticality, critical exponents for the susceptibility and the correlation
length are determined. The critical exponents obey several scaling laws. An infinite
correlation length occurs not only at the quantum critical point, but also in the entire
semimetallic ground state.

The chapter is structured as follows: After a short overview over quantum criticality
in section 3.1, the Dirac cone model is introduced in section 3.2. Afterwards, in section 3.3
our truncation and parametrization for the scale-dependent effective action is presented.
This will be used to analyze the interplay between fermions and order parameter fluctu-
ations close to the quantum critical point within the functional RG formalism. For that
truncation section 3.4 presents the functional RG flow in terms of rescaled variables at
zero and finite temperatures. In section 3.5, the analytic structure of the particle-particle
bubble gives us insights about the low-energy behaviour of the bosonic propagator and
will lead us to an unexpected power law decay. This will imply an infinite correlation
length and time in the entire ground state away from the critical point. Finally, the
renormalization group equations are solved numerically in two dimensions at zero and at
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3.1 Introduction

finite temperatures in section 3.6 and conclusions are drawn in section 3.7.

3.1 Introduction

In general quantum phase transitions occur at zero temperature by varying a non-thermal
control parameter. In the case of a continuous quantum phase transition, a quantum
critical point separates the symmetric and symmetry-broken phase. Although located at
zero temperature, and therefore not experimentally reachable, the quantum critical point
can strongly affect the finite temperature regime, within the so-called quantum critical
region above the critical point. In this regime quantum and thermal fluctuations have a
mutual interplay so that a description in terms of classical criticality breaks down and
non-Fermi liquid properties emerge.

The standard approach for dealing with quantum criticality in correlated electron sys-
tems was introduced by Hertz (1976) and Millis (1993) and is known as the Hertz-Millis
theory. Here, the fermionic interaction is decoupled by introducing an order parameter
field via Hubbard-Stratonovich transformation. Afterwards the fermionic degrees of free-
dom are integrated out and an effective bosonic theory is obtained. It was shown later
that this procedure of integrating fermions out may lead to divergent coefficients for the
effective bosonic theory and render the approximation with a local quartic term invalid.
This occurs due to the existence of gapless fermionic excitations around the Fermi surface
especially in low dimensionality (for review see Belitz et al. (2005) and Löhneysen et al.
(2007)).

The need for other routes towards quantum criticality leads to several approaches with
coupled fermion-boson theories, where both fermions and order parameter fluctuations
are treated on the same footing (Altshuler et al. (1994, 1995), Vojta et al. (2000a, 2000b),
Abanov et al. (2000), Abanov et al. (2003), Rech et al. (2006), Kaul et al. (2008), Huh
and Sachdev (2008) and Strack et al. (2010).

Coupled fermion-boson theories were also studied within the functional renormaliza-
tion group framework (see Berges et al. (2002), Baier et al. (2004), Schütz et al. (2005)
and Metzner et al. (2012). The interplay between gapless fermions and massless bosons
was analyzed within the functional renormalization group scheme in different physical sys-
tems: in quantum electrodynamics, see Gies and Jaeckel (2004), non-abelian gauge theory,
see Pawlowski et al. (2004), the Gross-Neveu model, see Rosa et al. (2001), Höfling et
al. (2002) and Scherer et al. (2013), and the Dirac cone model, see Strack et al. (2010).

The Dirac cone model was introduced and analyzed in the last work and undergoes
a quantum phase transition between superfluid and semimetal. Nowadays it is hard to
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3.1 Introduction

imagine not coming into contact with Dirac cones in condensed matter physics. First,
due to the groundbreaking experiments by Geim and Novoselov on graphene, which was
honoured by the Nobel prize in 2010 and triggered intensive research in that field. In
this two-dimensional material, two Dirac cones appear in the honeycomb band structure
at two nonequivalent sites in the Brillouin-zone. In contrast to graphene the Dirac cone
model has no entanglement of the momentum dependence with the pseudo-spin degree of
freedom, which is related to the 2-atom structure of the unit cell of graphene. To analyze
interaction effects in graphene, the Hubbard model is often employed, see for instance
Meng et al. (2010). Second, the introduction of the symmetry-protected Dirac cones in
the field of topological insulators, where Dirac fermions describe surface states in some
of these three dimensional systems. Here, the spin orientation is also correlated with
momenta, in contrast to the Dirac cone model.

Although seemingly similar to the Gross-Neveu model, the Dirac cone model was
proven to fall in another universality class. Strack et al. (2010) pointed out that the
model exhibits a quantum phase transition from a semimetal to a superfluid. Due to
gapless fermions the Hertz-Millis theory fails in this regime and a coupled fermion-boson
renormalization group method was applied at zero temperature. Within a simple trunca-
tion a breakdown of the Fermi-liquid concept and a non-Gaussian behaviour was observed
at the quantum critical point, due to the appearance of anomalous dimensions below three
dimensions. The critical exponent for the susceptibility and a scaling law was determined
by the explicit solution in two dimensions.

We extend this existing truncation of the RG flow in several directions. First, we dis-
tinguish between momentum and frequency renormalization, which will lead to a vanishing
Fermi velocity in the infrared. Furthermore, the work is extended to finite temperatures
and critical exponents and anomalous dimensions are determined. We revisit the ground
state of the model and find a non-analytic behaviour of the fermionic particle-particle
bubble which leads to a diverging correlation length also away from the quantum critical
point. This indicates that the entire semimetal phase at zero temperature is in some sense
’critical’. This resembles the situation in graphene, where the Dirac point which separates
the hole-doped and electron-doped phase may be interpreted as a critical point (Sheehy
and Schamlian (2007)). The next section gives a detailed introduction to the Dirac cone
model.
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3.2 Model

Figure 3.1: Visualization of the dispersion relation ϵkα = αvf |k| of the Dirac cone model
in two dimensions. The chemical potential µ is set to zero, so that only the states in the
lower cone are occupied and the Fermi surface consists of only one point (Picture from
Strack et al. (2010)).

3.2 Model

The Dirac cone model was introduced by Strack et al. (2010) as a prototype model for
a quantum phase transition between a semimetal and a superfluid. The model consists
of spinful fermions with a linear dispersion relation ϵkα = αvf |k|, where vf denotes the
Fermi velocity, α the band index of the lower and upper Dirac cone and σ =↑, ↓ the spin
configuration. Figure 3.1 shows the dispersion relation in two dimensions. The chemical
potential µ is set to zero to obtain a point-like Fermi surface, where only the states of the
lower cone are occupied. The contact interaction is attractive (U < 0) and includes inter-
and intra-band processes. In total the microscopic action reads

S[ψ, ψ̄] =

∫
kασ

ψ̄kασ(−ik0 + ϵkα)ψkασ + U

∫
kα

∫
k′α′

∫
q

ψ̄−k,α↓ψ̄k+q,α↑ψk′+q,α′↑ψ−k′,α′↓

+

∫
kασ

mαψ̄kασψkασ, (3.1)

where ψkασ and ψ̄kασ denote anticommuting fermionic fields. The short-hand notation
for the integral

∫
kασ

= T
∑
k0

∫
k
ddk
(2π)d

∑
α

∑
σ

includes integrations over fermionic Matsubara

frequencies k0 = (2n + 1)πT with integer n, integrations over momenta k, which are
restricted by an ultraviolet cutoff |ϵkα| < Λ0 and summations over both band indices
α = ±1 and spin configurations σ =↑, ↓. Additionally, a finite counterterm mass mα is
added to the bare microscopic action which preserves a gapless dispersion during the flow
and which will be discussed in section 3.3.

The fermionic interaction term can be decoupled with a Hubbard-Stratonovich trans-
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formation in the s-wave spin-singlet pairing channel by introducing a complex bosonic
auxiliary field which is conjugated to the fermionic bilinear U

∫
kα
ψk+q,α↑ψ−k,α↓. The re-

sulting coupled fermion-boson microscopic action reads

S[ψ, ψ̄, ϕ] =

∫
kασ

ψ̄kασ(−ik0 + ϵkα +mα)ψkασ −
∫
q

ϕ∗
q

1

U
ϕq

+

∫
kα

∫
q

(
ψ̄−k,α↓ψ̄k+q,α↑ ϕq + ψk+q,α↑ψ−k,α↓ ϕ

∗
q

)
, (3.2)

where ϕq and ϕq denote the complex valued bosonic fields. The integration
∫
q
=
∑
q0

∫
q
ddq
(2π)d

runs over bosonic Matsubara frequencies q0 = 2nπT with integer n and bosonic transfer
momenta q. The Hubbard Stratonovich transformation replaces the fermionic interaction
through a quadratic bosonic part with a bosonic mass of strength −1/U and through a
normal Yukawa coupling between bosonic and fermionic degrees of freedom with strength
one.

A saddle-point analysis of the theory leads to a BCS-like gap equation

∆MF = −U
∫
kα

∆MF

k20 + ϵ2kα +∆2
MF

(3.3)

with the mean-field gap ∆MF , which signals a phase transition to a superfluid phase at a
finite coupling strength. The vanishing density of states at the (point-like) Fermi surface
N(E) ∝ E3−d prevents a weak-pairing instability and a finite interaction Uqc becomes
necessary to reach the superfluid state. The upper critical dimension is given by d+c = 3.
Figure 3.2 visualizes the quantum phase transition between semimetallic and superfluid
phases, which are separated by a quantum critical point at a finite interaction strength
Uqc.

As mentioned in the introduction section 3.1, the standard approach for analyzing
quantum criticality is given by the Hertz-Millis theory, where the fermions in the coupled
fermion-boson theory would be integrated out and the resulting purely bosonic theory is
analyzed within a renormalization group scheme. It was shown by Strack et al. (2010)
that this approach fails here, because of a linear divergence in the local bosonic self-
interaction due to fermionic loop diagrams. Hence, they approached the critical point
with a coupled fermion-boson theory where both degrees of freedom are treated on the
same footing. We follow this route and analyze the coupled fermion-boson theory. In the
next section we will present our truncation of the scale-dependent effective action for a
functional renormalization group analysis beyond a mean-field study.
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3.3 Truncation and parametrization of the effective action

Figure 3.2: At zero temperature the superfluid and the semimetallic phase are separated
by a quantum critical point (QCP). In the superfluid phase s-wave spin singlet pairing
occurs, while in the semimetallic phase a massless Dirac cone remains. The transition
is controlled by the non-thermal parameter m2

b = − 1
U
, given by the inverse interaction

strength (Picture from Strack et al. (2010)).

3.3 Truncation and parametrization of the effective

action

In the following, our truncation and parametrization for the scale-dependent effective
action ΓΛ are presented. The leading low energy terms will be kept to capture the quan-
tum critical behaviour close to and at the phase transition. We will analyze the critical
behaviour within a coupled fermion-boson approach, approaching the QCP from the sym-
metric phase at zero and finite temperature.

As we saw in chapter 2, the full effective action ΓΛ=0 includes the complete thermo-
dynamics and all correlation functions of the system. We now make an ansatz for the
scale-dependent effective action ΓΛ in powers of fields and gradients. The scale-dependent
action will be truncated at fourth order in the bosonic fields. Scale-dependent renormal-
ization factors parametrize the momentum and frequency dependence for the fermionic
and bosonic propagator during the flow. The flow of the renormalization factors and
local terms is calculated by inserting the ansatz in the renormalization group equation
Eq. (2.33), and expanding the right hand side in powers of fields.

Our ansatz for the scale-dependent effective action consists of four terms

ΓΛ = Γψ̄ψ + Γϕ∗ϕ + Γ|ϕ|4 + Γψ2ϕ∗ . (3.4)

The quadratic term in fermionic fields

Γψ̄ψ =

∫
kασ

ψ̄kασ(−iZfk0 + Afϵkα +mα)ψkασ (3.5)

includes the renormalization factors Zf and Af , which parametrize the frequency and
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3.3 Truncation and parametrization of the effective action

momentum dependence and start both with initial value one. Further a fermionic mass
term is parametrized by mα, which is generated during the flow due to the fermionic two-
particle interaction. Hence, a finite counterterm mass is added to the microscopic action,
see Eq. (3.1) and (3.2), and is fine-tuned in such a way that the generated fermionic mass
is cancelled out. This preserves a massless dispersion relation and keeps a fermionic band
gap closed. A finite fermionic band gap would correspond to a finite fermionic mass. The
value of the counterterm mass does not need to be specified, but would be given by the
value of the fermionic band gap in the infrared regime without a counterterm.

The quadratic bosonic term

Γϕ∗ϕ =

∫
q

ϕ∗
q

(
Zbq

2
0 + Abq

2 +m2
b

)
ϕq (3.6)

is parametrized by a mass termm2
b which is initially given by them2

b = − 1
U
, and Zb and Ab,

which parametrize the quadratic frequency and momentum dependence. Both quadratic
dependencies will only be generated in the course of the flow and are not present in the
original microscopic action. During the flow, a vanishing bosonic mass, m2

b = 0, signals
the occurrence of spontaneous symmetry breaking and is used to determine the location
of the quantum critical point. Further a local bosonic self-interaction is introduced

Γ|ϕ|4 =
u

8

∫
q,q′,p

ϕ∗
q+pϕ

∗
q′−pϕq′ϕq , (3.7)

which is parametrized through the running coupling uΛ and which stabilises the boson
theory close to criticality. The Yukawa vertex

Γψ2ϕ∗ = g

∫
kα

∫
q

(
ψ̄−k,α↓ψ̄k+q,α↑ϕq + ψk+q,α↑ψ−k,α↓ϕ

∗
q

)
(3.8)

will not be renormalized in the symmetric phase, so that gΛ = 1. The vertex correction
of order g3 vanishes due to particle conservation, see Strack et al. (2008). For this theory
the fermionic and bosonic propagators are given by

Gfα(k) = −⟨ψkασψ̄kασ⟩ =
1

iZfk0 − Afϵkα −mα

, (3.9)

Gb(q) = −⟨ϕqϕ∗
q⟩ =

−1
Zbq20 + Abq2 +m2

b

. (3.10)

In contrast to the previous truncation by Strack et al. (2010), different renormalization
factors for the frequency and momentum dependence are considered for both fermion,
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3.3 Truncation and parametrization of the effective action

Γ|φ|4 : Γψ2φ∗ :

Figure 3.3: Vertices of the bosonic self-interaction and the Yukawa coupling.

Zf ̸= Af , and boson fields, Zb ̸= Ab. Further, the opening of a fermionic gap due to the
fermion interaction is prevented by implementing a counterterm mass term, as mentioned
above. Diagrams for both bosonic self-interaction and the Yukawa vertex are illustrated
in figure 3.3.

The renormalization group flow starts in the ultraviolet limit with the condition

ΓΛ0 = S, (3.11)

where the (scale-dependent) effective action matches the bare microscopic action.
For our analysis, we will start with the following initial values for the flowing couplings

ZΛ0
f = 1, AΛ0

f = 1, mΛ0
α = mα, gΛ0 = 1 (3.12)

ZΛ0
b = 1, AΛ0

b = 1, mΛ0
b =

√
1

|U |
, uΛ0 = 0. (3.13)

In our truncation, we assume a finite value for the bosonic renormalization factors ZΛ0
b = 1,

AΛ0
b = 1 already in the microscopic action. However, due to a local fermionic two-particle

interaction of our model, the bosonic renormalization factors Zb and Ab should be zero at
the beginning of the flow.

We motivate briefly our choice of the finite initial values for the bosonic renormal-
ization factors: In the case of zero initial values both bosonic renormalization factors
are generated by fermions at early stages of the flow accompanied with high anomalous
dimensions. This leads to a somewhat pathological behaviour for the bosonic regulator.
Since the regulator is directly proportional to Ab, it immediately reacts on a change in Ab.
Already at the beginning of the flow the fermions generate notables values Ab due to high
bosonic anomalous dimensions. Hence, the bosonic regulator is switched on at the same
scale regularizing the theory. Finally, in the infrared limit it vanishes again. Therefore, a
finite choice of the renormalization factors Zb and Ab suggests itself to avoid this patho-
logical off-on-off behaviour of the bosonic regulator. Furthermore, this also simplifies the
numerical treatment in the beginning of the flow, where we can neglect the scale derivative
of the bosonic renormalization factor. Then, a term of the form

∫
ϕ∗
q(q

2
0 + q2)ϕq appears

40



3.4 Renormalization group equations

already in the microscopic action, which suppresses the interaction at low frequency and
momentum transfers.

3.4 Renormalization group equations

The functional renormalization group equations for a coupled fermion-boson theory were
derived in chapter 2. In this chapter, we derive the flow equation for the various couplings
within our truncation, presented in the previous section. The truncation is plugged into
the flow equation and the flow for the couplings are determined by expanding the right
hand side of the flow equation in powers of the fields. To extract the frequency and
momentum dependence of the fermionic and bosonic propagator, external frequency and
momentum derivatives have to be applied.

The scale-dependence Λ is implemented by a sharp Litim momentum cutoff

Rf (k) = Af (−Λ sgn(ϵkα) + ϵkα)Θ(Λ− |ϵkα|) + δmΛ
α, (3.14)

Rb(q) = Ab(−Λ2 + q2)Θ(Λ2 − q2), (3.15)

which regularizes both fermionic and bosonic propagators

Gfα(k) =
1

iZfk0 − αAf |k| −mα +Rf (k)
, (3.16)

Gb(q) =
−1

Zbq20 + Abq2 +m2
b −Rb(q)

, (3.17)

where −αAf |k| is replaced by −αAfΛ in the fermionic propagator and Abq
2 by AbΛ2 in

the bosonic propagator if vf |k| < Λ and |q| < Λ is fulfilled. We choose the value of δmΛ
α

in such a way that it cancels out the scale-dependent mass mα in Eq. (3.5) at each scale.
This choice of the regulator simplifies the expressions on the right hand side of the

flow equation, and all frequency and momentum integrations and sums, respectively, can
be executed explicitly in both the zero and finite temperature regime.
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3.4.1 General flow equations

Expanding the renormalization group equation in fields and gradients, the flow for the
couplings reads

d

dΛ
Zf = −g2

∂

i∂k0

∣∣∣
k=0

∫
q

DΛ [Gfα(q − k)Gb(q)] , (3.18)

d

dΛ
Af = 0, (3.19)

d

dΛ
m2
b = −g2

∫
kα

DΛ [Gfα(k)Gfα(−k)]−
u

2

∫
q

DΛGb(q), (3.20)

d

dΛ
Zb = −

1

2

∂2

∂p20

∣∣∣
p=0

g2
∫
kα

DΛ [Gfα(k + p)Gfα(−k)] , (3.21)

d

dΛ
Ab = −

1

2

∂2

∂p2x

∣∣∣
p=0

g2
∫
k

DΛ [Gfα(k + p)Gfα(−k)] , (3.22)

d

dΛ
u = 4g4

∫
kα

DΛ [Gfα(−k)]2 [Gfα(k)]
2 − 5

4
u2
∫
q

DΛ [Gb(q)]
2 , (3.23)

d

dΛ
g = 0, (3.24)

where DΛ = d
dΛ

∣∣∣
ΣΛ

=
∑
s=f,b

(
d
dΛ
Rs

)
∂Rs denotes a scale derivative acting only on fermionic

and bosonic regulators, while keeping the self-energy of both propagators constant. In
the zero temperature case, T = 0, the shorthand notation for the integrals

∫
q
=
∫
q0

∫
q

and
∫
k
=
∫
k0

∫
k

includes integration over continuous frequencies and momenta and the
symbols ∂

∂k0
and ∂

∂p0
denote standard continuous derivatives.

A finite temperature, T > 0, the shorthand notation for the integrals
∫
k
= T

∑
k0

∫
k

and
∫
q
= T

∑
q0

∫
q

consists of sums over discrete fermionic k0 = (2n + 1)πT and bosonic

q0 = 2nπT Matsubara frequencies, respectively. The continuous frequency derivatives are
then replaced by discrete derivatives

∂

∂k0
ff (k0)

T>0→ ff (πT )− ff (−πT )
2πT

, (3.25)

∂2

∂q20
fb(q0)

T>0→ fb(2πT ) + fb(−2πT )− 2fb(0)

(2πT )2
, (3.26)

with the general functions ff (k0) and fb(q0). Figure 3.4 to 3.6 show diagrammatic contri-
butions to the flow for the fermionic self-energy, the bosonic self-energy and the bosonic
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Figure 3.4: Diagrammatic contribution to the fermionic self-energy.

Figure 3.5: Diagrammatic contributions to the bosonic self-energy.

self-interaction.
In the flow equations Eq. (3.18)-(3.24), the prefactors in front of the integrals are iden-

tical to the prefactors obtained from an renormalization group analysis of the fermionic
superfluid in the symmetric regime, which will be discussed later in chapter 4. Here, due
to the interaction, several summations over band indices appear which address fermions
in the lower and the upper Dirac cone.

When calculating the integrals on the right hand side explicitly, scale and external
momentum derivatives of the regulators appear. For the scale derivative of the fermionic
regulator the exact expression ∂ΛRΛ

fα(k) = −Afsgn (ϵkα)Θ (Λ− |ϵkα|) will be used, while
we approximate the scale derivative of the bosonic regulator as in previous work by
∂ΛR

Λ
b (q) ≈ −2AbΛΘ (Λ2 − q2), where the scale derivative of the bosonic renormaliza-

tion factor d
dΛ
Ab was neglected.

3.4.2 Rescaled flow equations at zero temperature T = 0

Previously, the flow equation were presented in a general form. As mentioned above, due
to an appropriate choice of the sharp Litim momentum cutoff, integrands appearing on
the right side of the flow become momentum independent, up to bosonic contributions to
the flow of d

dΛ
Ab. Hence, both frequency and momentum integrations can be performed

analytically for all integrals and only the differential equation system for the flow has to
be solved numerically.

We present the flow equation in a rescaled form, which is convenient to analyze

Figure 3.6: Diagrammatic contributions to the bosonic self-interaction.
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the behaviour of the system close to criticality and its fix point structure. Close to
the quantum critical point, several quantities show a scaling behaviour. Therefore, we
introduce the rescaled variables

m̃2
b =

m2
b

AbΛ2
, ũ =

u(Kd/d)

Λ3−d
√
ZbA3

b

, g̃ =
g
√
Kd/d

Λ
3−d
2

√
ZfAfAb

, λ̃ =
Af
Zf

√
Zb
Ab

(3.27)

with the abbreviationKd = dπ
d
2 /(Γ(d

2
+ 1)(2π)d) defined as the surface of the d-dimensional

unit sphere multiplied by the factor 1
(2π)d

. We also introduce anomalous dimensions,

ηZf = −∂ logZf
∂ log Λ

, ηAf = −∂ logAf
∂ log Λ

, ηZb = −∂ logZb
∂ log Λ

, ηAb = −∂ logAb
∂ log Λ

, (3.28)

defined by the logarithmic scale derivative of the bosonic and fermionic renormalization
factors. They determine the scaling behaviour of the fermionic and bosonic propagator
in the infrared and indicate non-Fermi liquid behaviour and non-Gaussian behaviour,
respectively.

At zero temperature the flow for the rescaled couplings reads

∂m̃2
b

∂ log Λ
=
(
ηAb − 2

)
m̃2
b −

ũ

4

1

(1 + m̃2
b)

3/2
+ g̃2 (3.29)

∂ũ

∂ log Λ
=

(
3

2
ηAb +

1

2
ηZb + d− 3

)
ũ+

15

16
ũ2

1

(1 + m̃2
b)

5/2
− 6

g̃4

λ̃
(3.30)

∂g̃

∂ log Λ
=

(
ηAf
2

+
ηZf
2

+
ηAb
2

+
d− 3

2

)
g̃ (3.31)

∂λ̃

∂ log Λ
=

(
−ηAf + ηZf −

1

2
ηZb +

1

2
ηAb

)
λ̃ (3.32)

and

ηZf = g̃2λ̃2
1√

1 + m̃2
b(λ̃+

√
1 + m̃2

b)
3
+

1

2
g̃2λ̃

λ̃+ 3
√
1 + m̃2

b

(1 + m̃2
b)

3/2(λ̃+
√
1 + m̃2

b)
3

(3.33)

ηAf = 0 (3.34)

ηZb =
3

4

g̃2

λ̃2
(3.35)

ηAb =
1

2
g̃2. (3.36)

In the case of identical frequency and momentum renormalization, Zf → Af and Zb → Ab,
implying λ̃→ 1, all flows reduce to the previous result by Strack et al. (2010).
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3.4 Renormalization group equations

3.4.3 Rescaled flow equations at finite temperatures T > 0

At finite temperatures, the execution of the Matsubara sums and the replacement of
the continuous derivatives by finite difference quotients, Eq. (3.25) and (3.26), of the
renormalization group equations Eq. (3.18)-(3.24), lead us to the rescaled flow equations

∂m̃2
b

∂ log Λ
= (ηAb − 2)m̃2

b + g̃2

(
tanh(

1

2Tf
)− 1

2Tf

1

cosh2( 1
2Tf

)

)
(3.37)

− ũ

4

1

(1 + m̃2
b)

3/2

[
−
√
1 + m̃2

b

2Tb
+

√
1 + m̃2

b

2Tb
coth2

(√
1 + m̃2

b

2Tb

)
+ coth

(√
1 + m̃2

b

2Tb

)]

δũ

∂ log Λ
=

(
d− 3 +

3

2
ηAb +

1

2
ηZb

)
ũ (3.38)

+ 4
g̃4

λ̃

−3

2
tanh

(
1

2Tf

)
+

3

2

1

2Tf

1

cosh2
(

1
2Tf

) +
1

(2Tf )2

tanh
(

1
2Tf

)
cosh2

(
1

2Tf

)


+
5

8

ũ2

(1 + m̃2
b)

5/2

(√1 + m̃2
b

2Tb

)2
coth(

√
1+m̃2

b

2Tb
)

sinh2(

√
1+m̃2

b

2Tb
)

+
3

2

(√
1 + m̃2

b

2Tb

)
1

sinh2(

√
1+δ̃

2Tb
)
+

3

2
coth

(√
1 + m̃2

b

2Tb

)

ηAb = −g̃2
cosh−3

(
1

2Tf

)
16T 2

f

[
4Tfcosh

(
1

2Tf

)
+sinh

(
1

2Tf

)(
1− 4T 2

f − 4T 2
f cosh

(
1

Tf

))]
(3.39)

ηZb = −1

8

g̃2

λ̃2

cosh−2
(

1
2Tf

)(
1 + π2T 2

f − sinh
(

1
Tf

) (
3Tf + 3π2T 3

f

))
Tf
(
1 + π2T 2

f

)2 (3.40)

ηAf = 0 (3.41)
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ηZf =
g̃2

λ̃2
1

2x̃T̃f

(
1− 2

(
x̃2 − π2T̃ 2

f

)
+
(
x̃2 + π2T̃ 2

f

)2)2 (3.42)

·

{
2Tfcoth

(√
1 + m̃2

b

2T̃b

)[
1− 3x̃4 − 2π2x̃2T̃ 2

f + π4T̃ 4
f + 2

(
x̃2 + π2T̃ 2

f

)]

+ x̃ cosh−2

(
1

2T̃f

)[
1− 2

(
x̃2 − π2T̃ 2

f

)
+
(
x̃2 + π2T̃ 2

f

)2]

+x̃Tf cosh
−2

(
1

2T̃f

)
sinh

(
1

T̃f

)[
−3 + 2

(
x̃2 − π2T̃ 2

f

)
+
(
x̃2 + π2T̃ 2

f

)2)]}

− g̃2

λ̃4
1

4x̃3T̃f

(
1− 2

(
x̃2 − π2T̃ 2

f

)
+
(
x̃2 + π2T̃ 2

f

)2)2

·

{
−2T̃fcoth

(√
1 + m̃2

b

2T̃b

)[(
1 +

(
x̃2 + π2T̃ 2

f

)2 (
3x̃2 + π2T̃ 2

f

))
+ 3x̃4 − 7x̃2 + 3π2T̃ 2

f − 2π2x̃2T̃ 2
f + 3π4T̃ 4

f

]
− x̃

sinh2

(√
1+m̃2

b

2T̃b

) [1− x̃2 + 3π2T̃ 2
f + (x̃2 + π2T̃ 2

f )
3 − x̃4 − 2π2x̃2T̃ 2

f + 3π4T̃ 4
f

]

−16x̃3T̃f tanh

(
1

2T̃f

)[
1− x̃2 − π2T̃ 2

f

]}
,

where rescaled fermionic and bosonic temperatures are introduced to eliminate an explicit
scale dependence in the flow equations

T̃f =
T

Λ

Zf
Af

, T̃b =
T

Λ

√
Zb
Ab
, x̃ =

√
1 + m̃2

b

λ̃
. (3.43)

In the zero temperature limit T → 0, these equations reduce to the previous result
Eq. (3.29)-(3.36).

In the next section 3.5, we analyze the analytic structure of the fermionic particle-
particle bubble, which will justify our quadratic ansatz of the bosonic propagator in the
renormalization group flow. Finally, in section 3.6, the flow equations at zero and finite
temperatures are solved numerically in two dimensions, to analyze the behaviour of the
system close to and at the quantum critical point.
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3.5 Fermionic particle-particle bubble and correlation decay

3.5 Fermionic particle-particle bubble and correlation

decay

In general, when dealing with an ansatz for the effective action, the random phase approx-
imation (RPA) serves as a guideline, how to parametrize the frequency and momentum
dependence of the bosonic propagator. The main building block for RPA-propagators in
our theory, that was decoupled in the particle-particle-channel, is given by the fermionic
particle-particle bubble. Therefore, we will discuss the low frequency and momentum
behaviour of the fermionic particle-particle bubble in presence of and without a cutoff in
subsection 3.5.1. In presence of a cutoff we will find a regular quadratic frequency and
momentum dependence, which justifies our ansatz for the scale-dependent effective action
ΓΛ. By contrast, the analysis of the fermionic particle-particle bubble without a cutoff
gives us a hint of what we possibly encounter in the infrared limit of the RG flow. Here,
linear non-analytic terms will dominate the low frequency and momentum dependence,
which will have a drastic impact on the correlation decay in the whole semimetallic ground
state. We will discuss the real space and real time behaviour of the correlation function
in the subsection 3.5.2.

3.5.1 Bare fermionic particle-particle bubble

The fermionic particle-particle bubble

Π(q0,q) =

∫
kα

Gfα(−k)Gfα(k + q), (3.44)

with q = (q0,q) enters the RPA solution of the bosonic propagator as

GRPA
b (q) =

U

1− UΠ(q0,q)
. (3.45)

At zero external frequencies and momenta the bubble remains finite

Π(0, 0) =
Kd

vdf

Λd−1
0

d− 1
for d ≥ 2, (3.46)
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3.5 Fermionic particle-particle bubble and correlation decay

while it diverges below two dimensions. The density of states vanishes in dimensions d > 1

N(E) =

∫
k

δ(E − |ξkα|) =


Ed−1

vdf
Kd if 0 < E < Λ0

0 else
(3.47)

at the Dirac point. Hence, a finite interaction strength is necessary to reach the superfluid
state for d ≥ 2. The constant Kd is defined as

∫
ddk
(2π)d

= Kd

∫
d|k||k|d−1. Inserting the

fermionic propagator and making the denominator real-valued, the bubble Eq. (3.44)
reads

Π(q0,q) =

∫
kα

(
ik0(ξkα − ξk+qα) + iq0ξkα

(k20 + ξ2kα)((k0 + q0)2 + ξ2k+qα)
+

k20 + k0q0 + ξkαξk+qα

(k20 + ξ2kα)((k0 + q0)2 + ξ2k+qα)

)
(3.48)

due to inflection symmetry ξ−kα = ξkα and band symmetry ξk−α = −ξkα. The exter-
nal frequency and momentum dependence, respectively, of the fermionic particle-particle
bubble, is given by

Π(0,q) =

∫
kα

k20 + ξkαξk+qα

(k20 + ξ2kα)(k
2
0 + ξ2k+qα)

(3.49)

and

Π(q0, 0) =

∫
kα

k20 + k0q0 + ξ2kα
(k20 + ξ2kα)((k0 + q0)2 + ξ2kα)

. (3.50)

After performing frequency and momentum integrations, one finally obtains

Π(0,q) =

∫
k

2

|ξk+|+ |ξk+q+|
, Π(q0, 0) =

∫ Λ0

0

dE
4EN(E)

(q20 + 4E2)
, (3.51)

where the band summation has already been performed.
Now we will analyze the small frequency and momentum dependence separately in

two dimensions (d = 2). First, we begin with the frequency dependence of the bubble in
situations both with and without an infrared cutoff. In the absence of a cutoff, the pure
frequency dependence of the particle-particle bubble reads

Π(q0, 0) =
Λ0

2πv2f

[
1−

(
q0
2Λ0

)
arctan

(
2Λ0

q0

)]
. (3.52)
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3.5 Fermionic particle-particle bubble and correlation decay

Expanding in |q0| leads to a linear non-analytic frequency dependence

Π(q0, 0)
q0≪Λ0≈ Λ0

2πv2f

[
1− π

2

|q0|
2Λ0

+

(
q0
2Λ0

)2

+O
(
|q0|
2Λ0

)3
]
. (3.53)

Otherwise, in presence of a cutoff, the pure frequency dependence is given by

ΠΛ(q0, 0)=
Λ0

2πv2f

[
1− Λ

Λ0

−
(
q0
2Λ0

)
arctan

(
2Λ0

q0

)
+

q0
2Λ0

arctan

(
2Λ

q0

)]
, (3.54)

which yields a regular analytic expression

ΠΛ(q0, 0)
q0≪Λ0,Λ≈ Λ0

2πv2f

[
1− Λ

Λ0

+
Λ− Λ0

Λ

(
q0
2Λ0

)2

+O

((
q0
2Λ0

)4
)]

(3.55)

after expansion in small frequencies q0. The non-analytic behaviour of the bubble in
the infrared Λ = 0, see Eq. (3.53), is signalled by the prefactor of the quadratic term
in Eq. (3.55), which diverges linearly in the limit Λ → 0. As we will see later, this
is consistent with a diverging renormalization factor Zb in the infrared regime of the
renormalization group flow. Therefore, we obtain

∂

∂q0
ΠΛ(q0, 0)

∣∣∣
q=0

= 0,
∂2

∂q20
ΠΛ(q0, 0)

∣∣∣
q=0
∝ 1

Λ
, (3.56)

which justifies our quadratic ansatz of the frequency dependence in the bosonic propa-
gator. In figure 3.7 the frequency dependence of the particle-particle bubble with and
without cutoff is plotted, where we choose Λ = 0.1Λ0.

In dimension d = 1 the fermionic particle-particle bubble diverges logarithmically at
zero momenta and frequencies, which would signal an instability towards fermionic su-
perfluidity for an arbitrary interaction strength if particle-hole fluctuations are neglected.
In d = 3 the fermionic particle-particle bubble remains finite at zero frequencies and mo-
menta and the low frequency dependence is dominated by a q20 log(|q0|) term. Hence, a
finite interaction strength becomes necessary to obtain a fermionic superfluid.

In the next step we analyze the small momentum dependence of the fermionic particle-
particle bubble at vanishing external frequencies. Switching to polar coordinates k =

(kx, ky) = (kr cosϕ, kr sinϕ) for the internal momentum integrations and for the external
momenta q = (qx, qy) = (qr cosΘ, qr sinΘ), the bare fermionic particle-particle bubble
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Figure 3.7: Plot of the external frequency dependence of the normalized particle-particle
bubble Π(q0, 0) in absence and in presence of a cutoff Λ. In presence of a cutoff (Λ > 0)
the fermionic particle-particle bubble exhibits a quadratic frequency dependence, while in
absence of a cutoff (Λ = 0) a linear non-analytic frequency dependence appears for small
scales.

reads

Π(0,q)
d=2
=

2

(2π)2vf

∫ Λ0/vf

0

∫ 2π

0

dϕdkr

1 +

√
1 + 2 qr

kr
cosϕ+

(
qr
kr

)2 (3.57)

The regularized fermionic-particle-particle bubble reads

ΠΛ(0,q)
d=2
=

2

(2π)2vf

∫ Λ0/vf

Λ/vf

∫ 2π

0

dϕdkr

1 +

√
1 + 2 qr

kr
cosϕ+

(
qr
kr

)2 , (3.58)

where a sharp infrared cutoff Λ gaps out the low energy modes. The first derivative of
Eq. (3.58) with respect to qr vanishes at qr = 0 and only the second derivative of Eq.
(3.58) remains finite,

∂

∂qr
ΠΛ(q0,q)

∣∣∣
q=0

= 0,
∂2

∂q2r
ΠΛ(0,q)

∣∣∣
q=0
∝ 1

Λ
, (3.59)

but again diverges linearly in the infrared limit Λ→ 0, similar to the frequency dependence
discussed above.

The analytic expression for the fermionic particle-particle bubble Eq. (3.57) with no
cutoff involves lengthy expressions in terms of elliptic integrals, which indicate a non-
analytic frequency dependence. A numerical integration of this expressions reveals a non-
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Figure 3.8: Plot of the external momentum dependence of the particle-particle bubble
Π(0,q) in absence and in presence of a cutoff Λ. In presence of a cutoff (Λ > 0) the
fermionic particle-particle bubble exhibits a quadratic momentum dependence, while in
absence of a cutoff (Λ = 0) a linear non-analytic momentum dependence appears.

analytic linear behaviour in absence of a cutoff (Λ = 0) in two dimensions and confirms
this conjecture. Figure 3.8 shows the numerical results for the normalized fermionic
particle-particle bubble in absence and in presence of a cutoff, Π(0,q) and ΠΛ(0,q).

In summary, the fermionic particle-particle bubble of the Dirac cone model develops
a non-analytic behaviour for low frequencies and momenta. In presence of a cutoff scale,
(Λ > 0) this non-analytic behaviour disappears, and only a quadratic frequency and
momentum dependence dominates the low energy regime. The prefactor of this quadratic
behaviour diverges linearly with the scale Λ−1 in the infrared limit Λ→ 0. This indicates
the presence of non-analytic terms |qr| and |q0| for Λ = 0. Since there is a regulator
throughout the renormalization group flow, which provides a cutoff scale to the theory, a
quadratic ansatz in frequencies and momenta for the bosonic propagator is justified, see
Eq. (3.6). Next, we will analyze the impact of these non-analytic terms on the decay of
correlations in real space and time.

3.5.2 Diverging correlation length

In the previous subsection we discovered that the unregularized fermionic particle-particle
bubble shows a linear non-analytic behaviour for small frequencies and momenta. Now,
we will show that this feature is responsible for a diverging correlation length and time not
only at the quantum critical point, but also in the entire semimetallic ground state at zero
temperature. Typically, away from the quantum phase transition we would have expected
a regular quadratic momentum and frequency dependence, which would immediately lead
to a well-defined finite correlation length. Due to the above non-analyticities it is not
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3.5 Fermionic particle-particle bubble and correlation decay

obvious how a correlation length can be defined. Therefore, we study the impact of
these non-analytic terms on the long distance and long time behaviour of the correlation
function. First, we revisit the well-known result for the correlation length for a system
without non-analytic terms. Second, we explicitly calculate the spatial and temporal
correlation decay and show that the linear non-analytic term in two dimensions leads
to a power law decay, which implies infinite correlation length and time in the whole
semimetallic phase.

We start with the analysis of a regular quadratic momentum and frequency depen-
dence of the bosonic propagator, which is parametrized by finite Z and A factors,

⟨ϕ∗
qϕq⟩ = Gb(q0,q) =

1

Zq20 + Aq2 +m2
b

, (3.60)

and include a mass term m2
b , which measures the distance to the phase transition. In

this subsection all three quantities are scale-independent. The spatial correlations decay
exponentially

⟨ϕ∗(r)ϕ(0)⟩ =
∫
q

Gb(0,q)e
iq·|r|er =

2

A(2π)2

∫ ∞

0

∫ π

0

dϕdqr
ei|r|qr cosϕ

q2r +
m2

b

A

qr (3.61)

=
1

A(2π)

∫ ∞

0

dqr
J0(|r|qr)qr
q2r +

m2
b

A

=

K0

(√
m2

b

A
|r|
)

(2π)A

|r|→∞
∝ e

−

√
m2

b
A

|r|
, (3.62)

with the unit vector er =
r
|r| in radial direction. The asymptotic behaviour is given by

⟨ϕ∗(r)ϕ(0)⟩
|r|→∞
∝ e−

|r|
ξ , (3.63)

where in the last line the correlation length ξ =
√
A/m2

b is introduced. J0(x) denotes
the Bessel function of the first kind and K0(x) the modified Bessel function of second
kind. A similar result can be obtained for the temporal correlations, which also decay
exponentially

⟨ϕ∗(t)ϕ(0)⟩ =
∫
q0

Gb(q0, 0)e
−iq0t =

1

Z

∫ ∞

−∞

dq0
2π

e−iq0t

q20 +
m2

b

Z

(3.64)

⟨ϕ∗(t)ϕ(0)⟩ ∝ e−
|t|
ξτ . (3.65)

with the correlation time defined as ξτ =
√
Z/m2

b . Hence, a regular quadratic frequency
and momentum dependence of the bosonic propagator leads to a finite correlation time
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and length ξ, ξτ <∞ away from criticality (m2
b ̸= 0).

We now move on to the case of a non-analytic term in the bosonic propagator

G−1
b (q) = Zq20 + Aq2 + Zl|q0|+ Al|q|+m2

b , (3.66)

where Z and A again parametrize the regular quadratic frequency and momentum de-
pendence. Additionally, linear non-analytic frequency and momentum dependencies are
added to the propagator and parametrized by Zl and Al, respectively.

First, we analyze the spatial correlation decay

⟨ϕ∗(r)ϕ(0)⟩ = 1

(2π)

∫ ∞

0

dqr
J0(|r|qr)qr

Aq2r + Al|qr|+m2
b

=
1

(2π)A

∫ ∞

0

J0(|r|qr)qr
(qr + a)(qr + b)

(3.67)

=
1

(2π)A

[
π

2

b

b− a
(H0(b|r|)−N0(b|r|))−

π

2

a

b− a
(H0(a|r|)−N0(a|r|))

]
,

which can be easily expressed in a sum of Struve functions H0(x) and Bessel functions of
second kind (also called Neumann functions) N0(x), by a partial fraction decomposition
with the zeros

a =
Al
2A

+

√(
Al
2A

)2

− m2
b

A
, b =

Al
2A
−

√(
Al
2A

)2

− m2
b

A
. (3.68)

Using the formula for the asymptotic behaviour for the difference between Struve and
Neumann functions, see Gradshteyn and Ryzhik (1965) formula 8.554,

H0(a|r|)−N0(a|r|)
|r|→∞
≈ 1

π

∑
n=0

cn

(
a|r|
2

)−2n−1

(3.69)

with the expansion coefficient cn =
Γ(n+ 1

2
)

Γ( 1
2
−n) , the long distance behaviour of the correlation

function is given by a power law decay

⟨ϕ∗(r)ϕ(0)⟩ ∝ 1

|r|3
(3.70)

with exponent three, which indicates an infinite correlation length in the whole semimetal
phase at zero temperature. The weaker decay of order 1

|r| in the asymptotic behaviour
Eq. (3.69) cancels out, due to the structure of the coefficients in Eq. (3.68). The double
logarithmic plot in figure 3.9 of the spatial correlation confirms this analytic result.

In the limit of a vanishing linear non-analyticity Al = 0 the coefficients Eq. (3.68)
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Figure 3.9: Decay of spatial correlation ⟨ϕ∗(r)ϕ(0)⟩ reveals a power law ∝ 1
|r|3 at long

distances.

reduce to

a = i

√
m2
b

A
, b = −i

√
m2
b

A
, (3.71)

and we obtain for the spatial correlation the expression

⟨ϕ∗(r)ϕ(0)⟩ = 1

(2π)A

∫ ∞

0

dqr
J0(|r|qr)qr
q2r +

m2
b

A

(3.72)

=
1

(2π)A

π

4
[H0(a|r|) +H0(−a|r|)−N0(a|r|)−N0(−a|r|)]

=
−1

(2π)A

π

4

[
N0(a|r|) +N0(−a|r|)

]
=

K0

(√
m2

b

A
|r|
)

(2π)A
.

Hence, an exponential decay for the spatial correlation

⟨ϕ∗(r)ϕ(0)⟩
|r|→∞
∝ e−

|r|
ξ (3.73)

reappears with a finite correlation length ξ =
√
A/m2

b .
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In a similar way, the temporal correlations

⟨ϕ∗(t)ϕ(0)⟩ =
∫ ∞

−∞

exp(−iq0t)
Zq20 + Zl|q0|+m2

b

dq0
2π

(3.74)

=
2

Z

∫ ∞

0

cos(q0t)

(q0 + a)(q0 + b)

dq0
2π

(3.75)

=
2

2πZ(b− a)

[
− cos(a|t|) Ci(a|t|) + sin(a|t|)

(π
2
− Si(a|t|)

)
+cos(b|t|) Ci(b|t|)− sin(b|t|)

(π
2
− Si(b|t|)

)]
(3.76)

can be studied, where Ci(x) = −
∫∞
x

cos(t)
t

and Si(x) =
∫ x
0

sin(t)
t

denote the cosine integral
and the sine integral. Here, one obtains a power law decay in time with a quadratic
exponent for the temporal correlation function

⟨ϕ∗(t)ϕ(0)⟩ ∝ 1

t2
. (3.77)

Again a partial fraction decomposition is performed with the coefficients

a =
1

2

Zl
Z

+

√(
Zl
Z

1

2

)2

−
(
m2
b

Z

)
, b =

1

2

Zl
Z
−

√(
Zl
Z

1

2

)2

−
(
m2
b

Z

)
, (3.78)

which in the limit Zl = 0 reduce to

a = i

√
m2
b

Z
, b = −i

√
m2
b

Z
, (3.79)

and lead to an exponential decay of the temporal correlations

⟨ϕ∗(t)ϕ(0)⟩ t≫1
= e−

|t|
ξτ (3.80)

with the correlation time ξτ =
√
Z/m2

b . Figure 3.10 confirms the analytic result with a
double logarithmic plot of the bosonic correlation function versus time.

In summary, due to the non-analytic momentum and frequency structure of the
fermionic particle-particle bubble Eq. (3.44) at zero temperature in two dimensions, both
temporal and spatial correlations decay with power laws in the entire semimetallic phase

⟨ϕ∗(t)ϕ(0)⟩ ∝ 1

t2
, ⟨ϕ∗(r)ϕ(0)⟩ ∝ 1

|r|3
, (3.81)
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Figure 3.10: Decay of temporal correlation ⟨ϕ∗(t)ϕ(0)⟩ reveals a power law ∝ 1
t2

at long
timescales.

which implies an infinite correlation length and correlation time

ξ, ξτ =∞. (3.82)

These RPA-like results will be confirmed by the numerical solution of the functional RG
flow in the next section 3.6. In the infrared, the renormalization factors AΛ

b and ZΛ
b , which

parametrize the quadratic momentum and frequency dependencies, diverge linearly with
the cutoff scale ∝ Λ−1, which implies an infinite correlation length and correlation time
even away from the quantum critical point at T = 0.

3.6 Numerical results

In this section, the numerical solution of the renormalization group equations is presented.
The program for the renormalization group flow is implemented with the Mathematica
software package and runs on a single double-core CPU. The system of differential equa-
tions is solved with a standard Runge-Kutta solver of fourth order. The flow is solved
in two dimensions (d = 2), at zero and finite temperatures and with an ultraviolet cutoff
Λ0 = 1. First, the behaviour at the quantum critical point is discussed in subsection 3.6.1.
Second, the semimetallic ground state will be analyzed in subsection 3.6.2, and finally the
quantum critical regime above the quantum critical point is studied in subsection 3.6.3.
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3.6 Numerical results

3.6.1 Quantum critical point: T = 0, U = Uqc

To determine the location of the quantum critical point at zero temperature, the fermionic
two-particle interaction U is fine-tuned in such a way that the bosonic mass renormalizes
down to zero (m2

b → 0) in the infrared limit Λ → 0. We find a critical interaction of
Uqc = −15.646. Compared to the mean-field value, the critical interaction is larger by a
factor of 2.5, so that the symmetry-broken phase shrinks due to the impact of fluctuations,
as expected.

Due to the vanishing mass (m2
b → 0) the pairing susceptibility χ diverges at the

critical point. The correlation length ξ and the correlation time ξτ are also infinite,
since the bosonic renormalization factors Zb, Ab → ∞ diverge in the infrared, see figure
3.12, at the quantum critical point. As expected, at criticality scaling occurs and the
rescaled variables in Eq. (3.27) show a scaling behaviour at intermediate scales down to
the infrared. Figure 3.13 shows the scaling of the rescaled bosonic mass m̃2

b , the bosonic
self-interaction ũ and the Yukawa vertex g̃. As mentioned, the bosonic renormalization
factors Zb, Ab and the fermionic renormalization factor Zf diverge as power laws in terms of
the vanishing scale Λ→ 0, which is illustrated on the left side of figure 3.12. By contrast,
the fermionic renormalization factor parametrizing the momentum dependence Af does
not renormalize at all. The right hand side of figure 3.12 shows the finite fermionic and
bosonic anomalous dimensions, Eq. (3.28), corresponding to the diverging renormalization
factors, which signal non-Gaussian and non-Fermi liquid behaviour at the quantum critical
point. A fixpoint analysis of the equations Eq. (3.29)-(3.36) leads to similar results for
the anomalous dimensions.

The fixpoint equations ∂log g̃
∂ log Λ

= 0 and ∂ log λ̃
∂ log Λ

= 0 lead to scaling equations

ηAb + ηZf + ηAf = 3− d, ηZb − ηAb = 2(ηZf − ηAf ). (3.83)

between fermionic and bosonic anomalous dimensions. Since the fermionic renormaliza-
tion factor for the momentum dependence remains constant during the flow, ηAf = 0, and
the scaling equations reduce to

ηAb + ηZf = 3− d, ηZb − ηAb = 2ηZf . (3.84)

The numerical values for the anomalous dimensions read

ηAb ≈ 0.75, ηZb ≈ 1.25, ηZf ≈ 0.25 (3.85)
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3.6 Numerical results

in two dimensions at the quantum critical point. They are obtained by the numerical
solution of the flow, if one approaches the quantum critical point from the semimetallic
phase, see figure 3.15 or from the finite temperature regime above the critical point, see
figure 3.16.

The divergence of the fermionic Zf renormalization factor indicates a breakdown
of the quasi-particle picture and the occurrence of non-Fermi liquid behaviour, which is
common in quantum critical interacting fermion systems.1 The fermionic renormalization
factor Af , parametrizing the momentum dependence does not renormalize at all, which
leads together with Zf →∞ to a vanishing Fermi velocity vf = 0 at the quantum critical
point. This was missed in the previous work by Strack et al. (2010), since a common
renormalization factor for the frequency and momentum dependence of the fermionic
propagator was used there.

As mentioned, due to the finite bosonic anomalous dimensions, the order parameter
shows non-Gaussian critical behaviour with different scaling of momentum and frequency
dependence.2 This unequal scaling between momenta and frequencies leads to an anoma-
lous dynamical exponent of

zf = 1 + ηZf − ηAf = zb = 1 +
ηZb − ηAb

2
≈ 1.25. (3.86)

in contrast to the bare value zf = zb = 1 of the bare action. The critical dynamical
exponents for fermions and bosons are identical due to the scaling relation in Eq. (3.84).

1For instance, the fermionic self-energy exhibits an anomalous frequency scaling ∝ ω2/3 at the quan-
tum critical point associated with a d-wave Pomeranchuk instability, which was studied by Metzner et
al. (2003) and Dell’Anna and Metzner (2006).

2It was shown by Abanov et al. (2000, 2003, 2004) that at an antiferromagnetic QCP of the spin-
fermion model, the spin susceptibility also exhibits anomalous scaling behaviour in the momentum ∝
|q|−1.75.
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Figure 3.11: At the quantum critical point, the bosonic mass renormalizes down to zero
m2
b and the local bosonic self-interaction u diverges in the infrared limit Λ→ 0.
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Figure 3.12: The bosonic renormalization factors Ab and Zb and the fermionic renormaliza-
tion factor Zf diverge at the quantum critical point in the infrared, implying finite anoma-
lous dimensions and therefore non-Gaussian and non-Fermi liquid behaviour. Several
scaling laws are satisfied. The fermionic renormalization factor Af , which parametrizes
the momentum dependence, does not renormalize at all.
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3.6 Numerical results

Figure 3.13: The rescaled bosonic mass m̃2
b , bosonic self-interaction ũ and Yukawa coupling

g̃ start scaling at intermediate scales down to the infrared Λ→ 0 at the quantum critical
point.

3.6.2 Semimetallic phase: T = 0, |U | < |Uqc|

In the semimetallic phase, at zero temperature and away from the quantum critical point,
the bosonic mass saturates in the infrared (m2

b > 0). The susceptibility χ is finite, but
diverges when approaching the quantum critical point as a power law

χ ∝ (|Uqc| − |U |)−γ0 (3.87)

with an exponent γ0 ≈ 1.725, see figure 3.14.
One would expect a similar behaviour for the correlation length. In our case it

turns out that the renormalization factors ZΛ
b and AΛ

b , parametrizing the frequency and
momentum dependence in the bosonic propagator do not saturate in the infrared Λ→ 0,
but diverge as a power law ∝ 1/Λ, see left side of figure 3.15. Thus, finite anomalous
dimensions ηAb = ηZb = 1 appear in the entire semimetallic phase and not only at the
quantum critical point, as illustrated on the right side of figure 3.15. This indicates a
non-analytic linear scaling of the bosonic propagator in the infrared in the frequency and
momentum dependence, and a diverging correlation length and time

ξ, ξτ =∞ (3.88)

due to ξ =

√
AΛ=0

b

m2
b

and ξτ =

√
ZΛ=0
b

m2
b

. Both results are consistent with the RPA-like

analysis from section 3.5. There, the regularized fermionic particle-particle bubble showed
a quadratic momentum and frequency dependence, but with a prefactor which diverges
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Figure 3.14: Approaching the quantum critical point at zero temperature, the suscepti-
bility diverges as a power law in the interaction strength U .

linearly in the infrared ∝ 1/Λ, indicating a non-analytic linear momentum and frequency
dependence. Second, the Fourier transformation of the non-analytic propagator leads to
a power law decay of spatial and temporal correlations, implying an infinite correlation
time and length ξτ = ∞ and ξ = ∞. Both results are reproduced within our functional
renormalization group approach. In theories discussing interactions in graphene, the Dirac
point is seen as a quantum phase transition between a hole-doped and a electron-doped
Fermi liquid (Sheehy and Schmalian (2007)). This resembles the situation we encounter,
however in their work the diamagnetic susceptibility also diverges at the quantum critical
point. Thermodynamical properties, as in Sheehy and Schmalian (2007) or transport
properties as discussed in Fritz et al. (2008), can then be calculated with scaling concepts
from the critical theory.

As can be seen from figure 3.15, both fermionic renormalization factors Zf and Af

remain finite at the end of the flow, leading to a vanishing fermionic anomalous dimension
ηfZ , η

f
A = 0. At intermediate scales finite anomalous dimensions appear, which correspond

to the critical behaviour at the critical point, since we are close to the QCP but still in
the semimetallic ground state. Hence, finite fermionic quasi-particle excitations remain
with a finite Fermi velocity vf ̸= 0.
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Figure 3.15: In the semimetallic ground state, the bosonic renormalization factors Zb and
Ab do not saturate, but diverge with a power law ∝ Λ−1. Therefore, finite bosonic anoma-
lous dimensions are found, which indicate a non-analytic linear behaviour in frequency
and momentum dependence of the bosonic propagator leading to an infinite correlation
length in the entire semimetallic ground state. We emphasize that in both figures the
system is in the semimetallic phase, however close to the quantum critical point. Hence,
on intermediate scales also other anomalous dimensions are visible, which coincide with
the values for the anomalous dimensions at the quantum critical point.

3.6.3 Quantum critical region: T > 0, U = Uqc

In the finite temperature regime above the quantum critical point, the temperature T acts
naturally as a cutoff, since no modes exist below frequencies k0 ≤ πT in the fermionic
particle-particle bubble. Hence, all renormalization factors for the fermionic and bosonic
frequency and momentum dependence saturate in the infrared limit Λ → 0. Thus, no
finite anomalous dimensions exist above the quantum critical point, see left and right
side of figure 3.16. Again at intermediate scales anomalous dimensions are visible, which
correspond to the quantum critical behaviour, since we are close to but still above the
QCP. The renormalization factors diverge as a power law in the temperature

Ab ∝ T−η̄Ab , Zb ∝ T−η̄Zb , Zf ∝ T−η̄Zf (3.89)

with the exponents η̄Ab ≈ 0.60, η̄Zb ≈ 1.00 and η̄Zf ≈ 0.20.
As illustrated in figure 3.17 the susceptibility and the correlation length remain finite

in the finite temperature region and only diverge at the quantum critical point. They
obey a power law behaviour close to the quantum critical point

χ ∝ T−γ, ξ ∝ T−ν , ξτ ∝ T−ντ , (3.90)

which are derived from χ ∝ (T − Tc)−γ and ξ ∝ (T − Tc)−ν with the critical temperature
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Figure 3.16: The quantum critical point is approached from finite temperatures. Bosonic
and fermionic renormalization factors (Zb, Ab and Zf ) scale and finite anomalous dimen-
sions are found on intermediate scales. They coincide with the anomalous dimensions
at the quantum critical point, since we are close to QCP but still in the finite temper-
ature regime. In the infrared limit the temperature acts as an cutoff and leads to finite
renormalization factors and vanishing anomalous dimensions.

Tc = 0. The corresponding critical exponents read

γ ≈ 1.00, ν ≈ 0.80, ντ ≈ 1.00 (3.91)

We find that the dynamical exponent is the inverse of the critical exponent of the correla-
tion length zb =

1
ν
, which is consistent with the scaling of the correlation time ξτ ∝ T−1.

Finally, the critical exponents obey the classical scaling law, see Goldenfeld (1992)

γ = (2− ηAb )ν. (3.92)
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Figure 3.17: Approaching the quantum critical point from finite temperatures leads to a
power law divergence of both the susceptibility and the correlation length.

3.7 Conclusion

This chapter was devoted to a study of the Dirac cone model, which exhibits a quantum
phase transition between semimetal and superfluid. The analysis of the zero and finite
temperature regime around the quantum critical point in two dimensions was performed
within a fermion-boson functional renormalization group method. At the quantum critical
point non-Fermi liquid and non-Gaussian behaviour occurred. A different renormalization
of the frequency and momentum dependence led to a vanishing Fermi-velocity. In the
semimetallic ground state away from the quantum critical point the fermionic particle-
particle bubble showed a non-analytic behaviour in the absence of a cutoff. This leads
to a power law decay of temporal and spatial correlations, which was confirmed within
our functional RG approach. Hence, the semimetallic ground state seems to be critical,
due to the infinite correlation time and correlation length, while the pairing susceptibility
remains finite. Approaching the quantum critical point from the finite temperature region,
both correlation length and pairing susceptibility diverge as a power law behaviour with
critical exponents, as expected. The critical exponents and anomalous dimensions obey
several scaling laws.
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CHAPTER 4

Project 2: Low-energy singularities in fermionic superfluids

In this chapter we analyze the ground state of a fermionic superfluid with functional
renormalization group methods in the 1PI formulation. Due to the attractive interaction
between the fermionic particles, spontaneous symmetry breaking occurs towards s-wave
superfluidity. The absence of the Anderson-Higgs mechanism1 in charge-neutral fermionic
superfluids leads to the emergence of massless Goldstone excitations. Several divergences
occur due to the massless character of these excitations in the infrared, requiring an RG
treatment. To investigate the mutual interplay between fermions and order parameter
fluctuations, we analyze the low-energy physics of the fermionic superfluid by a coupled
fermion-boson theory. The order parameter fluctuations, described by the bosonic field,
are decomposed into transverse and longitudinal components. We then study the infrared
asymptotics of the flow, where bosonic fluctuations decouple from the fermions and es-
pecially the Goldstone boson dominates the behaviour of the flow. The non-locality of
the bosonic self-interaction plays a major role. Several cancellations of divergencies will
occur. We show that the spectral weight of the Goldstone mode is preserved and the
Goldstone theorem is explicitly fulfilled within our truncation. Lowest order Ward iden-
tities are respected by our truncation. The collective excitations behave as an interacting
Bose gas. In this work we achieve a consistent treatment of the fermionic and bosonic
sector in a minimal truncation of the functional RG flow equations.

This chapter is structured as follows. We begin with a brief historical overview of
1For the discovery of the Anderson-Higgs mechanism P. W. Higgs and F. Englert were honoured with

the Nobel prize 2013, see Higgs (1964), Anderson (1958, 1963) and Englert and Brout (1964).
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4.1 Introduction

fermionic superfluidity and a short review about spontaneous symmetry breaking in the
functional RG literature, see section 4.1. Section 4.2 introduces the attractive Hubbard
model as a prototype model for fermionic superfluidity and presents mean-field results.
The truncation and ansatz of the scale-dependent effective action for the coupled fermion-
boson theory is presented in section 4.3. We distinguish between the symmetric regime
above and the symmetry-broken regime below the critical scale Λc. The RG flow for
self-energies and couplings parametrizing the effective action can be found in section 4.4.
In section 4.5 Ward identities and the Goldstone theorem are discussed. Subsequently,
analytic results for the asymptotic behaviour of the flow in the infrared limit are presented
in section 4.6. Section 4.7 discusses the low frequency behaviour of the fermionic particle-
particle bubble and numerical results of a mean-field flow of our RG equations. Finally,
section 4.8 shows numerical results for the RG equation in two dimensions. The chapter
closes with a conclusion in section 4.9.

4.1 Introduction

Due to their s-wave superfluid ground state the attractive Hubbard model and contin-
uum models for attractively interacting fermions are often applied as prototype models
for fermionic superfluidity on the lattice and in the continuum, respectively. Hence, they
are of high interest in the area of ultracold atom gases. Nowadays, sophisticated ex-
perimental setups facilitate the simulation of many-body models in the laboratory. For
reviews concerning bosonic atoms see Jaksch and Zoller (2005) and for fermionic and
bosonic atoms see Bloch et al. (2008). Thereby, ultracold bosonic and fermionic atoms,
respectively, are loaded in an atomic trap and the interactions between them are tuned
by Feshbach resonances. Hofstetter et al. (2002) proposed such a setup for fermionic
atoms and Chin et al. (2006) found for the first time evidence for superfluidity of ul-
tracold fermionic atoms in an optical lattice. An interesting phenomenon occurring in
such fermionic systems with attractive interaction is given by the so-called BEC-BCS
crossover, see Griffin et al. (1995) and Keller et al. (1999, 2001). For every finite interac-
tion strength Cooper pairs are formed by fermions with opposite spin direction. For weak
interactions only weakly bound pairs exist, whereas for strong interactions tightly bound
pairs exist which can undergo a Bose-Einstein condensation. Both regimes are connected
by a smooth crossover. Even in the weak-coupling limit particle-hole fluctuations lead
to a reduction of the superconducting gap compared to the mean-field result, see Gorkov
and Melik-Barkhudarov (1961) and Martin-Rodero and Flores (1992).

Several approaches have been used to analyze fluctuation effects in these systems.
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Continuous models for interacting fermionic atoms in three dimensions were intensively
investigated by functional RG methods, for reviews see Diehl et al. (2010) and Scherer et
al. (2010). Three dimensional continuous models and the attractive Hubbard model often
serves as a testbed for new methods and approximations. We now briefly review two
distinct technical routes towards spontaneous symmetry breaking in interacting Fermi
systems within the functional RG method. The RG flow in systems with spontaneous
symmetry breaking is characterized by a divergence of the two-particle vertex at a critical
scale, where anomalous fermionic expectation values appear, see Metzner et al. (2012) for
a detailed review.

The first route is given by a purely fermionic approach and was pioneered by Salmhofer
et al. (2004). By adding a small symmetry breaking field to the bare microscopic action
the divergence of the two-particle vertex is regularized at the critical scale. Therefore,
the RG flow can be continued to the symmetry-broken phase. Only at the end of the
flow the symmetry breaking field is sent to zero. The truncation proposed by Katanin
(2004) solves mean-field models exactly, see Salmhofer et al. (2004), Gersch et al. (2005)
and Gersch et al. (2006). The attractive Hubbard model was investigated by Gersch et
al. (2008) as a non-mean-field model within the so-called N-patch approach in the Katanin
scheme. The Fermi surface is split into several segments which are called patches. Irrel-
evant frequency and momentum dependencies were neglected. Reasonable values for the
fermionic single-particle gap were found in this rather crude parametrization. Eberlein
(2013) and Eberlein and Metzner (2013) examined the attractive Hubbard model by a
comprehensive numerical analysis of the functional RG flow. Extending the channel de-
composition proposed by Husemann et al. (2009) to the symmetry-broken phase, they
continued the RG flow into the symmetry-broken phase within a fermionic functional RG
approach and considered the full frequency dependence of the vertex. Previous results for
the superconducting gap were confirmed for weak and intermediate interaction strength.
However, it turned out that global Ward identities are not captured within the Katanin
truncation. Ward identities and the Goldstone theorem had to be enforced by a pro-
jection method. A one-loop truncation of the flow treats order parameter fluctuations
rather poorly, important terms capturing the correct renormalization behaviour of the
longitudinal mass are only included on two-loop level.

The second route towards symmetry breaking was pioneered by Baier et al. (2004)
in a study of antiferromagnetism in the repulsive Hubbard model. An order parameter
field is introduced in the original purely fermionic theory via a Hubbard-Stratonovich
transformation, see Popov (1987). Afterwards, the coupled theory with both fermionic
and bosonic degrees of freedom is analyzed with the functional RG method. Over the
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years, different studies have been performed. Krahl and Wetterich (2007) discussed the
Kosterlitz-Thouless transition in two dimensional superfluids and Diehl et al. (2007) an-
alyzed the BEC-BCS crossover. The ground state of a fermionic superfluid was investi-
gated by several authors: Birse et al. (2005), Diehl et al. (2007), Krippa (2007), Strack
et al. (2008), Flörchinger et al. (2008) and Bartosch et al. (2009).

The importance of fluctuations on fermionic superfluids is well-known. Feldman
et al. (1993) studied mathematically rigorously the impact of fluctuations on fermionic
superfluids and proved the pertubative renormalizability of singularities caused by the
Goldstone mode. Several singularities cancel out due to symmetry and conservation laws
as Ward identities are fulfilled. Other singularities require a renormalization group anal-
ysis. Diener et al. (2008) studied the impact of Gaussian fluctuations on such a system.
As mentioned above, several authors analyzed the ground state of the system with a func-
tional RG analysis in simple truncations. Birse et al. (2005) proposed the first truncation
of the fermion-boson functional RG flow to describe the fermionic superfluid. Other trun-
cations followed, which also discussed the BCS-BEC crossover (Krippa (2007) and Diehl
et al. (2007)). Flörchinger et al. (2008) additionally took particle-hole fluctuations into
account. Bartosch et al. (2009) analyzed the fermionic superfluid with a combined ap-
proach of functional RG and Dyson-Schwinger equations. They distinguished between
the fermionic gap and the bosonic order parameter, which were connected by a Yukawa
coupling. One year earlier, a distinction between both quantities was already considered
by Strack et al. (2008) in a truncation of the fermion-boson functional RG approach,
where they analyzed the interplay between fermions and order parameter fluctuations in
the attractive Hubbard model. In contrast to other authors, they distinguished longitu-
dinal and transverse directions of bosonic fluctuations in the symmetry-broken regime.
They found the correct infrared asymptotic for the longitudinal bosonic mode consistent
with the behaviour of an interacting Bose gas. This is expected since the fermionic exci-
tations are totally gapped in a fermionic s-wave superfluid. Singularities were driven by
the massless Goldstone mode. The interacting Bose gas was analyzed in early works in a
perturbative approach by Nepomnyashchy (1992) and later in a comprehensive work by
Castellani et al. (1997) and Pistolesi et al. (2004) within a field-theoretical RG approach.2

However, Strack et al. (2008) did not capture the correct infrared behaviour of the
Goldstone mode within the truncation. The Goldstone theorem and the finiteness of the
transverse renormalization factor were implemented by hand.3 Moreover, a subleading

2Dupuis et al. (2009) and Sinner et al. (2009, 2010) analyzed the interacting Bose gas behaviour within
an functional RG approach.

3The Goldstone theorem was also implemented by hand in the study by Bartosch et al. (2009), where
the fermionic superfluid was analyzed within a combined approach with Schwinger Dyson equations and
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linear imaginary frequency dependence, which would lead to a mixing between transverse
and longitudinal fluctuations, was neglected in the truncation.

In our approach we extend this work of Strack et al. (2008) in several directions.
We follow the spirit of analyzing a coupled fermion-boson theory within the functional
RG approach. The bosonic field will also be decomposed in transverse and longitudi-
nal direction. We introduce in addition a linear frequency dependence in the bosonic
propagator leading to the mixing of transverse and longitudinal modes. We introduce a
non-local bosonic self-interaction, where the quadratic frequency and momentum depen-
dence is parametrized by a so-called Y-term. In total, we propose a minimal truncation
for a fermion-boson theory describing fermionic superfluidity, which captures the correct
infrared behaviour of the interacting Bose gas for both transverse and longitudinal ex-
citations. Lowest order Ward identities are respected by our truncation. Furthermore
the Goldstone theorem is fulfilled and a finite spectral weight for the Goldstone mode is
obtained within our truncation.

4.2 The model

The Hamiltonian of the attractive Hubbard model is given by

H =
∑
i,j

∑
σ

tijc
†
iσcjσ + U

∑
i

c†i↑ci↑c
†
i↓ci↓ (4.1)

with an attractive on-site interaction U < 0 between fermionic particles with opposite
spin. Fermionic creation and annihilation operators c†iσ and ciσ obey the anticommuting
relation [ciσ′ , c†jσ]− = δi,jδσ,σ′ . The kinetic term, given by a hopping term tij between
different sites, competes with the on-site interaction. A review of the attractive Hubbard
model and its extensions can be found in Micnas et al. (1990). At zero temperature the
model has a superfluid ground state with a broken U(1)-charge symmetry. At half-filling
the superconducting order mixes with charge density wave order. In two dimensions a
Kosterlitz-Thouless-like transition is expected at finite temperatures.

As mentioned in the introduction, the model was already studied in several works
within the functional RG method. Gersch et al. (2008) and Eberlein and Metzner (2013)
investigated the model with an N-patch approach and with a channel-decomposition of
the Nambu vertex, respectively. The strength of those purely fermionic fRG studies relies
on the unbiased treatment of different channels and is therefore ideally suited for the

a vertex expansion of the functional RG equation.
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4.2 The model

analysis of competing instabilities. Particle-hole and particle-particle fluctuations were
both taken into account in a unbiased manner. Reasonable results were found for the
fermionic single-particle gap for weak to intermediate interaction strengths. Particle-hole
fluctuations and order parameter fluctuations reduce the fermionic single-particle gap
compared to the mean-field gap. Eberlein (2013) pointed out that global Ward identities
are not compatible with the Katanin scheme in general. Thus, the Goldstone theorem
has to be enforced by a projection method.

The mutual interplay between fermions and order parameter fluctuations is more
easily treated in a coupled fermion-boson functional RG approach. Here, the fermionic
interaction is decoupled by a Hubbard-Stratonovich transformation into one (or several)
bosonic fields while the fermions are not integrated out. During the coupled RG flow
the bosonic potential is deformed from a symmetric parabola-like potential to a Mexican-
hat-like potential. The transition between both regimes, the symmetric and symmetry-
broken one, occurs at the so-called critical scale, where symmetry breaking occurs and
finite anomalous fermionic expectation values appear. An order parameter is naturally
implemented by the bosonic field after the decoupling of the fermionic two-particle inter-
action. Strack et al. (2008) analyzed the impact of order parameter fluctuations in the
attractive Hubbard model. The singular behaviour of the longitudinal mass and renor-
malization factors was found to be consistent with the behaviour of an interacting Bose
gas. However, the Goldstone theorem and the linear dispersion of the Goldstone mode
were fixed by hand.

Since the fermionic particle-particle channel is the most dominant channel in the
ground state of the fermionic superfluid, it is natural to decouple the fermionic interaction
by a Hubbard-Stratonovich transformation in the s-wave pairing channel. The microscopic
action for the coupled fermion-boson theory then reads

S[ψ̄, ψ, ϕ∗, ϕ] =

∫
kσ

ψ̄kσ (ik0 − ξk)ψkσ −
∫
q

1

U
ϕ∗
qϕq (4.2)

+

∫
k,q

(
ψ̄−k+q↓ψ̄k↑ϕq + ψk↑ψ−k+q↓ϕ

∗
q

)
,

where ψ̄kσ and ψkσ denote fermionic fields with spin σ =↑, ↓ and ϕ∗
q and ϕq complex-valued

bosonic fields. The dispersion relation is given by ξk = −2t(cos kx + cos ky) − µ, where
µ represents the chemical potential and tij next-nearest neighbour hopping specified as
tij = −t. The action consists of three parts, a quadratic fermionic, a quadratic bosonic
part and a normal Yukawa coupling. Here, the bosonic mass is given by the relation
m2
b = − 1

U
.
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4.3 Truncation and parametrization

At the beginning of the flow the scale-dependent effective action is identical to the
microscopic action

ΓΛ=Λ0 [ψ̄, ψ, ϕ∗, ϕ] = S[ψ̄, ψ, ϕ∗, ϕ] (4.3)

and serves as the starting point for the RG flow, see chapter 2.
We now repeat the central results of previous mean-field considerations. Applying a

saddle point approximation to Eq. (4.2) one finds the BCS gap equation

∆ = −U
∫
k

∆

E2
k + k20

, (4.4)

where ∆ denotes the fermionic single-particle gap, and Ek =
√
ξ2k +∆2 the energies

of fermionic excitations, see Popov (1987) and Strack et al. (2008). Neglecting bosonic
fluctuations and running only a fermionic mean-field flow, Salmhofer et al. (2004) obtained
the correct mean-field result for the superconducting gap, since the Katanin scheme solves
mean-field models exactly. However, in the work by Strack et al. (2008), the solution of
the RG flow without bosonic fluctuations leads to a reduced gap compared to mean-field
result. This issue could be traced back to the ansatz for the bosonic self-interaction, which
is not identical to the exact bosonic mean-field potential, see Strack et al. (2008) and Popov
(1987). An analysis of the pole structure of the bosonic mean-field propagators shows the
existence of a massless collective excitation with a linear dispersion, the Goldstone mode,
as expected.

4.3 Truncation and parametrization

In this section we introduce the ansätze for the scale-dependent effective action for both
the symmetric and symmetry-broken regime parametrized by several renormalization fac-
tors and coupling constants. The effective action is truncated at fourth order in bosonic
fields, further a gradient expansion is employed. For the fermions we consider a quadratic
term in fermionic fields and a Yukawa vertex, which couples fermions to the bosonic
degrees of freedom. We will not consider renormalizations of the fermionic frequency
and momentum dependence in the quadratic fermionic term. Renormalization factors
parametrize the frequency and momentum dependence of the bosonic self-energy. Fur-
thermore, a non-local bosonic self-interaction is taken into account, which will induce
the fulfillment of Goldstone’s theorem and lowest order Ward identities. A transverse-
longitudinal basis is chosen for the description of the complex bosonic fields in the
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4.3 Truncation and parametrization

symmetry-broken regime. Transverse modes represent phase or Goldstone fluctuations,
respectively, whereas longitudinal modes describe fluctuations in radial or amplitude direc-
tion in the superfluid state. Furthermore, we distinguish between bosonic order parameter
and fermionic single-particle gap.

Subsection 4.3.1 introduces the ansatz for the scale-dependent effective action in the
symmetric and subsection 4.3.2 for the scale-dependent effective action in the symmetry-
broken regime.

4.3.1 Symmetric regime

In both the symmetric and symmetry-broken regime the effective action is invariant under
U(1)-symmetry. Our ansatz for the scale-dependent effective action reads

ΓΛ = Γψ̄ψ + Γϕ∗ϕ + Γϕ4 + Γψ2ϕ∗ , (4.5)

and consists of several terms which are discussed below. In general, the action includes a
purely bosonic and a purely fermionic sector linked by a Yukawa coupling in our trunca-
tion. The quadratic part in fermionic fields reads

Γψ̄ψ =

∫
kσ

ψ̄kσ (ik0 − ξk)ψkσ (4.6)

with the dispersion relation ξk = −2t(cos kx + cos ky) − µ. We will not consider renor-
malization effects of the fermionic self-energy receiving only a finite renormalization. In
principle, a fermionic two-particle interaction term is regenerated during the flow due to
fourth order contributions in the fermion-boson vertex. We discard these contributions,
since they only lead to finite renormalizations.4

Before we introduce the bosonic ansatz in frequency and momentum space, we first
discuss the bosonic ansatz in real space for clarity. The ansatz reads

Γb =
Zb
2

∫
dx|∇ϕ(x)|2 + W

2

∫
dxϕ(x)∗∂τϕ(x) (4.7)

+
u

8

∫
dx
(
|ϕ(x)|2

)2
+
Y

8

∫
dx
(
∇|ϕ(x)|2

)2
, (4.8)

where the variable x = (τ, r) collects imaginary time τ and space coordinates r. The
quadratic part in bosonic fields includes a spatial gradient term and a temporal derivative.

4By a dynamical decoupling of the interaction at each scale, one could implement this term into our
truncation, see Gies et al. (2002, 2004) and Flörchinger et al. (2009).
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4.3 Truncation and parametrization

These terms are generated during the flow. Second, a non-local bosonic self-interaction is
generated, where the local interaction is parametrized by u and a non-local dependence
is parametrized by the so-called Y -term. This non-local term is necessary to preserve the
U(1)-symmetry, if transverse and longitudinal fluctuations of the bosonic order parameter
fluctuations are distinguished in the symmetry-broken regime.

We move on to the frequency and momentum representation of the bosonic ansatz.
The quadratic part in bosonic fields is then given by

Γϕ∗ϕ =
1

2

∫
q

ϕ∗
q

(
−iWq0 + Zb(q

2
0 + ω2

q) +m2
b

)
ϕq. (4.9)

The renormalization factor Zb parametrizes the quadratic frequency and momentum de-
pendence of the propagator.5 The imaginary linear frequency dependence is parametrized
by the renormalization factor W .6 The bosonic mass m2

b vanishes at the critical scale
Λ = Λc signalling spontaneous symmetry breaking. In principle, a real-valued linear
momentum dependence is also generated due to a sharp frequency regularization, see
section 4.7. However, it is an artefact due to our frequency regulator and vanishes in
the infrared, so that we neglect it. The bosonic dispersion relation is approximated by
ω2
q = 4 − 2 cos qx − 2 cos qy and describes an isotropic quadratic momentum dependence

for small q and is periodic in the Brillouin zone. In general, the prefactors of the fre-
quency and momentum dependence are described by different renormalization factors.
For simplicity, we assume here that both renormalization factors renormalize in the same
way.

The bosonic self-interaction reads

Γϕ4 =
1

8

∫
k,k′,q

U(q)ϕkϕ
∗
k−qϕk′ϕ

∗
k′+q (4.10)

with the function U(q) = Y (q20 + ω2
q) + u. It is parametrized by the local term u and

by the so-called Y term describing a quadratic frequency and momentum dependence of
the non-local bosonic self-interaction.7 Figure 4.1 shows the frequency and momentum
resolved non-local bosonic self-interaction. Later, when we present the RG flow for the

5The quadratic frequency dependence was neglected in previous works by Birse et al. (2005), Diehl et
al. (2007) and Krippa (2007).

6An imaginary frequency dependence of the bosonic propagator was discussed previously in the fRG
literature in the context of the interacting Bose see Flörchinger et al. (2008, 2009a, 2009b).

7The Y-term parametrizing a quadratic momentum dependence of the non-local bosonic self-
interaction was already discussed in the context of O(N) models, see Tetradis and Wetterich (1994)
and Strack et al. (2008). It is crucial to preserve the symmetry, if transverse and longitudinal bosonic
fluctuations are distinguished.
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Γφ4 :
q

k

k − q

k′

k′ + q

Figure 4.1: Resolved frequency and momentum transfer q in the non-local bosonic self-
interaction.

Γ|φ|4 : Γψ2φ∗ :

Figure 4.2: Bosonic self-interaction and normal Yukawa vertex.

couplings in the symmetric regime, we will explicitly show the resolved frequency and
momentum transfers in the diagrams contributing to the RG flow.

The last term in the ansatz for the effective action Eq. (4.5) describes the Yukawa
coupling connecting the fermionic and bosonic sector of the theory. In the symmetric
regime only the so-called normal Yukawa vertex appears

Γψ2ϕ∗ = g

∫
k,q

(
ψ̄−k+q↓ψ̄k↑ϕq + ψk↑ψ−k+q↓ϕ

∗
q

)
, (4.11)

which is given by that term in the microscopic action, which couples fermionic and bosonic
fields after the application of the Hubbard-Stratonovich transformation. In the symmetry-
broken regime also an anomalous Yukawa vertex appears, which includes terms with two
incoming fermionic fields and one incoming bosonic field.

We assume a frequency and momentum independent coupling g. This coupling is
not renormalized in the symmetric phase in our truncation. The one-loop corrections to
the normal Yukawa vertex of order g3 vanish in the symmetric regime owing to particle
conservation. Since it is initialized with strength one in the microscopic action, the normal
Yukawa remains g = 1 during the RG flow. Diagrams for the bosonic self-interaction
and the Yukawa vertex are illustrated in figure 4.2. Solid lines correspond to fermionic
propagators and wiggly lines to bosonic propagators.
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4.3 Truncation and parametrization

4.3.2 Symmetry-broken regime

Now, we introduce the ansatz for the scale-dependent effective action describing the RG
flow of the attractive Hubbard model in the symmetry-broken phase. In contrast to the
symmetric case, where we worked in the basis ϕQ = (ϕq, ϕ

∗
q) for the description of the

bosons, we now switch to the transverse and longitudinal basis ϕQ = (πq, σq) around the
bosonic order parameter α. The explicit transformations between both representations
read

ϕq = αδq,0 + σq + iπq, (4.12)

ϕ∗
q = αδq,0 + σ−q − iπ−q. (4.13)

The total ansatz for the effective action

ΓΛ = Γψ̄ψ + Γψψ + Γb + Γψ2σ+ψ2π (4.14)

consists of several terms. The purely fermionic sector is given by the first and second
term. The third term denotes the purely bosonic sector of the effective action given by

Γb = Γσ2 + Γπ2 + Γπσ + Γσ4 + Γπ4 + Γσ2π2 + Γσ3 + Γσπ2 , (4.15)

where the single terms will be discussed below. Finally, the last term Γψ2σ+ψ2π in Eq. (4.14)
describes couplings between longitudinal and transverse bosonic fields, respectively, to
fermionic fields.

The quadratic part in fermionic fields

Γψ̄ψ =

∫
kσ

ψ̄kσ (ik0 − ξk)ψkσ (4.16)

is identical to the expression in the symmetric phase. In the symmetry-broken phase
anomalous fermionic expectation values appear, which are parametrized by

Γψψ =

∫
k

(
∆ψ̄−k↓ψ̄k↑ +∆∗ψk↑ψ−k↓

)
. (4.17)

Here, the fermionic single-particle gap is denoted as ∆.
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4.3 Truncation and parametrization

In real space the purely bosonic part of the effective reads

Γb =
Zb
2

∫
dx|∇ϕ(x)|2 + W

2

∫
dxϕ(x)∗∂τϕ(x) (4.18)

+
u

8

∫
dx
(
|ϕ(x)|2 − |α|2

)2
+
Y

8

∫
dx
(
∇|ϕ(x)|2

)2
with a finite order parameter α generated during the flow in the symmetry-broken phase.
In momentum and frequency representation the quadratic part in bosonic fields consists
of three parts: A quadratic part in longitudinal bosonic fields

Γσ2 =
1

2

∫
q

σq
(
Zσ(q

2
0 + ω2

q) +m2
σ

)
σ−q, (4.19)

a quadratic part in transverse bosonic fields

Γπ2 =
1

2

∫
q

πq
(
Zπ(q

2
0 + ω2

q) +m2
π

)
π−q, (4.20)

and a mixing term between longitudinal and transverse fluctuations

Γπσ =

∫
q

πq(m
2
σπ +Wq0)σ−q (4.21)

due to a linear frequency dependence of the bosonic propagator parametrized by W . The
renormalization factors Zπ and Zσ parametrize the quadratic frequency and momentum
dependence of the bosonic propagators. The longitudinal mass is denoted by m2

σ. We
set the transverse mass m2

π zero, which is consistent with the fulfillment of Goldstone’s
theorem in our truncation, as we will see later in section 4.5. The mixed mass term
m2
σπ = 0 vanishes due to symmetry. Renormalizations for the longitudinal mass m2

σ, and
both the transverse and longitudinal renormalization factor are considered.

In longitudinal and transverse representation the bosonic self-interaction is split into
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Γ
π
4 : Γ

σ
4 :

Γ
σ
2
π
2 : Γ

σ
3 :

Γ
σπ

2 :

Figure 4.3: Bosonic vertices in the symmetry-broken regime.

several interaction processes between transverse and longitudinal modes

Γσ3 =
1

2

∫
q,p

U(q)ασpσ−q−pσq, (4.22)

Γσ4 =
1

8

∫
p,p′,q

U(q)σpσq−pσp′σ−q−p′ , (4.23)

Γπ4 =
1

8

∫
p,p′,q

U(q)πpπq−pπp′π−q−p′ , (4.24)

Γσ2π2 =
1

4

∫
p,p′,q

U(q)σpσq−pπp′π−q−p′ , (4.25)

Γσπ2 =
1

2

∫
p,q

U(q)ασqπpπ−p−q. (4.26)

The function U(q) = Y (q20 + ω2
q) + u parametrizes the non-local bosonic self-interaction

as in the symmetric regime.8 A finite Y-term is decisive when distinguishing between
longitudinal and transverse renormalization factors. Figure 4.3 shows the diagrams cor-
responding to the bosonic vertices.

Local bosonic self-interaction u and Y-term are determined indirectly by the relations

u =
m2
σ

|α|2
, Y =

Zσ − Zπ
α2

, (4.27)

which follow straight from the ansatz of the bosonic effective action in the representation
from Eq. (4.18) by inserting the transformations Eq. (4.12) and (4.13). The local bosonic

8The contributions to the bosonic self-interaction are the same as in a O(2) model, see Tetradis and
Wetterich (1994) and Strack et al. (2008).
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Γψ2π : Γψ2σ :

Figure 4.4: Yukawa vertices in the symmetry-broken regime.

self-interaction is calculated by the ratio between longitudinal mass and order parameter
squared. The Y -term is determined by the difference between longitudinal and transverse
renormalization factor divided by the order parameter squared. The relations are in full
agreement with Ward identities in a linear sigma model, as we will see in section 4.5. In
the limit Y = 0 both longitudinal and transverse renormalization factors are thus enforced
to be identical, Zσ = Zπ.

In the symmetry-broken regime, besides the normal Yukawa vertex also an anomalous
Yukawa vertex of the form

Γψ2ϕ = g̃

∫
k,q

(
ψ̄−k+q↓ψ̄k↑ϕ

∗
−q + ψk↑ψ−k+q↓ϕ−q

)
, (4.28)

appears, where g̃ denotes the corresponding coupling strength. In the longitudinal trans-
verse basis the Yukawa terms

Γψ2σ = gσ

∫
k,q

(
ψ̄−k+q/2↓ψ̄k+q/2↑σq + ψk+q/2↑ψ−k+q/2↓σ−q

)
, (4.29)

Γψ2π = igπ

∫
k,q

(
ψ̄−k+q/2↓ψ̄k+q/2↑πq − ψk+q/2↑ψ−k+q/2↓π−q

)
(4.30)

then couple transverse and longitudinal bosonic fields to fermionic fields. In general, the
transverse Yukawa coupling, gπ = g− g̃, and longitudinal Yukawa coupling, gσ = g+ g̃, are
different. However, we will set both couplings equal, gπ = gσ, to be consistent with Ward
identities, which we will discuss in section 4.5. Finally, this leads to a natural fulfillment
of Goldstone’s theorem in our truncation as we will see later. In figure 4.4 both Yukawa
vertices are shown diagrammatically.

4.4 RG flow equations

In this section we present the functional RG equations, which we use for the analysis of
the attractive Hubbard model. We solve the functional RG equation for our ansätze of the
scale-dependent effective action, discussed in section 4.3. RG equations for the couplings
and self-energies parametrizing the effective action are presented for the symmetric and
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4.4 RG flow equations

Figure 4.5: Diagrammatic contributions to the bosonic self-energy.

Figure 4.6: Diagrammatic contributions to the bosonic self-interaction.

symmetry-broken regime. Subsection 4.4.1 presents flow equations for the symmetric
regime and subsection 4.4.2 presents flow equations for the symmetry-broken regime.

4.4.1 Symmetric regime: Flow equations

Here we present the flow equations for the couplings parametrizing the scale-dependent
effective action in the symmetric regime, see section 4.3.1. By expanding the RG equa-
tions for the effective action Eq. (2.33) in fields and gradients, the flow equations for the
couplings are determined by comparison of coefficients. Contributions to the flow are
given in terms of 1PI Feynman diagrams. Figure 4.5 and 4.6 illustrate the diagrammatic
contributions to the flow of the bosonic self-energy and self-interaction, respectively. De-
tails of the derivation of the functional RG equations for the couplings can be found in the
appendix A. There, the couplings are extracted by functional differentiation with respect
to bosonic and fermionic fields.

We regularize the theory by a sharp Litim frequency cutoff9 for fermions and bosons

Rf (k) = i(Λsgn(k0)− k0)Θ(Λ− |k0|), (4.31)

Rb(q) = Zb(Λ
2 − q20)Θ(Λ2 − q0), (4.32)

which are added to the inverse propagators. The frequency dependence of the fermionic
and bosonic propagator is then replaced by the cutoff scale for small frequencies |k0|, |q0| <
Λ, Zbq20 → ZbΛ

2 and ik0 → iΛsgn(k0), respectively. After the evaluation of the functional
9Often a Litim cutoff significantly simplifies the expressions on the right hand side of the flow equation,

see Litim (2001). Strack et al. (2008) applied a sharp multiplicative frequency cutoff.
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Gf (k) : Gb(q) :

Figure 4.7: Fermionic and bosonic propagators in the symmetic regime.

RG equation for our ansatz, the regularized fermionic propagator

Gf (k) =
1

ik0 − ξk +Rf (k)
, (4.33)

and bosonic propagator

Gb(q) =
2

−iWq0 + Zb(q20 + q2) +m2
b +Rb(q)

, (4.34)

will appear on the right side of the flow equation. Corresponding fermionic and bosonic
single-scale propagators

Sf (k) = DΛGf (k) =
∂

∂Λ

∣∣∣
Σ
Gf (k), Sb(k) = DΛGb(q) =

∂

∂Λ

∣∣∣
Σ
Gb(q) (4.35)

are obtained by the scale derivative of the regularized propagators, where the self-energy
is kept constant. We introduce the short-hand notation DΛ = ∂

∂Λ

∣∣∣
Σ

for this operation.
Figure 4.7 shows the diagrammatic representation of fermionic and bosonic propagators.
The flow of the bosonic self-energy is defined as d

dΛ
Σb(p) =

d
dΛ
(G−1

b (p)−G−1,(0)
b (p)) with

G
−1,(0)
b (p) = − 1

U
+ Rb(p)

2
.

The flow for the bosonic self-energy is then given by

d

dΛ
Σb(p) = −g2

∫
k

DΛ [Gf (k)Gf (−k + p)] +
1

4

∫
q

DΛGb(q)
[
u+ U(q − p)

]
. (4.36)

Bosonic mass and renormalization factors parametrizing the frequency and momentum
dependence are obtained by d

dΛ

m2
b

2
= d

dΛ
Σb(0) and d

dΛ
Zb = ∂2

∂p2x

∣∣∣
p=0

d
dΛ
Σb(p), respectively.

The bosonic mass flow reads

d

dΛ

m2
b

2
= −g2

∫
k

DΛ [Gf (k)Gf (−k)] +
1

4

∫
q

DΛGb(q)
[
u+ U(q)

]
. (4.37)

Fermionic contributions reduce the bosonic mass, whereas bosonic contribution weaken
this effect. The renormalization factor parametrizing the quadratic momentum and fre-
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p p

−q

q − p

Figure 4.8: Fermionic contributions to the bosonic self-energy are given by the fermionic
particle-particle bubble.

0

q

p p
p− q

p p

q

Figure 4.9: Bosonic contributions to the bosonic self-energy can be distinguished as
Hartree (left) and Fock (right) term.

quency dependence is given by

d

dΛ
Zb = −g2

∂2

∂p2x

∣∣∣
p=0

(∫
k

DΛ [Gf (k)Gf (−k + p)]

)
(4.38)

+
1

4

∂2

∂p2x

∣∣∣
p=0

∫
q

DΛGb(q)U(q − p).

Finally, the linear frequency dependence of the bosonic propagator is obtained as

d

dΛ
W = −2i ∂

∂p0

∣∣∣
p=0

g2
∫
k

DΛ [Gf (k)Gf (−k + p)]− i
∫
q

DΛGb(q)Y q0. (4.39)

In figure 4.8 and 4.9 the relevant fermionic and bosonic 1PI diagrams contributing to the
flow of the bosonic self-energy are shown. As mentioned above, the internal momentum
and frequency transfer within the non-local bosonic interaction is now resolved. Solid and
wiggly lines with black arrows denote fermionic and bosonic propagators, respectively.
Dotted lines indicate the bosonic self-interaction and the corresponding momentum and
frequency transfer. Bosonic contributions can be differentiated between a Hartree (tad-
pole) and a Fock (oyster) term. The fermionic contribution is given by the fermionic
particle-particle bubble.

Next, we present the flow equations for the couplings parametrizing the bosonic self-
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−k

k + p

k − p

−k

−p

p

−p

p

Figure 4.10: Fermionic box diagram generating the bosonic two-particle self-interaction.
The external momenta are chosen in a highly symmetric way.

interaction. The flow of the (local) bosonic self-interaction reads

d

dΛ
u = 4g4

∫
k

DΛ [Gf (k)Gf (−k)]2 −
1

4

∫
q

DΛ [Gb(q)Gb(−q)] [U(q)]2

− 1

4

∫
q

DΛ [Gb(q)]
2 [u+ U(q)]2 , (4.40)

and the flow for the non-local contribution, the Y-term

d

dΛ
Y =

∂2

∂p2x

∣∣∣
p=0

∫
k

DΛ

[
G2
f (k)Gf (−k + p)Gf (−k − p)

]
− 1

4

∂2

∂p2x

∣∣∣
p=0

∫
q

DΛ [Gb(q)Gb(−q)]
[
U(q − p)

4
+
U(q + p)

4

]2
− 1

2

∂2

∂p2x

∣∣∣
p=0

∫
q

DΛ [Gb(q)Gb(q)]

[
U(q + p)

4
+
u

4

] [
U(q − p)

4
+
u

4

]
− 1

2

∂2

∂p2x

∣∣∣
p=0

∫
q

DΛ [Gb(q + p)Gb(q − p)]
[
U(2p)

4
+
U(q)

4

]2
. (4.41)

Both couplings are generated by expressions with four fermionic propagators.
It is again illuminating to resolve the internal momentum and frequency transfer

in the 1PI diagrams for those contributions. The fermionic contribution consists of a
fermionic box diagram and is shown in figure 4.10. Bosonic contributions can be clas-
sified in particle-particle, particle-hole and crossed particle-hole contributions illustrated
in figures 4.11, 4.12 and 4.13. They are identical to the 1PI-diagrams contributing to
the theory of the interacting Bose gas. Furthermore, they are structurally identical to
1PI fermionic diagrams contributing to the fermionic two-particle vertex, see Metzner et
al. (2012). The analytical expressions can be written in a compact form due to a highly
symmetric choice for the external momentum and frequency dependence of the bosonic
two-particle vertex, where the total incoming momentum is zero.
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Figure 4.11: Bosonic particle-particle diagram contributing to the flow of the bosonic
two-particle interaction.
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Figure 4.12: Bosonic particle-hole diagrams contributing to the flow of the bosonic two-
particle interaction.
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Figure 4.13: Bosonic crossed particle-hole diagrams contributing to the flow of the bosonic
two-particle interaction.
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4.4.2 Symmetry-broken regime: Flow equations

The symmetry-broken regime of the RG flow is characterized by the appearance of anoma-
lous expectations values. Hence, a finite bosonic order parameter and a fermionic single-
particle gap are generated. We will now present the RG equations for the couplings
parametrizing the scale-dependent effective action in this regime introduced in subsection
4.3.2. As before, the RG flow of the effective action is expanded in powers of fields and
gradients. Finally, coefficients are compared and the flows of the couplings are extracted.
We explicitly derive the RG equations for the couplings in appendix B.

We regularize the effective action in the symmetry-broken regime with the same
fermionic and bosonic regulator as in the symmetric regime. Hence, the fermionic regu-
lator reads

Rf (k) = i(Λsgn(k0)− k0)Θ(Λ− |k0|). (4.42)

We choose an identical regulator for transverse and longitudinal bosons

Rπ(q) = Rσ(q) = Zπ(Λ
2 − q20)Θ(Λ2 − q20). (4.43)

Then, the regularized normal and anomalous fermionic propagators are given by

Ff (k) =
∆

∆2 + |ik0 − ξk +Rf (k)|2
, (4.44)

Gf (k) =
−ik0 − ξk −Rf (k)

∆2 + |ik0 − ξk +Rf (k)|2
, (4.45)

and obey the relation

F 2
f (k) +G2

f (k) =
Ff (k)

∆
. (4.46)

The regularized longitudinal and transverse bosonic propagators are given by

Gσ2(q) =
γπ2(q)

γσ2(q)γπ2(q) +W 2q20
, (4.47)

Gπ2(q) =
γσ2(q)

γσ2(q)γπ2(q) +W 2q20
, (4.48)
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Gf (k) : Gσπ(q) :

Ff (k) : Gσ2(q) :

Gπ2(q) :

Figure 4.14: Fermionic and bosonic propagators in the symmetry-broken regime.

and the mixed bosonic propagators by

Gσπ(q) =
−Wq0

γσ2(q)γπ2(q) +W 2q20
, (4.49)

Gπσ(q) =
Wq0

γσ2(q)γπ2(q) +W 2q20
. (4.50)

The functions

γσ2(q) = Zσ(q
2
0 + ω2

q) +m2
σ +Rσ(q), (4.51)

γπ2(q) = Zπ(q
2
0 + ω2

q) +Rπ(q) (4.52)

include bosonic regulators. The exact relation

γσ2(q)− γπ2(q) = U(q)α2 (4.53)

between transverse and longitudinal bosonic propagator and the function U(q) holds.
Both relations, Eq. (4.46) and Eq. (4.53), become relevant in the discussion of analytic
results of the flow equations in section 4.5 and 4.6. Figure 4.14 shows the diagrams for
fermionic and bosonic propagators in the symmetry-broken phase.

We again use the short-hand notation for the scale derivative acting only on the
regulator DΛ = ∂

∂Λ

∣∣∣
Σ
, where the self-energies are kept constant. The fermionic single-

scale propagators then reads

SG(q) = DΛGf (q), SF (q) = DΛFf (q), (4.54)
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Figure 4.15: Contributions to the bosonic order parameter α.

and bosonic single-scale propagators are given by

Sσ2(q) = DΛGσ2(q), Sπ2(q) = DΛGπ2(q), (4.55)

Sσπ(q) = DΛGσπ(q), Sπσ(q) = DΛGπσ(q). (4.56)

The single-scale propagators are obtained by a scale derivative, where the self-energy
is kept constant. For bosons the explicit expressions are given by

Sσ2(q) = −∂ΛRπ(q)
γπ2(q)2 −W 2q20

(γσ2(q)γπ2(q) +W 2q20)
2
, (4.57)

Sπ2(q) = −∂ΛRπ(q)
γσ2(q)2 −W 2q20

(γσ2(q)γπ2(q) +W 2q20)
2
, (4.58)

and

Sσπ(q) = −∂ΛRπ(q)
−Wq0(γσ2(q) + γπ2(q))

(γσ2(q)γπ2(q) +W 2q20)
2
, (4.59)

Sπσ(q) = −∂ΛRπ(q)
Wq0(γσ2(q) + γπ2(q))

(γσ2(q)γπ2(q) +W 2q20)
2
. (4.60)

We now present the RG equations for the couplings. The flow equation for the bosonic
order parameter reads

d

dΛ
α = 2

gσ
m2
σ

∫
k

DΛFf (k) (4.61)

− 1

2

1

m2
σ

[∫
q

DΛGσ2(q) [2U(q) + u]α + uα

∫
q

DΛGπ2(q)

]
. (4.62)

and consists of fermionic and bosonic tadpole diagrams visualized in figure 4.15. Here
we do not resolve the internal frequency and momentum dependence in the Feynman
diagrams as in the symmetric regime.
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Figure 4.16: Contributions to the fermionic single-particle gap ∆.

The order parameter flow dominates the flow of the fermionic gap

d

dΛ
∆ = gσ

d

dΛ
α− g2σ

∫
q

DΛ [Gσ2(q)Ff (kf − q)] + g2π

∫
q

DΛ [Gπ2(q)Ff (kf − q)]

− (igσgπ)

∫
q

DΛ [Gπσ(q)Ff (kf − q)]− igπgσ
∫
q

DΛ [Gσπ(q)Ff (−q + kf )] , (4.63)

due to the first term, as we will later see numerically. The variable kf = (0,kf ) includes
momenta on the Fermi surface. Bosonic fluctuations appear in terms of mixed fermion-
boson diagrams. However, contributions with mixed bosonic propagators Gσπ(q) vanish
due to symmetry. Figure 4.16 shows the corresponding diagrammatic contributions.

Next, we present the flow equation for the bosonic self-energies. We find the following
expression for the flow of the longitudinal bosonic self-energy

d

dΛ
Σσ2(p) = α(2U(p) + u)

d

dΛ
α (4.64)

− g2σ
∫
k

DΛ {[Gf (k)Gf (−k + p)− Ff (k)Ff (−k + p)] + (p↔ −p)}

+
1

2

∫
q

DΛGσ2(q) [2U(q + p) + u] +
u

2

∫
q

DΛGπ2(q)

− 1

2

∫
q

DΛ

[
Gπ2(q +

p

2
)Gπ2(q − p

2
)
] [
U(p)

]2
α2

− 1

2

∫
q

DΛ

[
Gσ2(q +

p

2
)Gσ2(q − p

2
)
]

·
[
U(q − p

2
) + U(q +

p

2
) + U(p)

]2
α2

−
∫
q

DΛ [Gσπ(q)Gπσ(q + p)] [U(q) + U(q + p) + U(p)]U(p)α2.
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Figure 4.17: Contributions to the self-energy of the longitudinal boson Σσ2(q).

Later, we will see that the bosonic bubble with two Goldstone propagators dominates the
infrared behaviour. Diagrammatic contributions to the longitudinal self-energy can be
found in figure 4.17. We determine the flow for the longitudinal mass and renormalization
factors by

d

dΛ
mσ =

d

dΛ
Σσ2(0),

d

dΛ
Zσ =

1

2

∂2

∂p2x

∣∣∣
p=0

d

dΛ
Σσ2(p). (4.65)

Thus, the flow for the longitudinal mass reads

d

dΛ
m2
σ = 3uα

d

dΛ
α− 2gσ2

∫
k

DΛ

[
Gf (k)Gf (−k)− Ff 2(k)

]
(4.66)

+
1

2

∫
q

DΛGσ2(q)
[
2U(q) + u

]
+
u

2

∫
q

DΛGπ2(q)

− u2α2

2

∫
q

DΛ [Gπ2(q)]2 − 1

2

∫
q

DΛ [Gσ2(q)]2 [2U(q) + u]2 α2

−
∫
q

DΛ [Gσπ(q)Gπσ(q)] [2U(q) + u]uα2,

and the flow for the longitudinal renormalization factor parametrizing momenta and fre-
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Figure 4.18: Contributions to the self-energy of the transverse boson Σπ2(q).

quencies is given by

d

dΛ
Zσ =

1

2

∂2

∂p2x

∣∣∣
p=0

[2U(p) + u]α
d

dΛ
α +

1

2

∂2

∂p2x

∣∣∣
p=0

∫
q

DΛGσ2(q)U(q + p) (4.67)

− g2σ
∂2

∂p2x

∣∣∣
p=0

∫
k

DΛ [Gf (k)Gf (−k + p)− Ff (k)Ff (−k + p)]

− 1

4

∂2

∂p2x

∣∣∣
p=0

∫
q

DΛ

[
Gπ2(q +

p

2
)Gπ2(q − p

2
)
] [
U(p)

]2
α2

− 1

4

∂2

∂p2x

∣∣∣
p=0

∫
q

DΛGσ2(q +
p

2
)Gσ2(q − p

2
)
[
U(q − p

2
) + U(q +

p

2
) + U(p)

]2
α2

− 1

2

∂2

∂p2x

∣∣∣
p=0

∫
q

DΛ [Gσπ(q)Gπσ(q + p)] [U(q) + U(q + p) + U(p)] [U(p)]α2.

The flow of the transverse bosonic self-energy is given by

d

dΛ
Σπ2(p) = uα

d

dΛ
α− g2π

∫
k

DΛ [Gf (k)Gf (−k + p) + Ff (k)Ff (k + p) + (p↔ −p)]

+
1

2

∫
q

[2U(q + p) + u]DΛGπ2(q) +
u

2

∫
q

DΛGσ2(q)

−
∫
q

DΛ[Gπ2(q + p)Gσ2(q)] [U(q)]2 α2

−
∫
q

DΛ

[
Gσπ(q)Gσπ(q + p)

]
[U(q)U(q + p)]α2. (4.68)

Figure 4.18 shows the corresponding contributions in terms of Feynman diagrams. The
flow for the transverse mass and transverse renormalization factor are obtained by the
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relations

d

dΛ
m2
π =

d

dΛ
Σπ2(0),

d

dΛ
Zπ =

1

2

∂2

∂p2x

∣∣∣
p=0

d

dΛ
Σπ2(p). (4.69)

Thus, the flow equations for the transverse mass reads

d

dΛ
m2
π = uα

d

dΛ
α− 2g2π

∫
k

DΛ

[
Gf (k)Gf (−k) + F 2

f (k)
]

+
1

2

∫
q

DΛGπ2(q) [2U(q) + u] +
u

2

∫
q

DΛGσ2(q)

−
∫
q

DΛ [Gπ2(q)Gσ2(q)] [U(q)]2 α2 −
∫
q

DΛ [Gσπ(q)]
2 [U(q)]2 α2, (4.70)

and for the transverse renormalization factor

d

dΛ
Zπ = −g2π

∂2

∂p2x

∣∣∣
p=0

∫
k

DΛ [Gf (k)Gf (−k + p)]− g2π
∂2

∂p2x

∣∣∣
p=0

∫
k

DΛ [Ff (k)Ff (k + p)]

− 1

2

∂2

∂p2x

∣∣∣
p=0

∫
q

DΛ [Gπ2(q + p)Gσ2(q)] [U(q)]2 α2

+
1

4

∂2

∂p2x

∣∣∣
p=0

∫
q

DΛGπ2(q) [2U(q + p) + u]

− 1

2

∂2

∂p2x

∣∣∣
p=0

∫
q

DΛ [Gσπ(q)Gσπ(q + p)] [U(q)U(q + p)]α2. (4.71)

Finally, the flow for the mixed bosonic self-energy is given by

d

dΛ
Σσπ(p)=igσgπ

(∫
k

DΛ [Gf (k)Gf (−p− k)]−
∫
k

DΛ [Gf (k)Gf (p− k)]
)

+ igσgπ

∫
k

DΛ [Ff (k)Ff (k + p)]− igσgπ
∫
k

DΛ [Ff (k)Ff (k − p)]

−
∫
q

DΛGσπ(q)U(q + p)

−
∫
q

DΛ [Gσ2(q)Gσπ(q + p)] [U(q) + U(q + p) + U(p)] [U(q)]α2

−
∫
q

DΛ [Gπ2(q + p)Gσπ(q)] [U(p)U(q)]α
2. (4.72)

The flow for mixed bosonic mass and the linear frequency dependence is calculated by

d

dΛ
mσπ =

d

dΛ
Σσπ(0),

d

dΛ
W =

∂

∂p0

d

dΛ

∣∣∣
p=0

Σσπ(p). (4.73)
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Figure 4.19: Contributions to the self-energy of the mixed bosonic self-energy Σσπ(q).

Diagrammatic contributions to the flow of the mixed self-energy can be found in figure
4.19. It is easy to see that all contributions to the mixed mass d

dΛ
mσπ = d

dΛ
Σσπ(0) cancel

out due to symmetry

d

dΛ
m2
σπ = 0. (4.74)

The flow for the linear frequency dependence reads

d

dΛ
W = igσgπ

∂

∂p0

∣∣∣
p=0

∫
k

DΛ [Gf (k)Gf (−k − p)−Gf (k)Gf (−k + p))

+ igσgπ
∂

∂p0

∣∣∣
p=0

∫
k

DΛ [Ff (k)Ff (k + p)− Ff (k)Ff (k − p)]

+ 2

∫
q

DΛGπσ(q)Y q0

− ∂

∂p0

∣∣∣
p=0

∫
q

DΛ [Gσ2(q)Gσπ(q + p)] [U(q) + U(q + p) + U(p)] [U(q)]α2

− ∂

∂p0

∣∣∣
p=0

∫
q

DΛ [Gπ2(q + p)Gσπ(q)] [U(q)U(p)]α
2. (4.75)

Flows for the (local) bosonic self-interaction and the Y-term are extracted indirectly
from the relations

d

dΛ
u =

d

dΛ

(
m2
σ

α2

)
,

d

dΛ
Y =

d

dΛ

(
Zσ − Zπ
α2

)
. (4.76)

Finally, the flow for the transverse Yukawa vertex, which couples fermions and bosons, is
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Figure 4.20: Contributions to the flow of the transverse Yukawa vertex gπ.

given by

d

dΛ
gπ = gπ

∫
q

DΛ

[
F 2
f (kf − q)) + |Gf (kf − q)|2

] [
g2σGσ2(q)− g2πGπ2(q)

]
+ 2gσgπ

∫
q

DΛ

[
Gσ2(q)Gπ2(q) +Gσπ(q)

2
]
Ff (kf − q)U(q)α (4.77)

with kf = (0,kf ), where we set the bosonic momenta to zero and choose the fermionic
momenta on diametral positions on the Fermi surface. Figure 4.20 shows the correspond-
ing diagrammatic contributions to the flow.10 We do not write out the flow equation
for the longitudinal Yukawa vertex gσ, since we set it identical to the transverse Yukawa
vertex gσ = gπ for reasons that will become clear in the next section.

4.5 Ward identities and Goldstone theorem

In general, truncations and other approximations of the effective action lead to a violation
of conservation laws and theorems valid for the full theory. In subsection 4.5.1 we will
discuss the fulfillment of Ward identities in our ansatz. We first analyze Ward identities
for the purely bosonic sector and confirm that our truncation is consistent with lowest
order Ward identities. Afterwards, we discuss identities for the coupled fermion-boson
theory. A relation between bosonic order parameter and fermionic single-particle gap is
found. Another Ward identity between two-boson-two-fermion vertex and the anomalous
Yukawa vertex is presented. We prove that lowest order Ward identities are respected by
our truncation of the functional RG flow. Finally, in subsection 4.5.2 we show explicitly
that fermionic and bosonic contributions to the RG flow of the transverse mass cancel
exactly. The relations between couplings implied by the fulfillment of the lowest order

10Contributions to the flow of the transverse Yukawa vertex gπ with one anomalous fermionic propagator
were neglected in the previous work by Strack et al. (2008). However, they play a major role for the flow
equation to respect the Ward identity between fermionic gap and order parameter.
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Ward identities are thereby essential.

4.5.1 Ward identities

Ward identities connect correlation functions of different order due to the underlying
symmetry of the system, see for instance Zinn-Justin (2002). A discussion of the fulfillment
of local Ward identities in the fermionic functional RG flow can be found in Katanin
(2004). Eberlein (2013) discusses the incompatibility between global Ward identities and
the Katanin scheme. A discussion of fermion-boson RG equations in a vertex expansion
and applications of Ward identities in this context can be found in Kopietz et al. (2010).

Here, we investigate the fulfillment of Ward identities, associated with the U(1)-
charge symmetry, within our truncation. We show that our truncation fulfills relations
derived from exact Ward identities of a linear sigma model and of a coupled boson-
fermion theory. We concentrate on the broken symmetry-phase where a finite bosonic
order parameter appears. The starting point for the derivation of Ward identities between
bosonic correlation functions is given by∫

q

ϕq
δΓ

δϕq
−
∫
q

ϕ∗
q

δΓ

δϕ∗
q

= 0. (4.78)

This equation is identical to a similar equation derived in the appendix C for a cou-
pled fermion-boson system in absence of fermionic degrees of freedom. In transverse-
longitudinal decomposition this purely bosonic identity reads∫

q

(
(αδq,0 + σq)

δΓ

δπq
− πq

δΓ

δσq

)
= 0, (4.79)

see Amit (1984). Differentiation with respect to transverse and longitudinal fields then
yields

δ2Γ

δσpδσ−p
− δ2Γ

δπpδπ−p
= α

δ3Γ

δπ0δπ−pδσp
, (4.80)

∂2

∂p2
δ2Γ

δσpδσ−p
− ∂2

∂p2
δ2Γ

δπpδπ−p
= α

∂2

∂p2
δ3Γ

δπ0δπ−pδσp
. (4.81)

The difference between longitudinal and transverse two-point functions is linked to the
three-particle vertex Γπ2σ. The transverse and longitudinal mass are connected via Eq. (4.80).
Momentum and frequency dependence of transverse and longitudinal renormalization fac-
tors are connected via Eq. (4.81). Inserting the ansatz for the scale-dependent effective
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action

Γσσ + Γππ =
1

2

∫
q

σq(Zσ(q
2
0 + ω2

q) +m2
σ)σ−q +

1

2

∫
q

πq
(
Zπ(q

2
0 + ω2

q) +m2
π

)
π−q (4.82)

Γσπ2 =
1

2

∫
q,p

U(q)ασqπpπ−q−p (4.83)

in Eq. (4.80) and (4.81), we find

m2
σ −m2

π = uα2 (4.84)

and

Y α2 = Zσ − Zπ. (4.85)

This totally agrees with the flow equation for the couplings parametrizing the bosonic self-
interaction, see Eq. (4.76). Those flow equations were naturally obtained by inserting the
transverse longitudinal decomposition Eq. (4.12) and (4.13) in the particle representation
of the effective action Eq. (4.18). Hence, the bosonic sector of our ansatz satisfies lowest
order Ward identities. Clearly, higher order Ward identities connecting the bosonic four-
point function with the five-point function are not satisfied due to the absence of bosonic
terms of order higher than four.

Ward identities for coupled fermion-boson theory:
We now discuss Ward identities between fermionic and bosonic correlation functions. We
will find an identity connecting the fermionic single-particle gap with the bosonic order
parameter via the transverse Yukawa vertex. Another identity couples the two-fermion-
two-boson vertex to the difference between transverse and longitudinal Yukawa vertex.

The starting point for the derivation of the Ward identities for a coupled fermion-
boson theory associated with U(1)-symmetry breaking is given by the connection∫

kσ

ψkσ
δΓ

δψkσ
−
∫
kσ

ψ̄kσ
δΓ

δψ̄kσ
= −2

∫
q

ϕq
δΓ

δϕq
+ 2

∫
q

ϕ∗
q

δΓ

δϕ∗
q

. (4.86)

An explicit derivation can be found in the appendix C or in Kopietz et al. (2010). Func-
tional differentiation with respect to fermionic fields δ2

δψ̄p↑δψ̄−p↓
leads to

δ2Γ

δψ̄p↑δψ̄−p↓
= α

δ3Γ

δψ̄p↑δψ̄−p↓δϕ0

− α∗ δ3Γ

δψ̄p↑δψ̄−p↓δϕ∗
0

(4.87)
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at ψ = ψ̄ = 0 and ϕq = αδq,0. After inserting the ansatz for the quadratic anomalous
fermionic term

Γψψ =

∫
k

(
∆ψ̄k↓ψ̄−k↑ +∆∗ψk↑ψ−k↓

)
(4.88)

and the normal and anomalous Yukawa vertices

Γψ2ϕ∗ + Γψ2ϕ = g

∫
k,q

(
ψ̄k↓ψ̄−k+q↑ϕq + ψk↑ψ−k+q↓ϕ

∗
q

)
(4.89)

+ g̃

∫
k,q

(
ψ̄k↓ψ̄−k+q↑ϕ

∗
−q + ψ−k↑ψ−k+q↓ϕ−q

)
,

the relation

∆ = αg − α∗g̃ (4.90)

is immediately found. Differentiation with respect to δ2

δψp↑δψ−p↓
leads to the complex con-

jugated relation. Assuming a real-valued gap and order parameter, the above relation
reduces to

∆ = αgπ (4.91)

with g − g̃ = gπ. Hence, the fermionic gap is connected to the bosonic order parameter
via the transverse Yukawa coupling.11

Next, we derive Ward identities concerning the two-boson-two-fermion vertex. Such
a term was neglected in our ansatz for the effective action. We will now study the
implication of this approximation on our couplings. A constraint between transverse and
longitudinal Yukawa couplings will emerge.

Functional differentiation with respect to fermionic fields δ2

δψ−p↑δψp↓
and bosonic fields

δ
δϕ0

and δ
δϕ∗0

yields

ϕ0
δ4Γ

δϕ∗
0δψ−p↑δψp↓δϕ0

= ϕ∗
0

δ4Γ

δϕ∗
0δψ−p↑δψp↓δϕ∗

0

, (4.92)

−2 δ3Γ

δϕ0δψp↓δψ−p↑
= −ϕ0

δ4Γ

δϕ0δψ−p↑δψp↓δϕ0

+ ϕ∗
0

δ4Γ

δϕ0δψ−p↑δψp↓δϕ∗
0

, (4.93)

11Bartosch et al. (2009) derived a similar identity between order parameter and fermionic gap. In their
work both quantities were connected by a general Yukawa vertex. However, we distinguish here explicitly
between the transverse and longitudinal Yukawa vertices.
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4.5 Ward identities and Goldstone theorem

Γψ2φ2 :

Figure 4.21: The absence of two-boson-two-fermion vertices in our truncation constrains
transverse and longitudinal Yukawa vertices to be identical gσ = gπ.

see appendix C for more details. In the case of a real-valued gap ∆ = ∆∗ and order
parameter α = α∗, these expressions reduce to

α
δ4Γ

δϕ∗
0δψ−p↑δψp↓δϕ0

= α
δ4Γ

δϕ∗
0δψ−p↑δψp↓δϕ∗

0

, (4.94)

−2 δ3Γ

δϕ0δψp↓δψ−p↑
= −α δ4Γ

δϕ2
0δψ−p↑δψp↓

+ α
δ4Γ

δϕ0δψ−p↑δψp↓δϕ∗
0

. (4.95)

A finite local two-boson-two-fermion vertex12

Γψ2ϕ2 =

∫
k,q,q′

λ
(
ψ̄k+q′↑ψ̄−k+q↓ϕ

∗
−qϕ

∗
−q′ + ψ−k+q↓ψk+q′↑ϕ−qϕ−q′

)
(4.96)

parametrized by the coupling λ, would then lead to the relation

gσ − gπ = 2g̃ = αλ. (4.97)

Figure 4.21 shows a diagram corresponding to a two-boson-two-fermion vertex. However,
such a two-boson-two-fermion term was not included in our truncation

Γψ2ϕ2 = 0. (4.98)

Equation (4.97) thus implies the constraint

gσ = gπ (4.99)

for our truncation of the scale-dependent effective action.
In summary, the above considerations suggests constraints for our truncation, which

are given by the relations

• m2
σ = uα2 and Y = Zσ−Zπ

α2 ,

12A two-boson-two fermion vertex was recently implemented in a functional RG study to analyze the
polaron problem, see Schmidt (2013).
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• ∆ = αgπ and gσ = gπ.

They determine the flow for the couplings parametrizing the bosonic self-interaction u

and Y and the Yukawa vertices gσ and gπ. Thereby, our minimal set for truncation is
consistent with lowest order Ward identities. Next, we show that indeed the Ward identity
∆ = αgπ is also consistent with the explicit flow for gap, order parameter and transverse
Yukawa coupling. This will play a crucial role in the fulfillment of Goldstone’s theorem,
implying m2

π = 0. We thus insert the relation Gf (k)
2 + Ff (k)

2 =
Ff (k)

∆
into the flow

equation for the transverse Yukawa vertex Eq. (4.77) and obtain

d

dΛ
gπ =

gπ
∆

∫
q

DΛF (kf − q)
[
g2σGσ2(q)− g2πGπ2(q)

]
(4.100)

+ 2
gσgπ
α

∫
q

DΛ

[
Gσ2(q)Gπ2(q) +Gσπ(q)

2
]
F (kf − q)U(q)α2. (4.101)

The application of the constraints ∆ = gπα, gπ = gσ and the exact identity

[Gσ2(q)Gπ2(q) +Gσπ(q)Gσπ(q)]U(q)α
2 = Gπ2(q)−Gσ2(q) (4.102)

yields

d

dΛ
gπ = −g

2
π

α

∫
q

DΛ {F (kf − q) [Gσ2(q)−Gπ2(q)]} . (4.103)

By inserting this expression for the Yukawa vertex into the scale-derivative of the identity
∆ = gπα we obtain

d

dΛ
∆ = gπ

d

dΛ
α + α

d

dΛ
gπ (4.104)

= gπ
d

dΛ
α− g2π

∫
q

DΛ {Ff (kf − q) [Gσ2(q)−Gπ2(q)]} , (4.105)

which is easily identified with the flow of the fermionic single particle-gap, see Eq. (4.63),
under the constraint gσ = gπ. Hence, we see that our RG equations indeed respect the
lowest order Ward identities derived between fermions and bosons, Eq. (4.91). Another
possible minimal truncation would be given by an ansatz where both the transverse and
longitudinal Yukawa coupling are set equal one, gσ = gπ = 1. Under this constraint the
lowest order Ward identity remains valid only if we set the flow of the gap identical to the
order parameter, d

dΛ
∆ = d

dΛ
α. Our results naturally suggest that a finite two-boson-two-

fermion vertex Γψ2ϕ2 ̸= 0 implies gσ ̸= gπ, entailing additional contributions to the flow
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4.5 Ward identities and Goldstone theorem

equations for gap and vertices.

4.5.2 Goldstone theorem

The fulfillment of Ward identities is strongly connected to important theorems valid for
the exact theory. The breaking of the global continuous U(1)-symmetry leads to a mass-
less excitation, the Goldstone boson. In our truncation, the transverse bosonic mode
corresponds to the Goldstone excitation in the fermionic superfluid. The so-called Gold-
stone theorem guarantees the disappearance of the transverse mass in an exact theory of
our model. However, in general due to truncations and an ansatz for the effective action
the Goldstone theorem is not respected by the flow and has to be implemented by hand,
see for instance Strack et al. (2008), Bartosch et al. (2009) and Eberlein (2013). We will
analyze both fermionic and bosonic contributions to the flow of the transverse mass and
show that the Goldstone mass m2

π remains indeed zero in the symmetry-broken phase
within our truncation.

The flow of the transverse mass Eq. (4.70)

d

dΛ
m2
π =

d

dΛ
m2,fer
π +

d

dΛ
m2,bos
π (4.106)

can be split into fermionic and bosonic contributions and are denoted as m2,fer
π and

m2,bos
π . Contributions due to the flow of the order parameter d

dΛ
αΛ can also be sepa-

rated in fermionic and bosonic fluctuations, see Eq. (4.62), and are already separated in
Eq. (4.106).

Fermionic contributions to the flow of the transverse mass are then obtained as

d

dΛ
m2,fer
π = −2g2π

∫
k

DΛ [Gf (k)Gf (−k)]− 2g2π

∫
k

DΛF
2
f (k))

+
2gσ
α

∫
k

DΛFf (k). (4.107)

Using the relation Eq. (4.46) between fermionic propagators and the Ward identity Eq. (4.91)
connecting gap and order parameter this expression simplifies to

d

dΛ
m2,fer
π = 2

(
−g

2
π

∆
+
gσ
α

)∫
k

DΛFf (k) (4.108)

=
2gπ
∆

(gσ − gπ)
∫
k

DΛFf (k). (4.109)

Hence, only under the constraint of identical longitudinal and transverse Yukawa vertices,
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4.5 Ward identities and Goldstone theorem

see Eq. (4.99), fermionic contributions will cancel exactly out in our truncation.
Bosonic contributions to the flow of the transverse mass are given by

d

dΛ
m2,bos
π = −1

2

∫
q

DΛ [Gπ2(q)Gσ2(q)] [U(q)]
[
U(q)α2 − 2G−1

σ2 (q)
]

(4.110)

− 1

2

∫
q

DΛ [Gσ2(q)Gπ2(q)] [U(q)]
[
U(q)α2 + 2G−1

π2 (q)
]

− 1

2

∫
q

DΛ [Gσπ(q)Gσπ(q) +Gπσ(q)Gπσ(q)] [U(q)]
2 α2,

where contributions owing to the scale derivative of the order parameter are already
included. Application of G2

σπ(q) = G2
πσ(q) and the exact identity

[Gσ2(q)Gπ2(q) +Gσπ(q)Gσπ(q)]U(q)α
2 = Gπ2(q)−Gσ2(q) (4.111)

in the last line of the previous equation yields

d

dΛ
m2,bos
π = −1

2

∫
q

DΛ [Gπ2(q)Gσ2(q)] [U(q)]
[
U(q)α2 − 2G−1

σ2 (q)
]

− 1

2

∫
q

DΛ [Gσ2(q)Gπ2(q)] [U(q)]
[
U(q)α2 + 2G−1

π2 (q)
]

+

∫
q

DΛ [U(q)] [Gσ2(q)−Gπ2(q)] +

∫
q

DΛ [U(q)]
2 α2 [Gσ2(q)Gπ2(q)] (4.112)

= 0, (4.113)

where all terms obviously cancel. Thus, we obtain

d

dΛ
m2,bos
π = 0. (4.114)

for the bosonic contribution to the flow of the transverse mass . Since both fermionic and
bosonic contributions to the transverse mass flow vanish, the Goldstone theorem is pre-
served. We explicitly used the identities connecting couplings parametrizing the bosonic
two-point and four-point functions, see Eq. (4.84) and (4.85). Fermionic contributions
cancel out due to an implementation of the fermionic Ward identity ∆ = αgπ.

In summary, we showed that fermionic contributions cancel due to the Ward identity
Eq. (4.91). It is easy to see that the choice gσ ̸= gπ would lead to finite contributions to the
flow of the Goldstone mass, violating Goldstone’s theorem in our truncation. However,
we showed that the inclusion of a two-boson-two-fermion vertex naturally implies gσ ̸= gπ.
In that case, the RG equation will experience a structural change by the appearance of
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further diagrams with two-boson-two-fermion vertices. We then expect that the Goldstone
theorem will again be fulfilled in a new truncation with a relation of the form gσ−gπ = λα,
where λ denotes a coupling parametrizing the local part of the two-fermion-two-boson
vertex.

4.6 Behaviour in the infrared Λ→ 0

4.6.1 Asymptotic behaviour

The infrared behaviour is independent of microscopic details of the system and exhibits
universal behaviour. Renormalization contributions including Goldstone modes dominate
the infrared. We find that the collective excitations of our fermionic superfluid behave
as an interacting Bose gas. We will reproduce the asymptotic singular behaviour for
longitudinal fluctuations obtained earlier by Strack et al. (2008) within a functional RG
approach.13 We will focus on the infrared behaviour of the transverse fluctuations and
couplings, extending the previous truncation. Here, we will explicitly show the finiteness
of the transverse renormalization factor Zπ that ensures a finite spectral weight for the
Goldstone mode.

In the infrared the flow of the longitudinal mass is dominated by a term including
two Goldstone bosons

d

dΛ
m2
σ ∝ −

α2u2

2

∫
q

DΛ [Gπ2(q)]2 (4.115)

The infrared behaviour of the integral ∝ Λd−4 together with the relation m2
σ = uα2 implies

that the longitudinal mass m2
σ and the bosonic self-interaction u vanish as Λ3−d in d < 3.

Both quantities vanish logarithmically in d = 3.
The leading contribution to the flow of the longitudinal renormalization factors is

given by

d

dΛ
Zσ ∝ −

1

4

∂2

∂px2

∣∣∣
p=0

∫
q

DΛGπ2(q)Gπ2(p+ q)[U(p)]2α2, (4.116)

and also includes two Goldstone propagators. The scale-dependent non-local bosonic
interaction U(q) scales as Λ3−d, the momentum differentiation as Λ−2, and the integra-
tion as Λd−4. Hence, the derivative of the longitudinal renormalization d

dΛ
Zσ scales as

13Singular behaviour of longitudinal fluctuations is already well-known in the literature of the inter-
acting Bose gas, see Nepomnashchy et al. (1992), Castellani et al. (1997) and Pistolesi et al. (2004).
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Λ−2Λ2(3−d)Λd−4 for 1 < d < 3 . The renormalization factor Zσ shows then a Λ1−d sin-
gularity in the infrared. In three dimensions U(q) vanishes only logarithmically in the
infrared due to the longitudinal mass. It thus entails singularities with logarithms for
the longitudinal renormalization factor d

dΛ
Zσ ∝ | log(Λ)|−2Λ−3 and Zσ ∝ |Λ log(Λ)|−2.

The non-local bosonic self-interaction parametrized by Y -term diverges as Zσ due to the
identity Eq. (4.85), if the order parameter and the transverse renormalization factors
saturate.

Flows of fermionic gap and bosonic order parameter saturate in the infrared. Singu-
larities caused by bosonic Goldstone modes are compensated by the integration. In the
case of the order parameter the situation it not that clear at first glance. A prefactor
given by the inverse 1/m2

σ signals a divergence. However this is compensated due to the
bosonic self-interaction U(q) that scales also as m2

σ. It is essential that the fermionic
cutoff is removed fast enough, otherwise artificial divergences appear in the flow of the
order parameter, see Strack et al. (2008).

In the quantities discussed above bosonic mixing terms entailed by the linear fre-
quency dependence W and other contributions due to the Y-term do not lead to quali-
tatively different singularities as without those terms. Thus, the infrared scaling remains
the same as in the limit W = Y = 0, discussed in the previous work. Finally, we discuss
the infrared behaviour of those renormalization factors which strongly depend on a finite
choice of both couplings W,Y ̸= 0.

We begin with the renormalization factor for the transverse bosonic mode and show
that it remains finite in the infrared. This implies a finite spectral weight and preserves
the linear dispersion relation for the Goldstone boson. The leading contribution to the
flow of the transverse renormalization factor is given by

d

dΛ
Zπ ∝

1

2

∂2

∂p2x

∣∣∣
p=0

∫
q

DΛU(p+ q)Gπ2(q) (4.117)

− 1

2

∂2

∂p2x

∣∣∣
p=0

∫
q

[U(q)]2α2DΛ [Gσ2(q)Gπ2(p+ q)] + finite terms

consisting of two divergent contributions ∝ Λ−1 in the infrared limit for 1 < d < 3.
Hence, a logarithmic divergence of Zπ is expected. This is true in the case of a purely
local bosonic self-interaction, Y = 0. In this limit the tadpole contribution with only one
single Goldstone propagator vanishes and the bosonic bubble consisting of one transverse
and one longitudinal propagator diverges logarithmically. However, in the case of a finite
Y-term, a singular tadpole term emerges, canceling the singularities of the divergent
bosonic bubble. Finally, a finite transverse renormalization factor Zπ is obtained, which
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preserves a finite spectral weight for the Goldstone excitation.
We prove this in the next few lines. To this end, we replace the bosonic interaction by

the relation U(q)α2 = γσ2(q)− γπ2(q) and commute it with the derivative DΛ. Neglecting
subleading terms proportional to W (justified below), the equation for the transverse
renormalization reduces to

d

dΛ
Zπ ∝

1

2

∂2

∂p2x

∣∣∣
p=0

∫
q

DΛU(p+ q)Gπ2(q) (4.118)

− 1

2

∂2

∂p2x

∣∣∣
p=0

∫
q

U(q)DΛ

[
Gπ2(p+ q)

−Gσ2(q)γπ2(q)Gπ2(p+ q)
]
+ finite terms.

Here, the singular dependencies on the scale dependence cancel out exactly, while the
remaining terms are finite in the limit Λ → 0. The momentum dependence of the non-
local bosonic self-interaction entails this cancellation and preserves a finite transverse
renormalization factor in the infrared, Zπ → const. Although irrelevant in power counting
arguments, the Y -term proves to be important due to symmetry for the correct infrared
behaviour of the Goldstone boson.

Finally, we discuss the infrared behaviour of the linear imaginary frequency depen-
dence of the bosonic propagator parametrized by W . It is generated due to the fermionic
particle-particle bubble, while in the infrared it is dominated by terms consisting of trans-
verse fluctuations. We will show that it will vanish linearly as in the interacting Bose gas.
The leading contribution to the flow of W is given by

d

dΛ
W ∝ ∂

∂p0

∣∣∣
p=0

∫
q

DΛ [Gσπ(p− q)Gπ2(q)]U(p)U(p− q)α2. (4.119)

By neglecting (Wq0)
2 in the denominator of the longitudinal propagator, this expression

simplifies to

d

dΛ
W ∝ −u ∂

∂p0

∣∣∣
p=0

∫
q

DΛ

[(W (p0 − q0)
γπ2(p− q)

− W (p0 − q0)
γσ2(p− q)

)
Gπ2(q)

]
, (4.120)

and finally to

d

dΛ
W ∝ −u ∂

∂p0

∣∣∣
p=0

∫
q

DΛ

[
W (p0 − q0)
γπ2(p− q)

1

γπ2(q)

]
(4.121)

∝ −u ∂

∂p0

∣∣∣
p=0

∫
q

[
− ∂ΛRπ(p0 − q0)

W (p0 − q0)
γπ2(p− q)2γπ2(q)

− ∂ΛRπ(q0)
W (p0 − q0)

γπ2(p− q)γπ2(q)2

]
.
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In the next step we perform two linear transformation q0 → q0 + p0 and q0 → −q0 on the
first term on the right side leading to

dW

dΛ

q0→q0+p0∝ −u ∂

∂p0

∣∣∣
p=0

∫
q

[
− ∂ΛRπ(−q0)

W (−q0)
γπ2(−q)2γπ2(q + p)

− ∂ΛRπ(q0)
W (p0 − q0)

γπ2(p− q)γπ2(q)2

]
q0→−q0∝ −u ∂

∂p0

∣∣∣
p=0

∫
q

[
− ∂ΛRπ(q0)

( Wq0
γπ2(q)2γπ2(p− q)

+
W (p0 − q0)

γπ2(p− q)γπ2(q)2

)
∝ −u ∂

∂p0

∣∣∣
p=0

∫
q

(−∂ΛRπ(q0))
[ Wp0
γπ2(q)2γπ2(p− q)

]
, (4.122)

where both terms are combined into a compact form. Finally we differentiate with respect
to the external frequency ∂

∂p0
, yielding

dW

dΛ
∝ −u

∫
q

(−∂ΛRπ(q0))

[
W

γπ2(q)2γπ2(p− q)
− Wp0
γπ2(q)2γπ2(p− q)2

∂γππ(p0 − q0)
∂p0

] ∣∣∣
p=0

∝ −u
∫
q

(−∂ΛRπ(q0))
[ W

γπ2(q)3

]
Λ→0
= −uW

2

∫
q

DΛ [Gπ2(q)Gπ2(q)]
∣∣∣
p=0

, (4.123)

where the infrared behaviour is dominated by an integral over two transverse bosonic
propagators. This resembles the infrared behaviour of the longitudinal mass

d

dΛ
m2
σ ∝ −

u2

2
α2

∫
q

DΛ [Gπ2(q)Gπ2(q)] (4.124)

Combining both expressions yields

d
dΛ
m2
σ

d
dΛ
W

=
m2
σ

W
(4.125)

implying a finite ratio between both quantities

W

m2
σ

→ C = const. (4.126)

The linear imaginary frequency dependence W behaves as the longitudinal mass m2
σ in the

infrared and vanishes linearly as in the interacting Bose gas, see Pistolesi et al. (2004).14

From the asymptotic behaviour of these renormalization factors the asymptotic form
14In an interacting Bose gas this ratio is proportional to a finite condensate compressibility dα2/dµ,

where µ denotes the chemical potential for the bosons, see Castellani et al. (1997) and Pistolesi et
al. (2004).
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of the propagators is given by

Gπ2(q) ∝ 1

Zπ(q20 + ω2
q)

(4.127)

and

Gπσ(q) ∝
Cq0

Zπ(q20 + ω2
q)
∝ −Gσπ(q) (4.128)

for small q. The longitudinal propagator Gσ2(q) shows anomalous scaling due to the
divergence of Zσ. In dimensions smaller than three, d < 3, we find power-law behaviour,
while in three dimensions, d = 3, logarithmic corrections appear.

4.7 Fermionic particle-particle bubble and mean-field

flow

In subsection 4.7.1 we analyze the small q-dependence of the fermionic particle-particle
bubble. Regular terms justify our quadratic ansatz in frequencies and momenta. Addi-
tionally, a finite real-valued linear term appears due to the sharp cutoff. We neglected it
in our truncation, since it disappears in absence of the cutoff scale Λ and does not exist at
all in a momentum regularization scheme. Subsection 4.7.2 presents the mean-field flow of
different cutoff schemes by neglecting bosonic fluctuations. We also study a flow including
bosonic fluctuations in the symmetric regime but excluding them in the symmetry-broken
phase. For both cases superfluid gaps are presented and discussed.

4.7.1 Fermionic particle-particle bubble

The fermionic particle-particle bubble is the main building block for the RPA propagator
in the superconducting channel. In our work we focus on the superfluid phase of the
attractive Hubbard model around quarter filling. We thus do not expect any non-analytic
momentum and frequency dependence in the particle-particle bubble in presence of a
cutoff Λ. However, due to the application of a sharp Litim frequency cutoff this argument
is flawed for the frequency dependence. Non-analytic frequency dependencies appear in
presence of a cutoff Λ, which vanish for Λ → 0 and would disappear in presence of a
momentum regulator replacing the frequency regulator. Thus, we neglect these terms in
our ansatz for the scale-dependent effective action, since they are merely artificial due
to the choice of a sharp frequency cutoff, and use a quadratic momentum and frequency
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4.7 Fermionic particle-particle bubble and mean-field flow

dependence parametrizing the bosonic self-energy.
The fermionic particle-particle bubble reads

Π(q0,q) =

∫
k

Gf (k)Gf (−k + q), (4.129)

and is the central building block for the RPA propagator

GRPA(q) =
−U

1 + UΠ(q0,q)
(4.130)

in the superconducting channel. Instead of that expression we will study here the deriva-
tive of the regularized particle-particle bubble appearing on the right hand side of the
flow equation

∂ΛΠ
Λ(q0,q) =

∫
k

DΛ [Gf (k)Gf (−k + q)] (4.131)

with the regularized fermionic propagator Gf (k) =
1

ik0−ξk+Rf (k)
and the regulator Rf (k) =

i(−k0 + Λsgn(k0))Θ(Λ − |k0|). The bubble can be split into two parts with the help of
the Heaviside function Θq0−k0 = Θ(Λ− |q0− k0|). In the symmetric regime in presence of
a cutoff the fermionic particle-particle bubble reads

∂ΛΠ
Λ(q0,q) =

∫
k

DΛ [Gf (k)Gf (−k + q)] (4.132)

=

∫
k

(
− d

dΛ
Rf (k)

)
2

(ik0 − ξk +Rf (k))2(−i(k0 − q0)− ξk−q +Rf (−k + q))

=

∫
k

i · sgn(k0)
−2Θk0Θk0−q0

(iΛsgn(k0)− ξk)2(−iΛsgn(k0 − q0)− ξk−q)

+

∫
k

i · sgn(k0)
−2Θk0(1−Θk0−q0)

(iΛsgn(k0)− ξk)2(−i(k0 − q0)− ξk−q)
. (4.133)

The real part of the bubble is symmetric in the external frequency q0, whereas the imag-
inary part is antisymmetric in q0 in the case of zero external momenta

ℜ (Π(q0, 0)) = ℜ (Π(−q0, 0)) , ℑ (Π(q0, 0)) = −ℑ (Π(−q0, 0)) . (4.134)

It is thus sufficient to restrict our analysis to positive external frequencies q0 > 0.
In the next step, we accomplish a proof by cases for frequencies in the range 0 ≤ q0 ≤
Λ. For general functionals f [k0, q0,Θk0 ,Θk0−q0 ] depending on both internal and external
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frequencies, k0 and q0, and on the Heaviside function Θk0 = Θ(Λ− |k0|), the relations∫ ∞

−∞

dk0
2π

Θk0 Θk0−q0f [k0, q0,Θk0 ,Θk0−q0 ] =

∫ Λ

q0−Λ

dk0
2π

f [k0, q0, 1, 1] (4.135)

and ∫ ∞

−∞

dk0
2π

Θk0 (1−Θk0−q0) f [k0, q0,Θk0 ,Θk0−q0 ] =

∫ q0−Λ

−Λ

dk0
2π

f(k0, q0, 1, 0) (4.136)

hold. These relations facilitate an analytic perfomance of the frequency integrations.
Expansion in positive frequencies q0 > 0 and capitalizing the symmetry relations then
yields

∂ΛΠ
Λ(q0, 0) =

∫
k

DΛ [Gf (k)Gf (−k + q)] (4.137)

∝ ∂ΛΠ
Λ(0, 0) + iq0

(
1

2π

)∫
k

−8Λ2ξk
(Λ2 + ξ2k)

3

− |q0|
(

1

2π

)∫
k

4Λ(−Λ2 + ξ2k)

(ξ2k + Λ2)3

+ q20

(
1

2π

)∫
k

1

(Λ2 + ξ2k)
2
. (4.138)

Analogously, the expansion of the fermionic particle-particle bubble in the symmetry-
broken regime with the normal fermionic propagator Gf (k) =

−ik0−ξk−Rf (k)

|ik0−ξk+Rf (k)|2+∆2 reads

∂ΛΠ
Λ(q0, 0) ∝ ∂ΛΠ

Λ(0, 0) + iq0

(
1

2π

)∫
k

−8Λ2ξk
(∆2 + Λ2 + ξ2k)

3

− |q0|
(

1

2π

)∫
k

4Λ(∆2 − Λ2 + ξ2k)

(ξ2k +∆2 + Λ2)3

+ q20

(
1

2π

)∫
k

(∆2 + Λ2 + ξ2k)
2 − 4∆2ξ2k

(∆2 + Λ2 + ξ2k)
4

. (4.139)

In the limit ∆ → 0 this expression reduces to the corresponding expression in the sym-
metric case.

The small q-dependence includes a linear imaginary frequency dependence that re-
sembles the term ∂τϕ

∗ϕ from the interacting Bose gas. Further, a quadratic frequency
dependence q20 is generated. However, due to a sharp Litim cutoff an artificial real-valued
linear frequency terms appears |q0|. It vanishes in absence of the cutoff, Λ = 0. This
indicates its artificial character owing to the presence of a sharp frequency cutoff. It is
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also easy to see that this non-analytic term vanishes in presence of a momentum cutoff.
We thus neglect this term in our ansatz for the scale-dependent effective action.

It is appropriate to mention that the method to determine the frequency dependence,
where the frequency regulator is kept constant during the differentiation, fails here. The
second frequency differentiation of the particle-particle bubble

∂

∂q20

∣∣∣
q=0

∣∣∣
RΛ
∂ΛΠ

Λ(q0,q) =

(
2Λ

2π

)∫
k

−4Λ
(Λ2 + ξ2k)

3
(4.140)

leads to a wrong sign for the prefactor. Yet, up to the sign it reproduces the structurally
correct Λ-dependence. A linear frequency dependence is not generated at all in this case

∂

∂q0

∣∣∣
q=0

∣∣∣
RΛ
∂ΛΠ

Λ(q0,q) = 0 (4.141)

due to symmetry. Finally, we consider the expansion for small momenta in qx-direction
to second order

∂ΛΠ
Λ(0,q) ∝ ∂ΛΠ

Λ(0, 0) + qx
∂

∂qx

∣∣∣
q=0

∂ΛΠ
Λ(0,q) +

q2x
2

∂2

∂q2x

∣∣∣
q=0

∂ΛΠ
Λ(0,q) (4.142)

It is easy to see that the term linear in qx vanishes due to symmetry, ∂
∂qx

∣∣∣
q=0

Π(0,q) = 0.

However, the quadratic part remains finite

∂2

∂q2x

∣∣∣
q=0

∂ΛΠ
Λ(0,q) =

(
2Λ

2π

)∫
k

4Λ(
∂ξk−q

∂qx
)2

(Λ2 + ξ2k)
3
. (4.143)

In summary, we analyzed the small q-dependence. Regular terms appear which justify
the quadratic ansatz in frequencies and momenta for the scale-dependent effective action.
However a real-valued linear frequency dependence appears due to the sharp Litim fre-
quency cutoff. In absence of a cutoff this term vanishes, we thus neglect it in our ansatz
for the effective action. The ratio of the renormalization factors, which parametrize the
frequency and momentum dependence, is only finite under renormalization. Since we are
not interested in this ratio, we set the renormalization factors parametrizing frequency
and momentum dependence equal.

4.7.2 Mean-field flow

Here, we present mean-field flows for the attractive Hubbard model in d = 2 at interaction
strength U = 4. First, we show the solution of the mean-field equations. Then, we present

107



4.7 Fermionic particle-particle bubble and mean-field flow

our results of the mean-field flow for two different regulators. Afterwards, we discuss the
determination of the fermionic contributions to the renormalization factors parametrizing
the frequency and momentum dependence of the bosonic self-energy. Finally, we discuss
the impact of fluctuations on the critical scale and the superfluid gap in different cutoff
schemes. Here, we will only allow fluctuations in the symmetric regime and neglect them
in the symmetry-broken regime. The results of a full treatment of fluctuations in both
regimes, the symmetric and the symmetry-broken one, are presented and discussed in the
next section 4.8.

We begin with the solution of the BCS gap equation

∆ = −U
∫
k

∆

E2
k + k20

, (4.144)

where Ek =
√

∆2 + ξ2k denotes the energy of single-particle excitations. Bosonic order
parameter and fermionic gap are identical. For the mean-field value of the superfluid gap
we find

∆MF
BCS = 1.16. (4.145)

Next, we numerically solve the functional RG equations for the symmetric regime in
presence of a Litim frequency cutoff, see section 4.4, in absence of bosonic fluctuations.
The flow equations then reduce to

d

dΛ
m2
b = g2

(
2Λ

2π

)∫
k

4Λ

(Λ2 + ξ2k)
2
, (4.146)

d

dΛ
u = g4

(
2Λ

2π

)∫
k

−16Λ
(Λ2 + ξ2k)

3
, (4.147)

where
∫
k
=
∫ π
−π

∫ π
−π

dkxdky
(2π)2

denotes momentum integrals over the Brillouin zone. At the
critical scale symmetry breaking occurs and a fermionic gap appears. Now, we solve
the mean-field flow in the symmetry-broken regime. The superfluid gap is obtained by
solving the coupled differential equation system between mass and gap equation in absence
of bosonic fluctuation contributions

d

dΛ
∆ =

2

m2
σ

(
2Λ

2π

)∫
k

−2Λ∆
(Λ2 + ξ2k +∆2)2

, (4.148)

d

dΛ
m2
σ =

(
2Λ

2π

)∫
k

−Λ(24∆2 + 8Λ2 + 8ξ2k)

(Λ2 + ξ2k +∆2)3
. (4.149)
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Cutoff type (frequency) Λ0 Λc uΛc ∆MF
Cutoff

Litim 100 1.48 0.18 0.98
Litim 1000 1.54 0.16 1.02
Multiplicative 100 0.50 0.34 0.84
Multiplicative 1000 0.47 0.33 0.86

Table 4.1: Comparison of different couplings and the superconducting gap between a
multiplicative cutoff and an additive sharp Litim cutoff for a mean-field flow. The flow
equations are employed for different ultraviolet cutoff scales Λ0 = (100, 1000).

The gap saturates in the infrared limit Λ→ 0 and we find the following mean-field values

∆MF
Litim = 0.98 (Λ0 = 100), ∆MF

Litim = 1.02 (Λ0 = 1000) (4.150)

for different ultraviolet cutoffs Λ0.
In the case of a sharp frequency multiplicative cutoff15 the equivalent flow equation

for the symmetric regime reads

d

dΛ
m2
b = g2

∫
k

4

2π

1

(Λ2 + ξ2q)
, (4.151)

d

dΛ
u = −4g2

∫
k

(
2

2π

)
1

(Λ2 + ξ2k)
2
. (4.152)

The solution of the coupled RG equations in the broken-symmetry regime

d

dΛ
∆ = − 2

m2
σ

2

2π

∫
k

∆

Λ2 + ξ2k +∆2
, (4.153)

d

dΛ
m2
σ = − 4

2π

∫
k

4∆2 + 2Λ2 + 2ξ2k
(Λ2 + ξ2k +∆2)2

(4.154)

yields the following mean-field values for the superconducting gap

∆MF
Multi = 0.84 (Λ0 = 100), ∆MF

Multi = 0.86 (Λ0 = 1000) (4.155)

for different choices of the ultraviolet cutoff Λ0. Table 4.1 sums up our results for the
superfluid gap for the different cutoff schemes in a compact way. The value of the bosonic
self-interaction is presented at the critical scale. Different cutoff schemes lead to different
mean-field gaps, see Eq. (4.150) and (4.155). Both superconducting gaps are reduced

15See Strack et al. (2008) for more details about the application of the sharp multiplicative cutoff in
the context of a fermionic superfluid.
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Figure 4.22: Mean-field flow (purely fermionic flow) for the bosonic mass mb for different
cutoff schemes (multiplicative and additive Litim cutoff) at different UV cutoff Λ0 =
(100, 1000). The critical scale is reached at m2

b = 0

compared to the exact mean-field results, due to our approximation for the bosonic po-
tential compared to the exact mean-field potential (see Strack et al. (2008) for a detailed
discussion). However, a rather large difference between the cutoff schemes arises for the
value of the critical scale. The critical scale in presence of a Litim cutoff is almost three
times as large as the critical scale in presence of a multiplicative cutoff. This effect is
nicely illustrated in the bosonic mass flow driven only by fermions, see figure 4.22. An
explanation for that behaviour can be found in the technical details of both regularization
schemes. The multiplicative cutoff regularizes low energy modes by simply cut them off
at the scale Λ. In contrast the Litim works more subtly and does not fully exclude low
energy modes, but includes them in a regularized manner. The frequency dependence ik0
is replaced by the expression iΛsgn(k0) in the fermionic propagator. Hence, at the scale Λ

the theory with a Litim cutoff has already included more low-energy degrees of freedom
compared to a theory with a multiplicative cutoff at the same scale. Thus, symmetry
breaking occurs at a higher critical scale in presence of a Litim cutoff compared to a
multiplicative cutoff.

Now, we discuss the determination of fermionic contributions to the flow of the renor-
malization factors parametrizing the frequency and momentum dependence of the bosonic
self-energy. It is generally known, that a determination of the frequency dependence of
renormalization factors in the presence of a frequency cutoff is a delicate procedure. Hence,
for the determination of the frequency dependence often a scheme is applied, where the
(frequency) regulator is kept constant during differentiation (with respect to external fre-
quencies), see for instance the work by Strack et al. (2008). However, in our case it turned
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out that unphysical values for the renormalization factor appear. Determination of the
prefactor within that differentiation scheme

d

dΛ
Zω
b =

1

2

∂2

∂q20

∣∣∣
p=0

∣∣∣
R

d

dΛ
Σb(p), (4.156)

leads to the result

d

dΛ
Zω
b = g2

(
2Λ

2π

)∫
k

4Λ

(Λ2 + ξ2k)
3

(4.157)

implying a negative Zω
b factor for all scales. This is an indication that additional contri-

butions due to the frequency dependence of the regulator have to be included to obtain
the correct (positive) prefactor. The same issue occurs in presence of a multiplicative
regulator, where the corresponding fermionic contribution to the flow of the frequency
renormalization factors reads

d

dΛ
Zω
b = g2

∫
k

(
2

2π

)
−2(ξ2k − Λ2)

(Λ2 + ξ2k)
3
. (4.158)

Here, the right side is positive for all scales leading to a negative Zω
b factor as in the case

of the Litim cutoff during the RG flow. This again indicates that important contributions
from frequency derivatives of the frequency regulator were neglected. A formal expansion
of the particle-particle bubble for small frequencies, as discussed in the previous subsec-
tion, yields the correct sign. However, in that case a non-analytic frequency dependence
appears.

In contrast to the renormalization factor parametrizing the frequency dependence,
the renormalization factors parametrizing the momentum dependence of the bosonic self-
energy can be easily determined. Differentiation with respect to momenta yields

d

dΛ
Zb = g2

(
2Λ

2π

)∫
k

−4Λ(2 sin(kx))2

(Λ2 + ξ2k)
3

, (4.159)

in presence of a Litim cutoff and

d

dΛ
Zb = g2

∫
k

(
2

2π

)[
2(2 sin(qx))

2(ξ2k − Λ2)

(Λ2 + ξ2k)
3

+
−2ξk cos(kx)
(Λ2 + ξ2k)

2

]
, (4.160)

in presence of a multiplicative cutoff. In figures 4.23 and 4.24 the flow for the bosonic
renormalization factor is shown, which parametrizes the quadratic momentum depen-
dence of the bosonic self-energy. Here, only the fermionic contribution to the flow of the
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Figure 4.23: Mean-field flow (purely fermionic flow) of the renormalization factor Zb in
different cutoff schemes and different ultraviolet cutoffs Λ0.
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Figure 4.24: Mean-field flow (purely fermionic flow) of the renormalization factor Zb in
different cutoff schemes and different intial values.

bosonic renormalization factors is considered. The renormalization factor in presence of
a multiplicative cutoff is almost a magnitude smaller than the renormalization factor in
presence of the Litim cutoff. Again this reflects the technical difference in the regular-
ization schemes between both cutoff schemes. Now, we discuss the ultraviolet behaviour
of the renormalization factors. Figure 4.23 shows the flow of the renormalization factors
starting all at the initial value Zb = 0. In the ultraviolet jumps appear due to the nu-
merical initialization. However, it is remarkable that below a certain scale there is no
difference recognizable in the flow of the renormalization factor between different ultra-
violet cutoffs for each cutoff scheme. The same effect happens by employing finite initial
values, Zb = 0.0001, see figure 4.24.

Finally, we discuss the effect of fluctuations in the symmetric regime in presence of
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Approximations for coupled theory (Litim,Λ0 = 1000) Λc ZΛc
b uΛc ∆MF

SSB

Mean-Field (pure fermionic flow) 1.54 0.09 0.16 1.02
Coupled theory (full flow) 1.36 0.12 0.19 0.88
Coupled theory (full flow Żfeedback

b = 0) 0.88 0.29 0.38 0.62
Bosons included (W = 0, Y ̸= 0) 1.36 0.13 0.18 0.93
Bosons included (W = 0, Y = 0) 1.29 0.13 0.18 0.91
Bosons included (W = 0, Y = 0, Żfeedback

b = 0) 0.70 0.48 0.53 0.51

Table 4.2: Critical scale Λc, bosonic self-interaction u, renormalization factor Zb and
gap ∆MF

SSB for different approximations of the flow equation. The renormalization factor
and the bosonic self-interaction are evaluated at the critical scale. The cutoff is a sharp
Litim frequency cutoff and the flow starts from an UV cutoff of Λ0 = 1000. In all cases
fluctuation effects in the symmetry-broken regime are neglected, which is marked as ′SSB′

in ∆MF
SSB.

a sharp Litim frequency cutoff. To this end, we use the RG equations derived in section
4.4. However, in the symmetry-broken regime we still neglect bosonic fluctuations and use
only the mean-field flow equations given by the coupled flow equation between bosonic
mass, Eq. (4.149), and fermionic gap, Eq. (4.148). Our results are summarized in table
4.2. Results for the critical scale, the momentum renormalization factor, the bosonic self-
interaction and the superconducting gap are presented. Different truncations are shown
and the impact of the non-local Y -term, the linear frequency dependence W and the
impact of the scale derivative of the bosonic renormalization factor d

dΛ
Zb, appearing in

the scale derivative of the regulator d
dΛ
Rb(q), are illustrated. For completeness also results

for the full RG flow including bosonic fluctuations in both regimes, the symmetric and the
symmetry-broken regime, are shown in the table. In general bosonic fluctuations slightly
reduce the critical scale compared to the pure fermionic (mean-field) flow. It turns out
that the inclusion of the Y -term and theW -term leads only to a minor difference of the gap
compared to the full flow. The inclusion of both W and Y tend to slow down the impact of
order parameter fluctuations compared to the pure mean-field result. The most dominant
impact is obtained by the inclusion of feedback effects due to the scale-derivative of the
Litim cutoff. In this case bosonic fluctuation contributions in the symmetric regime are
almost canceled out due to this additional term, and the results are roughly comparable to
the mean-field results. Neglecting these scale derivative leads to a significant drop of the
mean-field gap to almost one half. Numerical results for the total flow in the symmetric
and symmetry-broken regime including all fluctuations are presented and discussed in
detail in the next section.
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In summary, we obtained the following results. First, different cutoff schemes lead to
significant different critical scales in the mean-field flow. However, similar results for the
superconducting gap were obtained. Secondly, the weakness of the frequency differenti-
ation scheme was revealed, where the regulator is treated as a constant in presence of a
frequency cutoff. Negative signs for the frequency renormalization factors appeared sug-
gesting that important terms due to the frequency derivative of the sharp frequency cutoff
were neglected. Third, a refined ansatz for the frequency and momentum dependence of
the bosons including Y and W did not show a drastic impact on the superfluid gap,
at least not in the case where bosonic fluctuation are neglected in the symmetry-broken
regime. However, a pronounced impact on the superfluid gap was caused by the inclu-
sion of the scale-derivative of the bosonic renormalization factors produced by the scale
derivative of the regulator. This term cancels almost all bosonic fluctuation contributions
in the symmetric regime.

4.8 Numerical results in d = 2

Here, we present numerical results for the flow equations in two dimensions in the symmet-
ric and symmetry-broken regime. The equations were solved on a double-core CPU with
the software package Matlab. On the right side of the flow equations three dimensional
integrations over frequencies and momenta are performed numerically in most cases. Two
dimensional integrations over the momentum space in the Brillouin zone were partly re-
duced to one-dimensional integrations over energy with the bosonic density of states, see
appendix B. Throughout the discussion we will work with an intermediate interaction
strength U = 4. For weaker interaction strength qualitatively the same results are ob-
tained. The hopping is set to t = 1 and we start in the ultraviolet at the scale Λ0 = 1000.
We will show numerical results for the bosonic order parameter and the fermionic gap.
Additionally, the flow of the transverse Yukawa vertex is shown. Afterwards, results for
the longitudinal mass and renormalization factors Zσ, Zπ and W are presented. Finally,
the flow for u and Y -term parametrizing the non-local bosonic self-interaction are shown.

We begin with the results for the order parameter and the fermionic single-particle
gap shown in figure 4.25. At the critical scale Λc ≈ 1.36 spontaneous symmetry breaking
occurs. Above the critical scale Λ > Λc both quantities are identical zero. Below the
critical scale they develop gradually. The order parameter is slightly reduced compared
to the mean-field gap, due to bosonic fluctuations. In our truncation the result for the
fermionic gap is given by ∆ = 0.88. The value for the gap is reduced compared to mean-
field gap obtained from the solution of the BCS-gap equation due to fluctuation effects
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Figure 4.25: Renormalization group flow of the bosonic order parameter α and the
fermionic single-particle gap ∆. Both quantities are generated at the critical scale Λ = Λc
and saturate in the infrared limit Λ→ 0.

and due to a finite truncation of our ansatz. Strack et al. (2008) pointed out that in a
coupled fermion-boson mean-field flow a finite truncation of the bosonic potential will not
reproduce the exact mean-field result due to missing contributions. As mentioned above,
fluctuations also lead to a reduction of the superconducting gap compared to the mean-
field solution even in the weak coupling limit U → 0 due to particle-hole excitations, see
Gorkov and Melik-Barkhudarov (1961). However, compared to previous results we ob-
tained a rather high value for the superconducting gap. Gersch et al. (2008) and Eberlein
and Metzner (2013) found that the superconducting gap was approximately half of the
mean-field value at the same interaction strength in a purely fermionic functional RG
approach. A similar result was obtained by Martin-Rodero et al. (1992) in a perturbative
calculation. In the previous study by Strack et al. (2008) within a coupled fermion-boson
RG a more drastic reduction to roughly one quarter was observed. In our case, the rather
high value for the gap can be traced back to lack of particle-hole fluctuations in our trun-
cation. It also turned out that the scale derivative of the bosonic renormalization factor
d
dΛ
Zb, which appears in the scale derivative of the Litim regulator d

dΛ
Rb(q), compensates

the impact of bosonic fluctuations almost totally in the symmetric regime.
In figure 4.26 the renormalization of the transverse Yukawa vertex is illustrated. In

contrast to the earlier work, we find a value bigger than one that is consistent with
the fermion-boson Ward identity between gap and order parameter. Vertex corrections
including two bosons and one anomalous fermion propagator cause this behaviour see Eq.
(4.91), which were not considered in the previous work.
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Figure 4.26: Renormalization group flow of the transverse Yukawa vertex.

Figures 4.27-4.29 show the flow of various parameters for the bosonic self-energy in
our ansatz. In figure 4.27 the flow of the longitudinal bosonic mass is presented. It
starts at m2

b = 2
|U | in the ultraviolet limit Λ = Λ0 and vanishes at the critical scale

Λ = Λc, signalling the pairing instability. In the symmetric regime above the critical scale
bosonic fluctuations slightly compensate the drop of the longitudinal mass, leading to a
lower critical scale compared to the mean field value. In the symmetry-broken regime
the situation is reversed. Fermions generate a finite longitudinal mass below and bosonic
Goldstone fluctuations dominate the infrared behaviour leading to a linear disappearance
of the mass term m2

σ ∝ Λ. The transverse mass mπ = 0 remains zero in the whole
symmetry-broken phase as discussed in section 4.5.

The flow of the bosonic renormalization factor is shown in figure 4.28. In the sym-
metric regime the particle-particle bubble entails a smooth increase of the renormalization
factors parametrizing frequency and momentum dependence of the bosonic propagator.
At the critical scale we distinguish between transverse and longitudinal renormalization
factors. The transverse renormalization factor slowly grows due to fermionic contributions.
But then it saturates due to cancellations between logarithmically diverging bosonic con-
tributions, see section 4.6. This preserves the linearly dispersing Goldstone mode in our
theory and leads to a finite spectral weight of the Goldstone excitation. Finally, the
longitudinal renormalization factor diverges in the infrared, Zσ ∝ 1

Λ
. This signals the

existence of an incoherent continuum for the longitudinal excitations. Weichmann (1988)
and Zwerger (2004) found a similar behaviour for the longitudinal renormalization factor
in a different physical context.

On intermediate scales the value for Zπ is higher as Zσ which is consistent with
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Figure 4.27: Renormalization group flow of the bosonic mass m2
b in the symmetric regime

and of the longitudinal bosonic mass in the symmetry-broken regime. The bosonic mass
m2
b starts at the inverse interaction strength and vanishes at the critical scale, while the

lonigitudinal mass emerges at the critical scale, but vanishes linearly in the infrared limit
Λ→ 0.

the flow of the higher gradient term Y displayed in figure 4.30. The linear frequency
dependence parametrized by W is plotted in 4.29. In the symmetric regime it evolves
gradually from zero and vanishes linearly as the longitudinal mass in the infrared limit
due to Goldstone fluctuations W ∝ Λ. The ratio between W and the bosonic mass
was determined as C = W

m2
σ

= 0.25. In the context of the interacting Bose gas, this
quantity ensures a finite condensate compressibility (Castellani et al. (1997) and Pistolesi
et al. (2004)).

Finally, in figure 4.30 we discuss the flow of the bosonic self-interaction parametrized
by the local term u, and the Y -term inducing non-locality. The local interaction shown
in figure 4.30 is generated in the symmetric regime but vanishes linearly in the infrared
u ∝ Λ triggered by the behaviour of the longitudinal mass and the saturation of the order
parameter. In contrast, the Y-term diverges in the infrared as a power law Y ∝ 1

Λ
dictated

by the behaviour of the longitudinal renormalization factor Zσ. From the beginning of the
flow down to a scale Λ∗ below the critical scale, the Y-term is negative, since the transverse
renormalization factor is larger compared to the longitudinal one in that regime.

The behaviour of the discussed quantities is in full agreement with the behaviour of
a weakly interacting Bose gas in two dimensions (Castellani et al. (1997) and Pistolesi et
al. (2004), Sinner et al. (2009, 2010) and Dupuis (2009)).
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Figure 4.28: Renormalization group flow of bosonic renormalization factors. Zb denotes
the flow of the bosonic momentum and frequency dependence in the symmetric regime
above the critical scale. In the symmetry-broken phase Λ < Λc transverse and longitudinal
renormalization factors Zπ and Zσ are distinguished.
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Figure 4.29: Renormalization group flow of the linear imaginary frequency dependence
coefficient W .
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Figure 4.30: Renormalization group flow for the couplings parmetrizing the bosonic self-
interaction. u corresponds to the local bosonic self-interaction and Y denotes the non-local
quadratic frequency and momentum dependence of the bosonic self-interaction.

4.9 Conclusion

In this chapter we have analyzed the attractive Hubbard model as a prototype model for
a fermionic superfluid. Order parameter fluctuations and their interplay with fermions
were studied within a coupled fermion-boson functional RG analysis. The fermionic
two-particle interaction was decoupled by a Hubbard-Stratonovich transformation in the
particle-particle s-wave singlet channel. A previous truncation was extended in several
directions. The introduction of the so-called Y-term, implying a non-local bosonic self-
interaction, was necessary to preserve the U(1)-symmetry, when longitudinal and trans-
verse fluctuations are distinguished in the symmetry-broken regime of the flow. An imag-
inary linear frequency dependence of the bosonic propagator entails mixed transverse-
longitudinal bosonic propagators. During the flow the U(1)-symmetric potential develops
a Mexican-hat-like structure at the critical scale, signalling symmetry breaking. A finite
order parameter and a fermionic single-particle gap emerges. In the superfluid regime
bosonic fluctuations were decomposed in transverse and longitudinal components around
the order parameter. Transverse modes correspond to phase fluctuations and longitudinal
modes to amplitude fluctuations.

We consistently described the fermion-boson theory within a relatively simple trun-
cation of the RG equations. Our truncation preserves the Goldstone theorem and a finite
spectral weight for the Goldstone mode in spite of infrared divergencies. Lowest order
Ward identities are found to be respected by the ansatz. The collective excitations be-
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4.9 Conclusion

have as an interacting Bose gas. The correct asymptotic behaviour for the fluctuation
propagators are reproduced within our theory. Our study may serve as a reference for
future truncations requiring a fulfillment of Ward identities.
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CHAPTER 5

Summary and Outlook

In this work we investigated two different models of interacting fermions exhibiting s-wave
superfluidity within the framework of the coupled fermion-boson functional renormaliza-
tion group method. We studied the mutual interplay between order parameter fluctuations
and fermions in both systems.

5.1 Superfluid-semimetallic quantum phase transition

5.1.1 Summary

We analyzed the quantum phase transition between a semimetal and a superfluid in the
Dirac cone model. We were interested in the impact of critical fluctuations close to
and at the quantum critical point and their interplay with fermionic degrees of freedom.
Hence, bosonic fields were introduced in the s-wave singlet channel through a Hubbard-
Stratonovich transformation decoupling the fermionic two-particle interaction of the Dirac
cone model. In contrast to the standard approach of quantum criticality by Hertz and
Millis, we did not integrate out the fermions to derive a purely bosonic action. Instead we
analyzed the coupled fermion-boson theory with the functional renormalization group.

The Dirac cone model was introduced and first analyzed by Strack et al. (2010). An
ansatz for the scale-dependent effective action was employed in powers of fields and in
a gradient expansion. They investigated the quantum critical point starting from the
semimetallic phase at zero temperature and found non-Fermi-liquid and non-Gaussian
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5.1 Superfluid-semimetallic quantum phase transition

behaviour at the quantum critical point. Compared to the mean-field result the ordered
phase shrank due to bosonic order parameter fluctuations. We extended this previous
truncation of the functional RG flow in several directions. The fermionic two-particle
interaction led to an opening of a fermionic band gap. Thus, a finite counterterm was
added to the action and was tuned in such a way that the fermionic band gap was kept
closed during the RG flow, especially in the infrared limit preserving thus the semimetallic
phase. The fermionic renormalization factors parametrizing the frequency and momen-
tum dependence of the fermionic self-energy were distinguished. The renormalization
factor parametrizing the frequency dependence diverges, whereas the renormalization fac-
tor parametrizing the momentum dependence remains constant at the quantum critical
point. In contrast to the previous work, this behaviour leads to a vanishing Fermi velocity
at the quantum critical point. Furthermore, a fermionic anomalous dimension appears,
implying a breakdown of the Fermi liquid concept at the quantum critical point. We could
also confirm the result of a vanishing spectral weight of the fermionic quasi-particles. The
renormalization factors parametrizing the frequency and momentum dependence of the
bosonic self-energy diverge at the quantum critical point, leading to bosonic anomalous
dimensions implying non-Gaussian behaviour. The fermionic and bosonic anomalous ex-
ponents obey several scaling laws. At the quantum critical point the pairing susceptibility,
the correlation time and the correlation length are infinite.

Surprisingly, in the semimetallic ground state, away from the quantum critical point,
both correlation length and correlation time were found to be infinite, too, whereas the
pairing susceptibility remained finite there. The origin of this unexpected behaviour
could be traced back to non-analytic linear frequency and momentum dependencies of
the fermionic particle-particle bubble at zero temperature, leading to a power law decay
in space and time, respectively. At finite temperature or in presence of an infrared cut-
off only a regular frequency and momentum dependence appears in the particle-particle
bubble. At finite temperatures, above the quantum critical point, a finite susceptibility,
correlation length, and correlation time were found which all show a power law behaviour,
as expected. The corresponding critical exponents obey classical scaling laws and the
anomalous dynamical critical exponents for bosons and fermions were determined. We
summarize the central results in a list:
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5.1 Superfluid-semimetallic quantum phase transition

1. RG analysis of a quantum phase transition between a superfluid and a
semimetal

2. non-Fermi liquid behaviour and non-Gaussian behaviour at the quantum
critical point

3. vanishing Fermi velocity and spectral weight of fermionic quasi-particles at
the quantum critical point

4. correlation length, correlation time and susceptibility infinite at the quan-
tum critical point

5. scaling laws for critical exponents at zero and finite temperature

6. divergent correlation length in the entire semimetallic ground state

5.1.2 Outlook

The simplicity of the Dirac cone model naturally suggests it as a textbook model for
non-Gaussian criticality and non-Fermi liquid behaviour, illustrating the application of
the functional RG framework in a simple case study. Here an interesting quantum phase
transition close to s-wave superfluidity was investigated in our work. In an era, where
Dirac cones in graphene and in topological materials are intensively studied in condensed
matter physics, such a prototypical study between fermionic s-wave superfluidity and a
semimetallic phase consisting of one Dirac cone is timely.

Extensions towards more realistic models of topological insulators and superconduc-
tors, graphene or relativistic QED2+1 models are conceivable. In this case the structure of
the fermionic degrees of freedom has to be adapted to capture the correct entanglement
between spin and the momentum. In the case of graphene one should include the internal
spinor structure to include the second Dirac cone and an adapted kinetic term. Further-
more, the concept of exciton-condensation in bilayer graphene could also be studied in
such a simplified framework.

The work may serve as a guide line for studies of the concept of quantum criticality
at zero and finite temperatures by the fermion-boson functional RG studies. Other in-
triguing problems to analyze would be magnetic and nematic quantum phase transitions
in itinerant electronic systems.
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5.2 Low-energy singularities in fermionic superfluidity

5.2 Low-energy singularities in fermionic superfluidity

5.2.1 Summary

In this second project, the mutual interplay between fermions and bosonic order param-
eter fluctuations in the ground state of a charge-neutral fermionic s-wave superfluid was
investigated. The attractive Hubbard model served as a prototype model for fermionic
superfluidity in the numerical analysis of the problem. Massless Goldstone fluctuations
emerge due to spontaneous symmetry breaking of the global U(1)-symmetry, which dra-
matically influence the behaviour of the system. This is already visible in plain per-
turbation theory, where they lead to severe divergences. Our goal was to capture the
correct infrared behaviour within a minimal truncation of the fermion-boson functional
RG flow. Furthermore, we intended to study the mutual interplay between fermions and
order parameter fluctuations, especially the dramatic impact of Goldstone fluctuations.

To this end, the fermionic two-particle interaction of the model was decoupled by
a Hubbard-Stratonovich transformation in the s-wave singlet channel, and the resulting
coupled fermion-boson theory was investigated with the functional renormalization group
method in its 1PI version. In this approach the interplay between fermions and bosonic
fluctuations, especially Goldstone fluctuations, can be captured already in a one-loop
truncation of the RG flow. Fermions dominate the RG flow at high energies, whereas
bosonic fluctuations dominate the RG flow in the infrared limit, where the Goldstone
mode has a drastic impact.

We extended a previous truncation of a coupled fermion-boson functional RG flow
by Strack et al. (2008) in several directions. They distinguished already between the
fermionic single-particle gap and the bosonic order parameter. Further, longitudinal and
transverse fluctuations of the bosonic order parameter fluctuations were distinguished in
their study. The impact of Goldstone fluctuations on the longitudinal excitations was
proved, which behaved similarly as an interacting Bose gas (Castellani et al. (1997) and
Pistolesi et al. (2005)). However, in our work we additionally included a renormaliza-
tion factor parametrizing the linear imaginary frequency dependence of the bosonic self-
energy, which was neglected in this previous work. Such a term is generated by fermionic
diagrams and leads to a mixing between transverse and longitudinal order parameter
fluctuations. Furthermore, a non-local bosonic self-interaction is taken into account,
parametrized by the so-called Y-term. This term is irrelevant in power counting, but
turned out to be important due to symmetry. Only a finite Y -term was consistent with
distinguished renormalization factors between the longitudinal and transverse fluctuations
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5.2 Low-energy singularities in fermionic superfluidity

in the symmetry-broken phase, because of the U(1)-symmetry of the model.
In the following, we explain our main results. The fermionic single-particle gap

was reduced due to fluctuations compared to the mean-field result, as expected. How-
ever, compared to a purely fermionic RG flow our gap was much larger, which could be
traced back to the lack of particle-hole fluctuations in our truncation. In two dimensions,
the renormalization factor parametrizing the linear imaginary frequency dependence of
the bosonic self-energy vanishes linearly in the infrared just as the longitudinal bosonic
mass and the local bosonic self-interaction. The renormalization factor parametrizing the
quadratic frequency and momentum dependence of the longitudinal bosonic self-energy
diverged as the inverse of the cutoff scale, caused by Goldstone fluctuations, just as the
Y-term. In three dimensions logarithmic behaviour in the infrared limit was found. This
infrared behaviour is in full agreement with the behaviour of an interacting Bose gas.

Our simple truncation satisfies Ward identities of lowest order. Especially, we showed
that our truncation is consistent with a bosonic Ward identity, connecting the longitudinal
and transverse bosonic self-energies to the non-local bosonic self-interaction. Furthermore,
we derived two fermion-boson Ward identities. The first identity linked the fermionic
single-particle gap and the bosonic order parameter via the transverse Yukawa vertex.
Another fermion-boson Ward identity appeared that coupled the two-boson-two-fermion
vertex to the anomalous Yukawa coupling. In absence of a finite two-boson-two-fermion
vertex, as in our truncation, this identity constrained the transverse and longitudinal
Yukawa coupling to be identical.

Afterwards, we investigated the implications of these lowest order Ward identities.
First, we could explicitly show that all bosonic fluctuations contributing to the flow of
the Goldstone mass cancel out, due to the bosonic Ward identity. Here, the non-locality
of the bosonic self-interaction played a crucial role. Second, we showed that the fermion-
boson Ward identities led to a cancellation between fermionic contributions to the flow
of the Goldstone mass. Finally, we also proved that in the infrared limit two singular
contributions to the spectral weight of the Goldstone mode canceled out exactly. Gold-
stone fluctuations caused this singular behaviour of both contributions and the non-local
bosonic self-interaction was again crucial for this cancellation process. Hence, in our trun-
cation the Goldstone theorem was satisfied and a finite spectral weight for the Goldstone
mode was obtained. We also pointed out that the introduction of a finite two-boson-two-
fermion vertex in our theory would imply naturally differing longitudinal and transverse
Yukawa couplings. We proved analytically that the RG equations for the couplings in
our truncation were consistent with the Ward identity linking the fermionic gap and the
bosonic order parameter via the transverse Yukawa coupling.
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5.2 Low-energy singularities in fermionic superfluidity

We summarize the central results in a list:

1. RG analysis of the ground state of a fermionic s-wave superfluid

2. transverse and longitudinal fluctuations were distinguished

3. mixing between transverse and longitudinal bosonic modes was taken into
account

4. fermionic gap and bosonic order parameter were distinguished

5. gap was reduced compared to the mean-field result.

6. non-local bosonic self-interaction is important due to symmetry

7. collective excitations behaved as an interacting Bose gas

8. (lowest order) Ward identities were fulfilled in the truncation

9. massless linearly dispersing Goldstone mode was preserved in the trunca-
tion

5.2.2 Outlook

In this project, we presented a minimal truncation for the boson-fermion functional RG
flow describing a fermionic superfluid in a consistent way. Since we use an ansatz for the
effective action in powers of fields and gradients, new developments and extensions may
follow in that direction. As mentioned above, the impact of particle-hole fluctuations
(Flörchinger et al. (2007)) was not considered in our work. Hence, fluctuation contribu-
tions that are important for the size of the fermionic single-particle gap were neglected.
This drawback could be addressed by the application of the dynamical bosonization in
our RG scheme, where the regenerated fermionic two-particle interaction is dynamically
decoupled during the RG flow (Gies et al. (2002, 2004) and Flörchinger et al. (2009)). An-
other improvement towards a quantitative result for the fermionic gap is given by a fully
functional flow for the frequency and momentum dependence instead of a gradient ansatz.
This was implemented recently in a purely fermionic RG approach (Eberlein and Met-
zner (2013)). The combination of the advantages of both improvements together with our
achievements would lead to an accurate result for the fermionic single-particle gap, besides
the correct infrared asymptotic of the collective low-energy excitations. Furthermore, it
would also be interesting to investigate under what circumstances and conditions a roton
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5.2 Low-energy singularities in fermionic superfluidity

minimum appears in the spectrum of the transverse excitations, which is well-known to
occur in superfluid Bose systems.

In our truncation, we neglected a two-boson-two-fermion term, which is also generated
in the RG flow. As we pointed out, a finite two-boson-two-fermion vertex is connected to
the anomalous Yukawa vertex through a Ward identity. The inclusion of such a term allows
the distinction between transverse and longitudinal Yukawa vertices. The introduction
of such a term would lead to a structural change of the RG equations. We expect that
the linearly dispersing massless Goldstone mode would still be preserved within such a
truncation.

In the context of ultra-cold atoms, our minimal ansatz would be an ideal basis to
revisit the BCS-BEC crossover within a truncation that consistently treats the fermion-
boson sector. Further RG studies of continuum models of interacting fermions in three
dimensions or the attractive Hubbard model in two dimensions could be employed to
investigate the crossover. For the description of the crossover, the particle number has
to be fixed, which could be implemented by allowing a flow of the chemical potential.
In that situation, the Goldstone fluctuations would have a more drastic impact leading
to quasi-long-range order (Goldenfeld (1992)). At finite temperature, one would expect
a Kosterlitz-Thouless transition in two dimensions. A BCS-BEC-like crossover is also
conjectured to exist in excitonic insulators (Phan et al. (2010)), which provides a new
playground for experimental and theoretical research. Here, the condensed pairs consist
of electron-hole pairs instead of electron-electron pairs.

Our truncation may serve as a standard for future fermion-boson functional RG
studies, where a fulfillment of Ward identities is desired.
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APPENDIX A

Derivation of RG equations: Symmetric regime

In this section, we derive explicit flow equations for the couplings, which parametrize
the scale-dependent effective action in the symmetric regime of the fermionic superfluid
investigated in chapter 4. The flow of the couplings is extracted by successively applying
functional field derivatives to the right hand side of the RG equation of the effective action.
We also show that these flow equations, describing the fermionic superfluid, reduce to the
flow equations investigated in the context of the Dirac cone model in chapter 3.

This appendix is structured as follows: In section A.1 the ansatz for the scale-
dependent effective action is presented. Section A.2 shows the matrix representation
of fermionic and bosonic propagators. Amputated vertices connecting the propagator
lines and expressions for the couplings extracted from the effective action can be found
in section A.3. Finally, section A.4 presents the RG flow of the couplings. The reduction
of these RG equations to equations describing the quantum phase transition in the Dirac
cone model is discussed in section A.5.

A.1 Ansatz for the effective action

We briefly repeat the ansatz of the scale-dependent effective action that we use for our
analysis of the fermionic superfluid. The ansatz for the scale-dependent effective action
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A.2 Matrix representation of the fermionic and bosonic propagator

reads

Γ = Γψ̄ψ + Γϕ∗ϕ + Γϕ4 + Γψ2ϕ∗ , (A.1)

where the quadratic part in fermionic fields is given by

Γψ̄ψ =

∫
kσ

ψ̄kσ(ik0 − ξk)ψkσ (A.2)

and in bosonic fields by

Γϕ∗ϕ =
1

2

∫
q

ϕ∗
q

(
−iWq0 + Zb(q

2
0 + ω2

q) +m2
b

)
ϕq. (A.3)

The local and non-local parts of the bosonic self-interaction

Γϕ4 =
1

8

∫
k,k′,q

U(q)ϕkϕ
∗
k−qϕk′ϕ

∗
k′+q (A.4)

are parametrized by the couplings u and Y in the function U(q) = u+Y (q20 +ω2
q). In the

symmetric regime, only a normal Yukawa coupling occurs

Γψ2ϕ∗ = g

∫
k,q

(
ψ̄−k+q/2↓ψ̄k+q/2↑ϕq + ψk+q/2↑ψ−k+q/2↓ϕ

∗
q

)
, (A.5)

due to the decoupling of the fermionic two-particle interaction by the Hubbard-Stratonovich
transformation in the particle-particle channel.

A.2 Matrix representation of the fermionic and bosonic

propagator

Here, we present the fermionic and bosonic propagator in a matrix representation. This
representation will be useful for the evaluation of the RG equations in section A.4. We
work in the bosonic basis (ϕQ) = (ϕq, ϕ

∗
q). The functional field derivative of the scale-

dependent effective action Eq. (A.1) with respect to bosonic fields is defined as

δ2Γ

δϕ2
≡
(

δ2Γ

δϕQ′δϕQ′′

)
≡

 δ2Γ
δϕq′δϕq′′

δ2Γ
δϕq′δϕ

∗
q′′

δ2Γ
δϕ∗

q′δϕq′′
δ2Γ

δϕ∗
q′δϕ

∗
q′′

 .
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Inserting our ansatz yields

δ2Γ

δϕ2
=

(
0 −iW

2
q′0 +

Zb

2
(q′20 + ω2

q′) +
m2

b

2

−iW
2
q′0 +

Zb

2
(q′20 + ω2

q′) +
m2

b

2
0

)
δq′,q′′ (A.6)

in the limit of vanishing fields ϕ = ψ = 0. In the next step, we introduce the regularized
effective action as

Γ̃ = Γ +
1

2

∫
Q,Q′

ϕQRb(Q,Q
′)ϕQ′ +

1

2

∫
K,K′

ψKRf (K,K
′)ψK′ , (A.7)

where Rb(Q,Q
′) and Rf (Q,Q

′) denote bosonic and fermionic regulators which suppress
low energy modes in the effective action Γ. In matrix representation the bosonic regulator
reads

Rb(q, q
′) ≡

(
0 Rb(q)δq,q′

Rb(q)δq,q′ 0

)
. (A.8)

The matrix representation of the fermionic regulator will be shown below, when we discuss
the fermionic sector of the theory.

We define the inverse of the second derivative of the regularized effective action with
respect to bosonic fields as

B ≡
[δ2Γ̃
δϕ2

+Rb

]−1

≡
(
B(ϕQ′ , ϕQ′′)

)
≡

(
B(ϕq′ , ϕq′′) B(ϕq′ , ϕ∗

q′′)

B(ϕ∗
q′ , ϕq′′) B(ϕ∗

q′ , ϕ
∗
q′′)

)
. (A.9)

Inserting our ansatz for the effective action yields the bosonic propagator in matrix rep-
resentation

Gb ≡ B =

(
0 Gb(q

′)δq′,q′′

Gb(q
′)δq′,q′′ 0

)
(A.10)

with the regularized bosonic propagator

Gb(q) =
2

−iWq0 + Zb(q20 + ω2
q) +m2

b +Rb(q)
. (A.11)

The bosonic single-scale propagator

Sb ≡
∂

∂Λ

∣∣∣
Σ
Gb ≡

(
Sb(ϕQ′ , ϕQ′′)

)
≡

(
0 Sb(q

′)δq′,q′′

Sb(q
′)δq′,q′′ 0

)
(A.12)
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is defined as the first scale-derivative of the bosonic propagator, where the self-energy is
kept constant.

In the fermionic case, we choose the basis (ψK) = (ψk↑, ψk↓, ψ̄k↑, ψ̄k↓), whereK collects
spin, charge, momentum and Matsubara frequencies. The second derivative of the effective
action Eq. (A.1) with respect to fermionic fields is defined as

δ2Γ

δψ2
≡
(

δ2Γ

δψK′δψK′′

)
≡


δ2Γ

δψk′↑δψk′′↑

δ2Γ
δψk′↑δψk′′↓

δ2Γ
δψk′↑δψ̄k′′↑

δ2Γ
δψk′↑δψ̄k′′↓

δ2Γ
δψk′↓δψk′′↑

δ2Γ
δψk′↓δψk′′↓

δ2Γ
δψk′↓δψ̄k′′↑

δ2Γ
δψk′↓δψ̄k′′↓

δ2Γ
δψ̄k′↑δψk′′↑

δ2Γ
δψ̄k′↑δψk′′↓

δ2Γ
δψ̄k′↑δψ̄k′′↑

δ2Γ
δψ̄k′↑δψ̄k′′↓

δ2Γ
δψ̄k′↓δψk′′↑

δ2Γ
δψ̄k′↓δψk′′↓

δ2Γ
δψ̄k′↓δψ̄k′′↑

δ2Γ
δψ̄k′↓δψ̄k′′↓

 .

Inserting our ansatz yields

δ2Γ

δψ2
=


0 0 ik′0 − ξk′ 0

0 0 0 ik′0 − ξk′

−(ik′0 − ξk′) 0 0 0

0 −(ik′0 − ξk′) 0 0

 δk′,k′′

(A.13)

in the limit of vanishing fields ψ = ϕ = 0.
The inverse of the second functional derivative of the regularized effective action with

respect to fermionic fields is defined as

F ≡
(
F(ψK′ , ψK′′)

)
≡
[
δ2Γ

δψ2
−Rf

]−1

(A.14)

≡


F(ψk′↑, ψk′′↑) F(ψk′↑, ψk′′↓) F(ψk′↑, ψ̄k′′↑) F(ψk′↑, ψ̄k′′↓)
F(ψk′↓, ψk′′↑) F(ψk′↓, ψk′′↓) F(ψk′↓, ψ̄k′′↑) F(ψk′↓, ψ̄k′′↓)
F(ψ̄k′↑, ψk′′↑) F(ψ̄k′↑, ψk′′↓) F(ψ̄k′↑, ψ̄k′′↑) F(ψ̄k′,↑, ψ̄k′′↓)
F(ψ̄k′↓, ψk′′↑) F(ψ̄k′↓, ψk′′↓) F(ψ̄k′↓, ψ̄k′′↑) F(ψ̄k′↓, ψ̄k′′↓)

 , (A.15)
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where the matrix representation of the fermionic regulator is given by

Rf ≡
(
Rf (ψK′ , ψK′′)

)
(A.16)

≡


0 0 −Rf (k

′)δk′,k′′ 0

0 0 0 −Rf (k
′)δk′,k′′

Rf (k
′)δk′,k′′ 0 0 0

0 Rf (k
′)δk′,k′′ 0 0

 . (A.17)

Inserting our ansatz yields

F ≡


0 0 −Gf (k

′) 0

0 0 0 −Gf (k
′)

Gf (k
′) 0 0 0

0 Gf (k
′) 0 0

 δk′,k′′

(A.18)

with the regularized fermionic propagators

Gf (k) =
1

ik0 − ξk +Rf (k)
. (A.19)

In contrast to the bosons, the fermionic propagator is defined as the negative inverse
of the second derivative of the effective action with respect to fermionic fields

Gf ≡
(
Gf (ψK′ , ψK′′)

)
≡ −F(ψK′ , ψK′′) (A.20)

≡


0 0 Gf (k

′) 0

0 0 0 Gf (k
′)

−Gf (k
′) 0 0 0

0 −Gf (k
′) 0 0

 δk′,k′′ .

132



A.3 Interaction vertices and couplings

The fermionic single-scale propagator

Sf ≡
(
Sf (ψK′ , ψK′′)

)
≡ d

dΛ

∣∣∣
Σ
Gf (A.21)

≡


0 0 Sf (k

′) 0

0 0 0 Sf (k
′)

−Sf (k′) 0 0 0

0 −Sf (k′) 0 0

 δk′,k′′ .

(A.22)

is again given by the scale-derivative of the fermionic propagator.
During the evaluation of the RG equations in the next sections, we will use the

shorthand notation

F =

[
δ2Γ̃

δψ2

]−1

=

[
δ2Γ

δψ2
−Rf

]−1

, Sf =
∂

∂Λ

∣∣∣
Σ
Gf = −

∂

∂Λ

∣∣∣
Σ
F = −F∂ΛRfF , (A.23)

B =

[
δ2Γ̃

δϕ2

]−1

=

[
δ2Γ

δϕ2
+Rb

]−1

, Sb =
∂

∂Λ

∣∣∣
Σ
Gb =

∂

∂Λ

∣∣∣
Σ
B = −B∂ΛRbB. (A.24)

The abbreviations Sf and Sb denote the matrix representation for the fermionic and
bosonic single-scale propagators, whereas F and B denote the matrix representation of
the inverse of the second functional derivative of the effective action for fermions and
bosons. Fermionic and bosonic regulators Rf (k) and Rb(q) are not specified here, but are
chosen in such a way that they regularize low energy modes in the effective action with
the cutoff scale Λ.

A.3 Interaction vertices and couplings

The contributions to the RG flow are given in terms of one-particle-irreducible contribu-
tions consisting of propagator lines connected by vertices. First, we present the amputated
form of the interaction vertices, which are required to evaluate the functional RG equa-
tions. Second, we show how the flow of the couplings is extracted from the RG flow of
the effective action.

In our truncation bosonic propagators lines are connected to each other only by the
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bosonic self-interaction Eq. (A.4), which are given in its amputated form by

δ4Γ

δϕ∗
dδϕcδϕ

∗
bδϕa

=
1

4
(U(b− a) + U(b− c)) δa+c−b−d

=

(
u

2
+
Y

4
((b− a)2 + (b− c)2)

)
δa+c−b−d, (A.25)

where a = (a0, a), b = (b0,b), c = (c0, c) and d = (d0,d) collect Matsubara frequencies
and bosonic momenta. Fermions and bosons interact through the normal Yukawa coupling
Eq. (A.5), that in its amputated form reads as

δ3Γ

δψk′↑δψk′′↓δϕ∗
q

= −gδk′′+k′−q,
δ3Γ

δψ̄k′↑δψ̄k′′↓δϕq
= gδk′′+k′−q. (A.26)

The variables k′ = (k′0,k
′) and k′′ = (k′′0 ,k

′′) denote fermionic momenta and Matsubara
frequencies, and q = (q0,q) bosonic momenta and Matsubara frequencies. In both expres-
sions the delta functions conserve frequencies and momenta of the ingoing and outgoing
fields.

The couplings parametrizing the ansatz of the scale-dependent action are accessed by
functional field differentiation of the effective action with respect to fermion and boson
fields and subsequent frequency or momentum differentiation, respectively. Hence, the
flow of these couplings is obtained in the same way. The flow of the fermionic and bosonic
self-energies are calculated by

d

dΛ
Σf (k) =

δ2

δψk↑δψ̄k↑

d

dΛ
Γ,

d

dΛ
Σb(p) =

δ2

δϕ∗
pδϕp

d

dΛ
Γ (A.27)

at zero fields. Consequently, the renormalization constants parametrizing the frequency
and momentum dependence of the fermionic and bosonic self-energy can be easily ex-
tracted from these expressions by additional frequency and momentum derivatives

d

dΛ
Zf =

∂

∂ik0

∣∣∣
k=0

d

dΛ
Σf (k),

d

dΛ
Af =

∂2

∂k2x

∣∣∣
k=0

d

dΛ
Σf (k), (A.28)

and

d

dΛ
Zω
b =

∂2

∂p20

∣∣∣
p=0

d

dΛ
Σb(p),

d

dΛ
Zb =

∂2

∂p2x

∣∣∣
p=0

d

dΛ
Σb(p), (A.29)

d

dΛ
W = 2i

∂

∂p0

∣∣∣
p=0

d

dΛ
Σb(p). (A.30)
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Next, the flow of the bosonic self-interaction u and the Y -term is given by

d

dΛ

u

2
=

δ4

δϕ∗
0δϕ0δϕ∗

0δϕ0

d

dΛ
Γ,

d

dΛ
Y =

1

2

∂2

∂p2x

δ4

δϕ∗
pδϕpδϕ

∗
−pδϕ−p

d

dΛ
Γ. (A.31)

We use a highly symmetric choice for the ingoing and outgoing frequencies and momenta
for extracting the flow of Y . At last, the flow of the Yukawa coupling is determined from

d

dΛ
g =

δ3

δψ̄k↑δψ̄−k↓δϕ0

d

dΛ
Γ. (A.32)

A.4 RG equations for couplings

Here, we will derive the explicit flow equations for the couplings parametrizing the ansatz
for the scale-dependent effective action Eq. (A.1). To this end, the ansatz is plugged into
the renormalization group equation for the effective action Eq. (2.33). Afterwards, the
couplings are extracted by functional field differentiation on the right and left hand side
of the flow equation.

The section is structured as follows. First, we discuss the general form and properties
of the renormalization equation for the effective action Γ, which will be also relevant for
the discussion of the RG flow in the symmmetry-broken regime of the fermionic superfluid
in appendix B. Second, we explicitly derive formal expressions for the couplings. The
renormalization group equations for the bosonic self-energy Eq. (A.42) and the bosonic
self-interaction Eq. (A.52) and (A.53) form the central results of this chapter.

We first analyze the structure of the renormalization group equation Eq. (2.33) for
the scale-dependent effective action. The expression for the flow of the scale-dependent
effective action reads

d

dΛ
Γ =

1

2
Tr

∂ΛRb

(
δ2Γ̃

δϕ2

)−1
1− δ2Γ̃

δϕδψ

(
δ2Γ̃

δψ2

)−1(
δ2Γ̃

δψδϕ

)(
δ2Γ̃

δϕ2

)−1
−1 (A.33)

+
1

2
Tr

∂ΛRf

(
δ2Γ̃

δψ2

)−1
1− δ2Γ̃

δψδϕ

(
δ2Γ̃

δϕ2

)−1(
δ2Γ̃

δϕδψ

)(
δ2Γ̃

δψ2

)−1
−1 .

=
1

2
Tr

∂ΛRb

(
δ2Γ̃

δϕ2

)−1 (
1− E1

)−1

+
1

2
Tr

∂ΛRb

(
δ2Γ̃

δψ2

)−1 (
1− E2

)−1

 ,
where Γ denotes the unregularized and Γ̃ the regularized effective action. It consists of
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two main internal building blocks

E1 ≡

(
δ2Γ̃

δϕδψ

)(
δ2Γ̃

δψ2

)−1(
δ2Γ̃

δψδϕ

)(
δ2Γ̃

δϕ2

)−1

, (A.34)

E2 ≡

(
δ2Γ̃

δψδϕ

)(
δ2Γ̃

δϕ2

)−1(
δ2Γ̃

δϕδψ

)(
δ2Γ̃

δψ2

)−1

. (A.35)

This structure naturally suggests an expansion of the RG equations in a geometric series

in E1 and E2, for instance (1− E1)
−1 =

∞∑
n=0

(E1)
n.1

Functional differentiation with respect to bosonic fields

δn

δϕn
E1

∣∣∣
ψ,ϕ=0

=
δn

δϕn
E2

∣∣∣
ψ,ϕ=0

= 0, (A.36)

does not give any contributions from E1 and E2 with n ≥ 0 in the limit of vanishing fields,
since no vertex

δnΓ

δϕnδψ

∣∣∣
ψ,ϕ=0

= 0 (A.37)

with merely one single fermion field derivative exists. Hence, if we are only interested in
the renormalization of bosonic quantities, the reduced version

d

dΛ
Γ =

1

2
Tr

∂ΛRb

(
δ2Γ̃

δϕ2

)−1
+

1

2
Tr

∂ΛRf

(
δ2Γ̃

δψ2

)−1
 (A.38)

of (A.33) is sufficient for the analysis.
However, the terms E1 and E2 become relevant as soon as fermionic field derivatives

come into play. For instance, the second derivative of E1 with respect to fermionic fields
yields two finite contributions of the form

δ2E1

δψbδψa
=

(
δ3Γ̃

δψaδϕδψ

)(
δ2Γ̃

δψ2

)−1(
δ3Γ̃

δψbδψδϕ

)(
δ2Γ̃

δϕ2

)−1

−

(
δ3Γ̃

δψbδϕδψ

)(
δ2Γ̃

δψ2

)−1(
δ3Γ̃

δψaδψδϕ

)(
δ2Γ̃

δϕ2

)−1

(A.39)

1To evaluate the functional differentiation of the RG flow equation with respect to fermionic and
bosonic fields, the relations δ

δϕ (A)
−1 = −A−1 δ

δϕAA
−1 and δ

δψ (A)
−1 = −A−1 δ

δψAA
−1 are helpful, where

A denotes a general (functional) matrix.
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in the limit of vanishing fermionic and bosonic fields due to the Yukawa coupling.
Thus, we conclude that the terms E1 and E2 are relevant for the RG flow of the

fermionic self-energy, that means for fermionic renormalization factors and for the fermionic
single-particle gap. They also give a finite contribution to the renormalization of the
Yukawa vertex Γϕ∗ψ2 and the renormalization of the two-boson two-fermion vertex Γϕ2ψ2 .
In this case, the full flow equation Eq. (A.33) for the effective action is required to capture
all contributions.

After the above discussion concerning the structure of the functional RG equation
of the effective action, we will now calculate the flow equations for the couplings, which
parametrize our gradient ansatz of the scale-dependent effective action. We apply func-
tional field derivatives to the right hand side of the flow equation to extract the flow
of couplings. First, we present the derivation of the RG flow of the bosonic self-energy,
where we need the second functional derivative of the effective action with respect to the
bosonic fields

δ2

δϕ∗
bδϕa

d

dΛ
Γ =

1

2
Tr

(
Sb

δ4Γ̃

δϕ∗
bδϕaδϕ

2

)
(A.40)

− 1

2
Tr

(
Sf

δ3Γ̃

δϕ∗
bδψ

2
F δ3Γ̃

δϕaδψ2

)
− 1

2
Tr

(
Sf

δ3Γ̃

δϕaδψ2
F δ3Γ̃

δϕ∗
bδψ

2

)
.

Now, we evaluate the columns and the rows of the matrix representation for the propa-
gators F , B, Sf and Sb, see Eq. (A.23) and Eq. (A.24). Further, we consider only the
processes which are allowed due to the vertices Eq. (A.25) and (A.26). This yields

δ2

δϕ∗
bδϕa

d

dΛ
Γ =

1

2
Tr

(
Sb(ϕ∗

c, ϕd)
δ4Γ̃

δϕ∗
bδϕaδϕdδϕ∗

c

)
(A.41)

+
1

2
Tr

(
Sb(ϕc, ϕ

∗
d)

δ4Γ̃

δϕ∗
bδϕaδϕ∗

dδϕc

)

− 1

2
Tr

(
Sf(ψ̄x, ψy)

δ3Γ̃

δϕ∗
bδψyδψz

F(ψz, ψ̄w)
δ3Γ̃

δϕaδψ̄wδψ̄x

)

− 1

2
Tr

(
Sf(ψx, ψ̄y)

δ3Γ̃

δϕaδψ̄yδψ̄z

F(ψ̄z, ψw)
δ3Γ̃

δϕ∗
bδψwδψx

)
.

Here, the trace integrates over the remaining degrees of freedom.2 In the next step we
2In the first two lines of the equation, we use the abbreviation Tr =̂

∫
c,d

, whereas and in the last two
lines the relation Tr =̂

∫
y,z,w

holds. We will apply this compact notation throughout the rest of the work.
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insert both amputated vertices Eq. (A.25) and (A.26) and evaluate the integration over
the Dirac delta functions and sums over the fermionic spin σ index and set a = b = p.
Then, the flow of the bosonic self-energy is obtained as

d

dΛ
Σb(p) =

δ2

δϕ∗
pδϕp

d

dΛ
Γ =

∫
q

DΛGb(q)

(
u

2
+
Y

4

(
(q0 − p0)2 + ω2

q−p

))
− g2

∫
k

DΛ [Gf (k)Gf (−k + p)] (A.42)

Finally, the flow for the renormalization factors parametrizing the bosonic self-energy can
be calculated by

d

dΛ

m2
b

2
=

∫
q

DΛGb(q)

(
u

2
+
Y

4

(
q20 + ω2

q

))
− g2

∫
k

DΛ [Gf (k)Gf (−k)] , (A.43)

d

dΛ
Zω
b = −g2 ∂

2

∂p20

∣∣∣
p=0

∫
k

DΛ [Gf (k)Gf (−k + p)]

+
∂2

∂p20

∣∣∣
p=0

∫
q

DΛGb(q)
(Y
4
(q0 − p0)2

)
, (A.44)

d

dΛ
Zb = −g2

∂2

∂p2x

∣∣∣
p=0

∫
k

DΛ [Gf (k)Gf (−k + p)]

+
∂2

∂p2x

∣∣∣
p=0

∫
q

DΛGb(q)
(Y
4
ω2
q−p

)
, (A.45)

d

dΛ
W = −2i ∂

∂p0

∣∣∣
p=0

g2
∫
k

DΛ [Gf (k)Gf (−k + q)]− i
∫
q

DΛGb(q)Y q0. (A.46)

The regularized bosonic and fermionic propagators are defined as

Gb(q) =
2

−iWq0 + Zb(q20 + ω2
q) +m2

b +Rb(q)
, (A.47)

Gf (k) =
1

ik0 − ξk +Rf (k)
. (A.48)

Second, we evaluate the contributions which determine the flow of the non-local
bosonic self-interaction. We will first discuss fermionic contributions to the flow and then
bosonic contributions to the flow of the bosonic self-interaction. Functional differentiation
of the effective action with respect to bosonic fields yields

δ4

δϕ∗
dδϕcδϕ

∗
bδϕa

d

dΛ
Γ=I1 + I2 (A.49)
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a fermionic and a bosonic contribution to the flow. The fermionic contribution reads

I1 = −
1

2
Tr

(
Sf

δ3Γ̃

δϕaδψ̄2
F δ3Γ̃

δϕ∗
bδψ

2
F δ3Γ̃

δϕcδψ̄2
F δ3Γ̃

δϕ∗
dδψ

2

)

− 1

2
Tr

(
Sf

δ3Γ̃

δϕaδψ̄2
F δ3Γ̃

δϕ∗
dδψ

2
F δ3Γ̃

δϕcδψ̄2
F δ3Γ̃

δϕ∗
bδψ

2

)

− 1

2
Tr

(
Sf

δ3Γ̃

δϕcδψ̄2
F δ3Γ̃

δϕ∗
bδψ

2
F δ3Γ̃

δϕaδψ̄2
F δ3Γ̃

δϕ∗
dδψ

2

)

− 1

2
Tr

(
Sf

δ3Γ̃

δϕcδψ̄2
F δ3Γ̃

δϕ∗
dδψ

2
F δ3Γ̃

δϕaδψ̄2
F δ3Γ̃

δϕ∗
bδψ

2

)

− 1

2
Tr

(
Sf

δ3Γ̃

δϕ∗
bδψ

2
F δ3Γ̃

δϕaδψ̄2
F δ3Γ̃

δϕ∗
dδψ

2
F δ3Γ̃

δϕcδψ̄2

)

− 1

2
Tr

(
Sf

δ3Γ̃

δϕ∗
bδψ

2
F δ3Γ̃

δϕcδψ̄2
F δ3Γ̃

δϕ∗
dδψ

2
F δ3Γ̃

δϕaδψ̄2

)

− 1

2
Tr

(
Sf

δ3Γ̃

δϕ∗
dδψ

2
F δ3Γ̃

δϕaδψ̄2
F δ3Γ̃

δϕ∗
bδψ

2
F δ3Γ̃

δϕcδψ̄2

)

− 1

2
Tr

(
Sf

δ3Γ̃

δϕ∗
dδψ

2
F δ3Γ̃

δϕcδψ̄2
F δ3Γ̃

δϕ∗
bδψ

2
F δ3Γ̃

δϕaδψ̄2

)
.

For clarity reasons, we will now explicitly write out the sums over spins in the first
contribution to I1:

− 1

2
Tr

(
Sf

δ3Γ̃

δϕaδψ̄2
F δ3Γ̃

δϕ∗
bδψ

2
F δ3Γ̃

δϕcδψ̄2
F δ3Γ̃

δϕ∗
dδψ

2

)

= −1

2
Tr

(
Sf(ψx↑, ψ̄y↑)

δ3Γ̃

δϕaδψ̄y↑δψ̄z↓
F(ψ̄z↓, ψs↓)

δ3Γ̃

δϕ∗
bδψs↓δψt↑

(A.50)

· F(ψt↑, ψ̄u↑)
δ3Γ̃

δϕcδψ̄u↑δψ̄v↓
F(ψ̄v↓, ψw↓)

δ3Γ̃

δϕ∗
dδψw↓δψx↑

)

− 1

2
Tr

(
Sf(ψx↓, ψ̄y↓)

δ3Γ̃

δϕaδψ̄y↓δψ̄z↑
F(ψ̄z↑, ψs↑)

δ3Γ̃

δϕ∗
bδψs↑δψt↓

· F(ψt↓, ψ̄u↓)
δ3Γ̃

δϕcδψ̄u↓δψ̄v↑
F(ψ̄v↑, ψw↑)

δ3Γ̃

δϕ∗
dδψw↑δψx↓

)
.

We see that due to the normal Yukawa vertex Eq. (A.26), for each contribution only two
different spin configurations are possible which lead to a doubling of fermionic contribu-
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tions to the flow of the non-local bosonic self-interaction. Finally, the bosonic contribu-
tions to the flow of the non-local bosonic self-interaction are obtained as

I2=−
1

2
Tr

(
Sb

δ4Γ̃

δϕcδϕaδϕ2
B δ4Γ̃

δϕ∗
dδϕ

∗
bδϕ

2

)
− 1

2
Tr

(
Sb

δ4Γ̃

δϕ∗
dδϕ

∗
bδϕ

2
B δ4Γ̃

δϕcδϕaδϕ2

)

− 1

2
Tr

(
Sb

δ4Γ̃

δϕ∗
bδϕaδϕ

2
B δ4Γ̃

δϕ∗
dδϕcδ

2ϕ

)
− 1

2
Tr

(
Sb

δ4Γ̃

δϕ∗
dδϕcδϕ

2
B δ4Γ̃

δϕ∗
bδϕaδϕ

2

)
.

− 1

2
Tr

(
Sb

δ4Γ̃

δϕ∗
dδϕaδϕ

2
B δ4Γ̃

δϕcδϕ∗
bδ

2ϕ

)
− 1

2
Tr

(
Sb

δ4Γ̃

δϕcδϕ∗
bδϕ

2
B δ4Γ̃

δϕ∗
dδϕaδϕ

2

)
,

where we used that no bosonic three particle interaction term exists in the symmetric
phase. Evaluation of the bosonic c-index yields

I2=−
1

2
Tr

(
DΛ

[
B(ϕx, ϕ∗

y)
δ4Γ̃

δϕcδϕaδϕ∗
yδϕ

∗
z

B(ϕ∗
z, ϕw)

δ4Γ̃

δϕ∗
dδϕ

∗
bδϕwδϕx

])
(A.51)

− 1

2
Tr

(
DΛ

[
B(ϕ∗

x, ϕy)
δ4Γ̃

δϕ∗
bδϕaδϕyδϕ

∗
z

B(ϕ∗
z, ϕw)

δ4Γ̃

δϕ∗
dδϕcδϕwδϕ

∗
x

])

− 1

2
Tr

(
DΛ

[
B(ϕx, ϕ∗

y)
δ4Γ̃

δϕ∗
bδϕaδϕ

∗
yδϕz
B(ϕz, ϕ∗

w)
δ4Γ̃

δϕ∗
dδϕcδϕ

∗
wδϕx

])

− 1

2
Tr

(
DΛ

[
B(ϕ∗

x, ϕy)
δ4Γ̃

δϕ∗
dδϕaδϕyδϕ

∗
z

B(ϕ∗
z, ϕw)

δ4Γ̃

δϕcδϕ∗
bδϕwδϕ

∗
x

])

− 1

2
Tr

(
DΛ

[
B(ϕx, ϕ∗

y)
δ4Γ̃

δϕ∗
dδϕaδϕ

∗
yδϕz
B(ϕz, ϕ∗

w)
δ4Γ̃

δϕcδϕ∗
bδϕ

∗
wδϕx

])
,

where we already used the internal symmetry of the bosonic self-interaction to write the
expression in a compact way. The flow of the (local) bosonic self-interaction

d

dΛ
u=4g4

∫
k

d

dΛ
[Gf (k)Gf (−k)]2 −

∫
q

DΛ [Gb(q)Gb(−q)]
(
u

2
+
Y

2
(q20 + ω2

q)

)2

− 4

∫
q

DΛ [Gb(q)]
2

(
u

2
+
Y

4
(q20 + ω2

q)

)2

. (A.52)

is obtained by setting all external frequencies and momenta to zero a, b, c, d = 0. The RG
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flow of the Y-term is given by

d

dΛ
Y=

1

2

∂2

∂p2x

∣∣∣
p=0

∫
k

DΛ[G
2
f (k)Gf (−k + p)Gf (−k − p)] (A.53)

+
1

2

∂2

∂p2x

∣∣∣
p=0

∫
k

DΛ

[
Gf (k − p)Gf (k + p)Gf (−k)2

]
− 1

4

∂2

∂p2x

∣∣∣
p=0

∫
q

DΛ [Gb(q)Gb(−q)]
(
Y

4

(
(q − p)2 + (q + p)2

)
+
u

2

)2

− 1

2

∂2

∂p2x

∣∣∣
p=0

∫
q

DΛ [Gb(q)Gb(q)]

(
Y

4
(q + p)2 +

u

2

)(
Y

4
(q − p)2 + u

2

)
− 1

2

∂2

∂p2x

∣∣∣
p=0

∫
q

DΛ [Gb(q + p)Gb(q − p)]
(
Y

4
(4p2 + q2) +

u

2

)2

,

where we choose the external frequencies and momenta in a highly symmetric way, a =

−c = p and b = −d = p.
The equations Eq. (A.52) and (A.53), describing the RG flow of the non-local bosonic

self-interaction, and the RG equation for the bosonic self-energy Eq. (A.42) are the central
results of this chapter.

A.5 RG equations for the Dirac cone model

Here, we present the functional RG equations describing the quantum phase transition
between a superfluid and a semimetal in the Dirac cone model in chapter 3. The equations
governing the RG flow for the attractive Hubbard model and the Dirac cone model in the
symmetric regime are similar, since the fermionic two-particle interaction is decoupled by
a Hubbard-Stratonovich transformation in the particle-particle channel in both systems.
Thus, the one-particle-irreducible contributions to the RG flow are identical in both cases
and differ only in the explicit form of the propagators. However, the Dirac cone model
includes an internal band index α parametrizing the upper and lower Dirac cone, which
has to be considered additionally.

We start from the functional RG equations Eq. (A.42) and (A.52), which describe
the flow of the bosonic self-energy and self-interaction in the symmetric regime in the
attractive Hubbard model. In the limit of a vanishing Y-Term and a vanishing linear
frequency dependence in the bosonic propagator, W = Y = 0, this set of equations
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reduces to

d

dΛ
Σb(p) =

u

2

∫
q

DΛGb(q)− g2
∫
k

DΛ [Gf (k)Gf (−k + p)] (A.54)

d

dΛ
u = 4g4

∫
k

DΛ [Gf (k)Gf (−k)]2 −
5

4
u2
∫
q

DΛ [Gb(q)]
2 (A.55)

and therefore the flow equations for the couplings reads

d

dΛ

m2
b

2
=
u

2

∫
q

DΛGb(q)− g2
∫
k

DΛ [Gf (k)Gf (−k)] , (A.56)

d

dΛ
Zb = −g2

∂2

∂q20

∣∣∣
q=0

∫
k

DΛ [Gf (k)Gf (−k + q)] , (A.57)

d

dΛ
Ab = −g2

∂2

∂q2x

∣∣∣
q=0

∫
k

DΛ [Gf (k)Gf (−k + q)] , (A.58)

d

dΛ
u = 4g4

∫
k

DΛ [Gf (k)Gf (−k)]2 −
5

4
u2
∫
q

DΛ [Gb(q)]
2 , (A.59)

d

dΛ
g = 0. (A.60)

We used the following definition for the regularized fermionic and bosonic propagator

Gb(q) =
2

Zbq20 + Abω2
q +m2

b +Rb(q)
, (A.61)

Gf (k) =
1

iZfk0 − Afξk +Rf (k)
, (A.62)

where Zb and Ab denote bosonic frequency and momentum renormalization factors and
Zf and Af fermionic frequency and momentum renormalization factors. Both regulators
are regularized by a sharp Litim cutoff

Rb(q) = Zb(Λ
2 − q20)Θ(Λ2 − q20) (A.63)

Rf (k) = Zf (iΛsgn(k0)− ik0)Θ(Λ2 − k20). (A.64)

An internal sign change in the definition of the fermionic and bosonic regulator, Rf (k)→
−Rf (k) and Rb(q) → −Rb(q), is compensated by the scale-derivative of the regulator
and hence does not affect the form of the flow equations. However, a sign change in the
definition of the bosonic propagator has a more drastic impact: The sign structure of the
prefactors changes throughout the flow equations. Substituting the bosonic propagator
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A.5 RG equations for the Dirac cone model

Gb(q)→ −Ḡ(q) with

Ḡb(q) =
−1

Zbq20 + Abω2
q +m2

b −Rb(q)
(A.65)

the equations Eq. (A.54) and (A.55) transform to

d

dΛ
Ḡ−1
b (p) =

u

2

∫
q

DΛḠb(q) + g2
∫
k

DΛ [Gf (k)Gf (−k + p)] (A.66)

d

dΛ
u = 4g4

∫
k

DΛ [Gf (k)Gf (−k)]2 −
5

4
u2
∫
q

DΛ

[
Ḡb(q)

]2
. (A.67)

It is easy to check that the prefactors and the signs of this flow equations are identical to
those of the Dirac cone model. However, the RG equations of both systems still differ.
Until now the band structure reflecting interactions of fermions in the two Dirac cones is
not included. A diligent examination of the contributions to the flow leads to additional
summations over the band index α, which only affect fermionic contributions. In total,
the renormalization group equations for the Dirac cone model are then obtained as

d

dΛ
Ḡ−1
b (p) = g2

∫
kα

DΛ [Gfα(k)Gfα(−k + p)] +
u

2

∫
q

DΛ Ḡb(q) (A.68)

d

dΛ
u = 4g4

∫
kα

DΛ [Gfα(−k)]2 [Gfα(k)]
2 − 5

4
u2
∫
q

DΛ

[
Ḡb(q)

]2
. (A.69)

Finally, we obtain the central result of this section, the flow equations describing the RG
flow in the symmetric phase of the Dirac cone model:

d

dΛ
m2
b = −g2

∫
kα

DΛ [Gfα(k)Gfα(−k)]−
u

2

∫
q

DΛ Ḡb(q) (A.70)

d

dΛ
Zb = −

1

2

∂2

∂p20

∣∣∣
p=0

g2
∫
kα

DΛ [Gfα(k + p)Gfα(−k)] (A.71)

d

dΛ
Ab = −

1

2

∂2

∂p2x

∣∣∣
p=0

g2
∫
kα

DΛ [Gfα(k + p)Gfα(−k)] (A.72)

d

dΛ
u = 4g4

∫
kα

DΛ [Gfα(−k)]2 [Gfα(k)]
2 − 5

4
u2
∫
q

DΛ

[
Ḡb(q)

]2 (A.73)

d

dΛ
g = 0. (A.74)

with the abbreviation DΛ = d
dΛ

∣∣∣
ΣΛ

=
∑
s=f,b

(∂ΛRs)∂Rs . The regularized fermionic and
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A.5 RG equations for the Dirac cone model

bosonic propagators are now defined as

Gfα(k) =
1

iZfk0 − Afξkα +Rf (k)
, Ḡb(q) =

−1
Zbq20 + Abω2

q +m2
b −Rb(q)

. (A.75)

The propagators are regularized by a Litim momentum cutoff

Rb(q) = Ab
(
Λ2 − ω2

q

)
Θ(Λ2 − q2) (A.76)

Rfα(q) = Af (ξkα − Λsgn(ξkα))Θ(Λ− |ξkα|). (A.77)

instead of a sharp Litim frequency cutoff. The RG flow for the fermionic renormalization
factors Zf and Af can be derived in a similar way, but is not explicitly shown here. The
renormalization group equations Eq. (A.70)-(A.74) are identical to the equations derived
by Strack et al. (2010) in a diagrammatic approach.
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APPENDIX B

Derivation of RG equations: SSB regime

In this chapter, we derive RG equations for the couplings parametrizing the ansatz of the
scale-dependent effective action in the symmetry-broken phase. We use a coupled fermion-
boson ansatz to describe the RG flow in the symmetry-broken regime of a fermionic su-
perfluid. After the introduction of the explicit ansatz containing fermionic and bosonic
degrees of freedom in transverse and longitudinal decomposition, fermionic and bosonic
propagators are shown. In the symmetry-broken phase, also anomalous fermionic propa-
gators exist. A non-local bosonic self-interaction and a linear frequency dependence in the
bosonic propagator are generated during the flow. They lead to additional contributions
to the flow, compared to the previous work by Strack et al. (2008). The central result of
this chapter is given by the RG flow equations for the fermionic gap, Eq. (B.73), for the
transverse Yukawa coupling, Eq. (B.78), for the bosonic order parameter, Eq. (B.82) and
finally for the bosonic self-energies, Eq. (B.87), (B.91) and (B.95). The chapter is divided
into five parts. It begins with section B.1 introducing the ansatz of the scale-dependent
effective action. In section B.2 we present the matrix representation for fermionic and
bosonic propagators. Section B.3 shows amputated vertices and a calculation of the cou-
plings from the theory. Finally, in section B.4 the RG flow for the couplings can be found.
The chapter closes with section B.5 presenting the bosonic densities of states, which are
employed for the numerical solution of the RG flow.
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B.1 Ansatz for the effective action

B.1 Ansatz for the effective action

Here, we present the ansatz of the scale-dependent effective action for the symmetry-
broken phase in the attractive Hubbard model. The ansatz is parametrized by several
couplings, whose RG flows are calculated in section B.4. The total ansatz for the effective
action

Γ = Γψ̄ψ + Γψψ + Γσ2 + Γπ2 + Γπσ (B.1)

+ Γσ3 + Γσπ2 + Γσ4 + Γσ2π2 + Γπ4 + Γψ2σ + Γψ2π

consists of several terms, which will be explained in the following. The normal quadratic
part in fermionic fields reads

Γψ̄ψ =

∫
kσ

ψ̄kσ (ik0 − ξk)ψkσ (B.2)

and includes no renormalization factors parametrizing the fermionic self-energy. The
anomalous self-energy term

Γψψ =

∫
k

(
∆ψ̄−k↓ψ̄k↑ +∆∗ψk↑ψ−k↓

)
(B.3)

is parametrized by ∆, which represents the fermionic single-particle gap in our theory.
The quadratic part in bosonic fields reads

Γπ2 =
1

2

∫
q

πq
(
Zπ(q

2
0 + ω2

q) +m2
π

)
π−q, (B.4)

Γσ2 =
1

2

∫
q

σq
(
Zσ(q

2
0 + ω2

q) +m2
σ

)
σ−q, (B.5)

Γπσ =

∫
q

πq(m
2
σπ +Wq0)σ−q. (B.6)

Here, Zσ and Zπ parametrize the frequency and momentum dependence of the longitudinal
and transverse modes. Bosonic mass terms are represented by m2

σ, m2
π and m2

σπ and
the linear frequency dependence is parametrized by W . In transverse and longitudinal
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B.2 Matrix representation of the fermionic and bosonic propagators

representation the non-local bosonic self-interaction splits into several interaction parts

Γσ3 =
1

2

∫
q,p

U(q)ασpσ−q−pσq, (B.7)

Γσ4 =
1

8

∫
q,p′,p

U(q)σpσq−pσp′σ−q−p′ , (B.8)

Γπ4 =
1

8

∫
q,p′,p

U(q)πpπq−pπp′π−q−p′ , (B.9)

Γσ2π2 =
1

4

∫
q,p′,p

U(q)σpσq−pπp′π−q−p′ , (B.10)

Γσπ2 =
1

2

∫
q,p

U(q)ασqπpπ−p−q (B.11)

with the function U(q) = Y (q20 + ω2
q) + u. Finally, the Yukawa coupling connects the

fermionic and the bosonic sector of the theory. In the symmetry-broken phase, besides
the normal Yukawa coupling

Γψ2ϕ∗ = g

∫
k,q

(
ψ̄−k+q↓ψ̄k↑ϕq + ψk↑ψ−k+q↓ϕ

∗
q

)
(B.12)

also an anomalous Yukawa coupling

Γψ2ϕ = g̃

∫
k,q

(
ψ̄−k+q↓ψ̄k↑ϕ

∗
−q + ψk↑ψ−k+q↓ϕ−q

)
(B.13)

is generated. In σ-π representation the longitudinal and transverse Yukawa vertex then
reads

Γψ2σ = gσ

∫
k,q

(
ψ̄−k+q/2↓ψ̄k+q/2↑σq + ψk+q/2↑ψ−k+q/2↓σ−q

)
, (B.14)

Γψ2π = igπ

∫
k,q

(
ψ̄−k+q/2↓ψ̄k+q/2↑πq − ψk+q/2↑ψ−k+q/2↓π−q

)
. (B.15)

with the relations 2g = gσ + gπ and 2g̃ = gσ − gπ.

B.2 Matrix representation of the fermionic and bosonic

propagators

Before we present the RG equations, we introduce the matrix representation of the
fermionic and the bosonic propagators. Due to the anomalous fermionic term also anoma-
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B.2 Matrix representation of the fermionic and bosonic propagators

lous fermionic propagators appear. Further, the linear imaginary dependence of the
bosonic propagator leads to a mixing between transverse and longitudinal fluctuations.

We begin with the discussion of the fermionic propagator. For the fermions we choose
the basis (ψK) = (ψk↑, ψk↓, ψ̄k↑, ψ̄k↓). The second functional derivative of the effective
action Eq. (B.1) with respect to fermionic fields in matrix representation reads

δ2Γ

δψ2
≡
(

δ2Γ

δψK′δψK′′

)
≡


δ2Γ

δψk′↑δψk′′↑

δ2Γ
δψk′↑δψk′′↓

δ2Γ
δψk′↑δψ̄k′′↑

δ2Γ
δψk′↑δψ̄k′′↓

δ2Γ
δψk′↓δψk′′↑

δ2Γ
δψk′↓δψk′′↓

δ2Γ
δψk′↓δψ̄k′′↑

δ2Γ
δψk′↓δψ̄k′′↓

δ2Γ
δψ̄k′↑δψk′′↑

δ2Γ
δψ̄k′↑δψk′′↓

δ2Γ
δψ̄k′↑δψ̄k′′↑

δ2Γ
δψ̄k′↑δψ̄k′′↓

δ2Γ
δψ̄k′↓δψk′′↑

δ2Γ
δψ̄k′↓δψk′′↓

δ2Γ
δψ̄k′↓δψ̄k′′↑

δ2Γ
δψ̄k′↓δψ̄k′′↓

 ,

and leads to

δ2Γ

δψ2
=


0 −∆∗δk′,−k′′ (ik′0 − ξk′)δk,k′ 0

∆∗δk′,−k′′ 0 0 (ik′0 − ξk′)δk′,k′′

−(ik′0 − ξk′)δk′,k′′ 0 0 ∆δk′,−k′′

0 −(ik′0 − ξk′)δk′,k′′ −∆δk′,−k′′ 0

 (B.16)

in the limit of vanishing fermionic and bosonic fields.
In matrix representation the fermionic regulator reads

Rf ≡
(
Rf (ψK′ , ψK′′)

)
(B.17)

≡


0 0 −Rf (k

′)δk′,k′′ 0

0 0 0 −Rf (k
′)δk′,k′′

Rf (k
′)δk′,k′′ 0 0 0

0 Rf (k
′)δk′,k′′ 0 0

 , (B.18)

and regularizes low energy excitations in the absence of a fermionic single-particle gap.
We discuss here only the case of an additive cutoff. The regularized effective action can
then be defined as

Γ̃ = Γ +
1

2

∫
K,K′

ψKRf (ψK , ψK′)ψK′ +
1

2

∫
Q,Q′

ϕQRb(ϕQ, ϕQ′)ϕQ′ , (B.19)

where we will introduce the bosonic regulator Rb below, when we discuss the bosonic
sector of the theory. The second derivative of the regularized effective action with respect
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B.2 Matrix representation of the fermionic and bosonic propagators

to fermionic fields is given by

δ2Γ̃

δψK′δψK′′
=

δ2Γ

δψK′δψK′′
−Rf (K

′, K ′′), (B.20)

where the regulator is chosen in such a way that the low energy modes become regularized
in Γ̃ by the cutoff scale Λ. We then define the inverse of the second derivative of the
regularized effective action as

F ≡
[δ2Γ̃
δψ2

]−1

(B.21)

≡


F(ψk′↑, ψk′′↑) F(ψk′↑, ψk′′↓) F(ψk′↑, ψ̄k′′↑) F(ψk′↑, ψ̄k′′↓)
F(ψk′↓, ψk′′↑) F(ψk′↓, ψk′′↓) F(ψk′↓, ψ̄k′′↑) F(ψk′↓, ψ̄k′′↓)
F(ψ̄k′↑, ψk′′↑) F(ψ̄k′↑, ψk′′↓) F(ψ̄k′↑, ψ̄k′′↑) F(ψ̄k′,↑, ψ̄k′′↓)
F(ψ̄k′↓, ψk′′↑) F(ψ̄k′↓, ψk′′↓) F(ψ̄k′↓, ψ̄k′′↑) F(ψ̄k′↓, ψ̄k′′↓)

 . (B.22)

In the next step, we insert our ansatz for the regularized effective action into this definition
and obtain

F=


0 Ff (k

′, k′′) −Gf (k, k
′′) 0

−Ff (k′, k′′) 0 0 −Gf (k
′, k′′)

Gf (k
′, k′′) 0 0 −F̄f (k, k′′)
0 Gf (k, k

′′) F̄f (k, k
′′) 0

 (B.23)

in the limit of vanishing fields. The matrix entries are given by the functions

Ff (k
′, k′′) ≡ Ff (k

′)δk′,−k′′ , (B.24)

F̄f (k
′, k′′) ≡ F̄f (k

′)δk′,−k′′ , (B.25)

Gf (k
′, k′′) ≡ Gf (k

′)δk′,k′′ , (B.26)

which consists of (regularized) normal and anomalous fermionic propagators

Ff (k) ≡
∆

|∆|2 + |ik0 − ξk +Rf (k)|2
, (B.27)

F̄f (k) ≡
∆∗

|∆|2 + |ik0 − ξk +Rf (k)|2
, (B.28)

Gf (k) ≡
−ik0 − ξk +Rf (−k)

|∆|2 + |ik0 − ξk +Rf (k)|2
. (B.29)

The regularized fermionic propagator in matrix representation is given by the negative
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B.2 Matrix representation of the fermionic and bosonic propagators

inverse

Gf = −F = −
[
δ2Γ

δψ2
−Rf

]−1

. (B.30)

In the matrix formulation the fermionic propagator reads

Gf =
(
Gf (ψK′ , ψK′′)

)
(B.31)

=


0 −Ff (k′, k′′) Gf (k, k

′′) 0

Ff (k
′, k′′) 0 0 Gf (k

′, k′′)

−Gf (k
′, k′′) 0 0 F̄f (k, k

′′)

0 −Gf (k, k
′′) −F̄f (k, k′′) 0

 . (B.32)

The fermionic single-scale propagator can then be defined as the scale-derivative of the
regularized fermionic propagator Eq. (B.30)

Sf ≡
∂

∂Λ

∣∣∣
Σ
Gf = −

∂

∂Λ

∣∣∣
Σ

[ δ2Γ
δψ2
−Rf

]−1

(B.33)

= −
[ δ2Γ
δψ2
−Rf

]−1

∂ΛRf

[δ2Γ
δψ2
−Rf

]−1

(B.34)

= −Gf∂ΛRfGf , (B.35)

where the self-energy Σ is kept constant. The single-scale propagator reads

Sf =


0 −SF (k′, k′′) SG(k

′, k′′) 0

SF (k
′, k′′) 0 0 SG(k

′, k′′)

−SG(k′, k′′) 0 0 SF̄ (k
′, k′′)

0 −SG(k′, k′′) −SF̄ (k′, k′′) 0

 (B.36)

with the matrix entries

SF (k
′, k′′) = SF (k

′)δk′,−k′′ , SF̄ (k
′, k′′) = SF̄ (k

′)δk′,−k′′ , SG(k
′, k′′) = SG(k

′)δk′,k′′ .(B.37)

The anomalous and normal fermionic single-scale propagators are then given by

SF (k) =
∂

∂Λ

∣∣∣
Σ
Ff (k), SF̄ (k) =

∂

∂Λ

∣∣∣
Σ
F̄f (k), SG(k) =

∂

∂Λ

∣∣∣
Σ
Gf (k). (B.38)

These quantities appear on the right hand side of the RG flow equation for the couplings,
when evaluating the RG flow of the effective action in section B.4.
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B.2 Matrix representation of the fermionic and bosonic propagators

In the next step, we derive bosonic propagators from the ansatz of the effective
action Eq. (B.1). We choose the bosonic basis (ϕQ) = (σq, πq). The second derivative of
the scale-dependent effective action with respect to bosonic fields yields

δ2Γ

δϕ2
≡
(

δ2Γ

δϕQδϕQ′

)
≡

 δΓ
δσqδσq′

δΓ
δσqδπq′

δΓ
δπqδσq′

δΓ
δπqδπq′

 . (B.39)

We insert now the ansatz for the effective action and obtain in the limit of vanishing
fermionic and bosonic fields the result

δ2Γ

δϕ2
=

(
Zσ(q

2
0 + ω2

q) +m2
σ −Wq0

Wq0 Zπ(q
2
0 + ω2

q) +m2
π

)
δq,−q′ . (B.40)

The regularized effective action was introduced above. Here, we present now the bosonic
regulator in matrix representation 1 as

Rb(q, q
′) ≡

(
Rπ(q)δq,−q′ 0

0 Rπ(q)δq,−q′

)
. (B.41)

Now, we define the inverse of the regularized effective action as

B ≡
[δ2Γ̃
δϕ2

]−1

≡
(
B(ϕQ, ϕQ′)

)
≡

(
B(σq, σq′) B(σq, πq′)
B(πq, σq′) B(πq, πq′)

)
. (B.42)

After inserting our ansatz for the regularized effective action, we obtain

B =
1

γσ2(q)γπ2(q) +W 2q20

(
γπ2(q) −Wq0

Wq0 γσ2(q)

)
δq,−q, (B.43)

with the functions γσ2(q) = Zσ(q
2
0+ω

2
q)+m

2
σ+Rπ(q) and γπ2(q) = Zπ(q

2
0+ω

2
q)+m

2
π+Rπ(q).

The linear frequency dependence of the bosonic propagator leads to a rich structure in the
bosonic propagators. Besides diagonal elements now also off-diagonal elements appear,
associated to a mixing between transverse and longitudinal fluctuations.

The regularized bosonic propagator (matrix) is then defined as

Gb ≡ B ≡

(
Gσ2(q) Gσπ(q)

Gπσ(q) Gπ2(q)

)
δq,−q′ .

1We choose the same regulator for longitudinal and transverse modes in order to preserve the under-
lying symmetry of the model, hence Rσ(q) = Rπ(q).
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In total the transverse, longitudinal and mixed bosonic propagators read

Gσ2(q) =
γπ2(q)

γπ2(q)γσ2(q) +W 2q20
, Gπ2(q) =

γσ2(q)

γπ2(q)γσ2(q) +W 2q20
, (B.44)

Gσπ(q) =
−Wq0

γπ2(q)γσ2(q) +W 2q20
, Gπσ(q) =

Wq0
γπ2(q)γσ2(q) +W 2q20

. (B.45)

The corresponding single-scale propagators are obtained as the first scale-derivative of the
bosonic propagator

Sb ≡
∂

∂Λ

∣∣∣
Σ
Gb, (B.46)

where the self-energy Σ is kept constant.
The longitudinal, transverse and mixed bosonic single-scale propagators then read

Sσ2(q) = −∂ΛRπ(q)
γ2π2(q)−W 2q20

(γσ2(q)γπ2(q) +W 2q20)
2
, Sπ2(q) = −∂ΛRπ(q)

γ2σ2(q)−W 2q20
(γσ2(q)γπ2(q)−W 2q20)

2
,

Sσπ(q) = −∂ΛRπ(q)
−Wq0(γσ2(q) + γπ2(q))

(γσ2(q)γπ2(q) +W 2q20)
2
, Sπσ(q) = −Sσπ(q). (B.47)

B.3 Interaction vertices and couplings

The contributions to the RG flow of the couplings are given by 1PI Feynman diagrams.
The diagrams consist of the previously derived fermionic and bosonic propagators and
vertices connecting those propagators. Here, we present an amputated form of those
vertices, which are required to evaluate the flow equation in the next section. Afterwards,
we show how the flow of the RG couplings is calculated from the flow equation of the
effective action. For this purpose, derivatives with respect to fermionic and bosonic fields
are applied to extract self-energies and couplings.

In the longitudinal-transverse representation several interaction processes between
bosonic fields exist, see Eq. (B.7)-(B.11). The field-amputated form of these bosonic
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B.3 Interaction vertices and couplings

interaction vertices reads

δ4Γσ4

δσk′′δσk′δσq′′δσq′
= [U(q′ + q′′) + U(k′ + q′) + U(k′ + q′′)] δ0,q′+q′′+k′+k′′ , (B.48)

δ4Γσ2π2

δσk′′δσk′δπq′′δπq′
= U(q′ + q′′)δ0,k′+k′′+q′+q′′ , (B.49)

δ3Γσ3

δσk′δσq′′δσq′
= α [U(q′) + U(q′′) + U(q′ + q′′)] δ0,k′+q′+q′′ , (B.50)

δ4Γσ2π2

δπk′′δπk′δσq′′δσq′
= U(q′ + q′′)δ0,k′′+k′+q′+q′′ , (B.51)

δ4Γπ4

δπk′′δπk′δπq′′δπq′
= [U(q′ + q′′) + U(k′ + q′) + U(k′ + q′′)] δ0,q′+q′′+k′+k′′ , (B.52)

δ3Γσπ2

δπk′δσq′′δπq′
= αU(q′′)δ0,k′+q′+q′′ (B.53)

with U(q) = Y (q20+ω
2
q)+u and the variables q = (q0,q) and k = (k0,k) collecting bosonic

frequencies and momenta. Vertices between the fermionic and bosonic sector are given
by the normal and anomalous Yukawa couplings Eq. (B.14) and (B.15). Amputating the
external fields yields

δ3Γψ2σ

δψk′′−σ′δψk′σ′δσq′
= gσδ0,k′+k′′+q′ (δσ′,↑ − δσ′,↓) , (B.54)

δ3Γψ2σ

δψ̄k′′−σ′δψ̄k′σ′δσq′
= −gσδ0,k′+k′′−q′ (δσ′,↑ − δσ′,↓) , (B.55)

δ3Γψ2π

δψk′′−σ′δψk′σ′δπq′
= −igπδ0,k′+k′′+q′ (δσ′,↑ − δσ′,↓) , (B.56)

δ3Γψ2π

δψ̄k′′−σ′δψ̄k′σ′δπq′
= −igπδ0,k′+k′′−q′ (δσ′,↑ − δσ′,↓) . (B.57)

Now we show how the RG flow of the couplings is determined from the flow of the
scale-dependent effective action. As usual, we apply functional field derivatives with
respect to bosonic and fermionic fields to the flow of the scale-dependent effective action.
The flow of the fermionic single-particle gap is obtained from

d

dΛ
∆ =

δ2

δψ̄kf↑δψ̄−kf↓

d

dΛ
Γ. (B.58)

The bosonic order parameter is obtained from

d

dΛ
α = − 1

m2
σ

δ

δσ0

d

dΛ
Γ, (B.59)
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by a shift of the bosonic field in the effective action, which was discussed in chapter 2 in
section 2.3.

Further, the flow of the bosonic self-energies is given by

d

dΛ
Σσ2(p) =

δ2

δσpδσ−p

d

dΛ
Γ,

d

dΛ
Σπ2(p) =

δ2

δπpδπ−p

d

dΛ
Γ, (B.60)

d

dΛ
Σσπ(p) =

δ2

δπpδσ−p

d

dΛ
Γ. (B.61)

Couplings parametrizing the bosonic self-energy are obtained by taking frequency and
momentum derivatives. For the longitudinal bosonic mode we find

d

dΛ
Zω
σ =

1

2

∂2

∂p20

∣∣∣
p=0

d

dΛ
Σσ2(p),

d

dΛ
Zσ =

1

2

∂2

∂p2x

∣∣∣
p=0

d

dΛ
Σσ2(p), (B.62)

d

dΛ
m2
σ =

d

dΛ
Σσ2(0), (B.63)

and for the transverse bosonic mode we find

d

dΛ
Zω
π =

1

2

∂2

∂p20

∣∣∣
p=0

d

dΛ
Σπ2(p),

d

dΛ
Zπ =

1

2

∂2

∂p2x

∣∣∣
p=0

d

dΛ
Σπ2(p), (B.64)

d

dΛ
m2
π =

d

dΛ
Σπ2(0). (B.65)

The linear frequency dependence of the bosonic propagator is obtained as

d

dΛ
W =

∂

∂p0

∣∣∣
p=0

δ2

δσ−pδπp

d

dΛ
Γ. (B.66)

The RG flow of the bosonic self-interactions is extracted indirectly by the relations

d

dΛ
u =

d

dΛ

(
m2
σ

α2

)
,

d

dΛ
Y =

d

dΛ

(
Zσ − Zπ
α2

)
. (B.67)

B.4 RG equations of the couplings

In this section, we derive the RG flow equations for the couplings parametrizing the scale-
dependent effective action Eq. (B.1). To this end, our ansatz for the scale-dependent
effective action is inserted into the RG equation for the effective action see Eq. (2.48).2

2Note that the quantity Γ̃ appearing on the right hand side of the flow equation denotes the regularized
effective action. In contrast, the quantity Γ appearing on the left hand side of the flow equation denotes
the non-regularized effective action from which the flow of self-energies and couplings are extracted by
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By successively applying functional derivatives with respect to fermionic and bosonic
fields, the flow for the fermionic and bosonic self-energies, Yukawa coupling and bosonic
self-interactions are extracted. The flow of the couplings parametrizing the self-energies
are obtained by additional frequency and momentum derivatives. We will derive explicitly
the RG flow for the fermionic single-particle gap, Eq. (B.73), for the Yukawa coupling,
Eq. (B.78), for the order parameter, Eq. (B.82), the bosonic self-energies, Eq. (B.87),
(B.91) and (B.95), and the bosonic self-interaction, Eq. (B.99). These are the central
results of this chapter. In the case of the fermionic gap and the Yukawa vertex the full
flow equation has to be taken into account due to contributions with both fermions and
bosons, see the discussion in the appendix A.

We begin with the derivation of the flow equation for the fermionic single-particle
gap. The second functional derivative with respect to fermionic fields yields

δ2

δψ̄k′↑ψ̄k↓

d

dΛ
Γ =

δ3Γ

δψ̄k′↑δψ̄k↓δσ0

d

dΛ
α (B.68)

− 1

2
Tr

(
Sb

δ2Γ̃

δψ̄k↓δϕδψ
F δ2Γ̃

δψ̄k′↑δψδϕ

)

+
1

2
Tr

(
Sb

δ2Γ̃

δψ̄k′↑δϕδψ
F δ2Γ̃

δψ̄k↓δψδϕ

)

− 1

2
Tr

(
Sf

δ2Γ̃

δψ̄k↓δψδϕ
B δ2Γ̃

δψ̄k′↑δϕδψ

)

+
1

2
Tr

(
Sf

δ2Γ̃

δψ̄k′↑δψδϕ
B δ2Γ̃

δψ̄k↓δϕδψ

)
.

In the next step, we insert the matrix representation and evaluate the trace over the spin
and charge index. We then obtain

δ2

δψ̄k′↑δψ̄k↓

d

dΛ
Γ =

δ3Γ

δψ̄k′↑δψ̄k↓δσ0

d

dΛ
α +

d

dΛ
A1 +

d

dΛ
A2, (B.69)

where we distinguish between the contributions A1 and A2. The first contribution is given

functional differentiation with respect to fermionic and bosonic fields.
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by

d

dΛ
A1 = −

1

2
Tr

(
Sb(πa, σb)

δ3Γ̃

δψ̄k↓δσbδψ̄x↑
F(ψ̄x↑, ψ̄y↓)

δ3Γ̃

δψ̄k′↑δψ̄y↓δπa

)
(B.70)

− 1

2
Tr

(
Sb(σa, πb)

δ3Γ̃

δψ̄k↓δπbδψ̄x↑
F(ψ̄x↑, ψ̄y↓)

δ3Γ̃

δψ̄k′↑δψ̄y↓δσa

)

+
1

2
Tr

(
Sb(πa, σb)

δ3Γ̃

δψ̄k′↑δσbδψ̄x↓
F(ψ̄x↓, ψ̄y↑)

δ3Γ̃

δψ̄k↓δψ̄y↑δπa

)

+
1

2
Tr

(
Sb(σa, πb)

δ3Γ̃

δψ̄k′↑δπbδψ̄x↓
F(ψ̄x↓, ψ̄y↑)

δ3Γ̃

δψ̄k↓δψ̄y↑δσa

)

− 1

2
Tr

(
Sf(ψ̄x↓, ψ̄y↑)

δ3Γ̃

δψ̄k↓δσaδψ̄y↑
B(σa, πb)

δ3Γ̃

δψ̄k′↑δψ̄x↓δπb

)

− 1

2
Tr

(
Sf(ψ̄x↓, ψ̄y↑)

δ3Γ̃

δψ̄k↓δπaδψ̄y↑
B(πa, σb)

δ3Γ̃

δψ̄k′↑δψ̄x↓δσb

)

+
1

2
Tr

(
Sf(ψ̄x↑, ψ̄y↓)

δ3Γ̃

δψ̄k′↑δσaδψ̄y↓
B(σa, πb)

δ3Γ̃

δψ̄k↓δψ̄x↑δπb

)

+
1

2
Tr

(
Sf(ψ̄x↑, ψ̄y↓)

δ3Γ̃

δψ̄k′↑δπaδψ̄y↓
B(πa, σb)

δ3Γ̃

δψ̄k↓δψ̄x↑δσb

)
,
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and includes mixed bosonic propagators. The second contribution is given by

d

dΛ
A2 = −

1

2
Tr

(
Sb(σa, σb)

δ3Γ̃

δψ̄k↓δσbδψ̄x↑
F(ψ̄x↑, ψ̄y↓)

δ3Γ̃

δψ̄k′↑δψ̄y↓δσa

)
(B.71)

− 1

2
Tr

(
Sb(πa, πb)

δ3Γ̃

δψ̄k↓δπbδψ̄x↑
F(ψ̄x↑, ψ̄y↓)

δ3Γ̃

δψ̄k′↑δψ̄y↓δπa

)

+
1

2
Tr

(
Sb(σa, σb)

δ3Γ̃

δψ̄k′↑δσbδψ̄x↓
F(ψ̄x↓, ψ̄y↑)

δ3Γ̃

δψ̄k↓δψ̄y↑δσa

)

+
1

2
Tr

(
Sb(πa, πb)

δ3Γ̃

δψ̄k′↑δπbδψ̄x↓
F(ψ̄x↓, ψ̄y↑)

δ3Γ̃

δψ̄k↓δψ̄y↑δπa

)

− 1

2
Tr

(
Sf(ψ̄x↓, ψ̄y↑)

δ3Γ̃

δψ̄k↓δσaδψ̄y↑
B(σa, σb)

δ3Γ̃

δψ̄k′↑δψ̄x↓δσb

)

− 1

2
Tr

(
Sf(ψ̄x↓, ψ̄y↑)

δ3Γ̃

δψ̄k↓δπaδψ̄y↑
B(πa, πb)

δ3Γ̃

δψ̄k′↑δψ̄x↓δπb

)

+
1

2
Tr

(
Sf(ψ̄x↑, ψ̄y↓)

δ3Γ̃

δψ̄k′↑δσaδψ̄y↓
B(σa, σb)

δ3Γ̃

δψ̄k↓δψ̄x↑δσb

)

+
1

2
Tr

(
Sf(ψ̄x↑, ψ̄y↓)

δ3Γ̃

δψ̄k′↑δπaδψ̄y↓
B(πa, πb)

δ3Γ̃

δψ̄k↓δψ̄x↑δπb

)

and includes transverse and longitudinal bosonic propagators. To calculate the flow for
the gap

d

dΛ
∆ =

δ2

δψ̄kf↑δψ̄−kf↓

d

dΛ
Γ, (B.72)

the external momenta and frequencies are evaluated on the Fermi surface, k = −k′ =
kf = (0,kf ). Furthermore, the amputated Yukawa vertices Eq. (B.54)-(B.57) and the
propagators from Eq. (B.23) and (B.43) are inserted in the above expressions. Finally,
the integrals over the remaining delta functions are performed. The flow for the gap then
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reads

d

dΛ
∆ = gσ

d

dΛ
α (B.73)

− 1

2
g2σ

∫
q

DΛ [Gσ2(q)Ff (−q + kf )] +
1

2
g2π

∫
q

DΛ [Gπ2(k)Ff (−q + kf )]

− 1

2
(igσgπ)

∫
q

DΛ [Gπσ(q)Ff (−q + kf ) +Gσπ(q)Ff (−q + kf )]

+ (kf ↔ −kf ),

where we introduced the shorthand notation DΛ = d
dΛ

∣∣∣
Σ

for scale derivatives, where
the self-energy Σ is kept constant. The fermionic and bosonic single-scale operators are
then defined as Sf (k) = DΛFf (k), Sf (k) = DΛGf (k), Sσ2(q) = DΛGσ2(q), Sπ2(q) =

DΛGπ2(q). We set F̄f (k) = Ff (k), since we choose a real-valued gap and order parameter.
Contributions with mixed bosonic propagators vanish due to symmetry.

Next, we will derive the flow equation for the transverse Yukawa coupling. The
derivation for the longitudinal Yukawa vertex works analogously but will not be presented
here. The flow equation for the transverse Yukawa vertex is extracted by applying two
fermionic and one bosonic functional field derivative to the effective action

δ3

δϕqδψ̄k′↑δψ̄k↓

d

dΛ
Γ =

δ4Γ

δϕqδσ0δψ̄k′↑δψ̄k↓

d

dΛ
α (B.74)

+
[1
2
Tr

(
B δ3Γ̃

δϕ2ϕq

Sb
δ3Γ̃

δψ̄k↓δϕδψ
F δ3Γ̃

δψ̄k′↑δψδϕ

)

+
1

2
Tr

(
Sb

δ3Γ̃

δϕqδϕδϕ
B δ3Γ̃

δψ̄k↓δϕδψ
F δ3Γ̃

δψ̄k′↑δψδϕ

)

+
1

2
Tr

(
Sb

δ3Γ̃

δψ̄k↓δϕδψ
F δ3Γ̃

δϕqδψ2
F δ3Γ̃

δψ̄k′↑δψδϕ

)

+
1

2
Tr

(
F δ3Γ̃

δϕqδψ2
Sf

δ3Γ̃

δψk↓δψδϕ
B δ3Γ̃

δψ̄k′↑δϕδψ

)

+
1

2
Tr

(
Sf

δ3Γ̃

δϕqδψ2
F δ3Γ̃

δψ̄k↓δψδϕ
B δ3Γ̃

δψ̄k′↑δϕδψ

)

+
1

2
Tr

(
Sf

δ3Γ̃

δψ̄k↓δψδϕ
B δ3Γ̃

δϕqδϕ2
B δ3Γ̃

δψ̄k′↑δϕδψ

)
−
(
ψ̄k′↑ ↔ ψ̄k↓

) ]
.
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We can rewrite this expression

δ3

δπqδψ̄k′↑δψ̄k↓

d

dΛ
Γ =

δ4Γ

δπqδσ0δψ̄k′↑δψ̄k↓

d

dΛ
α +

d

dΛ
A3 +

d

dΛ
A4 (B.75)

with the contributions

d

dΛ
A3 =

D̃Λ

2
Tr

(
Gb(σa, σb)

δ3Γ̃

δσbδπcδπq
Gb(πc, πd)

δ3Γ̃

δψ̄k↓δψ̄x↑δπd
F(ψ̄x↑, ψ̄y↓)

δ3Γ̃

δψ̄k′↑δψ̄y↓δσa

)

+
D̃Λ

2
Tr

(
Gb(πa, πb)

δ3Γ̃

δπbδσcδπq
Gb(σc, σd)

δ3Γ̃

δψ̄k↓δψ̄x↑δσd
F(ψ̄x↑, ψ̄y↓)

δ3Γ̃

δψ̄k′↑δψ̄y↓δπa

)

+
D̃Λ

2
Tr

(
Gb(σa, πb)

δ3Γ̃

δπqδπbδσc
Gb(σc, πd)

δΓ̃

δψ̄k↓δπdδψ̄x↑
F(ψ̄x↑, ψ̄y↓)

δ3Γ̃

δψ̄k′↑δψ̄y↓δσa

)

+
D̃Λ

2
Tr

(
Gb(πa, σb)

δ3Γ̃

δπqδσbδπc
Gb(πc, σd)

δΓ̃

δψ̄k↓δσdδψ̄x↑
F(ψ̄x↑, ψ̄y↓)

δ3Γ̃

δψ̄k′↑δψ̄y↓δπa

)
−
(
ψ̄k′↑ ↔ ψ̄k↓

)
(B.76)

and

d

dΛ
A4 =

D̃Λ

2
Tr

(
Gb(πa, πb)

δ3Γ̃

δψ̄k↓δπbδψ̄x↑
F(ψ̄x↑, ψ̄y↓)

δ3Γ̃

δπqδψ̄y↓δψ̄z↑
F(ψ̄z↑, ψ̄w↓)

δ3Γ̃

δψ̄k′↑δψ̄w↓δπa

)

+
D̃Λ

2
Tr

(
Gb(πa, πb)

δ3Γ̃

δψ̄k↓δπbδψ̄x↑
F(ψ̄x↑, ψy↑)

δ3Γ̃

δπqδψy↑δψz↓
F(ψz↓, ψ̄w↓)

δ3Γ̃

δψ̄k′↑δψ̄w↓δπa

)

+
D̃Λ

2
Tr

(
Gb(σa, σb)

δ3Γ̃

δψ̄k↓δσbδψ̄x↑
F(ψ̄x↑, ψ̄y↓)

δ3Γ̃

δπqδψ̄y↓ψ̄z↑
F(ψ̄z↑, ψ̄w↓)

δ3Γ̃

δψ̄k′↑δψ̄w↓δσa

)

+
D̃Λ

2
Tr

(
Gb(σa, σb)

δ3Γ̃

δψ̄k↓δσbδψ̄x↑
F(ψ̄x↑, ψy↑)

δ3Γ̃

δπqδψy↑ψz↓
F(ψz↓, ψ̄w↓)

δ3Γ̃

δψ̄k′↑δψ̄w↓δσa

)
−
(
ψ̄k′↑ ↔ ψ̄k↓

)
, (B.77)

where we defined a new operator D̃Λ which acts similarly as DΛ for a compact notation.3

The spin degree of freedom in contributions with two fermionic propagators leads to a
doubling of each term. Integrals over terms with only one mixed bosonic propagator
Gσπ(q) and two fermionic propagator vanish due to the antisymmetric frequency depen-

3The operator D̃Λ is identical to DΛ = ∂
∂Λ

∣∣∣
Σ

if it acts on bosonic propagators. However, it will

induce an additional minus sign if it is applied to fermionic propagators. Hence, for instance D̃ΛGσ(q) =
DΛGσ(q), but D̃ΛF (q) = −DΛF (q)
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dence of the bosonic propagator. We discarded them already in the above equation. After
setting bosonic external frequencies and momenta to zero, and fermionic frequencies and
momenta onto the Fermi surface, we find

d

dΛ
gπ = gπ

∫
q

DΛ

[
F 2
f (kf − q)) + |Gf (kf − q)|2

] [
g2σGσ2(q)− g2πGπ2(q)

]
+ 2gσgπ

∫
q

DΛ

[
Gσ2(q)Gπ2(q) +Gσπ(q)

2
]
F (kf − q)U(q)α. (B.78)

Now, we will calculate the RG flow for the bosonic order parameter. The flow equation
for the order parameter in general reads

d

dΛ
α = −

(
δ2Γ

δσ0δσ0

)−1
δ

δσ0

d

dΛ
Γ (B.79)

with δ2Γ
δσ0δσ0

= m2
σ. A derivation can be found in section 2.3 of chapter 2. Hence, we need

the first derivative of the effective action with respect to a longitudinal bosonic field that
is given by

δ

δσ0

∂

∂Λ
Γ =

1

2
Tr

(
Sb

δ3Γ̃

δσ0δϕ2

)
+

1

2
Tr

(
Sf

δ3Γ̃

δσ0δψ2

)
. (B.80)

In the next step, we evaluate the columns and rows of the matrix representation and
obtain

∂

∂Λ

δΓ

δσ0
=

1

2
Tr

(
Sb(πa, πb)

δ3Γ̃

δσ0δπbδπa

)
+

1

2
Tr

(
Sb(σa, σb)

δ3Γ̃

δσ0δσbδσa

)
(B.81)

+
1

2
Tr

(
Sf(ψ̄x↓, ψ̄y↑)

δ3Γ̃

δσ0δψ̄y↑δψ̄x↓

)
+

1

2
Tr

(
Sf(ψx↓, ψy↑)

δ3Γ̃

δσ0δψy↑δψx↓

)

+
1

2
Tr

(
Sf(ψ̄x↑, ψ̄y↓)

δ3Γ̃

δσ0δψ̄y↓δψ̄x↑

)
+

1

2
Tr

(
Sf(ψx↑, ψy↓)

δ3Γ̃

δσ0δψy↓δψx↑

)
.

Finally, the RG flow for the bosonic order parameter is given by

d

dΛ
α = − uα

2m2
σ

∫
q

DΛGπ2(q)− 1

2m2
σ

∫
q

DΛGσ2(q) [2U(q) + u]α

+
2gσ
m2
σ

∫
k

DΛFf (k), (B.82)

which we obtain after inserting the amputated Yukawa vertices and bosonic interactions
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from Eq. (B.54)-(B.57) and Eq. (B.7)-(B.11).
Now, we derive the explicit flow equations of the bosonic self-energies, see Eq. (B.60)

and (B.61). We first present an expression for the functional field derivatives with respect
to general bosonic fields

δ2

δϕQδϕQ′

d

dΛ
Γ =

δ3Γ

δϕQδϕQ′δσ0

d

dΛ
α (B.83)

− 1

2
Tr

(
Sf

δ3Γ̃

δϕQδψ2
F δ3Γ̃

δϕQ′δψ2
+ (ϕQ ↔ ϕQ′)

)

+
1

2
Tr

(
Sb

δ4Γ̃

δϕQδϕQ′δϕ2

)

− 1

2
Tr

(
Sb

δ3Γ̃

δϕQδϕ2
B δ3Γ̃

δϕQ′δϕ2
+ (ϕQ ↔ ϕQ′)

)
.

Next, we specify these general bosonic fields of the transverse and longitudinal fields and
obtain the RG equations for the transverse, longitudinal and mixed bosonic self-energy.

We begin with the longitudinal bosonic self-energy specifying the general bosonic
fields in terms of longitudinal fields ϕQ, ϕQ′ → σq, σq′ . The flow for the second derivative
of the effective action with respect to longitudinal fields reads

δ2

δσqδσq′

d

dΛ
Γ =

δ3Γ

δσqδσq′δσ0

d

dΛ
α +

d

dΛ
A5 +

d

dΛ
A6, (B.84)
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and can be split in two contributions A5 and A6. The first term

d

dΛ
A5=−

1

2
Tr

(
Sf(ψl′′↑, ψ̄k′↑)

δ3Γ̃

δσqδψ̄k′↑δψ̄k′′↓
F(ψ̄k′′↓, ψl′↓)

δ3Γ̃

δσq′δψl′↓δψl′′↑

)

− 1

2
Tr

(
Sf(ψ̄l′′↓, ψ̄k′↑)

δ3Γ̃

δσqδψ̄k′↑δψ̄k′′↓
F(ψ̄k′′↓, ψ̄l′↑)

δ3Γ̃

δσq′δψ̄l′↑δψ̄l′′↓

)

− 1

2
Tr

(
Sf(ψl′′↓, ψ̄k′↓)

δ3Γ̃

δσqδψ̄k′↓δψ̄k′′↑
F(ψ̄k′′↑, ψl′↑)

δ3Γ̃

δσq′δψl′↑δψl′′↓

)

− 1

2
Tr

(
Sf(ψ̄l′′↑, ψ̄k′↓)

δ3Γ̃

δσqδψ̄k′↓δψ̄k′′↑
F(ψ̄k′′↑, ψ̄l′↓)

δ3Γ̃

δσq′δψ̄l′↓δψ̄l′′↑

)

− 1

2
Tr

(
Sf(ψ̄l′′↑, ψk′↑)

δ3Γ̃

δσqδψk′↑δψk′′↓
F(ψk′′↓, ψ̄l′↓)

δ3Γ̃

δσq′δψ̄l′↓δψ̄l′′↑

)

− 1

2
Tr

(
Sf(ψl′′↓, ψk′↑)

δ3Γ̃

δσqδψk′↑δψk′′↓
F(ψk′′↓, ψl′↑)

δ3Γ̃

δσq′δψl′↑δψl′′↓

)

− 1

2
Tr

(
Sf(ψ̄l′′↓, ψk′↓)

δ3Γ̃

δσqδψk′↓δψk′′↑
F(ψk′′↑, ψ̄l′↑)

δ3Γ̃

δσq′δψ̄l′↑δψ̄l′′↓

)

− 1

2
Tr

(
Sf(ψl′′↑, ψk′↓)

δ3Γ̃

δσqδψk′↓δψk′′↑
F(ψk′′↑, ψl′↓)

δ3Γ̃

δσq′δψl′↓δψl′′↑

)
+ (σq ↔ σq′) (B.85)

includes fermionic contributions to the flow, whereas the second term

d

dΛ
A6 =

1

2
Tr

(
Sb(σa, σb)

δ4Γ̃

δσq′δσqδσbδσa

)
+

1

2
Tr

(
Sb(πa, πb)

δ4Γ̃

δσq′δσqδπbδπa

)
(B.86)

+

[
−1

2
Tr

(
Sb(σa, σb)

δ3Γ̃

δσqδσbδσc
B(σc, σd)

δ3Γ̃

δσq′δσdδσa

)

− 1

2
Tr

(
Sb(πa, πb)

δ3Γ̃

δσqδπbδπc
B(πc, πd)

δ3Γ̃

δσq′δπdδπa

)

− 1

2
Tr

(
Sb(σa, πb)

δ3Γ̃

δσqδπbδπc
B(πc, σd)

δ3Γ̃

δσq′δσdδσa

)

−1

2
Tr

(
Sb(πa, σb)

δ3Γ̃

δσqδσbδσc
B(σc, πd)

δ3Γ̃

δσq′δπdδπa

)
+
(
σq ↔ σq′

) ]

includes bosonic fluctuations. To determine the flow of the longitudinal bosonic self-
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energy, we insert again the expressions for the amputated Yukawa vertices Eq. (B.54)-
(B.57) and the matrix representation of fermionic and bosonic propagators Eq. (B.23)
and (B.43) into the above expression. Setting external momenta q = −q′ = p we obtain
the RG flow for the longitudinal bosonic self-energy

d

dΛ
Σσ2(p) = α(2U(p) + u)

d

dΛ
α (B.87)

− g2σ
∫
k

DΛ {[Gf (k)Gf (−k + p)− Ff (k)Ff (k + p)] + (p↔ −p)}

+
1

2

∫
q

DΛGσ2(q) [2U(q + p) + u] +
u

2

∫
q

DΛGπ2(q)

− 1

2

∫
q

DΛ

[
Gπ2(q +

p

2
)Gπ2(q − p

2
)
] [
U(p)

]2
α2

− 1

2

∫
q

DΛ

[
Gσ2(q +

p

2
)Gσ2(q − p

2
)
]

·
[
U(q − p

2
) + U(q +

p

2
) + U(p)

]2
α2

−
∫
q

DΛ [Gσπ(q)Gπσ(q + p)] [U(q) + U(q + p) + U(p)]U(p)α2.

Secondly, we derive the flow equation for the transverse bosonic self-energy. We now
need the second derivative of the effective action with respect to transverse bosonic fields
and choose ϕQ, ϕQ′ → πq, πq′ . The flow equation then reads

δ2

δπqδπq′

d

dΛ
Γ =

δ3Γ

δπqδπq′δσ0

dα

dΛ
+

d

dΛ
A7 +

d

dΛ
A8 (B.88)

consisting of two contributions A7 and A8. The first term
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d

dΛ
A7=−

1

2
Tr

(
Sf(ψl′′↑, ψ̄k′↑)

δ3Γ̃

δπqδψ̄k′↑δψ̄k′′↓
F(ψ̄k′′↓, ψl′↓)

δ3Γ̃

δπq′δψl′↓δψl′′↑

)

− 1

2
Tr

(
Sf(ψ̄l′′↓, ψ̄k′↑)

δ3Γ̃

δπqδψ̄k′↑δψ̄k′′↓
F(ψ̄k′′↓, ψ̄l′↑)

δ3Γ̃

δπq′δψ̄l′↑δψ̄l′′↓

)

− 1

2
Tr

(
Sf(ψl′′↓, ψ̄k′↓)

δ3Γ̃

δπqδψ̄k′↓δψ̄k′′↑
F(ψ̄k′′↑, ψl′↑)

δ3Γ̃

δπq′δψl′↑δψl′′↓

)

− 1

2
Tr

(
Sf(ψ̄l′′↑, ψ̄k′↓)

δ3Γ̃

δπqδψ̄k′↓δψ̄k′′↑
F(ψ̄k′′↑, ψ̄l′↓)

δ3Γ̃

δπq′δψ̄l′↓δψ̄l′′↑

)

− 1

2
Tr

(
Sf(ψ̄l′′↑, ψk′↑)

δ3Γ̃

δπqδψk′↑δψk′′↓
F(ψk′′↓, ψ̄l′↓)

δ3Γ̃

δπq′δψ̄l′↓δψ̄l′′↑

)

− 1

2
Tr

(
Sf(ψl′′↓, ψk′↑)

δ3Γ̃

δπqδψk′↑δψk′′↓
F(ψk′′↓, ψl′↑)

δ3Γ̃

δπq′δψl′↑δψl′′↓

)

− 1

2
Tr

(
Sf(ψ̄l′′↓, ψk′↓)

δ3Γ̃

δπqδψk′↓δψk′′↑
F(ψk′′↑, ψ̄l′↑)

δ3Γ̃

δπq′δψ̄l′↑δψ̄l′′↓

)

− 1

2
Tr

(
Sf(ψl′′↑, ψk′↓)

δ3Γ̃

δπqδψk′↓δψk′′↑
F(ψk′′↑, ψl′↓)

δ3Γ̃

δπq′δψl′↓δψl′′↑

)
+ (πq ↔ πq′) (B.89)

describes fermionic contributions to the flow, whereas the latter

d

dΛ
A8 =

1

2
Tr

(
Sb(σa, σb)

δ4Γ̃

δπq′δπqδσbδσa

)
+

1

2
Tr

(
Sb(πa, πb)

δ4Γ̃

δπq′δπqδπbδπa

)
(B.90)

+

[
−1

2
Tr

(
Sb(σa, σb)

δ3Γ̃

δπqδσbδπc
B(πc, πd)

δ3Γ̃

δπq′δπdδσa

)

−1

2
Tr

(
Sb(σa, πb)

δ3Γ̃

δπqδπbδσc
B(σc, πd)

δ3Γ̃

δπq′δπdδσa

)

−1

2
Tr

(
Sb(πa, σb)

δ3Γ̃

δπqδσbδπc
B(πc, σd)

δ3Γ̃

δπq′δσdδπa

)

−1

2
Tr

(
Sb(πa, πb)

δ3Γ̃

δπqδπbδσc
B(σc, σd)

δ3Γ̃

δπq′δσdδπa

)
+ (πq ↔ πq′)

]

includes bosonic fluctuations. Again we insert the Yukawa couplings Eq. (B.54)-(B.57) and
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bosonic interactions Eq. (B.7)-(B.11) into the above expressions and perform the internal
integrations over the delta functions. We set the external momenta and frequencies to
q = −q′ = p. The RG flow equations for the transverse self-energy then reads

d

dΛ
Σπ2(p) = uα

d

dΛ
α− g2π

∫
k

DΛ [Gf (k)Gf (−k + p) + Ff (k)Ff (k + p) + (p↔ −p)]

−
∫
q

DΛ[Gπ2(q + p)Gσ2(q)] [U(q)]2 α2

+
1

2

∫
q

[2U(q + p) + u]DΛGπ2(q) +
u

2

∫
q

DΛGσ2(q)

−
∫
q

DΛ

[
Gσπ(q)Gσπ(q + p)

]
[U(q)U(q + p)]α2. (B.91)

At last we derive the flow equations for the mixed bosonic self-energy Σσπ(p). Here,
we require the second derivative of the effective action with respect to transverse and
longitudinal bosonic fields

δ2

δσq′δπq

d

dΛ
Γ =

d

dΛ
A9 +

d

dΛ
A10, (B.92)

which we split into two parts A9 and A10. The first part describes fermionic contributions

165



B.4 RG equations of the couplings

to the flow

d

dΛ
A9=−

1

2
Tr

(
Sf(ψl′′↑, ψ̄k′↑)

δ3Γ̃

δπqδψ̄k′↑δψ̄k′′↓
F(ψ̄k′′↓, ψl′↓)

δ3Γ̃

δσq′δψl′↓δψl′′↑

)

− 1

2
Tr

(
Sf(ψ̄l′′↓, ψ̄k′↑)

δ3Γ̃

δπqδψ̄k′↑δψ̄k′′↓
F(ψ̄k′′↓, ψ̄l′↑)

δ3Γ̃

δσq′δψ̄l′↑δψ̄l′′↓

)

− 1

2
Tr

(
Sf(ψl′′↓, ψ̄k′↓)

δ3Γ̃

δπqδψ̄k′↓δψ̄k′′↑
F(ψ̄k′′↑, ψl′↑)

δ3Γ̃

δσq′δψl′↑δψl′′↓

)

− 1

2
Tr

(
Sf(ψ̄l′′↑, ψ̄k′↓)

δ3Γ̃

δπqδψ̄k′↓δψ̄k′′↑
F(ψ̄k′′↑, ψ̄l′↓)

δ3Γ̃

δσq′δψ̄l′↓δψ̄l′′↑

)

− 1

2
Tr

(
Sf(ψ̄l′′↑, ψk′↑)

δ3Γ̃

δπqδψk′↑δψk′′↓
F(ψk′′↓, ψ̄l′↓)

δ3Γ̃

δσq′δψ̄l′↓δψ̄l′′↑

)

− 1

2
Tr

(
Sf(ψl′′↓, ψk′↑)

δ3Γ̃

δπqδψk′↑δψk′′↓
F(ψk′′↓, ψl′↑)

δ3Γ̃

δσq′δψl′↑δψl′′↓

)

− 1

2
Tr

(
Sf(ψ̄l′′↓, ψk′↓)

δ3Γ̃

δπqδψk′↓δψk′′↑
F(ψk′′↑, ψ̄l′↑)

δ3Γ̃

δσq′δψ̄l′↑δψ̄l′′↓

)

− 1

2
Tr

(
Sf(ψl′′↑, ψk′↓)

δ3Γ̃

δπqδψk′↓δψk′′↑
F(ψk′′↑, ψl′↓)

δ3Γ̃

δσq′δψl′↓δψl′′↑

)
+ (πq ↔ σq′), (B.93)
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and the second part includes bosonic contributions

d

dΛ
A10=

1

2
Tr

(
Sb(σa, πb)

δ4Γ̃

δσq′δπqδπbδσa

)
+

1

2
Tr

(
Sb(πa, σb)

δ4Γ̃

δσq′δπqδσbδπa

)

− 1

2
Tr

(
Sb(σa, σb)

δ3Γ̃

δσq′δσbδσc
B(σc, πd)

δ3Γ̃

δπqδπdδσa

)

− 1

2
Tr

(
Sb(σa, πb)

δ3Γ̃

δσq′δπbδπc
B(πc, πd)

δ3Γ̃

δπqδπdδσa

)

− 1

2
Tr

(
Sb(πa, σb)

δ3Γ̃

δσq′δσbδσc
B(σc, σd)

δ3Γ̃

δπqδσdδπa

)

− 1

2
Tr

(
Sb(πa, πb)

δ3Γ̃

δσq′δπbδπc
B(πc, σd)

δ3Γ̃

δπqδσdδπa

)

− 1

2
Tr

(
Sb(σa, σb)

δ3Γ̃

δπqδσbδπc
B(πc, σd)

δ3Γ̃

δσq′δσdδσa

)

− 1

2
Tr

(
Sb(σa, πb)

δ3Γ̃

δπqδπbδσc
B(σc, σd)

δ3Γ̃

δσq′δσdδσa

)

− 1

2
Tr

(
Sb(πa, σb)

δ3Γ̃

δπqδσbδπc
B(πc, πd)

δ3Γ̃

δσq′δπdδπa

)

− 1

2
Tr

(
Sb(πa, πb)

δ3Γ̃

δπqδπbδσc
B(σc, πd)

δ3Γ̃

δσq′δπdδπa

)
. (B.94)

For the determination of the mixed bosonic self-energy, we again insert the amputated
Yukawa vertices and bosonic couplings. Finally, we perform the integrations over all inter-
nal indices and delta functions and set the external momentum and frequency dependence
q = −q′ = p. The RG flow for the mixed bosonic self-energy finally reads

d

dΛ
Σσπ(p)= igσgπ

(∫
k

DΛ [Gf (k)Gf (−p− k)]−
∫
k

DΛ [Gf (k)Gf (p− k)]
)

+ igσgπ

∫
k

DΛ [Ff (k)Ff (k + p)]− igσgπ
∫
k

DΛ [Ff (k)Ff (k − p)]

−
∫
q

DΛ [Gσ2(q)Gσπ(q + p)] [U(q) + U(q + p) + U(p)] [U(q)]α2

−
∫
q

DΛ [Gπ2(q + p)Gσπ(q)] [U(p)U(q)]α
2

−
∫
q

DΛGσπ(q)U(q + p). (B.95)
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The RG flows for the bosonic self-energies Σσ2(p), Σπ2(p) and Σσπ(p) determine the
flow of the bosonic masses

d

dΛ
m2
σ =

d

dΛ
Σσ2(0),

d

dΛ
m2
π =

d

dΛ
Σπ2(0),

d

dΛ
m2
σπ =

d

dΛ
Σσπ(0). (B.96)

Furthermore, they determine the RG flow for the renormalization factors

d

dΛ
Zσ =

1

2

∂2

∂p2x

∣∣∣
p=0

d

dΛ
Σσ2(p),

d

dΛ
Zπ =

1

2

∂

∂p2x

∣∣∣
p=0

d

dΛ
Σπ2(p) (B.97)

d

dΛ
W =

∂

∂p0

∣∣∣
p0=0

d

dΛ
Σσπ(p). (B.98)

The values for the mass and gradient term of the bosonic self-interaction u and Y are
determined by

Y =
Zσ − Zπ
α2

, u =
m2
σ

α2
. (B.99)

B.5 Density of states for bosonic dispersion relation

In this section we present expressions for bosonic densities of states for our bosonic dis-
persion of the attractive Hubbard model. A detailed derivation can be found in Pesz and
Munn (1986), who discuss the density of state of anisotropic tight binding models. Our
bosonic dispersion relation

ω2
q = 4− 2 cos qx − 2 cos qy (B.100)

is a special case of the general version discussed there. For this simple dispersion relation
several density of state-like functions can be defined as

N(E) =

∫ π

−π

∫ π

−π
dqxdqyδ(E − ω2

q) = 2g

(
E − 4

2

)
, (B.101)

Ncos(E) =

∫ π

−π

∫ π

−π
dqxdqyδ(E − ω2

q) cos qx = 2gcos

(
E − 4

2

)
, (B.102)

Nsin2(E) =

∫ π

−π

∫ π

−π
dqxdqyδ(E − ω2

q) sin
2 qx = 2gsin2

(
E − 4

2

)
, (B.103)
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and can be written in terms of the functions g(ϵ), gcos(ϵ) and gsin2(ϵ) with the shifted
argument ϵ = E−4

2
.4 These functions are defined as

g(ϵ) =


∫ 1−ϵ
−1

dx√
1−x2
√

1−(x+ϵ)2
if 0 < ϵ < 2,∫ 1

−1−ϵ
dx√

1−x2
√

1−(x+ϵ)2
if − 2 < ϵ < 0,

0 else,

(B.104)

gcos(ϵ) =


∫ 1−ϵ
−1

dx x√
1−x2
√

1−(x+ϵ)2
if 0 < ϵ < 2,∫ 1

−1−ϵ dx
x√

1−x2
√

1−(x+ϵ)2
if − 2 < ϵ < 0,

0 else,

(B.105)

gsin2(ϵ) =


∫ 1−ϵ
−1

dx
√
1−x2√

1−(x+ϵ)2
if 0 < ϵ < 2,∫ 1

−1−ϵ dx
√
1−x2√

1−(x+ϵ)2
if − 2 < ϵ < 0,

0 else.

(B.106)

Hence, double integrals over the two-dimensional momentum space can be reduced to
one-dimensional integrals over energies via the above density of states. After we replace
the density of states by their analytic expressions from Eq. (B.101), (B.102) and (B.103),
we obtain the relations∫ Λ

−Λ

∫ π

−π

∫ π

−π

dq0dqxdqy
(2π)3

F [ω2
q, q0] = 2

∫ Λ

−Λ

∫ 8

0

dq0dE

(2π)3
g(
E − 4

2
)F [E, q0], (B.107)∫ Λ

−Λ

∫ π

−π

∫ π

−π

dq0dqxdqy
(2π)3

cos qxF [ω
2
q, q0] = 2

∫ Λ

−Λ

∫ 8

0

dq0dE

(2π)3
gcos(

E − 4

2
)F [E, q0],∫ Λ

−Λ

∫ π

−π

∫ π

−π

dq0dqxdqy
(2π)3

sin2 qxF [ω
2
q, q0] = 2

∫ Λ

−Λ

∫ 8

0

dq0dE

(2π)3
gsin2(

E − 4

2
)F [E, q0].

for an arbitrary test-function F [ω2
q, q0]. We will apply these expressions to numerically

evaluate the RG flow equations for the fermionic superfluid. Three-dimensional integra-
tions over the two-dimensional Brillouin zone and frequencies are thereby reduced to two-
dimensional integrations over energy and frequency, leading to a reduction of computing
time.

4Note that the variable E does not denote the physical energy here, but the square root of the energy.
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APPENDIX C

Ward identities

In this chapter we derive the Ward identities for a coupled fermion-boson system. We
follow arguments similar to Kopietz et al. (2010), Zinn-Justin (2002) and Amit (1984).
First, we derive a general connection valid for the effective action due to the underlying
U(1)-symmetry. Afterwards, Ward identities between different correlation functions are
obtained by functional differentiation with respect to fermionic and bosonic fields.

C.1 Ward identities for coupled fermion-boson theory

The starting point is given by a purely fermionic microscopic action of the form

S[ψ, ψ̄] =

∫
kσ

ψ̄kσ(ik0 − ξk)ψkσ + U
∑
i

ψ̄i↑ψi↑ψ̄i↓ψi↓, (C.1)

which obeys the global U(1)-symmetry

ψkσ → ψkσ exp(iασ), (C.2)

ψ̄kσ → ψ̄kσ exp(−iασ), (C.3)

with phase factor ασ for each spin configuration σ =↑, ↓. After decoupling of the two-
particle interaction by a Hubbard-Stratonovich transformation in the particle-particle
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channel, we obtain the coupled fermion-boson theory, which is described by

S[ψ̄, ψ, ϕ∗, ϕ] =

∫
kσ

ψ̄kσ (ik0 − ξk)ψkσ −
∫
q

1

U
ϕ∗
qϕq (C.4)

+

∫
k,q

(
ψ̄−k+q↓ψ̄k↑ϕq + ψk↑ψ−k+q↓ϕ

∗
q

)
,

where ϕq and ϕ∗
q denote bosonic fields, which are conjugated to fermionic bilinears in

the particle-particle channel. The U(1)-symmetry of the microscopic theory translates
directly to transformations for the bosonic fields

ϕq → ϕq exp(i(α↑ + α↓)), (C.5)

ϕ∗
q → ϕ∗

q exp(−i(α↑ + α↓)). (C.6)

We introduce now the shorthand variables K and Q collecting fermion and bosonic
frequency and momentum dependence, an index over conjugated fermionic and bosonic
fields, and a spin index for fermionic fields. The fermionic and bosonic fields are then
given by

(ψK) =
(
ψk↑, ψk↓, ψ̄k↑, ψ̄k↓

)
, ϕQ = (ϕq, ϕ

∗
q) (C.7)

and the corresponding external source fields are given by

(ηK) = (ηk↑, ηk↓, η̄k↑, η̄k↓) , JQ = (Jq, J
∗
q ). (C.8)

The transformations for fermionic and bosonic fields then read

ψK → ψK exp(iαFK), (C.9)

ϕQ → ϕQ exp(iαBQ), (C.10)

with the phases

αFK = (α↑, α↓, −α↑,−α↓) , αBQ = (α↑ + α↓, −(α↑ + α↓)) . (C.11)

The partition function with external source fields is given by

Z[JQ, ηK ] =

∫
Dψ̃Dϕ̃e−S[ϕ̃,ψ̃]−∆S[ϕ̃,ψ̃]+

∫
Q JQϕ̃Q+

∫
K ηK ψ̃K . (C.12)

(C.13)
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The invariance of the theory with respect to the U(1)-symmetry for fermionic and bosonic
fields leads to

Z[JQ, ηK ]
U(1)
= Z[JQe

−iαB
Q,, ηKe

−iαF
K ], (C.14)

which implies transformation laws for the external source fields. In the next step we
linearize the partition function to first order in the bosonic and fermionic phases αBQ and
αFK . This yields

Z[JQe
−iαB

Q , ηKe
−iαF

K ] =

∫
Dψ̃Dϕ̃e−S[ϕ̃,ψ̃]−∆S[ϕ̃,ψ̃]+

∫
Q JQe

−iαB
Q ϕ̃Q+

∫
K ηKe

−iαF
K ψ̃K (C.15)

lin
= Z[JQ, ηK ] +O(α2

B, α
2
F , αFαB) (C.16)

−
∫
Dψ̃Dϕ̃

(∫
Q

αBQJQϕ̃Q +

∫
K

αFKηKψ̃K

)
· e−S[ϕ̃,ψ̃]−∆S[ϕ̃,ψ̃]+

∫
Q JQϕ̃Q+

∫
K ηK ψ̃K

= Z[JQ, ηK ] +O(α2
B, α

2
F , αFαB)

−
(∫

Q

αBQJQ
δ

δJQ
+

∫
K

αFKηK
δ

ηK

)
Z[JQ, ηK ] (C.17)

Comparison of coefficients in the fermionic and bosonic phases of the same order yields

0 =
1

W

(∫
Q

αBQJQ
δ

δJQ
+

∫
K

αFKηK
δ

ηK

)
W [JQ, ηK ], (C.18)

where the partition Z[J, η] = ln (W [J, η]) was replaced by the generating functional for
connected Green’s functions W [J, η]. Next, we switch to the representation with average
bosonic and fermionic fields by the Legendre transformations

ψK = ⟨ψ̃K⟩ =
δW

δηK
, ϕQ = ⟨ϕ̃Q⟩ =

δW

δJQ
, −ηK =

δΓ

δψK
, JQ =

δΓ

δϕQ
, (C.19)

where we use W = W [J, η] and Γ = Γ[ψ, ϕ]. We thus obtain

0 =
1

W

(∫
Q

αBQϕQ
δΓ

δϕQ
+

∫
K

αFKψK
δΓ

ψK

)
. (C.20)

Now, we write out the explicit spin dependence of the fermionic fields and distinguish
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C.2 Ward identities in the symmetry-broken phase

between conjugated bosonic and fermionic fields. The equation then reads

0 =

∫
q

(α↑ + α↓)ϕq
δΓ

δϕq
−
∫
q

(α↑ + α↓)ϕ
∗
q

δΓ

δϕ∗
q

+

∫
k

(
α↑ψk↑

δΓ

δψk↑
+ α↓ψk↓

δΓ

δψk↓
− α↑ψ̄k↑

δΓ

δψ̄k↑
− α↓ψ̄k↓

δΓ

δψ̄k↓

)
. (C.21)

In the case of charge conservation of each spin configuration separately, the above relation
splits up into two equations∫

q

(
−ϕq

δΓ

δϕq
+
δΓ

δϕ∗
q

ϕ∗
q

)
=

∫
k

(
ψk↑

δΓ

δψk↑
− ψ̄↑

δΓ

δψ̄k↑

)
, (C.22)∫

q

(
−ϕq

δΓ

δϕq
+
δΓ

δϕ∗
q

ϕ∗
q

)
=

∫
k

(
ψk↓

δΓ

δψk↓
− ψ̄↓

δΓ

δψ̄k↓

)
, (C.23)

for the spin up phase α↑ and spin down phase α↓.1 In the case of total charge conservation,
both equations can be subsumed to

2

∫
q

(
−ϕq

δΓ

δϕq
+
δΓ

δϕ∗
q

ϕ∗
q

)
=

∫
kσ

(
ψkσ

δΓ

δψkσ
− ψ̄kσ

δΓ

δψ̄kσ

)
. (C.24)

C.2 Ward identities in the symmetry-broken phase

In this section, we derive the explicit Ward identity between the fermionic gap, bosonic
order parameter and the transverse Yukawa vertex. Furthermore, we present another
identity between transverse and longitudinal Yukawa vertices and the two-boson-two-
fermion vertex. The starting point is given by Eq. (C.24)

Differentiation with respect to fermionic fields δ2

δψ̄y↓δψ̄x↑
and δ2

δψy↓δψx↑
leads to the rela-

tions

− δ2Γ

δψ̄y↓δψ̄x↑
= −

∫
q

ϕq
δ3Γ

δψ̄y↓δψ̄x↑δϕq
+

∫
q

ϕ∗
q

δ3Γ

δψ̄y↓δψ̄x↑δϕ∗
q

, (C.25)

− δ2Γ

δψx↑δψy↓
= −

∫
q

ϕq
δ3Γ

δψy↓δψx↑δϕq
+

∫
q

ϕ∗
q

δ3Γ

δψy↓δψx↑δϕ∗
q

, (C.26)

between gap and Yukawa vertices at vanishing fermionic fields ψ = 0. We will now insert
1This result is identical to the result obtained by Kopietz et al. (2010).
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C.2 Ward identities in the symmetry-broken phase

the explicit ansatz for the anomalous quadratic fermionic part of the action

Γψψ =

∫
k

(
∆ψ̄k↓ψ̄−k↑ +∆∗ψk↑ψ−k↓

)
, (C.27)

and the ansatz for the Yukawa vertices in the particle representation

Γψ2ϕ∗+ψ2ϕ = g

∫
k,q

(
ψ̄−k+q↓ψ̄k↑(ϕq − αδq,0) + ψk↑ψ−k+q↓(ϕ

∗
q − α∗δq,0)

)
(C.28)

+ g̃

∫
k,q

(
ψ̄−k+q↓ψ̄k↑(ϕ

∗
−q − α∗δq,0) + ψk↑ψ−k+q↓(ϕ−q − αδq,0)

)
.

The relations g + g̃ = gσ and g − g̃ = gπ connect the couplings for the normal and
anomalous Yukawa vertices with the couplings for the longitudinal and transverse Yukawa
vertices. Bosonic fluctuations are decomposed into transverse and longitudinal direction
ϕq = αδq,0 + σq + iπq and ϕ∗

q = αδq,0 + σ−q − iπ−q. Inserting the ansätze Eq. (C.27) and
Eq. (C.28) into Eq. (C.25) and (C.26) and setting y = −x = −p, we obtain the relations

∆ = αg − α∗g̃, (C.29)

∆∗ = gα∗ − g̃α. (C.30)

reflecting the underlying Ward identities within our ansatz for the effective action. In the
case of a real-valued gap ∆ = ∆∗ and order parameter α = α∗, these equations reduce to

∆ = αgπ, (C.31)

connecting the fermionic single-particle gap and the bosonic order parameter via the
transverse Yukawa coupling.

Next, we determine Ward identities between the anomalous and normal Yukawa
coupling and the two-boson-two-fermion vertex. Differentiation with respect to fermionic
fields δ2

δψx↑δψy↓
and bosonic field δ

δϕa
and δ

δϕ∗a
, respectively, yields

∫
q

ϕq
δ4Γ

δϕ∗
aδψx↑δψy↓δϕq

=

∫
q

ϕ∗
q

δ4Γ

δϕ∗
aδψx↑δψy↓δϕ

∗
q

, (C.32)

−2 δ3Γ

δϕaδψy↓δψx↑
= −

∫
q

ϕq
δ4Γ

δϕaδψx↑δψy↓δϕq
+

∫
q

ϕ∗
q

δ4Γ

δϕaδψx↑δψy↓δϕ∗
q

, (C.33)
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C.2 Ward identities in the symmetry-broken phase

and differentiation with respect to δ2

δψ̄x↑δψ̄y↓
, and δ

δϕa
and δ

δϕ∗a
yields

∫
q

ϕq
δ4Γ

δϕaδψ̄x↑δψ̄y↓δϕq
=

∫
q

ϕ∗
q

δ4Γ

δϕaδψ̄x↑δψ̄y↓δϕ∗
q

, (C.34)

−2 δ3Γ

δϕ∗
aδψ̄y↓δψ̄x↑

=

∫
q

ϕq
δ4Γ

δϕ∗
aδψ̄x↑δψ̄y↓δϕq

−
∫
q

ϕ∗
q

δ4Γ

δϕ∗
aδψ̄x↑δψ̄y↓δϕ

∗
q

. (C.35)

Setting the external fermionic frequencies and momenta to y = −x = p and the external
bosonic frequencies and momenta to a = 0, we obtain

ϕ0
δ4Γ

δϕ∗
0δψ−p↑δψp↓δϕ0

= ϕ∗
0

δ4Γ

δϕ∗
0δψ−p↑δψp↓δϕ∗

0

, (C.36)

−2 δ3Γ

δϕ0δψp↓δψ−p↑
= −ϕ0

δ4Γ

δϕ0δψ−p↑δψp↓δϕ0

+ ϕ∗
0

δ4Γ

δϕ0δψ−p↑δψp↓δϕ∗
0

, (C.37)

ϕ0
δ4Γ

δϕ0δψ̄−p↑δψ̄p↓δϕ0

= ϕ∗
0

δ4Γ

δϕ0δψ̄−p↑δψ̄p↓δϕ∗
0

, (C.38)

−2 δ3Γ

δϕ∗
0δψ̄p↓δψ̄−p↑

= ϕ0
δ4Γ

δϕ∗
0δψ̄−p↑δψ̄p↓δϕ0

− ϕ∗
0

δ4Γ

δϕ∗
0δψ̄−p↑δψ̄p↓δϕ∗

0

, (C.39)

due to momentum and and energy conservation at each vertex. In the case of a real gap
∆ = ∆∗ and order parameter α = α∗ these equations reduce to

α
δ4Γ

δϕ∗
0δψ−p↑δψp↓δϕ0

= α
δ4Γ

δϕ∗
0δψ−p↑δψp↓δϕ∗

0

(C.40)

−2 δ3Γ

δϕ0δψp↓δψ−p↑
= −α δ4Γ

δϕ2
0δψ−p↑δψp↓

+ α
δ4Γ

δϕ0δψ−p↑δψp↓δϕ∗
0

(C.41)

and the corresponding complex conjugated equations. As an example, we now assume a
local ansatz for the two-boson-two-fermion vertex of the form

Γψ2ϕ2 =

∫
k,k′,q

λψk↓ψk′↑ϕ−k−qϕ−k′+q +

∫
k,k′,q

λψ̄k′↑ψ̄k↓ϕ
∗
−k−qϕ

∗
−k′+q (C.42)

consistent with the identities Eq. (C.36)-(C.39), and obtain then

2g̃ = gσ − gπ = αλ. (C.43)

This identity connects the anomalous Yukawa vertex, which is given by the difference of
transverse and longitudinal Yukawa vertices, with the couplings parametrizing the two-
boson-two-fermion vertex. In absence of a two-boson-two-fermion vertex, Γψ2ϕ2 = 0, the
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C.2 Ward identities in the symmetry-broken phase

Ward identity Eq. (C.41) implies

2g̃ = 0 ⇒ gσ = gπ. (C.44)

In that case the couplings parametrizing the transverse and longitudinal Yukawa vertices
are enforced to be identical. Higher order Ward identities can be derived in a similar way.
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Deutsche Zusammenfassung

In dieser Promotionsschrift werden moderne Renormierungsgruppenstrategien angewandt,
um Fluktuationseffekte des Ordnungsparameters in wechselwirkenden fermionischen Sys-
temen zu studieren. Es werden zwei Systeme untersucht, die in einem gewissen Para-
meterbereich Suprafluidiät zeigen. Im ersten Projekt wird ein Quantenphasenübergang
zwischen Halbmetall und Supraflüssigkeit untersucht, in dem masselose kritische Fluk-
tuationen das Geschehen am quantenkritischen Punkt bestimmen. Im zweiten Projekt
wird der Grundzustand einer fermionischen Supraflüssigkeit untersucht, in dem mas-
selose Goldstone-Fluktuationen einen dramatischen Einfluss auf das Verhalten des Sys-
tems haben. Um das vielfältige Wechselspiel zwischen Fermionen und Ordnungsparameter-
fluktuationen zu untersuchen, werden durch eine Hubbard-Stratonovich-Transformation
bosonische Felder zur adäquaten Beschreibung der Ordnungsparameterfluktuationen einge-
führt. Die gekoppelte fermionisch-bosonische Theorie wird mit Hilfe der funktionalen
Renormierungsgruppenmethode untersucht.

Die Arbeit besteht aus fünf Hauptkapiteln und beginnt in Kapitel 1 mit der Ein-
leitung, welche einen kurzen historischen Abriss über die Renormierungsgruppe (RG)
gibt. Anschließend werden die zwei Forschungsprojekte eingeführt. In Kapitel 2 wird die
funktionale Renormierungsgruppe diskutiert und die Flussgleichung für die skalenabhän-
gige effektive Wirkung abgeleitet. Die nachfolgenden Kapitel 3 und 4 bilden den zentralen
Kern dieser Arbeit. Dort werden die beiden Forschungsprojekte, sowie deren Resultate im
Detail vorgestellt. In Kapitel 5 werden die zentralen Ergebnisse beider Projekte zusam-
mengefasst. Außerdem wird ein Ausblick auf zukünftige mögliche Forschungsvorhaben
gegeben. In den Anhängen A und B werden die expliziten Flussgleichungen für die
Kopplungskonstanten, welche den Ansatz für die effektive Wirkung in der symmetrischen
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und symmetriegebrochenen Phase parametrisieren, abgeleitet. Schließlich werden in An-
hang C Ward-Identitäten für gemischte fermionisch-bosonische Systeme, die eine U(1)-
Symmetrie besitzen, abgeleitet. Im Folgenden wird die Renormierungsgruppenmethode
knapp skizziert. Anschliessend werden die beide Forschungsthemen im Einzelnen präsen-
tiert.

Die funktionale Renormierungsgruppe ist eine Weiterentwicklung der Wilsonschen
RG und ist ein ideales Werkzeug zur Analyse von Fluktuationseffekten in wechselwir-
kenden Fermi-Systemen (vgl. Review von Metzner et al. (2012)). Das Herzstück der funk-
tionalen RG bildet eine exakte Flussgleichung für die skalenabhängige effektive Wirkung,
welche die mikroskopische Wirkung und die volle effektive Wirkung durch einen Renor-
mierungsgruppenfluss verknüpft. Die volle effektive Wirkung entspricht dem generieren-
den Funktional für einteilchenirreduzibele Vertexfunktionen. Aus ihr lassen sich sowohl
beliebige Korrelationsfunktionen, als auch die Thermodynamik des Systems ableiten.
Die Skalenabhängigkeit der effektiven Wirkung wird durch eine Regulatorfunktion im-
plementiert. Bei endlichen Skalen unterdrückt der Regulator niederenergetische Moden
in der Theorie und führt zu einer Regularisierung singulärer Terme. Im Infrarotlimes des
Renormierungsgruppenflusses wird der Regulator vollständig entfernt, und man erhält die
volle effektive Wirkung.

Im ersten Projekt wurde ein Quantenphasenübergang zwischen einem Halbmetall
und einer Supraflüssigkeit untersucht. Beide Phasen sind durch einen quantenkritischen
Punkt getrennt. Die Dispersion der Halbmetallphase ist durch einen Dirac-Kegel gegeben,
dessen Fermi-Fläche bei entsprechender Wahl des chemischen Potentials aus nur einem
einzigen Punkt besteht. Das System wurde ursprünglich von Strack et al. (2010) einge-
führt, um Nicht-Fermi-Flüssigkeitsverhalten und Nicht-Gaußsches-Verhalten an einem
quantenkritischen Punkt anhand eines simplen Modellsystems zu studieren. In der dama-
ligen Arbeit wurde das kritische Verhalten des Systems am und in der Nähe des quan-
tenkritischen Punktes am absoluten Nullpunkt untersucht. Die Beschreibung erfolgte
im Rahmen einer gekoppelten fermionisch-bosonischen Theorie, die mit der funktionalen
Renormierungsgruppe untersucht wurde. Dazu wurde ein Ansatz für die skalenabhängige
effektive Wirkung in Feld- und Gradientenentwicklung verwendet. Die Frequenz- und Im-
pulsabhängigkeit der fermionischen und bosonischen Selbstenergie wurde mit identischen
Renormierungsfaktoren vereinfacht beschrieben. Der fermionische Renormierungsfak-
tor charakterisiert dabei das Verhalten der Quasiteilchen am quantenkritischen Punkt.
Fermionen und bosonische Fluktuationen sind über einen Yukawa-Vertex verknüpft. Die
Kopplungskonstante für den Yukawa-Vertex ist zu Beginn des Flusses eins und erfährt
keine Renormierung. Innerhalb dieser Trunkierung wurde ein Nicht-Fermi-Flüssigkeitsver-
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halten, insbesondere ein verschwindendes Quasiteilchen-Gewicht, sowie ein Nicht-Gaus-
sches-Verhalten der Ordnungsparameterfluktuationen gefunden. Die Fermi-Geschwindigkeit
blieb unverändert während der Renormierungsprozedur. Am absoluten Nullpunkt zeigte
die Paarsuszeptibilität ein Potenzgesetz-Verhalten mit kritischem Exponenten in der Nähe
des quantenkritischen Punktes. Der kritische Exponent der Korrelationslänge wurde in-
direkt durch eine Skalenrelation bestimmt.

Diese Resultate warfen folgende neue Fragen und Problemstellungen auf und inspi-
rierten weitere Forschungstätigkeiten über das Dirac-Cone-Modell:

• Bleibt die Fermi-Geschwindigkeit auch in einem verfeinerten Ansatz für die fer-
mionische Selbstenergie unverändert?

• Lässt sich der kritische Exponent der Korrelationslänge am absoluten Nullpunkt
ebenfalls wie der kritische Exponent der Suszeptibilität direkt aus dem RG-Fluss
bestimmen?

• Wie verhalten sich Suszeptibilität, Korrelationslänge und die verschiedenen Re-
normierungsfaktoren der fermionischen und bosonischen Selbstenergie im endlichen
Temperaturbereich oberhalb des quantenkritischen Punktes?

• Sind die kritischen Exponenten und anomalen Dimensionen über Skalenrelationen
miteinander verknüpft?

Ausgehend von diesen Fragestellungen wurde in der vorliegenden Arbeit die Re-
normierung des Dirac-Cone-Modells in verschiedene Richtungen erweitert. Dazu wurde
die Trunkierung der effektiven Wirkung verbessert. Für die Frequenz- und Impulsab-
hängigkeit von fermionischer und bosonischer Selbstenergie wurden unterschiedliche Re-
normierungsfaktoren verwendet. Außerdem wurde ein endlicher und von Hand eingestell-
ter Masseterm zur mikroskopischen Wirkung hinzugefügt. Dieser verhindert das Auftreten
einer Bandlücke, welche ansonsten durch die fermionische Wechselwirkung generiert würde.
Die Methode der Gegenterme garantiert dann einen masselosen Dirac-Kegel in der Halb-
metallphase. Das Verhalten des RG-Flusses wurde innerhalb dieser verbesserten Trun-
kierung nicht nur am absoluten Nullpunkt in der Halbmetallphase und am quantenkri-
tischen Punkt untersucht, sondern auch im endlichen Temperaturbereich oberhalb des
quantenkritischen Punktes.

Im Folgenden werden wir nun die zentralen Ergebnisse unserer Renormierungsgrup-
penanalyse zusammengefasst darlegen. Am kritischen Punkt divergieren Korrelations-
länge, Korrelationszeit und die Paarsuszeptibilität. Die Renormierungsfaktoren für die
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Frequenzabhängigkeit der fermionischen Selbstenergie, sowie die Renormierungsfaktoren
für die Frequenz- und Impulsabhängigkeit der bosonischen Selbstenergie sind ebenfalls di-
vergent und zeigen dort ein Potenzgesetz-Verhalten in der Abschneideskala des Regulators,
was dem Auftreten von anomalen fermionischen und bosonischen Dimensionen entspricht.
Dies impliziert ein Nicht-Fermi-Flüssigkeitsverhalten, insbesondere ein Verschwinden des
Quasiteilchen-Gewichts, sowie ein Nicht-Gaußsches-Verhalten der Ordnungsparameter-
fluktuationen. Überraschenderweise renormiert die Impulsabhängigkeit der fermionischen
Selbstenergie nicht. Zusammen mit der Divergenz der Frequenzabhängigkeit der fermioni-
schen Selbstenergie führt dies zu einer verschwindenden Fermi-Geschwindigkeit am kri-
tischen Punkt.

Die Paarsuszeptibilität zeigt in der Halbmetallphase am absoluten Nullpunkt ein
Potenzgesetz-Verhalten mit kritischen Exponenten. Für die Korrelationslänge und Kor-
relationszeit wurde wider Erwarten kein solches Potenzgesetz-Verhalten am absoluten
Nullpunkt gefunden. Stattdessen implizierte unsere RG-Analyse eine unendliche Kor-
relationslänge und Korrelationszeit in der gesamten Halbmetallphase auch abseits des
quantenkritischen Punktes. Dies konnte durch eine Analyse des fermionischen Teilchen-
Teilchen-Diagramms, das eine nicht-analytische Frequenz- und Impulsabhängigkeit zeigt,
bestätigt werden. Diese Nicht-Analytizitäten führen im Realraum und in der Realzeit zu
einem Abfall von räumlichen und zeitlichen Korrelationen in Form von Potenzgesetzen,
was unser RG-Ergebnis bestätigte.

Im endlichen Temperaturbereich oberhalb des quantenkritischen Punktes zeigte sich,
dass sowohl die Korrelationslänge als auch die Paarsuszeptibilität in der Nähe des kri-
tischen Punktes einem Potenzgesetz als Funktion der Temperatur gehorchen. Die da-
zugehörigen kritischen Exponenten konnten numerisch bestimmt werden. Es stellte sich
heraus, dass die kritischen Exponenten und die anomalen Dimensionen mehrere Skalenge-
setze erfüllen. Die zentralen Resultate lassen sich in Form einer Liste zusammenfassen:

• RG-Studie über einen Quantenphasenübergang zwischen Halbmetall und Supraflüs-
sigkeit

• Nicht-Fermi-Flüssigkeitsverhalten sowie Nicht-Gaußsches-Verhalten am quantenkri-
tischen Punkt

• Verschwindende Fermi-Geschwindigkeit und verschwindendes Quasiteilchen-Gewicht
am quantenkritischen Punkt

• Potenzgesetz-Verhalten mit kritischen Exponenten in der Nähe des kritischen Punk-
tes für verschiedene Größen am absoluten Nullpunkt sowie bei endlichen Tempera-
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turen.

• Divergente Korrelationslänge im Grundzustand in der gesamten Halbmetallphase
auch abseits des quantenkritischen Punktes

Das zweite Projekt dieser Dissertation beschäftigte sich mit dem Grundzustand von
fermionischen Supraflüssigkeiten. Dabei sollte das Wechselspiel zwischen Fermionen und
bosonischen Ordnungsparameterfluktuationen untersucht werden. Aufgrund der spon-
tanen Symmetriebrechung der kontinuierlichen U(1)-Symmetrie treten masselose kollek-
tive Anregungen, die Goldstone-Bosonen, auf. Diese Goldstonefluktuationen verursachen
Divergenzen innerhalb der Theorie und machen eine Renormierungsgruppenanalyse not-
wendig. Wie oben angedeutet, wird in dieser Arbeit der Grundzustand einer fermioni-
schen Supraflüssigkeit analysiert. Mittlerweile lassen sich solche Supraflüssigkeiten in
optischen Gittern mit ultrakalten Atomen experimentell realisieren (vgl. Review von
Bloch et al. (2008)). Im Rahmen der funktionalen Renormierungsgruppe wurden schon
mehrere Studien zu fermionischen Supraflüssigkeiten unternommen. Innerhalb einer rein
fermionischen funktionalen RG-Studie untersuchten Gersch et al. (2005) und Eberlein und
Metzner (2013) das attraktive Hubbard-Modell, welches häufig als Prototyp-Modell für
fermionische Supraflüssigkeiten verwendet wird. Dabei konnten quantitative Ergebnisse
für die fermionische Energielücke erzielt werden, die gut mit Werten aus der Literatur
übereinstimmen. Es zeigte sich jedoch, dass Ordnungsparameterfluktuationen nur teil-
weise innerhalb der Ein-Loop-Näherung berücksichtigt sind und wichtige Beiträge fehlen,
die für das korrekte Infrarot-Verhalten notwendig sind. Eine andere Möglichkeit, das
Wechselspiel zwischen Fermionen und Ordnungsparameterfluktuationen zu studieren, ist
durch die Analyse einer gekoppelten fermionisch-bosonischen Theorie mit Renormierungs-
gruppen-Techniken gegeben. Birse et al. (2005) untersuchte als erster den BEC-BCS-
Crossover in einer einfachen Trunkierung. Weitere Trunkierungen des funktionalen RG-
Flusses zu fermionischen Supraflüssigkeiten folgten von Krippa (2007) und Diehl et al.
(2007). Bartosch et al. (2010) studierte eine Kombination von Schwinger-Dyson-Gleichun-
gen und der funktionalen Renormierungsgruppe. In dieser Arbeit wurden die fermionische
Energielücke und der bosonische Ordnungsparameter unterschieden.

Dieselbe Unterscheidung zwischen Energielücke und Ordnungsparameter wurde be-
reits zwei Jahre früher von Strack et al. (2008) in einer gemischten fermionisch-bosonischen
funktionalen RG-Studie vorgenommen. Zusätzlich wurden in dieser Arbeit die Ord-
nungsparameterfluktuationen in transversale und longitudinale Fluktuationsbeiträge auf-
gespalten. Es konnte gezeigt werden, dass die transversalen Goldstonefluktuationen zu
Singularitäten in den longitudinalen Freiheitsgraden führen, die zur erwarteten Infrarot-
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Asymptotik der longitudinalen kollektiven Anregungen führt. In dieser Trunkierung wur-
den jedoch die Tatsache, dass die Goldstone-Masse verschwindet, sowie ein endliches
Quasiteilchen-Gewicht der Goldstone-Bosonen von Hand implementiert. Außerdem wurde
hier eine lineare Frequenzabhängigkeit in der bosonischen Selbstenergie vernachlässigt,
welche einen Mischterm zwischen longitudinalen und transversalen Ordnungsparameter-
fluktuationen verursacht. Weiter wurde nur eine lokale bosonische Selbstwechselwirkung
behandelt. Somit wurden neue Fragestellungen aufgeworfen, die zu weiterführenden Un-
tersuchungen animieren:

• Gibt es eine einfache Verbindung zwischen fermionischer Energielücke und bosoni-
schem Ordnungsparameter?

• Wie beeinflusst das Mischen von transversalen und longitudinalen Moden das Ver-
halten des Renormierungsgruppenflusses?

• Beschreibt eine lokale bosonische Selbstwechselwirkung das Verhalten des Systems
adäquat?

• Was lässt sich allgemein über die Erfüllung von Ward-Identitäten aussagen?

• Wie sieht eine konsistente Trunkierung der fermionisch-bosonischen Flussgleichun-
gen aus, welche die korrekte Infrarot-Asymptotik des Systems wiedergibt?

Diese Fragen und Problemstellungen wurden durch das zweite Forschungsprojekt dieser
Dissertation geklärt. Dazu wurde die Trunkierung von Strack et al. in mehrere Rich-
tungen erweitert. Zusätzlich zur früheren Trunkierung wurde ein linearer Frequenzterm
eingeführt, der zu einer Mischung zwischen transversalen und longitudinalen Ordnungspa-
rameterfluktuationen führt. Außerdem wurde eine nicht-lokale bosonische Selbstwechsel-
wirkung eingeführt (Y-Term).

Die Resultate von Strack et al. bezüglich des Infrarot-Verhaltens der longitudinalen
Moden bzw. der fermionischen Energielücke und Ordnungsparameters konnten sowohl
innerhalb einer analytischen als auch numerischen Analyse bestätigt werden. In zwei
Dimensionen verschwindet die longitudinale Masse und damit auch die lokale bosoni-
sche Wechselwirkung linear mit der Abschneideskala. Der Renormierungsfaktor, welcher
die Frequenz und Impulsabhängigkeit der longitudinalen Fluktuationen parametrisiert,
divergiert wie die inverse Abschneideskala. Dieses Verhalten ist konsistent mit dem
Verhalten eines wechselwirkenden Bosegases (Castellani et al. (1997) und Pistolesi et
al. (2004)). Sowohl der Fluss des bosonischen Ordnungsparameters als auch die fermioni-
sche Energielücke sättigen, wobei der Ordnungsparameter einen kleineren Wert annimmt
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als die Energielücke. Der lineare Frequenzterm verschwindet linear mit der Skala und
die Mischung zwischen longitudinalen und transversalen Moden führt zu keiner quali-
tativen Änderung der Infrarot-Asymptotik. Innerhalb unserer Trunkierung konnten wir
zeigen, dass der Y-Term entscheidend ist um die ursprüngliche U(1)-Symmetrie des Mo-
dells zu erhalten, wenn zwischen longitudinalen und transversalen Fluktuationen in der
symmetriegebrochenen Phase unterschieden wird.

Wir konnten zeigen, dass bosonische Ward-Identitäten in unserer Trunkierung erfüllt
sind. Die bosonische Ward-Identität verknüpft dabei die transversale und longitudinale
Selbstenergie mit der nicht-lokalen bosonischen Wechselwirkung. Außerdem wurden zwei
weitere gemischte Ward-Identitäten abgeleitet, welche fermionische und bosonische Kor-
relationsfunktionen verknüpfen. Zum einen fanden wir eine Identität, die den bosonischen
Ordnungsparameter mit der fermionischen Energielücke über den transversalen Yukawa-
Vertex verbindet. Wir konnten explizit zeigen, dass diese Identität konsistent ist mit
den expliziten Flussgleichungen. Zum anderen wurde eine Identität gefunden, welche
den Zwei-Boson-Zwei-Fermion-Vertex mit dem transversalen und longitudinalen Yukawa-
Vertex verbindet. Ein verschwindender Zwei-Boson-Zwei-Fermion-Vertex, wie in unserem
Falle, erzwingt dann eine identische Kopplungskonstante zwischen transversalem und lon-
gitudinalem Yukawa-Vertex.

Die Auswirkung der Ward-Identitäten wird vor allem im Verhalten der Asymp-
totik der Goldstone-Bosonen sichtbar. Wir konnten explizit zeigen, dass die bosoni-
sche Ward-Identität zur gegenseitigen Aufhebung von bosonischen Fluktuationsbeiträgen
zur Goldstone-Masse führt. Der Y-Term spielte dabei eine entscheidende Rolle. Durch
Anwendung der fermionischen Ward-Identitäten konnte auch gezeigt werden, dass sich
fermionische Beiträge zur Goldstone-Masse gegenseitig wegheben, und dass das Gold-
stonetheorem innerhalb unserer Trunkierung erfüllt ist. Bezüglich der Infrarot-Asymptotik
des transversalen Quasiteilchen-Gewichtes konnte analytisch sowie numerisch gezeigt wer-
den, dass sich zwei singuläre Beiträge gegenseitig wegheben. Auch hier spielte der Y-Term
eine entscheidende Rolle.

Demnach konnten wir zeigen, dass innerhalb unserer Trunkierung der RG-Flussglei-
chung sowohl die longitudinale Mode als auch die Goldstone-Mode konsistent behandelt
werden. In dieser Arbeit wurde zum ersten Mal die fermionisch-bosonische Theorie des
Grundzustandes der fermionischen Supraflüssigkeit konsistent in einer Trunkierung be-
handelt und analysiert. Die Arbeit kann als Richtlinie für zukünftige Arbeiten dienen,
bei denen innerhalb einer Trunkierung des fermionisch-bosonischen Flusses auch Ward-
Identitäten erfüllt sein sollen. Wir fassen die zentralen Ergebnisse des zweiten Projekts
in Form einer kompakten Auflistung zusammen:
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• RG-Studie von Fluktuationen im Grundzustand fermionischer Supraflüssigkeiten

• Unterscheidung von bosonischem Ordnungsparameter und fermionischer Energielücke

• Unterscheidung transversaler und longitudinaler Ordnungsparameterfluktuationen

• Berücksichtigung einer nicht-lokalen bosonischen Wechselwirkung

• Berücksichtigung der Mischung zwischen transversalen und longitudinalen bosonischen
Fluktuationen

• Nachweis, dass sich kollektive Moden wie ein wechselwirkendes Bosegas verhalten

• Erfüllung von Ward-Identitäten

• Konsistente Beschreibung masseloser Goldstone-Moden innerhalb der Trunkierung
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