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Summary

The present study analyzes wetting phenomena in electrolyte solutions. They are inves-

tigated by means of classical density functional theory. First, the wetting of a charged

substrate by an electrolyte solution is studied with emphasis on the influence of the sub-

strate charge density and of the ionic strength on the wetting transition temperature

and on the order of the wetting transition. The corresponding models consist of solvent

particles, anions, and cations. Two mean field approaches are used: (1) A lattice model

(Chap. 3) within which particles occupy the sites of a semi-infinite simple cubic lattice.

Each site is either empty or occupied by a single particle and the particles interact among

each other via an attractive nearest-neighbor interaction which is taken to be the same

for all pairs of particles. In addition, ion pairs interact via the Coulomb potential. The

substrate can carry a homogeneous surface charge density and additionally attracts par-

ticles in the first layer adjacent to it. (2) A continuum model (Chap. 4) with short- and

long-ranged solvent-solvent and substrate-solvent interactions and with ions interacting

among each other and with the wall only via the electrostatic field. The motivation to

use a lattice model for this system is that this kind of model offers the possibility to study

broad interfacial regions, which is important for wetting phenomena studies, with a lower

computational cost in comparison to continuum models.

For the lattice model, the bulk phase behavior has been obtained (see Fig. 3.1) as

a function of the ionic strength. Within this model the reduced critical temperature is

independent of the ionic strength whereas the critical density depends linearly on it. The

wetting phenomena are analyzed in terms of the effective interface potential, which is

calculated numerically for this model. The pure, i.e., salt-free, solvent exhibits a second-

order wetting transition for all strengths of the substrate-particle and the particle-particle

interactions for which the wetting transition temperature is nonzero (Fig. 3.2). Depend-

ing on the value of the ratio between the strengths of the substrate-fluid and fluid-fluid

interactions, the model can exhibit layering transitions when gas-liquid coexistence is

approached along an isotherm (Fig. 3.3). Next, the influence of the substrate charge

density and of the ionic strength on the wetting transition temperature and on the order
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of the wetting transition are studied. If the substrate is neutral, the addition of salt to

the solvent changes neither the order nor the transition temperature of the wetting tran-

sition of the system. On the other hand, if the surface charge is nonzero, upon adding

salt this continuous wetting transition changes to first-order within the range of substrate

surface charge densities and ionic strengths considered here (Fig. 3.4). As the substrate

surface charge density is increased, for fixed ionic strength, the wetting transition temper-

ature decreases. Moreover, the wetting transition temperature decreases when the ionic

strength is decreased for fixed surface charge density σ (Fig. 3.5). When bulk coexistence

is approached along an isotherm, in the case of a first-order wetting transition, i.e., if

σ 6= 0, the model exhibits first-order layering transitions in addition to prewetting (Fig.

3.6). This leads to a series of triple points in the surface phase diagram (see Fig. 3.7).

The prewetting line associated with the first-order wetting transition becomes longer as

the surface charge density is increased (Fig. 3.8).

For the continuum model, expressions for the effective interface potential are derived

analytically. The analysis of these expressions renders the conditions under which corre-

sponding wetting transitions can be first- or second-order. Within mean field theory two

cases are considered: One with only short-ranged solvent-solvent and substrate-solvent

interactions and one with both short- and long-ranged solvent-solvent and solvent-wall

interactions. The analytic results reveal in a transparent way that wetting transitions

in electrolyte solutions, which occur far away from their critical point (i.e., the bulk

correlation length is less than half of the Debye length), are always first-order if the

solvent-solvent and solvent-wall interactions are short-ranged. In contrast, wetting tran-

sitions close to the bulk critical point of the solvent (i.e., the bulk correlation length is

larger than the Debye length) exhibit the same wetting behavior as the pure, i.e., salt-

free, solvent. If the salt-free solvent is governed by long-ranged solvent-solvent as well as

long-ranged substrate-solvent interactions and exhibits critical wetting, adding salt can

cause the occurrence of an ion-induced first-order thin-thick transition which precedes the

subsequent continuous wetting as for the salt-free solvent (Fig. 4.1).

The phenomenon of electrowetting, i.e., the dependence of the macroscopic contact

angle of a fluid on the electrostatic potential of the substrate, is studied in Chap. 5 for

a vertical parallel plate capacitor in contact with two immiscible fluids, where at least

one of the two fluids is an electrolyte solution (Fig. 5.1). This system is studied by using

density functional theory applied to a continuum model similar to the one presented in

Chap. 4. Here, the possibility of the formation of films of microscopic thickness on the

substrates, widely ignored in the context of electrowetting, is taken into account (Fig. 5.2).

This approach allows one to transparently derive the electrowetting equation (5.18). The
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derivation shows that electrowetting is a consequence of the voltage-dependence of the

depth of the effective interface potential. Moreover, it is shown that the traditional elec-

trocapillarity approach to electrowetting, i.e., the assumption that electrowetting is a

consequence of the voltage-dependence of the substrate-fluid interfacial tension, is a good

approximation for the cases of metallic electrodes or electrodes coated with a hydropho-

bic dielectric in contact with an electrolyte solution and an ion-free oil. In contrast, a

significantly reduced tendency for electrowetting is predicted for electrodes coated with

a dielectric which is hydrophilic or which is in contact with two immiscible electrolyte

solutions.

Finally, the line tension and the three-phase contact line structure of a drop of an

electrolyte solution on a charged substrate are investigated within the lattice model in

Chap. 6. For the pure, i.e., salt-free, solvent, the equilibrium liquid-gas interface profile

approaches its asymptote from above, as expected for second-order wetting transitions

(Fig. 6.2) and the line tension depends linearly on the contact angle the drop makes

with the substrate (Fig. 6.3). For the electrolyte solution, the equilibrium liquid-gas

interface profile approaches its asymptote from below as expected for first-order wetting

transitions (Fig. 6.4). When the contact angle is changed by varying the temperature

while keeping the surface charge fixed, the line tension increases as the temperature is

increased, i.e, as the contact angle is decreased. For fixed temperature, the line tension

is smaller for the larger ionic strength (Fig. 6.5). When the contact angle is changed

by varying the surface charge density at fixed temperature, the line tension increases as

the surface charge is increased. The increase of the line tension depends weakly on the

ionic strength for very small surface charge. However, as the surface charge is increased,

the increase of the line tension becomes more pronounced for the smaller ionic strength

(Fig. 6.6). The equilibrium structure of the three-phase contact line for different charge

densities has been calculated. For large surface charge densities, non-linear effects of the

Poisson-Boltzmann theory are more important. This results in a different structure for

the ±-ions and for the electrostatic potential when compared with small surface charge

densities (Figs. 6.7, 6.8 and 6.9).
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Zusammenfassung

In der vorliegenden Arbeit werden Benetzungsphänomene in Elektrolytlösungen mittels

klassischer Dichtefunktionaltheorie untersucht. Zunächst wird der Einfluss der Ober-

flächenladungsdichte und der Ionenstärke auf die Übergangstemperatur und die Ordnung

des Benetzungsübergangs beim Benetzen eines elektrisch geladenen Substrats durch eine

Elektrolytlösung studiert. Die hier betrachteten Elektrolytösungen bestehend aus drei

Teilchensorten: Lösungsmittel, Anionen und Kationen. Es werden zwei verschiedene

Molekularfeld-Näherungen verwendet:

(1) Ein Gitter-Modell (Kapitel 3), in welchem die Gitterplätze eines halbunendlichen

einfach-kubischen Gitters entweder leer oder von nur einem Teilchen besetzt sind. Alle

direkt benachbarten Teilchen wechselwirken attraktiv miteinander. Zusätzlich wechsel-

wirken Ionen durch das Coulomb-Potential miteinander. Das Substrat kann eine homo-

gene Oberflächenladung tragen und zusätzlich wirkt es attraktiv auf die Fluid-Teilchen

in der direkt angrenzenden Schicht.

(2) Ein Kontinuum-Modell (Kapitel 4) mit kurz- und langreichweitigen Wechselwirkungen,

in welchem die Ionen miteinander und mit der Wand ausschließlich mittels des elektro-

statischen Felds wechselwirken.

Für das Gitter-Modell wurde das Phasenverhalten als Funktion der Ionenstärke bes-

timmt (Abb. 3.1). Innerhalb dieses Modells ist die reduzierte kritische Temperatur

unabhängig von der Ionenstärke, wohingegen sich die kritische Dichte linear mit der

Ionenstärke ändert. Die Analyse der Benetzungsphänomene wird mit Hilfe des effek-

tiven Grenzflächenpotentials vorgenommen, welches für dieses Modell numerisch berech-

net wurde. Die reine, d.h. salzfreie, Lösung zeigt einen Benetzungsübergang zweiter

Ordnung bei allen Stärken der Substrat-Fluid- und der Fluid-Fluid-Wechselwirkung, bei

denen die Benetzungstemperatur über dem absoluten Nullpunkt liegt (Abb. 3.2). In

Abhängigkeit vom Wert des Verhältnisses zwischen den Stärken der Substrat-Fluid- und

der Fluid-Fluid-Wechselwirkung kann das Modell bei isothermer Annäherung an die Gas-

Flüssigkeits-Koexistenz sogenannte “layering transitions” zeigen (Abb. 3.3). Als nächstes

wurde der Einfluss der Ladungsdichte des Substrats und der Ionenstärke auf die Tem-
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peratur und die Ordnung des Benetzungsübergangs untersucht. Bei einem elektrisch

neutralen Substrat ändert die Zugabe von Salz zur Lösung weder die Temperatur noch

die Ordnung des Benetzungsübergangs. Ist as Substrat hingegen geladen, ändert sich

für die hier betrachteten Ladungsdichten und Ionenstärken der kontinuierliche Benet-

zungsübergang in einen erster Ordnung (Abb. 3.4). Bei konstanter Ionenstärke sinkt

die Benetzungstemperatur mit steigender Oberflächenladungsdichte. Außerdem sinkt die

Benetzungstemperatur bei konstanter Oberflächenladungsdichte mit abnehmender Ionen-

stärke (Abb. 3.5). Bei isothermer Annäherung an die Koexistenz tritt bei einem Benet-

zungsübergang von erster Ordnung, d.h. bei geladenem Substrat, nicht nur das übliche

Vorbenetzen (“prewetting”) auf, sondern auch zusätzlich “layering transitions” erster Ord-

nung (Abb. 3.6). Dies führt zu einer Folge von Tripelpunkten im Oberflächenphasendi-

agramm (Abb. 3.7). Die mit dem Benetzungsübergang erster Ordnung verbundene Vor-

benetzungslinie wird länger, wenn die Oberflächenladung erhöht wird.

Innerhalb des Kontinuummodells wurden analytische Ausdrücke für das effektive Grenz-

flächenpotential hergeleitet. Eine Analyse dieser Ausdrücke gibt Aufschluss über die Be-

dingungen, unter welchen Benetzungsübergänge von erster Ordnung oder kontinuierlich

sein können. Im Rahmen der Molekularfeldtheorie wurden zwei Fälle betrachtet: ein-

erseits ausschließlich kurzreichweitige Wechselwirkungen und andererseits sowohl lang-

als auch kurzreichweitige Wechselwirkungen. Die analytischen Ergebnisse zeigen, dass

Benetzungsübergänge in Elektrolytlösungen weit entfernt vom kritischen Punkt (d.h.

die Korrelationslänge beträgt weniger als die Hälfte der Debye-Länge) bei ausschließlich

kurzreichweitigen Wechselwirkungen stets von erster Ordnung sind. Dagegen zeigen

Benetzungsübergänge in der Nähe des kritischen Punkts (d.h. die Korrelationslänge ist

gröer als die Debye-Länge) dasselbe Benetzungsverhalten wie das reine, d.h. salzfreie,

Lösungsmittel. Wenn das salzfreie Lösungsmittel durch langreichweitige Wechselwirkun-

gen beschrieben wird und einen kritischen Benetzungsübergang aufweist, kann das Hinzu-

fügen von Salz das Auftreten eines ioneninduzierten dünn-dick bergangs erster Ordnung

bewirken, der anschließendem kontinuierlichem Benetzen vorausgeht, wie beim salzfreien

Lösungsmittel (Abb. 4.1).

Das Phänomen “electrowetting”, d.h. die Abhängigkeit des makroskopischen Kon-

taktwinkels eines Fluids vom elektrostatischen Potential des Substrats, wird in Kapitel

5 für den Fall eines vertikalen Plattenkondensators in Kontakt mit zwei nicht misch-

baren Fluiden untersucht, von denen mindestens eine eine elektrolytische Lösung ist

(Abb. 5.1). Dieses System wird mittels Dichtefunktionaltheorie untersucht, die auf ein

Kontinuumsmodell angewendet wird, welches dem in Kapitel 4 vorgestellten ähnlich ist.

Dabei wird die weithin ignorierte Möglichkeit berücksichtigt, dass sich Benetzungsfilme
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mikroskopischer Dicke auf dem Substrat bilden können (Abb. 5.2). Dieser Ansatz er-

laubt es die sogenannte “electrowetting equation” (5.18) herzuleiten. Diese Herleitung

zeigt, dass “electrowetting” eine Folge der Spannungsabhängigkeit der Tiefe des effek-

tiven Grenzflächenpotentials ist. Außerdem wird gezeigt, dass der traditionelle Elektro-

kapillaritätszugang, d.h. die Annahme, dass “electrowetting” eine Folge der Spannungsab-

hängigkeit der Substrat-Fluid Grenzflächenspannung ist, eine gute Näherung darstellt für

die Fälle, dass metallische oder mit einem hydrophoben Dielektrikum beschichtete Elek-

troden in Kontakt mit einer Elektrolytlösung und einem salzfreien Öl vorliegen. Dagegen

wird eine deutlich verringerte Tendenz für “electrowetting” bei hydrophil beschichteten

Elektroden oder bei zwei nicht mischbaren Elektrolytlösungen vorausgesagt.

Schließlich wurden die Linienspannung und die Struktur der Dreiphasenkontaktlinie

eines Tropfens elektrolytischer Lösung auf einem geladenen Substrat innerhalb des Git-

termodells in Kapitel 6 untersucht. Im Falle des reinen, d.h. salzfreien, Lösungsmittels

nähert sich das Grenzflächenprofil zwischen Flüssigkeit und Gas seiner Asymptoten “von

oben” an, wie dies für kontinuierliche Benetzungsübergänge erwartet wird (Abb. 6.2),

und die Linienspannung hängt linear vom Kontaktwinkel ab, den der Tropfen mit dem

Substrat bildet (Abb. 6.3). Im Fall der elektrolytischen Lösung nähert sich das Grenz-

flächenprofil zwischen Flüssigkeit und Gas seiner Asymptoten “von unten” an, wie dies

für Benetzungsübergänge erster Ordnung zu erwarten ist (Abb. 6.4). Wenn der Kon-

taktwinkel durch Temperaturerhöhung bei konstanter Oberflächenladung verringert wird,

erhöht sich die Linienspannung. Bei konstanter Temperatur nimmt die Linienspannung

mit steigender Ionenstärke ab (Abb. 6.5). Wenn der Kontaktwinkel durch Erhöhung

der Oberflächenladungsdichte bei konstanter Temperatur verringert wird, erhöht sich die

Linienspannung. Der Anstieg der Linienspannung hängt für sehr kleine Oberflächen-

ladungen schwach von der Ionenstärke ab. Wird jedoch die Oberflächenladung erhöht,

so ist der Anstieg der Linienspannung ausgeprägter bei kleinen Ionenstärken (Abb. 6.6).

Die Gleichgewichtsstruktur der Dreiphasenkontaktlinie wurde für verschiedene Ladungs-

dichten berechnet. Bei groen Oberflächenladungsdichten sind nichtlineare Effekte der

Poisson-Boltzmann-Theorie wichtig. Verglichen mit kleinen Oberflächenladungsdichten

resultiert dies in einer andersartigen Struktur der Dichteprofile der Ionen und des elek-

trostatischen Potentials (Abb. 6.7, 6.8 und 6.9).
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Chapter 1

Introduction

This thesis deals with wetting in electrolyte solutions, which are of great importance in

physical chemistry and biophysical systems. They are ubiquitous in nature, e.g., physi-

ological fluids and sea water are electrolyte solutions made of mixtures of sodium Na+,

chloride Cl−, potassium K+, and calcium Ca2+ ions mainly. Moreover, their susceptibility

to electric fields, which can be easily controlled by electrodes, is crucial for several im-

portant processes such as electrolysis and electrowetting. These and many other relevant

applications of electrolytes involve interfaces with solid media. Therefore understanding

their interfacial properties is of great scientific and technological importance. Although

experimental access to the interfacial structure of fluids is challenging in comparison to

the bulk structure, interfacial properties such as the excess adsorption are experimentally

accessible. Wetting phenomena can be addressed by analyzing the behavior of the excess

adsorption in the vicinity of phase boundaries or when substrate-fluid or fluid-fluid in-

teractions change due for example to modifications of the substrate chemistry or of the

chemical composition of the fluid.

To a large extent, wetting studies have been devoted to fluids composed of electrically

neutral molecules such as one-component fluids and binary liquid mixtures [1–5], whereas

investigations of electrolyte solutions have been challenging due to their complexity, which

arises from the long-ranged Coulomb interactions between ions and the fact that they are

formed at least by three constituents: solvent, cations and anions. Nevertheless, the

presence of ions is of crucial importance for wetting phenomena such as electrowetting [6]

(see Sec. 1.3 and Chap. 5) which offers numerous applications such as “lab-on-a-chip”

devices [7, 8], adjustable lenses [9] and electronic displays [10]. The presence of ions in

wetting phenomena is also unavoidable because many substrates release ions once they

are brought into contact with polar solvents and because in biological and industrial

application water is, strictly speaking, an electrolyte solution [11].
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Most of the studies dealing with wetting properties in the presence of ions have focused

on the thickness of wetting films and on the behavior of the disjoining pressure [12–16].

Only recently theoretical investigations concerning wetting transitions at coexistence of

electrolyte solutions close to charged solid substrates have emerged [17–20] (See Sec. 1.3

for a brief review concerning wetting phenomena in systems with ions). However, the

models in Refs. [17–20] suffer from some limitations such as restrictions to small system

sizes.

In this thesis, wetting transitions at coexistence of electrolyte solutions close to charged

substrates are studied. To that end, a lattice and a continuum model are investigated

by means of classical density functional theory. In Chap. 2 the foundations of classical

density functional theory and the basic concepts of wetting phenomena are introduced.

In order to overcome the problems of previous studies, in Chap. 3 the lattice model for

an electrolyte exposed to a charged substrate is introduced (Sec. 3.1). This model takes

into account all three constituents, i.e., solvent, anions and cations, via density functional

theory (see Sec. 2.1) and offers the possibility to study significantly broader interfacial

regions than the continuum models of Refs. [19, 20]. The bulk and wetting behavior of

this model are studied.

Despite the differences between the models studied in Refs. [17–20] and in Chap. 3,

agreement concerning the trend that electrostatic forces favor first-order wetting transi-

tions is found between them. Consequently, a natural question which arises is whether

this observation is accidental or whether there is a deeper reason for it. To answer this

question, in Chap. 4 we derive an approximate expression for the effective interface poten-

tial (see Subsec. 2.2.1) of a suitable model for an electrolyte solution near a charged wall,

which has been introduced and studied in Ref. [21]. The analysis of the effective inter-

face potential provides a transparent understanding of the wetting behavior of electrolyte

solutions.

In Chap. 5 the effective interface potential for the case of a vertical parallel plate

capacitor in contact with two immiscible fluids is derived and used to obtain an elec-

trowetting equation. The cases of uncoated metal electrodes and electrodes coated with

hydrophobic and hydrophilic dielectrics with an electrolyte solution and an oil as fluids

are studied. In addition, the case of metal electrodes coated with dielectrics with two

immiscible electrolyte solutions as fluids is also considered.

Finally, in Chap. 6 the liquid-vapor-substrate three phase contact line (TPCL) of an

electrolyte solution close to a charged planar substrate is studied within the lattice model

presented in Chap. 3. In particular, the influence of surface charge and ionic strength on

the equilibrium structure close to the TPCL and on the line tension, i.e., the free energy
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per unit length associated with the contact line, is analyzed.

The remaining of this chapter is intended to provide a short review of general issues

related to the present work .

1.1 Bulk electrolyte solutions

In 1887 Arrhenius proposed the dissociation of salts and acids into positive ions (cations)

and negative ions (anions) when they are dissolved in water [22]. Assuming that ions

where non-interacting particles Arrhenius calculated the osmotic pressure of electrolyte

aqueous solutions using van’t Hoff’s law. While the theory was proved valid for weak

electrolytes, i.e., electrolytes that form a small amount of ions, it failed for strong elec-

trolytes such as NaCl. This problem remained unsolved until Debye and Hückel published

their theory of strong electrolytes [23]. They realized that, although on average ions are

randomly distributed and the electrostatic field inside the electrolyte is zero, there are

positional correlations between anions and cations. Due to these correlations anions tend

to distribute around a cation and vice versa. As a result the electrostatic potential of the

central ion is exponentially screened. Debye-Hückel theory is correct in the limit of dilute

solutions [24, 25] and works quite well for 1:1 electrolytes (e.g. NaCl or KCl).

Debye-Hückel theory is based on the linearization of the Poisson-Boltzmann equation

which relates the average electrostatic potential with the average ion distribution. Gron-

wall et al. extended the theory to overcome this linearization for the case of symmetric

electrolyte solutions [26], which was later extended to asymmetric electrolyte solutions

by La Mer et al. [27]. Another important extension proposed by Bjerrum [28, 29], in-

troduces the formation of ion pairs, i.e., ions that come close enough for the energy of

the attractive electrostatic interaction to be larger than the thermal energy. Integral

equations have also been used to obtain the structure and thermodynamic properties of

electrolyte solutions. In these theories, the Ornstein-Zernike equation [30] is solved by

using some closure relation between the pair correlation function and the direct correla-

tion function [31]. Waisman and Lebowitz [32–34] solved analytically the corresponding

integral equation theory for the primitive model, which assumes ions to be oppositely

charged hard spheres in a continuum dielectric (when positive and negative ions have the

same size the model is called restricted primitive model (RPM)), using the mean spherical

approximation (MSA) [35]. The asymptotic behavior of the thermodynamic consistent

generalization of the MSA, the GMSA proposed by Høye et al. [36], has been studied in

Ref. [37]. The hypernetted chain approximation has also been applied to electrolyte solu-

tions [38,39]. Ionic systems have been also studied using field-theoretic approaches [40–44].
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In this framework, Poisson-Boltzmann theory is proven to be the saddle-point approxi-

mation of the field-theoretic action [42] and corrections can be obtained by means of loop

expansions.

Phase separation and critical behavior of ionic fluids has been the subject of multiple

theoretical [45–48] and experimental investigations [49–52]. In 1976, after a systematic

study of the RPM, Stell et al. concluded that this system should exhibit a liquid-gas

coexistence curve with a critical point. Later investigations have shown that the critical

point belongs to the Ising universality class [47]. While earlier experiments supported both

Ising (e.g. [49,51]) and mean-field (e.g. [50,52]) criticality, more recent ones have confirmed

Ising behavior (see the review in Ref. [53] and references therein). Computer simulation

techniques have also been applied for obtaining the structure of electrolyte solutions. The

results obtained by this methods are important to test the validity of different approaches

and have contributed to clarify the character of criticality in these systems confirming the

Ising behavior. Several Monte Carlo [54–58] and molecular dynamics [59–61] simulations

have been reported. A review of simulations of phase transitions in ionic systems is

available in Ref. [62].

1.2 Fluids near planar charged surfaces

Surfaces in polar solvents or electrolyte solutions usually become charged. This is due to

the ionization or dissociation of surface chemical groups, or to the adsorption or chemical

binding of ions from the solution onto the surface. The surface-solution interface structure

is called electric double layer. This name arises from the first model for this interface due

to Helmholtz. In his model, the surface charge was completely neutralized by a layer

of counterions, known as the Helmholtz layer, which is located parallel to the surface.

The structure formed by the layer of co-ions on the surface and the one of counterions

in the solution is equivalent to a parallel-plate capacitor whose plates carry equal but

opposite charges; therefore the name “double layer”. This model predicts a constant

differential capacitance (i.e., a voltage-independent capacitance) which does not agree

with experimental observations. An alternative approach based on the Poisson-Boltzmann

equation was introduced by Gouy [63] and later by Chapman [64]. They proposed the

diffuse double layer model in which the density of the ions is approximated by a Boltzmann

distribution. Agreement between Gouy-Chapman theory predictions and experiments is

found in dilute solutions only. The failure of the theory is, inter alia, due to the fact that

ions are modeled as charged point particles that can approach the substrate arbitrarily

close. In order to take into account the effect of the finite size of ions, Stern [65] introduced
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a plane of closest approach for the center of the ions. Beyond this plane, a diffuse Gouy-

Chapman layer is assumed. This theory, which combines Helmholtz and Gouy-Chapman

models, gives results which are consistent with experiments [66]. However, there are still

discrepancies which are handled by refinements of the Stern model that take into account

e.g. the influence of the solvent or of specific adsorption (see Refs. [67,68] and references

therein).

Improvement over the Gouy-Chapman theory has been achieved by theories such as the

modified Poisson-Boltzmann (MPB) theory [69, 70], density functional theories [71–77],

and integral equation theories [70, 78], which produce results that are in good agreement

with Monte Carlo simulations [79–82]. A field-theoretic approach has also been used

to study the counterion distribution at a charged plane [83, 84]. Within this approach,

Poisson-Boltzmann theory is shown to be reliable in the weak-coupling limit of low surface

charge and low valence ions and invalid in the opposite limit (i.e., in the strong-coupling

regime). This approach offers the possibility to derive a theory that becomes valid in the

latter limit.

In recent years, there has been an increasing interest in room-temperature ionic liquids

(RTILs), i.e., salts with melting points below 100 ◦C, due to their potential application

as electrolytes for fuel cells and batteries, catalyst and lubricants, among others [85,

86]. For such applications their interaction with solid surfaces plays an important role.

Accordingly, the structure of RTILs in contact with charged surfaces has been the subject

of several theoretical [87–90] and experimental studies [91–98] to cite a few; a recent review

of the subject can be found in Ref. [99]. In contrast to ordinary electrolyte solutions,

Gouy-Chapman-Stern models are not applicable to RTILs. This is mainly due to the fact

that RTILs are dense ionic systems with strongly correlated ions. In a feature article,

Kornyshev [87] stressed this point and proposed an alternative mean-field approach to

the problem consisting in a Poisson-Boltzmann lattice-gas model that takes into account

constraints on the ion packing in RTILs. This theory suggested a more general form for the

differential capacitance which contains the Gouy-Chapman result as a limiting case. From

this formulation it follows that the capacitance versus voltage plot can have a bell-like

shape with a maximum at the point of zero charge (PZC) or a double hump shape (called

camel-shape in Ref. [87]) with a minimum at the PZC. This is in contrast to the Gouy-

Chapman theory of dilute electrolyte for which the the capacitance versus voltage plot has

U-shape with a minimum at the PZC. A similar expression for the differential capacitance

has been derived for concentrated electrolyte solutions in Ref. [100]. The behavior of the

differential capacitance predicted in Ref. [87] was confirmed by subsequent experiments

[91–93] and simulations [88, 89]. However both experiments [94–96] and simulations [88]
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suggested an alternate charge layering structure which decays exponentially into the bulk

liquid, which is not predicted by the simple mean-field theory in Ref. [87]. This structure,

known as overscreening structure from theoretical studies of molten salts near charged

walls [101], starts with a layer of counterions that overscreens the surface charge of the

electrode, the net charge resulting from the difference between the charge of the electrode

and the charge of the first layer is then overscreened by the coions in the second layer and

so on for several layers until charge neutrality is reached. This layering arrangement is

suggested to be a generic feature of RTILs at charged surfaces [94] and to be originated

from strong correlations between ions which are not taken into account in Ref. [87]. In

order to capture this feature, Bazant et al. [90] proposed a phenomenological theory based

on a Landau-Ginzburg functional with an additional potential gradient term, similar to

Cahn-Hilliard concentration gradient expansions [102]. For small voltages this theory

predicts the overscreening structure described before. Increasing the voltage gradually

weakens the overscreening and finally a condensed layer of counterions known as crowding

[90] or lattice saturation [87] forms for large voltage. The predictions of this theory are

in agreement with simulations in Ref. [88] and experiments in Refs. [94,98]. More recent

experiments [96, 97] have shown that the extension of the uncharged tails of the cations

plays an important role in the interfacial behavior of RTILs. The experiments suggest a

transition from alternating cation-anion monolayer structures to bilayer structures with

tail to tail cations when the length of the cation chain is increased. Since the seminal paper

by Kornyshev [87] there has been a growing number of studies of RTILs at charged walls;

the models used vary from “coarse-grain” models, which used simple representations of

the ions, to more sophisticated atomistic descriptions of them. The literature is too vast

to be reviewed here and the interested reader is referred to Refs. [99, 103] and references

therein.

Interactions between charged objects in contact with electrolyte solutions play an

important role in biology and soft matter physics. Experiments [104, 105] and com-

puter simulations [106–109] have shown an attraction between like-charged surfaces in

the presence of solutions with multivalent ions. These results do not agree with pre-

dictions from Poisson-Boltzmann theories for which the interaction between like-charged

surfaces is always repulsive [11]. This contradiction between observations and theory

has been attributed to correlation effects [84, 110] and to other non-electrostatic inter-

actions [111]. Interactions between charged objects have also been studied in binary

liquid mixtures [21, 112–119] where additional effects such as the adsorption preferences

of the surfaces for one of the components of the mixture play an important role. For

instance the critical Casimir force emerges in binary liquid mixtures close to their criti-
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cal point [120]. This force is attractive if the adsorption preferences of the surfaces are

the same (symmetric boundary conditions (BC)) and repulsive if they are opposite (an-

tisymmetric BC). Recently, the interaction potential between a colloidal particle and a

planar surface immersed in a water-2,6-lutidine mixture has been measured directly in

salt-free mixtures [114] and in mixtures with added salt [115]. For the salt-free case the

experimental observations were interpreted assuming the superposition of the electrostatic

force, which dominates far away from the critical temperature, and the critical Casimir

force which dominates as the critical point is approached. However, the subsequent ex-

perimental observations in mixtures with added salt could not be explained by using this

simple superposition and pointed towards a coupling between electrostatics and critical

phenomena. It turns out that contrary to the salt-free case where critical Casimir forces

are observed very close to the critical point, for symmetric BC in mixtures with added

salt the attractive Casimir force starts to dominate several Kelvin away from it. In ad-

dition, for antisymmetric BC in mixtures with added salt a crossover from attractive to

repulsive forces is observed upon approaching the critical point although both the elec-

trostatic and Casimir forces are repulsive. Several mechanisms were suggested to explain

the emergence of this attractions in the case of antisymmetric BC in mixtures with added

salt [21, 116–119]. In Refs. [21, 116] the effective surface-surface interaction potential is

derived approximately from a Ginzburg-Landau-like description. From this derivation it

turns out that the leading correction to the simple superposition of Casimir and electro-

static interactions is due to the interaction between two electric double layers: One due

to the unequal partitioning of ions, i.e, due to a difference of the solubility contrast of

cations and anions in the mixture, in the non-uniform order parameter close to one wall

and the other one due to the surface charge on the opposite wall. This interaction is

expected to be important only when direct electrostatic interactions are weak, which is

the case for antisymmetric BC. On the other hand, for symmetric BC with hydrophobic

surfaces, direct electrostatic forces are strong and the effect of added salt is to reduce the

Debye length weakening the the direct electrostatic repulsion. Accordingly, the Casimir

attraction is observed at temperatures further away from the critical point than in the

salt-free case. In Refs. [117, 118] a mechanism that is independent of differences in the

solubility of ions was proposed. In this model anions and cations are considered to be hy-

drophilic. It has been suggested that the charged wall attracts ions which in turn attract

water molecules to this wall due to their hydrophilic character. Accordingly, for a range

of temperatures an actual hydrophobic wall might turn into and effectively hydrophilic

one upon adding salt, leading to an effective wall-wall attraction. On the other hand, an

actual hydrophilic wall will remain hydrophilic upon adding salt. However it has been
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argued in Ref. [21] that this apparent hydrophilicity could be an artifact of the so called

bilinear coupling approximation (BCA) used in these references. In Ref. [119], the effect

of ion solvation and solvent adsorption in the interaction between surfaces was studied

numerically using BCA in the nonlinear regime. It has been suggested that nonlinearities

can strongly influence this interaction.

1.3 Wetting behavior in systems with ions

Theoretical studies of wetting films in systems with ions started back in 1938 when Lang-

muir developed a model to determine the equilibrium thickness of water films on planar

surfaces in contact with undersaturated water vapor, based on the calculation of the re-

pulsive force between two plates immersed in electrolyte solutions [12]. The typical values

for the equilibrium film thickness as predicted by Langmuir’s formula were confirmed ex-

perimentally [13] and the experimental data were used to analyze the effect of various

contributions to the disjoining pressure onto the stability of the wetting films [14]. Some

years later Kayser generalized Langmuir’s model for the equilibrium thickness of wetting

films to liquid mixtures of polar and non-polar components in contact with ionizables sub-

strates [15]; in contact with the wetting liquid these substrates donate ions to the liquid

which act as counterions to the emerging opposite charge left on the substrate with overall

charge neutrality. This analysis was followed up by a study in which the effect of added

salt, i.e., of ions which do not steam from the substrate [16]. These works did not address

the issue of wetting transitions at coexistence but rather focused on the thickness of the

wetting films and the behavior of the disjoining pressure. For wetting films of solvents

without added salt, i.e., with counterions only, Langmuir [12] and Kayser [15] found that

the film thickness l increases as l ∼ (∆µ)−1/2, with ∆µ = µco − µ, as the chemical poten-

tial µ approaches its value µco at coexistence from the vapor side (µ < µco). In contrast,

wetting films without ions and at neutral substrates but with van der Waals interactions

lead to l ∼ (∆µ)−1/4 or l ∼ (∆µ)−1/3, depending on whether retardation effects are taken

into account or not, respectively [2]. In the case that the effect of added salt dominates

over van der Waals interactions, Kayser [16] found l ∼ ln(∆µ) as it holds for short-ranged

interactions.

Wetting transitions at two-phase coexistence of electrolyte solutions at charged solid

substrates were analyzed in Refs. [17–20]. In Ref. [18] the effect of adding ions onto

the wetting behavior of the pure solvent was studied by using Cahn’s phenomenological

theory [1–4] for the solvent combined with the Poisson-Boltzmann theory for the ions. This

model does not take into account the solvent particles explicitly, neglecting the coupling
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between solvent particles and ions. On the other hand, the model in Ref. [19] takes all

three types of particles (i.e., solvent, cations, and anions) explicitly into account in terms

of hard spheres of different diameters with a Yukawa attraction between all pairs and the

Coulomb interaction between ions. The model was studied by using Rosenfeld’s density

functional theory [121,122] combined with a mean-field approximation for the Yukawa and

the electrostatic interactions. Within this model, the polar nature of the solvent molecules

was ignored; it was included in a subsequent article by the same authors in which the

solvent particles were represented by dipolar hard spheres [20]. However, for technical

reasons, the numerical analyses of these continuum models in which all three types of

particles are treated explicitly on a microscopic level were limited to small system sizes.

Therefore Refs. [19,20] focused on the case of strong screening of the Coulomb interactions

which is provided by large ionic strengths, i.e., large ion concentrations. However, the

approaches used in Refs. [18–20] are not reliable for large ionic strengths due to the use

of Poisson-Boltzmann theory for the electrostatic interactions which has been proved to

be valid only for low ionic concentrations and low surface charge density [79].

All the studies mentioned before are focused on the equilibrium thickness of wetting

films either at two-phase coexistence or when coexistence is approached along an isotherm

from the vapor side (µ < µco). This equilibrium thickness, as well as the contact angle,

is set by the intermolecular forces and changes in the equilibrium thickness and the con-

tact angle are achieved varying the temperature. However, the contact angle can also

be changed by applying an electrostatic potential, which is known as electrowetting and

can be used to control the wettability of a substrate by a fluid [123–125]. A typical

electrowetting setup consists of a planar metal electrode (usually coated with a thin di-

electric layer), a drop of a conductive liquid, and a thin wire immersed in the droplet

as counter-electrode. When a potential difference is applied between the two electrodes

the contact angle decreases with the voltage according a so-called electrowetting equa-

tion [6]. A summary of the classical approaches to derive this equation, which is then

also called Young-Lippmann equation and which depends quadratically on the applied

voltage, can be found in Ref. [6]. These approaches are based on the assumption that

electrowetting is an electrocapillarity effect, i.e., it is assumed to hinge on the voltage-

dependence of the substrate-fluid interfacial tension [6, 124–138]. A justification for this

approach is frequently given in terms of the vast experimental evidence for systems of un-

coated and hydrophobically coated electrodes. However, it turned out that the commonly

given derivations of the electrowetting equation [6] are incorrect in that they express the

contact angle in terms of fluid-substrate interfacial tensions, which are descriptors of the

interfacial structure of a single fluid phase in thermodynamic contact with a substrate.
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It has been overlooked that the interfacial structure, and thus interfacial quantities, of a

fluid can change upon bringing it into contact with another fluid. An alternative deriva-

tion based on a density functional theory approach is presented in Chap. 5 (see also

Ref. [139]). This approach shows that electrowetting cannot be consistently understood

as an electrocapillarity effect. In addition, it has been shown experimentally that the

electrowetting equation derived by using the electrocapillarity approach is only valid for

voltages smaller than a critical value, called the saturation voltage, above which the con-

tact angle has always been found to saturate, i.e., a voltage-induced wetting transition

has not been observed yet. This phenomenon is called contact angle saturation and its

origin is not fully clear yet (see Refs. [6,140] for reviews of theories and mechanisms that

have been proposed to explain such a contact angle saturation). Concerning the materi-

als used in experiments, electrowetting has been reported to depend weakly on the liquid

properties. The effect has been observed in deionized water [141], aqueous electrolyte so-

lutions (with no significant influence due to salt type or concentration) [142], RTILs [143]

and physiological fluids [7]. On the other hand, the effect depends significantly on the

properties of the dielectric layer used to coat the metal electrode [6,139]. The properties

of this layer are crucial to achieve a large contact angle tuning range, to reduce contact

angle hysteresis, and to ensure reproducibility. Reviews of electrowetting can be found in

Refs. [6, 140,144].

1.4 Line tension

The line tension is the free energy contribution per unit length associated with the con-

tact line where three interfaces meet, e.g., for a sessile liquid drop surrounded by a gas

phase on top of a solid substrate, the contact line corresponds to the periphery of the

circle where the liquid-gas interface meets the substrate. Although its magnitude is small

(theory predicts values of the order of 10−12 to 10−11 N while experimental values are in

the range 10−12 to 10−5 N [145]), the line tension plays an important role for different

systems and phenomena such as wetting in nanoporous surfaces [146], stability of emul-

sions and foams [147], drop size [148] and many others [145]. The line tension has been

the subject of several theoretical and experimental investigations (see Refs. [145,149–152]

and references therein). Experimental arrangements to study line tensions include solid-

liquid-gas systems such as drops or bubbles on solid substrates and particles at liquid-gas

interfaces, and liquid-liquid-gas systems such as liquid lenses at liquid-gas interfaces and

thin liquid film arrangements. Theoretical investigations include extensions of capillarity

theory, which take into account line tension effects, microscopic theories, and molecular
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dynamics and Monte Carlo simulations. Most of these investigations deal with simple

fluids or binary liquid mixtures and only few studies had studied the influence of electro-

static interactions on the line tension [153–155]. However, the analysis in Ref. [154] only

considers the electrostatic contribution to the free-energy based on a Poisson-Boltzmann

theory. Therefore, only the electrostatic contribution to the line tension is analyzed. In

Ref. [153] the theory of capillarity has been extended taking into account line contribu-

tions as well as electric charges at the interfaces and the TPCL. Within this approach

electrowetting has been interpreted as a line tension effect, but some of its predictions are

in disagreement with experiments [144]. In Ref. [155] an equation for the contact angle as

a function of the electrostatic potential at the TPCL and an estimate for the electrostatic

contribution to the line tension have been derived using a variational approach on a wedge

like geometry. Recently, Dörr and Hardt [156] studied the electric double layer structure

close to the TPCL by solving the linearized Poisson-Boltzmann equation in a wedge ge-

ometry without calculating the line tension. Following the method in Ref. [156], Das and

Mitra calculated the Maxwell stress and contact angle variation of drops or bubbles on

a charged substrate again without taking into account line effects [157]. More recently,

Dörr and Hardt [158] computed the line tension of an electrolyte in contact with a charged

substrate by considering a wedge geometry similar to Refs. [154, 156, 157]. Similarly to

Ref. [154] they considered only the electrostatic contribution to the line tension. However,

their model differs to the one in Ref. [154] in that it includes the interfacial deformation

of the fluid-fluid interface. To my knowledge there are no microscopic calculations of line

tensions in electrolyte solutions in which both solvent and ion contributions are taken into

account simultaneously. The line tension of a lattice model for an electrolyte solution is

considered in Chap. 6.
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Chapter 2

General formalism

In this thesis, the wetting of charged substrates by electrolyte solutions is studied using

a lattice and a continuum model. The general approach used to study both models is

classical density functional theory (DFT), which is the appropriate framework to study

inhomogeneous fluids. In this chapter, the DFT formalism and the basic concepts of

wetting theory which are the common ingredients of the following chapters, are introduced.

In the last section relevant aspects concerning microscopic calculations of the line tension

are briefly reviewed.

2.1 Classical density functional theory

Classical DFT is a standard approach to calculate the structure, the thermodynamic

properties and the phase behavior of fluids. It is particularly suitable for inhomogeneous

fluids i.e., fluids for which the average one-body density ̺(r), is spatially varying. Such

inhomogeneities in ̺ appear at interfaces between coexisting phases or in the vicinity

of confining surfaces, which can be represented by external potentials. The theory has

its origins in the density functional treatment for the ground state of an inhomogeneous

electron gas developed by Hohenberg and Kohn [159] and Kohn and Sham [160] and the

extension for non-zero temperatures derived by Mermim [161]. In this section, a brief

introduction to the DFT formalism for the case of one-component fluids, which can be

easily generalized to multicomponent fluids, is presented. Reviews and more rigorous

treatments of classical DFT can be found in Refs. [162,163].

The Hamiltonian for a one-component fluid of N particles in the presence of an arbi-
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trary external potential V (r) is given by

HN(
¯
r,
¯
p) =

N
∑

i=1

p2
i

2m
+ U(

¯
r) +

N
∑

i=1

V (ri) (2.1)

where pi and ri are the momentum and the position of particle i ∈ {1, dots,N}, respec-

tively, the collection of which are abbreviated by
¯
p = (p1, . . . ,pN) and

¯
r = (r1, . . . , rN ),

m is the mass of one particle and U(
¯
r) is the total interatomic potential. For this system

the equilibrium density is given by

̺eq(r) = Tr

(

fN(
¯
r,
¯
p)

N
∑

i=1

δ (r− ri)

)

(2.2)

where Tr is the classical trace

Tr =
∞
∑

N=0

1

h3NN !

∫

dri · · ·
∫

drN

∫

dpi · · ·
∫

dpN , (2.3)

with the Planck constant h, fN(
¯
r,
¯
p) is the equilibrium grand canonical probability density

fN(
¯
r,
¯
p) = Ξ−1 exp(−β(HN(

¯
r,
¯
p) − µN)), (2.4)

with the grand partition function Ξ = Tr(exp(−β(HN(
¯
r,
¯
p)− µN))), where β = (kBT )−1

is the inverse thermal energy with the Boltzman constant kB, and µ is the chemical

potential.

For given interatomic potential energy U and temperature T there is an unique func-

tional F [̺], independent of the external potential, defined by [164,165]

F [̺] = min
f̃N |̺

Tr
(

f̃N(
¯
r,
¯
p)
(

K(
¯
r) + U(

¯
r) + kBT ln f̃N(

¯
r,
¯
p)
))

(2.5)

where K(
¯
r) =

∑N
i=1

p2
i

2m
is the total kinetic energy and where f̃N |̺ denotes the set of all

probability densities f̃N which lead to the prescribed one-body density ̺ via

Tr

(

f̃N(
¯
r,
¯
p)

N
∑

i=1

δ (r− ri)

)

= ̺(r). (2.6)

The grand canonical density functional Ω[̺] is constructed via a Legendre transform of

F [̺]

Ω[̺] = F [̺] +

∫

dr̺(r) (V (r) − µ) . (2.7)
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The equilibrium density ̺eq(r) in Eq. (2.2) minimizes Ω[̺] so that

δΩ[̺]

δ̺(r)

∣

∣

∣

∣

̺=̺eq

=
δF [̺]

δ̺(r)

∣

∣

∣

∣

̺=̺eq

+ V (r) − µ = 0. (2.8)

Moreover, at the equilibrium density ̺eq(r), Ω[̺eq(r)] equals the grand potential Ω =

−kBT ln Ξ. Therefore, the knowledge of the functional F [̺] reduces the problem of calcu-

lating the equilibrium density profile and the grand potential of inhomogeneous fluids to a

functional minimization problem, representing a simplification over the direct evaluation

of the grand partition function Ξ. Since the Helmholtz free energy functional is given by

F [̺] = Ω[̺] + µ

∫

dr̺(r)

= F [̺] +

∫

dr̺(r)V (r),

(2.9)

the functional F [̺] is known as the intrinsic Helmholtz free energy functional. This

functional is divided into an ideal and an excess contribution, i.e., F [̺] = Fid[̺] +Fex[̺].

The ideal gas contribution is exactly known as

Fid[̺] = kBT

∫

dr̺(r)
(

ln(Λ3̺(r)) − 1
)

(2.10)

were Λ = h/
√

2πmkBT is the thermal de Broglie wavelength. On the other hand the

excess contribution Fex[̺], which accounts for the interaction among the fluid particles,

is in general unknown and has to be approximated. A review of some approximations for

F [̺] can be found in Ref. [162]. The approximation used in the present work corresponds

to a mean field theory (MFT) and will be described in detail for each of the models studied

in Sec. 3.2 and Sec. 4.1.

When the interatomic potential energy U(
¯
r) is a sum of pair potentials u(ri, rj), one

has the following relation between Fex[̺] and the pair density ̺(2)(r, r′) [31]

δFex[̺]

δu(r, r′)
=

1

2
̺(2)(r, r′). (2.11)

Assuming that the pair potential can be decomposed into a reference part uref and a

perturbation part uper and integrating Eq. (2.11) at constant ̺(r), along a path in function

space such that

uλ(r, r′) = uref (r, r′) + λuper(r, r
′) 0 ≤ λ ≤ 1, (2.12)
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yields

Fex[̺] = Fex,ref [̺] +
1

2

∫ 1

0

dλ

∫

dr

∫

dr′̺(2)(r, r′;λ)uper(r, r
′), (2.13)

where Fex,ref [̺] is the excess free energy functional of the reference fluid with pair potential

uref (i.e, λ = 0) and ̺(2)(r, r′;λ) is the pair density of the system with pair potential

uλ(r, r′). Equation (2.13) is the starting point for perturbation theories in both bulk

and inhomogeneous fluids [31]. The reference potential uref is usually taken to be the

repulsive part of the full pair potential u(r, r′) while the attractive part of it is treated as

the perturbation uper.

A mean-field-like approximation known as random phase approximation (RPA) cor-

responds to set

̺(2)(r, r′) ≈ ̺(r)̺(r′). (2.14)

In this case the excess free energy (Eq. (2.13)) reduces to

Fex[̺] ≈ Fex,ref [̺] +
1

2

∫

dr

∫

dr′̺(r)̺(r)uper(r, r
′). (2.15)

Another well known approximation is the square-gradient approximation [162] for

which the intrinsic free energy functional follows from a gradient expansion

F [̺] =

∫

dr
[

f(̺(r)) + f2(̺(r)) (∇̺(r))2 + O
(

(∇̺(r))4
)]

. (2.16)

Truncating the expansion after the first term corresponds to the local density approx-

imation (LDA), where f(̺) is the free energy density of a uniform fluid of density ̺.

The coefficient f2 is determined by requiring the functional F [̺] to be consistent with

linear-response theory [31]. In this case it is found that

βf2(̺) =
1

12

∫

drr2c(2)(r) (2.17)

where c(2)(r) is the two-body direct correlation function.

2.2 Wetting

This section briefly introduces the concepts of wetting phenomena to the extent needed in

the following chapters. The richness of these phenomena has been covered in great detail

in various reviews [1–5].

Wetting transitions are surface phase transitions which occur whenever a phase C
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Figure 2.1: (a) Generic surface phase diagram for a continuous wetting transition at Tw

(according to Refs. [2, 3]). At liquid-gas coexistence µ = µco and Tt ≤ T ≤ Tc where Tt is
the triple point. (b) Thickness of the intruding liquid film ℓ as coexistence is approached
from the gas phase (µ < µco) along an isotherm (paths (1) and (2)). Incomplete or partial
wetting occurs as coexistence is approached along path (1) whereas complete wetting
occurs along path (2). At two-phase coexistence (path 3), the film thickness ℓ diverges
smoothly as T → Tw (see (c)).

intrudes at the interface between two phases A and B, with either A, B, and C in ther-

modynamic coexistence or with A as a spectator phase and B and C in thermodynamic

coexistence. As an example, consider the case in which A is an inert substrate and B

and C are the gas and the liquid phase of a simple fluid, respectively. Upon approaching

gas-liquid coexistence along an isotherm, the thickness of the intruding liquid film can be

either finite (microscopic) (path (1) in Figs. 2.1 and 2.2), which is called incomplete or

partial wetting, or macroscopically large (path (2) in Figs. 2.1 and 2.2 ), which is called

complete wetting. The transition at two-phase coexistence (path (3) in Figs. 2.1 and

2.2) from incomplete to complete wetting occurs at the wetting transition temperature

T = Tw. It can be either continuous (second-order), in which case the film thickness

diverges smoothly as T → Tw along two-phase coexistence (see Fig. 2.1 (c)), or discon-
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tinuous (first-order), implying a macroscopically large jump of the film thickness from a

finite value below Tw to a macroscopically large one above Tw(see Fig. 2.2 (c)). In the

surface phase diagram a first-order wetting transition has a prewetting line associated

with it, which is connected tangentially to the gas-liquid coexistence line at Tw, extends

into the gas phase region, and ends at a critical point (see Fig. 2.2 (a)). This line marks

the loci of a finite discontinuity in film thickness (see Fig. 2.2 (b)). This finite jump in

film thickness becomes smaller as the system is brought further away from coexistence

and vanishes at the prewetting critical point.

�
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���

���

���

���

Figure 2.2: (a) Generic surface phase diagram for a first-order wetting transition at Tw (ac-
cording to Refs. [2,3]), showing the prewetting line which starts at the wetting transition
temperature Tw, extends into the gas phase region (µ < µco) and ends at the prewetting
critical point Tpw,c. (b) Film thickness ℓ as coexistence is approached along paths (1) and
(2). Incomplete wetting occurs along path (1) whereas complete wetting occurs along
path (2). Additionally, there is a jump in film thickness ℓ when the prewetting line is
crossed by path (2) . At coexistence (path 3), the film thickness ℓ jumps discontinuously
from a finite value below Tw to a macroscopic one above (see (c)).

38



2.2.1 Effective interface potential and the contact angle

The wetting behavior of fluids near substrates can be transparently studied by analyzing

the effective interface potential ω(ℓ) [2]

ω(ℓ) = Ωs(ℓ) − γl,g − γs,l (2.18)

where Ωs (ℓ) is the constrained surface contribution to the grand potential, i.e., Ωs (ℓ) :=

(Ω[{̺(ℓ)}]−ΩbV )/A, Ωb is the bulk grand potential density, A is the substrate area and and

V is the system volume. The density profiles ̺(ℓ) are the solutions of the Euler-Lagrange

equations (2.8) for a prescribed film thickness ℓ. The film thickness ℓ is defined by requiring

the density profiles ̺(z) to fulfill a certain property at z = ℓ, e.g, φ(z) = (φl + φg)/2

where φl and φg are the bulk number densities of the coexisting liquid and gas phases,

respectively, or d2̺(z)
dz2

∣

∣

∣

z=ℓ
= 0, etc. γl,g and γs,l are the liquid-gas and substrate-liquid

interfacial tensions, respectively, such that by construction at two-phase coexistence one

has ω(ℓ → ∞) = 0. The equilibrium film thickness ℓeq is given by the global minimum

of the effective interface potential ω(ℓeq) ≤ 0. At ℓeq, Ωs(ℓ) renders the substrate-gas

interfacial tension γs,g, which implies (see Eq. 2.18)

γs,g = γl,g + γs,l + ω(ℓeq). (2.19)

������

���

Figure 2.3: Sessile liquid drop forming a contact angle ϑ with a homogeneous substrate.

The effective interface potential ω(ℓeq) is related to the contact angle. Consider a liquid

drop on a homogeneous substrate in equilibrium with is vapor, as shown schematically in

Fig. 2.3. The relation between the equilibrium contact angle ϑ the drop makes with the

substrate and the three interfacial tensions associated with the liquid-gas, substrate-liquid

and substrate-gas interfaces meeting at the three phase contact line, is given by Young’s

equation

γs,g = γs,l + γl,g cosϑ. (2.20)
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Combining Eqs. (2.19) and (2.20) one obtains [2]

cosϑ = 1 +
ω(ℓeq)

γl,g
. (2.21)

Comparing the description in terms of the contact angle with the description of wetting

transition given before in terms of the thickness of the microscopic liquid film that intrudes

between the substrate and the vapor phase, one can see that incomplete or partial wetting

corresponds to non-zero contact angle 0 < ϑ < π and complete wetting to ϑ = 0, i.e.,

ω(ℓ → ∞) = 0. Moreover, ω(ℓeq) ≤ 0 vanishes continuously as T → Tw so that the thicker

the microscopic liquid film the smaller the contact angle. ϑ = π corresponds to complete

drying. In this case, a macroscopically thick film of gas intrudes between the liquid phase

and the substrate.

2.3 Line tension of a sessile liquid drop

The grand canonical energy Ω of a sessile drop on a solid substrate (see Fig. 2.3) decom-

poses into volume contributions associated with the gas, liquid, and solid bulk phases;

surface contributions due to the substrate-liquid, substrate-gas, and liquid-gas interfaces;

and a line contribution associated with the contact line along which the three phases

(solid, gas and liquid) meet, i.e.,

Ω =
∑

i=g,l,s

ViΩi + As,gγs,g + As,lγs,l + Al,gγl,g + τL + · · · , (2.22)

where Vi is the volume of the phase i with i ∈ {g, l, s} and Ωi is the bulk free energy

density of this phase. γs,g, γs,l, and γl,g are the interfacial tensions and As,g, As,l, and

Al,g the corresponding interfacial areas of the substrate-gas, substrate-liquid and liquid-

gas interfaces, respectively. L is the length of the three phase contact line, τ is the

line tension and · · · denotes subleading terms that vanish for infinitely long contact line

L → ∞.

The decomposition in Eq. (2.22) enables the evaluation of the line tension provided

that the bulk free energy densities and the interfacial tensions are calculated consistently

in separated steps. However, as pointed out in Ref. [149] for a sessile drop on an inert

solid substrate which is a spectator phase, two different definitions of the line tension

are possible: one which depends on the choice of dividing interfaces and one that is

independent. Therefore, care has to be taken when calculating the line tension of a

sessile drop on an inert substrate. A relation between the two definitions was derived in
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Ref. [149]. The results of Ref. [149] relevant to this work are reviewed in the following.

2.3.1 Substrate-fluid dividing interface

First, the influence of the choice of the dividing interface in the values of the substrate-

liquid and substrate-gas interfacial tension γs,l and γs,g, respectively, was considered (see

Sec. II in Ref. [149]). If an inert substrate is exposed to the liquid or gas phase of a fluid

f , the substrate-fluid interfacial tension is defined as

γs,f = lim
Vs,Vf ,As,f→∞

=
Ω − VfΩf − VsΩs

As,f

(2.23)

where Ω is the grand potential of the fluid plus the substrate, Ωf and Ωs are the grand

canonical free energy densities of the fluid and the substrate, respectively, Vf is the vol-

ume of the fluid, Vs is the volume of the substrate, and As,f is the area of the planar

substrate-fluid interface. If two parallel dividing interfaces separated by a distance ∆h

are considered, the fluid and substrate volume corresponding to each choice of dividing

interface are related by V
(2)
s = V

(1)
s + ∆hAs,f and V

(2)
f = V

(1)
f − ∆hAs,f . Consequently,

it follows from Eq. (2.23) that the values of γs,f associated with these two choices of the

dividing interface differ by

γ
(2)
s,f − γ

(1)
s,f = (Ωf − Ωs)∆h. (2.24)

Accordingly, the values of γs,l and γs,g depend on the choice of the substrate-fluid dividing

interface. If the substrate-liquid and the substrate-gas dividing interfaces are chosen to

be at the same height above the substrate, the difference γs,g − γs,l which enters Young’s

equation (Eq. 2.20) does not depend on the choice of the dividing interface.

Note that the value of the liquid-gas interfacial tension γl,g is independent of the choice

of the liquid-gas dividing interface because at two-phase coexistence the grand canonical

free energy densities of the gas and the liquid phase are equal, i.e., Ωg = Ωl.

2.3.2 Line tension of a liquid wedge

The subsequent question is whether or not the choice of the solid-fluid dividing interface

affects the value of the line tension τ . In order to answer this question, in Ref. [149] (see

Sec. II and VI in Ref. [149]) the line tension in a wedge geometry in which three planar

interfaces meet along an infinitely long contact line L → ∞ and the liquid-gas interface

meets the substrate with a contact angle ϑ was considered. Again, the effect of shifting

the dividing interface by a distance ∆h is investigated. Using Eq. (2.22) the difference
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in the value of the line tension corresponding to these two different dividing interfaces is

given by,

τ (2) − τ (1) =
1

L

(

−
(

V (2)
s − V (1)

s

)

Ωs −
(

V (2)
g − V (1)

g

)

Ωg −
(

V
(2)
l − V

(1)
l

)

Ωl

−
(

A(2)
s,gγ

(2)
s,g − A(1)

s,gγ
(1)
s,g

)

−
(

A
(2)
s,l γ

(2)
s,l − A

(1)
s,l γ

(1)
s,l

)

−
(

A
(2)
l,g γ

(2)
l,g − A

(1)
l,g γ

(1)
l,g

))

.

(2.25)

The volume changes can be written as:

V (2)
s − V (1)

s = ∆h
(

A
(2)
s,l + A(2)

s,g

)

= ∆h
(

A
(1)
s,l + A(1)

s,g

)

V
(2)
l + V (2)

g −
(

V
(1)
l + V (1)

g

)

= −
(

V
(2)
s − V (1)

s

)

.
(2.26)

The substrate-liquid and substrate-gas surface tensions transform according to Eq. (2.24)

as:
γ
(2)
s,l − γ

(1)
s,l = (Ωl − Ωs)∆h

γ(2)
s,g − γ(1)

s,g = (Ωg − Ωs)∆h.
(2.27)

As explained before the value of the liquid-gas interfacial tension is independent of the

choice of the dividing interface, i.e., γ
(1)
l,g = γ

(2)
l,g = γl,g.

The changes in area can be written in terms of the contact angle ϑ and the length of

the contact line L as:

A(2)
s,g − A(1)

s,g =
∆h

tanϑ
L

A
(2)
s,l − A

(1)
s,l = − ∆h

tanϑ
L

A
(2)
l,g − A

(1)
l,g = − ∆h

sinϑ
L

(2.28)

Inserting Eqs. (2.26)-(2.28) into Eq. (2.25) and using the fact that at two-phase
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coexistence Ωg = Ωl = Ωb, renders

τ (2) − τ (1) =
1

L

(

∆h
(

A
(1)
s,l + A(1)

s,g

)

(Ωb − Ωs)

−
((

∆h

tanϑ
L + A(1)

s,g

)

(

(Ωb − Ωs) ∆h + γ
(1)
s,g

)

− A(1)
s,gγ

(1)
s,g

)

−
((

− ∆h

tanϑ
L + A

(1)
s,l

)

(

(Ωb − Ωs) ∆h + γ
(1)
s,l

)

− A
(1)
s,l γ

(1)
s,l

)

+

(

∆h

sinϑ
L

)

γl,g

)

=
1

L

(

∆h

tanϑ
L
(

γ
(1)
s,l − γ(1)

s,g

)

+

(

∆h

sinϑ
L

)

γl,g

)

=
γl,g +

(

γ
(1)
s,l − γ

(1)
s,g

)

cosϑ

sinϑ
∆h.

(2.29)

Using Young’s equation (Eq. 2.20) one obtains:

τ (2) − τ (1) = γl,g∆h sinϑ. (2.30)

Therefore, the change in the value of the line tension is proportional to the distance ∆h

between the two different choices of substrate-fluid dividing interface. As a consequence

of this result, in order to compare values of line tensions obtained from calculations in a

wedge geometry, in addition to the line tension value one has to provided the definition of

the substrate-fluid dividing interface. The dependence of the line tension on the position

of the substrate-fluid dividing interface is in conflict with the invariance of the line tension

with respect to notional changes of the system, i.e, variations that leave the grand canon-

ical potential unchanged, which is derived using as a reference system a sessile liquid drop

surrounded by gas on top of an inert substrate.

2.3.3 Line tension of a sessile drop

In this section, the line tension of a sessile droplet in contact with an undeformable

inert substrate is considered. For small droplets gravity can be neglected and the grand

canonical energy can be decomposed as follows (see Eq. 2.22)

Ω = −plVl − pgVg + ΩsVs + Al,gγl,g(R) + πr2γs,l + (A− πr2)γs,g + 2πrτ, (2.31)

where the liquid-gas dividing interface is chosen to be a spherical cap which is extrapolated

into the three-phase contact line. r is the radius of the contact circle and R is the radius
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of the sphere forming the spherical cap. The area of the substrate-gas dividing interface

in the absence of the drop is A and the area of the substrate-liquid interface is As,l = πr2.

The substrate-liquid and substrate-gas dividing interfaces are chosen to be in the same

plane. Subleading contributions to τ in Eq. (2.31) are disregarded so that the definitions

of the line tension in Eqs. (2.22) and (2.31) agree. The pressure inside the droplet pl

deviates from the pressure in the gas phase pg = p by ∆p, i.e., pl = p+ ∆p. γl,g(R) is the

surface tension of a spherical liquid drop surrounded by gas. With these considerations

Eq. (2.31) holds for two scenarios: one in which the liquid drop exchanges matter with

the surrounding gas phase (therefore the chemical potentials in both phases are the same)

and a second one in which the volume of the liquid drop is prescribed so that pressure in

the liquid phase is determined by the amount of liquid.

In Ref. [149] two procedures to derive an equation which relates the contact angle ϑ to

the radius r were used. In the first one the requirement that the grand canonical potential

must be invariant with respect to notional changes was exploited. The notional changes

consist of a change in the liquid-gas dividing interface by [dR] and a common shift of

the substrate-liquid and substrate-gas dividing interfaces by [dh]. (The square brackets

were used in Ref. [149] to characterize notional changes). In the second procedure the

equation is derived from a variational procedure at fixed volume of the liquid drop Vl.

Both procedures lead to the same equation for the contact angle:

γl,g cosϑ + (γs,l − γs,g) = −τ

r
− dτ

dr

∣

∣

∣

∣

− sinϑ cosϑ

r

dτ

dϑ

∣

∣

∣

∣

, (2.32)

where dτ
dr

∣

∣ and dτ
dϑ

∣

∣ are stiffness coefficients which describe the cost in free energy resulting

from variational changes of r and ϑ at fixed thermodynamic conditions. Moreover, the

stiffness coefficients are equal to the notional derivatives of the line tension, i.e,

dτ

dϑ

∣

∣

∣

∣

=

[

dτ

dϑ

]

and
dτ

dr

∣

∣

∣

∣

=

[

dτ

dr

]

. (2.33)

It was also found that the line tension in Eq. (2.31) with the substrate-gas surface

tension γs,g and substrate-liquid surface tension γs,l evaluated at the pressure p, is inde-

pendent of the choice of the dividing interfaces within the leading order. However, if on

the other hand in Eq. (2.31) the substrate-liquid surface tension γs,l(pl) is evaluated at

the pressure pl = p + ∆p and the substrate-liquid surface tension γs,l(pg) at the pressure

pg = p, one obtains an alternative definition of the line tension. It turns out that this

alternative definition is equivalent to the definition using the planar interfaces (see Sub-

sec. 2.3.2) and its value depends on the choice of solid-fluid dividing interface as in Eq.
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(2.30). In order to distinguish the two definitions of the line tension, the line determined

using Eq. (2.31) with γs,l(p) and γs,g(p) is called τ , whereas the second definition with

γs,l(p + ∆p) and γs,g(p) is called τw. The relation between the two definitions is given by

τ = τw +
r

2
(γs,l(p + ∆p) − γs,l(p)) , (2.34)

which can be written for one-component fluids as

τ = τw − Γs,l

̺l
γl,g sinϑ, (2.35)

where Γs,l is the excess adsorption at the planar substrate-liquid interface and ̺l is the

bulk density of the liquid phase. Using Eq. (2.35) the line tension determined from a

microscopic density functional theory calculation in a wedge geometry can be related to

the line tension of sessile droplet.
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Chapter 3

Wetting in electrolyte solutions: a

lattice model

3.1 Model

In this chapter a lattice model for an electrolyte solution in contact with a charged wall is

studied. The solution consists of three components: solvent (0), anions (−), and cations

(+). The coordinate perpendicular to the wall is z. The region above the wall, accessible

to the electrolyte components, is divided into a set of cells the centers of which form a

simple cubic lattice {r} with lattice constant a. The volume a3 of a cell corresponds

roughly to the volumes of the particles, which are assumed to be of similar size. The

centers of the molecules in the top layer of the substrate form the plane z = 0. At closest

approach the centers of the solvent molecules and ions are at z = a. The plane z = a/2

is taken to be the surface of the planar wall. Each cell is either empty or occupied by a

single particle. This mimics the steric hard core repulsion between all particles. Particles

at different sites interact among each other via an attractive nearest-neighbor interaction

of strength u which is taken to be the same for all pairs of particles. In addition, ion

pairs interact via the Coulomb potential. The solvent particles are taken to carry a dipole

moment.

The wall attracts particles only in the first adjacent layer via an interaction potential

of strength uw which is the same for all species. In addition it can carry a homogeneous

surface charge density σ̃ = σea−2 which is taken to be localized in the plane z = a/2 and

which interacts electrostatically with the ions; e > 0 is the elementary charge. Since the

focus of this chapter is the influence of ions onto wetting phenomena, the more realistic,

long-ranged van der Waals forces which are known to be relevant for wetting transitions [2]

are not considered.
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The corresponding lattice-gas Hamiltonian for this system reads

H =
1

2

∑

r,r′

r6=r′

∑

i,j

ni(r)nj(r
′)w (|r− r′|) +

1

2

∑

r,r′

r6=r′

∑

i,j

e2qiqjni(r)nj(r
′)

4πε0|r− r′|

+
∑

r,r′

r6=r′

∑

i,j

eqini(r)mj(r
′) · (r− r′)

4πε0|r− r′|3

+
1

2

∑

r,r′

r6=r′

∑

i,j

[

mi(r) ·mj(r
′)

4πε0|r− r′|3 − 3 (mi(r) · (r− r′)) (mj(r
′) · (r− r′))

4πε0|r− r′|5
]

−
∑

r

∑

i

uwδz,ani(r) −
σ̃

2ε0

∑

r

∑

i

qini(r)z −
σ̃

2ε0

∑

r

∑

i

mi(r) · êz

(3.1)

where ni(r) are occupation number variables, which are either 0 or 1 according to whether

the cell at the discrete position r = (r||, z ≥ a) = (x, y, z ≥ a) = (ma, na, pa) with

m,n ∈ Z, |m| ≤ M̄/2 and |n| ≤ N̄/2, and p = 1, 2, 3, · · · , L̄ is empty or occupied by

a particle (there is no double occupancy); i, j = 0,+,−, eqi is the particle charge with

q0 = 0 and q± = ±1; mi(r) is the particle dipole moment at r (the typical situation of a

polar solvent and of ions without permanent electric dipoles, i.e., m± = 0, is considered

here); w (|r− r′|) = −u for nearest neighbors (u > 0 corresponds to attraction) and

w (|r− r′|) = 0 beyond; −uw is the strength of the attractive (uw > 0) substrate potential

acting on the first layer z = a. For the charge density ˜̺(r) = σ̃δ(z − a/2) on a substrate

with radial extension R0 the electrostatic potential is given by φ̃(r) =
∫

d3r′ ˜̺(r′)
4πε0|r−r′|

=
σ̃
2ε0

(
√

R2
0 + (z − a/2)2 − |z − a/2|) → − σ̃

2ε0
z + const. for R0 ≫ |z − a/2| and z > a/2. In

this regime of being close to the charged wall the electric field is uniform [176]. Therefore

the actual position of the charged wall enters the electrostatic potential, and thus the

Hamiltonian in Eq. (3.1), only via an irrelevant additive constant. The potential energy

of a dipole moment mi(r) in the electric field Ẽ(r) = ∇̃φ̃(r) → σ̃
2ε0

êz = const. of the

surface charge is given by −mi(r) · Ẽ. In Eq. (3.1) only charge neutral configurations

{ni(r)}, i.e.,
∑

r

(n+(r) − n−(r)) = −M̄N̄σ with r ∈ V = M̄N̄L̄a3, are considered.

For weak external electric fields the polarization is expected to exhibit a linear re-

sponse behavior [176]. In this case, it has been shown that the relative permittivity ε

of microscopic models like the one in Eq. (3.1) can be expressed in terms of molecular

properties such as the dipole moment and the polarizability [177,178]. In order to simplify

the model, the polar nature of the solvent is taken into account effectively via the relative

permittivity ε of the electrolyte solution which is assumed to depend on the solvent con-

figuration n0(r) but not on the configuration of the ions n±(r) because the orientational
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polarization, i.e., the polarization due to the permanent dipoles of the solvent molecules,

is the dominant contribution to the total polarization. In this case Eq. (3.1) reduces to

(see, c.f., Eqs. (3.7) and (3.9))

H =
1

2

∑

r,r′

r6=r′

∑

i,j

ni(r)nj(r
′)w (|r− r′|) −

∑

r

∑

i

uwδz,ani(r) +
1

2

∫

V

d3r∗φ̃(r∗)Q̃(r∗) (3.2)

where Q̃(r∗) = e
a3

∑

i

qin
∗
i (r

∗)+σ̃δ(z∗−a/2) is the local charge density where n∗
i (r

∗) = ni(r)

for all r∗ ∈ (aR)3 and r ∈ (aZ)3 with max (|x∗ − x|, |y∗ − y|, |z∗ − z|) ≤ a/2; φ̃(r∗) is the

electrostatic potential which can be obtained by solving the Poisson equation

−ε0∇̃ · [ε(n∗
0(r

∗))∇̃φ̃(r∗)] = Q̃(r∗, [n∗
±]), r∗ ∈ (aR)3 ∩ V, (3.3)

where V is the volume of the fluid. For general permittivity profiles ε(n∗
0(r

∗)) no closed

solution φ̃(r∗) of Eq. (3.3) as a functional of ε(n∗
0(r

∗)) and Q̃(r∗) is known, i.e., for each

configuration {ni(r)} the evaluation of Eq. (3.2) requires to solve the differential equation

(3.3) anew. It has been proven, that models including charges as in Eq. (3.2) possess a

proper thermodynamic limit for sequences of finite-sized systems, which is independent of

the shape of the container, provided that globally charge neutral configurations {ni(r)}
are considered [179, 180]. Since the thermodynamic limit is performed for sequences of

finite-sized systems the electrostatic potential φ̃(r∗) in Eq. (3.3) vanishes at infinity

(|r∗| → ∞) [176].

3.2 Density functional

With a given expression for ε(n0(r)) (see, c.f., Eq. (3.15)), Eq. (3.2) can be used directly

for numerical analyses such as Monte Carlo simulations, provided an efficient method

to determine the electrostatic potential φ̃(r∗) for arbitrary permittivity profiles ε(n0(r))

becomes available (see for example Ref. [181] for recent efforts in this direction). In

this work, a suitable mean field approximation is considered. This approximation can

be formulated as to minimize a grand canonical density functional Ω[{̺i(r)}] [162] of

continuous and dimensionless occupation number distributions ̺i(r) such that at the

minimum ̺i(r) = ̺eqi (r) approximates the thermal average 〈ni(r)〉.
Application of the Bragg-Williams Approximation [184–187] to the model Hamiltonian

in Eq. (3.2) leads to the following grand canonical density functional:
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βΩ [{̺i(r̄)}] =
∑

r̄

[

∑

i

̺i(r̄) ln ̺i(r̄) +
(

1 −
∑

i

̺i(r̄)
)

ln
(

1 −
∑

j

̺j(r̄)
)

]

+
1

2
β
∑

r̄,̄r′

r̄ 6=r̄′

∑

i,j

̺i(r̄)̺j(r̄
′)w (|̄r− r̄′|) − β

∑

r̄

∑

i

uwδz̄,1̺i(r̄)

− β
∑

r̄

∑

i

µi̺i(r̄) + 2πlB

∫

V

d3r̄∗
(

D
(

r̄∗, [̺∗±]
))2

ε(̺∗0(r̄
∗))

,

(3.4)

where β = (kBT )−1 is the inverse thermal energy and µi is the chemical potential of

species i, l̃B = lBa = e2β/(4πε0) is the Bjerrum length in vacuum, r̄ = r/a are the

dimensionless lattice positions, r̄∗ = r∗/a, ̺∗i (r̄
∗) = ̺i(r̄) for all r̄∗ ∈ R

3 and r̄ ∈ Z
3 with

max (|x̄∗ − x̄|, |ȳ∗ − ȳ|, |z̄∗ − z̄|) ≤ 1/2. The actual number densities of the components

are given by ˜̺i(r̄) = ̺i(r̄)a
−3. Charge neutrality demands

∑

r̄

[̺+(r̄) − ̺−(r̄)] = −Āσ

where A = MN = Āa2 = M̄N̄a2 is the substrate area and σ = σ̃/(ea−2); this constraint

is implemented via a boundary condition for D (see, c.f., Eq. (3.14)). The first two terms

of Eq. (3.4) represent the ideal gas or entropic contribution Fid to the intrinsic Helmholtz

free energy functional F [{̺i(r̄)}] = Fid [{̺i(r̄)}] + Fex [{̺i(r̄)}] (see Sec. 2.1); the third

and the fourth term represent the non-electrostatic contribution to Fex [{̺i(r̄)}], which

follows from the first and second term in Eq. (3.2) and turns out to be equal to the random

phase approximation (RPA) within density functional theory [162]. This approximation is

justified because it has turned out that RPA is reliable in the present situation of vanishing

contrast between the non-electrostatic interactions of the three species [21]. The last term

is the electrostatic energy. Using SI units, the electrostatic field energy density, which

enters into Eq. (3.4), is given by [176]

1

2
Ẽ · D̃ = −1

2

D̃2

ε0ε
=

1

2

D2e2

ε0εa4
= 2πkBT lB

D2

εa3
(3.5)

and
1

2
Ẽ · D̃ = −1

2
∇̃φ̃ · D̃ =

1

2
φ̃
(

∇̃ · D̃
)

− 1

2
∇̃ ·
(

φ̃D̃
)

, (3.6)

where Ẽ = −∇̃φ̃ = D̃
ε0ε

is the actual electric field, φ̃ is the electrostatic potential and

D̃ = Dea−2 is the actual electric displacement generated by the ions and the surface

charge density σ̃ = σea−2 , satisfying Gauß’s law [176]

∇̃ · D̃ = Q̃(r∗), (3.7)
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so that (∇ = a∇̃)

∇ ·D
(

r̄∗, [̺∗±]
)

=
∑

i

qi̺
∗
i (r̄

∗) + σδ(z̄ − 1/2). (3.8)

Due to Eq. (3.6), the electrostatic contribution to the functional can be written as

Fel =
1

2

∫

d3r∗
[

φ̃(r∗)
(

∇̃ · D̃
)

− ∇̃ ·
(

φ̃D̃
)]

, (3.9)

where the last term leads to a vanishing surface contribution [176], because the thermo-

dynamic limit is performed for sequences of finite-sized systems. Using Eq. (3.7) renders

the last term in Eq. (3.2).

Because the substrate potential depends only on z̄, the minimum of βΩ [{̺i(r̄)}] lies

in the subspace of distributions ̺i(r̄) which depend on z̄ only. Therefore Eq. (3.4) can be

written for the special case ̺i(r̄) = ̺i(z̄), i.e.,

βΩ [{̺i(z̄)}]

Ā
=

L̄z
∑

z̄=1

{

∑

i

̺i(z̄) ln ̺i(z̄) +
(

1 −
∑

i

̺i(z̄)
)

ln
(

1 −
∑

j

̺j(z̄)
)

− βu
∑

ij

(

̺i(z̄)̺j(z̄ + 1) + 2̺i(z̄)̺j(z̄)
)

− βuw

∑

i

̺i(z̄)δz̄,1

−β
∑

i

µi̺i(z̄)

}

+ 2πlB

∫ L̄z+1/2

1/2

dz̄∗
(

D(z̄∗, [̺∗±])
)2

ε(̺∗0(z̄))
,

(3.10)

where A = Āa2 is the substrate area so that ALz is the volume of the fluid (Lz = L̄za),

and ̺i(L̄z + 1) = 0.

Gauß’s law (Eq. (3.8)) reduces to

dD(z̄∗ > 1/2, [̺∗±])

dz̄∗
=
∑

i

qi̺
∗
i (z̄

∗) = ̺∗+(z̄∗) − ̺∗−(z̄∗), (3.11)

where the last term in Eq. (3.8) appears as a boundary condition to Eq. (3.11):

D(z̄∗ = 1/2, [̺∗±]) = σ. (3.12)

Since ̺∗± ∈ [0, 1] are bounded, i.e., the densities ̺∗± do not exhibit δ-like singularities, the

boundary condition is determined entirely by the surface charge.
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The density profiles ̺±(z̄) have to fulfill global charge neutrality, i.e.,

L̄z
∑

z̄=1

[̺+(z̄) − ̺−(z̄)] + σ = 0, (3.13)

which according to the integrated Eq. (3.11) is equivalent to

D
(

z̄∗ = L̄z + 1/2, [̺∗±]
)

= 0. (3.14)

The relative permittivity ε(z̄∗) is taken to depend locally on the solvent density ̺∗0(z̄
∗)

(see Subsec. 3.1) through the Clausius-Mossotti expression [176]

ε(̺∗0(z̄
∗)) =

1 + 2α
3ε0

̺0(z̄
∗)

1 − α
3ε0

̺∗0(z̄
∗)
, (3.15)

where α is an effective polarizability of the solvent molecules. In the following its value

is chosen such that ε = 60 for ̺0 = 1; this choice corresponds to a mean value for liquid

water along the liquid-vapor coexistence curve.

As for a lattice model Eqs. (3.2) and (3.10) do not include the kinetic energy. The

latter requires an off-lattice description which leads to a density independent contribution

to the chemical potential of species i so that

µi,phys = kBT ln(˜̺iΛ
3
i ) + µex,

= kBT ln(
̺i
a3

Λ3
i ) + µex,

= kBT ln(̺i) + µex + 3kBT ln(Λi/a),

= µi + 3kBT ln(Λi/a),

(3.16)

where Λi = h/
√

2πmikBT is the thermal wavelength , mi is the particle mass, and

µex is the excess chemical potential over the ideal gas contribution. This gives rise to a

density independent difference between the actual physical chemical potential µi,phys and

the chemical potential µi of the lattice-gas model: µi,phys − µi = 3kBT ln(Λi/a).

In order to obtain the equilibrium configuration, the density functional in Eq. (3.10)

has to be minimized under the constraints given by Eq. (3.12) and Eq. (3.14) [162]. The

variation of Eq. (3.10) reads:
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βδΩ [{̺i(z̄)}]

Ā
=

L̄
∑

z̄=1

{

∑

i

δ̺i(z̄)

[

ln ̺i(z̄) − βµi − ln
(

1 −
∑

j

̺j(z̄)
)

]

− βu
∑

ij

(

δ̺i(z̄)̺j(z̄+1)+̺i(z̄)δ̺j(z̄+1)+2δ̺i(z̄)̺j(z̄)+2̺i(z̄)δ̺j(z̄)
)

− 2πlB

∫ z̄+1/2

z̄−1/2

dz̄∗
(

D(z̄∗, [̺∗±])
)2

(ε (̺∗0(z̄
∗)))2

ε′ (̺∗0(z̄
∗))
∑

i

δi,0δ̺
∗
i (z̄

∗)

+ 4πlB

∫ z̄+1/2

z̄−1/2

dz̄∗
D(z̄∗, [̺∗±])

ε(̺∗0(z̄
∗))

δD(z̄∗) − βuw

∑

i

δz̄,1δ̺i(z̄)

}

=
L̄
∑

z̄=1

{

∑

i

δ̺i(z̄)

[

ln ̺i(z̄) − βµi − ln
(

1 −
∑

j

̺j(z̄)
)

−βu
∑

j

(

̺j(z̄+1) +
L̄
∑

z̄′=1

̺j(z̄
′)δz̄,z̄′+1 + 2̺j(z̄) + 2̺j(z̄)

)

− βuwδz̄,1

]

− 2πlB

∫ z̄+1/2

z̄−1/2

dz̄∗
(

D(z̄∗, [̺∗±])
)2

(ε(̺∗0(z̄
∗)))2

ε′(̺∗0(z̄
∗))δi,0δ̺

∗
i (z̄

∗)

−
∫ z̄+1/2

z̄−1/2

dz̄∗φ′(z̄∗)δD(z̄∗)

}

(3.17)

where φ(z̄∗) = βeφ̃(z∗) is the dimensionless electrostatic potential which fulfills

D̃(z∗) = ε0εẼ(z∗) = −ε0ε
dφ̃(z∗)

dz∗
,

ea−2D(z̄∗) = −ε0ε
1

a

d

dz̄∗

(

φ(z̄∗)

βe

)

,

D(z̄∗) = − ε

4πlB
φ′(z̄∗).

(3.18)

Upon integrating by parts the last term in Eq. (3.17), by using Eq. (3.12) so that

δD(z̄∗ = 1/2) = 0 and Eq. (3.14) so that δD(z̄∗ = L̄ + 1/2) = 0, with δD′(z̄∗) =
∑

i qiδ̺
∗
i (z̄

∗) due to Eq. (3.11), and δ̺∗(z̄∗) = δ̺i(z̄) for all z̄∗ ∈ R and z̄ ∈ Z with

max(|z̄∗− z̄| ≤ 1/2) one obtains the following three coupled Euler-Lagrange equations for

z̄ ∈ {1, . . . , L̄}

ln ̺i(z̄) − µ∗
i − βuwδz̄,1 − ln

(

1 −
∑

j

̺j(z̄)
)

− 1

3T ∗

∑

j

(4̺j(z̄) + ̺j(z̄ + 1) + ̺j(z̄ − 1))
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+ qi

∫ z̄+1/2

z̄−1/2

dz̄∗φ(z̄∗) − 2πlB

∫ z̄+1/2

z̄−1/2

dz̄∗
(

D(z̄∗, [̺∗±])
)2

(ε(̺∗0(z̄
∗)))2

ε′ (̺∗0(z̄
∗)) δi,0 = 0 (3.19)

with i, j = 0,+,−, where qie is the electric charge of component i and T ∗ = 1
3βu

is the

reduced temperature and µ∗
i = βµi. At the wall the convention ̺j(0) = 0 is used. The

integrals in Eq. (3.19) are approximated by

∫ z̄+1/2

z̄−1/2

dz̄∗f(z̄∗) ≈ ((z̄ + 1/2) − (z̄ − 1/2)) f

(

(z̄ + 1/2) + (z̄ − 1/2)

2

)

= f(z̄). (3.20)

For given chemical potentials µi these coupled equations can be solved numerically by

an iterative algorithm. The values of the chemical potentials µi considered here correspond

to those for the bulk gas phase of the system. For each iteration the electrostatic potential

φ(z̄∗) must be calculated by solving Poisson’s equation (see Eqs. (3.11) and (3.18))

d

dz̄∗
(ε(̺∗0(z̄

∗))φ′(z̄∗)) = −4πlB
∑

i

qi̺
∗
i (z̄

∗), (3.21)

ensuring global charge neutrality at each step.

3.2.1 Wetting films

The wetting behavior can be transparently inferred from the effective interface potential

ω(ℓ) introduced in Subsec. 2.2.1. Here, in order to obtain Ωs (ℓ), Ω [̺i(z)] (Eq. 3.10) has

been minimized under the constraint

∞
∑

z̄=1

(̺0(z̄) − ̺0,b) = Γ = ℓ(̺0,l − ̺0,g), (3.22)

where ̺0,b is the number density of the bulk gas phase in units of a−3 and ℓ̃ = ℓa is the

film thickness defined as

ℓ =
Γ

̺0,l − ̺0,g
, (3.23)

where Γ̃ =
∫∞

0
dz (˜̺0(z) − ˜̺0(∞)) = Γa−2 is the excess adsorption (or coverage) of the

substrate by the solvent and ̺0,l and ̺0,g are the corresponding bulk number densities of

the liquid and the gas phase, respectively.
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3.2.2 Choice of parameters

If one chooses the lattice constant a to be equal to 4Å, the maximal density 1/a3 lies

between the densities for liquid water at the triple point and at the critical point. Accord-

ingly, the choice lB = 400 corresponds to T ≈ 417 K. This temperature lies between the

triple point temperature of 273 K and the critical point temperature of 647 K for water. In

the units used in this chapter 1 mM = 10−3 mol/L corresponds to ̺i = ˜̺ia
3 = 3.9× 10−5.

For the present calculation values for the reduced surface charge density σ in the

range between 0 and 10−2 have been used. For a = 4Å the latter value corresponds to 1

µC/cm2. Such values are within the range of measured surface charge densities of silicon

nitride at two different concentrations of the background electrolyte NaCl (1 mM, 10 mM)

determined by potentiometric pH titration [188], which is a common method to determine

the unknown concentration of an identified substance and to estimate the surface charge

of a solid by comparing the titration of the solution with solid against the titration of the

same solution without solid.

These consideration indicate that the values of the reduced substrate surface charge

densities σ and ionic strengths I considered in the following are within the range of

values for which Poisson-Boltzmann theory, i.e., mean-field theory for the electrostatic

interaction, shows quantitative agreement with corresponding Monte Carlo simulations

[79]. The former is essentially identical to the theory used to describe the ions in Eq.

(3.10) if one neglects the effect of nonzero ion size, which is weak for the considered dilute

electrolyte solutions.

3.3 Bulk phase diagram

In the bulk, the number densities ̺i of the fluid are spatially constant and from the

requirement of local charge neutrality it follows that ̺+ = ̺− = I, where I is the so-

called ionic strength for monovalent ions. Under these conditions the density functional

given by Eq. (3.10) reduces to

βΩ[{̺i}]

V̄
= ̺0(ln ̺0 − µ∗

0) + I(2 ln I − µ∗
I)

+ (1 − ̺0 − 2I) ln (1 − ̺0 − 2I) − 1

T ∗
(̺0 + 2I)2, (3.24)

where µ∗
I = µ∗

+ + µ∗
− and V̄ = V/a3 (V is the volume of the fluid). The last term in

Eq. (3.10) vanishes because in the bulk D = 0 due to Eq. (3.11). The Euler Lagrange
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equations (3.19) read

ln ̺0 − µ∗
0 − ln (1 − ̺0 − 2I) − 2

T ∗
(̺0 + 2I) = 0

2 ln I − µ∗
I − 2 ln (1 − ̺0 − 2I) − 4

T ∗
(̺0 + 2I) = 0.

(3.25)

T ∗

T ∗

c
T ∗

w

µ
∗ 0 (A)

(B)

(C)

gas

liquid

-1

-2

-3

-4

-5
0.3 0.4 0.5

Figure 3.1: Bulk phase diagram µ0,co(T ) of liquid-gas coexistence according to Eq. (3.24)
in the µ∗

0 − T ∗ plane for the salt-free (I = 0) case of a pure solvent. If the wetting
transition temperature T ∗

w is above the triple point T ∗
t ≃ 0.21 (for water), three types of

paths (A), (B), and (C) are used to study the wetting behavior of the present model. (A)
is a path along gas-liquid coexistence on the gas side whereas along the paths (B) and
(C) two-phase coexistence is approached along isotherms leading to incomplete (B) and
complete (C) wetting, respectively.

For a given ionic strength I = ̺
(l)
± in the liquid phase of the solution, the liquid-gas

coexistence curves, i.e., the solvent density in the liquid phase of the solution and the

coexisting densities of the ions and of the solvent in the gas phase of the solution, are

determined by the equality of the chemical potentials µ0 and µI and of the pressure p:

µ0[{̺i,g}, T ∗] = µ0[{̺i,l}, T ∗],

µI [{̺i,g}, T ∗] = µI [{̺i,l}, T ∗],

p[{̺i,g}, T ∗] = p[{̺i,l}, T ∗].

(3.26)

For I = 0 the resulting phase diagram can be determined analytically and is plotted

in Fig. 3.1. The reduced critical temperature is T ∗
c (I = 0) = 0.5 and the critical number

density is ̺0,c(I = 0) = 0.5. For I 6= 0 the binodal curves are determined numerically

and the critical points are obtained by determining the maximum of the corresponding
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spinodal curves. Within the present model the reduced critical temperature T ∗
c is inde-

pendent of I whereas ̺0,c(I) = 0.5 − 2I. In agreement with experimental evidence [189]

the shift of the binodal curves is negligibly small for ionic strengths up to 10 mM, i.e.,

I ≤ 3.9 × 10−4.

3.4 Wetting

3.4.1 Wetting in the salt-free solvent

In this section the wetting behavior in the case I = 0 is considered. Under this condition,

the model described in Sec. 3.1 reduces to the lattice-gas model studied by Pandit et

al. [190,191]. In that case, the Euler-Lagrange equations in Eq. (3.19) reduce to

ln ̺0(z̄) − ln [1 − ̺0(z̄)] − µ∗
0 − βuwδ1,z̄ −

1

3T ∗
[4̺(z̄) + ̺(z̄ + 1) + ̺(z̄ − 1)] = 0, (3.27)

and the ratio uw/u = 3T ∗βuw controls the wetting and drying transitions. For uw/u > 1

the substrate is so strong that it is already wet at T ∗ = 0; in the range 0.5 < uw/u < 1

there is a wetting transition at T ∗
w > 0; and in the parameter range 0 ≤ uw/u < 0.5 a

drying transition occurs. Depending on the value of the ratio uw/u one observes layering

transitions, i.e., one can distinguish the number of discrete layers which are forming upon

reaching thick films. The transition from n to n + 1 layers is first order and shows up

as a jump in the film thickness ℓ. The loci of these discontinuities are layering transition

lines, each ending at a critical point T ∗
c,n. For large n, T ∗

c,n approaches the roughening

transition. However, within the present mean-field theory T ∗
c,n approaches T ∗

c . Since

layering transitions should only occur along or near the melting curve or the sublimation

line, these layering transitions are a special feature of the lattice-gas model used to describe

the liquid and gas phases [2].

Calculations in the parameter range 0.5 < uw/u < 1 were carried out. A wider

range of the parameter uw/u was studied thoroughly by Pandit et al. [190, 191]. Figure

3.2 shows the effective interface potential ω(ℓ) = Ωs(ℓ) − γg,l − γl,s for three different

temperatures along a path at coexistence [path (A) in Fig. 3.1] for the rather arbitrarily

chosen values uw/u = 0.81 and uw/u = 0.69. Here γg,l and γl,s are the gas-liquid and

liquid-substrate interfacial tensions, respectively, such that by construction at two-phase

coexistence ω(ℓ → ∞) = 0. The equilibrium thickness of the liquid film is given by the

position of the global minimum of ω(ℓ). If ℓ = ∞ is the global minimum of Ωs(ℓ) the

system is wet. In this case, the gas-substrate surface tension is given by γg,s = Ωs(ℓ =

∞) = γg,l + γl,s.
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Figure 3.2: Effective interface potential ω(ℓ) = Ωs(ℓ)−γg,l−γl,s at two-phase coexistence
as a function of the thickness ℓ̃ = ℓa of the adsorbed liquid film for three temperatures in
the salt-free case (I = 0) for uw/u = 0.81 (a) and uw/u = 0.69 (b) . In both cases ω(ℓ)
exhibits only a single minimum, the position of which diverges continuously as T ∗ → T ∗

w.
Accordingly, the system undergoes critical wetting at T ∗

w ≃ 0.856T ∗
c for uw/u = 0.81 and

at T ∗
w ≃ 0.95T ∗

c for uw/u = 0.69.

In the two cases which were considered in Fig. 3.2, ω(ℓ) exhibits only a single minimum,

the position of which diverges continuously or via steps of finite size as T ∗ → T ∗
w. For

T ∗ > T ∗
w the position of the minimum is ℓ = ∞ and the system is wet. The wetting

transition is second order and occurs at the temperature T ∗
w ≃ 0.856T ∗

c for uw/u = 0.81

and at T ∗
w ≃ 0.95T ∗

c for uw/u = 0.69. Within the present model, in which all interactions

are of the nearest-neighbor type only for the pure solvent, the system exhibits a second-

order wetting transition in the entire parameter range 0.5 < uw/u < 1. This observation

is compatible with corresponding Monte Carlo simulations of the Ising model on a cubic

lattice [192, 193]. However, the order of wetting transitions depends sensitively on the

range of interactions as well as on whether a continuous or a lattice model is considered.

For a continuous analogue of the present model, Pandit et al. [191] found a second-order

wetting transition only for 0.5 < uw/u . 0.7 but a first-order one for uw/u & 0.7.

Moreover, lattice-gas models with short-ranged particle-particle interactions and long-

ranged substrate potentials were studied by de Oliveira and Griffiths [194] and Ebner

[195, 196]. In Ref. [194] complete wetting in a system with Tw = 0 was studied within

mean field theory. Ebner reported Tw = 0 or a first-order wetting transition depending on

the strength of the substrate potential [195] and studied the same interaction potentials

as the ones used in Refs. [194, 195] applying Monte Carlo simulations [196]. Finally,
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in systems in which both the particle-particle interactions and the substrate potentials

are long-ranged, critical (i.e., second-order) and first-order wetting can occur for suitable

choices of the interaction potentials [197,198].

The film thickness ℓ = ℓ̃/a as function of µ∗
0,co(T

∗)−µ∗
0, when bulk coexistence µ0,co(T

∗)

(see Fig. 3.1) is approached along four isotherms from the gas phase [paths of type (B)

and (C) in Fig. 3.1], is plotted in Fig. 3.3. In the case uw/u = 0.81 (Fig. 3.3(a)) the

isotherms exhibit vertical steps at the aforementioned layering transitions. Above T ∗
w, i.e.,

when the substrate is completely wet at coexistence, the isotherms exhibit an unlimited

number of such steps as µ∗
0,co(T

∗) − µ∗
0 approaches zero, while for T ∗ < T ∗

w there is only

a finite number of steps. For uw/u = 0.69 (Fig. 3.3(b)) layering transitions do not occur

and the film thickness diverges logarithmically for T ∗ > T ∗
w, while for T ∗ < T ∗

w it reaches

a finite value at coexistence.
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Figure 3.3: Film thickness ℓ = ℓ̃/a in units of the lattice constant a as a function of un-
dersaturation µ∗

0,co(T
∗)−µ∗

0 for the salt-free case (I = 0). Gas-liquid coexistence µ∗
0,co(T

∗)
is approached from the gas phase. (a) uw/u = 0.81: for T ∗ < T ∗

w = 0.856T ∗
c the system is

partially wet and, if at all, there is a finite number of layering transitions; for T ∗ > T ∗
w the

isotherms exhibit an unlimited number of layering transitions as µ∗
0,co(T

∗)−µ∗
0 → 0 and

the first few layering transitions are rounded because for this temperature T ∗ > T ∗
c,n. (b)

uw/u = 0.69: the film thickness diverges logarithmically for T ∗ > T ∗
w = 0.95T ∗

c , while it
reaches a finite value at coexistence for T ∗ < T ∗

w. In (b) there are no layering transitions.

Note that with T ∗
c (I) = 1

2
one has µ∗

0,co(T
∗)−µ∗

0 = 2/3
T ∗/T ∗

c

[

µ0,co(T ∗)−µ0

u

]

.
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3.4.2 Wetting in electrolyte solution

Within the above concepts this section focuses on the influence of the ionic strength

Ĩ = Ia−3 and of the surface charge density σ̃ = σea−2 on the wetting behavior of systems

with uw/u = 0.81 or uw/u = 0.69. If the substrate is neutral (σ = 0), the addition of salt

changes neither the order nor the transition temperature of the wetting transition, i.e.,

there is a second-order wetting transition at the wetting temperature T ∗
w as discussed in the

previous Subsubsec. 3.4.1. This is expected because within the present model all particles

have the same size, the ions have the same absolute charge, and the strength of the particle-

particle and of the substrate-particle nearest-neighbor interactions are the same for all

three species. Hence local charge neutrality (̺+(z̄) = ̺−(z̄)) holds due to the exchange

symmetry with respect to the ionic components. This implies that there is no electric field

(D(z̄) = 0). If the surface charge becomes non-zero, the order of the wetting transition

changes from second order (σ = 0) to first order (σ 6= 0) for all values of the charge density

σ and ionic strength I studied here, with σ = 2 × 10−5 (i.e., σ̃ ≈ 0.002 µC/cm2) as the

smallest non-zero value considered. This result is in agreement with previous studies. The

influence of ionic solutes on the order of the wetting transition was studied in Ref. [18] by

using Cahn’s phenomenological theory and in Ref. [19] by using density functional theory

for an explicit solvent model for an ionic solution. Both studies suggest that electrostatic

interactions favor first-order wetting.

Figure 3.4 shows examples of the effective interface potential ω(ℓ) in the case of non-

zero surface charge densities, σ = 2 × 10−3 and σ = 2 × 10−4, for two temperatures and

at bulk coexistence [see path (A) in Fig. 3.1]. In both cases, ω(ℓ) has two local minima.

For T ∗ < T ∗
w the global minimum corresponds to a thin film whereas for T ∗ > T ∗

w the

film is macroscopically thick. At the wetting transition temperature T ∗
w the two minima

correspond to the same value of the effective interface potential ω(ℓ). Accordingly, at

T ∗
w the film thickness jumps discontinuously from a finite value below T ∗

w to a macroscopic

one above T ∗
w so that the system undergoes a first-order wetting transition. If σ is

decreased the height of the barrier in ω(ℓ) at the wetting temperature T ∗
w decreases and

the minimum close to the wall is shifted to larger thicknesses (Fig. 3.4(b)). In the

case σ = 0, ω(ℓ) has only a single minimum, like in the salt-free case (see Fig. 3.2),

corresponding to a second-order wetting transition.

In Fig. 3.5 the wetting transition temperature is plotted as function of the surface

charge density for two values of the ionic strength and for uw/u = 0.81 (Fig. 3.5 (a)) and

uw/u = 0.69 (Fig. 3.5 (b)). As σ = σ̃a2/e is increased, the wetting transition temperature

T ∗
w decreases due to the strengthening of the substrate-fluid attraction as the substrate is

charged up. For σ 6= 0 the system with a smaller ionic strength I has always the lower
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Figure 3.4: Effective interface potential ω(ℓ) at gas-liquid coexistence as function of the
thickness ℓ = ℓ̃/a of the liquid film for uw/u = 0.69, I = 3.9 × 10−5 (Ĩ = 1mM), and
σ = 2 × 10−3 (σ̃ = 0.2µC/cm2) in (a) and σ = 2 × 10−4 (σ̃ = 0.02µC/cm2) in (b) for two
temperatures in each case. The effective interface potential ω(ℓ) has two local minima
(one at ℓ < ∞ and one at ℓ = ∞) which have the same depth at T ∗

w. Accordingly, for
both surface charge densities σ the system undergoes a first-order wetting transition.
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Figure 3.5: Wetting transition temperature T ∗
w as a function of the substrate surface charge

density σ = σ̃a2/e for uw/u = 0.81 in (a) and for uw/u = 0.69 in (b). The two types of
symbols correspond to distinct values of the ionic strength I = Ĩa3 in the bulk liquid phase
(• for I = 3.9 × 10−5 (Ĩ = 1mM) and for I = 3.9 × 10−4 (Ĩ = 10mM)). Filled symbols
correspond to first-order wetting transitions, while the empty one at σ = 0 corresponds to
a second-order wetting transition, with the corresponding wetting transition temperature
being independent of I.
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wetting transition temperature T ∗
w because in this case the screening of the electrostatic

forces of the substrate is reduced making them effectively stronger which favors wetting.

As already mentioned above, within the present model for σ = 0 the wetting transition

temperature is independent of the ionic strength Ĩ = Ia−3. In the case of first-order

wetting transitions these results are in qualitative agreement with Ref. [19]. However,

the off-lattice model used therein exhibits also second-order wetting transitions (see the

discussion above in Subsubsec. 3.4.1), for which T ∗
w is a non-monotonic function of σ.
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Figure 3.6: The film thickness ℓ = ℓ̃a (Eq. (3.23)) as a function of undersaturation
µ∗
0,co(T

∗)−µ∗
0 along four different isotherms for uw/u = 0.81, I = 3.9 × 10−5 (Ĩ = 1mM),

and σ = 2 × 10−3 (σ̃ = 0.2µC/cm2) exhibits a large but finite jump (corresponding to
more than one monolayer) when the prewetting line is crossed and small jumps when
the various layering transition lines are crossed. The film thickness increases for small

undersaturation as ℓ ∼ ln(µ∗
0,co(T

∗)−µ∗
0) where µ∗

0,co(T
∗)−µ∗

0 = 2/3
T ∗/T ∗

c

[

µ0,co(T ∗)−µ0

u

]

. The

inset displays the corresponding asymptotic behavior of the effective interface potential

ω(ℓ) ∼ exp(−2κℓ) where κ =

√

8πlBI/(ε(̺
(l)
0 ) is the inverse Debye length.

Since the wetting transitions for σ 6= 0 are first order, there is a prewetting line

associated with them. The prewetting line is attached tangentially to the gas-liquid

coexistence line at the wetting temperature T ∗
w and bends away from coexistence, marking

the loci of a finite discontinuity in film thickness ℓ = ℓ̃/a. The discontinuity upon crossing

the prewetting line gets smaller as one moves further away from coexistence and it vanishes

at the prewetting critical point. Figure 3.6 shows the film thickness ℓ = ℓ̃/a for four

different isotherms as a function of undersaturation µ∗
0,co(T

∗) − µ∗
0 for uw/u = 0.81 and
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σ = 2× 10−3 (σ̃ = 0.2µC/cm2). The film thickness increases for small undersaturation as

ℓ ∼ ln(µ∗
0,co(T

∗) − µ∗
0). Accordingly, ω(ℓ) ∼ exp(−2κℓ), where κ =

√

8πlBI/ε(̺l0) is the

inverse Debye length (see inset of Fig. 3.6). This is in agreement with Refs. [16] and [18]

for wetting of solvents with added salt. In contrast, for wetting films of solvents without

addition of salt, i.e., with counterions only, one has ℓ ∼ (µco − µ)−1/2 and ω(ℓ) ∼ ℓ−1

[12, 14, 15, 18]. In order to obtain this result, Eqs. (3.2) and (3.10) have to be modified

to consider only solvent particles and counterions but leaving out coions. In addition

to the finite thin-thick jumps in film thickness ℓ when crossing the prewetting line first-

order layering transitions similar to those found in the salt-free case for uw/u = 0.81 (see

Fig. 3.3) are observed. The addition of the electrostatic interaction leads to a series of

triple points where the layering transition lines meet the prewetting line, as shown in the

surface phase diagram in Fig. 3.7. A similar phase diagram was found by Ebner [195]

using a lattice-gas model for a one-component fluid in which the fluid particles interact

among each other via a Lennard-Jones (6-12) potential and a fluid particle interacts with

the substrate via a (9-3) potential. This is also in line with the prediction by Pandit et

al. [190] for a substrate of intermediate strength, i.e., for 0.5 < uw/u < 1, with interactions

ranging beyond nearest neighbors.
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Figure 3.7: Surface phase diagram for uw/u = 0.81 and σ = 2 × 10−3 (σ̃ = 0.2µC/cm2)
. The full line is the prewetting line attached to T ∗

w = 0.864T ∗
c (N) and ending at the

prewetting critical point (•). The dashed lines correspond to layering transition lines.
They end at layering critical points T ∗

c,n (located at the end of the dashed lines without
being indicated separately), which within the present mean-field theory accumulate for
n → ∞ at T ∗

c instead of at the roughening transition temperature of the gas-liquid
interface on the lattice.

Figure 3.8 shows the prewetting lines for ionic strength I = 3.9 × 10−5 (Ĩ = 1mM)
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and for four values of σ in the case uw/u = 0.81. One can see clearly that as σ decreases,

the wetting temperature T ∗
w rises and the prewetting line becomes shorter. This is in

agreement with the fact that in the limit σ → 0 the wetting transition turns second order.

The values of the prewetting critical points for the lines shown in Fig. 3.8 are given in

Table 3.1.
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Figure 3.8: Prewetting lines for four values of the surface charge density σ = σ̃a2/e with
ionic strength I = 3.9 × 10−5 (Ĩ = 1mM) in the bulk liquid phase and for uw/u = 0.81.
The locations of the wetting transitions (N) and of the prewetting critical points (•) are
given in Table 3.1.

σ = σ̃a2/e T ∗
w/T

∗
c T ∗

pw,c/T
∗
c µ∗

0,co

(

T ∗
pw,c

)

− µ∗
0,pw,c

2 × 10−3 0.804 0.836 4.23 × 10−4

4 × 10−3 0.77 0.82 1.01 × 10−3

6 × 10−3 0.734 0.798 1.60 × 10−3

8 × 10−3 0.682 0.778 2.27 × 10−3

Table 3.1: Prewetting critical points (T ∗
pw,c, µ

∗
0,pw,c) for the prewetting lines shown in

Fig. 3.8. The ionic strength in the liquid phase is I = 3.9 × 10−5 (Ĩ = 1mM). T ∗
w

is the transition temperature for first-order wetting. Note that µ∗
0,co(T

∗
pw,c)−µ∗

0,pw,c =
2/3

T ∗
pw,c/T

∗
c

[

µ0,co(T ∗
pw,c)−µ0,pw,c

u

]

.
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Chapter 4

Wetting in electrolyte solutions: a

continuum model

4.1 Model with short-ranged interactions

In this chapter a continuum model [21] for an electrolyte solution in three spatial dimen-

sions consisting of solvent molecules (0), anions (-), and cations (+) close to a charged

planar wall is studied. Solvent particles are assumed to have a non-vanishing volume a3

whereas the ions are considered to be point-like particles. The wall under consideration is

the x̃−ỹ plane at z̃ = 0, i.e., r̃ = (r̃|| =(x̃, ỹ), z̃=0) which can carry a surface charge den-

sity σ̃ = σea−2, where e > 0 is the elementary charge. The starting point is the following

variational grand canonical functional, which is a modification of the one introduced in

Ref. [21]:

βΩ0[̺0(r), ̺±(r)] =

∫

d3r

{

̺0(r)(ln(̺0(r)) − βµ0) + (1 − ̺0(r)) ln(1 − ̺0(r))

+ χ(T )̺0(r)(1−̺0(r))+
χ(T )

6
(∇̺0(r))

2

}

− βh1

∫

d2r||̺0(r||, z = 0) + β
g

2

∫

d2r||̺0(r||, z = 0)2

+

∫

d3r

{

∑

i=±

̺i(r) (ln ̺i(r) − 1 − βµi + Vi(̺0(r)))

+
2πlB

ε(̺0(r))
(D(r, [̺±]))2

}

,

(4.1)

where β = (kBT )−1 is the inverse thermal energy, µ0 is the chemical potential of the

solvent, µ± are the chemical potentials of the ±-ions, l̃B = lBa = e2β/(4πε0) is the
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Bjerrum length in vacuum, and r = r̃/a are dimensionless positions. The actual number

density of the solvent is given by ˜̺0(r) = ̺0(r)a
−3 with ̺0(r) ∈ [0, 1], whereas the number

densities of anions and cations are given by ˜̺±(r) = ̺±(r)a−3. In the following the fluid

solvent at position r with ̺0(r) < 1/2 is referred to as a “gas”, whereas for ̺0(r) >

1/2 it is called a “liquid”. The first and the last integral are taken over the half-space

r = (x, y, z ≥ 0) whereas the second and the third integral run over the surface z = 0;

̺± (ln ̺± − 1 − βµ±) is the bulk grand potential density of the ±-ions in the low number

density limit. The Flory-Huggins parameter χ(T ) > 0 describes the effective interaction

between solvent particles [170]. The excess free energy of the solvent βF sol
ex [̺0(r)] =

∫

d3r
[

χ(T )̺0(r)(1−̺0(r))+χ(T )
6

(∇̺0(r))
2
]

is taken into account using the square-gradient

approximation. The ratio 1/6 of the coefficients in the two terms of βF sol
ex [̺0(r)] follows

from considering nearest neighbors only [171]. Within this model the interaction of the

solvent with the wall is captured by the parameters h1 and g. This implicitly assumes

that the fluid-wall interactions are sufficiently short ranged so that their contributions

to Ω0 depend only on the solvent density ̺0(r||, z = 0) in the vicinity of the wall. This

parametrization has been used by Nakanishi and Fisher [172] in order to analyze the global

surface phase diagram of the Landau-Ginzburg theory for wetting. V±(̺0) is the solvation

free energy per kBT of a ±-ion in the solvent of number density ̺0. Whereas more realistic

expressions of V±(̺0) are discussed in the literature [21], here a simple piece-wise constant

expression is used V±(̺0 < 1/2) = Vg and V±(̺0 > 1/2) = Vl with Vg−Vl ≫ 1. This choice

guarantees a vanishingly small ionic strength in the gas (̺0 < 1/2) as compared to the

ionic strength in the liquid (̺0 > 1/2). Without restriction of generality Vl := 0 is chosen,

which can be achieved by a redefinition of the ionic chemical potentials (βµ±−Vl 7→ βµ̂±;

in the following the hatˆis dropped). The discontinuity of V±(̺0) at ̺0 = 1/2 is expected

to not affect the results significantly because only thermodynamic states of liquid-gas

coexistence well below the critical point are considered, for which ̺0 = 1/2 is deep inside

the unstable region of the bulk phase diagram. Note that here no unequal partitioning of

ions in a non-uniform solvent occurs due to V+(̺0) − V−(̺0) = 0, i.e., due to a vanishing

difference of solubility contrasts of anions and cations between the two phases in the

sense of Ref. [21]. Moreover, no specific adsorption of ions at interfaces is considered here,

i.e., there are no surface fields acting on ̺±. D̃ = Dea−2 is the electric displacement

generated by the ions and by the surface charge density as related according to Gauß’s

law ∇ · D(r, [̺±]) = ̺+(r) − ̺−(r) + σδ(z). (Note that Gauß’s law is an ingredient of

the theory in addition to Eq. (4.1).) Within the present model, ions interact among each

other and with the wall only electrostatically (besides the hard core repulsion of the wall

which prevents the ions to penetrate the wall). Here, this is expressed in terms of the

66



energy density of the electric field (see Sec. 3.2) where ε(̺0) is the local permittivity of the

solvent of density ̺0 divided by the vacuum permittivity ε0. Various empirical expressions

for ε(̺0) are in use [173]. However, for the sake of simplicity a simple piece-wise constant

expression is considered here ε(̺0 < 1/2) = 1 and ε(̺0 > 1/2) = εl with the relative

permittivity εl of the liquid solvent. For the same reasons as for the case of the piece-wise

constant expressions V±(̺0) (see above), the discontinuity of ε(̺0) at ̺0 = 1/2 is expected

to be irrelevant for the present purposes.

The bulk grand canonical potential density per kBT following from Eq. (4.1) is given

by

βΩb(̺0, ̺) = fsol(̺0) + f
(+)
ion (̺) + f

(−)
ion (̺) + ̺ (V+(̺0) + V−(̺0)) (4.2)

with ̺+ = ̺− := ̺ due to local charge neutrality in the bulk, and with the abbrevi-

ations fsol(̺0) := ̺0(ln(̺0)−βµ0) + (1−̺0) ln(1−̺0) +χ(T )̺0(1−̺0) and f
(±)
ion (̺±) :=

̺± (ln ̺±−1−βµ±). As a consequence of local charge neutrality Ωb depends on µ+ and

µ− only via the combination µ+ +µ− ≡ µI . Accordingly, the ionic chemical potentials µ±

are of no individual importance but only their sum is of physical relevance. In the bulk

D = 0 due to local charge neutrality so that the last term in Eq. (4.1) does not contribute

to Eq. (4.2). Equilibrium bulk states (̺0, ̺) minimize βΩb(̺0, ̺;µ0, µI , T ), i.e., they fulfill

the Euler-Lagrange equations
∂Ωb

∂̺0
= 0 (4.3)

and
∂Ωb

∂̺
= 0. (4.4)

Equations (4.3) and (4.4) render two solutions, i.e., minima:

[̺0,l(µ0, µI , T ), ̺l(µ0, µI , T ) ≡ I] (4.5)

and

[̺0,g(µ0, µI , T ), ̺g(µ0, µI , T )] . (4.6)

Coexistence between these two minima occurs if upon inserting these two solutions into

Ωb the minima are equally deep:

Ωb (̺0 = ̺0,l(µ0, µI , T ), ̺ = ̺l(µ0, µI , T );µ0, µI , T )

= Ωb (̺0 = ̺0,g(µ0, µI , T ), ̺ = ̺g(µ0, µI , I);µ0, µI , T ) .
(4.7)

This renders a relation µ0 = µco
0 (µI , T ) which describes a two-dimensional manifold

in the three-dimensional parameter space (µ0, µI , T ) where gas-liquid coexistence

67



occurs. Inserting this relations into the solutions renders
[

̺co0,l(µI , T ), ̺col (µI , T )
]

and
[

̺co0,g (µI , T ) , ̺cog (µI , T )
]

with ̺co0,{l,g} (µI , T ) = ̺0,{l,g} (µ0 = µco
0 (µI , T ) , µI , T ) and

̺col,g (µI , T ) = ̺l,g (µ0 = µco
0 (µI , T ) , µI , T ) where ̺col = I. In the following the superscript

co in ̺co0,l, ̺
co
0,g, and ̺cog is dropped in order to avoid a clumsy notation so that, if not stated

otherwise, ̺0,l, ̺0,g, I, and ̺g correspond to the coexisting densities.

Equation (4.4) can be used to express the bulk ionic strength as

̺ = exp

(

1

2
(βµI − V+(̺0) − V−(̺0))

)

. (4.8)

Due to the choice V±(̺0 < 1/2) = Vg and V±(̺0 > 1/2) = Vl = 0 one obtains for the

ionic strength in the gas (̺0 = ̺0,g < 1/2) ̺ = ̺g = exp(βµI/2 − Vg) and in the liquid

(̺0 = ̺0,l > 1/2) ̺ = ̺l = exp(βµI/2) (see Eq. (4.8)). In the following it is assumed that

Vg ≫ 1 such that one can set ̺g = 0, and I = ̺l = exp(βµI/2). Accordingly, by using

µI = 2kBT ln I the densities discussed above can be expressed as functions of I and T .

Note that Eq. (4.8) is independent of the Flory-Huggins parameter χ(T ). For the choice

of the ion potential V±(̺0) (such that V ′
±(̺0 6= 1/2) = V ′′

±(̺0 6= 1/2) = 0) the binodal

Tbi(̺0) is determined via the implicit relation

χ(T ) =
ln(̺0) − ln(1 − ̺0)

2̺0 − 1
, (4.9)

where the temperature dependence of χ(T ) is often taken to be χ(T ) ∼= χS +χH/T , where

χS and χH/T are referred to as the entropic and the enthalpic part of χ(T ), respectively

[170]. From Eq. (4.9) one infers the critical point to be located at (̺0,c = 1/2, χ(Tc) = 2).

Note that within the present approximation the binodal (and hence the critical point) is

independent of the ionic strength I.

In the presence of walls, ̺0 and ̺± vary spatially in normal direction z. Their equi-

librium profiles minimize the full functional Ω0[̺0(r), ̺±(r)] in Eq. (4.1) and thus render

the equilibrium state. This procedure can be performed numerically. However, for the

present purpose, analytic expressions are sought. In order to achieve this goal a Taylor

expansion of the local part in Eq. (4.1) around the sharp-k ink reference density profiles [2]

¯̺0(z) = ̺sk,0(z) =







̺0,l, 0 ≤ z ≤ ℓ

̺0,g, z > ℓ
(4.10)
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and

¯̺±(z) = ̺sk,±(z) =







I, 0 ≤ z ≤ ℓ

0, z > ℓ
(4.11)

is performed, where ℓ is the position of the discontinuity of the sharp-kink profile ̺sk,0(z),

and ̺0,l and ̺0,g are, respectively, the equilibrium bulk densities of the solvent in the liquid

and gas phase for a bulk ionic strength I in the liquid phase. This Taylor expansion renders

an approximate variational functional Ω̂0 which up to quadratic order is given by

βΩ̂0[̺0(z), ̺±(z)]

A
= ℓfsol(̺0,l) + (L− ℓ)fsol(̺0,g) +

∫ L

0

dz

{

f ′
sol (¯̺0(z)) (̺0(z) − ¯̺0(z))

+
1

2
f ′′
sol (¯̺0(z)) (̺0(z) − ¯̺0(z))2 +

χ(T )

6

(

d̺0(z)

dz

)2
}

− βh1̺0(0) + β
g

2
(̺0(0))2

+

∫ ℓ

0

dz

{

∑

i=±

[

f
(i)
ion(I) + f

(i)
ion

′
(I)(̺i(z) − I)

+
1

2
f
(i)
ion

′′
(I)(̺i(z) − I)2

]

+
2πlB
εl

(D(z, [̺±]))2
}

,

(4.12)

where Ã = Aa2 is the wall area and Ṽ = ALa3 is the volume of the system. In order to

obtain Eq. (4.12) it has been used that ̺±(z > ℓ) = 0, V±(̺0(z ≤ ℓ)) = Vl = 0 because

̺0(z ≤ ℓ) > 1/2, and ε(̺0 ≤ ℓ) = εl. Therefore Eq. (4.12) does not apply very close to

the critical point where the actual spatial variation of V±(̺0(z)) and ε(̺0(z)) matters.

Moreover, D(z > ℓ) = 0 because the gas phase contains no ions and D(z → ∞) → 0 due

to the constraint of global charge neutrality.

The Euler-Lagrange equation for ̺0(z), which follows from Eq. (4.12) for fixed ℓ, is

given by

χ(T )

3

d2̺0(z)

dz2
= f ′

sol (¯̺0(z)) + f ′′
sol (¯̺0(z)) (̺0(z) − ¯̺0(z)) (4.13)

with the boundary conditions

χ(T )

3

d̺0(z)

dz

∣

∣

∣

∣

z=0

= −βh1 + βg̺0(0) and
d̺0(z)

dz

∣

∣

∣

∣

z=L

= 0. (4.14)

Similarly, the Euler-Lagrange equations for ̺±(z), 0 ≤ z ≤ ℓ, read (using Eq. (4.16) and
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d
dz

δD(z)
δ̺i(z′)

= δ
δ̺i(z′)

dD(z)
dz

= qiδ(z − z′) due to Gauß’s law)

f
(i)
ion

′
(I) + f

(i)
ion

′′
(I)(̺i(z) − I) = −qiφ(z), (4.15)

where eq± is the ion charge with q± = ±1 and φ̃(z) = φ(z)/(βe) is the electrostatic

potential such that

D(z) = − εl
4πlB

φ′(z) for 0 ≤ z ≤ ℓ. (4.16)

The variation leading to Eq. (4.15) generates also boundary terms φ(z)δD(z, [̺±])/δ̺i(z
′)

at z = 0 and z = ℓ which, however, vanish because of the boundary conditions D(z =

0) = σ and D(z = ℓ) = 0. The latter holds due to D ≡ 0 in the gas and the continuity

of D(z) at z = ℓ in the absence of a surface charge at z = ℓ. Due to Eq. (4.4), in

Eq. (4.15) one has f
(i)
ion

′
= 0. For the particular choice of ¯̺0(z) in Eq. (4.10) one has

f ′
sol(¯̺0(z < ℓ)) = f ′

sol(̺0,l) = 0 and f ′
sol(¯̺0(z > ℓ)) = f ′

sol(̺0,g) = 0 due to Eq. (4.3) and

the Euler-Lagrange equation (4.13) can be written as

d2

dz2
∆̺0(z) =







1
ξ2
l

∆̺0(z), 0 ≤ z < ℓ

1
ξ2g

∆̺0(z), z > ℓ
(4.17)

with
1

ξ2g,l
=

3

χ(T )

(

1

̺0,{g,l}
+

1

1 − ̺0,{g,l}
− 2χ(T )

)

, (4.18)

where ξg,l can be identified with the bulk correlation length of the solvent in the gas and

in the liquid phase, respectively (see Appendix A), and where ∆̺0(z) = ̺0(z) − ¯̺0(z) =

̺0(z) − ̺0,l for 0 ≤ z < ℓ and ∆̺0(z) = ̺0(z) − ̺0,g for z > ℓ. In addition to the

boundary conditions in Eq. (4.14), Eq. (4.13) requires the density profile ̺0(z) and its

first derivative d̺0(z)
dz

to be continuous at z = ℓ, i.e.,

̺0,l + ∆̺0(ℓ
−) = ̺0,g + ∆̺0(ℓ

+)

d

dz
∆̺0(z)

∣

∣

∣

∣

z=ℓ−
=

d

dz
∆̺0(z)

∣

∣

∣

∣

z=ℓ+

(4.19)

because the right-hand side of Eq. (4.13) is discontinuous; otherwise the left-hand side

of Eq. (4.13) would be more singular at z = ℓ than the right-hand side. Similarly, for

∆̺±(z) one obtains (see Eqs. (4.4) and (4.15))

∆̺±(z) = −q±φ(z)I, (4.20)
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where ∆̺±(z) = ̺±(z) − ¯̺±(z) = ̺±(z) − I for 0 ≤ z < ℓ and zero otherwise (see Eq.

(4.11) and ̺±(z > ℓ) = 0). The dependences of Eqs. (4.13) and (4.20) on µ0 and µI enter

via the equilibrium values of I, ̺0,g, and ̺0,l (Eqs. (4.2)-(4.7)).

The Poisson equation, which relates the dimensionless electrostatic potential φ = βeφ̃

to the dimensionless number densities ̺± of the ions, can be written as (see Eqs. (4.16)

and (4.20) and Gauß’s law)

φ′′(z) = −4πλB

εl

dD

dz
= −4πlB

εl

∑

i=±

qi̺i(z)

= −4πlB
εl

∑

i=±

qi(∆̺i + I)

= −4πlB
εl

∑

i=±

qiI(1 − qiφ(z))

=
8πIlB
εl

φ(z)

= κ2φ(z)

(4.21)

which is the linearized Poisson-Boltzmann equation with

κ =
√

8πIlB/εl (4.22)

as the inverse Debye length. This equation must be solved subject to the boundary

conditions

φ′(z = 0) = −4πlBσ

εl
and φ′(z = ℓ) = 0 (4.23)

which corresponds to D(z = 0) = σ and D(z = ℓ) = 0; the latter follows from the overall

charge neutrality (see Eqs. 3.13 and 3.14) and the assumption that there are no ions

in the vapor phase. Equations (4.17) and (4.21) can be solved analytically, yielding the

constrained equilibrium profiles

∆̺
(ℓ)
0 (z) =







Âl exp(z/ξl) + B̂l exp(−z/ξl), 0 ≤ z ≤ ℓ

B̂g exp(−z/ξg), z > ℓ
(4.24)
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where (see Eqs. (4.19) and (4.14))

Âl =
1

N

[(

βg +
χ(T )

3ξl

)

(̺0,g − ̺0,l) + β(h1 − g̺0,l)

(

ξg
ξl

− 1

)

exp(−ℓ/ξl))

]

,

B̂l =
1

N

[(

χ(T )

3ξl
− βg

)

(̺0,g − ̺0,l) + β(h1 − g̺0,l)

(

1 +
ξg
ξl

)

exp(ℓ/ξl))

]

,

B̂g =
ξg
ξl

(

Bl exp

(

ℓ

ξg
− ℓ

ξl

)

− Âl exp

(

ℓ

ξg
+

ℓ

ξl

))

,

N̂ =

(

βg +
χ(T )

3ξl

)(

ξg
ξl

+ 1

)

exp(ℓ/ξl) −
(

βg − χ(T )

3ξl

)(

1 − ξg
ξl

)

exp(−ℓ/ξl),

(4.25)

and (see Eq. (4.20)) ∆̺
(ℓ)
± (z) = −q±Iφ

(ℓ)(z) with

φ(ℓ)(z) = AI exp(κz) + BI exp(−κz), (4.26)

where (see Eq. (4.23))

AI =
4πlBσ

εlκ

1

exp(2κℓ) − 1
,

BI = AI exp(2κℓ).

(4.27)

Note that because ̺±(z) ≥ 0, |∆̺±(z)| has an upper limit given by (see Eq. (4.20))

|∆̺±(z)| ≤ I, i.e., |φ(z)| ≤ 1, (4.28)

Since φ(z) is monotonic (see Eqs. (4.26) and (4.27)) one requires

|φ(0)| ≤ 1

⇒ 4πlB|σ|
εlκ

coth(κℓ) ≤ 1,
(4.29)

which implies that there is an upper limit for the absolute value |σ| surface charge density:

|σ| ≤ εlκ

4πlBq±
tanh(κℓ) =: σsat(κℓ). (4.30)

In case the real surface charge |σ| is larger than the saturation value σsat(κℓ) the latter

has to be used instead in order to ensure ̺±(z) ≥ 0. This is the analogue of the well-

known charge renormalization in the linearized Poisson-Boltzmann theory of semi-infinite

electrolyte solutions [182].

Within the present model, at two-phase coexistence ̺0,g = 1 − ̺0,l so that ξg = ξl = ξ
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and that Eq. (4.25) reduces to

Al =
1

N

(

βg +
χ(T )

3ξ

)

(̺0,g − ̺0,l),

Bl =
1

N

[(

χ(T )

3ξ
− βg

)

(̺0,g − ̺0,l) + 2β(h1 − g̺0,l) exp(ℓ/ξ))

]

,

Bg = (Bl − Al exp(2ℓ/ξ)) ,

N = 2

(

βg +
χ(T )

3ξ

)

exp(ℓ/ξ).

(4.31)

The solvent density profiles at two-phase coexistence — obtained by expanding Ω0 up

to quadratic order around the sharp-kink profiles (see Eqs. (4.24) and (4.31)) — are

similar but not identical to the ones obtained by using the so-called double parabola ap-

proximation (DPA) (see Appendix B). A difference between the two approaches arises

because the boundary conditions and the definition of the thickness of the liquid film

differ in both approaches. Within the present approach the thickness ℓfilm of the liquid

film is defined as the position z > 0 in which the magnitude of the derivative |̺′0(z)| of

the solvent profile is maximal. This definition of the film thickness ℓfilm is convenient

within the present approach because Eq. (4.24) shows that it coincides with the posi-

tion ℓ of the discontinuity of the sharp-kink profile ̺sk,0(z), i.e., ℓfilm = ℓ. Alternative

definitions of the film thickness are possible but lead to more complicated expressions

of the effective interface potential introduced below. Moreover, the present solvent pro-

file and its derivative are continuous everywhere (see Eq. (4.19)), whereas within the

DPA the solvent profile is continuous everywhere but its derivative is discontinuous at

the position z = ℓDP where ̺0,DP(ℓDP) = 1
2
(̺0,g + ̺0,l) (see Eq. (B.7)). This equa-

tion defines the liquid film thickness ℓDPA within the DPA. However, the discontinuity

̺′0,DPA(ℓ+DPA)−̺′0,DPA(ℓ−DPA) = O(exp(−ℓDP/ξ)) is exponentially small for large film thick-

nesses (ℓDPA ≫ ξ) (see Eqs. (B.7) and (B.8)). Moreover, in Appendix B it is shown that

the relative difference between the coefficients of the profiles in Eq. (4.24) and those in

Eq. (B.7) is also exponentially small for ℓ = ℓDPA ≫ ξ (see Eq. (B.9)).

At the functional minimum the integrations in Eq. (4.12) can be performed analyti-

cally with the first integrand (see Eqs. (4.17) and (4.18))

χ(T )

6

(

d

dz
∆̺0(z)

)2

+
1

2
(∆̺0(z))2

(

1

̺0,{g,l}
+

1

1 − ̺0,{g,l}
− 2χ(T )

)

=
χ(T )

6

(

(∆̺0(z))2

ξ2g,l
+

(

d

dz
∆̺0(z)

)2
)
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=
χ(T )

6

(

(∆̺0(z))2

ξ2g,l
+

d

dz

(

∆̺0(z)
d

dz
∆̺0(z)

)

− ∆̺0(z)
d2

dz2
(∆̺0(z))

)

=
χ(T )

6

d

dz

(

∆̺0(z)
d

dz
∆̺0(z)

)

, (4.32)

and with the second the integrand (see Eqs. (4.16), (4.20), and (4.21) and f
(i)
ion

′
(I) = 0)

1

2I

∑

i=±

(∆̺i(z))2 +
2πlB
εl

(D(z, [∆̺±]))2 =
I

κ2

(

κ2 (φ(z))2 + (φ′(z))
2
)

=
I

κ2

(

φ(z)φ′′(z) + (φ′(z))
2
)

=
I

κ2
(φ(z)φ′(z))

′
. (4.33)

By exploiting the boundary conditions in Eqs. (4.14), (4.19), and (4.23) one obtains for

the surface contribution to the constrained grand potential

βΩs(ℓ) :=
βΩ̂0[̺

(ℓ)
0 (z), ̺

(ℓ)
± (z)] − V βΩb(̺0,g, ̺g = 0)

A

= βℓ[Ωb(̺0,l, I) − Ωb(̺0,g, 0)]

+
χ(T )

6

(

∆̺
(ℓ)
0

′
(ℓ)(̺0,g − ̺0,l) − ∆̺

(ℓ)
0

′
(0)∆̺

(ℓ)
0 (0)

)

− βh1(̺0,l + ∆̺
(ℓ)
0 (0)) +

βg

2
(̺0,l + ∆̺

(ℓ)
0 (0))2 +

1

2
σφ(ℓ)(0)

(4.34)

where ∆̺
(ℓ)
0

′
(ℓ) =

(

d
dz

∆̺
(ℓ)
0 (z)

)∣

∣

∣

z=ℓ
. Finally, inserting the solutions given by Eqs. (4.24)-

(4.27) into Eq. (4.34) and using Eqs. (4.14) and (4.23) leads to

βΩs(ℓ) = βℓ[Ωb(̺0,l, I) − Ωb(̺0,g, 0)]

+
χ(T )

6
(̺0,g − ̺0,l)

[

Âl

ξl
exp(ℓ/ξl) −

B̂l

ξl
exp(−ℓ/ξl)

]

+
β(g̺0,l − h1)

2
(Âl + B̂l) − βh1̺0,l +

βg

2
̺20,l

+
2πlBσ

2

εlκ
coth(κℓ).

(4.35)

The first term is the difference between the grand canonical potentials per volume of the

(potentially metastable) liquid and the gas bulk phase, respectively, multiplied by the

film thickness ℓ. This contribution linear in ℓ vanishes at two-phase coexistence due to

Eq. (4.7). The other terms provide the free energy associated with the emergence of the

liquid-gas and the liquid-wall interfaces as well as their effective interaction for ℓ < ∞.
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These expressions are valid also off two-phase coexistence.

At two-phase coexistence and in the limit ℓ ≫ 1/κ the surface contribution (Eq.

(4.35)) can be written as

βΩs(ℓ) ≃
χ(T )

12

(̺0,g − ̺0,l)
2

ξ
− β2(h1 − g̺0,l)

2

2
(

βg + χ(T )
3ξ

) − βh1̺0,l +
βg

2
̺0,l

+ (̺0,l − ̺0,g)
χ(T )

3ξ

β(h1 − g̺0,l)

βg + χ(T )
3ξ

exp(−ℓ/ξ)

− (̺0,l − ̺0,g)
2χ(T )

12ξ

χ(T )
3ξ

− βg

βg + χ(T )
3ξ

exp(−2ℓ/ξ)

+
2πlBσ

2

εlκ
(1 + 2 exp(−2κℓ)),

(4.36)

where only the last term in Eq. (4.35) has been expanded for κℓ ≫ 1. Note that within

the present theory the ions enter into Ωs(ℓ) only via the last term. Therefore, if the surface

charge σ is zero, the ions do not modify the wetting behavior of the solvent. This is due

to the fact that σ = 0 implies that there are no surface fields acting on ̺± . The first

term in Eq. (4.36) is the liquid-gas surface tension γl,g = χ(T )
12

(̺0,g−̺0,l)
2

ξ
, within the present

approach. As expected, within mean field theory (MFT) ̺0,l−̺0,g vanishes ∝ |χ−χc|β with

β = 1/2 upon approaching the critical point (̺0,c = 1
2
, χc = 2) (see Eq. (4.9)) and from Eq.

(4.18) one has ξ ∝ |χ−χc|−ν with ν = 1/2, so that γl,g ∝ |χ−χc|µ with 2β+ν = µ = 3/2;

in general µ = (d − 1)ν where d is the spatial dimension with d = 4 corresponding to

MFT [3]. The wall-liquid surface tension is γw,l = −β2(h1−g̺0,l)
2

2(βg+χ(T )
3ξ )

−βh1̺0,l +
βg
2
̺0,l +

2πlBσ2

εlκ
.

These two contributions are independent of the film thickness ℓ. The remaining terms

carry the dependence on ℓ, generated by the effective interaction between the emerging

liquid-vapor and wall-liquid interfaces.

Accordingly, the effective interface potential ω(ℓ) = Ωs(ℓ) − Ωs(∞) at two-phase co-

existence is given by

βω(ℓ ≫ 1/κ) ≃ (̺0,l − ̺0,g)
χ(T )

3ξ

β(h1 − g̺0,l)

βg + χ(T )
3ξ

exp(−ℓ/ξ)

− (̺0,l − ̺0,g)
2χ(T )

12ξ

χ(T )
3ξ

− βg

βg + χ(T )
3ξ

exp(−2ℓ/ξ)

+
4πlBσ

2

εlκ
exp(−2κℓ).

(4.37)

This effective potential captures the dependence of the grand canonical potential on the
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film thickness and determines whether or not the wall-gas interface is wetted by the liquid.

Moreover, the order of the wetting transition can be inferred from its functional form [2].

The property ξl = ξg at coexistence is a special feature of the present model. In general

ξl 6= ξg so that in this case an expansion of the effective interface potential ω(ℓ) similar

to Eq. (4.37) contains products of powers of exp(−ℓ/ξl) and exp(−ℓ/ξg) (see Eq. (4.35)).

4.1.1 Pure solvent

First the case of a pure solvent (i.e., I = 0) near a neutral wall (i.e., σ = 0) and at

gas-liquid coexistence is considered. For such a system the effective interface potential in

Eq. (4.37) reduces to

βω(ℓ) = a0(T ) exp(−ℓ/ξ) + b0(T ) exp(−2ℓ/ξ) (4.38)

with

a0(T ) = (̺0,l − ̺0,g)
χ(T )

3ξ

β(h1 − g̺0,l)

βg + χ(T ),
3ξ

(4.39)

and

b0(T ) = −(̺0,l − ̺0,g)
2χ(T )

12ξ

χ(T )
3ξ

− βg

βg + χ(T )
3ξ

. (4.40)

For second-order wetting to occur at T = Tw, the coefficient a0(T ) must be negative for

T < Tw, vanish at T = Tw, and be positive for T > Tw. As ̺0,l > ̺0,g, and because

̺0,l can vary only between its value at the triple point ̺0,l(Tt) and the critical density

̺0,c = ̺0,l(Tc), a0(T ) fulfills the above mentioned conditions if

̺0,c <
h1

g
< ̺0,l(Tt). (4.41)

Here and the following h1 > 0 and g > 0 are considered. The order of the transition is

determined by the higher-order coefficients in the expansion of ω(ℓ) [2]. If b0(Tw) < 0, the

transition will be first order while second-order wetting can occur if b0(Tw) > 0. Only in

the latter case a0(Tw) = 0 determines the wetting transition temperature, so that

̺0,l(Tw) =
h1

g
. (4.42)

Within the present approach, the wetting transition can be second order if

βg >
χ(Tw)

3ξ
, (4.43)
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and first order if the inequality is reversed. The separatrix between first- and second-order

wetting (i.e., the loci of tricritical wetting [172]) is given by

βg =
χ(Tw)

3ξ(Tw)
, (4.44)

where χ(Tw) follows from Eqs. (4.9) and (4.42):

χ(Tw) =
ln(h1/g) − ln(1 − h1/g)

2h1/g − 1
. (4.45)

4.1.2 Electrolyte solution

In the case of an electrolyte solution close to a charged wall the effective interface potential

given by Eq. (4.37) has the generic form studied by Aukrust and Hauge [174] for a model

in which both the wall-fluid and the fluid-fluid interaction potentials decay exponentially

but on distinct scales. The information about the wetting behavior is extracted in an

analogous procedure to the pure solvent case in Subsec. 4.1.1. Note that the electrostatic

term aI(T ) exp(−2κℓ) with

aI(T ) =
4πlBσ

2

εlκ
(4.46)

has a coefficient which is always positive. (Equation (4.37) shows that the coefficients

a0(T ) (Eq. (4.39)) and b0(T ) (Eq. (4.40)) do not change upon adding ions.) Accordingly,

the wetting behavior will depend on the competition between the Debye length 1/κ and

the correlation length ξ:

(i) 1/κ < ξ: In this case the electrostatic term decays faster than the remaining two

terms in Eq. (4.37). Therefore one obtains the same wetting behavior as for the

pure solvent (see Subsec. 4.1.1).

(ii) ξ < 1/κ < 2ξ: In this case the electrostatic term is the dominant subleading con-

tribution in the expansion. Moreover, because aI(T ) > 0 for all temperatures, the

transition can be second order if a0(T ) satisfies the conditions given by Eq. (4.41).

(iii) 1/κ > 2ξ: In this case, the electrostatic term is the leading contribution. As a result,

if in the pure solvent the wetting transition is second order, due to adding ions and

due to a nonzero surface charge density at the wall it turns first order or the wall

becomes wet at all temperatures T > Tt.

As discussed in Subsec. 4.1.1, for the pure solvent it is possible to determine the

separatrix between first- and second-order wetting in terms of the surface parameters h1
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and g only. Accordingly, the phase diagram is of the type shown in Fig. 2(a) of Ref. [172]

for g > 0 and of the type shown there in Fig. 2(b) for g = 0. On the other hand,

for electrolyte solutions this separatrix depends also on the surface charge density, the

ionic strength, and the competition between the Debye and the correlation lengths. As

mentioned before our approach neglects the interaction between ions so that it can be used

only for low ion concentrations, e.g., I . 10mM, which corresponds to a Debye length

1/κ & 3nm in water at room temperature. Thus one typically ends up with case (iii)

(1/κ > 2ξ) except in close proximity to the critical point, where one can reach case (ii)

(ξ < 1/κ < 2ξ) and ultimately case (i) (1/κ < ξ). Therefore, for g > 0 the phase diagram

for σ 6= 0 is of the type shown in Fig. 2(a) of Ref. [172], as for the pure solvent case with

g > 0, but the separatrix between first- and second-order wetting is shifted closer to the

critical point upon increasing the Debye length, i.e., upon decreasing the ionic strength.

The wetting behavior will be richer if ξl 6= ξg (see the discussion below Eq. (4.37)).

In this case, the possible wetting scenarios will depend on the competition between the

Debye length 1/κ, the correlation length ξg of the gas, and the correlation length ξl of the

liquid. This creates additional cases compared to the ones discussed above (see (i)-(iii)).

Nevertheless, in the present context, far from the critical point case (iii) is still the typical

one with the distinction that here 1/(2κ) competes with the maximum of ξl and ξg.

In the limit σ → 0 one has aI(T ) → 0 so that in this case there is no contribution to

the effective interface potential due to the ions. This is due to the fact that within the

present theory there are no surfaces fields acting on ̺± if σ = 0. For considering instead

the limit I → 0, i.e., κ → 0, in the expression for aI(T ) one has to use the saturation value

|σ| = σsat(κℓ) given by Eq. (4.30), which implies aI(T ) ∼ κ3. Accordingly, aI(T ) → 0

when κ → 0 so that, as expected, in the limit I → 0 the pure solvent case is recovered.

4.2 Model with long-ranged interactions

In this section systems in which the solvent exhibits attractive long-ranged interaction

potentials among the solvent particles as well as between the wall and the solvent particles

are considered. As in the previous section, the goal is to obtain an analytic expression for

the effective interface potential ω(ℓ). Following Ref. [175] the attractive part of the pair

potential between the solvent particles, as it enters the density functional, is modeled as

w̄(r) =
Af

(1 + r2)3
(4.47)
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with Af < 0 and the substrate potential as

V (z > 0) = −
∑

i≥3

ui

zi
(4.48)

with u3 > 0 corresponding to an asymptotically attractive interaction. The contribution

∼ u4 is generated, inter alia, by the discrete lattice structure of the substrate or by a thin

overlayer [2] and thus it can be tuned. The substrate potential V (z) diverges for z → 0.

Therefore the solvent density ̺0(z) must vanish for z → 0. In the following this effect

is taken into account approximately by replacing the short-ranged part of V (z) in Eq.

(4.48) by a hard-wall potential positioned at z = dw; the distances z are still measured

from z = 0. (Beyond this sharp-kink approximation for the wall-liquid interfacial profile,

dw is replaced by the moment d
(1)
wl (Eq. D.9) of the profile ̺0,wl(z).) This implies that

in the present section the short-ranged description of the surface-fluid interaction given

in terms of the surface parameters h1 and g in the previous section has to be shifted

from z = 0 to z = dw (see Eq. (4.1)). On the other hand, in order to account for the

long-ranged attractive part of V (z) (i.e., for z ≫ dw), here only the first two terms of

the sum in Eq. (4.48) are considered. The functional form in Eq. (4.47) facilitates to

carry out subsequent integrals analytically. These long-ranged interactions are treated as

a perturbation of the grand canonical functional in Eq. (4.1):

Ω[̺0(r), ̺±(r)] = Ω0[̺0(r), ̺±(r)] + ∆Ω[̺0(r)] (4.49)

where Ω0[̺0(r), ̺±(r)] is given by Eq. (4.1) and

∆Ω[̺0(r)] =
1

2

∫

d3r

∫

d3r′w̄(|r− r′|)̺0(r)̺0(r) +

∫

d3r̺wV (r)̺0(r). (4.50)

The integrations run over the half space {r = (x, y, z ≥ dw)}, w̄(r) is given by Eq. (4.47),

and V (r) is given by Eq. (4.48); ̺w is the particle number density of the substrate.

Concerning the interaction between the solvent particles, it turns out that it is most

suitable captured by the quantity [2],

t(z) :=

∫ ∞

z

dz′
∫

d2r′||w̄

(

(

r′
2
|| + z′

2
)1/2

)

. (4.51)

For large distances and non-retarded van der Waals forces one has

t(z → ∞) = −
(

t3
z3

+
t4
z4

+ · · ·
)

, (4.52)
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which defines the coefficients t3 > 0 and t4. For the present model this implies

t3 = −πAf

6
, (4.53)

t4 = 0. (4.54)

The addition of the long-ranged pair potential between solvent particles (Eq. (4.47))

modifies the bulk grand canonical potential per kBT of the pure solvent (i.e., ̺± = 0)

(see Eq. (4.2)). Accordingly, in this system the bulk densities ̺0,l and ̺0,g minimize the

modified bulk grand canonical potential density given by

βΩb,lr(̺0, ̺ = 0) = ̺0(ln(̺0) − βµ̃0) + (1 − ̺0) ln(1 − ̺0) + χ̃(T )̺0(1 − ̺0) (4.55)

with the shifted solvent chemical potential µ̃0 = µ0 − π2Af/8 and the modified Flory-

Huggins parameter χ̃(T ) = χS + χH/T − π2βAf/8, i.e., the RPA-like perturbation

∆Ω[̺0(r)] in Eq. (4.50) changes only the enthalpic part of the Flory-Huggins parame-

ter. The binodal Tbi,lr(̺0) is again of the form given in Eq. (4.9) but with χ(T ) replaced

by χ̃(T ). Hence the critical point is located at (̺0,c = 1/2, χ̃(Tc) = 2), i.e.,

Tc =
χH − π2Af/(8kB)

2 − χS

. (4.56)

The bulk correlation length is now given by (see Appendix A)

1

ξ2
=

3

χ̃(T )

( 1

̺0
+

1

1 − ̺0
− 2χ̃(T )

)

1 +
π2βAf

8χ̃(T )

. (4.57)

In a first-order perturbative theory approach (see Appendix C) the influence of

∆Ω[̺0(r)] on the wetting behavior of the electrolyte solution can be determined by in-

serting into Eq. (4.49) the solutions ̺
(0)
0 (r) and ̺

(0)
± (r) as obtained from Ω0[̺0(r), ̺±(r)]

(see Sec. 4.1). The superscript (0) denotes these solutions as the ones obtained from the

unperturbed functional Ω0.

Following the same procedure as described in Sec. 4.1, i.e., expanding the local part

of the grand canonical functional in Eq. (4.49) around the sharp-kink density profiles in

Eqs. (4.10) and (4.11), for ℓ → ∞ one obtains the following form for the effective interface
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potential (see Appendix E):

βω(ℓ → ∞) ≃ a1(T )

ℓ2
+

b1(T )

ℓ3
+ · · · + a0(T ) exp(−ℓ/ξ) + b0(T ) exp(−2ℓ/ξ)

+ aI(T ) exp(−2κℓ),

(4.58)

where ellipses stand for further subdominant terms as powers of 1/ℓ. As in the absence

of long-ranged interactions the ions enter into ω(ℓ) only via the last term. The analytic

expressions for the coefficients a1(T ) and b1(T ) are given in Appendix D, a0(T ) and b0(T )

are given by Eqs. (4.39) and (4.40), respectively, and aI(T ) is given by Eq. (4.46).

Corrections to the coefficients a0(T ) and b0(T ) due to the long-ranged interactions (Eqs.

(4.47) and (4.48)) are neglected because these long-ranged interactions are treated as

a small perturbation to the model with short-ranged interactions only. The sign of the

coefficients a1(T ), b1(T ), a0(T ), and b0(T ) can change with T while aI(T ) is always positive

(see Appendix D). As discussed for short-ranged interactions in the previous Sec. 4.1, the

order of the wetting transition can be inferred from the analysis of these coefficients.

They depend on seven parameters: χS, χH , Af , u3̺w, u4̺w, h1, and g. The value of χS

is typically much smaller than unity [170] so that χS = 0 is considered in the following.

Moreover, in the discussion below, the amplitude Af is chosen to be in the range (0.04 −
0.15)×10−19 J, which corresponds to typical strengths of the van der Waals interaction in

condensed phases (see Ref. [11]) and χH is determined via of Eq. (4.56) using the critical

temperature Tc = 647 K of water. Finally, u3̺w is fixed by specifying the temperature

T (a1) at which a1(T
(a1)) = 0 given by the implicit relation (see Eq. D.1) ̺0,l(T

(a1)) =

u3̺w/t3 = −6u3̺w/(πAf ) (u3 > 0, Af < 0); in the case of a critical wetting transition

this temperature coincides with the wetting transition temperature Tw = T (a1). With

these choices the only remaining free parameters in the following analysis are u4̺w, h1,

and g. However, their values are constrained by the condition b1(Tw) > 0 for critical

wetting (see Eq. (D.2)). Due to the additional presence of the parameters Af , u3̺w, and

u4̺w of the long-ranged interactions, in that case the corresponding discussion is slightly

more difficult than the one for short-ranged interactions only as studied in the previous

section.

First the pure solvent case, i.e., aI = 0 is analyzed. In this case, the necessary

conditions for the occurrence of critical wetting are (Eq. (4.58) and Ref. [2])

a1(Tw) = 0, a1(T < Tw) < 0, and b1(Tw) > 0 (4.59)

i.e., T (a1) = Tw, and, as before, one obtains conditions for the parameters of the pair
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potentials (see Eqs. (D.1) and (D.2)):

̺0,c/̺w < u3/t3 < ̺0,l(Tt)/̺w (4.60)

and

̺wu4 − 3t3̺0,l(Tw)
[

dw + d
(1)
wl

]

> 0, (4.61)

with d
(1)
wl given by Eq. (D.9) and ̺0,l(Tw) = u3̺w/t3.

Although necessary, these conditions are not sufficient for critical wetting to occur.

Large negative values of the coefficient a0(T ) of the exponentially decaying contribution

can still lead to a first-order wetting transition even if b1(T
(a1)) > 0. Within the present

model one has a0(T ) > 0 for h1/g > ̺0,l(T ) (see Eq. (4.39)). If b1(T
(a1)) < 0 the wetting

transition is always first order. However, in the case of a first-order wetting transition all

details of ω(l), and not only its leading contributions, matter for a reliable description of

the character of the transition and for determining the corresponding wetting transition

temperature. Hence, an asymptotic expansion of ω(ℓ) as in Eq. (4.58) is not conclusive

in the case of first-order wetting.

For wetting of a wall by a one-component fluid with short- and long-ranged interactions

and based on a Cahn type theory, in Refs. [199,200] a wetting scenario has been predicted

which involves a succession of two interfacial phase transitions upon increasing T . The

first of these two transitions is a discontinuous jump between two finite values ℓ1 and

ℓ2 > ℓ1 of the film thickness ℓ at two-phase coexistence and is referred to as a “thin-thick

transition”. The second one is the standard second-order wetting transition at T = Tw.

(In Refs. [199,200] the possibility of a thin-thick transition preceding a first-order wetting

transition has not been discussed). This wetting scenario can be explained in terms of the

competition between the short- and long-ranged interactions. Such a thin-thick transition

precedes the critical wetting transition only if the short-ranged interactions would give

rise to a first-order wetting transition in the case that the long-ranged interactions were

negligible. Because the present theory involves both short- and long-ranged interactions,

the occurrence of this wetting scenario can be checked for the pure solvent case. In

this case, the separatrix between first- and second-order wetting is given by Eq. (4.44)

for the model with short-ranged interactions only (e.g., for g = 1 the transition will be

first order in the pure solvent case without long-ranged interaction if h1 > 0.49). By

choosing a proper set of parameters (see the discussion above) the occurrence of this

two-stage transition for the pure solvent has been observed within the present model for

π2Af . 0.55 × 10−19 J, ̺0,l(Tw) = u3̺w/t3 = 0.7, u4 = 2.3 × t3, g = 1, and h1 = 0.76,

such that the condition for second-order wetting given by Eq. (4.61) is satisfied.
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This thin-thick transition has also been observed for wetting of a wall by a one-

component fluid in models with short-ranged interactions only [201–203] and with long-

ranged interactions only [197]. Furthermore it has been observed experimentally for wet-

ting of hexane on water [204]. In Ref. [201] this thin-thick transition has been observed

for a generalization of the Sullivan model [205], in which in addition to the exponentially

decaying wall-fluid potential a square-well attraction has been included. A thin-thick

transition was also analyzed in Ref. [202] for a Landau theory of wetting which includes

an extra surface term h3 (̺0(0))3 linked to the substrate potential (see Ref. [172] and

Eq. (4.1)). In Ref. [203] it has been shown that the behavior of the model in Ref. [201]

can be mapped onto that used in Ref. [202]. With that it turns out that the thin-thick

transition predicted in Refs. [201] and [202] involves short-ranged forces only and is due

to the competition between two opposing (effective) surface fields at the same surface,

one favoring wetting and the other favoring drying. Such a competition between surface

fields is not considered here. Therefore within the present model a thin-thick transition

does not occur in the pure solvent case with short-ranged interactions only (see Sec. 4.1).

The influence of ions and of surface charges on the wetting behavior of electrolytes

with solvents governed by short- and long-ranged forces differs qualitatively from the one

discussed in Subsec. 4.1.2, because in this case the leading contributions to ω(ℓ → ∞)

decay algebraically as function of the film thickness ℓ. Accordingly, the contribution due

to the ions and the charged wall can enter at most as the leading non-algebraic term in

the expansion for ℓ → ∞; this is the case if the Debye length 1/κ is larger than (twice)

the bulk correlation length ξ (see Subsec 4.1.2).

Various parameter sets (h1, g, u4, T
(a1)) have been chosen such that the pure solvent

with short- and long-ranged interactions near a charge neutral wall (i.e., for aI(T ) = 0)

exhibits a second-order wetting transition at Tw(I = 0, σ = 0) without being preceded by

a thin-thick transition (i.e., different from the above scenario). For fixed ionic strength

I 6= 0 and upon increasing the surface charge density σ, due to aI(T ) ∼ σ2/
√
I (Eq. 4.46)

ω(ℓ) rises at finite film thickness ℓ to the effect that the wetting transition temperature

Tw(I, σ) decreases for increasing surface charge density σ (see Fig. 3.5). Moreover, for

fixed surface charge density σ the wetting transition temperature Tw(I, σ) decreases upon

decreasing the ionic strength I (i.e., increasing the amplitude σ2/
√
I and the Debye length

1/κ ∼ 1/
√
I) (see Fig. 3.5). In addition, the positive and monotonically decreasing (as

a function of increasing ℓ) contribution aI(T ) exp(−2κℓ) to ω(ℓ) does lead to a thin-

thick transition preceding the critical wetting transition which is absent without ions.

Figure 4.1 shows the curves for ω(ℓ) corresponding to the temperatures T1 = 0.918 × Tc,

T2 = 0.919 × Tc, T3 = 0.92 × Tc, T4 = 0.932 × Tc, and Tw = 0.944 × Tc with T1 < T2 .
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Tt−t,w < T3 < T4 < Tw, i.e., the thin-thick transition occurs in between the temperatures

T2 and T3, whereas the critical wetting transition takes place at the wetting temperature

Tw.

However, in the case that the pure solvent exhibits a second-order wetting transition,

which is preceded by a thin-thick wetting transition, the effect of the term due to the ions

and to the surface charge density (aI(T ) 6= 0), in the case 1/κ > 2ξ, is to decrease the

thin-thick wetting transition temperature Tt−t,w and to increase the value of the jump in

film thickness.

The case of aI(T ) 6= 0 for a system in which a pure solvent with short- and long-

ranged interactions near a charge neutral wall exhibits a first-order wetting transition is

not discussed here, because within the present approach only the leading contributions of

the effective interface potential for ℓ → ∞ are analytically accessible (see Eq. (4.58)) and

reliable knowledge of the behavior of ω(ℓ) for small ℓ, which is particularly important for

first-order wetting transitions, is lacking. Therefore, in order to be able to analyze the

effect of the ions and of the surface charge density on solvents which without ions exhibit

first-order wetting transitions, more details of the effective interface potential are needed.

The thin-thick wetting transition at two-phase coexistence, which precedes a standard

second-order wetting scenario, has been discussed in the context of wetting in electrolytes

in Ref. [18] for a model of an ionic solution close to a charged wall in which the solvent-

solvent and solvent-wall interactions are short-ranged only and the contribution of the

ions to the effective interface potential is calculated by solving the full Poisson-Boltzmann

equation instead of the linearized one as in the present study (see Sec. 4.1). The thin-

thick transition in Ref. [18] occurs in a restricted region of the parameter space, provided

that the transition in the pure solvent is first order and that 1/κ < 2ξ, i.e, for large ionic

strength.

In contrast, within the present approach the combined presence of short- and long-

ranged interactions is taken into account. As discussed above for the case of a pure

solvent with short- and long-ranged interactions, a thin-thick transition will precede a

long-ranged critical wetting transition only if the short-ranged interactions alone would

give rise to a first-order wetting transition in the case that the long-ranged interactions

were negligible [199, 200]. This is precisely the case that is encountered in the present

context for the electrolyte solution when solvent-solvent and solvent-wall long-ranged

interactions are taken into account: In the absence of these long-ranged interactions

the transition is first-order if 1/κ > 2ξ (see Subsec. 4.1.2), such that ℓ jumps from ℓ1

to ℓ2 = ∞ (see Fig. 4.1). Once the long-ranged interactions are taken into account

they block the jump of ℓ to ℓ2 = ∞ and limit this jump to one with a finite value
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Figure 4.1: Effective interface potential ω(ℓ) for systems governed by short- and long-
ranged interactions as function of the thickness ℓ of the liquid film at gas-liquid coexistence
in the presence of ions for the case that the pure, i.e., salt-free, solvent exhibits a critical
wetting transition (without being preceded by a thin-thick transition). The parameters
used are Af/kB = −1013K, u3 = 0.7×t3 (i.e., ̺0,l(T

(a1) = Tw) = 0.7), u4 = 2.28×t3, g = 1,
h1 = 0.76 × g, I = 1mM , and σ = 0.1µC/cm2 (see main text). The effective interface
potential ω(ℓ) has two local minima (at ℓ1(T ) (see (a) and (b)) and ℓ2(T ) (see (c)) with
ℓ1 < ℓ2 < ∞), one of the two being the global one at a given temperature (see (a)). They
have the same depth at T = Tt−t,w ≈ 0.919 × Tc (not apparently visible). For T > Tt−t,w

the film thickness ℓ2(T ) is the global minimum and diverges continuously 1/(Tw − T ) as
T → Tw ≈ 0.944 × Tc (see (c)). The global minimum l0(T ) as a function of temperature
is plotted in (d). At Tt−t,w the film thickness exhibits a finite jump and subsequently
diverges smoothly for T ր Tw. Accordingly, the system undergoes a thin-thick wetting
transition at Tt−t,w, followed by a continuous one at Tw. Five different temperatures,
T1 ≈ 0.918 × Tc, T2 ≈ 0.919 × Tc, T3 ≈ 0.92 × Tc, T4 = 0.932 × Tc and Tw are displayed
in (a), (b), and (c) (using a common color code) with T1 < T2 . Tt−t,w < T3 < T4 < Tw.
(Note the different scales of the axes.) The film thickness ℓ is measured in units of a such
that a3 is the volume of a solvent particle. Densities are measured in units of a3.
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ℓ2 < ∞. Once ℓ has reached the value ℓ2 a further increase in temperature leads to the

unfolding of the standard wetting scenario under the aegis of long-ranged interactions

at Tw > Tt−t,w. Therefore, the thin-thick wetting transition is the remnant of the first-

order wetting transition that would occur in the electrolyte solution if the long-ranged

solvent-solvent and solvent-wall interactions were negligible (see Subsec. 4.1.2).
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Chapter 5

Density functional theory of

electrowetting

In this chapter, the phenomenon of electrowetting, i.e., the dependence of the macroscopic

contact angle of a fluid on the electrostatic potential of the substrate, is analyzed by using

a density functional theory approach. The effective interface potential (see Subsec. 2.2.1)

for Pellat’s classical setup of a vertical parallel plate capacitor [124, 125] is determined

and used to derive an electrowetting equation.

5.1 Theoretical considerations

5.1.1 Setting

Consider Pellat’s classical setup [124, 125] depicted in Fig. 5.1. A vertical parallel plate

capacitor of width L is in contact with two immiscible fluids F1 and F2 of mass densities

̺m1 and ̺m2, respectively. At least one of the fluids F1 and F2 is assumed to be an

electrolyte solution. It is further assumed that ̺m1 > ̺m2 so that both fluids are separated

in the gravitational field with F1 being the lower and F2 being the upper phase (see

Fig. 5.1). Provided the capacitor width L is smaller than the capillary length [208–210]

λ =

√

γ12
(̺m1 − ̺m2)g

(5.1)

with the F1-F2 interfacial tension γ12 and the acceleration due to gravity g, the contact

angles ϑ+ and ϑ− of phase F1 are related to the meniscus height h by [208–210]

cosϑ+ + cosϑ− ≃ hL

λ2
for L ≪ λ. (5.2)
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U

F1

F2

h

L
g

ϑ+ ϑ−

Figure 5.1: Pellat’s setup [124,125] of electrocapillary rise of a fluid F1 in a vertical parallel
plate capacitor of width L initially filled with a fluid F2. The meniscus height h is related
to the contact angles ϑ+ and ϑ− by Eq. (5.2). Electrowetting corresponds to a dependence
of ϑ+ and ϑ−, and hence of h, on the voltage U between the plate electrodes. A closeup
of the three-phase contact region marked by the dashed box is depicted in Fig. 5.2.

Depending on the interactions of the fluids F1, F2 and the substrates S+, S−, which are

metal electrodes (represented by the hatched parts in Fig. 5.1) possibly coated with some

dielectric (represented by yellow layers on top of the electrodes in Fig. 5.1), the respective

contact angles ϑ+ and ϑ− can be smaller or larger than π/2, which corresponds to positive

or negative contributions to the meniscus height h. Electrowetting can be detected as the

dependence of the contact angles ϑ+(U) and ϑ−(U), and in turn, via Eq. (5.2), of the

meniscus height h(U), on the electrostatic potential difference U = Φ+ − Φ− applied

between the electrodes.

5.1.2 Contact angle and effective interface potential

The contact angles ϑ+ and ϑ− in Fig. 5.1 provide a macroscopic description of the fluid-

fluid-substrate three-phase contact region (highlighted by the dashed box in Fig. 5.1 for

the anodic substrate S+). According to the chemical properties of the fluids and the

substrates, the contact of substrate S± with one fluid, henceforth denoted by fluid A,

is more preferable than with the other fluid, henceforth denoted by fluid B. Here it is

assumed that both substrates are chemically equal such that either fluid F1 or fluid F2 is

preferred by both substrates S+ and S−. Consequently, if substrate S± is macroscopically

in contact with the bulk of the less preferred fluid B and if the thermodynamic state is

away from wetting transitions such that the substrate is only partially wet by phase A, a

film of microscopic extension ℓ± > ξ composed of the preferred fluid A forms in between
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ℓ+
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F1

F2
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F1
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(a) (b)

Figure 5.2: Closeup of the possible geometries of the three-phase contact region formed
by the anodic substrate S+ (and similarly for the the cathodic substrate S−) and two
immiscible fluids F1 and F2 marked by the dashed box in Fig. 5.1. The fluid which is
preferred by the substrates S± is denoted by A, whereas the other, less preferred fluid is
called B. Panel (a) corresponds to the case of an F1-philic (A = F1) substrate S+, while
panel (b) displays the case of an F2-philic (A = F2) substrate S+. Here it is assumed
that both substrates S+ and S− prefer the same fluid. The macroscopic contact angle ϑ+

(ϑ−) shown in Fig. 5.1 describes the asymptotic inclination of the F1-F2 interface far away
from the substrate S+ (S−), whereas close to the substrate S+ (S−) a film of microscopic
thickness ℓ+ (ℓ−) of the preferred fluid A is formed.

substrate S± and the bulk of fluid B [2], where ξ denotes the bulk correlation length,

which is of the order of the particle size if the thermodynamic state is away from critical

points. Then the fluid structure is similar to that of a composition of an S±-A interface at

the substrate surface and a free A-B interface at a distance ℓ± away from the substrate,

both being of typical extension ξ [2]. This structure leads to a surface contribution

Ωs,±B(ℓ±) = γ±A + γ12 + ω±(ℓ±) to the grand potential of the system, where γ±A and

γ12 denote the S±-A and F1-F2 interfacial tensions, respectively, and where ω±(ℓ±) is the

effective interface potential [2]. It is important to distinguish Ωs,±B from the interfacial

tension γ±B of an S±-B interface in the absence of phase A. Here Ωs,±B 6= γ±B because

the presence of the preferred phase A leads to a structural change, i.e., the formation of

A-films, as compared to the situation in the absence of phase A. Ignoring the difference

between Ωs,±B and γ±B is equivalent to ignoring the formation of A-films and it is this

crucial misconception which underlies the electrocapillarity approach to electrowetting.

In contrast, if substrate S± is in contact with the bulk of the preferred fluid A, the fluid

is non-uniform only close to the substrate surfaces up to distances ξ, and this interfacial

structure is not modified by the presence of fluid B, hence Ωs,±A = γ±A. Depending on

whether the preferred fluid A is fluid F1 or fluid F2 the substrates S± are referred to

89



as F1-philic or F2-philic, respectively. A closeup of the fluid-fluid-substrate three-phase

contact region close to substrate S+ marked by the dashed box in Fig. 5.1 is sketched

respectively in Figs. 5.2(a) and (b) for an F1-philic (A = F1) and an F2-philic (A = F2)

substrate.

The macroscopic contact angle ϑ± (see Fig. 5.2) is related to the surface contributions

Ωs,±1, Ωs,±2 and the interfacial tension γ12 of the S±-F1, S±-F2, and F1-F2 interface,

respectively, by Young’s equation [208–210]

Ωs,±2 = Ωs,±1 + γ12 cosϑ±. (5.3)

It is common to assume Ωs,±α = γs,±α, α ∈ {F1, F2}, but this misconception to ignore the

structural differences of a macroscopic S±-α contact in the presence and in the absence

of additional phases can have significant consequences. The surface contributions Ωs,±1

and Ωs,±2 are related to the depth of the effective interface potential ω+(ℓ) evaluated at

the equilibrium film thickness ℓ = ℓ± by [2]

Ωs,±1 = γ±1

Ωs,±2 = γ±1 + γ12 + ω±(ℓ±) (5.4)

for F1-philic substrates S± (see above the three-phase contact region in Fig. 5.2(a)) and

by

Ωs,±1 = Ωs,±2 + γ12 + ω±(ℓ±)

Ωs,±2 = γs,±2 (5.5)

for F2-philic substrates S± (see below the three-phase contact region in Fig. 5.2(b)).

Hence, one obtains [2]

cosϑ± =
Ωs,±2 − Ωs,±1

γ12
= p

(

1 +
ω±(ℓ±)

γ12

)

, (5.6)

where p = +1 for F1-philic and p = −1 for F2-philic substrates S±. This equation

connects the macroscopic contact angle ϑ± with the microscopic structure represented by

the effective interface potential ω±(ℓ) of A-films at substrate S± in macroscopic contact

with bulk fluid B.

The next Sec. 5.1.3 describes an approximate calculation of the effective interface po-

tentials ω±(ℓ) for the setting of Fig. 5.1. The dependence of ω±(ℓ±;U) on the electrostatic

potential difference U between the electrodes, together with Eq. (5.6), then leads to the
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electrowetting equations derived in Sec. 5.1.4.

However, already without explicit expressions for the effective interface potentials, one

can draw an important conceptual conclusion from Eq. (5.6): Electrowetting is not an

electrocapillarity effect, since no U -dependent substrate-fluid interfacial tensions, which

describe the contact of the substrate with one fluid, occur on the right-hand side. Instead,

electrowetting is related to the depth of the effective interface potential, which describes

the U -dependence of the microscopic fluid structure close to the substrate in the presence

of two fluids.

5.1.3 Density functional theory of wetting

In order to obtain the effective interface potential ω±(ℓ) of an A-film of thickness ℓ at

substrate S± in Fig. 5.1, whose value for the equilibrium film thicknesses ℓ = ℓ± is related

to the contact angle ϑ± via Eq. (5.6), one may represent the structure in Fig. 5.1 far

above (for an F1-philic substrate S±, see Fig. 5.2(a)) or below (for an F2-philic substrate

S±, see Fig. 5.2(b)) the three-phase contact region by the quasi-one-dimensional slab

depicted in Fig. 5.3(a). The chemically identical substrates S+ and S−, which comprise

metal electrodes coated with dielectric layers of thickness d, are separated by a distance

L and covered with films of thicknesses ℓ+ and ℓ−, respectively, of the preferred fluid

A. Moreover, the electrodes are assumed to be ideally polarized, i.e., electrochemical

reactions do not occur. Even under these conditions the film thicknesses ℓ+ and ℓ− can

differ, if unequal partitioning of ions at the film-bulk fluid interfaces takes place. This is

expected to occur in general due to generic differences in solubility contrasts [21]. The

macroscopic distance L between the substrates is typically the largest length scale such

that only the limit L → ∞ is considered in the following. Hence the effective interface

potentials ω+(ℓ) and ω−(ℓ) at the substrates S+ and S−, respectively, are those of semi-

infinite systems. For each substrate S± a coordinate axis in normal direction with the

origin z = 0 at the substrate surface and the fluid at z > 0 is introduced (see Fig. 5.3(b)).

The interface between the A-film and the bulk of phase B is located at position z = ℓ±

and the electrode is at z = −d, where the electrostatic potential is Φ± and the surface

charge density is σ±.

Considering the two bulk phases of fluids F1 and F2 outside the capacitor in Fig. 5.1

as particle reservoirs, one is naturally led to a grand-canonical description of the ther-

modynamic state. A starting point for the derivation of the effective interface potential

ω±(ℓ) is the grand potential functional per thermal energy kBT = 1/β and per area A of
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d L d
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(b)
Ψ±, σ±

S± A B

z−d 0 ℓ±

Figure 5.3: (a) Far above (Fig. 5.2(a)) or below (Fig. 5.2(b)) the three-phase contact
regions (see Fig. 5.1) the dielectric substrates S+ and S− of thickness d and distance L
are covered by films of the preferred fluid A of microscopic thicknesses ℓ±, which separate
the substrates from the bulk of the less preferred fluid B. (b) Since the separation L
between the substrates S+ and S− is typically the largest length scale, one can consider
the limit L → ∞, which renders the effective interface potential ω±(ℓ) at substrate S±

that of a semi-infinite system. A coordinate axis normal to each substrate is introduced
with the origin z = 0 at the surface and the fluids in the range z > 0. The interface
between the A-film and the bulk fluid B is located at z = ℓ± and the electrode is at
position z = −d, where the electrostatic potential is Φ± and the surface charge density is
σ±.

the electrode

βΩ1[̺0, ̺±]

A =
βΩ0[̺0]

A +
βdD(0)2

2εvacεS
− βΦ±D(0)

+

∞
∫

0

dz

[

∑

i=±

̺i(z)

(

ln
̺i(z)

ζi
− 1 + βVi(̺0(z))

)

+
βD(z)2

2εvacε(̺0(z))

] (5.7)
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in terms of the solvent composition profile ̺0 and the ±-ion number density profiles ̺±.

Here the permittivity εvac of the vacuum, the relative permittivity εS of the substrate S±,

and the fugacities ζ± of ±-ions are used. The density functional Ω0[̺0] describes the grand

potential of the pure, i.e., salt-free fluids. The electric displacement D(z) is determined

by Gauß’s law and the boundary condition of global charge neutrality:

D′(z) =
∑

i=±

qie̺i(z), D(∞) = 0. (5.8)

Here q± = ±1 denotes the valency of ±-ions and e is the elementary charge. Since the

substrate S± is free of ions the electrode surface charge density is given by σ± = D(−d+) =

D(0−) (see Fig. 5.3(b)). In the absence of specific adsorption of ions at the substrate

surface, the electric displacement is continuous at z = 0, i.e., D(0−) = D(0+) = D(0), so

that σ± = D(0). The electric displacement D(z) is related to the electrostatic potential

φ(z) by D(z) = −εvacε(̺0(z))φ′(z). The electrostatic potential of the electrode is given

by Φ± = φ(−d) (see Fig. 5.3(b)). The second term on the right-hand side and the term

in the last line of Eq. (5.7) account for the electrostatic field energy inside the substrate

and the fluids, respectively, whereas the last term in the first line represents the internal

energy of the voltage source sustaining the electrostatic potential φ(−d) = Φ± of the

electrode (see Fig. 5.3(b)). The expressions V±(̺0(z)) and ε(̺0(z)) denote respectively

the local solvation free energy of a ±-ion and the relative permittivity at a position z > 0

where the solvent composition is given by ̺0(z) [21]. Finally, the second line of Eq. (5.7)

describes the grand potential of the ions, where the ion number densities are assumed to

be sufficiently small such that ions interact with each other only via the electrostatic field.

The equilibrium bulk state (¯̺0, I) with the bulk solvent composition ¯̺0 and the bulk

ionic strength I minimizes the bulk grand potential density Ωb(¯̺0, I)/V , which can be

derived from Eq. (5.7) by inserting uniform profiles ̺0(z) = ¯̺0 and ̺±(z) = I, omitting

all surface terms, and noting D = 0 in the bulk. The two immiscible fluids A and B at co-

existence in Fig. 5.3(a) correspond to two equilibrium bulk states (¯̺0,A, IA) and (¯̺0,B, IB),

respectively, with equal bulk grand potential density: Ωb(¯̺0,A, IA)/V = Ωb(¯̺0,B, IB)/V .

Since the present analysis is concerned with films of thicknesses ℓ± > ξ but not with

interfacial structures on length scales less than ξ it is natural to approximate the solvent

composition profile ̺0 in Eq. (5.7) within the so-called sharp-kink approximation [2]

̺sk,0ℓ(z) :=







¯̺0,A, z < ℓ

¯̺0,B, z > ℓ.
(5.9)
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Furthermore, in view of the small ionic strengths IA and IB to be considered here and for

sufficiently small surface potential |φ(0)− φ(∞)|, the term in the second line of Eq. (5.7)

can be expanded up to quadratic order in the ion number density deviations ∆̺i(z) :=

̺i(z) − Iα, i = ±, with α = A for z < ℓ and α = B for z > ℓ if Iα > 0. This leads to an

approximate grand potential functional

βΩ(ℓ, [∆̺±])

A =
βΩ0[̺sk,0]

A +
βdD(0)2

2εvacεS
− βΦ±D(0)

+

ℓ
∫

0

dz

[

fA(∆̺+(z),∆̺−(z)) +
βD(z)2

2εvacεA

]

+

∞
∫

ℓ

dz

[

fB(∆̺+(z),∆̺−(z)) +
βD(z)2

2εvacεB

]

(5.10)

with

fα(∆̺+,∆̺+) =































∑

i=±

[

Iα

(

ln
Iα
ζi

− 1 + βVi(¯̺0,α)
)

+
(

ln
Iα
ζi

+ βVi(¯̺0,α)
)

∆̺i +
∆̺2i
2Iα

]

, Iα > 0

0, Iα = 0.

(5.11)

By minimizing βΩ(ℓ, [∆̺±])/A in Eq. (5.10) with respect to the profiles ∆̺± one

obtains the equilibrium profiles ∆̺
(ℓ)
± . Inserting ∆̺

(ℓ)
± into Eq. (5.10) and subtracting

the bulk contribution βΩb(¯̺0,B, IB)/A leads to the surface contribution to the grand

potential [2]

Ωs(ℓ) =
Ω(ℓ, [∆̺

(ℓ)
± ]) − Ωb(¯̺0,B, IB)

A . (5.12)

Finally, the effective interface potential at substrate S± is given by ω±(ℓ) = Ωs(ℓ)−Ωs(∞)

[2], which, in the present context, can be written in the form

ω±(ℓ) = ω0(ℓ) +
A(ℓ)

2
(Φ± − φ̄A)2 + B(ℓ)(Φ± − φ̄A) + C(ℓ). (5.13)

Here ω0(ℓ) denotes the effective interface potential corresponding to the grand potential

functional Ω0[̺0] of the pure fluids, φ̄α := −(kBT ln(Iα/ζ+)+V+(¯̺0,α))/e = (kBT ln(Iα/ζ−)

+ V−(¯̺0,α))/e is the Galvani potential of phase α ∈ {A,B}, and
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A(ℓ) =
εvac

Q(ℓ)λB

λB − λA

λS + λA

exp
(

− λℓ

λA

)

B(ℓ) = − εvac
Q(ℓ)λB

(φ̄A − φ̄B) (5.14)

C(ℓ) =
εvac

2Q(ℓ)λB

λS − λA

λB + λA

exp
(

− λℓ

λA

)

(φ̄A − φ̄B)2

Q(ℓ) = cosh
( λℓ

λA

)(

1 +
λS

λB

)

+ sinh
( λℓ

λA

)(λA

λB

+
λS

λA

)

with the length scales λA := 1/(κAεA), λB := 1/(κBεB), λS := d/εS, and λℓ := ℓ/εA,

where κ2
α := 2βe2Iα/(εvacεα) is the square of the inverse Debye length in the bulk of phase

α ∈ {A,B}. In addition, the electrode charge density can be written as

σ± = D(0) = F (ℓ±)(Φ± − φ̄A) − B(ℓ±) (5.15)

with

F (ℓ) =
εvac
Q(ℓ)

( 1

λA

sinh
( λℓ

λA

)

+
1

λB

cosh
( λℓ

λA

))

(5.16)

The Galvani potential difference (Donnan potential) between the phases A and B, φ̄A −
φ̄B = ((V−(¯̺0,A) − V+(¯̺0,A)) − (V−(¯̺0,B) − V+(¯̺0,B)))/(2e), can be inferred from the

solubility of the ±-ions in the solvents A and B [207, 211–213]. Moreover, Φ± − ¯̺0,A

is determined by the potential difference U = Φ+ − Φ− and the fact that no chemical

reactions take place at the electrodes so that the total charge of both electrodes vanishes:

σ+ + σ− = 0. Using Eq. (5.15) leads to

Φ+ − φ̄A =
F (ℓ−)U + B(ℓ+) + B(ℓ−)

F (ℓ+) + F (ℓ−)

Φ− − φ̄A =
−F (ℓ+)U + B(ℓ+) + B(ℓ−)

F (ℓ+) + F (ℓ−)

(5.17)

5.1.4 Electrowetting equation

The equilibrium film thicknesses ℓ+ and ℓ− are both similar in magnitude (ℓ+ ≈ ℓ−) of the

order of a few bulk correlation lengths ξ away from wetting transitions. Hence, Eq. (5.17)

leads to Φ± − φ̄A ≈ ±U/2 + (B(ℓ+) + B(ℓ−))/(F (ℓ+) + F (ℓ−)), i.e., the U -dependent

part of Φ± − φ̄A is rather insensitive to a variation of ℓ+ ≈ ℓ−. Moreover, the film

thicknesses ℓ+ and ℓ− are typically much smaller than the Debye length 1/κA in the A-
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film. Consequently, the leading U -dependent contribution ∼ U2 to the effective interface

potential ω±(ℓ) in Eq. (5.13), which decays exponentially with ℓ on the length scale of half

of a Debye length, 1/(2κA) (see Eq. (5.14)), does not significantly shift the equilibrium

film thickness ℓ± but it merely lifts the depth ω±(ℓ±;U) of the effective interface potential.

Therefore, in the following, the film thicknesses ℓ± are considered as independent of the

applied voltage U .

Hence, Eq. (5.6) can be written as [6]

cosϑ±(U) = cosϑ±(0) + η±(U) (5.18)

with the electrowetting number

η±(U) := p
ω±(ℓ±;U) − ω±(ℓ±; 0)

γ12
. (5.19)

Inserting Eq. (5.17) into Eq. (5.13) leads to

η±(U) =
p

γ12

{

A(ℓ±)F (ℓ∓)2

2(F (ℓ+) + F (ℓ−))2
U2 ±

(

A(ℓ±)F (ℓ∓)(B(ℓ+) + B(ℓ−))

(F (ℓ+) + F (ℓ−))2

+
B(ℓ±)F (ℓ∓)

F (ℓ+) + F (ℓ−)

)

U

}

.

(5.20)

This equation is expected to be valid for sufficiently small voltages |U | such that the

quadratic approximation Eq. (5.11) is applicable. The electrowetting number η±(U) in

Eq. (5.20) differs from those in the literature [6] in a number of aspects, as is discussed in

the next section. The most obvious difference is the occurrence of a correction term ∼ U ,

which vanishes exactly only if B(ℓ) = 0 due to a vanishing Donnan potential (Galvani

potential difference) φ̄A − φ̄B. For φ̄A − φ̄B 6= 0, i.e., B(ℓ) 6= 0, the electrowetting number

η±(U) in Eq. (5.20) is not minimal at and not symmetric with respect to U = 0. However,

for a sufficiently large voltage |U | the subleading term ∼ U is dominated by the leading

term ∼ U2.

Whereas the full expression for the electrowetting number η±(U) in Eq. (5.20) depends

on the five possibly largely different length scales λA, λB, λS, λℓ+ , and λℓ− , the latter two,

corresponding to the thicknesses of the A-films at the substrates S+ and S−, respectively,

are typically of similar magnitude: ℓ+ ≈ ℓ−, i.e., λℓ+ ≈ λℓ− . This case ℓ+ = ℓ− =: ℓ

is discussed in detail in the next section, for which the electrowetting number η±(U) in
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Eq. (5.20) simplifies to

η±(U) =
p

γ12

(

A(ℓ)

8
U2 ± B(ℓ)

2

(A(ℓ)

F (ℓ)
+ 1
)

U

)

. (5.21)

Moreover, the film thicknesses ℓ+ and ℓ− are typically smaller than the Debye lengths

1/κA and 1/κB so that the limiting case λℓ ≪ λA, λB is considered throughout, within

which

A(ℓ) ≃ εvac
Q(ℓ)

λB − λA

λB(λS + λA)
(5.22)

B(ℓ) = − εvac
Q(ℓ)

φ̄A − φ̄B

λB

(5.23)

F (ℓ) ≃ εvac
Q(ℓ)

(

λℓ

λ2
A

+
1

λB

)

(5.24)

Q(ℓ) ≃ 1 +
λS

λB

+
λℓλS

λ2
A

. (5.25)

5.2 Discussion

5.2.1 Electrowetting and electrocapillarity

Before discussing the electrowetting number in Eq. (5.21) obtained within the present

density functional analysis, the traditional approach based on the assumption of elec-

trowetting being an electrocapillarity effect [6, 124–138] is repeated. Here only the clas-

sical method based on Lippmann’s equation is presented. However, calculations using

alternative methods, e.g., based on Maxwell’s stress tensor [6, 214], suffer from the same

misconceptions.

The starting point is Young’s equation (5.3) but with the incorrect assumption Ωs,±α =

γ±α, α ∈ {F1, F2}. In order to obtain the U -dependence of the interfacial tension γ±α one

considers a semi-infinite fluid α bound by a planar substrate S±. The interfacial tension

γ±α changes upon changing the electrostatic potential φ±α of substrate S± with respect

to that of the bulk of phase α according to Lippmann’s equation [123,206]

∂γ±α

∂φ±α

= −σ±α, (5.26)

where σ±α is the surface charge density of substrate S± in contact with phase α. De-

scribing the S±-α interface by means of the potential-independent differential capacitance

CSα = ∂σ±α/∂φ±α, which is assumed to not depend on S± for chemically identical sub-
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strates, and integrating twice with respect to the electrostatic substrate potential φ±α

using Lippmann’s equation (5.26) leads to

γ±α(φ±α) = γ±α(0) − CSα

2
φ2
±α. (5.27)

Young’s equation (5.3) in conjunction with the assumption Ωs,±α = γ±α reads

γ±2(φ±2) = γ±2(0) − CS2

2
φ2
±2

= γ±1(φ±1) + γ12 cosϑ±

= γ±1(0) − CS1

2
φ2
±1 + γ12 cosϑ±. (5.28)

Noting γ±2(0) − γ±1(0) = γ12 cosϑ±(0) leads to

cosϑ± − cosϑ±(0) =
CS1

2γ12
φ2
±1 −

CS2

2γ12
φ2
±2. (5.29)

Using σ±α = CSαφ±α, one obtains the analog of Eq. (5.17) from U = φ+α − φ−α and

σ+α+σ−α = 0 as φ±α = ±U/2. This leads to the commonly used form of the electrowetting

equation [6, 124–138]

cosϑ±(U) − cosϑ±(0) =
CS1 − CS2

8γ12
U2 =: ηec(U) (5.30)

with the differential capacitances CSα being those of a substrate in macroscopic con-

tact with only one fluid phase α. These differential capacitances CSα can typically

be interpreted as those of a capacitor of capacitance CS = εvacεS/d, representing sub-

strate S±, connected in series with a capacitor of capacitance Cα, representing fluid α:

1/CSα = 1/CS + 1/Cα. If fluid α is an electrolyte solution the fluid capacitance is that

of the electric double layer in a semi-infinite system, Cα = εvacκαεα, whereas for a non-

conducting dielectric fluid Cα = limL→∞ εvacεα/L = 0. Using the length scales defined

after Eq. (5.14), this leads to

CSα =







εvac
λS + λα

, α electrolyte solution

0, α non-conducting fluid.
(5.31)

Equations (5.30) and (5.31) represent the interpretation of electrowetting as an elec-

trocapillarity effect [6]. However, the crucial misconception underlying this interpretation

is to use the approximation Ωs,±α = γ±α and hence the differential capacitance CSα, which
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corresponds to a semi-infinite system of a single phase α bound by substrate S±, instead

of accounting for the actual fluid structure at the substrate. The interfacial structure,

and therefore surface quantities such as the surface contribution to the grand potential

as well as the differential capacitance, of substrate S± in macroscopic contact with the

bulk fluid B depend significantly on whether the preferred fluid A is present or not be-

cause an A-film forms in between the substrate S± and the bulk fluid B in the former

case whereas it does not in the latter case. In contrast, these structural properties are

naturally accounted for within the present density functional approach, which relates the

contact angle to the effective interface potential (see Eq. (5.6)), a quantity which correctly

describes the contact of a substrate with both fluids A and B.

5.2.2 Electrowetting on uncoated metal electrodes

The early investigations of electrocapillarity by Lippmann [123] and Pellat [124,125] have

been performed for metal electrodes without any dielectric coating. At that time for some

decades mercury electrodes became the experimental standard for investigations of the

electric double layer [206]. Pure metal electrodes can be considered as substrates with

thickness d being the smallest length scale: λS ≪ λℓ ≪ λA, λB. Within this limit one

obtains Q(ℓ) ≃ 1 from Eq. (5.25) and subsequently from Eqs. (5.22)–(5.24)

A(ℓ) ≃ εvac

(

1

λA

− 1

λB

)

(5.32)

B(ℓ) ≃ −εvac
λB

(φ̄A − φ̄B) (5.33)

F (ℓ) ≃ εvac

(

λℓ

λ2
A

+
1

λB

)

. (5.34)

For the case λA ≪ λB, which is typically the case for hydrophilic substrates, an

aqueous electrolyte solution F1 = A (i.e., p = +1), and an oil F2 = B, one obtains for the

the electrowetting number Eq. (5.21)

η±(U) ≃ εvac
8γ12λA

U2 ∓ εvac(φ̄A − φ̄B)

2γ12(λA + λℓλB/λA)
U

≃ εvac
8γ12λA

U2, for |U | ≫ 4|φ̄A − φ̄B|. (5.35)

Hence, if the voltage |U | is much larger than the Donnan potential (Galvani potential

difference) |φ̄A − φ̄B|, the electrowetting number η±(U) agrees with that in Eq. (5.30),

where CS1 ≃ εvac/λA, CS2 = 0 due to Eq. (5.31).

Similarly, for the case λA ≫ λB, which is typically the case for hydrophobic substrates,
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an oil F2 = A (i.e., p = −1), and an aqueous electrolyte solution F1 = B, one obtains for

the electrowetting number Eq. (5.21)

η±(U) ≃ εvac
8γ12λB

U2 ± εvac(φ̄A − φ̄B)

2γ12λA

U

≃ εvac
8γ12λB

U2, for |U | ≫ 4|φ̄A − φ̄B|. (5.36)

Again, if the voltage |U | is much larger than the Donnan potential (Galvani potential

difference) |φ̄A−φ̄B|, the electrowetting number η±(U) again agrees with that in Eq. (5.30),

where CS1 ≃ εvac/λB, CS2 = 0 due to Eq. (5.31).

Therefore, the present formalism (Eqs. (5.21)–(5.25)) confirms the electrocapillarity-

based form of the electrowetting number for the case of uncoated metal electrodes (η±(U) ≃
ηec(U)), provided the voltage |U | is sufficiently large as compared to the Donnan potential

(Galvani potential difference) |φ̄A − φ̄B|. Interestingly, for uncoated metal electrodes it is

irrelevant whether they are F1-philic (hydrophilic) or F2-philic (hydrophobic).

However, a small voltage |U | ≪ |φ̄A − φ̄B| or λA ≈ λB, e.g., for two immiscible

electrolyte solutions, leads to electrowetting numbers η±(U) ∼ U , in contrast to ηec(U) ≈ 0

in Eq. (5.30) due to CS1 ≈ CS2 according to Eq. (5.31). Since these conditions are rather

special, this scenario is not expected to be of practical relevance, but it might provide a

test for the present approach.

5.2.3 Electrowetting of water on hydrophobic dielectrics in oil

In the last few decades most electrowetting settings used electrodes coated with an iso-

lating dielectric for technical advantage [128]. Almost all of these studies used drops of

an aqueous electrolyte solution F1 placed on a hydrophobic dielectric and an oil F2 as

the environmental fluid in order to achieve large contact angle ranges being covered by

electrowetting [6]. Within the present notation this situation corresponds to A = F2 (i.e.,

p = −1) and B = F1. Since the thickness ℓ of the microscopic oil film on the substrates

S± is typically smaller than the the Debye length 1/κB of the dilute electrolyte solution

B = F1, which in turn is typically much smaller than the thickness d of the dielectric

substrates S±, one identifies the case λℓ ≪ λB ≪ λS ≪ λA, where a (practically) ion-free

oil A = F2 (IA ≈ 0) is assumed. For this regime Eqs. (5.22)–(5.25) read

Q(ℓ) ≃ λS

λB

(5.37)

A(ℓ) ≃ −εvac
λS

(5.38)
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B(ℓ) ≃ −εvac
λS

(φ̄A − φ̄B) (5.39)

F (ℓ) ≃ εvac
λS

(5.40)

and hence Eq. (5.21) is given by

η±(U) ≃ εvac
8γ12λS

U2 ± εvac(φ̄A − φ̄B)

2γ12λA

U (5.41)

≃ εvac
8γ12λS

U2, for |U | ≫ 4
λS

λA

|φ̄A − φ̄B|.

Since λS/λA ≪ 1, the approximation in the second line of the previous equation almost

always applies. It shows that the electrowetting number η±(U) for water on a hydrophobic

dielectric in oil is also in agreement with ηec(U) in Eq. (5.30) with CS1 ≃ εvac/λS, CS2 = 0

due to Eq. (5.31).

5.2.4 Electrowetting of water on hydrophilic dielectrics in oil

Replacing the hydrophobic dielectric substrate of the previous Sec. 5.2.3 by a hydrophilic

one leads to the case A = F1 (i.e., p = +1), B = F2, and λℓ ≪ λA ≪ λS ≪ λB,

where again a (practically) ion-free oil B = F2 (IB ≈ 0) is assumed. For this regime

Eqs. (5.22)–(5.25) read

Q(ℓ) ≃ 1 +
λℓλS

λ2
A

= 1 +
εA
εS

κAℓ κAd (5.42)

A(ℓ) ≃ εvac
Q(ℓ)

1

λS

(5.43)

B(ℓ) = − εvac
Q(ℓ)

φ̄A − φ̄B

λB

(5.44)

F (ℓ) ≃ εvac
Q(ℓ)

(

λℓ

λ2
A

+
1

λB

)

, (5.45)

which leads to Eq. (5.21) of the form

η±(U) ≃ 1

Q(ℓ)

(

εvac
8γ12λS

U2 ∓ εvac(φ̄A − φ̄B)

2γ12λB

(5.46)

×
( 1

λS(λℓ/λ2
A + 1/λB)

+ 1
)

U

)

≃ 1

Q(ℓ)

εvac
8γ12λS

U2, for |U | ≫ 4|φ̄A − φ̄B|.
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Within the electrocapillarity approach one again expects, as in the previous Sec. 5.2.3,

an electrowetting number ηec(U) = εvacU
2/(8γ12λS) (see Eqs. (5.30) and (5.31)). How-

ever, the electrowetting number η±(U) within the present density functional approach in

Eq. (5.46), for sufficiently large voltage |U | ≫ 4|φ̄A − φ̄B|, is actually smaller than ηec(U)

by a factor 1/Q(ℓ): η±(U) ≃ ηec(U)/Q(ℓ).

It is apparent from Eq. (5.42) that Q(ℓ) is not necessarily close to unity, because the

typically small value κAℓ ≪ 1 is multiplied with the typically large value κAdεA/εS ≫ 1.

Assuming typical values of, e.g., dielectric layers of thicknesses d = 1 µm and dielectric

constant εS = 2, a Debye length 1/κA = 10 nm in the aqueous (εA = 80) electrolyte

solution F1 = A, and thicknesses ℓ = 1 nm of the electrolyte films on the substrates,

Eq. (5.42) leads to Q(ℓ) ≈ 400. Hence, for this example of electrowetting on a hy-

drophilic dielectric, the analysis leads to electrowetting numbers η±(U) which are more

than two orders of magnitude smaller than expected within the electrocapillarity ap-

proach: η±(U) ≈ 0.0025ηec(U) ≪ ηec(U).

It appears as if no experimental studies of electrowetting on hydrophilic substrates have

been reported so far. This is remarkable since the preparation of hydrophilic substrates

is standard in surface science.

5.2.5 Electrowetting of immiscible electrolyte solutions on di-

electrics

Whereas the previous two Secs. 5.2.3 and 5.2.4 considered an electrolyte solution and an

oil, here the case of two immiscible electrolyte solutions is discussed. This situation is

characterized by λℓ ≪ λA, λB ≪ λS, which leads to Eqs. (5.22)–(5.25) of the form

Q(ℓ) ≃ λS

λA

(

λA

λB

+
λℓ

λA

)

=
εB
εS

κBd +
εA
εS

κAℓ κAd (5.47)

A(ℓ) ≃ εvac
Q(ℓ)

λB − λA

λSλB

(5.48)

B(ℓ) = − εvac
Q(ℓ)

φ̄A − φ̄B

λB

(5.49)

F (ℓ) ≃ εvac
Q(ℓ)

(

λℓ

λ2
A

+
1

λB

)

. (5.50)

If electrolyte solutions F1 and F2 are defined by λF1 ≤ λF2 , i.e., εF1IF1 ≥ εF2IF2 , the

following three cases have to be distinguished: (i) A = F1 (i.e., p = +1) and B = F2 with

λA ≪ λB, (ii) A = F2 (i.e., p = −1) and B = F1 with λA ≫ λB, and (iii) λA ≈ λB.
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Case (i) leads to the electrowetting number Eq. (5.21)

η±(U) ≃ 1

Q(ℓ)

(

εvac
8γ12λS

U2 ∓ εvac(φ̄A − φ̄B)

2γ12λB

U

)

(5.51)

≃ 1

Q(ℓ)

εvac
8γ12λS

U2, for |U | ≫ 4
λS

λB

|φ̄A − φ̄B|.

Hence η±(U) ≃ ηec/Q(ℓ), where, however, the depression factor 1/Q(ℓ) here is typically

much smaller than that of the previous Sec. 5.2.4 because typically εBκBd/εS ≫ 1 (see

Eqs. (5.42) and (5.47)).

The electrowetting number of case (ii) is given by

η±(U) ≃ λA

λS

(

εvac
8γ12λS

U2 ± εvac(φ̄A − φ̄B)

2γ12λA

U

)

(5.52)

≃ λA

λS

εvac
8γ12λS

U2, for |U | ≫ 4
λS

λA

|φ̄A − φ̄B|.

This expression bears some resemblance to Eq. (5.41) except of the typically very small

prefactor λA/λS ≪ 1 here.

Therefore, electrowetting is also expected to be strongly suppressed for two immiscible

electrolyte solutions with εF1IF1 6≈ εF2IF2 , a condition which is typically fulfilled.

For completeness the rather special case (iii) is mentioned, for which the electrowetting

number reads

η±(U) ≃ ∓pεvac(φ̄A − φ̄B)

2γ12λS

U. (5.53)
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Chapter 6

Three phase contact line and line

tension of an electrolyte solution in

contact with a charged substrate

In this chapter, the equilibrium density distribution of an electrolyte solution near the

three-phase contact line (TPCL) is calculated within classic density functional theory for

the lattice model presented in Sec. 3.1. As discussed in Chaps. 3 and 4, if the substrate

potential depends only on the direction perpendicular to the wall z, the equilibrium den-

sity profiles do not depend on the lateral coordinate, say x. However, this translational

invariance in the lateral direction can be broken by imposing appropriate boundary con-

ditions. In order to do so, the thermodynamic state of the system has to be chosen at

two-phase coexistence and below the wetting transition temperature T < Tw. In this case,

depending on the boundary conditions in the bulk, i.e., at z → ∞, two different equilib-

rium density distributions are possible. If the boundary condition imposes the liquid phase

in the bulk, i.e. ˜̺i(z → ∞) = ˜̺i,l, a substrate-liquid interface is formed. On the other

hand, if the boundary condition imposes the gas phase in the bulk, i.e. ˜̺i(z → ∞) = ˜̺i,g,

a substrate-gas interface, which can be decomposed into substrate-liquid and liquid-gas

interfaces separated by a liquid-like layer of thickness ℓ̃0(T ), is formed (see Sec. 2.2 and

Chaps. 3 and 4). Imposing these two different boundary conditions at x = ±∞ for

z → ∞, i.e ˜̺i(x → ∞, z → ∞) = ˜̺i,l and ˜̺i(x → −∞, z → ∞) = ˜̺i,g, leads to and equi-

librium density distribution ˜̺i(x, y) which interpolates smoothly between a substrate-gas

interface at x → −∞ and a substrate-liquid interface at x → −∞. A particular definition

of the local position of the liquid-gas interface renders a curve z = ℓ̃(x) (see Eq. (6.7))

such that ℓ̃(x → −∞) = ℓ̃0(T ) and that ℓ̃(x → ∞) = ℓ̃0(T ) + x tanϑ, where ϑ is the

contact angle given by Young’s equation (Eq. 2.20) (see Fig. 6.1). This arrangement
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leads to the formation of a TPCL where the liquid-gas, substrate-gas and substrate-liquid

interfaces meet.

������
���

	

Figure 6.1: Typical shape of the liquid-gas interface z = ℓ̃(x) (full line) near the three-
phase contact line (TPCL) on a homogeneous planar surface. ℓ̃0 is the equilibrium thick-
ness of the microscopic liquid-like film for T < Tw and at two-phase coexistence. The
dashed lines represent the asymptotes of z = ℓ̃(x) for x → ∞ and x → −∞. The po-
sition x = 0 is defined as the point at which the asymptotes intersect. The asymptote
z = ℓ̃(x → ∞) intersects the substrate with the contact angle ϑ. The density distribution
is assumed to be translationally invariant in the y direction.

6.1 Density functional

The density functional in Eq. (3.4) can be written for the special case ̺i(r̄) = ̺i(x̄, z̄)

considered in this chapter, i.e.,

βΩ [{̺i(x̄, z̄)}]

L̄
=

L̄x/2
∑

x̄=−L̄x/2

L̄z
∑

z̄=1

{

∑

i

̺i(z̄) ln ̺i(x̄, z̄) +
(

1 −
∑

i

̺i(x̄, z̄)
)

ln
(

1 −
∑

j

̺j(x̄, z̄)
)

− βu
∑

ij

̺i(x̄, z̄) (̺j(x̄ + 1, z̄) + ̺j(x̄, z̄ + 1) + ̺j(x̄, z̄))

−βuw

∑

i

̺i(x̄, z̄)δz̄,1 − β
∑

i

µi̺i(x̄, z̄)

}

+ 2πlB

∫ L̄x/2

−L̄x/2

∫ L̄z+1/2

1/2

dx̄∗dz̄∗
(

D(x̄∗, z̄∗, [̺∗±])
)2

ε(̺∗0(x̄, z̄))
,

(6.1)
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where L̄ = L/a is the contact line length and the fluid volume is V = LxLzL; i, j = 0,+,−;

and x̄ = x/a and z̄ = z/a are dimensionless lattice coordinates (see Sec. 3.1 for the details

of the model and Sec. 3.2 for details on the density functional).

Gauß’s Law (Eq. 3.8) can be written as

∇ ·D
(

x̄∗, z̄∗, [̺∗±]
)

=
∑

i

qi̺
∗
i (x̄

∗, z̄∗). (6.2)

with the boundary conditions

Dz(x̄
∗, z̄∗, [̺∗±])

∣

∣

z̄∗=1/2
= σ,

Dz(x̄
∗, z̄∗, [̺∗±])

∣

∣

z̄∗=L̄z+1/2
= 0,

Dx(x̄∗, z̄∗, [̺∗±])
∣

∣

x̄∗=−L̄x/2
= 0,

Dx(x̄∗, z̄∗, [̺∗±])
∣

∣

x̄∗=L̄x/2
= 0,

(6.3)

which follow from the overall charge neutrality (see Eqs. (3.13) and (3.14)).

The relative permittivity (see Eq. (3.15)) is given by

ε(̺∗0(x̄
∗, z̄∗)) =

1 + 2α
3ε0

̺0(x̄
∗, z̄∗)

1 − α
3ε0

̺∗0(x̄
∗, z̄∗)

, (6.4)

The Euler-Lagrange equations which follow from the minimization of Eq. (6.1) are

given by (the derivation of this equations is analogous to the one presented in Sec. 3.2)

ln ̺i(x̄, z̄) − µ∗
i − βuwδz̄,1 − ln

(

1 −
∑

j

̺j(x̄, z̄)
)

− 1

3T ∗

∑

j

(2̺j(x̄, z̄) + ̺j(x̄ + 1, z̄) + ̺j(x̄− 1, z̄) + ̺j(x̄, z̄ + 1) + ̺j(x̄, z̄ − 1))

+ qi

∫ z̄+1/2

z̄−1/2

dz̄∗φ(x̄∗, z̄∗) − 2πlB

∫ z̄+1/2

z̄−1/2

dz̄∗
(

D(x̄∗, z̄∗, [̺∗±])
)2

(ε(̺∗0(x̄
∗, z̄∗)))2

ε′ (̺∗0(x̄
∗, z̄∗)) δi,0 = 0. (6.5)

For given chemical potential at coexistence µi,co (see Sec. 3.3), these coupled equations

are solved numerically by an iterative algorithm. The electrostatic potential φ(x̄∗, z̄∗) is

calculated by solving Poisson’s Equation (see Eq. 3.21)

∇ · (ε(̺∗0(x̄
∗, z̄∗))∇φ(x̄∗, z̄∗)) = −4πlB

∑

i

qi̺
∗
i (x̄

∗, z̄∗). (6.6)

The parameters for this calculation are the same used in Chap. 3 (see Subsec. 3.2.2).
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6.2 Line tension calculation

Line tension values are calculated from the density profiles {̺i(x̄, z̄)} using the definition

for the line tension introduced in Eq. (2.22) (see also Eq. (F.4)). The plane z̄ = 0 is chosen

as the substrate-fluid dividing interface. In Ref. [149] it has been proposed that in order

to determine the line tension τ unambiguously from microscopic calculations in a finite

box, its boundaries have to be chosen such that the interfaces are cut perpendicularly and

that its edges are placed inside the homogeneous regions of the system. Here in order to

calculate the line tension, the integration box proposed in Ref. [149] was used (see Fig. 7 in

Ref. [149] and Fig. F.1). However, in a lattice model this type of box introduces practical

difficulties in the integration procedure which lead to numerical errors (see Appendix F for

more details). Therefore, in order to verify the consistency of the results, the line tension

has been calculated for various sizes of the integration box as described in Appendix F.

6.3 Pure solvent

First, the case I = 0 is considered. As explained in Subsec. 3.4.1, in this case the ratio

uw/u = 3T ∗βuw controls the wetting and drying transitions. Here the liquid-gas interfaces

near the TPCL and the line tension are studied for the particular choice uw/u = 0.69,

for which the system undergoes a second-order wetting transition (see Fig. 3.2) at T ∗
w ≃

0.95T ∗
c . Fig. 6.2 shows the temperature dependence of the liquid-gas interface ℓ(x̄) defined

as

ℓ(x̄) =

L̄z
∑

z̄=1

(̺0(x̄, z̄) − ̺0,g)

̺0,l − ̺0,g
. (6.7)

In the case of second-order wetting transitions, the curve z̄ = ℓ(x̄) approaches the asymp-

totes for x̄ → ∞ and x̄ → −∞ from above (Fig. 6.2). This result is in qualitative

agreement with the results obtained for second order wetting in Refs. [150,175,224,225].

The line tension as a function of the contact angle is presented in Fig. 6.3. The contact

angle has been changed by varying the temperature T ∗. The results for the line tension

are compatible with the prediction of the interface displacement model (IDM) [150] for

a system with short-ranged interactions approaching a second-order wetting transition at

two-phase coexistence. In this case, the line tension τ is negative and vanishes as τ ∼ −ϑ.

The order of magnitude of τ (βτa = 0.1 corresponds to τ ≈ 1.4 × 10−12 N ) is also

comparable with values from other theoretical calculations for one-component fluids and

with experimental results [145].
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T ∗ = 0.8T ∗

c

ϑ ≈ 48.7◦

ϑ ≈ 20.1◦

x̄ = x/a

z̄
=

ℓ(
x̄
)
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0
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T ∗ = 0.92T ∗

c

Figure 6.2: Liquid-gas interfaces for two different temperatures for uw/u = 0.69 in the
pure solvent case. The system undergoes a second-order wetting transition at T ∗

w ≃ 0.95T ∗
c

(see Fig. 3.2 (b)). The liquid-gas interface z̄ = ℓ(x̄) (full lines) was calculated from the
density profiles ̺0(x̄, z̄) using Eq. (6.7). For both x̄ → ∞ and x̄ → −∞, the curve
z̄ = ℓ(x̄) approaches the asymptotes (dashed lines) from above. The position x̄ = 0 is
defined as the point at which the asymptotes intersect.

β
τ
a

ϑ(◦)

-0.02

-0.04

-0.06

-0.08

-0.1

0

0 10 20 30 40 50

−0.0018ϑ

Figure 6.3: Contact angle dependence of the line tension τ for the same system as in Fig.
4.1.1. The numerical results for the line tension (•) are consistent with the prediction
of Ref. [150] for second-order wetting in systems with short-ranged interactions, i.e., τ is
negative and it vanishes as τ ∼ −ϑ. For details concerning the calculation of the line
tension, see Appendix F.
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6.4 Electrolyte solution

In this section the influence of the ionic strength Ĩ = Ia−3 and of the surface charge

density σ̃ = σea−2 on the TPCL and the line tension are studied. As discussed in

Subsec. 3.4.2, within the lattice model for an electrolyte solution, if σ 6= 0 and I 6= 0

the system undergoes a first-order wetting transition (see Fig. 3.4). In this case, the

wetting transition temperature T ∗
w decreases with increasing surface charge density of the

substrate σ for fixed ionic strength I or with decreasing ionic strength I for fixed surface

charge density σ (see Fig. 3.5). Therefore, there are three different routes to achieve a

change in the contact angle: (i) By changing the effective temperature T ∗ keeping the

surface charge density σ and the ionic strength I fixed, (ii) by changing the surface charge

density of the substrate σ keeping the temperature T ∗ and the ionic strength I fixed, and

(iii) by changing the ionic strength I keeping the temperature T ∗ and surface charge

density σ fixed. Here routes (i) and (ii) are employed for two values of the ionic strength

I = 3.9 × 10−5 (Ĩ = 1mM) and I = 3.9 × 10−4 (Ĩ = 10mM) with uw/u = 0.69 .

Figure 6.4 shows the liquid-gas interface calculated using Eq. (6.7) for fixed temper-

ature T ∗ = 0.8T ∗
c and ionic strength I = 3.9 × 10−5 (Ĩ = 1mM) and for three different

values of the surface charge density σ. When the wetting transition is first-order, the

curve z̄ = ℓ(x̄) approaches the asymptote from below for x̄ → ∞ and from above for

x̄ → −∞. For large contact angles, i.e., for small values of σ, z̄ = ℓ(x̄) in Fig. 6.4 follows

the asymptote closely. The deviation from the asymptotes increases for small contact an-

gles. The behavior of the liquid-gas interface is similar for the case in which the contact

angle is changed using route (i). These results for the interface profile are in agreement

with those of Refs. [150,175,224,225] for first-order wetting.

Figure 6.5 shows the line tension for the case in which the contact angle was changed

using route (i) for two different values of the ionic strength and constant surface charge

density σ = 1 × 10−3 (σ̃ = 0.1µC/cm2). The line tension is negative and increases with

decreasing contact angle which is in agreement with the prediction from the IDM [150] for

the case of first-order wetting transitions with short-range interactions. The line tension

is smaller for the larger value of ionic strength I = 3.9 × 10−4 (Ĩ = 10mM) for fixed

temperature. Smaller contact angles were not considered because they require bigger

boxes and therefore higher computational cost. According to Ref. [150], the line tension

in the case of first-order transitions should change its sign from negative to positive as ϑ

decreases and should be positive at the wetting transition temperature T ∗
w, i.e., for ϑ = 0.

From the present calculations this prediction can not be confirmed, but one can see from

the available data that such a change in sign is highly plausible. The asymptotic behavior

for ϑ → 0 predicted in Ref. [150] in this case is given by τ ∼ τw + c1ϑ lnϑ + c2ϑ + O(ϑ2).
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Figure 6.4: Liquid-gas interfaces for an electrolyte solution, which exhibits a first-order
wetting transition (see Sec. 3.4.2) for various surface charge densities σ̃ = σea−2, fixed
temperature T ∗ = 0.8T ∗

c , uw/u = 0.69 and I = 3.9 × 10−5 (Ĩ = 1 mM). Note that for the
electrolyte solution the wetting temperature Tw is a function of the surface charge density
(see Fig. 3.5). ℓ(x) (full lines) was calculated from the density profiles ̺0(x̄, z̄) using Eq.
(6.7). For first-order wetting, the curves z̄ = ℓ(x̄) approach the asymptotes (dashed lines)
from above for x̄ → −∞ and from bellow for x̄ → ∞. The position x̄ = 0 is defined as
the point at which the asymptotes intersect.
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Figure 6.5: Line tension τ as a function of the temperature T ∗ in (a) and of the contact
angle ϑ in (b) for σ = 1× 10−3 and uw/u = 0.69. The two types of symbols correspond to
distinct values of the ionic strength I = Ĩa3 in the bulk liquid phase (• for I = 3.9× 10−5

(Ĩ = 1mM) and for I = 3.9 × 10−4 (Ĩ = 10mM)). See Appendix F for details of the line
tension calculation.
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Figure 6.6: Line tension τ as a function of the surface charge density σ = σ̃a2/e in (a) and
of the contact angle ϑ in (b) for T ∗ = 0.8T ∗

c and uw/u = 0.69. The two types of symbols
correspond to distinct values of the ionic strength I = Ĩa3 in the bulk liquid phase (• for
I = 3.9 × 10−5 (Ĩ = 1mM) and for I = 3.9 × 10−4 (Ĩ = 10mM)). The dashed lines are a
guide to the eye. See Appendix F for details of the line tension calculation.

Figure 6.6 shows the line tension for the case in which the contact angle was changed

using route (ii) for two values of the ionic strength and T ∗ = 0.8T ∗
c . In this case, only

small surface charge values (σ = 1 × 10−4 − 2 × 10−3) were considered. Therefore small

contact angles which are obtained for large surface charges were not studied. The reason

for this is that in order to avoid the contribution from the corners of the integration

box, these corners should be placed far away from all the interfaces such that the density

profiles in the regions where the corners are placed are bulk-like (see Appendix F and

Sec. 6.2). To achieve the later for small contact angles is more difficult in the case of the

electrolyte solution than in the pure solvent, mainly due to the density distributions of

±-ions. Figure 6.7 (b) shows density maps for the solvent ̺0(x̄, z̄) and the ±-ions ̺±(x̄, z̄)

for σ = 8× 10−3 (σ̃ = 0.8µC/cm2). The density in the liquid bulk is ̺± = I = 3.9× 10−5

(Ĩ = 1mM). One can see that for the positive ions in the liquid phase the density profile

looks bulk-like only in a very small portion of the calculation box, which makes difficult

the use of the integration box in Fig. F.1 and the procedure described in Appendix F

for the calculation of the line tension. Moreover one can see in Fig. F.2, which shows

examples of the dependence of the value of the line tension for different box sizes and two

different surface charge densities, that the amplitude of the variations in the value of the

line tension increases when the surface charge density σ increases. Figure 6.6 (a) shows

that for small surface charge densities the value of the line tension depends weakly on

the ionic strength I. However, as the surface charge density increases, the line tension τ
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increases faster for I = 3.9× 10−5 (Ĩ = 1mM) than for I = 3.9× 10−4 (Ĩ = 10mM) . This

is related to the fact that due to screening for I = 3.9 × 10−4 (Ĩ = 10mM) a larger value

of the surface charge is needed to produce the same contact angle than for I = 3.9× 10−5

(Ĩ = 1mM) (see Fig. 6.6 (b)).

6.4.1 Density distributions close to the three phase contact line

The microscopic structure of the electrolyte solution close to the TPCL is illustrated as

density maps in Fig. 6.7 for I = 3.9× 10−5 (Ĩ = 1mM), T ∗ = 0.8T ∗
c and two values of the

surface charge density σ = 1×10−4(σ̃ = 0.01µC/cm2) and σ = 8×10−4(σ̃ = 0.8µC/cm2).

The contact angles are ϑ ≈ 47.5◦ for σ = 1× 10−4 and ϑ ≈ 28.3◦ for σ = 8× 10−3. Apart

from the difference in contact angle and the density of anions and cations in the vicinity

of the wall due to the difference in surface charge density σ, one can see that for larger

values of the surface charge the density distributions of ±-ions differ significantly from

the bulk values for a larger distance with respect to the substrate position.

Figures 6.8 and 6.9 show the charge density ̺c(x̄, z̄) = ̺+((x̄, z̄) − ̺−(x̄, z̄), the local

ionic strength I(x̄, z̄) = 1
2

(̺+((x̄, z̄) + ̺−((x̄, z̄))) and the electrostatic potential φ(x̄, z̄) =

βeφ̃(x̄, z̄) for the same parameters as in Fig. 6.7. For small surface charge density σ (see

Fig. 6.8) the charge density ̺c(x̄, z̄) has a region in the gas close to the liquid-gas interface

where ̺c(x̄, z̄) is less negative than ̺c(−∞, z̄). If one takes a path from the gas side at

constant and small z̄, the charge density ̺c(x̄, z̄) is constant in the gas phase far away

from the liquid-gas interface, increases upon approaching the liquid-gas interface from

the gas side, drops to a very low value on the liquid side of the liquid-gas interface and

ultimately increases towards a constant value in the liquid phase. This charge separation

in the vicinity of the liquid-gas interface and the TPCL is caused by the difference in

the local permittivity of the solvent ε(̺0(x̄, z̄)) which is higher in the liquid phase (see

Eq. 6.4). On the other hand, the structure of the local ionic strength I(x̄, z̄) profiles for

constant z̄, which interpolates from the value in the gas phase to the value in the liquid

phase, is almost independent of z̄. The electrostatic potential φ(x̄, z̄), which is related to

the charge density through Poisson’s Eq. (6.6), does not follow the liquid-gas interface

but bends away from it. Moreover, there is an electrostatic potential difference between

the liquid and the gas phases in the vicinity of the TPCL. For large surface charge density

σ (see Fig. 6.9), the high concentration of charge in the vicinity of the substrate in the gas

phase screens in few layers the surface charge of the substrate. This is in contrast to the

case of small surface charge for which the charge density ̺c(x̄, z̄) decays more slowly to

zero (see Fig. 6.8). This difference is due to the nonlinear character of Poisson’s equation

used in this work (see Eq. (6.6)); for small values of the surface charge density σ its
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Figure 6.7: Density distributions of the solvent ̺0(x̄, z̄), the cations ̺+(x̄, z̄) and the anions
̺−(x̄, z̄) for σ = 1 × 10−4(σ̃ = 0.01µC/cm2) in (a) and σ = 8 × 10−3(σ̃ = 0.8µC/cm2) in
(b). The contact angle in (a) is ϑ ≈ 47.5◦ and in (b) ϑ ≈ 28.3. The substrate is positively
charged, therefore the high (low) density of negative (positive) ions in its vicinity. Note
that the density distribution of the positive ions ̺+ in the liquid for σ = 8 × 103(σ̃ =
0.2µC/cm2) (see (b)) needs more layers to achieve its bulk value I = 3.9×10−5(Ĩ = 1mM)
than it needs for σ = 1 × 10−4(σ̃ = 0.01µC/cm2).

solution is close to the solution of the linearized equation in which the number densities

of ±-ions decay exponentially to its bulk values with the Debye length κ of the bulk

phase. In contrast, for large surface charge density σ both the density distributions of

±-ions and the electrostatic potential φ deviate significantly from the linear solution in

the vicinity of the substrate and the exponential decay is only valid far away from it. The

nonmonotonic variation of ̺c(x̄, z̄) in the vicinity of the liquid-gas interface from the gas

side is not observed for this value of σ, however, there is a decrease in the vicinity of the

liquid-gas interface from the liquid side. This qualitative difference in the charge density

in the vicinity of the TPCL results in a different behavior of the electrostatic potential. In

this case, the liquid-gas interface is visible for small z̄ and the difference of the values of

the electrostatic potential in the liquid and in the gas phases is not as pronounced as for

smaller surface charge densities (see Fig. 6.8). For both cases far away from the substrate
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the charge density ̺c(x̄, z̄) and the electrostatic potential φ(x̄, z̄) go to zero and the local

ionic strength goes to I = 3.9 × 10−5, i.e, their bulk values.
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Figure 6.8: Charge density ̺c(x̄, z̄) = ̺+(x̄, z̄) − ̺−(x̄, z̄), local ionic strength I(x̄, z̄) =
1
2

(̺+(x̄, z̄) + ̺−(x̄, z̄)) and electrostatic potential φ(x̄, z̄) = βeφ̃(x̄, z̄) for σ = 1×10−4(σ̃ =
0.01µC/cm2). The contact angle is ϑ ≈ 47.5◦. The red line in the plot for the electrostatic
potential shows the position of the liquid-gas interface profile ℓ(x̄) calculated using Eq.
(6.7). The plots on the right show close-ups of the plots on the left in the vicinity of the
TPCL.
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Figure 6.9: Charge density ̺c(x̄, z̄) = ̺+(x̄, z̄) − ̺−(x̄, z̄), local ionic strength I(x̄, z̄) =
1
2

(̺+(x̄, z̄) + ̺−(x̄, z̄)) and electrostatic potential φ(x̄, z̄) = βeφ̃(x̄, z̄) for σ = 8×10−3(σ̃ =
0.8µC/cm2). The contact angle is ϑ ≈ 28.3◦. The red line in the plot for the electrostatic
potential shows the position of the liquid-gas interface profile ℓ(x̄) calculated using Eq.
(6.7). The plots on the right show close-ups of the plots on the left in the vicinity of the
TPCL.
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Chapter 7

Conclusions and outlook

The purpose of this thesis has been to investigate wetting phenomena in electrolyte solu-

tions by means of classical density functional theory. To this end, the wetting behavior

of a lattice (see Chap. 3) and a continuum (see Chap. 4) model for an electrolyte so-

lution in contact with a charged substrate has been investigated. As a second issue, the

phenomenon of electrowetting for a vertical parallel plate capacitor in contact with two

immiscible fluids, where at least one of the two is an electrolyte solution, has been ana-

lyzed in Chap. 5. Lastly, the influence of the substrate surface charge and of the ionic

strength on the fluid structure in the vicinity of the three phase contact line (TPCL) and

on the line tension of the lattice model for an electrolyte solution has been investigated

(see Chap. 6). Within these density functional theory approaches both bulk and inho-

mogeneous fluids were studied within the same framework. This is important because an

investigation of wetting requires an accurate knowledge of the bulk properties because

they are used as boundary conditions for the inhomogeneous calculations. Moreover, the

calculations for the inhomogeneous systems, i.e., substrate-fluid and liquid-gas interfaces,

were used as boundary conditions in the calculations of the TPCL structure.

In Chap. 3, a lattice-gas model for an electrolyte in contact with a charged substrate

was studied. The pure, i.e., salt-free, solvent was first investigated, providing a reference

system relative to which the influence of the electrostatic interaction could be compared.

The results for the salt-free case were in good agreement with previous studies [190,191].

The effective interface potential ω(l), which facilitates the transparent identification of

the order of the wetting transition, has been calculated numerically. In the next step,

the effects of the ionic strength and of the surface charge density σ on the order and on

the transition temperature of the wetting transition have been analyzed quantitatively.

Concerning the order of the transition it was found that electrostatic forces induce a first-

order wetting transition, even for very small surface charges. Within the lattice model,
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for σ = 0 the transition is second order and occurs at the same temperature as in the

salt-free case. For σ 6= 0 the wetting transition temperature decreases as the surface

charge is increased for fixed ionic strength.

In Chap. 4, an improvement over the approximation of step-like varying density pro-

files has been implemented in order to derive analytic expressions for the effective interface

potential ω(ℓ) of electrolyte solutions near charged walls. The analysis of the analytical

expressions for the effective interface potential revealed that, in the case of short-ranged

solvent-solvent and solvent-wall interactions, wetting transitions in the presence of elec-

trostatic interactions are typically first order. This result could be explained in terms of

the competition between the two characteristic length scales in the system, i.e., the bulk

correlation length ξ in the wetting liquid phase and the Debye length 1/κ. If 1/κ > 2ξ,

which is typically the case for dilute electrolyte solutions away from (bulk) critical points,

a wetting transition at two-phase coexistence is always first order irrespective of its or-

der in the pure, i.e., salt-free, solvent. The same result has been obtained in Chap. 3.

However, the analysis of the analytical expressions for the effective interface potential

provided a transparent rationale for the pre-eminence of first-order wetting in electrolyte

solutions in terms of competing length scales. Moreover, if in those systems in addition

long-ranged solvent-solvent and solvent-wall interactions, which favor a critical wetting

transition, are present, our analysis reveals the possibility of a wetting scenario which

actually corresponds to a sequence of two wetting transitions: first an electrostatically

induced (i.e., 1/κ > 2ξ) discontinuous jump between two finite wetting film thicknesses

which upon raising the temperature is followed by a continuous divergence of the wetting

film thickness ℓ.

The effect of ions and the surface charge on pure solvents which exhibit first-order

wetting transitions was not considered in Chaps. 3 and 4. This is an open and important

question because first-order wetting transitions are more common in real systems than

second-order ones. This question can be addressed within the lattice model by including

for example the effect of long-ranged fluid-fluid and substrate-fluid interactions. On the

other hand, within the continuum model this question has to be addressed numerically

due to the fact that the analytical expressions for the effective interface potential derived

in Chap. 4 are valid only for thick wetting films and the behavior of the effective interface

potential for thin films, which is important for first-order wetting transitions, is missing.

In Chap. 5, the electrowetting equation was derived for Pellat’s setup of a verti-

cal parallel plate capacitor. The analysis of this equation led to effectively four length

scales corresponding to the Debye lengths in both fluids, the thickness of the substrate,

and the film thickness, which serve to classify various relevant experimental situations,
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e.g., uncoated metal electrodes, hydrophilic or hydrophobic dielectric substrates, or fluids

comprising water+oil systems or immiscible electrolyte solutions. By considering limiting

cases of general interest it has been found that for uncoated metal electrodes and wetting

of hydrophobic dielectric substrates by water in an oil environment, the electrowetting

number, i.e., the term in the electrowetting equation which carries the dependence on the

applied voltage, within the present density functional approach agrees with that within

the electrocapillarity picture as well as with numerous experimental studies. However,

a significantly reduced tendency of electrowetting has been predicted here as compared

to the predictions within the electrocapillarity approach for electrowetting on hydrophilic

dielectric substrates or situations with both fluids being immiscible electrolyte solutions.

Due to a lack of experimental data, verification of these predictions is an open issue.

Finally, in Chap. 6 the TPCL and the line tension for the electrolyte solution have

been studied for the lattice model in Chap. 3. The behavior for the line tension was found

to agree with the predicted behavior for systems with short-ranged interactions. However,

the lattice model was found not to be the most appropriate model for the calculation of

the line tension due to numerical errors and due to the dependence of the liquid-gas

surface tension and of the line tension on the underlying lattice structure. Therefore,

the study in Chap. 6 is regarded as a first-step in the microscopic calculation of line

tensions in electrolyte solutions which has to be compared with results for other models.

Unfortunately, however, such results are not yet available. Moreover, important questions

such as the behavior of the line tension upon approaching the wetting transition and the

effect of large surface charge density of the substrate on the line tension could not be

addressed within the present theory; they deserve to be studied in the future by using

for instance a continuum model. Nevertheless, within the lattice model it was possible to

calculate the structure of the fluid in the vicinity of the contact line and analyze the effect

of the surface charge density of the substrate on the charge density distribution within

the fluid and on the electrostatic potential.
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Appendix A

Bulk correlation length of the pure

solvent

In the case of a bulk pure solvent (I = 0), the density functional Ω0 given by Eq. (3.10)

reduces to

βΩ
(p)
0 [̺0(r)] =

∫

d3r

{

̺0(r)(ln(̺0(r)) − βµ̺0) + (1 − ̺0(r)) ln(1 − ̺0(r))

+ χ(T )̺0(r)(1 − ̺0(r)) +
χ(T )

6
(∇̺0(r))

2

}

.

(A.1)

If one considers a spatially uniform equilibrium state ̺0, the corresponding two-point

correlation function G(r) = ̺20h(r) = ̺20(g(r) − 1) is obtained from G(r) = G(r,0), with

the inverse G−1(r, r′) = δ2Ω
δ̺0(r)δ̺0(r′)

, where
∫

d3r′′G(r, r′′)G−1(r′′, r′) = δ(r−r′) [162]. From

Eq. (A.1) one obtains

G−1(r, r′) = δ(r− r′)

(

1

̺0
+

1

1 − ̺0
− 2χ(T )

)

− χ(T )

3
∇2δ(r− r′). (A.2)

The corresponding Fourier transform, Ĝ−1(k) =
∫

d3r G−1(r, r′)e−ik·(r−r′) with dimension-

less k, is given by

Ĝ−1(k) =
χ(T )

3

(

1

ξ2
+ k2

)

, (A.3)

where Eq. (4.18) has been used. Ĝ(k), which is proportional to the static structure factor,

can be written in the form

Ĝ(k) =

3ξ2

χ(T )

1 + (kξ)2
=

Ĝ(0)

1 + (kξ)2
. (A.4)
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This allows one to identify ξ with the bulk correlation length. For a discussion of the

structure in the presence of ions (Eq. (3.10)) see Ref. [21].

In a similar way for the case with long-ranged interaction between solvent particles

(see Eq. (4.49))

G−1(r, r′) = δ(r− r′)

(

1

̺0
+

1

1 − ̺0
− 2χ(T ) +

βπ2Af

4

)

− χ(T )

3
∇2δ(r− r′). (A.5)

Therefore the bulk correlation length ξ for this case is given by

1

ξ2
=

3

χ(T )

(

1

̺0
+

1

1 − ̺0
− 2χ(T ) +

π2βAf

4

)

,

=

3

χ̃(T )

( 1

̺0
+

1

1 − ̺0
− 2χ̃(T )

)

1 +
π2βAf

8χ̃(T )

(A.6)

with χ̃(T ) = χ(T ) − π2βAf/8.
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Appendix B

Double parabola approximation for

the pure solvent

The double parabola approximation (DPA) has been widely used in the context of wetting

phenomena in order to obtain analytically tractable density functionals [216–223]. Within

this approximations, the grand canonical functional for the pure solvent, i.e., ̺± = 0 and

D(r, [̺±]) = 0 (see Eq. (3.10)) is given by

βΩDPA[̺0(z)]

A
=

∫

dz

{

FDPA(̺0(z)) +
χ(T )

6

(

d̺0(z)

dz

)2

− ̺0(z)βµ0

}

− βh1̺0(z = 0) + β
g

2
(̺0(z = 0))2

(B.1)

with

FDPA(̺0) = C(T )







(̺0 − ̺0,l(T ))2, ̺0 >
1
2
(̺0,l(T ) + ̺0,g(T ))

(̺0 − ̺0,g(T ))2, ̺0 <
1
2
(̺0,l(T ) + ̺0,g(T )),

(B.2)

where ̺0,l(T ) and ̺0,g(T ) are, respectively, the (temperature dependent) liquid and gas

bulk densities at coexistence, and C(T ) is fixed later in order to render the bulk correla-

tion length. Upon construction, the DPA requires an underlying theory which provides

expressions for the bulk densities and the curvature of the local free energy density at

coexistence [216–223]. For brevity the temperature dependence is not indicated in the

present notation. Within this approach, for a given profile ̺0(z) the assigned film thick-

ness ℓDPA is defined as

̺0(z = ℓDPA) =
1

2
(̺0,l + ̺0,g). (B.3)
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Minimization of the functional in Eq. (B.1) leads to

̺′′0,DPA(z) =







6C
χ

(̺0,DPA(z) − ̺0,l) − βµ0, ̺0,DPA(z) > 1
2
(̺0,l + ̺0,g)

6C
χ

(̺0,DPA(z) − ̺0,g) − βµ0, ̺0,DPA(z) < 1
2
(̺0,l + ̺0,g)

(B.4)

with the boundary conditions

χ

3
̺′0,DPA(0) = β(−h1 + g̺0,DPA(0)),

̺0,DPA(ℓDPA) =
1

2
(̺0,l + ̺0,g),

̺0,DPA(∞) = ̺0,g.

(B.5)

At two-phase coexistence µ0 = 0 (as for the pure solvent case, i.e., ̺± = 0, in the present

model given by Eq. (4.2)) and Eq. (B.4) reduces to

̺′′0,DPA(z) =







6C
χ

(̺0,DPA(z) − ̺0,l), ̺0,DPA(z) > 1
2
(̺0,l + ̺0,g)

6C
χ

(̺0,DPA(z) − ̺0,g), ̺0,DPA(z) < 1
2
(̺0,l + ̺0,g).

(B.6)

Comparison with Eq. (4.17) leads to C = χ/(6ξ2). Equation (B.6) together with the

boundary conditions in Eq. (B.5) yields

̺0,DPA(z) =







C1 exp(z/ξ) + C2 exp(−z/ξ) + ̺0,l, 0 ≤ z ≤ ℓDPA

C3 exp (−z/ξ) + ̺0,g, z ≥ ℓDPA

(B.7)

where

C1 =

̺0,g−̺0,l
2

(

βg + χ
3ξ

)

− β(h1 − g̺0,l) exp(−ℓDPA/ξ)
(

βg + χ
3ξ

)

exp(ℓDPA/ξ) +
(

χ
3ξ

− βg
)

exp(−ℓDPA/ξ)
,

C2 =

̺0,g−̺0,l
2

(

χ
3ξ

− βg
)

+ β(h1 − g̺0,l) exp(ℓDPA/ξ)
(

βg + χ
3ξ

)

exp(ℓDPA/ξ) +
(

χ
3ξ

− βg
)

exp(−ℓDPA/ξ)
,

C3 =
̺0,l − ̺0,g

2
exp (ℓDPA/ξ) .

(B.8)

The comparison between Eqs. (4.24) and (B.7) shows that the coefficients Âl, B̂l, and

B̂g there play the same role as the coefficients C1, C2, and C3, respectively, here. At
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coexistence and for ℓ = ℓDPA in Eq. (4.31) one obtains

C1 = Al(1 + O(exp(−ℓDPA/ξ))),

C2 = Bl(1 + O(exp(−ℓDPA/ξ))),

C3 = Bg(1 + O(exp(−ℓDPA/ξ))),

(B.9)

i.e., the relative difference between the coefficients of the profiles in Eq. (4.24) and in

Eq. (B.7) is exponentially small for film thicknesses ℓ = ℓDPA ≫ ξ large compared to the

bulk correlation length.
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Appendix C

First-order perturbation theory for

including the long-ranged

interactions

The total grand canonical functional is given by

Ω[̺0(r), ̺±(r)] = Ω0[̺0(r), ̺±(r)] + ∆Ω[̺0(r)] (C.1)

with Ω0[̺0(r), ̺±(r)] given by Eq. (3.10) whereas ∆Ω[̺0(r)] is given by Eq. (4.50) and

depends only on ̺0(r). A dimensionless coupling parameter λ ∈ [0, 1] is chosen such that

for λ = 0 the perturbation ∆Ω is absent and for λ = 1 the perturbation is fully present.

The perturbed grand canonical functional is

Ωλ[̺0(r), ̺±(r)] = Ω0[̺0(r), ̺±(r)] + λ∆Ω[̺0(r)], (C.2)

where λ acts as an amplitude multiplying both w(|r− r′|) and V (r) (see Eq. (4.50)). The

equilibrium densities ̺0,λ(r) and ̺±,λ(r) minimize Ωλ:

δΩλ

δ̺0(r)
[̺0,λ(r), ̺±,λ(r)] = 0,

δΩλ

δ̺±(r)
[̺0,λ(r), ̺±,λ(r)] = 0. (C.3)

Furthermore, the equilibrium densities ̺
(0)
0 (r) ≡ ̺0,λ=0(r) and ̺

(0)
± (r) ≡ ̺±,λ=0(r) which

minimize Ω0[̺0(r), ̺±(r)] are known (see Sec. 4.1).

In order to proceed the equilibrium densities ̺0,λ(r) and ̺±,λ(r) are written as power
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series in terms of λ,

̺0,λ(r) =
∞
∑

n=0

λn̺
(n)
0 (r) = ̺

(0)
0 (r) + O(λ),

̺±,λ(r) =
∞
∑

n=0

λn̺
(n)
± (r) = ̺

(0)
± (r) + O(λ),

(C.4)

and perform a functional Taylor expansion of the grand canonical potential

Ωλ[̺0,λ(r), ̺±,λ(r)] around ̺
(0)
0 (r), ̺

(0)
± (r):

Ωλ[̺0,λ(r), ̺±,λ(r)] = Ω0

[

̺
(0)
0 (r) +

(

̺0,λ(r) − ̺
(0)
0 (r)

)

, ̺
(0)
± (r) +

(

̺±,λ(r) − ̺
(0)
± (r)

)]

+ λ∆Ω
[

̺
(0)
0 (r) +

(

̺0,λ(r) − ̺
(0)
0 (r)

)]

= Ω0[̺
(0)
0 (r), ̺

(0)
± (r)] + λ∆Ω[̺

(0)
0 (r)]

+

∫

d3r

{

δΩ0[̺0(r), ̺±(r)]

δ̺0(r)

∣

∣

∣

∣

̺
(0)
0 (r),̺

(0)
±

(r)

(̺0,λ(r) − ̺
(0)
0 (r))

+
δΩ0[̺0(r), ̺±(r)]

δ̺+(r)

∣

∣

∣

∣

̺
(0)
0 (r),̺

(0)
±

(r)

(̺+,λ(r) − ̺
(0)
+ (r))

+
δΩ0[̺0(r), ̺±(r)]

δ̺−(r)

∣

∣

∣

∣

̺
(0)
0 (r),̺

(0)
±

(r)

(̺−,λ(r) − ̺
(0)
− (r))

}

+ O(λ2)

= Ω0[̺
(0)
0 (r), ̺

(0)
± (r)] + λ∆Ω[̺

(0)
0 (r)] + O(λ2)

= Ωλ[̺
(0)
0 (r), ̺

(0)
± (r)] + O(λ2)

(C.5)

with ̺0,λ(r)−̺
(0)
0 (r) = O(λ) and ̺±,λ(r)−̺

(0)
± (r) = O(λ) (see Eq. (C.4)). In Eq. (C.5) the

first derivatives vanish because ̺
(0)
0 and ̺

(0)
± minimize Ω0. Hence Ωλ=1 [̺0,λ=1(r), ̺±,λ=1(r)]

≈ Ωλ=1[̺
(0)
0 (r), ̺

(0)
± (r)] = Ω[̺

(0)
0 (r), ̺

(0)
± (r)] up to second order in λ.
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Appendix D

Coefficients for the effective interface

potential in the presence of

long-ranged interactions

The effective interface potential for the model with long-ranged interaction (Sec. 4.2)

is calculated by following the procedure described in Sec. 4.1. The double integrals in

Eq. (4.50) have been evaluated by performing an asymptotic expansion for ℓ → ∞. The

analytic expressions for the coefficients in Eq. (4.58) are given by (see Appendix E)

a1(T ) =
(̺0,l − ̺0,g)

2
β(u3̺w − t3̺0,l) (D.1)

and

b1(T ) =
β(̺0,l − ̺0,g)

3

(

̺wu4 − 3t3̺0,ldw + 3ξt3 exp

(

−dw
ξ

)

(

β(h1 − g̺0,l)

βg + χ(T )
3ξ

))

. (D.2)

The coefficients a1 and b1 can be compared with the general expressions obtained in

Ref. [215] within a systematic study of wetting transitions of a simple one-component

fluid, inter alia including the presence of van der Waals tails. There the effective interface

potential is expressed in terms of the interfacial profiles which emerge as a consequence of

wetting phenomena, i.e., the wall-liquid and the free liquid-gas interface for wetting of the

wall-gas interface. Within that approach the effective interface potential at coexistence

is given by

ω(ℓ) =
4
∑

k=2

akℓ
−k + O(ℓ−5 ln ℓ) (D.3)
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where

a2 =
1

2
(̺0,l − ̺0,g)(̺wu3 − ̺0,lt3), (D.4)

a3 = a
(0)
3 − 2a2d

(1)
lg , (D.5)

and

a4 = a
(0)
4 − 3a3d

(1)
lg + 3a2[d

(2)
lg − 2(d

(1)
lg )2], (D.6)

with

a
(0)
3 =

1

3
(̺0,l − ̺0,g))[̺wu4 − ̺0,l(t4 + 3t3d

(1)
wl )] (D.7)

and

a
(0)
4 =

1

4
(̺0,l − ̺0,g))[̺wu5 − ̺0,l(t5 + 4t4d

(1)
wl + 6t3d

(2)
wl )]. (D.8)

The coefficients t3, t4 for the present model are given by Eqs. (4.53) and (4.54); d
(i)
wl

and d
(i)
lg are moments of the wall-liquid interface profile ̺0,wl(z) and of the free liquid-gas

interface profile ̺0,lg(z), respectively:

d
(i)
wl = i

∫ ∞

0

dzzi−1

[

1 − ̺0,wl(z)

̺0,l

]

, i = 1, 2, (D.9)

and

d
(i)
lg =

i

̺0,l − ̺0,g

∫ ∞

−∞

dzzi−1
[

̺0,lg(z) − ̺sk0,lg(z)
]

, i = 1, 2. (D.10)

The wall-liquid and the free liquid-gas interface profile can be calculated within our ap-

proach by following a procedure analogous to the one described in Sec. 4.1. To this end,

in the case of the wall-liquid interface for the pure solvent, the Taylor expansion up to

second order of the local part of the functional in Eq. (3.10) with ̺± = 0 and D = 0, is

performed about ̺0,wl(z) = ̺0,lΘ(z − dw) for z ≥ 0 where Θ(x) is the Heaviside function.

This leads to the wall-liquid density profile

̺0,wl(z) =

(

̺0,l +
β(h1 − g̺0,l)

βg + χ(T )
3ξ

exp(−z/ξ)

)

Θ(z − dw). (D.11)

Within the approximation discussed in Appendix C, this expression, obtained from min-

imizing Ω0 and shifting by dw, is inserting into the general expression in Eq. (D.9)

corresponding to ∆Ω and yields

d
(1)
wl = dw − βξ(h1 − g̺0,l)

̺0,l

(

βg + χ(T )
3ξ

) exp(−dw/ξ). (D.12)
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As expected, Eq. (D.12) respects the expected property that in the sharp-kink limit

(i.e, vanishing interfacial width ξ) d
(1)
wl reduces to dw. With this result Eq. (D.2) can

be rewritten as b1(T ) = (β/3) (̺0,l − ̺0,g)
(

̺wu4 − 3t3̺0,ld
(1)
wl

)

. For the free liquid-gas

interface, the functional in Eq. (A.1) is considered. All integrals extend over a macroscopic

volume. The following boundary conditions ̺0,lg(z → −∞) = ̺0,l and ̺0,lg(z → ∞) = ̺0,g

are imposed. Accordingly, the Taylor expansion up to second order of the local part of

the functional is performed about the sharp-k ink profile

̺sk0,lg(z) =







̺0,l, z < 0,

̺0,g, z > 0.
(D.13)

The resulting liquid-gas density profile based on Ω0 is

̺0,lg(z) =







̺0,l +
̺0,g−̺0,l

2
exp(z/ξ), z < 0,

̺0,g +
̺0,l−̺0,g

2
exp(−z/ξ), z > 0.

(D.14)

Again, within the approximation discussed in Appendix C, this profile stemming from Ω0

is inserted into the general expression in Eq. (D.10), which is based on ∆Ω, and renders

d
(1)
lg = 0. (D.15)

Inserting Eqs. (4.53), (4.54), (D.12), and (D.15) into Eqs. (D.4) and (D.5) one obtains

(with t4 = 0)

βa2 = a1 and βa3 = b1. (D.16)

This leads to the satisfactory statement that if the general results in Ref. [215] for the

effective interface potential are applied to the present model one finds the same effective

interface potential as the one obtained directly within the present model.
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Appendix E

Derivation of the effective interface

potential for the model with

long-ranged interactions

The derivation of ω(ℓ) in Eq. (4.58) follows the same procedure as described in Sec.

4.1. A Taylor expansion up to second order of the local part of the functional in Eq.

(4.49) about the sharp-kink profile in Eq. (4.10) shifted by dw and the sharp-kink profile

in Eq. (4.11) with the bulk state being determined by Eq. (E.3) is performed. From

this expansion one obtains an approximate variational functional Ω̂lr for the model with

long-ranged interactions. By subtracting the bulk contribution Ωb,lr of the gas phase one
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obtains the surface contribution Ωs,lr to this variational functional:

βΩs,lr (ℓ, [∆̺0,∆̺±]) =
β
(

Ω̂lr(ℓ, [∆̺0(z),∆̺±(z)]) − V Ωb,lr(̺0,g, 0)
)

A

= βℓ [Ωb,lr(̺0,l, I) − Ωb,lr(̺0,g, 0)] − βdwΩb,lr(̺0,l, I)

+

∫ ℓ

dw

dz

{

χ(T )

6

(

d

dz
∆̺0(z)

)2

+
1

2
(∆̺0(z))2

(

1

̺0,l
+

1

1−̺0,l
−2χ(T )

)

}

+

∫ ∞

ℓ

dz

{

χ(T )

6

(

d

dz
∆̺0(z)

)2

+
1

2
(∆̺0(z))2

(

1

̺0,g
+

1

1−̺0,g
−2χ(T )

)

}

− βh1̺0,l − βh1∆̺0(dw) + β
g

2
(̺0,l + ∆̺0(dw))2

− 1

2
̺20,lβ

(

I0
(ℓ,dw)
(dw,−∞) + I0

(ℓ,∞)
(dw,ℓ)

)

+ ̺0,l̺0,gβI0
(ℓ,∞)
(dw,ℓ) −

1

2
̺20,gβI0

(∞,ℓ)
(ℓ,−∞)

− ̺0,lβI2
(ℓ,dw)
(dw,−∞) − (̺0,l − ̺0,g)β

(

I2
(ℓ,∞)
(dw,ℓ) − I2

(∞,ℓ)
(ℓ,dw)

)

− ̺0,gβI2
(∞,dw)
(ℓ,−∞)

+
1

2
β
(

I3
(ℓ,ℓ)
(dw,dw) + I3

(ℓ,∞)
(dw,ℓ) + I3

(∞,ℓ)
(ℓ,dw) + I3

(∞,∞)
(ℓ,ℓ)

)

+ ̺0,l̺wβ

∫ ℓ

dw

dzV (z) + ̺wβI1
(ℓ)
(dw)+̺0,g̺wβ

∫ ∞

ℓ

dzV (z)+̺wβI1
(∞)
(ℓ)

+

∫ ℓ

0

dz

{

1

2I

∑

i=±

(∆̺i(z))2 +
2πlB
εl

(D(z, [∆̺±]))2
}

,

(E.1)

where dw describes the excluded volume due to the repulsive part of the substrate potential

V (z) given by Eq. (4.48) and

w(|z − z′|) =
πAf

2 [(z − z′)2 + 1]2
. (E.2)

The bulk grand canonical potential density Ωb,lr per kBT is given by

βΩb,lr(̺0, ̺) = ̺0(ln(̺0) − βµ̺0) + (1 − ̺0) ln(1 − ̺0) + χ(T )̺0(1 − ̺0)

+
1

2
̺20

∫ ∞

−∞

dxw(|x|) + 2̺(ln(̺) − 1) − βµI̺ + ̺(V+(̺0) + V−(̺0)).
(E.3)

I0, I1, I2, and I3 are abbreviations for the following types of integrals:

I0
(u2,v2)
(u1,v1)

=

∫ u2

u1

dz

∫ v2

v1

dz′w(|z − z′|), (E.4)

I1
(u2)
(u1)

=

∫ u2

u1

dzV (z)∆̺0(z), (E.5)
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I2
(u2,v2)
(u1,v1)

=

∫ u2

u1

dz

∫ v2

v1

dz′∆̺0(z)w(|z − z′|), (E.6)

and

I3
(u2,v2)
(u1,v1)

=

∫ u2

u1

dz

∫ v2

v1

dz′∆̺0(z)∆̺0(z
′)w(|z − z′|). (E.7)

The integrals in Eqs. (E.5)-(E.7) are evaluated at two-phase coexistence using the

solutions for ∆̺0(z) obtained in Sec. 4.1 (see Eqs. (4.24) and (4.31)). For the present

purpose only the asymptotic behavior of these integrals in the limit ℓ → ∞ is necessary.

Using Eqs. (4.24) and (4.48), I1
(ℓ)
(dw) can be written as

I1
(ℓ)
(dw) = −

∫ ℓ

dw

dz

[

∑

i≥3

ui

zi

][

Al exp(z/ξ) + Bl exp(−z/ξ)

]

= −Al

∫ ℓ

dw

dz

[

∑

i≥3

ui

zi

]

exp(z/ξ) −Bl

∫ ℓ

dw

dz

[

∑

i≥3

ui

zi

]

exp(−z/ξ).

(E.8)

Asymptotic approximations for the integrals in Eq. (E.8) are obtained via integrating

by parts repeatedly:

∫ ℓ

dw

dz
exp(z/ξ)

z3
=

ξ exp(ℓ/ξ)

ℓ3
− ξ exp(dw/ξ)

d3w
+ 3ξ

∫ ℓ

dw

dz
exp(z/ξ)

z4
,

=
ξ exp(ℓ/ξ)

ℓ3
+ O(ℓ−4 exp(ℓ/ξ)), ℓ ≫ dw,

(E.9)

and
∫ ℓ

dw

dz
exp(−z/ξ)

z3
=

∫ ∞

dw

dz
exp(−z/ξ)

z3
−
∫ ∞

ℓ

dz
exp(−z/ξ)

z3
(E.10)

with
∫ ∞

ℓ

dz
exp(−z/ξ)

z3
=

ξ exp(−ℓ/ξ)

ℓ3
− 3ξ

∫ ∞

ℓ

dz
exp(−z/ξ)

z4
,

=
ξ exp(−ℓ/ξ)

ℓ3
+ O(ℓ−4 exp(ℓ/ξ)), ℓ ≫ dw.

(E.11)

Here and in the following the properties

∫ ℓ+b

a

dz
P1(z)

P2(z)
exp(z/ξ)

ℓ→∞≃ c1
c2
ξℓn1−n2 exp(ℓ/ξ)

and
∫ ∞

ℓ+a

dz
P1(z)

P2(z)
exp(−z/ξ)

ℓ→∞≃ c1
c2
ξℓn1−n2 exp(−ℓ/ξ)

for two polynomials P1(z) and P2(z) of degrees n1 and n2 with the leading coefficients c1
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and c2, respectively, of the leading terms which follows from L’Hôpital’s rule.

For convenience, the expressions in Eq. (4.31) are written as

Al = A1 exp(−ℓ/ξ),

Bl = B1 exp(−ℓ/ξ) + B2,

Bg = −A1 exp(ℓ/ξ) + B1 exp(−ℓ/ξ) + B2,

(E.12)

with

A1 =
̺0,g − ̺0,l

2
,

B1 =

(

χ(T )
3ξ

− βg
)

(̺0,g − ̺0,l)

2
(

βg + χ(T )
3ξ

) ,

B2 =
β(h1 − g̺0,l)

βg + χ(T )
3ξ

.

(E.13)

Collecting only algebraic terms up to the order 1/ℓ3, one obtains for I1
(ℓ)
(dw)

I1
(ℓ)
(dw) = −ξA1u3

ℓ3
+ O

(

1

ℓ4

)

. (E.14)

Analogously, for I1
(∞)
(ℓ) one has

I1
(∞)
(ℓ) = −

∫ ∞

ℓ

dz

[

∑

i≥3

ui

zi

]

Bg exp(−z/ξ)

=
ξA1u3

ℓ3
+ O

(

1

ℓ4

)

.

(E.15)

In order to calculate integrals of the type I2 Eq. (E.2) is first integrated using the

various integration limits appearing in Eq. (E.1) so that

∫ dw

−∞

dz′w(|z − z′|) =
πAf

4

[

π

2
− arctan(z − dw) − z − dw

(z − dw)2 + 1

]

, (E.16)

∫ ∞

ℓ

dz′w(|z − z′|) =
πAf

4

[

arctan(z − ℓ) +
z − ℓ

(z − ℓ)2 + 1
+

π

2

]

, (E.17)

and

∫ ℓ

dw

dz′w(|z − z′|) =
πAf

4

[

arctan(z−dw) +
z− dw

(z−dw)2+1
−arctan(z−ℓ)− z−ℓ

(z−ℓ)2+1

]

.

(E.18)
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Using Eqs. (4.24) and (E.16) one can write I2
(ℓ,dw)
(dw,−∞) as

I2
(ℓ,dw)
(dw,−∞) =

πAf

4

∫ ℓ

dw

dz

[

π

2
−arctan(z−dw)− z−dw

(z−dw)2+1

][

Al exp(z/ξ)+Bl exp(−z/ξ)

]

=
πAf

4
Al

[

ξπ

2
(exp(ℓ/ξ) − exp(dw/ξ)) − ξ exp(ℓ/ξ) arctan(ℓ− dw)

+ξ exp(dw/ξ)

∫ ℓ−dw

0

dy
exp(y/ξ)

y2 + 1
− exp(dw/ξ)

∫ ℓ−dw

0

dz
y exp(y/ξ)

y2 + 1

]

+
πAf

4
Bl

[−ξπ

2
(exp(−ℓ/ξ) − exp(−dw/ξ)) + ξ exp(−ℓ/ξ) arctan(ℓ− dw)

−ξ exp(−dw/ξ)

∫ ℓ−dw

0

dy
exp(−y/ξ)

y2 + 1
− exp(−dw/ξ)

∫ ℓ−dw

0

dy
y exp(−y/ξ)

y2 + 1

]

,

(E.19)

where the integration variable has been changed to y = z − dw. Asymptotic approxima-

tions for the integrals in Eq. (E.19) are obtained via integrating by parts repeatedly:

∫ ℓ−dw

0

dz
exp(z/ξ)

z2 + 1
=

ξ exp((ℓ− dw)/ξ)

(ℓ− dw)2 + 1
− ξ +

2(ℓ− dw)ξ2 exp((ℓ− dw)/ξ)

((ℓ− dw)2 + 1)2

+ ξ2
∫ ℓ−dw

0

dz
6z2 − 2

(z2 + 1)3
exp(z/ξ),

=
ξ exp((ℓ− dw)/ξ)

ℓ2
+

2(dwξ + ξ2) exp((ℓ− dw)/ξ)

ℓ3

+ O(ℓ−4 exp(ℓ/ξ)), ℓ ≫ dw,

(E.20)

∫ ℓ−dw

0

dz
z exp(z/ξ)

z2 + 1
=

ξ(ℓ− dw) exp((ℓ− dw)/ξ)

(ℓ− dw)2 + 1
− ξ2 exp((ℓ− dw)/ξ)

(ℓ− dw)2 + 1
+ ξ2

+
2((ℓ− dw)ξ)2 exp((ℓ− dw)/ξ)

((ℓ− dw)2 + 1)2
− 6(ℓ− dw)ξ3 exp((ℓ− dw)/ξ)

((ℓ− dw)2 + 1)2

+
8((ℓ− dw)ξ)3 exp((ℓ− dw)/ξ)

((ℓ− dw)2 + 1)3

+

∫ ℓ−dw

0

dz
6(z4 − 6z2 + 1)

(z2 + 1)4
ξ3 exp(z/ξ),

= ξ exp((ℓ− dw)/ξ)

(

1

ℓ
+

dw
ℓ2

+
d2w − 1

ℓ3

)

+
ξ2 exp((ℓ− dw)/ξ)

ℓ2

+
2ξ2(dw + ξ) exp((ℓ− dw)/ξ)

ℓ3
+ O(ℓ−4 exp(ℓ/ξ)), ℓ ≫ dw,

(E.21)
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and
∫ ℓ−dw

0

dz
exp(−z/ξ)

z2 + 1
=

∫ ∞

0

dz
exp(−z/ξ)

z2 + 1
−
∫ ∞

ℓ−dw

dz
exp(−z/ξ)

z2 + 1
(E.22)

with

∫ ∞

ℓ−dw

dz
exp(−z/ξ)

z2 + 1
=

ξ exp(−(ℓ− dw)/ξ)

(ℓ− dw)2 + 1
− 2(ℓ− dw)ξ2 exp(−(ℓ− dw)/ξ)

((ℓ− dw)2 + 1)2

+

∫ ∞

ℓ−dw

dz
6z2 − 2

(z2 + 1)3
ξ2 exp(−z/ξ)

=
ξ exp(−(ℓ− dw)/ξ)

ℓ2
+

2ξ(dw − ξ) exp(−(ℓ− dw)/ξ)

ℓ3

+ O(ℓ−4 exp(−ℓ/ξ)), ℓ ≫ dw,

(E.23)

and

∫ ℓ−dw

0

dz
z exp(−z/ξ)

z2 + 1
=

∫ ∞

0

dz
z exp(−z/ξ)

z2 + 1
−
∫ ∞

ℓ−dw

dz
z exp(−z/ξ)

z2 + 1
(E.24)

with

∫ ∞

ℓ−dw

dz
z exp(−z/ξ)

z2 + 1
=

ξ(ℓ−dw) exp(−(ℓ−dw)/ξ)

(ℓ−dw)2+1
+

ξ2 exp(−(ℓ−dw)/ξ)

ℓ2+1

− 2((ℓ−dw)ξ)2 exp(−(ℓ−dw)/ξ)

((ℓ−dw)2+1)2

− 6(ℓ−dw)ξ3 exp(−(ℓ−dw)/ξ)

((ℓ−dw)2+1)2

+
8((ℓ−dw)ξ)3 exp(−(ℓ−dw)/ξ)

((ℓ−dw)2+1)3

− ξ3
∫ ∞

ℓ−dw

dz
6(z4−6z2+1)

(z2+1)4
exp(−z/ξ),

= ξ exp(−(ℓ−dw)/ξ)

(

1

ℓ
+
dw
ℓ2

+
d2w−1

ℓ3

)

− ξ2 exp(−(ℓ−dw)/ξ)

ℓ2

+
2ξ2(ξ−dw) exp(−(ℓ−dw)/ξ)

ℓ3
+O(ℓ−4 exp(−ℓ/ξ)), ℓ ≫ dw.

(E.25)

Additionally, for ℓ ≫ dw one has

π

2
− arctan(ℓ− dw) =

1

ℓ
+

dw
ℓ2

+
d2w − 1/3

ℓ3
+ O

(

1

ℓ4

)

. (E.26)

Note that Eqs. (E.20) and (E.21) contain terms which increase exponentially with ℓ.

However, these two integrals are multiplied by Al which decays exponentially with ℓ (see
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Eqs. (E.8) and (E.12)).

Collecting constants and algebraic terms up to the order 1/ℓ3, for I2
(ℓ,dw)
(dw,−∞) one obtains

I2
(ℓ,dw)
(dw,−∞) =

AfπB2

4
exp(−dw/ξ)





ξπ

2
− ξ

∫ ∞

0

dy
exp

(

−y
ξ

)

y2 + 1
−
∫ ∞

0

dy
y exp

(

−y
ξ

)

y2 + 1





+
πAfξA1

6ℓ3
+ O

(

1

ℓ4

)

.

(E.27)

Similarly, I2
(∞,dw)
(ℓ,−∞) can be written as

I2
(∞,dw)
(ℓ,−∞) =

πAf

4

∫ ∞

ℓ

dz

[

π

2
− arctan(z − dw) − z − dw

(z − dw)2 + 1

]

Bg exp(−z/ξ)

= −πAfξA1

6ℓ3
+ O

(

1

ℓ4

)

.

(E.28)

Using Eqs. (4.24) and (E.17) one can write I2
(ℓ,∞)
(dw,ℓ) as

I2
(ℓ,∞)
(dw,ℓ) =

πAf

4

∫ ℓ

dw

dz

[

arctan(z−ℓ)+
z−ℓ

(z−ℓ)2+1
+
π

2

][

Al exp(z/ξ)+Bl exp(−z/ξ)

]

=
πAf

4
Al

[

ξπ

2
(exp(ℓ/ξ) − exp(dw/ξ)) + ξ exp(dw/ξ) arctan(ℓ− dw)

−ξ exp(ℓ/ξ)

∫ ℓ−dw

0

dy
exp(−y/ξ)

y2 + 1
− exp(ℓ/ξ)

∫ ℓ−dw

0

dz
y exp(−y/ξ)

y2 + 1

]

+
πAf

4
Bl

[−ξπ

2
(exp(−ℓ/ξ) − exp(−dw/ξ)) − ξ exp(−dw/ξ) arctan(ℓ− dw)

+ξ exp(−ℓ/ξ)

∫ ℓ−dw

0

dy
exp(y/ξ)

y2 + 1
− exp(−ℓ/ξ)

∫ ℓ−dw

0

dy
y exp(y/ξ)

y2 + 1

]

,

(E.29)

where the integration variable has been changed to y = ℓ − z. Using Eqs. (E.20)-(E.26)

one obtains asymptotically

I2
(ℓ,∞)
(dw,ℓ) =

AfπA1

4





ξπ

2
− ξ

∫ ∞

0

dy
exp

(

−y
ξ

)

y2 + 1
−
∫ ∞

0

dy
y exp

(

−y
ξ

)

y2 + 1





+
AfξπB2

6ℓ3
exp(−dw/ξ) + O(

1

ℓ4
).

(E.30)
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Similarly, I2
(∞,ℓ)
(ℓ,dw) can be written as (see Eqs. (4.24) and (E.18))

I2
(∞,ℓ)
(ℓ,dw) =

∫ ∞

ℓ

dz
πAf

4

[

arctan(z−dw)+
z−dw

(z−dw)2+1
−arctan(z−ℓ)− z−ℓ

(z−ℓ)2+1

]

×

×
[

Bl − Al exp(2ℓ/ξ)

]

exp(−z/ξ)

=
πAf

4

[

Bl − Al exp(2ℓ/ξ)

] [

ξ arctan(ℓ− dw) exp(−ℓ/ξ)

+ ξ exp(−dw/ξ)

∫ ∞

ℓ−dw

dy
exp(−y/ξ)

y2 + 1
+ exp(−dw/ξ)

∫ ∞

ℓ−dw

dy
y exp(−y/ξ)

y2 + 1

−ξ exp(−ℓ/ξ)

∫ ∞

0

dy′
exp(−y′/ξ)

y′2 + 1
− exp(−ℓ/ξ)

∫ ∞

0

dy′
y′ exp(−y′/ξ)

y′2 + 1

]

,

(E.31)

where the integration variables have been changed to y = z−dw and y′ = z−ℓ, respectively.

Using Eqs. (E.20)-(E.26), this leads to the asymptotic behavior

I2
(∞,ℓ)
(ℓ,0) = −AfπA1

4





ξπ

2
− ξ

∫ ∞

0

dy
exp

(

−y
ξ

)

y2 + 1
−
∫ ∞

0

dy
y exp

(

−y
ξ

)

y2 + 1





+
πAfξA1

6ℓ3
+ O(

1

ℓ4
).

(E.32)

Integrals of the type I3 can be written as (see Eqs. (4.24) and Eqs. (E.2))

I3
(ℓ,ℓ)
(dw,dw) =

Afπ

2

{

A2
l

∫ ℓ

dw

dz

∫ ℓ

dw

dz′
exp(z/ξ) exp(z′/ξ)

[(z − z′)2 + 1]2

+ 2AlBl

∫ ℓ

dw

dz

∫ ℓ

dw

dz′
exp(z/ξ) exp(−z′/ξ)

[(z − z′)2 + 1]2

+B2
l

∫ ℓ

dw

dz

∫ ℓ

dw

dz′
exp(−z/ξ) exp(−z′/ξ)

[(z − z′)2 + 1]2

}

,

(E.33)

I3
(∞,∞)
(ℓ,ℓ) =

Afπ

2
B2

g

∫ ∞

ℓ

dz

∫ ∞

ℓ

dz′
exp(−z/ξ) exp(−z′/ξ)

[(z − z′)2 + 1]2
, (E.34)

I3
(ℓ,∞)
(dw,ℓ) =

Afπ

2

{

AlBg

∫ ℓ

dw

dz

∫ ∞

ℓ

dz′
exp(z/ξ) exp(−z′/ξ)

[(z − z′)2 + 1]2

+BlBg

∫ ℓ

dw

dz

∫ ∞

ℓ

dz′
exp(−z/ξ) exp(−z′/ξ)

[(z − z′)2 + 1]2

}

,

(E.35)
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and

I3
(∞,ℓ)
(ℓ,dw) =

Afπ

2

{

AlBg

∫ ∞

ℓ

dz

∫ ℓ

dw

dz′
exp(−z/ξ) exp(z′/ξ)

[(z − z′)2 + 1]2

+BlBg

∫ ∞

ℓ

dz

∫ ℓ

dw

dz′
exp(−z/ξ) exp(−z′/ξ)

[(z − z′)2 + 1]2

}

,

(E.36)

with I3
(ℓ,∞)
(dw,ℓ) = I3

(∞,ℓ)
(ℓ,dw). The double integrals can be reduced to single ones as follows:

∫ u2

u1

dz

∫ v2

v1

dz′
exp(z/ξ) exp(z′/ξ)

[(z − z′)2 + 1]2
=

∫ u2

u1

dz exp(2z/ξ)

∫ v2

v1

dz′
exp((z′ − z)/ξ)

[(z − z′)2 + 1]2

(y:=z′−z)
=

∫ u2

u1

dz exp(2z/ξ)

∫ v2−z

v1−z

dy
exp(y/ξ)

[y2 + 1]2

=
ξ

2

[

exp(2z/ξ)

∫ v2−z

v1−z

dy
exp(y/ξ)

[y2 + 1]2

]∣

∣

∣

∣

z=u2

z=u1

− ξ

2

∫ u2

u1

dz exp(2z/ξ)

[

−exp((v2 − z)/ξ)

[(v2 − z)2 + 1]2

+
exp((v1 − z)/ξ)

[(v1 − z)2 + 1]2

]

(y:=z−v2,1)
=

ξ

2

[

exp(2z/ξ)

∫ v2−z

v1−z

dy
exp(y/ξ)

[y2 + 1]2

]∣

∣

∣

∣

z=u2

z=u1

+
ξ

2

[

exp(2z/ξ)

∫ u2−z

u1−z

dy
exp(y/ξ)

(y2 + 1)2

]∣

∣

∣

∣

z=v2

z=v1

,

(E.37)
∫ u2

u1

dz

∫ v2

v1

dz′
exp(−z/ξ) exp(−z′/ξ)

[(z − z′)2 + 1]2
= − ξ

2

[

exp(−2z/ξ)

∫ v2−z

v1−z

dy
exp(−y/ξ)

(y2 + 1)2

]∣

∣

∣

∣

z=u2

z=u1

− ξ

2

[

exp(−2z/ξ)

∫ u2−z

u1−z

dy
exp(−y/ξ)

(y2 + 1)2

]∣

∣

∣

∣

z=v2

z=v1

,

(E.38)
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and

∫ u2

u1

dz

∫ v2

v1

dz′
exp(z/ξ) exp(−z′/ξ)

[(z − z′)2 + 1]2
=

[

z

∫ v2−z

v1−z

dy
exp(−y/ξ)

[y2 + 1]2

]∣

∣

∣

∣

z=u2

z=u1

+

[∫ u2−z

u1−z

dy(y + z)
exp(y/ξ)

[y2 + 1]2

]∣

∣

∣

∣

z=v2

z=v1

=

[

z

∫ v2−z

v1−z

dy
exp(−y/ξ)

[y2 + 1]2

]∣

∣

∣

∣

z=u2

z=u1

+

[

z

∫ u2−z

u1−z

dy
exp(y/ξ)

[y2 + 1]2

]∣

∣

∣

∣

z=v2

z=v1

+

[∫ u2−z

u1−z

dy
y exp(y/ξ)

[y2 + 1]2

]∣

∣

∣

∣

z=v2

z=v1

.

(E.39)

Inserting these expressions into Eqs. (E.33)-(E.35) leads to

I3
(ℓ,ℓ)
(dw,dw) =

Afπ

2

{

A2
l ξ

[

exp(2ℓ/ξ)

∫ ℓ−dw

0

dy
exp(−y/ξ)

(y2 + 1)2
− exp(2dw/ξ)

∫ ℓ−dw

0

dy
exp(y/ξ)

(y2 + 1)2

]

+ 2AlBl

[

(ℓ− dw)

(∫ ℓ−dw

0

dy
exp(−y/ξ)

(y2 + 1)2
+

∫ ℓ−dw

0

dy
exp(y/ξ)

(y2 + 1)2

)

−
∫ ℓ−dw

0

dy
y exp(−y/ξ)

(y2 + 1)2
−
∫ ℓ−dw

0

dy
y exp(y/ξ)

(y2 + 1)2

]

+B2
l ξ

[

− exp(−2ℓ/ξ)

∫ ℓ−dw

0

dy
exp(y/ξ)

(y2 + 1)2
+ exp(−2dw/ξ)

∫ ℓ−dw

0

dy
exp(−y/ξ)

(y2 + 1)2

]}

,

(E.40)

I3
(∞,∞)
(ℓ,ℓ) =

Afπ

2
B2

gξ exp(−2ℓ/ξ)

∫ ∞

0

dy
exp(−y/ξ)

(y2 + 1)2
, (E.41)

and

I3
(ℓ,∞)
(dw,ℓ) =

Afπ

2

{

AlBg

[

ℓ

(∫ ∞

0

dy
exp(−y/ξ)

(y2 + 1)2
−
∫ ℓ−dw

0

dy
exp(−y/ξ)

(y2 + 1)2

)

+

∫ ℓ−dw

0

dy
y exp(−y/ξ)

(y2 + 1)2
− dw

∫ ∞

l−dw

dy
exp(−y/ξ)

(y2 + 1)2

]

+ BlBg
ξ

2

[

exp(−2dw/ξ)

∫ ∞

ℓ−dw

dy
exp(−y/ξ)

(y2 + 1)2

+ exp(−2ℓ/ξ)

(∫ ℓ−dw

0

dy
exp(y/ξ)

(y2 + 1)2
−
∫ ∞

0

dy
exp(−y/ξ)

(y2 + 1)2

)]}

.

(E.42)
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Note the following relations:

A2
l = A2

1 exp(−2ℓ/ξ)

AlBl = A1B1 exp(−2ℓ/ξ) + A1B2 exp(−ℓ/ξ)

AlBg = A1B1 exp(−2ℓ/ξ) + A1B2 exp(−ℓ/ξ) − A2
1

B2
l = B2

1 exp(−2ℓ/ξ) + 2B1B2 exp(−ℓ/ξ) + B2
2

BlBg = B2
1 exp(−2ℓ/ξ) + 2B1B2 exp(−ℓ/ξ) − A1B2 exp(ℓ/ξ) + B2

2 − A1B1

B2
g = B2

1 exp(−2ℓ/ξ) + 2B1B2 exp(−ℓ/ξ) − 2A1B2 exp(ℓ/ξ)

+ A2
1 exp(2ℓ/ξ) + B2

2 − 2A1B1.

(E.43)

Accordingly one obtains

1

2

(

I3
(ℓ,ℓ)
(dw,dw)+I3

(ℓ,∞)
(dw,ℓ)+I3

(∞,ℓ)
(ℓ,dw)+I3

(∞,∞)
(ℓ,ℓ)

)

=
Afπ

2

{

A2
l ξ

2

[

exp(2ℓ/ξ)

∫ ℓ−dw

0

dy
exp(−y/ξ)

(y2 + 1)2

− exp(2dw/ξ)

∫ ℓ−dw

0

dy
exp(y/ξ)

(y2 + 1)2

]

− A2
1

[

(ℓ−dw)

∫ ∞

ℓ−dw

dy
exp(−y/ξ)

(y2 + 1)2
+

∫ ℓ−dw

0

dy
y exp(−y/ξ)

(y2 + 1)2

]

+ AlBl

[

(ℓ−dw)

∫ ∞

dw−ℓ

dy
exp(−y/ξ)

(y2 + 1)2
−
∫ ℓ−dw

0

dy
y exp(y/ξ)

(y2 + 1)2

]

+
B2

l ξ

2
exp(−2dw/ξ)

∫ ∞

0

dy
exp(−y/ξ)

(y2 + 1)2

+ (−A1B1 − A1B2 exp(ℓ/ξ))
ξ

2
×

×
[

exp (−2dw/ξ)

∫ ∞

ℓ−dw

dy
exp (−y/ξ)

(y2 + 1)2

+ exp (−2ℓ/ξ)

∫ ℓ−dw

0

dy
exp(y/ξ)

(y2 + 1)2

]

+
ξ

2

(

A2
1 exp(2ℓ/ξ) − A1B2 exp(ℓ/ξ) − A1B1

)

×

× exp(−2ℓ/ξ)

∫ ∞

0

dy
exp(−y/ξ)

(y2 + 1)2

}

.

(E.44)

In order to determine the asymptotic behavior of the integrals in Eqs. (E.40)-(E.42) we

repeatedly integrate by parts so that
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∫ ℓ−dw

0

dy
exp(y/ξ)

(y2 + 1)2
=

ξ exp((ℓ− dw)/ξ)

((ℓ− dw)2 + 1)2
− ξ + ξ

∫ ℓ−dw

0

4y

(y2 + 1)3
exp(y/ξ),

=
ξ exp((ℓ− dw)/ξ)

ℓ4
+ O(ℓ−5 exp(ℓ/ξ)), ℓ ≫ 1,

(E.45)

∫ ℓ−dw

0

dy
exp(−y/ξ)

(y2 + 1)2
=

∫ ∞

0

dy
exp(−y/ξ)

(y2 + 1)2
−
∫ ∞

ℓ−dw

dy
exp(−y/ξ)

(y2 + 1)2
(E.46)

with

∫ ∞

ℓ−dw

dy
exp(−y/ξ)

(y2 + 1)2
=

ξ exp(−(ℓ− dw)/ξ)

((ℓ− dw)2 + 1)2
− ξ

∫ ∞

ℓ

4y

(y2 + 1)3
exp(−y/ξ)

=
ξ exp(−(ℓ− dw)/ξ)

ℓ4
+ O(ℓ−5 exp(−ℓ/ξ)), ℓ ≫ dw,

(E.47)

and

∫ ∞

dw−ℓ

dy
exp(−y/ξ)

(y2 + 1)2
=

ξ exp ((ℓ− dw)/ξ)

((ℓ− dw)2 + 1)2
− ξ

∫ ∞

dw−ℓ

4y

(y2 + 1)3
exp(−y/ξ)

=
ξ exp((ℓ− dw)/ξ)

ℓ4
+ O(ℓ−5 exp(ℓ/ξ)), ℓ ≫ dw.

(E.48)

Finally, collecting the leading terms for ℓ → ∞ one obtains the asymptotic behavior

1

2

(

I3
(ℓ,ℓ)
(dw,dw) + I3

(ℓ,∞)
(dw,ℓ) + I3

(∞,ℓ)
(ℓ,dw) + I3

(∞,∞)
(ℓ,ℓ)

)

=
Afπξ

2



A2
1+

B2
2 exp

(

−2dw
ξ

)

2





∫ ∞

0

dy
exp

(

−y
ξ

)

(y2 + 1)2

− AfπA
2
1

2

(

1

2
− 1

2ξ

∫ ∞

0

dy
exp(−y/ξ)

y2 + 1

)

+O
(

1

ℓ4

)

.

(E.49)

Inserting the results for these integrals (see Eqs. (E.14), (E.15), (E.27), (E.28), (E.30),

(E.32), and (E.49)) into Eq. (E.1), one obtains the effective interface potential ω(ℓ) =

Ωs,lr(ℓ) − Ωs,lr(∞) given by Eq. (4.58); the index lr refers to long-ranged interactions

(Sec. 4.2).
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Appendix F

Line tension calculation in the lattice

model

For the line tension calculation, a box that cuts perpendicularly through all the interfaces

has been used (Fig. F.1). As discussed in Ref. [149] this type of box ensures that artificial

contributions that scale with the contact line length L due to the edges of the boxes or

to inhomogeneities caused by the boundaries do not arise. However in a lattice model,

depending on the contact angle, the boundary that cuts through the liquid-gas interface

crosses some of the cells leaving just a fraction of them inside the integration box. In

order to calculate the contribution of such cells to the total grand canonical energy in

Eq. (6.1) the contribution to the energy if the cell were completely included inside the

boundary was multiplied by the fraction of the volume of the cell that is actually inside

the box. Moreover the value of the line tension has been computed by using the change in

the total grand canonical energy when the size of the box is changed. This is done because

the lattice model underneath our calculation creates a dependence of the liquid-gas free

interface γl,g on the contact angle ϑ when such interface is tilted as in Fig. F.1 due to the

mismatch with the lattice grid underneath.

Consider the configuration shown Fig. F.1. The grand canonical energy per unit

length can be written as (see Eq. (2.22))

Ω(1)

L
= ΩbA

(1) + γl,g(ϑ)
z1

cosϑ
+ γs,lL

(1)
s,l + γs,gL

(1)
s,g + τ (F.1)

for the dashed line box (1) that cuts the liquid-gas interface at the coordinate point

(x1, z1) marked by a dot and the number (1) in Fig. F.1. Here A(1) = A(1)a2 is the area

of the dashed line box, such that V = A(1)L is the volume of the fluid inside the box

and L
(1)
s,l = L

(1)
s,l a and L

(1)
s,g = L

(1)
s,ga are the linear extensions of the substrate-liquid and
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Figure F.1: Geometry for the calculation of the line tension. The Euler-Lagrange equa-
tions in Eq. (6.5) are solved via an iterative algorithm in a rectangular box. However,
for the calculation of the line tension a box (dashed and dotted lines) that cuts perpen-
dicularly through all the interfaces and encloses the three-phase contact line has been
used. The dots (1) and (2) mark the coordinate points (x1, z1) and (x2, z2), respectively,
where the integration boxes intersect the liquid-gas interface. The system is translation-
ally invariant in the y-direction. Note that the boundary cutting through the liquid-gas
interface crosses some of the cells leaving just a fraction of each of them inside the in-
tegration box. The contribution of these cells to the total grand canonical energy was
computed by multiplying the total contribution of each of these cells by the volume of
the cell that is inside the integration box.

substrate-gas interfaces in the x-direction. Analogously for the dotted line box (2) one

has
Ω(2)

L
= ΩbA

(2) + γl,g(ϑ)
z2

cosϑ
+ γs,lL

(2)
s,l + γs,gL

(2)
s,g + τ (F.2)

Calculating ∆Ω
L∆z

= Ω(1)−Ω(2)

L(z1−z2)
one has

∆Ω

L∆z
= Ωb

∆A

∆z
+

γl,g(ϑ)

cosϑ
+ γs,l

∆Ls,l

∆z
+ γs,g

∆Ls,g

∆z
, (F.3)

where ∆Ls,l = L
(1)
s,l − L

(2)
s,l , ∆Ls,g = L

(1)
s,g − L

(2)
s,g , and ∆A = A(1) − A(2). Finally, the line

tension is obtained as

τ =
Ω(1)

L
−ΩbA

(1)−z1
∆Ω

∆z
+z1Ωb

∆A

∆z
+z1γs,l

∆Ls,g

∆z
+z1γs,g

∆Ls,g

∆z
−γs,lL

(1)
s,l −γs,gL

(1)
s,g (F.4)

The line tension τ was calculated by fixing the intersection of box (1) with the liquid-
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gas interface at a value z̄1 = z1/a ∈ [30, 40] for the pure solvent and z̄1 ∈ [70, 80] for the

electrolyte solution and variating the size of box (2) accordingly such that ∆z̄ = 1 − 15.

The procedure is repeated for all z̄1 integers in the corresponding intervals for the pure

solvent and the electrolyte solution. The values of Ls,l and Ls,g are calculated by using the

coordinate where the asymptote of the gas-liquid interface intersects the plane z = 0 (see

Chap. 6). The size of the rectangular box used to find the equilibrium profiles depends on

the contact angle ϑ, i.e., for small contact angles a larger extension in the x-direction is

needed . For the pure solvent the smaller size used was L̄x×L̄y = 300×60, while the bigger

was 1500× 60. For the electrolyte solution a fixed box size of 400× 100 was used. Figure

F.2 shows the calculated values for the line tension using the above described procedure

for the electrolyte solution with I = 3.9×10−5 (Ĩ = 1mM), T ∗ = 0.8T ∗
c , uw/u = 0.69, and

for two different values of the surface charges density: σ = 5 × 10−4 (σ̃ = 0.05µC/cm2)

(Fig. F.2 (a)) and σ = 1.8 × 10−3 (σ̃ = 0.18µC/cm2) ( Fig. F.2(b)). One can see

that the calculated line tension depends on the size of both integration boxes, i.e, on the

coordinates (x1, z1) and (x2, z2) where these boxes intersect the liquid-gas interface (see

Fig. F.1), nevertheless the values seem to be distributed around a particular value. In

order to determined the value of what in Chap. 6 is called the line tension, the value

of ∆z̄ that produces the smallest variation in the calculated value of the line tension for

different z̄1 is chosen and τ is taken to be the mean between the smallest and the largest

values of the calculated line tension for that particular ∆z̄. Note that the amplitude of

the variations in the line tension values increase with increasing σ, i.e., with decreasing

contact angle ϑ, this can be inferred from the different scale in the vertical axes of Fig.

F.2 (a) and (b). The behavior is similar for the other values of the surface charge density

considered in Chap. 6. When the surface charge is fixed and the contact angle ϑ is

changed by changing the temperature, the amplitude of the variations in the value of τ

increase with increasing temperature T ∗, i.e, with decreasing contact angle ϑ.
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Figure F.2: Line tension τ values for an electrolyte solution with I = 3.9 × 10−5 (Ĩ =
1mM) at T ∗ = 0.8T ∗

c for σ = 5 × 10−4 (σ̃ = 0.05µC/cm2) (a) and σ = 1.8 × 10−3

(σ̃ = 0.18µC/cm2) (b). Different colors correspond to different sizes of box (1) in Fig.
F.1, i.e., they correspond to different coordinates of the point (x1, z1) where the boundary
of the box intersects the liquid-gas interface. The line tension calculated using Eq. (F.4)
is plotted as a function of ∆z̄ = z1/a− z2/a, where a is the lattice constant.
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