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In acompact, connected topological projective plane, let £2 be a closed Lie subgroup of the group
of all axial collineations with a fixed axis A. We compare the set 3\A consisting of the centres of all
non-identical homologies in £ to orbm of th~ group .ﬂm of all elations contained in {2 and of its
connected component @ = (f;4)". It is shown that 3\A is the union of at most countably many
©-orbits; moreover, 3\A turns out to be a single 8-orbit whenever the connected component of 2
contains non-idantiell homologiec. This result is analogous to a well-known theorem of André for
finite planes. 1t has numerous consequences for the structure of collineation groups of compact,
connected projective planes.
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1. Introduction, results

Throughout this paper, we cc ' sider a compact, connected topologicsl projective
plane. Its point space will be denoted by P,

Collineations fixing all the points of a line A are called axial collineations (or
perspectivities) with axis A. For such collineations there is always a centre, i.e. a point
such that all the lines through this point are invariant; this notion is dual to the notion
of an axis. If, for an axial collineation a with axis A and centre z, the image a(po) of a
single point p, different from the centre and not lying on the axis is known, then the
images of all other points may be obtained by the geometric construction illustrated
in Fig. 1. In particular, if « is not the identity, then a has no fixed point besides z and
the points of A. Therefore, a non-identicai perspectivity has a unique axis and a
unique centre. A perspectivity with axis A and centre z is called an elation or a
homology depending on whether z € A or z¢£ A. The non-identical elations with axis
A are just the perspectivities without any fixed point outside A. Therefore they form,
together with the identity, a normal subgroup of the group of all collineations fixing
A, and this elation group acts freely outside A.
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Fig. 1.

In a topological projective plane, where join and intersection are continuous, it is
immediate from the construction in Fig. 1 that axial collir eations are continuous. In
the given compact, connected plane, we now consider, for a fixed line A, the group of
all axial collineations with axis A, and we endow it with the compact-open topology.

Tha aim of this paer is to determine the configurations which are obtained by
collecting the centres ¢f all non-identical homologies belonging to a :losed subgroup
£2 of the group of all perspectivities with axis A. This will be carried out under the
extra assumption that {2 is a Lie group. Probably, this is no restriction at all; some
comments on this question will be made at the end of this section.

The following conventions will be used: For a point z the group of all perspec-
tivities in £2 with centre ~ is denoted by {2(,;;

Qar1= U Q)

aceA

denotes the normal subgroup of all elations in (2. Let & and @ be tie connected
components of the identity in {2 and (2(4,, respectively.
We are interested in the set

3={zeP; 2.# {id}}

of all centres of nc1-identical elements in §2. More generally, for a subset ¥ of £ let
() ={z eP; fi;;n ¥ # {id}}.

The results of this paper are mainly concerned with the set
3\A = 3(02\2a))

of all centres of non- dentical honiologies in £2.
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+ Band 3\A are invariant under the normalizer of 12 in the collineation group of the
plane. smee for any eolhneation Y normalmng 2 we have

Yﬂm? = men | (1;

' '; ar, 3\A is the nnion of orblts under the connected component & of the
roup 24 Our ‘main result determines the configurations, which 3\A may
‘posﬁbly take on, Ly relating 3\A to the @-orbits contained in it:

l.l. Tlleom Let Nbea closed Lte subgroup of the groug of all axial collineations
with axis A. Then precisely one of the following assertions holds:

(0) B\A is emp:y, i.e. 12 consists entirely of elations.

(i) 8\A is a point. ~

(ii) 8\A consistsof more than one but at most countadly many points. In this case, 2
is discrete and at most countable.

(ili) 3\A is a connected manifold of positive dimension. It is then an orbit of the
elation group {4, which in this case must be connected. In particular, 3\A is closed in
P\A and homeomorphic to ;).

(iv) B\A is the union of more than one, but at most countabiy many orbits under the
connected component © of the elation group {4, and O is non-trivial. Each of these
orbits is closed in P\A and homeomorphic to O. In this case, the connected component
E of 12 contains elations only, so that £ = 6.

This theorem will be proved in Sections 3 and 4. We continue the present section
by making some comments on the theorem and by giving some typical applications
of it.

Assertion (iii) of the theorem may be regarded as the generic case since it occurs
whenever the connected component of £2 contains hornologies for more thaa one
centre. Thxs case represents an analogy to the well-known re ult of André [1] thatin.
finite planes 3\A is an orbit of £4). In compact, connected planes, however, this is
not generally tme, m Section ? we ‘shall consnder eounterexamples Jue t0 H.
Salzmann.

The theorem says that B\A, if not empty, is the union of at most countably many
orbits of 8. Since these orbits are homeomorphic to @ (see 3.1), we cbtain rather
precise information if we can narrow down the possibilities for the homeomorphisr
type of 6. Now this is possible in broad generality; in fact one may prove (see 3.2
and 3.7):

1.2. Supplement. Suppose that one of the following conditions is fulfilled:
(a) The poirt space P is cf finite topological dimension.
(b) There are two non-identical elaiions with axis A and with different centres.
(c) There is a centre z € P\A for which the homology group 2.} is not compact.
Then @ is homeomorphic to a euclidean space R* (k =0).
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(mluch 1% the same way as there are no locally oompact topologn_ 1w r spaces of
infinite dimension). This would mean that the conclusmn of the supplement holds in
generai, :

Cases (iii) and (iv) of the theorem really are mutually exclusiv
group is always a manifold, and since a connected manifold A
union ¢! at most countably many closed subspaces M; whxck 1
fact w» would have dim M; <dim M for all i (or else M

theon, um(UaM:) max dim M, <dim M. 2 B e

We now present some consequences of the theo:em sta hove.: Generally
speaking, it may be used to obtain information about eollmeatlon groups in the
oresenc: of homologies. As an exainple, we note the followmg oorollary which may
be deri.ed from the theorem by exploiting the conjugation fotmula (!)

1.3, C:orollary. LetI'be a closed Lie subgroup of the group of continuous callmeanons

leaving the line A invariant, and denote its coinected componentby 4. ; :

Assurme further that I contains a non-identical homology with axis A whose cenrre
z# A is not a fixed point of A. Then the group A;a,a) of elations in 4 mth axis Ais
connected, and the orbit A(z) is equal to the orbit Aja,a:(2) under thm elation group; in
particulcr, A(z) is closed in P\A and homeomorphic to Aia.a)

If T even contains a non-trivial connected subgroup of homologies w:th axis A, then
I'(z)=4(z), and all elations of I" with axis A are contained in 4.

For th: special case where the given homologies are reﬂectxons (i.e. of order two),
results of this type may be proved directly, using well known techmques of generatmg
elations from reflections. In the proof of the theorem above, we make use of such a
specializ:d result (lemma 4.6), of course with an independent proof -

One o' the features of the theorem is that it exhibits many elations. This leads to
chax acte: uatnons of’ translation planes by o:mdmons whxch postulate th

comllan 1] for such a result in finite projective planes) In compact ‘éonnected
planes, tiis condition may be weakened by topological methods: S

1.4, Corollary. In addition to the assumptions of the theorem, suppose that 2
contains. for each point z in a subset of second Baire category in P\A, a non-identical
homology with centre z. Then the elation group {da) is transitive cn P\A.

Indeed, 1inder these assumptions the set 3\A is uncountable; by the “heorem above,
it is therefore the union of at most countably many closed subsets of P\A each of
which is an orbit under the conrected elation group @. By catego y r6asons, one of
these closed orbits must contain an open subset. This orbit then is both closed and
open in PAA, and since P\A is connected {7}, @ is transitive on P\A.
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@(z,), of a pomt z eP\A under the connected com ponent 9 of .(2. A7 iS therefore i
subset of thelinezva jommg z'to a. If, for the sake of concratenass, we integrate
some hypothes:s of the type eonsndered in Supplement 1.2, then @(z) is homeomor-
phictoa euchdean ‘space R In particular, if k > 0, 8(z) is not closel in tiie compact
projectlve line z va. However, ®(z) is a closed subset of P\A \see 3.1) and is
therefore closed in zva\{a); in other words, @(z)u{a} is the one-point
compactification of @(z) =R, that is, a k-sphere. Thus we have obtained:

1.8. Corollary. Let A and L be iwo differentlines, and let A be a closed Lie subgroup of
the gro.sp of all axial collineations whose axis is A and whose centres lie on L. Suppose
either ‘hat P is of finite topological dimension, or that for some z € P\A the homology
group A,y is not compact.

Then for the set 3(A) of all the centres of non-identical elements in A one of the
following descriptions is valid:

i) B(A) is empty or a point.

(i) B(A) consists of more than one but at most countably many poinis, and A is
discrete and at most countable.

(iii) B(A) is a sphere of positive dimension consisting of the pointa = A A L and of an
orbit under the group Ara; of elations in A (which in this case must be connected).

(iv) B(A) is a bouguet of more than one but at n:osiv“cauntably many spheres of equal
positive dimension. In this case, the connected component A' of the identity in A
contains only eIanons, and each sphere of the bouquet consisis of the pointa=A AL
and of an orbit under this elation group A*.

Paralleling Corollary 1.4, one also gets the following result about transitivity
properties of the elation group in the presence of many homologies with centres on a
fixed line L:

1.6. Corollary. LetA and L betwo different lines, and let A be a closed Lie subgroup of
the group of all axial collineations whose axis is A and whose centres lie on L. Suppose
further than A contains, for each point : in a subset of second Baire category in L, a
non-identical homology with centre z and axis A. Then the elation group Ap.;
(a= A A L) zs transmve on L\{a}

Corollanes 1 4 and 1 6 together may be used to formulate characterizations of the
classical planes over the real numbers, the complex numbers, the quaternions and the
Cayley numbers in terms of existence of sufficiently many axiai collineations.



We nlose this exposition of ztsults hy a remark ‘t:o ! -

dirnensional planec this has been proved (see [9, 4. 1], [1 ‘
true for special types of planes, e.g. translanon p»lanes (wh

ooumtable basns (e. 2 9], see also [13 ).

2. A counterexample

The following family of examples is due to H. Salzmann: [8] For ﬁxed a eR\{O}
with |aj< 1 put

q(u, v) = a cos 2mru cos 2mrv,
X py

p(x, y)=j I q(u, v) dv du,
0 40

and define, for s, x € R, a new multiplication o by
sox =sx+p(s, x).

Salzrsann states in [8, § 4] that one gets an affine plane with point set R? by taking as
lines the subsets {(x, s ° x +1); x €R} for s, t e R and the verticals {(xo, y); ¥ € R} for
xo¢ 0. It follows from general results (10, 2.12 and 7.17] that the corresponding
projective plane, which is obtained by adjoining a line A at infinity, is a compact
connected topologicai plane. ~

Furthermore Salzmann proves that the group of translatnons (el atxons whose axxa is
the line A at infinity) of this plane consists of the transformations

x,y)=>(x+n,y+t) withneZ, teR.
Using the identity
s5o(=x)=—(s50x), | (2)

which follows easily from the symmetry properties of q(x, v), we show that the
transformation

(x, y)—=(-x, ~y)

it a homology with centre (0, 0) and axis A: Indeed, it maps the p{oitit» (x, sex+1) to
(= x, ~ (e 2x}-1), which by (2) is equal to (—x, 5 ° (~—x)~1); 5o the line (x, s x +1)

with slope s through (0. ¢) is mapped onto the line with the same *!cpe s through
€, 1),
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; "‘f;wzth the translataon (ry)->(1 +x, y) one obtains another
with ‘axnsA namely

}mt (%, 0). :
e orbit ZXR of the centre (0 0) under the
usthe set of all centres of non-identical homologies with axis A
: cormatn or ,han one orbnt of the group of all elations with axis A.

| ‘l’repamﬁons ior the proof

In thns;sactzon, we study the stmcture of groups of elations and of groups of
homelog:es with fixed axis and centre, and the orbits of such groups. Most of the facts
collected here are:part of the folklore on the subject; nevertheless they cannot be
fcund ready to use in the hteramre

3 l Let 'Pbga clased smbg oup of the group of elations with axis A. Then the orbits of &
are closed in P\A and ho ueomorphtc to dﬁ

For the proof, we may use sequence argluments since P has a countable basis for its
topology[10, 7.10]. Let z € P\A, and assume that p € P\ A is an accumulation point of
the orbit ¢(z); then there is a sequence (¢, ) in @ with lim ¢,(z) = p. Since the line A
is compact, we may assume that the centres a, € A of the elations ¢, converge to
acA. Let z' be any point of P\A not contained ir. the lines zva, (neN)andzva
Jommg 2 to a, and to a. Since ¢,(z") may be constructed geometrically as

Wzvz)rA)v cp..(Z)) A (Z'v ay),
itis clear that @x(2’) converges to the pomt
e =(((zvz')AA)sz))A(z va).

As is shown in {6, Lemma 3.7, p. 264], one can therefore construct an axial
collineation ¢ with axis A mapping z to p and z' to p’. This axial collineation is
uniquely determined, and is the limit of the ¢, in the compact-open topology. Since
& is closed, ¢ is contained in @; therefore we have p € @(2), and the orbits of @ are
closed inP\A. Moreover, thiz argument proves the following: if, for a fixed z e P\A,
the images of z under a sequence of elations g, € B converge to p(z) for ¢ € &, then
every subsequence of (¢.) contains a sub-subsequence which converges to ¢, so that
¢ is in fact the limit of- the whole seguence {@,). This shows that the inverse of the
continuous bijective map ® - @(z):¢+>¢(z) is also continucus and therefore is a
homeomorphism.

3.2. Suppose that there ure two non-ideatical elations with axis A and with different
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uo.morpmc {v a vector group R".

[y ». Loy
¢ latinne
rABCARTBED

with axis A commute and have the same order, finite or infinite (se f mstam:e [S P
97 Theorem 4, 14“ ,

WSS W

This follows at once from the well-known basic fact that in this

D
=
<B
+3
-
-
Eed

3.3, Let & be a closed connected Lie subgroup of the group of elations wiﬁ a#is ii, and

let w #id be a homology with axis A whick normalizes @, Then the set thm‘; of

aw Ve w vVerre wwesew Trvaweran A TIWETE EERw RI T W

centres of the perspectivities in the coset Dw is the orbit ¢(z) of the centre z of o

Praaf. Either we have & = 0.--‘ forsome aec A or & con Inhmn \mth dnﬁpmpf

w=es L8330 > 22 Gj =~ S8sst =45 &= -- --——qv- TRWAS WERLAWE W

centres and is 2 vertor group by 3.2. In the latter case,d’ is the union of its
one-parameter subgroups. A one-parameter subgroup @, being a homomorphic
irzage of R, contains a dease subgroup which is locally cyclic (e.g. the image of Q< R)
so that any two of its elements have the same centre. By continuity, the same istrue
for all elements of @;. Thus, each one-parameter subgroup is contained in @, for
some a € A. This implies that the subgroups ®,; are connected. Furthermore, as a
consequence of the conjugation formula (1), they too are normalized by w.

Thus, for any a € A, the subgroup ¥ = @y,; shares the properties which were
required of @. We now prove 3(¥w)= ¥(z); the same conclusion for ¢ w:ll then
follow from @ =|_J,ea Ppa;. <

For ¢ ¢ ¥, the point ¢(z) is the centre of the conjugate tllan[t € YoW. Since 'P is
normalized by w, we have Yo V¥ = ¥¥u < Yo ; so ¥(z)c 8(Yw). Since the orbit
¥(z) is closed in P\A and homeomorphic to ¥ by 3.1, it remains to be shown that
3(¥w) is homeomorphic to ¥ as well. For then, it follows from the Brouwer
invariance theorem that ¥(z)=¥ is also open in 3(¥w)=V, so that indeed
V7 iz) = 3(¥w) because ¥ is connected.

In order to show 3(Ww)= ¥, let L =z v a and choose any point p e P\(L v A) (as
indicated in Fig. 2). The orbit of p’ = w(p) under ¥ is contained in the line M =p'v a,
because ¥ consists of elations with centre a. For ¢ € ¥, the line L, which passes

L Z{ w)
S )
N
\\\ .r\
/ Wlp°) =g wip)
4

.r.“i'!g. 2.
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through the centres of both :lr and w, is a fixed line of the homology ¢w and therefore

contains the centre 2 (Yw) of Y. Since the image yw(p) = ¢(p') lies on z(Yw) v p, it
follows that the orbit ¥ ( p') €M is obtained from §(¥w)< L by central projection
from L into M via p as pro;ectnon centre. This establishes a homeomorphism
between 3( !Pm) and the orbit ¥(p'), which is homeomorphnc to ¥ by 3.1.

3.4. Forz eP\A, let X be a closed subgroup of the group of homologies with axis A and
centre z. Then:
(1) Theconnected component of Z either is compact or has two ends ; in particular, it
either has non-tmnal compact connected subgroups, or is isomorphic to R, or trivial.
(i) If X is not compact, then a compact subset of P\A can be compressed into any
given neighbourhood of the cem‘re z by means of a suitable homclogy in 3.

For the ).roof, we com'dinatize the givzn plane with coordinates from a locally
ccmpact, connected topological ternary field K (see [10, § 7]) in such a way that A is
the line at infinity and z is the origiu of the coordinate system. It is well known and
easy to see that in affine coordinates over K. every homology with centre z and axis A
is ot the form

(x, y)=> (xs, ys)

with suitable s € K\{0} = K™. The elemen:s s € K™ corresponding to elements of 5
thus form a closed subgroup N of the multiplicative loop K™ of K, and N is
isomorphic to 2.

Therefore one may study N (and its ccnnected component N') instead of 5. In
order to prove that they are either compact or have two ends, we look at their
embeddings into the one-point compactification K = K u {00} of X.

If N is not compact, then 0 or o must be a cluster point of N, becausz N is closed in
K™= K\{0, }. In fact, both 0 and 0 are cluster points, since there are continuous
maps R-R which leave N invariant and exchange 0 and 0. For instance, the
mapping K ™= K which associates to each s € X * its multiplicat ve left inverse s
extends continuously to K by 0! =00 and 00! = 0, see Fig. 3. Thus, N u{0,}is a
two-point compactification of N. The same argument applies to N''.

Now assume that N'' has no non-trivial compact connected subgroups. By the
Malcev-Iwasawa theorem, N is then homeomorphic to a euclidean space R™. For
m =2, however, R™ does not admit a two-point compactification, as is well-known.
[Otherwise, the connected boundary of a large ball containing in its interior the
compact complement of two disjoint open neighbourhoods U; and U, of the two
ideal points would be decomposed by U, and U,.] Thus, N is homeomorphic to R
and therefore isomorphic to R, and (i) is proved.

(ii) is equivalent to the statement that if N is not compact, then for any given
compact subset C of the ternary field K and for any neighbourhood U of 0 in K there
is an element s € N such that Cs < U. Such an element may be found by choosing a
neighbourhood W of 0 with CW < U (this is possible since C + 3 = {0} = U and since
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{1,5)

{o.1) 's1.1)

(0,0} 1,0)
Fig. 3.

C is compaci), end by taking & € N n W; this intersection is nonvoid if N is not
compact, since then 0 is a cluster point of N.

An irnmediate corollary of 3.4() is

3.8, For z €P\,i, a non-trivial closed connected Lie s:ibgroup of the group of all
homologies witk axis A and centre z either contains involutions, or is isomorphic to R.

lestricting the: compressions of 3.4(ii) to certain submanifolds of P\A, we obtain:

3.6. Suppose that a locally euclidean subspace M of P\A is invariant, for someé z € M,
under a closed non-compact subgroup X of the group of all homalogses with axis A and
centre z. Then .M has trivial hemotopy groups. : :

Supplementn’y remsrk. Using a well-known theorem of M. Brown,[3]‘. we show
moreover that M is in fact a euclidean space R*. However, .~ what follows we may do
without this extra information.

Proof. Every element of £ induces a homeomorphism of the X-invariant subspace
M. Therefore by 3.4(ii) every compact subset of M may be compressed homeomor-
phiczlly into a given neighbourhood of z in M. By choosing this ncxghbourhood tote
hemeomorphic to a euclidean ball D* and by considering its inverse image under the
above compression: ! one sees that every compact subset of M has a neighbourhood

homeomeorphic to [0°. The triviality of the homotopy groups of W now follows at
Gnee. '
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. Farf hc,rmere, since M’ is the countable union ef compact subsets, it follows that we
epresant ‘M as the union of a monotone sequence of open k-balls. By Brown’s
theorem, M itself is an open k-ball.

Concemmg the: home omorphmm type of elation groups, we now can prove:

3. Let '@ be a closed connected Lie subgroup of the group of elations with axis A.
Then & is homeamorplﬂtc to a euclidean space R* provided one of the following
conditions holds:

@) For iome centre z¢: A, the normalizer of @ in the group of homologies with certre
z and axi; A is not campact

(n) The Jomt sgmce Pis of finite topological dimension.

Proo! To deal wuh cast: (i) we shall use 3.5 above. Let 3 denote the normalizer of &
in the | group of homolog ies with centre z and axis A. The orbit ®(z) is 2 -invariant; it
is homeomorphic to & (3.1) and therefore is a manifold. We now may conclude
directly by applymg, the supplementary remark of 3.6. If one wants to avoid this
strong version of 3.6, one may proceed as follows: 3.6 then tells only that & has trivial
homotopy groups. By the Malcev-Iwasawa theorem, @ is homeomorphic to the
product of a cuclidean space R* and a marzimal compact subgroup C. But C must be
trivial since non-trivial compact Lie groups always have some non-vanishing homo-
topy group.

In case (ii), we use Snith ﬂxed poini theory. The affine point space P\A is
contractible [10, 7.11]. Therefore, and since P\A is finite dimensional by assump-
tion, any involutory homeomorphism of P\A has a fixed point [14]. Consequently,
the elation group @, which acts freely on P\ A, cannot contain a compact connected
Lie group. Using again the Malcev-Iwasawa theorem, we conclude that @ is
homeomorphic to some 2%,

4. Proof of the theorem

We}dist‘in'guish several cases, of which the simpler ones are treated first. Frequent
use will be made of the fact that the connected component = of £, as well as the
elation group {2;4; and its connected component &, are closed normal subgroups
of 2.

L. If© = E # {id}, then either £ consists entirely of elations (so that 3\A = &), or we
are in one af the situations (iii) or (iv) of the theorem.

Proof. Since {2 Ias a countable basis, the index of the (open) connected component
Zin {2 is at most countable so by our assumption (2 is the union of at most countably
many cosets of @ = E If such a coset does not entirely consist of elations, thea by 3.3
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she certres of its elements form an orbit under . Therefore | B\is the'umdn‘éf at
.nost countably many &-orbits. By 3.1, these orbits are clesed m P’&A and
homeo morphic to 6. ‘

4.2, If & ={id}, then 3 is at most countable,

since ir this case {2 is discrete and therefore is at most countable (havmg a ccmn 'able
basis). : '

4.3, If dim £ =1 and @ # E, then 3 is a point.

Prooi. In this case, the connected Lie group E is a one-parameter group, that is, a
homorrorphic image of R. Since R contains the locally cyclic group Q as a dense
subgroup, all elements of = have the same centre 2z, which is not contained int A if
@ # = Since z is the only fixed point of = in P\A, and since 5'is a normal subgroup
of £, z is a fixed point (and therefore the centre) of each element in 2. Thus 3 ={z}.

In the special cases considered above, the theorem was nearly obvious. The
remair.ag generic case is more involved; at firet sight it evenseems astomshmg that it
may be covered by such a uniform resuit: :

4.4. Proposition. If dim = =2 and O ;¢ E, then 3 is compact and is the union of an
arbit ur.der @ and of the set 3(0) < A of all centres of elements ir &\{id}.

For the proof of 4.4, we study the one-parame:er subgroups of the connected Lie
group Z. They correspond to the one-dimensional :ubspaces of the Lie algebra £(E)
of I, therefore we consider the projective space P..7( E) of all these one-dimensional
subspaces. As we have already noted, all elemeats in a one-parameter group of
perspectivities have the same centre. Therefore one may define the centre map

{PL(E)»P

mapping each one-dimensional subspace of £(Z) onto the common centre of the
perspectivities in the corresponding one-parameter subgroup This map is continu-
aJus, since the exponential function and the map assigning the centre to each
perspectivity are continuus. The image 3" of Z, i.e. the set of ali centres be !ongmg to
non-identical perspectivities in one-parameter subgroups of (2, is therefore compact.
From the conjugation formula (1) in the introduction and the fact that the set of
one-parameter subgroups is conjugation-invariant, it follows that 3' is invariant
under {2,

Using our knowledge about the structure of homology groups, we now dnsunguxsh
two possible cases:

Case 4.4(a). = contains a reflection (i.e. a homology of order two);
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~if’tliis does not hoid, then by 3.5 e have

,Cm 4.4(b) For all centres z& A, either the homology group ). is discrete, or its
cannected cwrponem o zsomorphic to R

In the seoond case, whnch we take up ﬁrst since it involves the core ot the argument,
we knowin partlcular that all the homology groups {2, are at most one-dimensional.
This implies that the centre map { is injective on P#( "')\P.‘Z(G) It therefore induces
a continuous buectxon PL(E)\PL(O)-31\A, which, moreover, is open, since
PL(E) i IS compact 50 we have a homeomorphlsm

PL(E)\PL(O)=3"\A
In particular '3?\;5 isa manifold of dimension k, where
k =dim P%(E)=dim E-1.

Now consider a fixed centre z € 3*\A. From the definitior of 3' we know that {2,
contains a one-parameter subgroup and so is not discrete; therefore by the assump-
tion of case 4 4(b) the conuected component of £y is lsomorphlc to B. In particular
£, is not compact, By 3.6, the 2;,;-invariant manifold 8"\A is simply connected.
Therefore the complement of the unit sphere of £(@) ia the unit sph:re of £(&) is
-disconnected, since it is a two-fold covering space of P£(F)\P£(0) = 3"\A. But this
means

dim ® =dim E—-1=k.

Since 3'\A is @-inveriant, it contains a @ -orbit. By 3.1, this orbit is closed in 3hA
on the one hand; on the other hand, it is homeomorphic to & and therefore open in
the connected k-manifoid Sl\A by the Brouwer invariance theorem, because
k =dim 6. Consequently, this orbit fills the whole of 3'\A; in particular, it is an
ﬂ-mvar!ant '@-orbit. This situation is dealt with in the following lemma (which will
be re-used for the handﬁmg of the remammg case 4.4(a) and therefore starts from less
mformatnon)

4.5. Lemma, Suppose that for some z € P\A we have Z(z)=6(z) and En .1 #
{id}. Then 3=6(2)u3(O)= 3'; in particular, 3 is compact.

Proof. For fe T let 3 € @ be the elaiion with v (z) = £€(2). Since z=19" 1£(z) we
then have 9 ~'¢ € O, j; thus £ =6 - (F N {1,). By 3.3 we get 3(E\0) = 6(z), from
which it follows that the whole of £2 leaves @(z) invariant, since = is normal in £2.
From this, one may deduce as above that

N=0 O 3)
and therefOre‘by 3.3
3\A = 6(2).



Since 3'\A is a @-invariant subset, we gét«eveﬁ. et
!dbl\A G(Z)

By 3.2, either all elations in & have the same centre a € A or. 61' is
therefore the union of its one-parameter subgroups, so tha 1
infer fli4;= 6. We now liave obtained :

3'c3=(3\A)uB{%a)= (S\A)u8(8)=6(z)u8

so the lemma is proved.

"hus, in the case 4.4(b) our proposition 44is estabhshed by the;conclusxon, of the
lemma above. Sy '

'me remaining case 4.4(a), which is charactenzed by the presenoeof reﬂectxons in
=, may be settled quite comfortably by means of well-known information how to
generate elations from reflections. For instance, the following lemma tells us that in
this case, t0oo, we may apply Lemma 4.5: e

4.6. Lemma. Let A be a closed connected Lie subgmup of the ,group of ail ccmtinuous
collineations leavir.g the line A invariant, and consider the cann, ted cornpbnem e of
the group of elations in 4 with axis A. If A contains a reﬂectwn with‘axiS‘A amd cemre
2€ A, then 4(z) = 8(z).

Proof. If 4(z) = z, the lerama is trivial. Otherwise, the codimension d of the isotropy
subgroup 4. in 4 is potitive. By considering a local cross section of the fibering
m:4-+4/4, one obtain; a d-dimensional compact connected subset D'~A with
ide D such that the map D -»P\A .6 — §(2) is injective. ‘

Now let . be a reflection with axis A and centre z, and & € D. Then 8&5, is a
rcﬂecnon with the sam: axis and with centre §(z); thereiore the ‘ D-4:
585", too, is injective. The image J of this map is eonnected" ’nd
d= dxm D, since D is oompact It is well known that] "t =={8c.8

Brouwer invariance theorem zmplles that w(&) is open in A/A “ .‘Bﬁt .ar(d?) is also
closed in Aa/ 4, beuause it 1s the inverse image of the orbxt 9(2) under the contmuous

In the case 4.4(a), we now apply this lemma putting A """ By hypothesns, )
contains 2 reflection with axis A. For the centre z¢ A of this rﬂﬂectnon, Lemma 4.6
tells us that £(z) = @(z). It follows from Lemma 4.5 that 3= 8{z) U 8 @) and that

2} is compact. This proves proposition 4.4. Thus the main Theorem 1.1, ‘which is a
condensation of 4,1-4.4, is established. :
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