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On the Kernel and the Nuclei of 8-Dimensional
Locally Compact Quasifields

By

Taomas BocEANAN and HeErmMany Hinn

1. Introduction. In this note we determine the nuclei of 8-dimensional real non-
associative division algebras and also study the corresponding substructures of
8-dimensional locally compact quasifields.

1.1. The left, middle or right nucleus of a (not necessarily associative) division
algebra D is defined to be the (skew) subfield consisting of those elements which
associate with all elements of D from the left, middle or right respectively (cf. 1.3
below). A consequence of the theorems of this paper is the

Corollary. If D is an 8-dimensional real division algebra with a wnit, then the left
nucleus, the middle nucleus and the right nucleus of D consist solely of the real scalar
multiples of the unit element. In particular, all nuclei of D are isomorphic to the field R
of real numbers.

In contrast, there exist real division algebras of dimension four with nuclei iso-
morphic to the complex field C — examples are contained in [9] — and, of course,
all three nuclei of the quaternion field H are H itself.

Actually, the corollary itself can be established directly and easily by applying
a result in algebraic topology due to A. Borel and J.-P. Serre [2, 17.1]. (See the
proof of Theorem 1 and the discussion in section 1.4 below for details.) The Borel-
Serre result, however, cannot be directly applied to determine the nuclei of more
general structures. Moreover, the proof of the Borel-Serre result as given in [2]
makes use of heavy machinery of algebraic topology, and we can establish our
corollary with more elementary techniques which involve only the homotopy theory
of classical groups as expounded in Steenrod [18]. This is essentially done in the
proof of Theorem 2 below.

Our motivation for the study of the kernel and the nuclei in division algebras and
quasifields was the fact that these substructures are related to certain groups of
axial collineations in the affine planes coordinatized by these domains. For the
details of this relationship we refer the reader to Dembowski [5, 3.1.28 and 3.1.30].

1.2. In [14, § 7] H. Salzmann describes some of the basic properties of a locally
compact quasifield @ of dimension n (n = 1). The structure of @ can be characterized
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as being the real vector space R” together with a continuous multiplication
Rz X R? - R%: (x,y)—>z0y

which satisfies the following axioms:

(Q1) The zero vector 0 € R is a zero for o.

(Q2) There exists a two-sided unit 1 for o.

(Q8) For every a,becR” with @ ==b the map R*—>R?: z+>ao0z —box is
linear and nonsingular.

{Q4) TForeverya, c e R”with @ == 0 there exists a solution to the equationyoa=¢
{(which by axiom (Q 3) is unique); this solution is required to depend con-
tinuously on the pair (e, ¢).

As noted in {14, 7.12], J. F. Adams’s theorem on the Hopf invariant implies that
the only possible dimensions of such quasifields are 1, 2, 4 and 8. An #n-dimensional
real division algebra is just an n-dimensional locally compact quasifield with both
distributive laws. Section 2 below contains examples of 8-dimensional locally
compact quasifields which are not division algebras.

The kernel K of @ is defined to be the set of elements which associate and distribute
with all elements of @ from the right:

(xoy)oa=zo(yoa) and}

K= {GERn] /\Z, yERn: (x_'_y)oa:xoa-l-yoa

In the special case of a division algebra the kernel coincides with the right nucleus.

It is easily verfied that the kernelis a topological field with respect to vector space
addition and the multiplication o. By continuity the real scalar multiples of the unit
element form a central subfield of X isomorphic to R. Thus K may be considered as
a real associative division algebra. By a well-known theorem of Frobenius K is
isomorphic to one of the topological fields R, C or H. In the 8-dimensional case we
prove more specifically: '

Theorem 1. The kernel of an 8-dimensional locally compact quasifield is isomorphic
o R.

1.3. The left nucleus N; and the middle nucleus N, of @ are defined as in a division
algebra, namely as

N,={acR?|\z,ycR®: (aoz)oy=ao(zoy)},
Ny={acRr| \z,ycR": (zoa)oy=2ao(aoy)}.

The nuclei N; and N, are not necessarily closed under addition. (See the examples
in section 2 below.) However, N} = N;\{0} and N} = N,\{0} are topological
groups with respect to the multiplication o (the verification of this fact is left to the
reader). By identifying each element ¢ € N;* with the linear map R? > R*: x+—aox
we obtain an isomorphism of topological groups mapping N} onto a subgroup of
GL(n, R); this subgroup is closed because of axiom (Q 2) and because of the continuity
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of o. Analogous statements hold for the multiplicative group N of the middle
nucleus. Consequently, N and N are both Lie groups. We shall prove

Theorem 2. If N isthe multiplicative group of the left nucleus of an 8-dimensional
locally compact quasifield, then N is either 1) finite, 2) discrete and isomorphic to a
semidirect product of a finite normal subgroup with Z, or 3) isomorphic as a topological
group to the direct product of a finite group and the multiplicative group Rpos of the
positive real numbers. The elements a € N of infinite order induce linear maps x+>aox
with determinant different from 1. These assertions hold for the multiplicative group N X
of the middle nucleus as well.

In all cases N (and N ) contains a Jargest compact subgroup F, and this subgroup
is actually finite. By left multiplication # can be considered as a finite fixed point
free linear group on R8. Up to equivalence a complete list of all such groups can be
found in Wolf [20, p. 225]. Further restrictions on F can be obtained by applying
Folkman’s results [6] on equivariant maps of spheres into the classical groups
(cf. [3]). However, a complete determination of ¥ using this approach seems to be
inextricably tied up with the unsolved problem of determining the homotopy class
of the map A: RO\ {0} — GL(8, R): a > A, with Az(x) = ¢ o x which is associated
with the quasifield multiplication o. If one assumes that A4 is homotopic to the
corresponding map of the classical Cayley algebra O or its opposite algebra QP as
is generally conjectured, Folkman’s results can be used to show that F has at most
two elements.

1.4. It is immediate that the Corollary in 1.1 above is a consequence of Theorems 1
and 2. Actually, this Corollary follows from each of them separately. In fact, by
reversing the order of the factors in the multiplication of a division algebra D (that
is by passing from D to the opposite algebra DoP) the roles of the left nucleus and
the kernel are interchanged; and a similar switch involving the left and middle
nuclei is obtained by transposition (see [4, § 2] and [13, Prop. 4 and Prop. 5(3)]).

1.5. A weak nucleus W of a division algebra D is a (skew) subfield of D such
that the equation a o (b oc) = (a 0 b) o ¢ holds provided two of the three elements
a,b,¢ of D lie in W. For example, any two-dimensional subfield of the Cayley
algebra © is a maximal weak nucleus of Q.

If D is a real n-dimensional division algebra, then the topological closure in D
(= R?") of a weak nucleus is obviously a weak nucleus too. The following theorem
may be of algebraic interest:

Theorem 3. A topologically closed weak nucleus of an 8-dimensional real division
algebra is isomorphic either to R or to C.

2. Examples. The following examples illustrate some of the diverse forms taken on
by nuclei of 8-dimensional locally compact quasifields.
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2.1. In what follows, we identify the Cayley numbers O with the real vector
space RS. Ordinary multiplication and inversion are understood to be those of 0.

Let @: Rpos — O be a fixed continuous map from the positive reals into O such
that ¢ (1) is the unit of O and | @(r)| = r for all 7 € Rpos. We define a new multiplica-
tion o on R8 which depends on ¢ by

o _{((a'¢(lal)‘1)w)-¢(lal) for a=0,
por= 0 for a=0.

The reader can easily verify that o satisfies the axioms (Q 1) through (Q 4). Note
that o is also norm preserving, i.e. |@ o z| = |a| | z|. In general with respect to o and
vector addition only one distributive law holds. The definition of o is analogous to
the multiplication in 4-dimensional near fields ([11], [19]).

To describe the nuclei NV; and N, of the quasifields with these multiplications we
distinguish three cases.

Case 1: ¢ is a multiplicative homomorphism.
Then

@(r)?
r

N)f( = :‘:¢(Rpos) a/nd N,i( ={:E re Rpos}.

For example, if ¢ is the homomorphism ¢(r) = r ¢**'1°¢7 with a fixed real « == 0,
then neither N; nor N, are the one-dimensional subspace spanned by the unit, nor
iS .ZV)b = N” .

Case2: @ is not multiplicative, but the image of ¢ is contained in a two-dimensional
subfield of O.
Then either the set

J={r>1|AseRpos: @(rs) = p(r) p(s)}
is empty, in which case

Ny =Ny ={,-1},
or J has a smallest element ro; then

| 2\n
N¥ = {+ p(ro)*| neZ} and N;z{i(ﬂg)__) .

ez}.

Case 3: The image of ¢ is not contained in a two-dimensional subfield of O.
Then either the set

J O pl(R) = {r>1|AseRpos: ¢(rs)= L7 -¢(s)}
is empty, in which case

NY=Ny={1,—1},
or J N @~1(R) has a smallest element r;; then

Ni=Nf={tr}|neZ}.
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The proofs consist of arithmetical calculations in @ using the Moufang identities.
We shall not reproduce them here.

2.2. Further examples of 8-dimensional locally compact quasifields can be obtained
as follows. Consider the affine plane over a real 8-dimensional division algebra
different from the alternative field Q. Choose a frame of reference for this plane with
coordinate axes nonparallel to the original ones. The coordinate domain with respect
to this frame is an 8-dimensional locally compact quasifield ([14, § 7]). Explicit
formulae for this change of coordinates are given in Skornyakov [16]. Both the left
and middle nuclei of a quasifield obtained in this fashion consist of 0 and 1 only,
since any nontrivial element of either nucleus would induce a collineation which
would move the shears direction, contradicting a well-known theorem of Skornyakov
([17], see also [1, Hilfssatz 4 and 5] and [10, Theorem 6.16 p. 140]) together with
the fact that O is the only 8-dimensional alternative field over R ([14, 7.27]).

Note that the examples of 2.1 above always have —1 in their nuclei and thus
are not of the type we have just described.

3. Proofs of the theorems.

Proof of Theorem 1. Let us assume the theorem is false. Then there is an
8-dimensional locally compact quasifield ¢ whose kernel K is isomorphic to C or
to H. In both cases C can be identified with a two-dimensional subfield of K, and
thus the vector space underlying @ may be regarded as a right complex 4-dimensional
vector space (with respect to operations induced from ). By definition of the kernel,
for any fixed @ € @Q\{0} (= C4\{0}) the map

de: Q@ —=>Q: x—>aocx

is linear with respect to this vector space structure, and 4, can be regarded as an
element of GL (4, C). We thus obtain a map

A CAN\{0} ~GL(4,C): a>14.

We shall assume that the unit element 1 of @ is contained in the unit sphere §7 of C4.
Evaluation at the unit gives 15(1) = @ 0 1 = a for all a. In other words, the restric-
tion of 1 to 87 would be a cross section for the map

_ v
ly@)]

The theorem is thus proved by contradiction since actually (as a consequence of
[2, 17.1]) this map does not, in fact, have a cross section. Indeed, choose an ordered
orthonormal basis of €4 having 1 as its first vector, and represent elements of
GL (4, C) by matrices with respect to this ordered basis. The Gram-Schmidt ortho-
gonalization process yields for every 4 € GL {4, C) a decomposition 4 = U(4) - D(4)
with U(4) unitary and D(4) upper triangular with positive real diagonal entries
so that, in particular, D{4)en~1(1). Also U(4) and D(A4) depend continuocusly
on A. The map 4 — U(A) is then a retraction ¢: GL (4, C) — U (4, C) which respects

7: GL(4,C)—87: z(y)
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the fibers of . Any cross section of & would by composition with ¢ yield a cross
section of the fibration =|U (4, C): U(4, C) = 87. But by [2, 17.1] such a cross
section does not exist. []

Proof of Theorem 2. a) It suffices to prove the statement for IV;, since for
any 8-dimensional locally compact quasifield @ there is another 8-dimensional
locally compact quasifield whose left nucleus is isomorphic to the middle nucleus
of Q; this may be proved with [4] analogously as in [13, Prop. 4] using the transpose
of the translation plane J coordinatized by @ (cf. [4, § 2]). Another quasifield with
this property is obtained by recoordinatizing 7~ with the roles of the first and second
coordinate axis interchanged ([5, 3.1.30], [16], [14, § 7).

b) To prove the statement for N;°, consider the map

A: RA\{0} >~GL@B,R): ar>1g
where
Aa(x) =aozx,

and its composition
A . RS\{O} - Rpogﬁ a—>det Za

with the determinant, where Rypos denotes the multiplicative group of the positive
reals. From the definition of N, it is immediate that by restriction 4 induces a
continuous group homomorphism

6: .N;_( "—>'Rpos.

By [8, 2.3] and since N, is closed in R8, we have that -1[r1, 72] is compact for all
0 < r1 << r2. In particular,

F=5-1(1)

is a compact normal subgroup of N} ; and since any nontrivial subgroup of Rpos is
cyclic or dense, the image

H=206(N%)

of § is either 1) all of Rpos, 2) discrete and isomorphic to Z, or 3) trivial.

Therefore all that remains to be shown is that F is finite. For then it is easily seen
that there is a closed subgroup H# of N} which is mapped isomorphically onto H
by 8. In fact, if H o~ Rpes, take H to be the connected component of 1 in N}, which
by the finiteness of F' is a covering group via ¢ of the simply connected group Rpos
and thus is isomorphic to Rpes. If H o Z, take H to be the subgroup of N generated
by an element @ such that §(e) generates H. Thus N} will be a semidirect product
of the normal subgroup F and the closed subgroup H isomorphic to either Rpos, Zor {1}.

¢) We now prove that the compact subgroup F is finite. Since N3 is a Lie group,
it suffices to show that N} does not contain a torus. Proceeding indirectly, we
assume that N contains a one-dimensional torus group T'. The restriction of 1 to
T defines a fixed point free linear representation of 7' on R8. We may identify RS
as a real vector space with C4 in such a way that 1(T) is the group @ of dilatations
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by complex numbers of norm 1. We let & C GL(8, R) act on GL(8, R) by left trans-
lation. Then by the definition of N (2 T) the restriction of A to the unit sphere S7
is @-equivariant; and, of course,

7: GLB,R)—=87: y—>

is @-equivariant too. Therefore there are induced maps /' and =’ between the orbit
spaces 87/0 = P3(C) and GL(8, R)/@ as indicated in the commutative diagram

87—t GL(8,R) —=— &7
{ | 1

| '
P3(C)—5— GL(8, R)/@ —— P5(C) .

v

Here v and 7 denote the canonical projections. Since z 0 4 = id, we haven’ 0 2’ =id
as well; in other words, A’ is a cross section for &’. Parts d) and e) below are now
devoted to showing that, in fact, a cross section for =" does not exist. This contradic-
tion will then prove the theorem.

d) The nonexistence of a cross section for 7' may be seen most quickly by looking
at the cohomology groups over the rationals Q of the spaces involved. In fact, we
have H4(P3(C), Q) =~ Q but H4(GL(8, R)/O, Q) = 0 ([7, p. 90] and [15], [12]).

e) A different proof of this fact making use of the lower homotopy groups of the
orbit spaces is the following. We claim first that there exist maps #, v, y making the
diagram

83 —*——GL(8, R)

() 7 lr
GL(8,R)/©

S2

X

commutative and such that y is not null-homotopic.
Indeed, regard C as a subfield of H, and identify R8 and H?2 as real vector spaces
in such a way that @ is the subgroup of GL(2, H) C GL(8, R) given by

o= )

Furthermore, identify 83 with the quaternions of norm 1, and define

zeC, |2] =1}.

p: 8 >GL(2, H)CGLES,R): u»(“ u)

u cos? sind\/1 cos? — sind
ur= 1/\— sind cos?d )\ sin & cos &

(0 £ ¥ < n/2) where cos ¢ and sin ¥ are considered as quaternions, p is homotopie to

uz
)

Via
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which is not null-homotopic because

()

is a generator of 713 (GL (8, R)) = Z ([18, 23.6 and 16.7]). Now t o  factors through the
orbit space of §% under the group {H — H: z+> 2z |2€C, |z]| = 1}, and this orbit
space is P;(C) = 82. We define # and y to be the canonical projection (the Hopf
map) and the map induced by vy respectively.

We now use the maps in diagram (%) to show that a cross section

A P3(C)—GL(8,R)/O
for 2’ does not exist. From the exact homotopy sequence of v: §7 - 87/@ = P3(C) we
have 712 (P3(C)) 22 Z; from the exact homotopy sequence of 7: GL(8, R) —~GL(8,R)/ O
we have @2 (GL(8, R)/0) =~ Z, since 72 (GL (8, R)) is trivial ([18, 22.10]). Consequently,
a cross section 4’ for #’ would induce an isomorphism

2 73(P3(C)) 72 (GL (8, R)/6) .

Let o: 82 — P3(C) be a representative of the homotopy class 2;‘1 [¢] with ¥ as in
diagram (%). Then in 73(GL(8, R)/@) we have

lyl=[gon]=[Voocon]= Z;[aon] .
The left-hand side of this equation is nonzero since [y] € w3(GL(8, R)) is nonzero by

construction and since 7,: 73(GL(8, R)) — n3(GL(8, R)/O) is an isomorphism. The
right-hand side, however, is zero since [¢ 0 7] € 713 (P3(C)) = 0, a contradiction. [J

Proof of Theorem 3. A closed weak nucleus of an 8-dimensional real division
algebra contains the scalar multiples of the unit (since these form the smallest closed
subfield of the algebra) and is therefore isomorphic to R, C or H by the Frobenius
theorem. We must exclude the quaternions from this list. Proceeding indirectly, we
assume that the 8-dimensional real division algebra D has H as a closed weak nucleus.
Pick any d € D\H. Then the underlying vector space of Dis the direct sum H + Hod;
and for all w,z,y e H we have

uo(r+yod)=uzx+ (uy)od.
Thus the restriction of the map
A: D\{0} >GL(8,R): a4, with A,(x) =aoz
to the 3-sphere 83 consisting of the elements of H C D of unit norm is described by

Ay = (“ u)eGL(2, H)CGLB,R) (ueH, |u|=1)

and therefore represents twice a generator of 73 (GL (8, R)) == Z ([18, 23.6]), cf. part e
of the proof of Theorem 2. In particular, 1| $2 would not be null-homotopic. On the
other hand, 1|82 must be null-homotopic as it extends to D\{0} and 73 (D\{0}) =~
=2 73 (87) = 0. This contradiction proves the theorem. [
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