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On the Kernel and the Nuclei of 8-Dimensional 
Locally Compact Quasifields 

By 

THO~S B~rC~A~v and HER~AN~r HXHL 

1. Introduction. In  this note we determine the nuclei of 8-dimensional real non- 
associative division algebras and also s tudy the corresponding substructures of 
8-dimensional locally compact quasifields. 

1.1. The le/t, middle or right nucleus of a (not necessarily associative) division 
algebra D is defined to be the (skew) subfield consisting of those elements which 
associate with all elements of D from the left, middle or right respectively (cf. 1.3 
below). A consequence of the theorems of this paper is the 

Coronary. I f  D is an 8-dimeusional real division algebra with a unit, then the le/t 
nucleus, the middle nucleus and the right nucleus o / D  consist solely o] the real scalar 
multiples o/the unit element. In  particular, all nuclei o / D  are isomorphic to the/ield 
o/real numbers. 

In  contrast, there exist real division algebras of dimension four with nuclei iso- 
morphic to the complex field C - -  examples are contained in [9] - -  and, of  course, 
all three nuclei of the quaternion field H are H itself. 

Actually, the corollary itseff can be established directly and easily by  applying 
a result in algebraic topology due to A. Bore1 and J.-P.  Serre [2, 17.1]. (See the 
proof of Theorem i and the discussion in section 1.4 below for details.) The Borel- 
Serre result, however, cannot be directly applied to determine the nuclei of more 
general structures. Moreover, the proof of  the Borel-Serre result as given in [2J 
makes use of heavy machinery of algebraic topology, and we can establish our 
corollary with more elementary techniques which involve only the homotopy theory 
of classical groups as expounded in Steenrod [18]. This is essentially done in the 
proof of Theorem 2 below. 

Our motivat ion for the s tudy of the kernel and the nuclei in division algebras and 
quasifields was the fact tha t  these substructures are related to certain groups of 
axial eollineations in the affine planes coordinatized by  these domains. For the 
details of this relationshi p we refer the reader to Dembowski [5, 3.1.28 and 3.1.30]. 

1.2. In  [14, w 7] H. Salzmarm describes some of the basic properties of a locally 
compact quasi/ield Q o/dimension n (n > 1). The structure of Q can be characterized 
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as being the real vector  space Rn together with a continuous multiplication 

Rn X IRn --> [~n: (x, y) ~-> x o y 

which satisfies the following axioms: 

(Q 1) The zero vector 0 e R n is a zero for o. 

(Q 2) There exists a two-sided unit  1 for o. 

(Q3) ]?or every a, b e ~ n  with a ~ = b  the map R n - ~ R n :  x ~ > a o x - - b o x  is 
linear and nonsingular. 

(Q 4) ]?or every a, c e R n with a ~= 0 there exists a solution to the equation y o a = c 
(which by  axiom (Q 3) is unique); this solution is required to depend con- 
tinuously on the pair (a, c). 

As noted in [14, 7.12], J .  ]?. Adams's  theorem on the Hopf  invariant implies tha t  
the only possible dimensions of such quasifields are 1, 2, 4 and 8. An n-dimensional 
real division algebra is just an n-dimensional locally compact quasifield with both 
distributive laws. Section 2 below contains examples of  8-dimensional locally 
compact quasifields which are not division algebras. 

The kernel K of Q is defined to be the set of elements which associate and distribute 
with all elements of Q from the right: 

(xoy) o a = x o ( y o a )  ana / 
K =  a e R n l A x ,  yeNn:  ( x ~ y )  o a = x o a ~ y o a  j .  

In  the special case of a division algebra the kernel coincides with the right nucleus. 
I t  is easily retried tha t  the kernel is a topolo~cal  field with respect to vector space 

addition and the multiplication c. By  continuity the real scalar multiples of the unit  
element form a central subfield of K isomorphic to R. Thus K may  be considered as 
a real associative division algebra. By  a well-known theorem of ]?robenius K is 
isomorphic to one of the topolo~cal  fields R, C or H. I n  the 8-dimensional case we 
prove more specifically: 

Theorem 1. The kernel o/an 8-dimensional locally compact quasi/ield is isomorphic 
to R. 

1.3. The le]t nucleus N~ and the middle nucleus N~ of Q are defined as in a division 
algebra, namely as 

)v~ = {ae~C.lAx, y e ~ :  (aox) o y = a o ( x o y ) } ,  
N ~ =  {ae•nlAx,  yeRn:  (xoa) oy----xo(aoy)}. 

The nuclei 2V~ and N~ are not necessarily closed under addition. (See the examples 
iu section 2 below.) However, 2V~. x ----NA{0} and N~ = Na\{0} are topological 
groups with respect to the multiplication o (the verification of this fact is left to the 
reader). By  identifying each element a e 2V; x with the linear map  ~n _~ Rn : x ~-> a o x 
we obtain an isomorphism of topolo~cal  ~oToups mapping ~V~ onto a subgroup of 
GL (n, R) ; this subgroup is closed because of axiom (Q 2) and because of the continuity 
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of o. Analogous statements hold for the multiplicative group 2V x of the middle 
nucleus. Consequently,/V~. x and N~ are both Lie groups. We shall prove 

Theorem 2. I / N ~  is the multiplicative group o/ the le/t nucleus o / a n  8.dimensional 
locally compact quasi/ield, then N~ is either 1)/inite, 2) discrete and isomorphic to a 
semidirect product o] a ]inite normal subgroup with 2_, or 3) isomorphic as a topological 
group to the direct product o / a / i n i t e  group and the multiplicative group ~pos o / the  
positive real numbers. The elements a e N~  o/in/inite order induce linear maps x ~->a o x 
with determinant di//erent /rom 1. These assertions hold/or the multiplicative group N~ 
o/the middle nucleus as well. 

In all cases Nff (and Nff ) contains a largest compact subgroup F,  and this subgroup 
is actually finite. By left multiplication F can be considered as a finite fixed point 
free linear group on ~s. Up to equivalence a complete list of all such groups can be 
found in Wolf [20, p. 225]. l~urther restrictions on F can be obtained by  applying 
~olkman's results [6] on equivariant maps of spheres into the classical groups 
(cf. [3]). However, a complete determination of F using this approach seems to be 
inextricably tied up with the unsolved problem of determining the homotopy class 
of the map ~: Rs\(0}--->GL(8, R): a ~-~ )~ with ~a(x) ----a o x which is associated 
with the quasifield multiplication o. I f  one assumes that  ~ is homotopic to the 
corresponding map of the classical Cayley algebra O or its opposite algebra OoP as 
is generally conjectured, Folkman's results can be used to show that  F has at  most 
two elements. 

1.4. I t  is immediate tha t  the Corollary in 1.1 above is a consequence of Theorems 1 
and 2. Actually, this Corollary follows from each of them separately. In  fact, by  
reversing the order of the factors in the multiplication of a division algebra D (that 
is by  passing from D to the opposite algebra Dop) the roles of the left nucleus and 
the kernel are interchanged; and a similar switch involving the left and middle 
nuclei is obtained by transposition (see [4, w 2] and [13, Prop. 4 and Prop. 5(3)]). 

1.5. A weak nucleus W of a division algebra D is a (skew) subfield of D such 
tha t  the equation a o (b o c) ~-- (a o b) o c holds provided two of the three elements 
a, b, c of D lie in W. For  example, any two-dimensional subfield of the Cayley 
algebra O is a maximal weak nucleus of O. 

I f  D is a real n-dimensional division algebra, then the topological closure in D 
(-~ R n) of a weak nucleus is obviously a weak nucleus too. The following theorem 
may be of algebraic interest: 

Theorem 3. A topologically closed wealc nucleus o/ an 8-dimensional real division 
algebra is isomorphic either to R or to C. 

2. Examples. The following examples illustrate some of the diverse forms taken on 
by nuclei of 8-dimensional locally compact quasifields. 
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2.1. I n  w h a t  follows, we ident i fy  the  Cayley numbers  O with  the  real vector  
space R s. Ord inary  mul t ip l ica t ion  and  inversion are unders tood to be those of  O.  

Le t  q0: Npos -+  O be a fixed cont inuous m a p  f rom the  posit ive reals into O such 
t h a t  ~ (1) is the  un i t  of  O and  ] ~ (r) I ---- r for all r e Rpos. W e  define a new mult ipl ica-  
t ion  o on ~8 which depends on 9 b y  

{ ( ( a . 9 ( l a ] ) - X l x ) . ~ ( l a l )  for  a ~ O ,  aox= 0 for  a = 0 .  

The  reader  can easily ver i fy  t h a t  o satisfies the  ax ioms (Q 1) th rough  (Q 4). Note  
t h a t  o is also no rm preserving,  i.e. l a o x [ = l a I Ix 1" I n  general with respect to o and 
vector  addi t ion  only  one d is t r ibut ive  law holds. The  definition of  o is analogous to  
the  mul t ip l ica t ion in 4-dimensional  near  fields ([11], [19]). 

To describe the  nuclei N~ and Aru of  the  quasifields wi th  these mult ipl icat ions we 
distinguish three  cases. 

C a s e  1 : q0 is a mul t ip l ica t ive  homomorph i sm.  
Then 

N ; . x = •  and  N~ ={• qz(r)2 [regCP~ 
For  example ,  i f  ~ is the  h o m o m o r p h i s m  9 (r) ---- r e ~ ' i~  wi th  a fixed real ~ :4= 0, 
then  ne i ther  zY~ nor  IY a are the  one-dimensional  subspace spanned b y  the  unit ,  nor  
is ~Y~ = / V a .  

C a s e 2: 9 is no t  mult ipl icat ive,  bu t  the  image of  9 is contained in a two-dimensional  
subfield of  O. 

Then  ei ther  the  set  

J = {r > 1[ A s e  R~o~: 9(rs) = 9(r) ~(s)} 

is empty ,  in which case 

N ~  = z r  = { i ,  - 1 } ,  

or J has a smallest  e lement  r0; t hen  

N ~  = { •  ~(r0) n [ n e Z }  and N~ =l• \9(r~ I 
C a s e  3: The  image  of  ~ is no t  conta ined in a two-dimensional  subfield of  O. 
Then ei ther  the  set  

J c ~  ~ -z (R)  - -  {r > 1[ A s e R p o s :  9(rs)----  4- r . ~ ( s ) }  

is empty ,  in which case 

~ = N ;  = {1 ,  - 1 } ,  

or J (~ 9 -1 (N) has  a smallest  e lement  r l ;  then  

- • e z / }  ~V~ - ~L - -  { •  ~1  ~ 
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The proofs consist of arithmetical calculations in O using the Moufang identities. 
We shall not reproduce them here. 

2.2. Further  examples of 8-dimensional locally compact  quasffields can be obtained 
as follows. Consider the affme plane over a real 8-dimensional division algebra 
different from the alternative field O. Choose a frame of reference for this plane with 
coordinate axes nonparallel to the ori~nal  ones. The coordinate domain with respect 
to this frame is an 8-dimensional locally compact quasifield ([14, w 7]). Explicit  
formulae for this change of coordinates are given in Skornyakov [16]. Both the left 
and middle nuclei of a quasifield obtained in this fashion consist of  0 and 1 only, 
since any  nontrivial element of either nucleus would induce a collineation which 
would move the shears direction, contradicting a well-known theorem of Skornyakov 
([17], see also [1, Hflfssatz 4 and 5] and [10, Theorem 6.16 p. 140]) together with 
the fact tha t  O is the only 8-dimensional alternative field over ~ ([14, 7.27]). 

lkTote tha t  the examples of 2.1 above always have - - 1  in their nuclei and thus 
are not of the type we have just described. 

3. Proofs of the theorems. 

P r o o f  o f  T h e o r e m  1. Let  us assume the theorem is false. Then there is an 
8-dimensional locally compact quasifield Q whose kernel K is isomorphic to C or 
to H. In  both cases C can be identified with a two-dimensional subfield of K, and 
thus the vector space underlying Q may  be regarded as a right complex 4-dimensional 
vector space (with respect to operations induced from Q). By definition of the kernel, 
for any  fixed a eQ \ (0}  ( - -  C4\(0}) the map 

,~a: Q-+Q: x.~>aox 

is linear with respect to this vector space structure, and ~a can be regarded as an 
element of GZ (4, C). We thus obtain a map 

,~: C4\(0~ .-~GL(4, C): a~-> )~a. 

We shall assume tha t  the unit element 1 of Q is contained in the unit sphere S 7 of C 4. 
Evaluat ion at  the unit  ~ves  )La(1) ~-- a o 1 ~-- a for all a. In  other words, the restric- 
tion of ~ to S 7 would be a cross section for the map 

Y(1) 
~: GL(4, C)-->$7: g(7) - -  17(1)1 

The theorem is thus proved by  contradiction since actually (as a consequence of 
[2, 17.1]) this map  does not, in fact, have a cross section. Indeed, choose an ordered 
orthonormal basis of C 4 having 1 as its first vector, and represent elements of 
GL (4, C) by  matrices with respect to this ordered basis. The Gram-Schmidt  ortho- 
gonalization process yields for every A ~ GL(4, C) a decomposition A ~ U(A).  D(A) 
with U(A) unitary and D(A) upper triangular with positive real diagonal entries 
so that ,  in particular, D ( A ) e ~ - z ( i ) .  Also U(A) and D(A) depend continuously 
on A. The map A ~-> U(A) is then a retraction ~ : GL (4, C) --> U (4, C) which respects 
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the fibers of ~r. Any cross section of ~r would by  composition with Q yield a cross 
section of the fibration ~r I U(4, C): U(4, C)-->S 7. But  by  [2, 17.1] such a cross 
section does not  exist. []  

P r o o f  o f  T h e o r e m  2. a) I t  suffices to prove the statement for 2V~, since for 
any 8-dimensional locally compact quasifield Q there is another 8-dimensional 
locally compact quasifield whose left nucleus is isomorphic to the middle nucleus 
of Q; this may  be proved with [4] analogously as in [13, Prop. 4] using the transpose 
of the translation plane 3-  coordinatized by Q (cf. [4, w 2]). Another quasifield with 
this property is obtained by  recoordinatizing 3-  with the roles of the first and second 
coordinate axis interchanged ([5, 3.1.30], [16], [14, w 7]). 

b) To prove the statement for i v y ,  consider the map 

~: ~s\{0}-->GL(8,R):  a~->,ka 
where 

k~(x)  = a o x ,  

and its composition 

zJ : RS\{0} --> Rpos : a ~-> det ~a 

with the determinant, where ~pos denotes the multiplicative group of the positive 
reals. From the definition of hr~ it is immediate tha t  by  restriction A induces a 
continuous group homomorphism 

~: lV~ -* R,os. 

By  [8, 2.3] and since 1V~ is closed in R s, we have that  ~-1 [rl, r2] is compact for all 
0 < rl < r2. In  particular, 

F = ~-~ (1 )  

is a compact normal subgroup o f /Vf  ; and since any nontrivial subgroup of Rpos is 
cyclic or dense, the image 

H = ~(2r 

of ~ is either I) all of Rpos, 2) discrete and isomorphic to 7, or 3) trivial. 
Therefore all that remains to be shown is that F is finite. For then it is easily seen 

tha t  there is a closed subgroup /~ of N~ < which is mapped isomorphically onto H 
by 8. In fact, ff H ~ Rpos, t ake /~  to be the connected component of 1 in iV~, which 
by  the finiteness of F is a covering group via 8 of the simply connected group ~pos 
and thus is isomorphic to Rpos. I f H  ---~ 7/, take/~ to be the subgroup ofiV~ generated 
by  an element a such that  6 (a) generates H. Thus N~ will be a semidirect product 
of the normal subgroup F and the closed subgroup/~ isomorphic to either Rpos, Z or { 1 }. 

c) We now prove tha t  the compact subgroup/~ is finite. Since/V~ is a Lie group, 
it  suffices to show that  /V~ does not contain a toms. Proceeding indirectly, we 
assume that  iV~ contains a one-dimensional terus group T. The restriction of ~ to 
T defines a fixed point free linear representation of T on ~s. We may identify R s 
as a real vector space with C 4 in such a way tha t  ~(T) is the group O 0f dilatations 
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by  complex numbers of norm 1. We let 0 C GL(8, R) act on GL(8, N) by left trans- 
lation. Then by  the definition of N~ (D T) the restriction of 2 to the unit sphere S 7 
is O-eqnivariant;  and, of course, 

r (1)  ~: GL(S, ~)-~ST: r ~  Ir(1)l 

is O-eqnivariant too. Therefore there are induced maps 2' and g '  between the orbit  
spaces $7/0 --- P8(C) and GL(8, R)/O as indicated in the commutat ive diagram 

S 7 ;" GL (8, N) = S 7 

v f 7:[ v] 

Pa (C) - - 7 -  GL (8, R)/O --V--* Ps  (C). 

Here v and T denote the canonical projections. Since ~ o 2 = id, we have ~'  o 2' ---- id 
as well; in other words, 2' is a cross section for 7~'. Parts  d) and e) below are now 
devoted to showing that ,  in fact, a cross section for 7~' does not  exist. This contradic- 
tion will then prove the theorem. 

d) The nonexistence of a cross section for ~'. may  be seen most  quickly by  looking 
a t  the cohomology groups over the rationals Q of the spaces involved. In  fact, we 
h a v e H 4 ( p a ( c ) ,  Q) ~- Q butH4(GL(8, R)/O, Q) = 0 ([7, p. 90] and [15], [12]). 

e) A different proof of this fact  making use of the lower homotopy groups of the  
orbit spaces is the following. We claim first tha t  there exist maps ~, yJ, Z making the  
diagram 

S3 

(*) 

$2 

-~GL(8, •) 

7: 

z 'GL(8'R)/O 

commutat ive and such tha t  ~ is not nuU-homotopic. 
Indeed, regard C as a subfield of H, and identify R s and H -~ as real vector spaces 

in such a way tha t  0 is the subgroup of GL(2, H) C GL(8, R) given by  

Furthermore,  identify S 3 with the quaternions of norm 1, and define 

v2: Sa-->GL(2, HICGL(8, R): u~-> 
= U 

Via 

~ ~ / ~ -  s ina  cos ~ / \ s i n ~  cosO/ 
(0 <: v q =< ~/2) where cos v ~ and sin 0 are considered as quaternions, ~0 is homotopic to  
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which is not  nuU-homotopic because 

u ~ ( U  1) 

is a generator of~3(GL(8, R)) ~ ;~ ([18, 23.6 and 16.7]). Now ~ o ~ factors through the 
orbit space of S 3 under the group {H ~ H: x ~ zx ]z E C, Izt --=-- 1}, and this orbit 
space is P1 (12) = S 2. We define 7 and Z to be the canonical projection (the Hopf  
map) and the map  induced by  ~0 respectively. 

We now use the maps in diagram (,) to show tha t  a cross section 

1':  P3(C) --->GL(8, R)/O 

for ~ '  does not exist. From the exact homotopy sequence of v: S 7 --> $7/0 = P3 (C) we 
have g2 (P3 (C)) ~ 7/; from the exact homotopy sequence of ~: GL (8, R) -+ GL (8, R)/O 
we have z~2 (GL (8, R)/O) ~ 7/, since ~2 (GL (8, R)) is trivial ([18, 22.10]). Consequently, 
a cross section 2' for ~ '  would induce an isomorphism 

i~: ~ (P3 (C)) --> g2 (GL (8, ~ ) /0 )  �9 

Let  o: S 2 -+ P3 (C) be a representative of the homotopy class i~-1  [Z] with Z as in 
diagram (,). Then in g3(GL(8, ~ ) /0 )  we have 

t 

T~ [to] ---- [Z o 7 ]  = [1' o ~ o 7 ]  = 2 ~ [ ~  o 7 ] -  

The left-hand side of this equation is nonzero since [~o] ~ ~3(GL(8, ~)) is nonzero by 
construction and since $~: ~a(GL(8, R) ) -+  ~3(GL(8, [~)/0) is an isomorphism. The 
right-hand side, however, is zero since [(r o 7] ~ r (P3 (C)) = 0, a contradiction. []  

P r o o f  o f  T h e o r e m  3. A closed weak nucleus of  an 8-dimensional real division 
algebra contains the scalar multiples of the unit (since these form the smallest closed 
subfield of the algebra) and is therefore isomorphic to R, C or H by  the Frobenius 
theorem. We must  exclude the quaternions from this hst. Proceeding indirectly, we 
assume tha t  the 8-dimensional real division algebra D has H as a closed weak nucleus. 
Pick any  d e D \ H .  Then the underlying vector space of D is the direct sum H -k H o d; 
and for all u, x, y e H we have 

u o ( x - - k y o d )  =ux- -F  (uy) od .  

Thus the restriction of the map 

2: D\{O}--+GL(8, ~): a~-->2a with 2a(x) = a o x  

to the 3-sphere S~ consisting of the elements of H C D of unit  norm is described by  

U ~ -  

and therefore represents twice a generator of ~ (GL (8, N)) ~--- 7/([18, 23.6]), of. par t  e 
of  the proof of Theorem 2. In  particular, 21 S~ would not be null-homotopie. On the 
other hand, l lSS must  be null-homotopic as it extends to D\{0} and z~s (D\{0}) ~_ 
---~ ~a (S 7) ----- 0. This contradiction proves the theorem. [] 
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The contribution of the second author to this paper is part of his work on a program spon- 
sored by the Deutsche _Forschungsgemeinscha]t, and he would like to thank the DFG for their 
support. 

References 

[1] J. A~R~,  Projektive Ebencn fiber FastkSrporn. Math. Z. 62, 137--160 (1955). 
[2] A. BOI~EL et J.-P. SERRE, Groupes de Lie et puissances r~duites de Stecnrod. Amer. J .  

Math. 75, 409--448 (1953). 
[3] T. BUCHAWAN, Finite subgroups of the nuclei of locally compact 8-dimensional quasifields. 

Preprint, Mathematisches Insti tut  Universit~t Tiibingen 1977. 
[4] T. BUCHA~AH and H. ~X~. ,  The transposition of locally compact connected translation 

planes. To appear in J. Geometry. 
[5] P. DE~BOWS]~I, Finite Geometries. Berlin-Heidelberg-New York 1968. 
[6] J. FOL~AW, Equivariant maps of spheres into the classical groups. Mere. Amer. Math. 

Soc. 95 (1971). 
[7] M. GREE~BE~G, Lectures on Algebraic Topology. New York-Amsterdam 1967. 
[8] H. H~:L, Automorphismengruppen yon lokalkompakten zusammenh~ngenden Quasik6r- 

pern nnd Translationsebcnen. Geometriae Dedicata 4, 305--321 (1975). 
[9] H. HXHL, Geometrisch homogene vierdimensionale reelle Divisionsalgebren. Geometriae 

Dedicata 4, 333--361 (1975). 
[10] D. R. HUGHES and F. C. PIPER, Projective Planes. Berlin-Heidelberg-New York 1973. 
[11] F. K~SCHEUER, Die Bestimmung aller stetigen FastkSrper. Abh. Math. Sere. Univ. Ham- 

burg 13, 413--435 (1940). 
[12] J.-L. KoszlrL, Sur l'homologie des espaces homog~nes. C. R. Acad. Sei. Paris 225, 477--479 

(1947). 
[13] D.M. NL~DVR~, Transposed translation planes. Proc. Amer. Math. Soc. 53, 265--270 

(1975). 
[14] H. S ~ , z ~ ,  Topological planes. Advances in Math. 2, 1--60 (1967/68). 
[15] H. S~ELSOH, Beitr~ige zur Topologie der Grupponmannigfaltigkeiten. Ann. of Math. 42, 

1091--1137 (1941). 
[16] L.A.  SKORHY~OV, Natural domains of Veblen-Wedderburn projective planes. Izv. Akad. 

Nauk SSSR Set. Mat. 13, 447--472 (1949); Amer. Math. Soc. Transl. Ser. I 1, 15--50 (1962). 
[17] L. A. SKo~NY~OV, Right alternative fields. Izv. Akad. Nauk SSSR Ser. Mat. 15, 177-- 

184 (1951). 
[18] !hL S~rEE~U~OD, The Topology of Fibre Bundles. Princeton 1951. 
[19] J. TITs, Sur les groupes doublemcnt transitifs continus: corrections et compl4ments. Com- 

ment. Math. Helv. 39, 234--240 (1956). 
[20] J.  A. WOLF, Spaces of Constant Curvature. New York-St. Louis-San Francisco 1967. 

Eingegangen am 13. 12. 1976 

Ansehrift der Autoren: 

Thomas Buchanan 
Hermann H~hl 
Mathematisches Institut 
der Universit~t Tiibingen 
Auf der Morgenstelle 10 
D-7400 Tiibingen I 


