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A b s t r a c t  

This report reviews the analysis used to extract the complex con- 
ductivity of a compound from a microwave cavity perturbation mea- 
surement. We intend to present a generalized treatment valid for any 
spheroidally shaped sample of arbitrary conductivity which is placed 
at either the electric or magnetic field antinode of the cavity. To begin 
with, we establish the relationship between the measured parameters 
and the conductivity for a spherical sample. Next, we extend these 
results to the case of spheroids; and for the first time, we cover all 
different configurations that one can possibly use to study an arbitrary 
conducting sample inside a cavity: in particular, all possible orienta- 
tions of the sample with respect to the applied field are solved. 

K e y w o r d s :  e lec t rodynamic  response, surface impedance,  microwave 
cavity pe r tu rba t ion  theory 

1 I n t r o d u c t i o n  

A m o n g  the different techniques available I0 determine the conduct ivi ty  in 
the micro and mill imeter wave spectral  range (e.g. a bridge or quasi-optical 
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device), the cavity perturbation technique is o:m of the most widely used 
[1, 2] because of its relative simplicity. In this technique one measures the 
adiabatic change of the characteristics of a resonator upon the introduction 
of a foreign body (the sample under investigation). The foreign body must be 
small compared to the spatial variation of the field (quasi-static limit [3]) and 
its disturbing influence must not be strong enough to force a jump from the 
unperturbed cavity mode. The perturbation is viewed as a serial expansion 
in powers of the filling factor (the volume of the sample Vs divided by the 
volume of the cavity Vc) and only first order effects are accounted for in this 
analysis. Although the maximum sample size is bounded with this technique, 
the measurement sensitivity is greatly enhanced by the confinement of the 
electromagnetic energy in a resonating structure with a high quality factor 
Q (typically on the order of 104). 

In this paper we intend to review the different theoreticaJ aspects which 
are needed in order to extract the intrinsic material properties of a sample. 
Several authors have previously studied this problem in a variety of limiting 
cases: Champlin and Krongard [4] together with Brodwin and Parsons [5] 
solved the problem exactly for a sphere placed in the maximum of either the 
magnetic or electric field; Buranov and Shchegolev [6] examined the case of 
a prolate spheroid in the electric field maximum under the condition that 
the electromagnetic radiation penetrated uniformly within the sample (de- 
polarization regime); Cohen [7] together with work by Ong [8] investigated a 
prolate spheroid in the electric field maximum in which the electromagnetic 
radiation was confined to a small volume near the surface of the sample 
(skin depth regime). To our knowledge, no general study has been made for 
a uniaxial spheroid in the maximum of the magnetic field, or for an oblate 
spheroid in the electric field maximum. Expanding on these previous solu- 
tions, we will present the solutions in both limits for the case of a uniaxial 
spheroid. In addition, we will present an approximation scheme whereby one 
may determine the solutions for an arbitrary value of the conductivity. 

This paper is one of a series of three which is intended to provide a com- 
prehensive review of both the different theoretical and experimental tech- 
niques which are commonly used in this field. In Part  II [9], we will review 
the modern technical developments and describe the experimental scheme 
which is used by our group. Finally, in Part  III [10], we will present the re- 
sults obtained using these techniques with an emphasis on the broad range 
of applicability. 
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2 De f in i t i ons  
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2.1 M a t e r i a l  P r o p e r t i e s  

We study the response of a compound to an external electromagnetic excita- 
tion of the form exp( iq ,  r - iw t ) .  This response is defined as the ratio of any 
couple of conjugate variables [11] and it is an intrinsic parameter (i.e. inde- 
pendent of the field strength) if we only retain first order terms (nonlinear 
effects are neglected). It is then a 3-dimensional tensor of complex eigenval- 
ues whose real and imaginary parts are related through the Kramers-Kronig 
relations [12] and are generally dependent on both q and w. In a microwave 
experiment, the integrated q dependence of the response is probed, because 
the photons have a large wavelength. The characteristic length scale of the 
response is then fixed by some other parameters, such as the mean free path, 
the coherence length or the sample size (in the case of thin films). 

The complex conductivity ~(q,w) = al  + ia2 is defined as the ratio of 
the current density over the incident electric field 

J (q ,  Lv) = ~(q,w). (1) 
E(q ,w)  

As there are many equivalent representations of the electromagnetic response 
of a system, and since several different conventions are widely used in the 
literature, we will review them briefly. 

The complex permitt ivi ty is defined by 

---- E 1 + ie2  ---- e ~  ~- 4~ri 5--, (2) 
O3 

where eoo is the dielectric constant due to the high frequency response. The 
complex refractive index no = v/~ and the complex wavevector inside the 
medium is given by 

~: = ~---X/~, (3) 
Co 

where co is the speed of light in vacuum. The skin depth ~f = 1/Im(]r is 
the characteristic length scale over which an external electromagnetic wave 
is damped inside a material. If 5 is small compared with the minimum 
sample dimension, the field is screened from the interior of the sample; this 
is the so-called skin depth regime. The electric susceptibility is related to 
the permit t ivi ty through the relation 

2 - 1  
~o - (4) 

4 r  
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In the case of magnetic materials, a complex permeability /2 is used 
which can also depend on the conductivity of the material (this is true even 
for a non-magnetic material, where #de = 1; see below). The magnetic 
susceptibility is defined as 

p - 1  
)Cm - 4~ (5) 

2.2 G e o m e t r i c a l  E f f e c t s  

For clarity, it is important to separate intrinsic effects (e.g. those due to the 
material properties) from extrinsic ones (e.g. geometrical effects). A sample 
in an externally applied field (the field far from the sample surface, denoted 
by calligraphic letters) sees a local field (or field in the sample, written in ro- 
man letters) that  can always be expressed as the sum of the applied field plus 
a correction field (called the depolarization field) proportional to the former. 
This result is a direct consequence of the linearity of Maxwell's equations. 
The depolarization field is composed of two factors; one originates from the 
sample susceptibility ~ (intrinsic) and the other is due to the magnification 
of the local field caused by geometrical effects (extrinsic). The geometrical 
effects are generally expressed in terms of a 3 • 3 matrix n (a tensor of rank 
1) which is defined by the following equation 

E = s  47rn-P in the electric field, (6) 

H = 7-/-  4~rn- M in the magnetic field, (7) 

where P and M are the polarization and magnetization of the sample re- 
spectively, defined by 

P = ~ E ,  (8) 

M = )~mH. (9) 

This definition of the susceptibility must not be confused with the polariz- 
ability & which includes the geometrical shape of the body, and is defined 
by 

P = &~$, (10) 

M = &roT-/. (11) 

In general both the susceptibility and polarizability are tensors whose prin- 
cipal axes do not necessarily correspond to the principal axes of the ellipsoid. 
For the sake of simplicity, we will hereafter assume that the principal axes of 
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the response functions coincide with the principal axes of the ellipsoid and 
therefore all three tensors may be simultaneously diagonalized. 

Additionally, the depolarization field is generally non-uniform within the 
sample [13]. However, eUipsoidally shaped samples present a special case 
and a uniform external field produces a uniform depolarization field inside 
the specimen [12]. The depolarization matrix n of an ellipsoid is diagonal in 
its principal basis and these elements have been calculated by Osborn [14]. 
The results of this calculation axe displayed in the Appendix A along with 
expressions in several limiting cases. 

The value of the polarization and/or magnetization of the sample can 
depend strongly on the orientation of the sample with respect to the ex- 
ternal field. In an oversimplified view, a small depolarization factor n << 1 
increases as the radii of curvature of the surface (e.g. a needle edge will have 
a small n, while a flat surface will have an n which approaches unity). Re- 
straining our study to cases where the local field is null (i.e. E = H = 0, e.g. 
as is found far inside a good conductor), the sample orientation with a max- 
imum polarization is generally different than the orientation of maximum 
magnetization. 

In the electric field, one finds from Eq. (6) 

s 
P -  4rn"  (12) 

The maximum polarization occurs in the orientation with the minimum de- 
polarization factor (this is the so-called edge-effect). For a needle-shaped 
sample (prolate spheroid), this corresponds to the case where the external 
field points along the needle axis. However, in the magnetic field one finds 
from Eq. (7) 

7-I 
M - 4 r ( n -  1)" (13) 

The maximum magnetization thus occurs when the depolarization factor is 
maximized (the maximum value of n is 1). For a flat disk-shaped sample 
(oblate spheroid) this corresponds to the case where the external field is 
normal to the plane of the disk. 

2 .3 S u r f a c e  I m p e d a n c e  

In the study of highly conducting specimens at microwave frequencies, the 
parameter usually measured is the surface impedance, a complex number, 
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2 ,  = R ,  - i X , ,  where Rs is the surface resistance and X,  is the surface 
reactance. The surface impedance is defined [3] as the ratio of the electric 
and magnetic field at the surface of the metal 2,  =_ EII/HII where the [I 
sign indicates the field component in the plane of the surface. This defini- 
tion is unJtless, independent of the surface geometry and normalized by the 
impedance of the vacuum Zo  = 47r /co  = 377 ft. 

At high frequency f = w / 2 ~ r ,  the field penetrates into the sample on a 
length scale, 1/Im(]r where k is the wavevector inside the material; this 
length is either the skin depth in the normal state or the penetration depth 
in the superconducting phase. It is assumed that the sample surface is flat 
at the scale of 1/Im(]r 

For most metals the relation between the current and the field is a l oca l  

one, i.e. the current density at one point in the conductor depends only on 
the field at that  position (Ohm's law). This condition presupposes that  the 
electron mean-free-path (g) is small compared with the distances over which 
the field varies (the skin-depth 5). In this case the field decays exponentially 
as it penetrates in the sample and the surface impedance is given by 

2,  = ~ =  ff-~47ri&. (14) 

For a good metal al  >> a2 in the millimeter wave frequency range, and 
1/Im(k) is called the classical skin-depth 

5 - -  CO 
(15) 

In this regime the surface resistance and reactance have the simple form 

w5 
R , = X , -  2' (16) 

Co 

where it was assumed that  the frequency is low enough that electromagnetic 
oscillations within the mean free path can be neglected. The simplest theory 
that  describes scattering effects is the Drude model 

Ttee2 T 1 
= - -  (17) 

m 1 - i w r '  

where n~ is the electron density and m the electron mass. The regime studied 
above corresponds to the case where wr << 1 (Hagen-Rubens limit). The 
other limit is when wv >> 1 (the relaxation limit). The correction factors at 
the cross-over are listed in Table 1. 
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Table 1: Correction factor for the electrodynamic properties of a Drude 
metal in the local regime. We abbreviate x = wr, ao = a(w = 0), and 
~o "= eo/(27rwao) 1/2. 

R==~2• 

X~ = ~ co2 • 

x_~_ 
R s  - -  

=~ox 

Hagen-Rubens regime Relaxation regime 
x < l  x > l  

(1- ~-~-~ o[~3]) 

x_.4_ z ~ ( 1 +  2 - -  8 + O[x31) 

x 2 
(1 + x -t- -~- -t- O[x3]) 

( 1 _  ~ * ;  2 -  s + ~ 

(v'-~ + 2(2=)3/~ + ~ 

1 1 (2x + 2x 8z 3 + 0[=--5]) 

3 ( v / ~ +  ~ + o[x-~/~]) 

The opposite limit occurs when ~<< ~ and the classical theory is no longer 
valid [15] (the wave propagation is not exponential). This limit is called the 
anomalous regime and all the equations derived above have to be modified. 
The exact solution is elaborate [16] but the correct result can be obtained 
(within a numerical prefactor) with the following over-simplified picture. 
Suppose that  only a fraction ~/~/t of the electrons can contribute to the 
conductivity. If we solve Eq. (15) self-consistently, the skin depth expression 
becomes 

c2e 
~ - - - .  (18) 

2rCrlalW 

The factor 7/was computed by Reuter and Sondheimer [16] for both specular 
scattering (77 = 3n/27r/128 ,,~ 10) and diffuse scattering (~/= 4 r /v f3  ,~ 7). 
In either case, the expression for the surface resistance is 

Xs 27rw ( c2e ~1/3 
R ~ - ~ -  e~ \2~"~,~'] " (19) 
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3 C a v i t y  P e r t u r b a t i o n  

A variety of resonant devices are available in the microwave and millimeter 
wave spectral range (e.g. microwave cavity, split ring resonator, Fabry-Perot 
resonator). The theoretical techniques we will discuss were originally devel- 
oped for microwave cavities, however we would like to stress that all of the 
results to be discussed here are equally applicable to any resonant device. 

3.1 C a v i t y  C h a r a c t e r i s t i c s  

Above a lower cut-off frequency, a resonant cavity can sustain many stand- 
ing wave modes and near each resonant frequency, the power absorption 
spectrum has a Lorentzian shape [12] 

1 
A ( w )  = 4(w - Wo) 2 + (2~rF) 2' (20) 

where fo = wo/2~r is the center frequency and F is the bandwidth or full 
frequency width at half-maximum, fo and F are the two characteristics of 
the resonator and their ratio gives the quality factor Q of the cavity, defined 
a s  

f o ~v o <W> 
Q -- Y - ~ - ~ - - '  (21) 

where <W> is the time-averaged energy stored in the cavity and L the energy 
loss per cycle. The simplest formulation of this problem can be made with 
the use of a complex frequency notation 

�9 (22) & =- Wo - z 2Q" 

3.2 T h e  P o l a r i z a b i l i t y  

The principle of the cavity perturbation technique is to measure separately 
the cavity characteristics both before (o) and after (s) a small sample has 
been inserted. The change in the complex frequency is 

~X& = , ~  - ~o. (23) 

K the change A& is adiabatic, then the product of the period and the time 
averaged energy stored is invariant [17] (Boltzmann-Ehrenfest theorem) 

<W> 
- constant. (24) & 
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This implies that  

A<W> 

<W> 

4 f >  ; (Is(r)l  + (26) 

1 / y ( p .  S* + M-H*)dv .  (27) A<W> _ 4 

In our definition, A is the variation caused by the introduction of a foreign 
body into the resonating structure, A f  = fs - fo is the frequency shift and 
AF = 1/Qs - 1/Qo the change in the width of the resonance. 

For ellipsoidal samples, the spatial dependence of the depolarization field 
can be omitted (see above) and the quantity should be evaluated at the center 
of the sample (e.g. P = P(r0) if the sample is located at the position r = r0). 
If we put the sample in the antinode of the electric field (7-/= 0), then 

P = &~s (28) 

As a-eV ISI2 --47rT&e. (29) 
w - 4 ~<W> - 

where 7 = 7oVs/Vc and 7o is a constant that depends only on the resonance 
mode of the cavity 

Isl IsP 
7 0 -  167r - - -~Vc-  2<~E1---- ~ , (30) 

1 fvc I~'(r)12dv" (31) 

The values of the constant 70 are given in Appendix B for the TE0n mode 
of a cylindrical cavity. If the sample is in the antinode of the magnetic field, 
Eqs. (28)-(31) will be equivalent but with C replaced by ~ and P by M. 

In conclusion, the absorption of electromagnetic waves by small particles 
is proportional to the polarizability of the sample 

A~b 
= -4~rTa. (32) 

O3 

3.3 H e l m h o l t z  E q u a t i o n  

As we have just seen in the previous section, the problem of determining 
A~b/w has been reduced to finding the polarizability of an arbitrarily shaped 
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sample. This requires one to solve the Hehnholtz differential equation [12] 

V2E(r) = 0 r outside the sample (33) 

V2E(r) + ]r = 0 r inside the sample (34) 

subject to the appropriate boundary conditions (equivalent equations apply 
for the H field). 

The sample shape of lowest symmetry with solutions to Eq. (34) which 
are independent of r is the ellipsoid (i.e. ellipsoidal coordinates are the most 
general form of separable coordinates for Eq. (34)). In the case of an ellipsoid, 
the differential equation is called the Lamb equation, and the solutions are 
the ellipsoidal harmonics [18, 19]. The ellipsoidal coordinates are related to 
the Cartesian dimension through the elliptic functions of the first and second 
kind [14]. While solving the problem for an ellipsoid is appealing due to its 
generality, the solution is quite elaborate and cannot be expressed in terms 
of classical algebraic functions. Therefore, we will proceed along a simpler 
course; first we will solve the problem for a sphere [3, 4, 5], followed by a 
solution in several limiting cases for a spheroid (an ellipse rotated about a 
symmetry axis) and finally we will develop an approximation scheme which 
will enable us to obtain results for a general spheroid. 

Depending on the ratio of the skin depth $ to sample size a, one can 
distinguish two limiting cases. 

1. D e p o l a r i z a t i o n  R e g i m e :  ka << 1 In this limit the fields penetrate 
uniformly throughout the sample and one can effectively neglect the second 
term in Eq. (34). The resulting case reduces to a solution of Laplace's 
equation, just as in a static case, and under these conditions the sample is 
in the so-called depolarization regime. 

2. Skin  D e p t h  Re g ime :  ka >> 1 In this, the skin depth regime, k 
cannot be neglected, and one must solve the full set of Helmholtz equations. 
However, as we are not interested in the field distribution within the sample, 
we can use simple arguments to learn about the form of the solution. 

The power absorbed is given by the time averaged energy flux of the 
Poynting vector through the surface of the sample 

= Co ^ 2. ( 3 5 )  <S> = 8~F_,II x HII* - ~ Z ,  IHII I e, 
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where El] and H]I are the electric and magnetic fields respectively, in the 
plane of the surface and ~ is a unit vector along the outward normal to 
the surface. For a good conductor, Eli and H• --* 0, while E• and Hll is 
proportional to the external electric and magnetic fields, respectively (the 
factor depends solely on the sample geometry). In both cases, the loss is 
caused by the induced eddy-currents of an effective surface current density 

Co 
K]I = ~-~ x HII. (36) 

The current is proportional to the external field, independent of the sample 
conductivity (current-driven excitation), and thus, in all cases, the loss is 
proportional to 2, (i.e. A <W>/<W> c(2,).  

As shown in Eq. (25), the energy dissipated in the sample is responsible 
for the variation of the complex frequency of the resonator. If we refer 
to the perturbation A& (the variation caused by the introduction of the 
sample in the empty cavity), we have to include a real additive constant, 
liml&l_~o o AdJ/wo, that represents the shift of the resonance frequency caused 
by the excluded volume of the field as the body tends to the perfect conductor 
limit. This offset is called the metallic shift and it depends on the volume, 
geometry and position (within the resonator) of the sample. For a sample 
in the skin depth regime, A~b is simply related to the surface impedance 

A& =~2,+ lim A& (37) 
Wo tS"l--,o~ Wo , 

where ~ is the so-called resonator constant. In general, ~ and limi&l__+oo ACo/wo 
depend on the detailed size and shape of the sample under investigation and 
one must await an appropriate solution of Eq. (33) in order to determine 
them. However, from very general arguments, we have been able to deter- 
mine the appropriate form of an equation which relates an experimentally 
measurable quantity A&/wo to an intrinsic quantity 2,. In fact, provided 
one knows certain properties of the material under investigation (e.g. it is a 
good metal with ~ <4 a), Eq. (37) is enough to determine normalized values 
of 2 ,  

To ease the notation, we define a new variation 

A'& =_ ~2, Acb lim A~b (38) 
OJo ----- ( ,do - -  W o  ' (5-1--,o~ 

where A'&/wo is the complex frequency shift from a perfectly conducting 
body of the same size and shape as the sample. Equating the real and 
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imaginary parts of Eq. (38) gives 

Alp = 

A ' f  = 

Klein etal. 

A r ,  (39) 

A f -  tim A f .  (40) 
I~1-+oo 

A' f / . f o  will be hereafter be referred to as the shift from a perfect conductor. 

4 Solut ions  of  the  H e l m h o l t z  Equat ion 

4.1 T h e  S p h e r e  

We are looking for a solution of the Helmholtz equation that depends only 
on the external field E or 7-/. We will first solve the problem of a sphere in a 
magnetic field. Following Landau [3], we seek a solution (inside the sample) 
of the form A = ~V x (sT-/), where A is the vector potential (polar) and 
H = V • A is the magnetic field, s is the spherically symmetrical solution 

of the scalar equation V2s + ]c2s = 0 and fl is a constant which depends 
on the boundary conditions. The only solution (finite at r = 0) of this 
differential equation is the z e r o  th order spherical Bessel function, s = jo([Cr). 
The solution of the differential equation exterior to the sample (Laplace's 
Equation) gives an external field H which is the sum of the applied field 7-I 
and the induced dipole field 57-/. By matching the boundary conditions, we 
compute the polarizability & of the specimen 

1 . ( 1 -  xj, cx) ) (41) 
& - 47r n - ~  nO[xjl(x)]/Ox]~:=k a ' 

where n = 1/3 (the depolarization factor of a sphere), - j t ( x ) / 2  = j'o(X) is 
the first derivative of the zero th order spherical Bessel function and a is the 
radius of the sphere. 

This form of the solution is also valid for the electric field (in the quasi- 
static limit), and one can therefore write 

3 eeff - 1 
P = &eE - _ ~ s  (42) 

47r - 1 - z  

and 
M = &,~7-/- 3 fi~ff - 17-/. (43) 

4r  12~i T + 2 
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where, following Champlin and Krongard [4], we have expressed the result in 
the form of the Clausius-Mossotti equation [12]. The effective permeability 
fi~g and permittivity Qg are given by 

;2~fr = 8# (44) 

= (45) 
where in each case ~ is given by 

= - 2  ( - ( k a )  cos (ka) + sin (ka) ) .  (46) 
\ -(]~a) cos (ka) -F sin (k'a) - (]~a) 2 sin (]ca) 

Using Eq. (32), we obtain 

A& 7 ~ - 1 (47) 
w o  - n eef f  + 2 

in the electric field. The result in the magnetic field is obtained by merely 
substituting t~e~ for ~r [20]. 

The following recipe gives the procedure used to extract ~: 

1. Substituting Eqs. (44) or (45) into Eq. (47), one can rewrite it in the 
form 

A&Wo E = .T'E(/2, ~) (48) 

A& ~-o H = 9cH(t~'e)' (49) 

where $'E,H represents the functional dependence (generally different 

in the E and H fields) on/~ and ~, and A..~j~ are the measured shifts 
E,H 

in the electric and magnetic field respectively. 

2. Inverting these functions ~ , H  and equating real and imaginary parts 
one can solve for both t~ and ~. Note, in most cases, #de = 1, so that 
a measurement in e i t h e r  the electric or magnetic field is sufficient to 
determine ~. 

One result obtained from this analysis is that a non-magnetic sample 
(#a t= l )  has a non-zero high-frequency magnetic polarizability that depends 
on the conductivity of the material. 
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/~ tends to a simple limiting value when ]]~a I << 1 or Ika] >> 1: 

l im fl = 1 § ~ln(ka)2~ 9--~n(ka)4~ O[(ka)6], (50) 
ka---,,o 

lim /~ - 2i (51) 
O'l--*c~ /ca" 

4.2 S p h e r e  in t h e  E l e c t r i c  F i e l d  M a x i m u m  

Inverting the normal procedure, we have computed A'&/Wo = A ' f / f o  + i 
A ' r / 2 fo  for a sphere (n = 1/3) in the electric field as a function of ne2, 
with el = 1. The results are displayed in Fig. 1 and we note the following 
features: 

a. the absorption AF peaks when E 1 : •2 "~- 1 - -  1/n. 

b. the metallic shift (liml&l_,~ AdJ/wo) is equal to - 7 I n  (note the sign). 

c. the shift A ' f / f o  changes sign and becomes negative in the skin depth 
regime. 

On Fig. 2 we have replotted Ar /2 fo  and IA' f / fol  (normalized to the 
metallic shift ("//n)) on a logarithmic scale to emphasize that,  in the skin 
depth regime, AF/2fo  and A ' f / f o  are both equal and proportional to the 
surface impedance (c (1 /v~2) .  On this plot A ' f / f o  changes sign at the 
position of the logarithmic divergence. 

We observe three independent regimes, each of which are characterized 
by a different power law dependence of the loss AI': 

1. e2 < el - 1 + 1/n, this is the insulating side of the depolarization 
regime. In this range, AF/2fo (x al and the frequency shift saturates 
to a constant (which is proportional to el). 

. el - 1 --t- 1/n < e2 < 4r(co/wa) 2, this is the metallic side of the depolar- 
ization regime, where the skin depth (~ = (co/w) 2~/2--'~2) is still larger 
than the radius of the sphere (a) but with the restriction e2 > el /n.  In 
this regime AF/2fo (x 1/o'1 and the frequency shift goes asymptotically 
to the metallic shift from below. 
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Figure 1: The ~2 dependence of ~ b / w  for a sphere of radius a = 51 ~m 

in the electric or magnetic field antinode (q = 1). A f  is the frequency 
shift, and A ' f  is the shift from a perfect conductor. The metallic shift 
(limlal_~ooA~b/~o) is equal to - 7 / n  in the E field and - 7 / ( n  - 1) in the H 
field. Notice that ~ f / f o  changes sign in the magnetic field when A ' f / f o  
does so in the electric field. 
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Figure  2: The e2 dependence of  the absolute vMue of AF and A ' f  for a 
sphere of  radius a = 51/zm in the electric fidd maximum at f=2 cm -1 
(el = 1). We observe three distinct regimes, each characterized by a different 
power  law dependence of the loss AF. In the skin depth regime (far right), 
AF = - A I  f o~ x/-1/e2 and A~&/~Oo is proportional to the surface impedance. 
The frequency shift A f i fo  is always negative, but the shift from a perfect  
conductor A ' f  /fo ---- A f /fo + 7/n changes sign near ne2 = 20, at the point 
of the negative divergence. 

3. 47r(co/wa) 2 < e~, this is the skin depth regime. In this regime, AF/2fo ,'., 
- A ' f / f o  o( 1/v/-~- as shown in Fig. 2, thus demonstra t ing tha t  A'dJ/w(, = 
~2s, as predicted by Eq. (38). Using the fact tha t  limal--.co/3 = 2i/]ca, 
we can e•  Eq. (47) to obtain 

iko  
lim A~b ,,, _7_ 1 + = - -  + ~2s, (52) 

al--OO Wo n ~n~]  n 

where the resonator  constant  ~ is given by 

- n2 \ 2 c o )  = - 7  (53) Co 
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and the metallic shift is 

2439 

lim Ao5 7 (54) 
I~1-.oo Wo = - - ' n  

4.2.1 S p h e r e  in t h e  M a g n e t i c  F ie ld  M a x i m u m  

Using the same procedure as in the electric field, we have computed A~d;/wo 
for a sphere in the maximum of the magnetic field. The results are displayed 
in Fig. 1 and we observe several differences from the results obtained in the 
electric field; namely 

a. the absorption, AF, peaks when ~ a = 5. 

b. the metallic shift (liml&l_~o o A&/wo) is positive and equal to - ' ~ / (n  - 1) 
(a metal has a finite frequency polarizability that is positive in the elec- 
tric field and negative in the magnetic field). 

c. the frequency shift A f / f o  changes sign and becomes positive in the 
skin depth regime. 

We have plotted the absolute value of the results on a logarithmic scale 
in Fig. 3 and in contrast to the results found in the electric field, we find 
only two independent regimes: 

1. 

. 

4~r(co/wa) 2 > e2, this is the depolarization regime, where the magnetic 
field penetrates throughout the sample. We observe that AF/2 fo  cx al 
and the frequency shift A f  saturates I o a constant (approximately zero 
for a metal). 

4r(co/wa) 2 < E2, this is the skin depth regime, and the magnetic field 
is expelled from the sample (diamagnetism). Furthermore, AF/2 fo  = 
- A ' f / f o  oc 1/x/'~-2 , and is thus proportional to the surface impedance 
(cf. Eq. (14)). As before, we find 

At5 7 ( 2i ) 7 
tim -~-~o ~ i+ - 

al--.oo n - 1 k a ( n -  1) n - 1  + +2+. (55) 

In the magnetic field, the resonator constant of a sphere is 

- i v  (2co  = 9 co (56) 
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while the metallic shift is given by 

tim AdJ = _  7 
{&l--,oo Wo n -  1" 

In the inset of Fig. 3 we have plotted A f / f o  to show the change of sign of 
the frequency shift. We have assumed tha t  the permeabil i ty of the material  
is 1 (generally the case for a metal  [3]). 
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Figure 3: The e2 dependence of the absolute value of AI '  and A ' f  for a 
sphere of radius a = 51 #m in the magnetic field maximum at f = 2 cm -1 
(El =1). In the inset we show the dependence of the frequency shift A f / fo. 
We observe two distinct regimes, each characterized by a different power 
law dependence of the loss AF. In the skin depth regime (far right) AF = 
- A '  f o( ~ and A'&/wo is proportional to the surface impedance. The 
shift from a perfect conductor A ' f  / fo is always negative, but the frequency 
shift A f i f o  = A ' f / f o  - 7/(n - 1) changes sign near he2 = 2 0 ,  becoming 
positive at the point of negative divergence (see inset). 
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4.2.2 C o m p a r i s o n  w i t h  Resul ts  of  a D r u d e  Metal  

In Figs. 2 and 3 we plotted both the real and imaginary parts of A& as a 
function of e2, with el held constant, for the case of a spherical sample. It 
should be noted that  this plot does not conserve the spectral weight of the 
real part  of the conductivity [21, 12] 

fo ~176 al ( w )dw = wp2 (58) 
8 

A more realistic solution of Eq. (29) would take in account the fact that 
al and a2 do not vary independently. 

The simplest picture that  respects the f-sum rule of Eq. (58) is the Drude 
model. The permitt ivi ty ~ depends only on four parameters [21]: the plasma 
frequency Wp (or the spectral weight), the relaxation rate l /T ,  the measure- 
ment frequency w and the permitt ivity at high frequency ~oo: 

al = ~p2 r ~p2 ~r2 (59) 
47r l + ( w r )  2 ; a2 = 47r l + ( w v )  2' 

wp2v2 wP2r /w (60) 
e l = e o o - - l + ( ~ T ) 2 ;  E2 - - 1 + ( ~ T ) 2 .  

In the following we will calculate both the frequency and relaxation rate 
dependence of A~&/wo for a sphere of radius a with a Drude conductivity. 

The parameters used in the example to be discussed are kept constant 
and are close to experimental values. The radius of the sphere is a = 51 #m, 
the plasma frequency Wp/27r= 1,000 cm -1 and the high frequency permit- 
t ivity e~ = 1. When calculating the frequency dependence, the relaxation 
rate is fixed to 1/2~rv = 1 cm -1 and when calculating the relaxation rate 
dependence, the excitation frequency is fixed to f = 2 cm -1 or 60 GHz. 

Fig. 4 displays the frequency dependence of the Drude conductivity, while 
the inset shows the permittivity. Using a logarithmic scale on the inset 
constrains us to take the absolute value; el is negative below the plasma 
frequency (w < wp) and saturates to eoo at higher frequency (w > Wp) (e2 
is positive for all frequencies). Notice that  el equals zero at the plasma 
frequency and thus leads to a negative divergence on a logarithmic scale at 
Wp (since coo = 1). 
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10 4 

The frequency dependence of the Drude conductivity (Eq. (59)) 
with 1 / ( 2 r r )  = 1 c m - '  and wp/27r=1000 cm -1. In the inset we display 
the absolute value of the permittivity on a logarithmic scale. The negative 
divergence signals the change in sign of q .  

In Fig. 5 we display the relaxation rate dependence of a Drude conduc- 
tivity (the permitt ivi ty is proportional since the frequency is kept constant).  
al increases as 1 / r  for wr > 1 (dean limit) and decreases as T for wr < 1 
(dirty limit), a2 is independent of the relaxation rate in the clean limit but 
is proportional to r 2 in the dirty limit. 

Figs. 6a and b compare the frequency dependence of the Drude surface 
impedance with A~Colwo in both field configurations. We have renormalized 
A'Co/wo by the resonator constant. We observe that  in the skin depth regime 
(~7 << a) A~Co/wo coincides with the Drude surface impedance up to 100 cm -1. 
Above this range the free space wavelength co/f becomes comparable to the 
size of the sample and thus we deviate from the quasi- static approximation. 
Notice on both figures, that  in the so-called Hagen-Rubens limit (cot << 1), 
the surface resistance is equal to the surface reactance and they deviate only 
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Figure 5: The relaxation rate dependence of the Drude conductivity at 
OJo/27r=2 cm -1, assuming a plasma frequency wp/2ze = 1000 cm -1. 

when wr  becomes larger than 1. Outside the skin depth regime (~5 > a) the 
surface impedance no longer has any meaning. 

Figs. 7a and b compare the relaxation rate dependence of the surface 
impedance with the ca/culation of A'5~/Wo for a sphere in the maximum of E 
or H.  We have used the same normalization as in the frequency dependence. 
We observe that  in the skin depth regime (6 << a) the surface impedance 
follows the corresponding component of AdJ/Wo in both configurations, fur- 
thermore in the Hagen-Rubens limit they are all equal. Once again we 
would like to emphasize the point that  when ~ > a the surface impedance 
no longer has any meaning and Atd~/Wo should not follow the Drude surface 
impedance. The infinite branch in the electric field configuration is due to 
the fact that  the frequency shift approaches the metallic shift from below 
and thus crosses the axis of the abscissa. 
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Figure 6: a) The frequency dependence of the surface resistance Rs compared 
with the absolute value of the half-width AF for a sphere in either the electric 
or magnetic field antinode. We display AF/2fo( ,  where ~ is the resonator 
constant (given in Table 2), and we observe three regimes 

�9 6 >> a [left of (27r)1/26 = a], this is the depolarization regime and 
the surface impedance has no meaning 

�9 6 <( a [right of  (27r)1/26 = a], this is the skin depth regime and 
Al&/wo is simply proportional to the surface impedance. I fwr  ~( 1, Rs = Xs 
and this is the so-called Hagen-Rubens regime. If o~r >> 1, X~ > R~ and this 
is the clean limit. 
b) The frequency dependence of the surface reactance. As in part a), the 
same three regimes are defined. 
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Again, we display AF/2fo~ and observe the same three regimes as in Fig. 6. 
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4.3  T h e  S p h e r o i d  

4.3.1 E x a c t  So lu t ions  

To our knowledge, the relationship between b and A&/wo  for a general 
spheroid of arbitrary conductivity has never been calculated. However, a 
variety of solutions have been presented in different limits [6, 7, 8]. We will 
present the results of the calculations that  have been made in the various 
limits and expand on some of these results. 

D e p o l a r i z a t i o n  R e g i m e :  /ca >> 1 For a poorly conducting compound 
the external fields penetrate throughout the sample and a simple analysis is 
possible. 

�9 Electric Field: In the electric field antinode, the field inside the sample 
can be determined using Eqs. (6) and (8), with 

s 
E - 1 + n ( ~ -  1)' (61) 

where n is the depolarization factor along the external field direction. 
Replacing s with the value in Eq. (10), and rearranging one finds 

1 ~ - 1  
de = 4~" 1 + n ( ~ -  1)" (62) 

The real and imaginary components of Eq. (29) give 

2 = 3'[1 + n(el - 1)] 2 + (ne2) 2' (63) 

f~ - fo (e  I -- 1)[1  "~ ?'t(E 1 -- 1)] "-~ hE2 2 
fo  = ' ( 6 4 )  

as first derived by Buranov and Shchegolev [6]. 

Taking the limit [~[ >> 1 in the previous equation, one finds that  the 
electric polarizability tends to a positive constant 

& e -  4~n 1 -  n--~ + ~ -  + O  (65) 
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and 

2 8 = "YI- F + o ( 6 6 )  

fSfo-fO _ -7n + 7 ~ - ~ + O  (67) 

Magnetic Field: In the limit ]ca << 1 the magnetic polarizability is 
computed from Eq. (62), but with the permittivity ~ replaced by the 
permeability li. Thus, in the magnetic field one determines the complex 
permeability t1 from the measured A&. However, even though the dc 
permeability of a non-magnetic metal ]tdc = 1, at finite frequencies the 
magnetic polarizability is finite. (The same is also true for a purely 
magnetic material in the electric field i.e. provided Ii # 1, &~ # 0 in an 
ac field even though ~=1.) Unfortunately, the magnetic polarizability 
depends on the geometry of the sample and it is difficult to calculate. 
To a first approximation, it is given by 

1 (]ca) 2 
- , ( 6 8 )  &m 40~" ( 

where ( is a constant that  depends on the geometry of the sample 
(( = 1 for a sphere). As discussed previously, this effect is due to the 
finite conductivity. 

Sk in  D e p t h  L imi t :  ]ca >~ 1 In the skin depth limit, the fields are 
not constant within the sample and the calculations are considerably more 
difficult. 

�9 Electric Field Maximum: A computation for a prolate spheroid (a > 
b = c) in the skin depth regime has been performed by Cohen and Ong 
[7, 8]. They computed the resonator constant ~ for a prolate spheroid 
of eccentricity ~ = x/1 - (b/a)  2 in the limit a >> b and obtained 

where 

= 

and n is the depolarization factor along the field. 

(69) 

(70) 
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Table 2: Resonator constant ~ of a spheroid for different orientations in 
either the electric or magnetic field antinode, where 2a >> 2b are the sample 
dimensions, co the speed of light, n the depolarization factor, w/27r the 
measurement frequency, (sphere the resonator constant of  a sphere enclosing 
the sample (radius a), ~ is the direction of the spheroid symmetry axis and 
the field is either parallel or perpendicular to this symmetry axis. 

Sphere 

Prolate 

Spheroid 

Oblate 

Spheroid 

Resonator Constant [ 
Electric Field Magnetic Field [ 

All Fields - iTIn 2 [wal2co] - i T l ( n -  1) 2 [2colwa] 

Field [I 5 (32r/25) b/a (37r/23) a/b 

Field _1_ 5 (37r3/26) b/a (37r/24) a/b 

Field I] 5 (3/23) a/b (3/2) b/a ln(a/b) 

Field _L ~ (32/23) b/a In (a/b) (3/22) a/b 

We have extended their calculations to include field orientations both 
parallel and perpendicular to the semi-major axis for both a prolate 
and oblate spheroid in the limit a >> b. The results are listed in Table 2. 

Magnetic Field: To the authors '  knowledge, the calculations for either 
a prolate or oblate spheroid have not been made. The calculations 
are straightforward but somewhat tedious and we have therefore only 
reproduced the calculation in Appendix C. For a prolate spheroid with 
H It ~ in the limit a >> b (i.e. needle shaped sample) we found 

- 3i') co~r 
- 4bw(n -  1) 2. (71) 

The calculation is similar with the field perpendicular to the symme- 
try axis as well as for an oblate spheroid, and we therefore simply 
reproduce the results (in the limit a >> b) in Table 2. 
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A comparison can be made of the loss when the sample is placed at the 
maximum of either the electric field or magnetic field. For a prolate spheroid 
in the limit a >> b, the bulk of the currents run along the a-ay,.is (E II h and 
H _1_ ~) and one finds 

A ( % ) B  2 (72) 
A - 3(1 

where nil and n• are the depolarization factors parallel and perpendicular to 
5 respectively. Typical values are a = 575 tzm, b = 50 #m, and f = w/27r= 
60 • 109 s -1. Using these values of a and b one finds [14] nil = .0164, n t  = 
.4918, and g = .71. As p depends on the geometry of the sample, the relative 
sensitivity of the measurement can be increased by choosing the appropriate 
configuration. 

4 .4  T h e  S p h e r i c a l  A p p r o x i m a t i o n  

While the solutions presented above are good for a spheroid in either the 
skin depth or depolarization regime, large changes take place in the cross- 
over region and it is not possible to simply extend either solution across 
this border. This cross-over region is of particular importance for a vari- 
ety of organic conductors, where the samples are generally small and the 
temperature  dependence of the conductivity large. In particular, the fre- 
quency dependent transport  is oftentimes of interest in the near vicinity of a 
metal-insulator transition, and it is at this point where one is most likely to 
cross-over to the other regime. It is for this reason that we have at tempted 
to approximate the solution for a general spheroid by extending the exact 
results obtained for a sphere. 

Keeping in mind that  the Clausius-Mossotti expression was conceived 
as a first order approximation of the polarizability for a spherically sym- 
metric system, we will define an expression relating the permittivity and 
the polarizability for an ellipsoid. Defining a generalized Clausius-Mossotti 
expression 

&~ _ _ ~ 1  ~efr - a_______~l ( 7 3 )  
4~-n ~ef[ + a2 ' 

where the effective values are defined by the same formulas as in Eq. (45) 
and the form of/~ from the sphericaJ case will be adopted. 

We will now proceed to evaluate this expression in several different lira- 
iting cases and to compare with the exact results obtained earlier. 
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D e p o l a r i z a t i o n  R e g i me :  ]~a << 1 In this limit, ~ ~ 1 (see Eq. (50)) and 
therefore ~eff ~ ~- Equating this expression with Eq. (62) we find 

~ 1  : 1, ( 7 4 )  

and 
1 - n  

a2 - (75) 
n 

Inserting these values we obtain the following expressions for the polariz- 
ability in the electric 

1 / ~ -  1 
&e = 47r 1 -I- n ( ~  - 1) (76) 

and magnetic fields 
1 f~/~- 1 

(~m = 4~r 1 + n(fl/2 -- 1)" (77) 

Skin  D e p t h  Re g i me :  ]ca >> 1 In this case fl c((]ga) -1. 

* Magnetic Field: 
one finds 

Electric Field: In tlfis limit the effective permittivity ~eff ~ cc and the 
induced variation of the cavity characteristics are given by 

7 1 (78) A~ 7_ + n "-~=-- 
t..Oo - -  / t  ~eff ' 

to first order in 1/~eff. Using Eq. (51) one finds 

_ 7 w a  . ~  

A&wo n7 + ~.~co(_z)Zr ' (79) 

where Z~u is proportional to Z~. On comparing with Eq. (37) and 
using the resonator constants from Table 2 one finds 

2 e U -  ~ 2~. (80) 
~ s p h e r e  

So, in this limit, we can exactly reproduce the earlier results by includ- 
ing the value of the normalized resonator constant obtained from the 
exact calculation made in the skin depth limit. 

In this case the effective permeability/2eft ~ 0 and 

AgJ_  3' + 3' . (81) 
1 - n (1 - n) i#r 
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Following the same procedure one finds 

A~ ~ + ~----2-----2C~ (82) 
Wo -- 1 - n (1 - n) 2 w a  

We are thus able to piece together a solution which is valid for arbitrary 
values of the conductivity by including the information which was earlier 
obtained by an exact solution in several limiting cases. While this approach 
is certainly an over-simplification, it works surprisingly well in the limiting 
cases. However, the error introduced is difficult to estimate (it certainly 
depends on the depolarization factor) and the absolute values should not 
be taken too seriously. Nevertheless, it is a powerful approach and we will 
present several results obtained in this fashion in Part  III  of these papers. 
Finally, we cannot, of course, extend this type of a solution to a sample of 
arbi t rary  shape as we must first be able to calculate the correction factor 

~/~sphero- 

5 Conclus ion  

In summary,  we have established a relationship between the intrinsic conduc- 
t ivity & = al  + ia2 and the parameters  experimentally accessible with the 
cavity per turbat ion technique: the frequency shift A f  and the bandwidth 
AF. We have computed explicitly the result for a sphere and compared it 
with the calculation of the surface impedance assuming that  the conductiv- 
ity follows a Drude behavior. In the skin depth regime, we have carried out 
the computat ion for both a prolate an oblate spheroid at the electric and 
magnetic field maximum for every possible orientation of the sample with 
respect to the applied field. 
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Appendix A.  D e p o l a r i z a t i o n  F a c t o r  

If a, b and c are the sample dimensions along the three principal axes x, y 
and z respectively, and 

a > b > c > 0 (83) 

then the depolarization factors are given by 

cos r cos 0 IF(k, O) - E(k,  0)] (84) 
nx -- k 2 sin 30 

~ k ~ ( 7 - - ~  ~o E(k ,O)_( l_k~)F(k ,O)  ~sinOcoSOcosr 

cos r  0 [sin Ocos r ] 
~z : ( f - V S ~ o  t 7o~ E(k,O) , (86) 

where 

7r 
cos r = b/a, (0 < r _< ~) ,  (87) 

7r 
cos 0 = c/a, (0 < 0 < ~), (88) 

k = s ine /s in0 .  (89) 

F(k, O) and E(k,  O) are the elliptic integrals of the first and second kind; k 
is the modulus and 8 the amplitude. 

A simple relationship exists among the matrix elements of the depolar- 
ization tensor; in the principal basis the trace is equal to unity 

n~ + ny + nz = 1. (90) 

The depolarization factors take on fairly simple forms in several limiting 
c a s e s :  

1. A s p h e r e ( a = b = c ) :  n , = n y = n z = l / 3 .  

2. A cylinder in the x-direction (a ---+ oc, b = c): nz = 0, ny = nz = 1/2. 

3. A fiat plate (a,b ~ oc): nx = ny = O, nz = 1. 

4. A prolate spheroid (a > b = c) of eccentricity r = x/1 - (b/a) 2 

1 - c 2  ( I + E - - 2 E ) ,  n y = n z = � 8 9  (91) n~- -  ~ - j  l n l _ E  
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5. An oblate spheroid (a = b > c) with e = ~/(a/c) 2 - 1 

1 + ~  2 
n : -  e3 ( e - a r c t a n e ) ,  n ~ = n u = � 8 9  (92) 

6. A prolate ellipsoid (a >> b _> c) 

bc ( l n ( b - ~ c ) - l )  (93) 

B. TEoia C y l i n d r i c a l  C a v i t y  
For a cylindrical cavity of radius d12 and height h, resonating at the TEoaa 
mode, the fields inside the cavity are given by 

Hr(r ,z)  = HoJo(kr)  cos ( ~ ) ,  (94) 

H : ( r , z )  = HoJo(kr)  sin ( ~ ) ,  (95) 

1 + \~c, olh} 

Er  = - ~ / ~ H o J o ( k r )  sin \ h J'(Trz'~ (96) 

Er ( r , z )  = He = Ez = O, (97) 

where Jo, represents the derivative of the zero th order cylindrical Bessel 
function, k = 2am/d, and ~01 = 3.83171. The frequency of the cavity is 
given by 

: ) + : 2.So. 

while the average of the electric field is 

<~gl2> = 0.0832PHo 2. 
E 

The electric field antinode occurs at 

(98) 

(99) 

r = 0.481a. (100) 
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For a cavity of dimension d / h  = 3/2, the mode constant is 

2.03 at r = 0.48d/2 and z = h / 2  Electric Field, 
70 = 0.675 at r = 0.48d/2 and z = 0 Magnetic Field 

4.18 at r = 0 and z = h / 2  Magnetic Field. 
(101) 

C.  R e s o n a t o r  C o n s t a n t  o f  a P r o l a t e  S p h e r o i d  in  t h e  M a g n e t i c  
F i e l d  
If the sample is in the magnetic field maximum, the total power dissipated 
in the sample is given by [12] 

1 / s ] K ] 2 d S  (102) L = 2a1~ 

with 
1 41r 

Rs.  (103) 
o'1~ Co 

The integral in Eq. (102) is over the surface of the spheroid and K is the 
effective surface current given by 

~0 (X) CO ^ K = Jd~ = ~--~r(e x H) ,  (104) 

where ( is in the direction of the outward pointing normal vector to the 
surface 6 and H is the magnetic field at the surface of the spheroid. From 
Eq. (13) we can determine 

7-/0 
H = - . (105) 

n - 1  
The simplest way to solve this problem is to make use of prolate spheroidal 
coordinates [22]. In this coordinate system the three independent coordi- 
nates are given by u, v, and r and the usual Cartesian coordinates are 
related to these through the transformation 

x = d s i n h u s i n v c o s r  (106) 

y = d s i n h u s i n v s i n r  (107) 

z = d c o s h u c o s r  (108) 

where d = v ~  - b 2 and a and b are the semi-major and semi-minor axes 
respectively. The three components of the metric are given by 

h~ = d~/cosh 2 u -  cos 2v (109) 

h~ = d~/cosh 2 u -  cos 2v (110) 

hr = d s i n h u s i n v .  (111) 
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The unit  normal  vector ~ is given by 

~ = ~ _  1 Or 
h~ Ou 

cosh u sin v cos r , 
X 

~/cosh 2 u - cos 2 v 
cosh u sin v sin r ^ 

+ Y 
x/cosh 2 u - cos 2 v 

sinh u cos v 
-~ ~?. (112) 

X/cosh 2 u - cos 2 v 

Assuming the external field is in the ~ direction leads to 

c2o1~o[ 2 ( c~ u sin2 v 
Igl 2 -  167r2(n - 1) 2 \ co -~u : -~os2v]  " (113) 

Inser t ing Eq. (113) into Eq. (102) and using the fact tha t  dS = hvhcdvdr 
gives 

c2[~o[ 2 cosh2uosinhuod 2 fo 2~ fo r 
L = d v  

sin 3 v 

cosh Uo--COS 2 V'  
(114) 

where coshuo = a/d, sinhuo = b/d. From Eqs. (21) and (30) appropria te  
for the magnet ic  field, one finds 

Im A& 8~rTL (115) 
wo -i,l_tol~V~" 

The integral  in Eq. (114) can be easily solved, and the resulting expres- 
sion in Eq. (115) is propor t ional  to the real par t  of the surface impedance.  
By analogy with Eq. (38) the resonator  constant  is given by 

= 
-3icoTd 2 cosh 2 uo sinh Uo 

2b2aw(n- 1)2 
1 

x{sinhuo+(2-cosh2uo)arcSinco-'ds'~uouo}. (116) 
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