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Introduction 

The effect of the shape or strike length of loads on the 
deflection of thin elastic plates has been addressed by 
several authors (e.g. Brotchie and Silvester, 1969; Watts 
et aI., 1975; Menke, 1981). In their discussions, the 
model of a two-dimensional load with a simple straight 
edge has, however, received little attention. This is even 
more remarkable in view of the simplicity of the so­
lution for the deflection in this special case (e.g. Officer, 
1974, p.386; Jeffreys, 1976, p. 271), which permits the 
model's application in preliminary interpretations. The 
disregard of this model is probably a consequence of 
some uncertainty as to the scale of geological loads 
that is required in order that they be approximated by 
two-dimensional edges. Most authors have therefore 
preferred other elementary geometries, such as strips or 
disks, as first approximations of physical load distri­
butions of appropriate shape (see Turcotte, 1979, for a 
recent review). 

A notable exception is Walcott's (1970) interpre­
tation of lithospheric flexure induced by the Lauren­
tide ice sheet in Canada. In his analysis, Walcott re­
garded the extent of this load large enough that, for 
points close to its margin, it can be represented by a 
two-dimensional edge. 

In this note, the solution appropriate to straight­
edged two-dimensional loads will be derived from the 

Fig. 1. Straight·edged axisymmetrIc load and its two-dlmen· 
sional approximatIOn 

more general solution for straight-edged axisymmetric 
loads (see Fig. 1). This limiting process will show that 
the accuracy of the two-dimensional approximation is 
controlled by both the scale of the load and the thick­
ness of the elastic plate. following that, several models 
appropriate to lithospheric flexure will be discussed. 

Theory 

The solution for the vertical surface displacement w(r) 
due to a straight-edged a"isymmetric unit load 

{
I, 

q(r)= 0, (1) 

of radius R, resting on a thin elastic plate of flexural 
scale length I/a, has been given by Brotchie and Silves­
ter (1969). If p is the density of the inviscid substratum 
and g denotes the acceleration due to gravity, the so­
lution in terms of Bessel-Kelvin functions is 

1 

(pg)-I EaR ker'(aR) ber(ar) 

() -aRkei'(aR)bei(ar)+I], r<R 
wr= 

(pg)-I EaR ber'(aR) ker(ar) 
-aR bei'(aR) kei(ar)], r>R, 

(2) 

where a prime denotes derivation with respect to the 
argument and r is the radial distance from the load 
axis. The flexural scale length l/a is related to the pa· 
rameters of the plate and the substratum by 

(3) 

with D the flexural rigidity of the plate. IntroduclOg 
non-dimensional quantities R*=aR and r*=ar. (2) can 
be written in the form 

1 

(p g) - I [R* ker' (R*) ber(R* + x*) 

-R*kei'(R*)bei(R*+x*)+I], x*<O 
w(x*)= 

(pg)-I [R* ber' (R*) ker(R* + x*) 

-R* bei'(R*) kei(R* +x*)]. x* >0, 

(4) 

where x* = r* - R* is the non-dimensional distance 
from the edge of the disk. In order to reduce (4) to the 
solution appropriate to two-dimensional loads, R* must 
be large, whereas x* /R* must be small. From the asymp-



totic approximations for Bessel-Kelvin functions for 
large arguments (McLachlan, 1934, pp. 168-172) we 
find 

ker' (R*) ber(R* + x*) 

= __ 1_ exp(x*/V2) cos(R*/V2-n/8) 
2R* 

· cos [(R* + x*)/V2 -n/8)], 

kei'(R*) bei(R* + x*) 

=_1_ exp(x*/V2)sin(R*/V2-n/8) 
2R* 

· sin [(R* + x*)/V2 -n/8)], 

ber'(R*) ker(R* + x*) 

=_1_ exp(x*/V2) cos (R*/V2 + n/8) 
2R* 

· cos [(R* + x*)/V2 + n/8)], 

bei'(R*) kei(R* +x*) 

= __ 1_ exp(x*/V2)sin(R*/V2+n/8) 
2R* 

· sin[(R*+x*)/V2+n/8)]. 

Substitution in (4) yields 

(Sa) 

(5b) 

(5c) 

(5d) 

{
(2Pg)-1[2-eXp(ax/V2)cos(ax/V2)], x<O (6) 

w(x)= ,r-; 
(2pg)-1 exp( -ax/V2) cos(ax/V 2), x >0, 

where x = x* /a has been used. This is the solution for a 
straight-edged two-dimensional load 

{
I, 

q(x)= 0, 
x<o 

x>O. 
(7) 

Alternatively, (6) could have been derived directly from 
the two-dimensional form of the thin plate equation by 
matching the appropriate boundary conditions (e.g. Jef­
freys, 1976, pp. 270-272). 

In order to render R* sufficiently large for (5) to be 
valid, R or a must be large enough. From (3) we realize 
that the latter is equivalent to requiring that D be 
small. But D = 11,,3/[6(1 - ,.)], where II, I" and " denote 
Lame's second constant (rigidity), Poisson's ratio and 
elastic plate thickness, respectively. In a geophYSical 
context, approximation (6) will therefore Improve With 
increasing load diameter or decreasing lithospherIc 
thickness. If ,,= 0, we find that, for any value of R. 
a ->x; and therefore 

W(X)={I/(Pg), 
0, 

x<o 
x>o. 

(g) 

which is the solution appropriate to local compen­
sation. 

Numerical results 

In order to ascertain whether the two-dimensional so­
lution (6) is suitable for approximatIng flexure in re­
sponse to axisymmetric loads of finite radius, the non-
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Fig. 2a and b. NormalIzed vertlcal displacement W,'I\', as a 
function of non-dimensional distance a x from the edge of the 
disk load for different non-dimensIOnal radii aR and a points 
below the load or b beside the load. "', denotes the displace­
ment for local compensatlon 

dimensional disk solution (4) will be compared with the 
non-dimensional form associated with (6) for different 
values of R*=aR. 

Figure 2 compares axisymmetrtc solutions for non­
dimensional disk radii R* = 2 and R* = 5 with the ap­
propriate two-dimensional solutions. In the area of pos­
Itive deflection, the two-dimensional approximation can 
be considered good for R* > 2. ThiS particularly applies 
to the steep slope near the edge of the load. In the 
range of the pertpheral bulge the approximation de­
teriorates. Here displacements are generally small. and 
the absolute error increases to values of the order of 
the displacements for R * = 2. 

For a demonstration of the geophYSical significance 
of this. we consider disk loads of charactemtic radii 
acting on elastic plates haVIng thicknesses approprIate 
to the Earth's lithosphere. Here we will limit the analy­
SIS to x> O. This range contains the nodal POInt of the 
deflection curve and is therefore of particular interest. If 
necessary. the behaVIOur for x <0 can be Inferred from 
Figure I after the model ha~ been non-dlmenslOnaltzed. 
To be ~pecific we choose 11=0.67· lOll Nm- 1

, \"=?.272 
and p = 3,3g0 kg m - 3. This is fairly typical of the Earth 
at IOOkm depth (Bullen, 1963, pp. 232-235). The load i~ 
taken to be I km thick With a denSity of 1 kg m 3 

Ftgure 3 applies to R = 200 km and thIn litho­
spheres. The configurations therefore have some rele­
vance when modelltng the flexure induced by Pleistocene 
Lake BonneVIlle (e.g. Naklboglu and Lambeck, 19X2) or 
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Fig. 3. Vertical displacement \\" for a disk radius of R 
= 200 km as a function of distance from the load edge for h 
=20km or aR=4.SS (solid) and h=50 km or aR=2.29 
(dashed). The dotted lines delineate the appropriate two-di­
mensional solutions 
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Fig. 4. Vertical displacement II' for a disk radius of R 
= 800 km as a function of distance from the load edge for h 
= 100 km or aR = 5.46 (solid) and h = 200 km or aR = 3.24 
«(lashed). The dotted lines dehneate the appropriate two-di­
mensional solutions 

sedimentary basins (e.g. Haxby et al.. 1976). If h 
= 20 km, the two-dimensional approximation is satis­
factory, although the peripheral bulge is overestimated 
by more than 30 percent. For h = 50 km, this misfit 
clearly exceeds 50 percent, and the inward shift of the 
nodal point becomes significant. 

Figure 4 compares the solution for disk radii of R 
= SOO km with the appropriate two-dimensional approx­
imations. The scale of the load is fairly typical of the 
Fennoscandian ice sheet (e.g. Haskell, 1937). A litho­
spheric thickness of 100 km is conventional for con­
tinental regions; the enhanced value of 200 km reflects 
very recent estimates (e.g. Peltier, 1984). For " 
= 100 km, the two-dimensional approximation is good. 
except for the region of the peripheral bulge. If the 
thickness is 200 km. the approximation deteriorates 
substantially and can be considered marginal at best. 

In Figure 5 we have chosen R = 1.600 km. The disk 
load may thus be taken as a crude approximation of 
the Laurentide ice sheet. If ,,= 100 km. the model is 
similar to the one used b)' Walcott (1970). As can be 
seen, the two-dimensional approximation is very good 
and also holds in the peripheral region. For h=200 km. 
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Fig. 5. Vertical displacement no for a disk radius of R = 1,600 
km as a function of distance from the load edge for h = 100 
km or aR = 10.9 (solid) and h = 200 km or aR = 6.49 (dashed). 
The dotted lines delineate the appropriate two-dimensional 
solutions 

the fit is still acceptable except for the peripheral bulge, 
which is overestimated by about 20 percent. It must be 
noted, however, that, for loads as extended as the 
Laurentide ice sheet, the Earth's sphericity is likely to 
become important. This problem is not followed up 
here but wil1 be discussed in a separate investigation. 

Conclusions 

This note has attempted to clarify the relation between 
straight-edged axisymmetric loads and straight-edged 
two-dimensional loads by emphasizing the critical role 
of the elastic plate in this relation. It has been shown 
that loads. of wi.dely varying scale can be approximated 
by two-dImensIonal edges, provided that the litho­
sphere is sufficiently thin. As the distance from the edge 
of the load increases, the displacement IV decreases. 
This results in enhanced relative discrepancies between 
the two models in the region of the peripheral bulge. 
Whether this is significant when modelling data will 
ultimately depend on the magnitude of the errors as­
sociated with the measurements. 
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