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Abstract

In the present work, the creep behavior of a metal-matrix-composite was investigated under
thermal cycling creep conditions. The material was an eutectic Al-Si matrix that had been
reinforced with 15 vol.% of discontinuous alumina fibers.

Advanced high-temperature mechanical testing techniques were used together with
specifically designed testing procedures to measure the stress dependent rate of deformation
during thermal cycles. The influence of the maximum temperature, of the thermal amplitude,
of high-temperature dwell times, of the sign of loading and of the reinforcement orientation
were especially studied.

At low stresses, a creep acceleration compared to isothermal conditions was found and the
apparent stress exponent decreased to low values. The material showed pronounced transi-
tional behavior upon load changes. An analysis of the strain evolution in individual cycles
showed evidence of substantial inelastic deformation which was for the biggest part compen-
sated between half-cycles.

A simple continuum mechanical model was set up which approximated the investigated com-
posite by a stack of two tightly bonded and homogeneously deforming slabs. The model was
used to predict the creep rates and the in-cycle strain evolution on the basis of calculated
internal stresses under thermal cycling creep conditions. The experimental observations were
interpreted and discussed in comparison to the simulation results. The observed phenomena
could be explained on the basis of the model.

The material showed pronounced transitional behavior on loading and unloading. This tran-
sient creep and the overall envelope shape of the thermal cycling creep curve was further
investigated with stress cycling creep experiments. The phenomenon of back-creep was
utilized to investigate effects of load transfer from the matrix to the fibers and to conclude on
the overall evolution of the composite strain rate.
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Kurzfassung

In der vorliegenden Arbeit wurde das Kriechverhalten eines Metall-Matrix-Verbundwerk-
stoffes unter thermozyklischen Bedingungen untersucht. Bei dem Verbundwerkstoff handelt es
sich um eine eutektische Al-Si Legierung, die mit 15 Vol.% diskontinuierlicher Aluminium-
oxid-Fasern verstärkt wurde.

Fortgeschrittene Methoden der mechanischen Hochtemperaturprüfung wurden verwendet, um
in speziell angepassten Versuchsabläufen die spannungsabhängige Verformungsrate während
der thermischen Zyklen zu messen. Speziell untersucht wurden die Einflüsse der
Maximaltemperatur, der thermischen Amplitude, von Haltezeiten bei hoher Temperatur, des
Vorzeichens der Belastung und der Orientierung der Verstärkung untersucht.

Bei geringen Spannungen wurde im Vergleich zu isothermen Bedingungen eine Beschleuni-
gung des Kriechens gefunden und der beobachtete Spannungsexponent sank auf kleine Werte.
Eine genaue Analyse der Dehnungsentwicklung in einzelnen Zyklen lieferte Belege für das
Vorhandensein beträchtlicher inelastischer Dehnungen, die sich von Halbzyklus zu Halb-
zyklus gegenseitig größtenteils kompensierten.

Ein einfaches kontinuumsmechanisches Modell wurde aufgestellt, das den untersuchten Ver-
bundwerkstoff durch zwei aufeinander gestapelte, fest miteinander verbundene und sich
homogen verformende Platten annäherte. Das Modell wurde verwendet, um auf Basis von
berechneten inneren Spannungen die Kriechraten und die innerzyklische Dehnungsent-
wicklung unter thermozyklischen Bedingungen zu erklären und vorherzusagen. Die experi-
mentell gemachten Beobachtungen wurden im Vergleich zu den Simulationsergebnissen
interpretiert und diskutiert. Die beobachteten Phänomene konnten auf Basis des Modells
erklärt werden.

Das Material zeigte ein ausgeprägtes Übergangsverhalten beim Be- und Entlasten. Dieses
Übergangskriechen und der gesamte Verlauf der Einhüllenden der thermozyklischen Kriech-
kurve wurde mit Hilfe von spannungszyklischen Kriechexperimenten näher untersucht. Das
Phänomen des Rückwärts-Kriechens nach äußerer Entlastung wurde ausgenutzt, um Effekte
der Last-Übertragung von der Matrix auf die Fasern zu untersuchen und um auf die
Entwicklung der Dehnrate eines Verbundwerkstoffes zurückzuschließen.
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List of Symbols and Abbreviations

Composite Nomenclature
Basically, composite nomenclature follows the simple denotation “chemical matrix symbol” /
“chemical reinforcement symbol”. The matrix material can be further qualified by anteposi-
tion of “hp” (for “high purity”) or “cp” (for commercial purity) or by appending an alloy index
number. The reinforcement symbol is often preceded by the specification of the weight or
volume content. A subscript after the reinforcement symbol denotes the reinforcement mor-
phology: “p” = particles, “platelets” = platelets, “w” = whiskers, “f” = fibers, “DS” =
directionally solidified eutectic. If necessary, the production route is also given in brackets
placed behind the composite denotation: “(PM)” indicates production on a powder metallurgi-
cal route, “(cast)” means production by casting.

Examples:

Al 6061 / 20 vol.% SiCw (PM) aluminum 6061 alloy, reinforced by silicon carbide
whiskers with a volume fraction of 20 percent. Production
by powder metallurgical processing.

cp Al / 15 vol.% Al2O3f (cast) aluminum of commercial purity, reinforced by alumina
fibers with a volume fraction of 15 percent. The composite
was made by casting.

Abbreviations
MMC Metal Matrix Composite

TCC Thermal Cycling Creep

CCA Cyclic Creep Acceleration

CCR Cyclic Creep Retardation

TECS Thermoelastic Coefficient of Stress

CTE Coefficient of Thermal Expansion

SEM Scanning Electron Microscopy

VP-SEM SEM with variable pressure

BS Back Scattered Electrons

SE Secondary Electrons

TEM Transmission Electron Microscopy

ODF Orientation Distribution Function
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WHZ Work Hardened Zone

MISP Mismatch Induced Superplasticity

Symbols
α Coefficient of thermal expansion CTE [1/K] (physical)

αinst Instantaneous CTE [1/K] (physical)

α20 Technical CTE [1/K] with respect to room temperature

a Time exponent, used for describing primary creep

a, b Major and minor radii of fiber section ellipses [µm]

aij Fiber orientation tensor

A Power-law creep pre-exponential factor [MPa-n·s-1]

A*, A’ Proportionality factors for primary creep laws

B Factor in the power-law creep equation containing the thermal activation term
and the pre-exponential factor [MPa-n·s-1]

Cc, Cm, Cr Stiffness tensors of composite, matrix and reinforcement

d Average fiber thickness [µm]

Dact Thermal activation term

E Young’s modulus

ε Strain. All strains are given as true strains unless indicated otherwise

εanel Anelastic strain

εc Creep strain

εel Elastic strain

εeq Equivalent strain

εfrac Fracture strain

εinel Inelastic strain

εinit Strain after initial heat treatment

εl Total strain that has accumulated since application of a thermal or mechanical
load (including elastic, anelastic, thermal and inelastic strain). In experiments
with repeatedly applied load: strain since first application of load.

εpc Strain increment in a complete thermal cycle

εpl Plastic strain
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εprim Strain in the primary creep regime

εt Technical strain

ε to min. Strain to minimum strain rate (strain at which the primary creep transient ends)

∆εf, ∆εb Forward and backward creep strain in cyclic creep testing

ε Strain rate [1/s]

SSε Steady state creep rate [1/s]

θ Inclination angle about a plane normal [deg, rad]

φ In plane rotation angle [deg, rad]

ϑ Inclination towards a horizontal line [deg, rad]

fm, fr Volume fraction of matrix/reinforcement

fScale Scaling factor

Fn Weighting function for cutting of inclined fibers

I Identitiy Matrix

I1, I3 Constants used in the definition of Eshelby Tensors (according to Brown and
Clarke (1975))

k Calibration factor for strain measurements

kE Ratio of reinforcement and matrix elastic moduli

L Average fiber length [µm]

L0 Specimen (extensometer) gage length [mm]

λij Transformation matrix

n Stress exponent in power-law creep

ν Poisson’s ratio

p1, p2, p3 Unit vector components

P, Q, R Constants used in the definition of Eshelby Tensors (according to Brown and
Clarke (1975))

Qapp Apparent activation energy

R Gas Constant [J/(K·mol)]

Ra Arithmetic average roughness [µm]

Rp0.1, Rp0.2 0.1% and 0.2% yield stress
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s, se Fiber aspect ratio, section ellipse aspect ratio

σ Stress [MPa]

σΑ Externally applied stress tensor

σeq Von-Mises equivalent stress [MPa]

p
σ Volume-averaged stress tensor in phase p [MPa]

σy Uniaxial yield stress [MPa]

S Eshelby Tensor

t Time [s]

tc Duration of a thermal cycle

tl Time at load.

T Temperature [K]

Teq Equivalent temperature. Average temperature of a thermal cycle, weigthed for
the diffusion coefficient [°C]

Tesf Effective stress-free temperature. Temperature in a thermal cycle, where the
volume averaged matrix and reinforcement stresses are zero [°C]

Tmin, Tmax, Minimum and maximum temperature of a thermal cycle [°C]

∆T Amplitude of a thermal cycle (Tmax-Tmin) [K]

∆Tc Critical thermal cycle amplitude to induce matrix plasticity [K]

∆V/V Phase transformation strain

x, y, z Global coordinate system used to describe specimen orientation

x’, y’, z’ Local coordinate system

ψ Probability distribution function of orientation

Subscripts
i (1, 2, 3) Orientation index indicating principal direction

p (c, m, r) Phase index referring to composite, matrix, reinforcement





1 Introduction
Metals and alloys are reinforced with stiff phases to improve their performance but sometimes
this introduces unwanted weaknesses. An example is the sensitivity of metal matrix com-
posites (MMCs) to changing temperatures. This is brought about by the differences in the
thermal expansion coefficients of the metallic matrix and the ceramic reinforcement, which
cause an internal strain mismatch when the temperature is varied. This strain mismatch can
give rise to large internal stresses. When the temperature is cycled, these stresses are con-
tinually regenerated and this can enhance the creep deformation of MMCs. This phenomenon
has been termed “thermal cycling creep” (TCC) and has been subject of research for many
years.

The acceleration of deformation is especially pronounced when the cyclically induced stresses
become substantially larger than the applied stresses. Under such conditions the thermal
cycling creep rates become proportional to the applied stress i.e. the apparent stress exponent
approaches unity. The high amount of strain rate sensitivity can give rise to superplastic
deformability. Another consequence of thermal cycling under such conditions is that the TCC
curves exhibit no transitional behavior. Such behavior has been observed in the past in many
investigations for a variety of different MMCs. It seems, however, that in many cases the
investigated material combinations and the test conditions were chosen such that a particularly
high creep enhancement could be observed. Almost all findings and interpretations therefore
originate from investigations of idealized materials or even model materials. TCC behavior of
metal matrix composites has been investigated theoretically using continuum theory as well as
micromechanical modeling and the fundamental phenomenology of thermal cycling creep
acceleration has been successfully explained by these models.

The composite behavior under thermal cycling conditions is not only of great academic
interest. Aluminum based MMCs, for example, have already found application in automotive
engine environments where thermal cycling is definitely an issue. In this work, the TCC-
behavior of a technical aluminum alloy, reinforced with discontinuous alumina fibers, has
been widely investigated. This composite system is one of the very few series applications of
short fiber reinforced metals. The material is used as local reinforcement in diesel engine
pistons and there it is subjected to both mechanical and thermal cyclic loads.

One of the aims of the present work is to test the performance of the material under thermal
cycling conditions that are close to use conditions. Furthermore it is to be investigated which
aspects of the present knowledge on thermal cycling creep can be recognized in the present
technical material and, if necessary, the present understanding of TCC is to be refined and
extended.





2 Literature
When materials have to be optimized for a structural application, it is usually strength and/or
stiffness that is to be improved. Reinforcing a material with a stiffer second phase has proved
to be an effective way to do so. The underlying concept is the principle of load sharing. An
applied external load is distributed amongst the phases of a composite according to their elas-
tic and plastic properties and the volume fraction, the shape and the orientation of the rein-
forcement. In composites with metallic or polymer matrices, low-strength phases are
reinforced by high-stiffness phases, because the stiffer phase does not only raise the stiffness
of the composite, but also reduces the average stress in the matrix effectively.

This load-partitioning between the components of a composite frequently changes the basic
phenomenology of the material’s response to an applied stress, as compared to single-phase
materials. Especially for plastic deformation or under creep and/or thermal cycling conditions,
metal matrix composites can behave quite differently than unreinforced metals. The key to the
understanding of these differences lies in understanding the evolution of stress in the metallic
matrix phase. In the following, some basic textbook knowledge related to the internal stresses
in MMCs is briefly revisited. This knowledge is required to understand the literature con-
cerning the isothermal creep and thermal cycling creep properties of MMCs which is reviewed
afterwards.

2.1 Stresses in MMCs
Stresses in materials arise when they are subjected to a strain or when a spontaneous strain is
impeded.

2.1.1 Origin
In composites, the straining of one phase can be impeded by the other. When two well-bonded
phases are strained by different amounts, the mismatch in strain causes stresses in each phase.
In this work, three different types of strain are distinguished: elastic, thermal, and inelastic
strain. Each type of strain can cause strain mismatch between the phases and thus can give rise
to internal stresses.

Elastic Strain Mismatch

Under external load, the individual phases are strained according to their individual
stiffnesses. If they have different stiffness, the tight bonding causes a strain mismatch. The
volume averaged stresses in the stiffer phase (reinforcement) will be higher than the externally
applied stress, while the more compliant phase will experience a lower average stress. As long
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as no inelastic strains are involved, the amount of load transfer is proportional to the applied
load. The proportionality constant depends, amongst other things, on the difference between
the elastic constants of the constituents and their volume fraction. Higher stiffness differences
and high reinforcement volume fraction lead to higher reductions in the matrix stress.

Thermal Strain Mismatch

The matrix and the reinforcing phase of an MMC usually have different coefficients of ther-
mal expansion (CTE). Changing the temperature will thus cause a strain mismatch between
them. When no inelastic strains are involved, then the induced stresses are proportional to the
change in temperature. The proportionality constant will be called thermoelastic coefficient of
stress. It is the first differential of stress σp in the phase p with respect to temperature T for
purely elastic deformation: 

elasticp dTd /σ . The abbreviation “TECS” will also be used fre-

quently. This coefficient is proportional to the difference in CTEs, ∆α, and again to the elastic
properties and the volume fraction of the phases. It also depends on the reinforcement mor-
phology and its orientation distribution.

In MMCs the CTE of the matrix phase is usually larger than that of the reinforcement. As a
consequence, the thermoelastic coefficient of stress for the matrix is negative. This means that
cooling increases the matrix stress, while heating decreases it. When a composite is cooled
from production temperature, where the strain misfit is zero, to room temperature, the matrix
will experience tensile stresses.

Inelastic Strain Mismatch

In MMCs, the matrix can undergo creep or time-independent plastic strain. A stiff reinforce-
ment, which is tightly bonded to the matrix has to make up the misfit strain by straining elas-
tically and so its stress changes. Inelastic deformation of the matrix thus results also in load
transfer from the matrix to the reinforcement.

Stress Relaxation

The above mentioned sources of strain mismatch often give rise to high stresses in the rein-
forcement. The stored elastic strain energy provides a driving force for relaxation of these
stresses. This can happen by a series of mechanisms that have in common that they help to
decrease the strain misfit between the matrix and the reinforcement. Such processes are rein-
forcement-fracture (Brechet et al. (1991), Llorca (1995), Favier et al. (1995)), reinforcement-
matrix debonding (Favier et al. (1995)), matrix cavitation (Whitehouse and Clyne (1993)),
reinforcement relaxation by interface diffusion (Rösler et al. (1991), Sato and Kuribayashi
(1993)) or any inelastic matrix deformation (creep, plasticity, interfacial diffusion, recrystalli-
zation).
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2.1.2 Mathematical Treatment
Stresses in MMCs can be calculated by considering the misfit strains in the composite. A rela-
tively widespread method to do so is the so-called Eshelby method. It is based on the insight
that an ellipsoidal elastic inclusion in an infinite matrix has a uniform state of stress at all
points within it. Eshelby (1957) developed a technique to represent an actual inclusion by an
inclusion made of the matrix material (an “equivalent homogeneous inclusion”) with a certain
misfit strain (the “equivalent transformation strain”) and an identical stress. An excellent
review of the method and its application to composites has been given by Withers et al.
(1989). A well comprehensible introduction to the topic can be found in the book by Clyne
and Withers (1993). The method is strictly valid only for ellipsoidal inclusions in an infinite
matrix and for purely elastically accommodated misfit. For non-dilute systems, the matrix is
approximated by an effective medium in a so-called “mean-field”-approach. This elegant
mathematical trick leads to lower bound estimates of the composite properties (Pedersen
(1983)).

The Eshelby method with the mean-field approach leads to the following equation for the
composite stiffness tensor Cc and the composite CTE tensor αc (Clyne and Withers (1993)):

( ) ( )[ ]{ } ( )[ ] 1111 −−−− ⋅−⋅−−−⋅−⋅−= mrmmrrmrmc CCCCISfSCCfCC (2-1)

( ) ( )[ ]{ } ( )mrrmrrmrmc CCISfSCCf αααα −−−−⋅−⋅−= −1 , (2-2)

Here, Cm and Cr are the stiffness tensors of the matrix and the reinforcement, respectively, fr is
the volume fraction of reinforcement and I is the identity matrix. S is the Eshelby-tensor,
which is a fourth-rank tensor that relates the constrained strain (tensor) of an elastically
homogeneous ellipsoidal inclusion to the inclusion’s unconstrained transformation strain (ten-
sor). It represents the shape and the orientation of the inclusions and depends on the
reinforcement geometry and the Poisson’s ratio of the matrix. αm and αr are the thermal
expansion tensors of the matrix and the reinforcement.

The amount of the volume averaged mean matrix stress 
m

σ  due to an external load as well

as the thermoelastic coefficient of stress d
m

σ /dT can also be easily derived from the equa-

tions that are given by Clyne and Withers (1993):

( ) ( ) ( )[ ]{ } ( )( ) Amrmmrrmmrm
CCCCISfSCCISCf σσ ⋅+⋅−⋅−−−⋅−⋅−⋅⋅= −− 111

(2-3)

and

( ) ( ) ( )[ ]{ } ( )mrrmrrmmr
m CCISfSCCISCf

dT
d

αα
σ

−⋅⋅−−−⋅−⋅−⋅⋅= −1 ,

(2-4)
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where σA is the applied stress tensor and T is the temperature. The misfit-generating “trans-
formation strains” can be added up so that the combined effects of an external load and a
thermally induced misfit (due to ∆T) on the mean matrix stress can also be calculated:

( ) ( ) ( )[ ]{ }
( ) ( )[ ]AAmrmmrr

mrrmmrm

CCCTC

CISfSCCISCf

σ+σ⋅⋅−+∆⋅α−α⋅⋅

−−−⋅−⋅−⋅⋅=σ
−

−

1

1

   

(2-5)

The components of the Eshelby tensor S can be found in textbooks (e.g. Clyne and Withers
(1993) or Mura (1987)) for various aligned reinforcements of certain geometry (spheres,
oblate and prolate spheroids, fibers, plates). Averaged Eshelby tensors have been calculated
for reinforcements that are not aligned but have certain special orientation distributions.
Johannesson and Ogin (1995) have calculated an average Eshelby tensor for fibrous rein-
forcements in a 2D-planar arrangement (see Appendix A.1). Johannesson and Pedersen (1998)
have extended this averaging routine with the aid of a computer algebra program to arbitrary
transversely isotropic orientation distributions (see Appendix A.2).

2.1.3 Measurement of Internal Stresses
Stresses cannot be measured directly. What can be measured is elastic strain. Internal elastic
strains in metals are usually measured by diffraction techniques. The underlying principle is
based on the distortions of the crystal lattice that cause (Bragg) diffraction peaks to shift in the
spectrum. From these peak-shifts, one can deduce the elastic strains and possibly the stresses.
The principle and its application to various materials is extensively reviewed in the book by
Noyan and Cohen (1987).

Diffraction techniques have been used extensively to measure internal stresses in MMCs.
Conventional X-ray diffraction at room temperature is relatively widespread. A survey of
internal stress measurements on aluminum based MMCs has been given by Ericsson et al.
(1993). Since then, X-ray diffraction has also been applied for measurements at high tem-
peratures (e.g. Weiland and Johannesson (1995), Weiland et al. (1998)) and during thermal
cycling (e,g, Weiland and Ericsson (1995), Li et al. (1998)). A basic drawback of the
technique is that it provides only near-surface information due to the limited penetration depth
of the X-rays. Thermal neutrons do not have this drawback because they exhibit a much
higher penetration depth. Therefore neutron diffraction techniques have been used by various
groups to measure the mean lattice strains in the bulk of MMCs during room temperature
deformation (e.g. Allen et al. (1992), and to measure thermally induced stresses at rising
temperatures (e.g. Majumdar et al. (1991), Ceretti et al. (1994)) and during thermal cycling
(Withers et al. (1987)). The major drawback of neutron diffraction is the low flux of the
sources, which makes measuring times very long (on the order of hours) and thus unsuitable
for the investigations of dynamic processes. In the case of thermal cycling, this has been
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overcome by applying a stroboscopic technique which measures lattice strains at various
points in a thermal cycle, averaged over many cycles (Daymond and Withers (1997)). More
recently, synchrotron X-rays with high energy and flux have become available with new third-
generation synchrotron facilities. Those X-rays have been employed to study internal strain
evolutions at short measuring times without the need of a stroboscopic technique (Daymond
and Withers (1996)). It seems obvious that this technique will be exploited further in the
future to study dynamic processes in MMCs.

From the survey of the diffraction studies on aluminum based MMCs by Ericsson et al.
(1993), it is apparent that the bulk of the internal stress measurements have been made on Al-
matrix composites reinforced with SiC particles and whiskers. This trend has continued to the
present date. This is probably due to the high modulus and CTE mismatch between the alumi-
num matrix and silicon carbide reinforcement that give rise to large, well measurable misfit
strains. Moreover, the SiC phase is usually single crystalline cubic and therefore also well
suited for lattice strain determination.

A general problem with diffraction techniques is that absolute stresses can only be determined
when the unstrained lattice parameter d0 is also measured with sufficient accuracy. This is a
tedious, often impossible task. Therefore, most diffraction results are only presented in terms
of the evolution of (relative) internal strains, without calculating stresses from them.

2.2 Isothermal Creep of MMCs
A short fiber reinforcement usually increases the creep strength of metals and alloys. The
reason for this is the above mentioned load transfer from a deforming matrix to the stiff rein-
forcement (for a review see Clyne and Withers (1993)). This load transfer reduces the
effective stress in the matrix progressively, so that the creep rate decreases continuously. For
continuously reinforced MMCs, this process may go on until, at infinite time, all the load is
borne by the reinforcement. MMCs with short fibers, however, usually exhibit a steady state
creep regime. This can be thought of as a dynamic equilibrium between load transfer to the
fibers and stress relaxation processes (damaging or non-damaging) that unload the fibers (see
2.1.1). Alternatively, one can think about part of the matrix creep strain occurring without
introducing additional strain misfit (e.g. flow around fiber ends). A steady state is then
reached when the matrix stress is such that the rate of creep that induces misfit assumes the
same values as the rate of creep that induces no misfit become equal. The initial transient
creep is thus a “built-in” feature of such composites, irrespective of whether the creeping
phase shows primary creep or not.

Due to the potential application of MMCs at elevated temperatures, many investigations on
the isothermal creep of a wide variety of composite materials have been published. In their
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book “An Introduction to Metal Matrix Composites”, Clyne and Withers (1993) give a short
review of experimental data and theoretical models for creep of MMCs.

In the following, at first the phenomenology of MMC creep, simple models and considera-
tions of the influence of primary creep will be briefly reviewed. A more detailed review,
which will be given afterwards, is confined to those publications that have focused on creep in
composite systems that are similar to the one used in this work, i.e. aluminum-based alloys,
reinforced with discontinuous alumina fibers (Al/Al2O3f). The present understanding of the
creep of discontinuously reinforced MMCs will be critically summarized at the end of this
chapter in Section 2.5.

2.2.1 General Findings and Basic Models
Most experimental creep investigations of fibrous composites have the following in common:
1) The composite creep strength is higher than that of the unreinforced matrix. 2) The stress
exponent for power-law creep and the thermal activation are higher for the reinforced mate-
rial.

The first point is not surprising, given that effective load transfer to the fibers can take place
(note that for particulate reinforcement, the creep strength is sometimes lowered, e.g.
Whitehouse and Winand (1999), Whitehouse et al. (1998)). High stress exponents for com-
posite creep have been observed in the system Al/SiC (e.g. Nieh (1984), Pickard and Derby
(1990)). Threshold-stress concepts have been put forward (Mishra and Pandey (1990)) to
rationalize these high stress exponents. It must be noted that pronounced thresholds had been
found only rarely in experiments. Nevertheless, there has been much speculation about the
origin of a threshold stress for MMCs in literature. It has been attributed to dispersion
strengthening of the matrix due to introduction of a fine oxide dispersion during powder-
metallurgical processing (Park et al. (1990)). Mishra and Pandey (1990) have explained it with
the stress-independent pinning of subgrains by the reinforcement, using the substructure-
invariant creep approach by Sherby et al. (1977). Nardone and Prewo (1986) have ascribed the
threshold stress to internal stresses from thermal strain misfit that oppose creep deformation.

The effect of internal load transfer as a possible cause for the high creep stress exponents
observed on MMCs has been investigated by Dragone and Nix (1990). They showed analyti-
cally that load transfer to an array of isolated aligned fibers results in a composite creep law
which has the same activation energy and the same stress exponent as the matrix material. In a
subsequent finite element model (FEM) study (Dragone and Nix (1992)), they found that load
transfer to an interconnected fiber network could give rise to high stress exponent, if it was
combined with progressive evolution of damage in the fiber network during creep. Their
experimental results and their model will be considered in more detail in one of the following
subsections.
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Models for Steady State Creep

Simple rule-of-mixture equations for two-phase composites with two creeping phases have
been given by McLean (1994), based on iso-strain assumptions between the phases. More
elaborate models, based on the shear-lag theory have been developed by De Silva (1968),
Mileiko (1970), McLean (1972), Kelly and Street (1972) and others. All these models,
however, can only be applied to aligned short fiber composites and they all predict only steady
state creep and no creep transitions. Goto and McLean (1991a, Goto and McLean (1991b)
have adapted the approach by Kelly and Street (1972) and have additionally assumed a
deforming interface layer around the elastic fibers. They calculated creep curves with a pro-
gressively decreasing strain rate until steady state was obtained and they showed the marked
influence that weak interfaces have on creep strength. Mori et al. (1997) claimed to have
shown that a steady-state in a discontinuously reinforced metal could be achieved only when
diffusion and/or sliding at the reinforcement interface takes place. They have been disproved,
however, by Sato et al. (1998), who showed that a steady state can be reached with only
matrix plastic (creep) flow operating.

Transient creep

Numerous FEM investigations of MMC creep with particles (e.g. Mori et al. (1997)), continu-
ous fibers (e.g. Durodola et al. (1994)), aligned short fibers (e.g. Dakshinamurthy and Pollock
(1998)) and misoriented short fibers (Sorensen (1993)) have been undertaken. They all capture
the effect of transient creep due to load transfer from the matrix to the fibers, without incorpo-
rating primary creep behavior in the matrix constitutive law. None of these investigations
focused on the influence of the reinforcement on the composite creep stress exponent or its
thermal activation energy for creep.

In an FEM study of the creep of an aluminum-based composite with TiC particles as rein-
forcement, Davis and Allison (1995) stated that the steady-state creep rate was only dependent
on the matrix steady-state creep rate and the reinforcement fraction. Furthermore they con-
firmed that the elastic/plastic properties of matrix and reinforcement do affect the transitional
behavior but not the final rates. They incorporated primary matrix creep of the matrix in the
form of a t-a strain-rate dependence in their model and found that the composite material
asymptotically approached the same behavior (t stands for time). The prediction for the begin-
ning of primary creep, however, was rather poor.

In another continuum mechanics FEM analysis of the primary creep of a SiC particle rein-
forced aluminum alloy, Atkins and Gibeling (1995) found that the primary-like effect due to
load transfer is minimal compared to the strain transient caused by true primary creep of the
matrix. They also reported that the stresses no longer change once a constant creep rate of the
composite is established.
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2.2.2 Creep of Al/Al2O3f Composites
The study by Dragone and Nix (1992) is one of the few investigations of creep of aluminum
based composites, reinforced with Al2O3 fibers (Al/Al2O3f), published so far. They investi-
gated the steady state and transient creep of an Al-5 wt.%Mg alloy, reinforced with 26 vol.%
short alumina fibers in a random-planar arrangement, in the temperature range 200-400 °C.
The steady state creep stress exponents were above 12, which is very high compared to the
measured matrix stress exponent of 3. They observed distinct primary creep and large anelas-
tic strains after unloading and attributed them to load transfer between fibers and matrix.
During loading, elastic strain energy is stored in the fibers and when the load is removed, this
elastic strain energy provides a driving force for back-creep. They found that the amount of
strain recovered depends non-linearly on the external stress. Higher absolute stresses led to
larger strain recovery after 10 minutes of unloading. The authors do not specify, for how long
or to what strain the specimen was initially loaded at each stress. They also do not report on
the recovery behavior for repeated loading and unloading. The creep behavior was modeled
with a 2-dimensional finite element model, with a matrix capable of elastic and power-law
creep deformation and an interconnected  random-planar fiber network, represented by
connected elastic beam elements. With this model, they succeeded in predicting the anelastic
unloading behavior reasonably well – although the initial rate for back-flow was over-
estimated. A second loading and recovery is less well predicted and the authors claim that this
is due to neglect of substantial damage that has happened during the second loading phase to
the fiber network. They suggest that progressive loading and an increasing damage to the fiber
network result in a reduction of the driving force for backflow and thus in a reduction of the
recovered strain. However, they give no experimental evidence for this assumption. Their
FEM model has another drawback: It fails in the prediction of the long-term creep rates of the
composites. This is due to the assumption of a continuous reinforcement. In their synopsis the
authors speculate that the incorporation of creep damage to the fiber network in the model
could remedy this.

Dlouhy et al. (1993) have studied creep in two aluminum-based alloys with 15 vol.% short
alumina fibers (random-planar arrangement) at 350 °C. They found a high degree of creep
strengthening and stress exponents that were raised compared to the matrix (10 instead of 5).
Based on microstructural observations they have put forward a micromechanical model for
creep, which encompasses transitional behavior (Dlouhy et al. (1995)). They claim that three
elementary processes are involved in the creep of a short-fiber MMC: 1) loading of the fibers
by the formation of a work hardened zone (WHZ), 2) a recovery process which decreases the
dislocation density in the WHZ and 3) breakage of fibers. The work hardened zone (WHZ)
around the fibers was interpreted as an arrangement of dislocation loops. This WHZ causes
load transfer from the matrix to the fibers. In continuum mechanics it could be interpreted as a
plastic strain mismatch between the phases. This load transfer is opposed by the recovery
mechanism, during which dislocation loops move to the fiber end, shrink and annihilate. The
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reduction in dislocation density contributes to the creep stain, but does not increase the plastic
strain mismatch. In this way the load in the fibers is reduced. Once the dislocation density in
the WHZ is high enough to induce a critical stress, multiple breakage of fibers starts to occur.
Fiber breakage accelerates the recovery process because the travel distance for the dislocation
loops to annihilate is reduced. The authors point out that, under all their assumptions, “creep
is never microstructurally steady”, i.e. no long-term steady state creep rate is achieved.
Primary creep is governed by load transfer and recovery. Before a dynamic equilibrium
between the rate of load transfer and the recovery rate is established, the stress in the fibers is
high enough to break them. Tertiary creep, governed by recovery and fiber breakage is the
consequence. Eggeler (1994) points out that fiber fracture relaxes only part of the elastic
energy stored in the fibers, and that the subfibers can be newly loaded by the surrounding
matrix. Dlouhy and Eggeler have not presented experimental data or modeled results
regarding the back-flow of their MMC. In a short note (Dlouhy and Eggeler (1994)), however,
they discuss the aforementioned results by Dragone and Nix. They claim that both the over-
estimate of the initial back-flow rate and the under-estimate of the total strain in the later
stages of creep are due to disregarding a recovery process that reduces the elastic energy
stored in the fibers.

Liu and Bathias (1994) performed uniaxial creep experiments on two hypoeutectic Al-Si
alloys, reinforced with 20 vol.% of alumina fibers with supposedly 3D-random orientation. In
their investigation they focused on a short-term negative creep region that followed after a
conventional primary creep transient. The negative creep disappears as the load is raised
above a critical stress. The authors attribute the occurrence of negative creep to the “randomly
oriented fibers strongly resisting dislocation creep of the matrices” without giving further
details.

A technical aluminum alloy that was reinforced with 15 vol.% of Al2O3 (Saffil) fibers has
been investigated for its creep rupture life by Nam and Han (1998). Like the aforementioned
investigators, they also found high stress exponents for creep in the MMC (about 12) and
lower ones in the matrix material ( about 4). They found that the creep rupture life was pro-
portional to the (n-1)th power of stress, where n is the stress exponent of power-law creep.
While the matrix material showed normal creep rupture by growth and coalescence of pores
(equiaxed dimples on the fracture surface), the MMC failed by brittle shear fracture (elon-
gated dimples).

Investigations of Creep Damage

Komenda and Henderson (1993) have investigated the influence of the homogeneity of fiber
densities on the creep rupture times of an Al-3 wt.%Cu alloy reinforced with 10, 20 and
30 vol.% of Al2O3 (Saffil) fibers. They quantified the fiber homogeneity in terms of the ratio
of standard deviation of the diameter of fiber free zones to the mean zone diameter. In their
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work, it was found that the stress needed for a rupture time of 1000 hours decreased linearly
with increasing inhomogeneity.

Sorensen (1991) employed FEM creep modeling with a 2D unit-cell approach to model creep
of whisker-reinforced aluminum. He found a low influence of fiber clustering on creep rates,
compared to the large effect on plastic deformation (Christman et al. (1989)). Fiber clustering
in his work, however, is discussed in terms of periodic arrangements of whiskers in pairs (due
to the unit-cell approach), and not to large-scale variations in reinforcement density.

Whitehouse et al. (1998) studied cast as well as powder-metallurgically produced aluminum
alloys, reinforced with 10 and 20 vol.% of Al2O3 (Saffil) fibers, that were extruded after pro-
duction. Matrix cavitation adjacent to fiber ends was found to be the dominant damage
mechanism. Cavitation was particularly pronounced in clustered regions. The authors propose
that this damage and not load transfer dominated the creep strain evolution of the MMC.

2.3 Isothermal Creep under Cyclic Loading Conditions
The isothermal creep behavior of materials can be altered when the externally applied load is
cyclically varied during the experiment. In the present work, experiments under such loading
conditions will be called “stress cycling creep experiments”. A few studies dedicated to the
creep behavior of materials in such stress cycling creep experiments have been published. The
experiments usually employ symmetric triangular or square wave cycles of stress with cycling
periods in the region of 1 to 60 seconds. They are thus very similar to slow load-controlled
fatigue tests under creep condition. Most investigations center on the question whether creep
is accelerated or retarded by load cycling.

Cyclic Creep Acceleration and Retardation

The two contrary phenomena have been termed “cyclic creep acceleration” (CCA) and
“cyclic creep retardation” (CCR). Hereby, creep rates determined from the envelopes of the
stress cycling creep curves are directly compared to static creep rates. Usually no correction is
made for the time spent at low or zero stresses. Both, CCA and CCR have been observed in
pure polycrystalline and single crystalline metals, alloys, dispersion strengthened materials
and also in MMCs. A general trend is that CCA occurs at rather low temperatures and high
stresses, while CCR is mostly found at high temperatures and low stresses (Lee and Nam
(1988)).

It has been tried to explain CCA by different theories. Cross slip based theories assume that
piled up screw dislocations can overcome obstacles by cross slip during off-load periods and
easily glide away upon re-loading. Other theories are based on point defects such as excess
vacancies. These are produced mechanically by non-conservative jog motion and they enhance
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diffusion controlled creep, which is reflected in a lowering of the apparent activation energy
for creep. Both types of theories, cross-slip and point-defect based ones, have been reviewed
by Lee and Nam (1988).

Kimmerle et al. (1986) investigated the frequency dependence of stress cycling creep rates of
a dispersion strengthened superalloy. They observed CCR and found that the creep rate
decreased when the cycle duration became shorter. To explain this behavior, they assumed that
during forward creep (under load), the strain could be divided into two components, a recov-
erable and a non-recoverable one. Only the non-recoverable component contributed to the
cyclic creep strain. They demanded that recoverable strain had to take place over a certain
time before non recoverable creep could occur. The time remaining for non-recoverable creep
was shortened when the cycle duration was shortened and therefore the stress cycling creep
rate decreased for shorter cycles. As a physical explanation they proposed a mechanism based
on climb controlled dislocation glide. Under load, dislocations bow out between strong
pinning points and during the phase of recoverable strain storage, they climb over weaker
pinning points. Upon load removal, they can completely un-bow again. Non-recoverable creep
occurs when the dislocation has sufficient time to climb over the strong pinning points. In
their reasoning the authors neglect that when the cycle duration is shortened, the time for
recovery is also shortened and then less time is needed to restore the recoverable strain on
loading. The explanation of Kimmerle, Nardone and Tien can only rationalize CCR behavior.

Stress Cycling Creep of MMCs

Stress cycling creep experiments have also been performed on MMCs. Tjong et al. (1999)
observed CCR behavior with cp-Al / 20 vol.% SiCw (PM) which they investigated at 325-
375 °C. They used sawtooth cycles with a frequency of 0.5 Hz and almost complete unload-
ing. They found a deceleration by 3 orders of magnitude and explained it using the same
rationale as Kimmerle et al. The same explanation was also used by Liu et al. (1997b), who
found CCR in Al 6061 / 28 vol.% SiCw at 350 °C. At temperatures of around 200 °C, how-
ever, they found CCA, which was more pronounced for higher cycle frequencies (see also Liu
et al. (1997a)). In this case they employed explanations based on the generation of excess
vacancies that had been given for pure metals (see above). All these dedicated stress cycling
creep investigations on MMCs have in common that short cycle times were used. They do not
consider effects of load transfer and strain energy storage in the reinforcement, probably
because these are believed to gain importance only at very low frequencies with long relaxa-
tion times.

No investigations of stress cycling creep on MMCs with long recovery times have been found
in literature. It was mentioned above (see 2.2.2) that Dragone and Nix (1992) studied the
creep recovery behavior upon load removal in a short fiber MMC. They, however, investigated
only singular back creep curves but not multiply repeated unloadings. They also did not
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address effects of recovery on the stress cycling creep rate or on the damage evolution. This
will be done in the present work for a short fiber-reinforced aluminum alloy.

2.4 Thermal Cycling Creep of MMCs
Thermal cycling under creep conditions can lead to increased creep rates and pronounced
dimensional changes in a variety of materials. This is expected when thermal cycling induces
considerable strain misfits (and thus internal stresses) in the material that are repeatedly
regenerated. The phenomenon has been termed “thermal cycling creep” and will be
frequently abbreviated “TCC” in this work*.

The probably first report on this phenomenon was made by Cottrell (1955). He reported on the
possibility of creep enhancement in polycrystalline α-uranium due to neutron irradiation or
thermal cycling. Without experimental evidence, he predicted that the high anisotropy of CTE
in α-U would give rise to large internal stresses, because the grains would mutually constrain
their individual thermoelastic deformation. He pointed out that the acceleration of creep
would be highest when the applied stresses are low: “This is because […] most of the work of
deformation is done by the internal stresses and the role of the external stress is merely to
guide the local plastic deformation such a way that their average […] has a non-vanishing
component in the direction of the stress.” Cottrell’s suppositions were experimentally con-
firmed later on. A more recent study is the one by Wu et al. (1987).

Examples of misfit-accelerated creep due to thermal cycling have been found in

1) materials with an anisotropic CTE, such as U, Zn, Cd … (e.g. Lobb et al. (1972), Wu et al.
(1987), Pickard and Derby (1991)),

2) materials that undergo phase transformations with density changes, such as U, Fe, Ti …
(e.g. Greenwood and Johnson (1965), Zwigl and Dunand (1998), Schuh and Dunand
(1998))
and

3) two- or multi-phase materials with CTE differences between the phases such as MMCs
(Wu and Sherby (1984), Pickard and Derby (1990), Chen and Daehn (1991))

In the following, the basic phenomenology of thermal cycling creep will be summarized.
Afterwards, existing models for the prediction of thermal cycling creep rates are reviewed.

                                                
* The use of the term “creep” in “thermal cycling creep” does not necessarily mean that creep deformation is a
dominant deformation mechanism or involved at all. The term is only used to indicate that the testing temperature
lies in a region where isothermal creep deformation can be expected.
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2.4.1 Phenomenology
Two typical results from TCC investigations are presented in Figure 2.1a and b in terms of
Norton plots of strain rate ε  vs. applied stress σ. They were chosen here because they are
thought to be representative for most experimental investigations of TCC in a variety of mate-
rials. In these plots, three basic features of TCC that have been identified in the literature (see
e.g. Derby (1991)) are visible:

1) At low applied stresses the creep rate under thermal cycling conditions is higher than for
isothermal creep (at a comparable temperature).

2) At low applied stresses the strain rate is proportional to the applied stress, i.e. the stress
exponent of creep approaches unity.

3) At high stresses the stress exponent approaches values for isothermal creep (at a compara-
ble temperature).

Furthermore, most investigators report that in the region where the stress exponent is low, no
transitional behavior (comparable to primary creep) was found, i.e. the strain per cycle was
constant from the first thermal cycle. It was also frequently reported that TCC was only
observed when the thermal excursion was higher than a critical value. This was attributed to
matrix plasticity being induced beyond a critical thermal excursion ∆Tc.

The low apparent stress exponent is equivalent to a high value of strain rate sensitivity. This
can result in the inhibition of necking and thus fulfils a necessary condition for superplastic
deformation (Avery and Backofen (1964)). Indeed, superplastic deformability under TCC
conditions has been shown for all of the above cases. To distinguish it from the classical
“microstructural superplasticity” or “fine-grained superplasticity” this has been called
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Figure 2.1: Examples for typical thermal cycling creep behavior. a) TCC of polycrystalline Zinc (Lobb
et al. (1972)) b) TCC of a metal matrix composite consisting of an aluminum based matrix with 20
vol.% of SiC whiskers (Wu and Sherby (1984)).



16 Chapter 2 - Literature

“transformation superplasticity” (for the case of metals undergoing phase transformation)
and “internal stress superplasticity” (in the field of MMCs). The expression “mismatch in-
duced superplasticity – MISP” used by Chen and Daehn (1991), seems to be the most appro-
priate formulation. It is, however, rarely used.

2.4.2 Materials, Experiments and Evaluation
The most popular MMC system for the investigation of thermal cycling creep seems to be the
system Al/SiC. Just like in the field of measurement of internal stresses (see Section 2.1.3),
the system Al/SiC is attractive because of the large difference in CTE between the constitu-
ents. A compilation of aluminum-based composites with discontinuous reinforcements that
have been investigated under thermal cycling creep conditions is given in Table 2.1.

Most TCC studies were conducted using standard creep rigs, equipped with radiant furnaces
and forced air cooling. In many cases, the effect of superplastic deformability was also
addressed. Therefore most experiments were conducted under tensile loading. Compressive
tests have also been conducted by Wu and Sherby (1984), Hong et al. (1988) and Kitazono et

Composite Reinforcement
volume fraction

Orientation Thermal cycle Reference

cp Al / SiCw 10% aligned 400↔175 °C Daymond and Withers (1997)

Al 2024 / SiCw 20 % aligned,

random

450↔100 °C Wu and Sherby (1984)

Al 2024 / SiCw 10%, 20% aligned 450↔100 °C Hong et al. (1988)

Al 6061 / SiCw 20% aligned 450↔100 °C Daehn and Gonzalez-Doncél (1989)

Al 6061 / SiCw 15% aligned 150↔50 °C Toitot et al. (1990)

cp Al / SiCp 5% - 40% 450↔130 °C

350↔130 °C

200↔80 °C

Pickard and Derby (1990)

Al 2024 / SiCp 10%, 20% 450↔100 °C Goncales-Doncel and Sherby (1996)

Al 7090 / SiCp 15% 200↔70 °C Le Flour and Locicéro (1987)

cp Al / Siplatelets 13.6% (eutectic) random 300↔165 °C Chen and Daehn (1991)

Al / Al3NiDS 10% (eutectic) aligned 400↔300 °C Kitazono et al. (1996)

cp Al / Al2O3f 10%, 20% aligned 340↔140 °C Furness and Clyne (1991b)

Table 2.1: Aluminum based composites with discontinuous reinforcement that have been investigated
under thermal cycling creep conditions (loaded thermal cycling).
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al. (1996). Possible differences in TCC behavior between tensile and compressive loading
were not addressed or reported.

Thermal cycling creep strains were commonly measured as strain increments from cycle to
cycle. The experimentators usually refrained from highly resolved strain measurements, most
probably because standard extensometers are not capable of measuring high strains, as they
occur in superplastic deformation, with the high resolutions that are necessary for this. An
exception are the works by Furness and Clyne (1991a) and Daymond and Withers (1997), who
both used a laser scanning extensometer to measure strains within the thermal cycles. Con-
tinuous strain measurement during the thermal cycles has also been performed in the present
work. The methods to evaluate these in-cycle strains are therefore discussed in Chapter 4
“Experimental”, Section 4.3.1.

In the previous section, it was stated that materials that showed accelerated thermal cycling
creep displayed no transitional behavior when the load was changed abruptly. This was also
reported for most studies with MMCs, but not for all. Le Flour and Locicéro (1987) and Toitot
et al. (1990) reported strong initial transients i.e. 10 and more cycles until a constant strain per
cycle was reached. It is remarkable that in these two investigations, thermal cycles at particu-
larly low temperatures were used. This trend has been confirmed by Daymond and Withers
(1996), who explicitly investigated the strain transients during the initial cycles. They found
that at high temperatures and high thermal amplitudes (400↔175 °C) only one cycle was
needed to achieve a state of constant strain per cycle, while it took three cycles at lower tem-
peratures and lower thermal excursions (325↔175 °C).

2.4.3 Models for Thermal Cycling Creep
Several models and theoretical considerations have been put forward to explain and predict
TCC behavior for the different materials. These can be roughly divided into three groups:

1) Models based on cyclic plasticity (“Enhanced plasticity models”, Derby (1991)). These
assume that the induced strain misfit is large enough to cause plasticity, biased by the
external load in every cycle.

2) Models based on repeated creep under the combined action of internal and external
stresses (“Enhanced creep models”, Derby (1991)).

3) Calculations using the Finite Element method. With these, it is tried to accurately predict
the matrix stress state during thermal cycling based on continuum mechanics. Appropriate
constitutive material laws are employed to consider inelastic effects and how these affect
the evolution of the matrix stress and the global strain response of the material.

These three types of modeling approaches will now be addressed in turn.
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Cyclic Plasticity Models

A very important model, on which many other TCC models are based, is the model for trans-
formation plasticity by Greenwood and Johnson (1965), which in turn is based on an earlier
model by Anderson and Bishop (1962). An excellent review of the Greenwood and Johnson
model, along with a brief overview of various refinements to it, can be found in the recent
publication by Zwigl and Dunand (1997). Only the most important assumptions and simplifi-
cations will be outlined here.

Greenwood and Johnson considered an ideally plastic material which undergoes a phase trans-
formation. During this transformation, the strain misfit becomes high enough to cause plastic
flow in the weaker phase. They add the transformation strain ∆V/V to the plastic strain which
is induced in the weaker phase to get the internal strain mismatch. Then they use the Levy-von
Mises flow rule*, to link this internal strain tensor to the plastic yield stress σy. After
introducing strain compatibility conditions, they arrive at an expression for the deviatoric
stress component in loading direction, which is a function of the transformation strain and the
total strain. To simplify this expression, Greenwood and Johnson assume that the total strain is
much smaller than the transformation strain, (ε<<∆V/V) and after an integration which con-
siders all possible orientations of the phase transformation strain, they arrive at the following
formula for the total strain ∆ε after two transformations per cycle:
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The above simplification leads to the prediction that the strain per cycle (and thus the TCC
rate) scales linearly with the applied stress σ. Furthermore, it is seen that the creep rate is pro-
portional to the induced strain mismatch and that higher yield stresses σy will lead to lower
strain rates. Analytical expressions have been obtained for the case of less strict simplifica-
tions (Zwigl and Dunand (1997)) and for these, a deviation from the linear stress / strain rate
dependence is found for higher strain rates (and thus higher stresses).

Derby (1985) adapted the Greenwood and Johnson model (making use of the Levy-von Mises
equations) for the case of CTE mismatch in MMCs. He assumed an ideal plastic matrix and
aligned rigid short fibers as reinforcement with a difference in CTE of ∆α. The matrix yields
as soon as the thermal excursion ∆T exceeds the critical value ∆Tc. His expression differs
from the one by Greenwood and Johnson only in the mismatch strain term:
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* The Levy-von Mises flow rule states that the strain rate in a certain direction is proportional to the deviatoric
stress component in this direction.
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An identical expression was given by Greenwood and Johnson (1965) (taken from Anderson
and Bishop (1962)) where ∆α is the difference in CTEs for the crystallographic axes of
uranium.

Despite the basic features that can be explained by these models (strain rate proportional to
stress at low stresses, critical thermal excursion), they have one obvious drawback: They do
not consider any time dependent processes such as creep and stress relaxation. In the case of
MMCs, other approaches have been made to consider creep. Some of these are reviewed in
the following section.

Enhanced Creep Models

A purely creep-based model for thermal cycling creep was proposed by Sherby and co-
workers (Wu et al. (1987)). As a starting point, they assumed that deformation in the matrix is
accomplished by diffusion-controlled dislocation creep, which they describe by the empirical
Garofalo creep equation (a hyperbolic sine relation). Their key supposition is that “at any
given time during thermal cycling, half of the moving dislocations are influenced by an inter-
nal stress (+σi) that aids their motion and the remaining half of the moving dislocations are
influenced by an internal stress (-σi) that opposes their motion”. Next, they assumed that
these two groups of dislocations contribute independently to the global deformation. They
arrived at a relation that reflects the basic phenomenology of thermal cycling creep:
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(σpbd is the stress at which the power-law breaks down to an exponential creep law). In this
simplified formulation of their creep law, one can see that for applied stresses σ that are much
higher than the internal stresses σi, the creep law simplifies to the Garofalo creep equation.
When the external stress is low, however, the term (σ±σi)/ σpbd becomes low and the two
hyperbolic sine functions can be approximated by linear functions. Then, Sherby and co-
workers expand the resulting power-law and eliminate all terms above second order as
negligible. Finally they arrive at an expression that states the linear dependence of strain rate
on applied stress σ for low stresses:

σσε ⋅−1~ n
i (2-9)

Their creep expression is well suited to fit experimental data of TCC rates. It is, however,
difficult to make predictions with it because it does not specify the amount or even the origin
of the internal stress. As a consequence, σi is mostly a fit-parameter. Moreover, to make equa-
tion 2-9 predictive requires to introduce difficult-to-obtain average quantities such as the
diffusion coefficient and the internal stress, because these change during a thermal cycle.
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It would be more desirable to have a model which takes into account the nature of changing
internal strain misfits and changing matrix creep rates right away. Such a model would
necessarily be a numerical one because the accepted exponential creep equations in combina-
tion with exponential thermal activation terms can usually not be integrated analytically. Such
a numerical approach has been followed by the next model.

Daehn and Gonzalez-Doncél (1989) have put forward a 2-dimensional (plane strain) model
that is based on the assumption that matrix deformation in an aligned MMC takes place by
shear between the fibers. They neglected effects at the fiber ends (especially flow around
them) and assumed homogeneity in the matrix. For their simple geometrical arrangement,
which is defined by the fiber aspect ratio and the volume fraction, they could calculate the
shear stress state in the matrix, incorporating the thermally induced stress. From this, a power-
law creep rate was calculated and resolved for its component in the loading direction. For a
small time step, the strain increment in the loading direction was calculated and via a strain
compatibility condition, it caused a change in the matrix (and fiber) stress. With a computer
program, they finally calculated the complete strain and stress evolution for a thermal cycle in
small increments. They used the model to fit experimental creep data for composite systems
of Al/SiCw (e.g. Daehn and Gonzalez-Doncél (1989)) and even particulate systems (Al/Si:
Chen and Daehn (1991)) and found good agreement with experimental findings. They could
reproduce the behavior at low loads and the transition to isothermal behavior for higher
stresses. Moreover, their model was probably the first one that included a dependence on the
cycling frequency and the shape of the thermal cycle (apart from its amplitude). It also
captured the effect of progressive load transfer to the fibers, because of a strain compatibility
condition between the matrix and the fibers together with an increasing inelastic matrix strain.
Note that Clyne and Withers (1993) erroneously deny this ability of the Daehn and Gonzalez-
Doncél model. Daehn and Gonzalez-Doncél point out that they made gross simplifications,
especially of the internal stress state, to make the problem tractable. Still they consider it to be
predictive, because it captures the effect of cyclic internal inelastic strains which become
irreversibly biased by an applied load “in a physically reasonable manner”.

FEM Calculations

A general problem of FEM studies of composite deformation is the limited complexity of the
structure that can be modeled within reasonable computing time. It is especially difficult to
capture the statistical character of the spatial, orientational and size distribution of the rein-
forcement in a real composite. Therefore, most FEM models for composites employ a so
called unit-cell approach, in which the real microstructure is approximated by a periodic
arrangement of identical cells that contain a limited number of reinforcement structures (usu-
ally a single fiber or particle segment).
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Zhang et al. (1991) employed such a unit-cell approach in an FEM investigation of the
geometry used in the Daehn and Gonzalez-Doncél model. They used plane strain elements
and an isotropic, elastic-perfectly plastic constitutive law for the matrix. The fibers were
assumed to be ideally rigid, with no elastic or plastic deformation. The thermal strain misfit
during thermal cycling caused rather uniform plastic deformation in a zone surrounding the
central portion of the fibers and plastic strain concentrations near the fiber ends. Substantial
plastic extension of the composite was only found when the plastic zones became inter-
connected. As for the dependence of strain rate on the applied stress, qualitatively, the same
behavior was predicted as with the closed-form model by Daehn and Gonzalez-Doncél
(1989). The FEM model was also used to study the influence of reinforcement morphology
(aspect ratio of the fibers, volume fraction). The authors reported that the influence of the
morphology is only very small.

An other interesting computational study of TCC in a Al/SiCw composite was published by
Daymond and Withers (1997). Two simple three-dimensional fiber arrangements were mod-
eled (staggered and aligned). To model the inelastic deformation of the matrix, a perfectly
plastic law with a temperature dependent yield stress and additionally a power-law creep law
was utilized. The authors point out that the matrix should rather be modeled with a kine-
matically hardening plasticity law. To compensate for the weakness introduced by the non-
hardening law, they adjusted the matrix yield stress for a better agreement with experimental
results. Their results were reported in the form of the evolution of the mean axial inelastic
strain components during thermal cycling. They individually investigated the case of only
plastic deformation and of combined creep and plastic deformation. One basic result was that
under the used conditions, creep contributed substantially to the cyclic strain evolution in the
composite. Especially at the high temperature end of the thermal cycle, creep took over from
plasticity as the dominant deformation mechanism. The authors also pointed out that creep
deformation in the model tended to be more localized than plastic deformation, due to the
high stress exponent. Their results will be discussed in comparison to results from this work
in more detail in Section 7.3.

2.5 Theoretical Understanding of Creep in MMCs – the
State of the Art

Isothermal Creep of Discontinuous MMCs

As mentioned above, the creep properties of many different MMCs have been investigated
experimentally with great care and detail. Models for the creep behavior of discontinuously
reinforced MMCs are, however, mostly confined to the description of the load transfer process
and in addition only available for idealized geometries (such as aligned short fibers). Such
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models are usually based on continuum mechanics and they cannot be adapted easily for
MMCs with arbitrary reinforcement orientation distributions. Multidirectional reinforcement
by comparatively long but discontinuous fibers, for example, is beyond the scope of the
present models.

A major shortcoming of present creep models is the neglect of damage. While damage pro-
cesses such as fiber fracture and interfacial debonding are a vital part of most creep models in
the field of continuously reinforced MMCs, such processes are rarely considered in models for
discontinuous reinforcement (particles or short fibers). Experimentally, the damage evolution
in discontinuously reinforced MMCs has received broader attention just in the last four or five
years. However, there is still a notable lack of experimental techniques with which processes
of load transfer and damage during creep can be studied simultaneously. Another remarkable
issue regarding the understanding of creep damage in MMCs is that, compared to other mate-
rial classes such as superalloys or technical ceramics, relatively few investigations have been
combined with transmission electron microscopy (TEM) studies. This is most probably due to
severe problems with the production of TEM specimens from MMC material. The usually
large size of the reinforcing phase makes the investigation of representative sample volumes
additionally difficult.

Only one model, namely the above mentioned model by Dlouhy and Eggeler, combines a load
transfer concept with damage evolution. It was noted above that this model was based on
microstructural observations that were obtained by TEM. To date, it seems to be the most ad-
vanced model for isothermal creep of a fibrous MMC. It is, however, difficult to apply
because of its complexity and because it has to be implemented numerically. It has to be
pointed out that the Dlouhy/Eggeler model is still a one-dimensional model in which real fiber
orientation distributions have to be approximated by an effective volume fraction of aligned
fibers.

All in all, isothermal creep of MMCs is at present best understood for systems with continu-
ous unidirectional fiber reinforcement. For this idealized case the concept of load transfer and
reinforcement damage is utilized in predictive models. With growing complexity of the rein-
forcement morphology, the modeling of load transfer and the incorporation of damage pro-
cesses becomes increasingly difficult and has only rarely been realized in theoretical models.

Thermal Cycling Creep

The most striking phenomena of creep under thermal cycling conditions in MMCs, namely
stress exponents of one and superplastic deformability, have been explained by the simple
considerations that have already been formulated for the case of transformation plasticity:
Generally speaking, internal stresses are biased by a small externally applied stress. The influ-
ence of this “disturbance” on the rate of deformation is linear when the disturbance is small.
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The simple models based on cyclic plasticity (see 2.4.3) can explain the low stress exponents
and the existence of a critical thermal excursion. These models can be applied only for ideal-
ized conditions because they neglect time dependent deformation and the effects of load trans-
fer and damage. A series of numerical models have successfully attempted to consider at least
time dependent deformation processes and load-transfer-effects. However, just like in the field
of isothermal creep modeling, these models are limited to idealized geometries (aligned short
fibers) and they still neglect effects of damage.

Thermal cycling creep has been mainly investigated in terms of steady state cyclic creep rates
as a function of applied stress. The evolution of thermal cycling creep curves, which is espe-
cially interesting when the internal stresses and the applied stress are comparable in size (high
applied stresses and/or low thermal cycle amplitudes), has been investigated only very rarely –
even with the latest numerical models that could well be applied to such problems.

Contributions of the Present Work

The present work provides detailed experimental studies of thermal cycling creep behavior
especially in the above mentioned realistic case where internal and externally applied stresses
are comparable in size. The found behavior will be compared to results from a simple model
(see Chapter 6) which is based on continuum mechanics and which focuses on the evolution
of internal stresses. Among the numerical models described in section 2.4.3 the model used in
the present work is most similar to the model by Daehn and Gonzalez-Doncél (1989) with
respect to its numerical basis and implementation. The model also uses a special geometry
which comes closest to an MMC with a 2D planar array of fibers. It will be widely used to
study the applicability of such continuum mechanics approaches to the case of TCC and the
considerations should provide a basis for more detailed studies of micromechanical processes.

The model still neglects damage processes. As mentioned above, damage in discontinuous
MMCs is generally not considered quantitatively even under isothermal conditions (with the
exception of the Dlouhy and Eggeler model). In the present work, it is tried to narrow the gap
between theoretical modeling of MMC-creep and the phenomenological understanding of the
load-transfer and damage process by introducing a newly developed testing technique with
which the processes of load transfer and damage can be studied simultaneously under iso-
thermal creep conditions. The phenomenological interpretation of results from these tests pro-
vides possibly important information for the setting up of future creep models that consider
damage.





3 Material
The experiments were done on a fiber reinforced piston alloy – a composite system that is one
of the very few series applications of short fiber reinforced metals. It was produced by squeeze
infiltration of fiber preforms by the company MAHLE GmbH, Stuttgart, Germany. The mate-
rial was obtained as infiltrated plates of size 250×100×20 mm3 that were machined from
ingots. The plates incorporated a reinforced region of size 55×75×20 mm3 in the center,
according to the dimensions of the preform. A sketch of such a plate is shown in Figure 3.1,
where also the orientations with respect to the faces of the plates are denoted.

3.1 Aluminum Alloy Al Si12Cu1Mg1Ni1
The piston alloy that forms the matrix is a slightly hypoeutectic aluminum-silicon alloy with
additions of copper, magnesium and nickel (proprietary name M124 F). Its composition is
given in Table 3.1. Due to the low room temperature solubility of silicon in aluminum, almost
all of the 12 wt.% (13.6 vol.%) of silicon form brittle platelet precipitates with diameters of up
to 50 µm (see Figure 3.3). The other alloying elements and impurities, in addition to their
solution and precipitation hardening effects, form a variety of brittle intermetallic phases (Paul
and Exner (1990)). Especially the presence of magnesium and thus the possible formation of
fine Mg2Si precipitates makes the matrix age hardenable.

In Figure 3.2 the solidification microstructure of the matrix alloy in the unreinforced regions
of an ingot can be seen. Large dendrites of proeutectic aluminum as well as the silicon and
intermetallic precipitates in the interdendritic spaces are clearly visible. Shape and size of the
precipitates are shown in Figure 3.3. It has been shown by Bär (1992) that the silicon precipi-

reinforced region matrix

x
y

z

250 mm

100 mm
20 mm

Figure 3.1: Orientational denotation for a plate that was cut from an ingot with a
reinforced region.

Si Cu Mg Ni Fe Mn Zn Ti Al

11-13 0.8-1.3 0.8-1.3 1.3 0.7 0.3 0.3 0.2 rest

Table 3.1: Nominal composition of the piston alloy M124 F in weight percent.



26 Chapter 3 - Material

tates together with the intermetallic phases form a continuous three-dimensional network with
low mechanical stability.

Figure 3.2: Dendritic solidification microstructure
of the unreinforced Al-12Si alloy. variable-pres-
sure scanning electron microscopy (VP-SEM),
back-scatterd electron (BS) detection.

Figure 3.3: Size and shape of the various phases
that are present in the piston alloy. Darkest:
Matrix Al, dark gray: Si-platelets, middle gray
chinese script and light: other intermetallic
phases, see Paul and Exner (1990) for details.
VP-SEM, BS detection.

3.2 Composite
The reinforcing phase is 15 vol.% of δ-Al2O3-fibers (“Saffil RF”, by ICI). The fiber properties
are listed in Table 3.2. Preforms are commonly fabricated from a liquid suspension of these
fibers by a combined sedimentation and draining process. It is also common to simultaneously
compress the preform in order to establish the desired volume fraction of fibers. A small addi-
tion of binder helps to increase the stability and therefore makes the preform easier to handle.
Although the fibers often tend to align in a plane perpendicular to the sedimentation direction,
it is yet possible to get much less pronounced degrees of orientation up to complete 3D-
random orientation.

To produce the composite material, the preform is heated and put in a pre-heated die, where it
is infiltrated with melt at high pressures of usually more than 100 MPa. The high pressure is
needed to feed freezing shrinkage during solidification. The infiltration and solidification pro-
cedure takes only few minutes.
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Figure 3.4 shows the typical microstructure of the fiber reinforced region in a cross section
perpendicular to the z-direction (see Figure 3.1 for the orientational denomination) at low
magnification. The fibers are visible as black dots and lines and at higher magnifications (see
Figure 3.5) as dark section ellipses. The fiber arrangement has no pronounced large-scale
homogeneity: considerable variations in the local fiber content and limited regions where the
fibers cluster with parallel alignment are clearly visible. However, a slightly preferential
orientation of fibers in the yz-plane is to be noticed. At higher magnification, the matrix
precipitates can be seen, yet smaller and finer than in the unreinforced matrix, probably owing
to heterogeneous nucleation at the fiber interfaces. In regions with very low fiber content, the
microstructure closely resembles the unreinforced regions of the ingot with its dendritic solidi-
fication microstructure. SEM investigation of the reinforced material revealed a small amount
of pores that are usually found next to fibers (see Figure 3.5).

Manufacturer ICI

Composition 95-97 % Al2O3, 3-4% SiO2 (a,b,c)

Density ρ [g/cm3] 3.5 (b), 3.3 (d)

Young’s Modulus E [GPa] 285 (b), 300 (a,c,d)

Poisson’s ratio ν 0.2 (a)

Tensile strength σm [MPa] 1500 (a,b), 2000 (c,d)

Coefficient of thermal expansion α [10-6/K] 7.7 (b), 7.5 (d)

median fiber diameter d [µm] 3.2 (f), 3.5 (a), 3 (b)

median fiber length L [µm] 50-200 (e), 100-300(d)

Table 3.2: Properties of Saffil RF© fibers according to: (a) ICI ), (b) Clyne and Withers
(1993), (c) Hegeler et al. (1994), (d) Müller-Schwelling and Röhrle (1988), (e) Henning
and Neite (1994), (f) this Work
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Figure 3.4: Metallographic section of the
composite material (vertical: x-axis, horizontal, y-
axis). Fibers are visible as dark dots and lines. No
large scale homogeneity is found, but a slightly
preferential orientation of fibers in the yz-plane is
observed. VP-SEM, BS detection.

Figure 3.5: Detail of Figure 3.4. The fibers are
visible as dark section ellipses alongside with the
silicon platelets and the other phases of the
matrix material. Infiltration pores were repeatedly
found and they were mostly associated with fibers
(see arrows). VP-SEM, BS detection.

3.3 Heat Treatment and Aging Behavior
After squeeze infiltration, the ingots were subjected to a T6 heat treatment. This comprises
homogenization for 1 h at 480 °C, quenching in oil and aging of 24 h at room temperature and
9 h at 215 °C (according to manufacturer’s specifications).
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Figure 3.6: Evolution of room-temperature hardness with time for annealing at various temperatures
from peak-aged condition: a) unreinforced matrix alloy, b) composite material.
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Mechanical testing at high temperatures, as performed in this work, usually involves heating
the sample to testing temperature and allowing for temperature homogenization prior to
testing. During this time, over-aging of the matrix alloy can happen and therefore the aging
behavior of the already peak-aged material was investigated by hardness measurements. The
results are shown in Figure 3.6. It can be seen that for annealing above 350 °C about 75 % of
the total hardness loss is achieved within 30 minutes. This applies to both the unreinforced
matrix and the composite material. It is also worth noting that the Saffil reinforcement does
not substantially accelerate the aging process. This complies with earlier findings on the same
material by Bär et al. (1993) and on a Saffil reinforced Al-2024 alloy (Chen and Chao (1995)).

3.4 Temperature Dependent Properties
For the interpretation of thermal cycling experiments, the temperature dependence of material
properties is important. In this section, the temperature dependence of yield stress, elasticity,
and thermal expansion are briefly summarized.

Yield Stress

Monotonic tensile and compressive tests were performed to evaluate the flow curves of the
unreinforced matrix material. A set of peak aged samples (as supplied) and a set of over-aged
samples were tested at a constant crosshead speed of 0.6 mm/min. The 0.1% and 0.2% yield
stresses are given in Figure 3.7. It can be seen that tensile and compressive yield stresses are
equal in the whole temperature range. The 0.1% yield stress for the over-aged matrix alloy is
about 75 MPa from room temperature up to 200 °C and then decreases to 42 MPa at 350 °C.
The room temperature yield stress of the over-aged matrix is only a third of the yield stress at
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Figure 3.7: Yield stress of the matrix alloy: a) Rp0.1 yield stress, b) Rp0.2 yield stress. Open symbols:
peak-aged (as supplied), closed symbols: over-aged 1h@350 °C
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peak-aged condition. However at 350 °C and for higher temperatures, the yield stresses for the
two aging conditions start to coincide. This is due to fast over-aging at the high temperatures
(see Section 3.3), which takes place during a 30 minute dwell at test temperature prior to
testing.

Elastic Properties

The elastic properties of the matrix alloy and the composite were measured at room tempera-
ture by Bidlingmaier (1999) with the impulse-echo method. For both materials, no pro-
nounced anisotropy was found so that the elastic properties were assumed to be
macroscopically isotropic (Bidlingmaier et al. (1997)). Bidlingmaier’s results are summarized
in Table 3.3.

The temperature dependence of the shear modulus was measured with a torsion pendulum at
frequencies of about 2.5 Hz. The results are shown in Figure 3.8. Between room temperature
and 250 °C the temperature dependence of the matrix shear modulus is linear with a coeffi-
cient of -0.014 GPa/K. Above that range, the curve becomes successively steeper. At 400 °C
the shear modulus is 22.4 GPa. If one assumes Poisson’s ratio to be constant in the relevant
temperature range, the temperature dependence of Young’s modulus E shows the same
characteristics as the shear modulus. E changes from 80 GPa at room temperature to 60 GPa
at 400 °C.

matrix alloy composite

Shear modulus G [GPa] 30.2 ± 0.6 35.8 ± 0.8

Young’s modulus E
[GPa]

80 ± 1.8 94 ± 2.2

Poisson’s ration ν [] 0.33 ± 0.02 0.31 ± 0.02

Table 3.3: Elastic constants at room temperature; data taken from Bidlingmaier (1999).
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Thermal Expansion

The thermal expansion was measured with a single pushrod dilatometer Model DIL 402 C by
NETZSCH with a tube-type sample carrier and pushrod made from quartz. Cylindrical sam-
ples of the matrix alloy with a diameter of 6 mm and a length of 25 mm were subjected to
temperature cycles from room temperature to 480 °C at heating and cooling rates of 0.5
K/min. The thermal expansion curve is shown in Figure 3.9a. It is seen that the heating and
cooling curve almost coincide. The technical coefficient of thermal expansion (CTE) α20 and
the physical CTE – both for the heating curve – are plotted in Figure 3.9b. The CTE values are
also summarized in Table 3.4 for selected temperatures and compared to data for pure Al.
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Figure 3.8: Temperature dependence of the shear modulus as measured in a torsion pendulum. The
value at room temperature were take form Table 3.3.

Temperature T [°C] 50 100 150 200 250 300 350 400 450

tech. CTE α20 [10-6/K] 19.7 20.0 20.6 21.1 21.7 22.2 22.7 23.0 23.4

phys CTE α [10-6/K] 19.5 20.8 22.0 22.8 24.7 25.1 25.4 25.5 25.1

tech. CTE α20 [10-6/K]
pure aluminum(a)

23.6 24.5 25.5 26.4

Table 3.4: Coefficient of thermal expansion (CTE) for the matrix alloy in comparison to pure aluminum.
(a)Humsicker et al. (1979)
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3.5 Isothermal Creep
Isothermal creep of the matrix material and the composite has been investigated under tension
and compression at various temperatures and loads by Bidlingmaier and Wolf. Bidlingmaier
tested the material in a standard creep rig under tensile loading at 350 °C (Bidlingmaier et al.
(1996a)), and at 250 and 400 °C (Bidlingmaier et al. (1996b)). Wolf (1997) investigated the
stress dependence at 350 °C. He also investigated the temperature dependence in the range
from 325 to 400 °C to assess the apparent activation energy for creep. Bidlingmaier’s tensile
specimens were oriented with the loading axis in y-direction, whereas Wolf’s compressive
specimens had z-orientation (cf. Fig. 3.1). Their experimental results are summarized in the
following sections.

Minimum Creep Rates

In the Figures 3.10a and -b it can be seen that the reinforcement enhances the material’s creep
resistance and that it also increases the apparent stress exponent. The apparent stress exponent
varies considerably for different temperatures. This may well be due to the small number of
data points and the substantial scatter in the test results. The open symbol in Figure 3.10b
denotes a data-point that was obtained within the present work for a specimen that was ori-
ented in x-direction (Bidlingmaier’s specimens had y-orientation). It can be seen that the
specimen orientation has no significant influence on the minimum isothermal creep rate. From
this, one can conclude that either a) the specimen microstructure is insensitive to the orienta-
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tion i.e. no texture is present or b) the creep rate of the specimens is insensitive to texture. In
Chapter 5, it will be shown that the latter is the case.

By comparing the tensile and the compressive creep data (Figures 3.10 and 3.11a), one can see
that the creep rate of the matrix alloy is insensitive to the sign of loading. For the reinforced
material, however, it is found that the compressive creep rates are much lower than the tensile
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Figure 3.10: Tensile creep rates of a) the matrix alloy and b) the composite material at 250, 350 and
400 °C, measured by Bidlingmaier et al. (1996a). Apparent stress exponents napp are also given. The
open circle in b denotes an experiment with a specimen that had a different orientation – see text for
details.
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creep rates. This tension-compression asymmetry has been explained by Bidlingmaier et al.
(1998) on the basis of differences in the damage evolution under the following assumptions:
1) The reinforcement is assumed to be macroscopically untextured, 2) the matrix and the
fibers are in iso-strain condition 3) the creep rate is dominated by progressive breaking of
fibers as the composite is strained beyond the elastic limit of the fibers and 4) fibers break
only in tension. The asymmetry is caused by the geometry: For tensile tests, the fibers that
break are the ones that are oriented parallel to the loading direction and for compression, the
ones that lie perpendicular to the external load fracture. However, if the constancy-of-volume
condition for plastic or creep deformation holds, the amount of strain perpendicular to the
loading direction is only half of the axial strain. Thus under compressive loading it takes twice
the strain until the fibers start to break than under tensile loading. This consideration has been
experimentally confirmed by Bidlingmaier with acoustic emission measurements of fiber
fractures under plastic deformation of the composite at room temperature Bidlingmaier
(1999).

The apparent activation energies for creep under compression were determined by Wolf from
an Arrhenius-type plot of ln(dε/dt) against 1/T (like in Figure 3.11b) and were reported to be
Qapp=294 kJ/mol for the matrix alloy and Qapp=249 kJ/mol for the composite.

The creep properties of the matrix and the reinforcement are important inputs for the numeri-
cal simulations of the present study which will be described in Chapter 6. The parameters for
semi-empirical creep equations (stress exponents napp, activation energies Qapp) can be esti-
mated from the experimental data of Bidlingmaier and Wolf. This analysis is also given in
Chapter 6.

Transient Behavior and Fracture

In Figure 3.12 the transient creep behavior is shown in plots of strain rate vs. strain of
Bildlingmaier’s data (Bidlingmaier et al. (1996a)). It can be seen that the matrix creep rate
decreases rapidly, goes through a minimum at relatively small strains and displays no pro-
nounced steady state. The minimum creep rate is reached at around 0.2% irrespective of the
applied load. The composite, in contrast, exhibits a prominent transitional regime up to around
0.55-0.75% strain. The strain to minimum strain rate appears to depend slightly on the applied
stress: For higher stresses, higher strains to minimum are needed. While the matrix creeps
with steadily increasing rate up to a fracture strain of around 15%, the composite displays a
seemingly long secondary regime and fracture occurs abruptly at only 1.5 to 1.8% strain. In all
these data there is some uncertainty of at least ±0.1%. Bidlingmaier and Wolf focused on the
measurement of minimum strain rates because they were mainly interested in the assessment
of apparent stress exponents and activation energies. To facilitate the conduction of their
experiments, they applied the load not instantaneously but gradually over about half a minute.
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As a consequence, the starting point of measurement was not well documented and there was
considerable ambiguity about the origin of strain and time in their data.

3.6 Material Properties –the Present Knowledge
The following mechanical properties can be regarded as well-known for the material under
investigation: The aging characteristics, the elastic properties and the plastic deformation
behavior (including damage evolution). The creep behavior has also been covered experi-
mentally especially in the temperature region around 350 °C. The behavior under tensile and
compressive creep loading, stress exponents and activation energies have been well estab-
lished. There is, however, still need in interpretation of the transient creep behavior and the
damage evolution under creep conditions.

A very similar composite material (20 instead of 15 vol.% of fiber reinforcement) has been
widely examined with respect to its isothermal fatigue behavior, mostly to determine the
improvement of fatigue life compared to the unreinforced matrix alloy (Seitz et al. (1991), Bär
(1992)). The material’s behavior under thermal cycling conditions, which might be important
in automotive engine environment, has not been investigated to date. This topic will be
covered in the present work.
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Figure 3.12: Transient creep behavior under tensile stress for a) the matrix and b) the composite
material. The matrix displayed only limited primary and secondary creep. After the initial transient a
steady increase of strain rate until fracture was observed. The composite exhibited pronounced tran-
sient creep until steady state was reached at comparably high strains depending on the applied stress.





4 Experimental
The following experimental methods were used in the present work: For the characterization
of the material’s microstructure, standard metallographic techniques including quantitative
image analysis were applied (Section 4.1). Mechanical tests were performed using a custom-
ary electro-mechanical testing machine which was suited for high temperature testing (Section
4.2). Self-written computer programs enabled special testing procedures which will be
described in Section 4.3.

4.1 Microstructural Characterization

4.1.1 Specimen Preparation
Cross sections of the composite material and the matrix alloy were prepared by standard
metallographic techniques. After cutting metallographic samples from the ingots or from
tested specimens they were wet ground with Struers 1200 silicon carbide grinding paper
(grain size ≈14 µm; US-Standard 600). They were polished subsequently with 6, 3, and 1 µm
diamond paste for about 120 seconds at each grain size. It was necessary to keep the polishing
times rather short, in order to avoid reliefs. The last step was a polish of 30-40 seconds with
Buehler Mastermet 2, a (supposedly) non-crystallizing colloidal silica suspension. This polish
greatly enhances the phase contrast for optical microscopy but it also leads to a slight em-
bedding of silica particles in the soft matrix. Apart from that, it was found that the surface
damage, introduced by the metallographic preparation was negligible.

4.1.2 Microscopy and Image Analysis
Most of the samples were examined by standard optical microscopy after testing to check for
noticeable features or damage in the microstructure. If porosity was to be examined, scanning
electron microscopy was preferred to optical microscopy.

It has been noted in Section 3.2 that there appears to be a particular plane with slightly prefer-
ential orientation of fibers. Quantitative image analysis was performed to investigate the
nature of the global orientation distribution of fibers in the matrix, and to possibly quantify the
reinforcement texture. A Leica Quantimet Q500IW (software version 2.2) system with an
optical microscope and a video camera were used for image acquisition, processing and analy-
sis. The procedure is outlined in the following.
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Image Processing

The specimen is viewed and focused in the optical microscope at a magnification of 500:1.
Images are acquired by a video camera which produces a digital 8-bit grayscale image of
760×570 pixel (see Figure 4.1a). A single square pixel has a size of 0,17×0,17 µm2, so that the
image size is 129.2×96,9 µm2. At this magnification, an image typically contains about 100
sections of fibers. A fiber with a diameter of 3 µm which is cut normal to its rotational axis by
the image plane shows up in the image with an average area of 244 pixels. The magnification
is thus high enough to detect single fibers with sufficient accuracy while there are still enough
fibers per image present to make the procedure efficient.

After acquisition, the image is digitally enhanced. Edges are sharpened, noise and dust are
removed and areas with pixels of similar intensities are connected to regions of identical gray-
scale value (see Figure 4.1b). Then the threshold grayscale value for the detection of the
fibers, which are the darkest phase, is set manually. The now binarized picture is shown in
Figure 4.1c superimposed on the enhanced image. White regions represent the detected fibers.
This first binarized picture usually needs some editing before features of the fiber sections can
be measured automatically. Adjacent fibers must be separated manually to avoid that they are

a) raw image b) enhanced image

c) detected fibers d) manual correction

Figure 4.1: Sequence of images, representing four important steps of image analysis for the
composite material. Optical microscopy.
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detected as one connected region in the binarized picture. The partial transparency of the
fibers poses some additional problems. Fibers that are sectioned at a low angle often have a
light core that is not detected as belonging to the fiber phase. These open regions were filled
in the binarized picture manually. It has been tried to obscure the light cores by sputter coating
the metallographic samples with gold. However, it was found that at a film thickness suffi-
cient to cover the fiber transparency, the contrast between the fibers and the silicon precipi-
tates was reduced to an unacceptable level.

Finally the computer automatically removes those of the detected fibers that intersect the
image border (very long fiber sections are excluded from this routine). Now the software
measures certain values for the whole edited binary picture (e.g. the area fraction of the fiber-
phase) and for each detected fiber.

Analysis of Fiber Orientation

In the following analysis, the fibers are assumed to be cylindrical and straight and to have an
average length of L=150 µm (see Tab. 3.2). The features that are relevant for the determina-
tion of the spatial orientation of the fibers are the maximum and minimum diameters of the
section ellipses 2a and 2b and the inclination of the longest axis to the horizontal ϑ (see
Figure 4.2). The fiber orientation is described in a Cartesian coordinate system. The z-axis is
perpendicular to the section plane, the y-axis lies on the horizontal and the x-axis is the verti-
cal of the section image (see Figure 4.2).
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y
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z

b ϑ

φ

θ
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y

z

p1

p3

p2

Figure 4.2:. Elliptic cross section of a fiber. Data
that are measured are the longest and smallest
diameters 2a and 2b and the inclination towards
the horizontal ϑ

Figure 4.3: Spatial fiber orientation with angular
denotation.

The spatial orientation of a fiber in a Cartesian coordinate system is determined by the angles
θ (inclination away from z) and φ (rotation of the fiber’s xy-projection about z starting from x)
or alternatively by a vector p=(p1,p2,p3) (see Figure 4.3). These parameters are related to the
measured values by the following formulae:

( )θ = arccos b a , (4-1)
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φ π ϑ= −2 , (4-2)

( )( )abp arccossinsinsincos1 ⋅=⋅= ϑθφ , (4-3)

( )( )p b a2 = ⋅ = ⋅sin sin cos sin arccosφ θ ϑ , (4-4)

p b a3 = =cosθ . (4-5)

The determination of fiber orientation from the elliptical cross-sections lacks accuracy in cer-
tain angular ranges. The error for θ becomes quite significant when the measured ellipse
aspect ratio is low. Below se = 1.41 (θ < 45°), the relative error is larger than 12% (∆θ > 5.5°).
Above 60° (se = 2), the error drops below 5% (∆θ < 2.8°). The uncertainty in the measurement
of ϑ also depends on the measured aspect ratio. For aspect ratios of more than 1.5 the accu-
racy of the angular measurement was found to be better than ±2.5°. A more detailed
consideration of the accuracy of fiber orientation measurement is given in Appendix B.

4.1.3 Fiber Orientation Tensor
It was shown above how the orientation of individual fibers can be measured from a polished
cross-section. Now, a convenient way to describe the statistics of orientation of a representa-
tive number of fibers in the specimen will be outlined. The most general characterization of
the fiber orientation state is the probability distribution function for orientation ψ(θ,φ) (see
e.g. Tucker and Advani (1994)). This function gives the probability of finding a fiber between
θ and (θ+dθ) and φ and (φ+dφ). Though being the most universal description, the orientation
distribution function is quite difficult to handle. A simpler approach, which has become more
and more popular in the last decade especially in the field of polymer composite engineering,
is the calculation of an orientation tensor, which in principle is a volume average of orienta-
tion distribution. It completely represents the distribution function in three dimensions with an
accuracy according to the order of the tensor (higher order tensors give more exact represen-
tations). A good review of the history and properties of orientation tensors and examples for
their application was given by Advani and Tucker (1987).

The second-order orientation tensor is defined as follows:

( )dppppa jiij ∫= ψ (4-6)

The main diagonal components a11, a22 and a33 of this tensor measure the degree of orienta-
tion in the three principal axes x, y and z of the section coordinate system. The off-diagonal
elements give the in-plane (a12) and out-of-plane (a13, a23) rotations. For 3D random fiber ori-
entation, the orientation tensor would be
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The tensor components can be determined experimentally from a sample of fiber orientations
that have been determined by image analysis of polished cross sections like in the previous
Section (see e.g. Mlekusch (1999)). In this case, a discrete sample of N orientations instead of
a continuous orientation function is used, and therefore the integration in Eq. 4-6 is replaced
by a summation:

( )
∑

∑
=

== N

n n

N

n nnji
ij

F

Fpp
a

1

1 (4-7)

The probability for a fiber to be intersected by the plane of polish is dependent on the inclina-
tion angle θ and the fiber length L. A weighting function Fn for the n-th fiber is needed to
account for this. The probability for a fiber to appear on the xy-section is proportional to the
fiber’s projected height L·cos(θ) on the z-axis. The weighting function is therefore:

( )
)cos(

1,
θ

θ
⋅

=
L

LF (4-8)

This weight has to be cut off at a critical inclination θcrit. Bay and Tucker (1992) suggest that
this should be done at






=

L
d

crit arccosθ , (4-9)

which is the inclination that is measured for a fiber that lies perfectly parallel to the sectioning
plane and has a projected height of the fiber diameter d. For high aspect ratios, as they appear
in the material studied here, the cutoff region is very narrow so that the weighting function can
be approximated without further refinement:

( ) crit
crit dL

LF θθ
θ

θ >=
⋅

= for       1
)cos(

1, (4-10)

A detailed study of the stereological issues and an error estimation for measurements of this
kind was given by Bay and Tucker (1992).
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It has to be pointed out that, from a single cross section, only the tensor components a11, a22,
a33 and a12 can be determined. This is because fibers with the orientation (θ, φ) or (θ, φ+π)
have identical cross-sections. As a consequence, for each individual elliptic fiber cross
section, only the absolute values of the tensor components (a13)n and (a23)n can be determined,
but not their sign. The ambiguity of the out-of-plane rotations a13 and a23 can be overcome by
assuming special symmetry conditions and using inclined cross sections (Mlekusch (1999)).
Alternatively, one can also take three perpendicular cross sections and determine the am-
biguous tensor components in one cross section coordinate system from the a12-components
of the other two sections. In this work, the latter approach has been followed. Three polished
sections with axes aligned parallel to the global ingot coordinate system (see Figure 3.1) have
been made and prepared and analyzed as described in Section 4.1.1 and 4.1.2. The results
obtained are given in 0.

4.2 Mechanical Testing
In thermal cycling creep tests, a sample is subjected to a constant external load and to simul-
taneous cyclic temperature changes, while the strain evolution with time is measured. A test-
ing system with which this can be achieved has to consist of eight components that have to be
carefully adjusted to each other: 1) the sample, the loading system including 2) the testing rig
with load cell and load control circuitry, 3) the specimen grips, 4) an extensometer for strain
measurement, the heating system including 5) the temperature controller, 6) the heater and 7)
a thermometer and finally 8) computer hardware with a software program for experiment
control and data acquisition and storage.

The requirements for thermal cycling creep tests are very similar to those for thermomechani-
cal fatigue testing, where temperature cycles are synchronized with simultaneous strain cycles.
In this work, a testing system which had previously been used for low cycle fatigue (Elzey
(1989)) and thermomechanical fatigue tests (Joos (1995)) was adapted to perform thermal
cycling creep tests.

grips

machine

extensometer

heater

temperature
controller

thermometer

sample

program

Figure 4.4: Components of a testing system for thermal
cycling creep experiments
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4.2.1 Testing Rig
The thermal cycling creep tests were performed in an uniaxial electro-mechanical testing
machine model RMC100 by Schenck-Trebel. The screw-driven machine has a maximum load
capacity of 100 kN in compression or tension and can be operated in closed loop load- or
strain-control. The machine is equipped with a digital interface, which makes it possible to
control tests with a personal computer.

4.2.2 Specimen
For tensile tests, cylindrical button-head specimens with an elongated hourglass shape were
used. The length and diameter of the parallel gage section were 15 and 7 mm, the exact di-
mensions are given in Figure 4.5a. These samples were cut from the partially reinforced plates
described in Section 3.2, so that the whole gage-section, the transition radii and a part of both
shoulders were reinforced with fibers. Following the orientational denotation given in Figure
3.1, the tensile samples that can be produced from the plates have x-orientation. The gage
lengths of the tensile samples were diamond ground and successively polished with 7, 3, 1,
and 0.2 µm diamond suspension on a lathe.

For compressive tests, smaller cylindrical samples with a length of 18 mm and a diameter of
9 mm were used. These could be cut in x-, y- or z-orientation from the fiber reinforced plate
regions. On some of these samples two parallel side faces were ground to enable ultrasonic
measurements of elastic constants or observation of changes in surface morphology. Specimen
dimensions are given in Figure 4.5b and c.
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Figure 4.5: Specimen geometry for a) tension/compression specimen, b) compression
specimen and c) compression specimen with parallel side faces.
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The two different sample geometries required very different setups with respect to gripping
and heating. These will be described in the following sections.

4.2.3 Grips
For tension tests the sample is gripped by a split flange that exerts pressure on the inside face
of the button head when it is screwed to the loading rod. A stainless steel punch between the
specimen end and the water cooled loading rod diminishes the heat loss at the sample end
while still allowing for moderate cooling rates. An additional locking ring on the split flanges
is necessary to assure even distribution of the flange pressure. For the compressive specimens,
the setup is far simpler: The sample is held between two hard metal punches that are placed on
plate fixtures which are screwed to the loading rods. For compressive tests that were run to
total strains of more than -5%, a suspension of boron nitride was used as a lubricant between
the specimen and the hard metal punches to minimize friction at the specimen ends. Figure 4.6
shows the grip assembly for the tension and the compression specimens.

For good reproducibility of testing results, it is necessary to achieve a high degree of axial
alignment. According to ASTM standard E139-83 for creep tests of metallic materials ASTM
(1983), bending strains should not exceed 10%. Bending strains were measured according to
the code of practice EUR 16138 EN (Bressers (1995)) and were found to be about 5% or
lower if the flange screws were mutually tightened very carefully. Good specimen alignment
however takes much practice and experience on the part of the experimentator. It was found
that slight uneven tightening of the screws can result in bending strains of more than 50%.

Figure 4.6: Grip assembly for a) tension-compression tests and b) compression only test
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4.2.4 Heating System
In this work, a 5 kW induction heater by Hüttinger (model TIG 5/300) was used together with
self-built cooled copper coils. The specimens are mounted in the center of the coil and heated
by direct coupling to the specimen and to the grips or punches. A relatively low induction fre-
quency of about 50 kHz is used to reduce the skin effect. Great care has been taken in the
design of the induction coils for the two different sample geometries. It was found that the coil
geometry and position relative to the specimen was very important to minimize temperature
gradients in the gage length.

At first, the poor coupling of the aluminum based materials could be enhanced by using a
square cross section for the coil tubing instead of the conventional round copper tubes. For the
tension/compression samples, a coil with two tight windings at each shoulder and an inner
diameter of 22 mm was designed. This helped to avoid hot spots in the middle of the gage
section to which these samples were very susceptible. For the compression samples a similar
coil was used (see Figure 4.7). Due to the fact that the hard metal punches coupled better to
the coil than the sample itself, an additional winding in the middle of the gage section was
introduced to prevent overheating at the sample ends. Initially it had been tried to overcome
this problem by replacing the hard metal punches by ceramic punches. However in that case
the cooling rates were inadmissibly low.

Temperature measurement was accomplished using several Ni/NiCr (Type K) thermocouples
that were spot-welded equally spaced along the gage length. The central thermocouple was
used for temperature control and was connected to a Dimension II Series 8700 Process
Controller by RESEARCH INC. Temperature setpoints were either programmed directly into
the controller or given externally by an analog signal from a programmable function generator

Figure 4.7: Compressive testing
setup (cf. Figure 4.6b). The speci-
men is equipped with three ther-
mocouples and the side-contact
extensometer is put up to the
specimen from the right. The
inductive coil has two windings at
the top and the bottom and one
central winding.
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(WAVETEK arbitrary waveform generator model 75). The signals from the remaining ther-
mocouples were fed into a Keithley 2000 digital multimeter equipped with a Model 2001
TCSCAN thermocouple scanner card. Usually, a total of five thermocouples (including the
controlling thermocouple) was used with tensile specimens and three thermocouples with the
compression specimens. With this setup, the temperature distribution along the gage length
could be monitored throughout an experiment.

One sample of each type was specially prepared with eight thermocouples, five on the front
and three on the back of the gage length. These samples were used to optimize the
temperature distribution during the design of the induction coils, to adjust the control
parameters of the temperature controller and to measure the thermal gradients during the
testing of different temperature cycles. Results from tests with these samples are shown in
Figures 4.8 to 4.11. For the tension setup the control parameters of the temperature controller
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Figure 4.8: Standard temperature-time cycle with a tensile specimen: a) full cycle, b) high-temperature
dwell enlarged and c) low temperature dwell enlarged
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Figure 4.9: Temperature distribution on the gage length of a tensile specimen at the end of the high-
temperature dwell ( ), at the end of the low temperature dwell ( ) and in the middle of the heating
ramp ( ) for standard thermal cycles (350 °C - 150 °C, 600 sec. period, 1 minute dwell).
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were set to yield a maximum overshoot of 1.7 K and a maximum time-lag of 2 seconds
compared to the setpoint signal at the extreme points of a typical temperature cycle like it was
used in this work (see Figure 4.8). The respective values for the compressive setup were 2.6 K
overshoot (at the low temperature dwell) and 3 seconds time-lag. A comparison of the
readings from the thermocouples at certain characteristic temperatures during a standard cycle
showed that the temperature distribution along the gage length was homogeneous well within
2 K (see Figures 4.9 and 4.11). Finally, the radial temperature gradient was tested using a
tensile specimen with five shielded thermocouples mounted into holes that were drilled into
the sample from the side. The core temperatures were also found to fall into the 2 K homoge-
neity bounds.

For the thermal cycles with a 600 second period and 350 °C and 150 °C as the extreme tem-
peratures, the specimen temperature follows the command signal quite well. If the minimum
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Figure 4.10: Standard temperature-time cycle with compression specimen: a) full cycle, b) high-tem-
perature dwell enlarged and c) low temperature dwell enlarged
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Figure 4.11: Temperature distribution on the gage length of a compression specimen at the end of the
high-temperature dwell ( ), at the end of the low temperature dwell ( ) and in the middle of the heat-
ing ramp ( ) for standard thermal cycles (350 °C - 150 °C, 600 sec. period, 1 minute dwell).
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temperature is set to lower values, say 100 °C, deviations from the desired cooling curve
occur and the time-lag becomes longer. This, however, does not increase the thermal gradients
within the specimen.

4.2.5 Strain Measurement
The specimen strain in the gage section was measured using a high-temperature side-contact
extensometer by Schenck. It is based on a standard clip-on extensometer with resistor strain
gages, which is connected to two ceramic rods with straight knife edges at one end. The
ceramic rods are mounted on a leaf spring that serves two purposes: first it presses the tips of
the rods with a constant force against the specimen and second it is the hinge of the lever
system that transmits the specimen strain via the rods to the clip-gage. The technical strain εt

is calculated from the conditioned voltage readings V as

ε t
Scale

V k
f L

= ⋅
⋅ 0

, (4-11)

with k being the calibration constant of the extensometer and fScale being the scaling factor
(amplification of the output voltage). In the following, the different contributions to the error
of extensometry will be briefly discussed.

• Voltage measurements. It has been found that the voltage readings at constant strain scatter
within 5 mV in the signal range of ±10 V. This scatter can be numerically reduced to less
than 1 mV by averaging over multiple measurements at constant strain. This technique
however is not applicable to dynamic measurements. The resolution of the 12-bit analog to
digital converter has the same magnitude: about 1 mV within ±2 V, 2.5 mV within ±5 V
and 5 mV within ±10 V. The non-linearity of the voltage measurements was found to be
less than 0.1% within ±10 V. The scaling factor fScale can be set to 1:1, 1:2 or 1:5 manually.
The error of the amplification is already considered in the non-linearity of the voltage
measurements.

• Calibration factor. The calibration factor k is given by the geometry of the extensometer
and the properties of the resistor strain gages. Calibrating the extensometer with a calibra-
tion device employing a drum micrometer gave a factor k of 0.1501 mm/V with a non-
linearity smaller than 0.2%.

• Gage length. The largest error in measuring the strain is introduced by the determination of
the initial gage length L0. Before each experiment, the extensometer was put up against a
double notched bar with a known notch separation of 13 mm and strain measurement was
zeroed. Then the extensometer was put up to the sample and the initial gage length was
calculated from the strain readings. After that, the strain readings were zeroed again. In an
analysis of over 50 experiments within 24 months, the mean gage length was found to be
12.887 mm with a standard deviation of 0.026 mm and maximum deviation of less than
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±0.08 mm. This statistical analysis gives a relative error of less than 0.6% for the gage
length determination. It however neglects systematic errors that may be introduced by the
non-linearity of the voltage measurements (<0.1%) or an error in the calibration constant k
(<0.2%). Adding up all these errors, the relative error for the L0-determination is less than
0.9% (≈0.12 mm).

In Table 4.1, errors for strain measurement are given at different strains and different settings
for the signal scaling. It can be seen that the relative error is usually less than 1.5%. If however
strains from one and the same experiment are compared to each other (e.g. when the opening
of a strain hysteresis during a thermal cycle is calculated), the result does no longer depend on
the initial gage length L0 and so the error from L0-determination is eliminated. In this case, the
accuracy becomes better than 0.6% (or 4·10-5 in absolute values) for the frequent case of low
strains and high signal amplifications.

4.2.6 Computer Control and Data Acquisition
Figure 4.12 shows the setup of the measuring system in a block diagram: A customary per-
sonal computer was interfaced to various devices via a GPIB-Bus (IEEE 488) or a serial bus
so that most of the functionality of the devices was controllable by a self-written software

tech. strain [] 1·10-3 1·10-3 1·10-2 1·10-2 2·10-2 2·10-2 2·10-2 5·10-2 5·10-2

Scaling 1:2 1:5 1:2 1:5 1:1 1:2 1:5 1:1 1:2

calibration k 0.1501 [mm/V]

linearity error < 0.2 %

gage length L0 12.887 [mm]

Error < 0.9 %

voltage [V] 0.1717 0.4293 1.7171 4.2928 1.7171 3.4342 8.5856 4.2928 8.5856

noise [V] < 0.0050 V

digital resol. [V] 0.0010 0.0010 0.0010 0.0024 0.0010 0.0024 0.0049 0.0024 0.0049

linearity error < 0.1 [%]

voltage error
[%]

3.01 1.26 0.39 0.22 0.39 0.25 0.16 0.22 0.16

strain error
(relative) [%]

4.11 2.36 1.49 1.32 1.49 1.35 1.26 1.32 1.26

strain error [] 4.1·10-5 2.4·10-5 1.5·10-4 1.3·10-4 3.0·10-4 2.7·10-4 2.5·10-4 6.6·10-4 6.3·10-4

Table 4.1: Errors for strain measurement at various strains and for different scaling. All values refer to
technical strains.
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running on that computer. The software serves two purposes, namely data acquisition and
experiment control.

• Experiment control. A single experiment was programmed as a sequence of isothermal or
thermal cycling segments with individual loads, temperatures and data acquisition rates.
For each segment, a set of data limits (maximum and minimum strain or load, maximum
number of cycles etc.) was given. When one of them was exceeded, the experiment was
continued with the next segment or ended automatically.

• Data acquisition. During an experiment, time, strain, load and all thermocouple readings
were measured with a frequency of usually 0.5 Hz. All data were stored to hard disk in a
separate file for each segment of the experiment.

4.3 Experiments and Evaluation
A great variety of experiments can be performed with the setup and controlling software
described in section 4.2.6. In the following, the general procedures of several kinds of experi-
ments that have been performed within this work are described. In the results section, frequent
reference will be made to these testing procedures.

Rig Machine control Interfacer

Load cell

Extensometer

Conditioner

servo motor 
control

Conditioner

sample

A/D

A/D

A/D

Induction 
heater

D/A

Temperature controller
Function 
generator 

(programmable)

P

PID

Conditioner T

on / off

Personal 
computer

Thermocouple 
scanner

F

ε

F

ε

T

Fset

Tset

on/off, isothermal setpoint

F
ε

Fset

T(t), trigger

analog signal serial bus GPIB bus

Figure 4.12: Block diagram of the testing system circuitry.
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4.3.1 Thermal Cycling Creep Tests

TCC-Test with Initial Load-Free Cycling

The specimen, equipped with thermocouples, is mounted in the testing machine under zero
load control and the extensometer is attached. It is then heated to an annealing temperature
and kept there for some time to overage the matrix alloy. Then the specimen is subjected to a
number of thermal cycles until a stable strain-temperature hysteresis is reached. After the
initial load-free cycling stage, the desired external load is applied and held constant for the
rest of the experiment. The thermal cycling creep test is run until specimen fracture occurs.
Load, temperature distribution and strain are measured and recorded continuously throughout
the experiment.

An example for such a test is shown in Figure 4.13. The evolution of the true strain and the
applied load are plotted against time. The origin of the time scale is always set to the point
where the external load is first applied. The initial heat treatment (over-aging) consisted of a
30-minute dwell at 350 °C and was followed by 26 load-free thermal cycles. Afterwards, a
tensile load of 40 MPa was applied. Specimen fracture occurred at the beginning of cycle
number 86.

The thermal cycle used in this experiment was a standard 350↔150 °C cycle with a cycle
duration of tc=10 minutes, including dwell times of 1 minute at the extreme temperatures and
linear heating and cooling ramps (see Figure 4.8). The cycles start with the high-temperature
dwell.

This test type had to be slightly modified for compressive tests: Instead of mounting the
specimens under zero load, a slight compressive pre-load of less than 1.5 MPa had to be
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Figure 4.13: TCC-test with initial load-free cycling. Stages of the experiment are:  thermal treatment,
 load-free thermal cycling and  thermal cycling with an applied creep load of 32 MPa.
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applied to ensure gripping of the specimens during the thermal treatment and the initial load-
free cycling segments. The compressive experiments were ended at a certain strain or when a
defined number of cycles was reached.

Other experiments were performed in which the test sequence was further modified with re-
spect to the thermal cycle (higher amplitude ∆T, other maximum and minimum temperatures
Tmin and Tmax). In Chapter 5, where the test results are presented, it is distinguished between
tests with standard cycles (350↔150 °C) and cycles with a Tmax higher than 350 °C.

TCC-Test with Stepwise Loading

In order to accelerate the experimental procedure and to save specimen material, creep
experiments are often conducted in a stepwise manner, where a single specimen is tested at
various external loads, with only few percents of strain at each stress level. Those stepwise
creep tests can be applied only if the tested material exhibits pronounced secondary creep and
when transient as well as tertiary creep are limited. In conventional creep testing, such a
stepwise loading technique is frequently called “single sample technique”. This type of test is
also relatively wide spread in thermal cycling creep testing. In the scope of this work, such
tests were conducted as follows: The initial heat treatment and load-free cycling stages were
performed as described above. The following loaded thermal cycling stages were each run to a
certain strain (typically < 1%) or to a defined number of cycles before the load was changed
for the next segment. The load was usually incremented a few times before it was reduced
again to a low level in order to check for reproducibility of the individual creep rates.

An example for the output of such a test is given in Figure 4.14. A compressive specimen of
the matrix alloy was mounted in the testing machine under a gripping stress of -1.5 MPa. The
initial treatment consisted of a 1 hour anneal at 400 °C, followed by 30 thermal cycles under
the gripping stress. The thermal cycles in this experiment had the same form as the standard
cycles mentioned before with the exception that the maximum and minimum temperatures
were 400 and 200 °C. Under these conditions, the matrix alloy showed measurable thermal
cycling creep deformation already at the gripping stress. In this case, the term “load-free
cycling” for the initial segment seems inappropriate. The expression is nevertheless used for
sake of consistency. After the initial treatment, the stress was increased to -4, then -6, -8. -10
and -12 MPa. For the final segments, a stress level of again -4 MPa was set. The control pro-
gram ended each segment when a previously defined amount of strain (which included the
elastic strain from the stress change) had accumulated. The limiting strains for each segment
were chosen according to the applied stresses. For low stresses, strains of typically 0.3 or
0.4% were chosen, while for the higher stresses, where the (average) strain rate was higher,
the strain limit was set to 0.6 to 1%. The control program was also capable to end a segment
after a given number of cycles.
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The whole testing sequence included series of segments, where not the stress but the cycle
duration was changed. This was done at one low stress level and also at one high stress level,
to assess the time-dependence of the thermal cycling creep rate.

Evaluation of Thermal Cycling Creep Rates

TCC tests were usually evaluated from plots of true strain versus time, where only the strain
readings at the very beginning of each cycle are plotted (see Figure 4.14). After a data
smoothing operation (averaging over adjacent data points), derivatives of these curves were
taken and the minimum of the derivatives was referred to as the thermal cycling creep rate.
Apart from the minimum creep rate at a given stress, the transitional behavior after load
changes was found to be of interest. Therefore, the results of the TCC tests will be frequently
presented as plots of absolute strain rate (logarithmic) vs. accumulated creep strain (linear) in
the results section.

The determination of thermal cycling creep rates was limited with respect to applicable
stresses and the time that one is ready to invest into a single test. The lowest applicable
stresses that were held sufficiently stable by the testing machine were around 1 MPa (this is
about the gripping stress applied on the compressive samples). In most cases, such low
stresses led to very low creep rates. Strain rates below 10-8 1/s were rarely measured, because
such experiments were very time-consuming, especially when the transitional regime was
pronounced.
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Evaluation of Strain Evolution in Individual Thermal Cycles

Different researchers have successfully attempted to gain insight into the mechanisms
involved in thermal cycling creep by examining the strain evolution in individual thermal
cycles. This was done by directly measuring phase strains using diffraction techniques
(Daymond and Withers (1996), Daymond and Withers (1997)) or by precisely measuring the
macroscopic strain evolution (Furness and Clyne (1991b), Gordon and Clyne (1993),
Daymond and Withers (1997)). The commercial composite investigated in the present work
was not suited for diffractive strain measurements: The multi-phase matrix was highly alloyed
with presumably strong local variations in composition and the fibers had a weak texture and
were nanocrystalline. The experimental setup described above, however, was well suited for
precise strain measurements and so the route of investigating macroscopic strain changes was
followed.

If one considers the measured macroscopic strain evolution, the view is obstructed most of the
time by (recoverable) thermoelastic expansion strains, which are usually much larger than the
inelastic contribution. A straightforward way to overcome this problem would be to subtract
experimentally determined thermal expansion curves from the measured TCC cycles. This,
however, will give misleading results, because inelastic strains that occur during load-free
cycling are neglected. Alternatively, one can subtract calculated thermal expansion curves for
purely thermoelastic deformation from the measured strains (done e.g. by Furness and Clyne
(1991b)). These calculations, however, are usually based on a simplified composite model and
the approximations made in such a model introduce uncertainties in the analysis.

In this work, it was chosen to follow an approach by Daymond and Withers Daymond and
Withers (1997). They presented the in-cycle strain evolution in terms of the so-called “instan-
taneous CTE” αinst, which is simply the first differential of measured strain with respect to
temperature*. This does of course not overcome the principal problem that inelastic strains
occur in both loaded and unloaded cycles. Taking derivatives is a good way to bring out the
slight changes in the thermal strain hysteresis due to applied load, without having to modify
the primary experimental data by some strain compensation method.

As useful as the instantaneous CTE is, it is hard to determine meaningful derivatives from the
experimentally acquired strain data. The main reason for this is the noise level of the strain
measurement which is high compared to the considered inelastic strain effects. This can be
overcome in part by applying suitable data smoothing methods. In this work, the following
smoothing procedure was employed: First, the strain and temperature vs. time curves were

                                                
* The CTE is usually defined for thermal expansion with no external load applied. Daymond and Withers
nevertheless used the term “instantaneous CTE” also for loaded thermal cycling. Their terminology was adapted
here because of its simplicity and for consistency with the literature. Moreover, most of the inelastic strain within
a thermal cycle is fully reversed and the share of not reversed inelastic strain due to the applied load is
comparatively small.
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averaged over several (typically 4 or 5) subsequent cycles, provided that the residual strain per
cycle was more or less constant in all of these cycles. Then the T(t)- and ε(t)-curves were
separately subjected to a Fast-Fourier-Transform (FFT) smoothing operation, which filtered
out frequencies above 0.1 Hz (the sampling rate was 0.5 Hz). After that, the data was reor-
ganized to give a strain with temperature (ε(T)) cycle which was split up in a heating and a
cooling half-cycle. The two half-cycles were then numerically differentiated to give the final
curves of instantaneous CTE. It should be noted here that all attempts to approximate the raw
data by an analytical function and then taking the derivative of the best fit gave less reliable
curves and frequently misleading results.

4.3.2 Isothermal Stress Cycling Creep Tests
A series of experiments were performed in which not the temperature but the applied stress
was cycled*. After the initial heat treatment, the applied stress was changed from segment to
segment between the creep stress and the low gripping stress, so that after each creep segment,
the material was allowed to recover for some time. The purpose of these tests was to investi-
gate back-creep of the material and to determine the material’s ability to store elastic strain
energy in the reinforcements.

An example for such an experiment is shown in Figure 4.15. Like in the TCC tests, the speci-
mens were subjected to the standard in-situ over-aging treatment after they had been mounted
in the testing machine. Afterwards a standard isothermal creep test under load control was
undertaken. When the creep strain had increased by a certain increment (typically below 1%),
the load was removed (or reduced to the gripping load) and the material was allowed to
recover for a certain time (6 hours). After this time, the load was reapplied until the desired
strain increment was again reached. This loading/unloading sequence was repeated until a
certain total strain εt had accumulated. The strain increment under load will subsequently be
called “forward strain increment” ∆εf and the strain that was recovered during the unloaded
phase will be called “backward strain” ∆εb. Both quantities include the elastic strain from
applying or removing the load as well as the immediate anelastic response. Figure 4.15 shows
the strain-time curve for such a test with a forward strain increment of 0.6 %.

                                                
* Such tests are frequently referred to as “cyclic creep” tests in the literature. In this work, the term “stress cycling
creep” is preferred in order to clearly distinguish it from thermal cycling creep.
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5 Results
The results of the experimental work are grouped into five sections in this chapter. Initially the
results from image analysis of the composite material, which was done to quantitatively
characterize the orientation distribution of the reinforcement phase, are presented. Then, the
bulk of the experimental results, namely those from thermal cycling creep tests, are summa-
rized in two sections. Measured creep rates and the net strain curves are presented at first,
followed by the strain evolution in individual thermal cycles. In the fourth section, results
from isothermal stress cycling creep experiments are supplemented. The chapter is closed
with a brief report on the material damage that was found after mechanical testing.

5.1 Reinforcement Microstructure
Detailed image analysis has been carried out for three mutually perpendicular sections of the
composite material. The axes of the sections were aligned with the axes x, y and z of the
global ingot (plate) coordinate system. Unless indicated otherwise, this global ingot coordi-
nate system will be used throughout this section and the results chapter.

Of each metallographic section, more than 25 images, each containing around 60-120 fibers,
were taken and analyzed as described in Chapter 4.

5.1.1 Fiber Thickness

The thickness of an individual fiber can be determined from its elliptical cross section. The
small semiaxis of the ellipse is the thickness of the sectioned fiber. This value was automati-
cally measured by the image analysis software. In Figure 5.1 a histogram of the thickness dis-
tribution is given for the three perpendicular sections. The arithmetic mean thickness was
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3.2 µm with a measuring error of 0.2 µm, the median thickness was 3.0 µm. No correlation
between the fiber thickness and any orientational parameter of the fiber was found. Thick
fibers had the same orientation distribution as thinner ones, i.e. the orientational distribution
of fiber thickness was uniform.

5.1.2 Fiber Orientation Tensor

Global Orientation Tensor

The fiber orientation of each individual fiber has been determined with the techniques
described in Section 4.1.2. A first graphical representation of the orientation state is given in
Figure 5.2. In this diagram, the normalized frequency of in-plane orientations φ was plotted in
polar diagrams for each metallographic section. The frequencies were corrected with the
weighting function F(θ) (Eq. 4-8). Apart from this correction, this diagram contains no infor-
mation about the inclination of the fibers. The single polar plots are all oriented in the same
local coordinate system (x´, y´, z´). Also given are the axes of the global ingot coordinate
system. From these in-plane fiber orientations, one can already see that there is a preferential
orientation of fibers perpendicular to the (global) x-axis. Within this plane, orientational com-
ponents in z-direction seem to be more strongly represented than the y-direction. Furthermore,
the preferential plane appears to be tilted a little along the z-axis.

The orientation tensors for these sections were determined according to Equations 4-7 and 4-8
– except for the 13- and 23-components. It has been pointed out in Section 4.1.3 that these
components cannot be determined from a single cross section because their sign is ambiguous
for an individual fiber. The three orientation tensors that were determined from the met-
allographic sections, each in its individual coordinate system, were then transformed into the
global coordinate system by the transformation rule

y´y´

x´
x

z

x´

y´

a) b) c)
y

-z

x´
x z

-yy

φ

xy-plane xz-plane yz-plane

Figure 5.2: Frequency of the orientation φ of the elliptic fiber cross sections in one specific plane: a) in
x-y-plane, b) in x-z-plane, c) in y-z-plane. The data are corrected with the weighting function Eq. 4-8. In
each diagram, the local (section) coordinate system (x´, y´, z´), which is always identical, is given
along with the global (ingot) coordinate system (x, y, z).
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T
ijijijij aa λλ ⋅′⋅= . (5-12)

Here aij and a´ij are the orientation tensors in the global (ingot) and local (metallographic
section) coordinate system and λij and λT

ij are the transformation matrix and the transposed
transformation matrix. The λij are the directional cosines between the axes of the different
coordinate systems. The local orientation tensors and their transformation to the global coor-
dinate system are given in Table 5.1. The transformation matrices for the orientational rela-
tions that are shown in Figure 5.2 are also given there.

The diagonal elements of the three transformed tensors should be the same when each cross
section contains a representative sample of the global fiber orientation distribution. This was
not the case here because of limited sampling and due to the inhomogeneity of the reinforce-
ment. Nevertheless, it was found that the a11-component was always the lowest and the a22

and a33 components lay closer to each other than to the a11-component. This showed that the
fibers were preferentially oriented in the yz-plane (perpendicular to the x-axis) although the
degree of alignment was relatively weak so that still a good portion of fibers had random-3D
orientation.

To obtain the complete global fiber orientation tensor, the diagonal tensor components were
averaged over all three sections. The local a´12-components were taken to yield the off-diago-
nal elements. Finally the orientation tensor is given as:
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Table 5.1: Orientation tensors as determined from three perpendicular cross sections. Also given are
the transformation matrices for the transformation into the global coordinate system and the trans-
formed orientation tensors.
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The fibers were preferentially oriented in the yz-plane with a slight preference of the z-direc-
tion. In Figure 5.3a this orientation distribution is schematically visualized. The plane of
preferential orientation was slightly tilted about the z-axis (a12 is largest, a13 and a23 are very
small and can be neglected). This tilt can be due to misalignment of the metallographic
section during preparation.

Local Variations

The above tensor describes the volume averaged orientation state for the whole composite. In
this simple description, the local variation of the fiber orientation distribution is of course lost.
These local variations can be shown at least qualitatively if the tensor components are not
determined for three complete sections but for every single image. In Figure 5.4 some local
tensor components a´ij,n that have been obtained from the n-th image in the xy-section are
plotted. It can be seen that there is substantial scatter in the data. Nevertheless, a´11 is in gen-
eral lower than a´22 and a´33, which are again very similar.

a) b)
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y

Figure 5.3: a) Ellipsoid representing the fiber orientation distribution as it is given by the
measured orientation tensor. b) Schematic of the orientation of a selection of fibers. Note the
preferential orientation of fibers in the yz-plane.
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Relevance of the Image Analysis Results

The results obtained in this section show that the reinforcement was textured and that aniso-
topic behavior could be expected in mechanical tests. In the following Sections 5.2-5.4, this
anisotropy will be considered and experiments will be distinguished according to the speci-
men orientation. The quantification of the reinforcement texture in the form of an orientation
tensor will be of great help in Chapter 6, where material properties are compared to theoretical
predictions. The orientation tensor will be used there to determine an Eshelby tensor (see also
Appendix A.2) with which thermoelastic properties of the material can be predicted (Sections
6.3.1 and 6.3.4).

5.2 Strain Rates for Thermal Cycling Creep
In the following two sub-sections, composite TCC rates are given first for cycles with low
mean temperatures and thermal amplitudes and secondly for more intense thermal loading. In
a third sub-section the TCC rates for the matrix material without the reinforcement are pre-
sented.

5.2.1 TCC Behavior for 350 ↔↔↔↔ 150 °C Cycles
All test that are presented in this section employed the 350 to 150 °C thermal cycle that was
shown in section 4.2.4. The cycle duration was 10 minutes with constant linear heating and
cooling rates and dwell times of 1 minute at the upper and lower temperature. The initial heat
treatment comprised 30 minute anneals at 400 °C and 350 °C. Load-free cycling lasted for at
least 20 cycles before the load was applied. The evolution of strain during this load-free
cycling phase is addressed in the following sub-section. Afterwards, results from tensile TCC
tests are given as a starting point. Compressive test for various specimen orientations were
made to find out whether a tension/compression asymmetry was present under thermal cycling
conditions as it had been found in the isothermal case.

Initial Load-Free Cycling

During the load-free cycling, the specimens changed their shape: Within 30 cycles, they con-
tracted in x-direction by approximately -0.09% and they expanded in y- and z-direction by half
that value. This behavior is displayed in Figure 5.5 for the first 20 cycles. Although the abso-
lute strain per cycle decreased steadily, no saturation to a constant strain was observed within
50 cycles.
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Tensile Tests, X-Orientation

Tensile specimens could only be produced with the loading axis in x-direction, which was the
direction perpendicular to the plane of preferential fiber orientation (see Section 4.2.2). Three
typical tensile TCC-experiments – for a very low, a comparatively high and an intermediate
external stress – are shown in Figure 5.6.

During the load free cycling stage, the specimens contracted slightly in the x-direction (around
0.2% within 20 cycles, see above). After loading, the material displayed a pronounced transi-
tional behavior in all three cases, until a minimum creep rate (i.e. a minimum strain per cycle)
was reached. For the high stress, this took about 30, for the lower stresses over 100 cycles.

0 5 10 15 20
-0.10

-0.08

-0.06

-0.04

-0.02

0.00

0.02

0.04

0.06

 εx (x-orientation)
 εy (y-orientation)
 -2·εy

strain change during
load-free cycling

a)

st
ra

in
 a

fte
r h

ea
t-t

re
at

m
en

t ε
-ε

in
it [

%
]

number of cycles

Figure 5.5: Strain evolution
during 20 cycles of load-
free cycling. Only the strain
readings from the very
beginning of each cycle are
shown. The specimens
contracted in the x-direction
and they expanded by half
of that value in y- and z-
direction.

-12 0 12 24 36 48 60 72 84 96 108 120 132 144 156 168
0

1

2

3

4

5

60 full cycles
displayed

tensile, x-orientation, 350↔150 °C Cycle

12 MPa

24 MPa

32 MPa

×

to
ta

l s
tra

in
 ε  

[%
]

time t [h]

 

 
 

Figure 5.6: Selected tensile TCC experiments (x-orientation). Strain vs. time for three samples tested
at stresses of 12, 24 and 32 MPa. Only the strain readings at the very beginning of each cycle are
shown. The plot includes the initial strain due to heating and over-aging of the specimen and due to the
load free cycling prior to loading.
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The minimum creep rate prevailed only for a rather low number of cycles, after which the
strain rate started to increase progressively. The test at the lowest stress had been aborted
before this increase was observed. In analogy to the three stages of conventional creep, the
stages of the overall strain evolution for the thermal cycling creep experiments will from here
on be called “primary” or “transitional regime”, “steady state regime” and “tertiary stage”.
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loading. b) transitional behavior for a test at -40 MPa, where steady state was reached at slightly more
than 1% of creep strain.
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The minimum strain rates from the tensile TCC creep tests (350↔150 °C) with x-orientation
are shown in Figure 5.7a. It can be seen that in the stress range under investigation, the TCC-
rates were generally higher than the isothermal creep rates at peak temperature. At the higher
stresses, the apparent stress exponent of thermal cycling creep approached the one for iso-
thermal behavior, at the low stresses the stress exponent decreased substantially. Yet the
classical slope-one-regime of thermal cycling creep at low loads could not be observed in the
stress-range investigated.

The initial transitional behavior following the load change is displayed in Figure 5.7b, where
the strain rate (determined from the strains per cycle) is plotted versus the strain accumulated
since the time of loading. The strain at which the steady state was reached shifted to lower
values for decreasing stresses: At 32 MPa, the steady state was reached at around 0.7%, for 24
MPa at around 0.6% and for the lowest load at less than 0.4%.

Only the specimen at 24 MPa was tested until fracture. The fracture strain since loading
(including the elastic strain) was 4.1%. In the isothermal case, the fracture strains were always
smaller than 1.8% Bidlingmaier et al. (1996a).

Compressive Tests, X-Orientation

The thermal cycling creep behavior depended on the sign of the external load. As in the iso-
thermal case, the creep rates were considerably lower in compression (see Figure 5.8a) than in
tension (see section 3.5). Yet thermal cycling still enhanced the creep rate compared to the
isothermal case. In the stress range investigated, the thermal cycling creep rates were an order
of magnitude higher than the isothermal creep rates. The apparent stress exponent was fairly
constant over the whole stress range and with a value of 4.6, it was not much less than the
apparent stress exponent for the isothermal case (6.0). The strain rate evolution of one
selected compressive creep curve, given in Figure 5.8b, showed a similar transitional behavior
as observed for tensile loading. However, if one compares tensile and compressive tests with
similar minimum creep rates (Fig. 5.8b and 5.7b), it can be seen that the strain at which the
steady state was reached was considerably larger in the case of compression. In the case of
isothermal creep, no such difference in the transitional strain was found. This can be seen in
comparing Bidlingmaier’s and Wolf’s data (Bidlingmaier et al. (1996a), Wolf (1997)).

Compressive Tests, Y- and Z-Orientation

On changing the orientation of the specimens from x- to y-orientation the thermal cycling
creep rates decreased even further. The loading axis was then no longer perpendicular but
parallel to the plane of preferential fiber orientation. For the two specimens that were tested,
the creep rates lay in between those for TCC in x-orientation and the isothermal creep rates at
peak temperature (compare Figures 5.9a and 5.8a). The stress exponent  estimated from the
two data points is 4.7. The transitional behavior, which is shown in Figure 5.9b, showed the
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same stress-dependence as for x-orientation in tension: Lower stresses led to shorter transi-
tions. The compression creep curve for the higher load did not differ substantially from the
one for x-orientation. For both orientations, the minimum creep rate was reached at slightly
more than 1% of creep strain.

5.2.2 Effect of Cycling to Higher Temperatures
The maximum temperature of 350 °C in the standard cycles was chosen to roughly reflect
service conditions in an engine environment. It could be seen in the previous section that for
the standard cycles, the strains per cycle were very small – especially at low loads – and thus
difficult to measure experimentally. In order to get better insight in the behavior at low loads,
a few test series were performed with thermal cycles that went to comparatively high maxi-
mum temperatures. In the following, the term “high-temperature cycle” will be used for cycles
with a Tmax higher than 350 °C.

These high-temperature cycles resulted in higher strain rates, lower apparent stress exponents
and shorter transitional regimes. Under these conditions, time- and specimen-saving tests with
stepwise loading could be more reasonably conducted. Interesting investigations such as
studying the influence of the thermal excursion or studying the influence of a high-tempera-
ture dwell time could be made using only few specimens. Results from these investigations
are presented in the following sub-sections.

X-Orientation

Two tests were performed with specimens in x-orientation. The thermal cycle was similar to
the standard cycle, with identical cycle duration (600 seconds) and dwell times of 1 minute at
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Figure 5.9: a) Rates for two compressive TCC-experiments in y-orientation (standard cycle).
b) transitional behavior for these test.
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the extreme temperatures. However, the maximum and minimum temperatures were altered,
which also changed the rates for the linear heating and cooling ramps. The rates that are
shown in Figure 5.10 were determined from TCC-tests with stepwise increasing loads (single
sample technique), starting with the lowest load. It can be seen that in both cases the apparent
stress exponent became small for very low loads. The stresses were, however, not low enough
to reach a slope of one. At higher stresses, the apparent stress exponent increased to values
close to those for isothermal creep. Further comparisons of the curves are not meaningful
because of the differences in both the thermal cycle and the sign of loading.

Influence of Thermal Amplitude

For a tensile specimen (x-orientation), a special experiment was conducted to assess the influ-
ence of the magnitude of the thermal excursion on the TCC rate. In this experiment, the
specimen was kept at a stress of 8.5 MPa in tension while the amplitude of the thermal cycles
was altered every 50 cycles. The maximum temperature of the cycles was always 450 °C and
each cycle included a dwell time of 1 minute at Tmin and Tmax. The heating and cooling rates of
the linear ramps were kept constant at (±)50 K/min (0.833 K/s). This means that upon chang-
ing the minimum temperature of a cycle, the cycle duration was also changed. The amplitude
was varied from 50 K (450↔400 °C) up to 370 K (450↔80 °C). The sequence of the cycle
types was not ordered. Usually, a 50-cycle segment with a high amplitude was followed by 50
cycles with a lower amplitude and vice-versa. Average strain rates were determined from the
last 30 cycles of each segment. Because the cycle duration was varying with the amplitude, it
was better to quantify the TCC rate in terms of strain per cycle rather than by the average
strain rate. The results are presented in Figure 5.11. The average strain per cycle stayed at a
relatively low level with considerable scatter up to a thermal excursion of 250 °C. For high
cycle amplitudes of 300 °C and higher, the strain per cycle rose above that level. A data point
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from the 450↔120°C experiment that was shown in Figure 5.10 for the same load fell well
within the trend (open symbol in Figure 5.11). The load was also 8.5 MPa and the parameters
of the thermal cycle were the same except for the higher heating and cooling rates.

Regarding the transitional behavior, it was found that after a change in cycle amplitude, the
strain evolution underwent a measurable transition of up to 5 cycles until a steady strain rate
was achieved. This is remarkable because the externally applied load was not changed
throughout the experiment. If the amplitude of the cycle was lowered, the TCC-strain rate
became initially high and sank to the steady state value. If the cycle amplitude was increased,
an inverse transition was observed, i.e. the TCC rate was initially negative until again a posi-
tive steady state TCC-rate was established. The higher the change in thermal amplitude was,
the more pronounced was the transitional behavior. However, the transitions are much smaller
that those that are commonly found upon load changes.

Influence of High-Temperature Dwell

The effect of the high-temperature dwell on the TCC behavior was studied by a series of
compression tests on specimens with y-orientation. The temperature was cycled between 450
and 100 °C with linear heating and cooling ramps of 240 seconds and a lower dwell time of
60 seconds. High-temperature dwell times of 0, 60 and 360 seconds were investigated, corres-
ponding to overall cycle periods of 540, 600 and 900 minutes. The tests were conducted with
the stepwise loading procedure, starting with the lowest load. The average thermal cycling
creep rates from the steady state are shown in Figure 5.12a. In Figure 5.12b), the corres-
ponding strains per cycle are given.
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Figure 5.11: Influence of the thermal amplitude
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are the same except for the heating/cooling
rates, which are higher).



68 Chapter 5 - Results

The lowest average strains per cycle and creep rates were found for the case when no high-
temperature dwell was employed. Although a short high-temperature dwell in each cycle
increased the average strain per cycle substantially (especially at low loads), the even longer
dwell time led to no further increase. Along with the increasing rates, the apparent stress
exponents became lower. The stress exponents were roughly the same for both tests with high-
temperature dwell times.

5.2.3 Thermal Cycling Creep (TCC) Behavior of the Matrix Alloy
The matrix alloy itself can be considered as a composite with an aluminum matrix and
12 wt.% of silicon platelets and intermetallic phases as reinforcements. In fact, in TCC tests it
was found that the matrix alloy exhibited a composite-like increase of the average creep rate
and a decrease in the apparent stress exponent. Minimum strain rates from TCC tests with
stepwise loading are shown in Figure 5.13. For the standard 350↔150 °C cycle, the minimum
creep rate had an apparent stress exponent of napp=2.5 (compared to 4.5 for isothermal creep at
Tmax) which was constant in the investigated stress range. For cycles to higher temperatures,
this was no longer so. The apparent stress exponent decreased with decreasing load down to a
value of napp=1.2 (for a 400↔100 °C cycle, see Figure 5.13b and c).
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Figure 5.12: TCC rates and strains per cycle for changing the high-temperature dwell time of the
thermal cycle. The rates for each type of cycle were measured in compressive TCC tests with stepwise
increasing load on a single specimen (y-orientation). The extreme temperatures were 450 and 100 °C,
the linear heating and cooling ramps took 4 minutes, and the low-temperature dwell time was 1 minute.
The high-temperature dwell was varied from no dwell (0 seconds) over short dwell (60 seconds) to long
dwell (360 seconds).
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5.2.4 Summary of TCC Strain Rate Results

TCC for Standard Cycles

For all standard TCC-tests that were performed in the present work, the minimum creep rates
were always higher than isothermal creep rates measured at the maximum temperature of the
cycle. A tension/compression asymmetry, like it was found for isothermal creep, was also
present under thermal cycling conditions. This kind of behavior has not been published before
for thermal cycling creep of MMCs. Moreover, the TCC-rates showed an orientation depen-
dence: For x-oriented specimens (loading perpendicular to the plane of preferential fiber
orientation) the rates were higher than for y-orientation. The apparent stress exponents were
found to be generally lower than for isothermal creep but still larger than one. Only for tensile
loading (x-orientation) did the stress exponents become substantially lower and could be
suspected to reach unity for lower loads.

The envelope creep curves themselves displayed only a very short secondary stage and exten-
sive transitional stages. Such pronounced TCC transients have been reported only very rarely
and only for thermal cycles with particularly low temperatures (see Section 0). The transient
creep was found to be more pronounced the higher the stresses were. If creep curves with
comparable minimum strain rates were compared, then the compressive tests seemed to
exhibit longer creep transients than the tensile ones. A distinct orientation dependence was,
however, not observed.
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Figure 5.13: Thermal cycling creep rates for the matrix material (compressive) a) standard cycles
350↔150 °C, b) cycling 400↔200 °C and c) thermal cycling 400↔100 °C. Cycle duration was 10
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TCC for High-Temperature Cycles

The high-temperature experiments showed the same principal behavior as the standard TCC:
The TCC rates were increased compared to the isothermal creep rates at Tmax – especially at
low loads. The apparent stress exponents became also substantially lower and close to unity in
the lower end of the investigated stress range. The same principal orientation dependence and
the dependence on the sign of loading were also observed. The biggest differences to the
standard cycles were found regarding the overall form of the creep curves: The high-tempera-
ture (and high-amplitude) experiments exhibited much shorter creep transients.

The average strain per cycle increased considerably when the thermal amplitude of the cycle
(for a fixed Tmax=450 °C) was increased above around 250 K (Tmin<200 °C). For lower
amplitudes, a finite strain per cycle was measurable but it was low and more or less constant.
Such behavior has been attributed to the presence of a critical amplitude ∆Tc beyond which
the matrix yields. It will be discussed in Chapter 7 whether this is the case for the present
material as well.

The average strains per cycle became noticeably lower when the 60 second dwell time at Tmax

was omitted of the cycle. When the dwell time was increased to 6 minutes, however, the strain
per cycle stayed more or less the same.

5.3 In-Cycle Strain Evolution
Only few investigations of the in-cycle strain evolution during TCC were reported in literature
and in no case a systematic study on the influence of testing parameters has been presented.
Thus, in this work, the primary purpose of the in-cycle strain analysis was to find out whether
differences in the creep rates and the overall TCC curve were reflected in systematic dif-
ferences in the in-cycle strain evolution.

The in-cycle strain evolutions were determined for various representative cycles from selected
TCC experiments. As described in Section 4.3.1, the results are presented in the form of
instantaneous CTE curves. At first, the standard 350↔150 °C experiments are dealt with. In a
second section, the analysis of high-temperature cycles is presented.

5.3.1 Standard Tests

Load-Free Cycling

When the composite specimens were cycled from 350 to 150 °C without external load, they
exhibited a small hysteresis in the strain-temperature curve. As a consequence, the first dif-
ferential of strain with respect to temperature – which is called instantaneous CTE – was
different for heating and cooling half-cycles. This can be clearly seen, when Figures 5.14a and
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b) are compared. The specimens with x-orientation had an almost linear cooling curve i.e. the
instantaneous CTE was approximately constant with temperature. The heating curve, in con-
trast, had a lower instantaneous CTE at the lower end of the cycle and a much higher one the
high-temperature end. Moreover, a little shoulder was reproducibly found at around 250 °C.
As expected, the curves for the two specimens with x-orientation coincided very well. The
small undulations in all curves were mostly due to noise in the basic data and should not be
over-interpreted. The instantaneous CTE in y-direction was found to be always smaller than in
x-direction. Furthermore, the heating/cooling asymmetry was reversed for y-orientation: Now
it was the cooling curve which lay initially below and at high temperatures above the instanta-
neous CTE for heating. In y-direction, no almost linear strain-temperature behavior was found
– neither for heating nor for cooling.

A good test for the validity of the analysis that leads to the CTE-curves and for the quality of
the measurements is the calculation of a volume-averaged instantaneous CTE. The volume
averaged thermal expansion should show no thermal hysteresis because the volume of the
specimen has to be constant at a given temperature*. It is assumed that the y- and z-directions
are equivalent so that the volume averaged instantaneous CTE is given by

                                                
* The tiny volume changes due to internal elastic strains are neglected in this analysis.
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Figure 5.14: Instantaneous CTE for load-free cycling in standard 350↔150 °C tests. a) cooling curves
for x-orientation reflected the linear thermal contraction behavior in this direction. The cooling curve in
y-direction had a lower CTE and showed a clear decrease of CTE for lower temperatures. b) the
heating curves for x-orientation started at lower CTE values and ended at higher CTEs than the cooling
curves. The CTE in y-direction lay below the one for x-direction and were less temperature dependent
than the cooling-CTE in y-direction.
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The results of this analysis are given in Figure 5.15. It can be seen that no significant differ-
ences were present between the volume averaged CTEs for heating and cooling.

Loaded Thermal Cycling

The instantaneous CTEs changed when the material was loaded. In Figure 5.16b), this can be
seen most clearly for the heating curves: For tensile loading, the material expanded more
readily at the high-temperature end of the cycle than without external load. For compressive
loading, the instantaneous CTE was lowered in the same temperature range. Up to around
270 °C, all the heating curves showed the same CTE values. The tensile heating curve started
to deviate from the unloaded curve at 270 °C, the compressive curve deviated not before
290 °C were reached. The small deviation of the compressive heating curve at the low
temperature end of the heating cycle could not be reproduced in other experiments. The
cooling curves that were shown in Figure 5.16a were virtually unchanged by the external
loading. Only at the very beginning of the cooling curve was a significant enhancement of the
thermal contraction found for compressive loading.

The cycles shown in Figure 5.16 were taken from the region of minimum TCC-rate in the
experiment. In the following Figures 5.17 and 5.18, the same curves are shown in comparison
to the instantaneous CTE from very “early” (the second loaded cycle) and “late” cycles. In the
tensile case (Figure 5.17), the cooling curves stayed more or less the same throughout the
experiment. Only for the first few cycles (see cycle #2) are they shifted to slightly lower
values. For heating, the instantaneous CTE curve was initially very steep – especially at the
high-temperature end – but it flattened as the TCC experiment proceeded to the region of
minimum strain rate. At higher strains, when the specimen was already in the tertiary regime,
the instantaneous heating CTE was increased again. For tensile TCC experiments that were
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continued to failure of the specimen, it was found that the instantaneous heating CTE could
become very high in the last few cycles before fracture – considerably higher than it had been
in the first few cycles.

The same comparison was made for a compressive TCC test in Figure 5.18. The intermediate
and the late cycle showed almost identical instantaneous heating and cooling CTEs. Only the
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Figure 5.16: Instantaneous CTE for standard TCC-cycles and x-orientation. The cycles are taken from
regions of minimum strain rate. For comparison, the instantaneous CTE for load-free cycling of the
same specimens are also given. a) cooling curves b) heating curves.
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Figure 5.17: Tensile TCC test: Instantaneous CTE for early, intermediate and late cycles. The
specimen had x-orientation and the load was 32 MPa. The cycles number 2, 50 (at 0.9% strain) and
182 (at 2.7% strain) are given. a) cooling curves. b) heating curves.
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early cycle exhibited a different behavior. For cycle #2, the cooling CTE was considerably
raised and the respective curve was more erratic: At the very beginning of the second cooling
cycle, the contraction was much stronger than for the intermediate and late cycles. It further-
more showed a pronounced shoulder at around 270 °C. The heating CTE curve of cycle #2
bowed downwards at the high-temperature end. The deviation from the intermediate and late
cycle heating curves started at about 220 °C.

5.3.2 High-temperature Cycles

Variation of Amplitude

In Figure 5.11, results from a tensile TCC test with cycles to 450 °C and various thermal
excursions were presented. The instantaneous CTE curves for selected cycles from this
experiment are given here. All these cycles had the same high-temperature dwell times and the
same heating and cooling rates. In Figure 5.19a it can be seen that all cooling curves coin-
cided, no matter how low the minimum temperature was. The cooling curve was not as linear
as it was for most of the (tensile) standard cycles. The instantaneous CTE curve was rather S-
shaped with a steep segment between 260 and 330 °C and rather constant values above and
below. The instantaneous heating CTE curves were found to differ a lot for various thermal
excursions. For the cycle with 300 K thermal excursion, the heating CTE started at 150 °C
with values below the cooling curve. Upon heating, the CTE increased steadily with
increasing slope until about 430 °C. At this point, the slope of the curve reverted and for the
last 20 K the CTE dropped a little. The instantaneous heating CTE curves for lower thermal
amplitudes had roughly the same shape, but they were shifted to higher temperatures. Simul-
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Figure 5.18: Compressive TCC test: Instantaneous CTE for early, intermediate and late cycles. The
specimen had x-orientation and the load was -41 MPa. The cycles number 2, 81 (at -1.1% strain) and
252 (at -2.4% strain) are given. a) cooling curves. b) heating curves.
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taneously, the range of heating CTEs was narrowed down: Compared to the 300 K cycle, the
heating CTE of the 50 K cycle started at higher values and ended at much lower ones.

Influence of Dwell Time

It was shown in Section 5.2.2 that the strain per cycle was significantly influenced by the
high-temperature dwell time. Experiments with high-temperature dwells of 60 and 360
seconds exhibited both the same strains per cycle and these were higher than for a TCC test
without dwell. Instantaneous CTE curves from these three tests (for y-oriented samples) are
shown in Figure 5.20. The general shapes of the heating and cooling curves were the same as
for the standard load-free cycles for y-oriented samples (see Figure 5.14). However, they were
extended to higher and lower temperatures. Above 350 °C, the heating-CTE dropped to values
as low as at the low temperature end of the curve. All three cooling curves coincided as well
as the three heating curves.

No pronounced differences were found in the instantaneous CTE curves for the different dwell
times. This is why the strain evolution during the dwell time was investigated further: In
Figure 5.21, the strain-time curves during the 60-second and 360-second dwell at 450°C are
shown. Both curves displayed non-linear behavior, similar to transient creep. The accumulated
strains were -0.011 and -0.016 % for the short and long dwell time and in both cases, this
strain was higher than the strain per cycle. This means that part of the strain that had accu-
mulated during the high-temperature dwell was recovered during the following thermal cycle.
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Figure 5.19: Instantaneous CTE for a tensile TCC test at 8.5 MPa, where the cycle amplitude was
changed (see page 66 for details of the cycle shape). The instantaneous CTE is given for excursions
of 300, 200, 100 and 50 K. It is remarkable that the cooling CTEs (a) were always the same, while the
heating CTEs (b) were shifted to higher temperatures for smaller excursions.
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5.3.3 Summary of the Observed In-Cycle Strain Evolution
The instantaneous CTE curves were generally markedly different for heating and cooling, i.e.
a strain-temperature hysteresis was always present. When instantaneous CTE curves for
various test conditions were compared, it was found that differences in the composite defor-
mation were usually found in the heating curves– especially at the high-temperature end – but
that the cooling curves stayed more or less the same.

The instantaneous CTE curves and what their form can tell about the evolution of inelastic
strains and internal stresses will be discussed in detail in Chapter 7.
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Figure 5.20: Instantaneous CTE for a three compressive TCC test (y-orientation) at 15 MPa. The
cycles differed in the high-temperature dwell time (see Page 67 for details). Nevertheless, the cooling
CTEs (a) and the heating CTEs (b) coincided for all three curves.
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5.4 Stress Cycling Creep Behavior
To complement the TCC tests that were described in the previous section, some stress cycling
creep tests were performed. The temperature was kept constant at 350 °C and the applied
stress was cycled between a creep stress and zero stress (or the low stress necessary to grip
compressive samples) at a very low frequency. It is reasonable to assume that the composite
stores elastic strain energy in the reinforcement when a load is applied and creep deformation
takes place. The stress cycling creep tests were performed to investigate to what extent this
strain is released in the form of back-creep if the load is removed.

Stress cycling creep tests are characterized by the temperature, the creep- and recovery-
stresses and the times or strains in the creep/recovery phases (see Section 4.3.2). In this work,
the experiments were done with x-oriented specimens at 350 °C in compression. The external
stress was cycled between -63 MPa and the gripping stress of about -1.5 MPa. The stress
changes were applied instantaneously. Various forward creep strains were used together with a
fixed recovery time of 6 hours. The results from those experiments are given in the following.

Compressive Tests

In Figure 5.22a, the amount of back creep with increasing creep strain is shown for three
different forward strain increments. In all three cases, the amount of recovered strain became
almost constant after a number of cycles. The total forward strain needed to achieve this con-
stant back creep was found to depend on the forward strain increment.
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Figure 5.22: a) Isothermal stress cycling creep tests at 350 °C with creep/recovery stresses of
-63/-1.5 MPa. The specimens were loaded until 0.6%, 0.8% or 1.2% of forward creep strain were
reached and subsequently allowed to recover for 6 hours. The evolution of the recovery strain with the
accumulated total creep strain is shown. b) Back creep strain for stress cycling creep with a forward
strain of 0.6%, following various types of pre-deformation. The recovery strain decreased only very
moderately with increasing accumulated creep strain and was independent of the type of pre-defor-
mation.
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In a series of experiments, the specimens were deformed to large strains with different types
of tests. The intention was to cause different amounts of damage to the reinforcement. After-
wards, a stress cycling creep test with a forward creep strain of 0.6% was performed in order
to find out whether the reinforcement damage had affected the tendency for back-creep. The
back creep strains from these tests are shown in Figure 5.22b. The recovery strain showed
only a very moderate decrease with increasing total creep strain. Furthermore, in all cases the
recovery strain was almost the same at the same total accumulated strain, irrespective of the
type of pre-deformation.

In Figure 5.22a it was shown that recovery depended slightly on the amount of the forward
strain increment. A closer look on this is given in Figure 5.23, where the amount of backward
strain at a certain total strain (-2.75% accumulated creep strain) of different samples is plotted
against the amount of the prior forward strain. For small forward strain increments, the large
total strain was reached in an incremental technique with large-increment stress cycling creep
preceding small-increment stress cycling creep. For very low forward strain increments
(below around 0.3%), almost all the strain was recovered within 6 hours. The back creep
strain increased with increasing forward strains. Although the degree of increase diminished
progressively, no upper limit for back creep was observed up to forward strain increments of
around 3%. It is to be noted here that even at the end of the 6-hour load-free segment, the
specimen still exhibited measurable back-creep: The back creep rate was low but not zero.

Tensile Test

Under tensile conditions, only slightly different observations were made. A single tensile
stress cycling creep experiment was conducted at an external stress of 50 MPa and a stress of
0 MPa during recovery. The forward strain increment was chosen to be +0.4% and the
recovery time was again 6 hours. The back creep strains from this experiment are shown in
Figure 5.24. A maximum of 0.34% back creep was found at 1.2% tensile creep strain. After
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Figure 5.23: Amount of back-
creep for different forward
creep strain increments. The
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four further cycles, where the amount of recovered strain decreased slightly, the specimen
fractured. The total strain to fracture was 1.53%. This fracture strain matches well with the
strains to failure for standard isothermal creep experiments (see section 3.5).

The overall shape of the back-creep strain vs. total strain curve was similar to the ones for the
compressive experiments. In both cases, no dramatic decrease in the recovery ratio was found
for larger strains. While in the tensile case the specimen failed as soon as the back creep
started to become lower, the compressive specimens exhibited only a slight decrease of the
recovery strains up to relatively large strains. It is remarkable that under tension (at the smaller
external stress) the maximum recovery strain is reached at smaller total strains than under
compression (at the larger stress).

Rates of Stress Cycling Creep

An interesting question was how the creep rate of the composite was influenced by the
repeated unloading during stress cycling creep. In order to compare stress cycling creep curves
directly to data from static creep experiments, data in the recovery phases had to be removed
from the strain vs. time curves. In Figure 5.25a two cyclic creep curves are shown, where only
the data from the loaded segments are concatenated. For comparison, a static compressive
creep curve (-63 MPa, 350 °C) is also given. In Figure 5.25b, the respective strain rate vs.
total strain curves are plotted. The overall shape of the creep curve was always the same. In
each experiment, the strain to minimum strain rate was about 1.2%. Pronounced primary and
tertiary creep regimes were found while the regime of steady state creep was very narrow. It
can be clearly seen that the stress cycling creep experiments yielded higher creep rates. The
creep acceleration seems to be linked to the number of creep recovery segments per time (or
strain), because lower forward strain increments led to higher creep rates.
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Figure 5.24: Tensile isothermal
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strain increment of 0.4% and a
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5.5 Damage
Damage due to TCC testing can be observed on different size scales. In the following, these
observations will be grouped into “macroscopic” and “microscopic”. All discovered damage
features that were larger than the typical inter-fiber spacing were termed “macroscopic”,
although a microscope was sometimes helpful in viewing them. These will be presented in the
first of the following two sections.

5.5.1 Macroscopic Observations

Strain to Failure

A series of tensile TCC-tests with standard cycles were run until fracture of the specimen. The
strain to failure was determined as the total strain from directly before application of the load
until final fracture minus the elastic strain, calculated with a measured elastic modulus of
76.4 GPa at 350 °C (see Section 3.4, Figure 3.8). The results for various loads and amounts of
isothermal pre-creep are summarized in Figure 5.26. For comparison, fracture strains
measured by Bidlingmaier et al. (1996a) for isothermal creep are also given. These lay
between 1.5 and 1.8% (cf. Section 3.5). The TCC fracture strains scattered around 4.1% with
considerable variation. Just like in the isothermal case, the fracture strain for TCC showed no
pronounced dependence on the applied load (Figure 5.26a). It also seemed to be independent
of the amount of isothermal pre-creep (Figure 5.26b).
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Figure 5.25: Stress cycling creep compared to static creep. a) strain vs. time curves where only the
loaded segments are shown; data from the recovery segments are removed. b) strain rate vs. strain
curves. For the cyclic creep curves, only the very last measurements in the loaded segments were
taken and differentiated with respect to the time at load. It can be seen that, for all three curves, the
strain to minimum strain rate lay at about 1.2%.
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Fracture Surface

Figure 5.27: The typical fracture surface of a
tensile composite specimen after a TCC test is
very rugged on a macroscopic scale. No indi-
cations were found for starting sites and cyclic
growth of macroscopic cracks. SEM, SE detec-
tion.

Figure 5.28: Fracture surface detail that shows
evidence (equiaxed creep dimples) for classical
creep fracture by growth and coalescence of
creep voids. SEM, SE detection.

The fracture surfaces of tested tensile TCC specimens were very rugged on a macroscopic
scale. In some cases, sideways fissures with millimeters in depth were found. No indication
was found for the initiation and cyclic growth of macroscopic cracks. Only one out of 8 frac-
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Figure 5.26: Strain to failure for tensile thermal cycling creep (x-orientation), 350↔150 °C. a) Strain to
failure for different stresses and different amounts of pre-creep, plotted against stress. No pronounced
dependence was found. For comparison, fracture strains for isothermal creep at 350 °C measured by
Bidlingmaier et al. (1996a) are also given. b) Same TCC data as in a) but plotted against the amount of
pre-creep. Again, no correlation between fracture strain and pre-creep could be observed.



82 Chapter 5 - Results

ture surfaces went through one of the thermocouples that had been spot-welded to the speci-
men surface, although those would have been obvious starting points from which damage
could have emanated. At higher magnifications, equiaxed creep dimples were found all over
the fracture surface. Apparently, macroscopic damage by growth and coalescence of pores led
to final fracture. Elongated dimples that would have been evidence for shear rupture could
only rarely be observed. No pronounced fiber pull-out or debonding was found. Fibers that
stuck out from the fracture surface always had remains of matrix material sticking to them.
This indicated good bonding between the matrix and the fibers.

Surface Roughening

On all tested specimens, surface roughening was observed. An image of a compression
specimen that was deformed under stress cycling creep conditions up to -6% of strain is given
in Figure 5.29. The initially polished surface had become very rough during testing and a
characteristic surface topography with bands of hills and valleys had built up. These features
became clearly visible with the naked eye for strains larger than 1.5% under all kinds of creep
deformation (tensile, compressive, cyclic, thermal cycling). It was found that surface valleys
were usually associated with regions of low fiber content. This is illustrated in Figure 5.30
where a cross section of a tensile TCC specimen with a fracture strain of 5% is shown.

Figure 5.29: Compressive specimen after stress
cycling creep to a strain of -6%. Note that the
initially polished surface shows a high amount of
roughness. Specimen diameter is 9 mm.

Figure 5.30: Longitudinal cross section of a
tensile TCC specimen strained to 5%. Note that
the characteristic surface trenches are usually
associated with regions of low fiber content.
Loading direction vertical. VP-SEM, BS detection.
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The surface roughness of tensile specimens with various fracture strains was measured with a
DEKTAK3 surface profilometer. The measured profiles are shown in Figure 5.31. They were
measured in the direction of the tensile axis. For each one, the arithmetic average roughness
Ra (arithmetic average deviation form the mean line) is also given. It was found that the sur-
face roughness increased non-linearly with increasing creep strain. The occurrence of fracture
was not correlated with a certain roughness.

5.5.2 Microscopic Damage

Pores

Longitudinal metallographic cross sections of broken tensile TCC specimens revealed vast
assemblies of pores in the matrix that had grown and coalesced to cracks perpendicular to the
loading direction (Figure 5.32). It was found that these assemblies were mostly associated
with fiber free-regions. Either adjacent regions of low fiber content had been linked up by a
series of pores or the pores had aligned along the boundary of a fiber-free region. These typi-
cal pore arrangements were found all over the cross section, with no pronounced concen-
tration near the specimen surface or the fracture surface. They were exclusively found under
tensile loading conditions, not in compression. Such pore arrangements were not found under
tensile isothermal creep conditions.
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Figure 5.31: Surface profiles of tensile specimens tested to different fracture strains. The arithmetic
average roughness Ra increased non-linearly with the fracture strain εf. The measuring direction was
parallel to the tensile axis.
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In the wake of these pore arrangements, an increased amount of microscopic damage, such as
particle cracking, matrix cracking or fiber fracture was frequently observed. An example for
this is shown in Figure 5.33.

Fiber Fracture

Only a limited number of fiber fractures were found in the metallographic investigations, even
when the fracture strain or the compressive creep strain of the specimens had been large. As
mentioned above, fiber fracture occurred more frequently in the wake of pore assemblies in
tensile specimens. An example for fiber fracture in a compressive specimen is given in Figure
5.34. It is clearly seen that the region between the fiber fracture surfaces is filled with matrix

Figure 5.32: Typical pore arrangement as seen on a longitudinal cross section of a tested TCC-
specimen (5% strain). Tensile loading, the loading direction was vertical. VP-SEM, BS detection.

Figure 5.33: Creep pores after a tensile TCC test. Detail from
Figure 5.32. Note the increased amount of microscopic damage
such as matrix, particle or fiber cracks in the wake of the pore
assembly. VP-SEM, BS detection
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material. Open cracks were observed only in very rare instances. The gaps could have been
filled by deformation processes or as a result of the metallographic preparation (smearing).
Silicon precipitates or intermetallic phases were never found in the gap between the fracture
surfaces. This indicates that the fractures did not occur before or during the infiltration pro-
cess.

An orientational dependence of fiber fracture was not observed. In most tensile specimens, it
was almost impossible to find fibers that were aligned with the loading direction (x-orien-
tation), and these were usually not damaged. In compressive specimens, fiber fracture
appeared to be more frequent in fibers that were aligned perpendicular to the loading
direction. Precise statements can, however, not be made without extensive image analysis and
statistics. Such an analysis of fiber fractures was performed by Wolf (1997) for tensile and
compressive creep samples that both had the direction of loading in the plane of preferential
fiber orientation. He found a clear orientational dependence of fiber fractures with preferred
fracture of aligned fibers in tension and preferred fracture of transverse fibers in compression
(see also Bidlingmaier et al. (1998)).

Figure 5.34: Fiber fracture in a TCC-tested compression specimen (longitudinal section) The loading
axis was vertical. Note that the gaps between the fiber fracture surfaces are filled with matrix material.
Optical microscope.
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5.6 Summary of the Most Important Results
By quantitative metallographical analysis it was shown that the reinforcement was textured.
This means that for all mechanical tests, attention has to be paid to the orientation of the
specimen. The orientational distribution of fibers was quantified by an orientation tensor. The
quantification of the orientation distribution facilitates comparison to past and future results
from other researchers and it is essential when numerical predictions of physical and
mechanical properties are to be made.

Under thermal cycling conditions, the rate of deformation of the MMC was always higher
than under isothermal condition at the maximum temperature of the thermal cycle. This kind
of behavior has also been reported in the literature for other MMCs.

In some aspects, however, the behavior observed in the present study differed from the classi-
cal thermal cycling creep (TCC) behavior described in the literature. Although the apparent
stress exponents were found to be generally lower than for isothermal creep, they were still
larger than one – even at very low applied stresses. Another remarkable result is that the en-
velope creep curves displayed pronounced transient behavior upon load changes. This tran-
sient creep was more pronounced the higher the stresses and the lower the temperatures were.
The origin of these discrepancies will be addressed in Chapter 7.

The above mentioned reinforcement-texture was well reflected in the orientational depen-
dence of the TCC-rates: The creep rates were higher when the specimen was loaded perpen-
dicular to a plane of preferential fiber orientation. Moreover, the creep rates depended on the
sign of loading (lower creep rates were found under compression). These two observations are
not only important issues for mechanical design with this material but they also give informa-
tion about the underlying deformation processes. As will be shown in the following chapters,
conclusions on the deformation processes can also be drawn from the strain hystereses ob-
served within the individual thermal cycles.

The deformation processes in the material were further investigated with stress cycling creep
experiments in which the applied stress was switched back and forth between the creep stress
and zero stress at varying time intervals. The most important result of these tests was that the
composite material was able to recover considerable amounts of creep strain after unloading.
The amount of recovered strain was found to depend on the total amount of previously accu-
mulated creep strain but also on the amount of strain since the last recovery. When the stress
cycling creep experiments were compared to uninterrupted isothermal creep experiments, it
was found that the creep rates under load were slightly higher. This means that the creep
deformation of the material is accelerated if the load is not applied constantly.

These results are of great importance for the practical application of this kind of material as
service conditions generally include varying stresses and varying temperatures.



6 Calculations
For the interpretation of results that were presented in the previous chapter, it is desirable to
calculate the evolution of internal stresses under thermal and/or load-cycling conditions for
comparison. In the following, a so-called slab-model will be described, which provides such
estimates for a simplified geometry. At first, its basic assumptions, its implementation and its
fundamental limitations will be addressed. In a second section, the slab-model will be
calibrated with parameters to yield predictions for the composite material. Finally, the pre-
diction of basic physical properties will be presented in order to check the validity of the
calculations. In Chapter 7, the slab-model will be used to predict thermal cycling creep rates
and in-cycle strain evolution. These predictions will be compared to the experimental
findings.

6.1 The Slab Model
The slab model in a simple form has been used to approximate a long-fiber reinforced com-
posite by a stack of two cuboid slabs that represent the matrix and the reinforcement, with
relative thicknesses proportional to the respective volume contents (Clyne and Withers
(1993)). Considering the symmetry, it is quite obvious that the slab arrangement is most useful
in modeling a random planar distribution of continuous fibers. The degree of abstraction
increases as the composite geometry is changed to discontinuous fibers with a preferential
orientation in one particular plane. It cannot be expected that the behavior of the investigated
composite is predicted with high accuracy by such a slab model. Due to this simplicity, how-
ever, the model can be set up to consider the complex interplay of elastic loading, thermal
expansion, creep relaxation and plastic flow. This will be shown in the following sections.

6.1.1 Basic Assumptions and Equations
A two-phase composite, consisting of a stack of cuboid slabs that are tightly bonded together
is considered. It is assumed that one principal axis of the stress tensor coincides with the
direction of stacking. This axis is denoted with the index “1”.

Phase “m”

Phase “r”

Matrix

Reinforcement
32

1

Figure 6.1: Slab model: graphic representation and orientational deno-
tation
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Both phases are allowed to undergo elastic deformation, thermal expansion and inelastic
deformation (i.e. creep and/or plasticity). All material properties are assumed to be isotropic
for each phase and the strains in the slabs are assumed to be uniform. The principal strains εip

in the phase p are thus given by the following equations:

inel
ppp

p

p
p

p

p
p

p
p T

EEE 13211
1 εασ

ν
σ

ν
σε +∆+−−= , (6-1 a)

inel
ppp

p

p
p

p

p
p

p
p T

EEE 23122
1 εασ

ν
σ

ν
σε +∆+−−= , (6-1 b)

inel
ppp

p

p
p

p

p
p

p
p T

EEE 32133
1 εασ

ν
σ

ν
σε +∆+−−= . (6-1 c)

The elastic strains are given by the principal stresses σip in the phases and Young’s modulus
Ep and Poisson’s ratio νp according to Hooke’s law. The thermal strain is the product of the
phase’s coefficient of thermal expansion αp (CTE) and the temperature change ∆T. The con-
tribution of inelastic strain in the phase p in the direction i is represented by inel

ipε .

In the stacking direction, the phase strains simply add up to the composite strain. The princi-
pal strains in the 2/3-plane of both slabs must all be identical and equal to the principal strain
of the arrangement in this plane. This follows from the compatibility condition due to the tight
bonding and from the uniformity of strain. The principal strains are:

rrmm ff 111 εεε += (6-2 a)

rm 222 εεε == (6-2 b)

rm 333 εεε == (6-2 c)

The subscripts m and r stand for the matrix and reinforcement phases, fm and fr are the volume
fractions of these constituents. They are represented by the relative thickness of the slabs in
the model. The principal stresses σip in the phases have to fulfil the equilibrium condition with
the principal external stresses σi:

rm 111 σσσ == (6-3 a)

rrmm ff 222 σσσ += (6-3 b)

rrmm ff 333 σσσ += (6-3 c)

where σ1 is the external stress in the stacking direction. In order to calculate the strains in the
phases from equations (6-1), the stresses in the phases have to be obtained first. The phase
stresses σ1m and σ1r are simply given by Eq. (6-3a). The others can be obtained as follows:
Introducing Eqs. (6-1b) in (6-2b) and substituting σ2r by σ2m and σ3r by σ3m from Eqs. (6-3b)
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and (6-3c) gives an equation that contains only σ2m and σ3m as unknowns. An equivalent
equation can be obtained from the iso-strain condition (6-2c). Substituting σ3m from the latter
leads to a rather long equation for one of the in-plane phase stresses:
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The other in-plane phase stresses are easily obtained by exchanging the indices for the princi-
pal directions (2 and 3) and for the phases (m and r).

The next section will describe how these equations can be utilized together with suitable
expressions for the inelastic deformation to simulate the strain evolution of the slab arrange-
ment under load.

6.1.2 Implementation
It is the objective of the model to determine a global strain history under changing external
stresses and temperature. This requires calculating the evolution of the internal stresses under
consideration of all phase strains, including inelastic strains, which are in turn strongly
dependent on the internal stress state (see above). Such problems are analytically tractable
only for very restrictive assumptions, which is why they are usually solved numerically.

Basic Concept

The slab model is implemented in an incremental manner, similar to implementations of other
models for the evolution of internal stresses reported in literature (e.g. Daehn and Gonzalez-
Doncél (1989), Furness and Clyne (1991b)). For sufficiently small increments in time, the
elastic, thermal and inelastic strain increments are calculated, based on the changes in external
stress, the temperature change and the current phase stresses. Knowing these strain incre-
ments, the increments in the principal phases stresses can be calculated from (6-3a) and (6-4).
After each step, the new composite strain and the new phase stresses are obtained by adding
the stress and strain increments.

The simulation program is written in the programming language Visual Basic for Applications
as it is supplied with the widespread spreadsheet program Microsoft Excel. The input of
parameters and the output of the simulation are done via Microsoft Excel worksheets, which
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greatly eases further processing of the results. A detailed flow-chart of the implementation is
given in Figure 6.2.

Implementation of Steady State Creep

The inelastic deformation of the slabs was modeled by employing a steady-state power-law
creep expression. For the uniaxial case the creep law is formulated as follows:

ε σSS
nB= ⋅ , (6-5)
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Figure 6.2: Flow-chart, showing the implementation of the slab-model.
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where SSε  is the uniaxial steady-state creep rate, σ is the uniaxially applied stress and n is the

stress exponent. B contains the proportionality constant A and the thermal activation term with
the activation energy Q, Gas constant R and temperature T:

B A Q
RT

= ⋅ −





exp (6-6)

According to Soderberg (1936) (as cited in Finnie and Heller (1959)) such a creep expression
can be used under a triaxial state of stress, if the following assumptions are made: 1) the
directions of the principal strains coincide with the principal stresses; 2) the volume remains
constant; 3) the principal shear strains are proportional to the principal shear stresses and 4)
the relation of the equivalent strain rate to the von–Mises equivalent stress is the same as for
the uniaxial case. Soderberg’s derivation as it is reviewed in several textbooks (see e.g. Finnie
and Heller (1959) or Oding (1965)) leads to the following equations for the principal creep
rates ipSS ,ε  in a phase p:
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where σ p
eq  is the von-Mises equivalent stress in the phase p defined as
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2
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The creep contribution to the inelastic deformation can now be calculated from the creep rates
in the phases by integrating (6-7) over the time increment of the simulation, using the current
temperature and stress state in the phase.

Implementation of Rate-Independent Plastic Deformation

For some simulations, it was useful to additionally consider rate-independent plasticity as a
source of inelastic strain in the slabs. For ideal plastic deformation, the directional contribu-
tion of rate-independent plastic flow can be obtained from the Levy-von-Mises equations as
they are found in numerous textbooks (see e.g. Dieter (1988)):
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(6-9 a)
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( )δε
δε
σ

σ σ σ2 2 3 1
1
2p

p
eq

p
eq p p p= − +





(6-9 b)

( )δε
δε
σ

σ σ σ3 3 1 2
1
2p

p
eq

p
eq p p p= − +





(6-9 c)

They specify the principal phase strain increments δεip if under a certain state of stress the
equivalent strain is changed by δε p

eq  (the equivalent strain is defined in analogy to Eq. (6-8)).

In the simulation, this is considered as follows: For each time step, the creep strain and the
resulting stress increments in the phases are computed and from this a preliminary phase stress
is obtained. If the von-Mises equivalent stress in one phase exceeds the uniaxial yield stress of
the material, a small increment in the equivalent plastic strain is assumed (typically 10-6) and
its directional components are calculated according to Eqs. (6-9). The plastic strain increments
are now added to the inelastic strain increments and a new preliminary phase stress is calcu-
lated. If the equivalent phase stress is still in excess of the uniaxial yield stress, the equivalent
plastic strain is again increased by a small increment. The whole procedure is repeated until
the equivalent phase stress falls below the yield stress. In this way, a stress increment that
causes the stress in a phase to cross the yield surface is relaxed by plastic flow within the same
time-step, until the yield surface is reached again.

Temperature Dependent Properties

The elastic properties, the thermal expansion coefficient and the uniaxial yield stress of each
phases were implemented as temperature dependent properties. They are supplied as a table of
values for certain temperatures, between which the simulation program interpolates linearly.
The temperature dependence for each property and for each phase can be switched off at will,
if simulation time is to be saved.

6.1.3 Basic Limitations
To avoid misinterpretation, basic limitations of the slab model are summarized in the follow-
ing. These limitations also have consequences for the way in which the slab model has to be
calibrated in order to simulate the real composite material.

Reinforcement Texture

The slab model is highly anisotropic. Its geometry together with the strain-compatibility
conditions (Eqs. 6-2) excludes strain mismatch and internal stresses in 1-direction. This will
especially affect the thermoelastic properties, such as the Young’s modulus or the CTE. In
comparison to a material with discontinuous fibers in an ideal 2D-random arrangement, the
slab model can be expected to over-estimate the anisotropy of these thermoelastic properties.
The inelastic strain components are mainly determined by the von-Mises equivalent stress and
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they are thus distributed more evenly in the 3 principal directions. In 1-direction, however, the
generated inelastic strains produce no strain mismatch and no associated counteracting stress.
As a consequence, the slab-model can be expected to over-estimate inelastic deformation in
the 1-direction.

The experimentally studied reinforced piston alloy does not have an ideal 2D-random rein-
forcement texture. It was shown in the previous chapter that although the fibers were prefer-
entially oriented in the yz-plane, the fiber orientation component in x-direction, though
smaller, was also considerable. This weaker structural anisotropy tends to lower the mean
stresses and strains compared to a strongly textured composite.

After all, the slab-model direction 1 matches best with the x-direction of the real composite
and the y- and z-directions correspond to directions in the 2/3-plane. One has to be aware of
the fact that internal stresses in 2/3 direction are over-estimated and are not present in the 1-
direction. Furthermore, strains in 1-direction can be expected to be over-estimated.

Homogeneity

A severe simplification in the slab-model is the assumption of homogeneous deformation. In a
real composite, stresses are expected to concentrate at reinforcement angularities and inelastic
strains will occur there first. This has been shown in a vast number of FEM investigations.
Because of the local stress concentrations, dynamic processes, such as creep under an
increasing thermal misfit strain, will occur relatively widespread over the duration of the
process. However, macroscopically, these local stresses and strains are noticeable only as a
volume average. In contrast to the homogeneously deforming slabs, the inelastic response of a
real composite will start earlier (because of the stress concentrations), but will be possibly less
noticeable macroscopically (because of the volume average).

In the case of global plastic deformation, where regions of long-range dislocation glide get
interconnected, plasticity can be thought of being uniform (Withers et al. (1989)). Then, the
simplifying assumption of homogeneity of the slab-model is an appropriate one. The micro-
structural inhomogeneity of a real composite, which can for example influence the matrix
yield stress and flow behavior, is, however, not captured in the slab-model.

Inelastic Deformation

The continuity of the slabs together with the strain compatibility condition introduces a
fundamental limitation in the slab-model: If one slab is assumed to behave purely elastically,
like an individual fiber in an MMC, inelastic deformation of the whole arrangement in 2/3
plane is completely disabled (because of the iso-strain assumption). In the real composite,
however, the discontinuous nature of the fibers allows for global inelastic deformation of the
matrix in the direction of the main reinforcement orientation. As far as creep deformation is
concerned, this problem can be overcome by attributing creep properties not only to the matrix
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but also to the reinforcement slab. This is a meaningful assumption: The slab-model is an
abstraction of the real composite and in this abstraction, no individual fibers are considered
but rather their collective coaction as a reinforcing phase, and this phase can deform inelasti-
cally. In a sense, the inelastic deformations of the matrix and the reinforcement slab represent
two parts of matrix strain in the real material: Matrix (slab) deformation is the part of the
global strain which creates fiber/matrix misfit. Reinforcement (slab) deformation represents
the part of global strain which occurs without generation of misfit. Flow around fiber ends, for
example, could be considered as a process which aids elongation of the composite but which
does not transfer load to the fibers. It will be shown later how the creep properties of the slab
model can be calibrated with experimental matrix and composite creep data.

Plastic deformation underlies the same limitations: When the reinforcement slab is purely
elastic, plastic deformation of the matrix slab cannot cause permanent deformation of the
whole slab arrangement because of the strain compatibility condition. The problem can in
principle be overcome in the same way as for creep deformation. This was not done in this
work because of lack of calibration data.

Sign of Loading

The slab model is insensitive to the sign of loading. Predictions of compressive and tensile
creep rates, for example, differ only in their sign but not in the absolute values. This is
because none of the assumed strain contributions contains a tension-compression inequity. Of
course, internal stresses lead to indirect differences in the tensile and compressive response of
the simulation, so that Bauschinger-like effects can be simulated. However, no real sign-
dependent deformation mechanisms, such as reinforcement damage proposed by Bidlingmaier
for the MMC under investigation (Bidlingmaier et al. (1998) cf. Section 3.5), are included.

6.2 Parameters for the Slab Model
Most of the properties of the matrix and reinforcement slabs were copied directly from the
properties of the M124 matrix alloy and the Saffil fibers. These properties are listed in Section
6.2.1. The creep properties, however were calibrated so that the steady state isothermal creep
behavior of the slab model matched the creep behavior of the real composite as closely as
possible.

The reinforcement volume fraction was set to 15%, which is the nominal fraction of Saffil
fibers in the investigated composite.
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6.2.1 Properties of the Composite Constituents
In this sub-section, all those properties are summarized that were taken directly from the
properties of the constituents and attributed to the slabs without further modification. These
are the elastic constants, the CTEs and the matrix yield stress.

Elastic Properties

For the matrix slab, the room-temperature elastic properties of the matrix alloy M124 were
taken from Table 3.3. Poisson’s ratio was assumed to be constant for all temperatures and the
elastic modulus for higher temperatures was taken from Figure 3.8. The values for the Saffil
reinforcement were taken from Table 3.2 and assumed to be constant over the whole
temperature range.

Thermal Expansion

The coefficients of thermal expansion were taken from Table 3.4 (matrix) and from Table 3.2
(reinforcement). Again, a temperature dependence was considered only for the matrix slab.

Yield Stress

Only the matrix slab was allowed to yield. The uniaxial compressive 0.2%-yield stress of the
over-aged matrix material, as it was shown in Figure 3.7b, was taken as yield stress for the
matrix slab.

T [°C] 20 250 350 400 650

Em [GPa] 80 71.6 65.2 59.4 0

νm [] 0.325 – – 0.325 0

Er [GPa] 285 – – – –

νr [] 0.2 – – – –

Table 6.1: Elastic properties of the matrix and reinforcement slabs

T [°C] 0 20 50 250 400 450

αm [10-6/K] 18.5 18.9 19.5 24.7 25.5 25.1

αr [10-6/K] – 7.7 – – – –

Table 6.2: Thermal expansion coefficients of the matrix and reinforcement slabs

T [°C] 0 200 300 400 500 650

σ m
y  [MPa] 90 90 50 30 10 0

Table 6.3: Uniaxial yield stress of the matrix slab
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6.2.2 Creep Parameters
The creep parameters were chosen such that the isothermal minimum composite creep rate
was reproduced by the slab-model. This means that in the calibration not only constituent
properties were used but also experimentally determined properties of the real composite. It is
described in the following how this was done.

Matrix Creep

First, the matrix creep parameters for a power-law creep expression according to Eqs. (6-5)
and (6-6) had to be determined. For this, the experimental tensile creep data by Bidlingmaier
that were shown in section 3.5, Figure 3.10a were analyzed as follows: Rearranging (6-5) and
using (6-6) gives

ln ln lnε σSS
Q
RT

n A+ = ⋅ + . (6-10)

The left hand side of this equation was then plotted against lnσ by using experimental data for

SSε , σ and T and a rough estimate for Q. Next, Q was varied until a best fit to a straight line
was achieved in the resulting diagram. The slope of this line finally yielded n and from the
intercept, A could be calculated. The analysis is shown in Figure 6.3.

The analysis yielded the following creep parameters for the matrix slab:
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Figure 6.3: a) Isothermal creep data for the matrix material in a classical Norton-type plot (cf. Fig.
3.10a). b) Best fit of creep data to a straight line after varying the activation energy Q.
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Reinforcement Creep

As pointed out in Section 6.1.3 it is useful to attribute creep properties to the reinforcement
slab. The reinforcement slab is an abstraction of the collective effect of all fibers on the
composite behavior and it must therefore have the ability to deform inelastically together with
the composite.

As mentioned above, the creep parameters of the reinforcement slab were chosen such that the
isothermal minimum composite creep rate was reproduced by the slab-model. They were
determined from the experimental creep data of the composite material and the known creep
law of the matrix. Based on the insight that if the phases of a composite can develop a steady
state creep rate individually, the composite will also exhibit steady state creep, a simple rule of
mixtures can be applied McLean (1994). The steady state is reached, when both phases are
deforming with the same creep rate. The stresses in the phases that are necessary to sustain
this creep rate have to fulfil the equilibrium condition:

( ) ( ) ( )
rn

rr
rmm RTQA

fTfT
/1

/exp
,, 








−

⋅+⋅= εεσεσ (6-11)

The applied stress σ and the composite creep rate ε  were given by experimental data points
for various temperatures T. The stress σm(ε ,T) that has to be applied to the matrix in order to
yield the composite creep rate was given by the matrix creep law that has been established
above. The parameters that remained to be determined were Ar, Qr and nr. Rearranging (6-11)
gives an equation analogous to the one that was used for the determination of the matrix creep
parameters:
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Again, the left hand side of the equation was plotted against the stress dependent term on the
right hand side of the equation. Then Qr was varied, until a best fit to a straight line was
obtained. From this fit, nf and Ar were determined as before. The analysis is shown in Figure
6.4. There was one data point for creep at 250 °C and 180 MPa that could not be brought to
agreement with the assumed creep law. This data point was excluded from the analysis. It is
worth noting that the stress/strain-rate lines for various temperatures in Figure 6.4a are not

Qm [kJ/mol] 230

nm [] 5.07

Am [MPa-ns-1] 1.27·106

Table 6.4: Creep parameters for the
matrix slab according to (6-5)
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straight. For the composite creep law according to a simple rule of mixtures of power-laws, it
is expected that the apparent stress exponent as well as the apparent activation energy both
vary with stress and temperature McLean (1994).

The analysis yielded the following parameters for power-law creep of the reinforcement slab:

It is to be noted here that the rule of mixtures-approach (see Eq. (6-11)) that was applied in
this analysis is not an approximation for the slab model. For uniaxial steady state creep of the
slab arrangement under consideration of the triaxiality of the phase stresses, exactly the same
formulation is obtained. This is shown in Section 6.3.3.

Tension / Compression Asymmetry of Creep Properties

It has been pointed out in Section 6.1.3 that the slab model is insensitive to the sign of loading
and it can therefore not rationalize a tension / compression asymmetry of isothermal creep
rates as found experimentally. The creep properties of the slab-model were calibrated with
composite creep data for tensile loading. Because the measured tensile creep rates were
always higher than the compressive ones, the slab model simulations will generally over-
estimate creep rates when the reinforcement slab is mainly loaded in compression. The proper
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Figure 6.4: a) Isothermal creep data for the composite material in a classical Norton-type plot (cf. Fig.
3.10b). Note that the lines that are drawn for the different temperatures are not straight. b) Best fit of
creep data to a straight line after varying the activation energy Qr.

Qr [kJ/mol] 185

nr [] 6.08

Ar [MPa-ns-1] 1.39·10-5

Table 6.5: Creep parameters for the
reinforcement-slab according to
(6-5).
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way to overcome this problem would be to find a suitable model that is able to describe the
experimentally observed inequity (possibly by taking into account reinforcement damage) and
implement it in the slab-model. A crude alternative would be to re-calibrate the reinforcement
creep properties using the compressive creep data of the composite. This set of parameters
should then be used exclusively for simulations, where the reinforcement slab experiences
mainly compressive loading. Unfortunately the compressive creep rates measured by Wolf
(1997) were not sufficient in quantity and showed a considerable amount of scatter, so that
they could not be analyzed adequately with the above method. Nevertheless, such a calibration
was tried and the parameters found are given in Table 6.6. They can serve merely as an esti-
mate and should only be used for simulations under constant compressive loading

6.2.3 Refinement: Primary Creep
In the results section, pronounced transient creep behavior was reported for many different
experiments. In single phase materials, such behavior is usually attributed to primary creep. In
composites, transitions in creep rates are also expected due to progressive load transfer from
the creeping matrix to the reinforcement. The incorporation of a primary creep law for the
matrix slab can help to study the interplay of the two effects – matrix primary creep and load
transfer.

In order to do this, first, Bidlingmaier’s (1996a) and Wolf’s (1997) isothermal creep experi-
ments for the matrix material (see Section 3.5) will be re-analyzed with respect to the creep
behavior at low strains. Next, a primary creep law is set up on this basis, which in the last
section is implemented into the slab model.

Analysis of Isothermal Creep Curves

It is often found in metals and alloys at elevated temperatures that the biggest portion of
primary creep strain follows a power-law in time, such as

at∝ε . (6-13)

For most pure metals at temperatures above 0.5·TM, the exponent a is 1/3 (Andrade (1910)).
At lower temperatures or for alloyed metals, the time exponent can become higher. Dobson

Qr [kJ/mol] 283

nr [] 5.98

Ar [MPa-ns-1] 5.7·101

Table 6.6: Estimate of creep
parameters for the reinforcement-
slab under monotonic compressive
loading according to Eq. (6-5).
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and Greenwood (1996), for example, reported a time exponent of a=0.55 for pure aluminum
at low stresses and below 0.45·TM. In the same work, they also found that the temperature
dependence of primary creep had the same activation energy as the steady state creep law – a
result which is also common for other metals (see e.g. Argon and Bhattacharya (1987)).

The power-law in time relationship can also be applied to the matrix material M124. In Figure
6.5, the initial portion of compressive creep curves, measured by (Wolf (1997)), are shown as
a double-logarithmic plot of creep strain against a combined time-temperature parameter. It
can be seen that the curves for different temperatures fall into the same narrow band, indi-
cating that the transitional region has the same activation energy as the steady state creep law
(Qapp = 294 kJ/mol for compressive matrix creep, cf. 3.5). In the region from 0.1% to 0.4%,
the curves are linear with a time exponent of about 0.6. For lower strains, elastic and anelastic
deformation can be assumed to contribute and beyond 0.4%, steady state and later on tertiary
creep take over. It was tried to analyze Bidlingmaier’s tensile creep data in the same way. As
he mainly focused on the determination of the steady state creep rate, his data are not well
resolved at low strains (see Section 3.5) so that only general trends can be given: The time
exponent for tensile creep seems to be lower than in the compressive case (about 0.3) and the
thermal activation energy again is roughly the same as for steady state creep (230 kJ/mol for
tensile matrix creep). Primary creep seems to last only up to a very small strain, approximately
0.2%.

In summary, the primary creep regime of the matrix alloy can be described by an equation of
the following type:

a
act

a tDAtA ⋅⋅′== ∗ε (6-14)

ε is the primary creep strain at time t, Dact = exp(-Q/RT) is the thermal activation term and A’
is a proportionality factor which is a function of stress. In order to use an equation of this type
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in the slab model, the proportionality factor has to be determined in a way so that the creep
laws for primary and secondary creep fit together.

Equation for Primary Creep

For later implementation in the slab-model simulation program, it is desirable to have a
formulation for primary creep in terms of strain rate as a function of strain ( )εε  and not of

strain as a function of time ε(t). Differentiating Eq. 6-14 and substituting t for ε leads to

( )( ) ( )aaaa aAAaAtaA 111111 −∗−∗∗−∗ ⋅⋅=⋅⋅=⋅⋅= εεε , (6-15)

which is valid for a certain combination of temperature and stress.

From isothermal creep tests of the matrix, it is known that primary creep is confined to low
strains up to a limiting strain which we will call εprim,max. In Figure 6.5 it was shown that for
compressive creep εprim,max is approximately 0.4%. For higher strains, a steady-state power law
in stress (Eq. 6-5) was assumed to be valid. At εprim,max the two laws should give identical
strain rates:

( )a
maxprim

a
ss aA 11

,
1 −∗ ⋅⋅== εεε , (6-16)

where ssε  is the steady state creep rate given by the power-law in stress. From Eq. 6-16, the

factor A*1/a·a can be substituted in Eq. 6-15 so that we end up with the following simple
formulation for the primary creep strain rate of a strain hardening material:

( )( )a
maxprimss

11
,

−⋅= εεεε (6-17)

Altogether the creep rate is:
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Application of this creep-law in its integrated form is shown in Figure 6.6. Three selected
compressive creep curves by Wolf are compared to the creep curves according to Eq. 6-18.
The parameters that were used were a=0.6 and εprim,max=0.4%. The parameters for steady-state
creep were taken from Table 6.4. For these values, the agreement is quite satisfying.
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Implementation

For the matrix slab, the creep law from Eq. 6-18 can be adapted to triaxiality when SSε  is
replaced by miSS ,,ε  from Eqs. 6-7a-c and all uniaxial strains are replaced by the appropriate
equivalent strains. For the maximum primary creep strain this means that maxprim,ε  has to be
changed to eq

maxprim,ε . For plastic flow (Poisson’s ratio ν=0.5), the equivalent maximum primary
creep strain is related to the uniaxially measured strain by maxprim

eq
maxprim ,, 3 εε ⋅= . The same

applies to the primary creep strain.

At very low values of inelastic strain (at the very beginning of creep), the creep rate has to be
limited, because extremely high creep rates cause instabilities in the numerical simulation.
Primary creep enhancement was therefore cut off below a critical strain eq

minprim,ε . The follow-

ing creep law was used for the phase p and the principal direction i:
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(6-19)

At last, the slab-model simulation program has to be extended to keep track of the inelastic
strain that has accumulated since εinel=0, so that it can decide, whether the primary or steady-
state creep law is to be applied.

Great care has to be given to the evolution of the equivalent inelastic strain, especially when
load or temperature are not held constant. Removing the load during a creep simulation, for
example, could reduce the equivalent inelastic strain to low values so that primary creep
suddenly reappears in the unloading curve. Such behavior has to be carefully considered,
before attributing physical meaning to the simulation results.
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6.2.4 Limitations Introduced by the Choice of Parameters
In addition to the basic limitations of the slab-model that were discussed in Section 6.1.3, the
choice of parameters introduces further uncertainties.

Matrix Properties

A known problem in determining composite matrix properties from unreinforced material is
that the matrix microstructure can be changed by the incorporation of a reinforcing phase. In
the present case, the most apparent differences between the unreinforced alloy and the com-
posite matrix are the grain and particle sizes. It must be assumed that those materials parame-
ters which strongly depend on microstructure, such as the yield stress and the creep properties
are changed due to the presence of the reinforcement. Increases in the apparent creep stress
exponent and activation energy, for example, were frequently attributed to dispersion
strengthening of the matrix, where the dispersoids were introduced during a powder metal-
lurgical production route (e.g. Park et al. (1990)). The effect of a reduced subgrain size due to
pinning by these dispersoids has also been discussed (e.g. Mishra and Pandey (1990)). This
effect is assumed to be subordinate for the piston alloy, because of the employed casting route,
which is less likely to introduce oxide particles into the matrix. Moreover, as was already
mentioned in Section 3.2, the aging behavior was not significantly influenced by the presence
of the reinforcement. As far as plastic yielding is concerned, the reduction in grain size,
precipitation particle size and interparticle spacing (see Section 3.2) can be assumed to raise
the yield stress of the composite matrix compared to the monolithic matrix alloy.

The microstructural changes in the matrix are complex. The matrix slab properties were thus
adopted unchanged from the unreinforced material.

Plastic Deformation

In the current implementation, plastic deformation is confined to the matrix slab. Because of
the strain compatibility condition, plastic matrix deformation does not cause direct plastic
deformation of the whole slab arrangement, it only helps to reduce the internal elastic strain
mismatch. Cyclically repeated plastic deformation of the matrix, for example, would lead to
no permanent deformation if the reinforcement slab remained entirely elastic. In the current
implementation, plastic deformation of the matrix causes permanent deformation of the slab
arrangement only indirectly by increasing the stresses that drive creep in the reinforcement.

This is a crucial point for modeling thermal cycling creep. It will be shown later on (Section
6.3.4) that thermal cycling induces stresses in the matrix that exceed the yield stress –
especially at the low-temperature end of the cycle where the matrix stresses become highly
tensile. When matrix plasticity is permitted in the simulation, the stresses at the low tempera-
ture end are limited by the yield stress (because the thermal misfit is accommodated plas-
tically). For the above reasons, however, the big effect of plasticity on the overall stress
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evolution is not reflected in the strain evolution. Nevertheless, simulations incorporating
matrix plasticity are still useful. Under thermal cycling conditions, it is e.g. possible to quan-
tify the amount of plastic deformation by calculating the accumulated equivalent inelastic
matrix strain in one cycle. When the cycle amplitude / frequency / temperature etc. is altered,
this quantity will change and these changes can be expected to correlate with changes in the
deformation rate of the real material.

6.3 Basic Results
In this section the slab model, fed with the parameters from the last section, is used to calcu-
late basic physical properties and behavior of the composite material. The calculations of the
elastic properties and the thermal expansion in the first two sub-sections are predictions based
on the constituent properties. These are compared to predictions based on Eshelby-type
models. In the third sub-section, the isothermal creep behavior is simulated.

6.3.1 Elasticity
If only elastic strains are considered, the slab-model yields the following expressions for
Young’s modulus in 1-direction and in the 2/3-plane :
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The terms A, B, C, D and E were defined previously for Eq. (6-4). These two equations are
derived in Appendix C. They contain only the elastic constants and the volume fractions of the
slabs. The variation of both moduli with the reinforcement volume fraction are shown in
Figure 6.7. They are compared to predictions based on the equivalent elastic inclusion method
by Eshelby. Predictions using the mean-field approach (see Section 2.1.2) have been made
with three different Eshelby (S-) tensors: The first was an S-tensor for discs parallel to the 2/3
plane. This represents the same geometry as the slab model and the use of this tensor therefore
led to exactly the same thermoelastic predictions as the slab-model*. For the case of fibrous
reinforcement, a composite structure which comes closest to the slab-model arrangement is
the arrangement of continuous fibers in a 2D random planar array. The S-tensor for such an

                                                
* This applies only to Eshelby-modeling of non-dilute systems using the mean-field approach.
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arrangement was given by Johannesson and Ogin (1995). Predictions with this “random-
planar” S-tensor have also been made. Both Eshelby tensors – for discs and the random planar
arrangement – are listed in Appendix A.1. Finally, an average Eshelby tensor has been calcu-
lated which represents the fiber orientation distribution of the real composite under investiga-
tion. The procedure with which this “average” S-tensor was determined is outlined in
Appendix A.2. Predictions based on the average S-tensor are also given. It must be noted that
the Eshelby-model is strictly valid only for entirely elastic problems of an ellipsoidal inclusion
in an infinite matrix. For non-dilute systems, like in the present case, the matrix has to be
approximated by an effective medium and this mean-field approach leads to lower bound
estimates of the composite properties (Withers et al. (1989)).

It can be seen that the prediction of the Young’s modulus in the direction of stacking is close
to the prediction of an Eshelby-based model for continuous fibers in random-planar arrange-
ment. At a reinforcement volume fraction of 15% the values for the slab model lie closer to
the Eshelby-prediction in 2/3-plane than to the Eshelby-prediction perpendicular to the fiber-
plane. The in-plane slab-model prediction shows only very little deviation from the linear rule
of mixtures. The stiffness is bigger due to the additional internal stresses caused by the dif-
ferent Poisson’s ratios of the slabs. Eshelby-predictions for the averaged S-tensor reveal a
negligible macroscopic elastic anisotropy. The predictions deviate from the experimental data
(Bidlingmaier (1999)) by less than 1% and are well within the range of the measurement error.
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Figure 6.7: The predicted Young’s moduli for two-phase composites and different models (room-
temperature). a) A rough estimate is given by the iso-strain (Voigt) and iso-stress (Reuss) rule of
mixtures. The in-plane (2/3 plane) Young’s modulus of the slab model shows only very little deviations
from the linear rule of mixtures. In the stacking direction, the slab-model prediction lies in between the
Voigt- and the Reuss-bounds. Predictions from an Eshelby-type model assuming a random planar
arrangement of continuous fibers for the in-plane and the perpendicular (1-) direction both lie close to
the slab-model prediction in stacking direction. The experimental value lies in between the Eshelby-
predictions. b) Magnified version of a). In b) Eshelby-predictions for the average S-tensor which closely
describes the real fiber orientation distribution are additionally given. Note that the moduli in 1-direction
and in the 2/3 plane are almost the same for this averaged tensor.



106 Chapter 6 - Calculations

The low amount of elastic anisotropy led Bidlingmaier to the conclusion that the fiber orien-
tation distribution is 3D random.

The slab model over-estimates Young’s modulus of a composite. This general trend is also
seen in the comparison with the experimental Young’s modulus of the composite. As pointed
out in Section 6.1.3, the slab-arrangement obviously over-estimates the effectiveness of the
reinforcement in impeding the matrix elastic expansion – especially in the 2/3-plane.
However, the prediction for the 1-direction is quite satisfactory.

6.3.2 Thermal Expansion
If inelastic strains are excluded, the thermal expansion of the slab arrangement without
external load is given by
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Again, the results are compared to predictions of an Eshelby-type model for continuous fibers
in a random-planar arrangement. The comparison is shown in Figure 6.8. The composite CTE
tensor was calculated using Eq. 2-2. The Eshelby tensor used was also the one for a random-
planar arrangement of continuous fibers in the 2/3-plane.

The slab-model predictions for the 1-direction and the 2/3-plane differ largely from each other
and are in both cases far off the predictions from the Eshelby-type model. The CTE in 1-
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Figure 6.8: The predicted thermal expansivities
for two-phase composites according to the slab
model and an Eshelby-type model assuming a
random planar arrangement of continuous fibers
in the 2/3-plane. It can be seen that the slab
model gives only very rough estimates of the
composite CTE. At the relevant reinforcement
volume fraction of 15%, the predicted composite
CTE in the 1-direction is higher than the matrix
CTE (αm= 18.5 10-6/K).
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direction even assumes a maximum for reinforcement volume fractions around 15%. The
aforementioned high effectiveness of the reinforcement slab in the 2/3-plane is the reason for
the strong impediment of matrix expansion in this direction. The matrix reacts with an
enhancement of the expansion in the 1-direction.

6.3.3 Isothermal Creep
During creep of the slab arrangement, load is progressively transferred from one slab to the
other. A steady state is reached when both slabs deform at the same rate under their individual
(and then constant) state of stress. For uniaxial loading in 1-direction, this creep rate can be
easily calculated: At steady state the creep rates have to be equal in the two slabs

( )

( )



 +−⋅⋅=





 +−⋅⋅=

==

−

−

rrr
neq

rr

mmm
neq

mm

rm

r

m

B

B

321
)1(

321
)1(

111

2
1
2
1

σσσσ

σσσσ

εεε

(6-24)

and with the conditions for the external stresses σ1=σ1m=σ1r and σ2=σ3=0 and the phase
stresses σ2m=σ3m and σ2r=σ3r this equation simplifies to
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With the equilibrium condition (6-3b) we arrive at
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which can be solved for 1ε  numerically. This equation is essentially identical to Eq. (6-12) if

1ε  is replaced by ε  and σ1 by σ and because ( ) m
n

m
mB σε =1 . This means that the slab model

yields exactly the same steady-state creep rate as the simple rule of mixtures that was applied
for the determination of the creep parameters (page 97). The same creep rate is obtained
numerically with the slab-model for uniaxial loading in the 2/3-plane. In summary, the steady-
state creep-rate is dependent only on the external uniaxial stress, the temperature and the creep
properties of the slabs. The transitional behavior from the moment of loading until the steady
state is reached, however, additionally depends on the elastic properties, the direction of
loading and on the existence of internal stresses. In Figure 6.9, experimental and simulated
creep curves are compared. The experimental and the simulated creep rates coincide in the
steady state region as they should according to the calibration. It can be seen that the slab
model predicts the existence of a primary creep regime although only steady-state creep laws
are used for the individual slabs. Yet it strongly under-estimates the creep rate in the transient
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region. When primary creep is additionally considered, transient creep becomes more
pronounced, the experimental creep rates are, however, still not reached.

6.3.4 Thermal Cycling

The Thermoelastic Coefficient of Stress

The stresses that are generated in the slab arrangement by changing the temperature are easily
calculated from Equation 6-4. When no external stresses are applied and no inelastic defor-
mation is allowed, the stress change upon a temperature change in the matrix is given by
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This quantity is called thermoelastic coefficient of stress (see 2.1.1, page 4) because the ther-
mal expansion mismatch is accommodated purely elastically. It represents the slope of a line
in a diagram of induced stress vs. temperature, which is often called the thermoelastic line.
Neglecting the differences between the Poisson’s ratios and substituting the reinforcement
modulus by Er=kE·Em, where kE is the factor by which the reinforcement is stiffer than the
matrix, then Eq. 6-27 simplifies to:
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Figure 6.9: Experimental and modeled creep curves for 350 °C and 30 MPa. The strain vs. time
curves (a) include the elastic stain on loading. The dashed and dotted lines show the simulated strain
evolution (in the direction of loading) for loading in 1- and 2-direction. Additionally, a simulated curve for
loading in 1-direction and considering primary creep is shown. The slabs were assumed to be stress-
free prior to loading. In b) the evolution of strain rate with strain is shown. It can be seen that the
modeled creep curves exhibit very distinct transient creep behavior, depending on the loading direction
and the presence of internal stresses (not shown). They all, however, converge to a common creep
rate of 2.73·10-7 1/s because of the calibration of the slab-model. When no primary creep is
considered, the transitional regime lasts up to 0.2% at maximum. The experimental creep curve in
contrast displays a much more pronounced transitional behavior, as the steady state is reached not
before 0.5%.
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It is apparent from this formula that the thermally induced stress is not only proportional to the
difference in CTE but also depends on the modulus mismatch (measured by kE). For very low
reinforcement volume fractions (fr→0), the thermally induced stresses depend linearly on kE,
i.e. the stiffer the reinforcement is, the higher are the matrix stresses. Higher reinforcement
volume fractions diminish the influence of the modulus mismatch. For (fr→1), the influence
vanishes. All this applies only to the simplified geometry of the slab-model. In a real com-
posite, the TECS depends additionally on the reinforcement shape and the orientation distri-
bution.

The TECS can also be calculated with the elastic inclusion-theory by Eshelby (see Section
2.1.2, page 5). In Figure 6.10, values for (dσm/dT)el are calculated for the slab-model and the
Eshelby model (using again the Eshelby tensor for a random-planar array of continuous fibers
and the averaged Eshelby-tensor for the fiber orientation distribution of the investigated mate-
rial). The temperature dependence is caused by considering the temperature dependence of the
matrix Young’s modulus (decreasing with temperature) and the matrix CTE (increasing with
temperature). It can be seen that the slab model predicts much higher stress changes for a
given temperature change than the Eshelby model. Again, the effectiveness of the reinforce-
ment is over-estimated in the 2/3-plane and not present perpendicular to the stacking
direction. The Eshelby model, in contrast, takes into account the thermal strain misfit in all
directions, including the one perpendicular to the main reinforcement direction. This leads to a
considerable amount of hydrostatic stress in the mean matrix stress state and to relatively low
equivalent stresses. For the real fiber orientation distribution, the Eshelby-model predicts
almost entirely hydrostatic thermally induced stresses. This is a direct consequence of volume
averaging and it can be expected that predictions of creep deformation, based on Eshelby-type
mean matrix stresses under-estimate the real composite behavior.
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Figure 6.10: Stress change due to ther-
moelastic strain misfit induced by tem-
perature changes. The slope of the so-
called thermoelastic line (thermoelastic
coefficient of stress (dσm/dT)el ) is given
for the slab-model and for Eshelby-type
modeling assuming a random planar ar-
rangement of continuous fibers in the 2/3-
plane and for the averaged S-tensor
which describes the fiber orientation dis-
tribution of the investigated material. For
the slab model, only stresses in the
2/3-plane are generated by thermal strain
misfit. For the Eshelby-type model,
stresses in 2/3- and 1-direction are
shown.
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Thermally Induced Stresses for Elastic Accommodation

The absolute value of the internal stresses during thermal cycling is not only dependent on the
thermal excursion and the TECS but also on the reference temperature, where the internal
stresses are zero. This temperature is called the effective stress free temperature Tesf. The
lowest tensile and compressive stresses are induced when the stress-free temperature lies in
the middle of the thermal cycle. For higher Tesf, the tensile stresses in the low-temperature part
of the cycle become higher on the expense of the compressive stresses at high temperatures. In
Figure 6.11, this is shown for a 450↔150 °C cycle where the Tesf is arbitrarily set to 400 °C.
The thermoelastic lines for the slab model and for the mean-field Eshslby model were calcu-
lated by numerically integrating over the values for the TECS given in Figure 6.10. In the slab
model, with no external load applied, the stress in the 1-direction is always zero and thus the
equibiaxial matrix stress in the 2/3-plane is identical to the von-Mises equivalent stress. With
the Eshelby method, the principal thermoelastic matrix stresses are lower in the 2/3-plane but
higher in the 1-direction. Therefore the mean equivalent matrix stresses are very low. As
mentioned above, for the case of the averaged Eshelby tensor which represents the fiber
orientation distribution of the investigated material, the mean matrix stress state is almost
entirely hydrostatic. This reveals a serious drawback of the mean-field approach in Eshelby-
type modeling: the implicit volume averaging leads to low deviatoric stresses although locally,
highly deviatoric stress states are present. In the extreme case of spherical inclusions or a 3D
random orientation distribution of any kind of reinforcement, an entirely hydrostatic stress
state would be predicted. These models are thus not very useful for the prediction of inelastic
deformation.

The stresses calculated with the slab model are very high compared to the mean-field-
predictions. For the given cycle, they reach up above 150 MPa in tension and down to –30
MPa in compression. These stresses are high enough to cause considerable creep or plastic
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Figure 6.11: Thermoelastic lines
for a 450↔150 °C cycle with the
effective stress free temperature
Tesf set to 400 °C. Given are the
slab-model matrix stresses in the
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Figure 6.10.
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deformation. When these deformation mechanisms are considered in the slab model simula-
tion, the matrix stress changes. This will be addressed in the next paragraph.

Stress Evolution Including Creep and Plasticity

In Figure 6.12 the slab-model simulations of the internal matrix stress, now considering
inelastic deformation, are shown. The thermal cycle was the same as above. Stress-tempera-
ture curves are given for creep relaxation enabled and for combined creep and plasticity. For
comparison, the thermoelastic line from the previous paragraph is also given. Only stable
stress-temperature hystereses are shown. In this context, the term “stable” means that the
evolution of stress and strain is identical for the present and subsequent cycles. For the given
cycle and the high temperatures, this stable hysteresis is reached after the very first cycle
already. For lower temperatures it can take many more cycles until the stress evolution, origi-
nating from the initial stress state, assumes a steady state.

For the simulation with only creep contribution the cycle starts at 450 °C with compressive
stresses. In this temperature range, creep causes the stress to deviate from the thermoelastic
line. During cooling, a state of zero matrix stress is assumed. At this point, creep ceases and
thus the material behavior becomes thermoelastic. As the stresses rise further, the stresses
again deviate from the thermoelastic line until at a temperature of around 300°C, the creep
contribution to the deformation becomes negligible and the slope of the curve again assumes
the slope of the thermoelastic line. In principle the same things happen on re-heating: The
thermoelastic line is left at around 300 °C but the slope becomes thermoelastic again as the
stress approaches zero (at around 390°C). For further increasing temperature and stress, creep
comes into effect once more and relaxes the compressive stress partly, until the maximum
temperature is reached again.
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Figure 6.12: Slab model
simulations of the matrix
stress in 2/3 direction for
thermal cycling from 450°C
to 150 °C. Ramp rates were
±50 K/min, no external load
was applied. Only stable
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The implemented matrix yield stress as a function of temperature is also shown in Figure 6.12
(values are given in Tab. 6.3). The stress-temperature curve (including creep) impinges on the
yield stress-curve slightly above 350 °C. If matrix plasticity is also taken into account, the
stress-temperature curve follows the yield stress curve from that point on downwards to
150 °C, because the thermoelastic coefficient of stress is more negative than the slope of the
yield-stress curve (note again that for the case of a slab-arrangement with no external load
applied, the stress in 1-direction is always zero and thus the matrix stress in the 2/3-plane is
identical to the equivalent stress and can be compared directly to the uniaxial yield stress). On
re-heating from 150 °C, the compressive yield stress is reached at around 350 °C. The stress
follows the yield stress curve up to 380 °C, where creep becomes strong enough to relax the
stress quickly to absolute values below the yield stress.

Shakedown

In the discussion of the internal stress evolution in MMCs, it is useful to adopt some of the
terminology from the continuum mechanics literature in the field of fatigue modeling and
ratcheting, as it was done by Elfishawy and Daehn (1995). In this field, the term shakedown is
frequently used for the phenomenon that cyclic plastic deformations (usually modeled on the
basis of the Levy-von-Mises flow rule) lead to a redistribution of internal stresses in a way so
that a stable cyclic stress evolution in the elastic regime is achieved. Shakedown occurs
frequently, when a composite is cooled from production temperature (initially stress free) and
the induced stresses cause the matrix to yield. The term thermal shakedown is often used for
this behavior. Along with shakedown, two other terms are often used to qualify cyclic
behavior: Cyclic plasticity and ratcheting. These are used to qualify the case that a stable
internal stress evolution is reached where the yield surface bounds the stable stress-cycle at
two ends, in tension and compression. Ratcheting is used when the repeated plastic defor-
mation leads to stable permanent changes in the external dimensions. Cyclic plasticity is used
when the deformation is entirely “internal” i.e. permanent macroscopic deformation does not
occur at all or maybe only in the first few cycles. Elfishawy and Daehn (1995) additionally
introduce the term isolated plasticity, which describes the behavior in real composites that
stable plastic zones are formed during thermal cycling, but that these zones do not inter-
connect. In this case the material is dimensionally stable. Based on this classification of com-
posite deformation behavior, Elfishawy and Daehn (1995) have proposed composite behavior
maps for simple composite geometries.

The above terminology is confined to the case of elastic-plastic behavior. Creep is usually not
taken into account. Under creep conditions, inelastic strains will also lead to a redistribution
of internal stresses, even if the plastic yield stress is not reached. This will also lead to a stable
stress-temperature cycle sooner or later (depending on how big the contribution of inelastic
deformation is). We will call this phenomenon creep shakedown. If stresses and temperature
during the cycle are high enough to cause considerable creep deformation, creep shakedown
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will occur in the first or after a few cycles (like in the example form the last paragraph). If the
creep contribution in the cycle is small, creep shakedown can take very long times but it will
eventually happen.

Strain Evolution

The strain evolution for two stable unloaded thermal cycles corresponding to the above simu-
lation incorporating creep deformation is shown in Figure 6.14. As expected, the strain-tem-
perature evolution is linear in regions where the composite response is thermoelastic. The
strain evolution deviates from a straight line whenever inelastic deformation takes place. It
can be seen that the biggest part of the accumulated strain in one half-cycle is recovered
during the other half-cycle. However, the strains are not fully reversed, i.e. the strain-tem-
perature hysteresis does not close so that a small amount of strain is accumulated during each
cycle. The slab model thus predicts thermal ratcheting, because all this happens without an
external load applied. This is a direct consequence of the two slabs having different creep
properties. When creep of one phase is disabled or when both phases are given the same creep
properties, the strains become fully reversed so that the strain per cycle becomes zero. This
sometimes unwanted effect must be considered when cyclic strains are calculated for applied
loads. Thermal cycling creep rates under applied loads can be corrected for the influence of
thermal ratcheting by subtracting the creep rate for unloaded cycling. This can be done, when
the external load is small so that the stress evolution is not changed too much compared to
unloaded cycling. As the ratcheting strain rate is usually low, its influence is only relevant at
low applied stresses, where the TCC rate is also low.

The strain evolution is clearly dominated by the thermal expansion/contraction strain and
effects of inelastic deformation are comparatively small. Therefore, as it was already said in
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has assumed a steady cycle.
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Section 4.3.1, page 53, the strain evolution is best analyzed in terms of the instantaneous CTE,
which will be done in Chapter 7.
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Figure 6.14: Evolution of strain
in stable cycles, calculated with
the slab model for an unloaded
450↔150 °C cycle. Only
thermoelastic and creep
deformation are considered.
Note that the cyclic strain is not
fully reversed.



7 Discussion
The experimental results will be discussed in three different stages. In the first two sections,
the discussion will be limited to the minimum strain rate data from the thermal cycling creep
experiments, for the unreinforced and the composite material. The TCC rates will be
compared to the isothermal creep rates as well as to literature data. It will be analyzed which
classical features of thermal cycling creep are found in the technical material under investi-
gation and where its behavior differs from the expected behavior. Comparison to slab model
simulations will be of great help here. In the third section, the strain evolution in individual
cycles will be discussed and again, slab model simulations will be presented for comparison.
The concept of load transfer and progressive damage of the reinforcement will be discussed in
the fourth and fifth section. The isothermal, stress cycling creep experiments are interpreted in
the fourth section and the conclusions from these experiments will be used in the fifth section,
where the overall form of the thermal cycling creep curves is discussed. The influence of
specimen orientation and the sign of loading will also be discussed there.

7.1 Thermal Cycling Creep of the Unreinforced Material
In Section 5.2.3 it was shown that even the unreinforced matrix material exhibits accelerated
creep deformation under thermal cycling conditions. This behavior will be now discussed in
comparison to literature data.

The eutectic matrix material can be considered as a composite of aluminum with silicon
platelets. It is thus not surprising that this alloy shows thermal cycling creep acceleration at
low loads. The only investigation of thermal cycling creep with an Al-Si “composite” that was
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Figure 7.1: Comparison of matrix TCC rates to literature data for a eutectic binary Al-Si alloy
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found in the available literature was performed by Chen and Daehn (1991). They tested a
sand-cast binary eutectic Al-12 wt.%Si (13.6 vol.%) isothermally and under thermal cycles of
165↔300 °C at various tensile loads. They found “classical” thermal cycling creep behavior
at low loads with an apparent stress exponent of one and negligible transitional behavior upon
load changes. Their results are shown in Figure 7.1 in comparison to data from Section 5.2.3.

The two composites have the same amount of Si as reinforcement and, apart from the
additional intermetallic precipitates, differ only in the constitution of the matrix. The M124
alloy studied in the present work has an aluminum matrix which is precipitation hardening
and which has been optimized for yield strength and creep resistance. The matrix in Chen and
Daehn’s material was aluminum of commercial purity. It is thus not surprising that, despite the
higher temperature (350 °C instead of 300 °C), the M124 alloy exhibits lower creep rates than
the binary eutectic. For the same reason, the technical alloy also performs better under TCC
conditions, with lower creep rates at the same stresses and even higher Tmax and larger thermal
excursions. The TCC rates were found to approach an apparent stress exponent of one only
when Tmax was increased to 450 °C and the thermal excursion was raised to 300 °C.

These findings may be relevant for the application of the matrix alloy in engine environments.
Thermal cycling creep of the matrix alloy was, however, not the subject of the present work
and will not be discussed further. Based on these general findings, however, a more detailed
discussion will be made regarding the effect of the silicon platelets on thermal cycling creep
of the fiber-reinforced material in Section 7.2.3.

7.2 Thermal Cycling Creep Rates of the Composite

7.2.1 Comparison to Isothermal Creep

Equivalent Strain Rates

In Chapter 5, the minimum creep rates from all thermal cycling creep tests were compared to
creep rates from isothermal tests at the maximum cycle temperature. From an engineering
point of view, this is a useful comparison because it involves the two most severe temperature
conditions in an automotive engine environment: Permanent operation at a peak temperature
and steadily repeated cycling to a peak temperature. It is also a very direct and easy to under-
stand comparison and the observed creep enhancements are intuitively striking.

The real extent of thermal cycling creep enhancement, however, can only be seen when com-
parison is made to the isothermal creep rate at an equivalent temperature Teq, which takes into
account the influence of the varying temperature during the cycle. This equivalent temperature
is usually taken as the average temperature of the cycle, weighted for the diffusion coefficient
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and is therefore often called “diffusional mean temperature”. It can be calculated for a
temperature profile T(t) and an activation energy Q with the following formula (solving for
Teq):

( )[ ] ( )( )[ ]dttTRQ
t

TRQ ct

c
eq  exp1exp

0∫ ⋅−⋅=⋅− (7-1)

Comparison to isothermal creep can then be made by measuring the isothermal creep rates at
the diffusional mean temperature (e.g. Gordon and Clyne (1993)). An equivalent approach
makes use of isothermal creep data obtained at Tmax: One can calculate a diffusivity-com-
pensated strain rate ε /D for cyclic and isothermal tests, where D is the diffusion coefficient
for creep. For thermal cycling experiments, an effective diffusion coefficient has to be deter-
mined then by again averaging the temperature dependence of the diffusion coefficient over
the whole thermal cycle (usually done by graphical integration (e.g. Hong et al. (1988)).

In both cases it is assumed that the temperature dependence of composite creep can be
described by a single thermally activated process. This is not necessarily so, if the reinforce-
ment itself shows thermally activated deformation or it the reinforcement introduces stress
relaxation processes with a different thermal activation than that for matrix creep. In the slab
model, presented in Chapter 6, this is considered by attributing separate creep properties to the
reinforcement slab. It has been pointed out there already that this causes the apparent acti-
vation energy to be no longer independent of temperature, although the activation energies for
creep of the two constituents are constant. Maybe this is the reason why the direct comparison
of thermal cycling creep rates to creep rates at Tmax is more widespread in the literature
dealing with thermal cycling of composites (Wu and Sherby (1984), Pickard and Derby
(1990), Wakashima et al. (1986), Goncales-Doncel and Sherby (1996)). In contrast, most
investigations of thermal cycling of single-phase materials make use of effective temperatures
or diffusivity-compensated strain rates (Lobb et al. (1972), Wu et al. (1987), Dunand and
Bedell (1996)).

In this work the thermally equivalent isothermal strain rates were determined with the aid of
the slab model simulation program. Loaded thermal cycling was simulated with the thermal
expansion coefficients of the phases set to zero, so that no thermal strain mismatch was
present. A net equivalent creep rate can be determined when a steady state is achieved. At this
point, it has to be pointed out again that, as the slab model is insensitive to the sign of loading
and as it was calibrated with tensile composite creep data, the simulation will over-estimate
creep rates of compressive tests. In Section 6.2.2, page 98, a re-calibration with isothermal
compressive creep data was proposed to overcome this drawback. This re-calibration can be
applied here, because the absence of thermal cycling stresses ensures that the stress compo-
nents in the reinforcement stay compressive.
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Basic Results, Compared to Isothermal Creep Rates

In Figure 7.2, TCC rates from selected experiments from Chapter 5 (all for x-orientation) are
compared to isothermal creep rates at the equivalent temperatures. Thermal cycling in any
case led to higher creep rates than for isothermal creep at Tmax. Of course, the increase in
strain rate is even more drastic when compared to creep at the equivalent temperature: In the
tensile case, creep is accelerated by a factor of at least 10 for the standard cycle
(350↔150 °C) and by a factor of at least 30 for the high-temperature cycle (450↔120 °C).
The compressive TCC rates exceed the estimated isothermal creep rates at Teq, by a factor of
around 35.

The overall stress dependence of the TCC rates was found to be similar to literature results for
other MMCs: At high stresses, the stress exponent matches the one for isothermal creep. At
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Figure 7.2: Thermal cycling creep rates for different thermal cycles, compared to
isothermal creep rates at equivalent (diffusional mean) temperatures.
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lower stresses, it continuously decreases towards unity, except for the compressive tests with
standard cycles, where no such reduction of the stress exponent was found. It is remarkable
that none of the curves displayed approaches the isothermal strain rate values for high stresses
as reported in literature (e.g. Kitazono and Sato (1999)). Instead, the TCC strain rate vs. stress
curves seem to be offset relative to the isothermal curves by a certain factor.

This disparity at high stresses is not caused by measurement errors or systematic failures in
the conduction of the experiments. Errors in the measurement of stresses and strains are far
below the observed shift of data: Stresses were constant within ±0.5 MPa. The failure in the
determination of a strain rate of, say, 10-7 1/s  is only about 10 percent, based on a maximum
strain measurement error of ∆ε=±4·10-5 (see Section 4.2.5), measured over one hour. Basic
material differences could also be excluded as a source of error. All specimens were manu-
factured from the same batch of material and thus had undergone the same processing.

After all, for the material under investigation, the acceleration of creep by thermal cycling was
not limited to very low stresses but was present over the whole range of stresses.

7.2.2 Comparison to Literature Data

Comparison to Literature Data: Al/Al2O3f-Composites

The only study of thermal cycling creep of aluminum reinforced with discontinuous alumina
(Saffil) fibers that could be found is the thesis by Furness (Furness (1991)). He investigated,
amongst other systems, aluminum of commercial purity, reinforced with 10 and 20% δ-Al2O3-
fibers (Saffil). The composites were produced in two different ways. One was a powder
metallurgical route, involving dry blending of the powder and the reinforcement, followed by
cold compaction and hot extrusion. The second route was squeeze infiltration of fiber-
preforms, again followed by hot extrusion. During the extrusion process, the Saffil fibers
broke to pieces with a mean aspect ratio of 3.5 to 5 and were aligned in the extrusion
direction. From these composites, tensile specimens were machined with the fibers aligned in
the loading direction. Tensile isothermal creep as well as thermal cycling creep tests were
performed, employing the technique of laser scanning extensometry (Furness and Clyne
(1991a)). The thermal cycle employed by Furness was identical to the standard cycle that was
used in this work, except that Tmax and Tmin were 340 and 140 °C respectively. In Figure 7.3,
the strain rates reported by Furness are compared to the tensile TCC-rates (standard cycle, x-
orientation) from the present work. Also given are isothermal creep rates at 300 °C. It can be
seen that the powder-route material has similar creep rates at 300 °C as the composite used in
the present work (extrapolated from Bidlingmaier’s creep results). The same applies to the
TCC rates. For a composite with a pure aluminum matrix, this is a comparatively high creep
strength. Furness attributed this to matrix strengthening by a fine oxide dispersion that was
introduced by the powder-route processing. The composite made by squeeze casting contained
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no comparable oxide dispersion and thus exhibited a substantially lower creep strength. Both
composites showed considerable TCC-enhancement by factors comparable to those for the
reinforced piston alloy.

The composites investigated by Furness show the same overall behavior as the reinforced
Al-Si alloy investigated in the present study: no extreme change in the stress exponent and a
considerable difference between the TCC- and isothermal creep rates at high stresses were
found. A thermal cycling stress exponent tending towards unity was not reported. It has to be
noted that Furness found no measurable permanent creep deformation at a load of 8 MPa for
the powder-route material. He attributed this to the possible existence of a creep threshold
stress (as proposed by Park et al. (1990), see 2.2.1,).

Comparison to Literature Data: Al/SiC-Composites

As already mentioned in Section 0, the bulk of the experimental work in the field of TCC has
been performed on the composite system Al/SiC. In this and the following sections, TCC
behavior as it has been found in the literature for the Al/SiC system will be compared to the
behavior of the Al/Al2O3 system used in this work. One can expect that the two systems
exhibit substantially different TCC rates: For SiC reinforcement, the CTE mismatch is much
larger, resulting in higher internal strain mismatches. Therefore only general trends and
dependencies in the TCC properties will be compared.

Pure and alloyed aluminum matrices reinforced by different volume fractions of SiC particles
or whiskers in various sizes have been investigated. In most of these studies, the basic
phenomenology of the thermal cycling creep behavior of pure metals with anisotropic CTEs
(Zn, U) or with phase transformations (U, Ti) was reproduced. This includes that TCC rates
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Figure 7.3: Comparison of TCC rates to data from Furness (1991).
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and equivalent isothermal creep rates coincide at high applied stresses and that TCC rates
have a stress exponent close to unity at low stresses. In Figure 7.4 some examples for this
behavior from the works of Daehn and Gonzalez-Doncél (1989) and Goncales-Doncel and
Sherby (1996) are given.

In these studies, it has been shown that the stress exponent for TCC is about unity over the
whole range of stresses up to the isothermal creep rates at Tmax. The lines for TCC and iso-
thermal creep intersect and it can be assumed that the TCC-rates coincide with the equivalent
isothermal creep rates at higher stresses.

There are, however, also reports of TCC behavior for Al/SiC systems that show a disparity
between the TCC rates and isothermal creep rate curves, similar to he one reported in the
present work. These are given in Figure 7.5. Only Hong et al. (1988) mentioned this
discrepancy, but the authors did not discuss its origin or offer an explanation. They investiga-
ted aluminum systems with 10 and 20 vol.% of aligned SiC whiskers under longitudinal and
transverse compressive loading. In all cases, the TCC rates deviated from the slope-1 behavior
at stresses far below those stresses that cause comparable isothermal creep rates at Tmax. The
offset was even more drastic when diffusivity compensated strain rates were compared (see
Hong et al. (1988)). A similar but less pronounced offset was found in the work of Wu and
Sherby (1984), but again, it was not addressed by the authors. Unfortunatly, there is a lack of
experimental studies that include comparisons to isothermal data. Therefore no clear state-
ments can be made about the origin of the displacement between the TCC rates and the
isothermal creep rates.
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Figure 7.4: TCC data for Al/SiC composites, taken from Daehn and Gonzalez-Doncél (1989) and
Goncales-Doncel and Sherby (1996). The TCC rates have a stress exponent close to unity up to at
least the isothermal creep rates at Tmax. Creep is only accelerated by thermal cycling at low stresses.
At high stresses, isothermal creep at Tmax leads to higher creep rates.
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Even slight changes in one of the parameters can obviously influence the creep behavior
strongly. This is illustrated in Figure 7.5. In both of the cited investigations, most of the
material and test parameters seem to be the same, except for the T6 treatment that was applied
to the material in the investigation by Hong et al. (1988). Surprisingly, the isothermal creep
strength of the age hardened material was lower than for the material studied by Wu and
Sherby (1984). This is probably due to differences in the processing route that were not
reported in the cited investigations. In the light of this, the fact that the TCC rates fall onto the
same line for lower stresses can be mere coincidence.

The most prominent difference between the experiments shown in Figure 7.4 and 7.5 is the
loading direction: The two investigations, in which a large stress displacement between TCC
and isothermal creep was found, were conducted under compressive loading. Such a
difference between tensile and compressive loading was not found in the present work (see
Figure 7.2), where such a displacement was observed under both types of loading. No
comparative study of TCC under various loading directions has been found in the literature.
Apart from that, no definite distinction between the results in Figure 7.4 and Figure 7.5 could
be found, which could give indications about the origin of the disparity between the creep rate
vs. stress curves.

From an engineering point of view, it is interesting to know which material performs better
under thermal cycling creep conditions: the piston alloy reinforced with Al2O3 fibers or the
precipitation hardening alloys with SiC reinforcement. In Figure 7.6 such a comparison is
made for intermediate temperatures (Tmax = 350 °C) and high temperature cycles (Tmax =
450 °C). One of the very few investigations of TCC in Al/SiC systems where also cycles with

1 10 100
10-7

10-6

10-5

10-4

10-3

10-2

10-1

101

 100↔450 °C, 1Hong et. al. '88
 450 °C 1Hong et. al. '88
 100↔450 °C, 2Wu & Sherby '84
 450 °C 2Wu & Sherby '84

Material and cycle details:
1 Al2024 + 20% SiCw, PM, extruded, T6

compr., tc=200 s (50 s heat, 150 s cool)
2 Al2024 + 20% SiCw, PM, extruded,

compr., tc=180 s (50 s heat, 130 s cool)

stress σ [MPa]

 

st
ra

in
 ra

te
 ε  

[1
/s

]

Figure 7.5: TCC and isothermal creep data for Al/SiC composites, by Hong et al. (1988) and Wu and
Sherby (1984). The TCC rates have a stress exponent close to unity at very low stresses. However,
the stress exponent starts to increase at stresses below those that are needed for comparable iso-
thermal creep rates at Tmax.
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low Tmax were investigated is the work by Pickard and Derby (1990). They performed their
experiments on commercially pure aluminum, reinforced with various amounts of SiC-
particles (powder-metallurgical processing). In Figure 7.6a, TCC data are shown for a material
with 20 vol.% reinforcement that was tested in tension with a 7-minute thermal cycles from
350 to 120 °C (including a long upper dwell-time). Isothermal creep rates at 350 °C are given
as well. It can be seen that the thermal cycling creep rates are at least two orders of magnitude
higher than for the alumina fiber reinforced piston alloy. The isothermal creep rates are also
higher in the investigated range of stress. For higher temperatures, the results of Daehn and
Gonzalez-Doncél (1989) (cf. Figure 7.4) are compared to high-temperature TCC rates from
this work. Again, it is obvious that the TCC rates are considerably higher for the Material with
SiC reinforcement. For isothermal creep, no definite statement can be made, because the
450 °C creep rates for the fiber-reinforced piston alloy were not measured experimentally but
were extrapolated from lower temperatures. It is likely that the isothermal creep strength at
lower stresses is higher for the SiC-reinforced material owing to the higher stress exponent.

The explanation for the worse TCC performance of composites with SiC reinforcement lies in
the higher thermoelastic mismatch. The shape of the reinforcement – high aspect ratio fibers
as compared to short whiskers – may additionally play a role for the distribution of the
internal stresses. In the following section, the influence of the constituent properties and the
reinforcement shape on the induced internal stresses will be analyzed in more detail.
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Figure 7.6: Comparison of TCC rates from this work to TCC rates of Al/SiC systems from the
literature. Experiments with similar thermal cycles are compared.a) Thermal cycles with Tmax=350 °C,
Literature data were taken from Pickard and Derby (1990), who investigated cp-Al with 20 vol.% SiCp
(2.3 µm) in tension. The thermal cycles had a duration of 7 minutes and included a long upper dwell
time. b) Thermal cycles with Tmax=350 °C, Literature data were taken from Daehn and Gonzalez-
Doncél (1989) (see Figure 7.4).
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7.2.3 Stresses Induced by Thermal Cycling
In this sub-section, the influence of the type of reinforcement on the thermally induced
stresses will be investigated. At first, the basic influence of the material combination will be
addressed and secondly, the influence of the reinforcement morphology is considered. Finally,
the statements will be used to judge the relevance of the silicon platelets in the matrix material
for the thermal cycling creep acceleration.

Influence of Material Combination

The influence of the physical properties of the constituents on the thermally induced stresses
can be conveniently quantified in terms of the thermoelastic coefficient of stress (dσ/dT)el

(TECS) for the simplified geometry of the slab model. It has been shown in Section 6.3.4 how
the TECS can be calculated and this will be now done for different material combinations
using Eq. 6-27. In this work, the combinations Al/Al2O3 and Al/Si are relevant. For compari-
son with literature, we will also take into account the system Al/SiC. Textbook values for
essential thermoelastic properties of these materials are listed in Table 7.1. The respective
thermoelastic coefficients of stress for the different combinations with Al and for a volume
fraction of 15 % are also listed. It is apparent from the calculated TECS that the highest
stresses will be induced in the material combination Al/SiC, while for the combination Al/Si,
the thermally induced stresses will be rather low. At first sight this seems surprising because
the difference in CTE is similar for both composites. However, as it was pointed out in
Section 6.3.4, the thermally induced stresses do not only depend on the difference in CTE
between the phases but also on the differences between the elastic moduli. It is apparent that at
comparable volume fractions, the combination Al/Si, despite the slightly bigger CTE-
difference, will cause lower matrix stresses during thermal cycling than the combination
Al/SiC or even Al/Al2O3 with its even lower ∆α. This is because of the low modulus
mismatch between Al and Si.

For the behavior under external load, it is also important to consider how effective the
reinforcement is in shielding the applied stresses against the matrix. For a given volume
fraction and matrix modulus, the matrix stress is the lower the higher the reinforcement
modulus is. Among the material combinations considered, SiC, with the highest modulus, is
therefore the most effective reinforcement in terms of reducing the matrix stress.

All the above considerations are strictly valid only for the slab-model. The qualitative results
are, however, believed to apply also for real composites with a more complex reinforcement
geometry. The additional influence of the reinforcement shape will be addressed next.
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Influence of Reinforcement Shape

The influence of the reinforcement shape on the internal stresses is also studied by calculating
the TECS first. The slab-model with its fixed geometry is of no great use here. Instead,
Eshelby-based mean-field predictions are employed with S-tensors according to different
reinforcement geometries. Results from calculations of the mean matrix stress for aligned
spheroidal inclusions of different aspect ratio are given in Table 7.2. It can be seen that
platelets induce larger mean stresses during thermal cycling than fibers.

Material Properties Slab-model
Al / 15 vol.% X

E [GPa] ν α [10-6/K] dTd m 3/2σ

Al 70 (a) 0.33 (a) 23.6 (a) –

Al2O3f (Saffil) 285 (b) 0.20 (b) 7.7 (a) -0.62

Si 107 (c) 0.27 (c) 3.5 (d) -0.42

SiCw 450 (a) 0.17 (a) 4.0 (a) -0.85

Table 7.1: Textbook values for thermoelastic properties of selected materials. (a) Clyne and
Withers (1993), (b) ICI (1982), (c) Courtney (1990), (d) Ebert (1971). Also given are the thermo-
elastic coefficients of stress, calculated with the slab model for combinations of 15% reinforce-
ment with aluminum.

Shape
(of ellipsoid)

Aspect
ratio

TECS
(thermoelastic coefficient of stress)

Elastic load transfer
(share of mean matrix stress)

1-direction 2/3-plane von-Mises 1-direction 2/3-plane

s dTd
m1

σ dTd
m 3/2

σ dTd eq

m
σ 11 Am

σσ 3/23/2 Am
σσ

0.01 -0.28 -0.97 0.69 0.91 0.38
Platelets

0.1 -0.29 -0.81 0.57 0.86 0.49

Spheres 1 -0.31 -0.31 0 0.80 0.80

10 -0.70 -0.21 0.49 0.49 0.87
Fibers

100 -0.75 -0.21 0.54 0.45 0.88

Table 7.2: Thermoelastic coefficient of stress and amount of elastic load transfer calculated with the
Eshelby method (mean-field approximation) for aligned spheroids with different aspect ratios. Note that
the highest stresses due to thermal misfit are induced by platelets. The 1-direction is the axis of
rotational symmetry. The physical properties of the constituents were taken from Tables 6.1 and 6.2;
the volume fraction was 15%. The appropriate S-tensors for aligned prolate and oblate spheroids are
listed in Appendix A.1.
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The reinforcement shape is not only important for the thermally induced stresses but also
when the effectiveness of shielding the matrix against externally applied loads is considered.
The mean matrix stress that arises under external loading can be calculated with Eq 2-3. Mean
matrix stresses under uniaxially applied loads have been calculated for the same reinforcement
morphologies as above and the results are also listed in Table 7.2. The platelets are very
effective in reducing the matrix stress when they are oriented parallel to the applied load –
more effective than parallel aligned fibers. They are, however, much less effective when they
are oriented perpendicular to the loading axis (like fibers under transverse loading). Platelets
are the slightly more effective form of reinforcement in terms of elastic load transfer when
they are compared to fibers with the same aspect ratio and volume fraction. The same result
has been obtained by Brown and Clarke (1975) who calculated the effectiveness of various
reinforcements against plastic flow of the matrix. All these considerations have been made for
the thermoelastic case. Under TCC conditions, however, inelastic effects are important. It was
already noted in Chaper 6 that the Eshelby-method using the mean-field approach has the
major drawback of averaging out localized deviatoric stress states and therefore leads to a
high hydrostatic component. Such stress predictions are therefore not the best choice for
calculating effects of inelastic deformation. A frequently applied alternative is modeling of
deformation using FEM models. Bao et al. (1991), for example, investigated the effectiveness
of different reinforcement shapes and aspect ratios against plastic flow with a unit-cell FEM
model. They found that the composite limit flow stress was higher for needle-like particles
aligned parallel to the loading direction than for platelets aligned perpendicular to the loading
direction. This result also complies to the above thermoelastic calculations. The authors stated
further that for randomly oriented packets of needles or platelets, the needles were the slightly
more efficient reinforcement.

No literature studies were found regarding the influence of particle shape on the amount of the
thermally induced stresses.

Relevance of Silicon Precipitates for TCC of the Composite

The findings of thermal cycling creep acceleration due to the presence of silicon platelets in
aluminum raise several questions regarding the TCC behavior of the fiber-reinforced piston
alloy: Could it be that TCC acceleration in the fiber reinforced composite is entirely due to Si-
particles? If not, can their presence be neglected?

From the above considerations it is known that the material Si introduces a 50 % lower
thermoelastic misfit than Al2O3 does. However, the platelet morphology of the Si precipitates
is – according to the mean-field predictions – more effective in inducing high stresses than
fibrous reinforcements. This is expected even for the given microstructure, in which the aspect
ratio of the Saffil fibers is much higher than that of the Si platelets (s≈50 for the Saffil fibers
and s≈10 for the Si platelets (see Figure 3.5)). The higher effectiveness of the platelets is
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probably not sufficient to outweigh the 50% lower thermoelastic misfit. It is therefore rea-
sonable to assume that the presence of the Si platelets adds considerable stresses upon thermal
cycling but that it cannot dominate TCC behavior alone. In the investigated stress range, the
thermally induced stresses are significant in size and the contribution of the Si-particles is also
significant but it is still the Saffil reinforcement which introduces most of the stresses during
thermal cycling.

In all considerations of this sub-section, we have concentrated on the induced stresses. The
influence of the reinforcement morphology on impeding macroscopic strain was not
addressed. Doing this quantitatively would have been beyond the scope of the present work. It
seems, however, intuitively clear that a network of relatively long fibers is more effective in
impeding a given global inelastic strain than small platelets.

7.2.4 Comparison to Simulations
The standard as well as the high temperature cycles were simulated with the slab model
simulation program and corrected for thermal ratcheting (the simulated strain rates for load-
free cycling were subtracted as outlined in Section 6.3.4, Page 113). The results are compared
to experimental data in Figure 7.7. The calculations show the expected TCC behavior. At low
loads, the apparent stress exponent is unity and at high loads the strain rates coincide with
those at the equivalent temperature.

10 100

10-9

10-8

10-7

10-6

10-5

isothermal
creep at Teq

TCC 350↔150 °C
 creep (slab model)
 + primary creep
 experimental

stress σ [MPa]

 

m
in

. s
tra

in
 ra

te
 ε  

[1
/s

]

10 100

10-8

10-7

10-6

10-5

10-4

isothermal
creep at Teq

TCC 350↔150 °C
 creep (slab model)
 experimental

m
in

. s
tra

in
 ra

te
 ε  

[1
/s

]

stress σ [MPa]

Figure 7.7: Comparison of experimental and simulated TCC rates. For the low temperature cycles, the
agreement is quite good (a), for the high temperature cycles (b), the TCC rate is largely over-esti-
mated. Applying a primary creep law which is re-initiated in each thermal cycle, the creep rates are
further increased irrespective of the applied stress (shown in a). In this case, the simulated TCC rate
and the isothermal minimum creep rate at the equivalent temperature do not coincide at high stresses.
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For the standard cycles, the agreement between calculated and measured TCC rates is quite
good. This is rather surprising, considering the over-estimation of the matrix stresses due to
the model geometry and the neglect of the stresses that are introduced by the silicon platelets.
It can be speculated that these two counteracting inaccuracies cancel each other for the stan-
dard cycle, leading to a good prediction. For the high temperature cycles, the slab-model over-
estimates the TCC rates. The over-estimation of thermally induced stresses may weigh
stronger under these conditions. Another reason could be the neglect of plasticity in the slab
model simulations (due to the mentioned incapability of the slab model to determine total
strains when plasticity is involved): It will be shown later in this chapter that plastic deforma-
tion can influence the in-cycle strain evolution in a way that the net strain per cycle is reduced.

A comparison between the simulated TCC rates for the standard (low-temperature) cycles and
the isothermal creep rates at Teq in Figure 7.7a shows that the transition between isothermal
creep behavior and slope-1 behavior takes place over a wide range of stresses: Agreement
between the curves is found not below 100 MPa and an apparent stress exponent of one is
reached at stresses below 10 MPa. In the investigated stress range, the applied stresses are not
high enough to outweigh the (simulated) thermally induced stresses. This raises the question if
the disagreement between the experimentally measured TCC rates and the (extrapolated)
isothermal creep rates at high stresses is really so remarkable. Maybe the maximum applied
stresses were simply not high enough and for higher stresses, the creep rates would have been
equal. This assumption is contradicted by the strong variation in the apparent stress exponent
for TCC. The apparent stress exponent for TCC had reached values that were already very
close to the ones for isothermal creep. It is therefore likely that the strain rate difference at
high stresses is real, i.e. that thermal cycling enhances creep beyond the mere introduction of
internal stresses.

Effects of Primary Creep

Primary creep has been attributed to a vast amount of microstructural processes. One of the
common explanations is that the initial dislocation and subgrain structure gradually transforms
into an arrangement in which mobile dislocations move in a dynamic equilibrium between the
applied stress and counter-acting internal stresses on the micro-scale (e.g. dislocation pile-ups)
(Derby and Ashby (1987)). A high temperature anneal can be applied to recover the initial
dislocation arrangement, e.g. by dissolving pile-ups and subgrain walls., One can speculate
that such a transient creep behavior also takes place under thermal cycling conditions:
Whenever the maximum temperature of the cycle is reached, the microstructural creep state is
“reset” and primary creep starts over. Experimental findings that support such a view can be
found in the work by Pickard and Derby (1990) (Al/SiCp). They state that the dislocation
microstructure at room temperature showed only little change over a large number of loaded
thermal cycles. Cyclic re-initiation of transient creep would lead to an increase of creep rate
irrespective of the applied stress. Such a scenario was set up using the slab model: For stan-
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dard cycles, primary creep deformation was enabled and whenever Tmax was reached, the
internal variable that measured the inelastic strain evolution was set to zero, resetting the
primary creep process. The results of this simulation are also shown in Figure 7.7a. It is found
that creep is indeed accelerated over the whole stress range, so that at high stresses the creep
rates do not agree with the creep rates at the equivalent temperature. The predicted difference
in creep rates at high stresses is smaller than it was observed experimentally. Rather than
leading to a more perfect agreement with the experiment, this approach clearly shows the
following: A continuum mechanics approach which focuses on the evolution of internal
stresses alone is well suited to describe TCC in the present case. However, micromechanical
effects that influence the kinetics of creep directly can be additionally taken into account to
indicate the origin of discrepancies.

7.2.5 Influence of Cycling Amplitude
In the experiments described in Section 5.2.2, where Tmax was fixed at 450 °C and Tmin was
varied, it was found that the investigated material, after an initial increase, showed a more or
less constant low strain per cycle εpc up to thermal excursions of ∆T=250 °C. For higher cycle
amplitudes (to lower temperatures) the strain per cycle started to increase significantly. Such
behavior has been explained by models for internal stress driven plasticity (e.g. Greenwood
and Johnson (1965), Derby (1985)). In these models, a critical thermal excursion ∆Tc is
required to induce stresses high enough to cause plastic flow. For higher excursions, a linear
dependence of thermal cycle amplitude and strain per cycle is predicted. However, it has been
pointed out by Furness (1991) already that except for data published by Daehn and Gonzalez-
Doncél (1989), almost all investigations on MMCs showed a non-linear dependence of εpc on
∆T.

For insights into the processes that control the influence of the thermal excursion on the strain
per cycle for the material under investigation, some slab model calculations will be presented
next. It will be elucidated what the thermal cycle of an experiment with changing cycle
amplitude should look like to achieve maximum comparability of the results. As we have seen
in the previous section, TCC rates are highly over-estimated for high temperature cycles. We
will therefore focus on principal effects of internal stresses and the relative contribution of
creep and plasticity rather than predicting the strains per cycle quantitatively.

Influence of the Equivalent Temperature

When the amplitude of a thermal cycle is changed, the diffusional mean temperature also
changes. This alone alters the average creep rate – even if no internal stresses are involved.
This fundamental influence of amplitude on creep rate can be easily calculated. The strain
rates at the equivalent temperatures are calculated as explained in Section 7.2.1 and then
divided by the cycle duration tc. The results are shown in Figure 7.8. At zero thermal ampli-



130 Chapter 7 - Discussion

tude, the cycle consists only of two dwell times of 60 seconds at 450°C, so that the strain per
cycle is given by the isothermal strain rate at 450 °C divided by 120 seconds. As Tmin

decreases, the diffusional mean temperature is reduced and along with it the strain rate. Below
a temperature of around 350 °C, the thermal activation becomes very low and the strain
contribution of the low temperature part of the cycle becomes negligible. Therefore the strain
per cycle becomes constant. It becomes clear that the decrease of the diffusional mean
temperature has no influence on the strain per cycle for high excursions. This advantageous
feature is a direct consequence of the way the experiment is conducted, namely with a fixed
upper temperature and constant ramp rates. The majority of experiments reported in the
literature were done with a fixed lower temperature or with a fixed cycle duration. In the
results from such experiments, the effects of equivalent temperature and internal stresses are
intermixed and it is complicated to separate them.

Internal Stress Evolution and Inelastic Strains

The presence of internal stresses is considered next. The general trend for the thermal cycling
evolution of the internal matrix stress in the slab model was already calculated in Section
6.3.4. This calculation is repeated for the cycle shape used here. Because we are mainly
interested in the relative importance of creep and plasticity, depending on the cycle amplitude,
we confine the analysis to the simple case of thermal cycling without external load. Slab
model calculations were done using creep and plasticity. The calculated internal matrix stress
evolution is shown for three prominent thermal cycles in Figure 7.9a. In Figure 7.9b, the
equivalent inelastic matrix strain per cycle is given as a function of the cycle amplitude. These
values were determined by adding up the inelastic matrix strain increments over a complete
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Figure 7.8:  Diffusional mean strain and temperature for different thermal cycles. The thermal cycle
consisted of 1 min. dwell at Tmax=450 °C, cooling with 50 K/min to Tmin=Tmax-∆T, 1 min. dwell at Tmin and
again heating to Tmax with 50 K/min. a) Strain per cycle at the diffusional mean temperature
b) diffusional mean temperature.
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stable cycle. For comparison, the inelastic matrix strains were also calculated for the cases
when only creep is allowed and when only plasticity is allowed.

The first cycle shown ( , 450↔350 °C) has an amplitude at which the matrix yield stress is
just reached at the low temperature end (tensile). In cycles with lower amplitudes, only creep
but no plasticity occurs. For higher amplitudes, the yield surface is hit during the low
temperature end and thermal strain misfit is accommodated by plastic deformation. The
second stress-temperature curve ( , 450↔300 °C) denotes a transition in the temperature
dependence of the matrix yield stress. The third curve ( , 450↔185 °C) finally shows the
case where the matrix yield surface is reached additionally on heating (in compression).

The inelastic matrix strain variations with changing amplitude can only be understood when
one realizes that part of the inelastic matrix strain that accumulates during the cooling half
cycle is reversed during heating. Full reversal does not occur because 1) the reinforcement
slab does also deform and 2) unconstrained matrix flow can take place in 1-direction (see
Section 6.3.4). We will first look on the simulated matrix inelasticity for the case of “creep-
only” and “plasticity-only” deformation. For creep, the inelastic strain rises sharply as the
thermal cycle amplitude is increased. With the described setup, the forward creep contribution
during cooling is larger than the reverse component during heating so that a positive net
inelastic strain results. Beyond amplitudes of around 175 K, the inelastic strain stagnates
because the cycle is purely elastic for lower temperatures. When only plastic deformation is
considered, inelastic strains (in the second thermal cycle) do not occur if ∆T is smaller than
90 K. In this regime, the deformation is entirely elastic or shakedown to elastic deformation
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Figure 7.9: a) Matrix stress evolution for stable thermal cycles to 450 °C without external load (slab-
model simulation incorporation creep and plasticity). Three distinct cycles are shown:  impingement
on the yield surface in tension,  change of matrix yield stress dependence and  impingement on the
yield surface in compression. b) net equivalent inelastic matrix strain (per cycle) as a function of the
thermal excursion. For comparison, simulation results are also given for the cases of only creep (stable
cycles) and only plasticity (second cycles) allowed.
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occurs in the very first cycle. For higher amplitudes, cyclic plasticity takes place as the yield
surface is hit in tension and compression. Again, the inelastic strain contribution of the
cooling half cycle outweighs the contribution of the heating half cycle. The inelastic strain
rises with further increasing amplitudes and the rate of increase is determined by the
temperature dependence of the matrix yield stress.

Now for the case of combined creep and plasticity. For low amplitudes, the stresses do not
reach the yield surface and the inelastic behavior is determined by creep only. The yield stress
is reached at around ∆T = 100 K. For higher excursions, the inelastic matrix strain falls short
behind the creep-only simulation, although for the latter the amount of stress relaxed during
cooling is lower. The reason is that plastic yielding on cooling shifts the stresses for heating
downwards, so that the compressive stresses during heating become much higher than for pure
creep. This means that plasticity does not only introduce more forward straining but also more
reverse creep. The (relative) enhancement of the reverse portion weighs stronger so that the
overall inelastic strain per cycle is reduced compared to the creep-only simulations. Yet the
inelastic strains for combined creep and plasticity are still larger than those for the plasticity-
only simulations due to the additional inelastic creep contribution. As the forward creep
contribution stays constant and the reverse creep contribution becomes more pronounced with
increasing ∆T, the plasticity-only simulations soon gives higher inelastic strains than the
combination of creep and plasticity. For high amplitudes, plasticity dominates the inelastic
strain behavior but the presence of creep in compression still keeps the inelastic strain below
the values for pure plasticity.

The findings can be summarized as follows: Starting from very low cycle amplitudes, the
amount of equivalent inelastic strain rises steeply as the internal stresses enhance creep
deformation. Cyclic plasticity balanced by creep relaxation leads to a stagnation of this
increase at intermediate cycle amplitudes. When the amplitude becomes high enough to cause
plastic yielding on both heating and cooling, the deformation increases again and the creep
influence is diminished. Another important point is that although the inelastic matrix strains in
an individual cycle may be very large when plasticity is involved, they can cancel each other.
It is the balance between forward and reverse inelastic deformations during the half-cycles
that counts. The coaction of creep and plasticity can shift this balance in favor of lower net
strains.

All the above findings have been obtained for the case of thermal cycling without external
load. If a (low) external load is applied, the stress evolution changes only slightly. The
characteristic temperatures of the strain evolution curves (Fig. 7.9b / / ) are shifted
accordingly, but this shift is not very pronounced when the applied load is low. The cyclic
inelastic deformations are biased in a certain direction by this external load. When the
equivalent inelastic strains per cycle is large, one can expect that the net external strain due to
biasing is also large. The strain per cycle (under small loads) will thus vary with thermal
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amplitude in the same way as the equivalent inelastic matrix strains that were shown in Figure
7.9b:

1) For very low amplitudes the strain per cycle rises steeply because of creep deformation
assisted by the growing internal stresses.

2) When the thermal amplitude becomes high enough that the yield stress is reached during
cooling (at ∆T≈100 K), reverse creep deformation (during heating in compression) is
enhanced and therefore the increase of the strain per cycle stagnates.

3) For high thermal amplitudes, plastic deformation (in tension and compression) dominates
and the strain per cycle is expected to rise again. The yield surface is hit in tension and
compression when ∆T≈265 K.

Of course all those predictions are subject to the limitations of the slab model and the known
inaccuracies. Additionally the critical temperatures are slightly shifted due to the applied load.
Nevertheless, the predictions are qualitatively consistent with the measured strains per cycle
as they are shown in Figure 7.10 (data taken from Figure 5.11). Even the predicted tempera-
tures for the transitions between the regimes of different behavior seem to match well with the
ones that were found experimentally.

These findings are important because they show that the concept of a critical thermal ampli-
tude for cyclic plasticity may be too crude a simplification. The presence of creep relaxation
can cause relatively low strains per cycle even when cyclic plasticity is already present. A
neglect of this effect can lead to misinterpretations of TCC experiments with varying ampli-
tudes.
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7.2.6 Summary of Discussion Regarding the Composite TCC-Rate
At low stresses, the TCC rates were increased compared to the isothermal creep rates at the
equivalent temperature as it is well established in literature. What is remarkable here is that
this acceleration was also present at higher stresses, where the apparent stress exponents for
isothermal and thermal cycling creep were the same i.e. the creep rates did not coincide at
high stresses. This behavior has also been found in reports of TCC for other MMCs but it has
not been explained yet. It was speculated in the present work that micromechanical effects
which enhance the kinetics of creep could directly cause a creep acceleration beyond the mere
introduction of internal stresses. As an example, cyclically re-initiated primary creep was
additionally considered in the slab model and this led indeed to a TCC acceleration over the
whole stress range.

Comparison to literature data revealed that the fiber reinforced piston alloy was less suscepti-
ble to TCC than MMCs with the material combination Al/SiC. An analysis of the thermo-
elastic stresses, which are thought to be the driving force for TCC acceleration, showed that
SiC reinforcements induce substantially higher stresses than Al2O3, which is essentially the
reason for the worse TCC performance of MMCs with SiC reinforcement. In the same
analysis it was found that Si reinforcements induce lower thermoelastic stresses than Al2O3

but also that platelets induce higher stresses than fibers. For the analyzed reinforcements, the
material combination has a stronger effect on the thermoelastic stresses than the reinforcement
morphology. Based on the thermoelastic considerations it was concluded that the silicon
platelets add stresses to the MMC that are significant in size but that theses stresses are most
probably not high enough to dominate TCC behavior. The Saffil fibers still remain the main
source of thermally induced matrix stresses.

The slab model simulations of TCC rates gave fair agreement with the experimental data for
standard (350↔150 °C) TCC tests. It was found that agreement with equivalent isothermal
creep rates could not be expected below 100 MPa and that a stress exponent of one is not
reached for stresses higher than 10 MPa. For the high-temperature cycles, the agreement
between experimental and simulated TCC rates was less good. This was mainly attributed to
the neglect of plasticity in the slab-model.

The slab model was also used to interpret the results from TCC experiments with increasing
thermal amplitudes. An important finding was that, in order to avoid misinterpretation, it is
necessary to compare only experiments with thermal cycles that have the same Tmax and the
same heating and cooling rates. Creep deformation at the high temperature leads to measur-
able strains per cycle even at low thermal amplitudes. The slab model simulations showed that
a large part of the inelastic matrix strain that accumulates during the cooling half cycle is
reversed during heating. The balance between forward and reverse inelastic deformations
during the half-cycles determines the net strain per cycle. The occurrence of plasticity in
addition to creep can shift the balance in favor of low strains per cycle. Only when the thermal
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amplitude becomes high enough so that plastic deformation gains dominance above the creep
contribution, does the strain per cycle increase substantially. This contradicts the established
simplified concept of a critical thermal amplitude ∆Tc beyond which matrix plasticity and thus
rapid TCC deformation is induced and below which no deformation happens at all.

7.3 In-Cycle Strain Evolution
In the present work, the concept of instantaneous CTE was used to present the in cycle strain
evolution. This was investigated at high an low temperatures, at varying amplitudes, with and
without load, for different reinforcement orientations and finally for different cycle shapes. In
this section, the experimental findings are compared to slab model calculations. These will
help in the interpretation of distinct features in the evolution of instantaneous CTEs. This will
give more information on the contribution of creep and plasticity to the inelastic deformation
and will lead to a better understanding of how the strains accumulate during thermal cycling
creep.

7.3.1 Literature
As it was pointed out in Section 0, only very few studies of the in-cycle strain evolution
during loaded thermal cycling creep of MMCs can be found in the literature. Furness and
Clyne (1991b) used the technique of laser-extensometry to accurately measure the in-cycle
strain evolution for cp-Al (cp = ”commercial purity”) reinforced with 10 and 20 vol.% of
aligned δ-Al2O3-fibers (aspect ratio s=5). The thermal cycle went from 340 to 140 °C. They
subtracted calculated thermoelastic strains from the measured data to obtain the inelastic
strain contribution. Under tensile loading they found reverse inelastic strains at the beginning
of the cooling ramp and a slight acceleration of deformation at the end of the heating ramp.
They modeled the strain evolution based on a thermoelastic strain misfit (calculated with the
Eshelby method) relative to a fixed stress-free temperature. Deviatoric stresses were calcu-
lated from the misfit and creep strains were calculated based on these stresses. The major
drawback of their modeling is that they did not correct the strain misfit for the accumulated
creep strain i.e. the creep strain is not treated as additional misfit strain. Therefore, the strain
evolution is always the same on heating and cooling and the effective stress-free temperature
stays fixed.

Daymond and Withers (1997) also used a laser scanning extensometer to measure in-cycle
strains for TCC with cp-Al/ 10 vol.% SiCw (aligned whiskers) in the temperature range
between 400 and 175 °C. They also measured the internal elastic strains in the matrix and the
reinforcement with a stroboscopic neutron diffraction technique (see Section 0). They
introduced the concept of instantaneous CTE to present their findings of the macroscopic
strain evolution. They found that the instantaneous CTEs during heating and cooling deviated
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from the calculated thermoelastic behavior especially at high temperatures in the cycle. The
CTEs were increased above the thermoelastic values at the high temperature end of the
heating ramp and they were lower than the thermoelastic CTE at the beginning of the cooling
ramp. Daymond and Withers set up a unit-cell FEM model to calculate the internal elastic
strains and the instantaneous CTEs and achieved fair agreement with the experimental data.
They also used the FEM calculations to predict the relative contribution of creep and non-
hardening plastic deformation to the overall strain evolution. They found that a substantial
portion of strain in one half cycle was recovered in the other half cycle. In the case of plas-
ticity-only deformation this led to low overall strains per cycle. This overall strain per cycle
increased when power-law creep deformation was additionally considered. Creep contributed
especially at the high temperature end of the heating ramp, and this increase also led to an
enhancement of plasticity at the end of the cooling ramp.

7.3.2 Cycles to High Temperatures
A typical cycle from a TCC-experiment with a high maximum temperature will be considered
in this section. The thermal cycle consisted of 1 min. dwell at Tmax=450 °C, cooling to
Tmin=120 °C in 4 minutes, 1 min. dwell at Tmin and again heating to Tmax within 4 minutes.
This cycle was simulated with the slab-model including creep. The results from the simulation
with and without external load are compared to experimental findings in the following two
sections.

Unloaded Cycles

The simulated evolution of the matrix stress for unloaded thermal cycling is shown in Figure
7.11. Without external load, the stress in 1-direction is zero by definition so that only the
stress in the 2/3-plane is given. Along with this, the instantaneous CTE in 1-direction for
heating and cooling are plotted. Also shown is the composite CTE for purely elastically
accommodated misfit. The instantaneous CTE curves deviate from the “elastic” CTE when-
ever both temperature and stress are high enough to cause creep deformation. These calculated
CTE curves will now be discussed in detail. Certain characteristics of the simulated curves
will afterwards be correlated to similar features in the experimentally measured CTE curves.

The cycle in Figure 7.11 is a stable cycle for which creep shakedown has already occurred. For
this cycle, shakedown occurs in the very first cycle no matter what the initial internal stresses
are. The simulation was started with a stress free slab model and after two cycles, the internal
matrix stress was σm2/3=–8.9 MPa (after the high temperature dwell).

We will now start at Tmax with the cooling half-cycle. The matrix stresses are slightly
compressive, but decreasing the temperature raises them towards zero. The response of the
composite is essentially elastic, because the stresses are not high enough to cause substantial
creep deformation in this region. As the stresses rise progressively, creep comes into effect
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and the matrix slab has to follow the deformation of the stiff elastic reinforcement. This
means that in the reinforcement-direction (2/3-plane), the matrix does no longer contract as
fast as it should (in the elastic case). Instead, it shrinks faster perpendicular to the reinforce-
ment (1-direction), because the volume has to stay constant*. This is why the CTE in the 1-
direction suddenly rises during cooling. It indicates that matrix creep sets in. Simultaneously,
matrix creep reduces the thermal strain misfit and so the rate of stress-increase drops. At low
temperatures, the thermal activation for creep becomes very small, so that both the CTE and
the rate of stress-change assume their purely elastic values. On re-heating, the matrix slab
again experiences creep relaxation. As the matrix is still under tension in the 2/3-plane, the
inelastic strain is positive in the direction of the reinforcement and negative perpendicular to
it. This time the creep deformation in 1-direction opposes the thermal expansion strain, so that
the CTE is diminished. When the matrix stress approaches zero, creep ceases again and the
composite response becomes elastic. Creep sets in soon after the matrix stress has reverted to
compressive, because the temperature is now very high. The compressive nature of the matrix
stress leads to a negative inelastic strain in the 2/3-plane and consequently to an enhanced
expansion in 1-direction. This is reflected in the steep increase in CTE at the end of the
heating cycle. In this final phase of the cycle and during the high-temperature dwell time,
creep deformation reduces the strain misfit and so the internal stresses relax towards lower
absolute values.

                                                
* The very small effects of elastic volume change are neglected in this explanation, although they are included in
the simulation.
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Figure 7.11: Slab-model simulation of an unloaded thermal cycle 450↔120 °C. The stress in the
2/3-plane is given along with the instantaneous CTE in 1-direction for heating and cooling and for
purely elastic deformation.
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At a given temperature, the instantaneous CTE is given by the slope of the thermoelastic line
(rate of thermal misfit generation) and by the rate of inelastic deformation (creep rate). While
the slope of the thermoelastic line is independent of the current stress, the creep rate depends
strongly on the von-Mises equivalent stress. It can be concluded that, whenever the CTE
curves for heating and cooling intersect or fall together, the creep rates must be the same and
thus the equivalent stresses must be the same. On the other hand this means that differences in
the heating and cooling CTEs at a given temperature indicate that inelastic deformation is
taking place at different rates. Furthermore it can be concluded that when the heating and
cooling CTE curves cross each other (instead of just coinciding), the stresses have the same
amount but different signs during heating and cooling, while they are identical in amount and
sign when the curves coincide.

The sign of CTE deviations from the thermoelastic values is determined by the sign of the
temperature change (heating or cooling), by the average hydrostatic matrix stress (tension or
compression) and by the orientation of CTE measurement relative to the reinforcement tex-
ture. This can be summarized in a simple equation:
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latter quantity introduces the orientational dependence in the formula. It tells us whether the
thermally induced misfit in the measured direction is larger or smaller than perpendicular to it.
The sign of this deviatoric component becomes apparent from the calculated TECS values in
Table 7.2. The following table summarizes the possible deviations from thermoelastic
behavior for the slab model arrangement:
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Table 7.3 can be of great help in the interpretation of instantaneous CTE curves. If for exam-
ple the instantaneous cooling CTE in y-direction shows a sudden increase, one can conclude
that the internal matrix stresses are probably compressive.

In Figure 7.12 experimentally determined CTEs of the short fiber composite are compared to
the slab-model predictions. The general trend of both the heating and cooling curves is repro-
duced by the simulation. At high temperatures, the heating CTE rises steeply above the
cooling CTE-curve and at low temperatures the heating CTEs lie below the ones for cooling.
The simulated CTEs are generally higher than the experimental ones. This is not unexpected.
In Chapter 6 it was already mentioned that the CTE in the main reinforcement direction is
under-estimated and perpendicular to it over-estimated. The rather high degree of misalign-
ment of the fibers in the real composite additionally reduces this directional CTE-inequity.
Despite these minor shortcomings of the simulation, important things can be learned from the
comparison to the experimental data. Regions can be estimated, where the composite exhibits
an almost elastic response to temperature changes. From the above analysis of the simulated
CTEs it is know that the equivalent stresses for heating and cooling are the same at the tem-
perature where the CTE curves intersect. In the experiment, this is at around 370 °C. We can
be sure that at this temperature the matrix stress in the y/z-direction is tensile for cooling and
compressive for heating (see above). At temperatures slightly below this point, it can be
expected that the heating CTEs come close to an “elastic” CTE while for the cooling curves
the rather elastic response should lie at higher temperatures.

Unlike in the simulation, no pronounced increase in the experimental cooling CTE is found at
temperatures below the intersection of the curves. This is probably due to the inhomogeneous
reinforcement distribution in the technical material and due to non-homogeneous deformation.

Sign of
temperature change

Hydrostatic
matrix stress

Orientation
(deviatoric TECS)

Sign of CTE deviation from
thermoelastic behavior

x (+) -tensile
(+) y (-) +

x (+) +
heating

(+) compressive
(-) y (-) -

x (+) +tensile
(+) y (-) -

x (+) -
cooling

(-) compressive
(-) y (-) +

Table 7.3: Sign of deviation of the instantaneous CTE from thermoelastic behavior for various
conditions.
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Both effects will tend to “smear out” pronounced changes in the CTE as they are predicted by
the slab-model with its idealized geometry and homogeneity.

Another interesting feature is that the measured heating and cooling CTEs do not agree at low
temperatures. This deviation from the predictions will be addressed next.

Plasticity Induced by Thermal Cycling

Upon reversal of the temperature ramp at Tmin, the CTE jumps to lower values. This indicates
the presence of inelastic processes. Global creep deformation is not likely to be happening in
this regime because the temperature is too low to provide sufficient thermal activation. Yet,
time dependent relaxation of internal stresses at room temperature has been reported e.g. for
the system cp-Al +5vol.% SiCw in the literature (Withers et al. (1987)). However, such inelas-
tic deformation occurs over several hours up to days and not within the duration of a single
10-minute thermal cycle. It is concluded that it is not creep but rather time-independent plastic
deformation which influences the CTE at the low-temperature end of the cycle. It is expected
that the internal stresses in the matrix are tensile. In this case, re-heating leads to a reduction
in the effective stress and thus cannot give rise to further plastic deformation. It can be
concluded that at low temperatures, the heating response is essentially elastic. In the same
regime, the CTE for cooling is increased in 1-direction. This is because the matrix yields
plastically under high tensile stresses in the 2/3-plane and contraction perpendicular to this
plane is enhanced.

The curve of the cooling CTE almost meets the one for heating at around 260 °C. This tem-
perature might be associated with the onset of plastic flow in the material. In a slab-model
simulation one would expect a sudden jump in the instantaneous CTE to values that are pro-
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Figure 7.12: Comparison of the instantaneous CTEs from experiments (thick lines) and Slab-model
simulations (thin lines). Unloaded thermal cycling 450↔120 °C.
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portional to the thermoelastic coefficient of stress (dσ/dT)el, when homogeneous
non-hardening plastic deformation sets in. In the real composite, the state of stress is not
homogeneous in the matrix. Plastic deformation will start in highly stressed regions and
extend from there for further cooling. In addition, strain hardening could raise the yield stress
until a dynamic equilibrium between hardening and recovery is established. This is reflected
in the slow deviation of the cooling CTE towards higher values. After cooling by another
60 K (to 200 °C), an almost constant difference in the CTEs between heating and cooling is
established. It can be speculated that at this temperature, the whole matrix experiences global
plastic yielding with negligible further strain hardening. In Section 7.2.5 (Figure 7.10) it was
shown that a significant increase in the average strain per cycle was found when thermal
cycles reached down to below 200 °C (∆T>250 °C), which is roughly the temperature at
which supposedly global plastic deformation is established.

Plastic yielding at low temperatures causes further deviations from the simulations: When the
heating curve starts from a lower internal stress at Tmin, the point of zero stress will be reached
at a lower temperature during re-heating. Moreover, inelastic deformation during the tensile
part of the heating curve (at intermediate temperatures) will be reduced because the stresses at
a given temperature are lower. The associated drop in CTE will be reduced. Conversely, in the
compressive regime, creep deformation will start earlier because the compressive stresses are
higher at a given temperature so that the terminal increase of CTE starts at lower tempera-
tures. All these effects are indeed found when the experimental heating CTE is compared to
the simulated one: The CTE-drop at intermediate temperatures is absent and the CTE-increase
is found at lower temperatures.

Loaded Cycles

When a small tensile load is applied perpendicular to the main reinforcement direction
(samples loaded in x-orientation or the slab-model in 1-direction), the effective matrix stress
can be reduced or increased, depending on whether the present thermally induced stresses are
tensile (at lower temperatures) or compressive (at higher temperatures). In those parts of the
cycle where the thermal mismatch stresses in the matrix are tensile, the application of a small
external load will tend to decrease the deviatoric stress and reduce the deviations from elastic
behavior. Tensile matrix stresses can only cause a reduction of the strain in 1-direction and the
external load will reduce this tendency. The opposite is true in the compressive parts of the
cycle. The deviatoric matrix stresses are increased by the tensile load and inelastic defor-
mation is enhanced. This happens at the high-temperature end of the heating cycle.

For the high-temperature cycles, the stresses that are commonly applied are small compared to
the maximum thermally induced stresses. In this case, the effect on the instantaneous CTE is
not very pronounced. The inelastic deformation that is present under unloaded thermal cycling
is only biased by the small external load. Experimentally, the cooling CTE curves were the
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same for load-free cycling and for an applied load of 8.5 MPa. The heating curves differed
only at the high-temperature end, where the CTE was marginally higher in the case of an
applied load. Furthermore, it was predicted and found experimentally that, in the loaded case,
the CTE-curves intersect at slightly lower temperatures. The experimentally determined and
the calculated CTE-evolution are compared to the results from load-free cycling (see the
previous section) in Figure 7.13.

The same considerations as above can be made for compressive loading. Now the external
compressive load increases deviatoric stresses where a tensile load would have decreased
them and vice-versa. The same applies to the CTEs: they are increased, where tensile loading
led to a decrease and vice-versa. The bias of the inelastic deformation acts just in the opposite
direction. Of course all these propositions are only valid for the slab-model simulations and
only for small stresses. For thermal cycles where the maximum temperature is lower and the
inelastic deformation processes are slower, the applied stresses are usually higher and they
exceed the internal stresses over a considerable part of the cycle. Such effects are discussed in
Section 7.3.3 for the standard TCC cycles.

Influence of Cycle Amplitude

In Section 5.3.2 it was shown that changing the cycle amplitude (at constant ramp rates and
Tmax) did not change the CTE during cooling. One can conclude that the stress state at the start
of the cooling ramp is always very similar. The heating CTEs, in contrast, were very different.
The point at which the curves crossed was shifted to higher temperatures with sinking ampli-
tudes. At a given temperature, the heating CTE was lower, the lower the amplitude of the
cycle was. Both phenomena, the invariant cooling CTE curves and the systematically reduced
heating CTEs, could be reproduced with the slab model. Simulations of thermal amplitudes of
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Figure 7.13: Comparison of instantaneous CTEs for loaded and unlaoded thermal cycles
450↔120 °C. a) Experimental data. b) Slab-model simulation.
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50, 100 and 300 K are shown in Figure 7.14. All cooling curves agree because the stress states
after the high-temperature dwell are essentially identical. Lower cycle amplitudes lead to
higher matrix stresses on heating. This increases the creep rate in the 2/3-plane at a given
temperature and thus the CTE in 1-direction is reduced. The state of zero stress is reached at
progressively higher temperatures and for further heating the internal stresses become
compressive. The higher the cycle amplitude is, the higher are the compressive internal
stresses at a given temperature. Higher compressive stresses lead to enhanced contraction in
the 2/3-plane and thus the expansion in 1-direction is increased. This effect will be enhanced
further when plastic yielding is induced for the high thermal amplitudes, as this shifts the
stresses on heating to even lower temperatures.

In summary, the cooling CTEs are identical because the stress state after the high-temperature
dwell is essentially the same. The heating CTEs are lower the lower the cycling amplitude is,
because low amplitudes lead to higher tensile and lower compressive internal stresses.

Influence of Orientation

Both the simulated and measured CTE curves are substantially different when the responses in
y- or 2-direction are considered. Nevertheless, for unloaded thermal cycling, the slab-model
simulations of the CTE in 1-direction and the 2/3-plane are closely related. We have seen that
deviations form the “elastic CTE” are caused mainly by inelastic deformation of the matrix
slab. The inelastic deformations in the principal directions are related via the conservation of
volume. A relative contraction in the 2/3-plane is always accompanied by an expansion in 1-
direction. For the CTE curves, this means that whenever α1,inst deviates from the correspond-
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Figure 7.14: Slab model simulations of thermal cycling creep under an external load of σ1=8.5 MPa.
Thermal cycles to 450 °C with a ramp rate of 50 K/min and upper and lower dwell times of 1 minute
were simulated for thermal excursions of 50, 100 and 300 K. a) matrix stress in 2/3-plane
(σm1=σ1=8.5 MPa) and b) instantaneous CTE for heating and cooling. The cooling curves all agree.
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ing elastic value, α2/3,inst will deviate in the opposite direction. This is illustrated in Figure
7.15, where experimental and simulated instantaneous CTEs in y-direction and the 2/3-plane
are shown for load-free cycling. The curves can be compared to the corresponding data in
Figure 7.12. Differences between the experimental results and the simulated data can be
explained in the same way: Inhomogeneous reinforcement distribution and non-homogeneous
deformation in the technical material tend to “smear out” pronounced changes as they are
predicted from the slab-model simulations. Plastic yielding during cooling to low tempera-
tures reduces the internal stresses for heating. This diminishes the inelastic deformation in the
tensile regime and the compressive regime is entered at lower temperatures, so that inelastic
deformation at the end of the heating half-cycle starts earlier.

It is interesting to note that the instantaneous CTE is elevated at the start of cooling. Obvi-
ously, the matrix stresses (in y-direction) are compressive in this regime and they are high
enough to cause negative creep deformation in y-direction. This leads to an acceleration of the
contraction in y-direction and so αy,inst is higher than for elastic response. This indicates that
the relaxation of the internal stresses during the high-temperature dwell is not as pronounced
as it is predicted from the slab-model simulations. The particular influence of this dwell time
is addressed in the next section.

Influence of High-Temperature Dwell

It was found experimentally (Section 5.3.2, Figure 5.20) that the duration of the high-
temperature dwell had no measurable effect on the instantaneous CTE curves. The major
differences can therefore be expected to be located directly in the strain evolution during the

100 200 300 400
10

15

20

25

30

α2/3,inst

αy,inst

composite, y-orientation,
unloaded, 450↔100 °C
instantaneous CTE

experimental
 CTE heat
 CTE cool

simulation
 CTE heat
 CTE cool
 CTE elastic

 

 in
st

an
ta

ne
ou

s 
C

TE
 α

in
st [

10
-6
/K

]

temperature T [°C]

Figure 7.15: Comparison of the instantaneous CTEs from experiments on y-oriented samples (thick
lines) and to CTEs in the 2/3-plane from a slab-model simulation (thin lines). Unloaded  thermal cycling
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high-temperature dwell. This strain evolution was shown in Figure 5.21 (and it is repeated in
Figure 7.17).

The loaded thermal cycles used in the above mentioned investigation were also simulated with
the slab model. The predictions for the evolution of the internals stresses and the instantane-
ous CTEs are shown in Figure 7.16a and b. In contrast to the experimental findings, the
simulated evolution of the cooling curves is significantly influenced by the dwell time; the
heating curves stay unaffected – just like in the experiments. The main difference between the
simulated and the measured instantaneous cooling CTE curves is found at the high tempera-
ture end of the cooling ramp. In the experiment, all cooling ramps start with the same high
CTEs. This suggests that the stress state at the beginning of the cooling ramp is not essentially
different for the three different cycles because no differences in the inelastic behavior were
found. The slab model predicts high CTEs at the start of the cooling ramp only for the cycle
without dwell time. In the other two cases, the internal matrix stresses relax towards an
equibiaxial state during the dwell time so that no high driving force for deformation is present
when cooling starts.

Better agreement between experiments and simulations is found for the strain evolution
during the high temperature dwell. The measured and the simulated curves have very similar
shape (see Figure 7.17). The slab model over-estimates the amount of strain a little, most
probably because of the well-known over-estimation of the internal stresses. The two experi-
mentally determined strain curves agree well with each other and this suggests that the initial
stress state was the same in both cases. This was also found in the slab model simulations.
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Figure 7.16: Slab-model simulations of the influence of the high temperature dwell time on the stress
and strain evolution with temperature. a) matrix stress in 2-direction for thermal cycles with dwell times
of 0, 1 and 6 minutes. b) calculated instantaneous CTE in 2-direction. Note that the dwell time affects
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We therefore have indications for two phenomena: 1) The stress state at the beginning of the
dwell time is always the same irrespective of the dwell time. This is substantiated by the slab
model simulations and by the agreement between the two measured strain curves during two
different dwell times. 2) The stress state at the end of the dwell time is also constant. This was
concluded from the agreement of the instantaneous CTEs at the beginning of the cooling
ramp. The slab model simulations contradict this and based on the current considerations no
explanation for this unexpected effect was found.

It was found in the experiments that the strain during the upper dwell time was larger than the
overall strain of the cycle. This indicates that part of the strain that is accumulated during the
dwell time is recovered in the following cycle. This can only happen in the tensile region,
because only there the internal matrix stress opposes the applied (compressive) stress so that
reverse deformation can happen. The slab model simulations did not predict such a behavior
most probably because no plastic deformation was considered. It was shown before both
experimentally and in simulations that the thermally induced stresses become high enough to
cause plastic deformation during the cooling ramp (see Section 7.2.5). Plastic flow in this
region would induce additional backward strain which is not considered in the simulations.

7.3.3 In Cycle Strain Evolution in Standard Cycles (150↔↔↔↔350 °C)

Unloaded Cycles

There are some basic differences between the standard cycles and the cycles to high tempera-
tures. In the standard cycles, much less evidence is found for inelastic deformation, which is
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Figure 7.17: Strain evolution during the high temperature dwell. a) comparison of measured and
simulated strain evolution with time during the high temperature dwell. b) simulated and measured
strains per cycle compared to the strains that are accumulated during the high temperature dwell. Note
that in the experiments, the strain during the dwell time was larger than the overall strain per cycle.
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due to the overall lower temperature: The strain-temperature hystereses are rather narrow, the
instantaneous CTEs exhibit lower variations and it takes many more cycles to achieve creep
shakedown than for high-temperature cycles. These basic findings are qualitatively reproduced
by the slab-model. In the simulations of standard cycling, only a small part of the internal
stress is relaxed in each cycle and it takes many more cycles until a steady stress-temperature-
hysteresis is achieved (creep shakedown). The initial internal stresses* that are present in the
material as a result of production and heat-treatment play now a more important role than for
the high-temperature cycles. At the beginning of the first cycle, the internal stresses in the slab
model were set to σm2/3 = 16.4 MPa and σf2/3 = -92.8 MPa. They were determined with the
slab model with a sequence that simulated production and heat treatment (see Section 3.3) and
the initial over-aging treatment which was part of every experiment (see Section 4.3.1).

In Figure 7.18a the evolution of the matrix stress σm2/3 in a slab-model simulation incorpo-
rating creep deformation is shown. Even in the very first cycle the deviations from a ther-
moelastic line can hardly be resolved within the line-width of the graph. It can be seen that
only a small fraction of the internal stress has been relaxed until the end of the cycle. A very
late cycle (No. 350) is also given. This cycle starts at a compressive stress of
σm2/3 = -16.0 MPa and ends at the same value, i.e. the cycle is stable. No hysteresis in the

                                                
* These internal stresses after cooling from production temperature are often called residual stresses because they
reside in the material at low temperature when no external load is applied and further inelastic deformation is
negligible.
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Figure 7.18: Simulated matrix stresses for standard 350↔150 °C cycles. a) The stress- temperature
curves show no resolvable hysteresis, when only creep is considered as a deformation
mechanism. Including plasticity in the simulation leads to immediate plastic shakedown so that
in the first half-cycle, a stable but narrow stress-temperature hysteresis is established. b)
Evolution of the matrix stress at the start of the cycle (350°C) for an increasing number of
cycles. Very low amounts of inelastic deformation lead to a progressive relaxation of internal
stresses during creep shakedown.



148 Chapter 7 - Discussion

stress-temperature curve can be resolved in this graph. The maximum calculated difference
between the stress on heating and on cooling is only 0.113 MPa at 310 °C. The simulation
results become substantially different when matrix plasticity is also taken into account. The
matrix yield stress is reached on cooling and for further decreasing temperature the internal
matrix stress follows the expanding yield surface (the yield surface expands due to sinking
temperature, not because of hardening). Because no hardening is considered, plastic shake-
down occurs in the very first cycle, i.e. all subsequent cycles are bound in tension by the same
yield stress and thus have the same stress evolution.

The evolution of the matrix stress at the beginning of each cycle is shown in Figure 7.18b.
When only creep deformation is considered, it takes around 200 cycles until a stable hysteresis
is reached. When plasticity is included, the cycles are stable right after the first cycle.

The calculated instantaneous CTEs corresponding to the stress evolutions in Figure 7.18 are
shown in Figure 7.19. The first cycle for the simulation with only creep deformation con-
sidered exhibits slight deviations of the CTE from thermo-elastic behavior (Figure 7.19a ).
During heating, the CTE is reduced at high temperature, because the matrix slab relaxes under
tension in the 2/3-plane. It shows a relative contraction normal to the direction of the internal
stresses and so the CTE in 1-direction is reduced. On cooling, the CTE is enhanced in the
same region for the same reason. For the stabilized cycle, no deviation from thermoelastic
behavior can be resolved in the graph. For the simulation including plasticity (Figure 7.18b),
the instantaneous cooling-CTE jumps to high values when the yield stress is reached at low
temperatures. Again, the matrix slab yields under tensile stresses in the 2/3-plane and thus
contracts in the 1-direction. On re-heating, the compressive stresses at the high-temperature
end become high enough to cause compressive creep relaxation in the 2/3-plane and enhanced
expansivity in 1-direction. During the high-temperature dwell, the matrix stress relaxes further
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Figure 7.19: Evolution of the Instantaneous CTE corresponding to the stress evolutions from Figure
7.18. a) Simulation with creep deformation only, b) simulation including plasticity.
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and there is still some relaxation going on when the cooling ramp is started. It must be noted
that the distinct bend in the CTE-curves at 250 °C is due to the discretization of the tempera-
ture-dependent matrix-CTE (see Tables 6.1 and 6.2) and no result of inelastic deformation.

Experimentally determined instantaneous CTEs for load-free standard cycles were shown in
Section 5.3.1, Figure 5.14. They are compared to CTE-curves for high-temperature cycles in
Figure 7.20. The measured curves show more evidence of inelastic deformation than expected
from the above simulations. Nevertheless, the discussion of these curves is started with elastic
behavior.

The heating CTE curves of the standard and high-temperature cycles agree at low tempera-
tures. Obviously, the response of the composite is thermo-elastic for both cycles in this low-
temperature region. On heating, the CTE curve for the standard cycle starts to rise at lower
temperatures. The region where the heating and cooling CTEs are equal is also shifted to
lower temperatures and it extends over a range of 50 K, whereas for the high-temperature
cycles a clearly defined intersection of the curves was found. If the composite has equal CTEs
on heating and cooling over a relatively wide temperature range of temperature, it can be
concluded that no temperature dependent inelastic processes are involved in this region.
Otherwise, the CTE would deviate in different directions for heating and cooling. Again, at
high temperatures, the heating CTE rises, indicating creep relaxation under compression in the
main reinforcement direction. The increase, however, is by far lower than for the high-tem-
perature cycle. The temperature at which the average internal stresses on heating become zero
lies supposedly in the middle between 250 and 290 °C. This can be concluded from the above
finding that in this region, the composite response is thermo-elastic and from the fact that the
CTE rises at higher temperatures, which indicates that the stresses in the matrix are com-
pressive.
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The cooling curves also show substantial differences between standard and high-temperature
cycles – especially at low temperatures, where plastic yielding is expected. The cooling CTE,
for example, starts to deviate from the heating CTE at lower temperatures. Moreover, it is not
risen as much above the heating CTE than for the high-temperature cycles. This indicates that
plasticity is less prominent and possibly confined to regions of high stresses (e.g. around fiber
ends). It is also possible that the yield stress is higher for the standard cycles, because recovery
of the microstructure at the high-temperature end of the cycle is less pronounced.

The agreement between measured and simulated CTEs is not as good as for high-temperature
cycles. The measured stress-temperature and strain-temperature hystereses show much more
evidence for inelastic deformation than the slab-model predicts. This is probably due to the
enforced homogeneous deformation in the model.

For high-temperature cycles, where the stresses are high and the thermal activation is suffi-
cient, inelastic deformation can be assumed to take place in the whole composite matrix and
the homogeneous deformation of the matrix in the slab-model seems to be a good approxima-
tion for this. In the real composite, the overall stresses are lower. Global inelastic deformation
cannot be expected. One can speculate that instead, the inelastic strains will tend to be more
localized because of stress concentrations at reinforcement angularities. Although these in-
elastic strains will be confined to a low fraction of volume, they have a big effect on the
macroscopic behavior because they widen up the thermal strain hysteresis. As before, the
biggest part of the inelastic strains cancel out over the cycle, so that the accumulated net
macroscopic strain is comparatively low. This is found in both the simulation and for the real
composite.

Loaded Cycles

The experimentally determined instantaneous CTEs for loaded cycles differed from those for
unloaded cycles only at high temperatures: loaded heating curves deviated from those for
load-free cycling above 270 °C for tension and above 290 °C for compression. Tensile loading
led to an increase in the heating CTE, compressive loading to a decrease. The loaded cooling
curves differed from the unloaded ones only within the first 20 to 30 K of cooling. The rela-
tive difference in the CTEs between loaded and unloaded cycles is larger for the standard
cycles than for the high-temperature cycles. This is due to the applied stresses which in the
case of the standard cycles are comparable in magnitude to the thermoelastically induced
stresses.

Simulated loaded cycles displayed the same principal behavior but again with much less
inelastic strains involved. For tensile loading, the temperature, where the equivalent stress
becomes zero (hydrostatic stress state), shifts to lower and for compressive loading to higher
temperatures. This corresponds well to the experimentally found difference in the temperature,
where the loaded heating CTE curves deviate form the unloaded ones. However, the point
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where the hydrostatic stress state is reached is predicted to lie at around 325 °C. In the
experiments it lies certainly below 280 °C – at least for heating.

Summary of the In-Cycle Strain Evolution for Standard Cycles

In summary, it can be said that despite the low thermal amplitude and temperature, creep and
time-independent plasticity both play a considerable role during thermal cycling. From the
characteristic evolution of the instantaneous CTE it can be seen that the stresses in the matrix
are compressive at high temperatures and tensile at low temperatures. A state of zero internal
stress is estimated to be between 250 and 290 °C for heating, which is relatively low
compared to the simulations.

The wide strain hysteresis (big differences in the instantaneous heating and cooling CTEs)
suggest that a considerable amount of inelastic deformation is induced by thermal cycling.
Plasticity occurs at the low temperature end of the cooling ramp. The low strains per cycle,
however, indicate that the strains are localized and do not lead to strong global inelastic
deformation.

7.3.4 Summary of Discussion Regarding the In-Cycle Strain
Evolution

It was found that presenting the in cycle strain evolution in the form of instantaneous CTE
curves is a good way to visualize the sometimes subtle differences in deformation behavior for
various test conditions. The approach works well for both experimental and simulated results.

Qualitative agreement between simulated and experimental instantaneous CTE curves was
found throughout so that the simulations could be used for the interpretation of the measure-
ments. Especially the comparison of simulations with inelastic deformation to simulated
thermoelastic instantaneous CTEs (for purely elastically accommodated misfit) helped to set
up some simple rules for the interpretation of instantaneous CTE curves:

1) The instantaneous CTE at a given temperature is representative for the rate of composite
deformation and thus for the internal equivalent matrix stress.

2) When the instantaneous CTE curves for heating and cooling cross each other (instead of
just coinciding), the matrix stresses have the same amount but different signs during heating
and cooling. The internal stresses are identical in amount and sign when the curves coincide
over an extended temperature range.

3) The sign of CTE deviations from the thermoelastic values is given by a simple equation
which depends on the sign of the temperature change (heating or cooling), the sign of the
average hydrostatic matrix stress (tension or compression) and by the orientation of CTE
measurement relative to the reinforcement texture.
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With the aid of these rules, the in-cycle strain evolution could be successfully explained in
most cases. Pronounced differences between simulated and measured CTEs were found at the
low temperature end of the cooling cycles. These were explained by the presence of plastic
deformation. The temperatures at which this happened agreed well with the analysis of the
amplitude influence on TCC rates from Section 7.2.5.

For standard thermal cycles (low thermal amplitudes and low Tmax, 350↔150 °C), the
measured strain-temperature hysteresis showed much more evidence of inelastic strains than
the simulations predicted. This was explained with strong localization of inelastic strains e.g.
at reinforcement angularities.

The external stresses that were usually applied were low enough so that they did not influence
the instantaneous CTEs strongly. This was found both experimentally and in the simulations.
Analysis of the in-cycle strain evolution can therefore be also accomplished with data from
unloaded cycles. The orientational dependence of the instantaneous CTE curves was also
successfully predicted by the slab model. This again confirms the presence and nature of a
preferential reinforcement orientation, and it shows that the slab model reflected this texture
correctly.

7.4 Stress Cycling Creep
Within this section, a simple qualitative scheme is proposed to explain the experimentally
found stress cycling creep behavior that was presented in Chapter 5. This will mainly give
information on the processes of load transfer and damage and how these are linked to the
amount of total strain.

The literature on stress cycling creep (see Section 2.3) focused mainly on the question if
isothermal creep was accelerated (CCA) or retarded (CCR) due to comparatively fast cyclic
loading. In most cases CCA occurs at rather low temperatures and high stresses, while CCR is
mostly found at high temperatures and low stresses (Lee and Nam (1988)). All stress cycling
creep investigations on MMCs have in common that short cycle times were used. They do not
consider effects of load transfer and strain energy storage in the reinforcement, probably
because these are believed to gain importance only at very low frequencies with long relaxa-
tion times. No investigations of stress cycling creep on MMCs with long recovery times, like
it was done in this work, have been found in literature.

The stress cycling creep experiments in this work were conducted with a fixed forward strain
at creep load, followed by a 6-hour period of recovery at almost zero external stress. It was
found that the amount of recovered strain per cycle increased with increasing total strain up to
an almost constant value. For high total strains, the amount of back creep decreased only
slightly.
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7.4.1 General Considerations
In this sub-section, a scheme for the strain evolution under stress cycling creep conditions is
lined out.

Recoverable and Non Recoverable Strain

The basic assumption is that the total accumulated strain can be split up in a recoverable and a
non recoverable part. The same underlying assumption has been made by Dlouhy and Eggeler
in their work (see e.g. Dlouhy and Eggeler (1994)) and by Kimmerle and co-workers
(Kimmerle et al. (1986, Kimmerle et al. (1987)). The recoverable part is the one that stores
elastic strain energy in the reinforcement while the non-recoverable strain does not. The nature
of non-recoverable strain will be discussed later on. These two strain contributions have been
previously called “misfit-generating” and “non-misfit-generating”. Together with the elastic
contribution, the forward strain increment in a stress cycling creep test can be expressed as

rblnrbl
anelelinelel

f −∆+∆++=∆+∆=∆ εεεεεεε , (7-3)

where ∆εel is the instantaneous elastic strain on loading which is fully recovered when the load
is removed. ∆εrbl is the inelastic but recoverable and ∆εn-rbl is the non recoverable strain
increment. The backward strain upon load removal can be expressed as

rec
el

b εεε ∆+∆=∆ , (7-4)

where ∆εrec is the amount of inelastic backflow* strain during the time given for recovery. All
strain quantities are defined relative to the state before the load change. It shall be noted that,
unlike in the scheme proposed by Kimmerle et al. (see above), ∆εrbl and ∆εn-rbl occur simul-
taneously and not successively. For the moment, it shall be assumed that no damage occurs in
the reinforcement or the matrix. The recoverable strain increment will then rise with
increasing forward strain increment. The fraction of non-recoverable strain will depend on the
underlying deformation process.

Possible Deformation Processes for Non Recoverable Strain

One such process could for example be plastic deformation in fiber free zones (as they are
present in the material under investigation). Strain tends to concentrate in these weak regions
but it is constrained by the surrounding reinforced material. The easily deforming fiber free
zones cause a strain misfit and thus stress concentration in neighboring reinforced regions.
This in turn causes highly localized (not global) reinforcement damage so that a contiguous

                                                
* In the literature regarding the material response after creep unloading, the terms “backflow”, “recovery”, and
“anelasticity” are often used interchangeably. In this discussion, the term “recovery” or alternatively “back creep”
is preferred because the term “backflow” suggests the presence of time-independent plasticity and the term
“anelasticity” is more frequently used in conjunction with short-term behavior such as damping.
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network of highly deformed zones is formed. This is schematically illustrated in Figure 7.21a.
According to this idea, the recoverable and non-recoverable parts of the total strain are located
in separate regions of the specimen volume. Apart from the strain accommodation problems,
deformations in the reinforced and unreinforced regions are independent of each other. The
non recoverable strain process takes part in the overall straining of the composite by a certain
fraction and if no time dependent processes are involved, the non recoverable strain is propor-
tional to the total creep strain. Under the conditions used in this work, time dependent (creep)
deformation definitely plays a role. During the load transfer process it will therefore take
progressively more time to strain the reinforced regions to larger strains. This increases the
relative share of the total strain for the unreinforced regions.

The evolution of recoverable and non-recoverable creep is visualized in the curves on the right
hand side of Figure 7.21. The lower curve shows the amount of recoverable strain as a
function of the accumulated inelastic strain. The upper line depicts the summation of recover-
able and non-recoverable creep. these two contributions add up to the total inelastic strain so
that a straight line with a slope of one is obtained.

Another process that can accumulate non recoverable creep is reinforcement relaxation driven
by interface diffusion (Rösler et al. (1991)). This process was proposed as a possible source of
non-recoverable strain by Dlouhy and Eggeler (Dlouhy and Eggeler (1994)). The matrix stress
state around a fiber is different near the fiber end and midway along its length. The resulting
gradient in stress perpendicular to the fiber (inclusion) surface gives rise to diffusional mass
transport between these regions and this relaxes the strain misfit*. This diffusional flow is
proportional to the stress gradient which is given by the load transfer process and depends
non-linearly on the misfit strain. The misfit strain represents the amount of recoverable
deformation and the misfit reduction by diffusional flow represents the non-recoverable strain.
Their relative contribution depends on many parameters, the most important ones being those
that control the diffusional relaxation process (temperature, reinforcement size, matrix stress
state etc.). The share of non-recoverable strain will again increase with increasing total strain.

A third possibility is that non-recoverable creep occurs by global fracture of fibers. This
process is not initiated before a critical misfit strain is reached. For progressively increasing
strain, more and more fibers break according to the fracture statistics and the share of non
recoverable creep increases. For high strains, the amount of recoverable creep can be expected
to decrease because the load carrying ability of the reinforcement decreases. This process is
not likely to occur alone, because non-recoverable creep is already found at very low forward
strain increments. It rather provides an upper limit for the recoverable strain.

                                                
* In the extreme case that the diffusional relaxation is fast enough to balance matrix creep (small particles, high
temperatures), load transfer can no longer take place and the reinforcement does no longer contribute to
strengthening.
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It must be noted here that the three processes mentioned above differ in their contribution
during the relaxation phases: While deformation in fiber free regions and fiber fracture cease
as soon as the external load is removed, diffusional relaxation around fibers can still take
place as long as there is a strain misfit between the phases, i.e. also during the recovery period.
The three processes also differ in their dependence on the internal stresses: Fiber fracture and
diffusional relaxation of the fibers depend directly on the strain misfit between the matrix and
the fibers. Deformation in the separate fiber free regions, however, depends on the total accu-
mulated strain. It therefore depends only indirectly on the fiber-matrix misfit in reinforced
regions.

inelastic strain

st
ra

in
 c

on
tri

bu
tio

n

εrbl

εn-rbl

re
in

fo
rc

ed

a)

po
or

ly
re

in
fo

rc
ed

da
m

ag
e

rblnrblinel −+= εεε
Figure 7.21: Possible
mechanisms for
non-recoverable creep.

a) Deformation of
fiber free regions.

The share of non-recover-
able strain increases with
increasing inelastic strain
because strain concen-
trates in unreinforced
regions.

inelastic strain

st
ra

in
 c

on
tri

bu
tio

n

εrbl

εn-rbldiffusional
flow of
matterdesired

matrix shape
without the

reinforcement

b)

rigid
reinforcement

b) diffusional relaxation of
reinforcement misfit strain,
driven by a gradient in the
normal stress along the
reinforcement interface.

Large misfit strains accele-
rate relaxation and so the
share of εn-rbl increases
with increasing inelastic
strain.

inelastic strain

st
ra

in
 c

on
tri

bu
tio

n

εrbl

εn-rbl

c)

el
as

tic
re

in
fo

rc
em

en
t c) Global fiber fracture,

starting at a critical misfit
strain.

At low total strains (no
fractures), all strain is
recoverable. At very high
strains, the amount of re-
coverable strain decreases
because the load carrying
ability of the reinforcement
is reduced.



156 Chapter 7 - Discussion

Evolution of Recoverable and Non Recoverable Strain with Total Strain

It shall now be discussed how the recoverable and non recoverable strain together with the
recovered strain interact to yield the overall strain evolution during stress cycling creep. The
evolution of the recoverable strain for the first two load changes is shown schematically in
Figure 7.22a. The elastic strain contribution is omitted in this graph.

Figure 7.22a : During the first forward creep segment, both the recoverable and non-re-
coverable strains increase. For simplicity, it is assumed for the moment that the recoverable
and non-recoverable strain contributions are proportional to each other so that

inel
rblrbl k εε ∆⋅=∆ (7-5)

and

( ) inel
rblrbln k εε ∆⋅−=∆ − 1 , (7-6)

with krbl being a constant smaller than unity. As seen above, this is most probably not the case
in a real composite but the basics of strain recovery under stress cycling creep conditions can
still be demonstrated.

Figure 7.22a : When the load is removed, the material creeps backwards. During this back-
ward creep, only the recoverable strain is reduced – the non recoverable strain stays constant.

Figure 7.22a : Upon reapplying the load, the recoverable and non-recoverable strains
increase again according to the factor krbl. At the end of the second loading segment, the
recoverable strain is lower than it would have been if the total strain had been accumulated
without the interim recovery. During the second recovery phase, the recoverable strain is
reduced again, but now by a larger amount than during the first recovery time. The reason for
this is given in the following:

The amount of recovered strain is determined by the time given for recovery ∆t and by the
driving force for recovery. For the investigated material, the elastic strain mismatch between
the fibers and the matrix (the recoverable strain) suggests itself as a probable driving force for
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back creep. The strain recovery therefore depends on the amount of recoverable strain. This is
shown schematically in Figure 7.22b for a given ∆t. It is important that the strain recovery
increases with increasing amount of recoverable strain (i.e. with increasing load transfer). The
dependencies can be expressed as:

rblrecrec k εε ⋅−=∆ (7-7)

Here, krec is a factor which increases with ∆t from zero to 1 as ∆t goes to infinity. For a given
∆t, krec increases with increasing εrbl.

),( rblrec tfk ε∆= (7-8)

The evolution of recoverable and non recoverable strain for further loading and unloading
segments, is shown in Figure 7.23a.

The amount of back creep, which is shown in 7.23c), rises cycle by cycle as the recoverable
strain gets bigger. The recoverable strain asymptotically approaches a value where the back
creep tendency is large enough to cause recovery which exactly balances the previous
increment of recoverable creep:

0),()( =∆∆+∆∆ rblrec
inel

rbl t εεεε (7-9)

This is why the increase in recovery seems to stop after a number of cycles. The rate at which
the equilibrium is approached (in terms of strain increment per cycle) and the amount of
inelastic strain accumulated during the cycles depends on the amount of forward creep strain
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plotted against the total accumulated inelastic strain. The recoverable strain after a forward
creep increment approaches a value where the build-up of recoverable strain in the loaded
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and on the time given for recovery. With large forward strain increments, the maximum load
transfer is reached at larger strains than with smaller forward strain increments. The final
degree of load transfer is also higher the larger the forward strain increment is.

Up to now, it has not been considered that the reinforcement can have a limited capacity to
store recoverable strain, i.e. the load transfer to the reinforcement is somehow limited. The
consequences of such a limit for stress cycling creep experiments are shown in Figure 7.24. It
is the same schematic as in Figure 7.23 but now the recoverable strain is limited to an arbi-
trarily chosen maximum value. When this value is reached during stress cycling creep, the
amount of back creep becomes constant immediately, irrespective of the forward strain incre-
ment. This happens at a total strain which lies above the point of maximum load transfer for
uninterrupted deformation.

Two essential points can be extracted from the above considerations:

1) For stress cycling creep experiments like they were done in this work (fixed amount of
forward strain, fixed recovery time), the amount of back-creep becomes constant sooner or
later. Either a limiting recovery strain is approached asymptotically which balances the
increase in recoverable strain during loaded creep. Or, for larger forward strain increments, the
maximum load carrying capacity in the reinforcement is reached.

2) The evolution of back creep in stress cycling creep experiments cannot provide a measure
for load transfer under static creep conditions. The total strain at which a constant amount of
back creep is reached are not correlated to the conditions under static creep.
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reinforcement damage) is limited at large strains. The corresponding back-creep becomes
constant in this case, irrespective of the prior forward creep strain. Note that the point at
which the back-creep becomes constant is always found at larger strains than the point of
maximum load transfer for static creep.
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The concept that was developed here will be utilized in the following to interpret the stress
cycling creep results from Section 5.3.3.

7.4.2 Interpretation of Experiments
Before the amount of observed back creep is looked at in more detail, its origin is to be clari-
fied.

Origin of Back Creep

As it was already pointed out above, the elastic strain mismatch between the matrix and the
fibers suggests itself as a probable driving force for back creep for the material under investi-
gation. However, comparatively large amounts of creep recovery after unloading have also
been observed in pure polycrystalline metals (e.g. Gibeling and Nix (1981), Dobson and
Greenwood (1996)). It has been commonly attributed to the presence of internal “dislocation
back stresses” that act on mobile dislocations (un-bowing of dislocations, recovery of pile-
ups, subgrain boundary migration). For example, the anelastic backflow strain for pure poly-
crystalline aluminum at 400 °C and at very low stresses has been reported to be 5 times the
elastic strain at maximum (Gibeling and Nix (1981)). The amounts of back-creep that were
observed on the composite material in this work were even larger than 5 times the elastic
strain. Within six hours, strains above 0.6% could be recovered upon unloading from a stress
of –63 MPa. This amounts to ten times the expected elastic strain at this temperature, based on
dynamic measurements of the Young’s modulus of the composite. The amount of backflow in
our study is therefore substantially bigger and occurs over a much larger time-scale than
“dislocation back-stress” driven back creep. It can be concluded that the elastic strain energy
stored in the reinforcement provides a vital and maybe the major driving force for back creep.

Saturation of Back Creep

In Chapter 5 it was shown that back creep became constant after a certain amount of strain had
accumulated. It was shown above that this can have two reasons: 1) The amount of recover-
able strain becomes such that the amount of back creep during the recovery phase exactly
balances the increase in recoverable strain during the subsequent loading phase. 2) The
maximum load carrying capacity of the reinforcement is reached and therefore the recoverable
strain is limited to a certain value. In the first case the constant back creep strain will depend
on the forward strain increment. In the second case, it is expected that the amount of back-
creep becomes constant and that additionally its amount is independent of the forward strain
increment. In the experiments, the back creep strain saturated to more or less constant values
but these values were different for different forward strain increments. No limit in the back
creep strain was found, even not for forward creep strain increments as large as 3%. This
suggests that at least up to this value, the load carrying capacity of the reinforcement is not
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reached. Instead, the saturation seems to be due to the above mentioned balancing between the
recovered strain and the increment of the recoverable strain.

A forward strain increment of up to 3% without reaching the load carrying limit of the rein-
forcement seems relatively large. The average fracture strain of the Saffil fibers is around
0.7% in tension (see Table 3.2) or maybe a little higher if the elastic modulus decreases with
increasing temperature. Even under compressive loading, where the fibers oriented perpen-
dicular to the loading axis experience a tensile strain which is only half of the external
compressive strain, the applied strain at which fibers will start to fracture amounts to only
-1.4% (iso-strain condition assumed). This is still half of the largest forward strain increment
that was applied and at which still a further increase in back creep was observed. This means
that at least half of the total strain was contributed by non-recoverable strain. Of course, all the
above considerations are only rough estimates and, taking into account the simplicity of the
assumptions, it is clear that the general statements cannot be quantitative. Yet, some important
conclusion can be drawn: 1) During creep deformation, the contribution of non-recoverable
strain is at least comparable in size to the recoverable strain contribution. 2) The global load
carrying limit of the reinforcement is not reached below strains of 3% (behavior for larger
strains has not been verified experimentally). This can be concluded from the absence of a
common back creep limit for different forward creep strains. This indicates that fiber fracture
is probably no major source of non-recoverable creep. For static isothermal creep this means
that load transfer to the fibers is not complete or limited in any way up to comparatively high
strains – strains that are higher than the strains at which the minimum strain rate is observed.

It must be noted that the above conclusions were drawn based on compressive cyclic creep
experiments with a creep stress of –63 MPa. For smaller absolute stresses, absolute and rela-
tive quantities may change but the above reasoning predicts no changes in the qualitative
behavior.

Nature of Non-Recoverable Creep

In the introductory part of this section, three possible mechanisms have been proposed by
which non-recoverable strain could accumulate: Deformation in fiber free zones, diffusional
relaxation of fiber stresses and fiber fracture. It was concluded in the previous subsection that
fiber fracture is probably no major source of non-recoverable creep.

The remaining two mechanisms represent two fundamentally different types of deformation
with respect to their time dependence. In the case of diffusional relaxation of fiber stresses, the
time dependence of non-recoverable strain is a function of the stress gradient along the fiber
interface and thus a function of the momentary recoverable strain. The creep rate for this
mechanism does depend on the elastic strain misfit between the fibers and the surrounding
matrix. The deformation in fiber free zones is mainly dominated by matrix creep. It takes
place in separate regions of the material and apart from strain accommodation problems, its
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deformation is independent of the deformation of the fiber reinforced regions. This also means
that the elastic strain mismatch between the fibers and the matrix in the reinforced regions
does not influence non recoverable creep.

For the material under investigation, it is observed that the rate of back-creep does not depend
on the rate of forward creep. This is shown in Figure 7.25, where two loading / unloading
cycles for intermediate and high total strains are compared. In both cycles, the recovery seg-
ments are virtually identical and therefore the internal stresses are the same. The forward
creep segments, however, differ substantially in duration. At the smaller total strain, the for-
ward strain rate is much higher than for the cycle at the large strain. This is a clear indication
that at least part of the forward strain occurs at a rate which does not depend on the reinforce-
ment stress state. Deformation of fiber free zones therefore seems to be a more probable
source of non-recoverable creep than other processes which are associated with the reinforce-
ment stress. Besides, the lack of a time dependence could also be made out in another inter-
esting feature: When the specimen was pre-deformed by various types of experiments, the
subsequent stress cycling creep tests showed almost identical amounts of back creep. It did not
matter whether the pre-deformation was applied slowly (e.g. by stress cycling creep) or fast
(e.g. by compressive deformation at room temperature): The subsequent back creep was
always the same. This also suggests that only the total strain but not the time needed to
accumulate it controls the evolution of recoverable creep.

The idea that fiber free zones are a major source of non recoverable creep is additionally
substantiated by microscopical observations of strain localization in these zones (see Figure
5.30).
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Notes on Reinforcement Damage

It was stated above that reinforcement damage is probably no major source of non-recoverable
creep. If during tertiary creep the reinforcement gets massively damaged, one would expect
that the ability to store elastic strain energy would decrease, and so the tendency for back-
creep should be reduced. The experimental findings in cyclic creep tests provide no strong
evidence for this. The recovery strain showed only a very moderate decrease with increasing
total creep strain, even when the specimen was pre-deformed to large strains (see Figure 5.22).
Even after a supposedly highly damaging room temperature compression test up to -2%, the
specimen showed no pronounced reduction of its ability to restore creep strain. A very
straightforward explanation for this would be that the reinforcement just does not get damaged
globally. Tertiary creep would then be caused exclusively by damage in fiber free zones. It has
to be clarified then, where the small but still measurable decrease of back creep comes from.

It was also stated above that the deformation in fiber free regions is most probably constrained
by surrounding reinforced material. The strain concentration in the fiber free regions causes
localized (not global) reinforcement damage in their vicinity and especially in regions that link
up fiber free zones. Under these conditions, reinforcement damage is related to the total
amount of non-recoverable strain εn-rbl. This reasoning leads to the surprising result that the
extent of damage is high when the share of recoverable strain is small.

Reinforcement damage in the form of fiber fractures was indeed found in the material. The
fragmentation of fibers was, however, not pronounced, and it was not obvious, whether the
concentration of fiber fractures was at all higher than in the untested material. Similar findings
have been reported in Section 5.5.2 for TCC tests. Dedicated image analyses for damage
assessment have not been conducted in this work. Evidence of reinforcement damage under
compression in the form of fiber fractures was given by Wolf (1997). He investigated the
orientational distribution of fiber cracks with respect to the loading axes after compressive
creep loading to -1,5% at 350 °C and various stresses. He found a significantly higher amount
of fractures in those fibers that were oriented perpendicular to the loading direction.

From the stress cycling creep experiments, it cannot be determined when reinforcement
damage sets in. The fact that a decrease in back creep occurs only at large strains does not
necessarily mean that damage does not occur at small strains already. Recently, Bidlingmaier
et al. (1999) observed very early initiation of damage in the form of fiber fractures at strains
only slightly above the elastic loading strain, which was observed with acoustic emission
techniques on a Pb/Al2O3f model composite.

In summary it can be said that 1) reinforcement damage does take place and it is probably
mainly dependent on the amount of non-recoverable strain. 2) Strain accommodation prob-
lems are likely to cause reinforcement damage in zones adjacent to the fiber-free regions. It is
the accumulation of non-recoverable creep that drives this damage process. 3) Global
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damaging of the reinforcement by loading it up to its maximum load carrying capacity is
probably no governing damage mechanism.

7.4.3 Evolution of Stress Cycling Creep Rate
as Compared to the Static Case

Now the consequences of the above findings for the time dependent strain and strain rate
evolution shall be discussed. It was shown in Chapter 5 that introducing recovery phases
during creep enhances the creep rates in the loaded periods (see Section 5.3.3). This can also
be explained on the basis of the previously proposed scheme. It was shown that the amount of
recoverable strain is reduced by the recovery phases compared to the case of static creep (see
Figure 7.23). This has consequences for the creep rates: Large recoverable strains are tanta-
mount to a high degree of load transfer from the matrix to the fibers. This load transfer is,
however, believed to control the initial decrease of the creep rate. Reducing the load transfer
by introducing recovery phases does therefore increase the creep rate. Moreover, the point of
maximum load transfer may be shifted to larger total strains under stress cycling conditions.

It was also shown that recovery promotes non-recoverable creep, which occurs probably by
deformation of fiber-free zones and reinforcement damage around them. The degree of
weakening / damage is supposedly correlated to the amount of accumulated non-recoverable
creep. Stress cycling creep does therefore not only enhance the creep rate in the initial stage
but also the degree of damage at larger strains. This is schematically illustrated in Figure 7.26.

When the loaded phases of the stress cycling creep curves are concatenated and compared to
the isothermal creep curve (strain rate vs. strain), it was seen that for both types of experiment
the principal evolution of strain rate with strain was the same (around 1.2%). The strain to
minimum strain rate, was also apparently the same. This is surprising since the evolution of
load-transfer with strain is different for the two tests. A possible reason for this finding is that
the joint enhancement of creep rate by reduced load transfer and increased damage leaves the
point of minimum strain rate apparently unaltered (see Figure 7.26d). This can only happen
when damage starts at very low creep strains, so that the initial transient is immediately
followed by tertiary creep without a pronounced steady state creep regime. This is also
substantiated by the lack of a steady state in the experimentally determined creep curves.

The creep enhancement due to repeated unloading as it was found here cannot be compared
directly to the CCA behavior as it is commonly discussed in literature. The used loading/
recovery cycle was not symmetrical and the time for recovery was unusually large. If the stress
cycling creep rates were calculated from the strain per cycle with a cycle time that includes the
recovery phase, extremely low creep rates would be obtained. It can be speculated that reduc-
tion of the recovery time together with very low forward strain increments (i.e. low stresses
and short loading times) could lead to a saturation of recoverable creep to very low values. In
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this case, a high amount of creep acceleration is expected – maybe high enough to over-com-
pensate the reduction in creep rate due to the off-load periods.
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7.4.4 Summary of Discussion Regarding the Stress Cycling Creep
Behavior

The basis of the interpretation of the stress cycling creep experiments is the assumption that
the inelastic strain can be split up into a recoverable and a non-recoverable part. The following
conclusions were drawn based on the evaluation of the stress cycling creep experiments.

1) A major driving force for back creep is the elastic strain energy which is stored in the
fibers. It is built up by recoverable strain. Back creep in the composite material was shown to
be larger than typical anelastic strains for pure metals and alloys.

2) A substantial part of the forward creep strain cannot be recovered.

3) A maximum load carrying capacity of the fibers is not reached, not even for large forward
strains. This was verified for compressive strains up to –3%. Based on this one can speculate
that global reinforcement damage (fiber fragmentation, debonding etc.) does not take place
because this should limit the load carrying capacity.

4) Among three proposed mechanisms for non recoverable creep, deformation in fiber free
zones was found to be the most probable one. Non recoverable creep by global reinforcement
damage was ruled out in point 3). Diffusional relaxation around the fibers could be ruled out
because non recoverable creep occurred at a rate which did not depend on the elastic strain
mismatch between the fibers and the matrix. Additionally, metallographic investigations
revealed evidence of strain localization in fiber free regions.

5) Reinforcement damage does nevertheless occur and it is probably located around and
between fiber free regions.

6) Cyclic recovery accelerates creep under load by a) reducing the amount of load transfer
from the matrix to the fibers and b) by increasing damage caused by strain concentration.

7.5 Thermal Cycling Creep Curves
Up to now we have discussed the minimum creep rates during thermal cycling creep, the
effect of the thermal amplitude and the stress and strain evolution within single thermal
cycles. In this Section, the overall envelope of the thermal cycling creep curve will be looked
at.

It is widely accepted that the form of an isothermal creep curve of a composite is given essen-
tially by the two counteracting processes of load transfer (dominating the primary stage and
damage (dominating the tertiary stage). From the above discussion of stress cycling creep
experiments it is known that “damage” does not necessarily mean “global damage of the
whole reinforcement”. Instead, weakening of the material in, around and in between fiber free
zones can be expected to contribute largely to tertiary creep. In the case of isothermal stress
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cycling creep and isothermal static creep, the creep curves had almost identical shape. It was
shown previously in this work that the form of the thermal cycling creep curve for standard
cycles (150↔350 °C) was also not very much different from isothermal creep curves (apart
from the higher creep rate, of course). One can therefore speculate with some degree of confi-
dence that the same processes of load-transfer and damage do determine the creep curves for
the three types of tests. The relative contributions of load transfer and damage effects seem to
be similar in all these cases. The TCC experiments with high temperature cycles have differ-
ent creep curves. The cyclically induced plasticity leads to very quick load transfer and there-
fore to much shorter transients. Moreover, the experiments have been conducted with
incrementally increased stresses so that no long-term creep curve at a certain stress was
determined.

These two processes of load transfer and damage and the effect of stress, sign of loading and
reinforcement orientation on them shall be discussed here. Many creep curves under TCC
conditions have been presented in this work. As they have been obtained under most different
conditions, they are scattered throughout the results chapter. To ease discussion, these creep
curves will be brought together and presented so that they can be compared to each other.
Then, the phenomenological influence of various testing parameters on their shape will
become distinguishable.

Next, the insights that were gained from the stress cycling creep experiments will be used
together with general considerations for load transfer and damage evolution in order to obtain
a final scheme with which the form of TCC curves can be explained.

7.5.1 Characteristics of Creep Curves
In the following Figure 7.27, a compilation of isothermal and thermal cycling creep curves is
given. They are presented in order to illustrate the effect of stress, sign of loading and
reinforcement orientation on their shape. Part of the isothermal curves were taken from
Bidlingmaier’s work as cited in Section 3.5 (Bidlingmaier et al. (1996a)). These are displayed
as dotted lines. The rest of the isothermal and TCC curves were taken from the present
experimental work (solid lines).

For isothermal creep, the tensile creep curves had the typical shape with an initial transient
regime, an extended secondary regime and a pronounced tertiary regime. A weak dependence
of the strain ε to min to minimum strain rate. on the applied stress was detected. A change in
reinforcement orientation from y- to x-orientation did not change the creep curve in tension;
both minimum strain rate and the creep transients were the same. Things were different in
compression. Here the strain to minimum strain rate was shifted to smaller strains when the
material was loaded in y-direction. The sign of loading had a huge effect: Compressive
loading at comparable absolute stresses led to lower strain rates and much stronger initial
transients. Tertiary creep was much more pronounced under tensile loading.
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Under TCC conditions, the stress dependence of ε to min. was more pronounced. Compressive
loading, again, led to lower strain rates and higher values of ε to min.. Just like in the compres-
sive isothermal case, the reinforcement orientation affects the creep curve under TCC: For y-
orientation, the minimum strain rate is slightly lower and it is reached at substantially lower
strains than for x-orientation.

One thing is quite remarkable about the tertiary creep regime: For identical stresses, the creep
curves coincide at larger strains, irrespective of the orientation or the sign of loading.

7.5.2 Load transfer

Isothermal Creep

We shall now discuss the strain rate evolution when damage processes are neglected. It has
been shown in Chapter 6 that a slab-model like composite of two creeping phases assumes a
steady state sooner or later. The final creep rate only depends on the creep properties and the
volume fraction of the constituents. The orientation of the external load or the sign of loading
have no effect on the final absolute creep rate. Only the transition to this steady state is influ-
enced. One can speculate that the real composite with its comparatively long fibers also
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Figure 7.27: Selected isothermal and thermal cycling creep curves to illustrate the effect of stress, sign
of loading and orientation on their shape. All strains include elastic strains from the application of load,
supposedly also the curves taken from Bidlingmaier et al. (1996a) (dotted lines), for which, however,
some uncertainty exists on the origin of time and strain.
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behaves like this. Experimental findings suggest that this is really the case: In Figure 7.27c
and 7.27f, one can see that for identical stresses, the creep curves coincide at larger strains,
irrespective of the orientation or the sign of loading.

It was found experimentally that applying larger stresses leads to larger strains until minimum
strain rate. This finding can be explained with the concept of progressive load transfer.
Consider a composite with continuous elastic reinforcement. At loading, an elastic strain
misfit between the phases is introduced which is larger the larger the applied stress is. During
creep, this misfit is reduced by the deforming matrix, which simultaneously sheds load onto
the reinforcement. Creep ceases at infinite time when the whole elastic misfit is made up by
matrix creep strain and the reinforcement carries all the load. The stress equilibrium (simple
rule of mixtures) changes from

rrmm ff σ+σ=σ to SSrrf ,σ=σ

The total strain to minimum creep rate is then

rrrSSrrm EfE σ=σ=ε=ε=ε , , (7-10)

i.e. it is proportional to the applied stress. For the case of a creeping reinforcement, the strain
to minimum creep rate can be calculated numerically. This was done here with the aid of the
slab model. The results are given in Figure 7.28. In 7.28a simulated isothermal creep curves
are shown for various loads in 1-direction. Only steady state matrix and reinforcement creep
was considered (no primary creep) and no initial internal (residual) stresses were assumed. In
Figure 7.28b it is seen that the strain to minimum strain rate is also proportional to the applied
stress. As the proportionality constant, we can define a load transfer modulus MLT = σ / εto min..
It was found to be 27 GPa for loading the slab model in 1-direction and 35 GPa for loading in
the 2/3-plane. For the case of a non-creeping reinforcement MLT can be calculated from
Eq. 7-10 and is 42 GPa. The elastically more compliant direction has a lower load transfer
modulus because more misfit strain is generated upon loading and therefore more creep strain
has to accumulate to accommodate it.

It can be noted here that the kinetics of the creep process has no influence on the strain to
minimum strain rate. The initially induced elastic misfit has to be accommodated with one and
the same amount of creep strain, no matter how fast it is accumulated. Changing the tempera-
ture, for example, has no effect except for the temperature dependence of the elastic proper-
ties. This underlines the necessity to look at creep curves in the form of strain rate vs. strain
curves and not vs. time.

The above results are important because they explain why in the experiments the minima of
the creep curves occur at different strains. On the other hand, the shift in the minimum of the
creep curves should be a good indicator of the relative importance of the load transfer process.
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Thermal Cycling Creep

Under thermal cycling conditions, cyclic thermal stresses are superimposed on the stresses due
to the static external load. The material deformation is such that starting from a certain inter-
nal stress, the cyclic stress evolution finally reaches a stable stress-temperature cycle, which is
then associated with a steady state creep rate (creep shakedown). This is a load transfer
process in which the creeping phase sheds load on the reinforcement until a stable cycle is
established. For the standard cycles this process can take a large number of cycles (cf. Section
7.3.3 Figure 7.18) so that a pronounced transitional behavior is observed during creep loading.
A comparison of slab model simulations of isothermal and thermal cycling creep shows that
the strain to minimum strain rate is the same for both simulations. This is again because the
initially applied stress creates a defined misfit strain which is accommodated by inelastic
straining. The inelastic process or the rate by which it occurs have no influence on the strain to
minimum strain rate.

It is not clear whether the real composite also shows such a linear dependence between the
external stress and the strain to minimum strain rate. It was mentioned in Chapter 6 that the
slab-model was well set up and calibrated to simulate composite creep rates. It is less good in
predicting creep strains. Therefore the load transfer moduli calculated above are not relevant
as quantitative predictions, yet they are interesting as a concept.
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for both loading directions. Linear dependence is clearly seen. The modulus of load transfer is given as
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In Figure 7.30, an apparent load transfer modulus is shown. It was determined from the strains
to minimum strain rates for tensile and compressive TCC tests at various loads. The
associated creep curves were shown in Figures 5.7b and 5.9b. Low absolute values for MLT of
only 4.5 GPa for loading in x-direction and 5 GPa for loading in y-direction can be estimated.
This rough trend reflects that loading in the less compliant direction leads to higher load
transfer moduli. The assessed load transfer moduli are merely upper bound estimates, because
the strain to minimum strain rate is possibly smaller than the strain at which the load transfer
is completed. The reason for the upper bound is that damage processes, which start early in
creep life, can raise the strain rate above the steady state level before load transfer is complete.

It is worth noting that the stress axis intercept is negative for both fitted lines in Figure 7.30.
The absolute value is too low to be significant (-1.9 MPa for tension and –2.5 MPa for com-
pression), the statistics is rather poor, the existence of a linear dependency is not proved and
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the influence of damage is also not considered. Nevertheless, the finding of a non-zero inter-
cept raises questions about the initial stress state in the material. This is addressed next.

Internal stresses

Internal (residual) stresses that are present in the material before loading can additionally
influence the initial strain mismatch and thus the strain to minimum strain rate. Whether the
strain to minimum strain rate is increased or decreased depends on the sign of loading: For
tensile loading, a residual tensile matrix stress will increase the initial misfit and a compres-
sive residual matrix stress will decrease it. In Figure 7.30, a slightly negative intercept was
found which is probably not significant. Nevertheless, such a negative intercept suggests that
the residual matrix stress is tensile: The strain needed to accommodate the initial misfit is
larger than expected under tension and it is smaller than expected under compression.

Considerations of the internal matrix stress evolution during heat treatment substantiate the
existence of tensile residual stresses at the testing temperature. The thermal pre-treatment
includes heating to 400 °C and It can be expected that the tensile matrix stresses revert to
compression. During the following dwell time, these stresses relax towards zero. Subse-
quently, the temperature is reduced to the testing temperature of 350 °C and the matrix
stresses again become tensile. The then present misfit strain is reduced further during the load-
free cycling phase but the overall evolution of misfit strain is such that still some misfit
remains. This residual misfit must be small but it has the same sign as an elastic misfit due to
an external tensile load. The strain to minimum strain rate will be increased in this case.

7.5.3 Damage
Damage processes in the constraining zones around fiber free zones have been neglected so
far but they obviously influence the strain rate evolution. These are considered in the follow-
ing. Damage was observed in the material in the form of fiber fracture, creep porosity (tension
only) and fracture of matrix precipitates. The latter contribution is not considered further. Its
effect may be considered together with the effects of fiber fracture.

Fiber fracture

The stress cycling creep experiments as well as the metallographic investigations suggest that
reinforcement damage is localized around fiber free zones due to the necessary strain accom-
modation. The fiber free zones have no preferential orientation and they are uniformly distrib-
uted. The size of the constraining zones where damage is induced can therefore be expected to
be independent of the loading direction. The amount of damage in these constraining zones
should also be only weakly dependent on the specimen orientation.
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Damage around fiber free zones is a matter of strain accommodation and the amount of
damage therefore depends only on the accumulated strain. The applied stress plays a subordi-
nate role for this. The time needed for strain accommodation is of course shorter for higher
stresses but the strain that has to be accommodated is the same.

Based on the above considerations it is expected that the evolution of damage with strain
under compression is roughly the same for all stresses, orientations, and types of tests. This is
indeed found: Beyond the minimum all the compressive creep curves exhibit the same slight
increase in strain rate. When the stresses are also the same, the curves even coincide irrespec-
tive of the reinforcement orientation. The increase in strain rate appeared to follow a linear
dependence of )log(ε  on ε up to at least 2%.

Creep Porosity

Under tensile loading, pore growth has also been found as a damage mechanism. It was
clearly visible especially for the high strains that could be achieved under thermal cycling
deformation. The metallographic investigations showed that pores aligned perpendicular to
the loading direction especially around fiber free regions or in regions connecting fiber free
zones. The pores were thus found exactly at those sites in which the highest degree of strain
incompatibility was expected.

Creep pores can grow from infiltration micropores which are widespread throughout the
material. There is thus no nucleation time or strain and pore growth can take place right from
the beginning of loading.

The growth of creep pores is accelerated with increasing pore size in principle because the
external load acts on a remaining uncavitated area which becomes progressively smaller.

7.5.4 Summary of the Interpretation of Thermal Cycling Creep
Curves

Load transfer takes place because strain misfit between the phases is accommodated by in-
elastic deformation. The strain that accumulates during the load transfer process is determined
by the initial strain misfit in the material immediately after load application. The initial misfit
strain is influenced by the applied stress, the orientation (and morphology) of the reinforce-
ment and by residual strains. Their influence is summarized in the following schematic graph.
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From the stress cycling creep experiments it is known that a substantial amount of inelastic
strain is probably located in fiber free regions. This part of the strain was important when
back-creep phenomena were investigated. It has, however, subordinate importance for the
evolution of strain rate. The deformation in the fiber free regions is constrained by the sur-
rounding reinforced material. The creep rate of these constraining zones thus determines the
overall creep rate of the composite. The load transfer process in the reinforced zones is thus
still of prime importance for the evolution of the creep rate. Damage in the form of fiber
fracture or cavitation accumulates in the constraining zones and progressively increases the
strain rate. In the tensile case it appeared that damage had a more pronounced effect on the
tertiary strain rate. This is most probably due to cavitation damage that partly replaces fiber
fracture in the constraining zones.
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The load-transfer strain (and thus the
strain to minimum strain rate) is deter-
mined by the initial misfit strain after load
application. Larger applied stresses
increase the misfit and thus the load
transfer strain. The presence of residual
stresses and the reinforcement orien-
tation do also influence the initial misfit
strain.

The strain to minimum strain rate is also
influenced by the damage evolution and
therefore by the sign of loading. Tensile
loading increases the strain rate and
shifts the strain to minimum strain rate to
lower values.





8 Summary and Conclusions
An industrially used metal matrix composite has been widely investigated in the present work
regarding its behavior under thermal cycling creep conditions. The composite consisted of an
eutectic Al-Si matrix with 15 vol.% of discontinuous alumina fibers. Standard experimental
techniques were adapted to purpose and suitable test procedures for testing under thermal
cycling conditions were developed to measure the stress dependent rate of deformation. The
thermal cycling creep (TCC) behavior was determined for thermal cycles to very high
temperatures and under moderate thermal cycling conditions, for various high-temperature
dwell times, for changing thermal amplitudes, under tensile and compressive loading, and for
different orientations of the reinforcement. This provided a uniquely comprehensive set of
experimental data of thermal cycling creep in a fibrous MMC.

In some important aspects, the TCC behavior of the investigated composite matched the
classical phenomenology established in literature: At low stresses, a creep acceleration
compared to isothermal conditions was found and the apparent stress exponent decreased to
low values. However, the following differences to the classical behavior appeared on closer
examination: The stress exponent did not decrease to 1 and no superplastic deformation was
observed (although the ductility of the material was slightly enhanced). Moreover, pronounced
transitional behavior upon load changes was found. These discrepancies to classical behavior
could be attributed to a) too low internal stresses because of the relatively small thermoelastic
misfit strain for the material combination Al/Al2O3 and b) an effective impediment of strain
by the relatively long fibers. In fact, the performance under TCC conditions of the present
MMC investigated in this work was excellent (in technical terms). It exhibited the lowest
TCC rates compared to all published investigations of TCC on aluminum based MMCs at
comparable conditions. The fiber reinforcement improved the MMC’s behavior compared to
the matrix material, even under thermal cycling at very low stresses, because the Al-Si matrix
material alone did also exhibit TCC behavior. It was shown theoretically that the Si platelets
from the matrix material probably introduce additional stresses in the fiber reinforced piston
alloy but that the overall TCC behavior is probably still dominated by the Al2O3 fibers.

An important deviation from classical TCC behavior, which had hitherto not been addressed
in literature, was that the TCC rates were increased compared to the isothermal creep rates not
only at low applied stresses but also at high stresses, where the apparent stress exponents for
isothermal and thermal cycling creep were the same. It was speculated in the present work that
micromechanical effects which enhance the kinetics of creep directly could cause such a creep
acceleration beyond the mere introduction of internal stresses. Cyclically re-initiated primary
creep was proposed as such a mechanism which could indeed lead to a substantial TCC
acceleration in the whole stress range (and not only at low stresses).
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The experimental setup had been optimized among other things for precise strain measure-
ment and this allowed for analysis of the strain evolution in individual cycles. It was found
that presenting the in-cycle strain evolution in the form of strain differentials with respect to
temperature (“instantaneous CTE”) was a good way to visualize effects of inelastic straining.
Simple rules for the interpretation of such instantaneous CTE curves were set up and with
them it was possible to define the temperatures at which the average internal matrix stresses
were zero (“effective stress-free temperatures”) or where matrix plasticity set in. The
measurements showed evidence of substantial inelastic deformation under thermal cycling
conditions. An important finding was that most of the inelastic strain which had accumulated
in one half cycle was recovered by reversed inelastic deformation in the other. It was shown
with the aid of a self-developed numerical simulation program how the combined action of
creep (mainly at the high temperature end of the heating half-cycle) and plasticity (mainly at
the low temperature end of the cooling half-cycle) could lead to a well balanced cycle with a
low net strain per cycle. Theses findings contradict former theories, in which the onset of
plastic deformation beyond a critical thermal amplitude was believed to cause a strong
increase of the net accumulated strain per cycle.

The composite exhibited a weak reinforcement texture. In a quantitative analysis of the fiber
orientation distribution it was found that a plane of preferential fiber orientation existed, but
that the degree of alignment was relatively weak so that still a substantial amount of fibers
were oriented randomly. This texture did not affect measurements of the Young’s modulus or
the isothermal creep rates. It however largely influenced the behavior under thermal cycling
conditions: For example, the TCC rates in the direction perpendicular to the preferential plane
were generally higher than for loading parallel to this plane. In order to describe the fiber
orientation distribution quantitatively, the concept of orientation tensors was adapted from the
field of polymer matrix composites and for the first time applied to MMCs. With the aid of a
measured second-order orientation tensor, it was possible to determine an averaged Eshelby
tensor with which in turn thermoelastic properties (such as the Young’s modulus) of the
composite material could be estimated and compared to the experimental findings.

For thermal cycles which came close to use conditions (cycling between 350 and 150 °C), the
investigated composite exhibited pronounced transient creep behavior and the overall enve-
lope shape of the thermal cycling creep curve was very similar to the shape of an isothermal
creep curve. The mechanisms that led to this form of the creep curve were further investigated
with a newly developed experimental procedure of isothermal stress cycling creep. In contrast
to conventional stress cycling creep experiments that resemble slow fatigue tests, particularly
long relaxation times were employed alternating with defined creep straining. The phenome-
non of back-creep (strain recovery after removing a creep load) was utilized to investigate
effects of load transfer from the matrix to the fibers and to conclude on the overall evolution
of the composite strain rate. An important finding of this investigation was that a substantial
part of the creep strain was probably concentrated in regions of low fiber content. This led
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also to the unexpected finding that reinforcement damage in the form of fiber fracture was not
widespread in the whole microstructure but that it was rather localized in those reinforced
regions that had to accommodate the strain concentrations. Metallographic investigations
supported these suggestions. It is expected that creep rates would be more effectively reduced
when zones that concentrate strains such as fiber free regions were avoided. This applies to
isothermal and thermal cycling conditions.

A simple continuum mechanical model has been set up which approximated the investigated
composite by a stack of two homogeneous and tightly bonded deforming slabs. The slabs were
attributed the thermoelastic properties of the matrix and the reinforcement material and the
creep properties of the slabs were calibrated with the known isothermal creep properties of the
matrix and the composite. The problem of the impediment of deformation by a continuous and
elastic reinforcement was overcome by attributing creep properties not only to the matrix but
also to the reinforcement slab. The slab model was implemented in a computer program and it
was used to predict the creep rates and the in cycle strain evolution under thermal cycling
creep conditions. Due to its geometrical simplicity, the slab model yielded no quantitatively
exact predictions but excellent qualitative agreement with the experimental findings was
found throughout. The simulations proved to be of great help in the interpretation and expla-
nation of the observed phenomena. Furthermore, the calculations showed that a continuum
mechanics approach which focuses on the evolution of internal stresses alone is well suited to
describe TCC behavior in the present case.

In the present work, established knowledge from the literature of isothermal and thermal
cycling creep of MMCs, from the field of continuum mechanics and from polymer composite
engineering were brought together to explain the thermal cycling creep behavior of a technical
metal matrix composite. Almost all deviations from the idealized behavior could be resolved
by carefully refining or correcting established concepts and sometimes by proposing reason-
able new concepts. The challenging task was to clarify the complicated relations between
different aspects of the external and internal stresses and strains, their evolution within single
cycles and their long-term evolution so that finally a concise picture of the deformation
behavior for a special technical MMC emerged.





Appendix A Eshelby Tensors
A.1 Eshelby Tensor for Aligned Discs and Spheroids and

for a Planar Array of Continuous Fibers
In Table A.1 the Eshelby (S-)tensor for prolate spheroids with an aspect ratio s, which are
aligned in 1-direction and the S-tensor for discs aligned in the 2/3-plane are listed (taken from
Clyne and Withers (1993)). The geometry of aligned discs is identical to the geometrical setup
of the slab model. The thermoelastic predictions from a mean-field Eshelby model using the
S-tensor for aligned discs are thus identical to thermoelastic slab-model predictions.

For the case of fibrous reinforcement, a composite structure which, regarding the symmetry
and overall constraints, comes closest to the slab-model arrangement is the arrangement of
continuous fibers in a 2D random planar array. The Eshelby tensor for such an arrangement
(fibers in the 2/3 plane) has been given by Johannesson and Ogin (1995). The tensor compo-
nents are listed in the widely accepted notation by Brown and Clarke (1975).

Tensor notation Matrix notation Spheroids Discs 2D random
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1 S55 = 2
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2
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ν
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−
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Table A.1: Eshelby tensors for a) spheroids with aspect ratio s, oriented in 1-direction, b) discs
parallel to the 2/3-plane (taken from Clyne and Withers (1993)) and c) a planar array of
continuous fibers in the 2/3-plane (Johannesson and Ogin (1995))
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The used constants are:
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A.2 Estimation of the Eshelby Tensor from an Orientation
Tensor

For calculations of thermoelastic composite properties, it would be desirable to have an
Eshelby tensor not for aligned fibers but for the individual reinforcement texture of the mate-
rial investigated in this work. This requires the orientational averaging of the fourth-rank
Eshelby tensor for the aligned reinforcement according to the reinforcement orientation distri-
bution. Setting up such an averaged tensor is not an easy task. It has been pointed out by
Johannesson and Pedersen (1998) that for the calculation of an average Eshelby S tensor for
arbitrarily oriented inclusions, “it is necessary to carry out 38=6561 complicated trigonomet-
ric triple integrals”. In the same paper, they have given a computer algebra solution for the
determination of the average S tensor for a transversely isotropic reinforcement orientation
distribution function (ODF). This solution shall be applied to the material from this work. In
order to do so, we have to approximate the measured reinforcement orientation distribution by
a transverse isotropic one. We can do this by omitting the off-diagonal elements and by aver-
aging over the 2/3 components. The transverse isotropic approximation of the orientation
tensor would then be:
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The next task is to recover the fiber ODF from the approximated orientation tensor. Advani
and Tucker (1987) have shown how this can be done. Because of the low order of the orienta-
tion tensor, only limited information about the real ODF is stored in it. The recovered ODF
will thus be only a second-order approximation. Better results can be obtained when higher-
order orientation tensors are also taken into account. The second-order approximation of the
distribution function is given by the formula
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where

ijijij ab δ
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is the deviatoric version of the orientation tensor and

( ) ijjiij pppf δ
3
1−= (A-3)

are tensor basis functions of the vector p (δij is the Kronecker-delta). The ODF for fibers
perpendicular to the plane of transverse isotropy is shown in Figure A.1. It is compared to the
histogram of fiber inclinations towards the (global) x-axis as they were measured from section
ellipsoids in the yz-plane. The agreement between the measured and the recovered ODF is not
perfect but still quite reasonable.

Now that we have obtained a transverse isotropic fiber ODF, we can apply Johannesson and
Pedersen’s analytical recipe for averaging any Eshelby tensor. Their solution is given in the
form of numerous lengthy formulas in their paper Johannesson and Pedersen (1998). The
appropriate Eshelby tensor to be averaged was considered to be the tensor for aligned fibers
with an aspect ratio of 50. Finally, after orientational averaging, the averaged Eshelby tensor
for the fiber reinforced piston alloy is:
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0.00

0.01

0.02

0.03

ψ
(θ

)

inclination θ [°]

Figure A.1: Fiber ODF (thick line),
recovered from the approximated
transversely isotropic orientation
tensor, compared to the histogram
of the fiber inclinations towards the
x-axis (measured from the aspect
ratio of ellipsoidal fiber sections in
the microscope). The ODF-curve
has been corrected by sin(θ) for
the realization probabilities of the
angle θ in spherical coordinates.
The histogram was corrected with
the weighting function for different
section-realization probabilities
(see Section 4.1.3).
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Tensor notation Matrix notation S tensor

S1111 S11 0.548

S1122 = S1133 S12 = S13 0.052

S2211 = S3311 S21 = S31 0.053

S2233 = S3322 S23 = S32 0.051

S2222 = S3333 S22 = S33 0.538

S2322 S44 0.322

S1313 = S1212 2
1 S55 = 2

1 S66 0.450

Table A.2: Eshelby tensor for the fiber-reinforced piston alloy investi-
gated in this work. The tensor was determined from an approximated
transversely isotropic second-order orientation tensor.
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Appendix B Accuracy of Orientation Measurement
It is obvious that the determination of the fiber orientation from its elliptic cross section lacks
accuracy for certain angular ranges. The error for the calculation of θ from a measured aspect
ratio of the ellipse se=a/b with an error in length measurement ∆l can be calculated by the law
of error propagation from equation 4-1:
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(for the definition of the angles θ and φ see Figure 4.3). One can assume a standard error of
one pixel in length (2∆l = 0.17 µm) for the measurement of 2a and 2b. The variation of
calculated θ with measured se is shown in Figure B.1. The upper and lower error bounds
according to equation B-1 for a fiber with a thickness d of 3 µm (b = 1.5 µm) are also shown
there. It can be seen that for low aspect ratios, the error for θ becomes quite significant: For an
ellipse aspect ratio below se = 1.41 (θ < 45°), the relative error is larger than 12% (∆θ > 5.5°).
Above 60° (se = 2), the error drops below 5% (∆θ < 2.8°). Another error arises from the finite
length of the fibers or from the fact that long fiber sections have a high probability to be
clipped by the image frame. According to equation 4-1, even those fibers that lie perfectly
perpendicular to the z-axis would be measured with θ < 90°, just because the aspect ratio of
the fiber section is finite. Section aspect ratios of up to ten are usually not limited by the
image frame or the length of the fibers – provided that the fibers themselves have a fairly large
aspect ratio. Therefore this error has to be accounted for only at larger aspect ratios (θ > 85°).

The error for the determination of the angle φ can only be roughly estimated, because the
software algorithm for the measurement of ϑ is not given by the manufacturer. It is evident
that as the section aspect ratio approaches unity, the uncertainty in the measurement of ϑ
increases to a maximum of ±90°. For aspect ratios of more than 1.5, however, the accuracy of
the angular measurement was found to be better than ±2.5°.
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Figure B.1: Inclination θ of fibers, calculated from the aspect ratio of their section ellipses. The error
bounds are calculated for a fiber with a thickness of 3 µm and for an absolute error of 0.17 µm in the
spatial resolution of the image analysis.
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Appendix C Slab Model: Derivation of Young’s
Modulus

If only elastic strains are considered, Eq. 6-1a) in 6-2a) simplifies to
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Substituting σ2r for σ2m using Eq. 6-3b) and σ2=0 yields
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σ2m is given by Eq. 6-4 which simplifies to the following equation when again inelastic and
thermal strain terms are omitted and σ2=σ3=0:

( ) 1

1
2

2
1 σσ ⋅+⋅





 ⋅−=⋅

−

CABCBA
Am . (C-3)

The terms A, B, C and D have been defined in Chapter 6 for Eq. 6-4. Equation C-3 can be
susbstituted in C-2 so that we obtain an equation which directly relates ε1 to σ1 and from
which we can obtain the slab model’s Young’s modulus E1 (cf. Eq. 6-20):
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Young’s modulus for the in-plane-direction can be derived in a similar manner. The strain
compatibility condition 6-2b) with Eq. 6-1b) simplifies to
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considering that σ1=σ3=0. Equations for σ2m and σ3m can be obtained again from Eq. 6-4:
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Substituting these into Eq. C-5 gives a direct relation between ε2 and σ2 which yields the slab
model’s Young’s Modulus E2/3 (cf. 6-21).
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Appendix D Tables of Experimental TCC Data

Standard Cycles

specimen orientation sign of loading applied stress
[MPa]

min. strain rate
[s-1]

Standard cycle 350↔150 °C, tc=600 sec., 60 sec. dwell at Tmax and Tmin
* denotes tests with incremental loading

V20_3 x tensile 12.1 7.9·10-9

V19_1 x tensile 18.4 2.0·10-8

V19_3 x tensile 23.9 2.6·10-8

V20_1 x tensile 25.6 3.6·10-8

V19_2 x tensile 27.8 1.2·10-7

V18_2 x tensile 31.7 1.5·10-7

V22x08 x compressive -20.0 -4.3·10-9

V22x08 x compressive -25.0* -1.3·10-8

V22x08 x compressive -30.0* -5.0·10-8

V22x01 x compressive -30.4 -3.8·10-8

V22x03 x compressive -40.7 -9.5·10-8

V22x11 x compressive -35.6 -5.4·10-8

V22x11 x compressive -61.1* -7.1·10-7

V22y03 y compressive -40.7 -4.7·10-8

V22y01 y compressive -50.8 -1.4·10-7

Table C.1: Minimum TCC rates for standard thermal cycles with the composite
material.
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Standard Cycles with Isothermal Pre-Creep

Note that these experimental data were not presented or discussed in the present work. In
these tests, an isothermal creep segment at test load was introduced between the initial load
free cycling and the loaded thermal cycling segments. The measurements suggest that iso-
thermal pre-deformation increased the minimum creep rates mainly by initiation of creep
damage. The overall effect of pre-creep was not pronounced.

specimen orientation sign of loading applied stress
[MPa]

min. strain rate
[s-1]

pre creep
[%]

Standard cycle 350↔150 °C, tc=600 sec., 60 sec. dwell at Tmax and Tmin

All test were done with isothermal pre-creep before TCC

V12_3 x tensile 20.9 5.3·10-7 0.60

V11_3 x tensile 23.7 2.8·10-8 0.30

V17_2 x tensile 26.9 4.0·10-8 0.30

V10_2 x tensile 30.4 2.6·10-7 0.78

V18_3 x tensile 31.3 9.7·10-8 0.20

V17_3 x tensile 34.6 1.9·10-7 0.30

V11_2 x tensile 40.7 4.0·10-7 0.60

V12_1 x tensile 51.6 7.5·10-7 0.60

V2_xc1 x compressive -39.8 -1.9·10-7 -0.60

V2_xc2 x compressive -50.2 -5.4·10-7 -0.60

V2_xc3 x compressive -50.3 -4.7·10-7 -0.60

V2_xc4 x compressive -60.5 -1.2·10-6 -0.60

V2_yc4 y compressive -39.9 -5.0·10-8 -0.60

V2_yc2 y compressive -50.2 -1.0·10-7 -0.60

V2_yc3 y compressive -60.4 -2.1·10-7 -0.60

V2_zc1 z compressive -50.2 -1.0·10-7 -0.60

V2_zc2 z compressive -70.3 -3.1·10-7 -0.60

Table C.2: Minimum TCC rates of the composite material for experiments with standard cycles and
isothermal pre-creep.
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High-Temperature Cycles

specimen orientation sign of loading applied stress
[MPa]

min. strain rate
[s-1]

High-temp. cycle 400↔100 °C, tc=600 sec., 60 sec. dwell at Tmax and Tmin
* denotes tests with incremental loading

V22x09 x compressive -6.2 -1.0·10-9

V22x09 x compressive -8.2* -1.6·10-9

V22x09 x compressive -15.2* -8.0·10-9

V22x09 x compressive -17.0* -1.4·10-8

V22x09 x compressive -20.5* -3.5·10-8

V22x09 x compressive -22.6* -7.3·10-8

V22x09 x compressive -25.6* -1.7·10-7

High-temp. cycle 450↔120 °C, tc=600 sec., 60 sec. dwell at Tmax and Tmin

v24_2 x tensile 2.3 2.0·10-10

v24_2 x tensile 6.5* 2.2·10-8

v24_2 x tensile 12.7* 1.3·10-7

v24_2 x tensile 17.8* 4.0·10-7

v24_1 x tensile 4.4 1.2·10-8

v24_1 x tensile 8.6* 3.5·10-8

v24_1 x tensile 10.7* 7.2·10-8

v24_1 x tensile 15.8* 2.7·10-7

v24_1 x tensile 17.9* 4.8·10-7

v24_1 x tensile 21.0* 1.4·10-6

Table C.3: Minimum TCC rates for high temperature cycles with the composite
material.
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Influence of High-Temperature Dwell

specimen orientation sign of loading applied stress
[MPa]

min. strain rate
[s-1]

strain per cycle
[%]

High-temp. cycle 450↔100 °C, tc=540 sec., no dwell at Tmax and 60 sec dwell at Tmin
* denotes tests with incremental loading

V22y05 y compressive -8.2 -2.3·10-9 1.2·10-6

V22y05 y compressive -10.2* -6.1·10-9 3.3·10-6

V22y05 y compressive -15.3* -4.4·10-8 2.4·10-5

V22y05 y compressive -17.5* -9.0·10-8 4.9·10-5

V22y05 y compressive -20.6* -2.0·10-7 1.1·10-4

High-temp. cycle 450↔100 °C, tc=600 sec., 60 sec. dwell at Tmax and 60 sec dwell at Tmin

V22y04 y compressive -8.2 -2.0·10-8 1.2·10-5

V22y04 y compressive -10.2* -4.0·10-8 2.4·10-5

V22y04 y compressive -15.5* -1.4·10-7 8.4·10-5

V22y04 y compressive -17.5* -2.4·10-7 1.4·10-4

V22y04 y compressive -20.6* -3.4·10-7 2.0·10-4

High-temp. cycle 450↔100 °C, tc=600 sec., 360 sec. dwell at Tmax and 60 sec dwell at Tmin

V22y07 y compressive -8.1 -1.3·10-8 1.2·10-5

V22y07 y compressive -10.1* -2.5·10-8 2.3·10-5

V22y07 y compressive -15.2* -1.1·10-7 9.9·10-5

V22y07 y compressive -17.3* -1.9·10-7 1.7·10-4

V22y07 y compressive -20.3* -4.0·10-7 3.6·10-4

Table C.4: Minimum TCC rates for high temperature cycles with the composite material and various
dwell times at the maximum cycle temperature.
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Matrix Material

specimen sign of loading applied stress
[MPa]

min. strain rate
[s-1]

Cycle 350↔150 °C, tc=600 sec., 60 sec. dwell at Tmax and Tmin
* denotes tests with incremental loading

u18_4 compressive 9.8 1.2·10-7

u18_5 compressive 3.9* 2.0·10-8

u18_5 compressive 8.1* 1.4·10-7

u18_5 compressive 14.3* 5.0·10-7

u18_5 compressive 20.4* 1.2·10-6

u18_5 compressive 10.2* 2.4·10-7

u18_7 compressive 1.5 5.9·10-8

Cycle 400↔200 °C, tc=600 sec., 60 sec. dwell at Tmax and Tmin

u18_7 compressive 4.0 2.3·10-7

u18_7 compressive 6.1* 4.3·10-7

u18_7 compressive 8.1* 7.0·10-7

u18_7 compressive 10.2* 1.1·10-6

u18_7 compressive 12.3* 1.6·10-6

u18_7 compressive 4.0* 2.2·10-7

Cycle 400↔100 °C, tc=600 sec., 60 sec. dwell at Tmax and Tmin

u18_6 compressive 1.5 1.0·10-7

u18_6 compressive 4.0* 3.2·10-7

u18_6 compressive 6.1* 5.6·10-7

u18_6 compressive 8.1* 9.0·10-7

u18_6 compressive 10.2* 1.3·10-6

u18_6 compressive 12.3 1.9·10-6

u18_6 compressive 4.0* 3.3·10-7

Table C.5: Minimum TCC rates for the matrix material.
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