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SUMMARY 
We consider a spherical, isochemical, incompressible, non-rotating fluid planet and  
study infinitesimal, quasi-static, gravitational-viscoelastic perturbations, induced by 
surface loads, of a hydrostatic initial state. The analytic solution to  the  incremental 
field equations and  interface conditions governing the problem is derived using a 
formulation in terms of the isopotential incremental pressure measuring the 
increment of the hydrostatic initial pressure with respect t o  a particular level surface 
of the gravitational potential. This admits the decoupling of the incremental 
equilibrium equation from the incremental potential equation. As result, two 
mutually independent (4 X 4) and (2 X 2) first-order ordinary differential systems in 
terms of the mechanical and gravitational quantities, respectively, a re  obtained, 
whose integration is algebraically easier than that of the conventional (6 X 6) 
differential system. In support of various types of application, we provide transfer 
functions, impulse-response functions and Green’s functions for the full range of 
incremental field quantities of interest in studies of planetary deformations. The  
functional forms in the  different solution domains involve explicit expressions for 
the Legendre degrees n = 0, n = 1 and n 2 2, apply to any location in the interior o r  
exterior of the planet and are valid for any type of generalized Maxwell 
viscoelasticity and  for arbitrary surface loads. 

Key words: generalized Maxwell viscoelasticity, gravitational viscoelastodynamics, 
Green’s functions, impulse-response functions, surface loading, transfer functions. 

1 INTRODUCTION 

The problem of the elastostatic deformation of a spherical body was first investigated by Lam6 (1854), who considered a 
spherical shell subjected to given volume forces and prescribed conditions on its inner and outer surfaces. LamC formulated the 
field equations in spherical coordinates and derived the solution for the displacement in terms of surface harmonics. Lame’s 
problem was independently solved by Thomson (1864). In contrast to LamC, he employed Cartesian coordinates and expanded 
the solution into solid harmonics. 

Applications of Lam& problem to deformation studies of planetary bodies were initially connected with the problem of 
correctly accounting for gravitation. The modifications introduced by gravitation were discussed by Love (1908), who pointed 
out two basic effects. One of them is related to the presence of initial stress in planetary interiors and requires a modification of 
the ordinary momentum equation valid in the absence of initial stress. Love (1911, pp. 89-93) implemented the necessary 
adjustments to the theory and derived the incremental momentum equation for a hydrostatic initial state. The other effect only 
arises if the planet is taken as compressible. In that case, the incremental gravitational force associated with perturbations of 
the initial density introduces a tendency towards instability. Normally, this tendency is, however, compensated by the opposing 
force resulting from the compressibility of the material. The stability of planets was studied in detail by Love (1911, pp. 89-104, 

A simplification of the investigations by Lame, Thomson and Love as far as applications to planets are concerned is the 
assumption of homogeneous distributions of density, bulk modulus and shear modulus in the initial state. This constraint was 
removed by Herglotz (1905) and Hoskins (1910, 1920), who gave analytic solutions for elastostatic and gravitational- 
elastostatic deformations of a sphere, due to tidal volume forces, for simple types of variation of density and elasticity with 
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radial distance. Later, Takeuchi (1950) extended these studies in order to allow for more realistic radial variations. This 
generalization required the use of numerical integration techniques. Takeuchi’s approach was also employed in studies of 
gravitational-elastostatic perturbations of planetary bodies due to arbitrary surface loads. The latter problem was first 
investigated by Slichter & Caputo (1960), Caputo (1961, 1962) and Longman (1962, 1963), who calculated the Green’s 
functions for displacement and incremental gravity. Longman’s theory and numerical results were reviewed and extended by 
Farrell (1972). 

More recently, a number of studies were concerned with gravitational-elastostatic perturbations of a compressible planet 
with fluid core. The solution to this problem proved not to be straightforward and occupied the investigators involved for 
several years. The competing approaches were reviewed by Longman (1975) and reconciled by Dahlen & Fels (1978); in both 
works, comprehensive bibliographies of the relevant publications may be found. 

The development of the theory governing quasi-static, gravitational-viscoelastic perturbations of initially hydrostatic 
planets has been intimately related to the study of the earth’s response to glacial surface loads. The basic theoretical work was 
completed by Peltier (1974) and Wu & Peltier (1982); an alternative approach was taken by Sabadini, Yuen & Boschi (1982) 
and Spada et al. (1992). Essential to both approaches is the formal reduction of the problem to the corresponding elastostatic 
problem, which is then solved by recasting the incremental field equations into a (6 X 6) first-order ordinary differential system 
with respect to the radial coordinate, leading to six fundamental solutions. 

The virtue of the theory presented in these publications is that perturbations of realistic spherically symmetric planets can 
be calculated. On the other hand, explicit solution functions for elementary models are indispensable for a physical 
interpretation of the perturbations (e.g. Wolf 1991b) or for tests of the accuracy of numerical solution methods (e.g. Gasperini 
& Sabadini 1989; Wu 1992). So far, only a limited number of explicit solutions have been obtained on the assumption of 
incompressible Maxwell viscoelasticity. Thus, Sabadini et al. (1982) stated the six fundamental solutions for a homogeneous 
spherical layer. Considering the particular case of a homogeneous sphere, Wu & Peltier (1982) derived the special solution for 
displacement due to surface loading. Dragoni, Yuen & Boschi (1983) gave the special solution for displacement induced by 
volume forces in a sphere consisting of a homogeneous elastic lithosphere overlying a homogeneous viscoelastic mantle. Wolf 
(1984) and Amelung & Wolf (1994) studied selected two-layer models and derived special solutions for surface loading. For 
the same type of forcing, Wu (1990) analysed gravitational-viscoelastic perturbations of a two-layer sphere with arbitrary 
contrasts of density, shear modulus and viscosity across the interface. 

In this study, infinitesimal, quasi-static, gravitational-viscoelastic perturbations, due to surface loads, of a spherical, 
isochemical, incompressible, non-rotating, fluid planet initially in hydrostatic equilibrium are reconsidered. The distinctive 
features of our analysis are the following. 

We show that the incremental field equations can be recast into a form in which the equation for the (mechanical) 
momentum is decoupled from the equation for the (gravitational) potential. The coupling between the mechanical and 
gravitational aspects of the problem is then restricted to density discontinuities and expressed by incremental interface 
conditions. Instrumental to the decoupling of the incremental field equations is the use of a field quantity referred to as 
isopotenrial incremental pressure measuring the increment of the hydrostatic initial pressure with respect to a (perturbed) level 
surface of the gravitational potential (Section 2). 

Using the appropriate ansatz for the decoupled incremental field equations, we then establish two mutually independent 
(4 X 4) and (2 X 2) first-order ordinary differential systems for the mechanical and gravitational aspects of the problem, 
respectively. The deduction of the general solutions to these systems is algebraically simpler than the deduction of the general 
solution to the conventional ( 6 x 6 )  differential system; the special solution is obtained in the usual way by means of the 
incremental interface conditions (Section 3). 

For the main portion of our study, we are concerned with the derivation of special solution functions. In contrast to 
previous studies, a comprehensive catalogue of formulae covering all field quantities of interest in studies of planetary 
deformations is provided. Furthermore, transfer functions, impulse-response functions and Green’s functions for the incremental 
fields in the appropriate solution domains are collected. The solution functions given involve explicit expressions for the 
Legendre degrees n = 0, n = 1 and n 2 2 and apply to any location in the interior or exterior of planetary bodies and for 
arbitrary surface loads. Of theoretical and practical interest is the consideration of generalized Maxwell viscoelasticity, which 
includes a stability analysis of the solution for this type of viscoelasticity (Section 4). 

We conclude our study with an assessment of the results obtained and a brief outlook on possible consequences (Section 
5 ) .  

2 FIELD EQUATIONS A N D  INTERFACE CONDITIONS 

In this section, the basic equations governing infinitesimal, quasi-static, gravitational-viscoelastic perturbations, due to surface 
loads, of a spherical, isochemical, incompressible, non-rotating, fluid planet initially in hydrostatic equilibrium are compiled. 
Section 2.1 presents the Cartesian-tensor forms of the field equations and interface conditions for the initial fields (Section 
2.1.1) and the incremental fields and their Laplace transforms (Section 2.1.2). Section 2.2 defines the geometry of the problem 
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to be solved (Section 2.2.1) and gives the scalar forms in spherical coordinates of the equations for the initial fields (Section 
2.2.2) and the Laplace-transformed incremental fields (Section 2.2.3). Key points of this section are (i) the uniform use of the 
Lagrangian kinematic formulation in the internal and external domains and (ii) the decoupling of the incremental field 
equations for the mechanical quantities from those for the gravitational quantities. Complete derivations from first principles of 
the equations in this section can be found elsewhere (Wolf 1993, pp. 14-22, 27-31, 48-50). 

2.1 Tensor equations 

We consider Cartesian-tensor fields in indicia1 notation and imply for them the usual summation and differentiation 
conventions. Throughout this study, we employ the Lagrangian formulation, Aj... = L j . . . ( X ,  t ) ,  where the field value refers to the 
position, X, + u,(X, t ) ,  at the current time, t ,  of a material point whose position, Xi, at the initial time, t = 0, is taken as the 
spatial argument. The spatial domains of definition for the field equations and interface conditions are 2- U %+ and a%, 
respectively, with E- the internal domain, %+ the external domain and 8% the interface; 8 = 2- U %+ U 8% is the Euclidian 
space domain. We also regard the total field value, i, ..., as perturbation of the initial field value, f$!. ,  such that 
ij... = f j;!. + f :,?. applies, with fg!. the material incremental value. Accordingly, the temporal argument is the initial time, t = 0, 
for the initial fields, the current time, r E 5, for the total and the incremental fields and the inverse Laplace time, s E 9, for the 
Laplace-transformed incremental fields, with 9 the time domain [0, 2) and Spthe (complex) inverse Laplace-time domain. For 
all Xi E 2- U %+ and t E .T, the field values are taken as continuously differentiable with respect to the arguments as many 
times as required; jump discontinuities are admitted for Xi E 8%. We begin on the assumption that the fluid completely fills 8 
and is isochemical in %- and %+, respectively. More details on the mathematical and notational concepts underlying this study 
can be found in Appendix A. 

2.1.1 

For a fluid with the properties specified above, the initial field equations take the forms 

Equations f o r  the initial fields 

- p y +  p4‘y’ = 0,  

gjo’ = 4(!)  
. I  * 

4‘;) = -4aGp, (3) 

where G is Newton’s gravitational constant, g, the gravity (gravitational force per unit mass), p the (mechanical) pressure, p the 
volume-mass density and 6, the (gravitational) potential. With p prescribed in 2- and %+, respectively, (1)-(3) constitute a 
system of partial differential equations for gjo),  p(O) and 4(”).  The associated initial interface conditions are 

2.1.2 Equations f o r  the incremental fields 

On the assumption of infinitesimal, quasi-static, gravitational-viscoelastic perturbations of the specified fluid, the material form 
of the incremental field equations is given by 

where tij is the (Cauchy) stress, t‘ the excitation time, ui the material displacement, 6, the Kronecker symbol and p(t - t‘) the 
shear-relaxation function. With p(t - t’)  and p prescribed parameters in 2?- and %+, respectively, and p(O) and +(’) given as 
special solution to the equations for the initial fields, (7)-( 11) constitute a system of partial differential equations for 
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gi(S),p(*), fl;), ui and 4(6). Supposing a material sheet on the interface, the material form of the associated incremental 
interface conditions can be written as 

with nio) the outward unit normal on 82, y = -n!O)gjo) the magnitude of g!') on 8% and u the (incremental) interface-mass 
density. Note that the definition of y implies that gjo) and nj") are anti-parallel (e.g. Batchelor 1967, pp. 14-20). 

The derivation of the solution simplifies if the incremental field equations and interface conditions are put into their 
isopotential-local form. The definitions of material, isopotential and local incremental fields, f j:?., f:!. and fp?., respectively, 
are considered in Appendix A2. In particular, we use (309) to express p(')  and r!;) in terms of p(')  and rg) and (310) to express 
gjs) and I$(') in terms of gjA) and 4('). Taking the Laplace transforms of the resulting equations (e.g. LePage 1980, pp. 
285-328) and denoting the Laplace transform of f ( t )  by f(s), we arrive at the following system of partial differential equations 
and associated interface conditions for &A),  $'), Ty), Ei and 6 (I): 

We note that the incremental equilibrium equation, (18), no longer includes terms accounting for effects due to hydrostatic 
initial stress and gravitational perturbations and thus formally agrees with the corresponding equation valid in the absence of 
gravitation. However, such effects now appear in the traction interface condition, (22), which explicitly involves the initial 
pressure gradient, p+':), and the local incremental potential, &(a). 

Next, we eliminate ElA) and f f )  from the above equations. For this purpose, we introduce the rotation, Gi, defined by 

G . = l e . .  I 2 q k U k , j ,  - (25) 

P"y + 2sp€ijkGk,j  = 0. 

with eijk the Levi-Civita symbol. Using (16), (17), (25) and the identity eijkekCm = 6i,Sjm - 6im6jC, eq. (18) takes the form 

(26) 

Eqs (16), (20), (25) and (26) constitute an alternative system of partial differential equations in terms of $'), iii, & ( A )  and 8,. 
The incremental interface condition for follows upon substitution of (17) into (22): 

[nj0)p(') - spnjo'(ni,j + E ~ , ~ )  + pnjO)($(A) + 4::)~~)lT = -ynjo)el. (27) 

Eqs (21), (23), (24) and (27) constitute the incremental interface conditions associated with the alternative system of differential 
equations given above. 

2.2 Scalar equations in spherical coordinates 

2.2.1 Geometrical considerations 

We proceed on the assumption that the fluid is initially confined to E. In this case, p(O) = 0, p( t  - t ' )  = 0 and p = 0 for X i  E %+ 
and it follows from the incremental field equations and interface conditions that iii  = continuous for X i  E 8%, 
Ei = indeterminate for X ,  E %+ and the remaining mechanical quantities vanish for Xi E 2+. 

must be 
parallel planes, co-axial cylinders or concentric spheres (e.g. Batchelor 1967, pp. 14-20). Here, we consider spherically 

It can be shown that, for a hydrostatic initial state in a non-rotating fluid, the level surfaces of p(O) and 
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symmetric level surfaces and take their common centre as the origin, 0, of a Cartesian coordinate system, OX,X,X3.  The 
spherical coordinates, r ,  8 and A ,  are related to the Cartesian coordinates, X,, X, and X,, by 

x2 

x3 
A =tan-' - 

where r E (0, m) is the radial distance, 8 E (0, z) the colatitude and A E [0,2z) the longitude of the observation point. For 
brevity, we refer to the fluid initially occupying E- as planet and to the material sheet initially occupying dEas  load. With u the 
radius of the planet, we then have 2- = {Xi I r E (0,  a)}, 2+ = {Xi 1 r E (u ,  y-)} and a%= {Xi I r = a}. Henceforth. we append to 
symbols of tensors the label subscripts r ,  8 and A to denote their appropriate scalar components in spherical coordinates; the 
summation convention no longer applies. 

2.2.2 Equations for the initial$elds 

On account of the spherical symmetry, the relevant components of the initial field equations and interface conditions, (1)-(6), 
reduce to 

-4nr2Gp, r < a  
r > a '  

r = a. 

[p(O']- = 0 

[4"'']' = 0 

[4:;']' = 0 

These equations are to be supplemented by appropriate conditions ensuring that the initial fields remain bounded as r + 0 and 
r 4 ~ .  

2.2.3 Equations for  the incremental fields 

Since the solution functions in the (r, 8, A ,  t )  domain are to be expressed in terms of Green's functions representing the 
contributions from point loads (Section 4.3), it  is sufficient to restrict the following analysis to uxisyrnnzetric perturbations. For 
convenience, we let the X, axis coincide with the symmetry axis. Then, the relevant components of (16), (20), (25) and (26) 
reduce to 

I Er, ,  - (riie),r + 2 6 ,  = 0 

(40) 

(41) sin 8(rz&$?),r + (sin e i  f;)),@ = 0, r # a. 

Eqs (37)-(40) are four partial differential equations of first order for the mechanical quantities pea), Lf,., Ee and 6,; they are 
decoupled from (41), which is a second-order partial differential equation in terms of the gravitational quantity & ( A ) .  

The solutions to these equations must satisfy the appropriate incremental interface conditions. In view of the supposed 
symmetries, we find for the relevant components of (21), (23), (24) and (27) the expressions 

(42) I F ' a )  - 2spa,, +,@a' + 4!,"'E,)]- = y b  

r =a.  t (43) 

(44) 
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These equations are to be supplemented by appropriate conditions ensuring the boundedness of the incremental fields as r + 0 
and r + m. 

Before proceeding to the integration of the incremental equations, we note that a related decoupling method was briefly 
commented on by Richards & Hager (1984). In contrast to the present study, their scheme is limited to viscous-gravitational 
perturbations. Hence, the coupled form of the incremental field equations and interface conditions basic to their study involves 
the local incremental stress, tj?’, and therefore differs from (7)-(15) above, which are written in terms of the material 
incremental stress, t y )  (cf Wolf 1991a for details on this difference). 

3 INTEGRATION OF THE EQUATIONS 

In this section, the scalar equations in spherical coordinates compiled above are solved. In Section 3.1 the special solution to 
the initial field equations and interface conditions is given. In Section 3.2, fundamental solutions with respect to 8 satisfying the 
incremental field equations and interface conditions are sought in terms of Legendre polynomials. Based on this assumption, 
we deduce the special solution with respect to r in three steps. First, we establish the general solution to the (4 X 4) differential 
system governing the mechanical quantities (Section 3.2.1). After that, we derive the general solution to the (2 X 2) differential 
system for the gravitational quantities (Section 3.2.2). Finally, we determine the integration coefficients using the incremental 
interface conditions (Section 3.2.3). 

3.1 Solution for the initial fields 

The special solution to (31)-(33) which satisfies (34)-(36) and remains bounded as r+ 0 and r+ = is well known (e.g. 
Ramsey 1981, pp. 45-51). Upon introducing the non-dimensional radial distance, R = r / a ,  the following formulae are obtained: 

p c O ) =  $ a y p ( l  - R2), R < 1, (46) 

where the additive constant in the potential function has been chosen such that 1imr-= 4 ( O )  = 0. Since y = 4nGap/3, the initial 
state is completely determined if any two of the parameters a,  y and p are given. 

3.2 Solution for the incremental fields: ( r , n , s )  domain 

In the following, we seek solutions to (37)-(41) subject to (42)-(45) in terms of Legendre polynomials of the first kind, 
P,(cos 8) ,  where n E {0,1,. . .} is the Legendre degree and P,(cos 8 )  satisfies Legendre’s equation (e.g. Lebedev 1972, pp. 
44-5 1). 

a r ,  8, S) = - f ihn(r ,  s)l,(~)p,,,(cos e), (52) 

where f , ( s )  is the non-dimensional Legendre coefficient of a(@, s) (Section 3.2.3) and p,(r, s) the normalized Legendre 
coefficient of f ( r ,  8, s). Note that P,(r, s) is assumed to be a Laplace transform, which will be confirmed below (Section 4.3.2). 
To proceed further, we distinguish the Legendre degrees n = 0 and n 2 1. For brevity, the arguments of the functions will 
usually be suppressed. 

Degree n = 0. With Po,, = 0, we may put 

(53) 
- I u*o = Qh0 = 0, 
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whence (37)-(40) reduce to 

,.jj(a) - 0 ] r < a .  
0,r - 

+ 20, = o 
General solutions are 

0 -A(2)R-2 

pf) = A(1) ] R < 1 ,  
m- 

with A(')  and A(') arbitrary integration coefficients. 

Degrees n 2 1. Upon substitution of (49)-(52) and use of Legendre's equation, (37)-(40) take the forms 

r <a.  I - - - - 
Urn + rue,,, + U,, - 2rQAn = 0 

rFg!  + 2n(n + 1)siifiAn = o 
P?) + 2sii (rfiAn,r + fiA,,) = o 
rUrn,r + 2Urn + n(n + 1)8,, = o 
We introduce the vector [y] by non-dimensional solution 

and consider fundamental solutions with respect to R of the form 

Upon successive substitution of (62) and (63), eqs (58)-(61) can be recast into the following matrix equation: 

K(")+2 n ( n + l )  0 0 
K ( " ) +  1 0 

0 K ( " ) - l  ?2(?2+1) 
0 1 

This has non-trivial solutions only if the system determinant vanishes: 

[ (K 'k '  + 1)(K'"' f 2) - n(n $- 1) ] [K ' " ' (K ' " '  - 1) - n(n f I)] = 0, 

whose roots are 

(54) 

(55) 

(56) 

(57) 

The determination of the eigenvectors, [Yj"'], associated with the eigenvalues, K ( " ) ,  follows standard procedures, which are 
explicitly shown elsewhere (Wolf 1993, pp. 83-84). Putting Yil) = n ,  Y y )  = n(n + l) ,  Yy)  = n + 1, Yy)  = n(n + l) ,  we obtain 

[Y!"] = [n(n + I), -(n + 3), (TI + 1)(2n + 3), -(2n + 3)IT, 

[Yi'"] = [n + 1, 1, 0,01=, 

[Yy)] = [n(n + I), n - 2, n(2n - I), 2n - lIT. 
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Since we have four fundamental solutions, the general solution with respect to R for the mechanical quantities can be 
written as 

4 

[ y ]  = 2 A(k)RK'k)[Yjk)],  

where the integration coefficients, A('), are arbitrary. 

R < 1, 
k = l  

3.2.2. General salurion for the gmuitatiional quantities 

We consider the radial component of (19): 

fP' = 6 (A) 
.r J 

whose substitution into (41) yields 

sin Q(r'g;")),, + (sin 8$$)),8 = 0, 

As for the mechanical quantities, we suppose fundamental solutions with respect to 8 of the forms 

$(*)(r ,  8, s) = &LA)(r, s)~,(s)P,,(cos e),  

gy) ( r ,  8, s) = C::)(r, s)rn(s)pn(cos 6).  

Upon substitution of these equations and use of Legendre's equation, (75) and (76) reduce to 

r # a. 

- G;;l = 0 

n(n .+ I)&?) - r 2 G,, - - 2qy;) = 0 

Next, we introduce the vector [Z,]  by non-dimensional solution 

and consider fundamental mlutions with respect to R of the form 

Upon successive substitution of (81) and (82), eqs (79) and (80) can be recast into the following matrix equation: 

(74) 

(75) 

This has non-trivial solutions only if the system determinant vanishes: 

whose roots are 

n, = 

A'2' = -(n -k 1). 

The elements of the eigenvectors, [Zi(')], associated with the eigenvalues, A('), are found to satisfy 

[Zi"] = [I, n]T,  

[Zi"'] = [I, -(n + 1)jT (89) (90) I 



Lamt?'s problem 329 

Since we have two fundamental solutions, the general solution with respect to R for the gravitational quantities takes the 
form 

2 

[Z,] = B(eR"'g[Z$o], R # 1, 

with the integration coefficients, B ( O ,  arbitrary. 

c= 1 

3.2.3 Special solution 

Next, we adjust the general solutions with respect to R deduced above to the incremental interface conditions. This requires 
that the interface-mass density is of the form 

a(e, S) = ~,(~)P,(cos el ,  (92) 

where a,(s) is the ordinary Legendre coefficient of a(6, s). Its relation to the non-dimensional Legendre coefficient, l,(s), is 
given by 

E,(s) = ap(2n  + I ) ~ , ( S ) .  (93) 

We note that, since J,"p,(cos 0 )  sin 6 d6 is finite for n = 0 and vanishes otherwise, @,(s) corresponds to an accreted load and 
C,(s) for n 2 1 to a redistributed load. 

Degree n = 0. As for the initial fields, we seek solutions that remain bounded as r 4 0 and r + m. According to (53)-(57), 
this requires 

Imposing the constraint 1imr+= $('I = 0 and considering the relevant equations, we also get 

The three coefficients are determined using (42)-(45). Expressing the incremental fields in these equations using the 
appropriate relations, we obtain upon some manipulation 

(98) 

R = 1. (99) 

(100) 

(101) 

(102) 

1 [PY' + p 6 h A ) ] -  = ayp 

[&p] '' = 0 

[UpG'!;)]: = -3ayp 

Substituting (95)-(97) yields 

A(1) = -2ayp, 
B(1) = B(2) = 1 

Degrees n 2 1. Again, we require a bounded solution for r 4 0 and r + X. Observing the signs of the eigenvalues K ( ~ )  and 
A(o, (74) and (91) reduce to 

The four coefficients are determined following steps simiiar to those taken for Legendre degree n = 0. We obtain 

R = 1. i 
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Upon successive substitution of the appropriate relations expressing the field quantities in terms of the integration coefficients, 
we arrive at (Wolf 1993, pp. 57-58) 

n - 1  n(n +2)  

-n(n + 1) 
B(2) = 

If n 2 2, the solution is given by 

YP I A ( ’ ) =  -(n +2)  
knsP + YP ’ 

with k,  = (2n2 + 4n + 3)/(an)  the Legendre wave number. 
If n = 1, eq. (109) reduces to 

-1 -2  
Since the system determinant vanishes, the system is underdetermined and no unique solution exists. Considering the 
‘reduced’ system 

we may put B ( l )  = B(’) = C, whence we find A(1) = 3(C - 1) and A(’) = 0. Constant C can be determined by bearing in mind 
that, for redistributed loads, planet and load constitute a closed system whose centre of mass remains unperturbed. Since 
PI = cos 8 ,  this is satisfied for n = 1 only if the interface-mass density associated with the load is anulled by the effective 
interface-mass density resulting from the perturbation of the surface of the planet. The mathematical expression of this 
condition is [p.FrJ- = -@, which can be shown to be equivalent to [i7,.J- = -3a. However, we also derive [orlJ- = -3a(l-  C). 
Hence, C = 0 and 

, (116) 

(117) 

A(1) = -3 

A(2) = B(1) = B(2) = 0. 

4 SOLUTION FUNCTIONS FOR THE INCREMENTAL FIELDS 

We begin by compiling the special solution functions for the individual fields in the (r, n, s) domain, where transfer functions 
are introduced (Section 4.1). This is followed by the specification of the shear-relaxation function for generalized Maxwell 
viscoelasticity (Section 4.2). After that, the solution functions are transformed to the (r, n,  t )  domain, where impulse-response 
functions are established (Section 4.3). Finally, we consider the transformation to the (r,  8, A, t )  domain and provide the 
appropriate Green’s functions (Section 4.4). 

4.1 Functions in the ( r , n , s )  domain 

First, we give closed-form solution functions for the following fields: material displacement, isopotential incremental pressure 
and local incremental potential (Section 4.1.1); isopotential height (Section 4.1.2); strain (Section 4.1.3); rotation (Section 
4.1.4); material, isopotential and local incremental stresses (Section 4.1.5); and material, isopotential and local incremental 
gravity (Section 4.1.6). After that, the agreement between our solution and that derived from the conventional (6 X6) 
differential system is discussed and the half-space approximation derived (Section 4.1.7). Finally, the general form of the 
individual solution functions is established and transfer functions are defined (Section 4.1.8). All formulae are written in terms 
of the non-dimensional radial distance, R = r / a ,  with the Legendre degrees n = 0, n = 1 and n 2 2 considered explicitly for each 
field. We recall that, for redistributed loads, go = 0 so that n = 0 is without relevance in that case. 
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4.1 .I Material displacement, isopotential incremental pressure and local incremental potential 
The incremental fields iir, ii,,p(') and $(A) are basic in the sense that all other incremental fields can be expressed in terms of 
them or their spatial derivatives. For convenient reference, we recollect the following fundamental solutions with respect to 0 
(Sections 3.2.1 and 3.2.2): 

~ r =  f i r n f n p n ,  (118) 
Ee = - ~Tentnpn.,, (119) 
p) = p w f  n n p nj (120) 
$(A)  = 5 ( A ) f  n n p n' (121) 

Degree n = 0. Eqs (94)-(96), (101) and (102) yield 
Od=0 

tr,, = 0 } R < L  
P g )  = -2ayp 

" - {3ayR- ' ,  R > 1 '  
(A) - 3ayj R < 1  

Degree n = 1. Using (62), (81), (103) and (104) and substituting the appropriate equations for the eigenvectors and 
integration coefficients, we obtain 
I 

U,, = -3a (126) 
(127) 

p"',"'= 0 (128) 
&$A) = 0, R ZO. (129) 

tr,, = -3a ] R < 1 ,  

Degrees n 2 2. A s  for Legendre degree n = 1, we find 

YP or,, = -a[n(n + 2)R"-' - (n' - l)R"+'] 
kns$ + Y P  

a YP  8,, = - [n(n + 2)R"-' - (n  - l)(n + 3 ) R n f 1 ]  
n knS$ + Y P  

(2n + 3)(n2 - 1) 
2n2 + 4n + 3 

kns$ 
k,sF + y p  

F z )  = 2a y p  R" 

R<1,  

With formulae for the four basic incremental field components, ii,., ii,,p"(') and $(A),  for n = 0, n = 1 and n 2 2, 
respectively, we can now give formulae for any other incremental field quantity of interest. In order to relate isopotential 
increments to local or material increments, we need the solution for the isopotential height, 5, which is given in the following 
section. 

4.1.2 Isopotential height 
With di the isopotential displacement (Appendix Al) and $(a) = 0 by definition of the isopotential increment (Appendix A 2 ) ,  
(309) and (310) lead to 4(F)d, = -$ (A) .  Since n:') is anti-parallel to c$(;), can be replaced by nIo)n,(O)4::)Z, = -$('). An 
elementary consideration shows that, on the assumption of infinitesimal perturbations, njO)d, equals the height of the current 
level surface, 4 = 4', passing through X i  + di with respect to the associated initial level surface, 4(O) = +', passing through Xi, 
as measured in the direction of niO). With 

- 

= njO)d, the isopotential height and gy' = +(:I, we thus obtain 

or, in spherical coordinates, 

Using (121) and 

K = t7,fnPn, 
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we get 

- 1 -  ff = --@(A) 
n n ,  r f a .  do) 

Degree n = 0. Substituting (48) and (125), the preceding equation gives 

3aR-', R < 1  
"= {3aR, R > 1 '  

We note that, with g!"' vanishing for R = 0 and R * 33, Go becomes singular at these points. 

Degree n = 1. In view of (48) and (129), it follows that 

R, = 0. 

Degrees n 2 2. Upon substitution of (48) and (133), we obtain 

(137) 

4.1.3 Strain 

In Cartesian-tensor notation, the strain, Eij ,  is defined by 

e".. = &. . + E. .), 
i , j  j . z  Xi E E-. 

In spherical coordinates, the non-vanishing components of Fij are given by 
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Degree n = 0. In view of (122) and (123), it follows that 

I - I E ,  = E,,, = EFJO = E(2)  - E(1) = g.2) = 0 
880-  A A O  A h 0  > R < l .  

Degree n = 1. Substituting (126) and (127), we arrive at 

1 E,, = 0 

E,,, = 3R-1 

Degrees n 2 2. Using (130) and (131), we obtain the following formulae: 

Y P  Err,, = -(n - l ) [n(n  + 2)R"-' - (n  + 1)'R"I 
knsF + Y P  

Er8,, = (n  - l)(n + 2)(Rn-'- R") 

B$&, = (n  + 2)[n2Rn-' - (n' - l ) R n ]  

YP  
knsP + Y P  

Y P  
knsF + Y P  

1 YP 
n knsF + YP 

EfJ,, = - - [n(n + 2)Rn-' - (n  - l)(n + 3)R"I 

Ei?,, = -[n(n + 2)R"-' - (n' - l )Rn]  I YP 
knsp + YP 

1 Y P  
n knsF + Y P  a 

Eyin = - [n(n + 2)Rn-2 - (n  - l ) ( n  + 3)Rn] 

R < 1  

4.1.4 Rotation 

In spherical coordinates, the non-vanishing component of (25) is 

Using (118), (119) and 

'A = -TiAn!?nPn,8, 

this takes the form 

- 1  
QAn = (Urn + rUen,r + UTen), r <a. 

Degree n = 0. By (122) and (123), the preceding equation reduces to 

f i h O = O ,  R<1. 

Degree n = 1. With (126) and (127), it follows that 
- 
RA1 = -3RP1, R < 1. 
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Degrees n 2 2. Using (130) and (131),  we arrive at 

, R < 1 .  (174) 
- (n  - 1)(2n + 3 )  YP 
QAn = - R” 

n knsF + Y P  

4.1.5 

In the first instance, the isopotential incremental stress, T$‘), has been introduced to decouple the incremental field equations 
for the mechanical quantities from those for the gravitational quantities (Section 2.1.2). Apart from that, Tf) serves as a 
measure of the deviation from a hydrostatic equilibrium state. In this respect, it resembles the local incremental stress, fit), 
which provides such a measure in the absence of gravitational perturbations. On the other hand, observations of the 
incremental stress at or below the surface of planets commonly refer to material points and therefore yield values for the 
material incremental stress, Tj;S’. 

The relations between Tr), T$‘) and 7r) are most conveniently expressed upon decomposition of the stresses into spherical 
and deviatoric increments. Since p(’) = -$:)/3, p(’) = - f j f ) /3 ,  p(A) = -T!:)/3 and FF) = 5:) = F F )  = Fij, we obtain 

Material, isopotential and local incremental stresses 

Spherical increments 

With the spherical incremental stress equal to the negative of the incremental pressure, we proceed by considering the 
incremental pressure. In view of (309) and (310), it follows for the three measures of incremental pressure in spherical 
coordinates 

we find the following equations: 

g p  = p(a) -pco)f i  
n 

.r n } r<a.  
p?)  =p!;’u, 

Degree n = 0. Substitution of (46), (122), (124) and (138) results in 

I p$y)  = 0 

Degree n = 1. In view of (46), (126), (128) and (139),  it follows that 

p(A) = 0 } R < 1 .  
p a ,  = 

1 3aYPR 

Degrees n 2 2. Using (46), (130), (132) and (140), we get 

YP p?)  = a y p [ n ( n  + 2)R” - (n2 - l)Rn+*] 
knsF + YP 

R < 1 .  
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n(n + 2) knsp S;in = 2a y p  [n2RnP2 - (n2 - 1)R"I 
2n' + 4n + 3 knsp + Y P  

knsp S(2) = -za [n(n + 2)Rn-2 - (n - l ) (n  + 3)Rn] 
YP2n2+4n + 3  knsp + Y P  

n knsP 

Ben 

= -2a [n(n + 2)Rn-2 - (n' - l )Rn]  - 
YP2n'+4n + 3  krPP + Y P  

h A n  

1 knsp S(hj,, = 2a y p  [n(n + 2)Rn-2 - (n  - l ) ( n  + 3)Rn] 

Deuiatoric increment 

In Cartesian-tensor notation, comparison of (17), (141) and (176) yields 

sij = 2spzij, 

srr = 2sp zrr 
sre = 2spz,, 

s,, = 2Spz,, 

s,, = 2Spz,, 

Introducing 

srr = Srrn Zn Pn 9 

$rS = - S r 6 n z n p n , B ~  

s,, = SYJnCnPn - SFJnZn cot ep,,,, 

s,, = SyinZnPn - syinzn cot ep,,, 

Srrn = 2 s p  B ,  

xi E E. 
In spherical coordinates, the non-vanishing components of Fij are given by 

] r<a.  

and observing (146)-(149), we obtain the formulae 

r < a. 

- s yin = 2sp  E ?in 
s ?in = 2sp E y) An 
- 

Degree n = 0. In view of (156), it follows that 
I s = greo=g(l )  - 5 ( 2 )  - S(1) - S(2) = 
rm 000- e e o -  A ~ o -  A A o  0, R < 1 .  

Degree n = 1. Upon substitution of (157)-(162) and definition of k ,  = 9 / a ,  the following formulae result: 

Srr1 = 0 

R < 1. 

S ( 2 )  = -gaR-'k s- 
Ah 1 1 P  

Degrees n 2 2 .  Using the definition of k, and substituting (163)-(168), we arrive at 

n(n - 1) knsp 
2n2+4n + 3  knsF + YP 

S,, = -2ayp [n(n + 2)RnP2 - (n  + l)'Rn] 

R < 1  
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4.1.6 Material, isopotential and local incremental gravity 

With the isopotential height, z, the material displacement, Ei, and the local incremental potential, 
increments of gravity, g:'), glJ) and ElA), may be calculated. 

given, any of the 

Local increment 

We consider (19), whose non-vanishing components in spherical coordinates are 

If we define 

g!A) = G ( A ) f  p 

g$A) = - G ( A ) Z  p 
m n n )  

E n  n n , B  

and observe (121), we obtain the following equations: 

r 

Degree n = 0. Considering (125) and Po,e = 0, it follows that 

C ( A )  = 0 eo , R+1.  

Degree n = 1. With (129), we arrive at 

c::) = G ( A )  = 0 ei , R+1.  

Degrees n 2 2. Substitution of (133) yields the formulae 

Material and isopotential increments 

Observations of gravity changes at or below the surface of planets usually refer to material points and are frequently reduced to 
the geoid. Therefore, it is necessary to relate &A) to the material incremental gravity, &'), and the isopotential incremental 
gravity, gia). In spherical coordinates and with 8:) = 0, it follows from (309) and (310) that 

-. 
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Note that, by (230) and (232), the colatitudinal components of the different measures of incremental gravity are identical in the 
joint spatial domains. The following analysis is therefore limited to the radial components. We introduce 

and get with (118), (136) and (220) the formulae 

G::) = g:p>urn 

Degree n = 0. Upon substitution of (48), (122), (138) and (224), the preceding equations become 

0, R < 1, (237) &;) = 

Degree n = 1. In view of (48), (126), (139) and (226), the following expressions result: 

3Y, R < 1 ,  (239) 

G:;) = 0, R Z 1 .  (240) 

= 

Degrees n 2 2. Considering (48), (130), (140) and (227), we obtain 

~ 

4.1.7 Relations to other studies 

Provided the underlying field equations and interface conditions are identical, the special solution functions derived above must 
be identical with those obtained from the conventional (6 X 6) differential system. Special solution functions for models similar 
to ours have been published by Wu & Peltier (1982), Spada et al. (1992) and Amelung & Wolf (1994). Here, we inspect the 
formulae in the (r, n, s) domain given by the first authors, which apply to a model identical to ours. Considering the radial 
displacement as an example, we write (130) in the form Ern = onPn with fin = C,n/[2(2n + 3)]rnt1 + C,r"-'. Upon expressing 
C, and C, in terms of the model parameters and with the appropriate notational changes applied, some algebra establishes the 
identity of (130) with the corresponding formulae in Wu & Peltier (1982) [ c t  in particular their eqs (5), (29) and (32)]. 

Of some interest is also the case where the wavelength of planetary deformations is sufficiently short compared to the 
radius of the planet that the sphericity becomes irrelevant and gravitational perturbations may be neglected. Then, the 
half-space theory developed elsewhere (e.g. Wolf 1991b, 1993, pp. 33-45) is profitably employed and yields the desired results 
more easily than the spherical theory considered here. The accuracy of the half-space approximation has been tested 
computationally for a number of earth models (Wolf 1984; Amelung & Wolf 1994); here, we show how the solution functions 
for the sphere can be formally reduced to those for the half-space. 

Since the problem is primarily of theoretical interest, we restrict our analysis to the radial displacement. Using 
(93), (118), (130), R = 1 + x / a ,  a, = Ex and the definition of k,, it is expressible as 

(1 +;)(1+ y-'- (1 -$)(I +;)"" 

1 n (2 +:)[ (2 +; + g )  ;sF + Y P  

Y@,P,. ax = - 
1 4 3 n  (243) 



If we put n /a  = k, this can be recast into 

where 

(1 +i)(l +g - (1 -f)(l  + ; k x )  1 

r, = ' (2 +:I[ (2 +; 4 3  + 2 ) k ~ i i  + 
n 

Supposing now that x /a  +. 0 and n + x such that k = finite, some manipulation yields 

1 - k x  
lim r, = 

n - r  2ksp + y p '  

1 "  
lim (1 + ; k x )  = ekr. 

n+s5 

(247) 

According to Hobson (1931, p. 299), En can always be chosen such that, correct to the order l/&, the relation 
EnPx = s sin [(n + $)@ + n/4] applies in some neighbourhood of 8. Selecting 0 = n/2  and putting ne = ky, this simplifies to 

@,P, = s cos ( k y ) .  (249) 

In view of (244) and (247)-(249), we obtain for x /a  +. 0 and l / n  --;r 0 the limit 

" (1 - kx)ek" cos (ky). (250) 
- u, = - 

2ks& + yp 

Eqs (249) and (250) are fully consistent with the special solution functions in Wolf (1991b, 1993, pp. 33-45) [ c j  in particular 
eqs (4.40), (4.41) and (4.61) in the second reference] and, accordingly, give the vertical displacement in a half-space subject to a 
fixed and homogeneous gravity field and a sinusoidal load of wavelength 27r/k and amplitude s. 

4.1.8 Transfer functions 

Inspection of the solution functions listed above shows that the ordinary Legendre coefficients, f n ( r ,  s) = Fn(r, s ) f , ( s ) ,  of the 
field quantities analysed can be decomposed according to 

Sn(r, s) = E z ( r ) T n ( s ) t n ( s ) ,  (251) 

which is the general form of the solution functions in the (r,  n, s) domain. Function E ( r )  = F,(r, s ) / T , ( s )  specifies the radial 
dependence of fn ( r ,  s) and can be directly obtained from the individual solution functions. Function Tn(s) is referred to as 
transfer function and found to be of either of two types: 

c 1, n = l  

As in the foregoing equations, the arguments of the functions considered will henceforth be displayed for clarity. 
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4.2 Generalized Maxwell viscoelasticity 

For the inversion of ?LA)@) for n 2 2 and T;*)(s) for n 2 1, it is necessary to specify jZ (s). We start from the general formula 

which expresses p(t - t’)  in terms of its spectrum, ~ ( c u ‘ ) .  We can approximate the latter to any degree of accuracy required by 
F(a ’) = x.,“=l p,(9)8(a‘ - a(9)), where a(q)  > 0 is the qth inverse elemental Maxwell time and p(q) > 0 the qth elemental 
elastic shear modulus, both prescribed for q E (1, 2, . . . , Q}; as usual, 8(a’  - a(q) )  denotes the (shifted) Dirac delta function. 
Using this approximation, (254) reduces to 

which is the shear-relaxation function for generalized Maxwell viscoelasticity (e.g. Christensen 1982, pp. 16-20; Muller 1986; 
Wang 1986). Defining p, = limr-r,+o p(t - t’), we obtain in particular pe = xf=l p(9), which is the elastic shear modulus. The 
Laplace transform of (255) with respect to t - t’ is 

4.3 Functions in the (r,  n, t )  domain 

4.3. I Impulse-response functions 

We proceed with the transformation of the solution functions specified in Sections 4.1.1-4.1.6 from the (r,  n, s) to the (r,  n, t )  
domain. This requires inverse Laplace transformation of (251)-(253). Details on the inversion of the regular and singular 
functions entering into these equations can be found elsewhere (e.g. LePage 1980, pp. 285-328; Wolf 1993, pp. 80-82). Inverse 
Laplace transformation of (251) gives 

as general form of the solution functions in the ( r ,  n, t )  domain. Function T,(t - t ’ )  is the impulse-response function associated 
with the transfer function T,(s), which is of type TiA)(s) or TiB)(s). 

With p(s) specified and the general functional form of f,(r, t )  established, (252) and (253) can now be inverted. We 
consider the Legendre degrees n = 0, n = 1 and n 2 2 individually. 

Degree n = 0. The shifted inverse Laplace transform of (253) is 

T p ( t  - t’) = s(t - t’). 

Degree n = 1. The shifted inverse Laplace transform of (252) is 

T$A’(t - t’) = s(t - t’) ,  

Upon substitution of (256) into (253), it follows that 

whence the shifted inverse Laplace transform takes the form 
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Degrees n 2 2. Substituting (256), we obtain from (252) the equation 

After some algebraic manipulation, this can be recast into 

where 

The shifted inverse Laplace transform of (263) can formally be written as 

T y ( t  - t ’) = 
y p  [ 6 ( t  - t’) + Wn(t - t ’ )] .  I knpe + YP 

Comparing (252) and (253), we get 

T y ) ( s )  = 1 - T P ) ( s ) ,  

whose shifted inverse Laplace transform is 

T y ( t  - t ’ )  = y p  [ 525 6 ( t  - t ’ )  - Wn(t - t ’ ) ] .  
k n P e + Y p  Y P  

~ ~~ 

4.3.2 Stability analysis 

It remains to establish the functional form of Wn(t - t’). Inspecting (264)-(266), we note that Fn(s) can be rewritten as the 
quotient of two polynomials in s (without common roots) of degrees L = Q - 1 in the enumerator and M = Q in the 
denominator. Hence, the inverse Laplace transform of m ( s )  exist and, according to the complex inversion formula and the 
residue theorem, can be specified upon determination of the roots of Vn(s). To prove that all roots are simple and negative, we 
assume that the M poles of Vn(s) have been ordered such that 0 > -a(’)  > -a(2) > . . . > a(M) .  Considering the interval 
$ ( l )  = ( -a(’) ,  0) first, we note that lim3+--a(,)+0 V,(s) = --cc and V,(O) = 1, whence one root must lie in 9(’). The remaining 
roots are found by considering the interval @-) = ( -a(m),  -a(m-’)),  where rn E {2,3, . . . , M}. Since lims--m(m)+o Vn(s)  = --co 

and l i m s ~ ~ a ~ , , - l ~ ~ o  Vn(s) = 2, one root must also lie in each of &*), 9(3), . . . , 9(M). However, Vn(s) can have either M roots if 
all are simple, or less than M roots if at least one is multiple. Taking this into account, it follows that there is exactly one root 
in each of 9(’), 9(”), . . . , 9a(M). 

Having established that vn(s )  has M simple and negative roots, the functional form of Wn(t - t ’ )  can now be given. 
Denoting the pole in 9‘”) by -Pim),  evaluation by means of the complex inversion formula and the residue theorem yields 
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The mth term of the sum in (270) is called rnth relaxation mode, with ULm)/VLm) the modal amplitude, pirn) the inverse modal 
relaxation time and M the total number of relaxation modes. Eqs (270)-(272) completely determine the impulse-response 
functions TL*)(t - t’)  and TLB)(t - t‘)  for n 2 2 and, thus, the solution functions in the (r, n,  t )  domain. 

4.3.3 Maxwell and Burgers viscoelasticity 

General methods of obtaining closed-form expressions of the roots, -pLm), of V,(s) exist only for M 5 4 .  In all other cases, 
numerical methods must normally be applied. In practice, such methods are even used for M = 3 or M = 4. Here, we evaluate 
W,(t - 1’) exactly for M = 1 and M = 2. Since M = Q, this is equivalent to Q = 1 and Q = 2, which correspond to Maxwell 
viscoelasticity and Burgers viscoelasticity, respectively. 

Case M = 1. Eq. (266) takes the simplified form 

with the root 

whereas (270)-(272) lead to 

The solution for Maxwell viscoelasticity was discussed by Wu & Peltier (1982) and, more recently, by Amelung & Wolf (1993). 
Its characteristic feature is the single exponential decay mode, with the modal amplitude and modal relaxation time being 
simple functions of the Legendre degree and the parameters of the planet. 

Case M = 2. Eq. (266) reduces to 

which has the following roots: 

The solution is now characterized by the superposition of two exponential decay modes. Compared to Maxwell viscoelasticity, 
the complexity of the functional forms for the modal amplitudes and relaxation times is greatly enhanced. A detailed discussion 
of the response characteristics of elementary models with Burgers viscoelasticity can be found in Riimpker (1990). 

4.4 Functions in the (r ,  8, A, c) domain 

The final step is the transformation of the solution function (257) from the (r, n, t )  to the ( r ,  8, A ,  t )  domain. In the following, 
we will distinguish axisymmetric and non-symmetric loads and calculate the respective Green’s functions. 

4.4.1 Axisymmetric Green’s functions 

We first consider the Green’s function for axisymmetric loads whose distribution is given by c(O’, t ‘ ) ,  where 8‘ is the colatitude 
of the excitation point. On the assumption that a(@’, t’) is twice continuously differentiable with respect to 8’ in (0, n) and that 



342 D. Wolf 

J,”[v(8’, t‘)I2 sin 8’ do’ is finite, the distribution can be expanded into a convergent Legendre series (e.g. Lebedev 1972, pp. 
53-60): 

u,(t’) = (n + i) v(8’, t’) sin B’P,(cos 8 ’ )  d8’.  c 
We recall that only the term v,(t‘) corresponds to a net mass; accordingly, no = 0 applies if v(8’, t’)  specifies an accreted load, 
and no = 1 if it specifies a redistributed load. In view of the linearity of the problem, the solution of the load prescribed by (279) can be 
expressed as 

which, upon use of (93) and (257), takes the form 

1 =  
P,(cos 8) 

-cot ep,,,(cos e) 
2 F,O [ -P,,,(cos 8 )  ] LT,(t - t‘)a,(t’) dt’. 

n=no2n + 1 

Substituting (280) and changing the sequence of summation and integrations, this becomes 

where f(””)(r,  8, 8’ ,  t - t ‘ )  denotes the axisymmetric Green’s function in the (r,  8, t )  domain. 

4.4.2 Non-symmetric Green’s functions 

It is now straightforward to deduce the Green’s function for non-symmetric loads described by the distribution u(8 ’ ,  A’, t‘), 
where 8’ and A ’  are the colatitude and longitude of the excitation point, respectively. For this, we take into account that 
f(””)(r,  8, 8’ ,  t - t ’ )  is the normalized contribution to f ( r ,  8, t )  lrom an annular load at colatitude 8‘. The contribution to 
f ( r ,  8, t )  from a point load on the symmetry axis thus follows from 

Noting that, for a non-symmetric load, f ( r ,  8, A, t )  can be obtained by superposing the contributions from the appropriate 
distribution of point loads, the generalizations of (283) and (284) are 

j 7  2 R  f 

f ( r ,  8, A ,  t )  = 1 ~ f “ ’ ) ( r ,  6 ,  t - t ’ ) r ( 8 ’ ,  A‘, t’) sin 8‘ do’  dA‘ dt’, 

1 “  

0 0  

-cot 6P,,.(cos 6) 
f @ ) ( r ,  6, t - t ’ )  = - c F,(r) 

2ap 

where f @ ) ( r ,  6, t - t’) denotes the non-symmetric Green’s function in the (r,  8, A, t )  domain and 6 the angle between the 
observation and excitation points, with cos 6 = cos (8  - 8’) cos (A - A‘). Since <(r)  = F,,(r, s)/T,(s) is implied by the solution 
functions listed in Sections 4.1.1-4.1.6, T,(t - t ’ )  of the types T:*)(t - t ’ )  or TLB)(t - t’) given in Section 4.3.1 and u(8 ’ ,  A’, t’) 
prescribed, the solution to Lame’s problem of gravitational viscoelasticity is completely specified. 
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5 CONCLUDING REMARKS 

The main results of our study are the following. 

(1) We have given a complete and rigorous solution describing infinitesimal, quasi-static, gravitational-viscoelastic 
perturbations, induced by surface loads, of a spherical, isochemical, incompressible, non-rotating, fluid planet initially in 
hydrostatic equilibrium. The kinematic formulation is uniformly Lagrangian in the internal and external domains of the planet. 

(2) The solution method adopted differs from the methods conventionally employed for the type of problem studied. Its 
main characteristic is that the incremental field equations are recast into two mutually decoupled (4 X 4) and (2 X 2) first-order 
ordinary differential systems in terms of the mechanical and gravitational quantities of the problem, respectively, the coupling 
being restricted to the incremental interface conditions. A useful property of the decoupled differential systems is that the 
complexity of the algebraic manipulations necessary to solve them is significantly less than for the (6 X 6) differential system 
commonly used. It is suggested that this simplification is also of some consequence when considering perturbations of layered 
planets. 

(3) The decoupling of the incremental field equations is contingent upon the use of the isopotential incremental pressure 
measuring the increment of the hydrostatic pressure with respect to a particular isopotential surface. The rigorous definition of 
isopotential increments and the Lagrangian expressions relating them to the material and local increments conventionally 
employed in the mechanics of continua subject to initial stress are given in Appendix A. 

(4) The resulting solution functions are specified for the ( r ,  n,  s), (r ,  n, t ) ,  (r ,  0, t )  and (r ,  8, A ,  r )  domains. They involve 
explicit expressions for the Legendre degrees n = 0, n = 1 and n 2 2, are valid at any location in the interior or exterior of the 
planet and comprise all incremental field quantities of interest in the dynamics of planetary bodies. Of significance is that the 
solution functions apply to arbitrary types of generalized Maxwell viscoelasticity. The inverse relaxation times characterizing 
the particular type are given as the poles of the quotient of two polynomials in terms of the Laplace frequency, s. Since all 
poles are simple and negative, the planet is always stable and its impulse response involves a series of exponential decay 
modes. 

Some interesting consequences of our study are the following. 

(1) The (4 X 4) differential system obtained formally agrees with the system governing the corresponding non-gravitating 
problem. Available solutions to this simpler problem can therefore be generalized a posteriori in order to include gravitation. 
Since the numerical modelling of viscoelastic perturbations of planets has so far been based on techniques developed for 
non-gravitating continua, our solution method opens a way of accounting for initial stress and gravitational perturbations when 
using these techniques. 

(2) Allowance for perturbations due to non-gravitational volume forces can be made by an additional term, p(o ) f i s ) ,  on 
the left-hand side of (9). Since j$’) = 0, we then have instead of (18) the expression T K )  + p(0)fjA) = 0 and therefore again 
formal agreement between the isopotential-local form of the incremental field equations and the corresponding equations valid 
in the absence of initial stress and gravitation. 

(3) In the case of perturbations of a compressible planet, we have ui,i # 0 and p = p‘” + p‘”.  As a consequence, (16) no 
longer applies, T f j  - g~o’(p‘o’iij),j = 0 replaces (18) and p‘” is to be substituted for p in (16)-(24). Hence, no additional 
mechanical-gravitational coupling is introduced by compressibility, but the formal reduction to the non-gravitating case is not 
achieved. A special type of compressibility where ( p ‘ ” ) ~ ~ ) , ~  vanishes has recently been studied by Li & Yuen (1987) and Wolf 
(1991 a). 
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A P P E N D I X  A: MATHEMATICAL A N D  N O T A T I O N A L  CONCEPTS 

We modify and extend the concepts developed in Dahlen (1974), Grafarend (1982) and Wolf (1991a); a complete exposition of 
the following analysis can be found in Wolf (1993, pp. 4-10). 

A1 Kinematic formulations 

Suppose Cartesian-tensor fields and employ for them the usual indicia1 notation and summation convention. Denote by 8 the 
unbounded 3-D Euclidian space domain, by 5 the time domain [ O , x )  and consider the mapping ri = ri(X, r ) ,  where X i  E 8 and 
t E 9. We stipulate that ri = r j ( X ,  t )  is a one-to-one mapping of 8 onto itself with the property X i  = r f ( X ,  0) and continuous 
differentiability with respect to the arguments as many times as required. We call t current time, ri current position, t = 0 initial 
time and Xi initial position. Assume now that % is completely filled by a gravitating fluid. A particular mapping satisfying our 
assumptions then is 

rlL) = rjyx, t )  = X i  + U i ( X ,  t ) ,  xi E 8, t E 3, 
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which is the kinematic formulation used for material points (particles). The mapping identifies each material point by its initial 
position, Xi, and relates to the point its current position, r!'), in terms of the material displacement, uir from its initial position. 
In addition, we define isopotential points, which move in the direction of the gradient of the gravitational potential currently 
existing at their respective positions such that the potential experienced by each of them remains constant during their motion. 
A second mapping satisfying our assumptions thus is 

riN) = r j N ) ( X ,  t )  = X, + d i ( x ,  t ) ,  xi E 8, t E 9, (289) 

which is the kinematic formulation used for isopotential points. The mapping identifies each isopotential point by its initial 
position, Xi, and relates to the point its current position, rj", in terms of the isopotential displacement, di, from its initial 
position. 

The inverse mappings to (288) and (289) are, respectively, 

In contrast to (288) and (289), eqs (290) and (291), refer to local points (places) identified by their position, ri. In particular, 
(290) relates to each local point the initial position, Xj"), of the material point currently at ri by means of the material 
displacement, Ui. Similarly, (291) relates to each local point the initial position, XIN', of the isopotential point currently at ri by 
means of the isopotential displacement, D,. In view of the general assumptions to be satisfied by the mappings r j L ) ( X , t )  and 
r j N ) ( X ,  t ) ,  (290) and (291) define one-to-one mappings that are continuously differentiable with respect to the arguments as 
many times as required. 

We proceed by specifying the domains of definition of the mappings (288)-(291) more closely. Beginning with (288), we 
decompose 8 into two open subdomains: the simply connected internal domain, gPL), and the complementary external domain, 
@:). With a@') the 2-D interface between the two domains, it then follows that 8 = @-L) U @:) U a@'). We now define 

B.L")(t) = { r$L) (X ,  t )  I xi E @:), r E T}, 

M P ) ( t )  = {r;')(X, t )  I xi E a@'), t E q. 
(292) 

(293) 

Considering the physical interpretation of (288), %F)(t) and 89?("(t) are the current domains of those material points initially 
occupying @,"I and a@'", respectively. In this study, we suppose that 9 y L ) ( t )  and 9?YL)(t) are domains of continuity for the 
parameters of the fluid and that a%?(t) is an interface of discontinuity for these parameters. We therefore take 
B.F)(f) = 9LN)(t), d%(')(t)  = a9?("(t) and define 

@T)(t) = {XjN)(r, t )  I ri E %iN)(f ) ,  t E 9, 

aPN)( t )  = {XjN)(r, t )  I ri E ag("(t), t E 91. 

(294) 

(295) 

In view of the physical interpretation of (291), @T)(t) and a@"(r) are the initial domains of those isopotential points currently 
occupying %?zc,")(t) and 3B.(N)(t), respectively. Since 9?kL)(t) = %LN)(t) and d9?Z'L)(t) = 3 9 ( N ) ( t ) ,  no distinction is required and the 
symbols 9?+(t) and a9?(r) are used henceforth. 

Next, we give formulations equivalent to (288)-(291) for arbitrary field quantities. Since we wish to allow for the 
possibility that the values of such fields or their gradients are discontinuous on d % ( t ) ,  all material, isopotential and local points 
currently on this interface are excluded. We thus disregard material points for which X i  E a@'), isopotential points for which 
Xi E a@"(t) and local points for which ri E a9?(t). With this, the generalizations to (288) and (289) are 

f$!. = f F ! . ( X ,  t ) .  xi E a"'" U @p, t E 9, (296) 

f$N! =fkN!(X, t ) ,  xi E @-N)(t) u Pp(r), t E 9. (297) 

The quantity f:,!?. in (296) is the current value of an arbitrary field at the material point whose initial position is Xi. Similarly, 
fkN! in (297) is the current value of that field at the isopotential point whose initial position is X i .  Eq. (296) is commonly 
referred to as Lagrangian formulation of the field. Eq. (297) is non-conventional and here referred to as Newtonian 
formulation. The generalization to (290) and (291) is 

I$... = F, ,... (r,r), r, E %(t )  LJ 9?+(t), t E 9. (298) 

This equation relates to each local point identified by its position, r,, the current value, cj..., of an arbitrary field at this point; it 
is commonly called Eulerian formulation of the field. The mappings defined in (296)-(298) are assumed to be single-valued and 
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continuously differentiable with respect to the arguments as many times as required. As in the preceding equations, we use 
lower case symbols for the Lagrangian and Newtonian formulations of fields and upper case symbols for the Eulerian 
formulation. The Lagrangian and Newtonian formulations are distinguished by the label superscripts L and N. 

A2 Perturbation equations 

We assume that the current value of an arbitrary field represents a perturbation of its initial value. Allowing for discontinuities 
of the field values on d%(t),  the Newtonian and Eulerian formulations of the perturbation equation are then straightforward 
only for isopotential and local points that are initially in %-(O) and currently in %-(t) or that are initially in %+(O) and 
currently in %+(t). We call such points strictZy internal or external. For conciseness, we define 

$:)(ti = $c)(o) n @F)(t), (299) 

= %*(o) n %+(t). (300) 

On account of these equations, the necessary and sufficient conditions for strictly internal or external isopotential points and 
for strictly internal or external local points, respectively, are therefore Xi E @-”(t) U g?)(t) and ri E % ( t )  U i%+(t). Using 
this, the Lagrangian, Newtonian and Eulerian forms of the perturbation equation can be written as follows: 

fkL?.(X, t )  =f&!.(X, 0)  + SfkL?.(X, t ) ,  

f$N!(x, t )  =f$N’I!(x, 0)  + afLN!(x, t ) ,  

q j . . . ( r ,  t )  = cj,,.(r, 0)  + A<,.,,(r, t ) ,  

xi E @-=) u @!I, 

xi E @-”(t) u %!F)(t), 
rj E i%(t) U a+(?), 

t E q (301) 

(302) 

(303) 

t E z 
t E .T. 

We refer to the left-hand sides of the equations as total fields, to the first terms on the right-hand sides as initial fields and to the 
second terms on the right-hand sides as incremental fields. In particular, Sf $?!.(X, t )  is called material increment, df;N!(X, t )  
isopotential increment and Aei ...( r, t )  local increment. 

In some neighbourhood of d%(t ) ,  isopotential and local points are initially in %-(O) and currently in %+(t) or vice versa. 
Since the field values are not necessarily continuous on a%(t), such hybrid points require special consideration. In order that 
this be avoided, we need the Lagrangian forms of (302) and (303). Using the abbreviation fF?.,,(X, t )  for the gradient of 
fkL?.(X, t )  with respect to X ,  and assuming infinitesimal perturbations, we obtain upon some algebraic manipulations (Wolf 
1993, pp. 7-9) 

fF?.(X, t )  =fk?.(X, 0) + dfkL?.(X, t )  +fbL!,,(X, O)[u,(X, t )  - dlf-’(X, t ) ] ,  xi E 2FL’ u @?’, t E z 
f f? . (X, t )=f~~. (X,O)+Aff? , (X, t )+f~) ,k(X,O)u, (X, t ) ,  Xi E@-~)U@>), t E 3 

For notational convenience, we adopt several simplifications: (i) the arguments Xi, ri and t are suppressed; (ii) the argument 
t = 0 is indicated by the label superscript 0 appended to the function symbols; (iii) the material, isopotential and local 
increments are indicated by the label superscripts 6, a and A appended to the function symbols. With these conventions, the 
three alternative forms of the Lagrangian perturbation equation, (301), (304) and (305), reduce to 

(306) 

xi E SL) u S:), t E r, (307) 

(308) 

fp  =fp f f y  

f f?. = f k.0) + fF.A’ + f y i u ,  
fg?. = f&.o’+f~.?”+ fEP,!(u, -d j f - ) )  

whence 

The second terms on the right-hand sides of (309) and (310) are called aduectiue increments. They account for those parts of 
the increments resulting from the component of the motion of material or isopotential points parallel to the gradient of the 
initial field. In the present study, only the Lagrangian formulation is employed, allowing us to suppress L. 

A3 Interface .conditions 

We consider the behaviour of field values on a%. In order to formulate a condition expressing this behaviour, we locally assign 
to 8% (the Lagrangian form of) the unit normal directed outward into %+. Denoting this vector by nj and assuming E > O ,  
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we define 

The interface condition for fi,.. can then be written as 

[Lj ...I l=f; ... ) X , € d %  t € %  

where f$. .. is the increase of fi,... in the direction of n,. 

APPENDIX B: LIST OF IMPORTANT SYMBOLS 

B1 Latin symbols 

integration coefficient of fundamental solution to 
(4 x 4) system 
radius of planet 
integration coefficient of fundamental solution to 
(2 x 2) system 
isopotential displacement 
2.71828.. . 
strain 
normalized Legendre coefficient off 
r-dependent part of Fn 
scalar field or function 
Laplace transform of f  
non-gravitational force per unit mass 
ordinary Legendre coefficient off 
axisymmetric Green's function for f 
non-symmetric Green's function for f 
Cartesian tensor field of arbitrary rank 
gradient of j& with respect to Xk 
initial value of J j . . .  

local increment off$?. 
material increment off 1;9!. 
isopotential increment of f:!. 
Newton's gravitational constant 
gravity (gravitational force per unit mass) 
isopotential height 
sequential number of fundamental solution to (4 X 4) 
system 
Legendre wave number 

B2 Greek symbols 

inverse spectral time 
inverse elemental Maxwell time 
inverse modal relaxation time 
magnitude of gjo) on da" 
Dirac delta function 
Kronecker symbol 
partial-derivative operator with respect to t 
Levi-Civita symbol 
non-dimensional Legendre coefficient of CT 
colatitude of observation point 
colatitude of excitation point 
angle between observation and excitation points 
eigenvalue of (4 X 4) system 

c 

(313) 

sequential number of fundamental solution to (2 X 2) 
system 
total number of relaxation modes 
sequential number of relaxation mode 
Legendre degree 
outward unit normal on 8% 
origin of coordinate system 
Legendre polynomial of the first kind 
(mechanical) pressure 
total number of Maxwell elements 
sequential number of Maxwell. element 
non-dimensional radial distance of observation point 
radial distance of observation point 
current position of material point 
inverse Laplace time 
deviatoric incremental stress 
impulse-response function 
transfer function 
current time 
excitation time 
(Cauchy) stress 
material displacement 
initial position of material point 
solution vector of (4 X 4) system 
eigenvector of (4 X 4) system 
solution vector of (2 X 2) system 
eigenvector of (2 X 2) system 

longitude of observation point 
longitude of excitation point 
eigenvalue of (2 x 2) system 
shear-relaxation function 
shear-relaxation spectrum 
elastic shear modulus 
elemental elastic shear modulus 
3.14159.. . 
volume-mass density 
(incremental) interface-mass density 
gravitational potential 
rotation 
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B3 Calligraphic symbols 

% Euclidian space domain 
9- internal domain of ri 
9+ external domain of ri 
9’ domain of s 
9 domain of t  

2- internal domain of X ,  
2+ external domain of X, 
8% 
8% 

interface between 9- and %+ 
interface between %- and %+ 


