Photoelectron Spectra and Molecular Properties. XXX.1
π Interactions in H₃Si- and H₃C-Substituted Acetylenes

Walter Ensslin,² Hans Bock,* and Gerd Becker

Contribution from the Institutes of Inorganic Chemistry, University of Frankfurt, Frankfurt-am-Main, Germany, and University of Karlsruhe, Karlsruhe, Germany. Received September 24, 1973

Abstract: The photoelectron (pe) spectra of mono- and disubstituted silyl- and methy lacetylenes are assigned by comparison with the corresponding ionization potentials of acetylene, disilane, and ethane. The observed π splittings can be rationalized within a parameterized hyperconjugation model. Calculations using a modified CNDO/2 procedure with and without inclusion of 3d orbitals in the basis set demonstrate that the usual parameters tend to overemphasize πdσ back-bonding. To rationalize available experimental data, 3dσ orbitals need not to be considered explicitly—neither for the different dipole moments of methyl- and silylacetylenes nor for the general pe spectroscopic pattern of silicon compounds, i.e., high first ionization potential, reduced spin-orbit coupling, or band broadening.

The cylindrical π system of acetylene and its perturbation by substituents have been the subject of numerous investigations. In particular, the different properties of trimethylsilyl- and tert-butylacetylenes have been attributed to differences in inductive and conjugative effects of silyl and alkyl groups. In contrast, Pitt,¹ on the basis of CNDO/2 calculations, proposed a hyperconjugative model neglecting πdσ back-bonding to account for silicon substituent effects. Heilbronner, et al.,² completely assigned the photoelectron spectra of trimethylsilylacetylene and its halogen derivatives and derived spectroscopically basis orbital parameters for the trimethylsilyl group. In the following we report the assignment and interpretation of the photoelectron spectra of silyl- and methy lacetylenes H₃XS==CH and H₃XS==CXH₃ (X = C, Si).

Pe Spectra and Hyperconjugation Model

The spectra of the four silyl- and methyl-substituted acetylenes are shown in Figure 1, and their vertical ionization potentials are compiled in Table 1.

Based on Koopmans theorem³ the pe spectrum of acetylene⁴ has been interpreted in terms of the orbital sequence (1σg)³ (3σg)³ (2πu)². The first band, corresponding to electron ejection from the doubly degenerate πu orbital, consists of well-resolved peaks with ΔIP = 1830 cm⁻¹; the small reduction relative to the ground-state C≡C stretching frequency vC≡C = 1983 cm⁻¹ indicating only a modest change of the triple bond lengths in the radical cation.

In the pe spectrum of methy lacetylene⁵ (Figure 1), the first π band rises steeply and clearly displays the...

* Correspondence should be addressed to Institute of Inorganic Chemistry, 6 Frankfurt, Germany, Theodor-Stern-Kai 7.

Table I. Vertical Ionization Energies (eV) of Methyl- and Silylacetylenes, Acetylene, Ethylene, and Disilane

<table>
<thead>
<tr>
<th>Compd</th>
<th>π_{O2C}</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\text{H}_2\text{CC}==\text{CH}$</td>
<td>10.37</td>
<td>14.6</td>
<td></td>
<td></td>
<td>(15.3)$_{ab}$</td>
<td>17.4</td>
<td></td>
</tr>
<tr>
<td>$\text{H}_2\text{SiC}==\text{CH}$</td>
<td>10.73</td>
<td>12.53</td>
<td></td>
<td></td>
<td>(13.05)$_{a}$</td>
<td>17.4</td>
<td>18.9</td>
</tr>
<tr>
<td>$\text{H}_2\text{CC}==\text{CCH}_2$</td>
<td>9.61</td>
<td></td>
<td>(14.0)$_{ab}$</td>
<td>14.5</td>
<td>(15.0)$_{ab}$</td>
<td>18.2</td>
<td>19.0</td>
</tr>
<tr>
<td>$\text{H}_2\text{CC}==\text{SiH}_3$</td>
<td>10.46</td>
<td></td>
<td>(12.4)$_{ab}$</td>
<td>12.9</td>
<td>14.51</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\text{H}_2\text{C}==\text{CH}$</td>
<td>11.40</td>
<td>16.75</td>
<td>18.75</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\text{H}_2\text{SiC}==\text{CSiH}_3$</td>
<td>10.46</td>
<td></td>
<td>(12.4)$_{ab}$</td>
<td>12.9</td>
<td>14.51</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\text{H}_2\text{CC}==\text{CCH}$</td>
<td>10.53</td>
<td>11.88</td>
<td>(12.13)$_{ab}$</td>
<td>12.73$_{a}$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H_2SiSiH_2</td>
<td>12.13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(a) J/T: pe bands obviously split by the Jahn-Teller effect (see text).

Figure 1. Pe spectra of mono- and disubstituted methyl- and silylacetylenes.

Figure 2. LCBO MO model for monosubstituted acetylenes $\text{H}_2\text{X}==\text{CH}$.

Gravity $\overline{e}(\pi) = 11.93$ eV. In the pe spectrum of silylacetylene (Figure 1) the corresponding mean, $\overline{e}(\pi) = \frac{[e_{\text{SiH}_3}(\pi) + e_{\text{C}==\text{CH}}(\pi)]}{2} = \frac{(13.45 + 10.73)}{2} = 12.09$ eV, is shifted by +0.16 eV, probably because all unoccupied orbitals are neglected within the LCBO MO model (see Figure 2). This value is used to correct the basis orbital energies $e_{\text{SiH}_3}(\pi) = 12.45 + 0.16 = 12.61$ eV and $e_{\text{C}==\text{CH}}(\pi) = 11.40 + 0.16 = 11.56$ eV, henceforth called coulomb parameters a_{SiH_3} and $a_{\text{C}==\text{CH}}$. The LCBO interaction term, i.e., the resonance integral $\beta_{\text{SiH}_3\text{C}==\text{CH}}^{\text{LCBO}}$, is then calculated from the corresponding second-order determinant to be -1.25 eV. Analogously, with $e_{\text{CH}}(\pi) = 14.25$ eV (e (ethane) = 14.3 eV and e (methane) = 14.2 eV) one obtains for methylacetylene a hyperconjugation parameter $\beta_{\text{H}3\text{C}==\text{CH}}^{\text{LCBO}} = -2.07$ eV. As shown subsequently, these β_{LCBO} values allow calculation of the π ionization potentials of dimethyl- and disilylacetylenes as well. Therefore, the pe spectra of the monosubstituted acetylenes are tentatively assigned following the proposal in Figure 2. The second pe band corresponds to an ionization from the σ orbital $4a_1$, mainly representing the $\text{X}-\text{C}$ bond, which is supported by the 2 eV reduction on methyl-silyl exchange or by the vibrational fine structures (e.g., silyl deformation: 890 cm^{-1}; ion, 890 cm^{-1}). The third band is due to electron ejection from the degenerate H_2X orbital $1e$ in accordance with the observed Jahn-Teller split and with the lack of vibrational fine structure. It is

lowered in the silyl derivative by 2 eV. In contrast the
fourth band stays almost constant representing more or
less the acetylene C–H bond 3α1.

The parameter βLBO, calculated from H3XC=CH ionization potentials, will now be utilized to assign the
H3XC≡CXH3 pe spectra. To do so, our model has
to be expanded for two eXH3 basis orbitals, assuming
free rotation in the H3XC≡CXH3 molecules and therefore
the D1 conformation being the most frequent one.

From the linear combinations of the two eXH3 group
orbitals

$$\phi_{XH3} = \frac{1}{\sqrt{2}}(\phi_{e(XH3)} \pm \phi_{e(XH3)}) \quad (1)$$

only ϕ_{XH3}^+ will interact with the acetylene π orbital
$\phi_{e=c}$. Therefore only a split $\phi_{XH3}^+|\phi_{e=c}$ is to be
expected, whereas ϕ_{XH3}^- should remain unaffected.
Starting with the coulomb parameters $\alpha_{e=c} = -11.72$
eV (again corrected by +0.16 eV) and $\alpha_{SiH3} = -12.77$
eV and with the interaction term $\beta_{e,SiH3}LBO = \sqrt{2}\beta_{e,SiH3}LBO = \sqrt{2}(-1.25) = -1.77$ eV, one calculates for disilylacetylene the π-orbital energies $\epsilon_{1,e} = -12.24 \pm 1.84$ eV. Of the resulting two eigenvalues, $\epsilon_{1} = 10.4$ eV matches perfectly with the observed π ionization potential $IE = 10.46$ eV (Table 1). For dimethylacetylene one also finds a near perfect matching of the experimental $IE = 9.61$ eV with the value 9.62 eV, calculated analogously by inserting the mono-
methylacetylene parameters $\epsilon_{e=c}(\pi) = 11.40$ eV and
$\epsilon_{e=c}(\pi) = 14.25$ eV. The second and third π-orbitals
are then expected at about 14.25 eV (nonbonding) and
at about 16.18 eV (bonding), the other value obtained
from the above calculation.

The results of the parameterized hyperconjugation
model are displayed in Figure 3, together with the
vertical ionization energies of those pe bands, which
will be assigned to the e(π) orbitals.

The assignment of the less well-resolved part of the
disilyl- and dimethylacetylene pe spectra starts
advantageously from the three e(π) orbitals (Figure 3).
As the lowest π ionization potential is well reproduced
by the parameterization, the two higher ones are also
considered trustworthy. Modified CNDO/2 calculations
yield the orbital sequence $3e < 3a1 < 2e < 1e < 2a2 < 2a1 < 1a2 < 1a1$ (cf. Figure 4).

Although intensity ratios are generally considered a
rather poor guideline in assigning pe spectra, the
linearly corrected values for the first three bands of
disilylacetylene approaching 2:5:2 would fit to the
CNDO/2 sequence as follows (cf. Table I): pe band
1, 3e; shoulder 2, 3a1; multicomponent band 3, 2e
plus one of the Jahn–Teller split 1e; and band 4, the
other 1e and 2a2. Obviously, there is no direct
confirmation, but the vibrational fine structure on the low
energy flank of the second pe band (Figure 1, shoulder
2) with $v \sim 930$ cm$^{-1}$, probably due to the a_1 silyl
deformation, would not be expected for a degenerate
state with numerous overlapping fine structures. The
0.8 eV Jahn–Teller split observed for monosilylacetylene
(Table I) lends some credit to the assumed 1e splitting.
The remaining two bands at 18.2 and 19.0 eV are fitted
into the above CNDO/2 sequence as 2a2 and 1a2.

The pe spectrum of dimethylacetylene (Figure 1)
shows altogether only three separated bands. According
to modified CNDO/2 calculations, the components
2–5 (Table I) of the second pe mountain

Figure 3. Hyperconjugation model for methyl- and silylacetylenes, including center of gravity corrections (↓) as well as pe ionization potentials of the e(π) assigned bands. Observed Jahn–Teller splits are indicated by [] and assignments of overlapping bands according to parameterization by $\phi_{e=c}$.
set have been performed.

Section) has been used, which in contrast to conventional CNDO/2 reproduces the π spectroscopically deduced orbital sequences in both calculations without any alkyl- and silylacetylenes, mainly due to the reduced overlap the modified CNDO/2 readjusts, e.g., the order \(\pi(3e) < \sigma(3a_2) \) as observed experimentally. The calculations without any \(\pi \) interactions were achieved by setting the off-diagonal elements between \(\pi_{\text{C=C}} \) and \(\pi_{\text{XH}} \) in the Hartree–Fock matrix equal to zero before diagonalization. The resulting “group orbital” energy \(\pi_{\text{C=C}}(\text{H}_3\text{C}==\text{C}==\text{C}==\text{C}) \), when compared with the calculated \(\pi \) orbital energy of acetylene, reflects the inductive effect of the \(\text{XH}_3 \) substituent. The procedure is illustrated in Figure 5 for methylacetylene. Within the above approximation the hyperconjugative destabilization of the acetylene \(\pi \)-orbital by a methyl group is smaller than the inductive one. In dimethylacetylene, hyperconjugation contributes 1 eV to the orbital shift and the inductive effect about 1.7 eV, the methyl group perturbations being by far not additive.

For silylacetylene two sets of calculations were carried out, without and with inclusion of silicon 3d orbitals (Figure 6). Comparison within each of the two sets reveals: Only the calculations with the reduced basis \((E_{\text{total}} = -327.2 \text{ eV}) \) yield inductive as well as hyperconjugative \(\pi \) destabilization by the silyl group, both being smaller than the methyl group effects (Figure 5). Inclusion of the silicon 3d orbitals in the basis lowers the total energy as expected \((E_{\text{total}} = -334.7 \text{ eV}) \) but leads to a “negative” hyperconjugative split 3.20 \(\rightarrow 3.05 \text{ eV} \) (Figure 6), shifting the \(\pi_{\text{C=C}} \) orbital to higher values \(|\epsilon_i| \) than in acetylene itself. This is contrary to the \(\pi \) data (Table 1), which clearly demonstrate, that the acetylene \(\pi \) ionization potential is lowered on silyl substitution. The reason for the exaggerate \(p_d \), back-bonding is traced back to unrealistic overlap relations

\[
\begin{align*}
H_2C=CH & : 1.46 \text{ Å} \\
H_2Si=Si & : 1.83 \text{ Å}
\end{align*}
\]

The much too high overlap \(S(p_d,p_d) \) leads to a Hartree–Fock off-diagonal element of 2.6 eV compared to a \(p_d,p_d \), interaction of only 1.7 eV. As expected from the overlap disproportion, the CNDO/2 calculations with inclusion of 3d\(_{\text{Si}} \) orbitals also fail for disilylacetylene, while those with the reduced 3s\(_{\text{Si}}/3p_{\text{Si}} \) basis set allow comparison with other acetylenes as well as with the \(\pi \) data. Analogous comments were first published by

Pitt,16 who recently, in an extensive examination4 of available experimental data, concluded that numerous ground-state properties of group IV compounds are reasonably reproduced by CNDO/2 calculations with sp basis set. This statement is further confirmed by the calculated charge distributions and dipole moments of methyl- and silylacetylenes. Convincingly, trends and magnitudes of the experimental gas-phase dipole moments17 are only reflected in modified CNDO/2 calculations without silicon 3d orbitals.

\[
\begin{array}{ccc}
\text{H} & \text{H} & 3\times(0.038) \\
\text{C} & -0.008 & +0.405 \\
\text{Si} & +0.416 \\
\text{H} & +0.098 & +0.070 \\
\frac{\mu_{\text{elect}}}{\mu_{\text{rep}}^{\text{calc}}} & 1.013 \text{D} & 0.781 \text{D} \\
\end{array}
\]

\[
\begin{array}{ccc}
\text{H} & \text{H} & 3\times(-0.074) \\
\text{C} & -0.023 & -0.169 \\
\text{Si} & -0.086 & +0.009 \\
\text{H} & +0.098 & +0.072 \\
\frac{\mu_{\text{elect}}}{\mu_{\text{rep}}^{\text{calc}}} & 1.135 \text{D} & 0.316 \text{D} \\
\end{array}
\]

\[\mu_{\text{elect}}^{3\text{dsi}} = 0.781 \text{D}, \quad \mu_{\text{rep}}^{3\text{dsi}} = 1.013 \text{D}\]

Concluding Remarks

The preceding discussions of methyl- and silylacetylenes and especially their pe spectra have demonstrated: (i) how simple LCBO MO hyperconjugation models can be parameterized using pe data and how well they predict ionization potentials of related compounds, (ii) why LCAO MO calculations using modified CNDO/2 exaggerate p,d, back-bonding, and (iii) that a basis set without silicon d orbitals better reproduces the dipole moment of silylacetylene and only allows comparison of pe ionization potentials and CNDO/2 eigenvalues within the series RC=CR (R = H, CH₃, SiH₃).

The main concern for the chemist might be not so much whether 3dₗ participation is real and provable or not but rather which model will be most useful and easily applicable to rationalize experimental data. Our example shows, that the different lowering of the acetylene π ionization potentials by methyl and silyl groups can be explained by both LCAO MO and LCBO MO models without explicit introduction of p,d, back-bonding. No decision can be made, however, on how much of it might be absorbed in the parameterization—especially within an LCBO MO hyperconjugation approach, which only considers occupied orbitals.

Cradock, Ebsworth, and Whiteford,10 who published first the pe spectra of most of the silyl and germyl derivatives, E(XH₃)ₙ, of group V to VII elements E, based their assignments mainly on orbital symmetry considerations. Cautiously they pointed out, that the following observations might be in accord with d orbital participation:10 (i) the first ionization potentials of compounds E(XH₃)ₙ always reach their maximum value in the silyl derivative IP_{CH₃} < IP_{SiH₃} < IP_{GeH₃}; (ii) spin-orbit coupling of heavy atoms is reduced in the silyl relative to the methyl derivative, and (iii) pe bands assigned to electron pair ionizations are usually broadened in the spectra of silicyl compounds. These findings could be rationalized within an LCBO MO model as follows. (i) The maximum ionization potential IP_{CH₃} < IP_{SiH₃} < IP_{GeH₃} needs two opposing effects for its explanation, e.g., different inductive electron donation and counteracting p,d, back-bonding in the sequence CH₃-SiH₃-GeH₃. Within the hyperconjugation model, analogous second-order perturbation arguments can be employed; the change in orbital energies is proportional to the square of the interaction term β² = thus depends on overlap respectively on bond lengths and inversely proportional to the energy difference between the coulomb parameters Δα and thus depends on the relative position of the basis orbitals. Therefore, depending on both the parameters, α and β, a minimum eigenvalue ε_{min} i.e., via Koopmans' theorem ε = IP_{π}, a maximum first-ionization potential can be reproduced. (ii) To incorporate second-order spin–orbit coupling qualitatively into an LCBO MO model,18 symmetry double groups prove to be useful. For a Cₜₐ molecule as silyl iodide,10 H₃SiI, on inclusion of spin functions in the C₄v double group, only two irreducible representations result, ε₁ and ε₅. Symmetry allowed mixing yields

\[IP_{SiH₃} > IP_{GeH₃}\]

Obviously, the splitting between the adjacent ε₁,3 orbitals must exceed that between the more distant ε₅,7 ones. Thus for silyl iodide a smaller gap between the first two pe bands is expected than for methyl iodide, judging along from second-order spin–orbit coupling. (iii) Also the reasoning for the observed broadening6 of the first pe bands of silyl compounds19 does not necessarily have to rest on p,d, delocalization. Within an LCBO MO model it is as easily explained by the stronger mixing of two symmetry equivalent orbitals as their energy distance Δε shortens.

Repeatedly it has been pointed out that there is no chance to subdivide LCBO MO parameters unequivocally any further on the basis of experimental data.

Therefore the hyperconjugation model, well suited to help in assigning the pe spectra of alkyl- and silylacetylenes, does neither prove nor disprove p-d back-bonding in silicon compounds—just as most of the numerous arguments produced favor one or the other.

Experimental Section

Synthesis. Monosilylacetylene was prepared from acetylene magnesium bromide and iodosilane in dry, degased tetrahydrofuran. The reaction product was pumped off and purified by fractionate condensation. The measurement sample was finally obtained by high vacuum line distillation between two baths at −112 and −132°C and its purity controlled by ir and nmr as well as molecular weight determination (found 56.8, calc 56.1).

Disilylacetylene can be obtained analogously from acetylene di-Grignard solution in dibutyl ether and bromosilane. The measurement sample was purified from dibutyl ether by fractionate condensation at −78 and at −96°C from excess bromosilane. Neither by ir and nmr nor by molecular weight determination (found 87.0, calc 86.2) could any impurities in the measurement sample be detected.

Spectra. The pe spectrum of methylacetylene was taken from the literature; the one of dimethylacetylene has been kindly given to us by Elbel from our group. The pe spectra of the silylacetylenes were recorded with a Perkin-Elmer PS 16 and calibrated with argon. The samples have been introduced into the spectrometer carefully avoiding exposition to air.

Calculations. The calculations have been carried out at the UNIVAC 1108 of the computer center of the University of Frankfurt. The modified CNDO/2 version used is described elsewhere. In addition the β values for the three-period elements have been reduced proportionally to βcarbon. The π interaction was switched off by setting the corresponding A(i,j) in subroutine SCFCLO equal to zero. Silicon d orbitals can be excluded by either reducing the basis set or by setting all d overlap integrals in subroutine INTEGRAL equal to zero. The latter procedure allows alternatively a reduction of the back-bonding by multiplying the d overlap integrals with a factor <1.

(23) Part of the thesis of S. Elbel, unpublished results.