Trimethylsilylverbindungen der Vb-Elemente. II [1]

Molekül- und Kristallstruktur des Tetrakis(trimethylsilyl)diarsans

Von G. BECKER, G. GUTEKUNST und C. WITTHAUER

Karlsruhe, Institut für Anorganische Chemie der Universität

Marburg, Fachbereich Chemie der Philipps-Universität, Sonderforschungsbereich 127

Inhaltsübersicht. Das schwach gelbe, aus Lithium-bis(trimethylsilyl)arsenid \cdot 2 Tetrahydrofuran (THF) und 1,2-Dibromäthan leicht zugängliche Tetrakis(trimethylsilyl)diarsan 1 kristallisiert trigonal mit den bei der Meßtemperatur von -95 ± 5 °C verfeinerten Gitterkonstanten: a = 974,2(2); c = 2080,0(4) pm; Z = 3. Unter Berücksichtigung der anomalen Dispersion konvergieren die Verfeinerungen der Röntgenstrukturanalyse in der Raumgruppe P3₁21 bei einem R-Wert von 0,060, in ihrem Enantiomorphen P3₂21 bei 0,031. Mit einem Diederwinkel Si2'-As'-As-Si1 von -125,7° weist das Molekül gauche Konformation auf; beide Bis(trimethylsilyl)arsano-Gruppen werden über die kristallographische Symmetrieoperation der zweizähligen Drehachse ineinander überführt. Charakteristische Bindungslängen und -winkel sind: As-As 245,8(1); As-Si 236,5(1) und 236,2(2) pm; Si-As-Si 100,90(5); As-As-Si 93,87(3) und 113,63(4)°. Der kürzeste intermolekulare As-As-Abstand beträgt 662 pm.

Trimethylsilyl Derivatives of Vb-Elements. II. Molecular and Crystal Structure of Tetrakis(trimethylsilyl)diarsine

Abstract. Pale yellow tetrakis(trimethylsilyl)diarsine 1 which is easily obtained from lithium bis(trimethylsilyl)arsenide \cdot 2 tetrahydrofurane (THF) and 1,2-dibromoethane crystallizes in a trigonal, acentric space group. The dimensions of the unit cell determined at $-95 \pm 5^{\circ}$ C are: a = 974.2(2); c = 2080.0(4) pm; Z = 3. Considering anomalous dispersion the refinement of structural data in space group P3₁21 converges at an R-value of 0.060, in its enantiomorph P3₂21, however, at 0.031. With a dihedral angle Si2'-As'-As-Si1 of -125.7° the molecule adopts gauche conformation. Both bis(trimethylsilyl)arsino groups are symmetry-related by the crystallographic operation of the diad. Characteristic bond lengths and angles are: As-As 245.8(1); As-Si 236.5(1) and 236.2(2) pm; Si-As-Si 100.90(5); As-As-Si 93.87(3) and 113.63(4)°. The shortest intermolecular As-As distance is found to be 662 pm.

In den letzten Jahren gelang die Synthese mehrerer elementorganischer Verbindungen der Zusammensetzung $[(CH_3)_3M-]_4E_2$ mit Trimethylsilyl-, Trimethylgermyl- und Trimethylstannyl-Gruppen als Substituenten am Vb-Element E [1-14]. Vornehmlich die Silyl-Derivate sind aus den entsprechenden Lithiumbis(trimethylsilyl)-Verbindungen des Phosphors, Arsens, Antimons oder Bismuts und 1,2-Dibromäthan mit hohen Ausbeuten leicht zugänglich (1)[•][1, 4, 5, 9, 13, s. auch 6].

$$2 [(CH_3)_3Si-]_2E-Li \cdot 2 OR_2 \xrightarrow{+Br-CH_2-CH_2-Br}_{-H_2C=CH_2; -2 LiBr; -4 OR_2} + [(CH_3)_3Si-]_4E_2$$
(1)

$$E = P, As, Sb, Bi; OR_2 = THF, 1/2 1, 2-Dimethoxyäthan$$

Beim Vergleich der in Tab. 1 zusammengestellten charakteristischen Eigenschaften überrascht vor allem die unterschiedliche Farbe der Substanzen. Während nämlich Tetrakis(trimethylsilyl)diphosphan [4, 5] und Tetrakis(trimethylsilyl)diarsan 1 [1] farblos bzw. schwach gelb sind, weisen die Distibane [8-12] und das Tetrakis(trimethylsilyl)dibismutan [13, 14] im kristallinen Zustand eine tiefrote bzw. intensiv grüne Farbe auf. Da die Lösungen oder Schmelzen der Distibane nur noch gelb sind, ist eine Klärung der für den Farbwechsel verant-

Tabelle 1 Synthese und Eigenschaften von elementorganischen Verbindungen der Zusammensetzung $[(CH_3)_3M -]_4E_2$ (M: Si, Ge, Sn; E: N, P, As, Sb, Bi)

Verbindung	Farbe	Schmp.	Synthese	Konformation	Winkel am Atom E	Lit.
$[(CH_3)_3Si-]_4N_2$	farblos	286°C	^a)	vermutlich bisphenoidal	vermutlich 120°	[2, 3]
$[(\mathrm{CH_3})_3\mathrm{Ge}-]_4\mathrm{N}_2$	farblos	311°C	^a)	vermutlich bisphenoidal	vermutlich 120°	[2, 3]
$[(CH_3)_3Sn-]_4N_2$	farblos	200—250°C (Zersetzung)	^a)	^e)	^e)	[2]
$[(CH_3)_3Si-]_4P_2$	farblos	flüssig	^b)	e)	e)	[4, 5]
$[(\mathrm{CH_3})_3\mathrm{Ge}-]_4\mathrm{P}_2$	farblos	flüssig	^b)	^e)	^e)	[6]
$[(\mathrm{CH}_{\pmb{8}})_{\pmb{3}}\mathrm{Si-}]_{\pmb{4}}\mathrm{As}_2$	schwach gelb •	66—67°C	^b)	gauche	Si $-$ As $-$ Si: 101° As $-$ As $-$ Si: 94°; 114	[1] I°
$[(\mathrm{CH}_3)_3\mathrm{Sn}-]_4\mathrm{As}_2$	2 orange	99°C	^c)	e)	^e)	[7]
$[(\mathrm{CH_3})_3\mathrm{Si}-]_4\mathrm{Sb}_2$	tiefrot	119°C	^b)	anti	Si-Sb-Si: 94° Sb-Sb-Si: 94°; 99°	[8-10]
$[(CH_3)_3Ge-]_4Sb_2$	tiefrot	125°C (unter Zer- setzung)	^d)	^e)	^e)	[11]
$[(CH_3)_3Sn-]_4Sb_2$, tiefrot	93°C (unter Zer- setzung)	d)	^e)	^e)	[12]
$[(\mathrm{CH}_3)_3\mathrm{Si}-]_4\mathrm{Bi}_2$	grün	148°C	^b)	anti	Si-Bi-Si: 93° Bi-Bi-Si: 92°; 97°	[13, 14]

^{a)} aus N₂H₄ und (CH₃)₃M-N(CH₃)₂ (M = Si, Ge, Sn) über die Zwischenstufe [(CH₃)₃M-]₂N-NH-[-M(CH₃)₃]; ^{b)} aus Li-E[-M(CH₃)₃]₂ · 2 OR₂ und Br-CH₂CH₂-Br (E = P, As, Sb, Bi; M = Si, Ge); ^{c)} aus [(CH₃)₃Si-]₄As₂ und (CH₃)₃Sn-Cl; ^d) aus [(CH₃)₃M-]₃Sb und R-J (M = Ge, Sn; R = CH₃, C(CH₃)₃); ^{e)} nicht bekannt. wortlichen Ursachen erst nach Kenntnis von Molekül- und Kristallstruktur der angesprochenen und verwandter Verbindungen möglich. Die zu diesem Zweck durchgeführten Röntgenstrukturanalysen geben auch Auskunft über die Konformation im kristallinen Zustand. Ein mögliches Auftreten von gauche und anti Konformerem in der Lösung oder in der Schmelze soll durch Aufnahme und Auswertung von IR- und Raman-Spektren geklärt werden [15]. Im Rahmen eingehenderer Untersuchungen berichten wir hier über die Molekül- und Kristallstruktur des Tetrakis(trimethylsilyl)diarsans 1, in späteren Publikationen über Tetrakis(trimethylsilyl)distiban [9, 10] und -dibismutan [13, 14].

Kristalldaten und Meßtechnik

Beim vorsichtigen Sublimieren kristallisiert das aus Lithium-bis(trimethylsilyl)arsenid \cdot 2 Tetrahydrofuran (THF) und 1,2-Dibromäthan nach (1) zugängliche Tetrakis(trimethylsilyl)diarsan 1 [1] in vielflächigen Kristallen. Präzessions- und Weißenberg- Aufnahmen bei +20 und -95°C zeigen die Laue-Symmetrie 3m1; die systematische Auslöschung (0001: l = 2n + 1) weist auf die nichtzentrosymmetrischen enantiomorphen Raumgruppen P3₁21 oder P3₂21 hin. Die bei +20°C aus Filmaufnahmen ermittelten und bei der Meßtemperatur von -95 ± 5°C mit den genauen Positionen von 12 Reflexen (26° < 2 θ <36°) verfeinerten Gitterkonstanten sind Tab. 2 zu entnehmen. Der verwendete Kristall hatte die ungefähren Abmessungen 0,4 · 0,2 · 0,1 mm. Einzelheiten zur Messung finden sich in Tab. 3. Die Reflexintensitäten wurden Lp-korrigiert; nach Mittelung aller mehrfach gemessenen Reflexe verblieben 2564 unabhängige F₀-Werte, von denen 54 als unbeobachtet (F₀ < $2\sigma(F_0)$) eingestuft wurden. Auf eine Absorptionskorrektur haben wir bei einem linearen Absorptionskoeffizienten von $\mu = 30.3$ cm⁻¹ verzichtet.

Strukturbestimmung

Die Struktur wurde zunächst für die Raumgruppe P3₁21 mit dem unter Beachtung der Friedel-Beziehung erhaltenen Datensatz von 1524 Reflexen bestimmt; dabei konnte der Pattersonfunktion die Lage des Arsenatoms sofort entnommen werden. Aus Differenz-Fouriersynthesen ergaben sich die

Tabelle 2 Kristalldaten des Tetrakis(trimethylsilyl)diarsans 1 Trigonal; Raumgruppe P3₂21; Z = 3; Raumerfüllung nach KITAJGORODSKIJ [16] $68\%^{a}$); Schmp. $66-67\degree$ C

	+20 °C	$-95\pm5^{\circ}\mathrm{C}$	
a (pm)	981(2)	974,2(2)	
e (pm)	2110(2)	2080,0(4)	
V (10 ⁻³⁰ m ³)	1758,5	1709,6	

^a) Den Berechnungen liegen folgende Werte für die intermolekularen Radien und Bindungslängen (pm) zugrunde: H 117, C 180, Si 210, As 200, C-H 108, Si-C 186, As-Si 230 und As-As 240.

Tabelle 3 Daten zur Messung

Gerät: Automatisches Vierkreisdiffraktometer Picker-FACS-1
Strahlung: MoKa; Graphitmonochromator mit Reflex 002
Gemessener Bereich des reziproken Raumes: $4,0^{\circ} < 2\theta < 55,0^{\circ}$
Meßtechnik: ω -2 θ -Scan; Scanbreite 1,8° variabel mit der Dispersion 0,692 zur Berücksichtigung
der α_1/α_2 -Aufspaltung; Scangeschwindigkeit 2°/min; Untergrundmeßzeit 40 sec; Schwächungsfilter
im gebeugten Strahl ab 10 ⁴ Impulse/sec: 3 Standardreflexe bei einer Periode von 50 Reflexen

Positionen der Silicium- und Kohlenstoffatome. Die Verfeinerung der gefundenen Atomlagen und der isotropen Temperaturfaktoren mit dem Programmsystem X-Ray [17] endete bei einem konventionellen R-Wert $R = \Sigma |(|F_0| - |F_c|)|/\Sigma |F_0|$ von 0,049; nach Einführung der anisotropen Werte fiel er auf 0,032. Eine sich anschließende Differenz-Fouriersynthese lieferte die Positionen aller Wasserstoffatome; sie ließen sich jedoch zunächst nicht verfeinern.

Die unter Berücksichtigung der anomalen Dispersion mit dem nun größeren Datensatz von 2564 Reflexen durchgeführten Berechnungen konvergierten für die Raumgruppe $P3_121$ bei 0,060, für ihr Enantiomorphes $P3_221$ jedoch wesentlich besser bei 0,032. Durch Verfeinerung der Wasserstoffpositionen und der isotropen Temperaturfaktoren verbesserte sich der R-Wert nochmals geringfügig auf 0,031 für die beobachteten Reflexe allein und auf 0,032 für den gesamten Datensatz. Auf eine Wichtung der beobachteten Strukturfaktoren konnte verzichtet werden; eine abschließende Differenz-Fouriersynthese zeigte eine maximale Restelektronendichte von $0,4 \cdot 10^{30}$ e/m³.

Die Ergebnisse der Strukturbestimmung sind in Tab. 4 und 5 zusammengestellt. Den berechneten F_c -Werten liegen diese Daten sowie die im Programmsystem X-Ray [17] vorgesehenen Atomformfaktorkurven der neutralen Atome As, Si, C und H zugrunde.

 Tabelle 4
 Ortskoordinaten und Parameter des Debye-Waller-Faktors für die Atome der asymmetrischen Einheit.

 Die isotropen B-Werte der Schweratome wurden nach der Methode von HAMILTON [18] aus den Daten von Tab.5 berechnet

	x	У	Z	B(10 ⁻²⁰ m ²)
As	0,00328(5)	-0,50639(4)	0,22574(2)	1,72(3)
Si1	0,25036(15)	-0,73442(14)	0,23573(5)	2,29(7)
Si2	-0,04320(15)	-0,31162(13)	-0,27168(5)	2,52(7)
C11	-0,4036(6)	-0,7368(8)	-0,1809(3)	3,63(35)
C12	-0,2190(9)	-0,9044(6)	-0,2161(3)	4,17(41)
H111	-0,503(8)	-0,838(8)	-0,182(3)	5(2)
H112	-0,420(7)	-0,647(7)	-0,190(3)	5(1)
H 113	-0,375(7)	0,739(6)	0,141(2)	4(1)
H121	0,315(10)	0,994(10)	-0,219(4)	9(2)
H122	-0,178(8)	-0,900(7)	0,167(3)	6(2)
H123	0,139(6)	0,900(6)	-0,242(2)	4(1)
H131	0,427(8)	0,861(7)	0,326(3)	5(1)
H132	0,264(7)	0,770(6) -	-0,345(2)	4(1)
H133	-0,349(7)	-0,661(6)	0,335(2)	4(1)
8- <u></u>	x	у	Z	B(10 ⁻²⁰ m ²)
C13	-0,3236(6)	-0,7557(6)	-0,3210(2)	2,80(30)
C21	0,2409(7)	-0,3296(8)	-0,2585(3)	3,90(44)
C22	0,0231(7)	-0,3339(7)	-0,3601(2)	3,17(34)
C23	0,1180(9)	-0,1102(7)	-0,2473(3)	3,87(37)
H211	-0,257(9)	-0,227(9)	-0,280(3)	8(2)
H212	-0,283(8)	-0,332(9)	-0,211(3)	8(2)
H213	-0,322(6)	-0,415(8)	-0,278(3)	5(1)
H221	-0,031(9)	0,260(10)	-0,374(3)	8(2)
H222	-0,097(6)	0,450(6)	-0,372(2)	3(1)
H223	0,079(8)	-0,314(7)	-0,367(3)	5(1)
H231	0,108(7)	-0,028(7)	-0,273(2)	4(1)
H232	0,201(9)	-0,113(8)	-0,246(3)	8(2)
H233	0,090(8)	-0,078(7)	-0,195(3)	5(1)

	U11	U22	U33	U12	U_{13}	U_{23}
As	2,36(2)	2,31(2)	1,88(2)	1,19(2)	0,07(2)	0,09(1)
Si1	3,03(6)	2,33(5)	2,45(5)	0,68(5)	-0,16(5)	0,01(4)
Si2	3,46(6)	2,38(5)	2,34(5)	1,42(5)	-0,39(5)	0,12(4)
C11	2,71(24)	5,49(34)	3,50(25)	0,50(23)	0,47(19)	0,48(23)
C12	7,07(44)	2,75(23)	5,41(32)	1,98(27)	-0,87(31)	0,27(22)
C13	3,46(24)	3,93(25)	2,71(22)	1,33(21)	-0,39(19)	-0.51(19)
C21	5,02(33)	5,60(37)	5,51(33)	3,65(31)	-1,06(26)	-1,23(26)
C22	4,97(31)	3,59(26)	3,01(22)	1,79(24)	-0,34(21)	0.32(20)
C23	6,21(39)	2,67(24)	4,15(26)	0,96(23)	-0.18(27)	0.50(21)

Tabelle 5 Daten zur Anisotropie der thermischen Schwingung mit Ausnahme der Wasserstoffatome. Vom Parameter $U_{ij}(m^2)$ des Temperaturfaktors $\exp[-2 \cdot \pi^2(U_{11} \cdot h^2 \cdot a^{*2} + U_{22} \cdot k^2 \cdot b^{*2} + ... + 2U_{23}k \cdot l \cdot b^* \cdot c^*)]$ sind die 10⁺²²-fachen Werte aufgeführt

Molekülstruktur

Abb. 1 zeigt das Molekül in stereoskopischer Darstellung. Einander entsprechende Atome wurden in gleicher Weise gekennzeichnet:

Bei den Kohlenstoffatomen der Trimethylsilyl-Gruppen ist der ersten Ziffer zu entnehmen, welchem Siliciumatom sie zugeordnet sind. Die Bezifferung von Kohlenstoff- und zugehörigen Wasserstoffatomen unterscheidet sich nur in einer zusätzlichen Laufzahl. Da die beiden Bis(trimethylsilyl)arsano-Gruppen über die kristallographische Symmetrieoperation der zweizähligen Drehachse ineinander überführt werden, haben wir die Atome aus der unteren Molekülhälfte durch ein zusätzliches Apostroph (') von denen aus der oberen Hälfte unterschieden.

Abb. 1 Stereoskopische Darstellung eines Tetrakis(trimethylsilyl)diarsan-Moleküls. Die Zeichnung wurde mit dem Programm ORTEP [19] erstellt. Die Schwingungsellipsoide der Schweratome enthalten 50% der Aufenthaltswahrscheinlichkeit; der Radius der Wasserstoffatome beträgt willkürlich 10 pm

Tabelle 6 Intramolekulare Bindungslängen (pm) und -winkel (°)

Die in Klammern angegebenen Standardabweichungen berücksichtigen außer den .	Koordinatenunge-
nauigkeiten (Tab. 4) auch den Fehlereinfluß der Gitterkonstanten (Tab. 2). Die m	nittleren Abstände
und Winkel (M.W.) berechnen sich aus den jeweiligen Einzelwerten einer Gruppe	

	n = 1	n = 2	M.W.		n = 1	n = 2	M.W.
As—As' As—Sin	245,8(1) 236,5(1)	236,2(2)	245,8 236,4	Sin—Cn1 Sin—Cn2 Sin—Cn3	186,9(6) 187,3(8) 188,4(5)	186,5(8) 187,4(5) 186,9(5)	187,2
Si1—As—Si2 As'—As—Sin As—Sin—Cn1 As—Sin—Cn2 As—Sin—Cn3	$100,90(5) \\93,87(3) \\114,3(2) \\104,8(2) \\110,3(1)$	113,63(4) 118,0(2) 103,4(2) 109,6(3)	100,9 ^a) 110	Cn1-Sin-Cn2 Cn1-Sin-Cn3 Cn2-Sin-Cn3	109,8(3) 108,5(3) 109,2(3)	107,3(3) 110,1(3) 107,9(2)	108,8

^a) Die Angabe eines Mittelwertes ist wegen der stark voneinander abweichenden Einzelwerte nicht sinnvoll.

Tabelle 7 As-As-Bindungslängen in charakteristischen Polyars
anen und Polyarseniden sowie in den Modifikationen des Elementes

Verbindung	As-As (pm)	Bemerkungen	Lit.
$As_{0}[-Si(CH_{2})_{3}],$	245,8(1)	As-As-Hanteln	
[As-C(CH ₃) ₃] ₄	244,4 ^a)	gefaltete As ₄ -Ringe	[20]
$(As-CF_3)_4$	245,4(1)	gefaltete As ₄ -Ringe	[21]
(As-CH ₃) ₅	242,8 ^a)	gewellte As ₅ -Ringe	[22, 23]
$(As-C_6H_5)_6$	$245,6^{a}$)	gewellte As ₆ -Ringe	[23, 24]
$[(CH_3 - As)_2]_{\infty}$	240	Leiterstruktur	[25]
$As_7[-Si(CH_3)_3]_3$	240,7 bis 244,4	${f Heptaarsa-nortricyclen}$	[26]
(AsCH ₂) ₃ C-CH ₃	$241,4^{a}$)	Triarsa-nortricyclen	[27]
As ₃ Co(CO) ₃	237,2(5)	As ₃ Co-Tetraeder	[28]
As_4S_3	247,0 ^a)	As ₃ -Ringe	[29]
LiAs	246,3 ^a)	As_{∞} -Ketten	[30]
NaAs	$246,5(15)^{a}$)	As_{∞} -Ketten	[31]
KAs	$248,9(7)^{a}$	As_{∞} -Ketten	[31]
RbAs	$249,7(23)^{a}$	As_{∞} -Ketten	[31]
CaAs	250,4; 256,3	As_2 -Hanteln	[32]
NdAs_2	248,7 ^a)	As_4 -Ketten	[33]
SrAs ₃	243,8 bis 246,6	Netz aus As ₁₄ -Ringen	[34]
Sr ₃ As ₄	248,3(2); 254,8(2)	As_4 -Ketten	[35]
Ba ₃ As ₁₄	239,9 bis 249,8 ^a)	Heptaarsa-nortricyclen	[36]
K ₃ As ₁₁ · 3 (2,2,2-crypt)	235,7 bis 248,1	As ₁₁ -Käfig	[55]
Ca ₂ As ₃	247,4 bis 257,9	As ₄ - und As ₈ -Ketten	[37]
CoAs ₃	246,4(2); 257,2(2)	As_4 -Ringe	[38]
IrAs ₃	247(3); 254(3)	As_4 -Ringe	[39]
α-As	252	Netz aus As ₆ -Ringen	[40]
$As_4(gasf.)$	244	As_4 -Tetraeder	[41]

a) Mittelwert(e)

Bindungslängen und -winkel sind in Tab. 6 zusammengestellt. Der intramolekulare As-As-Abstand ordnet sich mit 245,8 pm gut bei den an charakteristischen Polyarsanen, Polyarseniden oder den Modifikationen des Elements gemessenen und in Tab. 7 aufgeführten Werten ein [20-41, 55]. Die As-Si- und Si-C-Abstände sind durch die kleinen isotropen Temperaturfaktoren (Tab. 4) kaum verfälscht und weichen deshalb nur geringfügig von bekannten, bereits von anderen Autoren [42] zusammengestellten Werten ab. Die beobachteten C-H-Abstände liegen zwischen 82 und 120 pm, die H-C-H- und Si-C-H-Winkel zwischen 99 und 124° ; auf die Wiedergabe der ungenauen Einzelwerte wird verzichtet (Tab. 6).

Während das von uns strukturell ebenfalls aufgeklärte Tetrakis(trimethylsilyl)distiban ein Inversionszentrum aufweist [10], gehört das hier untersuchte Diarsan 1 zur Punktgruppe C₂. Abb. 2 zeigt die Newman-Projektion des Moleküls; mit einem Torsionswinkel Si2'—As'—As—Si2 zwischen den zu Si2' und Si2 gehörenden Trimethylsilyl-Substituenten von nur —22,0° nehmen die beiden Bis-(trimethylsilyl)arsano-Gruppen eine nahezu halbekliptische Stellung ein (Tab. 8). Folgt man der von MISLOW [44] gewählten Nomenklatur, so liegt eine F_2B_2 -Anordnung der Substituenten vor; sie wird auch in dem von RICHTER u. Mitarb. strukturell untersuchten Tetra(cyclohexyl)diphosphan [45] angetroffen. Der an 1 beobachtete Diederwinkel zwischen den Flächen Si2'—As'—As und As'—As—Si1 beträgt —125,7°; der in der vorausgehenden Publikation [1] fälschlich mit 54,3° angegebene Wert beruht auf einer Verwechslung.

Abb. 2 Newman-Projektion vom Tetrakis(trimethylsilyl)diarsan 1

Tabelle 8 Beschreibung der Molekülkonformation durch die Torsionswinkel $\varphi(A-B-C-D)$ Zur Vorzeichenfestlegung blickt man von B nach C. Wird die A-B-Bindung durch eine Drehung im Uhrzeigersinn mit der C-D-Bindung zur Deckung gebracht, erhält der Winkel ein positives Vorzeichen [43]

			the second se	
$\varphi(Si2' - As' - As - Si2)$	$-22,0^{\circ}$	$\varphi(\text{Si2}'-\text{As}'-\text{As}-\text{Si1})$	-125,7°	
$\varphi(C11-Si1-As-As')$	$+43,9^{\circ}$	$\varphi(C11-Si1-As-Si2)$	-71,1°	
$\varphi(C12-Si1-As-As')$	$-76,2^{\circ}$	φ (C12-Si1-As-Si2)	$+168,8^{\circ}$	
¢(C13-Si1-As-As')	$+166,8^{\circ}$	φ (C13-Si1-As-Si2)	$+51,8^{\circ}$	
$\varphi(C21-Si2-As-As')$	64,0°	$\varphi(C21-Si2-As-Si1)$	$+35,2^{\circ}$	
$\varphi(C22-Si2-As-As')$	$+177,7^{\circ}$	$\varphi(C22-Si2-As-Si1)$	83,0°	
$\varphi(C23-Si2-As-As')$	$+63,0^{\circ}$	φ (C23-Si2-As-Si1)	$+162,0^{\circ}$	

Tabelle 9 Intra- und intermolekulare Kontaktabstände (pm). Die Tabelle enthält nur Abstände, die kleiner als die um 20 pm erhöhten Summen der van-der-Waals-Radien sind.

a) intramolekular

Die mit einem Apostroph (') gekennzeichneten Atome gehören zur zweiten Bis(trimethylsilyl)arsano-Gruppe. Ihre Koordinaten werden mit der Symmetrieoperation (-x, y-x, -z-1/3) aus den Daten von Tab. 4 erzeugt.

Si1-C21	393	C12-H132	311	C21 - H221	300	H112 - H212	270	As-Sil'	352
Si2-C13	393	C12-H113	313	C22 - H213	311	H112 - H213	269	As-Si2'	403
C11-C21	382	C13-H121	318	C22-H231	316	H132 - H222	276	Si2-C23'	409
C22-C13	375	C13-H222	288	C23-H221	301	H133-H213	256	C11-As'	372
C13C21	403	C21-H112	304	C23-H223	309	H133-H222	241		
C11-H121	313								
C21-C23'	375	C23-H212'	296	H212-H233'	232				
C23-C23'	390	C23-H233'	290	H232-H212'	267				
C21-H233'	293	H212 - H232'	267	H233-H233'	192				

b) intermolekular

Das zuerst genannte Atom gehört zur asymmetrischen Einheit. Die Koordinaten des zweiten Atoms werden durch die angegebene Symmetrieoperation erzeugt.

x y-1 z		x-y-y-z-2/3	x-y-y-1-	-z-2/3	-x-1 y-x-1 -z-1/3		
C12-C21	414	C22-C23 396	C13-C21	410	C11-C21	409	
y - x - x - 1 z	+1/3	C23C23 403	C22 - C21	406	C12-C11	417	
C11-C13	409	C22-H231 314	C22-C13	408	H111-H212	241	
C12-C22	402	H221 - H231 = 247	C22-C11	412	x-y-1-y-	2 -z-2/3	
H113-H222	273	H231-H231 255	H132-H211	245	C13-C13	415	
H122 - H221	270	-y-1 x-y-1 z-1/3	H222 - H213	279	H131-H131	237	
x-y-1-y-	1 -z-2/3	C22-H122 313		251			
C13-H223	319		H223 - H213	275			

c) van-der-Waals-Radien (pm) [46]: As 200; Si 210; C 170; H 120

Durch die halbekliptische Konformation des Moleküls kommt es zu einem Kontakt zwischen den Methylgruppen von C21 bzw. C23 und C23' (Tab. 9). Offenbar führen bei intramolekularen Abständen von 232 und 192 pm Abstoßungen zwischen den Wasserstoffatomen H212 und H233' bzw. H233 und H233' zu einer Vergrößerung des Winkels As'-As-Si2, der mit 113,6° um nahezu 20° vom entsprechenden Wert für As'-As-Si1 abweicht (Tab. 6). Die Winkel As-Si1-C11 und As-Si2-C21 sowie As-Si1-C12 und As-Si2-C22 unterscheiden sich mit 114° und 118° einerseits bzw. mit 105° und 103° andererseits in ähnlicher Weise. Wenn auch alle wesentlichen intra- und intermolekularen Wechselwirkungen nur schwer zu übersehen sind und die in Tab. 9 für C11-C21, C11-As' oder C22-C13 aufgeführten Kontakte keine eindeutige Interpretation erlauben, können aber zur Erklärung der Winkelaufweitungen bei As-Si1-C11 und As-Si2-C21 Abweichungen von der idealen gestaffelten Anordnung vicinaler Bindungen, wie sie sich in Werten von $+43,9^{\circ}$ und $+35,2^{\circ}$ für die Torsionswinkel $\varphi(C11-Si1-As-As')$ und $\varphi(C21-Si2-As-Si1)$ zu erkennen geben, durchaus herangezogen werden. Der Einfluß der freien Elektronenpaare an den Atomen As und As' auf die Bindungswinkel allerdings ist nicht zu fassen.

Hydrazin und seine Derivate sowie Diphosphane und Diarsane der Zusammensetzung R_4E_2 weisen in Abhängigkeit vom Substituenten R gauche- oder anti-Konformation auf; oftmals liegen aber schon bei Raumtemperatur Gemische vor. Nach Auffassung verschiedener Autoren sind Wechselwirkungen zwischen benachbarten freien Elektronenpaaren und polaren Bindungen für die gauche-Stellung verantwortlich ([47, 48] und dort zitierte Literatur). Elektronegative Reste R und eine zunehmende Länge der zentralen E-E-Bindung begünstigen die anti-Anordnung.

In den letzten Jahren wurden die bevorzugten Konformationen von Äthan-Derivaten sowie einiger Disilane und Diphosphane mit vier voluminösen Substituenten in 1, 1, 2, 2-Stellung bestimmt und die aus Röntgenstrukturanalysen zugänglichen Daten mit Berechnungen der intramolekularen Wechselwirkungen nach der Methode des empirischen Kraftfeldes (EFF) in Beziehung gesetzt [49]. Obwohl beim Übergang vom Tetra(cyclohexyl)diphosphan [45] zum 1, 1, 2, 2-Tetra(cyclohexyl)disilan [49] Phosphoratome mit freien Elektronenpaaren durch Si--H-Gruppen ersetzt werden, findet man doch in beiden Verbindungen die gleiche halbekliptische Anordnung der Cyclohexylreste. Auch 1, 1, 2, 2-Tetra(cyclohexyl)äthan fügt sich mit ähnlicher Stellung der Alkylgruppen [50] hier gut ein, so daß die Autoren die beobachteten Konformationen ausschließlich auf sterische Wechselwirkungen zwischen den voluminösen Substituenten zurückführen. NMR-spektroskopische Untersuchungen an Tetraalkyläthanen haben ebenfalls gezeigt, daß auch in Lösung mit zunehmender Größe des Alkylrestes die gauche-Anordnung bevorzugt wird ([51, 52] und dort zitierte Literatur).

Auf Grund dieser neuen Befunde kann also die oben angeführte Erklärung des gauche-Effektes über elektronische Wechselwirkungen allein nur für die seit längerem bekannten Verbindungen mit Substituenten geringer Raumerfüllung gültig sein. Die am kristallinen 1, 1, 2, 2-Tetraphenyläthan sowie am entsprechenden Tetramesityl- oder Tetrakis(2-methoxyphenyl)-Derivat beobachtete anti-Stellung ist nach MISLOW u. Mitarb. [53] auf geringe intramolekulare Abstoßungen und eine gute Packung (s. hierzu [54]) der propellerartig angeordneten Arylringe zurückzuführen.

Abb. 3 Anordnung der Moleküle in der Elementarzelle. Der besseren Übersicht wegen wurden insgesamt sechs Moleküle eingezeichnet. Auf die Wiedergabe der Wasserstoffatome haben wir verzichtet.

Nach den bereits erwähnten Berechnungen intramolekularer Wechselwirkungen ist beim 1,1,2,2-Tetra(tert-butyl)disilan die gauche- gegenüber der anti-Anordnung um 11,9 kcal \cdot mol⁻¹ begünstigt [49]. Deshalb führen auch wir die am ähnlichen Tetrakis(trimethylsilyl)diarsan 1 beobachtete halbekliptische F_2B_2 -Stellung der vier Trimethylsilyl-Gruppen ebenfalls auf sterische Wechselwirkungen zurück. Die in Tab. 9a aufgeführten und bereits diskutierten Kontakte sowie die Abb. 1 zu entnehmende, gute gegenseitige Verzahnung der Methylgruppen weisen auf eine nur geringfügig verspannte Konformation hin.

Kristallstruktur

Abb. 3 zeigt die Anordnung der Moleküle im Kristall. Sie richten sich mit ihren As-As-Bindungen annähernd parallel zu [001] aus; der Winkel zwischen beiden Vektoren beträgt nur 1,3°. Aufgrund der halbekliptischen Konformation des Moleküls wird das Arsenatom der einen durch die Substituenten aus der anderen Molekülhälfte weitgehend abgeschirmt. Im Gegensatz zum homologen Tetrakis(trimethylsilyl)distiban [10] ist in 1 eine Wechselwirkung zwischen den Heteroatomen E (E = As, Sb) aus unterschiedlichen Molekülen nicht möglich. Der kürzeste intermolekulare As-Abstand ist mit 662 pm wesentlich länger als die mit 400 pm angegebene Summe der van-der-Waals-Radien [46].

Einige kurze intermolekulare Kontakte sind in Tab. 9b zusammengestellt. Schon ihre geringe Zahl und der niedrige Schmelzpunkt von 66-67 °C weisen darauf hin, daß starke intermolekulare Wechselwirkungen fehlen.

Die Messungen wurden im Institut für Kristallographie der Universität Karlsruhe, die Berechnungen in den Rechenzentren der Universitäten Karlsruhe und Marburg durchgeführt. Wir danken der Deutschen Forschungsgemeinschaft und dem Fonds der Chemie für die Bereitstellung von Personal- (C. W.) und Sachmitteln sowie der Bayer AG, Leverkusen, und der Metallgesellschaft, Langelsheim, für Chemikalienspenden.

Literatur

- [1] I. MITTELLUNG: G. BECKER, G. GUTEKUNST u. H. J. WESSELY, Z. anorg. allg. Chem. 462, 113 (1980).
- [2] N. WIBERG U. M. VEITH, Chem. Ber. 104, 3176 (1971).
- [3] M. VEITH, Z. anorg. allg. Chem. 446, 237 (1978).
- [4] H. SCHUMANN u. R. FISCHER, J. Organomet. Chem. 88, C13 (1975).
- [5] H. SCHUMANN, L. RÖSCH U. W. SCHMIDT-FRITSCHE, Chemiker-Ztg. 101, 156 (1977).
- [6] H. SCHUMANN, L. RÖSCH u. W. SCHMIDT-FRITSCHE, J. Organomet. Chem. 140, C21 (1977).
- [7] G. BECKER, M. RÖSSLER u. H. SCHÖN, unveröffentlicht.
- [8] H. J. BREUNIG U. V. BREUNIG-LYRITI, Z. Naturforsch. 34 b, 926 (1979).
- [9] G. BECKER, H. FREUDENBLUM, M. HIEMER; A. MÜNCH u. M. RÖSSLER, unveröffentlicht.
- [10] G. BECKER, H. FREUDENBLUM U. C. WITTHAUER, Z. anorg. allg. Chem, im Druck.
- [11] H. J. BREUNIG, Z. Naturforsch. 33 b, 244 (1978).
- [12] H. J. BREUNIG, Z. Naturforsch. 33 b, 990 (1978).
- [13] G. BECKER u. M. RÖSSLER, Z. Naturforsch. 37b, 91 (1982).
- [14] G. BECKER, O. MUNDT, M. RÖSSLER u. C. WITTHAUER, unveröffentlicht.
- [15] H. BÜRGER, GH Wuppertal, unveröffentlicht.

- [16] A. I. KITAIGORODSKII, Organic Chemical Crystallography, Consultants Bureau, New York 1961.
- [17] J. M. STEWART, P. A. MACHIN, C. W. DICKINSON, H. L. AMMON, H. HECK U. H. FLACK, The X-Ray System of Crystallographic Programs, Computer Science Center, University of Maryland, College Park, Maryland 1976.
- [18] W. C. HAMILTON, Acta Crystallogr. 12, 609 (1959).
- [19] C. K. JOHNSON, ORTEP, Report ORNL-3794, Oak Ridge National Laboratory, Oak Ridge, Tennessee 1965.
- [20] O. MUNDT, G. BECKER, H.-J. WESSELY, H. J. BREUNIG U. H. KISCHKEL, Z. anorg. allg. Chem. 486, 70 (1982).
- [21] N. MANDEL U. J. DONOHUE, Acta Crystallogr. B 27, 476 (1971),
- [22] J. H. BURNS u. J. WASER, J. Amer. Chem. Soc. 79, 859 (1957).
- [23] J. DONOHUE, Acta Crystallogr. 15, 708 (1962).
- [24] K. HEDBERG, E. W. HUGHES u. J. WASER, Acta Crystallogr. 14, 369 (1961).
- [25] J. J. DALY u. F. SANZ, Helv. Chim. Acta 53, 1879 (1970); 56, 561 (1973).
- [26] H. G. v. SCHNERING, D. FENSKE, W. HÖNLE, M. BINNEWIES u. K. PETERS, Angew. Chem. 91, 755 (1979).
- [27] G. THIELE, G. ZOUBEK, H. A. LINDNER U. J. ELLERMANN, Angew. Chem. 90, 133 (1978).
- [28] A. S. FOUST, M. S. FOSTER u. L. F. DAHL, J. Amer. Chem. Soc. 91, 5631 (1969).
- [29] H. J. WHITFIELD, J. Chem. Soc., Dalton Trans. 1973, 1737.
- [30] D. T. CROMER, Acta Crystallogr. 12, 36 (1959).
- [31] W. HÖNLE U. H. G. v. SCHNERING, Acta Crystallogr. A 34, Suppl., S152 (1978).
- [32] P. L'HARIDON, J. GUYADER U. M. HAMON, Rev. Chim. Miner. 13, 185 (1976).
- [33] Y. WANG, R. D. HEYDING, E. J. GABE, L. D. CALVERT U. J. B. TAYLOR, Acta Crystallogr. B 34, 1959 (1978).
- [34] K. DELLER u. B. EISENMANN, Z. Naturforsch. 31 b, 1550 (1976).
- [35] K. DELLER U. B. EISENMANN, Z. Naturforsch. 32 b, 1368 (1977).
- [36] W. SCHMETTOW u. H. G. v. SCHNERING, Angew. Chem. 89, 895 (1977).
- [37] K. DELLER U. B. EISENMANN, Z. Naturforsch. 31 b, 1023 (1976).
- [38] N. MANDEL u. J. DONOHUE, Acta Crystallogr. B27, 2288 (1971).
- [39] A. KJEKSHUS U. G. PEDERSEN, Acta Crystallogr. 14, 1065 (1961).
- [40] J. DONOHUE, The Structures of the Elements, Wiley-Interscience, New York 1974.
- [41] L. R. MAXWELL, S. B. HENDRICKS u. V. M. MOSLEY, J. Chem. Phys. 3, 699 (1935).
- [42] W. HÖNLE, u. H. G. v. SCHNERING Z. Naturforsch. 35 b, 789 (1980).
- [43] H. J. GEISE, C. ALTONA u. C. ROMERS, Tetrahedron 23, 439 (1967).
- [44] W. D. HOUNSHELL, D. A. DOUGHERTY u. K. MISLOW, J. Amer. Chem. Soc. 100, 3149 (1978).
- [45] R. RICHTER, J. KAISER, J. SIELER, H. HARTUNG u. C. PETER, Acta Crystallogr. B33, 1887 (1977).
- [46] J. E. HUHEEY, Inorganic Chemistry, Harper and Row, New York 1972; L. PAULING, Die Natur der chemischen Bindung, Verlag Chemie, Weinheim 1973.
- [47] S. WOLFE, Acc. Chem. Research 5, 102 (1972).
- [48] J. R. DURIG U. J. S. DIYORIO, Inorg. Chem. 8, 2796 (1969); J. R. DURIG U. J. M. CASPER, J. Chem. Phys. 55, 198 (1971); J. D. WITT, J. W. THOMPSON U. J. R. DURIG, Inorg. Chem. 12, 811 (1973); J. W. THOMPSON, J. D. WITT U. J. R. DURIG, Inorg. Chem. 12, 2124 (1973); J. R. DURIG U. R. W. MACNAMEE, J. MOI. Struct. 17, 426 (1973).
- [49] S. G. BAXTER, D. A. DOUGHERTY, J. P. HUMMEL, J. F. BLOUNT u. K. MISLOW, J. Amer. Chem. Soc. 100, 7795 (1978).
- [50] S. G. BAXTER, H. FRITZ, G. HELLMANN, B. KITSCHKE, H. J. LINDNER, K. MISLOW, C. RÜ-CHARDT U. S. WEINER, J. Amer. Chem. Soc. 101, 4493 (1979).
- [51] S. BROWNSTEIN, J. DUNOGUES, D. LINDSAY U. K. U. INGOLD, J. Amer. Chem. Soc. 99, 2073 (1977); L. LUNAZZI, D. MACCIANTELLI, F. BERNARDI U. K. U. INGOLD, J. Amer. Chem. Soc. 99, 4573 (1977).

- [52] W. RITTER, W. HULL u. H.-J. CANTOW, Tetrahedron Lett. 1978, 3093.
- [53] D. A. DOUGHERTY, F. M. LLORT U. K. MISLOW, Tetrahedron 34, 1301 (1978); D. A. DOUGHERTY, K. MISLOW, J. F. BLOUNT, J. B. WOOTEN U. J. JACOBUS, J. Amer. Chem. Soc. 99, 6149 (1977); H. J. POSTMA U. F. VAN BOLHUIS, Acta Crystallogr. B31, 1792 (1975); J. J. DALY, F. SANZ, R. P. A. SNEEDEN U. H. H. ZEISS, J. Chem. Soc., Perkin Trans. II, 1972, 1614,
- [54] U. MÜLLER, Acta Crystallogr. B 36, 1075 (1980).
- [55] C. H. E. BELIN, J. Amer. Chem. Soc. 102, 6036 (1980).

Bei der Redaktion eingegangen am 15. Mai 1981.

Anschr. d. Verf.: Prof. Dr. GERD BECKER, Dr. GERHARD GUTEKUNST u. Dr. CLAUDIA WITTHAUER, Fachbereich Chemie d. Philipps-Univ., Hans-Meerwein-Straße, D-3550 Marburg