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Abstract

X-ray (and neutron) diffraction can be used for the non-destructive analysis of residual and

load stresses. Suitable parameters as (X-ray) elastic constants are required for relating the

measured lattice strains to the components of the mechanical stress tensor. 

For the first time a unifying, rigorous treatment for the diffraction stress analysis of both

macroscopically elastically isotropic and anisotropic polycrystals has been given. The notion

‘surface anisotropy’ of bulk specimens has been revisited as a special case of direction-

dependent grain interaction. 

Evidence for direction-dependent grain interaction, i.e. the direction dependence of the elastic

coupling of  grains in a polycrystal, was obtained only very recently for the first time in the

diffraction stress analysis of an untextured, polycrystalline nickel thin film by van Leeuwen et

al. (1999). A stress analysis of the measured diffraction strains was only possible by adopting

grain interaction assumptions given by Vook & Witt (1965). In this work, the Vook-Witt

based grain interaction model is elaborated for the textured case. 

The concept of direction-dependent grain interaction for diffraction analysis of stress is

generalised, overcoming some unrealistic (extreme) grain interaction assumptions involved in

the Vook-Witt based grain interaction model. Experimental verification has been achieved by

X-ray diffraction strain measurements performed on a vapour deposited copper film. 

To this end, a quantitative analysis of the texture of the specimen in terms of an orientation

distribution function was required. This analysis was performed employing a Polycapillary X-

ray lens. The corrections for instrumental aberrations in texture measurements with this

optical component have been, for the first time, rigorously investigated and suitable correction

procedures have been developed. 
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1. Introduction

Thin surface layers, deposited by means of chemical or physical vapour deposition or formed,

for example, by a process like plasma-nitriding are often utilised for improving the (surface)

properties of bulks. For example: cutting tools may be covered with a thin ceramic surface

layer of titanium nitride to enhance wear resistance. Moreover, layered structures are of key

importance in the microelectronics industry. 

Among the manifold of factors determining the properties of a layered structure, like

adhesion of the layer(s), residual stress may be one of the least understood entities of a part

entering its service live even though residual stress is of crucial importance for its

performance and reliability (see, for example, Vande Walle, 1985, Machlin, 1995). 

For obtaining fundamental insight into the origin of residual stress and its correlation

to microstructure and properties, first of all methods of reliably measuring residual stress are

required. Among a number of techniques, X-ray diffraction plays a key role being accurate,

non-destructive and capable of providing additional information (see, for example, Noyan &

Cohen, 1987, Hauk, 1997). Simultaneously with the X-ray diffraction stress measurement, as

an example, the crystallographic texture can be analysed quantitatively. 

This work is dedicated to residual stress analysis of polycrystalline specimens with a

focus on modelling of elastic grain interaction in thin films and surfaces. 

The analysis of residual stress by X-ray diffraction involves the measurement of elastic lattice

strains as functions of two angles � and �, where � is the inclination angle of the sample

surface normal with respect to the diffraction vector and � denotes the rotation of the sample

around the sample surface normal. From a number of measured lattice strains for various

measurement directions (i.e. various � and/or �) for single or multiple reflections, the

components of the mechanical stress tensor can be calculated by means of suitable, so-called

diffraction elastic constants (see, for example, Noyan & Cohen, 1987, Hauk, 1997). 

However, for polycrystalline specimens composed of (intrinsically) elastically

anisotropic crystallites, the interpretation of the measured lattice strains in terms of

mechanical stress is not straightforward. For (intrinsically) elastically anisotropic crystallites,

the elastic properties depend on the crystallographic direction. As a consequence, stresses and

strains vary over the crystallographically differently oriented crystallites in a polycrystalline

specimen subjected to a mechanical stress-strain state. Therefore neither the mechanical

elastic constants (relating mechanical (macroscopic) strains to mechanical (macroscopic)

stresses) nor the diffraction elastic constants (diffraction stress factors for elastically
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anisotropic samples), relating diffraction strains to mechanical stresses, can be derived

without more ado from single-crystal data of the crystallites composing the specimen. 

X-ray diffraction is highly susceptible to the elastic anisotropy, because lattice strains

are measured for particular hkl reflections pertaining to particular crystallographic planes.

Thus, lattice strains are not a direct measure for mechanical strains, being averages of the

strains of all crystallites (see, for example, Möller & Martin, 1939, Hauk, 1997). 

A possible solution of this problem is the adoption of a so-called grain-interaction

model describing the distribution of stresses and strains over the crystallographically

differently oriented crystallites in the specimen. 

Common grain-interaction models, in particular the models of Voigt (1910), Reuss

(1929), Neerfeld-Hill (Neerfeld, 1942, Hill, 1952) and Eshelby-Kröner (Eshelby, 1957,

Kröner, 1958, see also Kneer, 1965), were devised for the calculation of mechanical elastic

constants of polycrystals from single-crystal elastic data but these models can also be used for

the calculation of diffraction elastic constants from single-crystal elastic data. 

Even though the above models have been devised for bulk polycrystals, these models

are also frequently applied to thin film stress analysis. Owing to their microstructure and

reduced dimensionality, the elastic behaviour of thin films can be different from the elastic

behaviour of corresponding bulk polycrystals. In a bulk specimen, each crystallite is

surrounded by neighbouring crystallites in three dimensions, whereas this is not necessarily

the case for a thin film (or surface adjacent material). See figure 1.1 for an example.

Thin films cannot generally be considered as macroscopically elastically isotropic;

rather they can exhibit macroscopically transversely isotropic elastic properties (even in the

absence of texture; van Leeuwen et al., 1999). The traditional models for grain interaction

(Voigt, Reuss, Eshelby-Kröner, Neerfeld-Hill) are compatible only with macroscopic elastic

isotropy (in the absence of texture) and hence these models are inappropriate for the analysis

of stress in such thin films. 

Only recently van Leeuwen et al. (1999) observed experimentally the occurrence of

transverse elastic isotropy for an untextured Ni film. Experimental observations (curved

sin2
�-plots; see further) being incompatible with the traditional models for grain interaction

were interpreted on the basis of a grain interaction model adapted to the microstructure of a

columnar thin film. To this end, grain-interaction assumptions proposed by Vook and Witt

(Vook & Witt, 1965, Witt & Vook, 1968) were, for the first time, employed for the analysis

of diffraction stress measurements. It was shown by van Leeuwen et al. (1999) that the Vook-

Witt grain interaction assumptions give rise to elastic anisotropy on the macroscopic scale. 
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interaction tensor representing the linear transformation of the macroscopic mechanical stress

tensor into the local stress tensor of a crystallite in a polycrystalline specimen.

In Chapter 3 of this work, the Vook-Witt model is extended to textured specimens. On

the basis of simulations of lattice strains for the case of fibre-texture it is demonstrated that

erroneous results (errors as large as 50%) for the stress can occur when this type of grain

interaction holds and, yet, traditional models are employed in stress analysis. 

In Chapter 4 of this work, a more general approach for the modelling of direction

dependent grain interaction is proposed.  Even though the Vook-Witt grain-interaction model

has to be considered as some ‘intermediate’ model of grain interaction (with reference to the

Voigt and Reuss models), it still imposes extreme constraints (e.g. identical in-plain strain for

all crystallites). It is well known from literature (see, for example, Neerfeld, 1942, Hill, 1952,

Hauk, 1997) that extreme grain-interaction assumptions are in general not compatible with the

elastic behaviour of real specimens. Therefore, in this work a so-called effective grain

interaction model, based on a linear combination of basic, extreme models with volume

fractions as weighing factors is presented. To this end, the so-called inverse Vook-Witt model

for grain interaction has been proposed. The proposed effective grain interaction model

(combing the Reuss, Voigt, Vook-Witt and inverse Vook-Witt models) is applied to the

diffraction analysis of stress in a fibre-textured copper layer. The measured lattice strains,

represented as sin2
�-plots (i.e. plots of the lattice strain versus the squared sin of the specimen

tilt angle), are incompatible with the traditional grain interaction models. A consistent,

simultaneous analysis of six sin2
�-plots was possible only on the basis of the effective grain

interaction model proposed in this work.

In Chapter 5 the corrections for instrumental aberrations of pole figure measurements

employing an X-ray lens (see, for example, Kumachov & Komarov, 1990, Kogan & Bethke,

1998, Scardi et al., 2000) are discussed. 

Crystallographic texture is commonly met in thin films as a result of the layer growth. The

occurrence of texture influences the mechanical and diffraction elastic constants considerably

and thus it is necessary to consider texture in terms of an orientation distribution function in

diffraction stress analysis. 

In this work, an X-ray lens has been employed for diffraction stress and (simultaneous,

see Chapter 4) texture analysis. The use of X-ray lenses, which have now been commercially

available for a few years, is not yet frequent in texture analysis. The present work presents, on

the basis of measurements performed with texture-free reference samples, an analysis of the

corrections for instrumental aberrations of texture measurements (pole figures) if an X-ray
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lens is employed. It is demonstrated that the use of an X-ray lens considerably simplifies the

corrections necessary for the quantitative interpretation of the measured intensity in terms of

orientation dependent volume fractions as compared to traditional (focusing, e.g. Bragg-

Brentano) measurement geometries. Two correction procedures for the instrumental

aberrations, an experimental one and a numerical one, have been described and tested.

The method was also successfully applied to the texture analysis of a fibre textured copper

layer (see Chapter 4). 
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2. Diffraction Stress Analysis of Macroscopically Elastically

Anisotropic Specimens; On the Concepts of Diffraction Elastic

Constants and Stress Factors

Udo Welzel & Eric J. Mittemeijer 

Abstract

For the first time a unifying, rigorous treatment has been given for the diffraction stress

analysis of both macroscopically elastically isotropic specimens and macroscopically

elastically anisotropic specimens. The applicability ranges of so-called diffraction elastic

constants and diffraction stress factors have been discussed. It has been shown that the

diffraction stress factors, originally introduced for the diffraction stress analysis of textured

specimens, can also be used in the diffraction stress analysis of specimens exhibiting direction

dependent grain interaction. The grain interaction tensor has been introduced and investigated

for various grain interaction models. The notion surface anisotropy of bulk specimens has

been revisited as a special case of direction dependent grain interaction. 
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2.1. Introduction

X-ray (and neutron) diffraction is a well-established tool for the non-destructive analysis of

(macro-) stress states in polycrystalline solids. Usually, diffraction lines of one or more hkl

reflections are measured at various specimen tilt (and, dependent on the complexity of the

stress state, rotation) angles. From the angular positions of  the diffraction lines, lattice

spacings and thus (elastic) lattice strains can be calculated (see, for example, Noyan & Cohen,

1987, Hauk, 1997). The components of the mechanical stress tensor can be calculated from

these lattice strains employing suitable parameters as elastic constants. 

Experimental results indicated that the mechanical elastic constants relating the

mechanical stress of the specimen to the mechanical elastic strain (e.g. E, Young’s modulus,

and �, Poisson’s ratio, for macroscopically elastically isotropic specimens) are, in general, not

suitable for the calculation of the components of the mechanical stress tensor from diffraction

lattice strains (see, for example, Glocker, 1938, Möller & Martin, 1939). The strain probed by

X-ray diffraction (‘diffraction strain’, named ‘lattice strain’ in the following) can be different

from the mechanical strain because a diffraction line contains information on the elastic strain

of only a subset of crystallites which have the lattice planes under study oriented

perpendicular to the diffraction vector. Individual crystallites are, in general, intrinsically

elastically anisotropic. Hence, the elastic properties of subsets of grains (as can be described

by so-called diffraction elastic constants) can be different from the mechanical elastic

properties of the whole specimen. Against this background the so-called diffraction (X-ray)

elastic constants for macroscopically elastically isotropic (quasi-isotropic1) specimens (see,

for example, Hauk, 1997; see also Chapter 2.3) and the so-called diffraction (X-ray) stress

factors for textured (macroscopically elastically anisotropic) samples were introduced (Dölle

& Hauk, 1978, Dölle & Hauk, 1979, Hauk, 1997; see also Chapter 2.2 and 2.3). 

For the analysis of an homogeneous stress state in a macroscopically elastically

isotropic specimen, the so-called sin2
�-method can be used. This method relies on the linear

(or elliptic, in the presence of shear stresses) dependence of the measured diffraction strain on

sin2
�, where � is the specimen tilt angle (i.e. the inclination of the lattice-strain measurement

direction with respect to the surface normal of the specimen). The components of the

mechanical stress tensor follow from slopes of straight lines (or parameters of ellipses, in the

                                                
1 A specimen is termed quasi-isotropic if the (whole) specimen is elastically isotropic but the individual

crystallites are elastically anisotropic.
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case of the presence of shear stresses), fitted to the lattice-strain data in sin2
� -plots, and the

values of the hkl-dependent X-ray elastic constants 1
hklS  and 2

1
2

hklS . These elastic constants

were introduced on an empirical basis by Möller and Martin (1939) . The general proof of the

validity of the concept of X-ray elastic constants for any macroscopically elastically isotropic

polycrystal with a rigorous discussion of the underlying assumptions was not given before

some tens of years later by Stickforth (1966). 

For the analysis of an homogeneous stress state in macroscopically elastically

anisotropic specimens, a diffraction analysis of stress is also possible. However, a rigorous

derivation of the underlying equations lacks. Until recently, only (crystallographic) texture

was considered as a possible source of macroscopic elastic anisotropy. 

It was observed experimentally (for a comprehensive review, see for example Hauk,

1997) that non-linear sin2
�-plots occur for textured materials. To account for these non-

linearities, incompatible with the traditional sin2
� -behaviour, the so-called X-ray stress

factors were introduced (on the basis of the Reuss grain interaction model; Dölle & Hauk,

1978, Dölle & Hauk, 1979). 

X-ray diffraction stress analysis is also frequently applied for the determination of load

or residual stress in thin films. Owing to their microstructure and reduced dimensionality, the

elastic behaviour of thin films can be different from the elastic behaviour of bulk polycrystals.

Thin films cannot generally be considered as macroscopically elastically isotropic, rather they

can exhibit macroscopically transversely isotropic properties even in the absence of texture.

Only recently, it has been demonstrated theoretically and experimentally by van Leeuwen et

al. (1999) that the application of a new type of grain-interaction model, a so-called direction-

dependent grain interaction model, is compatible with macroscopic anisotropic elastic

behaviour even in the absence of texture. However, basic equations, analogous to the

traditional sin2
�-law for elastically isotropic specimens, lack.

In this work, the concept of diffraction elastic constants will be revisited rigorously. It

will be demonstrated that the concept of X-ray stress factors holds for macroscopically

elastically anisotropic specimens independent of the source of the anisotropy. Thus, X-ray

stress factors can be employed for diffraction stress analysis of specimens exhibiting texture,

direction dependent grain interaction, or both. Finally, the relation of the surface anisotropy as

discussed by Stickforth (1966) with the recent direction dependent grain interaction models

(van Leeuwen et al., 1999, see also Chapter 3 and 4 of this work) is discussed. 
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2.2. Theoretical basis - frames of reference and calculation of mechanical

and diffraction averages of elastic stress and strain tensors

It is convenient to introduce three Cartesian frames of reference:

� The crystal frame of reference (C): The conventional definition of an orthonormal crystal

system, such as the one given by Nye (1957) (for a detailed treatment, see also

Giacovazzo, 1998) is adopted. For cubic crystal symmetry the axes chosen coincide with

the a, b and c axis of the crystal lattice. 

� The specimen frame of reference (S): The S3 axis is oriented perpendicular to the

specimen surface and the S 1 and S 2 axes are in the surface plane.

� The laboratory frame of reference (L): This frame is chosen in such a way that the L3-axis

coincides with the diffraction vector in the (X-ray) diffraction experiment.

In the following a superscript (C, S or L) is used for indicating the reference frame adopted for

the representation of a tensor. The absence of any superscript implies the validity of an

equation independent of the reference frame used for tensor representation (but the same

frame of reference has to be adopted for all tensors in the equation). 

Transformations of tensors can be accomplished by suitable rotation matrices (for a

general introduction on the use of transformation matrices in the context of diffraction stress

analysis, see for example, Hauk, 1997; for details on matrices within the context of this

Chapter, see also Chapter 3.).

The orientation of  each crystallite in the S system can be identified by three Euler

angles. The convention of Roe and Krigbaum (1964) in the definition of these angles will be

adopted and these angles will be called �, � and �. It is usual to associate a set of Euler angles

with a vector g
��

=(�,�,��) in the three-dimensional orientation (Euler) space G (for example,

see Bunge, 1982a). In this way, each point in the orientation space G  represents a possible

orientation of the C frame of reference with respect to the S frame of reference. Only in the

absence of texture it holds, that the volume fraction of crystallites having an orientation in the

infinitesimal orientation range 3 sin( )d g d d d� � � ��  around g
��

 is independent of g
��

. Texture

can be quantified by introducing the so-called orientation distribution function (ODF),

( , , )f � � � , which is a function of  the Euler angles, specifying the volume fraction of

crystallites having an orientation in the infinitesimal orientation range 3 sin( )d g d d d� � � ��

around g
��

:
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� � � �
2 2

( , , ) sin( )
8 8

dV g f g fdg d d d
V

� � �
� � � �

� �
� �

�� ��

. (2.1)

The ODF is normalised:

� � 3
2 1

8G

f g
d g

�

����

��

. (2.2)

On the basis of the Euler angles it is possible to calculate mechanical and diffraction averages

of elastic-, stress- and strain tensors. In the following, angular brackets  denote volume-

weighted averages for all crystallites in the aggregate considered (i.e. mechanical averages)

whereas braces � �  denote volume-weighted averages for diffracting crystallites only (i.e.

diffraction averages). The group of diffracting crystallites is selected by specifying the hkl of

the reflection considered and the orientation of the diffraction vector with respect to the

specimen reference frame, which can be identified by the angles (�,�), where � denotes the

rotation of the sample around the sample surface normal . 

Mechanical averages of a tensor �  can be calculated by integration over all Euler

angles, using the ODF as a weighing factor:

� � 3
2

2 2

2
0 0 0

1
8

1 ( , , ) ( , , ) sin( )
8

G

f g d g

f d d d
� � �

� � �

�

� � � � � � � � � �
�

� � �

� � � �

� �

���

� � �

��

. (2.3)

A diffraction line contains data on only a subset of the crystallites for which the diffracting

planes are perpendicular to the chosen measurement direction. Because only the measurement

direction (i.e. the direction of the diffraction vector) is defined, a degree of freedom occurs for

the diffracting crystallites: the rotation around the diffraction vector (denoted by the angle �

in the following). For a hkl diffraction line, the subset of diffracting crystallites is selected by

the orientation of the diffraction vector with respect to the specimen frame of reference S.

This is indicated by attaching sub- (�,�) and superscripts (hkl) to the corresponding average:

� �

2
*

0
2,

*

0

( , , , ) ( , , , )

( , , , )

hkl
hkl f hkl d

f hkl d

�

�� �

� � � � � � �

� � � �

�

� �

�

�
. (2.4)

*f (hkl,�,�,�) is the representation of the ODF in terms of the measurement parameters and

the rotation angle �. The ODF as defined in equation (2.1) cannot be directly used in equation

(2.4), in analogy to equation (2.3), since the angles �,�,� are not Euler angles representing a
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rotation of the C system with respect to the S system (they provide the rotation of the system

L with respect to the system S). However, the values of �, �, � and thus ( , , )f � � �  at every �

can be calculated from hkl, �, � and �, to be finally substituted for *f ( hkl,�,�,�) in equation

(2.4) (for a more detailed treatment of the necessary transformations, see also Chapter 3 and

the corresponding Appendix). 

Using the above approach, the lattice strain hkl
��
� can be calculated as the average strain

� �33

hklL
��

� , i.e. the average strain parallel to the L3-axis:

� �

2
*

33
0

33 2
*

0

( , , , ) ( , , , )

( , , , )

L

hklhkl L

hkl f hkl d

f hkl d

�

�� ���

� � � � � � � �

� �

� � � �

� �

�

�
. (2.5)
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2.3. The fundamental equations of diffraction stress analysis

In this section first a short synopsis of the of the present stage of knowledge on the diffraction

stress analysis of homogeneous stress states is given. The basic equations for macroscopically

elastically isotropic, untextured and for macroscopically elastically anisotropic, textured

polycrystalline specimens are presented. Then, recent developments in the field of grain-

interaction models are discussed (Chapter 2.3.1). The shortcomings of the current

understanding of the basics of diffraction stress analysis are: A rigorous discussion of the

assumptions underlying (the role of grain interaction in) diffraction stress analysis lacks and

the general applicability of the so-called X-ray stress factors has not been realised and

demonstrated. 

In this paper, the assumptions underlying diffraction stress analysis are introduced

rigorously (Chapter 2.3.2), followed by a derivation of the sin2
�-law for macroscopically

elastically isotropic specimens (in association with the case of X-ray elastic constants;

Chapter 2.3.3) and a derivation of the sin2
�-law for macroscopically elastically anisotropic

specimens (in association with the case of X-ray stress factors; Chapter 2.3.3). Special

attention is paid to the sources of macroscopic elastic anisotropy as texture and direction

dependent grain interaction. This section concludes with an illustration of the consequences of

various grain interaction models as those due to Reuss, Voigt and Vook-Witt, for diffraction

stress analysis.  
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2.3.1 Hierarchy of elastic anisotropy in diffraction stress analysis

2.3.1.1. Intrinsic elastic isotropy

For a polycrystalline material composed of elastically isotropic crystallites, Hooke’s law

relating the stress and the strain tensor in the specimen frame of reference reads:

� �� �1 1
1 22 2

S S S S
ij ijkl kl ij kl ik jl il jk klS S S� � � � � � � � �� � � �  (2.6)

with 

1S
E
�

� �  and 1
22

1S
E
��

� , (2.7),(2.8)

where �  is Poisson’s ratio and E  is Young’s modulus. SS  is the compliance tensor of the

body. Equation (2.6) contains mechanical quantities. However, in the case of elastically

isotropic crystallites equation (2.6) holds as well for every crystallite in the aggregate (and

thus also for the lattice strain probed by X-ray diffraction) as the elastic constants of the

individual crystallites are independent of their orientation with respect to the specimen frame

of reference. Thus the elastic properties of the body are identical to the elastic properties of

the individual crystallites and SS is the compliance tensor of the body as well as of the

individual crystallites. Note that also the superscript indicating the reference frame could be

skipped for SS , as the compliance tensor has, in this case of intrinsic elastic isotropy for each

crystallite, an identical notation with respect to every (orthogonal) reference frame. 

The elastic lattice strain 
��
� measured by X-ray diffraction can be obtained as the

strain along the direction of the diffraction vector Sm
����

. No averaging is necessary here as the

strain tensor is identical for all elastically isotropic crystallites; angular/curly brackets and the

indication of the particular reflection considered can be skipped in this case, i.e. S S
ij ij� ��

and � �33
L

��
��

� ��

h
, and thus:

2 2 2 2 2
11 22 33

2
12 13 23

cos sin sin sin cos

sin 2 sin cos sin 2 sin sin 2

S S S S S S
i ij j

S S S

m m
��
� � � � � � � � � �

� � � � � � � � �

� � � � �

� � �

(2.9)

where 

sin cos
sin sin
cos

Sm
� �

� �

�

� �
� ��
� �
� �

����

. (2.10)



2. Diffraction Stress Analysis of Macroscopically Elastically Anisotropic Specimens

23

The angles � and � define the orientation of the (normalised) diffraction vector m
��

 (i.e. the

direction of the strain measurement, the z-direction of the laboratory frame of reference) with

respect to the sample reference frame (see Chapter 2.2.).

By insertion of equation (2.6) into equation (2.9), it follows straightforwardly:

� �� �

� � � �� �

� �

2

2

2 2 21
11 12 222

21
13 23 332

1 11 22 33

sin cos sin 2 sin

cos sin 2 sin sin 2 cos

S S S

S S S

S S S

S

S

S

��
� � � � � � � �

� � � � � � � �

� � �

� � � �

� � �

� � �

(2.11)

1S and 
2

1
2 S  are the elastic constants relating the measured lattice strain (i.e. 33

L
��

� ��  ) to the

components of the mechanical stress tensor S
ij� .  Note that, formally, the elastic constants

1S and 2
1
2

S used in equations (2.6) and (2.11) are defined in the specimen frame of reference

(however, they would, due to the isotropy of the polycrystal, be the same in any other

orthogonal reference frame). Note that, for a polycrystalline aggregate consisting of elastically

isotropic crystallites, equation (2.11) holds independently of the presence of crystallographic

texture or the occurrence of direction dependent grain interaction. 

2.3.1.2. Macroscopic elastic isotropic (‘quasi-isotropy’) 

For a polycrystalline aggregate composed of elastically anisotropic crystallites, mechanical

elastic isotropy requires at least the absence of texture (and the absence of direction

dependence of the grain interaction; see corresponding discussion in Chapter 2.3.3). When a

polycrystal composed of elastically anisotropic crystallites exhibits macroscopic elastic

isotropy, which is also called ‘quasi-isotropy’, a diffraction analysis of a homogeneous stress

state is still possible on the basis of equation (2.11). To this end, the elastic constants 1S  and

1
22 S  have to be replaced by the so-called hkl-dependent X-ray elastic constants 1

hklS  and

2

1
2

hklS . Then, the lattice strains depend on the reflection hkl (in this case, the stresses / strains

of individual crystallites are not equal to the corresponding mechanical averages, thus

averaging braces and brackets, cf. Chapter 2.2, have to be used):

� � � �� �

� � � �� �

� �

2

2

2 2 21
33 11 12 222

21
13 23 332

1 11 22 33

sin cos sin 2 sin

cos sin 2 sin sin 2 cos

hklL hkl S S S

hkl S S S

hkl S S S

S

S

S

��

� � � � � � � �

� � � � � � � �

� � �

� � � �

� � �

� � �

 (2.12)
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The X-ray elastic constants 1
hklS  and 

2

1
2

hklS  can be measured by applying a known load

stress to a specimen under simultaneous lattice strain measurement in a diffractometer or they

can be calculated from single crystal elastic compliances by adopting a grain-interaction

model. The modifications of equation (2.11) necessary to obtain equation (2.12) were

introduced on an empirical basis: about ten years after the first strain measurements by means

of X-ray diffraction (Joffe & Kirpitcheva, 1922), Möller & Barbers (1935) obtained

experimental results indicating that equation (2.11) cannot be used for the stress analysis of

polycrystals composed of elastically anisotropic crystallites, i.e. lattice strains differ from

mechanical strains (as an effect of single crystal elastic anisotropy). The following

introduction of the X-ray elastic constants on an empirical basis by Möller and Martin (1939)

was supported by an elaboration of the Voigt grain-interaction model (Voigt, 1910, and

Reuss, 1929) and an elaboration of the Reuss grain-interaction model (Möller and Martin,

1939) for the application to the stress analysis by diffraction for a principal stress state. 

However, a rigorous proof of the validity of equation (2.12) for any quasi-isotropic

polycrystal for any state of stress (irrespective of the type of grain interaction) was given

decades later by Stickforth (1966). Evenschor and Hauk (1975) were the first to discuss

explicitly the analysis of the shear components of the stress tensor.

The analogous structures of equation (2.12) and (2.11) suggest that also the X-ray

elastic constants 1
hklS  and 

2

1
2

hklS  are defined in the sample reference frame. However, this is

not the case; the X-ray elastic constants are defined in laboratory reference frame (for further

discussion on the validity of equation (2.12), see Chapter 2.3.3). 

2.3.1.3. Macroscopic elastic anisotropy; case of a textured polycrystal 

For a polycrystalline aggregate consisting of elastically anisotropic crystallites, the occurrence

of texture leads to a macroscopically elastically anisotropic behaviour. Thus, the use of

equation (2.12) for stress analysis is not possible, as equation (2.12) is incompatible with

macroscopic elastic anisotropy. Experimentally it was found (for an comprehensive review,

see for example Hauk, 1997) that non-linear sin2
�-plots are generally observed for textured

specimens (also for a plane state of stress). The equation proposed for diffraction stress

analysis in this case resulted from adopting a particular model of grain interaction, the Reuss

model, and in this context the stress factors ( , , )klF hkl� �  were introduced (Dölle & Hauk,

1978, Dölle & Hauk, 1979):

� �33 ( , , )L S
kl klF hkl

h

��

� � � �� (2.13)
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The stress factors ( , , )klF hkl� �  can be measured by applying a known load stress to a

specimen under simultaneous lattice strain measurement in a diffractometer or calculated

from single crystal elastic compliances (by adopting a grain interaction model). 

A general proof of the validity of equation (2.13) for macroscopically elastically

anisotropic specimens exhibiting texture, independently of the adoption of a particular grain-

interaction model lacks. This proof is provided in Chapter 2.3.2.

2.3.1.4. Macroscopic elastic anisotropy; case of direction dependent grain interaction 

Recently, the occurrence of non-linear sin2
�-plots for an untextured nickel film in a plane

state of stress was reported by van Leeuwen et al. (1999). Similar observations were reported

earlier in a diffraction stress analysis of a TiN specimen by Rafaja et al. (1996). These results

can not be analysed on the basis of the traditional sin2
�-law, equation (2.12), as then only a

linear dependence of the lattice strain on sin2
� is possible (for a plane state of stress). A

consistent stress analysis was possible by developing a so-called direction dependent grain-

interaction model (van Leeuwen et al., 1999, see Chapter 3). In a direction dependent grain-

interaction model, the elastic coupling of crystallites is direction dependent (for a precise

definition of direction dependent grain interaction, see also Chapter 2.3.3). The simultaneous

occurrence of texture and direction dependent grain interaction has been dealt with in

Chapter 3. 

The occurrence of direction dependent grain interaction implies that, even in the

absence of texture, a polycrystal exhibits macroscopic elastic isotropy, as was pointed out by

van Leeuwen et al. (1999), hereby excluding applicability of equation (2.12).

The equations analogous to the traditional sin2
�-law, underlying a diffraction stress

analysis of a polycrystal with direction dependent grain interaction, lack (only numerical

calculations of the lattice strains for a given mechanical stress/strain state of the polycrystal

have been presented). In this paper it will be shown that, under certain basic assumptions,

equation (2.13) is generally valid for any macroscopically elastically anisotropic polycrystal,

independent of the origin of the anisotropy which can be texture, direction dependent grain

interaction or both. 
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2.3.2. The assumptions underlying diffraction stress analysis 

The basic assumption for diffraction stress analysis is the validity of the following equation: 

� � � �*, , , , ,
hklL L C L

ij ijkl klA hkl s f
��

� � � �� � . (2.14)

� �*, , , , ,L CA hkl s f� � �  is a suitable rank-four tensor (Stickforth, 1966), which generally

depends on hkl, �, �, Cs  (the single-crystal elastic compliance tensor), �  (the so-called grain

interaction tensor, see below) and *f  (the crystallographic orientation distribution function). 

For diffraction stress analysis, only � �33

hklL
��

�  is relevant (i.e. the strain in the direction

of the diffraction vector) and the mechanical stress in the laboratory frame of reference L
ij�

can be expressed in terms of the mechanical stress S
mn�  in the specimen frame of  reference

by an orthogonal transformation relating specimen and laboratory frames of reference,

represented by the matrix �  (for the definition of � , see Appendix 2.1):
L S
ij im jn mn� �� � � (2.15)

Using equation (2.15), equation (2.14) can be rearranged

� � � �

� � � �

*
33 33

* *
33

, , , , ,

, , , , , , , , , ,

hklL L C L
ij ij

L C S C S
ij im jn mn mn mn

A hkl s f

A hkl s f F hkl s f
��

� � � �

� � � � � �

� � �

� � � � �

(2.16)

with:

� � � �* *
33, , , , , , , , , ,C L C

mn ij im jnF hkl s f A hkl s f� � � �� � � � � . (2.17)

� �*, , , , ,C
mnF hkl s f� � �  are the so-called X-ray stress factors, which have been introduced in

Chapter 2.3.1.3 (in the context of texture, cf. equation (2.13)). Note that the X-ray stress

factors are due to their definition, equation (2.17), not the components of a rank-two tensor.

Equations (2.14) and (2.15) imply that the concept of effective elastic constants, i.e.

the L
ijklA , are valid for ensembles of grains selected in diffraction measurements. The general

validity of equations (2.14) and (2.15) is not trivial. A general proof has not been presented so

far (a similar problem, the validity of the concept of effective elastic constants for relating the

mechanical strain tensor to the mechanical stress tensor, was investigated on the basis of

statistical continuum mechanics by Kröner (1971)). Throughout this paper, the validity of

equation (2.14) will be presupposed.

Note that, as the stress and the strain tensors are symmetric, it holds that:



2. Diffraction Stress Analysis of Macroscopically Elastically Anisotropic Specimens

27

ijkl jikl ijlkA A A� � . (2.18)

The condition under which equation (2.14) is valid can be reformulated as follows.

Consider Hooke’s law for an individual crystallite in a polycrystalline sample: 
L L L
ij ijkl kls� �� (2.19)

where L
�  is the elastic strain tensor of the crystallite, L

�  is the corresponding stress tensor

and Ls  is the single crystal compliance tensor transformed to the laboratory frame of

reference. The stress tensor for every crystallite is a function of the mechanical stress tensor

of the polycrystal and the orientation of the crystallite represented by , , ,hkl � � � :

� �, , , ,L L L
kl kl hkl� � � � � �� (2.20)

Inserting equation (2.20) in equation (2.19) and calculating the average for the diffracting

crystallites yields (cf. equation (2.4)):

� �
� � � � � �

� �

2
*

0
2

*

0

, , , , , , , ,

, , ,

L L L
ijkl kl

hklL
ij

s hkl hkl f hkl d

f hkl d

�

���

� � � � � � � � � �

�

� � � �

�

�

�
(2.21)

Now, the right-hand side of equation (2.21) equals the right-hand side of equation (2.14) if:

� �, , ,L L L
kl klmn mnhkl� � � � �� � (2.22)

with

� �

� � � � � �

� �

*

2
*

0
2

*

0

, , , , ,

, , , , , , ,

, , ,

L C
ijkl

L L
ijmn mnkl

A hkl s f

s hkl hkl f hkl d

f hkl d

�

�

� �

� � � � � � � �

� � � �

� �

��

�

. (2.23)

The (arbitrarily) introduced function �  is obviously a fourth-rank tensor and represents the

outcome of the elastic interaction of the grains in the specimen, i.e. it tells how from the

macroscopic stress the stress of a single crystallite can be calculated. Hence, � will be called

the grain-interaction tensor.
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2.3.3. Macroscopic elastic isotropy and anisotropy: diffraction (X-ray) elastic constants

and diffraction (X-ray) stress factors

In the following, the consequences of macroscopic elastic isotropy of the polycrystal on the

tensor � �*, , , , ,L CA hkl s f� � �  defined in equation (2.23) will be investigated. By definition a

polycrystal is (said to be) macroscopically elastically isotropic if the average stress/strain state

in the laboratory frame of reference of any ensemble of diffracting crystallites (i.e. � �
hklL

ij
��

�

and � �
hklL

ij
��

� ) is independent of the orientation of the polycrystal with respect to the laboratory

frame of reference when the polycrystal is subjected to a certain macroscopic, mechanical

stress/strain state in the laboratory frame of reference (see Burbach, 1974). Under this

assumption, the � �*, , , , ,L C
ijklA hkl s f� � �  are independent of � and ��:

� �*, , , , , 0L C
ijklA hkl s f� �

�

�
� �

�
(2.24)

� �*, , , , , 0L C
ijklA hkl s f� �

�

�
� �

�
, (2.25)

i.e. the ‘orientation-dependence’ of the � �*, , , , ,L C
ijklA hkl s f� � �  is only due to the reflection

hkl. Further simplification of the � �*, , ,L C
ijklA hkl s f� is possible considering that every

ensemble of diffracting crystallites is invariant with respect to a rotation around the diffraction

vector. Thus, only the following components can be non-zero (see, for example, Hauk, 1997):

1111 2222 3333 1122 2211 1133 2233 3311 3322

1313 2323 3131 3232 1212 2121

, , , , , ,

, , ,

L L L L L L L L L

L L L L L L

A A A A A A A A A

A A A A A A

� � �

� �

(2.26)

By using equations (2.26) in simplifying equation (2.14), the diffraction strain � �33

hklL

��

� reads:

� � � �

� � � � � �

*
33 33

* *
3311 11 22 3333 33

, , ,

, , , , , ,

hklL L C L
kl kl

L C L L L C L

A hkl s f

A hkl s f A hkl s f

��

� �

� � �

� � � �

� � � � � � �

(2.27)

By defining 

� �

� � � �

*
1 3311

* *
2 3333 3311

, , , ,

1 , , , , , ,
2

hkl L C

hkl L C L C

S A hkl s f

S A hkl s f A hkl s f

� �

� � � �

(2.28)

and replacing the mechanical stress tensor components in the laboratory reference frame
L
ij�  by the mechanical stress tensor components in the specimen frame of reference S

ij�
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(for the necessary transformation matrices, see Appendix 2.1) equation (2.27) is directly

transformed into equation (2.12): the traditional sin2
�-law. Thus, the assumption of

macroscopic elastic isotropy together with the adoption of equation (2.14) is sufficient for the

derivation of the traditional sin2
�-law.  Note that the X-ray elastic constants 1

hklS  and 2
1
2

hklS

derived in the above way are defined in the laboratory frame of reference L (cf. equation

(2.28)).  

The assumption of macroscopic elastic isotropy imposes certain restrictions for the

� �*, , , , ,L CA hkl s f� � � , which are expressed by equations (2.24), (2.25) and (2.26). The

consequences of macroscopic elastic isotropy for the grain interaction tensor and the

orientation distribution function will be discussed next. 

If macroscopic elastic isotropy occurs, it follows from equations (2.24) and (2.25) that 

� � � � � �

� �

2
*

0
2

*

0

, , , , , , ,
0

, , ,

L L
ijkl klmns hkl hkl f hkl d

f hkl d

�

�

� � � � � � � �

�
� � � �

�
�

�
�

�

�
(2.29)

� � � � � �

� �
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*
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, , , , , , ,
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, , ,

L L
ijkl klmns hkl hkl f hkl d

f hkl d

�

�

� � � � � � � �

�
� � � �

�
�

�
�

�

�
. (2.30)

By reversing the order of the partial differentiation and the integration, it follows:

� � � �

� � � �

*

*

, , , , , ,

, , , , , , 0

L
klmn

L
klmn

hkl f hkl

hkl f hkl

� � � � � �
�

� � � � � �
�

�
� �

�

�
� � �
�

(2.31)

As the grain interaction tensor is defined independent of the orientation distribution function

(cf. equation  (2.22)), we can conclude that:

� � � �, , , , , , 0L L
klmn klmnhkl hkl� � � � � �

� �

� �
� � � �

� �
(2.32)

� � � �* *, , , , , , 0f hkl f hkl� � � � � �
� �

� �
� �

� �
. (2.33)

Equations (2.33) imply that the specimen is untextured as from equation (2.33) it follows that 

� � � �
2 2

* *

0 0

, , , , , , 0f hkl d f hkl d
� �

� � � � � � � �
� �

� �
� �

� �
� � (2.34)
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which is equivalent to the statement that the corresponding pole figure for the reflection hkl is

�- and �-independent. 

Equation (2.32) expresses the requirement of macroscopic isotropy for the grain

interaction tensor (cf. equation (2.22)). Also, equations (2.26) impose restrictions on the

actual grain interaction. If L’ is a Cartesian frame of reference which is rotated by an angle �

around the L3 axis with respect to the laboratory frame of reference, equations (2.26) require

that (texture is not considered as the occurrence of texture is not compatible with macroscopic

elastic isotropy):

� � � �' , , , ,L C L C
ijkl ijklA hkl s A hkl s� � � (2.35)

In Appendix 2.2 it is demonstrated that for macroscopic elastic isotropy, equation (2.35) is

equivalent to:

� � � �, ,L L
im jn ko lp mnop ijklhkl hkl� � � �

� � �� � � � � � � � (2.36)

where �
�  is a matrix representing the othonormal transformation from the L frame of

reference to the L’ frame of reference. Hence, if at least one of equations (2.32) and (2.36)

does not hold, the grain interaction is no longer direction independent but direction dependent.

Then, the polycrystal is macroscopically elastically anisotropic.

Note that equations (2.32), (2.33) and (2.36) together are equivalent to the definition

of macroscopic elastic isotropy as given at the beginning of this subsection.

It should be noted that although the grain interaction can be isotropic (i.e. equations

(2.32) and (2.36) hold), the specimen can exhibit macroscopic elastic anisotropic behaviour

yet, if preferred orientation (texture) occurs (i.e. equation (2.33) does not hold). Such cases

are discussed in Chapter 2.3.4.1 and 2.3.4.2. 

Thus, in case of macroscopic elastic isotropy, diffraction stress analysis can be

performed by using equation (2.12) by employing the concept of diffraction (X-ray) elastic

constants. In all cases of macroscopic elastic anisotropy, i.e. due to direction dependent grain

interaction and/or the occurrence of preferred orientation, in association with intrinsic single

crystal elastic anisotropy, diffraction stress analysis can be performed using equation (2.16)

employing the concept of diffraction (X-ray) stress factors. 

Until now, the (implicit) assumption inherent to all diffraction stress analyses, as

expressed by equation (2.14) has not been generally recognised. Furthermore, the general

validity of the stress factors, applicable in all cases of macroscopic anisotropy, has not been

shown before. 
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2.3.4. Examples 

In the following, the theoretical considerations of Chapters 2.3.1 to 2.3.3 will be illustrated on

the basis of the Reuss, the Voigt and the Vook-Witt based grain interaction model.

2.3.4.1. Reuss grain interaction model

Adopting the Reuss model, the components of the stress tensor in the specimen frame of

reference for every individual crystallite are set equal to the corresponding components of the

mechanical stress tensor:
S S
ij ij� �� . (2.37)

By introducing the rank-four identity I, equation (2.37) can be rewritten:
S S
kl klmn mnI� �� , (2.38)

The rank-four identity is defined as (� is Kronecker-Delta): 

� �
1
2ijkl ik jl il jkI � � � �� � (2.39)

Obviously, equations (2.37) and (2.38) also hold in the laboratory frame of reference. Then, 

by comparison of equation (2.38), with the superscript ‘S’ substituted by the superscript ‘L’,

with equation (2.22), it can be concluded that 

� �, , ,L L
klmn klmn klmnhkl I� � �� � � � . (2.40)

Thus, the grain interaction tensor adopting the Reuss grain interaction model is the rank-4

identity. L
klmn�  fulfils equations (2.32) and (2.36), thus the Reuss model is an isotropic grain

interaction model. Note that a textured specimen obeying the Reuss grain interaction model is

macroscopically elastically anisotropic, as in this case, equation (2.33) does not hold (see

discussion in Chapter 2.3.3).

2.3.4.2. Voigt grain interaction model

Adopting the Voigt model, the components of the strain tensor in the specimen frame of

reference for every individual crystallite are set equal to the corresponding components of the

mechanical strain tensor:
S S
ij ij� �� . (2.41)

The mechanical stress can be calculated from:
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S S S S S
ij ijkl kl ijkl klc c� � �� � , (2.42)

thus
1S S S S

ij ij ijkl klc� � �

�

� � (2.43)

The components of the local stress tensor of an individual crystallite follow from:
1S S S S S S

ij ijkl kl ijkl klmn mnc c c� � �

�

� � . (2.44)

Obviously, equation (2.44) also holds in the laboratory frame of reference. By comparison of

equation (2.44), with the superscript ‘S’ substituted by the superscript ‘L’, with equation

(2.22), it can be concluded that 

� �
1

, , ,L L L
klmn klop opmnhkl c c� � �

�

� � . (2.45)

Thus, the grain interaction tensor adopting the Voigt grain interaction model is given by

equation (2.45).

Equation (2.45) can be rewritten recognising all dependencies:

� � � � � �� �
1

, , , , ,L L L
klmn klop opmnhkl c hkl c� � � � � �

�

� � (2.46)

where � �
1

,L
opmnc � �

�

 symbolises that 
1L

opmnc
�

 in principle depends on � �,� � . For an

untextured specimen, 
1L

opmnc
�

 is an isotropic tensor. In this case, equations (2.32) and (2.36)

hold and then the Voigt model is an isotropic grain interaction model. In the case of a textured

polycrystal, 
1L

opmnc
�

 depends on � and � and equations (2.32) and (2.33) do not hold.

Consequently, a textured polycrystal obeying the Voigt grain interaction model is

macroscopically elastically anisotropic. 

2.3.4.3. Vook-Witt based grain interaction model

The equations for the components of the stress and strain tensor of individual crystallites

cannot be given in an analytical form for the Vook-Witt based grain interaction model. Thus a

formulation of an analytical solution for the grain interaction tensor � �, , ,L
klmn hkl � � ��  is not

possible. However, it is demonstrated that in this case � �, , ,L
klmn hkl � � ��  depends on � and �,

even in the absence of texture. For a more detailed discussion of the Vook-Witt model, see

also Chapter 3 and 4.
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The analysis will be focused on a transversely isotropic thin film subject to a plane

state of stress. Both the symmetry axis of the elastic properties and the one of the stress field

are chosen parallel to the sample normal. The stress tensor reads:

0 0
0 0
0 0 0

S

S S
�

�

�

� �

� �
� �

� � �
� �
� �

, (2.47)

with S
�

�  as the mechanical stress parallel to the surface. Only two mechanical elastic

constants are necessary to characterise the mechanical elastic behaviour as only one

(independent) component of the mechanical stress tensor and two (independent) components

of the mechanical strain tensor, S
�
�  and S

�
�

, the mechanical strains parallel and perpendicular

to the surface, respectively, are non-zero: 

0 0
0 0
0 0

S

S S

S

�

�

�

� �

�
�

� �
� �

� � �
� �
� �

(2.48)

These elastic constants will be called A and B (cf. van Leeuwen et al.,1999, Chapter 3 and 4):

AS S
� ��
� �

(2.49)

BS S
� �
�
�

�
(2.50)

The following grain interaction assumptions are adopted:

(i) the strain is rotationally symmetric parallel to the surface and 

(ii) equal for all crystallites parallel to the surface and 

(iii) the stresses perpendicular to the surface are zero for all crystallites, i.e. the crystallites

can deform freely in this direction. 

This type of grain interaction model can be of special relevance for thin films (with a

columnar microstructure) and for surface adjacent material (with grain boundaries oriented

more or less perpendicular to the surface; cf. also discussion in Chapter 3 and 4).

The grain interaction assumptions ((i) – (iii)) fix parts of the stress and strain tensors

(in the specimen frame of reference) for all crystallites:

0
0

S

S S
�

�

�

� �

� ��
� �

� �� �
� �� � �� �

, 
0
0

0 0 0

S
�

� �� �
� �

� � �� �
� �
� �

. (2.51),(2.52)

The tensor components marked by �  are not explicitly specified for every crystallite, but

these components can be calculated employing Hooke’s law for every crystallite. To this end,

it is convenient first to solve the following set of equations 
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1112 1222 1212 11 12

1111 1122 1112 22 11 //

1122 2222 1222 12 22 //

2 0
2  
2

S S S S S

def
S S S S S S

S S S S S S

s s s
s s s ε ε
s s s ε ε

� �

�

�

� � � � � � � �
� � � � � � � �� �� � � � � � � �� � � � � � � �� � � � � �

(2.53)

for the missing stress tensor components:

� � � �1222 1222 1211 1212 1122 2222
11

S S S S S S
S S

s s s s s s
� �

� � �
�

�
�

(2.54)

� � � �1212 1211 1111 1211 1211 1222
22

S S S S S S
S S

s s s s s s
� �

� � �
�

�
�

(2.55)

� � � �1211 1111 1211 1211 2222 1122
12

1
2

S S S S S S
S S

s s s s s s
� �

� � �
�

�
�

(2.56)

where 

2
1122 1112 1212 1222 1112 1222 2222

2
1111 1222 1212 2222

( ) ( ) ( )

(( ) )

def
S S S S S S S

S S S S

s s s s s s s

s s s s

� � � � � �

�

(2.57)

is the determinant of the matrix in equation (2.53) (the symmetry of the compliance tensor has

been used). Hereafter, the three missing strain tensor components of the specific crystallite

can be calculated from the now complete stress tensor by applying Hooke’s law. 

Equations (2.49) and (2.50) can be reformulated as

11
11

11 11

( )
A

( )

S
SS

G
S S S

G

f g dg

f g dg

�

��

� � �

� � �

���

���
�

�

(2.58)

33
33

11 11

( )
B

( )

S
SS

G
S S S

G

f g dg

f g dg

�

��

� � �

�
� � �

���

����

(2.59)

indicating how the two mechanical elastic constants A and B can be calculated. 

The effect of the direction dependent grain interaction assumptions on the linear

transformation represented by the rank-4 tensor � �, , ,L
klmn hkl � � ��  can be understood as

follows: The linear transformation � �, , ,L
klmn hkl � � ��  relating the stress tensor of an

individual crystallite to the mechanical stress tensor (equation (2.22)), which cannot be

written explicitly, can be replaced by a sequence of linear transformations (see figure 2.1):

First, an orthogonal transformation (‘1’ in figure 2.1) rotates the mechanical stress tensor from

the laboratory frame of reference to the specimen frame of reference. In the specimen frame

of reference, where the grain interaction conditions have been formulated, the missing stress
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tensor components for each crystallite ( 11 22 12 21, ,S S S S
� � � �� ) can be calculated by solving the

system of equations (2.54), (2.55) and (2.56) after substituting S
�
�

 by A S
�

�
. Clearly, the

solution of the system of equations (2.54), (2.55) and (2.56) depends on the orientation of the

crystallite with respect to the specimen frame of reference, which is specified by

� �, , ,hkl � � �  (transformation ‘2’ in figure 2.1). Finally, applying the inverse transformation

(‘3’ in the figure) with respect to the above transformation yields the stress tensor of the

crystallite in the laboratory frame of reference. Consequently, this L
�  depends on

� �, , ,hkl � � �  and L
�  (see also figure 2.1). 

Thus, it holds:

� �, , ,S� � � �h

0 0
0 0
0 0 0

S
�

�

�

� �

� �
� �

� � �
� �
� �

      2

3   1

      �
      L

�        L
�

Figure 2.1: Schematic diagram of the transformations relating the stress in the sample system

(upper box) to the stress in the laboratory system (lower box). Arrow 2 marks the linear

transformation relating the mechanical stress in the sample system to the stress of individual

crystallite. (i.e. solving a system of equations  for the missing stress tensor components in the

sample system). Note that the orientation of an individual crystallite is  identified by

specifying � �, , ,hkl � � � , i.e. the transformation 2 depends on � �, , ,hkl � � � .
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� �, , , 0L
klmn hkl � � �

�

�
� �

�
(2.60)

� �, , , 0L
klmn hkl � � �

�

�
� �

�
(2.61)

Therefore, the Vook-Witt based model is indeed a direction dependent grain interaction

model. Then, even in the absence of texture, a polycrystal obeying the Vook-Witt grain

interaction model is macroscopically elastically anisotropic. 

2.4. Surface anisotropy as a special case of direction dependent grain

interaction

Equation (2.14) is the basic equation adopted for diffraction stress analysis and holds for

macroscopically elastically isotropic and anisotropic specimens. In the following for

simplicity, a plane, principal state of stress in the specimen frame of reference an is imposed.

Equation (2.14) can be straightforwardly reformulated as (cf. Stickforth, 1966):

� � � �� �

� � � �

� � � �

*
33 1 11 22

* 2 2 21
2 11 222

*
3 11 22

, , , , ,

, , , , , sin cos sin

, , , , , sin 2

hklL C S S

C S S

C S S

t hkl s f

t hkl s f

t hkl s f

��
� � � � �

� � � � � � �

� � � � �

� � � �

� � �

� �

(2.62)

where:

� �*
1 3322, , , , ,C Lt hkl s f A� � � � (2.63)

 
� �

� �

* 21
22

2
3333 3311 3311 3322 3313

, , , , , sin

sin sin 2

C

L L L L L

t hkl s f

A A A A A

� � �

� �

� �

� � � �

(2.64)

� �*
3 3312 3323, , , , , cos sinC L Lt hkl s f A A� � � �� � � � (2.65)

Here it should be noted that Stickforth (1966) was the first to propose an equation like

equation (2.62). It should also be noted that equation (2.62) is a fully equivalent, alternative

reformulation of equation (2.16) (for the case of a plane, principle state of stress).

The A’s in equations (2.63), (2.64) and (2.65) depend on , , , ,Chkl s� � �  and *f . The

factors 1t , 1
22 t  and 3t  might be named ‘diffraction (X-ray) elastic constants’ with reference to

the traditional sin2
�-law (cf. equation (2.12)): 1t  takes the place of 1

hklS  and 1
22 t  takes the

place of 
2

1
2

hklS ; for 3t  there is no equivalent in the traditional sin2
�-law. For the case of

macroscopic elastic isotropy 3t  equals zero and 1t and 1
22 t  are then equal to the X-ray elastic



2. Diffraction Stress Analysis of Macroscopically Elastically Anisotropic Specimens

37

constants 1
hklS  and 

2

1
2

hklS . However, it should be recognised that, in contrast with 1
hklS  and

2

1
2

hklS , in general 1t , 1
22 t  and 3t  depend on � and �: i.e. curvature occurs in the sin2

�-plots.

 Surface anisotropy was first considered by Stickforth (1966) as a source of

macroscopic elastic anisotropy: the elastic behaviour of crystallites located adjacent to the

surface of a polycrystal can be different from the elastic behaviour of crystals located at some

distance from the surface. In the bulk of a polycrystal, each crystallite is surrounded by other

crystallites in three dimensions, whereas crystallites located at the surface of a polycrystal

have no neighbouring crystallites in the direction perpendicular to the surface. Thus, for the

crystallites adjacent to the surface not all directions may be equivalent for the interaction of

the grains. 

Experimental investigations on the possible occurrence of surface anisotropy were

performed by, for example, Nikolin (1983) and Hauk, Nikolin & Weisshaupt (1985). Hauk

(1997) summarised various publications and concluded (see also Hartmann, 1973, Nikolin,

1983)  that, if surface anisotropy is a genuine physical phenomenon, the surface region of a

polycrystal affected by surface anisotropy must have a thickness of less than 400nm. 

The first evidence of direction dependent grain interaction was obtained only very

recently in the diffraction stress analysis of an untextured, polycrystalline thin film in a plane

state of stress (van Leeuwen et al., 1999). The apparent lack of convincing proof of distinct

surface anisotropy in the diffraction analysis of the surface region of bulk specimens may be

understood as follows: Straightforward diffraction evidence of direction dependent grain

interaction is obtained if deviations of straight line behaviour occurs in sin2
�-plots for

untextured specimens in a plane state of stress (see equation (2.62)). Indeed this is the line of

reasoning followed by van Leeuwen et al. (1999) in their work on a stressed thin film. 

However, non-linear behaviour in sin2
�-plots can also be explained on the basis of

more complicated states of stress, the occurrence of texture and/or the occurrence of stress

depth gradients. It is not unlikely that the unavailability of an appropriate direction dependent

grain-interaction model (as, for example, the Vook-Witt based model proposed for diffraction

stress analysis by van Leeuwen et al. (1999) ; see also this work, Chapter 3. and Chapter 4.),

and the tendency to either ignore non-linearities in measured sin2
�-plots or to focus on

interpretation invoking shear components, texture effects and/or stress depth gradients, has

obstructed the recognition of the significance of surface anisotropy for (also) bulk specimens.

This work may breathe new life into that research.
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2.5. Summary

� Diffraction analysis of stress is based on an (assumed) linear transformation of the

macroscopic mechanical stress tensor into the local stress tensor of a crystallite in a

polycrystalline specimen. This linear transformation is achieved by the grain interaction

tensor.

� In case of macroscopic elastic isotropy diffraction stress analysis can be performed

employing the concept of diffraction (X-ray) elastic constants.

� In case of macroscopic elastic anisotropy, i.e. in the presence of preferred orientation

and/or direction dependent grain interaction, diffraction stress analysis can be performed

employing the concept of diffraction (X-ray) stress factors.

� A specimen can exhibit isotropic grain interaction and macroscopically elastically

anisotropic behaviour at the same time due to the occurrence of texture.

� The Vook-Witt based grain interaction model, recently proposed as the first, explicit

direction dependent grain interaction model for diffraction stress analysis of thin films,

has relevance for the phenomenon of surface anisotropy of bulk specimens. Observations

of non-linearities in sin2
�-plots may need reinterpretation recognising the role of the

surface anisotropy. 
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Appendix 2.1.  Calculation of the components of the stress tensor in the

laboratory frame of reference from the stress  components in the specimen

frame of reference 

The laboratory frame of reference is related to the specimen frame of reference by the three

Euler angles �, and � and � (��is not needed in the following). The order of rotations is: (i)

rotation around S3 axis by �; the new frame of reference will be referred to as the S’ frame of

reference. (ii) rotation around S’2 axis by �. 

The individual rotations can be realised by rotation matrices:

cos sin 0
sin cos 0
0 0 1

a
�

� �

� �

� �
� �� �
� �
� �

(2A1)

cos 0 sin
0 1 0

sin 0 cos
a
�

� �

� �

�� �
� ��
� �
� �

(2A2)

The matrix for the transformation from the specimen frame of reference to the laboratory

frame of reference L S�

�  is the product of the two matrices:
L S a a

� �

�

� � (2A3)

Hence, the mechanical stress tensor in the laboratory frame of reference can be calculated

from the mechanical stress tensor in the specimen frame of reference:

� �
TL L S S L S

� �
� �

� � � . (2A4)
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Appendix 2.2. Consequences of macroscopic elastic isotropy for the grain

interaction tensor 

The calculation of � �' , , , ,L C
ijklA hkl s� � �  (in the absence of texture) can be reformulated as

follows:

� �
� � � �

� � � �

2
' '

' 0

2

0

, ' , ' '
, , , ,

2

, ,

2

L L
ijmn mnkl

L C
ijkl

L L
im jn qo rp mnop qs rt ku lv stuv

s hkl hkl d
A hkl s

s hkl hkl d

�

�

� � � � � � � �

� � �

� �
�

� � � � �

�

�

� � �

� � � � � � � � � � �

�

�

�

(2A5)

� �' , , , ,L C
ijklA hkl s� � �  in equation (2A5) can only be identical to � �, , , ,L C

ijklA hkl s� � �  if:

� � � �, ,L L
im jn ko lp mnop ijklhkl hkl� � � �

� � �� � � � � � � � (2A6)

as 

� � � �, ,L L
im jn ko lp mnop ijkls hkl s hkl� � � �

� � �� � � � � � . (2A7)

Equation (2A7) is the transformation rule for the compliance tensor, which holds always.

Equation (2A6) expresses a condition for the grain interaction for macroscopically elastically

isotropic specimens.
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3. Diffraction analysis of internal strain/stress fields in textured

transversely isotropic thin films; theoretical basis and simulation

M. Leoni, U. Welzel, P. Lamparter, E. J. Mittemeijer & J.-D. Kamminga

Abstract

Polycrystalline films produced via physical vapour deposition often possess a microstructure

composed of columnar oriented grains. From the mechanical point of view, they cannot be

treated as isotropic bulk solids; rather their elastic macroscopic behaviour is only transversely

isotropic. In this context, the effect of texture on the elastic response of such films has been

investigated for different grain interaction models. In particular, the determination of

macroscopic stress by X-ray diffraction methods has been analysed. Traditional grain-

interaction models as those due to Voigt and Reuss, have been compared with the one

proposed by Vook and Witt, compatible with the presence of only transverse isotropy of the

body (even in the absence of crystallographic texture). By simulation, it has been

demonstrated that, although texture only moderately affects the values of the macroscopic

mechanical elastic constants of the transversely isotropic body, it can pronouncedly influence

the results from the X-ray diffraction measurements. This effect is shown to depend strongly

on the type of grain interaction.

3.1. Introduction

Knowledge of the internal strain/stress fields in thin deposits is of key importance for

optimising the corresponding production process and service life. De-adhesion failure and

surface-quality dependent properties such as hardness, wear and corrosion resistance are

highly dependent on the presence of stresses in the deposited layer (Machlin, 1995). 

X-ray diffraction is a powerful tool for the non-destructive measurement of the

internal stresses in thin films. Various methods based on X-ray diffraction have been

presented for the analysis of macroscopically mechanically isotropic (sometimes termed as

quasi-isotropic (Hauk, 1997)) bodies subjected to homogeneous (Noyan & Cohen, 1987,

Hauk, 1997, Kamminga et al., 2000) or depth-dependent (Sasaki et al., 1993, Genzel, 1994,

1997, 1998, Hauk, 1997, Leoni, 1998, Leoni et al., 1999, Scardi et al., 1999) strain/stress
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fields. Special procedures, like the Crystallite Group Method (CGM; see e.g. Hauk, 1997),

have been proposed for the diffraction stress analysis of specimens exhibiting distinct

macroscopic anisotropy due to texture. 

Owing to their microstructure, thin films cannot usually be considered as

macroscopically isotropic. Thin films produced via Physical Vapour Deposition provide a

good example, as they are often composed of columnar grains aligned along a preferential

direction usually parallel to the surface normal (Machlin, 1995). In this manner, they can

exhibit rotational symmetry of the macroscopic (elastic) properties with respect to the surface

normal. From the microstructural crystallographic point of view, such films show a fibre

texture (see for instance Bunge, 1982a), while from the mechanical (macroscopic) point of

view, they can be considered as transversely isotropic (Love, 1927, van Leeuwen et al.,

1999). All macroscopically isotropic bodies are obviously also macroscopically transversely

isotropic, whereas the reverse does not necessarily hold. It should be noted that also in the

absence of crystallographic texture only transverse isotropy on a macroscopic scale can occur

(van Leeuwen et al., 1999).

The macroscopic elastic response of a polycrystalline aggregate differs, in general,

from that of a single crystal. By means of suitable models, the macroscopic elastic behaviour

of a polycrystalline material (as given by the full macroscopic compliance or stiffness tensors)

can be calculated from single-crystal elastic data. 

In the absence of texture, the most common models, due to Voigt, Reuss, Neerfeld-

Hill or Eshelby-Kröner (see for instance Noyan & Cohen, 1987, Hauk, 1997, van Leeuwen et

al., 1999) predict macroscopic mechanical isotropy for the aggregate. Thus, if these models

are used for the description of an only transversely isotropic untextured thin film, the

symmetry of the calculated macroscopic elastic tensor is higher than that really presented by

the specimen.

Vook and Witt have presented an alternative grain interaction model that can be used

for the analysis of a thin film with the symmetry axis parallel to the surface normal in the

sixties (Vook & Witt, 1965, Witt & Vook, 1968). The Vook-Witt model was originally

intended for the study of thermal stresses in thin films. As such, it was used and in some way

extended by several investigators (Murakami & Yogi, 1985, Wieder, 1995a-c, 1996), but in

most cases it was applied erroneously in the analysis of diffraction data. Only recently (van

Leeuwen et al., 1999), the model was revisited, elaborated and adapted to the analysis of

residual stresses in thin films using X-ray diffraction. However, the consequences of

crystallographic texture have not been considered until now. In the present paper, the
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approach by van Leeuwen et al., (1999) is extended to textured films. To demonstrate the

distinct influence of texture on the strain data obtained from a diffraction experiment,

simulations have been conducted for various materials covering a large range of elastic

(single crystal) anisotropy. In this way the large differences become apparent between the

values of the stress components obtained by application of the traditional diffraction methods

and the actually imposed stress field. Therefore, a more appropriate analysis of diffraction

strain data can be proposed. 

3.2. Theoretical basis

3.2.1. Mechanical and diffraction response of transversely isotropic films

An elaboration of the Vook-Witt hypotheses and their application to the diffraction

analysis of (macro)stress in randomly oriented (textureless) thin films, has been recently

presented by van Leeuwen et al. (1999). The essentials will be briefly summarised here.

In order to describe the orientation of a crystallite within the specimen, and its

relations with the experimental apparatus, three Cartesian reference frames are usually

considered: the crystal (C), sample (S) and laboratory (L) systems (see figure 3.1 and

Appendix 3.1). A suitable superscript, indicating the corresponding reference (basis), will be

given to the representation in components of a rank-n tensor (e.g. S
ij�  is the (i,j) component of

the strain tensor represented in the S system). The transformation from one to another basis is

accomplished by means of suitable rotation (orthonormal) matrices (further details are

presented in Appendix 3.1; similar conventions as in van Leeuwen et al. (1999) are adopted).

Adopting the Einstein notation (i.e. summation over repeated indices (Nye, 1957)),

Hooke’s law can be written for every crystallite in the sample, as:
S S S
ij ijkl kls� �� (3.1)

Equation (3.1) represents a system of six relations between six S
ij�  and six S

ij�  (i.e. there are

12 unknowns). From a mathematical point of view, the stress and strain tensors are fully

determined if six more independent equations are given. These additional hypotheses are

provided by adopting a suitable grain interaction model i.e. by assigning, to six of the

unknowns, values independent of the orientation of the crystallite in the S system. 
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The analysis will be focused on a transversely isotropic thin film subject to a plane

state of stress. Both the symmetry axis of the elastic properties and the one of the stress field

are chosen parallel to the sample normal. Mechanical equilibrium requires the macroscopic

average stress components perpendicular to the sample surface to be zero. Denoting by

the volume-weighed averaging over all occurring crystallite orientations, mechanical

equilibrium for the thin film thus implies:

3 3 0S S
i i� �� � (3.2)

The film is free to expand along its normal, and the average strain along that direction is:

33

def
S S

� �
�

� (3.3)

Due to the transverse isotropy, the rotational symmetry of the stress field as expressed by

L2

L’1

L3=L’3

L’2

�

S1
S’1

S3=S’3

S’2=L2

�

�

L3

S2

L1

L’1

L”1

�

�

C3

C1
(l2+k2,-hk,-lh)

(h,k,l)

�

�

�

�

Figure 3.1: Definition of and relations between the crystal (C), sample (S) and laboratory (L)

reference frames. (a) Relation between the L system and the intermediate L’ system. (b)

Transformation between the L’ system and the C system through the intermediate system L”. (c)

Transformation between the S system and the L system through the intermediate system S’.

(a) (b)

(c)
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11 22 12 21 0
def

S S S S S
�

� � � � �� � � � (3.4)

induces a rotational symmetry of the strain field:

11 22 12 21 0
def

S S S S S
�

� � � � �� � � � (3.5)

Five independent elastic constants suffice to completely describe the macroscopic

elastic behaviour of a transversely isotropic body (Love, 1927, Hendrix and Yu, 1998, Leigh

and Berndt, 1999). The relations (3.2)-(3.5) do not permit the determination of all these five

constants (using Hooke’s law). However, only two elastic constants are required to fully

describe the relation between the stress and strain tensors for a transversely isotropic body

subjected to a plane state of stress (symmetry axis parallel to the sample normal): only two

strain tensor components and one stress tensor component are independent and non-zero.

Thus:

AS S
� �
� �� (3.6)

BS S
�

� �
�
� (3.7)

where A and B are mechanical elastic constants, i.e. macroscopic averages of the

elastic compliance tensor over all crystallites constituting the transversely isotropic body. 

The average mechanical strain and stress tensor components in the S system are

obtained by integrating the respective tensor components over all the crystallites composing

the sample (this is equivalent with taking a single crystallite and integrating over all its

possible, i.e. occurring, orientations in space). The orientation of each crystallite in the S

system can be univocally identified by three Euler angles; the convention of Roe in the

definition of these angles will be adopted (Roe & Krigbaum, 1964). In accordance with

Matthies et al. (1987, 1988), the three angles will be called �,�,��. It is usual to associate a set

of Euler angles to a vector g
��

=(�,�,��) in the three-dimensional orientation (Euler) space G

(more details are given in Appendix 3.1). In this way, each point in the orientation space

represents a possible orientation of the C system with respect to the S system. 

Given the vector g
��

=(�,�,��) in G, the volume fraction � � /dV g V
��

 of crystallites in the

infinitesimal orientation range 3 sin( )d g d d d� � � ��  around g
��

, is provided by the

Orientation Distribution Function (ODF) f(g) according to:

� � � � 3
2 2

( , , ) sin( )
8 8

dV g f g fd g d d d
V

� � �
� � � �

� �
� �

�� ��

(3.8)
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Owing to this definition, the ODF is a probability density (cf. Matthies et al., 1987), and it

holds:

� � 3
2 1

8G

f g
d g

�

����

��

(3.9)

With these definitions, the average value of the (i,j) component of a rank-2 tensor �

(in this case, � or �) in the S system, is given in terms of Euler angles by the three-fold

integral:

� �

� �
� �

3
2

3
2

3
2

2 2

2
0 0 0

8 1
8

8

1 ( , , ) sin( )
8

S
ij

S SG
ij ij

G

G

S
ij

f g
d g

f g d g
f g

d g

f d d d
� � �

� � �

�

�

�

� � � � � � �
�

� � �

�

� � � � �

�

���
���

���

� � �

��

��

��

(3.10)

All strain and stress tensor components can be averaged in this way, but a grain interaction

model is needed for actual computation of the values (see discussion below equation (3.1)

and Chapter 3.2.3). 

On this basis, equations (3.6) and (3.7) can be reformulated:

� �

� �

3
11

11

3
11 11

A

S
SS

G
S S S

G

f g d g

f g d g

�
��

� � �

� � �

���

���
�

�

��

�� (3.11)

� �

� �

3
33

33

3
11 11

B

S
SS

G
S S S

G

f g d g

f g d g

�
��

� � �

�
� � �

���

����

��

�� (3.12)

permitting the value for the two mechanical elastic constants A and B to be calculated if the

ODF, i.e. the texture, is known.

As discussed in the introduction, (X-ray) diffraction affords a measure of the

macroscopic deformation in solids. However, it does not provide a direct evaluation of the

average stress/strain in the whole sample, in the sense of equation (3.10). A diffraction line

contains data on only a subset of the crystallites for which the diffracting planes are

perpendicular to the chosen measurement direction. Because only the direction of the

diffraction vector is defined, a degree of freedom occurs for the diffracting crystallites: the

rotation around the diffraction vector (denoted by the angle �). Thus the diffraction

experiment is insensitive to features perpendicular to the diffraction vector and an average
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over these crystallites is observed experimentally. Hence, the diffraction strain is in general

not equal to the overall mechanical strain.

In a diffractometer, the measurement direction, i.e. the orientation of the diffraction

vector with respect to the sample surface normal, is indicated by two angles � and �. The tilt

of the sample with respect to the diffraction plane is indicated by �, while � denotes the

rotation of the sample around its surface normal. For a textured specimen the average strain in

the measurement direction of the diffraction experiment for the hkl reflection is given by:
2

*
33

0
, 33 33 2

*

0

( , , , )

( , , , )

L

hkl L L L
kl kl

f hkl d
s

f hkl d

�

� � �

� � � � �

� � �

� � � �

� � �

�

�
(3.13)

where *f (hkl,�,�,�) is the representation of the ODF in terms of the measurement

parameters. The ODF as defined in equation (3.8) cannot be directly used in equation (3.13)

in analogy to equation (3.10) since the angles �,�,� are not Euler angles representing a

rotation of the C system with respect to the S system (in fact they provide the rotation of the

system L with respect to the system S). However, the rotation matrix aCS is known in terms of

the measurement angles �, �, and of hkl and � (see Appendix 3.1 for application to cubic

materials). The same rotation in terms of Euler angles is represented by a rotation matrix

associated to g
��

=(�,�,��) (see Appendix 3.1); by equating this matrix to aCS, the values of �,

�, � and thus ( , , )f � � �  at every � can be determined, to be finally substituted for

*f (hkl,�,�,�) in equation (3.13). 

A simplification of (3.13) is possible if the ODF exhibits symmetry. A typical

example is the case of the so-called fibre texture, i.e. the texture is rotationally symmetric

around the sample surface normal (see, for instance, Roe & Krigbaum, 1964). Due to this

rotational symmetry, the measured strain becomes independent of the rotation �. In terms of

the Euler angles �, �, �, the presence of a revolution axis causes the ODF to loose its

dependence on � (the angle � is the rotation of the C system around the S3 axis, i.e. the

sample surface normal). 

To describe the measured lattice strain values in terms of the macroscopic stress/strain

fields acting on the sample, equation (3.13) should contain quantities defined in the sample S

system. By using Hooke’s law and the appropriate tensor rotations, equation (3.13) is

transformed into the following basic relation for the diffraction stress analysis of fibre

textured films (note that in this case ,
hkl hkl
� � �
� �� ):
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� �
2

*
3 3

0
2

*

0

, ,

( , , )

LS LS SC SC SC SC C S
i j im jn ko lp mnop kl

hkl

a a a a a a s f hkl d

f hkl d

�

� �

� � � �

�

� � �

�

�

�
(3.14)

where LS
ija  and SC

ija are the direction cosines in the corresponding rotation matrices (for cubic

materials see Appendix 3.1 for more details). 

When, for a given set of hkl and � in equation (3.14), the number of diffracting

crystallites is zero, then *( , , ) 0f hkl � � �  independent of � and, obviously, the corresponding

hkl
�
� cannot be evaluated by the diffraction experiment.

The stress tensor components S
kl�  to be used in equation (3.14) can be calculated only if a

grain interaction model is adopted.

3.2.2. The Vook-Witt grain interaction assumptions

Calculations of the average stress/strain tensors, and thus of the constants A and B as

well as the diffraction response, require adoption of a grain interaction model (cf. discussion

of  equation (3.1)). In a thin film (irrespective of texture), the perpendicular direction and the

in-plane directions differ on a macroscopic scale. This is compatible with the assumptions of

the Vook-Witt grain interaction model:

(i) the film is subject to a strain field possessing a rotational symmetry axis parallel to the

sample normal; 

(ii) the in-plane strain components are equal for all crystallites;

(iii) the stresses perpendicular to the film are zero for all crystallites;

Under these hypotheses, equations (3.2)-(3.5) for the stress and strain values in each

crystallite become:

11 22 //

12 21

3 3

0

0

def
S S S

def
S S

def
S S
i i

� � �

� �

� �

�
� � �

��
� � �

�
�� �
��

(3.15)

These equations, setting for each crystallite 3
S
i� , 11

S
� , 22

S
�  and 12

S
�  to values independent of its

orientation, provide the six additional independent relations (cf. discussion of equation (3.1))

that permit (for each crystallite) calculation of the full stress and strain tensors. 
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3.2.3. Evaluation of A and B and the diffraction strain

A and B as well as the diffraction response of the body can be calculated from

equations (3.11), (3.12), and (3.13). To this end strain and stress tensor components in the S

system have to be calculated for all occurring crystals, using equation (3.1). 

For traditional models (Reuss, Voigt) the procedure is straightforward, since either the

full stress or the full strain tensors are imposed to be the same, in the S frame, for all

crystallites (for details see Appendix 3.2). The procedure becomes more tedious for the Vook-

Witt grain-interaction model (van Leeuwen et al., 1999). Since the compliance tensor for all

crystallites in the S system is known (calculated by suitable rotation of sC for which literature

values are available), combining the Vook-Witt model (see also equation (3.15)) with

Hooke’s law permits the calculation of three non-zero stress tensor components of a

crystallite in the S system according to:

1112 1222 1212 11 12

1111 1122 1112 22 11

1122 2222 1222 12 22

2 0
2  
2

S S S S S

def
S S S S S S

S S S S S S

s s s
s s s ε ε
s s s ε ε

�

�

� �

�

�

� � � � � � � �
� � � � � � � �� �� � � � � � � �

� �� � � � � � � �� � � � � �

(3.16)

and, analogously, the three not-imposed strain tensor terms from:

1311 1322 1312 11 13

2311 2322 2312 22 23

3311 3322 3312 12 33

2
2  
2

S S S S S

S S S S S

S S S S S

s s s ε
s s s ε
s s s ε

�

�

�

� � � � � �
� � � � � ��� � � � � �
� � � � � �� � � � � �

(3.17)

The symmetry of the compliance tensor s has been used in these equations. The desired stress

components can be obtained easily by matrix inversion from equation (3.16) and, due to the

simple nature of the problem, an analytical solution of equation (3.16) is readily obtained:

� � � �1222 1222 1211 1212 1122 2222
11

S S S S S S
S S

s s s s s s
�

� �

� � �
�

�
(3.18)

� � � �1212 1211 1111 1211 1211 1222
22

S S S S S S
S S

s s s s s s
�

� �

� � �
�

�
(3.19)

� � � �1211 1111 1211 1211 2222 1122
12

1
2

S S S S S S
S S

s s s s s s
�

� �

� � �
�

�
(3.20)

where 

2 2
1122 1112 1212 1222 1112 1222 2222 1111 1222 1212 2222( ) ( ) ( ) (( ) )

def
S S S S S S S S S S Ss s s s s s s s s s s� � � � � � � (3.21)

is the determinant of the matrix in equation (3.16).

From equation (3.17), the missing strain tensor components can then be calculated. 
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A and B are calculated by imposing an (arbitrary) macroscopic in-plane strain S
�
�

 (the elastic

constants A and B are obviously independent of the actual strain/stress state which must be

compatible with the loading conditions according to equations (3.2)-(3.5)). Using equations

(3.16) to (3.21) the unknowns in the equations (3.11) and (3.12) ( 11
S

� , 33
S

� ) can be calculated

for each crystallite (each orientation) and the evaluation of the integrals in equations (3.11)

and (3.12) is then possible.

The diffraction strain for a given reflection and a given stress/strain state is calculated

as a function of sin2
� in an analogous way by imposing a macroscopic strain S

�
�

 and

calculating the stress tensor components S
kl�  for each crystallite (each orientation) from

equation (3.16). The integral in equation (3.14) can then be calculated (see Appendix 3.1 for

the definition of the rotational matrices). 

As a concluding note it is remarked that the elastic constant sL appearing in equation

(3.13) is, for each �� tilting, dependent on � and cannot be evaluated just once, as holds for

the traditional Reuss grain interaction model (as was erroneously done by Diz & Humbert,

1992 and Wieder, 1995a, 1995b, 1995c, 1996). Since only in the Reuss limit S
kl�  is a constant

(i.e. the same for each grain), the following relation then holds (cf. equation (3A10))

33 33 33
L L L L L

kl kl kl kls s� � �� � (3.22)

and one set 33
L

kls suffices.

In the case of the adopted Vook-Witt grain-interaction model, due to the particular

(mixed) nature of the grain interaction conditions (cf. equation (3.15)), it is immediately clear

that equation (3.22) cannot hold. 

3.3. Simulations

Based on equation (3.14), simulations of diffraction measurements have been carried

out for different cubic materials characterised by different extents of elastic anisotropy,

defined by the parameter Ai:

� �1111 1122

12122

C C

i C

s s
A

s
�

� (3.23)

Tungsten (Ai=1.00), niobium (Ai=0.49) and gold (Ai=2.85) were selected for the simulations:

the respective single-crystal elastic constants corresponding to the C system have been

collected in table 3.1. 



3. Diffraction analysis of internal strain/stress fields in textured transversely isotropic thin films; theoretical basis and simulation

51

For most of the known materials, the anisotropy is in the range defined here by the

‘limiting’ values of Ai for niobium and gold. For each material, the expected (X-ray)

diffraction strain was calculated (equation (3.14)) as function of sin2
� (the so-called sin2

�

plot), for a number of reflections. The calculations were performed assuming an average

stress S
�

�
=100MPa for the film. Note that this average stress can be transferred immediately

to the average strain parallel to the substrate S
�
�

 from equation (3.11) and to the strain

perpendicular to the substrate S
�
�

 from equation (3.12), when the elastic constants A and B

are known. 

The sin2
� plot is a traditional way of X-ray residual stress analysis (Noyan & Cohen,

1987, Hauk, 1997) based on traditional grain-interaction models compatible with macroscopic

isotropy. 

Therefore, in order to evaluate the errors arising from the adoption of a classical grain

interaction model, the sin2
� plots simulated for the current transversely isotropic film have

also been tentatively fitted according to the traditional macroscopically isotropic model for

the same value of average stress S
�

� . In the case of macroscopic isotropy, the common form

of equation (3.14) reads (see for instance Noyan & Cohen, 1987, Hauk, 1997, Stickforth,

1966, see also Chapter 2)
2 2 21

33 1 11 22 2 11 222 cos sin sinL hkl S S hkl S SS S� � � � � � � �� � � �� � � �� � � � (3.24)

where 1
hklS  and 1

22
hklS  denote the X-ray elastic constants (XECs) which arise from the explicit

elaboration of equation (3.14) for the macroscopically isotropic body. In view of the

rotational symmetry of the film, there is no dependence on �, thus 11 22
S S

� ��  and

� �2 21
33 1 222 sin sinmeas L hkl hkl SS S q m

��
� � � � �� � � � � (3.25)

where S
�

�
, as in equation (3.4), is the average stress in the S system, parallel to the sample

surface. As demonstrated by Stickforth (Stickforth, 1966, see also Chapter 2), the two XECs

are independent of � for a macroscopically isotropic body. Thus, if the XECs are known, the

average stress parallel to the surface can be calculated from the slope of the straight line

defined by equation (3.25). On the other hand, for a homogeneous specimen and a

homogeneous strain/stress field, the absence of such linearity in the sin2
� plot implies the

absence of macroscopic isotropy of the body (see Chapter 2).

To demonstrate the pronounced effects of texture on the diffraction stress analysis, a

simple Gaussian fibre texture (Bunge, 1982a), with 5º pole-width (Half-Width at Half-
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Maximum, HWHM) was used for two different preferred orientations, namely {110} and

{111}. In addition to the calculation of the diffraction strain, the elastic constants A and B

where also evaluated as a function of the texture pole width using equations (3.11) and (3.12).

The ODF was supplied numerically for the calculation of A, B and the diffraction

strain according to equations (3.11), (3.12) and (3.14). The corresponding section of the pole

figure, i.e. the peak area (integrated intensity of the reflection considered) versus � is also

shown in for the diffraction strain calculations. Note that instrumental aberrations and sample

effects, as absorption, are not considered. For details on the calculations using the traditional

models of Voigt, Reuss and Neerfeld-Hill refer to Appendix 3.2. 

Table 3.1: Single crystal elastic constants and anisotropy factor Ai for the elements used in the sin2
�

plot simulations. The stiffness matrix components (cij) and the corresponding compliance matrix

components (sij) are shown. The Voigt 2-index notation (Nye, 1957) is used: to revert to the

traditional tensorial notation, the index must be replaced according to: 1=11, 2=22, 4=12 and

remembering that smn = 4sijkl if m,n>3. The values in bold have been calculated here by tensor

inversion.

c11

(GPa)

c12

(GPa)

c44

(GPa)

s11

(TPa-1)

s12

(TPa-1)

s44

(TPa-1)

Ai ref.

Au (fcc) 192.9 163.8 41.5 23.5 -10.8 24.1 2.85 Ledbetter & Naimon,

1974

W (fcc) 501 198 151.4 2.57 -0.73 6.6 1.00 Meyers & Chawla,

1984

Nb

(bcc)

244.6 138.1 29.2 6.9 -2.49 34.2 0.55 Meyers & Chawla,

1984
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3.4. Results and discussion

3.4.1 Tungsten film

Due to the elastic isotropy of tungsten, the response of the film is independent of the

particular averaging conducted, i.e. the same trend for the sin2
� curve is expected for all grain

interaction models and for all reflections. As long as the specimen and the stress/strain fields

are homogeneous (absence of gradients), it is impossible to observe non-linear sin2
� plots for

tungsten (cf. discussion below equation (3.25)). Accordingly, the mechanical elastic constants

are also independent of the adopted grain-interaction model.
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Figure 3.2: Textured, macroscopically isotropic tungsten film (Gaussian {110} fibre texture, 5º

half width at half maximum pole width). Lattice strain hkl
�
�  (sin2

� plots; line with dots) and

integrated intensity (lines without dots; arbitrary units) vs. sin2
� for the 110 (a), 211 (b) and 400 (c)

reflections, respectively. In this case, the hkl
�
� curves for all grain-interaction models coincide; in

the textured case, only the points that can be calculated (i.e. integrated intensity larger than zero)

are shown.
53
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Sin2
� plots for a {110} textured transversely isotropic tungsten film subjected to a

rotationally symmetric stress S
�

� =100MPa are shown in figures 3.2a-c for the 110, 211 and

400 reflections. 

The presence of a texture is revealed by the impossibility to record diffracted intensity

at all � values because of the non-uniform distribution of crystallite orientation. The sections

shown of the corresponding pole figure make this clear by presenting the distribution of

intensity as a function of �.

It should be realised that, due to the texture, the distribution of the intensity as a

function of � (i.e. rotation around the normal of the diffracting hkl planes) at constant � (�0º)

is strongly varying, in contrast with the corresponding distribution of the strain that does not

change with � for tungsten. As an example, the integrated intensity of the 110 reflection and

the corresponding strain for the {110} textured tungsten film at �=52º and �=88º are shown

in figures 3.3a and b, respectively. The evident symmetry of these intensity distributions

reflects that of the {110} plane. Corresponding results for the 321 peak at �=74º are shown in

figure 3c; clearly the {321} plane lacks such symmetry.
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3.4.2. Niobium film

Niobium is distinctly anisotropic: Ai<1, indicating that the <hhh> direction is ‘softer’

than the <00l> one. From the results discussed below, the differences between the values for

the elastic constants as calculated for the various grain-interaction models, in the presence or

absence of texture, might be considered moderate. As will be shown, the consequences of the

intrinsic elastic anisotropy in the diffraction-stress analysis, through the effects of texture and

of the choice of grain-interaction model, are noticeable.

The mechanical elastic constants A and B for {110} and {111} fibre-textured niobium

films are shown in figure 3.4 as a function of the texture pole width. For a cubic material and
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Figure 3.3: Textured, macroscopically isotropic tungsten film (Gaussian {110} fibre texture, 5º

HWHM). Strain 33
L

�  (solid line) and relative integrated intensity (dotted line; arbitrary units) as a

function of the rotation � around the diffraction vector for the 110 reflection at ��=52º (a) and

��=88º (b), and for the 321  reflection at ��=74º (c).
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a perfect {111} fibre-texture, it is possible to evaluate the elastic constants A and B

analytically (Kamminga et al., 2000, Vook and Witt, 1965):

11 12 44
2 4 1A
3 3 6

C C Cs s s� � � (3.26)

11 12 44 44
2 4 1 1B A
3 3 3 2

C C C Cs s s s� � � � � (3.27)

In this case, A and B are independent of the choice of the grain interaction model; the values

obtained according to equations (3.26) and (3.27) agree with the numerical results shown in

figures 3.4c, and 3.4d. The convergence to a single value for A and B for pole width going to

zero, independent of the type of grain-interaction model adopted, is not expected for the

{110} texture and is indeed not observed (cf. figures 3.4a-b).
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Figure 3.4: Textured, transversely isotropic niobium film. Variation of the macroscopic elastic

constants A and B as function of the texture pole width for a Gaussian {110} fibre texture (a and b,

respectively) and for a Gaussian {111} fibre texture (c and d, respectively). A legend, valid for all

four plots, is presented in (a).
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The proof of Hill (1952) that the average elastic constants for a macroscopically

mechanically isotropic aggregate should fall within the limits imposed by the Reuss and

Voigt models, is in accordance with the numerical results for A and B. However, it should be

recognised that the ‘effective’ X-ray elastic constants need not to be within the Voigt and

Reuss bounds, as demonstrated by the sin2
� plots for untextured (van Leeuwen et al., 1999)

and textured films (this work). 

The sin2
� plots for untextured and {110} textured niobium films, containing a stress

S
�

�  of 100MPa are shown in figure 2.5a for the 211 reflection. 

Relatively minor differences occur between the results of the various models, namely

Reuss, Voigt and Vook-Witt, in the absence of texture. 
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Figure 3.5: Textured, transversely isotropic niobium film (Gaussian {110} fibre texture, 5º

HWHM). Lattice strain hkl
�
�  (sin2

� plots) and integrated intensity (arbitrary units) vs. sin2
� for the

211 (a), 222 (b), 321 (c) and 400 (d) reflections, respectively. A legend, valid for all four plots, is

presented in (a). The relative integrated intensity is also shown in the figures (lines without dots;

arbitrary units).
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However, if texture is present, as characterised by three intensity maxima occurring in

the plot of integrated intensity vs. sin2
�, significant differences with the untextured case are

observed. 

Thus, a clearly non-linear (‘discontinuous’) dependence of hkl
�
� on sin2

� is visible

according to the Vook-Witt and Reuss grain-interaction models: the effects in the diffraction

stress analysis of the intrinsic (single-crystal) elastic anisotropy of the material are enhanced

by the presence of texture. 

Similar observations as above can be made considering corresponding results for the

222, 321 and 400 reflections as shown in figures 3.5b-d, respectively. Again, non-linear sin2
�

curves occur according to the Vook-Witt grain-interaction model. Note that for the 400

reflection particularly large differences occur between the results of the various grain-

interaction models. For the Reuss model it is possible to demonstrate that the sin2
� plot

corresponding to the 00l and hhh reflections is always linear, independent of the texture (see

also Brakman, 1983).

An interesting comparison with tungsten is offered by figure 3.6, analogous to figure

3.3. The anisotropy of niobium changes the distribution of strain at constant � as a function of

�, in contrast with what is observed for tungsten. 

In all the presented sin2
� plots, the strain curve exhibits a change of trend (maxima or

minima of the first derivative) at a value of � where a minimum occurs in the texture

contribution (i.e. diffraction peak area).

Now, to resemble what is normally done in practice, the simulated data according to

the Vook-Witt grain-interaction model for the case of a textured film (figure 3.5, full dots)

can be reinterpreted in terms of the fully macroscopically isotropic models, i.e. using equation

(3.25). Thereby, in principle erroneous values for the stress S
�

�  are obtained. To approach

closely reality, data points at � angles where the integrated intensity is very low (<5% of the

maximum value), and data points at high tilting angle, which are affected by large

instrumental effects, are not considered. Such ‘reduced’ plots for the 211, 222, 321 and 400

reflections are shown in figure 3.7. 

The straight lines fitted to the data are also shown in figure 3.7 and the resulting S
�

�

values are presented in table 3.2. The stress was calculated from the slope of the straight line

(cf. equation (3.25)) using the Reuss, Voigt and Neerfeld-Hill models. Considering table 3.2,

it follows that very large differences occur in the value of the stress derived: none of the
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normally used procedures is able to recover the true stress (100MPa) from all the considered

reflections (deviations up to 50% occur).

Although the strain data in such plots may apparently be reasonably well fitted with a

straight line (equation (3.25)), the results shown in table 3.2 demonstrate that erroneous

values for the stress can be obtained.

Commonly, reflections at high Bragg angles are employed in order to minimise errors

in the lattice spacing value, due to the uncertainty in peak position determination. The results

obtained here show that the application of the normal procedure (equation (3.25)) to the

corresponding strain data can lead to quite erroneous results (e.g. see results for the 400

reflection and {110} fibre texture in table 3.2).
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Figure 3.6: Textured, transversely isotropic niobium film (Gaussian {110} fibre texture, 5º HWHM).

Strain 33
L

�  (solid line) and relative integrated intensity (dotted line; arbitrary units) as a function of

the rotation � around the diffraction vector for the 110 reflection at ��=52º (a) and ��=88º (b), and

for the 321 reflection at ��=74º (c).
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Figure 3.7: Textured, transversely isotropic niobium film (Gaussian {110} fibre texture, 5º HWHM).

‘Reduced’ sin2
� plots for the 211 (a), 222 (b), 321 (c) and 400 (d) reflections (strain data taken from

figures 3.5a-d) as used for the application of the traditional, macroscopically isotropic models: straight

line fits according to equation (3.25). The relative integrated intensity is also shown in the figures (lines

without dots; arbitrary units).
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Table 3.2: Apparent stress values for the niobium film calculated from simulated data by using the

macroscopically isotropic models (Voigt, Reuss and Neerfeld-Hill (N-H) respectively). Intercept and

slope for the straight line fitted according to equation (3.25) are given together with the correlation

coefficient R. The true stress is 100MPa. The fibre texture is indicated by the fibre axis; the orientation

distribution around the fibre axis is Gaussian with a 5º HWHM.

reflection

hkl

texture intercept slope R 1
22
hklS

Voigt

1
22
hklS

Reuss

1
22
hklS

N-H

S
�

�

Voigt

S
�

�

Reuss

S
�

�

N-H

[x10-4] [x10-4] (TPa-1) (TPa-1) (TPa-1) (MPa) (MPa) (MPa)

111 {110} -9.98 19.4 0.999 14.14 17.10 15.62 137 113 124

112 {110} -8.32 14.4 0.998 14.14 15.17 14.27 102 95 101

123 {110} -8.26 14.7 0.999 14.14 15.17 14.42 104 95 102

004 {110} -5.02 7.95 0.999 14.14 9.39 11.05 56 85 72

111 {111} -10.2 17.2 0.998 16.89 17.10 17.00 102 101 101

112 {111} -10.0 17.0 0.997 16.89 15.17 16.03 101 112 106

123 {111} -9.97 16.9 0.997 16.89 15.17 16.03 100 112 106

004 {111} -6.22 11.4 0.998 16.89 9.39 13.14 67 121 87
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3.4.3. Gold film

The mechanical elastic constants A and B for {110} and {111} fibre-textured gold

films are shown in figure 3.8 as a function of the texture pole width. Gold is distinctly

anisotropic (Ai>1, indicating that the <00l> direction is ‘softer’ than the <hhh> one). With

reference to the results discussed for the niobium film, it holds also in this case that the

consequences of the intrinsic elastic anisotropy through the effects of texture and of choice of

the grain-interaction model are most dramatically revealed in the diffraction stress analysis, as

shown next.

Gold and niobium possess different crystal structures (bcc and fcc, respectively). As

compared to the case of the niobium film, different reflections were thus selected for the

study of the gold film, namely the 111, 311, 400 and 331 ones. 
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Figure 3.8: Textured, transversely isotropic gold film. Variation of the macroscopic elastic constants A

and B as function of the texture pole width for a Gaussian {110} fibre texture (a and b, respectively) and

for a Gaussian {111} fibre texture (c and d, respectively). A legend, valid for all four plots, is presented in

(a).
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The corresponding sin2
� plots for the untextured and {110} textured gold films

containing a stress S
�

�  of 100MPa are shown in figures 3.9a-d. The largest differences

between the various grain-interaction models are observed for the 111 and 400 reflections

where the Reuss model predicts linear sin2
� plots.

For fcc metals as gold, the {111} fibre-texture is more common than the {110} one.

The effects of the different texture can be observed by comparing figures 3.9 ({110} fibre

texture) and 3.10 ({111} fibre texture). From figure 3.9b and figure 3.10a, the decisive

influence of the type of texture on the sin2
� dependence of the strain becomes evident.

As shown for the niobium films, to resemble what is usually done in practice, the

simulated data can be interpreted based on traditional analysis involving the incorrect
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Figure 3.9: Textured, transversely isotropic gold film (Gaussian {110} fibre texture, 5º HWHM).

Lattice strain hkl
�
�  (sin2

� plots) and integrated intensity (arbitrary units) vs. sin2
� for the 111 (a),

311 (b), 400 (c) and 331 (d) reflections, respectively. A legend, valid for all four plots, is presented

in (a). The relative integrated intensity is also shown in the figures (lines without dots; arbitrary

units).
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assumption of macroscopic isotropy. As an example, figure 3.11 shows the ‘reduced’ (see

above for the niobium film) data set for the 331 gold reflection ({110} fibre-texture, see

figure 3.9d). A linear dependence of hkl
�
�  on sin2

� is imposed according to the traditional

analyses. Wrong and highly different (from reality) results are obtained by applying the

macroscopically isotropic models to obtain a stress value from the simulated data (see table

3.3: note that the true stress is 100MPa).

Table 3.3: Apparent stress values for the gold film calculated from simulated data by using the

macroscopically isotropic models (Voigt, Reuss and Neerfeld-Hill (N-H) respectively). Intercept and

slope for the straight line fitted according to equation (3.25) are given with the Goodness-of-Fit (R)

parameter. The true stress is 100 MPa. The fibre texture is indicated by the fibre axis; the orientation

distribution around the fibre axis is Gaussian with a 5º HWHM.

reflection

hkl

texture intercept slope R 1
22
hklS

Voigt

1
22
hklS

Reuss

1
22
hklS

N-H

S
��

Voigt

S
��

Reuss

S
��

N-H

[x10-4] [x10-4] (TPa-1) (TPa-1) (TPa-1) (MPa) (MPa) (MPa)

111 {111} -6.7 11.7 0.998 12.17 12.05 12.11 96 97 97

113 {111} -7.3 12.7 0.992 12.17 23.85 18.01 104 53 71

004 {111} -13.9 22.7 0.998 12.17 34.36 23.27 187 66 98

133 {111} -6.9 12.1 0.996 12.17 16.01 14.09 99 76 86
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Figure 3.10: Textured, transversely isotropic gold film (Gaussian {111} fibre texture, 5º HWHM).

Lattice strain hkl
�
�  (sin2

� plots) and integrated intensity (arbitrary units) vs. sin2
� for the 311 (a) and

331 (b) reflections, respectively. A legend, valid for both plots, is presented in (a). The relative

integrated intensity is also shown in the figures (lines without dots; arbitrary units).
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Figure 3.11. Textured transversely isotropic gold film (Gaussian {111} fibre texture, 5º HWHM).

‘Reduced’ sin2
� plot for the 331 reflection (strain data taken from figure 3.10b) as used for the

application of the traditional, macroscopically isotropic models: straight line fits according to equation

(3.25). The relative integrated intensity is also shown in the figure (line without dots; arbitrary units).
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3.5. Conclusions

The values of the macroscopic mechanical elastic constants of a polycrystalline body

are affected moderately by the type of grain interaction model adopted, irrespective of the

presence of texture. Fibre texture (with the fibre axis perpendicular to the specimen surface)

in a polycrystalline thin film made of an intrinsically anisotropic material, drastically

influences the dependence of lattice strain on measurement direction, i.e. non-linearity occurs

in the sin2
� plots. In addition, this kind of texture induces a strong dependence of the lattice

strain on the type of grain interaction.

Correct values for the stress components in a textured thin film can be obtained by

fitting, to the measured data, the values of strain calculated as a function of the measurement

direction by means of equation (3.13) (general) or (3.14) (fibre texture).

The grain interaction in strained polycrystalline thin films is more likely of

transversely isotropic character than of macroscopically isotropic nature. The application of

the traditional Voigt, Reuss or Neerfeld-Hill models leads to very erroneous values (errors as

large as 50%) for the stress derived from classical diffraction analyses (e.g. sin2
� plots) if a

Vook-Witt type of grain interaction, compatible with transverse isotropy as in thin films,

holds. 
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Appendix 3.1.
Reference frames

The representation of a tensorial quantity depends on the reference frame. The

transformation of a tensor component from one to another orthogonal frame of reference is

performed by means of suitable rotations, defined in terms of direction cosines. Consider two

orthogonal systems A and B; the cosine of the angle between the unit vector j in the B system

and the corresponding unit vector i in the A system, AB
ija , is called direction cosine. The

direction cosines can be grouped in a rotation matrix ABa . Since the rotation preserves norm

and angular relations between the reference axes, the rotation matrix is orthonormal and thus

its inverse is equivalent to its transposed. 

On this basis, the representation in A of a vector vB represented in B, is given by:
A AB B
i ij jv a v� (3A1)

Similarly, the inverse transformation is realised by the transposed matrix � �
TAB

ija :

� �
TB BA A AB A AB A

i ij j ij j ji jv a v a v a v� � � (3A2)

It is easy to prove that consecutive transformations are accomplished by consecutive

multiplication of the corresponding rotation matrices. Analogous rules are valid for the

transformation of higher rank tensors (than pertaining to vB).

A quick way to evaluate the matrices representing the transformations indicated in this

paper, namely LSa  and CLa (from which ( )SC CL LS Ta a a�  follows), consists in the

decomposition of complex rotations into elementary ones. The transformation from the

reference S (sample) to L (laboratory) can be conceived as combination of a rotation � around

3S  to get an intermediate S�  system, followed by a rotation � around 2S�  to reach L:

cos 0 sin cos sin 0
0 1 0 sin cos 0

sin 0 cos 0 0 1

LS LS S Sa a a
� � � �

� �

� �

� �

�� � � �
� � � �� � � �
� � � �
� 	 � 	

(3A3)

These two rotations correspond to the traditional � and � positioning of the specimen in a

stress/texture diffractometer.

For the transformation from the laboratory L to the crystal C system, the intermediate

reference frame L� , fixed with respect to C, is introduced (van Leeuwen et al., 1999). Cubic

materials (i.e. <hkl>� {hkl}) are considered, and L3 is chosen parallel to the <h,k,l> direction.

By setting 3L�  parallel to L3, the other two orthogonal directions (corresponding to 1L�  and 2L� )
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can be defined in the plane (h,k,l) as the vectors (k2+l2,-hk,-hl) and (0,-l,k); a subsequent

rotation around 3L�  according to the angle �, accomplishes the desired CLa  transformation 

2 2

2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2 2

0

cos sin 0
sin cos 0
0 0 1

CL CL L L

k l h
k l h k l h k l

hk l ka a a
k l h k l k l h k l

hl k l
k l h k l k l h k l

� �

� �

� �

� ��
� �� � � � �� �
� ��

� � �� �
� � � � � �� �

� �� �
� �
	 
� � � � � �

� �
� ��
� �
	 


(3A4)

Note the different convention used in this paper with respect to van Leeuwen et al., (1999)

concerning the direction for the � rotation (� rotation in the paper cited). Following equation

(A2), the inverse transformation LCa  is performed by (aCL)-1=(aCL)T. 

The matrix in equation (A4) is expressed in terms of the Miller indices of the

diffraction vector h=(h,k,l). The diffraction vector direction can also be expressed in terms of

two polar coordinates � and �. The following relations between the Miller indices h,k,l and

the polar co-ordinates exist (��=� in van Leeuwen et al., 1999)

h = sin � sin �

k = sin � cos � �����

l = cos �

which makes it possible to express CLa and LCa in terms of continuous angles, instead of the

integers h,k,l, for an easier integration in Euler space.

Euler space and Euler angles

The orientation of a crystallite with respect to the sample is described by the rotation

matrix CSa  that transforms the reference frame S of the specimen into the reference frame C

associated with the crystal lattice. As follows from the above, the matrix CSa  depends on the

angles �,�, relating the L and S systems, and on h and � relating the L and C systems. In

general, any orientation of the C system with respect to the S system can be represented by

three subsequent non-commutative rotations of the S reference frame (Euler angles). The

three rotation angles can be conceived as coordinates of a vector in the so-called orientation

or Euler space G. A vector g
��

=(�,�,	) in the Euler space thus represent a possible rotation
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matrix CSa .

According to the order of the axes chosen for the rotation, different sets of Euler

angles can be defined. In the following, the variant proposed by Roe (Roe & Krigbaum, 1964,

Krigbaum & Roe, 1964, Roe, 1965), with the naming convention of Matthies, Vinel &

Helming (1987), will be used: 

� rotation of S about the axis 3S  through the angle � to get S� ; the corresponding vector

(�,0,0) in Euler space, represents the rotation matrix 
cos sin 0
sin cos 0
0 0 1

� �

� �

� �
� �
�� �

� �
� �

� rotation of S� about the axis 2S�  through the angle � to get S �� ; the corresponding vector

(0,�,0) in Euler space, represents the rotation matrix 
cos 0 sin

0 1 0
sin 0 cos

� �

� �

�� �
� �
� �
� �
� �

� rotation of S ��about the axis 3S ��  through the angle 	 to get S C��� � ; the corresponding

vector (0,0,	) in Euler space, represents the rotation matrix 
cos sin 0
sin cos 0
0 0 1

� �

� �

� �
� �
�� �

� �
� �

A generic rotation g
��

=(�,�,	) is thus a combination of the single rotations outlined above:

( , , ) (0,0, ) (0, ,0) ( ,0,0)
cos( ) sin( ) 0 cos( ) 0 sin( ) cos( ) sin( ) 0
sin( ) cos( ) 0 0 1 0 sin( ) cos( ) 0

0 0 1 sin( ) 0 cos( ) 0 0 1

g � � � � � �

� � � � � �

� � � �

� �

� � � �

�� � � � � �
� � � � � �� � � � �
� � � � � �
� 	 � 	 � 	

(3A6)

Analogous expressions hold if the convention of Bunge (1982a) is adopted for the definition

of the Euler angles.
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Appendix 3.2.
Evaluation of A and B: traditional grain interaction models (Voigt, Reuss, Neerfeld-Hill)

The Voigt, Reuss and Neerfeld-Hill models for the calculation of macroscopic elastic

properties of polycrystalline solids (Voigt, 1910, Reuss, 1929, Neerfeld, 1942, Hill, 1952) are

well known and therefore they will be only briefly discussed. Adopting the Voigt model, the

complete strain tensor is set equal for all crystallites in the sample reference frame, whereas,

adopting the Reuss model, the complete stress tensor is set equal for all crystallites in the

sample reference frame. In the Voigt case, the stress tensor components are therefore different

for the various crystallites:
S S S
ij ijkl klc� �� (3A7)

whereas, in the Reuss case, the strain tensor components are different
S S S
ij ijkl kls� �� (3A8)

as a consequence of the variable crystallite orientation.

In equations (3A7) and (3A8), cS and sS represent, respectively, the single-crystal

elastic stiffness and compliance tensors transformed to the sample reference frame. 

Under these assumptions the macroscopic elastic properties of the polycrystal can be

calculated by averaging the compliance tensor in the Reuss-case and by averaging the

stiffness tensor in the Voigt-case over all possible crystallite orientations using the ODF as a

weighting function (cf. equation (3.10)). 
S S S S S Voigt S
ij ijkl kl ijkl kl ijkl klc c c� � � �� � � Voigt model (3A9)

S S S S S Reuss S
ij ijkl kl ijkl kl ijkl kls s s� � � �� � � Reuss model (3A10)

The strain tensor can be taken out of the averaging adopting the Voigt model, whereas the

stress tensor can be taken out of the averaging adopting the Reuss model, as these tensors are

set fixed for all crystallites in equation (3A9) and (3A10), respectively. 

The elastic constants A and B describing the elastic behaviour under a rotational

symmetric strain field with zero average stress components perpendicular to the film surface

(same hypotheses adopted for the Vook-Witt model, see above) can be calculated for the

Voigt and Reuss models by imposing the corresponding strain and stress fields.

0 0
0 0
0 0

S S
Voigt

�

�

�

� � �

�
�

� �
� �

� �� �
� �
� �

 , Re

0 0
0 0
0 0 0

S S
uss

�

�

�

� � �

� �
� �

� �� �
� �
� �

(3A11)

The evaluation of A and B is then a straightforward calculation by substituting the pair of



3. Diffraction analysis of internal strain/stress fields in textured transversely isotropic thin films; theoretical basis and simulation

71

equations (3A9) and (3A10) into equations (3.6) and (3.7). The Voigt and Reuss models

predict macroscopically isotropic properties in the absence of texture and transversely

isotropic properties for fibre textured specimens. 

The two models cannot represent the true elastic behaviour of a polycrystalline

aggregate (apart for a body composed of a truly intrinsically elastically isotropic material),

due to the extreme nature of the grain interaction assumptions. The Voigt model, for example,

violates mechanical equilibrium, as the stress is discontinuous at crystallite boundaries.

Further, the macroscopic elastic constants derived from both models are incompatible

(Matthies & Humbert, 1995), i.e. 1( )Voigt Reussc s �

� . 

Hill proved that the Reuss and Voigt models represent, respectively, the lower and

upper bounds for the elastic moduli of a macroscopically isotropic aggregate (Hill, 1952).

Therefore, it is reasonable to assume that the true average elastic constants are better

approximated by the arithmetic average of the values predicted by the Reuss and Voigt

models. This approach is generally referred to as the Neerfeld-Hill model (Neerfeld, 1942,

Hill, 1952). The Neerfeld-Hill approach is just an averaging procedure and does not represent

a specific grain-interaction model in the sense that specific grain-interaction parameters can

be indicated. This holds also for alternative models, which do obey the compatibility relation
1c s�

�  (like that based on the geometric averaging of the elastic tensors; Matthies &

Humbert,1995).
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4. The determination of stresses in thin films; modelling elastic

grain interaction

U. Welzel, M. Leoni & E. J. Mittemeijer

Abstract

X-ray diffraction is frequently employed for the analysis of mechanical stresses in

polycrystalline specimens. To this end, suitable so-called diffraction elastic constants are

needed for determining the components of the mechanical stress tensor from measured lattice

strains. These diffraction elastic constants depend on the single crystal elastic constants of the

material considered and the so-called grain interaction, describing the distribution of stresses

and strains over the crystallographically differently oriented crystallites composing the

specimen. Well-known grain-interaction models, as due to Voigt, Reuss, Neerfeld-Hill and

Eshelby-Kröner, may be applied to bulk specimens, but they are generally not suitable for thin

films. In this paper, an average, ‘effective’ grain-interaction model is proposed that consists of

a linear combination of basic, extreme models including new models specially suited for thin

films. Experimental verification has been achieved by X-ray diffraction strain measurements

performed on a sputter-deposited copper film. This is the first time that anisotropic grain

interaction has been analysed quantitatively.
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4.1. Introduction

X-ray residual stress analysis is routinely employed for the determination of homogeneous

macrostress states in polycrystalline solids (see, for example, Noyan & Cohen, 1987, Hauk,

1997). Generally, diffraction lines of one or more hkl reflections are recorded at various

sample tilt (and possibly, dependent on the complexity of the stress state, rotation) angles.

From the measured peak positions lattice strains can be calculated. 

A straightforward interpretation of strains in terms of stresses can be obstructed if the

single crystallites composing the specimen are elastically anisotropic. In this case neither the

mechanical elastic constants (relating mechanical (macroscopic) strains to mechanical

(macroscopic) stresses) nor the diffraction elastic constants (diffraction stress factors for

elastically anisotropic samples), relating (diffraction) lattice strains to mechanical stresses,

can be derived without more ado from single-crystal elastic compliances (or stiffnesses) of the

crystallites composing the specimen. A so-called grain-interaction model is needed to

describe the distribution of stresses and strains over the crystallographically differently

oriented crystallites in the specimen. 

Common grain-interaction models are the Voigt (1910), Reuss (1929) and Eshelby-

Kröner (Eshelby, 1957, Kröner, 1958,  see also Kneer, 1965) models, which were devised for

the calculation of mechanical elastic constants of bulk polycrystals from single-crystal elastic

compliances. Such models can also be used for the calculation of X-ray elastic constants from

single-crystal elastic compliances. The models according to Voigt  and Reuss  present

extremes for the grain interaction: either the strain tensor (Voigt model) or the stress tensor

(Reuss model) for each crystallite is assumed to be equal to the mechanical strain or stress

tensor, respectively; they are incompatible with physical reality because of the corresponding

stress, respectively strain discontinuities at the grain boundaries. It was shown that the Voigt

and Reuss models set bounds for the mechanical elastic constants (Hill, 1952). Further,

Neerfeld (1942) and Hill (1952), on an empirical basis, suggested that the arithmetic (or

geometric2) averages of X-ray (Neerfeld, 1942) and macroscopic (Neerfeld, 1942, Hill, 1952)

elastic constants calculated according to the models of Voigt and Reuss yield values that

come close to experimental values. The mathematically more tedious Eshelby-Kröner model

gives numerical values close to those obtained by this Neerfeld-Hill approach. 

                                                
2 Usually the arithmetic and not the geometric average is used. 
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The above models have been devised for bulk materials. Yet, these models are also

frequently applied to thin film stress analysis. Owing to their microstructure and reduced

dimensionality, the elasticity of thin films can be different from the elasticity of bulk

polycrystals. Thin films cannot generally be considered as macroscopically elastically

isotropic, rather they can exhibit macroscopically transversely isotropic properties (even in

the absence of texture; van Leeuwen et al., 1999). The traditional models for grain interaction

(Voigt, Reuss, Eshelby-Kröner, Neerfeld-Hill) are compatible only with macroscopically

isotropic elastic properties (in the absence of texture) and hence these models are

inappropriate for the analysis of stress in such thin films.

Only recently it has been demonstrated experimentally by van Leeuwen et al. (1999)

for an untextured Ni film that diffraction effects can be observed (curved sin2
�-plots; see

further) that are incompatible with the traditional models for grain interaction. Van Leeuwen

et al. (1999) demonstrated that a grain-interaction model, which is adapted to the

microstructure of a columnar thin film, can explain these experimental findings. To this end,

grain-interaction assumptions proposed by Vook and Witt (Vook & Witt, 1965, Witt & Vook,

1968) were, for the first time, employed for the analysis of diffraction stress measurements.

Leoni et al. (2001) extended this Vook-Witt based model to fibre-textured specimens and

showed by simulations that erroneous results (errors as large as 50%) for the stress can easily

occur when this type of grain interaction holds and, yet, traditional models are employed in

stress analysis. 

The Vook-Witt based grain-interaction model is the first model taking the

microstructure of a (columnar) thin film into account by assuming that all crystallites exhibit

the same in-plane strain whereas they can deform freely in a direction perpendicular to the

film surface as a consequence of the columnar grain structure, implying a predominant

orientation of the grain boundaries perpendicular to the film surface. A grain-interaction

model involving different grain interaction assumptions for different directions in the

specimen will be called a direction-dependent grain interaction model in the following.

Although the Vook-Witt approach can be considered as some ‘intermediate’ model of

grain interaction (with reference to the Voigt and Reuss models), it still imposes extreme

constraints: identical in-plain strain and completely unconstrained deformation perpendicular

to the surface, for all grains. Extreme grain-interaction assumptions are in general not

compatible with the true elastic behaviour of real polycrystals. Therefore, in this paper a more

general approach to grain interaction (in thin films) is presented. The method proposed is

applied to the diffraction analysis of stress in a fibre-textured copper layer. 
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4.2. Theory

4.2.1. Calculation of mechanical and diffraction averages of elastic stress and strain

tensors by adopting a grain-interaction model

For the considerations presented in the following it is convenient to make use of three

Cartesian frames of reference:

� The crystal reference frame (C): the conventional definition of an orthonormal crystal

system, such as the one given by Nye (1957) (for a detailed treatment, see also

Giacovazzo et al., 1998) is adopted. Thus, for cubic crystal symmetry, the axes are chosen

parallel to the a, b and c axis of the crystal lattice. 

� The specimen reference frame (S): The S3-axis is oriented perpendicular to the specimen

surface and the S1- and S2-axes are in the surface plane.

� The laboratory reference frame (L): This frame is chosen in such a way that the L3-axis

coincides with the diffraction vector in the (X-ray) diffraction experiment.

In the following a superscript (C, S or L) indicates the reference frame used for the

representation of tensors. The absence of any superscript implies the validity of an equation

independent of the reference frame used for tensor representation (but the same reference

frame has to be adopted for all tensors in the equation). For the relative orientations of

laboratory and the specimen frames of reference, consider also figure 4.1. 

Transformations of tensors can be accomplished by suitable rotation matrices (for a

general introduction on the use of transformation matrices in the context of X-ray diffraction,

see for example, Hauk (1997), for detailed information on matrices within the context of this

Chapter, see also Chapter 3.2.1 and the corresponding Appendix).

The orientation of  each crystallite in the S system  can be identified by three Euler

angles. The convention of Roe and Krigbaum (1964) in the definition of these angles will be

adopted and the angles will be called �, � and �. It is usual to associate a set of Euler angles to

a vector g
��

=(�,�,��) in the three-dimensional orientation (Euler) space G (for example, see

Bunge, 1982a). In this way, each point in the orientation space G represents a possible

orientation of the C system with respect to the S system. Only in the absence of texture it

holds, that the volume fraction of crystallites having an orientation in the infinitesimal

orientation range 3 sin( )d g d d d� � � ��  around g
��

is independent of g
��

. 
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The occurrence of texture implies the introduction of the so-called orientation

distribution function (ODF) ( , , )f � � � , which is a function of  the Euler angles, specifying

the volume fraction of  crystallites having an orientation in the infinitesimal orientation range
3 sin( )d g d d d� � � ��  around g

��

:

� � � � 3
2 2

( , , ) sin( )
8 8

dV g f g fd g d d d
V

�� ��

� � �
� � � �

� �
� � . (4.1)

The ODF is normalised such that it holds:

� � 3
2 1

8G

f g
d g

��

�
���� . (4.2)

On the basis of the Euler angles it is possible to calculate mechanical and diffraction averages

of elastic-, stress- and strain tensors. In the following, angular brackets  denote volume-

weighed averages for all crystallites in the aggregate considered (i.e. mechanical averages)

whereas braces � �  denote volume-weighed averages for diffracting crystallites only (i.e.

S1

S3

L2

�

�

L3

S2

L1

�

�

Figure 4.1: Definition of and relations between the sample (S) and laboratory (L) reference

frames.
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diffraction averages). The group of diffracting crystallites is selected by specifying the

reflection hkl  under consideration and the orientation of the diffraction vector with respect to

the specimen reference frame, which will be specified by the angles (�,�), where � is the

inclination of the diffraction vector with respect to the surface normal of the sample and � is

the rotation angle around the sample surface normal (see also figure 4.1). 

Mechanical averages of a tensor � , e.g. the strain tensor � , can be calculated by

integration over all Euler angles, using the ODF as a weighting factor:

� � 3
2

2 2

2
0 0 0

1
8

1 ( , , ) ( , , ) sin( )
8

G

f g d g

f d d d

��

� � �

� � �

�

� � � � � � � � � �
�

� � �

� � � �

� �

���

� � �
(4.3)

For the corresponding diffraction averages only the diffracting crystallites have to be taken

into account. As the orientation of the diffracting crystallites differs only by a rotation around

the diffraction vector, the averaging has to be performed with respect to this degree of

freedom, in the following called � (see Chapter 3.2.1):

� �

2
*

0
2,

*

0

( , , , ) ( , , , )

( , , , )

hkl
hkl f hkl d

f hkl d

�

�� �

� � � � � � �

� � � �

�

� �

�

�
. (4.4)

*( , , , )f hkl � � �  is the representation of the ODF in terms of the measurement parameters and

the rotation angle with respect to the diffraction vector. The ODF as defined in equation (4.1)

cannot be directly used in equation (4.4) in analogy to equation (4.3) since the angles �,�,�

are not Euler angles representing a rotation of the C system with respect to the S system (they

provide the rotation of the system L with respect to the system S). However, the values of �,

�, � and thus ( , , )f � � �  at every � can be calculated from hkl, �, � and �, to be finally

substituted for *( , , , )f hkl � � �  in equation (4.4) (for a more detailed treatment of the

necessary calculations, see Chapter 3.2.1). Thus, the diffraction strain measured for a

particular reflection hkl at the orientation of the diffraction vector (�,�) can be calculated

according to:

� �

2
*

33
0

, 33 2,
*

0

( , , , ) ( , , , )

( , , , )

L

hklhkl L

hkl f hkl d

f hkl d

�

� � �� �

� � � � � � � �

� �

� � � �

� �

�

�
. (4.5)
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The analysis will be focused on an at least transversely isotropic thin film subjected to

a plane, rotationally symmetric state of stress. This requires that the film is either untextured

or fibre-textured  (fibre texture is frequently encountered in thin films grown on (amorphous)

substrates by physical or chemical vapour deposition). Thus, both the symmetry axis of the

elastic properties and the symmetry axis of the stress field are parallel to the specimen normal. 

The rotational symmetric, plane state of stress is characterised by the following stress

tensor:

0 0

0 0
0 0 0

S

SS

�

� �

� �
� �

�� �
� �
� �
� �

�

�
. (4.6)

Owing to the transverse isotropy, the stress field induces a rotational symmetric strain field:

0 0

0 0

0 0

S

S S

S

�

� �

�
�

� �
� �

�� �
� �� �
� �

�

�
. (4.7)

Only two elastic constants are required to describe fully the relation between the stress

and strain tensors for a transversely isotropic body subjected to a plane state of stress, as only

two strain tensor components and one stress tensor component are independent and non-zero.

In analogy to van Leeuwen et al. (1999) (see also Chapter 3. in this work), those elastic

constants will be called A and B:

AS S
� ��
� �

, (4.8)

BS S
� �
�
�

�
. (4.9)

For the calculation of the stress S
�

�
 from lattice strains measured by X-ray diffraction

(cf. equation (4.5)), the sin2
�-method is employed traditionally: the peak position of a

particular hkl reflection is measured at different specimen tilt angles � and the lattice strain

perpendicular to the hkl planes at the different tilt angles � is calculated from the measured

peak positions. For a macroscopically isotropic specimen the following equation relates the

lattice strain to the components of the mechanical stress tensor (see, for example, Hauk, 1997,

see also Chapter 2):
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� �� �
� � � �� �

� �

2

2

2 2 21
, 11 12 222

21
13 23 332

1 11 22 33

sin cos sin 2 sin

cos sin 2 sin sin 2 cos

hkl hkl S S S

hkl S S S

hkl S S S

S

S

S

� �
� � � � � � � �

� � � � � � � �

� � �

� � � �

� � �

� � �

(4.10)

For the case of a plane, rotationally symmetric state of mechanical stress

( 12 13 23 33 0S S S S
� � � �� � � � ), ,

hkl
� �
�  is independent of � and equation (4.10) can be

simplified: �

 � �21
1 222 sinhkl hkl hkl SS S

�
� � �� �

�
. (4.11)

The stress S
�

�
 can be deduced from the slope of a plot of the diffraction strain versus

sin2
���The constants 1

hklS  and 1
22
hklS  are independent of � and � and are called X-ray elastic

constants. These constants were introduced on an empirical basis by Möller & Martin (1939). 

Decades later Stickforth (1966) has proved on the basis of symmetry considerations

that the concept of X-ray elastic constants is justified for any macroscopically elastically

isotropic aggregate, i.e. thereby confirming the validity of equation (4.11) in such a case (see

also Chapter 2 in this work; note that the analysis of shear components of the stress tensor was

discussed explicitly by Evenschor & Hauk (1975) for the first time). 

Preferred crystallographic orientation (crystallographic texture) leads to

macroscopically anisotropic elastic properties for a polycrystalline aggregate, if intrinsic

(single crystal) elastic anisotropy occurs. This is the only case of macroscopic elastic

anisotropy considered traditionally. Within this context the X-ray stress factors have been

introduced (Dölle & Hauk, 1978, Dölle & Hauk, 1979). The �, � and hkl-dependent X-ray

stress factors relate the diffraction strain to mechanical stress expressed in the S-system (the

Einstein convention, i.e. summation over indices appearing at least twice in a formula, is

adopted):

, ( , , )hkl S
kl klF hkl

� �
� � � �� . (4.12)

Note that the ( , , )klF hkl� �  are not components of a tensor since they relate the lattice strain

(a number) to the stress tensor (expressed in the S-system). 

For the case of a plane, rotationally symmetric state of stress equation (4.12) can be

simplified. 

� �, 11 22( , , ) ( , , )hkl SF hkl F hkl
� �
� � � � � �� �

�
. (4.13)
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For the case of transverse elastic isotropy, the diffraction strain is independent of the angle �,

thus, � can be set to zero (or any other value) for the X-ray stress factors and � as an index

can be suppressed for the diffraction strain:

� �11 22( ,0, ) ( ,0, )hkl SF hkl F hkl
�
� � � �� �

�
(4.14)

Only recently, it has been demonstrated both theoretically and experimentally by van

Leeuwen et al. (1999) that direction-dependent grain interaction leads to macroscopically

anisotropic elastic behaviour, even in the absence of texture. Also in this case, an analysis on

the basis of equation (4.11) is not possible, but equation (4.12) can be employed (this has been

shown for the first time in Chapter 2). 

The X-ray stress factors can, like the X-ray elastic constants, be calculated by adopting

a grain-interaction model. In the following, a model for the calculation of macroscopic and X-

ray (diffraction) elastic constants will be called a grain-interaction model, when it enables the

calculation of the strain tensor ( , , )� � � � and the stress tensor ( , , )� � � �  for every crystallite

in the aggregate considered from the average stress S
�  and/or strain S

� . The basics

common to all grain-interaction models considered here are as follows: 

For each crystallite, the stress and strain tensors in the specimen reference frame

satisfy Hooks law:
S S S
ij ijkl kls� �� . (4.15)

The S
ijkls  denote the single crystal elastic compliances expressed in the specimen frame of

reference. Equation (4.15) represents a system of nine equations for eighteen unknowns, but

as the strain and stress tensors are symmetric (i.e. ij ji� ��  and ij ji� �� ), equation (4.15) thus

is a short notation for six independent equations for twelve independent unknowns. If six

components of the twelve unknowns are known, as a consequence, the other components can

be calculated by solving the system of equations (4.15). In the type of grain-interaction

models considered here, a total of six stress and/or strain tensor components in the S system

are taken equal to the mechanical averages for all crystallites and thus the other six (unknown)

components can be calculated from the system of equations (4.15).

The elastic constants A and B can thus be calculated from (cf. equations (4.8) and

(4.9)):
3

11
11

3
11 11

( )
A

( )

S
SS

G
S S S

G

f g d g

f g d g

�

��

� � �
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���

���
�

�

��

��  (4.16)
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and
3

33
33

3
11 11

( )
B

( )

S
SS

G
S S S

G

f g d g

f g d g

�

��

� � �

�
� � �

���

����

��

�� . (4.17)

The diffraction strain can be calculated following equation (4.5) and the stress factors follow

from equation (4.14):

� �11 22( ,0, ) ( ,0, ) SF hkl F hkl �
�

� �
�

� �

�

. (4.18)

However, only the sum of the two X-ray stress factors is needed. This sum will be abbreviated

as:

11 22( , ) ( ,0, ) ( ,0, )
def

F hkl F hkl F hkl� � �� � (4.19) 

4.2.2. ‘Average grain interaction’

Neerfeld (1942) and Hill (1952) found on an empirical basis, that the arithmetic (or

geometric1) averages of (X-ray and macroscopic) elastic constants calculated according to the

models of Voigt and Reuss yield values that come close to the true, i.e. experimental ones.

This ‘average’ Neerfeld-Hill (NH) model is, strictly speaking, not a grain-interaction model,

as it is not possible to specify the grain-interaction assumptions for each individual grain

composing a polycrystalline aggregate. 

In a similar way, X-ray stress factors can be calculated as the arithmetic average of the

stress factors calculated according to the Reuss (R) and Voigt (V) models (see, for example,

Brakman, 1988, Serruys et al., 1987). A generally accepted physical basis for mixing the

models of Reuss and Voigt lacks, but a few authors have tried to give a physical basis of such

a averaging procedure (Serruys et al., 1987, Serruys et al., 1989). The background of any

averaging of (extreme) grain- interaction models to represent physical reality could be

described as follows. A real sample is conceived to be constituted from separate volume

fractions of crystallites, each of which obeys a certain type of grain interaction. For the

following discussion an average of (extreme) grain-interaction models will be called an

effective grain-interaction model. It will be shown that, depending on the type of specimen

considered, appropriate choices of the grain- interaction models ‘to be averaged’ can be made.

For an at least transversely isotropic body in a plane, rotationally symmetric state of

stress, two mechanical constants, A and B, suffice for describing the macroscopic elastic

behaviour (cf. equations (4.8) and (4.9)). If it is assumed that the volume fraction fi of the
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polycrystalline aggregate obeys the (extreme) grain-interaction model i (in Chapter 4.3.2 four

grain-interaction models will be considered), the average macroscopic strain of the aggregate
S

i
�
�

 parallel to the substrate can be calculated as an arithmetic average:

AS S
i ii

i

f� �

� �
� � �
� �
�� �

, (4.20)

where the subscript i indicates that the averaging has to be performed with respect to the

various volume fractions. Thus, the averaged mechanical constant A
i
 reads in this case:

A Ai ii
i

f�� . (4.21)

Analogously, the average mechanical constant B
i
 can be obtained from:

B Bi ii
i

f�� . (4.22)

 

4.2.3. Direction-dependent grain interaction

4.2.3.1. The Vook-Witt model

Only recently, a direction-dependent grain-interaction model, based on adopting the grain-

interaction assumptions of Vook and Witt, has been presented and tested experimentally by

van Leeuwen et al. (1999). A generalised treatment for the case of (fibre-) texture is given in

this work, see Chapter 3. The essentials will be briefly summarised here; for more details the

reader is referred to van Leeuwen et al. (1999) and Chapter 3 of this work.

Thin films often exhibit a columnar microstructure. In such a film, in contrast with

bulk specimens, each crystallite is surrounded by other crystallites in two dimensions only.

The interaction between the columns in a direction perpendicular to the surface of the film can

be assumed to be weak (there are often voids at the grain boundaries). As a consequence, the

grain interaction cannot be the same for in-plane directions and the direction perpendicular to

the film surface. For this reason, a columnar thin film will exhibit transversely isotropic

elastic properties (even in the absence of texture), the surface normal being the axis of

symmetry, whereas the traditional grain-interaction models are compatible only with

macroscopic isotropy. 

The Vook-Witt grain-interaction model is the first model taking the microstructure (of

a thin film) into account. The assumptions are: (i) the strain is rotationally symmetric in the

plane of the film and (ii) the in-plane strain is equal for all crystallites and (iii) the stresses
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perpendicular to the layer are zero for all crystallites, i.e. the crystallites can deform freely in

this direction. These assumptions fix parts of the stress and strain tensor for all crystallites:

0
0

S

S S

�

� �

� ��
� �

� �� �
� �� � �� �

�

�
,

0
0

0 0 0

S
�

� �� �
� �

� � �� �
� �
� �

. (4.23),(4.24)

The tensor components marked by �  are not explicitly specified for every crystallite,

but these components can be calculated from Hooke’s law for every crystallite according to

equation (4.15). Thus, for a particular value of the strain parallel to the substrate S
�
�

, all non-

zero strain and stress tensor components can be calculated by solving the system of equations

(4.15) (for explicit equations, see Chapter 3.2.3). The elastic constants A and B can thus be

calculated from (cf. also equations (4.8) and (4.9)) equations (4.16) and (4.17). The diffraction

strain can be calculated following equation (4.5) and the stress factors follow from equation

(4.18).

This model was applied to the stress analysis of an untextured nickel layer by van

Leeuwen et al. (1999). Experimental findings not compatible with the traditional models, i.e.

curved sin2
�-plots in the absence of texture, became understandable as a consequence of the

direction-dependent grain interaction. 

However, the Vook-Witt assumptions represent extreme grain-interaction assumptions

for the in-plane direction (crystallites are tightly connected together) and the direction

perpendicular to the surface of the film (crystallites can deform freely, independent from

neighbouring crystallites). It could be said: in terms of the bulk models, a Voigt behaviour is

attributed to the in-plane directions, whereas a Reuss behaviour is attributed to the direction

perpendicular to the film surface. For this reason, the Vook-Witt model will, in general, not be

able to describe the true elastic behaviour of a real thin film. Therefore, the following

development of a suitable ‘average grain-interaction model’ can be useful, as the experimental

data presented later in this work will show. 

It should be recognised that also in a bulk polycrystal, the elastic behaviour of

crystallites located adjacent to the surface could be different from the elastic behaviour of

crystallites located at some distance from the surface. This effect was first considered (on

hypothetical basis) by Stickforth (1966) and named ‘surface anisotropy’. In this case, the

‘average grain-interaction model’ proposed in this work may also be used for diffraction

stress analysis. So far, experimental evidence of surface anisotropy lacks (Hauk, 1997, see

also Hartmann, 1973, Nikolin, 1983 and discussion in Chapter 2.4), but only few investigators

have paid attention to this phenomenon. Until recently (van Leeuwen et al., 1999), also the
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importance of direction dependent grain interaction for the elastic behaviour of thin films has

not been realised. Thus, it should be recognised that, even if the following discussion is

focused on thin films, the model proposed may also be applicable for the diffraction stress

analysis of surface adjacent material of bulk polycrystals.

4.2.3.2. A generalised effective grain-interaction model

As compared to bulk materials where all directions for grain interaction can be equivalent,

columnar thin films posses two principal directions exhibiting possibly different types of

grain interactions; the in-plane direction (all in-plane directions are equivalent) and the

direction perpendicular to the surface of the film. For this reason, the number of grain-

interaction models of extreme types of grain-interaction assumptions is two for bulk materials

(Reuss and Voigt, provided that all directions within the bulk are equivalent for grain

interaction). But, on the basis of the same reasoning, four types of extreme grain-interaction

models then can be formulated for columnar thin films, as two principal directions, each with

two possible extreme grain interactions, occur (the Voigt and Reuss models and the Vook-

Witt model have already been discussed):

1. The Voigt model

All crystallites are tightly connected together with respect to both principal

directions and exhibit identical strains.

2. The Reuss model

All crystallites are subjected to identical stresses, but can deform freely with

respect to both principal directions under these stresses. 

3. The Vook-Witt model 

All crystallites are tightly connected together (or to a common substrate) with

respect to the in-plane directions and exhibit identical in-plane strains, whereas

they can deform freely in the perpendicular direction.

The fourth extreme model has not been presented before in the literature:

4. The inverse Vook-Witt model

All crystallites can deform freely with respect to the in-plane directions under

identical in-plane stresses, whereas they are tightly connected together with respect

to the perpendicular direction and exhibit identical strains perpendicular to the

surface. 
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The inverse Vook-Witt model

The inverse Vook-Witt model, is a new grain-interaction model. It is required for the

construction of an effective grain-interaction model. The grain-interaction assumptions for

this model are as follows: (i) the  in-plane stress is rotational symmetric and (ii) equal for all

crystallites and (iii) the strain perpendicular to the film surface is equal for all crystallites.

Like in the (regular) Vook-Witt model, these assumptions fix certain strain and stress tensor

components for all crystallites (cf. equations (4.23) and (4.24)):

0
0

0 0

S

S

�

�
�

� �� �
� �

� � �� �
� �
� �

,
0

0

S

S S

�

� �

� ��
� �

� �� �
� �� � �� �

�

�
. (4.25),(4.26)

The missing strain and stress tensor components for each crystallite, marked by � , can be

calculated by solving the system of equations (4.15). 

For the calculation of the mechanical elastic constants, A and B, it is necessary to

assure that 33
S S

� �
�
�  is zero (with the VW approach this is already assumed by the

boundary conditions). The following approach can be followed:

Starting from arbitrary values for the in-plane stress ,1
S

�
�

 and the strain perpendicular

to the surface ,1
S

�
�

, the mechanical averages of the strain and stress tensor are calculated. In

general, the stress perpendicular to the surface, 33
S S

� �
�
� , will be non-zero. However, by

changing the mechanical strain perpendicular to the surface S
�
�

 (keeping S
�

�
 fixed), S

�
�

 can

be made zero, so that a plane, rotational symmetric stress state is achieved as required for a

thin film unloaded in the direction perpendicular to the film surface. To this end, the above

calculation has to be repeated for another value for the strain perpendicular to the surface,

,2
S

�
�

. As S
�

�
 is linearly related to S

�
�

,

S Sm c� �
� �
� � � (4.27)

the strain  making S
�

�
 equal to zero can be determined from equation (4.27) once the

constants m and c have been calculated from the two (arbitrary) values of the strain

perpendicular to the film surface ,1
S

�
�

, ,2
S

�
�

 and the corresponding stresses perpendicular to the
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film surface ,1
S

�
�

 and ,2
S

�
�

. As an alternative, the mechanical stress parallel to the surface, S
�

�
,

can be varied with the mechanical strain perpendicular to the substrate, S
�
�

, fixed to assure

that 33
S S

� �
�
�  is zero.

When it has been realised that S
�

�
 is zero for a given combination of S

�
�

 and S
�
�

, the

elastic constants A and B can be calculated according to (cf. equations (4.16) and (4.17)):
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A
SS

S S
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� �

� �
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�

, (4.28)
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The diffraction strain can be calculated following equation (4.5) and the stress factors follow

from equation (4.18) (cf. also Chapter 2.1).

Constructing an effective grain-interaction model 

On the basis of the models for the four types of extreme grain interaction, an effective grain

interaction model can be constructed for a thin film (see discussion in Chapter 4.2.2). The

following example is relevant to the present work. 

The Reuss approach and the Vook-Witt approach are combined by assuming that a

volume fraction fR of the sample obeys the Reuss model and a volume fraction fVW obeys the

Vook-Witt model. Such a combined model leads, effectively, to partial in-plane Reuss-

behaviour: whereas the crystallites are tightly connected together with respect to the in-plane

direction in the Vook-Witt approach, the combination with the Reuss constraint gives the

crystallites some degree of freedom for in-plane deformation independent of the neighbouring

crystallites, by relieving the (unrealistic) constraint of identical planar strain for every

crystallite. 

A quantification of this effect of model mixing on the grain interaction can be achieved by

defining interaction parameters for the two principal directions:

� in-plane interaction parameter w
�
: equals 1 for a Voigt-type interaction (crystallites are

tightly connected together) and zero for a Reuss-type interaction (crystallites can deform

independently of neighbouring crystallites but their stresses are identical)
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� the out-of plane interaction parameter w
�

: definition analogous to the in-plane

parameter w
�

, i.e. w
�

 equals 1 for Voigt-type interaction and zero for a Reuss-type

interaction.

Combining the models for extreme types of grain interaction results in average values w
�

and w
�

 for the interaction parameters:

,i i
i

w f w��� �
(4.30)

,i i
i

w f w
� �

�� . (4.31)

In equation (4.30) and equation (4.31), the fi represent, like in equations (4.20) to (4.22) ,

volume fractions of grains obeying the grain-interaction model i:

1i
i

f �� . (4.32)

The four models for the extreme types of grain interaction are summarised, together with the

in-plane and out-of-plane interaction parameters, in table 4.1. 

For a given combination of grain-interaction models, the average interaction parameters can

be calculated following equation (4.30) and equation (4.31). However, it is obvious that the

same values of the interaction parameters can be realised by different combinations of the

grain-interaction models. As an example, 0.5w �
�

 and 0.5w
�
�  can be realised by the

effective model with 0.5Rf �  and 0.5Vf �  and by the effective model with 0.5VWf �  and

0.5IVWf �  as well. Numerical evaluations of the mechanical elastic constants A and B
Table 4.1: Grain interaction models (first column) with grain-interaction assumption for the in-

plane direction (second column, V...Voigt type of grain interaction, i.e. crystallites are tightly

connected, R...Reuss type of grain interaction, i.e. crystallites can deform freely) and for the

direction perpendicular to the sample surface (third column) and the corresponding grain-

interaction parameters w
�
 and w

�
 (fourth and fifth columns).

in-plane

direction

perpendicular

to sample surf.
w

�
w

�

Voigt V V 1 1

Reuss R R 0 0

Vook-Witt V R 1 0

inverse Vook-Witt R V 0 1
88



4. The determination of stresses in thin films; modelling elastic grain interaction

exhibit, that their values are practically independent of the choice of combination of models as

long as the same values of the interaction parameters w
�

 and w
�

 hold (see last two

columns of table 4.3 for an example; calculation using single crystal elastic constants for

copper taken from table 4.2). 

However, this does not hold for the diffraction strain (or the stress factors), as can be

seen in figure 4.2 (calculation using single crystal elastic constants for copper taken from

table 4.2): noticeable differences (large enough to be detected in a lattice strain measurement)

in the diffraction strain occur as function of sin2
� for different combinations of grain-

interaction models, although the same set of values holds for the parameters w
�

 and w
�

. 

This observation is not in contradiction to the (approximate) independence of the elastic

constants A and B for the type of grain interaction: the diffraction strain stems only from a

f s

f e

d

raction of all crystallites, whereas the mechanical elastic constants are calculated as average

or all crystallites. Therefore, diffraction strain analysis is a sensitive method to investigat

irection dependent grain interaction.

Table 4.2: Single crystal elastic constants (Meyers & Chawla, 1984) and anisotropy factor used.

The compliance matrix components sij have been given together with the anisotropy factor Ai (see

Chapter 4.3). The Voigt two-index notation (see, for example, Hauk, 1997) is used; to change to

the tensorial notation, the indices must be replaced following the scheme: sij � smnop, i�mn, j�op

with 1�11, 2�22, 4�12 and recognizing that sij=4smnop if i,j > 3.

s11 (TPa-1) s12 (TPa-1) s44 (TPa-1) Ai

Cu (fcc) 14.98 -6.29 13.26 3.21

Nb (bcc) 6.90 -2.49 34.20 0.55

Table 4.3: Macroscopic, mechanical elastic constants A and B according to the separate grain-

interaction models and two effective models (fR=fV= 0.5 and fVW= fIVW = 0.5) for an untextured

copper film. The single crystal elastic constants of copper given in Table 2 have been used.
89

fV=1 fR=1 fVW=1 fIVW=1 fR=fV= 0.5

0.5w w
� �
� �

fVW=fIVW = 0.5

0.5w w
� �
� �

A (TPa-1)  4.65  5.77  5.24  4.92  5.21  5.08

B (TPa-1) -4.50 -6.73 -5.68 -5.03 -5.62 -5.36
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4.3. Diffraction-strain simulations on the basis of the various grain-

interaction models

Based on equation (4.5), simulations of diffraction strain have been carried out for two

different cubic materials with two distinctly different extents of elastic anisotropy as

characterised by the anisotropy factor:

� �1111 1122

12122

C C

i C

s s
A

s
�

� . (4.33)

Niobium (Ai=0.49) and copper (Ai=3.20) were selected for the simulations. The single-crystal
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Figure 4.2: Calculated diffraction strain for the 111 reflection of an untextured copper film

subjected to a plane, rotationally symmetric, tensile stress of 100MPa for two effective grain-

interaction models: a combination of the Voigt and the Reuss model (fR=fV= 0.5, continuous line)

and a combination of the Vook-Witt and the inverse Vook-Witt model (fVW= fIVW = 0.5, dashed

line).
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elastic compliances corresponding to the C system have been summarised in table 4.2. For

most of the known materials, the anisotropy is in the range defined here by the “limiting”

values of Ai for niobium and copper. For each material, the (X-ray) diffraction strain was

calculated and has been presented as a function of sin2
� (in the so-called sin2

�-plot), for a

number of reflections. The calculations were performed assuming an average stress
S
�

� =100MPa for the film. In addition, the mechanical elastic constants A and B have been

calculated following equations (4.16) and equation (4.17). 

Copper Film

Copper is strongly elastically anisotropic: the anisotropy factor is much larger than one, i.e.

the <00l> direction is much softer than the <hhh> direction. The calculations were conducted

for an untextured copper film, imposing a tensile, rotationally symmetric in-plane stress of

100MPa. For an intrinsically elastically isotropic material, only straight, coinciding lines can

be expected in the sin2
�-plots. Clearly, as follows from figures 4.3a and 4.3b, in general the

results for the various types of grain interaction do not coincide, and also distinct curvature

occurs in the sin2
�-plots. 

Due to the elastic anisotropy of copper, the maximum (absolute) diffraction strain is

equal or higher for the 200 reflection than for the 111 reflection for a particular grain-

interaction model (note that this statement, in fact, holds not only for the maximum strain but

also for large parts of the sin2
�-range). Whereas, in the absence of texture, linear sin2

�-plots

are obtained for all reflections from the traditional models (Reuss, Voigt), this is not the case

for the direction-dependent grain-interaction models (Vook-Witt, inverse Vook-Witt; see

figures 4.3a, 4.3b, 4.3c and 4.3d; note that, although hardly visible, also in figure 4.3d a

curved behaviour can be observed). This result is caused by the macroscopic anisotropy of the

specimen, in case of direction-dependent grain interaction: the specimen presents

mechanically anisotropic behaviour when it obeys the Vook-Witt or the inverse Vook-Witt

grain-interaction models, whereas macroscopically isotropic behaviour results when the film

obeys one of the traditional grain-interaction models. 
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The (additional) effect of texture on the sin2
�-plots is demonstrated in figure 4.4; a

{111}-fibre-texture with a pole width of 5° half width at half maximum was assumed for the

calculation. The volume fraction of diffracting crystallites, as represented by the integrated

intensity of a diffraction line in a measurement, is indicated in the figures by the continuous

line. Major differences become evident upon comparing figure 4.3 and figure 4.4. As a

consequence of the presence of texture, the calculation of the diffraction strain, as well as its

measurement for a real sample with the texture considered, is not possible for all tilt angles �,

and therefore certain ranges of the sin2
�-plot cannot be accessed (see figures 4.4a, b, c and d).

The Reuss model yields non-linear sin2
�-plots for the 331 and the 420 reflections (figures

4.4c and 4.4d), whereas the 111 and the 200 reflections still exhibit linear behaviours (figures

4.4a and 4.4b). This non-linearity observed for the Reuss model is a consequence of the

texture, leading to an anisotropic (i.e. transversely isotropic) mechanical behaviour of the

film. For the Voigt model, linear sin2
�-plots are obtained independently of the texture. 
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Figure 4.3: Untextured copper film subjected to a plane, rotational symmetric state of stress

(tensile stress, 100MPa). Simulations of the diffraction strain hkl
�
� versus 2sin � (‘ 2sin � -plot’) for

(a) the 111, (b) the 200, (c) the 331 and (d) the 420 reflection. A legend indicating the symbols

used for the different grain-interaction models has been given in the figures.
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Figure 4.4: Textured copper film (Gaussian {111}-fibre texture, 5° pole half width at half

maximum) subjected to a plane, rotational symmetric state of stress (tensile stress, 100MPa).

Simulations of the diffraction strain hkl
�
�  versus 2sin � (‘ 2sin � -plot’) for (a) the 111, (b) the 200, (c)

the 331 and (d) the 420 reflection. A legend indicating the symbols used for the different grain-

interaction models has been given in the figures. The relative integrated intensity is also shown in

the figures (lines without dots; arbitrary units).
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A general observation is, that the sin2
�-plots of the Vook-Witt model and those of the

nverse Vook-Witt model exhibit curvatures with opposite signs for large portions of the

in2
�-range.

The macroscopic, mechanical elastic constants A and B are summarised (for both

ases: no texture and fibre texture) in table 4.4 for the grain-interaction models Voigt, Reuss,

ook-Witt, inverse Vook-Witt.  The mechanical elastic constants are bounded by the

onstants calculated according to the Voigt and the Reuss model. Due to the pronounced

ntrinsic elastic anisotropy of copper, the macroscopic elastic constants of the textured film

iffer significantly from those for an untextured film.
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Niobium Film

Diffraction-strain simulations have been conducted also for an untextured film and a film with

fibre texture. For niobium, a bcc-metal, the occurrence of a {110}-texture is more likely than

the occurrence of a {111}-texture; thus, a {110}-fibre texture with a pole width of 5° half

width at half maximum was used. For niobium, the anisotropy factor is smaller than one, i.e.

the <00l> direction is stiffer than the <hhh> direction. In the absence of texture, linear sin2
�-

plots are obtained for all reflections from the traditional models (Reuss, Voigt); this is not the

case for the direction-dependent grain-interaction models (Vook-Witt, inverse Vook-Witt, see

figures 4.5a, b, c and d; note that, although hardly visible, also in figures 4.5a and d a curved

behaviour can be observed). Due to the elastic anisotropy of niobium, the maximum

(absolute) diffraction strain is equal or higher for the 222 reflection than for the 200

reflection.

The effect of texture on the sin2
�-plots is presented in figure 4.6: analogous effects as

for copper can be seen: the Voigt model yields linear sin2
�-plots for all reflections; the Reuss

model results in non-linear sin2
�-plots for a textured film for the 110- and the 321-reflection,

whereas the sin2
�-plot for the 200 and the 222 reflections is linear. Again, as a general

observation, the sin2
�-plots of the direction dependent grain-interaction Vook-Witt and

inverse Vook-Witt models exhibit curvatures with opposite signs for large portions of the

Table 4.4: Macroscopic, mechanical elastic constants A and B of a copper film (untextured and

fibre textured; {111} fibre texture with a pole width of 5° half width at half maximum) according

to the grain-interaction models Voigt, Reuss, Vook-Witt, inverse Vook-Witt and Neerfeld-Hill.

Single crystal elastic data taken from Meyers & Chawla (1984).

Cu R V VW IVW NH

no A (TPa-1) 5.77 4.65 5.24 4.92 5.21

texture B (TPa-1) -6.73 -4.50 -5.68 -5.03 -5.62

fibre- A (TPa-1) 3.89 3.83 3.86 3.84 3.85

texture B (TPa-1) -2.98 -2.87 -2.92 -2.88 -2.93
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Figure 4.5: Untextured niobium film subjected to a plane, rotational symmetric state of stress

(tensile stress, 100MPa). Simulations of the diffraction strain hkl
�
�  versus 2sin � (‘ 2sin � -plot’) for

(a) the 111, (b) the 200, (c) the 331 and (d) the 420 reflection. A legend indicating the symbols

used for the different grain-interaction models is given in the figures.

Table 4.5: Macroscopic, mechanical elastic constants A and B of a niobium film (untextured and

fibre textured; {110}-fibre texture with a pole width of 5° half width at half maximum) according

to the grain-interaction models Voigt, Reuss, Vook-Witt, inverse Vook-Witt and Neerfeld-Hill.

Single crystal elastic data taken from Meyers & Chawla (1984).

Nb R V VW IVW NH

no A (TPa-1) 5.95 5.57 5.81 5.66 5.76

texture B (TPa-1) -8.06 -7.30 -7.78 -7.49 -7.68

fibre- A (TPa-1) 6.32 5.99 6.11 6.30 6.16

texture B (TPa-1) -8.80 -8.14 -8.38 -8.75 8.47
95

The macroscopic, mechanical elastic constants A and B are summarised (for both

ases: no texture and fibre texture) in table 4.5 for the grain-interaction models Voigt, Reuss,

ook-Witt, inverse Vook-Witt. 
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Due to the intrinsic elastic anisotropy of niobium, the elastic constants of the textured

film differ from those obtained for an untextured film (cf. above results for copper).
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Figure 4.6: Textured niobium film (Gaussian {110}-fibre texture, 5° pole half width at half

maximum) subjected to a plane, rotational symmetric state of stress (tensile stress, 100MPa).

Simulations of the diffraction strain hkl
�
�  versus 2sin � (‘ 2sin � -plot’) for (a) the 110, (b) the 200,

(c) the 222 and (d) the 321 reflection. A legend indicating the symbols used for the different grain-

interaction models has been given in the figures.
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4.4. Stress analysis on the basis of an effective grain-interaction model

Generally, a stress analysis can be done as follows (for a review of different methods of

diffraction stress analysis, see also Welzel et al., 2002). When the diffraction (X-ray) elastic

constants (in the case of macroscopically elastically isotropic specimens; cf. equation (4.12))

or stress factors (in the case of macroscopically elastically anisotropic specimens; cf. equation

(4.10)) are known, either by measurement or by calculation from single crystal elastic data by

adopting a grain-interaction model, the unknown stress tensor components can be obtained as

fit parameters in a (least-squares) minimisation of the difference 2
� ,  

� � � �� �
2

2 2 , , , , ,calc S meas
i i i

i
hkl hkl� � � � � � � � �� �� (4.34)

where meas
i� represents the measured lattice strains. 

The index i stands for all measured lattice strains (for all different �, � and/or hkl analysed).

The i� are weighing factors which can be used to reflect the statistical relevance of the

measured strains � �, ,meas
i hkl� � �  in the result of the minimisation and could correspond to the

inverse of the standard deviations of the measured strains.

For the case of macroscopically elastically anisotropic specimens, the diffraction strains, calc
i� ,

have to be calculated following equation (4.12)

� �, , , ( , , )calc S S
i kl klhkl F hkl� � � � � � �� . (4.35)

For the case of macroscopically elastically isotropic specimens, the diffraction strains, calc
i� ,

can be calculated following equation (4.10): 

� � � �� �
� � � �� �

� �

2

2

2 2 21
11 12 222

21
13 23 332

1 11 22 33

, , , sin cos sin 2 sin

cos sin 2 sin sin 2 cos

calc S hkl S S S
i

hkl S S S

hkl S S S

hkl S

S

S

� � � � � � � � � � �

� � � � � � � �

� � �

� � � �

� � �

� � �

(4.36)

Note that equation (4.35) could be used as well in this case, but the use of equation (4.34),

based on �- and �-independent X-ray elastic constants may be more convenient.  

The following variant of the above-described method is relevant to the present work. If

the type of grain interaction, i.e. the parameters fi (cf. Chapter 4.2.2), are not known a priori,

they can be used as fitting parameters in addition to the unknown stress tensor components

(cf. Serruys et al., 1989). It is suggested to use measured data from multiple reflections
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simultaneously in the fitting, which can considerably improve the uniqueness of the obtained

fit results. 

In the present work, the analysis has been focused on untextured and fibre textured

specimens subjected to a plane, rotationally symmetric state of stress. In this case, only one

stress tensor component, 11 22
S S S

� � �� �
�

, has to be determined. Thus, following the above

described method, four parameters ( S
�

�
 and the three volume fractions fi, cf. Chapter 4.2.3.2)

have to be determined on the basis of equation (4.34). 

The required minimum number of reflections and the minimum number of lattice-

strain measurements at different tilt angles for a particular reflection cannot be given in

general. However, it should be noted in this context that the hhh and 00l reflections always

yield linear sin2
�-plots (in the absence of shear stresses, which lead to elliptical sin2

�-plots),

independent of texture, according to a grain-interaction model consisting of a mixture of only

the  Reuss and Voigt models. For that reason, deviations of the actual grain interaction from

these traditional models (Reuss, Voigt) are easily detected from lattice-strain measurements

using the hhh and 00l reflections: whenever non-linear sin2
�-plots are obtained for these

reflections (and the influence of other sources of curvature, like depth gradients, can be

excluded), one of the direction-dependent grain-interaction models has to be incorporated in

the analysis. 
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4.5. Experiment

4.5.1. Copper-layer preparation

Copper films of thickness 500nm were sputter deposited onto pieces (size 14mm x 14mm) of

an thermally oxidised <510>-silicon wafer using a dc-magnetron with a copper target (purity

99.95 at.-%) in an ultra high vacuum chamber (base pressure below 2•10-10 mbar). In one

deposition run, four samples were prepared. The magnetron was operated at 100W using

precleaned (Messer Griessheim Oxisorb gas cleaning cartridge) Ar 6.0 with a pressure of

3.5•10-3 mbar as a sputter gas. Immediately before the layer deposition the substrates were

cleaned by heating them to 673K and, after cooling down to room temperature, by argon ion

bombardment using an ion gun. The film thickness was determined by calibration of the

deposition rate using a stylus profilometer (Dektak). For this purpose a sample with a step in

height was produced.

4.5.2. Focused ion beam microscopy

The microstructure (grain shape and size) was investigated by using a FEI Fib 200 ion beam

workstation. The workstation allows cutting cross-sections and their imaging with the help of

a Ga-ion beam. The images were taken employing an ion beam current of 67pA at a viewing

angle of 45� after cutting a cross section. 

4.5.3. X-ray diffraction measurement

The X-ray diffraction measurements were carried out using a Philips X’Pert MRD Pro

diffractometer equipped with an Eulerian cradle (4-circle goniometer). Cu K� radiation

emerging from the point focus of a sealed X-ray tube operated at 45kV and 40mA was

paralleled by an X-ray lens. The lens aperture had a diameter of approximately 7mm. The size

of the beam was adjustable by crossed slits placed directly in front of the lens and the size was

set to 4mm by 4mm for all measurements. The diffracted beam passed a parallel plate

collimator (0.27° acceptance angle) and a flat graphite analyser set to select CuK� radiation

before being detected by a proportional counter. Diffraction patterns were recorded in

continuous mode. The sample tilt angle � was varied in step mode from 0° to 90° with a step

size of 3°. 
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For some reflections, the measurements were performed also at negative � and at

various � to verify that the results obtained were independent of the sign of the tilt angle and

of the selection of a particular � angle. The measurement ranges were at least ten times the

full width at half maximum of the �1 peak of a diffraction line. The scan parameters for the

measured reflections have been gathered in table 4.6. 

4.5.3.1 Determination of peak position and integrated intensity

Diffraction patterns were evaluated by fitting split Pearson VII functions (for the definition of

the profile function, see for instance Sonneveld et al., 1991) using a custom peak fit program.

Peak positions, heights, half widths at half maximum (HWHM), asymmetries and shape

parameters were refined. No significant differences of the peak position and the integrated

intensity were observed for symmetric and asymmetric peak fits. The K�2 component was

taken into account by simultaneous fitting of two Pearson VII functions, one for each

radiation component. A K�2:K�1 intensity ratio of 0.5 was assumed (this assumption was

checked by setting the ratio free as a fit parameter for some evaluations). For each diffraction

peak (or group of overlapping diffraction peaks) a linear background was fitted. 

4.5.3.2 Determination of the Orientation Distribution Function

The integrated areas of six diffraction lines (see table 4.6) were determined by peak fitting

(see above). The integrated intensity depended on the sample tilt angle � but was independent

of the rotation angle �  (see Chapter 4.6). Thus, it can be concluded that the layer exhibited a

Table 4.6: Measurement parameters for diffraction measurements of lattice strain from a

sputtered, 500nm thick copper film: hkl, 2�-range, step size(�2�) and counting time per step.

reflection 2�min (°) 2�max (°) steps size (°) counting time (s)

111 40.5 46.5 0.05 20

200 47.5 53.5 0.05 25

220 71.0 77.0 0.05 25

311 87.0 93.0 0.05 30

331 131.0 141.0 0.1 50

420 140.0 150.0 0.1 50
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fibre texture. In this case, pole figures exhibit rotational symmetry (for rotation around the

fibre axis) and the pole figure can be constructed from only the �-dependency of the

integrated intensity. 

Pole figures for the 111 and the 200 reflections were generated from the measured

integrated intensity of the diffraction lines measured as a function of the tilt angle �

considering the fibre-symmetry, i.e. the same integrated intensity was attributed to every � for

a given �. A step size of 3° was used in � and �. The pole figures obtained in this way cannot

be used without more ado for the calculation of the orientation distribution function, because

instrumental effects obstruct an interpretation of integrated intensities in terms of volume

fractions. The pole figures have to be corrected for absorption, the increase of illuminated

sample area upon tilting the sample and instrumental intensity loss occurring if a fraction of

the incident beam misses the sample surface or a fraction of the diffracted beam misses the

detector. For details of the corresponding correction procedure applied here, see Chapter 5. 

For the correction of the integrated intensities for instrumental intensity loss, standard

measurements for eight reflections from a texture-free tungsten powder sample were used.

The absorption corrections were performed using the linear (bulk) absorption coefficient of

copper (0.04559 1/�m, Leroux & Thinh, 1977) and the sample thickness value of 500nm. The

ODF was calculated from the corrected pole figures (111 and 200 reflections) using the

software package X’Pert Texture (Philips Analytical, Almelo, The Netherlands). The use of

more than two reflections for texture analysis did not change the resulting orientation

distribution function, thus two reflections are sufficient for the ODF calculation (see below).

The ODF was exported in ASCII-format (on a grid with 3° spacing for the three Euler angles)

and used in the calculations of the elastic constants (see equations (4.16) and (4.17)), the

diffraction strain (see equation (4.5)) and the X-ray stress factors (see equation (4.18)).

4.6. Results and discussion

4.6.1. Focused ion beam microscopy

An image of the microstructure is shown in figure 4.7. The top view and the cross section can

be seen in one image. To that end, a rectangular section of the layer was removed using a Ga

ion sputter beam. 
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The layer has a columnar microstructure

extending from the interface to the layer surface. T

film thickness, 500nm. 

4.6.2. Texture
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texture components. The integrated intensity as me
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 Figure 4.8: Textured copper film. The experimentally determined integrated intensity for six

diffraction peaks as a function of the sample tilt angle ��: as measured (open circles), as

measured and corrected for absorption and instrumental aberrations (filled circles), and  as

recalculated from the corresponding orientation distribution function (dashed line). The

orientation distribution function was calculated on the basis of pole figures for the 111 and the

200 reflection.
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learly, the ODF, as derived from the 111 and the 200 reflections, provides a very good

epresentation of the texture of the specimen; excellent agreement is observed also for the

ntensities of the reflections that have not been used for the calculation of the orientation

istribution function. It should be recognised that the correction of the measured intensity (cf.

hapter 4.5.3.2) is a prerequisite to arrive at such a consistent texture representation.

.6.3. Stress

s the diffraction-line positions for a particular reflection hkl and tilt angle � were found to

e independent of the rotation angle �, the stress state is rotationally symmetric. Shear

omponents do not occur because no splitting of the sin2
�-plots for positive and negative �,

ypical for the presence of shear stresses, was observed. It follows, that only one
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(independent) stress tensor component had to be determined, namely the stress parallel to the

substrate, 11 22
S S S

� � �� �
�

. 

The lattice strain hkl
�
� was calculated from the measured hkl lattice plane spacing hkl

md

and the strain-free hkl lattice plane spacing  0
hkld :

0

0

hkl hkl
hkl m

hkl

d d
d�

�

�

� (4.37)

To this end, the spacing of the hkl lattice planes was calculated from the measured peak

position 2 hkl
m�  by using Bragg’s law (a wavelength of 1.540562Å for the K�1 component of

copper radiation was used (International Tables For X-ray Crystallography, 1974). For the

determination of 0
hkld , see below.

For an accurate determination of the stress, the lattice- (diffraction-) strain

measurements should have accuracy in the order 10-5. The measurement of peak shifts (�2�)

with the required accuracy poses no problems when the diffractometer is well aligned (note

that alignment errors are less critical in the parallel beam set-up used as compared to a

focusing, e.g. Bragg-Brentano geometry), sufficiently long counting times are used and the

measurement temperature and the temperature of the cooling water of the X-ray source are

controlled to within a few Kelvin. The absolute determination of the peak position is, in

general, more difficult, as instrumental effects (in particular a shift of the zero position of the

goniometers 2� scale and the instrumental contribution to the peak broadening), unimportant

for tracing peak shifts, can be of crucial importance for the absolute determination of the peak

position. However, when multiple reflections are combined in a stress analysis, as suggested

in Chapter 4, absolute peak positions have to be measured very accurately.

Two approaches have been followed for dealing with this difficulty.

(i) One possibility is to use the strain free lattice spacing 0
hkld  for each sin2

�-plot used in a

stress analysis as an additional fit parameter. In this way, no accurate determination of the

absolute peak position is required. In this case, ten fit parameters are determined from six

sin2
�-plots, each corresponding to one hkl reflection: six strain free lattice spacings 0

hkld , the

stress parallel to the substrate S
�

�
 and three (independent) volume fractions pertaining to the

effective grain-interaction model involved (i.e. the Voigt, Reus, Vook-Witt and inverse Vook-

Witt contributions). Note that the strain free lattice spacings have no direct physical meaning
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and cannot be used for the calculation of the lattice constant a, as they are biased by

instrumental errors. 

Following approach (i), the measured sin2
�-plots for six reflections have been presented

in figure 4.9 together with the simulation corresponding to the fit. Clearly, a very good

agreement between experiment and fit has been achieved. The results of the fit are: 

� S
�

�
=165MPa (tensile), 

� volume fractions for the grain-interaction models:
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 Figure 4.9: Textured copper film. Measured (open circles) and simulated (dashed line) diffraction

strain data for six different reflections as function of sin2
� (sin2

� - plots). For details of the

simulation, see text.



4. The determination of stresses in thin films; modelling elastic grain interaction

106

(ii) Considering that the only significant instrumental error for the parallel beam geometry

used in the investigations is a zero-shift of the goniometer 2�-scale, the number of fit

parameters can be reduced. Thus, an alternative approach can be realised by taking the zero-

shift, 0�� , as an additional fitting parameter together with the strain free lattice constant a. 

In this case, the lattice strain derived from the hkl planes, hkl
md , is calculated as follows:

� �� � � �

� �

2 2 2
0

2 2 2

2sin 2 / 2hkl

hkl

a

h k l

a

h k l

�

�

�

� �

�

�

�� � �

�

� �

, (4.38)

where 2 hkl
�
�  is the diffraction angle of the hkl reflection at tilt �.

In this approach, the following fit parameters occur:  the strain-free lattice constant,

the zero-shift of the goniometers 2�-scale, the stress parallel to the substrate S
�

�
 and the three

(independent) volume fractions pertaining to the grain-interaction models involved. Thus the

number of fitting parameters is six, as compared to ten in approach (i). 

Following approach (ii), very good agreement between experiment and fit occurs as well.

The results of the fit are: 

� S
�

�
=165MPa (tensile), 

� volume fractions for the grain-interaction models,

0.6, 0.3, 0.1, 0.0VW R IVW Vf f f f� � � � ,

� strain free lattice parameter 0a =3.6153Å (literature value: 3.615Å, Powder Diffraction

File, Release 2000, International Centre for Diffraction Data),

� goniometer 2�-scale zero shift = 0.01° (this zero shift value is compatible with results

from separate recordings of the position of the direct beam). 
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4.6.4. Discussion

Evidently, the traditional models cannot describe the measured sin2
�-plots of the thin copper

film analysed. Of course, fitting to only one sin2
�-plot using only one of the traditional grain-

interaction models (this is the procedure usually applied in the literature) is possible, see

figure 4.10 for an example, but it is impossible to obtain a consistent fit for a single traditional

grain-interaction model by fitting simultaneously to all measured sin2
�-plots (one for each

measured reflection). This emphasises the need for the procedure of diffraction-stress analysis

proposed in this paper.

In particular is should be noted, that any combination of the Reuss model with the

Voigt model (e.g. the traditional Neerfeld-Hill model) predicts linear sin2
�-plots for the hhh

and 00l reflections; obviously, the measured sin2
�-plots for the 111 and 200 reflections

cannot be described by straight lines. Only the direction-dependent grain-interaction models

are compatible with the curved behaviour in the sin2
�-plots observed for these two

reflections. 

An interpretation of the parameters representing the volume fractions of the grain-

interaction models, 0.6, 0.3, 0.1, 0.0VW R IVW Vf f f f� � � � , may be as follows. The in-plane

interaction parameter, w
�
 (cf. equation (4.30)), equals 0.6 whereas the out-of plane interaction

parameter, w
�

(cf. equation(4.31)), equals 0.1. In view of the discussion given in Chapter

4.2.3.2 this indicates that the in-plane crystallite coupling is comparable to a bulk material

whereas the out-of plane crystallite coupling allows relatively unconstrained crystallite

deformation (note that 0w
�
�  would correspond to completely unconstrained crystallite

deformation). These findings are compatible with the microstructure of the layer, exhibiting a

more or less columnar microstructure with grain boundaries extending from the layer-

substrate interface to the surface. 
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Figure 4.10: Textured copper film. Measured (open circles) and simulated (dashed line) diffraction

strain data for the 420 reflection as function of sin2
� (sin2

� - plot). Clearly, the Neerfeld-Hill model

is able to provide a good simulation of the sin2
� - plot for only one reflection. However, the

Neerfeld-Hill model fails if multiple reflections are considered.
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4.7. Conclusion

� The traditional grain-interaction models due to Voigt, Reuss, Neerfeld-Hill and

Eshelby-Kröner can be inappropriate for the stress analysis in thin films by X-ray

diffraction due to the assumption of isotropic grain interaction, which is not

compatible with the columnar microstructures frequently observed in thin films. 

� The Vook-Witt approach to grain interaction, i.e. equal in-plane strain (parallel to the

substrate) and zero stress perpendicular to the film surface for all crystallites, is the

first direction-dependent grain interaction taking the microstructure of a (columnar)

thin film into account. The model predicts only transversely isotropic macroscopic

(mechanical) properties reflecting the microstructure and thus the model can explain

occurrence of curved sin2
�-plots in the absence of texture. In analogy with the

pendants formulated by Voigt and Reuss for grain interaction, for the case of

transverse isotropy in this paper the inverse Vook-Witt grain-interaction model has

been proposed, where all crystallites in a (thin layer) specimen can deform freely with

respect to the in-plane direction, whereas they are tightly connected together with

respect to the perpendicular direction.

� The traditional models of Voigt and Reuss, the recently proposed Vook-Witt model

and the inverse Vook-Witt model proposed in this paper imply extreme grain-

interaction assumptions. However, extreme grain-interaction assumptions are

incompatible with physical reality. In this paper, an average, ‘effective’ grain-

interaction model is proposed that consists of a linear combination of basic, extreme

models with volume fractions as weighing factors. Four basic grain-interaction models

have to be taken into account for surface-adjacent polycrystals as a (columnar) thin

film, recognizing the occurrence of two principal directions (in-plane and

perpendicular to the (film) surface) and two extremes of grain interaction (fully

unconstrained (Reuss) and fully constrained (Voigt)). 

� The type of grain interaction, i.e. the parameters fi, representing the fractional

contributions of the extreme grain-interaction models to the overall grain interaction,

can be determined in the diffraction-stress analysis in addition to the unknown stress

tensor components. It is demonstrated in this work that diffraction-stress analysis (of

thin films) can best be performed by the simultaneous use of multiple reflections in a

fit procedure. Fitting to only one sin2
�-plot can lead to fortuitous, seemingly good fits

that are incompatible with physical reality.
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� The proposed effective grain-interaction model has been applied to experimental

lattice-strain measurements of a fibre textured copper layer. The measured lattice

strains, represented as sin2
�-plots, exhibit curvature (in particular for the 111 and the

200 reflections), which is incompatible with the traditional models of grain interaction.

On the basis of the effective grain-interaction model, a consistent, simultaneous

analysis of several sin2
�-plots is possible. The grain-interaction parameters used for

fitting the measured sin2
�-plots indicate that for the copper film investigated

contributions of three types of grain interaction are significant: a dominating Vook-

Witt ( 0.6VWf � ), a distinct Reuss ( 0.3Rf � ) and a small inverse Vook-Witt

( 0.1IVWf � ) type of grain interaction have been determined. These results imply that

the grain interaction parallel to the surface is constrained and of mixed nature

( 0.6w �
�

), whereas the grain interaction perpendicular to the surface is almost

unconstrained ( 0.1w
�
� ). This is the first time that anisotropic grain interaction has

been analysed quantitatively. 
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5. Use of Polycapillary X-Ray Lenses in the X-Ray Diffraction

Measurement of Texture

 

U. Welzel &  M. Leoni

Abstract
Corrections for instrumental aberrations of X-ray diffraction texture measurements (pole

figure measurements) conducted in quasi-parallel beam geometry using an X-ray lens have

been investigated on the basis of measurements on (texture-free) reference samples.

It has been shown that a defocusing correction, which is a major correction for pole figures

recorded with divergent beam geometries, is not necessary when a beam paralleled by an X-

ray lens is used. In this case, the major instrumental sources of error stem from the

illumination of areas outside the sample surface, i.e. the finite sample size, and the finite area

of the detector, both giving rise to a reduction of the recorded signal. Two correction

procedures for this reduction, an experimental one and a numerical one, have been described

and tested.
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5.1.Introduction

X-ray diffraction texture analysis is based on the measurement of pole figures for one or more

(dependent on the texture symmetry) reflections of the sample under investigation.

Diffractometers equipped with an Eulerian cradle and crossed slits for defining the size and

divergence of the incident beam are the standard equipment for recording pole figures with

the reflection technique (Schulz, 1949). Due to the Bragg Brentano geometry often employed

in these instruments (see for example Bunge, 1982b, 1999), pole figures are severely affected

by instrumental aberrations and have to be corrected before quantitative use. 

A major instrumental aberration is the defocusing of the diffracted beam in a texture

measurement: a  broadening of the diffracted beam upon tilting the sample arises as parts of

the sample move away from the focusing circle. This causes a reduction of the recorded

intensity  upon specimen tilting, when a fraction of the broadened diffraction profile does not

pass the receiving slit. Various publications have  paid attention  to the correction of measured

pole figures for defocusing (see, for example, Chernock & Beck, 1952, Gale & Griffiths,

1960, Holland, 1964, Tenckhoff, 1970, Holt & Winegar, 1977, Ortiz & Hermida, 1981, Lahn

& Hougardy, 1999). The extent of defocusing depends on several parameters: settings of the

diffractometer optics, sample contribution to the width of the diffraction line (‘sample

broadening’), diffraction angle, illuminated sample size and misalignments of the

diffractometer. In particular, misalignments and sample size effects not taken properly into

account can make the application of analytical corrections unreliable (Ortiz & Hermida, 1981,

Hermida, 1982, Kurtasov et al., 1983). Experimental correction methods for defocusing are

based on texture-free reference samples with a line width close to that of the sample under

investigation. However, the similarity of the line width of the reference and the sample under

investigation can be a requirement difficult to meet. 

Novel X-ray optical components, such as polycapillary collimators (‘X-ray lenses’)

have recently been introduced (see, for instance, Kumachov &  Komarov, 1990, Kogan &

Bethke, 1998, Scardi et al., 2000), providing higher intensity than traditional optics based on

crossed slits. Further, the (quasi-) parallel beam geometry realised by means of these optics is

less sensitive to sample displacements, as compared to focusing geometries and therefore

instrumental aberrations are reduced. However, as the beam, when using an X-ray lens, is not

perfectly parallel but exhibits a small residual divergence (‘quasi-parallel beam’), aberrations

are not completely eliminated (Scardi et al., 2000). 

An X-ray lens is composed of a large number (up to millions) of individual capillaries
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(hollow fibres). When the condition for total reflection is met (i.e. the incident angle of the

beam with respect to the capillary wall is below the angle for total reflection of the material

composing the capillary), the capillaries guide the X-rays with a very small intensity loss by

successive total reflections at the (inner) walls. Since photons with energies above a certain

threshold (given by the fibre diameter and the angle for total reflection) are highly absorbed

by the capillary walls as the condition for total reflection is not met, the lens acts also as an

energy filter. The curvatures of the capillaries are arranged such that a fraction of the

divergent beam emitted from the focus of a X-ray tube is converted to a quasi-parallel beam

(see, for instance, Kumachov &  Komarov, 1990, Downing et al., 1996).

The application of X-ray lenses, which have now been commercially available for a

few years, is not yet frequent in texture analysis. The present paper presents, on the basis of

measurements performed with texture-free reference samples, an analysis of the corrections

for instrumental aberrations of texture measurements (pole figures) if an X-ray lens is

employed. It will be demonstrated that the defocusing (i.e. the broadening of the diffraction

line, see also discussion in Chapter 5.2.) of the diffracted beam, a major problem for

measurements performed in focusing geometry (e.g. Bragg-Brentano geometry), is eliminated

by the quasi-parallel beam. A reduction of the measured intensity occurs in a pole-figure

measurement when areas outside of the sample surface are illuminated or when only a

(specimen orientation dependent) fraction of the diffracted beam is collected by the detector

due to its finite size. Correction procedures for the reduction of the intensity upon specimen

tilting, based on reference measurements as well as geometrical considerations, and

experimental validation are presented.

 

5.2. Theoretical background

A pole figure 
02 ( , )P

�
� �  for a particular hkl reflection (identified by the Bragg angle 02�  in

the following) is a representation of the volume fraction of diffracting crystallites which have

their (hkl) planes oriented normal to the diffraction vector as a function of angles � and �,

where � is the inclination angle of the sample surface normal with respect to the diffraction

vector and � denotes the rotation of the sample around the sample surface normal. A

particular set of (hkl) lattice planes is selected by the choice of the diffraction angle 2�

according to Bragg’s law. The integrated intensity of a hkl reflection is proportional to the

volume fraction of crystallites (within the irradiated volume) which have their (hkl) planes
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oriented normal to the diffraction vector. Thus, for a pole figure it is necessary to consider

integrated intensities. 

However, measured pole figures have to be corrected  for effects, which hinder in

direct interpretation of the recorded integrated intensity 
02 ( , )

meas

P
�

� � in terms of (orientation

dependent) volume fractions (see, for instance, Bunge, 1982b, 1999):

Absorption. Because of the tilt-angle dependence of the absorption of the incident as well as

of the diffracted beam along the path through the sample, an absorption factor for a

(homogeneous) layer with thickness d can be given by (see, for instance, Bunge, 1982b):

( , ) exp dA d � � �

�

� �
� � �� �

� �
. (5.1)

The corresponding correction involves division of the measured intensity by A. The

penetration depth � is given by (Hauk, 1997)

sin cos

2 sample

� �
�

�
�

�

�
� �
� �
� �

. (5.2)

� depends on the mass absorption coefficient (��	) of the material composing the sample and

the (actual) density sample� �of the sample.

If the sample thickness d is much larger than the  penetration depth �, equation (5.1) becomes:

( , ) dA d �

� ������
� . (5.3)

Geometry of illuminated and detected areas. The illuminated area G of the sample is given by 

0
1

sin cos
G G

� �
� , (5.4)

where 0G  represents the cross-section of the incident beam. Correcting for the illuminated

area involves division of the measured intensity by G. 

Note that  equation (5.4) holds only as long as the illuminated area remains within the

sample perimeter. When a fraction of the incident beam misses the sample, equation (5.4) is

no longer valid. An  analogous problem arises (in the parallel beam geometry, cf. discussion

below) when the irradiated sample area is larger than the area ‘visible’ for the detector. Then,

an additional correction is necessary for the specimen orientation dependence of the diffracted
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beam fraction missing the detector. The corresponding correction procedures will be

discussed in detail in Chapter 5.5 Note that, in case equation (5.4) fails, G can also depend on

the rotation angle �.

Defocusing. For a parallel beam geometry, defocusing, strictly speaking, cannot occur as there

is no focusing condition that could be violated. Thus, the use of parallel beam diffraction

would result in a diffraction line shape independent of the actual sample tilting and rotation.

However, as the beam emerging from an X-ray lens is not perfectly parallel but quasi-parallel

(i.e. it exhibits a small residual divergence, see Chapter 5.4) and the diffracted beam optics

accept a small divergence of the diffracted beam, the instrumental effects of tilting and

rotating the sample in a texture measurement on peak shape (and  position) are not obvious.

These effects will be studied experimentally in Chapter 5.4.2.

Note that in parallel beam geometry, in contrast to a focusing geometry, the

measurement of integrated intensities of a diffraction line is not possible if the diffraction

angle, 2�, is kept fixed (using a focusing geometry, the integrated intensity can be measured

for a fixed diffraction angle 2� by making the receiving slit large, so that the slit comprises

the entire diffraction line). However, as long as the shape of the diffraction line is invariant

(i.e. independent of sample tilting and rotation), the integrated intensity is proportional to the

peak intensity and therefore recording the recording the intensity of a diffraction line is

equivalent to the measurement of the integrated intensity.

In order to comply with the conventions used in the literature on texture analysis, a

correction for an intensity loss due to a change in the width of  the diffraction line (with

respect to 2� ) will be referred to as defocusing correction in the following, although one

could call this as well a ‘geometrical correction’. If the measured intensity is reduced when

areas outside of the sample surface are illuminated or when only a (specimen orientation

dependent) fraction of the diffracted beam is collected by the detector due to its finite size for

a measurement in (quasi-) parallel beam geometry (whereas the width of the diffraction line

with respect to the 2� scale remains unchanged), this effect will be referred to as a

geometrical aberration. In the following, these two (geometrical) sources of error  (i.e.

fraction of the incident beam not ‘hitting’ the specimen and fraction of the illuminated sample

area not ‘seen’ by the detector) will be named instrumental intensity loss.

Taking all corrections into account, the corrected pole figure 
2 0

( , )corrP
�

� �  for a given

reflection can be expressed in terms of the measured pole figure 
2 0

( , )measP
�

� �  by:
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� �
2 0

2 0

0 0 0

( , )
( , )

2 , , , , (2 , , ) (2 , , )

meas
corr

sample

P
P

A d G D

�

�

� �
� �

�
� � � � � � � � �

�

�
� �
� �
� �

(5.5)

where A, G and D represent the effects of absorption, geometry and defocusing, respectively.

Note that 
2 0

( , )corrP
�

� �  is normalised to the diffracting volume.

5.3. Experimental

A set of texture-free powder samples was used. These samples were prepared by filling square

or rectangular cavities cut in an aluminium disk, with tungsten powder (Merck, sample A1,

area 14x14mm2 and sample A2, area 8x22mm2) and germanium powder (Johnson-Matthey,

sample B, area 14x14mm2). A thin layered sample (consisting, idealised, of a mono-layer of

powder particles) was prepared by sedimentation of silicon powder (Ventron, sample C, area

14x14mm2) onto a silicon wafer using ethanol as dispersing agent. The absence of texture was

checked for the tungsten, the germanium and the silicon samples by a Rietveld-refinement of

diffraction patterns collected with Cu K�-radiation (for the tungsten and germanium samples)

and with Co K�-radiation (for the silicon sample) on a Philips X’Pert MPD �
-�

diffractometer in Bragg-Brentano geometry using the Rietveld-program GSAS (Larson & von

Dreele, 1994). No texture effects had to be taken into account in the Rietveld-refinement, thus

the refinement indicates that the samples are untextured.

Square- or rectangular-shaped samples are chosen here because correction with respect

to the rotation � of the sample around its surface normal is investigated (no such correction

would be necessary for round-shaped samples). However, one of the two correction strategies

presented in this paper can be applied to samples of any shape. 

A Philips X’Pert MRD diffractometer equipped with an Eulerian cradle (4-circle

goniometer) was used for texture measurements. Cu K�-radiation emerging from the point

focus of a sealed X-ray tube operated at 45kV and 40mA was converted into a quasi-parallel

beam by a commercially available X-ray lens (Philips). The lens used in these investigations

had a diameter of  approximately 7mm. The size of the beam was adjustable to a square or

rectangle by crossed slits placed in front of the lens (slit size was adjustable from 0mm to

10mm). Note that only if the size of both slits is smaller than the lens diameter divided by

2 , the incident beam has  a square- or rectangular cross section. It is recommended to use

slit settings significantly smaller than the size of the lens, (e.g. 4mm x 4mm) to obtain a well-

shaped beam and avoid inhomogeneous transmission properties of the lens that can occur in
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the outer lens corona. The diffracted beam passed a parallel plate collimator (0.18° acceptance

angle) and a flat graphite analyser (optional) before being detected by a proportional counter. 

Diffraction patterns were evaluated by fitting split Pearson VII functions (for the

definition of the profile function, see for instance Sonneveld et al. 1991). Peak positions, peak

heights, half widths at half maximum (HWHM), asymmetries and shape parameters were

refined. The K�2 component was taken into account by simultaneous fitting of two Pearson

VII functions, one for each radiation component. A K�2:K�1 intensity ratio of 0.5 was used

(this assumption was checked by setting the ratio free as a fit parameter for some evaluations).

For each diffraction peak (or group of overlapping diffraction peaks) a linear background was

fitted. The span of the measurement ranges was selected as to collect a number of points

sufficient for a full description of peak tails and background. The stepsize was chosen such

that at least 5 data points across the full width at half maximum of the K�1 peak were

measured. The �-range was 0° to 90°, the step size in � was 2°. Some measurements were

conducted at negative � to ensure that the results are independent of the tilting direction.

5.4. Experimental results and discussion

5.4.1. Beam divergence and beam intensity distribution

The beam characteristics of X-ray lenses have been described from a theoretical as well as an

experimental point of view in various publications (see, for instance, Kardiawarman et al.,

1995).

A detailed description of the intensity distribution and divergence of the beam emerging from

the lens will be presented elsewhere (Leoni et al., 2001); however, some main points useful

for the following discussion are summarised here. 
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The residual divergence of the beam produced by the X-ray lens used in the present

investigations was characterised by recording rocking curves from a single crystalline silicon

wafer (<001> cut). A residual divergence of approximately 0.30 was found, as determined

from the full width at half maximum of the (004)-Si-rocking curve presented in figure 5.1;

note that the rocking curve was recorded without any optical components in the diffracted

beam path. The homogeneity of the resulting beam was investigated by measuring the

intensity of the beam as a function of the beam size (same in both vertical and horizontal

direction, i.e. using a square-shaped slit aperture) by placing the detector directly in front of

the crossed slits (a copper attenuator was used for reducing the intensity to a level suitable to

the detector; practically identical results were obtained when a monochromator was employed

or when a nickel filter for removing Cu K�-radiation was used): see figure 5.2. Three regions

have been indicated in figure 5.2, separated by particular values of the slit aperture bl . In

region I the crossed slits aperture is positioned fully within the beam exiting the lens. The

limiting case is a crossed silts aperture corresponding to the largest square that can be

inscribed in the lens circumference (in this case the diagonal of the square is equal to the

diameter of the lens, thus the limiting slit aperture is 1
2 4.95Il D mm� � , D being the lens

diameter).  
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Figure 5.1: Rocking curve for the 400 reflection of a single crystalline silicon wafer (filled

circles). The intensity can be described by a Gaussian distribution (line) with full width at

half maximum of approximately 0.3°.
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In region II the beam extension is determined by both the slits and the lens whereas in region

III the extension is determined only by the lens. The slit size for the transition from region II

to region III is IIl D�  (provided the centres of gravity of lens and slit apertures coincide). 

Plotting the intensity in region I as a function of the slit size should yield a parabola in

the case of a homogeneous transmission. For small slit apertures (l<3mm) such a parabola fit

is possible indeed, but this fit does not represent the observed intensity for slit sizes l>3mm

(which are still within range I, see figure 5.2). It is concluded that the lens transmission is not

homogeneous, the outer lens corona transmitting relatively less intensity. This can be

understood, recognising that a ray passing through the centre of a lens can be transmitted

without being reflected at the fibre walls whereas a ray propagating in an outer lens corona

suffers an intensity loss from a number of total reflections at the walls (note that, as every

material exhibits absorption, for a total reflection at an incidence angle larger than zero, a

small loss of intensity occurs due to absorption).

A good (empirical) approximation, comprising regions I, II and III is possible by a Gaussian

curve:
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Figure 5.2: Beam intensity versus beam size as set by the slits (filled circles). The intensity

behaviour can be described by a Gaussian distribution (solid line). A parabola can only be fitted

for small lens apertures (dotted line).
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2

0 2
0

1 exp blI I
l

� �� �
� � �� �� �� �

� �� �
(5.6)

where I0 indicates the maximum intensity and l0 is the slit size where about 63% of the

maximum intensity passes the slits. 

5.4.2. Instrumental effects in texture measurements

For a (hypothetical) pole-figure measurement without instrumental aberrations, the integrated

intensity of a diffraction peak of a thick, texture-free powder sample should be independent of

the sample orientation �
 (rotation) and �
(tilting). Thus, any orientation dependence of the

peak shape or the peak intensity observed in a measurement from a texture-free specimen

hints at the necessity for corrections to be performed in pole-figure measurements using an X-

ray lens (cf. Chapter 5.2. ‘Defocusing’). 

Peak shape 

For investigating the influence of instrumental effects on peak shape associated with tilting

and rotating the sample, diffraction lines of (texture-free) reference powder samples (cf.

Chapter 5.3) were recorded at various Bragg-, sample tilt- and rotation angles: 2�
: 28°...155°,

�
: -90°...+90°,  �
: 0°...360°). Results for the tungsten sample (thick layer, sample A1) at

relatively low (110-reflection, 2 40� � � ) and high Bragg angle (321-reflection, 2 130� � � )

are shown in figures 5.3 and 5.4. Figure 5.3 presents the diffraction line width (half width at

half maximum, HWHM), the diffraction line shape parameter ��and the diffraction line

asymmetry �  as a function of the sample tilt � (Pearson VII fits). 
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Figure 5.3: Peak parameters obtained from reflections of a thick tungsten powder layer (sample

A1): half width at half maximum, shape parameter � and asymmetry �� of the tungsten 110- and

321-reflections versus the sample tilt angle ���open and filled circles, respectively).
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Figure 5.4: Peak parameters obtained from reflections of a thick tungsten powder layer (sample

A1): half width at half maximum, shape parameter � and asymmetry �� of the tungsten 110

reflection versus the sample rotation angle ��for two different tilt angles �, 0° (open circles) and

80° (filled circles).
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Figure 5.4 shows results for the same parameters as recorded for the tungsten 321-reflection

as a function of the rotation angle �
 for two different values of �-tilt 0° and 80°. Evidently,

these parameters are practically independent of � and �. Only a slight increase of the shape

parameter � occurs for the 110-reflection of tungsten at high angles, �
> 84°. However, the

ratio of the integrated and the peak intensity does not change significantly, thus, recording the

peak intensity is still equivalent to evaluating the integrated intensity from the whole

diffraction peak.  It is not necessary to account for an instrumental shift in peak position.

Although a stable peak position cannot be guaranteed at high tilt angles, the observed shifts

need not be considered for texture analysis as they are too small to influence the measured

intensity significantly (see also Scardi et al., 2000).

There is thus no need for applying a defocusing correction when an X-ray lens is used.

In the following, integrated intensities extracted from the whole diffraction line profiles have

been used in all figures; as a distinction between peak and integrated intensities is not

necessary,the term ‘intensity’ will be used in the following for brevity.

Peak intensity

Experimental examples are shown in figures 5.5a and 5.5b. The intensity of the 321-reflection

of a (thick) tungsten powder layer (sample A1) is presented in figure 5.5a as a function of the

sample tilt angle �, the intensity of the 400-reflection of a thin silicon layer (sample C, this

layer cannot be considered as infinitely thick) is shown in figure 5.5b. 

For the thick layer (sample A1) it holds that, at low ���up to about 60°), the intensity

increase due to increase of illuminated sample area is compensated exactly by the decrease of

diffracted intensity due to absorption: the recorded intensity is independent of � (figure 5.5a).

The intensity decrease at higher angle of tilt is due to instrumental intensity loss. For the thin

layer (sample C), the intensity decrease due to absorption is overcompensated  by the increase

in intensity due to increase in illuminated area upon tilting and therefore the intensity

increases up to about 60°. The intensity decrease upon further tilting is due to instrumental

intensity loss (figure 5.5b). 

The extent of instrumental intensity loss depends not only on the angle of sample tilt

but also on the Bragg angle of the reflection considered. The intensity as function of tilt angle

� for tungsten (sample A1) at low (110-reflection, 2 40� � � ) and high (321-reflection,

2 131� � � ) Bragg angle is shown in figure 5.6a. It follows that the extent of the instrumental

intensity loss decreases with increasing Bragg angle. 
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The instrumental intensity loss upon tilting depends also on the ratio of the diameter of the

incident beam and the surface area of the sample: see figure 5.6b. The smaller this ratio the

lesser the instrumental intensity loss. 

The integrated intensity does not depend on the angle of rotation, �, for a round-

shaped sample. However, for a square- or rectangular-shaped sample an effect of specimen

rotation on the recorded intensity can be observed (if instrumental intensity loss occurs). As

an example, the �-dependence of the peak intensity of the W 110-reflection of two tungsten

samples (sample A1 and A2) is presented for a tilt angle � of 60° in figure 5.7. For the square

sample (A1) only a shallow modulation of the intensity is observed whereas for the

rectangular sample (A2) the modulation is much more pronounced. 
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Figure 5.5: Intensity of the 321-reflection of a (thick) tungsten powder layer (a) (sample A1) and

intensity of the 400-reflection of a thin silicon layer (b) (sample C) versus the sample tilt angle �.
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Figure 5.6: (a) Intensity of the tungsten 110- ( 2 40� � � , open circles) and 321-reflections

( 2 130� � � , filled circles) of a thick powder layer (sample A1) versus the sample tilt angle �. (b)

Intensity of the tungsten 321-reflection ( 2 130� � � ) of a thick powder layer (sample A1) versus the

sample tilt angle � for two sizes of the incident beam, 1x1mm2 and 4x4mm2  (open circles and filled

circles, respectively).
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Figure 5.7: Intensities of the 110-reflections of two (thick) tungsten powder layers (samples A1,

14x14mm2 and A2, 8x22mm2) versus the sample rotation angle � for �=60o
�
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In summary, from the results shown in this section it can be concluded that the only

instrumental effect, for which a correction is necessary, is the geometrically conditioned

instrumental intensity loss occurring upon tilting and/or rotating the sample. 

Note that even though the peak intensity of a diffraction line is equivalent to the integrated

intensity, weak reflections must be counted for an appropriate time to reduce the associated

statistical error.

5.5. Full correction of pole figure intensities

Analytical corrections for the effect of instrumental intensity loss in the case that an X-ray

lens is used are not available in the literature. In the following an experimental approach for

the correction of the instrumental intensity loss is presented. The method is based on

measurements on texture-free samples, valid for all sample and beam geometries. On the basis

of geometrical considerations the required number of such measurements can be reduced if

only tilting-dependent effects have to be corrected (e.g. in the case of fibre texture or for

square shaped samples, when the modulation of the intensity in a �-rotation is marginal): in

this case a numerical calculation of the correction factor, calibrated by only one measurement

on a texture-free reference sample is possible. 

5.5.1. Experimental method

To establish the correction factor for instrumental intensity loss by measurement from a

texture-free reference sample, it is required that the size and the shape of the reference sample

and the sample under investigation are identical. Moreover, an identical positioning of the

reference and the sample under investigation in the diffractometer must be guaranteed. To this

end, the positioning of the reference and the sample under investigation should be performed

with an accuracy of  5% for a shift within the plane of the sample. For the sample height

(‘displacement’), a displacement of ±100�m from the ideal position is acceptable (in this

case, no significant deviations of measured intensities were observed in test measurements).

This reproducibility is achievable under practical conditions. It is not required that the

material of the reference sample is the same as that of the sample under investigation. The

widths of the diffraction peaks may also be different.

The correction is first presented for the effect of tilt angle � only; the effect of rotation

(�) is considered afterwards. The determination of the correction factor (2 , )iC � �  for changes
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in illuminated sample area and instrumental intensity loss runs as follows:

Determination of the Correction Factor for illuminated sample area and instrumental

intensity loss

(i) Measurement of the intensity 2 ( )
meas

i
I

�
� for various reflections (characterised by the

Bragg angles 2 i� ) of a thick reference (i.e. texture-free) sample as a function of �. 

(ii) Correction of 2 ( )
meas

i
I

�
�  for the tilting angle dependence of absorption (factors being

constant for a particular sample and reflection are ignored, as, in the next step (iii), a

normalisation is performed, cf. equation (5.2) and (5.3)): 

2
2

( )
( )

cos

meas

corrabs
i

i

I
I �

�

�
�

�
� .

(iii) Normalisation of the intensities for every reflection such that 

2 ( 0) 1
corrabs

i
I

�
� � � .

(iv) 2(2 , ) 1/ ( )
corrabs

iiC I
�

� � ��  is the correction factor for changes in illuminated sample area

and instrumental intensity loss. 

Then, full correction of the pole figure intensities 2 ( )
S

P
�
� of a particular reflection of the

sample to be investigated (characterised by the Bragg angle 2 S� ), i.e. the correction for

absorption, changes in illuminated sample area and instrumental intensity loss, is achieved as

follows (cf. equation (5.5)):

Full correction of pole figure intensities using the correction factor (2 , )iC � �

(i) Absorption correction by division of the measured intensity by A according to

equation (5.1) (general case) or equation (5.3) (thick sample).

(ii) Multiplication of the intensity as obtained by the previous step (i) by (2 , )SC � � .

(iii) Division of the intensity as obtained by the previous step (ii) by 0 / sin SG �  ( 0G  being

the cross-section of the incident beam) results in a normalisation to the diffracting

volume, such that the obtained intensity corresponds to 
2

( )
S

corrP
�

�  in equation (5.5).

For performing the correction, only the mass coverage and the mass absorption coefficient of

the sample under investigation must be known: as the ratio of the sample thickness and the

penetration depth  (i.e. the argument of the exponential function in equation (5.1)) contains

the mass coverage sampled� times the mass absorption coefficient as individual factors,

thickness and density of the layer are not needed as individual quantities for the absorption

correction and the knowledge of the mass coverage is sufficient.
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The correction factor (2 , )C � �  can only be determined experimentally for Bragg angles ( 2 i� )

where peaks of the reference are available. After normalisation of the intensities  of the

reference specimen as a function of � (step (iii) in the determination of the correction factor,

see above), a smooth 2� -dependence for (2 , )iC � �  for a given tilting �  is observed.

Therefore a spline-interpolation on the 2�-scale is a sufficiently accurate method for the

determination of (2 , )C � � at a Bragg angle where no reference peak is available. Here a cubic

spline interpolation routine (from the IMSL Fortran Math-library v1.0, � 1987 by IMSL,

Inc.) was applied. 

The performance of the experimental method was tested as follows:

� The correction factor (2 , )C � �  for changes in illuminated sample area and instrumental

intensity loss was determined using eight reflections (i.e. all reflections accessible with

CuK� radiation) of the tungsten powder layer (sample A1) as a reference.

� Then, the full correction (absorption + illuminated area + instrumental intensity loss) was

applied to the intensities of reflections recorded from a thick Ge powder sample (sample

B) as function of tilt angle �. The corrected intensity for each reflection as function of �

should then be independent of �� This expectation was met by the results: see figure 5.8. 

� The full correction was also applied to the integrated intensities of reflections of a thin Si

powder sample, see figure 5.9. The mass coverage (mass per unit area, here: 9.4 �g /mm2)

was calculated from the mass of the silicon powder dispersed and the covered area. Also

in this case an almost �-independent intensity is observed after correction.

It can be deduced from the figures 5.8 and 5.9 that (especially at low Bragg angle) the

correction of the experimental intensities for instrumental intensity loss is a prerequisite for

quantitative texture analysis. If the correction is applied, as a rule, the tilt angle range can be

extended up to about 860, independently of the Bragg angle for the reflection used for pole-

figure measurement. 
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Figure 5.8: Full (experimental) correction of m

corrected (filled circles) intensities versus the sam

germanium sample (sample B).
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Figure 5.9: Full (experimental) correction of m

corrected (filled circles) intensities versus the sa

sample (sample C).
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The effect of rotation by the angle � can be taken into account in the correction

procedure as follows: The intensity of a particular reflection of the reference sample has to be

measured not only as a function of the tilt angle � but now also as a function of the rotation

angle �. For regularly shaped samples the full range of 0° to 360° for � has not to be

considered: the measurement time can be reduced by symmetry considerations. Consider, for

example, a square shaped samples: the intensity for a �-rotation at a given �� tilt exhibits

four-fold symmetry and thus only one quarter of the complete ��rotation angle range has to

be covered. The intensity 
02 ( , )

meas

I
�

� � of the reference specimen for a particular reflection

which has to be determined thus pertains to one quadrant of a pole figure. 

A further reduction in measurement time for the standard can be gained by considering

that the �-dependence of the intensity of the standard (see figure 5.7) is smooth for regular

sample shapes, thus a spline-interpolation for the �-dependence of the correction factor also

reduces the number of �-values for which measurements are necessary. The same analysis as

outlined above can be applied to the integrated intensity measured as a function of � and �

for a particular reflection of the sample under investigation. 
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Figure 5.10: Correction factor for illuminated sample area and instrumental intensity loss for a

diffraction angle 2��=60° (continuous line). The calculation of the correction factor is based on

standard measurements for 8 reflections of the tungsten standard sample A1. In addition, cos(�)

is shown by the broken line.



5. Use of Polycapillary X-Ray Lenses in the X-ray Diffraction Measurement of Texture

130

As a concluding remark it is noted that, at high tilt (�>80°), the correction factor (2 , )C � �

increases quite steeply with ��; see figure 5.10 for an example. For proper correction, special

care has to be taken to ensure that the standard specimen and the specimen under investigation

is well aligned, i.e. the mounting is identical with respect to the tilt angle �.

5.5.2. Geometrical considerations and numerical method

A numerical calculation of the instrumental intensity loss can, in principle, be carried out

straightforwardly. To this end, the specimen orientation dependence of the fraction of the

incident beam missing the sample and the specimen orientation dependence of the illuminated

area not visible for the detector have to be calculated.  However, due to beam imperfections,

e.g. inhomogeneous lens transmission and residual divergence, and a rather complex

transmission of the diffracted beam optics (e.g. mosaic spread of the monochromator) a

calculation of the instrumental intensity loss (taking all beam imperfections and instrumental

details into account) is complex (but possible, see Leoni et al. 2001). In the following, the

simplest geometrical approach will be presented, based on the following assumptions: 

� The cross section of the incident beam has a square shape.

� The sample has a square shape.

� The instrumental intensity loss is solely due to a fraction of the incident beam missing the

sample surface, i.e., no correction for the (specimen orientation dependence of the)

diffracted beam fraction missing the detector is applied. This constraint can be met in

practice by a proper selection of the sample size, i.e. smaller than the acceptance of the

optical modules in the diffracted beam path. The monochromator used is the limiting

optical module for the equatorial size of the diffracted beam: the acceptance is

approximately 9mm in the equatorial plane with a monochromator and 14mm without the

monochromator. For this reason, the monochromator was removed from the diffracted

beam path for measurements used for testing the numerical method with square shaped

samples of the size 14x14mm2. 3

The calculation of the correction factor is performed as follows (for mathematical details see

                                                
3 Note that even without the monochromator mounted in the diffracted beam path, a small

specimen orientation dependent intensity loss can occur in the diffracted beam path for a

sample size of  14x14mm2. However, the loss of intensity is small and is not considered in the

following for this reason. Equivalent results are obtained with smaller samples. 
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Appendix 5):

(i) A laboratory reference frame with the origin at the centre of the goniometer is defined

such that the x-axis points towards the source of the incident X-ray beam (lens centre),

the y-axis is aligned parallel to the inverse surface normal of the sample for �=�=0

and the z-axis is parallel to the �/2�� rotation axis. With respect to this reference

frame, the corners of the square sample can be indicated by four vectors. When the

sample is in the position �=0, �=0, �=0, the components of the vectors can be readily

determined as the y-components are zero.

(ii) Any (rotational) positioning of the sample is defined by values for the three rotation

angles �,� and �� The vectors for the corners of the sample in a rotated position

(�,�,��) can be found by multiplying the initial vectors corresponding to the sample

position (�=0, �=0, �=0) by suitable rotation matrices (see appendix for the definition

of the rotation matrices).

(iii) The projection of the corners of the sample onto the y-z-plane  (i.e. the plane

perpendicular to the propagation direction of the incident beam) is obtained by setting

the x-component of the vectors for the corners equal to zero. When the y- and z-

components are considered as vectors in a (two-dimensional) y-z-reference frame,

they define the sample surface as it is seen along the direction of the incident beam,

i.e. the area of the projection of the sample surface.

(iv) The area of the projection of the sample surface covered by the incident beam can then

be determined by numerical integration as a function of �� tilt and ��rotation. This

calculated area (as a function of � and �) can be used instead of the measured

intensity of a thick reference sample and the correction can be performed analogous to

the procedure outlined in Chapter 5.5.1. 

In the above calculation procedure a perfectly parallel and homogeneous incident beam has

been assumed. The use of a beam with these characteristics is not possible in practice by

employing an X-ray lens: residual divergence as well as inhomogeneous lens transmission

occur (cf. Chapter 5.4.1). An approximate procedure for considering beam divergence

(neglecting any changes of the cross section of the beam due to divergence) is possible as

follows: Due to divergence the beam size at the sample position 
b

sl , i.e. the edge length of the

square-shaped beam, is larger than the size bl  as defined by the slit settings (i.e. the aperture

size at the lens exit). 
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Figure 5.11: Full (numerical) correction of measured intensities: Measured (open circles) and

corrected (filled circles) intensity of the tungsten 211-reflection of a thick powder layer (sample A1)

versus the sample tilt �, measured without a monochromator (a) and with a monochromator (b).

Calculated intensity following the correction scheme presented in section 5.2 is shown as dashed

lines.
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Figure 5.12: Measured (circles) and calculated (lines) intensity of the tungsten 110-reflection (a) and

the tungsten 211-reflection (b) of a thick powder layer (sample A1) versus the sample rotation angle

� at a tilt angle �=80°.
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The increase in beam size can be described by a factor �  as s
b bl l�� � .The correction

procedure can be followed as outlined above (steps 1 to 4) by replacing the beam size as set

by the slits at the lens exit bl by the increased beam size 
b

sl . 

For the practical application of the correction, the factor �  can be determined as

follows: For a measurement of the tilting angle dependence of the intensity of  a (texture-free)

reference sample for one particular reflection, � has to be fitted such that the calculated tilting

dependence of the intensity equals the measured dependence for this reference measurement.

This fitting is necessary, as the divergence angle of the incident beam, as measured by the

FWHM of a rocking curve, cannot be used straightforwardly for the calculation of � (note that

the divergence has a distribution, the divergence angle being the width of this distribution (cf.

Chapter 5.4.1)).  In addition, other instrumental effects not taken into consideration so far, as

for example the beam inhomogeneity, can be satisfactorily corrected for by determining a

proper value �, i.e. other beam imperfections can also be covered (empirically) by this simple

treatment. 

Results for the tilt-(�)-dependence of the intensity for the 211 reflection of  tungsten

(sample A1) are presented in figure 5.11a where the measured intensity is shown together

with the intensity calculated as outlined above and the corrected intensity. The beam area set

by the slits was 4x4mm2 and the sample area was 14x14mm2. Divergence was taken into

account by using a corrected beam area of 4.4x4.4mm2 (i.e. �=1.1) as determined by the fit of

the calculated normalised intensity to the measured one. Also an instrumental intensity loss in

the diffracted beam path can be modelled (empirically) by the correction: see figure 5.11b,

where the experimental results for the tilt-(�)-dependence of the intensity for the 211

reflection of  tungsten (sample A1) measured with a monochromator4 in the diffracted beam

path can be compared with the calculated and the corrected intensity evaluated using a beam

area of 5.6x5.6mm2 instead of 4x4mm2 (i.e. �=1.4). � was determined by the fit of the

calculated normalised intensity to the measured intensity for the 222 reflection (not shown).

Note that � determined in this  way provides a reasonable correction not only for the

                                                
4 Insertion of the monochromator causes significant intensity loss in the diffracted beam path,

as can be seen by comparing the experimental results in figure 11a and 11b: for the data

shown in figure 11b, the intensity decrease due to instrumental intensity loss occurs at lower

tilt angle and is more pronounced as compared to the data presented in figure 11a.
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particular reflection employed for the determination of � but also for other reflections, thus

the measurement of the tilt angle dependence for one reflection is sufficient to establish the

correction. It can be concluded that the simple geometrical procedure proposed provides a

reasonable estimation of the tilting angle-dependent instrumental intensity loss and thus of a

correction factor. However, due to the simplifying  assumptions employed, some unphysical

oscillations can occur in the corrected intensity (see figure 5.11a,b).

The quantitative evaluation of the rotation-(�)-dependence of the intensity shows

qualitative agreement with the experimental results, however, the calculation slightly

overestimates the amplitude of the  intensity modulation: see figure 5.12, showing calculated

and experimental data  for the 110 and the 211 reflection of tungsten (sample A1,

measurement without monochromator).  One reason for the observed discrepancy is that beam

divergence causes a rounding of the ideally square-shaped profile of the incident beam; the

amplitude of the intensity modulation is therefore lower than expected from the calculation

where a truly square-shaped beam  is assumed. In addition, the outer portions of the irradiated

sample area contribute less to the diffracted signal than the centre, as the lens transmission is

inhomogeneous (i.e. reduced within the outer lens corona). It should be noted that a correction

for the �-dependence of instrumental intensity loss is not required for many practical

applications as their effect can be of minor importance as compared to the �-dependence of

instrumental intensity loss.

From the performance of the numerical method as shown above (see figure 5.11,

correction of the tilting dependence of the intensity, and figure 5.12, slight overestimation of

the intensity modulation amplitude), the limitations of a simple geometrical approach

approximating details of the beam imperfections become obvious. The (fully) experimental

correction discussed in Chapter 5.5.1 is certainly more rigorous but also more tedious. An

alternative correction procedure not relying on measurement from texture free standard

samples, taking all beam imperfections and instrumental details fully into account, is a ray-

tracing of the diffractometer optics. Details on this approach will be presented elsewhere

(Leoni et al., 2001). 
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5.6. Conclusions

1. If an X-ray lens is used in X-ray diffraction texture analysis no defocusing correction is

necessary as a result of the parallel beam geometry. Thus, measuring the (peak) intensity

of a diffraction line is equivalent to the measurement of the integrated intensity in a pole

figure measurement.

2. The effects of absorption and the geometry of illuminated and detected areas on the

intensity as function of specimen tilt and rotation, as presented in measured pole figures,

have to be corrected. The geometry effects include the obvious intensity increase due to

the increase of illuminated sample area upon tilting, and intensity loss due to a part of the

incident beam not “hitting” the specimen and a part of the diffracted beam not recorded by

the detector.

3. An experimental correction procedure for the geometric effects has been proposed. The

method is based on measurements for various reflections from texture-free reference

powder specimens. The reference powder can be different from the material of the sample

under investigation. The reference measurements have to be performed only once for a

given sample shape and beam size. The procedure can be applied to correct intensities

recorded as a function both of the sample tilt and the specimen rotation. 

4. A numerical correction for the geometric effects has been proposed as well. This method

is suitable for applications where the instrumental intensity is �-independent (e.g. round-

shaped samples) or where the  �-dependence is marginal. This procedure can incorporate

the effects of beam divergence and beam inhomogeneity by fitting to one reference

measurement. 



5. Use of Polycapillary X-Ray Lenses in the X-ray Diffraction Measurement of Texture

136

Appendix 5. Rotation matrices used in the numerical method

For the particular choice of the laboratory reference frame (see main text), the rotations are

best applied in the order �-rotation, �-rotation and ��- rotation. Then the rotation axes remain

stationary, i.e. their relation to the reference axes is the same for each calculation step,

because for each calculation step, i.e. for each tilt or rotation angle, the sample is rotated

starting from the position ��= 0, ��= 0, ��= 0). The rotation axis for the ��-rotation is the y-

axis, the corresponding rotation matrix D
�

 is:

cos 0 sin
0 1 0

sin 0 cos
D

�

� �

� �

� �
� �

� � �
� ��� �

. (5A1)

The second rotation, �, has to be performed around the x-axis, the corresponding rotation

matrix D
�

 is:

1 0 0
0 cos sin
0 sin cos

D
�

� �

� �

� �
� �

� � �
� ��� �

. (5A2)

The last rotation, rotating around the �/2��axis, is described by the rotation matrix D
�

:

cos sin 0
sin cos 0

0 0 1
D

�

� �

� �

�� �
� �

� � �
� �
� �

. (5A3)

The matrices have to be applied to the vectors ic
��

 of the four sample corners, which can be

readily given when the sample is in the position ��= 0, ��= 0, ��= 0:

1

1
0

2
1

lc
��

� �
� �

� � �
� �
� �

, 2

1
0

2
1

lc
���

� �
� �

� � �
� ��� �

, 3

1
0

2
1

lc
��

�� �
� �

� � �
� ��� �

 and 4

1
0

2
1

lc
���

�� �
� �

� � �
� �
� �

, (5A4)

where l is the length of one edge of the sample (assuming a square shape). 
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6. Kurzfassung der Dissertation in deutscher Sprache

6. 1. Einleitung und Überblick

Dünne Schichten, hergestellt durch Abscheidung auf einem Substrat oder durch einen Prozeß

(wie z.B. Plasmanitrieren) an einer Oberfläche, sind von großer technologischer Bedeutung,

z.B. als Schutzschichten oder in der Mikroelektronik. Zahlreiche Faktoren, wie z.B. die

Adhäsion einer abgeschiedenen Schicht auf ihrem Substrat, beeinflussen die Eigenschaften

und insbesondere die Zuverlässigkeit von Schichten und Schichtsystemen. Einen der wohl

wichtigsten Faktoren stellt der Eigenspannungszustand dar (siehe z.B. Machlin, 1995). 

Um ein grundlegendes Verständnis für die Korrelation von Mikrostruktur,

Eigenspannungszustand und weiteren (z.B. elektrischen oder magnetischen) Eigenschaften

des Schichtsystems zu entwickeln, bedarf es insbesondere auch der Meßverfahren zur

quantitativen Analyse von Eigenspannungszuständen. 

Röntgenbeugungsmessungen stellen für kristalline Proben eine Möglichkeit zur

Analyse von Eigen- (und Last-) Spannungszuständen dar (siehe z.B. Noyan und Cohen, 1987,

Hauk, 1997). Es ist ein Vorteil dieser Methode, daß neben der Messung von Gitterdehnungen

zur Spannungsanalyse auch gleichzeitig weitere Informationen über die untersuchte Probe

erhalten werden können. So können Aussagen über die kristallografische Textur aus der

(integralen) Intensität der Röntgenbeugungslinien und die Defektstruktur (z.B. Größe von

Kristalliten, Verseztungsdichten) aus der Verbreiterung der Röntgenbeugungslinien erhalten

werden. Überdies ist die Methode zerstörungsfrei. 

Die vorliegende Arbeit ist der Analyse von Eigenspannungszuständen polykristalliner

Proben mit Hilfe von Röntgenbeugungsmessungen gewidmet. Der Schwerpunkt liegt dabei

auf der Modellierung der elastischen Kornwechselwirkung in dünnen, oberflächennahen

Schichten.

Die Grundlage jeder röntgenografischen Spannungsanalyse ist die Messung von

Gitterdehnungen unter der Verwendung einer oder mehrerer Röntgenbeugungslinien in

Abhängigkeit von zwei Winkeln � und �, wobei � den Verkippungswinkel des

Beugungsvektors bezüglich der Oberflächennormalen der Probe und � den Drehwinkel um

die Oberflächennormale der Probe  bezeichnet. Aus den gemessenen Gitterdehnungen können

die Komponenten des mechanischen Spannungstensors in einem bezüglich der Probe fixierten
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Koordinatensystem unter Verwendung von geeigneten, sogenannten röntgenelastischen

Konstanten ermittelt werden (siehe z.B. Noyan & Cohen, 1987, Hauk, 1997). 

Die Bestimmung dieser elastischen Konstanten (ebenso wie der mechanischen

elastischen Konstanten) aus den einkristallelastischen Konstanten des Probenmaterials ist

nicht ohne zusätzliche Annahmen möglich, falls die einzelnen Kristallite, aus denen der

Vielkristall zusammengesetzt ist, elastisch anisotrop sind. In diesem Fall sind die Dehnungs-

und Spannungszustände für die unterschiedlich orientierten Kristallite im Vielkristall

voneinander und von dem Dehnungs- und Spannungszustand des Vielkristalls verschieden. In

sogenannten Kornwechselwirkungsmodellen werden Annahmen über die Verteilung von

Dehnungen und Spannungen für die verschieden orientierten Kristallite getroffen und somit

wird auch die Berechnung von röntgenelastischen und mechanischen elastischen Konstanten

ermöglicht. In der Regel werden die Kornwechselwirkungsmodelle nach Voigt (1910), Reuss

(1929), Neerfeld-Hill (Neerfeld, 1942 und Hill, 1952) und Eshelby-Kröner (Eshelby, 1957,

Kröner, 1958, siehe auch Kneer, 1965) verwendet. Diese Modelle werden, obwohl nicht

ursprünglich dafür konzipiert, auch auf dünne Schichten angewendet. 

Aufgrund ihres quasi-zweidimensionalen Aufbaus und ihrer Mikrostruktur kann das

elastische Verhalten dünner Schichten nicht ohne weiteres mit dem elastischen Verhalten

eines dreidimensionalen (Bulk-)Vielkristalls, der aus Kristalliten des gleichen Materials wie

die dünne Schicht aufgebaut ist, gleichgesetzt werden. Es ist vielmehr zu erwarten, daß sich

der quasi-zweidimensionale Aufbau einer Schicht  sowie ihre Mikrostruktur in der Symmetrie

der elastischen Eigenschaften widerspiegelt, also keine elastische Isotropie, sondern höchstens

Rotationssymmetrie der elastischen Eigenschaften bezüglich der Oberflächennormalen

vorliegt (Stickforth, 1966, van Leeuwen et al., 1999; im folgenden als transversale elastische

Isotropie bezeichnet). Da die herkömmlichen Kornwechselwirkungsmodelle (siehe oben)

jedoch (in der Abwesenheit von kristallografischer Textur) für einen Vielkristall elastische

Isotropie implizieren, sind diese für die Anwendung auf dünne Schichten nur eingeschränkt

geeignet. 

Erst kürzlich wurde das Vorliegen von mechanischer elastischer Anisotropie (hier:

transversaler elastischer Isotropie) in einer dünnen, untexturierten Nickelschicht von van

Leeuwen et al. (1999) experimentell mittels einer röntgenografischen Spannungsmessung

nachgewiesen; bei einer Auftragung der gemessenen Gitterdehnung für verschiedene

Beugungslinien gegen sin2
� (‚sin2

�-Auftragung’) wurden jeweils nicht-lineare Verläufe

gefunden, die sich für die betrachteten Proben nur beim Vorliegen von mechanischer

elastischer Anisotropie ergeben können (siehe auch Kapitel 2 dieser Arbeit und Stickforth,
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1966). Eine Auswertung der experimentellen Ergebnisse wurde nur durch die Entwicklung

eines Kornwechselwirkungsmodells, welches auf von Vook und Witt (1965) vorgeschlagenen

Kornwechselwirkungsannahmen basiert, möglich. In diesem Modell ist die elastische

Wechselwirkung von Kristalliten abhängig von der Richtung in der betrachteten Probe,

weswegen es im folgenden als ‚richtungsabhängiges Kornwechselwirkungsmodell’

bezeichnet wird. 

In Kapitel 2 dieser Arbeit wird gezeigt, daß bei der Anwendung richtungsabhängiger

Kornwechselwirkungsmodelle (weitere richtungsabhängige Kornwechselwirkungsmodelle

werden in Kapitel 4 vorgestellt) die sogenannten röntgenografischen Spannungsfaktoren

(Dölle & Hauk, 1978, Dölle & Hauk, 1979) zur Auswertung von röntgenografischen

Spannungsmessungen benutzt werden können. Weiterhin wird gezeigt, daß die

röntgenografischen Spannungsfaktoren die allgemeinste Formulierung des Zusammenhangs

der Gitterdehnung mit den mechanischen Spannungen im Probensystem darstellen. Für

makroskopisch elastisch isotrope Proben ist die Verwendung der röntgenografischen

elastischen Konstanten jedoch eine mathematisch sehr viel einfachere Alternative (siehe auch

Stickforth, 1966). 

Im Kapitel 3 dieser Arbeit wird das Vook-Witt Kornwechselwirkungsmodell erweitert,

so daß eine Anwendung für Proben mit kristallografischer Textur ermöglicht wird. Basierend

auf der Simulation von Gitterdehnungen für fasertexturierte Proben ließ sich zeigen, daß

fehlerhafte Ergebnisse für die Eigenspannungen (bis zu 50% Abweichungen) erhalten werden

können, wenn die Kornwechselwirkung in der Probe dem Vook-Witt Modell folgt, aber bei

der Auswertung eines der herkömmlichen Kornwechselwirkungsmodelle zur Berechnung der

röntgenografischen elastischen Konstanten (bzw. Spannugsfaktoren) angewendet wird.  

Im Kapitel 4 dieser Arbeit wird ein verallgemeinertes richtungsabhängiges

Kornwechselwirkungsmodell vorgestellt. Obwohl das Vook-Witt Modell für die Anwendung

auf dünne Schichten besser geeignet als die herkömmlichen Kornwechselwirkungsmodelle,

da nur das Vook-Witt Modell mit transversaler elastischer Isotropie kompatibel ist, während

die herkömmlichen Kornwechselwirkungsmodelle mechanische elastische Isotropie

implizieren, werden dennoch extreme Kornwechselwirkungsannahmen verwendet. Es wird

davon ausgegangen daß parallel zur Oberfläche alle Kristallite die gleiche Dehnung aufweisen

(d.h. eine Voigt-artige Kornwechselwirkung vorliegt) und senkrecht zur Oberfläche alle

Kristallite die gleiche Spannung aufweisen (d.h. eine Reuss-artige Kornwechselwirkung

vorliegt). Es ist aus der Literatur bekannt (siehe z.B. Hill, 1952, Neerfeld, 1942) daß

extremale Kornwechselwirkungsannahmen nicht mit dem Verhalten von realen Vielkristallen
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kompatibel sind. In dieser Arbeit wurde ein sogenanntes effektives

Kornwechselwirkungsmodell entwickelt, welches auf einer linearen Kombination von

mehreren (extremalen) Kornwechselwirkungsmodellen beruht. Dieses Modell ist das erste

richtungsabhängige Kornwechselwirkungsmodell welches nicht auf extremalen Annahmen

für die Kornwechselwirkung basiert, sondern mit dessen Hilfe richtungsabhängige

Kornwechselwirkung quantitativ durch die Einführung von Kornwechselwirkungsparametern

beschrieben werden kann. 

In Kapitel 5 werden die Korrekturen von instrumentellen Aberrationen für

röntgenografische Texturuntersuchungen (Polfigurmessungen), die mit einer

Röntgenpolykappilarlinse durchgeführt wurden, diskutiert.

Kristallografische Textur wird häufig in dünnen Schichten angetroffen und hat einen

signifikanten Einfluß auf die mechanischen elastischen und röntgenelastischen Eigenschaften.

Es ist daher notwendig, die Textur bei der Auswertung röntgenografischer Messungen

quantitativ zu berücksichtigen. In dieser Arbeit wurde für die Spannungs- und

Texturuntersuchungen eine sogenannte Röntgenpolykapillarlinse verwendet (siehe z.B.

Kumachov &  Komarov, 1990, Kogan & Bethke, 1998, Scardi et al., 2000), welche seit

einigen Jahren erhältlich ist. Die Anwendung dieser röntgenoptischen Komponente ist noch

nicht weit verbreitet und aus diesem Grund existieren in der Literatur noch keine

Korrekturverfahren für instrumentelle Aberrationen. In dieser Arbeit wurden die Korrekturen,

welche für quantitative röntgenografische Texturmessungen notwendig sind, experimentell

untersucht und es wurden geeignete Korrekturmethoden entwickelt. 

6.2. Röntgenografische Spannungsanalyse markoskopisch elastisch

anisotroper Vielkristalle; das Konzept der röntgenografischen elatischen

Konstanten und der röntgenografischen Spannnungsfaktoren – Kapitel 2

Bei der Auswertung der röntgenografischen Spannungsmessung wird in der Regel zwischen

untexturierten (makroskopisch elastisch isotropen) und texturierten Proben unterschieden

(sieh z.B. Hauk, 1997). Für untexturierte Proben werden zur Auswertung die sogenannten

röntgenografischen elastischen Konstanten 1
hklS  und 

2

1
2

hklS  benutzt. Der Zusammenhang der

Gitterdehnung für eine Röntgenbeugungslinie hkl (in die durch die Winkel � und �

charakterisierte Richtung des Beugungsvektors) mit den Komponenten des mechanischen
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Spannungstensors, ausgedrückt im Probensystem S, S
ij� ,wird durch das sin2

�-Gesetz

beschrieben (siehe, z.B. Hauk, 1997, siehe auch Stickforth, 1966):

� �� �
� � � �� �

� �

2

2

2 2 21
, 11 12 222

21
13 23 332

1 11 22 33

sin cos sin 2 sin

cos sin 2 sin sin 2 cos

hkl hkl S S S

hkl S S S

hkl S S S

S

S

S

� �
� � � � � � � �

� � � � � � � �

� � �

� � � �

� � �

� � �

  (6.1)

Für texturierte Proben werden die sogenannten röntgenografischen Spannungsfaktoren

( , , )klF hkl� �  benutzt (siehe Dölle & Hauk, 1978, Dölle & Hauk, 1979, Hauk, 1997) und der

Zusammenhang der Gitterdehnung mit den Komponenten des mechanischen

Spannugstensors, S
ij� , kann geschrieben werden als (die Einsteinsche Summenkonvention,

d.h. Summation über wenigstens doppelt vorkommende Indizes, wird benutzt):

, ( , , )hkl S
kl klF hkl

� �
� � � �� . (6.2)

Von van Leeuwen et al. (1999) wurde gezeigt, daß makroskopische elastische

Anisotropie auch für untexturierte Proben auftreten kann, falls richtungsabhängige

Kornwechselwirkung vorliegt. Insbesondere wurden für eine Probe mit ebenem,

rotationssymmetrischem Spannungszustand experimentell nicht-lineare sin2
�-Verläufe

beobachtet, welche mit Gleichung (6.1) nicht kompatibel sind. Daraus folgt, daß selbst für

untexturierte Proben welche einer richtungsabhängigen Kornwechselwirkung unterliegen, das

herkömmlich sin2
�-Gesetz (Gleichung (6.1)) nicht angewendet werden kann. 

In dieser Arbeit wird gezeigt, daß die röntgenografischen Spannungsfaktoren (d.h.

Gleichung (6.2)) generell für makroskopisch elastisch anisotrope Proben verwendet werden

können. Insbesondere gilt Gleichung (6.2) auch für Proben mit richtungsabhängiger

Kornwechselwirkung, unabhängig von kristallografischer Textur. 

Die Gültigkeit von Gleichung (6.1) wurde mehr als 40 Jahre nach der ersten

röntgenografischen Messung von elastischen Dehnungen (Joffe & Kirpitcheva, 1922) von

Stickforth (1966) gezeigt. In diesem Zusammenhang wurde von Stickforth (1966) postuliert,

daß das röntgenelastische Verhalten von oberflächennahen Kristalliten von dem Verhalten

von Kristalliten im Inneren eines Bulk-Vielkristalls abweicht.  In dieser Arbeit wird

diskutiert, inwiefern die postulierte Oberflächenanisotropie als Sonderfall von

richtungsabhängiger Kornwechselwirkung verstanden werden kann. 
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6.3. Spannungs- und Dehnungsfelder in transversal elastisch isotropen

dünnen Schichten – Kapitel 3

6.3.1. Theoretische Grundlagen

Während in einem dreidimensional ausgedehnten Vielkristall alle Kristallite in allen

Richtungen von benachbarten Kristalliten umgeben sind, ist dies für dünne Schichten oder

Oberflächen im allgemeinen nicht der Fall. Kornwechselwirkungsannahmen, welche an eine

kolumnare, oberflächennahe Mikrostruktur angepaßt sind, wurden von Vook und Witt (1965)

vorgeschlagen und erstmals von van Leeuwen et al. (1999) als Kornwechselwirkungsmodell

auf die röntgenografische Spannungsmessung angewendet. 

Im folgenden wird davon ausgegangen daß die Schicht wenigstens transverale elastische

Isotropie (d.h. Rotationssymmetrie der elastischen Eigenschaften bezüglich der

Oberflächennormalen) aufweist. Die Kornwechselwirkungsannahmen im Vook-Witt Modell

sind wie folgt:

1. Die Schicht ist einem Dehnungszustand unterworfen, der Rotationssymmetrie bezüglich

der Oberflächennormalen der Probe aufweist.

2. Alle Kristallite haben den gleichen Dehnungszustand in der Ebene der Schicht.

3. Die Spannungen senkrecht zur Oberfläche sind Null für alle Kristallite.

Diese Annahmen legen in einem bezüglich der Probe fixierten Koordinatensystem, dem

sogenannten Proben-System, dessen z-Achse mit der Oberflächennormalen der Probe

zusammenfällt, sechs Komponenten des Spannungs- und Dehnungstensors fest. Im folgenden

gibt ein hochgestelltes S an, daß ein Tensor im Probensystem zu betrachten ist.

11 22

12 21

3 3

0

0

def
S S S

def
S S

def
S S
i i

�
� � �

� �

� �

�
� � �

��
� � �

�
�� �
��

(6.3)

Die sechs Komponenten S
ij� des Dehnungstensors  und S

ij�  des Spannungstensors (beide

Tensoren sind symmetrische Tensoren, d.h. S S
ij ji� ��  und S S

ij ji� �� ) welche nicht (direkt)

durch die Gleichungen (6.3) definiert werden, können unter Verwendung des Hookeschen

Gesetzes berechnet werden:
S S S
ij ijkl kls� �� , (6.4)
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welches mit dem Nachgiebigkeitstensor S
ijkls  eines Einkristalls ein lineares Gleichungssystem

in 12 Unbekannten darstellt (es muß beachtet werden, daß Spannungs- und Dehnungstensoren

symmetrisch sind, d.h. beide Tensoren weisen jeweils nur sechs unabhängige Einträge auf).

Der Nachgiebigkeitstensor im Probensystem kann für jeden Kristallit mittels

geeigneter (orthogonaler) Transformationsmatrizen aus dem Nachgiebigkeitstensor im

Kristallsystem berechnet werden, welcher für viele Materialien tabelliert vorliegt. Somit sind

für alle Kristallite im Vielkristall Dehnungs- und Spannungszustand bekannt und es kann

auch das elastische Verhalten des Vielkristalls berechnet werden. Zur Berechnung des

mechanischen elastischen Verhaltens sind Mittelwerte über alle Kristallite in der Probe zu

berechnen während für die Berechnung des röntgenografischen elastischen Verhaltens sich

die Mittelung nur über die in einem Beugungsexperiment erfaßten Kristallite erstreckt (also

über Kristallite, für die der Beugungsvektor senkrecht zu den dem betrachteten Reflex

entsprechenden Ebenen orientiert ist).

Im folgenden wird ein ebener, rotationssymmetrischer (mechanischer)

Spannungszustand betrachtet (mechanische Spannungs- und Dehnungstensoren werden in

eckige Klammern gesetzt um diese gegen Spannungen und Dehnungen einzelner Kristallite

abzugrenzen):

0 0

0 0
0 0 0

S

SS

�

� �

� �
� �

�� �
� �
� �
� �

�

�
. (6.5)

Es genügt die Kenntnis der zwei mechanischen elastischen Konstanten A und B zur

Beschreibung des mechanischen elastischen Verhaltens:

AS S
� ��
� �

, (6.6)

BS S
� �
�
�

�
. (6.7)

Dabei bezeichnet S
�
�

 die Dehnung (aller Kristallite) parallel zum Substrat und S
�
�

 die

mechanische, d.h. über alle Kristallite gemittelte Dehnung, senkrecht zur Oberfläche der

Schicht so daß für den mechanischen Dehnungstensor

0 0

0 0

0 0

S

S S

S

�

�

�

� �

�
�

� �
� �

�� �
� �� �
� �

(6.8)

geschrieben werden kann. 
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Das röntgenelastische Verhalten wird im folgenden durch eine sogenannte sin2
�-

Auftragung veranschaulicht, wobei die Gitterdehnung hkl
�
� , welche für eine bestimmte

Röntgenlinie erhalten wird, gegen sin2
�  aufgetragen wird.

In der vorliegenden Arbeit wurde nun die kristallografische Textur in die

Betrachtungen einbezogen. Dazu muß bei der Berechnung des mechanischen und des

röntgenografischen elastischen Verhaltens die sogenannte Orientierungsverteilungsfunktion

(ODF) als Wichtungsfaktor berücksichtigt werden (siehe z.B. Bunge, 1982a, 1999), welche

angibt mit welcher Häufigkeit die verschiedenen Kristallitorientierungen in der betrachteten

Probe vorkommen. 

Im folgenden werden sowohl das mechanische elastische Verhalten (charakterisiert

durch die mechanischen elastischen Konstanten A und B) sowie das röntgenelastische

Verhalten (charakterisiert durch eine Auftragung der Gitterdehnung für verschiedene Reflexe

gegen sin2
�) für verschieden Kornwechselwirkungsmodelle veranschaulicht und diskutiert.

Dabei wird das auf den Annahmen von Vook und Witt basierende

Kornwechselwirkungsmodell mit den Modellen nach Reuss und Voigt (für die mechanischen

elastischen Konstanten A und B auch nach Neerfeld-Hill) verglichen. Für eine detaillierte

Beschreibung dieser Modelle sei auf Kapitel 3 dieser Arbeit verwiesen. 

6.3.2 Mechanisches und röntgenelastisches Verhalten fasertexturierter Polykristalle

nach den Kornwechselwirkungsmodellen von Reuss, Voigt und Vook - Witt

Zur Veranschaulichung des Einflusses einer kristallografischen Textur wurden für

verschiedene (kubische) Materialien, welche sich in ihrer elastischen Anistropie

unterscheiden, Berechnungen durchgeführt. Im folgenden sei als Beispiel nur Niob

herausgegriffen, welches sich durch eine hohe elastische Anisotropie auszeichnet. Für weitere

Beispiele sei an dieser Stelle auf Kapitel 3 dieser Arbeit verwiesen. 

Exemplarisch ist in Abbildung 6.1 die Abhängigkeit der mechanischen elastischen

Konstanten A und B von der Breite der Verteilung einer {111} Fasertextur dargestellt. 

Für eine ‚perfekte‘ {111} Fasertextur (Breite 0°) werden die elastischen Konstanten

unabhängig von der vorliegenden Kornwechselwirkung, d.h. die verschiedenen

Modellrechnungen liefern identische Werte für A und B (Kamminga et al., 2000; Vook &

Witt, 1965). Die ist nicht der Fall für eine ‚perfekte‘ {110} Fasertextur. 

Der Einfluß der Textur auf das röntgenelastische Verhalten wird in Abbildung 6.2

veranschaulicht. 
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Nur geringe Unterschiede ergeben sich für die verschiedenen Modelle in Abwesenheit

von Textur. Wenn eine Textur berücksichtigt wird, so ergeben sich signifikant nicht-lineare

Verläufe für die Modelle von Reuss und Vook-Witt: der Einfluß der intrinsischen elastischen

Anisotropie von Niob auf das röntgenelastische Verhalten wird durch die Textur verstärkt.

Insbesondere für die 222 und 400 (allgemeiner: 00l und hhh) Reflektion treten die

Unterschiede zwischen dem Vook-Witt Kornwechselwirkungsmodelle und den Modellen

nach Reuss und Voigt besonders hervor, da diese Modelle (wie alle herkömmlichen

Kornwechselwirkungsmodelle) hier lineare Verläufe liefern (Brakman, 1983), für das Vook-

Witt Modell aber ausgeprägte Nichtlinearitäten auftreten. 

Es soll an dieser Stelle nur kurz erwähnt werden daß die Anwendung der traditionellen

sin2
�-Auswertung auf der Basis der sogenannten röntgenografischen elastischen Konstanten

für den Fall, daß der Vielkristall der Vook-Witt Kornwechselwirkung unterliegt, zu erheblich

verfälschten Spannungswerten führt. 
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Abbildung 6.1: Texturierte, transversal elastisch isotrope Niob Schicht; Verlauf der

mechanischen elastischen Konstanten A und B berechnet für verschiedene

Kornwechselwirkungsmodelle als Funktion der Breite der Textur (Gaußsche Fasertextur, Breite

entspricht der halben Breite bei halber Höhe der Orientierungsverteilungsfunktion).
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Abbildung 6.2: Texturierte, transversal elastisch isotrope Niob-Schicht (Gaußsche {110}

Fasertextur mit 5º Breite); berechnete Gitterdehnung hkl
�
�  für verschiedene Reflektionen ((a) 211,

(b) 222, (c) 321 und (d) 400) aufgetragen gegen sin2
� für eine Spannung S

�
�

 von 100 MPa. Die

integrale Intensität, welche dem Volumenanteil von diffraktierenden Kristalliten proportional ist,

wird durch die (dünne) durchgezogene Linie dargestellt.

Die auftretenden Fehler können in der Größenordnung von 50% liegen. Für eine genauere

Diskussion auf der Basis von berechneten Beispielen sei der Leser auf Kapitel 3. dieser Arbeit

verwiesen. 
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6.3.3. Zusammenfassung

Der Einfluß der Kornwechselwirkung im Vielkristall auf die mechanischen elastischen

Konstanten ist, unabhängig von der betrachteten Textur, eher gering. Sehr viel stärker

ausgeprägt ist der Einfluß der Kornwechselwirkung auf das röntgenelastische Verhalten, wie

es durch die Auftragung der Gitterdehnung für einen bestimmten Reflex gegen sin2
�

beschrieben wird. Selbst für untexturierte Proben können signifikant nicht-lineare Verläufe

auftreten. Die Auswertung von röntgenografischen Dehnungsmessungen an dünnen Filmen,

welche der Vook-Witt Kornwechselwirkung unterliegen,  mittels herkömmlicher Methoden

(d.h. unter Verwendung der röntgenografischen elastischen Konstanten) kann zu stark

verfälschten Spannungswerten führen (Fehler bis zu 50%).
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6.4. Die Bestimmung von Spannungen in dünnen Schichten; Modellierung

der elastischen Kornwechselwirkung – Kapitel 4

6.4.1. Theoretische Grundlagen - Die Modellierung von richtungsabhängiger elastischer

Kornwechselwirkung

Neerfeld (1942) und Hill (1952) folgerten auf der Basis experimenteller Ergebnisse, daß das

elastische Verhalten von Vielkristallen im allgemeinen nicht durch die Modelle von Reuss

und Voigt beschrieben werden kann. Neerfeld (1942) schlug basierend auf experimentellen

Daten vor, die röntgenografischen und mechanischen elastischen Konstanten durch die

Mittelwerte der entsprechenden nach den Voigt und Reuss Modellen berechneten Konstanten

zu ersetzen. Die gleiche Vorgehensweise wurde ebenso von Hill (1952) empirisch für die

mechanischen elastischen Konstanten vorgeschlagen. Hill (1952) zeigte außerdem, daß die

Modelle von Reuss und Voigt extremale Annahmen für die Kornwechselwirkung darstellen:

diese beiden Modelle liefern Unter- und Obergrenze für die mechanischen elastischen

Konstanten. 

Die Verwendung der (arithmetischen) Mittelwerte der elastischen Konstanten gemäß

der Modelle von Reuss und Voigt wird deshalb in der Literatur als Neerfeld-Hill Modell

bezeichnet. Im folgenden wird ein Modell, bei dem Mittelwerte von elastischen Konstanten,

welche mittels extremaler Modelle berechnet wurden, benutzt werden als effektives

Kornwechselwirkungsmodell bezeichnet.

Das Vook-Witt Modell stellt hinsichtlich der Kornwechselwirkungsannahmen einen

‚Kompromiß‘ der Modelle nach Reuss und Voigt dar (siehe auch 6.3 und Kapitel 3). Dennoch

werden für die beiden Hauptrichtungen in einer dünnen Schicht, in der Schichtebene und

senkrecht zur Oberfläche, extremale Kornwechselwirkungsannahmen gemacht. Für alle

Richtungen parallel zur Oberfläche wird davon ausgegangen, daß alle Kristallite die gleiche

Dehnung aufweisen (d.h. eine Voigt-artige Kornwechselwirkung vorliegt), während für die

Richtung senkrecht zur Oberfläche davon ausgegangen wird, daß alle Kristallite die gleiche

Spannung aufweisen (d.h. eine Reuss-artige Kornwechselwirkung vorliegt). Aus diesem

Grund muß das Vook-Witt Kornwechselwirkungsmodell als ein extremales

Kornwechselwirkungsmodell betrachtet werden und folglich kann auch nicht allgemein davon

ausgegangen werden daß das Vook-Witt Modell in der Lage ist, das (reale) Verhalten von

Vielkristallen zu beschreiben. 
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Im folgenden wird ein verallgemeinertes Kornwechselwirkungsmodell vorgeschlagen,

welches analog zum Neerfeld-Hill Modell als effektives Kornwechselwirkungsmodell auf

einer linearen Kombination von extremalen Modellen basiert. Es wird gezeigt, daß für eine

gegebene Probe eine geeignete Auswahl von Kornwechselwirkungsmodellen zur Auswertung

von röntgenografischen Spannungsmessungen bestimmt werden kann. 

In Bulk-Vielkristallen können alle Richtungen bezüglich der Kornwechselwirkung

äquivalent sein und deswegen exisitieren für (solche) Bulk-Vielkristalle zwei verschiedene

extremale Annahmen für die Kornwechselwirkung (‚Reuss-artig‘ und ‚Voigt-artig‘). Im

Gegensatz dazu besitzen dünne, oberflächennahe Schichten zwei Hauptrichtungen, parallel

und senkrecht zur Oberfläche, für die jeweils zwei mögliche extremale

Kornwechselwirkungen (‚Reuss-artig’ und ‚Voigt-artig’) vorliegen können. Aus diesem

Grund können vier extremale Kornwechselwirkungsmodelle für eine dünne Schicht formuliert

werden. Diese vier Modelle werden im folgenden zusammengestellt:

1. Das Voigt Modell

Alle Kristallite weisen bezüglich beider Hauptrichtungen identische Dehnungen

auf, können sich also nicht (dehnungs-)unabhängig von benachbarten Kristalliten

deformieren.

2. Das Reuss Modell

Alle Kristallite weisen identische Spannungen auf und können sich unter dem

Einfluß dieser Spannungen (dehnungs-)unabhängig von benachbarten Kristalliten

deformieren.

3. Das Vook-Witt Modell

Alle Kristallite weisen parallel zur Oberfläche identische Dehnungen auf  (‚Voigt-

artige Kornwechselwirkung’), während sie sich senkrecht zur Oberfläche

(dehnungs-)unabhängig von benachbarten Kristalliten deformieren können und

gleiche Spannungen aufweisen (‚Reuss-artige Kornwechselwirkung’). 

Das vierte Kornwechselwirkungsmodell wird in dieser Arbeit eingeführt:

4. Das inverse Vook-Witt Modell

Alle Kristallite können sich in der Schichtebene (dehnungs-)unabhängig von

benachbarten Kristalliten verformen (‚Reuss-artige Kornwechselwirkung’) und

weisen die gleichen Spannungen auf, während sie senkrecht zur Oberfläche die

gleichen Dehnungen aufweisen (‚Voigt-artige Kornwechselwirkung’). 

Das inverse Vook-Witt Modell ist ein neues Kornwechselwirkungsmodell, welches für die

Konstruktion eines effektiven Kornwechselwirkungsmodells benötigt wird. Im folgenden
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wird vorausgesetzt, daß der Vielkristall wenigstens transversale elstische Isotropie aufweist

(siehe auch 6.1) und einem ebenen, rotationssymmetrischen Spannungszustand unterworfen

ist. Die Kornwechselwirkungsannahmen für das inverse Vook-Witt Modell sind:

(i) die Spannung parallel zur Oberfläche ist rotationssymmetrisch und (ii) parallel zur

Oberfläche gleich für alle Kristallite und (iii) die Dehnung senkrecht zur Oberfläche ist gleich

für alle Kristallite. 

Wie schon beim Vook-Witt Modell (vergl. 6.3 und Kapitel 3) fixieren diese

Kornwechselwirkungsannahmen sechs Komponenten des Spannungs- und Dehnungstensors:
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(6.9)

Die noch fehlenden sechs Komponenten können unter Benutzung der Gleichung (6.4)

(siehe auch Text unter Gleichung (6.4)) berechnet werden, so daß eine Bestimmung der

röntgenografischen und mechanischen elastischen Konstanten möglich ist. 

Basierend auf den vier beschriebenen Modellen kann ein effektives

Kornwechselwirkungsmodell konstruiert werden. Das folgende Beispiel soll der Illustration

dienen: Die Modelle nach Reuss und Vook-Witt können kombiniert werden, wenn für die

Berechnung der röntgenografischen Spannungsfaktoren (und der mechanischen elastischen

Konstanten) davon ausgegangen wird, daß ein Volumenanteil fR von Kristalliten dem Reuss-

Kornwechselwirkungsmodell unterliegt, während ein Volumenanteil fVW = 1- fR  dem Vook-

Witt Kornwechselwirkungsmodell unterliegt. Ein solches durch Mittelung erhaltenes

Kornwechselwirkungsmodell kann so verstanden werden, daß effektiv für die Richtungen in

der Schichtebene eine Kornwechselwirkung vorliegt, die zwischen den extremalen ‚Reuss-

artigen’ und ‚Voigt-artigen’ Annahmen liegt; während die Kristallite gemäß dem Vook-Witt

Modell starr miteinander verbunden sind und alle die gleiche Dehnung aufweisen, führt die

Kombination mit dem Reuss-Modell dazu, daß diese unrealistische

Kornwechselwirkungsannahme aufgehoben wird. 

Eine Quantifizierung der effektiven Kornwechselwirkung kann durch die Einführung von

Wechselwirkungsparametern für die zwei Hauptrichtungen erzielt werden:

� Wechselwirkungsparameter parallel zur Oberfläche w
�
: 1w

�
�  falls alle Kristallite

identische Dehnungen aufweisen (‚Voigt-artige Kornwechselwirkung‘, Kristallite sind

starr verbunden) und 0w
�
�  falls alle Kristallite gleiche Spannungen aufweisen (‚Reuss-
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artige Kornwechselwirkung‘, Kristallite können sich unabhängig von benachbarten

Kristalliten deformieren).

� Wechselwirkungsparameter senkrecht zur Oberfläche w
�

: Definition analog zu  w
�
.

Die Kombination mehrerer Kornwechselwirkungsmodelle resultiert in gemittelten

Wechselwirkungsparametern w
�

 und w
�

:

,i i
i

w f w��� �
(6.10)

,i i
i

w f w
� �

�� . (6.11)

In den Gleichungen (6.10) und (6.11) repräsentieren  die Parameter fi Volumenfraktionen von

Kristalliten welche dem Kornwechselwirkungsmodell i unterliegen.

1i
i

f �� . (6.12)

6.4.2. Experimentelle Ergebnisse und Diskussion

Das in dieser Arbeit entwickelte Kornwechselwirkungsmodell wurde auf die

Spannungsmessung einer gesputterten, 500nm dicken Kupferschicht angewendet. Die

Probenherstellung ist detailliert in Kapitel 4 dieser Arbeit beschrieben. Eine Charakterisierung

der Textur durch Berechnung der Orientierungsverteilungsfunktion wurde durch Analyse der

integralen Intensitäten der Röntgenbeugungslinien aus der Spannungsmessung durchgeführt.

Die integralen Intensitäten wurden mittels des in Kapitel 5 (siehe auch Kapitel 6.5)

beschriebenen Verfahrens auf instrumentelle Effekte korrigiert. Zusätzlich zu den

röntgenografischen Messungen wurden Untersuchungen der Mikrostruktur mittels

Ionenstrahlmikroskopie  durchgeführt. 

Es ergab sich, daß eine Auswertung der Spannungsmessung mit dem in dieser Arbeit

vorgestellten  effektiven Kornwechselwirkungsmodell, nicht aber mit den herkömmlichen

Kornwechselwirkungsmodellen möglich ist. Insbesondere wurden nichtlineare sin2
�-Verläufe

für die 111 und 200 Reflektionen beobachtet, welche durch die Modelle aus der Literatur

nicht erklärt werden können. In Abbildung 6.3 sind die gemessenen sin2
�-Auftragungen für

sechs Reflexe zusammen mit den berechneten Verläufen dargestellt. Der Spannungswert

ergibt sich aus einer Anpassung von berechneten sin2
�-Verläufen an die gemessenen

Verläufe und wurde zu 165 MPa (Zugspannung) bestimmt. Die Parameter if , welche den

Anteil des Kornwechselwirkungsmodells i an der effektiven Kornwechselwirkung in der
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Probe beschreiben, wurden ebenfalls als freie Parameter in der Anpassung benutzt. Die daraus

abgeleiteten Kornwechselwirkungsparemeter ergaben sich zu 0.6w �
�

und 0.1w
�
� . Für

weitere Details der Auswertung sei der Leser an dieser Stelle auf Kapitel 4 der Arbeit

verwiesen. 

Die Kornwechselwirkungsparameter zeigen, daß parallel zur Oberfläche eine

Kornwechselwirkung zwischen den extremalen Kornwechselwirkungen nach Voigt und

Reuss auftritt, also eine Kornwechselwirkung ähnlich wie in einem Bulk-Vielkristall vorliegt,

währenddessen sich die Kristallite senkrecht zur Oberfläche praktisch unabhängig von

benachbarten Kristalliten verformen können, d.h. eine ‚Reuss-artige’ Kornwechselwirkung

vorliegt. Dieses Ergebnis ist mit der kolumnaren Mikrostruktur der Schicht kompatibel,

welche in den mikroskopischen Untersuchungen gefunden wurde. 

0.0 0.2 0.4 0.6 0.8 1.0

-5

0

5

 

 

111
 Messung
 Simulation

�
�

hk
l  *

 1
04

0.0 0.2 0.4 0.6 0.8 1.0

-15

-10

-5

0

5

10

15

 

 

 

 

200
 Messung
 Simulation

0.0 0.2 0.4 0.6 0.8 1.0

-5

0

5

10

 

 

 

 
220

 Messung
 Simulation

0.0 0.2 0.4 0.6 0.8 1.0
-15

-10

-5

0

5

10

 

 

 

311
 Messung
 Simulation

0.0 0.2 0.4 0.6 0.8 1.0

-5

0

5

 

 

 

 sin2
�

331
 Messung
 Simulation

0.0 0.2 0.4 0.6 0.8 1.0
-15

-10

-5

0

5

10

 

 

 

420
 Messung
 Simulation

 Abbildung 6.3: Spannungsanalyse einer texturierten Kupferschicht. Auftragung der gemessenen

(offene Kreise) und berechneten (gestrichelte Linie) Verläufe der Gitterdehnung für verschiedene

Röntgenbeugungslinien gegen sin2
�.
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6.4.3. Zusammenfassung 

Die herkömmlichen Kornwechselwirkungsmodelle (z.B. die Modelle nach Reuss und nach

Voigt) können für die Anwendung auf dünne Schichten ungeeignet sein. Diese Modelle

implizieren, daß ein Vielkristall (in der Abwesenheit von Textur) elastisch isotrop ist,

während dünne Schichten (auch in der Abwesenheit von Textur) elastisch anisotrop sein

können. 

Das Vook-Witt Kornwechselwirkungsmodell ist das erste Modell, welches auf

richtungsabhängigen Kornwechselwirkungsannahmen beruht. Dabei wird angenommen, daß

alle Kristallite die gleiche Dehnung parallel zur Oberfläche und die gleiche Spannung

senkrecht dazu aufweisen. Dieses Modell impliziert, daß ein Vielkristall (auch wenn keine

kristallographische Textur vorliegt) elastisch anisotrop ist. 

In Analogie zu den Modellen nach Reuss und Voigt wird in dieser Arbeit das

sogenannte ‚inverse Vook-Witt‘ Modell vorgeschlagen. Dieses Modell ist komplementär zum

Vook-Witt Modell und es wird davon ausgegangen, daß alle Kristallite die gleiche Spannung

parallel zur Oberfläche und die gleiche Dehnung senkrecht zur Oberfläche aufweisen.

Die Modelle nach Reuss, Voigt, Vook-Witt und das in dieser Arbeit vorgestellte

Modell basieren auf extremen Kornwechselwirkungsannahmen, welche i.a. nicht mit realen

Vielkristallen kompatibel sind. In dieser Arbeit wird ein effektives

Kornwechselwirkungsmodell vorgeschlagen, welches auf einer (linearen) Kombination von

vier Modellen - Reuss, Voigt, Vook-Witt und inverses Vook-Witt - beruht und mit dessen

Hilfe die Richtungsabhängigkeit der Kornwechselwirkung durch

Kornwechselwirkungsparameter quantitativ beschrieben werden kann.

Das vorgeschlagene Modell wurde auf die Spannungsanalyse einer dünnen (500 nm)

Kupferschicht angewendet. Während eine Auswertung auf der Basis der herkömmlichen

Modelle nicht möglich war, konnte mittels des in dieser Arbeit vorgeschlagenen Modells eine

simultane Auswertung von sin2
�-Auftragungen für sechs verschiedene Beugungslinien

durchgeführt werden. Die aus dem Modell resultierenden Kornwechselwirkungsparameter,

welche die Richtungsabängigkeit der Kornwechselwirkung beschreiben, sind in

Übereinstimmung mit der kolumnaren Mikrostruktur der Schicht, welche in mikroskopischen

Untersuchungen nachgewiesen wurde.

In dieser Arbeit gelang es erstmals, richtungsabhängige Kornwechselwirkung quantitativ zu

beschreiben.
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6.5. Die Benutzung von Polykapillarröntgenlinsen für Textur-

untersuchungen – Kapitel 5

6.5.1. Grundlagen

Für röntgenografische Untersuchungen steht heutzutage ein Vielzahl von neuen optischen

Komponenten für den Anwender zur Verfügung. Im Bereich der Textur- und

Spannungsanalyse finden insbesondere sogenannte Polykapillarröntgenlinsen Verwendung

(siehe z.B. Kumachov &  Komarov, 1990, Kogan & Bethke, 1998, Scardi et al., 2000).

Diese ‚Linsen‘ nutzen den Effekt der Totalreflektion aus, welcher für Röntgenstrahlen

auftritt, wenn diese unter einem sehr flachen Winkel (typisch einige Zehntelgrad) auf ein

optisch dünneres Medium treffen. Da der Brechungsindex in Festkörpern für Röntgenstrahlen

kleiner als eins ist, kann Totalreflektion z.B. beim Auftreffen des Röntgenstrahls auf eine

Glasoberfläche auftreten (der Brechungsindex von Luft ist nahezu exakt eins).  Dieser Effekt

wird in Polykapillarlinsen ausgenutzt, um aus dem vom Röhrenfokus abgestrahlten,

divergenten Strahlbündel ein nahezu paralleles Strahlbündel zu erhalten. Zu diesem Zweck

werden die Röntgenstrahlen in sehr dünnen Glaskapillaren z.B. entlang von Segmenten von

Parabelbahnen geführt, so daß ein divergentes Strahlenbündel zum einem Parallelstrahl

konvertiert wird. Allerdings weist der Strahl immer noch eine Restdivergenz auf, welche

durch die Eigenschaften der verwendeten Linse und die Wellenlänge der benutzten Strahlung

bestimmt wird. Mittels des erhaltenen Parallelstrahls lassen sich dann

Röntgenbeugungsuntersuchungen in (Pseudo-)Parallelstrahlgeometrie durchführen, welche

verglichen mit Fokusierungsgeometrien (z.B. Bragg-Brentano Geometrie) außerordentlich

geringe instrumentelle Aberrationen aufweist. Überdies stehen, bezogen auf herkömmliche

Messgeometrien, vergleichsweise hohe Intensitäten für Beugungsuntersuchungen zur

Verfügung. 

Röntgenografische Texturuntersuchungen basieren auf der Messung von sogenannten

Polfiguren (siehe z.B. Bunge, 1982b, 1999). In einer Polfigurmessung wird die (integrale)

Intensität einer bestimmten Beugungslinie, welche dem Volumen der diffraktierenden

Kristallite proportional ist (abgesehen von Korrekturen, siehe unten), als Funktion der Winkel

�  und � gemessen. Allerdings muß die gemessene Intensität korrigiert werden, da

verschiedene Effekte die gemessene Intensität verfälschen. Bei der Verwendung von

fokusierenden Geometrien (z.B. der Bragg-Brentano Geometrie) müssen Korrekturen für

Defokusierung, Änderung der beleuchteten Probenfläche und Überstrahlung, sowie
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Absorption durchgeführt werden (siehe z.B. Chernock & Beck, 1952, Gale & Griffiths, 1960,

Holland, 1964, Tenckhoff, 1970, Holt & Winegar, 1977, Ortiz & Hermida, 1981, Lahn &

Hougardy, 1999). In dieser Arbeit wurden die notwendigen Korrekturen, welche bei der

Verwendung einer Polykapillarlinse berücksichtigt werden müssen, an Hand von Messungen

an untexturierten Standardproben untersucht und geeignete Korrekturverfahren entwickelt. 

6.5.2. Korrekturen bei Verwendung einer Polykapillarlinse

Die Defokusierungskorrektur stellt eine zentrale Korrektur bei der röntgenografischen

Texturmessung bei der Verwendung  von fokusierenden Messgeometrien (z.B. Bragg-

Brentano Geometrie) dar. Unter Defokusierung wird die Verbreiterung einer Beugungslinie

verstanden, die entsteht, wenn die Probe bei der Texturmessung verkippt wird, und dadurch

Teilbereiche der Probe die Fokusierungsbedingung verletzen. Eine Reduzierung der

gemessenen Intensität ergibt sich, wenn ein Teil des verbreiterten diffraktierten Strahls nicht

in den Empfangsspalt fällt. 

In dieser Arbeit konnte experimentell gezeigt werden, daß auf Grund des (Pseudo-)

Parallelstrahlengangs bei Verwendung einer Röntgenlinse keine Defokusierungskorrektur

benötigt wird. Da bei Parallelstrahlengang keine Fokusierungsbedingung vorliegt, ergibt sich

durch die Verkippung der Probe auch keine Verbreiterung des diffraktierten Strahls

(bezüglich des Beugungswinkels). Dies ist für ein Beispiel in Abbildung 6.4 veranschaulicht,

in der die Peakparameter von Röntgenbeugungslinien einer Wolfram-Pulverprobe gegen den

Verkippungswinkel � aufgetragen wurden. 

Damit müssen lediglich Absorption und geometrische Effekte, d.h. die Veränderung

der bestrahlten Probenoberfläche sowie die Überstrahlung der Probe (und, für große Proben,

die Überstrahlung der Optiken im diffraktierten Strahl) korrigiert werden. Die

Absorptionskorrektur kann mittels bekannter Formeln leicht durchgeführt werden (siehe z.B.

Bunge, 1982b, 1999), so daß nur die geometrischen Effekte besondere Aufmerksamkeit

erfordern. In dieser Arbeit wurden zwei Verfahren für die Korrektur von geometrischen

Effekten entwickelt. Eines dieser Verfahren beruht auf der Messung von Polfiguren für

mehrere Reflektionen einer untexturierten Pulverprobe, welche als Standard für die

Ermittlung einer Korrekturfunktion benutzt wird. Ein zweites Verfahren basiert auf einer

numerischen Berechnung der geometrischen Korrekturfunktion. Es wird jedoch noch eine

Polfigurmessung für eine Reflektion einer untexturierten Standardprobe zur Kalibrierung der

Korrektur benötigt (für Details, siehe Kapitel 5). Ein Beispiel ist in Abbildung 6.5. gegeben.
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Abbildung 6.4: Parameter der 110 (offene Kreise) und der 321 (gefüllte Kreise) Beugungslinien

einer Wolfram Pulverprobe als Funktion des Probenverkippungswinkels ��: Halbe Breite bei

halber Höhe (HWHM), Formfaktor � und Asymmetrie ��. Die Parameter wurden durch das

Anpassen einer Pearson VII Funktion an die gemessenen Beugungslinien bestimmt.
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Abbildung 6.5: Experimentelle Korrektur gemessener Intensitäten (Schnitt durch eine Polfigur

für � = konstant; offene Kreise, 111 Beugunslinie (a) und 440 Beugungslinie (b)) einer dicken

Germaniumprobe. Die korrigierten Intensitäten sind als gefüllte Kreise dargestellt. Zur

Ermittlung der Korrekturfunktion wurden acht Beugungslininen einer Wolframstandardprobe

benutzt.
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Die gemessene Intensität als Funktion des Kippwinkels für zwei Reflektionen einer

Germaniumpulverprobe wurde mittels Standardmessungen an einer Wolframpulverprobe

korrigiert. Da die Probe untexturiert ist, sollte sich nach der Korrektur eine von �

unabhängige Intensität ergeben, was im Beispiel auch gut erfüllt ist. 

6.5.3. Zusammenfassung 

Wenn eine Polykapillarlinse zur röntgenografischen Texturmessung benutzt wird, kann die

Defokusierungskorrektur auf Grund des quasi-parallelen Strahlengangs entfallen. 

Es müssen Korrekturen für Absorption und geometrische Effekte, d.h. die Veränderung der

bestrahlten Probenoberfläche sowie die Überstrahlung der Probe (und, für große Proben, die

Überstrahlung des Detektors) durchgeführt werden. 

Für die Korrektur der geometrischen Effekte wurden zwei Methoden vorgeschlagen,

wobei eine der beiden auf Standardmessungen an untexturierten Proben zur Bestimmung

einer Korrekturfunktion basiert, während die andere Methode eine geometrischen Berechnung

der Korrekturfunktion benutzt. In diesem Fall wird jedoch noch eine Standardmessung zur

Kalibrierung benötigt.

Die Anwendbarkeit der vorgeschlagenen Korrekturverfahren wurde an Hand von

experimentellen Beispielen demonstriert.



6. Kurzfassung der Dissertation in deutscher Sprache

158

 



References

159

References

Baron, H.U. & Hauk, V. (1988), Z. Metallkde., 79, 127-131.

Brakman, C.M. (1983), J. Appl. Cryst., 16, 325-340.

Brakman, C. M. (1987), Phil. Mag. A, 55 [1], 39-58.

Brakman, C. M. (1988), Phil. Mag. A 58 [4], 635-650.

Bunge, H.-J. (1982a), Texture analysis in materials science, Butterworths (London).

Bunge, H. J. (1982b), Experimental techniques, in ‘Quantitative texture analysis’, edited by 

Bunge, H. J., Esling, C., p. 85. Oberursel: Deutsche Gesellschaft für Metallkunde.

Bunge, H. J. (1999), Texture and structure of polycrystals, in ‘Defect and Microstructure

Analysis by Diffraction’, edited by Snyder R. L., Fiala J., Bunge H. J., pp.405., Oxford

University Press (New York).

Burbach, J. (1974) in ‘Mechanische Anisotropie’, edited by Stüwe, H. P., Springer (Wien).

Chernock, W. P. & Beck, P. A. (1952), J. Appl. Phys. 23, 341-345

Diz, J. & Humbert, M. (1992), J. Appl. Cryst., 25, 756-760.

Dölle, H. & Hauk, V. (1978), Z. Metallkde. 69, 410-417.

Dölle, H. & Hauk, V. (1979), Z. Metallkde. 70, 682-685.

Downing, R. G., Gibson, W. M. & MacDonald, C. A. (1996), Proceedings of the SPIE – The

International Society for Optical Engineering 2859, 150-161.

Eshelby, J. D. (1957), Proc. Roy. Soc. A 241, 376-396.



References

160

Evenschor, P. D. & Hauk, V. (1975), Z. Metallkde. 66, 167-168.

Gale, B. & Griffiths, D. (1960), Brit. J. Appl. Phys. 11, 96-102. 

Genzel, Ch. (1994), Phys. stat. sol. (a), 146, 629-637.

Genzel, Ch. (1997), Phys. stat. sol. (a), 159, 283-296.

Genzel, Ch. (1998), Phys. stat. sol. (a), 165, 347-360.

Giacovazzo, C., Monaco, H. L., Voterbo, D., Scordari, F., Gilli, G., Zanotti, G. & Catti, M.

(1998), Fundamentals of Crystallography, Oxford Science (Oxford)

Glocker, R. (1938), ZS. f. techn. Phys. 10, 289-293.

Hartmann, U. R.(1973), PhD thesis, Universität Karlsruhe (TH).

Hauk, V., Nikolin, H.-J. & Weisshaupt, H. (1985), Z. Metallkde. 76, 226-231.

Hauk, V. (ed.) (1997), Structural and residual stress analysis by nondestructive methods,

Elsevier (Amsterdam).

Hendrix, B. C. & Yu, L. G. (1998), Acta Mater., 46 [1], 127-135.

Hermida, J. D. (1982). Mater. Sci. Eng. 56, 135-141.

Hill, R. (1952), Proc. Phys. Soc. London, 65, 349-354.

Holland, J. R. (1964), Advanc. X-ray Anal. 7, 86-93

Holt, R. A. & Winegar, J. E. (1977), J. App. Phys. 48, 3557-3559



References

161

International Tables For X-ray Crystallography Vol. IV (1974), edited by J.A. Ibers and W.C.

Hamilton (Kynoch, Birmingham). 

Kamminga, J.-D., De Keijser, Th. H., Delhez, R. & Mittemeijer, E. J., (1999), J. Appl. Cryst.,

33, 1059-1066.

Kardiawarman, York, B. R., Qian, X. W., Xiao, Q. F., MacDonald, C. A. & Gibson, W. M.

(1995), Proceedings of the SPIE - The International Society for Optical Engineering 2519,

197-206.

Kneer, G. (1965), Phys. Stat. Sol., 9, 825-838.

Kogan, V. A. &  Bethke, J. (1998), Mat. Sci. Forum 278-281, 227-235.

Krigbaum, W. R. & Roe, R.-J. (1964), J. Chem. Phys., 41 [3], 737-748.

Kröner, E. (1958), Z. Physik 151, 504-518.

Kröner, E. (1971), Statistical Continuum Mechanics, Springer (New York).

Kumachov, M. A. & Komarov, F. A. (1990), Physics Reports 5, 289-298. 

Kurtasov, S. F., Borodkina, M. M.& Shestakov, K. A. (1983), Zavodskaya Laboratoriya 49
[9], 52-53.

Lahn, L. & Hougardy, H. P. (1999), Mat.-wiss. u. Werkstofftech. 30, 77-86.

Larson, A. C. & von Dreele, R. B. (1994), GSAS-General Structure Analysis System -

Manual, Los Alamos.

Ledbetter, H.M. & Naimon E.R. (1974), J. Appl. Phys., 45 [1], 66-69.

Leigh S.-H. & Berndt, C. C. (1999), Acta Mater., 47 [5], 1575-1586.

Leoni, M., (1998), PhD Thesis. Universitá di Roma “Tor Vergata”, Italy.



References

162

Leoni, M., Dong, Y.H. & Scardi, P. (1999), Mat. Sci. Forum, 321-324, 439-444.

Leoni, M., Welzel, U. & Scardi, P. (2001), Proceedings of the conference “Accuracy in

Powder Diffraction III”,  April 22-25, 2001, National Institute of Standards and Technology,

Gaithersburg, MD, USA.

Leroux, J. & Thinh, T. P. (1977), Revised Tables of X-Ray Mass Attenuation Coefficients,

Corporation Scientifique Claisse Inc. (Quebec).  

Love, A. E. H. (1927), A treatise on the mathematical theory of elasticity, Cambridge (New

York).

Machlin, E.S. (1995), Materials science in microelectronics. Vol. 2, Giro Press (New York). 

Matthies, S. & Humbert, M. (1995), J. Appl. Cryst., 28, 254-266.

Matthies, S., Vinel, G. & Helming K. (1987), Standard distributions in texture analysis,

Akademie Verlag (Berlin).

Matthies, S., Wenk, H.-R. & Vinel, G. W. (1988), J. Appl. Cryst., 21, 285-304.

Meyers, M. A. & Chawla, K. K. (1984), Mechanical Metallurgy, Principles and applications;

Prentice-Hall (Englewood Cliffs), pp. 57-58.

Möller, H. & Barbers, J. (1935), Mitt. K.-Wilh.-Inst. Eisenforsch., Düsseldorf, 17, 157-166.

Möller, H. & Martin, G. (1939), Mitt. K.-Wilh.-Inst. Eisenforsch., Düsseldorf, 21, 261-269.

Murakami, M. & Yogi, T. (1985), J. Appl. Phys., 57 [2], 211-215.

Neerfeld, H. (1942), Mitt. K.-Wilh.-Inst. Eisenforschg., 24, 61-70.

Nikolin, H.J. (1983), Diploma thesis, Institut für Werkstoffkunde, RWTH Aachen.



References

163

Noyan, I.C. & Cohen, J. B. (1987), Residual stress. Measurement by diffraction and

interpretation, Springer Verlag (New York).

Nye, J.F. (1957), Physical properties of crystals, Oxford University Press (Oxford).

Ortiz, M. & Hermida, J. D. (1981). Texture 4, 159-169.

Rafaja, D., Valvoda, V., Kuzel, R., Perry, A. J. & Treglio, J.R. (1996), Surface & Coatings

Technology, 87, 302-308.

Reuss, A. (1929), Zeitschrift für angewandte Mathematik und Mechanik, 9, 49-58.

Roe, R.-J. & Krigbaum, W. R. (1964), J. Chem. Phys. 40 [9], 2608-2615.

Roe, R.-J. (1965), J. Appl. Phys., 36 [6], 2024-2031.

Sasaki, T., Yoshioka, Y. & Kuramoto, M. (1993), in Current Japanese Materials Research,

Vol. 10, eds. K. Tanaka, S. Kodama, T. Goto, Elsevier (Amsterdam), 73-94.

Scardi, P., Leoni, M. & Dong, Y.H. (1999), Adv. X-ray Anal., 42.

Scardi, P., Setti, S. & Leoni, M. (2000). Mat. Sci. Forum 321-324, 162-167.

Schulz, L. G. (1949).  J. Appl. Phys. 20, 1030-1033.

Serruys, W., Van Houtte, P. & Aernoudt, E. (1987), in Residual Stresses in Science and

Technology (Macherauch, E. & Hauk, V., ed.). Deutsche Gesellschaft für Metallkunde

(Oberursel)

Serruys, W., Langouche, F., van Houtte, P. & Aernoudt, E., Proc. (1989), in Proc. of ICRS2

(Beck, G., Denis, S. & Simon, A., ed.). Elsevier Applied Science (London, New York).

Sonneveld, E. J., Delhez, R., de Keijser, Th. H. & Mittemeijer, E. J. (1991). Mat. Sci. Forum

79-82, 85-90.



References

164

Stickforth, J. (1966), Tech. Mitt. Krupp – Forsch.-Ber. 24 [3] 89-102.

Tenckhoff, E. (1970). J. Appl. Phys. 41 (10), 3944-3948.

vande Walle (ed.) (1981), Residual stress for designers and metallurgists,

Materials/Metalworking series, American Society for Metals (Metals Park, Ohio)

van Leeuwen, M., Kamminga, J.-D. & Mittemeijer, E. J. (1999), J. Appl. Phys. 86 [4], 1904-

1914.

Voigt, W. (1910), Lehrbuch der Kristallphysik, Teubner (Leipzig-Berlin).

Vook, R.W. & Witt, F. (1965), J. Appl. Phys. 36 [7], 2169-2171.

Welzel, U., Lamparter, P., Ligot, J., Vermeulen, A. & Mittemeijer, E. J. (2002), in preparation

Wieder, T. (1995a), Thin Solid Films, 256, 39-43.

Wieder, T.  (1995b), J. Appl. Phys., 78 [2], 838-841.

Wieder, T. (1995c), Computer Physics Communications, 85 [3], 398-414.

Wieder, T. (1996), Computer Physics Communications, 96 [1], 53-60.

Witt F. & Vook, R. W. (1968), J. Appl. Phys., 39 [6], 2773-2776.



165

Curriculum Vitae

Name Udo Siegfried Welzel

Date of birth February 19, 1972

Place of birth  Selb (Bayern)

School 1978-1982

Grundschule Erkersreuth – Selb-Plößberg

1982-1991

Gymnasium Selb

Community Service 1991-1992

Home of the Aged ‚Paul-Gerhardt-Haus‘ in Selb

Higher Education 1992-1998

Physics at University of Bayreuth, Bayreuth

since 1998

PhD student at Max Planck Institute for Metals Research

and Institut für Metallkunde of Stuttgart University, Stuttgart



166



167

Danksagung

Die vorliegende Arbeit wurde am Institut für Metallkunde der Universität Stuttgart

und am Max-Planck-Institut für Metallforschung, Stuttgart, angefertigt. 

Mein besonderer Dank gilt Herrn Prof. Dr. Ir. E.J. Mittemeijer für die Aufnahme in

seine Arbeitsgruppe und sein außergewöhnliches Engagement bei der fachlichen Betreuung.

Durch zahlreiche Diskussionen und nicht zuletzt auch durch das Redigieren von

Manuskripten trug er entscheidend zum erfolgreichen Abschluß dieser Arbeit bei. 

Bei Herrn Prof. Dr. P. Scardi von der Universität Trento möchte ich mich für viele

hilfreiche, konstruktiv-kritische Diskussionen und die Übernahme des Mitberichts für diese

Arbeit bedanken. 

Sehr herzlich danke ich Herrn Dr. P. Lamparter für seine außerordentlich große

Hilfsbereitschaft, die vielen Diskussionen und die sehr angenehme Arbeitsatmosphäre. 

Herzlich danken möchte ich auch allen Mitarbeitern des Max-Planck-Instituts für

Metallforschung für die hilfreiche Unterstützung. Mein besonderer Dank gilt hierbei Frau M.

Dudek, Herrn Dipl.-Ing. (FH) G. Maier und Frau U. Schestag, die mir stets mit voller

Unterstützung bei allen technischen Problemen der Röntgenbeugung und der Computerhard-

und Software zur Seite standen.


