α- and β-(BEDT-TTF)$_2$I$_3$: Two Dimensional Organic Metals

I. HENNIG, K. BENDER and D. SCHWEITZER
Max-Planck-Institut, Abt. Mol. Physik,
D-6900 Heidelberg, FRG

K. DIETZ, H. ENDRES and H. J. KELLER
Anorganisch-Chem. Institut der Universität,
D-6900 Heidelberg, FRG

A. GLEITZ and H. W. HELBERG
3. Physikalisches Institut der Universität,
D-3400 Göttingen, FRG

Abstract Electronic properties of α- and β-(BEDT-TTF)$_2$I$_3$ crystals are reported.

BEDT-TTF [bis(ethylendithio)tetrathiofulvalene] salts have caused considerable interest, since Saito et al.\(^1\) have proved strong intermolecular contacts and exchanges in more than one direction. Additionally, Parking et al.\(^2\) reported a superconducting transition in a ReO$_4$-derivative under pressure. Electrochemical methods using I$_3^-$ as counterions yield several crystallographic phases\(^3\)-\(^7\), with different physical properties, e.g. α-(BEDT-TTF)$_2$I$_3$ (α-\(\perp\)) and β-(BEDT-TTF)$_2$I$_3$ (β-\(\perp\)). The former has a metal to insulator transition at 135 K\(^3\)-\(^4\) which can be suppressed above 15 Kbar\(^8\).

β-\(\perp\) stays metallic down to 1.4 K. There the crystals become superconducting at ambient pressure\(^5\),\(^8\). Other triiodide phases seem to show superconducting transitions even at 2.5 K\(^6\),\(^7\). Figure 1 shows the projection of the unit cells of α-\(\perp\) onto the bc-plane (left) and of β-\(\perp\) onto the ac-plane. Both phases crystallize in the triclinic space group P\(\overline{1}\) (α-\(\perp\): a = 9.211 Å, b = 10.850 Å, c = 17.488 Å, α = 96.95°, β = 97.97°, γ = 90.75°; β-\(\perp\): a = 6.615 Å, b = 9.097 Å, c = 15.291 Å, α = 94.35°, β = 95.55°, γ = 109.75°).
and are two dimensional organic metals.

The first order phase transition in \(\alpha-1 \) at 135 K can be utilized to demonstrate the validity of the Wiedemann-Franz-law

\[
\frac{K_e}{\sigma} = \frac{\pi^2}{2}\frac{k_B^2}{e^2} \frac{T}{L_0 \cdot T},
\]

Here \(K_e \) is the thermal conductivity of the charge carrier, \(\sigma \) the electrical conductivity, \(T \) the temperature and \(L_0 = 2.44 \cdot 10^{-8} \frac{V^2}{K^2} \) the Lorentz-number. Fig. 2 shows the temperature dependence of the total thermal conductivity \(K \) shows the tals of \(\alpha-1 \). Assuming that the difference of 1.5 mW/(cm\(^2\)K) in \(K \) at 135 K is due to the contribution \(K_e \) of the charge carriers in the metallic range and taking the typical value of the electrical conductivity at 135 K \(\sigma_{135} = 450(\Omega \cdot \text{cm})^{-1} \) we obtain a value

![Fig. 1) Structure of \(\alpha-1 \) (left) and \(\beta-1 \) (right).](image)

![Fig. 2) Thermal conductivity of \(\alpha-1 \).](image)
\[K_e/(a_{135} \cdot T) = 2.5 \cdot 10^{-8} \cdot v^2/K^2. \] Even if we assume that \(a_{135} \) is only correct within an error of 20% this value agrees quite well with the Lorentz-number. In addition the results of Fig. 2 demonstrate that in an organic metal the contribution to \(K \) due to the lattice phonons predominates the contribution of the charge carriers in contrast to the usual metals.

In our preparation of \(\alpha-\) using THF\(^3,4\) we always observed canted rhombohedrons of \(\beta-\). Fig. 3 shows the microwave conductivity as measured at 10 GHz by the cavity perturbation method between 3 and 300 K. A very similar temperature dependent conductivity behaviour was observed with dc-methods. Typical room temperature conductivities range around \(35(\, \Omega \, \text{cm})^{-1} \). Nevertheless, the peak in the microwave conductivity at about 125 K is sensitive to the microwave power. For somewhat higher microwave field strength (\(x \)) the conductivity increases stronger and already at higher temperatures (\(T \approx 200 \, \text{K} \)). Further experiments are in progress in order to explain this behaviour.

Fig. 3) Microwave conductivity at 10 GHz of \(\beta-\).
ESR-experiments indicate a temperature independent susceptibility between 300 and 4.2 K. The ESR-linewidth at room temperature can be used to discriminate between α-1 and β-1 (70 to 110 Gauss for α-1 and 20 to 25 Gauss for β-1 depending on the orientation of the crystals with respect to the magnetic field).

Temperature dependent thermopower measurements prove a metallic state down to low temperatures (Fig. 4) but around 120 K a phase transition might occur. From the slope of the thermopower above 150 K it can be estimated that the width of the conducting band in a-direction is about 2/3 of the bandwidth in b-direction in good agreement with optical reflectance measurements. Volume superconductivity in β-1 at ambient pressure and a diamagnetic transition temperature of 1 K is reported separately.

ACKNOWLEDGEMENT

We would like to thank Mrs. I. Heinen for the preparation of the crystals. This work has been supported by Stiftung Volkswagenwerk, Hannover.

REFERENCES