NMR INVESTIGATIONS OF THE ORGANIC METALS AND SUPERCONDUCTORS α-(BEDT-TTF)$_2$I$_3$, β-(BEDT-TTF)$_2$I$_3$ AND α_t-(BEDT-TTF)$_2$I$_3$

Max Planck Institut für Med. Forschung, Arbeitsgruppe Molekülkristalle, Jahnstraße 29, 6900 Heidelberg, FRG and *Anorganisch-Chemisches Institut der Universität Heidelberg, Im Neuenheimer Feld, 6900 Heidelberg, FRG.

1H and 13C spin lattice relaxation rates as well as 13C Knight shifts of the quasi two dimensional organic metals $\alpha-$, $\beta-$ and α_t-(BEDT-TTF)$_2$I$_3$ are reported. In $\beta-$ and α_t-(BEDT-TTF)$_2$I$_3$ at temperatures below 100 K the Korringa relation is fulfilled. Near the critical temperature of 8K of the stable superconducting state of α_t-(BEDT-TTF)$_2$I$_3$ an enhancement of the proton spin lattice relaxation rate due to superconducting fluctuations is observed. The observed individual 13C Knight shifts, as measured by magic angle sample spinning and cross polarisation methods range between -6 and $+244$ ppm for $\alpha-$ phase and -10 and $+125$ ppm for $\beta-$ and α_t- phase crystals.

1. INTRODUCTION

Since in organic metals the conduction band arises from delocalized molecular orbitals the understanding of the electronic properties on a microscopic level is of importance. High resolution 13C NMR investigations can provide such information because spin densities derived from Knight shifts for individual carbons reflect directly the charge density [1-3].

Here we report 1H and 13C NMR investigations on the three title compounds. α-(BEDT-TTF)$_2$I$_3$ is an organic metal at temperatures above 135K. At 135K a metal insulator phase transition occurs [4]. Crystals of β-(BEDT-TTF)$_2$I$_3$ are organic metals down to low temperatures and have a superconducting state at ambient pressure below 1.3K [5]. They have a second metastable superconducting state at 8K [6]. Crystals of α_t-(BEDT-TTF)$_2$I$_3$ have at ambient pressure a stable superconducting state below 8K [7,8].

2. EXPERIMENTAL, RESULTS AND DISCUSSION

13C Knight shifts were measured on $\alpha-$, $\beta-$ and α_t-(BEDT-TTF)$_2$I$_3$ crystals, using magic angle sample spinning and cross polarisation methods. Besides samples with natural abundance of 13C,10% 13C enriched crystals were used as well in the case of α-(BEDT-TTF)$_2$I$_3$ and α_t-(BEDT-TTF)$_2$I$_3$ (enriched in the positions 1-6 of BEDT-TTF, see fig.1), since cross polarisation was not very efficient for the C positions 1–6. In the spectra of the 13C enriched samples the intensities of the lines of the carbons to which the protons are attached (positions 7–10, see fig.1) are very weak. Therefore this range is shown separately in fig.2 for samples with natural abundance. The Knight shifts of these carbons are given with respect to pure BEDT-TTF. As a reference for the Knight shifts of the other carbons (pos.1–6) the insulating state below 135K of α-(BEDT-TTF)$_2$I$_3$ was used. The chemical shifts of the carbons of the BEDT-TTF molecules in these crystals below 135K are very similar to those of pure BEDT-TTF as can be seen from fig.1, while above 135K in the metallic region the Knight shifts range between -6 and +244 ppm (see figures 1 to 3 and the table).
FIGURE 3
\[^{13}\text{C} \text{ spectra of polycrystalline BEDT-TTF, } \alpha-, \alpha'-, \beta-(\text{BEDT-TTF})_2I_3 \text{ at 68 MHz and 300 K (see text).} \]

All carbons are resolved due to the low symmetry in the BEDT-TTF crystal. In order to separate the center \(^{13}\text{C}\) bands from spinning side bands the spinning frequencies were varied (between 3 and 5 KHz). In addition TOSS experiments were performed. In figures 1 and 3 the center bands are marked by \(\Delta\). The Knight shifts and the \(^{13}\text{C} \text{ spin lattice relaxation times at 300 K are listed in the table.} \]

The \(^1\text{H} \text{ spin lattice relaxation rates of } \beta- \text{ and } \alpha-(\text{BEDT-TTF})_2I_3 \text{ were measured at several frequencies in the temperature range 4.2 – 380 K. Below 100 K the Korringa relation is fulfilled, while above 100 K the relaxation is dominated by a strong contribution due to flipping of the } \text{CH}_2^- \text{ groups. Figure 4 shows the } ^1\text{H} \text{ spin lattice relaxation rates of } \alpha-(\text{BEDT-TTF})_2I_3 \text{ (single crystals) below 20 K for the magnetic field parallel and perpendicular to the c*-axes. The insert in figure 4 shows the relaxation rates up to 100 K. Similarly as in the case of } \beta-(\text{BEDT-TTF})_2I_3 \text{ the relaxation rates deviate from the Korringa law near the superconducting transition. This is ascribed to fluctuation effects. Here in the case of } \alpha-(\text{BEDT-TTF})_2I_3 \text{ the increase of the relaxation rates is much weaker than for the crystals of } \beta-(\text{BEDT-TTF})_2I_3 \text{. This behaviour might be explained by the fact that } \alpha-(\text{BEDT-TTF})_2I_3 \text{ crystals behave at low magnetic fields like anisotropic three dimensional superconductors and only at magnetic fields above 1.5T like typical two dimensional superconductors.} \]

The behavior might be explained by the fact that \(\alpha-(\text{BEDT-TTF})_2I_3 \text{ crystals behave at low magnetic fields like anisotropic three dimensional superconductors and only at magnetic fields above 1.5T like typical two dimensional superconductors.} \]

A detailed discussion of this subject as well as of the spin densities at individual carbon sites will be given elsewhere. \]

REFERENCES

...