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PREFACE

The theory of topological planes (or stable planes, to stress the importance of the
stability axiom) originates from the foundations of geometry. In fact, a simulta-
neous axiomatic treatment of the “classical plane geometries” — the euclidean,
hyperbolic and elliptic plane — has to combine incidence properties with topo-
logical (or ordering) properties as well as some assumptions that nowadays are
conveniently stated by means of a group action (distance, or angles, among oth-
ers). The use of topology instead of an ordering makes it also possible to include,
e.g., the complex plane geometries. Of course, the theory will be substantial only
if one imposes some conditions on the topologies involved. It turns out that the
assumption of locally compactness in combination with connectedness singles out
a very manageable class of topological planes. This class includes the planes whose
point space is a two-dimensional manifold; i.e., the (topologically) nearest relatives
of the classical plane geometries.

Two-dimensional planes with (simply) connected lines were studied systemati-
cally from the 1950’s on; key papers to this part of the theory are [31] and [3].
Turning to the higher dimensional cases, it turns out, however, that connectedness
of the lines, is not as natural a condition as it seems for two-dimensional planes.
While stable planes of dimension 2 and 4 were studied systematically by R. LOWEN
without assuming connectedness of lines, results on higher-dimensional planes were
few. A major breakthrough was made by R. LOWEN’s deep result [20] on the
possible dimensions of point spaces of stable planes; the only possibilities are 2, 4,
8, and 16. These values are attained by the planes over the field R of real num-
bers, the field C of complex numbers, the skew field H of Hamilton’s quaternions,
and the alternative division algebra O of Cayley’s octonions, respectively. As a
consequence of R. LOWEN’s result, it is possible to proceed in the theory of sta-
ble planes by induction on the dimension of the point space. Moreover, there is a
“classical reference object” for each stable plane, namely the projective plane over
F € {R,C H,0} that has the same dimension.

The present treatment has two aims. On the one hand, we study stable planes of
all possible dimensions with respect to possible actions of locally compact groups.
Our main result is that the projective and the affine planes over R, C, H, and O are
the “most homogeneous stable planes” (in a sense to be made precise in 15.5). On
the other hand, we attempt to give an overview of the existing theory. In particular,
we have included (without proofs) the results that are needed in the proofs of the
new results.

In our overview of the existing theory, important special cases are excluded: We
do not discuss the results that have been obtained under additional hypotheses on
(simply) connectedness of the point space, or of the lines; see [31], [3], and [14]. The
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elaborate classification of compact connected projective planes with large groups of
automorphisms may be found in the key papers [31], [1], [25], [38], and [37]). This
theory will find a comprehensive treatment in a monograph [39]. Finally, we do
not give an account of the theory of symmetric planes, cf. 15.6. This fascinating
combination of the theories of stable planes and of symmetric spaces has proved to
be very fruitful for the study of low dimensional planes, and looks promising for
planes of dimension 8 and 16.

NoTtaTioN. If F € {R,C H, 0} is one of the classical division algebras, we write
P,F for the projective plane, and A;F for the affine plane over F.

For F € {R,C, H}, we denote by GLnF the group of invertible n x n matrices
over F. For F € {R,C}, we write O,F for the group of orthogonal n x n matrices
with respect to the bilinear form that is given by f(u,v) = uv’. ' F € {C,H},
then U,F denotes the group of unitary n x n matrices over F, with respect to the
hermitian form that is given by f(u,v) = ud’. More generally, we write U(J) for the
group of all unitary n x n matrices, where the form is given by f(u,v) =uJv' for a
n x n-matrix J. If J is the diagonal matrix (1)*~" x (—1)", we also write OnR(r),
U,C(r), or UyH(r) for the unitary groups with respect to the forms defined by
f(u,v) = uJv'. The prefixes S and P denote the subgroup consisting of elements of
determinant 1, and the factor group modulo the center, respectively. Note that in
the case of the skew field H we have to use J. DIEUDONNE’s determinant function,
which takes its non-zero values in the commutator factor group of the multiplicative
group of H. Via polar coordinates in H, however, this factor group may be identified
with the multiplicative group of positive real numbers.

Group actions will always be from the right, and we shall use exponential no-
tation. The stabilizer of z in T' is denoted by I';. If X is a subset of the set that
T acts on, the pointwise stabilizer of X is denoted by I'(x]. Centralizer and nor-
malizer of a subgroup A in I’ are denoted by CrA and NrA, respectively. If I’
is a topological group, we denote its connected component by I'l. KT is locally
compact and almost simple, we say that T' is of type X, if the factor group I'/Z
modulo the center Z of I is the simple Lie group of type X, cf. A6.2. E.g., & group
T of type AR satisfies I'/Z = PSL,R. We use the notation of J. TITs’ tables [55]
for the simple Lie algebras.

A reader who is not familiar with the basic structure theory of locally compact
connected groups may find it useful to have a look at the Appendix before turning
to the applications to geometry. In particular, the Appendix serves as a justification
for the use of notions (and the intuition!) from the theory of Lie groups. Note that
the Appendix has a separate bibliography (“References”, numbered by R1...).
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CHAPTER 1

INTRODUCTION

The first chapter introduces basic notions. We quote fundamental results (some of
them quite deep) from the literature. Most of the material is known, and included
for the sake of easy reference.

1. Generalities

In this section, we define stable planes and their subplanes, and collect some of their
fundamental properties. The main sources for the material are R. LOWEN’s fun-
damental papers [14], [20). Inspiration has also been drawn from H. SALZMANN's
papers about geometries on surfaces, and about compact projective planes.

1.1 DEFINITION. Let P and £ be sets, and ] C P x £. Then (P,L,I) is called an
incidence structure. For (p,L) € I, we shall say that p and L are incident, or that
p lies on L, or that L passes through p. An incidence structure (P, L, I) is called a
linear space (with point set P and line set £) if the following axioms (J) and (Q)
are satisfied.

(J) For any two elements p,q of P, there exists exactly one line L € £ that is
incident with both of them. :

(Q) Every line L € L is incident with at least two points, and there exist fémr
points such that no three of them are incident with one line.

1.2 NOTATION. The line L in (J) will be denoted by pV g, or pq for short. Axiom
(J) implies that for any two lines K,L € L, there exists at most one point that
is incident with both of them. If p is such a point, we say that K and L are
intersecting, and write K A L := p. The set of all pairs of intersecting lines is
denoted by D,, and the set of pairs of different points is denoted by Dy,. We obtain

mappings
V:Dy —+ L:(p,q) » pg

ADpr = P:(K,L)» KAL,
the geometric operations (joining points and intersecting lines).

If X and Y are disjoint subsets of P, we write XY := {zy; z € X,y e Y}. X
and Y are subsets of £ such that & x Y C D,, we write

XAY:={XAY;XeXY€e)}.

More general, we write ZV := {pg; (p,q) € Z} for every subset Z of Dy, and
Z" :={K A L; (K,L) € Z} for every subset Z of D,.
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For every subset X of P, we denote by Lx the set of all lines that are incident
with at least one point in X. For every point p € P, the set £, := Ly, is called
the pencilin p.

Quite often, we shall tacitly identify each line with the set of points that are
incident with it. Thus “€” denotes incidence.

Examples of linear spaces exist in abundance. In particular, every affine or
projective space is a linear space. We shall study linear spaces that have nice topo-
logical properties; namely, we require that the geometric operations are continuous
with respect to locally compact finite-dimensional topologies on the sets of points
and of lines. By the topological dimension dim X of a space X, we mean its small
inductive dimension, cf. the Appendix. To be precise:

1.3 DEFINITION. A stable plane is a linear space M = (M, M), where the point
space M and the line space M are endowed with locally compact topologies such
that

- The mappings V (joining points) and A (intersecting lines) are continuous.

- The set D4 of pairs of intersecting lines is open in M x M (axiom of stability).
- The point space M has positive and finite (topological) dimension.

Examples of stable planes are the well known projective and affine planes over the
locally compact connected (skew) fields R, C, H; their point spaces have dimension
2, 4, and 8, respectively. Possibly less well known are the planes over Cayley’s
octonions O, these planes provide examples where the point space has dimension 16.

A wealth of examples is provided by the class of compact connected projective
planes of finite dimension, and their open subplanes; see the definition of subplane
below. Historically, the notion of stable plane originates from “line systems in the
plane”, as studied by L.A. SKORNJAKOV, H. SALZMANN, and others. These line
systems were later also called “Salzmann planes” and “R2-planes”. Note also that
the first examples of non-desarguesian geometries were obtained as line systems in
R? by E. BELTRAMI, F. KLEIN, and D. HILBERT. Another early example of the
sort is F.R. MOULTON’s plane.

General information about stable planes can be found in the work of R. LOWEN;
in particular, see [14], [17], [20].

1.4 THEOREM.
In every stable plane M = (M, M), one has the following topological properties.

a. The spaces M, M are separable metric spaces.

b. For every line L and every point q € L, the restriction of V to L x {q} yields
an open embedding of L into M,. In particular, the spaces L and M, are
locally homeomorphic for every L € M and every p € P.

c. The spaces M, M, L x L and My x M, are locally homeomorphic.

d. The spaces M, and M are globally and locally arcwise connected, and the
spaces M and L are locally arcwise connected.

PROOF. Assertions a-c have been proved by R. LOWEN in [14, 1.9, 1.2, 1.4].
In order to prove assertion d, we first remark that every line L is locally arcwise
connected 14, 1.12]. From b and ¢ we infer that M, M and M, are locally arcwise
connected as well. Since each pencil is connected [14, 1.14], we infer that M, is

2
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arcwise connected. For any two lines K, L in M, we choose pointsp € K andg€ L
such that p # ¢q. Now there exist arcs from K to pg in M, and from pq to L in
M, 0O

As an immediate consequence of 1.4d, we obtain that projective stable planes
(where DA consists of all pairs of different lines) are connected; just interchange
the roles of points and lines.

There are competing notions of dimension for topological spaces in general.
However, from 1.4a we infer that the most commonly used dimension functions
(e.g., small and large inductive dimension, or covering dimension) coincide on these
spaces, cf. [10]. The same applies to M, to each line L (considered as a subset
of M), and to each pencil M,. If one of these spaces is a topological manifold,
i.e., locally homeomorphic to R" for some n, then its topological dimension equals
n. An important feature of small inductive dimension is that it is locally defined
and monotone (even if applied to subspaces that are not closed). This will be im-
portant if we study subplanes. The equality dim M = dim M allows us to define
dim M := dim M for every stable plane M = (M, M).

For our purposes, the following deep results of R. LOWEN [20] are fundamental.

1.5 DIMENSION THEOREM.

a. The only possible values for dim M are the integers 2, 4, 8, and 16.
b. For each point p € M, the line pencil M, = {L; p € L € M} is a compact
connected homotopy l-sphere, where | = dim M, = dim L =  dim M.
c. A closed subset Y of X € {M,M} U MU {M,; p € M} has nonempty
interior if, and only if, dimY = dim X.
d. Every connected open subset Y of X € {M,M}UMU{M,;pe M} isa
« Cantor manifold; i.e., Y \ Z is connected for every closed subspace Z of Y
i withdimZ <dimX — 1.

The restriction on the dimension of the point space suggests an inductive treat-
ment. For this purpose, we need suitable notions of subplanes.

1.6 DEFINITIONS. Let M = (M, M) be a linear space. For any subset D of M,
let M|p be the set of lines that are incident with at least two points of D. Then
D = (D, M|p) is called the geometry induced on D. If D contains a quadrangle (i.e.,
four points such that no three of them are collinear), then D is called a subplane of
M. A subplane D = (D, M|p) is called full (in M), if D contains each point of M
that is the intersection of two lines of M|p. A subplane of a stable plane is called
open, closed, d-dimensional etc., if its point space has the property in question.

There are two important cases where a subplane is a stable plane again: if the
subplane is open, or if it is a closed full subplane of positive dimension. Passing
to open subplanes will help to reduce the number of cases in proofs; e.g., one
often deletes a closed subset of points with special properties. The open subplanes
of compact connected projective planes form a large class of examples of stable
planes. There are, however, stable planes that do not admit open embeddings into
projective planes (see [53)] for an easy example).

Note that, for each full subplane D = (D,D), the geometry induced on the
closure of D is a closed full subplane. If a subset X of M contains a quadrangle,

3
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then there is a smallest closed full subplane (X) of M, called the subplane generated
by X.

We have the following maximum property for full closed subplanes of positive
dimension:

1.7 LEMMA. Let E = (E,€) be a full closed subplane of M with dim E > 0. If
E C F and F = (F, F) is a closed subplane, then dim E < dim F..

PROOF. Assume that dim E = dim F. According to [20, Th. 11c)], E has nonempty
interior E° in F. For any point z € F, choose points z,y € E° such that y ¢ zz.
Each of the lines zz, yz meets the open set E° in more than one point. Thus zz
and yz belong to £ and hence z € E, since E is full. O

Of particular interest are proper full closed subplanes that have the maximal
possible dimension.

1.8 DEFINITION. A closed full subplane B = (B, B) of M is called a Baer subplane,
if dim B = 1 dim M.

In the theory of projective planes, the notion of a Baer subplane is defined
already; there it means a subplane with the property that every point of the larger
plane lies on a line of the subplane. In order to prove that this notion is consistent

with 1.8, we need two lemmas. The first of them will also be fundamental for the
study of straight actions.

1.9 RESULT. (15, 1.1] Let M = (M, M) be a stable plane, and assume that L is a
subset of M such that each point z € M is incident with exactly one member L.
of L. Then the following hold.

a. The line L. depends continuously on z. In particular, connectedness of M
implies that L is connected.

b. The set L is closed in M, and locally homeomorphic to a line in M. In
particular, £ is a locally compact separable metric space, and dimL =
1 dim M.

Mutatis mutandis, the assertions of 1.9 about £ still hold true if there only exists
a neighborhood U in M such that every point of U lies on a member of £, as one
easily sees after passing to the stable plane that is induced on the interior of U.

1.10 LEMMA. Let M = (M, M) be a stable plane, and assume that B = (B, B)
is a full closed subplane such that dim B = } dim M. Then there exist arbitrarily
small compact neighborhoods in B that are homeomorphic to neighborhoods in a
pencil M..

PROOF. Choose a compact neighborhood V in B and a point z € M \ B. The
mapping m: V — M; : b+ bz is continuous and closed (since V is compact). Since
B is full, there is at most one line in BN M., and we may choose V such that = is
injective. Then V is homeomorphic to W = V*, hence dim W = dim M., and W
is a neighborhood of some line in M, by 1.5¢. O

Note that B and M, are in fact locally homeomorphic, since the spaces M, M,
L, and M: have the domain invariance property [20, 11b)].

4
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1.11 COROLLARY. Let M = (M, M) be a stable plane. If there is a Baer subplane
= (B, B) such that B is a (topological) manifold, then each line pencil of M (and
hence each line and the point space M) is a manifold.

1.12 THEOREM. Let M = (M, M) be a stable plane, and assume that B = (B, B)
is a proper full closed subplane. Then dim B = } dim M if, and only if, the set of
points that are incident with an element of B has nonempty interior in M.

ProorF. If X is a nonempty open set of points that are incident with an element
of B, then X \ B is a nonempty open subset of M. Since B is a full subplane, every
point of X \ B is incident with exactly one element of B. Applying 1.9b to the
stable plane (X \ B, M|x\p), we obtain that dim B = 1 dim M.

Now assume that dim B = ; dim M. Let K be a line in B, and choose a point
z € K\B and aline L € M;\ {K}. Since B is full, we know that L ¢ B. By
stability, we find compact neighborhoods U/ of K in B and V of L in M such that
U xV C Da. If we choose these neighborhoods small enough, we obtain in addition
that U NV € M \ B and that U is homeomorphic to a neighborhood in M. ‘In
particular, we have that dim¥ x V = dim M; x M; = dim M.

We claim that the restriction Alyxy is an injection. Assume that there exist
K; € U and L; € V such that K; A L; = K3 A L,. Since U AV contains no point
of the full subplane B, we infer that K; = K;. The equality L; = L3 follows from
the fact that L; € M. We conclude that &/ AV is a homeomorphic image of the
compact space U/ x V. In particular, dim(U A V) = dim M. According to 1.5c, the
set U AV has nonempty interior in M, and the theorem is proved. 0O

2. Morphisms

In this section, we introduce a category of stable planes and derive basic results on
morphisms in this category. The main source is [46), cf. also [50]. The fundamental
theorem on AutM is taken from [14, 2.9].

2.1 DEFINITION. Let E = (E,€) and F = (F,F) be linear spaces. A mapping
m: E — F is called a lineation from E to F if for each line L € £ there exists a line
L' € F (not necessarily unique) such that L* C L'. A lineation = is called collapsed
if the image E™ is contained in some line H € F.

Including a mapping of lines in the definition would be redundant for injective
lineations.

2.2 RESULT. [46, 3] Let m: E — F be an injective lineation from a stable plane
(E,€) to a stable plane (F,F).
a. There exists a unique mapping A: £ — F such that L™ C L foreach L € .
b. If = is noncollapsed, then A is injective.
c. If w is continuous, then A is continuous.

2.3 RESULT. [46, 6] If a continuous lineation =: E — F from a stable plane (E,£)
to a stable plane (F,F) is not injective, then either m is collapsed or  is locally
constant.

The assertion of 2.3 has been proved in [46] for stable planes in a wider sense:
The point space is only required to be nondiscrete, but need neither be locally

5
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compact nor of positive or finite dimension. For stable planes in the sense of 1.3,
the converse of 2.3 is also true.

2.4 THEOREM. If a continuous lineation n: E — F from a stable plane (E,£) to
a stable plane (F,F) with dim E = dim F is injective, then m is neither collapsed
nor locally constant.

PROOF. Let U be a compact neighborhood in E. Since = is injective, the restriction
x|y is a homeomorphism onto U*. Consequently, dimU” = dim E = dim F, and
U cannot be contained in a line of F. 0O

If E is connected (in particular, if E is projective), then every noncollapsed
lineation is injective. It is easy to produce examples of noncollapsed locally constant
lineations of stable planes that are not connected.

2.5 EXAMPLE. For any stable plane (E,£) and any triangle z,y,z in E there are
neighborhoods X,Y, Z of z,y, z, respectivelv. such that XY, XZ,Y Z are mutually
disjoint neighborhoods of the lines zy,zz,yz in £, respectively. Hence the mapping

: z ifpeX
mXUYUZ3XUYUZ:p({y ifpeY
z ifpelZ

is a locally constant lineation of the stable plane that is induced on the point set
X UY UZ. The same procedure applies if we replace the triangle by any discrete
subset S of E with the property that no line meets S in more than two points.

Theorem 2.3 and the examples motivate the introduction of a category StP of
stable planes, whose morphisms are continuous injective noncollapsed lineations.
In contrast, for a category of projective planes one would take as morphisms those
lineations whose image contains a quadrangle (and hence is a projective plane).

Using the fact that M has the domain invariance property (20, 11b)], one obtains
that images of morphisms in StP are stable planes.

2.6 RESULT. [46, 8] Let M = (M, M) be a stable plane. Then each endomorphism

n of M is an open mapping. Moreover, © is an isomorphism from (M, M) onto
(M',MlM')-

As a consequence of 2.6, we have that each semigroup of endomorphisms of a
stable plane is “almost a group”:

2.7 RESULT. [46, 10] Assume that M = (M, M) is a stable plane, and let T be
a set of endomorphisms of M, endowed with the compact-open topology derived
from the action on M. If ¥ is closed under composition, then ¥ is a cancellative
topological semigroup; i.e., for 7, a, € £, the implications ra = 78 = a = 8 and
ar = 7 = a = 8 hold.

The problem whether or not a cancellative nonabelian semigroup is embeddable
in some group is a delicate one. Interesting results have been obtained for the case
that the semigroup is locally euclidean, or even analytic. In particular, there are

examples of analytic semigroups that are not embeddable in groups. See [9] or [12]
for the state of the art.
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2.8 REMARK. The existence of proper endomorphisms sharply distinguishes the
class of stable planes from the subclass of compact connected projective planes, cf.
(46, 9]. In fact, there exist stable planes whose endomorphisms form a semigroup
that is substantially bigger than the group of automorphisms, cf. [46, 14, 15]. There
arises the interesting question whether or not it is possible to describe certain
stable planes from a semigroup of endomorphisms, while the corresponding group
of automorphisms is too small to determine the plane. However, this question will
not be pursued here.

Another consequence of 2.3 and 2.6 is the fact that every continuous surjective
lineation of stable planes is an isomorphism.

2.9 RESULT. [14, 2.3, 2.9] Endowed with the compact-open topology derived from
the action on M, the group Aut M of all automorphisms (i.e., continuous surjective

lineations) of M is a locally compact separable transformation group both on M
and M.

From the fact that every compact subgroup of Aut M has finite dimension [51],
we infer that AutM has finite dimension. Thus Aut M is “almost a Lie group”, cf.
the Appendix.

We close this section with the assertion that endomorphisms respect the process
of generating subplanes.

2.10 LEMMA. Let M = (M, M) be a stable plane, and assume that X C M
contains a quadrangle. Then (X) Is invariant under each endomorphism a of M
that leaves X invariant, and « acts trivially on (X) if the action of a on X is trivial.

ProOF. This follows from the fact that it is possible to describe (X) “from below”;
see [43,3.1]. O

3. Actions

In this section, we define actions of topological groups on stable planes. Thus
we generalize the notion of “group of automorphisms”. Restrictions of actions to
invariant subplanes or to interesting subgroups (e.g., Lie subgroups) become more
easily tractable.

3.1 DEFINITION. By an action of a topological group A on M we mean a continuous
group homomorphism a: A —+ Aut M. If there is no danger of confusion, we just
say that A acts on M. An injective action will be called effective, and an action
with totally disconnected kernel will be called almost effective.

If A acts effectively on M, we shall also call A a group of automorphisms of M,
although the topology of A may be finer than that of A®.

In view of the fact that AutM is locally compact (cf. 2.9), actions of locally
compact groups are of particular interest. Exactly the closed subgroups of AutM
are locally compact (with respect to the induced topology). However, there may be
continuous injective group homomorphisms from locally compact groups into Aut M
such that the image is not a closed subgroup!. In particular, such a situation might

1E.g., the mapping ¢ — (‘“ ¢m) is a continuous injective group homomorphism from R to
the group GL2C with nonclosed image.
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occur if we restrict a given action to some invariant subplane; see the next section

for details. - .
Apart from the fact that we lose certain compactness criteria, there do not arise

substantial additional problems from the change of the topology that occurs with
actions whose image is not closed in AutM. By arguments similar to those in
[43, 3.2], even results that use compactness criteria may be transferred. Of course,
any (continuous) action of a compact group has closed image in Aut M.

The structure theory of locally compact groups is well developed, see the Appen-
dix. The following observation will be fundamental for our study of “large” groups
of automorphisms, since it provides a “logarithmic” analog for counting arguments,
as used in the study of finite geometries.

3.2 RESULT. (8] cf. A1.13. Let A be a topological transformation group on a
separable metric space of finite dimension, and assume that there exists a countable
covering of A by relatively compact open subsets. Then the dimensions of orbits
and stabilizers are related in the following way:

dimz® =dimA/(A;) and dim A = dim z% +dim A,.

In general, the orbit z& and the coset space A/(A:) are not homeomorphic. If 4
is locally compact (in particular, if A is compact), then the canonical bijection is a
homeomorphism.

Recall from 1.4 that the spaces M, M, L and M, are separable metric for every
stable plane M = (M, M) and every L € M, p € M. If L is a subset of M such
that every point of some neighborhood in M lies on a unique member of £, then £
is separable metric as well, ¢f. 1.9.

A locally compact group A has a countable covering by relatively compact open
subsets if, and omly if, there exists an open subgroup € such that 2/(A?) modulo
the connected component A! of A is compact and A/Q is countable. In particular,
this is the case if A is connected, or if A/(A!) is countable, or if A/(A?) is compact.

3.3 DEFINITIONS. Assume that the group A acts on a stable plane (M, M).

a. The (action of the) group A is called planar, if the set Fix A of fixed points
has positive dimension and contains a quadrangle.

b. If each orbit z2 is contained in a line L,, then (the action of) A is called
straight. In this situation, the line L; is uniquely determined for each point
z that is moved by A, and we shall write Ma = {L;;z € M\ FixA}.

c. If A acts trivially on M, for some point z € M, then z is called the center
of A.

d. If A acts trivially on some line L € M, then L is called an azis of A.

e. If A acts trivially on some nonempty open subset U of some line L € M,
then Ly := L is called a semi-azis of A.

3.4 REMARK. Straight actions have been called “quasi-perspective” in the liter-
ature. However, since the terms “perspectivity” and “projectivity” are nowadays
reserved for mappings between lines (or pencils) that are obtained by (repeated)

“projecting”, the term “quasi-perspectivity” should no longer be used to denote a
special type of collineation.
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If A acts straightly and nontrivially, then every point of the open set M \ Fix A
lies on a member of Ma. According to 1.8b, the set M, is locally homeomorphic
to a line in M, and dim M4 = 1 dim M.

It is easy to see that the geometry induced on the set of fixed points of a planar
group is a full closed subplane F = (F, F), where dim F > 0. In fact, planar groups
are just the kernels of restrictions to (closed full) subplanes of positive dimension.

3.5 REMARKS. It is not known whether or not the stabilizer of a quadrangle Q in
a stable plane is a planar group; i.e., whether or not the subplane (Q) has positive
dimension. Even in the case of projective planes (of dimension 8 or 16), it is
conceivable that dim(Q) = 0, cf. [34]. Groups that act trivial on some nondiscrete
subplane were called semi-planar in [43). '

It is easy to construct examples of (nonprojective) stable planes with a quadran-
gle Q that generates a finite subplane; one has to remove some of the intersection
points of lines that occur during the process of generating (Q).

In Chapter III, we shall heavily use information about planar groups, while
subplanes of dimension 0 do not occur at all. This is due to the fact that planar
groups occur quite naturally, if one studies centralizers.

3.6 LEMMA. Let A be a connected nontrivial group of automorphisms of a stable
plane M = (M, M).
a. If there is a point = € M such that the orbit z® is not contained in any
line, then z® generates a subplane E = (E, ), where dim E > dimz2 > 0.
For each subgroup ¥ of AutM that commutes with A, the stabilizer ¥
acts trivially on E.
b. If there is no such orbit, then A acts straightly. In this case, for any two
points z € M \FixA and y € M \ (Fix AU L), the set z® U y® generates
a subplane F = (F, F), where dim F > 2dim z4 > 0. For each subgrpup ¥
of Aut M that commutes with A, the stabilizer ¥ y acts trivially on F.

PROOF. Assume first that z2 is not contained in any line. Since z2 is connected,
it follows that z® contains a quadrangle. For the subplane E = (E,£) that is
generated by z2, we have that & C E and therefore dim E > dim z4.

If A acts straightly, we choose a point z that is moved by A. Then z2 is
contained in a line L;, and A cannot fix all points outside L;. For every point y
outside L. that is moved by A, we infer that 22 U y® contains a quadrangle. The
orbit z2 is contained in a line of the subplane F = (F,F) that is generated by
z2 Uy®, whence dim F > 2dimz4. O

A typical problem in the theory of stable planes with “much homogeneity” (i.e.,
with a “large group of automorphisms”) is the following. Determine “all” actions
a:A - AutM of a given (locally compact) group A, where M belongs to a given
class of stable planes (e.g., the class of m-dimensional planes, or a class of planes
with other special properties). In particular, we need a notion of equivalent action.
The restriction of a to some open invariant subplane yields an action again. Finally,
there is the problem whether or not the stable plane M can be embedded in a larger
plane (in particular, a projective plane!) such that the action a extends.

The following definition (which amounts to the introduction of a category of
actions) covers phenomena like “equivalent actions” or “equivariant embeddings”.

9
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3.7 DEFINITION. Let a:I' = AutE and 8: A — AutF be actions of topological
groups T, A on stable planes E = (E,£) and F = (F,F). A pair (m,p) is called a
morphism of actionsif u:T' — A is a morphism of topological groups and 7: E — F is
a morphism in StP (i.e., m: E — F is a continuous injective noncollapsed lineation)
such that the following diagram commutes.

(z,7)=z0)

ExT y E
wxp l=
FxA y F

(3,8)-y %)

If p is injective, we say that (w,u) is an embedding of actions; recall that = is
injective by definition, and open by 2.6. If r and x4 are isomorphisms, we call (7, u)
a quasi-equivalence of actions. If moreover, I' = A and y = idr, then (m,idr) is
called an equivalence of actions.

See [50] for a general discussion of categories of actions on incidence structures.

3.8 EXAMPLES.

a. The action of the connected component §2 = PSLyR of the real hyperbolic
motion group on the (interior) hyperbolic plane is embedded in an action
of Q2 on the modified hyperbolic planes that were constructed by H. SALZ-
MANN, cf. [21]. However, there is no embedding of the action of the full
hyperbolic motion group (including the reflections) in an action on a mod-
ified hyperbolic plane.

b. K. STRAMBACH has constructed a 2-dimensional stable plane with an action
a of the group T of all real 2 x 2-matrices of determinant %1, see [40], cf.
also [29]. He proved that this action cannot be embedded in an action on
a 2-dimensional projective plane. Later, R. LOWEN proved that there is
no proper embedding of a in any action on a 2-dimensional stable plane
[21]. However, there exist embeddings of a in the action of the group
of all complex 2 x 2-matrices of determinant +1 on R. LOWEN’s complex
analog to K. STRAMBACH s plane [49]. Moreover, the restriction of a to
the maximal compact subgroup O2R of £ embeds into an action of O;R on
a 2-dimensional projective plane [54, 17].

4. Restrictions of actions

In the study of geometries with large automorphism groups it is often convenient
to restrict the action of the group to some subgeometry. In the case of topological
geometries, there arises the question whether or not the topology of the group
is affected seriously by the restriction. All the material in this section is taken
from [4].

For each subset X C M, the restriction map § +» é|x is continuous with respect
to the compact-open topologies on C(M, M) and C(X, M). If X is invariant, then
the corestriction to X does not change the topology. However, the restriction map
need neither be open nor closed. If, in particular, the set X is A-invariant for some
closed subgroup A of AutM, then the group A|x need not be closed in Aut (X),

10
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and A|x need not be topologically isomorphic to the factor group A/K, where K is
the kernel of the restriction. The continuity of the restriction map, however, yields
the following information about the closure T of A|x in Aut (X).

a. If A/K is compact, then A|x is compact and hence closed in Aut (X).
Consequently, the groups A/K and A|x are topologically isomorphic.

b. If A/K is connected, then T is connected.

c. dmA/K=dimA|x <dim T, see A1.13.

d. The factor group A/K is abelian, nilpotent, or solvable if, and only if, the
group T has the property in question.

4.1 EXAMPLE. Let I" be the group of all orientation-preserving similarities of the
Euclidean plane that fix the origin. This group is isomorphic to A = R x (R/Z).
The element (1, 7+Z) generates a discrete subgroup Z = Z of A. The projection pr;
to the second factor of A, however, maps Z onto a dense subgroup. This projection
corresponds to the restriction of I' to the pencil in the origin (or to the line at
infinity). Hence prs|z is not a quotient mapping, although pr, is (cf. [7, 3.8]).

We know of no example for a restriction to a subplane that is not a quotient
mapping. It has been shown that restrictions to Baer subplanes in compact pro-
jective planes are quotient mappings [4]; the proof rests on the compactness of the
point space. For actions on stable planes, we know at least that passing to open
subplanes does not affect the topology.

4.2 RESULT. (4, 4]
Let M = (M, M) be a stable plane, and let A be a subgroup of Aut M.

a. The compact-open topologies derived from the actions on M and M, re-
, spectively, coincide for A.

l?. For each nonempty open subset U of M, the compact-open topologies de-
rived from the action on M and the restriction to U, respectively, coincide
for A.

c. For each nonempty open subset U of M, the compact-open topologies de-
rived from the action on M and the restriction to U, respectively, coincide
for A.

d. [43, 4.6] If A is planar and p € Fix A, then the compact-open topologies de-
rived from the action on M and the restriction to M, respectively, coincide
for A.

The following consequence of 4.2 generalizes a result of H. HAHL about actions
on translation planes.

4.3 RESULT. [4, 5] Assume that = = R™ and let & be a closed subgroup of GLnR.
The linear action of ® on = gives rise to a semi-direct product A = ® x =. Let
M = (M, M) be a stable plane such that dim M = m. Then each effective action
a: A — AutM such that * = (A®), for some point p € M (or & = (A®)y, for
some line L € M) is a topological embedding.

11



CHAPTER 11

A COMPILATION OF KNOWN RESULTS

The second chapter comprises more specialized results about actions of locally
compact groups on stable planes.

5. Planar actions

In this section, we collect some of the results on planar actions. Bounds for the
dimension of a planar group (depending on the dimension of the plane and on the
dimension of the set of fixed points) are of particular interest for the applications
in subsequent sections. The material is taken from [43], which was inspired by
H. SALZMANN’s work on automorphism groups of locally compact ternary fields
[34], [35].

5.1 RESULT. [43, 6.1, 6.3, 6.8, 6.10] Let M be a stable plane. Any closed subgroup
A of Aut M that acts trivially on a Baer subplane B = (B, B) is compact.

This compactness criterion is useful since the structure of compact planar groups
is strictly restrained.

5.2 ResuLTs. Let A be a compact connected planar group on a stable plane M.

a. [15,1.6] IfdimM < 4, then A = 1.

b. [43, 6.13, a)] If dim M = 8, then either A = SO3;R, A = SO;R, A =1, or
A is an abelian non-Lie group. In any case, dim A < 3.

c. [43, 6.13, b)] If dimM = 16, then either A is of type Gz, or dimA < 8
and A is isomorphic to one of the groups SU;3;C, SO4R, U,C, SU,C, SO3R,
SO;R x SOzR, SOzR, 1, or A is a non-Lie group of dimension < 7.

d. [43, 6.3, 6.8] If the set of fixed points of A carries a Baer subplane of M, then
either dmM <4 and A=1, ordmM =8 anddimA <1, or dimM = 16
and dim A £ 3, or dimM = 16 and A is a non-Lie group (and dim A < 7).

e. [43, 6.10) If A is abelian, then dim A < } dimM.

There is a conjecture that every closed planar group is compact. Even in the case
of projective planes, however, this could be verified only under various additional
assumptions, such as associativity of the addition in a corresponding ternary field,
or existence of (a tower of) Baer subplanes, or differentiability of the geometric
operations. As a concequence, we have to work with results that provide only
weaker information about the structure and the dimension of planar groups. In the
case of 16-dimensional planes, this has the consequence that our bounds for the
dimension of solvable, or almost simple groups of automorphisms are probably not

sharp.

12
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5.3 RESULT. Rigidity properties of eight-dimensional planes [43, 7.6]
Let A be a nontrivial planar group of an eight-dimensional stable plane. Then
dim A + dimFix A < 5.

5.4 RESULT. Rigidity properties of 16-dimensional planes [43, 8.21]
Let A be a closed planar subgroup of Aut M, where M = (M, M) is a stable plane,
and dim M = 16.
a. Either dimA < 12, or the identity component of A is isomorphic to the
compact exceptional Lie group of type Gy(—14) or the semi-direct product
of the groups SU3C and C*. In both cases, dim A = 14.
b. If dimFix A = 8, then A is compact, and dim A < 7.
c. IfdimFixA =4, thendim A < 11.
d. If @ is a nontrivial, connected subgroup of A, then either dim C;,® < 11, or
dim A = 12.
e. If A is semi-simple, then A = Gy(_y4), or dim A < 10.

6. Straight actions, involutions

In this section, we collect material on straight actions from the existing literature.
Of particular interest are involutory automorphisms (these are always straight),
and their centralizers. Information about involutions will be useful in the study of
actions of semi-simple groups. The material is taken from [47].

6.1 RESuULT. (47, Th. 5] Let (M, M) be a stable plane, and let § # 1 be an
automorphism of prime order. If § is straight, in particular, if § is an involution,
then one (and only one) of the following holds.

a. § is free; i.e., Fix6d =0,

b. § is a Baer collineation; i.e., (Fix §, M|rixs) is a Baer subplane.

c. & has a center or an axis (or both).

Examples of free involutions are easily constructed by deleting the fixed points
from M. Similarly, one obtains involutions with an axis, but no center, or vice
versa. Note, however, that axial involutions always fix exactly two lines in the
pencil M, in a point a of the axis, just as if they had some “imaginary center”, cf.
[47, 7). The second fixed line through a will be denoted by Ci.

6.2 RESULT. [47, 8] Let A be an elementary abelian group of automorphisms of
a stable plane (M, M) and assume that there is a line A € M such that A is the
axis of each § € A. Then A is cyclic. In particular, commuting involutions with
the same axis are equal.

6.3 RESULT. “Triangle Lemma” [47, 10]
Let M be a stable plane, and let & and A be subgroups of Aut M such that @ fixes

a point z and A fixes a triangle pointwise.
a. If there are three commuting involutions in ®, then at least one of them has

no axis through z.
b. If there are four commuting involutions in A, then at least one of them is a

Baer collineation.

13
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c. If there are three commuting involutions in ® such that each of them has
center and axis, then the centers form a nondegenerate triangle.

d. Let a,f,~ be three commuting involutions in A. If none of them is a Baer
collineation, then v = af, and (a, B) = (Z/2Z)*.

In the study of stable planes with large automorphism groups, it will be useful
to have upper bounds for the dimension of straight groups.

6.4 RESULT. [47, 11] Let A be a locally compact group of automorphisms of a
stable plane M = (M, M) with dim M = 2l.
a. If A has a semi-axis, then dim A < 3l.
b. If A acts straightly, then dim A < 3.
c. If A acts straightly and has a semi-axis, then dim A < [.
d. If A has a semi-axis U and centralizes an involution o € A, then o has axis
Ly. Consequently, dim A <1, and A acts freely on M, \ {Ly,C,} for each
pointu € U.

Subgroups of the classical groups give examples that show that the bounds in 6.4
are sharp. Much lower bounds can be proved for compact groups. To some extent,
these bounds may replace the information that a compact connected straight group
on a compact connected projective plane of finite dimension acts freely outside the
set of fixed points.

6.5 RESULT. [51, 2.14] Let © be a compact connected straight group on a stable
plane M = (M, M).
a. Each point orbit has dimension strictly less than 1 dim M.
b. If dim M = 2, then © = 1.
c. If dim M = 4,/then © is abelian, and dim© < 2.
d. If © is almost simple, then eitherdim M = 8 anddim© = 3, ordim M = 16,
and dim © < 28.

7. Actions of compact groups

The possibilities for actions of compact groups are much more restrained than for
actions of locally compact groups in general. The results that are collected in this
section will also help to exclude actions of large almost simple groups, since almost

simple groups tend to contain rather large compact subgroups. The material is
taken from [51).

7.1 RESULT. Main Theorem on compact groups of automorphisms [51]
Let M = (M, M) be a stable plane, where dim M = 2l, and let P,F be the
projective plane over the l-dimensional real alternative division algebra F (i.e.,
F € {R,C, H, 0}, according to l).
a. If @ is a compact connected group of automorphisms of M, then & is iso-
morphic to the elliptic motion group E on P3F, or dim® < dimE — dim M
(i.e., the dimension of the stabilizer of a point).

b. If ® is (locally) isomorphic to E, then M 22 P,F, and the action of ® on M
is equivalent to the usual action of E on P,F.

14



8. ACTIONS OF COMPACT GROUPS

Note that the elliptic motion group has dimension 3, 8, 21, or 52, according to
the value of I. Hence the bound dim E — dim M equals 1, 4, 13, or 36, respectively.

There are only few isomorphism types of compact Lie groups of low dimension.
Since Aut Ml is a Lie group if dimM = 2 orif dimM = 4 and dim Aut M > 4, we have
precise information about the possibilities for compact groups of automorphisms of
stable planes of low dimension.

7.2 RESULT. [51, 3.1] Let & be a nontrivial compact connected group of automor-
phisms of a 2-dimensional stable plane M. Then & =2 SO;R, or & = SO;R. In
the latter case, the plane M is isomorphic to the projective plane over R, and the
action of @ is equivalent to the usual one.

7.3 RESULT. (51, 3.2] Let ® be a compact connected group of automorphisms of
a 4-dimensional stable plane M. Then either dim ® < 4 and ® is isomorphic to one
of the groups Uz C, SU,C, SO3R, or @ is an abelian group of dimension at most 3,
or & = PSU3C. In the last case, the plane M is isomorphic to the projective plane
over C, and the action of ® is equivalent to the usual one.

' For compact groups of automorphisms of stable planes of dimension 8 or 16, the
picture is more complicated. The following results have been used in the proofs of
7.1, 7.2, and 7.3, but are also of their own interest.

7.4 RESULT. [19] Let M = (M, M) be a stable plane, and let I' be a group of
automorphisms of M. If there are two points z;,z3 € M such that the stabilizer
T';, acts transitively on the line pencil M, (fori € {1,2}), then M contains a flag
homogeneous open subplane E. This subplane is isomorphic to the elliptic, hyper-
bolic or euclidean plane of the adequate dimension. In particular, E is isomorphic
tg"a an open subplane of the projective plane P;F (where F € {R,C, H, 0}, according
tb dim M), and T is isomorphic to a subgroup of Aut P,F.

7.5 RESULT. [51, 2.10] Let A be a compact connected group of automorphisms of
a stable plane M = (M, M).

a. If there is a point z such that dim z% = dim M, then M is isomorphic to the
projective plane over R, C, H, or O, according to dim M, and A is isomorphic
to the corresponding elliptic motion group E (i.e., PSO3R, PSU;C, PSU;3H,
or Fy(—s2), respectively). Moreover, the action of A on M is equivalent to
the usual action of E.

b. If A fixes a point z € M and there is a line L through z such that | =
dim M, = dim L®, then M is homeomorphic to the sphere S;, and A is
a two-fold covering group of SO141R (i.e., SO;R for ! = 1, and Spin;y, for
I > 1). Moreover, the action of A on M; is equivalent to the usual (linear,
almost effective) action on S;. In particular, the central involution of A has
center z. :

c. If A fixes a line L and there is a point z € L such that | = dim L = dim z4,
then L is homeomorphic to the sphere S;, and A is a two-fold covering group
of SO;4+1R. Moreover, the action of A on L is equivalent to the usual action
on S;. In particular, the line L is a projective line (i.e., it meets each other
line), and the central involution of A has axis L.
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8. Solvable groups

Before we turn to almost simple groups in the next section, we report on results
about the other extreme.

8.1 RESULT. [45, 2.11] Assume that A is a solvable group of automorphisms of a
stable plane M = (M, M), where dim M < 4. Then dimA < 2dimM.

8.2 EXAMPLE. The bound in 8.1 is sharp: For F € {R,C}, the solvable group

a b
A= d ; a,b,c,d,e € Fad # 0

acts effectively on the projective plane PoF, and dim A = £ dim P,F.

-0 0

Turning to planes of higher dimension, the bound $ dim M is no longer attained
in the projective case, cf. [26]. The proof for the projective case heavily relies on the
existence of fixed elements for solvable groups and the structure theory for compact
connected projective planes. Thus it does not carry over to the general case. We
have the following result (which might be improved).

8.3 RESULT. (45, 2.13] Assume that A is a solvable group of automorphisms of a
stable plane M = (M, M).

a. If dim M = 8, then dim A < 18 (< 3 dim M).

b. If dim M = 16, then dim A < 40 (= $ dim M).

8.4 EXAMPLE. The solvable group

a b c
A= d e|;bcecHadfeCadf #0; |f|=1;
f

acts almost effectively on the projective plane P;H, and dim A = 17. According to
[26), this is the maximal possible dimension for a solvable group of automorphisms
of an eight-dimensional compact projective plane. For the case of 16-dimensional
compact projective planes, M. LUNEBURG has proved that a solvable group of

automorphisms can have dimension 30 at most [26]. He also gives examples that
show that this bound is sharp.

9. Actions of almost simple groups

In this section, we collect results about possible actions of almost simple groups on
stable planes of dimension at most 8, and about possible actions of compact almost
simple groups on stable planes of arbitrary dimension. The results on 2-dimensional
planes are due to H. SALZMANN, K. STRAMBACH, and, in final form, to R. LOWEN
[21]. The 4-dimensional case has been solved completely by R. LOWEN [15], while
the results for 8-dimensional planes are taken from [42].

Most prominent among the (almost) simple groups of automorphisms of stable
planes are the (connected components of) the full groups of automorphisms of the
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projective planes over R, C, H, and 0, and the corresponding elliptic and hyperbolic
motion groups; these groups are

PSL3R, PSOsR, PSO;R(1),

PSL3C, PSU;3C, PSU3C(1),

PSL;H, PSU3H, PSU3H(1),
and the exceptional simple Lie groups of type Eg(_26), F4(-52), F4(-20), respectively.
The possible actions have been completely determined by R. LOWEN.

9.1 RESULT. [22] Let M be a stable plane of dimension m, and assume that A
is a locally compact group that is locally isomorphic to the elliptic or hyperbolic
motion group of the projective plane over R, C, H, or O, according tom. Then every
effective action of A is embedded into the usual action, except in the case of the
real hyperbolic motion group. In this case, one has to assume that A is isomorphic
to the (disconnected) hyperbolic motion group in order to exclude nonclassical
actions.

The actions of groups that are locally isomorphic to the real hyperbolic motion
group on 2-dimensional stable planes have been determined in [21]; they are em-
bedded in the actions on F.R. MOULTON’s projective planes, on H. SALZMANN’s
projective modified hyperbolic planes, and on K. STRAMBACH’s exceptional plane.
See [21] for a description of these planes as well as further references.

9.2 The following table attempts to visualize the distribution of simple Lie algebras
in the range that is relevant for this paper. Recall that there are exceptional
isomorphisms A; = B; = C;, B, = Cz, A; = D3. Note also that Dz = A; x A, is
not simple. An asterisk (*) indicates the real forms.

s
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A, A, B, GaA, B, A, D, AsB,

Cs Ce

Al A A3 A As Az Az

B3 B3 D: B2 D3 B D3 B3
G < G G
G Fs Es

Dimensions of simple Lie algebras.

9.3 RESULT. [21] Let A be a locally compact almost simple group of automor-
phisms of a 2-dimensional stable plane M. Then A is isomorphic to PSL3R, SL:R,
SO;R, the connected component Q = PSL;R of SO3R(1), or the simply connected
covering §) of PSLgR. The action of A on M is embedded in one of the following.

a. The classical action of PSL3R on P2R, or its dual.
b. The action of Q on a modified real hyperbolic plane.
c. The action of SL,R on K. STRAMBACH s exceptional SL;R-plane.

d. The action of {} on a Moulton plane.
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1. A COMPILATION OF KNOWN RESULTS

9.4 RESULT. [23] Let A be a locally compact almost simple group of automor-
phisms of a 4-dimensional stable plane M. Then A is isomorphic to one of the
following groups. -
PSL;C, PSU,C, PSU;C(1),
PSLsR, SL,C, PSL,C=S0;C,
SU,C, SO;R, SI;R, PSLzR, a covering of PSLzR,

or A is a non-Lie group, and the factor group modulo the center is isomorphic to
PSL;R.

Apart from the higher coverings of PSL;R and the non-Lie groups, all these groups
are subgroups of PSL3C. In the remaining cases, we know of no effective action. If
A is one of the groups PSL;C, PSU3C, PSU3sC(1), or PSL3R, then the action of A
on M is embedded in the classical action of PSL3C on P;C, or its dual. Actions of
SL,C are either embedded in the classical action of PSL3C on P,C, or embedded in
the action of SL,C on R. LOWEN’s complex analog to K. STRAMBACH ’s exceptional
SLglR-pIane.

Note that the assertions of 9.3 and 9.4 remain true if we only assume that A is
semi-simple, instead of almost simple.

9.5 THEOREM. Let A be a locally compact almost simple group of automorphisms
of an 8-dimensional stable plane M. Then either dim A < 16, or A is isomorphic
to one of the groups

PSL;H, PSU3;H, PSU;H(1).

Every nontrivial action of these groups is embedded in the classical action of PSLzH
on PoH, or its dual. If dim A = 16, then A is isomorphic to SL3C or to PSL3C.
Every effective action of SL3C on M is embedded in the action of SL3;C on a Hughes
plane (possibly P,H).

|

PROOF. For dim A > 16, the assertion has been proved in [42, Theorem B.]. If
dim A = 16, then A is isomorphic either to SL3C, or to PSL3C. The effective
actions of SL3C on 8-dimensional stable planes have been determined in [52]. O

We know of no example for an action of PSL3C on an 8-dimensional plane. Ac-
tions on projective planes are impossible by a result of H. SALZMANN [36]. However,
the proof cannot be extended to actions on arbitrary stable planes.

9.6 LEMMA. No almost simple group of type DR can act nontrivially on a stable
plane.

PROOF. Let A be an almost simple group of type Df. This means that the factor
group A/Z modulo the center Z of A is isomorphic to the simple Lie group PaUgH.
For our purposes, it will be convenient to describe the group SaUgH as the group of
those elements of GLgH that leave invariant the skew hermitian form ):’_;1 Z i
With respect to this description, it is easy to see that SaUgH N GLsC = UgC. We
may assume that A contains a subgroup @ that is either equal to SUgC or equal
to PSUgC, cf. A8.6a. Moreover, we have that the connected component ¥ of the
centralizer of ¢ in A has dimension 1.

It is easy to see that every involution in SUgC is either a conjugate of the diago-
nal matrix 3 := diag(~1,-1,1,1,1, 1), or a conjugate of —f, or equal to the central
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9. ACTIONS OF ALMOST SIMPLE GROUPS

involution —1. Similarly, the conjugacy classes of involutions in PSUgC are repre-
sented by the matrices 8, —f, and the diagonal matrices v := diag(—i,1,1,1,1,1),
§ .= diag(—1, —1, —1,1,1,1).

We infer that each involution ¢ € @ is centralized by a group A that is locally
isomorphic either to SU4C or to SU3C x SU;C. From 5.2, we know that a group
that is locally isomorphic to SU3C cannot act trivially on a Baer subplane. If ¢
is planar, this implies that A acts almost effectively on the Baer subplane that is
induced on the set of fixed points of ¢, in contradiction to 7.1.

We consider the stabilizer . of a point z that is moved by ¥. The connected
component of ®; is a compact connected Lie group of dimension at least 19. In
particular, @, contains commuting involutions. None of these involutions is planar.
Since @ acts trivially on the connected orbit z¥, we conclude that no involution
in ® has center z. Thus we obtain that all involutions in ®, have the same axis, in
contradiction to 6.2.

We have shown that an almost simple group of type DF cannot act almost
effectively on an 8-dimensional stable plane. This implies that such a group cannot
act nontrivially. O

9.7 THEOREM. Let A be a locally compact almost simple group of automorphisms
of a 16-dimensional stable plane M. Then either dim A < 56, or A is isomorphic
to Aut PO (i.e., the 78-dimensional simple Lie group of type Eg(_26)). Every
nontrivial action of Eg(—16) on a stable plane is equivalent to the usual action on
P,0, or its dual.

PROOF. According to 9.1, every action of Fy(_s;) embeds in the usual action of
Ee(—26), or its dual. In particular, this entails the assertion about the action of
Eg(-26)- Assume that A is neither isomorphic to Eg(—z6) nor to the elliptic mo-
tion group Fg(_s2). According to 7.1, the maximal compact subgroups of A have
dimension at most 36. The dimension of a solvable subgroup of A is at most 40
by 8.3b. The Iwasawa decomposition of A yields that dimA <36 +40+1 =77,
see A6.3.

If 66 < dim A < 77, then A is a complex Lie group of type As, By, or Cq, cf.
9.2 and A7.6. It is easy to see that each group of type As contains a subgroup of
dimension 60 with a normal subgroup isomorphic to C* = R'°. According to 12.3c,
this subgroup cannot act on a 16-dimensional plane. In every group of type By,
we find a 2-dimensional (abelian) subgroup with a 44-dimensional centralizer. This
case is excluded by 10.6c. Finally, each group of type C4 contains a semi-simple
subgroup of type A; x C3, and cannot act by 10.6d.

If 56 < dim A < 66, then A is a group of type A7 or of type Dg, cf. 9.2. It
is easy to see that every group of type AR or A?" contains a closed subgroup
I of dimension 49 such that I' centralizes a nontrivial connected subgroup (e.g.,
choose GL7R — SLsR, or UzC(r) < SUsC(r)). Every group of type A® contains
a subgroup of type A} with a 36-dimensional centralizer (e.g., consider SL; H and
GL;H in SL,H). Thus all groups of type A7 are excluded by 10.6b or 10.6d.

Finally, every group of type D?" contains a subgroup of type B x A}, which
cannot act by 10.6d. In the remaining case, A is of type DE, and cannot act by
9.6. O
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9.8 REMARK. In view of the results 9.3, 9.4, and 9.5, it seems promising to study
actions of almost simple groups of dimension, say, at least 36, on stable planes of
dimension 16. However, it is reasonable to postpone the general case, at least until
the special case of actions on projective planes is thoroughly understood. Here,

work is still in progress.

We conclude this section with a report on results about actions of compact almost
simple groups.
9.9 RESULT. [51, 4.2] Let M = (M, M) be a stable plane. If Aut M has a compact
connected almost simple subgroup of type G; or A3, then dim M = 16.

9.10 RESULT. [51, 4.3] If @ is a compact connected almost simple group of auto-
morphisms of an 8-dimensional stable plane M, then dim & < 10, or ® is isomorphic
to the elliptic motion group PSU3H.

9.11 RESULT. [51, 5.10] Let A be a compact almost simple group of automor-
phisms of a stable plane (M, M). If dimA > 28, then dimM = 16, and A is
locally isomorphic to SUgC, SOgR, SU4H or the elliptic motion group Fa(-s52)-

Probably, Result 9.11 is not sharp. We know of no example for an action of
SUeC, SOgR, or SU4H. The covering Sping of SOgR acts on P,0. It is not known
whether or not there are any nonclassical actions.
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CHAPTER III

ON GROUPS THAT ARE SEMI-SIMPLE,
AND ON GROUPS THAT ARE NOT

Mostly, the results in this chapter are new; at least for stable planes of higher
dimension. Starting with bounds for the dimensions of groups of automorphisms
that centralize each other, we then derive bounds for the dimension of semi-simple
groups that are not almost simple, as well as for groups that are not semi-simple.

10. Centralizers

In this section, we use results on straight and planar actions in order to derive
dimension bounds for pairs of groups that centralize each other.

10.1 LEMMA. Let M be a stable plane, and assume that ® and ¥ are subgroups
of Aut M that centralize each other. If z is a point such that ®, is nontrivial, then
dimz¥ < 7 dimM.

PROOF. If dimz¥ > 1 dimM, then z¥ is neither contained in a line nor in a proper
subplane, cf. 1.5a,b. Consequently, z¥ generates M, and ®; is trivial. 0

10.2 THEOREM. Assume that M = (M, M) is a stable plane of dimehsion m €
{2,4}. Let &,V be locally compact groups, and assume that a:® — AutM and
B: ¥ — AutM are almost effective actions such that [$*,%f] = 1. Then the
following hold.

‘a. Ifdim ¥ > m, then ® acts straightly.
b. If dim® > 1, then dim ¥ < 2m.

c. If dim® > 2, then dim ¥ < m.

d. In any case, dm® + dim ¥ < 3m.

PROOF. Recall from 5.2 that m € {2,4} implies that every planar group has
dimension 0. Assume first that dim & > 1. If there exists a point z € M such that
z% is not contained in any line, then ¥ is planar by 3.6, whence dim ¥, = 0. This
implies that dim ¥ < m, and a is proved. If @ acts straightly, then we find points
z,y such that ¥, is planar. This implies that dim¥ < 2m. We have proved
assertion b. Now assume that dim @ > 2. If there exists a point z € M such that
dim &, = 0, then z® cannot be contained in a line or a proper subplane, and we
infer that dim ¥ < m. If dim ®, > 1 for every point ¢ € M, then ¥ acts straightly,
and dim ¥ < m by 3.6 and 10.1. This proves assertion c. The last assertion follows
immediately (after interchanging the réoles of @ and ¥). O
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III. ON GROUPS THAT ARE SEMI-SIMPLE, AND ON GROUPS THAT ARE NOT

10.3 REMARK. The bounds in 10.2b,c are sharp. E.g., consider the following
subgroups of SL3K, where K € {R,C}, according to the value of m.

b. ¢={('1:);zex},q:={(“.5=E);a,z,y,zex,a;eo}

o B= (-ﬂ_z);ael(,a;ué()},'b:{(A detA_l);AeGLgK}

1
c. d= ( 1 );x,yEK}='I’
zryl

10.4 THEOREM. Assume that M = (M, M) is a stable plane of dimension 8. Let
&, ¥ be locally compact groups, and assume that a: ® — AutM and : ¥ - AutM
are almost effective actions such that (&, ¥#] = 1. Then the following hold.

a. Ifdim ¥ > 11, then ® acts straightly.
b. If dim® > 1, then dim ¥ < 19.

c. Ifdim® > 2, then dim ¥ < 17.

d. If dim® > 3, then dim ¥ < 16.

e. Ifdim® > 5, then dim ¥ < 8.

f. In any case, dim $2¥7 < 19.

ProOF. Without loss, we may assume that ® and ¥ are connected. If there exists
a point z such that z?% is not contained in a line, then ¥; is planar by 3.6a, and
dim ¥, < 3 by 5.3. Consequently, dim ¥ < 11, and assertion a is proved.

If ® acts straightly, we choose points z and y such that z® U y® generates
a subplane E, cf. 3.6b. Since ¥, , acts trivially on E, we infer from 5.3 that
dim\IIF,, < 3, and dim ¥ < 8 4+ 8 + 3 = 19. Thus assertion b is proved.

Mcgreover, dimE = 4 implies that dim¥ < 8 + 8 + 1 = 17, while dimE = 8
means that E=M, and dm V¥ < 16. If dim® > 2 and dmE =2, or if dm® > 3
and dim E < 4, then both ¢, and @, are nontrivial. From 10.1 and 5.3 we infer
that dim ¥ < 4+ 4 + 3 = 11. This completes the proof of assertions ¢ and d.

Now assume that dim & > 5. If there exists a point z such that z® generates a
subplane E, then either E = M and dim ¥ < 8, or &, is nontrivial, and dim ¥ <
4+ 3 =7 by 10.1 and 5.3. There remains the case where & acts straightly. For
every point z, we infer that @ is nontrivial, and that dimz¥ < 4. We can choose
z and y in such a way that z% U y® generates a subplane E, and that z¥ U y¥
generates a subplane F. If ¥, is trivial for some choice of z,y, we obtain that
dim¥ < 8. If ¥, , is nontrivial for every choice of z,y, we have that E is a proper
subplane, whence dim @, > 3 for z € {z,y} and dim®,, > 1. We conclude that
dimz¥ <2, and dim ¥ < 2+ 2 + 3 = 7. This completes the proof of e.

Assertion f follows from b-e; note that in the situation of b we may assume that
¢<Vv. O

10.5 REMARK. The bounds in 10.4b-e are sharp. E.g., consider the following

subgroups of SL3H. For the description of subgroups of GL3 H, we employ J. DIEU-
DONNE's determinant Det: GL,H — (0, 00).

b. & = {(l 1 :);tGR}, U= {(‘::);a’bsz’ysz E‘{:lazbl-—-l}
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10. CENTRALIZERS
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10.6 THEOREM. Assume that M = (M, M) is a stable plane of dimension 16. Let
®, ¥ be locally compact groups, and assume that a: ® — AutM and 3: ¥ — AutM
are almost effective actions such that [8%, ¥#] = 1. Then the following hold.

a. Ifdim ¥ > 30, then & acts straightly.
b. If dim® > 1, then dim ¥ < 46.
c. Ifdim® > 2, then dim ¥ < 43.
d. If dim® > 3, then dim ¥ < 35.
e. If dim® > 16, then dim ¥ < 16.

el &

PROOF. If there exists a point z such that z% is not contained in a line, then ¥,
is planar, and dim ¥, < 14 by 5.4. Consequently, dim ¥ < 30, and assertion a is
proved.

If ® acts straightly, we choose points z and y such that z% U y*® generates a
subplane E. From 5.4, we infer that dim ¥, , < 14, and dim ¥ < 46, as asserted
in b,

If dim ® > 2 and dim E = 2, then the stabilizers &, and &, are both nontrivial.
According to 10.1, this implies that dim ¥V < 8 4+ 8 4+ 14 = 30. If dimE > 4, then
dim ¥ < 16 + 16 + 11 = 43, in view of 5.4b,c.

If dim® > 3 and dimE < 4, then both &, and ®, are nontrivial. Using 10.1,
we infer that dim ¥ < 8 + 8 + 14 = 30. There remains the case where dimE > 8.
We may assume that ¥ is closed in AutM, and that ¥ is connected. Let Z be the
center of ¥. We know that ¥/Z is a Lie group, f. A6.2a. If Z; ; is nontrivial,
then dm ¥ < 8 + 8 + 7 = 23, f. 10.1. If Z; , is trivial, then ¥, , is a (compact)
Lie group, and dim ¥, , < 3, cf. 5.2d. This implies that dim ¥ < 16+ 16+ 3 = 35.
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Now assume that dim® > 16. We consider first the case where there exists a
point z such that z® generates a subplane E. If E = M, then ¥, is trivial, and
dim ¥ < 16. If E is a Baer subplane, then &, is nontrivial, and dim¥ <8+7 =15
by 10.1 and 5.2d. In the remaining cases, we choose a point y of E such that z¥uy¥
generates a subplane F. Then dimz¥ < dimF. If dimE = 4, then dim &, 2 8,
and dim F < 4 by 5.2d. This implies that dim ¥ < 4411 = 15by 5.4. If dimE = 2,
we obtain that dim &, > 12, whence dimF =2 and dim ¥ < 2+ 14 = 16.

There remains the case where ® acts straightly. Using 3.6b, we find two points
z,y such that z® U y® generates a subplane E, and z¥ Uy¥ generates a subplane
F. fE = M, then dim¥ < 8 4+ 8 = 16, cf. 10.1. If E is a Baer subplane, then
dim®,;, > 8, and dimF < 4. This implies that dmV¥V < 44+4+7=15. If
dimE = 4, then dim®;, > 12, and dimF = 2. Hence dm¥ <2+ 2+ 11 = 15.
Finally, assume that dimE = 2. Then dim ¥ < 141+ 14 = 16, or F is generated by
z¥ for z € {z,y}. In the latter case, dim ®, < 14, and we obtain the contradiction
dm®<1+4+14<16. O

10.7 REMARKS. The bound in 10.6b is attained by the centralizer of a one-para-
meter group of translations in Aut P,0. The centralizer of a planar involution in
Aut P,0 is the product of commuting almost simple groups of dimension 3 and 35.
Thus the bound in 10.6d is sharp. The bound in 10.6e is attained by the full
group of translations of the affine plane over the octonions.

As a byproduct, we have re-proved the fact that the dimension of an abelian
group is bounded by the dimension of the point space [48, 3.3].

10.8 COROLLARY. If a locally compact abelian group A acts almost effectively on
a stable plane M, then dim A < dimM.

11. Semi-simple groups

In this section, we derive dimension bounds for groups of automorphisms that are
semi-simple, but not almost simple. We test our method with stable planes of
low dimension (where the results are known) before we proceed to stable planes.of
dimension 8 and 16.

Let A be a locally compact connected group of finite dimension. If A is semi-
simple, then it either is almost simple, or there are almost simple normal subgroups
1,... ,Zn such that A=%,:--E,, and 1 < i < j < n implies that [Z;,Z;] = 1
If we order these factors in such a way that dim Z; < dim E;4,, then the n-tuple
(dim &y,... ,dim ¥,) depends only on the isomorphism type of A.

11.1 DEFINITION. For every locally compact connected semi-simple group A =
Ly -+ L, with almost simple factors ¥; such that dim E; < dim Z;4;, we define
da = (dim Z,,... ,dim I,).

Applying 10.2, 10.4 and 10.6, we obtain the following three theorems.

11.2 THEOREM. Let A be a locally compact connected semi-simple group, and

assume that A acts almost effectively on a stable plane of dimension m € {2,4}.
Then A is almost simple.
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PROOF. Assume that A is not almost simple, and let £ be a factor of smallest
dimension. Then dimX > 3. If m = 2, we obtain that dim A 2 6 > 5 in contradic-
tion to 10.2d. There remains the case where m = 4. Since dimE > 2. we infer
from 10.2b that dim A — dim ¥ < 4. Consequently, we have that da = (3,3). This
last case is difficult, it has been excluded by R. LOWEN in [15, pp. 21-26]. O

The case where m = 4 and da = (3, 3) is difficult since a priori it is conceivable
that the two factors either both act straightly or both act freely on M. In fact,
this is what happens in the case of abelian groups whose dimension equals the
dimension of the point space. The case where m = 8 and da = (8,8) presents
similar problems, we did not yet succeed in proving that it does not occur.

Since the kernel of the restriction to an invariant Baer subplane of an 8-di-
mensional stable plane has dimension at most 1 by 5.3, we have the following
consequence of 11.2.

11.3 COROLLARY. Assume that a locally compact group A acts effectively on an
8-dimensional plane M. If an involution a € A is centralized by a semi-simple, not
almost simple subgroup of Aut M, then a is not planar (viz., « either is free, or has
an axis or a center). '

Before we study actions of semi-simple groups on 8-dimensional planes, we treat
a special case.

11.4 LEMMA. Assume that A is locally isomorphic to SL3C. If A acts effectively
on a stable plane M, then either dim M = 16, or the connected component ¥ of the
centralizer of A in AutM is a solvable group of dimension at most 4.

PROOF. (i) According to 9.3, the group A cannot act effectively on a 2-dimensional
plane. If dim M = 4, then the centralizer of A in Aut M is trivial by 9.4. Therefore,
~ it suffices to study the case where dim M = 8. From 10.4e we infer that dim ¥ < 4,
and V¥ is straight by 10.4a. If ¥ is not solvable, then there exists an t simple
subgroup ¥ of ¥, and dimE = 3. After removing a closed invariant set, we have
that no point is fixed by £ or A. We claim that T acts freely on M. In fact, if £,
is nontrivial, then we infer from 10.1 that dim A € 4+ 8+ 3 < 16, a contradiction.
We conclude that for every point z there exists a point y such that zZUyT generates
M. Consequently, A;,, is trivial, and dim Ay =8 for every point z.

(i) The simply connected covering group A is isomorphic to SL3C, and A is iso-
morphic either to SL3C or to PSL3C. In both cases, it is easy to see that the
involutions in A form a single conjugacy class, and that each involution is central-
ized by a subgroup of A that is isomorphic to SL2C. Since every element of A
is also centralized by £, we obtain from 11.3 that no involution in A is planar.
Since ¥ fixes no point, the involutions cannot have centers. There remain the cases
that either all involutions are axial, or all involutions are free. In particular, the
stabilizer A; contains no commuting involutions by 6.2.

(iii) If an eight-dimensional closed connected subgroup of A is semi-simple, then it
is even almost simple, and a real form of A. This implies that every such group is
isomorphic to (P)SU,C, (P)SU;C(1), or SL3R. Since each of these groups contains
commuting involutions, we obtain that A} is not semi-simple. Since A} isa normal
subgroup of (£A), this implies that the connected component of (£A): is not
semi-simple.
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(iv) Since I acts freely, the restriction of the natural epimorphism LA — A/(ZNA)
to the stabilizer (ZA); induces a monomorphism onto a subgroup A of A/(ENA).
Let A be the connected component of the corresponding subgroup of A = SL,C.
From the fact that dim 22 = 8 we infer that dim A = 11. The normal subgroup A,
of (£A); gives an 8-dimensional normal subgroup © of A.

(v) We restrict the natural action of SL3C on C® to A. Since the centralizer of
SL3;C in GL3C is a group isomorphic to C* and almost disjoint to SL3C, we infer
that irreducibility of A implies that A is semi-simple (cf. A6.5b), in contradiction
to step (iii). Therefore, A is contained in the stabilizer of a proper subspace of C3;
i.e., in a group that is the semi-direct product of = = C? and Q = GL,C. Since
dim=Q = 12, we know that ANZE and A N Q' are subgroups of co-dimension at
most 1 in = and Q' = SL;C, respectively. This implies that {2 is contained in A,
and = < A since ' acts irreducibly on . Now © N ZQ' is a normal subgroup
of dimension 7 or 8, in contradiction to the fact that = is the only proper closed
connected normal subgroup of =Q'. O

11.5 THEOREM. Let A be a locally compact connected semi-simple group, and
assume that A acts almost effectively on a stable plane of dimension 8. Then either
A is almost simple, or dim A < 14, or da € {(3,15),(8,8)}.

PROOF. Let ¥ be an almost simple factor of maximal dimension, and let ¥ denote
the connected component of CAZL. Recall that ¥ is the product of all almost
simple factors except L. From 9.5 we infer that dim £ < 16. If dim £ = 14, then
L is a real form of type Gz, and has no subgroup of dimension greater than 9, cf.
A9.5. Consequently, there are no nontrivial actions of £ on spaces of dimension 4.
However, the centralizer ¥ is a nontrivial straight group by 10.4a, and T leaves
My invariant. Consequently, T acts trivially on My, and A is a straight group of
dimension at least 17, in contradiction to 6.4. Therefore dim T € {16, 15, 10, 8,6, 3}.
However, the case da = (3,16) is excluded by 11.4; note that every locally compact
almost simple group of dimension 16 is covered by SL3C, cf. A8.86.

If dim ¥ > 10, we infer from 10.4e that dim ¥ < 4; in fact dim ¥ = 3, since there
are no semi-simple groups of dimension 4. If dim ¥ > 6, we know that dim ¥ < 8
by 10.4e. Finally, there remains the case that all almost simple factors of A have
dimension 3. Let & be the product of two of the factors. Then the product of the
other factors has dimension at most 8 by 10.4e, and we infer that dim A <12: O

11.6 REMARK. The case dy = (3,15) occurs; in fact, the subgroup

A={(A a);AeSLgH,aeH,Ia]=1}

of SL3H acts almost effectively on P,H. According to [41], every effective action
of SL,H on an 8-dimensional stable plane embeds in this action. Probably, this is
the only possibility for the case m =8 and dp = (3,15) (at least, there is no other
almost effective action of a semi-simple group of type (3,15) on a projective stable
plane of dimension 8, see [36]). However, this conjecture will be hard to verify.
One of the major problems seems to originate from the fact that the 2-dimensional
projective geometry over the ring of real 2 x 2-matrices is a kind of 8-dimensional
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plane geometry (but not a stable plane!) which admits an almost effective action
of the group SL;R x SL4R.

We turn to planes of dimension 16 now.

11.7 RESULT. [51,5.3] If a compact group A of automorphisms of a 16-dimensional
stable plane is semi-simple, but not almost simple, then dim A < 35.

11.8 THEOREM. Let A be a locally compact connected semi-simple group, and
assume that A acts almost effectively on a stable plane of dimension 16. Then
either A is almost simple, or dim A < 38.

PROOF. Let ¥ be an almost simple factor of minimal dimension. From 10.6 we
infer that the connected component ¥ of Co ¥ has dimension at most 35, and this
bound reduces to 30 if £ is not straight.

Assume first that there exists a point z such that z¥ is not contained in a line,
and let E be the subplane that is generated by z=. If dim £ < 8, then dim A < 38.
So we may assume that dim £ > 10. If X, is trivial, then E = M, and dim ¥ < 16.
This implies that dim A < 32. If E is a Baer subplane, then T, is nontrivial, and
dimV¥ < 8+ 7 = 15 by 10.1 and 5.4b. Thus dim A < 30 in this case. Since &
cannot act almost effectively on a 2-dimensional plane, there remains the case that
dim E = 4. From 9.4, we infer that T induces the 16-dimensional group PSL3;C on
E. According to 10.1 and 5.4c, the dimension of ¥ is bounded by 8 + 11 = 19,
and we obtain that dim A < 35.

Assume now that ¥ acts straightly, and let z and y be points such that z& Uy®
generates a subplane F. Then dimz® < %dimF. From 6.4 we infer that dimF >
2 dim K.

If dim ¥ = 3, then dim ¥ < 35 by 10.6, and we infer that dim A < 38.

Now consider the case where dim ¥ € {6,8}. If both I; and £, are nontrivial,
then dim A < 8 +8 + 8 + 11 = 35. If one of the stabilizers is trivial, we infer
that F = M, and dim A < 8 + 16 + 16 = 40. Of course, dim A > 39 implies that
dim ¥ = 8. Since there are no almost simple groups of dimension 31 or 32, there
exists an almost simple factor @ of ¥ such that the connected component 2 of the
centralizer of ® in ¥ has dimension at least 8, recall that £ was chosen as a factor of
minimal dimension. Since dim & > 8 as well, we infer from 10.6e that dim 2 < 16,
and that dim ® < 16. If dimA > 38, then either dim{) = 16 or dim® = 16. In
both cases, we have reached a contradiction to 10.6e.

If dim¥ = 10, then dimF > 8, and both I; and I, are nontrivial. Hence
dimA <10+8+48+47=233. fdimZ > 14, then F =M, and both I, and T, are
nontrivial. Hence dim¥ < 8+ 8 =16, and dmA <32. O

11.9 REMARK. The centralizer I of a planar involution in Aut P20 is a semi-simple
group, and dr = (3,35). Thus the bound in 11.8 is sharp.
12. Groups that are not semi-simple

In this section, our results on centralizers are employed to derive bounds for the
dimension of groups of automorphisms that are not semi-simple. These results
are obtained almost simultaneously for stable planes of arbitrary (positive, finite)
dimension.
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For the sake of readability, the next three theorems are stated separately. How-
ever, we shall prove them all together by a single argument.

12.1 THEOREM. Let A be a locally compact connected group, and assume that A
acts almost effectively on a stable plane of dimension m € {2,4}.

a. If A is not semi-simple, then dim A < 3m.

b. If A contains a nontrivial compact connected abelian normal subgroup, then
dim A € 2m.

c. If A contains a normal subgroup = = R, thent < m, and dim A < t +2m.

d. If A contains a normal subgroup = = R* and dim A > t + m, then every
one-dimensional closed connected subgroup of = acts straightly.

12.2 THEOREM. Let A be a locally compact connected group, and assume that A
acts almost effectively on a stable plane of dimension 8.

a. If A is not semi-simple, then dim A < 27.

b. If A contains a nontrivial compact connected abelian normal subgroup, then
dim A £19.

c. If A contains a normal subgroup = = R, then t < 8, and dim A < ¢ + 19.

d. If A contains a normal subgroup = = R* and dim A > t + 11, then every
one-dimensional closed connected subgroup of = acts straightly.

12.3 THEOREM. Let A be a locally compact connected group, and assume that A
acts almost effectively on a stable plane of dimension 16.

a. If A is not semi-simple, then dim A < 62.
b. If A contains a nontrivial compact connected abelian normal subgroup, then
dim A < 46. .
c. If A contains a normal subgroup = = R?, then t < 16, and dim A < t + 46.
d. If A contains a normal subgroup = = R* and dim A > t + 30, then every
one-dimensional closed connected subgroup of = acts straightly.
L]

PROOF of 12.1, 12.2, 12.3. If A has a nontrivial compact connected abelian nor-
mal subgroup 6, then O lies in the center of A by A6.4, and the dimension bound
for A follows from 10.2, 10.4, and 10.6, respectively. If no such © exists, then
every minimal connected abelian normal subgroup = of A is isomorphic to Rf
for some t < dimM. Via conjugation, the group A acts R-linearly on =. In
particular, the centralizer of £ € =\ {1} is already the centralizer of a closed con-
nected subgroup. Thus the assertions follow immediately from the observation that
dimA <t+dimCa¢ and 10.2, 10.4, and 10.6, respectively. O

13. A characterization of translation planes

Translation planes provide very homogeneous examples of stable (even affine or
projective) planes. We report a characterization of translation planes in terms of

stable planes, and indicate a family of stable planes that are closely related (so-
called shear planes).

13.1 RESU_LT. (48, 3.3] Let A be a connected locally compact abelian group of
automorphisms of a stable plane M = (M, M) with dim M = 2l. Then we have
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13. A CHARACTERIZATION OF TRANSLATION PLANES

one of the following (mutually exclusive) cases:

a. The group A acts straightly. In this case, the stabilizer of any line moved
by A is trivial, and dim A < dim M = 2I.

b. There is a point p € M whose orbit p» generates the whole plane. Conse-
quently, the stabilizer A, is trivial, and dim A < dim M = 2l.

c. There are points whose orbits are not contained in any line, but each of these
orbits generates a proper subplane. In this case, dim A < 31 < dim M.

13.2 RESULT. (48, 3.4] Let A be a connected locally compact abelian group of
automorphisms of a stable plane M = (M, M) and assume that dim A = dim M.
Then either A acts straightly with an open orbit in M, or A has an open orbit in
M. In both cases, the action of A on the open orbit is sharply transitive.

13.3 REMARKS. Prominent examples of abelian groups of the maximal possible
dimension are translation groups in translation planes, and their duals. The latter
obviously act straightly. In its natural (linear) action on the real affine plane, the
group {(°,);a,b >0} = R? is neither a translation group nor straight (indeed,
the one-parameter subgroup {(* ,-1); a > 0} does not act straightly). There are
also compact 4-dimensional projective planes admitting a group of automorphisms
that is isomorphic to R* but is not a translation group, see [11, Satz 1,3)].

If a stable plane is an affine translation plane, then there is a unique open
embedding in a compact projective plane such that the complement of the stable
plane is a line W. Every plane that is obtained by deleting a closed part of W is
called an almost projective translation plane.

13.4 RESULT. [48, 3.6] Let M = (M, M) be a stable plane of dimension m, and let
A = R™ be a group of automorphisms of M such that each one-parameter subgroup
acts straightly. If A is not straight, then M is an almost projective translation plane
with A acting as full group of translations.

Straight effective actions of R™ on m-dimensional stable planes are also under-
stood quite well. However, there is a greater variety of possibilities.

13.5 RESULTS. [48, 3.6], (13, 3.2] Let M = (M, M) be a stable plane of dimension
21, and let A = R?! be a straight group of automorphisms of M.

a. The set Fix A has at most one element. If a point z € Fix A exists, then
each element § € A has center z.

b. For each point z € M \ FixA, we have that A; =R/, and A; acts sharply
transitively on Mz \{L¢}, where L is the line containing z®. In particular,
the group A is transitive on L; \ Fix A, and Az = Ap,).

c. Every line in M meets every line outside Ma; i.e., Ma x(M\Ma) C Da.

d. The plane M is a dual affine (or projective) translation plane if, and only if,
the set Ma is compact. In particular, this is the case if Fix A is nonempty.

If A = R™ is a straight group of automorphisms of a stable plane M of dimension
m, H. LOWE [13] noticed that the set P = {A:; z € M\ Fix A} forms a partial
spread in R™; i.e., P consist of subspaces of dimension 2 such that the intersection
of two of these subspaces is trivial. Conversely, H. LOWE shows that a partial
spread P yields a stable plane S(P) if, and only if, P is a topological manifold of
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dimension  (in the topology that is induced from the Grassmann manifold), see
(13, Th. 1]. Every such plane is called a shear plane.

The next assertion indicates that translation planes and shear planes (including
dual translation planes) belong to the most homogeneous planes. Note, however,
that it is not yet clear whether or not there exist planes admitting a vector group
that has almost the dimension of the point space, and a large normalizer.

13.6 THEOREM. Assume that a locally compact group A acts almost effectively
on a stable plane M of dimension m. If A has a normal subgroup = = R™, then
M is either an almost projective translation plane, or a shear plane, in each of the
following situations.

a. m <4 and dmA > 2m.
b. m =8 and dim A > 19.
c. m = 16 and dim A > 46.

PROOF. The assertions follow immediately from 12.1d, 12.2d, and 12.3d, com-
bined with 13.4 and 13.5. O

‘The following necessary condition for the embeddability of a shear plane in a
dual translation plane is also due to H. LOWE.

13.7 RESULT. (13, Th. 2] If a shear plane S2(P) of dimension m is embeddable in a
compact projective plane of dimension m, then the closure of P in the corresponding
Grassmann manifold is a partial spread.

While every partial spread in R? is a part of the unique spread that consists of
all one-dimensional subspaces, there exist examples of partial spreads in the higher
dimensions that define shear planes but fail to fulfil the condition stated in 13.7.
Tlliise planes are examples of stable planes that are not open subplanes of projective
planes.

13.8 REMARKS. Forl = 1, there are no translation planes except the desarguesian
plane over R. Translation planes admitting large automorphism groups have been
studied by D. BETTEN in the case | = 2. The cases | = 4,8 have been treated by
H. HAHL. See [1], [7], and the references given there.

Examples of shear planes are obtained as open subplanes of dual translation

planes; there are also examples that cannot be embedded in a dual translation
plane, cf. 13.7.

The following assertions prepare grounds for a characterization of the classical
planes by means of sufficiently large groups that are not semi-simple.

13.9 THEOREM. Assume that = = R™ acts straightly and almost effectively on a
stable plane M = (M, M) of dimension m. If = = | J, ¢ =, then M is a dual affine
or projective translation plane.

PROOF. If there exists a point z € FixZ, then the assertion follows from 13.5d. So
assume that FixZ is empty. From 13.5b, we know that =, is a vector subspace of
dimension 7, and that = and =, have nontrivial intersection only if they coincide.
Since = = |J,¢pm Zz, we have shown that {Z;; z € M \ FixZ} forms a spread

in =.
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13.10 COROLLARY. Let M be a stable plane of dimension m, and assume that a
locally compact group A acts effectively on M. Assume that A has a normal sub-
group = = R™, and that = acts straightly. If A acts (via conjugation) transitively
on the set of one-dimensional subspaces of = = R™, then M is a dual affine or pro-

jective translation plane. In particular, this assertion holds if A acts transitively
on =\ {1}.

PROOF. The assertion follows immediately from 13.9; recall that =, is a nontrivial
vector subspace of = for every point z. O

14. Characterizations of the classical affine planes

In this section, we give characterizations of the classical planes over R, C, H, and
O in terms of actions of vector groups on stable planes.

14.1 THEOREM. Let A be a locally compact connected group of automorphisms
of a stable plane M of dimension m, and let A;F be the classical affine plane of
dimension m. Recall that dim Aut A;F equals 6, 12, 27, or 62, according to m =
2,4,8,16. If A is not semi-simple, then dim A < dim(Aut A,;F), or A = Aut A,F,
and the action embeds in the usual action on P;F, or its dual.

PROOF. According to 12.1, 12.2, and 12.3, we only have to show that dim A =
dim(Aut A,F) implies that the action of A on M embeds in the action of Aut A,F
on P,F, or its dual. So assume that dim A = dim Aut A;F. We know that A has
a minimal normal subgroup = = R™. From 13.6, we infer that either = is not
straight, and M is an almost projective translation plane, or = acts straightly, and
M is a shear plane. For every nontrivial element £ of =, we conclude from 10.2b,
10.4b, and 10.6b that dim {2 = dimZ. Thus £2 is open in Z. Since =\ {1} is
connected, this yields that A acts transitively on =\ {1}. If M is a translation
plane, we infer that A acts transitively on the set of parallel classes of affine lines.
Since = acts transitively on the set of (affine) points, we infer that M is classical by
the result of H. SALZMANN [33] that the planes A3F are the only locally compact
connected affine planes that admit a line-transitive group of automorphisms.

If = acts straightly, then M is a dual translation plane by 13.10. The group A
acts transitively on the pencil M,, where z is the common center of all elements
of =. Since z= = zz \ {z} for every point z different from z, we infer that A acts
transitively on M \ z. Thus M is classical by the dual of [33]. O

We close this section with examples of results that characterize the locally com-
pact connected desarguesian planes by means of rather small (yet prominent) groups
of automorphisms.

14.2 RESULT. [48, 3.8] Let F € {R,C,H}, and assume that a group A = F? of
automorphisms of a stable plane M = (M, M) acts sharply transitively on M. Let
® be a locally compact group of automorphisms of M such that @ fixes a point
pE M, normalizes A and acts F_hneady on A =F (\’18 conjugation). IfF=H
and dim Cg4 > 1 for each § € A, or if F € {R,C} and dim Ceé 2 1 for each § € 4,
then each one-parameter subgroup of A acts straightly, and the geometry induced
on z8 js the desarguesian affine plane with A acting as full group of translations.
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14.3 RESULT. [22] Let F € {R, C,H}, and assume that the euclidean motion group
of A,F acts almost effectively on a stable plane M. Then dimM > dim A;F, and
dimM = dim A;F implies that the action embeds in the action of the euclidean

group on P,F, or its dual.

Recall that the euclidean motion group is the semi-direct product R? x SO;R,
C? x SU,C, H? x SU2H, or 0* x Spinyg, according to F € {R,C, H,0}.
14.4 RESULT. [48, 4.4] Let ®A be a group of automorphisms of an 8-dimensional
stable plane, with A = R® = H? and ® = U(J), where J € {(l 1) ; (l _1) ; (i ')}
describes a nondegenerate (skew) hermitian form on H?. Assume that & acts on
A in the usual, H-linear way.
a. If A is not straight, then M is isomorphic to the plane induced on the

complement of some closed subset of a line in the projective quaternion
plane, and the group ®A acts in the usual way.

b. If A acts straightly and J = (' 1)' then the stable plane M is isomorphic
to the dual euclidean quaternion plane, or its projective closure.

c. If A acts straightly and J = (* _, ) then the stable plane M has an open
$A-invariant subplane that is isomorphic to the cylinder plane M(; -, ).

d. If A acts straightly, J = (i ..), and the involution a = ("1 1) is not

planar, then the stable plane M has an open ®A-invariant subplane that is
isomorphic to the skew cylinder plane My; ; o).

The cylinder plane M(; _, o) and the skew cylinder plane M(; i0) are open sub-
planes of the projective planes over H, defined by certain degenerate (skew) her-
mitian forms on H®. See [48] for a precise definition. In the situation of 14.4d, the
planarity of @ may be forced by the assumption that the action of A embeds in the
action of a group T' such that Cra has special properties, e.g., is semi-simple, but
not almost simple.

An analog of 14.4 should be true for hermitian planes over R and C, but has
not been proved yet.
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CHAPTER IV

STABLE PLANES WITH LARGE AUTOMORPHISM GROUPS

We collect our results and combine them to show that the classical projective and
affine planes are the most homogeneous stable planes.

15. Notions of homogeneity

Our aim in this treatise is to prove that every “sufficiently homogeneous” stable
plane is isomorphic to one of the projective and (dual) affine planes over R, C,
H, and 0. If we want to establish such a statement, we have to make precise
what “homogeneity” means for a stable plane, and how we can compare different
planes with respect to some notion of homogeneity. Throughout this chapter, let
M = (M, M) be a stable plane of dimension m. We shall describe homogeneity in
terms of groups of automorphisms. Only at the end of this section, we shall briefly
digress to a discussion of alternatives.

15.1 The first homogeneity condition that comes to mind is
(P) There exists a point-transitive group of automorphisms.

This is a rather weak condition. In fact, if a group A of automorphisms has an open
orbit U in M, then A acts point-transitively on the stable plane (U, M|y). Many
point- homogeneous stable planes are known; apart from the classical projective,
affine or hyperbolic planes we mention the large family of affine translation planes,
and H. GROH’s arc planes. In the special case of compact connected projective
planes, however, condition (P) is very strong, it characterizes the classical projective
planes over R, C, H, and O, see [30], [16].

15.2 A very strong homogeneity condition is

(F) There exists a group of automorphisms that acts transitively on the set of

flags (i.e., the set of incident point-line pairs).

In fact, R. LOWEN has proved in [19] that even the assumption that the stabilizer
A, acts transitively on M, for some group A < Aut M and two (different!) points
21,z enforces that M contains an open A-invariant classical plane. Moreover, the
action of A on M embeds in the usual action of Aut P;F on P,F or its dual, or A is
isomorphic to PSL;R, and the action embeds in the action on a modified hyperbolic
plane.

15.3 For the sake of completeness, we mention the following homogeneity condi-
tion.
(L) There exists a group of automorphisms that acts transitively on the set of
lines.
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This condition seems hard to deal with in general. Of course, it is just the c}ua.l of
(P) in the special case of projective planes. For affine planes, condition (L) is very
strong, it characterizes the classical affine planes over R, C, H, and O, see [33].

15.4 It would seem a reasonable weakening of condition (F) if one only requires
the following.

(f) There exists a group of automorphisms with an open orbit in the set of

flags.

Here the topology on the set of flags is induced from the product topology on
M x M. Planes that satisfy condition (f) have been called flezible. From [20, Th. 1],
one deduces that an orbit & in the flag space is open if, and only if, dmU =
2 dim M. This observation is the key to classification results about flexible compact
connected projective planes, since it implies that dim AutM > 2 dim M.

15.5 An important idea of H. SALZMANN is to require that Aut M is “large” in
the following sense.

(D) There exists a group A of automorphisms such that dim A > b, , where by,
is a suitably chosen integer, depending on m = dim M.

Of course, the bound b,, has to be chosen differently, if one considers special classes
of actions; e.g., actions on projective planes, on translation planes, or on stable
planes with additional topological properties. It will also be of interest to study
groups with special structure. Most prominent, perhaps, are the (almost) simple
groups. Interesting and useful results have also been obtained for compact groups,
and for abelian groups. In the last case, one needs additional assumptions on the
action of the group (or the one-dimensional subgroups). These additional proper-
ties may be enforced by the assumption that the normalizer in the full group of
automorphisms is “big enough”.

We close this section by briefly indicating notions of homogeneity that do not
make use of group actions, at least not explicitly.

15.6 Involutory automorphisms play a prominent réle in the study of geometries.
The following condition proved to be useful in the theory of stable planes.

(S) There exists an open set of points that are centers of involutory automor-

phisms.

In this case, one is lead to the study of symmetric planes, where the topological
and the incidence structure are combined with the structure of a symmetric space
whose symmetries are automorphisms of the plane, cf. [18]. Symmetric planes of
dimension 2 and 4 have been studied by R. LGWEN, H.-P. SEIDEL, and most
recently by H. LOWE. The theory of symmetric planes yields strong results about

a,ctio:.'zs of almost simple groups (where many involutions exist), and the extension
of this theory to the case of stable planes of higher dimension seems promising.

15.7 Contrasting the situation for projective planes, the study of actions of semi-
groups on stable planes seems to be an interesting field. However, an investigation of
the endomorphisms of the known examples of (nonclassical) stable planes will have
to take place first. E.g., it would be interesting whether or not K. STRAMBACH’s
exceptional plane has endomorphisms that are not automorphisms.
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15.8 Since the theory of stable planes may be regarded as a “local theory of
compact connected projective planes”, it might also be fruitful to study (local)
actions of local groups rather than actions of groups or semigroups. In particular,
the study of semigroup actions might lead to an interest in local actions, since the
known solution for the embeddability problem for semigroups on manifolds [9] is
rather a local solution. Moreover, recent investigations of R. B6D1 and L. KRAMER
about differentiable structures that are compatible with an incidence structure seem
to indicate a need for a local theory.

15.9 Last, but not least, there are several geometrical notions of homogeneity.
Most prominent, perhaps, is Desargues’ Theorem and its degenerations. For the
case of (discrete) projective planes, R. BAER has shown how to translate the validity
of Desargues’ Theorem for certain centers and axes into the existence of groups of
axial collineations. For stable planes (in fact, for topological planes in general), it
is also interesting to study the consequences of local forms of Desargues’ Theorem.
For 2-dimensional stable planes with connected lines, C. POLLEY has obtained
very satisfying results, in particular, every locally desarguesian 2-dimensional stable
plane with connected lines is globally desarguesian [27], [28]. This is no longer true
if one drops the assumption that the lines are connected; e.g., consider the Moulton
planes.

Generalizing R. BAER’s point of view, there arises the question to what extent
local geometric homogeneity conditions can be expressed in terms of actions of
groups. Possibly, local actions are better suited for this purpose.

16. Every sufficiently homogeneous plane is classical

In this section, our investigations culminate. We briefly recall some of our results,
and combine them to obtain our Main Theorem. Throughout this section, let A be
a connected locally compact group, let M be a stable plane of dimension m, and
let a: A = Aut M be an effective action.

16.1 THEOREM. Assume that A is semi-simple.

a. If m = 2, then A is an almost simple Lie group of dimension 3 or 8. All
possible actions are known.

b. If m = 4, then A is almost simple. If dim A 2 6, then A is a Lie group of
dimension 6, 8, or 16, and all possible actions are known; in fact, they are
embedded in the classical action of PSL3C, or in one exceptional action of
SL,C.

c. If!‘:nc= 8 and dim A > 16, then A is a Lie group of dimension 18, 21, or
35, and all possible actions embed in the classical action of PSL3H. There
is some information about the cases where dim A € {15, 16}; in particular,

there do exist nonclassical actions. . _
d. If m = 16, then either the action is equivalent to the classical action of

Eg(-26) on P20, or A is almost simple, and dim A < 56, or dim A < 38.

For details, see 9.3, 9.4, 9.5, 9.7, and 11.2, 11.5, 11.8.

16.2 THEOREM. If A is not semi-simple, then either A contains a normal subgroup
= = RY, or there exists a connected nontrivial central subgroup. In the first case,
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we have that t < m, and dim A is bounded by the dimension a,, of the full group
of automorphisms of the classical affine plane of dimension m. In the second case,
dim A < a,, —m. If dim A = a,,, then the action embeds into the classical action.

For details, see 12.1, 12.2, 12.3 and 14.1.

16.3 THEOREM. If A is compact, then either the action is equivalent to the action
of the elliptic motion group E on the classical projective plane of dimension m, or
dimA <dimE —m.

For details, see 7.1.

16.4 MAIN THEOREM. Let M be a stable plane of dimension m, and let F €
{R,C,H,0} be chosen such that dim P,F = m. Then one of the following cases

OCcurs.

a. The plane M is isomorphic to P3F, and dim Aut M equals 8, 16, 35, or 78,
according to the value of m.

b. The plane M is either isomorphic to the affine plane A3F, or isomorphic to
P,F with one point deleted. In this case, dim Aut M equals 6, 12, 27, or 62,
according to the value of m.

c. In any other case, dim Aut M is strictly less than dim Aut A,F.

PROOF. Combine the results on almost simple groups 9.3, 9.4, 9.5, and 9.7 with
the results on semi-simple groups 11.2, 11.5, and 11.8 and with the results on
groups that are not semi-simple 12.1, 12.2, and 12.3. Finally, apply 14.1. O

16.5 As in [53], we attempt to describe the state of the art in a table. Note that,
in comparison with the table in (53], our new version has two more rows (“general”,
and “not semi-simple”), and that the ?’s id [53] have been replaced.

Let M = (M, M) be a stable plane, and ssume that o: ' = Aut M is an effective
action of a locally compact group. In the spirit of 15.5, we are interested in the
possibilities for a, if dimT is “large enough” (depending on the structure of ).
Except where marked by #, the given bounds are known to be sharp.
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structure of T’ dmM =2 dimM =4 dmM =8 dim M =16
general dimT < 8; dimT < 16; dimT < 35; dimT < 78;
pf dim " > 6 then | if dimT' > 12 then |if dimT > 27 then |if dimT > 62 then
« is classical a is classical a is classical a is classical
almost simple dimT € {3,8}, |[dim[ € {3,6,8,16};| dimT < 35; dimT < 78;
and « is known §f dim[l > 3 then |if dimT > 16 then fif dim I’ > 56 then®
a is known a is classical a is classical
semi-simple, but
not almost simple impossible impossible dimTI < 18 diml < 38
not semi-simple either T has a center of positive dimension, and
dimT < 4 dimIr <8 dimT < 19 dimT < 46
or I' has a normal subgroup = & R* with ¢t < dim M, and
dimI'<44t<6|dml<8+41t<12 dmI'<194t<27dimI<46+1t <62
solvable dimT < $dim M dimT < 18 dimT < 40
abelian dimT < dim M
compact dimI = 3, dimT =8, dimI = 21, dimT = 52,
nd a is classical, | and a is classical, | and « is classical, | and a is classical,
Er dimI'<1 or dimI'< 4 or dimI' <13 or dmrI < 36
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APPENDIX

LIE STRUCTURE THEORY FOR NON-LIE GROUPS

This appendix is intended to serve as a reference to results on the structure of
locally compact (connected, finite-dimensional) groups. Much of the material is
known, some of it is new.

The class of locally compact groups admits a strong structure theory. This is
due to the fact that—via approximation (projective limits)—important parts of
the theory of Lie groups and Lie algebras carry over. This phenomenon becomes
particularly striking if one assumes, in addition, that the groups under consideration
are connected and of finite dimension. The aim of the present notes is to collect
results and to show that Lie theory completely describes the rough structure (i.e.,
the lattice of closed connected subgroups) of locally compact finite-dimensional
groups. Moreover, we shall describe the possibilities for locally compact connected
non-Lie groups of finite dimension.

We shall only consider Hausdorff groups (and shall, therefore, form quotients
only with respect to closed subgroups—except in Example A1.7).

Al. Dimension

First of all, we need a notion of dimensicfn. Mainly, we shall use the so-called small
inductive dimension, denoted by dim.

Al.1 DEFINITION. Let X be a topological space. We say that dim X = —1 if, and
only if, X is empty. If X is non-empty, and n is a natural number, then we say
that dim X < n if, and only if, for every point z € X and every neighborhood U
of z in X there exists a neighborhood V of z such that V C U and the boundary
OV satisfies dim 3V < n — 1. Finally, let dim X denote the minimum of all n such
that dim X < n; if no such n exists, we say that X has infinite dimension.

Obviously, dim X is a topological invariant. A non-empty space X satisfies
dimX = 0 if, and only if, there exists a neighborhood base consisting of closed
open sets. Consequently, a T space of dimension 0 is totally disconnected.

See [R25] for a study of the properties of dim for separable metric spaces. Al-
though it is quite intuitive, our dimension function does not work well for arbitrary
spaces. Other dimension functions, notably covering dimension [R39, 3.1.1], have
turned out to be better suited for general spaces, while they coincide with dim for
separable metric spaces. See [R39] for a comprehensive treatment. Note, how-
ever, that small inductive dimension coincides with large inductive dimension and
covering dimension, if applied to locally compact groups [R2], [R37]. The duality
theory for compact abelian groups uses covering dimension rather than inductive
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dimension, cf. [R33, pp. 106-111}, [R15, 3.11]. For this special case, we shall prove
the equality in A4.7 below.

We collect some important properties of small inductive dimension.
A1.2 THEOREM. For every natural number n, we have that dimR™ = n.
ProoF. [R25, Th. IV 1], or [R39, 3.2.7] in combination with [R39, 4.5.10]. O

A1.3 LEMMA. Let X be a non-empty Hausdorff space.

a. For every subspace Y of X, we have that dimY < dim X.

b. dim X < n if, and only if, every point z € X has some neighborhood U,
such that dimU,; < n.

c. dim X > n if, and only if, there exists a point z € X with arbitrarily small
neighborhoods of dimension at least n.

d. If X is locally homogeneous, then dim X = dim U for every neighborhood

UinX.

e. If X is locally compact, then dim X = 0 if, and only if, X is totally discon-
nected.

f. If X is the product of a family of (non-empty) finite discrete spaces, then
dim X = 0.

g. If dim X = 0, then dim(R™ x X) = n for every natural number n.

PROOF. An argument by induction on dim X yields a, compare [R39, 4.1.4]. As-
sertions b and ¢ are immediate consequences of the definition, and they imply
assertion d. By b, it suffices to prove assertion e for compact spaces. A compact
(Hausdorff) space has at every point a neighborhood base of closed open sets if, and
only if| it is totally disconnected [R39, 3.1.3]. Assertion f follows immediately from
e since the product of a family of (non-empty) finite discrete spaces is compact and
totally disconnected.

Finally, assume that dim X = 0. We proceed by induction on n. If n = 0, then
dim(R° x X) = dim X = 0. So assume that n > 0, and that dimR*"!x X =n-1.
Let U be a neighborhood of (r,z) in R™ x X. Since dim X = 0, there exists a
closed open set V in X and a ball B around r in R™ such that (r,z) e BxV CU.
Since the boundary d(B x V) is contained in 8B x V, we infer from our induction
hypothesis that dim U < n. The subspace R™ x {z} of R" x X has dimension n.
This completes the proof of assertion g. O

A1l.4 REMARK. Assertion A1.3d applies, in particular, to topological manifolds,
and to topological groups. Note that, if a space X is not locally homogeneo?s, it
may happen that there exists a point z € X with the property that dimU < dim X
for every sufficiently small neighborhood U of z. E.g., consider the topological sum
of R and a single point.

Let G be a locally compact group. Finiteness of dim G allows to ob.tain analogues
of counting arguments, as used in the theory of finite groups. In particular, we have
the following:

A1.5 THEOREM. Let G be a locally compact group, and assume that H is a closed
subgroup of G. Then dim G = dimG/H + dim H.

PROOF. This follows from [R34, Sect. 5, Cor 2], .sinoe.by A1.2 and A1.3 inductive
dimension has the properties a)—€) that are required in [R34, p. 64f]. O
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A1.6 REMARK. The same conclusion holds if we replace small inductive dimension
by large inductive dimension, or by covering dimension, see [R38).

A1.7 EXAMPLE. The closedness assumption on H is indispensable in A1.5. E.g.,
consider the additive group R. Since Q is dense in R, the factor group R/Q has the
indiscrete topology. Hence dmR/Q =0 =dim Q, but dimR = 1.

Denoting the connected component of G by G! and using A1.3e, we obtain:

A1.8 THEOREM.

a. If G is a locally compact group, then dim G = dim G'.
b. If H is a closed subgroup of a locally compact group G, and dimH =
dim G < oo, then G < H.

PROOF. Assertion a follows from A1.5 and the fact that G/G! is totally discon-
nected [R15, 7.3]. If dimH = dimG < oo then dimG/H = 0 by Al.5, and
assertion b follows from the fact that the connected component can only act triv-
ially on the totally disconnected space G/H.

A1.9 THEOREM. Let G be a locally compact group. Assume that N is a closed
normal subgroup, and C is a closed o-compact subgroup such that dim(CNN) =0
and CN =G. ThendimG =dimC +dim N.

PROOF. Since G/N = CN/N = C/(CNN) [R15, 5.33], the assertion follows from
Theorem Al1l.5. O

A1.10 DEFINITION.

a. If, in the situation of A1.9, we have in addition that C and N are con-
nected?, we say that G is an almost semi-direct product of C and N.

b. If, moreover, the subgroup C is normal as well, we say that G is an almost
direct product of C and N.

The terminology suggests that every almost (semi-)direct product is a proper
(semi-)direct product, “up to a totally disconnected normal subgroup”. This may
be made precise in two different ways. Either the almost (semi-)simple product is
obtained from a proper (semi-)direct product by forming the quotient modulo a
totally disconnected subgroup, or one obtains a proper (semi-)direct product after
passing to such a quotient. From the first of these viewpoints, our terminology is
fully justified. In fact, every almost (semi-)direct product G = CN is isomorphic
to the quotient of the proper (semi-)direct product C x N modulo K , where the
action of C' on N is given by conjugation in G, and K = {(g, g71);9€eCNN}is
isomorphic to the totally disconnected group C N N.

From the second point of view, our terminology is adequate for almost direct
products, but almost semi-direct products are more delicate.

Al.11 THEOREM. IfG is an almost direct product of (closed connected) subgroups
N, and N,, then Ny N N, is contained in the center of G. The factor group

?Note that a locally compact connected group is generated by any compact neighborhood
[R15, 5.7], and is therefore o-compact.
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G/(N, N Ng) is the direct product of Ny /(N, N Nz) and N3 /(Ny N N;). Moreover,
dim G = dim (G/(N1 N N;)), and dim N; = dim (N; /(N1 N N,)).

PROOF. The assertions follow from the fact that the connected group G acts triv-
ially on the totally disconnected normal subgroup N; N N,, and A1.5. O

A1.12 EXAMPLE. For almost semi-direct products G = CN , the intersection CNN
need not be a normal subgroup of G. E.g., let N = SO3R, let C = T, the circle
group, and let 4:C — N be an embedding. Let a be an element of order 4 in C.
Now (¢, z)(d,y) := (cd,(d7*)Yzd"y) defines a semi-direct product G = C x N. It
is easy to see that Z = ((a,(a™")")) is contained in the center of G. We infer that
G := G/Z is an almost semi-direct product of C := ZC/Z and N := ZN/Z, and
that Z(a,1) = Z(1,a") belongs to CN N, but Z(1,a) is not central in G. Since G
is connected and C N N is totally disconnected, normality of C N N would imply
that C N N is central.

A1.13 LEMMA. Assume that the topological space X is the countable union
of relatively compact neighborhoods U, such that dimU, = d for every n, and
let Y be a separable metric space. If p: X — Y is a continuous injection, then
dimX = dim X¥ < dimY.

PROOF. We adapt the proof from [R13]. Small inductive dimension is defined
locally, whence dim X = dim U, for every n. Since U, is compact, we obtain that
Up and U¥ are homeomorphic, and dim U, = dimU¥. Now dim X¥ = dim U¥ by
the sum theorem [R35, p. 14]. Finally, monotony of dim yields that dim X¥ <
dmY. O

Every locally compact connected group G and every quotient space G/H, where
H is a closed subgroup of G, satisfies the assumptions on X in A1.13. In fact, the
group G is algebraically generated by every compact neighborhood of 1. Therefore,
we obtain the following applications.

A1.14 COROLLARY. Let G be a locally compact connected group. If G acts on
a separable metric space Y, then dim(G/Gy) = dimy® < dimY, wherey € Y is
any point, G, is its stabilizer, and yC its orbit under the given action. Important
special cases are the following.
a. If L is a Lie group, and a:G — L is a continuous homomorphism, then
dim(G/ ker @) = dim G* < dim L.
b. If G acts linearly on V 2 R", then dim(G/G,) = dimvG < dimV = n,
where v € V is any vector, G, is its stabilizer, and vG its orbit under the
given action.

In general, a bijective continuous homomorphism of topological groups need not
be a topological isomorphism; e.g., consider the identity with respect to the discrete
and some non-discrete group topology. Locally compact connected groups, however,
behave well.

A1.15 THEOREM. Let G be a locally compact group, and assume that G is o-
compact. Then the following hold:
a. If X is a locally compact space, and a: (X, G) = X is a continuous transitive
action, then the mapping g ~ a(z,9) is open for every z € X.
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b. If u:G — H is a surjective continuous homomorphism onto a locally com-
pact group H, then p is in fact a topological isomorphism.

PROOF. Assertion a is due to [R10], cf. also [R23]. Assertion b follows by an ap-
plication of a to the regular action of G on H = G*. Compare also [R15,3.29]. O

Recall that a locally compact group G is o-compact if it is compactly generated;
in particular if G/G? is compact, or if G/G" is countable.

A2. The Approximation Theorem

If G is a locally compact group such that G/G" is compact, then there exist arbi-
trarily small compact normal subgroups such that the factor group is a Lie group.
To be precise:

A2.1 APPROXIMATION THEOREM. Let G be a locally compact group such that
G/G! is compact.
a. For every neighborhood U of 1 in G there exists a compact normal subgroup
N of G such that N C U and G/N admits local analytic coordinates that
render the group operations analytic.
b. If, moreover, dimG < oo, then there exists a neighborhood V' of 1 such
that every subgroup H C V satisfies dim H = 0. That is, there is a totally

disconnected compact normal subgroup N such that G/N is a Lie group
with dim G = dim G/N.

PROOF. [R32, Chap. IV], [R11, Th. 9], see also [R30, I1.10, Th.18]. O

A2.2 REMARK. Forlocally compact graups in general, one knows that there always
exists an open subgroup G such that G/G! is compact, cf. [R11, 3.5].

We obtain a useful criterion.

A2.3 THEOREM. A locally compact group G is a Lie group if, and only if, every
compact subgroup of G is a Lie group. If G is a locally compact group such that
G/G! is compact, then we can say even more: in this case, the group G is a Lie
group if, and only if, every compact normal subgroup is a Lie group.

PROOF. Closed subgroups of Lie groups are Lie groups; see, e.g., [R17, VIIL1].
Conversely, assume that every compact subgroup of G is a Lie group. According to
A2.2, there exists an open subgroup H of G such that H/H? is compact. Let N be
a compact normal subgroup of H such that H/N is a Lie group. Then N is a Lie
group by our assumption, and has, therefore, no small subgroups. Consequently,
there exists a neighborhood U in H such that every subgroup M C NNU is trivial.
Let M be a compact normal subgroup of H such that M C U and H/M is a Lie
group. Then H/(M N N) is a Lie group as well [R11, 1.5}, but MNN = {1}. Thus
H is a Lie group, and G is a Lie group as well, since H is open in G. If G/G! is
compact, our proof works for H = G, yielding the second part of our assertion. O

For the case where G/G? is compact, the criterion A2.3 can also be deduced

from the fact that the class of Lie groups is closed with respect to extensi
[R27, Th. 7). pect o ereEe
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Compact subgroups play an important role in the theory of locally compact

groups. They are understood quite well (see also the chapter on compact groups),
especially in the connected case.

A2.4 THEOREM. Let G be a locally compact group such that G/G? is compact.

a. Every compact subgroup of G is contained in some maximal compact sub-
group of G.

b. The maximal compact subgroups of G form a single conjugacy class.

c. There exists some natural number n such that the underlying topological
space of G is homeomorphic to R" x C, where C is one of the maximal
compact subgroups of G.

d. In particular, every maximal compact subgroup of a locally compact con-
nected group is connected.

PROOF. [R27, §4, Th. 13}, cf. also [R17, Th. 3.1}, and [R21]. O

Considering, for example, a discrete infinite torsion group, one easily sees that
some connectedness assumption is essential for the mere existence of maximal com-
pact subgroups. Note that A2.4, in combination with the solution of D. HILBERT's
Fifth Problem, provides another proof for A2.3.

There is, in general, no natural choice of N such that G/N is a Lie group.
However, we have:

A2.5 THEOREM. Let G be a locally compact connected group of finite dimension.
If both N, and N, are closed normal subgroups such that dim N; = 0 and G/N; is
a Lie group, then G/ N, is locally isomorphic to G/N.

PROOF. The factor group G/(Ny N N3) is also a Lie group, cf. [R11, 1.5]. Now
N;/(N; N N,) is a Lie group of dimension 0, and therefore discrete. This implies
that G/(N; N N3) is a covering group for both G/N; and G/N;. O

It is often more convenient to work with compact normal subgroups than with
arbitrary closed normal subgroups. The general case may be reduced to the study
of quotients with respect to compact kernels.

A2.6 THEOREM. Let G be a locally compact connected group of finite dimension.
If N is a closed normal subgroup such that dim N = 0 and G/N is a Lie group,
then there exists a compact normal subgroup M of G such that M <N and G/M
is a Lie group. The natural mapping 7: G/M = G/N is a covering.

PROOF. Choose a compact neighborhood U of 1in G. According to A2.2!.b, there
exists a compact normal subgroup N' such that N’ C U and G/N' is a Lie group.
Now M := N N N’ has the required properties; in fact, G/M is a Lx.e group by
[R11, 1.5), and the kernel of the natural mapping 7:G/M — G/N is a totally
disconnected Lie group, hence discrete. O

ents with respect to compact subgroups
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A2.7 LEMMA. Let G be a topological group, and let H be a c?mpa-ict subgroup

of G. Then the natural mapping m:G — G/H is a perfect mapping, i.e., for every
-1 .

compact subset C C G/H the preimage C* ~ is also compact.

PROOF. Since H is compact, the natural mapping = is closed [R15, 5.18]. Now =
is a closed mapping with compact fibers, and therefore perfect [R8, XL.5]. O

A3. The rough structure

In this section, we introduce the lattice of closed connected subgroups of a locally
compact group, with additional binary operations. We show that this structure
is preserved under the forming of quotients modulo compact totally disconnected
normal subgroups.

We start with a fundamental observation. For subsets A4, B of a topological group
G, let [A, B] be the closed subgroup that is generated by the set {a~'b~'ab; a €
A,b € B}. With this notation, we have:

A3.1 LEMMA. Let G be a topological group, and let N be a totally disconnected
closed normal subgroup of G. If A, B are connected subgroups of G, then [A, B] =
{1} if, and only if, [AN/N,BN/N] = {1}.

PROOF. This follows directly from the fact that [A, B] is connected [R27, Lemma
2.1]. O

Let G be a locally compact group. We are interested in the lattice of closed
connected subgroups; i.e., for closed connected subgroups A, B of G, we consider
the smallest closed (necessarily connected) subgroup AV B that contains both A and
B, and the biggest connected (necessarily closed) subgroup A A B that is contained
in both A and B. Note that AA B = (AN B)!. Moreover, we are interested in
the connected components of the normalizer and the centralizer of B, taken in A
(denoted by Ny B and C) B, respectively). Finally, recall that the commutator
subgroup [A, B] is necessarily connected, while closedness is enforced by the very
definition.

A3.2 DEFINITION.

a. For any locally compact group, let Struc(G) be the algebra of all closed
connected subgroups of G, endowed with the binary operations V, A, N1,
C1, [, ], as introduced above. We call Struc(G) the rough structure of G.

b. Let Comp(G) be the set of compact connected subgroups of G, and let
Cpfree(G) be the set of compact-free closed connected subgroups of G.

A3.3 REMARKS.

a. Note that Comp(G) and Cpfree(G) are subsets but, in general, not sub-
algebras of Struc(G).

b. Of course, Struc(G) = Struc(G?).

We are going to investigate the effect of continuous group homomorphisms on
the rough structure. Our results will justify the vague feeling that the quotient of

a locally compact group by a compact totally disconnected normal subgroup has
“roughly the same structure”.
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A3.4 PROPOSITION. Let G and H be locally compact groups, and let a:G — H
be a continuous homomorphism. For every closed connected subgroup A of G, let
A% be the closure of A® in H.
a. The mapping G maps Struc(G) to Struc(H), and Comp(G) to Comp(H).
b. For A < B < G, we have that A% < B%,
c. For every choice of A,B € Struc(G), we have that A% v B& < (AV B)&
and A% A B& > (A A B)S.
d. For every choice of A, B € Struc(G), we have that (NhB)dr < N1.B%, and
that (C4B)® < CL.B®.

PROOF. Assertions a and b are obvious from the definition of & and the fact
that every continuous mapping preserves compactness. From 4, B < C it follows
that A%, B < C%. This implies that A% Vv B¥ < (AV B)&. The second part of ¢
follows analogously. Assertion d follows from the well-known inequalities (N4 B)* <
NeB® and (C4B)® < C4eB®, combined with the fact that continuous images of
connected spaces are connected. O

_ Even if a is a quotient morphism with totally disconnected kernel, the mapping
& may be far from being injective. E.g., consider a quotient mapping from R? onto
T?. In fact, the rough structure Struc(R?) has uncountably many elements, while
Struc(T?) is countable. However, we have:

A3.5 THEOREM. Let G be a locally compact group, let N be a compact totally
disconnected normal subgroup, and let = be the natural epimorphism from G onto
G/N. Then the following hold:
a. Forevery A € Struc(G), we bave that A* = A*, and that dim A = dim A™.
b. The mapping n induces an isomorphism of Struc(G) onto Struc(G/N).
c. The mapping n induces bijections of Comp(G) onto Comp(G/N), and of
Cpfree(G) onto Cpfree(G/N).

PROOF. According to A3.3, we may assume that G is connected. Hence G is o-
compact, and so is every closed subgroup 4 of G. In particular, AB/A = B/(ANB)
for every closed subgroup B of NgA, see [R15, 5.33]. Mutatis mutandis, the same
assertion holds for the epimorphic images.
(i) Being an epimorphism with compact kernel, the mapping = is closed [R15, 5.18].
Moreover, we infer that the restriction of 7 to A is a closed surjection onto A%,
hence a quotient mapping. Therefore, dim A = dim A™ by A1.5, and assertion a is
proved.
(ii) For every H € Struc(G/N), let H*" be the connected component of the
n-preimage H* . Since = is continuous, we infer that 7 is a mapping._from
Struc(G/N) to Struc(G). For every H in Struc(G/N), the group .{I/(H' ") =
H* |(H=" N) is totally disconnected. Hence H*"*> HY, and H*"* = H since
is connected. For every A in Struc(G), we have that A is a fmrmnl closed
subgroup of AN = A’""'; recall that N centralizes A. Ti:e quotit_mt ANJA =
N/(N N A) is totally disconnected. We infer that A = (AN)" = A™ . .
(iii) The mapping 7+ is monotone. In fact, let H < I}'_ in StrEc(Gﬂ\.T ). Then H
is a connected subgroup of H <K *~! hence H® < K™ . In view of A3.4b,

this shows that r respects the binary operations V and A.
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(iv) From A3.1, we infer that = respects the operations [, ] and C!. Arguments
similar to those in step (ii) show that x respects the operation N1 as well; recall
that every epimorphism of (discrete) groups maps normalizers to normalizers.

(v) The natural epimorphism = is a proper continuous mapping, see A2.7. Thus
7 is a bijection of Comp(G) onto Comp(G/N). For A € Cpfree(G), we obtain
that AN N = {1}, hence A = A" € Cpfree(G/N). Conversely, assume that
A € Struc(G) \ Cpfree(G). According to A2.4d, there exists a connected non-
trivial compact subgroup C of A. Now C~ is a non-trivial compact subgroup of
A~™. This completes the proof of assertion c. 0O

A4. Compact groups

By the following result, the structure theory of compact connected groups is, essen-
tially, reduced to the theory of compact almost simple Lie groups and the theory
of compact abelian groups:

A4.1 THEOREM.

a. Let G be a compact connected group. Then there exist a compact connected
abelian group C, a family (S;)ier of almost simple compact Lie groups S;,
and a surjective homomorphism 1 : C X [];¢; Si = G with dimkern = 0.
The image C" is the connected component of the center of G, and the
commutator group G' equals ([];¢; Si)"-

b. Conversely, every group of the form C x [];c; Si, as in a, is compact; hence
also (C x [[;er Si)"-

PROOF. [R29, Th. 1, Th. 2], cf. [R5, App. I, no. 3, Prop. 2], [R27, Remark after
Lemma 2.4], [R45, §25]. O

i

Note that, in general, the connected component C" of the center of G is not a
complement, but merely a supplement of the commutator group in G. Since the
topology of the commutator group ([];; Si)" is well understood, a complement
would be fine in order to show the more delicate topological features of G. The

following result asserts the existence of a complement (which, in general, is not
contained in the center of G).

A4.2 THEOREM. Every compact connected group is a semi-direct product of its
commutator group and an abelian compact connected group.

PRroOF. [R20, 2.4]. A generalization to locally compact groups, involving rather
technical assumptions, is given in [R19, Th. 6). O

For a compact connected group G, let n: C x [lic; Si = G be an epimorphism as
in A4.1. The possible factors S; are known from Lie Theory; see, e.g., [R36, Ch. 5.
In order to understand the structure of C, one employs the PONTRYAGIN-VAN
KAMPEN duality for (locally) compact abelian groups. See [R41], [R42] for a
treatment that stresses the functorial aspects of duality. The dual € is a discrete
torsion-free abelian group of rank c, and ¢ equals the covering dimension of C if one
of the two s ﬁnitg [R33, Th. 34, p. 108], [R15, 24.28). Hence there are embeddings
Ze) 5 Cand ¢ » QQC = Q(©). Dualizing again, we obtain a convenient
description of the class of compact connected abelian groups:
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A4.3 THEOREM. Let C be a compact connected abelian group.

a. IfC has finite covering dimension c, then there are epimorphisms o: ¢ — C
and 7:C = T¢, both with totally disconnected kenil. o =
b. If C has infinite covering dimension, then there exists a cardinal number

¢ such that there are epimorphisms 0: Q¢ = C and 7:C — T¢, both with
totally disconnected kernel.

Sometimes, one needs a more detailed description, as supplied by

A4.4 REMARK. Dualizing the description of Q as inductive limit of the system
(2Z)neN (fndowed with natural inclusions 1Z — -1,Z), we obtain that the charac-
ter group Q is the projective limit of the system (T )nen, where T}, = T for each n,
with epimorphisms t + t4:T,,4 = T,. Every one-dimensional compact connected
group is an epimorphic image of Q.

Within the boundaries that are set up by the fact that locally compact connected
abelian groups are divisible [R15, 24.25], we are free to prescribe the torsion sub-
group of a one-dimensional compact connected group. In fact, let P be the set of all
prime numbers, and let P C P be an arbitrary subset. In the multiplicative monoid
of natural numbers, let Np be the submonoid generated by P (i.e., Np consists of
all natural numbers whose prime decomposition uses only factors from P). With
this notation, we have:

A4.5 THEOREM. For every subset P C PP, there exists a compact connected group
C with dimC = 1 and the following properties: If ¢ € C has finite order n, then
n € Np. Conversely, for every n € Np there exists some ¢ € C of order n.

PROOF. The limit Sp of the subsystem (Tn)neNe of the projective system consid-
ered in A4.4 has the required property. O

See [R15, 10.12-10.15) for alternate descriptions of the “solenoids™ Sp.

A4.6 EXAMPLES. Of course, Sp = Q, and Sy = T. The group S} is the dual of
the group | Jo, ;l;z, its torsion group has elements of orders that are not divisible

by p.
We conclude this chapter with an observation that relates A4.3 to the inductive
dimension function, as used in the rest of this paper.

A4.7 THEOREM. Small inductive dimension and covering dimension coincide for
compact connected abelian groups.

PROOF. Let A be a compact connected abelian group, and let d denote its a?vering
dimension. The dual group A is discrete [R15, 23.17] and torsion-frec (since A
is connected, [R15, 24.25]). Assume first that d is finite. According to [R33,
Th. 34, p. 108], we have the equality d = rank A. For a maximal free subgrm.:;t F of
A we infer that F = Z¢, and A/F is a torsion group. Consequently, the anmhxh:tor
Fi s totally disconnected, and has inductive dimension 0 I.Jy Al.&af. Now T¢ =
Fe A/(F+), and we conclude from A1.5 and A1.8 tl-1at dunA =.d.u:nT‘ =d If
d is infinite, then rank A is infinite, and we infer that dim A is infinite as well. 0O
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A5. The abelian case

In this section, we study connected locally compact abelian groups. Special atten-
tion will be given to decompositions of such groups, and their automorphisms.

For the structure theory of locally compact abelian groups, PONTRJAGIN-VAN
KAMPEN duality is the strongest tool by far. See, e.g. [R15, Chap. VI], [R3],
[R33], [R40, VI]. For the functorial aspects of duality theory, see [R41], [R42].
We give some results that are of interest for our special point of view. In particular,
we concentrate on the connected case.

A5.1 DECOMPOSITION THEOREM. Let A be a locally compact connected abelian
group. Then there exist closed subgroups R and C of A such that A is the (interior)
direct product R x C, and R = R*® for some natural number a, while C is compact
and connected. The group C is the maximal compact subgroup of A, hence it is a
characteristic subgroup.

PROOF. [R15,9.14], [R33, Th. 26). O

The Decomposition Theorem is a special case of the Theorem of MALCEV and
IWASAWA A2.4. Using the decomposition A = R x C, we shall gain information
about the automorphisms of A. The following lemma, which is also of interest for
its own sake, will be needed.

A5.2 LEMMA. Let a,b be natural numbers. Every continuous group homomor-
phism from R*® to R® is an R-linear mapping.

PROOF. Forevery z € R™ and every integer z # 0, there exists exactly one element
y € R™ (namely, i-z) such that zy = z. Therefore every additive mapping u:R® —
R? is in fact Q-linear. Continuity of y implies that u is even R-linear, since Qz is
dense in Rz forevery z € R%. O

Note that, if a,b # 0, then there exist many discontinuous Q-linear mappings
from R to R®.

Given a decomposition A = R x C as in A5.1, the subgroup R is not character-
istic in A = R x C, except if R = A. In fact, we have the following.

A5.3 THEOREM. Let C be a compact group, R R*%, and A= R x C.

a. If a:R = C is a continuous homomorphism, then Ty := {(z,2%);z € R}
is a closed subgroup of A, and Ty = R. Moreover, the mapping o =
((r,e) = (r,r%c)) is an automorphism of A.

b. If B is a closed subgroup of A such that B 22 R®, then there exists some
;ontinuous homomorphism a:R — C such that B < Ty. In particular,

< a.

c. If :R = A is a continuous homomorphism such that R* is not closed in
A, then R* C C.

PROOF. Assertion a is straightforward, using the fact that the graph of a contin-
uous function is closed, if the codomain is Hausdorff, Let B = R’ be a closed
subgroup of A. We consider the projections 7g: A — R: (r,e) = r and 7c: 4 —
C:(r,c) » c. Since B is compact-free, the restriction of 7R to B is injective. Hence
there exists a section o: R — B, and for a := onc we infer that B < I',. This
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proves b. Let u:R — A be a continuous homomorphism, and assume that R# ZC.
Then R#"® is a non-trivial subgroup of R 2 R®. We infer that urp is an R-linear
mapping, and that there exists a section 0: R —+ R. Now R# < Toure is closed in
A. This proves assertion c. [

A5.4 EXAMPLES.

a. Dense one-parameter subgroups (or dense analytical subgroups) are familiar
from Lie theory; most prominent, perhaps, is the “dense wind” R — T2. In
the realm of Lie groups, the closure of a non-closed analytical subgroup has
larger dimension than the subgroup itself.

b. The dual of the monomorphism Q — R, where Q carries the discrete
topology, yields a monomorphism R — Q with dense image. Note that
dimQ = 1 = dimR. Equidimensional immersions are typical for non-Lie
groups; see [R22], and A8.6 below.

_ Next, we study automorphism groups of locally compact connected abelian
groups. We endow Aut(A) with the coarsest Hausdorff topology that makes Aut(A)
a topological (not necessarily locally compact) transformation group on A (see [R1],
[R15, §26]). With respect to this topology, Aut(A) and Aut(A) are isomorphic as
topological groups [R15, 26.9]. This has the following immediate consequences
[R15, 26.8, 26.10):

A5.5 THEOREM.

a. The group of automorphisms of a compact abelian group is totally discon-

nected.
b. Let G be a connected group, and assume that N is a compact abelian normal

subgroup of G. Then N lies in the center of G.

A5.6 Let R and C be arbitrary topological groups, but assume that C is abelian®.
It will be convenient to use additive notation. Let a be an endomorphism of the
direct sum R@C, and assume that a leaves C invariant. Since (r+c¢)* = r®+c®, we
can write a as the (pointwise) sum of the restrictions a|r and al|c. Since C* < C,
the restriction a|c may be considered as an endomorphism of C. The restriction
a|gr may be decomposed as the sum of the co-restrictions a|R and al§, ie., we
write r® = ralk 4 ol where ol € R and r®I® € C. It is very convenient to use

the matrix description

alf alﬁ)

In fact, an easy computation shows that the usual matrix product describes the
composition of endomorphisms of R® C, namely

BOIR olRBIE + olRAl
(r,€)** = (ryc) (alntflﬂ e mﬁc-ﬁl'::lkt c)

31 C is not abelian, the following remarks remain valid if we consider Hom(R, Z) instead of
Hom(R, C), where Z is the center of C.
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The group of all automorphisms of R@® C that leave C invariant is obtained as

{(S .’;) . p € Aut(R),7 € Aut(C), g € Hom(R, C)}

Obviously, we have that

{ (ic(l]g igc) g € Hom(R,C)}

is a normal subgroup, and that

{(g igc) ;pGAut(R)} and {(i%*' 2);76Aut(6’)}

are subgroups that centralize each other. That is, the group of those automorphisms
of R® C that leave C invariant can be written as a semi-direct product Aut(R)
Hom(R,C) x Aut(C). Note that parentheses are not necessary.

A5.7 THEOREM. Let A be a locally compact connected abelian group, and write
A = RC, where R = R® and C is compact and connected.

a. The group of automorphisms of A is isomorphic to the semi-direct prod-
uct Aut(C) x Hom(R®,C) x GL4R, the connected component Aut(A)?! is
isomorphic to Hom(C,R®) x GL4R.

b. If dimC = ¢ < oc, then Aut(A)! is a linear Lie group; in fact, there is a
monomorphism ¢: Aut(A) = GL.Q x Hom(Q¢,R?) % GL,R, where Q and
GL_.Q carry the discrete topologies.

PROOF. The group Aut(A) leaves invariant the (unique) maximal compact sub-
group C of A. Together with the remarks in A5.6, this gives the first part
of the assertion. From Hom(R,C), & Hom(C,R®) < Hom(Q ® C,R®) we infer
that there exists a monomorphism from Aut(A4) to the group L := Aut(C) x
Hom(Q*,R?) % GL4R. Now assume that dim C' < co. According to [R15, 24.28),
dim(Q ® C) = rankC = dimC. Hence L is a (linear) Lie group. Since L has no
small subgroups, the same holds for Aut(A4). Hence Aut(A)! is a (connected) Lie
group [R32, Ch. I1I, 4.4], and the restriction of ¢ to Aut(A)? is analytic, see [R17,
VII, Th. 4.2) or [R44, Sect. 2.11. O

A5.8 COROLLARY. Let G be a locally compact connected group, and assume that
A is a closed connected normal abelian subgroup of G. If dim A < oo, then G/CgA
is an analytic subgroup of R°® x GL,R, where C' is a compact group of dimension
c,and A2R®*xC.

An important application is the following.

A5.9 THEOREM. Let G be a compact group, and assume that a is a natural num-
ber, and that C is a compact connected abelian group. If u: G — Aut(R® x C) is
a continuous homomorphism of topological groups, then the following hold:

a. Both R*® and C are invariant under G*.

b. There exists a positive definite symmetric bilinear form on R® that is in-

variant under G*. Consequently, p induces a completely reducible R-linear
action of G on R®.

c. If G* is connected, then G* acts trivially on C.
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PROOF. Assertion a follows from A5.7 and the fact that Hom(C, R) is compact-

free. The group G* induces a compact subgroup of GL,R. According to [R15, 22.23],
or [R36, Chap. 3 §4], there exists a G*-invariant positive definite symmetric bi-

linear form ¢ on R®. If V is a G*-invariant subspace of R®, then the orthogonal

complement with respect to ¢ is G#-invariant as well. This completes the proof of

assertion b. The last assertion follows from A5.5a. O

An interesting feature of locally compact connected abelian groups is the fact
that the lattice of closed connected subgroups is complemented:

A5.10 THEOREM. Let A be a locally compact connected abelian group, and as-
sume that B is a closed connected subgroup of A. Then there exists a closed
connected subgroup K of A such that A= BK anddim(BNK) =0 (ie, BNK
is totally disconnected).

PROOF. It suffices to show the existence of a closed subgroup S such that BS = A
and dim(B N S) = 0; in fact, connectedness of A implies that BS! = A (consider
the action of A on the totally disconnected homogeneous space A/(BS?)).

(i) Assume first that A is compact. Then the dual group A is discrete [R15, 23.17]
and torsion-free (since A is connected, [R15, 24.25]). Consequently, A embeds in
Q := Q® A, taken with the discrete topology. Since A spans the Q-vector space
Q, there exists a basis E C A for Q. Moreover, we can choose E in such a way
that £ N B+ is a basis for the subspace U spanned by B+. Now E \ B+ spans a
complement V of U in Q. Writing L := V N A, we infer that B+ N L = {.l}' Since
E C BL U L, the factor group Q/(B+L) is a torsion group, and so is A/(B+L).
We conclude that BL* = A, and dim(BN L*) = 0.

(i) In the general case, we write A = Rx C and B = § x D with compact groups
C,D, where R = R® and S = R®. According to A5.3b, there exists a continuous
homomorphism a: R — C such that S is contained in the graph I'a, and A =Tq xC
by A5.3a. Therefore, we may assume that S = R® < R = R®. For any subgroup
Z = Z° of R® such that BN Z = Z?, the group A/Z is compact, and BZ/Z is a
compact, hence closed, subgroup. Now (i) applies, and we infer that there exists a
closed subgroup S of A such that A = BS and dim(BNS)=0. O

A5.11 REMARKS.

a. The example of a two-dimensional indecomposable group in [R40, Bsp. 68]
shows that, in general, a complement for a closed connected subgroup need
not exist. ' _

b. Complements do exist in abelian connected Lie groups; this can be derived
from the fact that, in this case, the dual group is isomorphic to R® x Z°,

¢. If Aisalocally compact abelian group, and B isa closed connected sub'group
of A such that B is a Lie group (i.e., B is isomorphic to R® x T for suitable
cardinal numbers a < co and c), then there exists a complement for B in
A, see [R3, 6.16].

d. The a.ss[;ertion of]AS.IO can also be derived from b and A3.5.
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A6. Notions of simplicity

We are now going to introduce the concepts “almost simple”, “semi-simple”, “min-
imal closed connected abelian normal subgroup”, “solvable radical” in the context
of locally compact connected groups of finite dimension. See [R17, XIL.3.1] for a
comparison of the concepts of solvability and nilpotency in topological groups and
in discrete groups.

A locally compact connected non-abelian group G is called semi-simple if it has
no non-trivial closed connected abelian normal subgroup; the group G is called
almost simple if it has no proper non-trivial closed connected normal subgroup.

Let (G;)ier be a family of normal subgroups of a topological group G. Gener-
alizing A1.10b, we call the group G an almost direct product of the groups G;, if
G is generated by | J;c; Gi and the intersection of G; with the subgroup generated
by Uien () Gi is totally disconnected. Examples are given by compact connected
groups A4.1, and also by semi-simple groups:

A6.1 THEOREM. A locally compact connected group of finite dimension is semi-
simple if, and only if, it is the almost direct product of a finite family (S;)i1<i<n of
almost simple (closed connected) subgroups S;.

PROOF. This follows from the corresponding theorem on Lie groups [R5, III §9
no. 8 Prop. 26] via the Approximation Theorem A2.1a and A3.5. O

A6.2 THEOREM. Let G be a locally compact connected group.

a. If G is almost simple, then every proper closed normal subgroup is contained
in the center Z of G, and Z is totally disconnected. In particular, G/Z is a
simple Lie group with dimG/Z = dim G < oo.

b. If G is semi-simple and of finite dimension, then every closed connected

normal subgroup is of the form S;, --- S;,, where the Si; are some of the
almost simple factors from A6.1.

PROOF. Let N be a proper closed normal subgroup of G. The connected compo-
nent N is a proper closed connected normal subgroup of G. If G is almost simple,
we infer that N! = {1}. Via conjugation, the connected group G acts trivially on
the totally disconnected group N. Therefore N is contained in Z. Applying this
reasoning to the case where N = Z, we obtain that Z is totally disconnected. The
rest of assertion a follows from A1.5 and A2.1. Assertion b follows from A3.5 and
the corresponding theorem on Lie groups [R5, I, §6, no. 2, Cor. 1; III, §6, no. 6,
Prop. 14]. O

Our next observation makes precise the intuition that an almost simple group
either has large compact subgroups, or large solvable subgroups.

A6.3 THEOREM. Let G be a locally compact connected almost simple group.
Then there exist a compact subgroup C and closed connected subgroups T' and D
of G such that the following hold.

a. The group C is compact and semi-simple, T is a subgroup of dimension at
most 1 that centralizes C, and D is solvable.

b. G=TCD, and dimG < dimC +dim D + 1.

c. The group D is a simply connected, compact-free linear Lie group.
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d. The center Z of G is contained in TC, and TC/Z is a maximal compact
subgroup of G/Z, while CZ/Z is the commutator group of TC/Z.

PROOF. The centralizer of the commutator group of a maximal compact subgroup
of a simple Lie group has dimension at most 1. The assertions follow immediately
from the Iwasawa decomposition for simple real Lie groups [R14, VI, 5.3] by an
application of A3.5 and A2.1. O

A6.4 THEOREM. Let G be a locally compact group, and assume that A is a
closed connected abelian normal subgroup such that dim A < co. Then there exists
a minimal closed connected abelian normal subgroup M < A, and 0 < dim M <
dim A. Moreover:

a. Either the group M is compact, or it is isomorphic with R™, where m =
dim M.
b. If M is compact, then M lies in the center of the connected component G1.

PROOF. The set A of closed connected abelian normal subgroups of G that are
contained in A is partially ordered by inclusion. Since dim X = dimY for X,Y € 4
implies that X = Y by A1.8b, there are only chains of finite length in A. The
maximal compact subgroup C of a minimal element of A is a closed connected
characteristic subgroup of M, hence either M = C or C = {1} by minimality. In
the latter case, M = R™ by A5.1. Assertion b is immediate from A5.5b. O

From A6.4, we infer that the class of locally compact connected groups of finite
dimension splits into the class of semi-simple groups, and the class of groups with
a minimal closed connected abelian normal subgroup M. The action of G on M
via conjugation is well understood:

A6.5 THEOREM. Let @ be a locally compact group, and assume that there exists
a minimal closed connected abelian normal subgroup M = R™.
a. The group G acts (via conjugation) R-linearly and irreducibly on M.
b. The factor group L = G/CgM is a linear Lie group, in fact, a closed
subgroup of GL,R. The commutator group S of L is also closed in GLnR,
and we have that L = SZ, where S is either trivial or semi-simple, and Z
is the connected component of the center of L. Moreover, Z is isomorphic
to a closed connected subgroup of the multiplicative group C*.
c. For every one-parameter subgroup R of M, we have that dimG/CgR <
dim M.
PROOF. The action via conjugation yields a continuous homomorphism G = GL,R,
of. A5.2. Every invariant subspace V of M = R™ is a clo§ed ?oynectec? normal
subgroup of G. Minimality of M implies that V = M, or V is trivial. This proves
assertion a.

The factor group G/CgM is a Lie group [R17, VI.II.I.I], v.which acts effectively
on M = R™, '%1;:3 action is a continuous homomorphism of Lie groups. From [R5,

116.2, Cor. 1(ii)] we infer that the image L of G/CM in GLmR is an analytic
subgroup. Moreover, we know that L is irreducible on R™. According to [R7], the
group L is closed in GLn,R. Hence we may identify L and G/CgM, of. A1.15.
The commutator group S of L is closed, see [R17, XVIIL.4.5].
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From [R44, 3.16.2] we infer that the radical of the group L is contained in the
center Z of L, whence L = §Z. According to Schur’s Lemma [R28, p. 118, p. 257],
the centralizer of L in Endg(M) is a skew field. Since this skew field is also a
finite-dimensional algebra over R, we infer that it is isomorphic to R, C, or H, cf.
[R9]. (See also [R8, 6.7].) Thus Z generates a commutative subfield of H, hence
Z < C*. This completes the proof of assertion b.

Assertion ¢ follows readily from A1.14b, since by linearity CecR = Cgr for
every non-trivial element r of R. O

A6.6 THEOREM. In every locally compact connected group G of finite dimension,
there exists a maximal closed connected solvable normal subgroup (called the solv-
able radical V/G of G). Of course, G = VG iff G is solvable, and /G is non-trivial
if G is not semi-simple. The factor group G/+/G is semi-simple (or trivial).

ProOOF. Obviously, the radical is generated by the union of all closed connected
normal solvable subgroups, cf. [R27, Th. 15]. O

If G is a connected linear Lie group, or a simply connected Lie group, it is known
[R17, XVIIL4], [R44, 3.18.13] that there exists a closed subgroup S of G such that
G = SVG and dim(S N VG) = 0. Such a (necessarily semi-simple) subgroup is
called a Levi-complement in G. Even for Lie groups, however, such an .5 does not
exist in general (see [R44, Ch. 3, Ex. 47 for an example). Apart from the fact that,
in the Lie case, one has at least an analytic (possibly non-closed) Levi complement
[R44, 3.18.13], one also has some information about the general case:

A6.7 THEOREM.

a. Let L be a Lie group, and let S be a semi-simple analytic subgroup of L.
Then the closure of S in L js an almost direct product of S and an abelian
closed connected subgroup of L.

b. Let G be a locally compact connected group of finite dimension, and let /G
be the solvable radical of G. Then there exists a closed subgroup H of G
such that G = HVG and (H N VG)! < CgH.

PROOF. Without loss, we may assume that S is dense in L. The adjoint action of
S on the Lie algebra [ of L is completely reducible, hence there exists a complement
¢ of the Lie algebra s of § such that [s,¢] < ¢N[f,]. According to [R17, XVI1.2.1],
we have that [[,[] = [s,s] = 5. This implies that [s,c] = 0, and assertion a follows.

If G is a Lie group, then assertion b can be obtained from a. In fact, the closure
of the Levi complement S of G is of the form SC, where C is a closed connected
subgroup of CgS, and the connected component of SC N /G is contained in the
radical C of SC. Applying A3.5, we obtain assertion b in general. [

A6.8 REMARK. If G is an algebraic group, then the decomposition in AB.7b is
the so-called algebraic Levi decomposition into an almost semi-direct product of a
reductive group and the unipotent radical, see [R36, Ch. 6].

AT7. On the existence of non-Lie groups of finite dimension

In this section, we construct some examples of non-Lie groups, and solve the

problem whether or not a given simple Lie group is the quotient of some almost
simple non-Lie group.
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A7. ON THE EXISTENCE OF NON-LIE GROUPS OF FINITE DIMENSION

A7.1 LEMMA. Assume that (I,>) is a directed set, and let (7ij: Gi =+ Gj);s, ; be

a projective system of locally compact groups. If 7;; has compact kernel for all &J
such that 1 > 3, then the projective limit is a locally compact group.

PROOF. Let G be the projective limit. For every i € I, the natural mapping
7i: G — Gi has compact kernel, since this kernel is the projective limit of compact
groups. Hence =; is a proper mapping by A2.7, and the preimage of a compact
neighborhood in G is a compact neighborhood in G. O

AT7.2 LEMMA. Assume that (,>) is a directed set, and let (mij: G; — Gj), ; bea
projective system of locally compact groups such that ker ;; is finite for all i > j.
Let G denote the projective limit. If I has a smallest element, then every projection
7;:G — G; has compact totally disconnected kernel.

PROOF. Assume that a is the smallest element of I. For every 1 € I, let K;
denote the kernel of m;,. The kernel of 7, is the projective limit K of the system

(Tr,':‘l;‘(": K;i 2 K j) i>j. Since kerm; < kerm,, the assertion follows from the fact
that K is a closed subgroup of the compact totally disconnected group [];c; Ki. O

A7.3 THEOREM. Let G be a locally compact connected group of finite dimension.

a. If G is not a Lie group, and N is a compact totally disconnected normal
subgroup such that G/N is a Lie group, then there exists an infinite sequence
Tn: Lpt1 = Ly of ca-fold coverings of connected Lie groups such that Lo =
G/N and 1 < ¢, < oo for every n.

b. Conversely, let L be a connected Lie group, and let mp: Layy — L be
an infinite sequence of cq-fold coverings of connected Lie groups such that
Lo = L and 1 < ¢, < oo for every n. Then there exists a locally compact
connected non-Lie group G with a compact totally disconnected normal
subgroup N such that G/N £ L.

PROOF. Assume that G and N satisfy the assumptions of a. If N is discrete,
then G is a Lie group, in contradiction to our assumption. Hence there exists a
neighborhood U of 1 in G such that N € U and NNU # {1}. According to A2.1,
there exists some compact normal subgroup M C U such that G/M is a Lie group.
The natural mapping G/N — G/(N N M) is a proper finite covering. Iterating this
process, we obtain assertion a.

In the situation of b, consider the projective system mn: Ln41 = Ln. By A7.1,
the limit is a locally compact group G. The projective limit N of the ke.rnels of the
natural mappings G — G; is a compact infinite group, and N is totally disconnected
by A7.2. Hence G is not a Lie group. 0O
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AT7.4 REMARKS.

a. Our technical assumption in A7.2 that I has a smallest element seems
to be adequate for the application in A7.3b. The example [R22, bot-
tom of page 260] of an infinite-dimensional projective limit of a system of
one-dimensional groups shows that A7.2 does not hold without some as-
sumption of the sort.

b. Theorem A7.3b could also be derived from [R22, 2.2, 3.3]. Roughly speak-
ing, the method of K.H. HOFMANN, T.S. WU and J.S. YANG [R22] con-
sists of a dimension-preserving compactification of the center of a given

group.

A7.5 The fundamental group of a semi-simple compact Lie group is finite, cf.
[R26, §7.12]. This implies that, for a connected Lie group L, the existence of a
sequence of coverings as in Theorem A7.3 is equivalent to the existence of a cen-
tral torus in a maximal compact subgroup of L. The simple Lie groups with this
property are sometimes called hermitian groups, they give rise to non-compact irre-
ducible hermitian symmetric spaces [R14, VIIL.6.1]. In the terminology of [R43],
the corresponding simple Lie algebras are the real forms AF" (1<p< -'Jg-l), B?‘z
(! 2 2), Dj** (1 2 3), DY, (p 2 2), DF;; (p > 2), Eg(—14), Ex—25). In [R36],
these algebras are denoted as su, 14—, (including su, ), 502,1-1, 502, 1-2, u3,(H),
u3,4+1(H), EIII, and EVII, respectively.

Consequently, we know the locally compact almost simple non-Lie groups.

AT7.6 THEOREM. Let G be a locally compact connected group, and assume that
G is not a Lie group. Then G is almost simple if, and only if, the center Z of G is
totally disconnected and G/Z is a hermitian group (cf. A7.5).

Of course, a similar result holds for semi-simple non-Lie groups: at least one of
the almost simple factors in A6.1 is not a Lie group.

A8. Arcwise connected subgroups of locally compact groups

In the theory of Lie groups, arcwise connectedness plays an important role. In fact,
according to a theorem of H. YAMABE [R12], the arcwise connected subgroups of
a Lie group are in one-to-one correspondence with the subalgebras of the corre-
sponding Lie algebra. Our aim in this section is to extend this to the case of locally
compact groups of finite dimension. To this end, we shall refine the topology of the
arc component, and show that we obtain a Lie group topology.

A8.1 DEFINITION. Let G be a topological group, and let &/ be a neighborhood
base at 1. For W € U, let Uw = {U € U; U C W1}, of course Uw is again a
neighborhood base at 1. For every U € U, we denote by U** the arc component
of 1in U. For W € U, let U® = {U*; U € Uw}.

Easy verification shows that the system {Vg; V € UY*, g € G} forms a base for
a group topology on G. For every W € U, we obtain the same group topology on

G, this topology shall be denoted by Tjjiecare. Obviously, the topology Tijiocar is
locally arcwise connected.
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AS8.2 PROPOSITION.

a. The topology Tyecare is finer than the original topology on G.
b. A function a:[0,1] = G is continuous with respect to the original topology
if, and only if, it is continuous with respect to Tyiocare.

PROOF. For U € U and g € U, we find V € U such that Vg C U. Now V*<g C U,
and we infer that U € Tyiocarc. The “only if”-part of assertion b follows immediately
from a. So assume that a is continuous with respect to the original topology, let
r € [0,1] and U € U. By continuity, there is a connected neighborhood I of r such
that J* C Ur®. Now continuity of a with respect to Tjjicarc follows from the fact
that J* C U*<re. O

A8.3 COROLLARY.

a. The arc component G** of G coincides with the arc component of G with
respect to Tyiecare.

b. Algebraically, G** is generated by U** for every U € U.

c. With respect to Tyiocare, the arc component is again arcwise connected.

While G*© is understood to be endowed with the induced original topology, we
shall write G'°¢*™ for the topological group G** with the topology induced from
Tipocsee. According to A8.2a, the inclusion G*™ — G yields a continuous injection
i Glocare 5 G,

A8.4 THEOREM. Assume that G is a locally compact group of finite dimension,
and let U be a neighborhood base at 1. Then the following hold:

a. If W € U is the direct product of a compact totally disconnected normal
subgroup C of G and some local Lie group A C G, then G* is algebraically
generated by the connected component Al. In particular, G! < G**C.

b. The factor group G/C is a Lie group, in fact, the natural mapping m:G —
G/C restricts to a topological isomorphism of A onto a neighborhood of 1
in G/C.

c. G'oca s g connected Lie group, and um: G'°¢** — (G/C)! is a covering.

d. The arc component G** is dense in G1.

e. The sets Hom(R, G) and Hom(R, G**) coincide. The mapping

a + au: Hom(R, G**¢**) — Hom(R, G)
is a bijection.

PROOF. For every U € U, the connected component G! is contained in the sub-
group (U) that is algebraically generated by U. In particular, G? < (W) = C(A);
recall that C is a normal subgroup of G. The connected component A! is arcwise
connected, therefore A! = W**, This implies that A! is open in G'°**<, whence
Glocare — (A1), This proves assertion a. From the fact that W is the direct product
of C and A, we conclude that =, is injective. The quotient mapping = is open,
hence A™ = W™ is open in G/C. Therefore, the group G/C is locally isomorphic
to A, and b is proved. Since V := (A?)* is open in G/C, we obtain that (G/C)! is
generated by V. Hence tm: Glo¢* — (G/C)! is surjective, and assertion ¢ holds.
An application of A3.5b to the closure of G** and the restriction of = to G? yields
assertion d. Finally, assertion e is an immediate consequence of A8.2b. 0O
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A8.5 REMARKS.

a. From K. IwAsawA’s local product theorem [R11, Th. B| we know that
in every locally compact group there exists a neighborhood W with the
properties that are required in A8.4a.

b. In view of A8.4e, we define the Lie algebra of G as Hom(R, G), f. [R30,
I1.11.9, p. 140]. We then have the exponential function exp: Hom(R,G) =
G:a +» 1°. For every subalgebra s of Hom(R, G), it seems reasonable to
define the corresponding arcwise connected subgroup that is generated by
exps. Thisis in contrast with R. LASHOF’s definition [R31, 4.20], while our
definition of the Lie algebra essentially amounts to the same as R. LASHOF’s.

c. A source for further information on G might be the epimorphism

n:G°¢%¢ x C = G = G**C:(z,c) = z'c.

Note that 7 is a local isomorphism, and therefore a quotient mapping.

d. As an immediate consequence of the local product theorem, we have that
a locally compact group of finite dimension is a Lie group if, and only if, it
is locally connected. However, it is not clear a priori that G'°* is locally
compact.

We collect some consequences of A8.4.

A8.6 THEOREM. Let G be a locally compact connected group of finite dimension.

a. Let M be a compact normal subgroup such that dimM = 0 and G/M
is a Lie group. For the natural mapping np:G — G/M, we have that
vy Glocae —y G/M is a covering. In particular, dimG = dimG/M =
djmcloc arc !

b. The group G is a Lie group if, and only if, the composite twp is a finite
covering.

c. If H is a connected Lie group, and a: H = G is a continuous homomor-
phism, then a factors through ¢.

d. The group G is a Lie group if, and only if, the morphism ¢ is surjective.

PROOF. The kernel K = G**NM of ¢x is closed in G'°¢**¢ and totally disconnected.
Since G'o¢**¢ is a Lie group, we infer that K is discrete. Since G'°¢**® and G/M
are connected Lie groups of the same dimension, we conclude that ¢7 is surjective,
hence assertion a holds. If G is a Lie group, then G = G*'¢ = Gl°c3rc, Being totally
disconnected, the subgroup M is discrete and compact, hence finite. Thus 7z is
a finite covering. Now assume that 7y has finite kernel K = G** N M. Let U
be a neighborhood of 1in G such that UN K = {1}. According to A2.1b, there
exists an normal totally disconnected compact subgroup N such that N C U and
G/N is a Lie group. For every such N, we obtain that ¢y is an isomorphism.
If N is non-trivial, we may pass to a neighborhood V of 1 in U such that N is
not contained in V. Then we find a normal compact subgroup N’ C NNV, and
obtain a proper covering G/N’ — G/N, in contradiction to the fact that 7 is an
isomorphism. This implies that N = {1}, and G is a Lie group. Thus assertion b
is proved. In the situation of ¢, it suffices to show that a is continuous with respect
to Typecare; in fact H® is arcwise connected, hence contained in G***. For every
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U € U, we find a neighborhood V of 1 in H such that V* C U. Since H is locally
arcwise connected, we may assume that V is arcwise connected. This implies that
Ve C U*®, whence « is continuous with respect to Tjiecarc. In order to prove d,
assume first that ¢ is surjective. Then ¢ is a homeomorphism by the open mapping
theorem [R15, 5.29], hence G is a Lie group. The proof of d is completed by the
observation that every connected Lie group is arcwise connected. O

A9. Algebraic groups

In this last section, we briefly indicate how certain results from the theory of com-
plex algebraic groups yield results on the rough structure of locally compact groups
of finite dimension.

Let G be a locally compact group. If dim G < oo, and A, B € Struc(G) such that
A < B, then dimA < dim B by A1.8b. Consequently, every chain in Struc(G)
has a maximal and a minimal element. This corresponds to the fact that analytic
(arcwise connected) subgroups of a Lie group are in one-to-one correspondence
to the subalgebras of the Lie algebra, where the dimension function is obviously
injective on every chain. Upper bounds for the dimension of subgroups of a given
locally compact group G yield lower bounds for the dimension of separable metric
spaces that admit a non-trivial action of G, cf. A1.14. In order to gain information
about the maximal elements in Struc(G), we shall try to employ information from
the theory of algebraic groups. The maximal algebraic subgroups of a complex
algebraic group are understood quite well. E.g., one has the following result, cf.
[R24, 30.4].

A9.1 THEOREM. Let G be a reductive complex algebraic group. Then every maxi-
mal algebraic subgroup of G either is parabolic or has reductive Zariski-component.

Parabolic subgroups are those that contain a Borel subgroup. Every parabolic
subgroup is a conjugate of a so called standard parabolic subgroup, and these are
easy to describe. In fact, they are in one-to-one correspondence to the subsets of a
base for the lattice of roots of G relative to a maximal torus. Cf. [R24, 30.1].

The reductive subgroups of reductive complex algebraic groups are known, see

R4).

[ 'I!here arises the question as to what extent these results are applicable in order
to describe the maximal closed subgroups of a given locally compact group, or even
a Lie group. First of all, we note that an important class of Lie groups consists in
fact of algebraic groups, cf. [R36, Ch. 3, Th. 5].

A9.2 THEOREM. Let G be a connected complex linear Lie group, and assume
that G equals its commutator group. Then G admits a unique complex algebraic
structure. In particular, every complex semi-simple linear Lie group is complex
algebraic.

While every algebraic subgroup of a complex algebraic group G is closed in
the Lie topology, the converse does not hold in general. However, the structure
of the algebraic closure H™® of a connected analytic subgroup H of G (i.e., the
smallest algebraic subgroup that contains H) is to some extent controlled by the
structure of H. In particular, the commutator group of H*$ equals that of H, cf.
[R18, VIIL3.1]. This implies the following.
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A9.3 THEOREM. Let G be a complex semi-simple linear Lie group. Then every
maximal closed connected subgroup is algebraic.

Via complexification, we obtain an estimate for the possible dimensions of max-
imal closed subgroups of real semi-simple Lie groups (and thus of locally compact
semi-simple groups).

A9.4 THEOREM. Let G be a semi-simple (real) Lie group. If H is a proper sub-
group, then dim H < mg, where mg denotes the maximal (complex) dimension of
proper subgroups of the complexification of G.

Since, e.g., the parabolic subgroups have no counterpart in compact real forms,
the estimate in A9.4 may be quite rough. However, it is attained in the case of
split real forms.

A9.5 EXAMPLE. Consider a complex simple Lie group of type G;. Then a reduc-
tive subgroups is either semi-simple of type Az, Ay x Ay, A,, or a product of A; with
a one-dimensional centralizer, or abelian of dimension at most two. The maximal
parabolic subgroups are semi-direct products of a Levi factor of type A, and a solv-
able radical of dimension 6. Consequently, if G is a locally compact almost simple
group such that the factor group modulo the center is a real form of Gy, then the
maximal elements in Struc(G) have dimension at most 9. Note that, if G is the
compact real form, then every subgroup is reductive, and the maximal elements in
Struc(G) have dimension at most 8. Since dimG = 14, we infer that if G acts
non-trivially on a separable metric space X, then dim X > 5, anddim X > 6 if G
1s compact.

62



R1
R2

R4.

R7.
R8.
R9.
R10.

R11.

R12.

R13.

R14.

R15.

R16.

R17.
R18.

R19.

R21.

R22.

R23.
R24.

R27.
R28.
R29.

References

R. Arens, Topologies for homeomorphism groups, Amer. J. Math. 68 (1946), 593-610.

A. Arhangel’skil, On the identity of the dimension ind G and dim G for locally bicompact
groups, Dokl. Akad. Nauk SSSR, N.S. 132 (1960), 980-981 (Russian); English transl.,
Soviet Math. (Doklady) 1 (1960), 670-671.

. D.L. Armacost, The structure of locally compact abelian groups, Monographs and textbooks

in pure and applied mathematics, vol. 68, Marcel Dekker, New York/Basel, 1981.
A. Borel, J. De Siebenthal, Les sous-groupes fermés de rang mazimum des groupes de Lie
clos, Comment. Math. Helv. 23 (1949), 200-221.

. N. Bourbaki, Groupes et algébres de Lie, Hermann, Paris, 1968. (French)
R6.

T. Brocker, T. tom Dieck, Representations of compact Lie groups, Graduate texts in math-
ematics 98, Springer, New York etc., 1985.

D. Djokovi€, Irreducible connected Lie subgroups of GLa (R) are closed, Israel J. Math. 28
(1977), 175-176.

J. Dugundji, Topology, Allyn and Bacon, Boston, 19686.

H.D. Ebbinghaus et al.,, Numbers, Springer, New York etc., 1990.

H. Freudenthal, Einige Satze uber topologische Gruppen, Ann. of Math. 37 (1936), 46-56.
(German)

V.M. Gluskov, The structure of locally compact groups and Hilbert’s fifth problem, Usp.
Mat. Nauk 12 no.2 (1957), 3-41 (Russian); English transl., Amer. Math. Soc. Transl. (2)
15 (1960), 55-93.

M. Goto, On an arcwise connected subgroup of a Lie group, Proc. Amer. Math. Soc. 20
(1969), 157-162.

H.-R. Halder, Dimension der Bahnen lokal kompakter Gruppen, Arch. Math. 22 (1971),
302-303.

S. Helgason, Differential geometry, Lie groups, and symmetric spaces, Academic Press,
New York etc., 1978.

E. Hewitt, K.A. Ross, Absiract harmonic analysis, Grundlehren der mathematischen Wis-
senschaften 115, Springer, Berlin etc., 1963.

J. Hilgert, K.-H. Neeb, Lie-Gruppen und Lie-Algebren, Vieweg, Braunschweig, 1991. (Ger-
man) '

G. Hochschild, The structure of Lie groups, Holden Day, San Francisco etc., 1965.

G. Hochschild, Basic theory of algebraic groups and Lie algebras, Graduate texts in math-
ematics 75, Springer, New York etc., 1981.

K.H. Hofmann, Sur la décomposition semidirecte des groupes compacts connezes, Symposia
Math. 16 (1975), 471-476. (French)

. K.H. Hofmann, S.A. Morris, Free compact groups V: remarks on projectivily, Category

theory at work (H. Herrlich, H.-E. Porst, eds.), Research and exposition in mathematics,
vol. 18, Heldermann, Berlin, 1991, pp. 177-198.

K.H. Hofmann, C. Terp, Compact subgroups of Lie groups and locally compact groups,
Proceedings Amer. Math. Soc. (1993) (to appear).

K.H. Hofmann, T.S. Wu, J.S. Yang, Equidimensional immersions of locally compact groups,
Math. Proc. Camb. Phil. Soc. 105 (1989), 253-261.

A. Hohti, Another alternative proof of Effros’ theorem, Topology Proc. 12 (87), 295-298.
J.E. Humphreys, Linear algebraic groups, Graduate texts in mathematics 21, Springer,
New York etc, 1975.

. W. Hurewicz, H. Wallman, Dimension Theory, Princeton mathematical series, vol. 4,

Princeton University Press, Princeton, 1948.

. D. Husemoller, Pibre bundles, Graduate texts in mathematics 20, Springer, New York etc,

1975.

K. Iwasawa, On some types of topological groups, Ann. of Math. 50 (1949), 507-558.

N. Jacobson, Basic Algebra II, Freeman, New York, 1980.

E. van Kampen, The structure of a compact connected group, Amer. J. Math. 57 (1935),
301-308.

63



R30.

R31.
R32.

R33.

R34.

R3S.
R36.

R39.

R40.
R41.

R42.

R43.

R44.

R45.

APPENDIX: LIE STRUCTURE THEORY FOR NON-LIE GROUPS

I. Kaplansky, Lie algebras and locally compact groups, Chicago lectures in mathematics
series, The University of Chicago Press, Chicago etc., 1971.

R. Lashof, Lie algebras of locally compact groups, Pac. J. Math. T (1957), 1145-1162.

D. Montgomery, L. Zippin, Topological transformation groups, Interscience tracts in pure
and applied mathematics, vol. 1, Interscience, New York, 1955.

S.A. Morris, Pontryagin duality and the structure of locally compact abelian groups, London
Mathematical Society Lecture Note Series, vol. 29, Cambridge University Press, Cambridge
etc., 1977.

P.S. Mostert, Sections in principal fibre spaces, Duke Math. J. 23 (1956), 57-71.

J. Nagata, Modern dimension theory, North Holland, Amsterdam, 1965.

A L. Onishchik, E.B. Vinberg, Lie groups and algebraic groups, Springer, New York etc.,
1990.

. B.A. Pasynkov, The coincidence of various definitions of dimensionality for locally bicom-

pact groups, Dokl. Akad. Nauk SSSR 132 (1960), 1035-1037 (Russian); English transl.,
Soviet Math. (Doklady) 1 (1960), 720-722.

y The coincidence of various definitions of dimensionality for factor spaces of locally
bicompact groups, Usp. Mat. Nauk 17 no.5 (1962), 129-135. (Russian)

A.R. Pears, Dimension theory of general spaces, Cambridge University Press, Cambridge
etc., 1975.

L.S. Pontrjagin, Topologische Gruppen, Teil 1 und 2, Teubner, Leipzig, 1957/58. (German)
D.W. Roeder, Functorial characterization of Pontryagin duality, Trans. Amer. Math. Soc.
154 (1971), 151-175.

y Category theory applied to Pontryagin duality, Pacific J. Math. 52 (1974), 519-

527.

J. Tits, Tabellen zu den einfachen Lie Gruppen und ihren Darstellungen, Lect. notes in
mathematics 40, Springer, Berlin etc., 1967. (German)

V.S. Varadarajan, Lie groups, Lie algebras, and their representations, Springer, New York
ete., 1984,

A. Weil, L’intégration dans les groupes topologiques et ses applications, 2nd edition, Her-
mann, Paris, 1965. (French)





