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The poper shows the applicability of a regular perturbation me/hod for predicting 
Ihe Iransienl development of the ice layer thickness inside a cooled planar channel 
subjected to laminar flow. Applying the perturbation expansion 10 Ihe conservation 
equations. closed-form solutions jar the velocity and temperature distributiofLS in 
the fluid for an arbitrarily shaped channel could be derived under Ihe assumption 
that the axial variation in solid layer thickness Is small. The distributions obtained 
for the steady-state ice layer thickness ond the velocity were checked by numerical 
calculations and compared with the measurements of Kikuchi et 01. (/986) and Q 

generally good agreement was found. 

Introduction 
Problems of solidification or freezing of liquids inside cold 

channels have been encountered in numerous engineering ap­
plications. B~ause the freezing shut of systems may lead to a 
destruction of the equipment (for example. freezing shut of a 
water pipe in winter or freezing of molten sodium in a nuclear 
reactor), it is advisable to prevent blockage. If solidification 
on the cooled walls cannot be suppressed. steady-state con­
ditions must be sought. 

Many theoretical and experimental studies have been per­
formed for fluid flow with solidification in circular tubes. An 
early investigation was reported by Zerkle and Sunderland 
(1968) for the steady-state freezing of laminar flow inside a 
horizontal tube. Under the assumption of a parabolic axial 
velocity distribution throughout the full axial length of the 
lube and with an appropriate coordinate transform, they were 
able to reduce the pro~lem to the classical Graetz problem 
without solidification. Ozi~ik and Mulligan (1969) used a slug 
flow approximation for the liquid core to analyze transient 
freezing in an isothermal circular tube. They applied integral 
transforms to obtain the transient development of the ice layer 
inside the tube. Bilenas and Jiji (l970) solved the boundary 
layer equations applying a finile-<iifference scheme. but they 
used a wide-meshed grid for their calculalions. Chida (1983) 
calculated numerically Ihe steady·state ice layer thickness. un· 
der consideration of axial conduction. Bilenas and Jiji (1970) 
and Chida (1983) assumed a fully developed parabolic axial 
velocity distribution at the entrance of the cooled section. 

Despite its relevance to any important technological and 
physical problems. the freezing of liquid nows through a cooled 
two-dimensional channel has not been studied as intensively 
as the freezing in a cooled circular pipe. An early investigation 
of this problem was reported by Lee and Zerkle (1969). They 
assumed the axial velocity to be parabolic throughout the whole 
chill region. which was in analogy to Zerkle and Sunderland 
(1968). With the approximated velocity profile and with an 
appropriate coordinate transform. the energy equation could 
be reduced to a Graetz problem. and the steady-state ice layer 
was calculated . An experimental investigation of the effect of 
freezing a liquid in case of laminar flow between two cooled 
plates has been performed only by Kikuchi et al. (1986). They 
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used water as the working fluid. Both plates were maintained 
at the same temperature. which was below the freezing tem­
perature of the water and varied from - rc to - 7·C. A 
numerical ca1culation of the steady-state ice layers for an ar­
bitrary velocity profile at the entrance of the chill region was 
given by Weigand and Beer (1991), who solved the boundary 
layer equations with the help of a finite-difference method. 
For the case of a fully developed parabolic velocity distribution 
at the entrance of the cooled channel. the results of Weigand 
and Beer (1991) were compared with the experimental findings 
of Kikuchi et a1. (1986) and a generally good agreement was 
found. Bennon and incropera (1988) studied numerically the 
influence of free convection effects on the axial distribution 
of the steady-state solid-liquid interface by solving the con· 
servation equations for laminar flow without simplified as­
sumptions. The transient development of the solidified crust 
in a planar channel has been studied only by Weigand and 
Beer (1992). They obtained an approximate analytical solution 
for the distribution of the ice layer thickness under the as· 
sumption that the axial variation in solid layer thickness could 
be negJected. Their analysis is based on the boundary layer 
equations. 

The subject of this paper is the presentation of an approx­
imate solution of the boundary layer equations with the help 
of a regular penurbation method. Under the assumption that 
the axia1 variation in solid layer thickness is small. closed-form 
solutions for the velocity and temperature distributions in the 
fluid for an arbitrarily shaped channel could be developed. 
The given method is quite flexible and can be used to calculate 
the velocity and temperalUre distributions in a channel with 
an arbitrary cross section. if the axial variation in the free 
channel height is comparatively small. Finally. it can be shown 
that the solutions of Zerkle and Sunderland (1969) and Wei· 
gand and Beer (1992) can be obtained as the zero-order solution 
of the regular penurbalion expansion, presented here. 

Moreover, it should be pointed out that the present paper 
deals solely with smooth ice layers in laminar liquid now. This 
means lhat lhe ice layers are assumed to increase monotonously 
in thickness with increasing values of the axial coordinate. 

Analysis 

Basic Equations and Assumptions. Figure I shows the geo­
metric configuration and the coordinate system for a planar 
symmetric channel. The nuid enlers the chilled region at x = O 
with a fully developed laminar velocity profile and with a 
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constant temperature To. In the cooled section. the wall tem­
perature is maintained at a constant value T w. which is lower 
than the freezing temperature TFofthe fluid. The frozen layers 
are generated on both walls as the fluid proceeds along the 
channel. Assuming an incompressible. Newtonian fluid with 
constant nuid properties. the quasi-steady conservation equa· 
tions for the fluid may be written in the following form: 

ail aD 
ax + oy=O 

_ ail _ au aft I a2a 
u-+u-=--+--ax oj ax Re,., af 

0= afj 
aj 

a an + iJ ao =_1_ a'e 
ai aj Reh Pr af 

with the dimensionless quantities 

(I) 

(2) 

(3) 

(4) 

where Uo denotes the axial mean velocity for i= O. The bound­
ary conditions belonging to Eqs. (1)-(4) are 

3 
x=D: "=2 (1- .f), jj=Po. 8= 1 

Y~=O' au =0 0=0, a8 =0 
·ajl' aj 

j=6: 11=0, 0=0, 8=0 (6) 

By deriving Eqs. (1)-(4), the usual boundary-layer assumptions 
were made, which are a common treatment of the conservation 
equations for channel flows (Cebeci and Chang, 1978). The 
assumption of quasi~steady conditions, which was incorpo­
rated into Eqs. (1)-(5), is justified for water now because of 

Nomenclature 

the small value of the Stefan number, which is about Ste""O.1 
(Cervantes et aI., 1990). The conservation of mass in integral 
form is given by , 

l=t Udj (7) 

where the mass that gets lost by freezing at the channel walls 
was neglected as the change in the density between fluid and 
solid is very small for water and quasi-steady conditions are 
assumed. As a consequence of these assumptions, the resulting 
velocity at the freezing front in Eq. (6) is taken to be zero. 

In addition to Eqs. (1)-(7), the energy equation for the solid 
region is required. Assuming constant propenies in the solid 
region and negligible axial conduction, the heat conduction 
equation for the solid phase reduces for quaSi-steady conditions 

'0 
a28s 
ap' =0 

with the boundary conditions 

j=b: 8s= I 

j=l: 8s =0 

(8) 

(9) 

The dimensionless temperature 8s is defined as 8s=(T - T w)1 
(TF - T w). Equations (1)-(6) and Eqs. (8)-(9) are coupled by 
the interface energy equation 

ae,_!ae=a3 [1+(a3)l -' jI=3 (10) 
ajBajor ax' 

with the following dimensionless quantities: 

la, 
FO=I1' 

S 
CS(TF-Tw) 

le= 
r, 

(II) 

where B denotes a dimensionless freezing parameter. 

Velocity and Temperature Distribution in the Liquid 
Phase. The velocity and the temperature distribution in the 
liquid can be calculated from Eqs. (1)-(7). Introducing a 
streamfunction, defined by 

_ a" 
14= aj' 

_ a" 
11= --ai (12) 

into Eqs. (1)-(7) and applying the coordinate transformation 

f/:::i., ~=_I- r.f d.! (13) o RehJoo 

R", Reynolds number =u04hlv , ~ modified vertical coordi-
a = thermal diffusivity Ste = Stefan number. Eq. (II) nate, Eq. (13) 
B = dimensionless freezing pa- T = temperature e = dimensionless temperature 

rameter, Eq. (II) TF = freezing temperature of the of the fluid = (T - TF)I 
Bmm = functions. Eq. (43) liquid (To- TF) 

Fo = Fourier number T, = fluid temperature at the en- e, = dimensionless temperature 

F. = eigenfunctions trance of the solid =(T - T w)1 
h distance from centerline to Tw wall temperature (TF- T w) 

wall I = time )." = eigenvalues 
k = thermal conductivity u, v = fluid velocity components , = kinematic viscosity 

L = channel length U, = mean velocity at the en- , = integral coordinate, Eq. 

p = pressure trance (13) 
p, = Prandtl number X,Y = coordinates p = density 

r. heat of fusion ; = distance from centerline to T = dimensionless time 

Re, = Reynolds number= ZiehlI' the solid-liquid interface " = streamfunction 
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to the resulting equations. the following set of partial dirrer­
ential equations can be derived : 

a~ ;f'~ _ a~ a'~ _! a3 (a~)' = -Ii' ap + a'~ (14) 
iJ1/ a~a" at iJ.,,2 0 iJE a" iJE a."J 

0 = aft (IS) a, 
(16) 

The boundary conditions. according to Eq. (6). arc given by 

(cO: y,=i (1J-i Ill) - I, P=Po. 8= I 

al 1/t as 
1)=0: iJl'{=O. 1/1= -I. a." = 0 

a~ 
71= 1: iJ'l =0, 1/1-0, 8",,0 (17) 

Without loss of generality. the streamfunction was assumed 
to be zero for 17 = 1. The evaluation of the conservation of 
mass in integral form leads to V. "" -1 for '1=0. In Eq. (17) 
the inlet boundary condition for ii was replaced by a condition 
for the stream function at E = 0. 

The coordinate transform, according to Eq. (13), is very 
useful in order to solve the conservation equations. because 
the duct with variable distance between the wall and the cen­
terline is transformed into a duct with constant height. 

Equation (IS) states that the pressure is not a function of 
the coordinate 1/. Therefore. one obtains the following partial 
differential equation for'" by differentiating Eq. (14) with 
respect to 1/ 

a~ a'~ a~ a'~ a'~ 2 a3 a~ a'~ 
all a~all2- a~ alll - all· +~ a~ all a.,l (18) 

The last term on the right-hand side of Eq. (18) is of the order 
(1 10) (a!lan. This term represents the effect of acceleration 
due to the converging ice layers. For moderate values of the 
cooling parameter B this term is relatively small. Therefore. 
this quantity will be treated as a perturbation parameter. Let 
us assume an expansion for the streamfunction '" and also for 
the temperature distribution 6 of the form 

la3 (Ia~ ' la'3 
~=~o+Za,~'+ Zal) ~'+3a,,~' +··· (19) 

I a3 (I a3)' I a'3 
6=80+~a~61+ '3a~ 01+'3ae261+'" (20) 

whereby the perturbation quantity is a function of ~ for a rued 
value of time. Inserting the expansions. according to Eqs. (19) 
and (20). into the conservation Eqs. (16). (IS) and into the 
boundary conditions (17). results in the following set ofpartiai 
differential equations: 

Zero-Order Equations (- 1). 

8"'0 ;r",o _ a",o al~o_ a4",0 
a" aeall2 ae a" - all· 
a",o aoo a",o a80 I a200 -------= all 8e ae all Pr all 

with the boundary conditions 

e = 0: "'o =~ (Il - ~ Ill) - I, 80= I 

Il=O: "'0= -I, al~o=o, a60 =0 
a" all 
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(21) 

(22) 

a~o 
1)= I : "'0=0, a;= O, 00 =0 

First-Order Equations (- (1 /6)(a618E)). 

iNo a1",. a",. aJ",o a",. a]",o a",o a]",. 
a;; aea,l + a; aeall2 - af al-af all' 

_ a4",. 2 a1J-o a21J-o 
- all4 + all all2 

a1J-o a6. a1J-o ao. 1 a20. a",. aoo aDo a1J-. 
- --- - - - 71- - -+--
all aE" ae aJl - Pr all a" ae a" aE" 

with the homogeneous boundary conditions 

,=0, ~, =O, 6,=0 

JI=O: "'. = 0, 

(23) 

(24) 

(25) 

(26) 

It should be noted that only the zero-order and first-order 
problem are given here. This is done in view of the fact that 
only these two problems will be solved subsequently. The ex­
trapolation to higher-order problems is straightforward. be­
cause the perturbation equations can be solved in succession. 

The zero-order equation, EQ. (21), for the streamfunct ion. 
with the boundary conditions given by Eq. (23), can easily be 
solved. The resulting expression for Vto is 

3 ( I ,) 1fo=2 JI - 3" - I (27) 

Equation (27) states the fact that the axial velocity profile is 
parabolic through the whole chill region. After inserting the 
expression for the streamfu nction "'0 into the energy Eq. (22), 
the following Graetz problem will be obtained: 

.! (1 _ 1) a60 ""..!.. a2
00 (28) 

2 "at Pr aJl2 
Equation (28) can be solved easily by applying the method of 
separation of variables to 60 in the form 

(29) 

The temperature distribution 00, which satisfies Eq. (2S) and 
the given boundary conditions according to Eq. (23), is found 
'0 be • (2, ,) 

00 = b A"F,,(,,)exp -3 Pr "'It .. , (30) 

The eigenvalUes ~ and the constants All are given for example 
by Shah and London (1978). It is interesting to note that the 
zero-order solution for the velocity and temperature distri­
butions in the fluid represents those given by Lee and Zerkle 
(1969) for steady-state conditions. Hence, it can be concluded 
that Lee and Zerkle (1969) ignored in their analysis the effect 
of acceleration due to converging ice layers on the velocity and 
temperature distributio ns in the nuid and calculated the ther­
mal development of a hydrodynamically fully developed now 
in the transformed (t. JI) plane. 

Inserting the expression for the streamfunction "'0, Eq. (27), 
into Eq. (24), results in the following linear partial differential 
equation for "'.: 

3 2 al1J-1 a"'l a·",. 2 
:z(I-')a,a,,+3T<=a,.-9,(I-,) (31) 

with the boundary conditions given by Eq. (26) . Equation (31) 
can be solved with the aid of the Laplace transform 

L{~,(! , ,)). r ~,(!, ,)exp( -s,)d,~~,(s, ,) (32) 
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with respect to the axial coordinate t . This results in an Of­
dinary differential equation for the transformed function ~I 

3 ,,r;,, - ~, 9 
2 (I - I) S dl1l +3..S'It-.= d114 +; (17

1
_11) (33) 

with the transformed boundary conditions 

'1=0: ~I = O. ~I = O 
d, 

:;: df, _ O 
'1= I: \v. ",,0, -

d, 
(34) 

§quation (33) can be solved by assuming a series solution for 
.pI of the form - -~I :: h Q2 _ _ 1'12_. I + ~ 02i112• (3S) 

. _ 1 .. _ 1 

Inserting the above given power series for ~I into the differ­
ential Eq. (33) and into the boundary conditions (34), it can 
easily be shown that the coefficients Qlo for the even-powered 
terms art identically zero. Therefore. the first sum appearing 
in Eq. (35) represents the complete solution for ~1: 

(36) .. , 
It is obvious ti!!t Eq. (36) automatically satisfies the boundary 
conditio ns on ". for 11=0. Using expression (36) for ~I in Eqs. 
(33) and (34) results in a system of infinite coupled linear 
algebraic equations for the unk'!.own a1. _ I' 

The power series solutions for 'If. converges very rapidly with 
an increasing number of terms for arbitrary values of s. There­
fore, only a fiv~-term expansion was used to approximate the 
distr!bution of *,. Afte~calculating the coefficients al • ... , a9. 
a rat~onal function fo.!. 'lf1 of s and" is obtained. Using partial 
fractIOn expansions, "', can be wrilten as 

if; A(,) B( , )s+C(,) I, 
,::: s +b + (s+a)2+ w1 +; n(,,) (37) 

with the following abbreviations: 

I 
10(11) :: 149 (-840'!9 + 3312,,' -7056'1/} + 75361/' - 2952'1/) 

I 
11(11) ::: 5215 (1575rl + 1302J]' - 8379,,' +65521/1- 1050,,) 

f : ( '1/) ::: ~O ( - 9-q' + 63,,' - 99J]1 + 45J]) 

A ( ) j , (,) -bJ, (,) - b'j,(,) 
" - ,..,2+ (o-b)] 

B(,) = - (/,(,) + A (,» 
,,,1 + az 

C(,)= - - b-A(,)-JoC,) (38) 

and the constants 

a:::5.04390800, b= 11.80480144, w:::22.57064595 (39) 

The inverse Laplace transformation ~It according to Eq . 
(37), can be obtained directly from existing tables of transforms 
(see, e.g., Andrews and Shivamoggi, 1988). This results in 

"',(E, ,,) = A ('1)exp( -bE) +exp( -an 
x [ B(,,) (COS(WEj -~ Sin(wn) 

C(,). ] +--:;- slO(wn +12(,,) (4O} 

The functions fo£l)./1 (,,), and f1(") satisfy independently the 
boundary conditions for." = 0 and,,::: I, according to Eq. (26) . 
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The fonctionh(l/). which appears as the last term on the right­
hand side of Eq . (40), represents Ihe solution of Eq . (31) for 
large values of E. Further, it is interesting to note that the 
monotonously decreasing paft of the solution A(J1)exp (- bE) 
tends more rapidly to zero for increasing values of E than the 
second term on the right-hand side Eq. (40), which contains 
oscillating terms in E. In order to check the accuracy of the 
given solution for 'If •• the linear panial dirrerenlial Eq. (31), 
with the boundary conditions (26). was solved numerically with 
a finite-difference method. The applied implicit finite·dirrer· 
enee scheme was the Keller-box method (Cebeci and Bradshaw, 
1984). This method has several very desirable features that 
make it appropriate for the solution of parabolic panial dif­
ferential equations. One of them is that it allows nonuniform 
E and" spacings by second·order accuracy. Because the box 
scheme is a common method for solving parabolic dirrerential 
equations, only a brief outline is provided here. First of all. 
the parabolic differential equation of order n is reduced to a 
system of n first-order equations. These equations were ap· 
pro"imated by difference equations, using central differences 
at each nodal point. The ensuing algebraic equations, which 
show a block tridiagonal structure, can be solved easily. 

The numerical calculations concerning Eq. (31) were per­
formed with the help of a uniform grid in the E and" directions. 
NumericaJ runs showed that approximately 50 points in the II 
direction and approximately 400 points in the axial direction 
(0 :s E:s 1.6) guaranteed sufficient accuracy. 

Figure 2 shows the perturbation velocity u. = iJ'lfl / iJJ] cal­
culated rrom Eq. (40). compared with the numerical solution 
of Eq. (31). It can be seen that the simple five-term expansion, 
according to Eq. (40), approximates the numerical solulion 
quite well. Only for greater values or the axial coordinate, the 
deviation from the numerical calculation is more pronounced. 
However. ror ~_CC1, the perturbation velocity Ult ca1culated 
from EQ. (40), and the numerically calculated distributions are 
identical. 

Insercing the expressions ror the streamfunctions "'0 and 'lfl. 
given by Eqs. (27) and (40), respectively, into the energy Eq . 
(25) ror the quantity 8 .. the rollowing partial dirrerential equa· 
tion for 8, can be obtained by using Eq. (30) for 80: 

3 l as, I a2o, al/-, ~, ( 2! ,) 
2(1-,,) af-Pr a"l =8f ~ A"F .. (l1) exp -'3 Pr ~ 

a~,.:c-. 2 , ( 2! ,) +-LJ - >.; A.,F.(,) exp --- >.; (41) 
iJ"" ... 3Pr 3Pr 

The boundary conditions belonging to Eq. (41) are 
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~=0:01 =0 

ao, 
'1=0: 0" =0 

"1= I: 01 =0 (42) 

By ignoring all tenus on the right-hand side of Eq. (41) it can 
be seen that the resulting homogeneous equation reduces to 
Eq. (28). Therefore, the solution of Eq. (41) can be assumed 
in the form (see. e.g., Myers, 1987) 

• 
0, = 2: B.(!)F.(,) (43) 

Equation (43) satisfies identically the boundary conditions on 
8. (or 'l =0 and l)'= 1 because of the used eigenfunctions F",(q) 
according to Eq. (30). Inserting the expression for 8 .. given 
by Eq. (43), into Eq. (41) and using the orthogonality relation 
for the eigenfunctions F",(l}'). results in a linear differential 
equation for the functions Bm(O 

dBm(~) 2 >-.~ 2 1 rl 
d! = -, p, B.{/) +, K.J,F.(,)Q(!, ,)d, (44) 

with the abbreviations 

Km= fo _,,2) ~(l}')dl)' , 
a., f-" ( 2! ,) Q(!, ')=3f £..J A"F, (,) exp - , p, A; ,-, 

a.,f-, 2 , ( 2! ,) 
+a;f:i3Pr~A,.F~(,,)exp -3Pr>-'" (45) 

The resulting boundary condition for Bm{O was obtained 
from Eq. (42) 

(46) 

Equation (44) can be solved analytically. After some routine 
but rather longish algebra the following expression for Bm (t) 
was obtained: 

(47) 

In Eq. (47) the functions D,(~. ,,). D1(c. 1]) and D](c, 1]) were 
used. These functions are given by 

bA (,) 
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I 
+ 2 exp (at) 

( 
2 -, n ) , 

3Pr (>-.m- .... ")+0 +w 

+ [(B(,): +C(')~-B(')~) ((3!' (X~-X!)+a) 
x sin(wO -WCOS(WO) ( 2B(l}')o+ C(1)) 

x ( (3!' (~; -~!) +a) cos(~!)+ ~Sin(~!») ] 
A' (,) 

D, (!. ,) = 2 exp (b!) 

3Pr (h~ ->:~) + b 

I 
+ 2 exp (at) 

( 
2 -, n ) , 

3Pr (A", -I\,,) + a +w 

[ B' (,) ((3!' (X; - X!) +a) cos(~!) +~Sin(~!») + (C'~') 

+B' (,) ~) ((3!' (X; -X!) +a)Sin(~n-Cos(~n) ] 
999 2 9 .. 9 6 

D1Cc, l}')= 168-280 1] +241] -1201) (48) 

Inserting Eq. (47) into Eq. (43) results in the solution 810 which 
satisfies the given boundary conditions according to Eq. (42). 

The Temperature Distribution in the Solid Region. With 
the boundary conditions (9), the temperature distribution in 
the solid phase is easily calculated from Eq. (8). The temper­
ature distribution adopts the following form: 

I-j 
0'=,_3 (49) 

The temperature gradient at the solid-liquid interface is given 
in dimensionless form by 

(SO) 

The Solid-Liquid Interface. Afler solving Eqs. (21)-(26). 
the temperature gradient in the fluid at the solid-liquid inter­
face is known. Therefore, the development of the ice layer 
thickness can be calculated from Eq. (to) at every axial po­
sition. Introducing Eq. (SO) into Eq. (to) results in 

(!D, = .~ ,-~. :: 1._, (51) 

in which terms or the order (a26Ia~2) were neglected. 
The temperature gradient in the fluid at the solid-liquid 

interface, which appears in Eq. (51). is given by 

ao I ao, I ' a. ao, I (52) 
al)' ~ .. . =a;; ,_I+"Eac al}' ,. ,+ ". 

with the known functions aOolal}' I, .. 1 and a01laljl, .. h which 
can be calculated from Eqs. (30) and (43) by differentiating 
the expressions with respect to l}' and evaluating the resulting 
functions at 1]= 1. It should be noted here that aOola01]I,,,, 
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Equation (51) is a nonlinear integrodifferential equation, 
because the derivation of A with time has to be taken at constant 
x and the temperature gradient in tbe fluid at the solid-liquid 
interface is a function of the integral coordinate ~. defined in 
Eo. (13). 

By ignoring terms of the order (aAI8i) in Eqs. (51) and (52), 
Weigand and Beer (1992.) were able to derive a simple ap­
proximative solution for the transient development of the fro­
zen layer. They obtained the free channel height! as an implicit 
function of VReJ/Pr for a jiven value of the freezing param­
eter B. The distribution of 0 for the steady-state solution and 
for a parabolic entrance velocity profile was identica1to the 
solution given by L«: and Zerkle (1969). 

Taking terms into account of the order (o!/8j) in Eqs. (51) 
and (52). Eq. (51) must be integrated numerically. This was 
done by using tbe Runge-Kutta method. Approximately 200 
grid points in the axial direction were used for the calculation 
of the development of the frozen crust at the cooled channel 
walls (Os;x::s20). The calculations were performed with a time 
step tlT of approximately 10- ·. It must be pointed out that 
the calculation of ~ at each time step involves an iteration. 
because the perturbation quantity (l/!}(04VOO for the tem­
perature gradient at the solid-liquid interface appears in Eq. 
(52) and. therefore. Eqs. (51) to (52) are coupled. However. 
by performing some numerical calculations. it could be shown 
that the perturbation quantity (1/3)(03/00, appearing in Eq. 
(52). could be approximated with good accuracy by taking the 
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uro-order solution of Weigand and Betr (1992). This makes 
superfluous the iteration for 6 at a rlXed value of time. The 
resulting error is negligible (the ice layers obtained with the 
two methods coincide). The steady-state solution was reached. 
if 

l

a3
1 < W-'; x=!:. 

OT ~ h 

was satisified at the end of the cooled test section. 

Results and Discussion 

(53) 

Steady-State Fr«zing Fronts. The validity of the given 
perturbation analysis will be checked for the steady-state so­
lution. This yields an upper limit of error, as (1 /6)(03/ 00 will 
teach its maximum for steady-state conditions. In Figs. 3 and 
4 the steady-state ice layer thickness is plotted as a function 
of the dimensionless downstream coordinate x/h. 11 can be 
observed that the ice layer thickness increases with growing 
values of B for a given Reynolds number. The two figures 
elucidate the deviation of the presented perturbation solution 
from the numerical calculation. The numerical solution was 
obtained by solving Eqs. (1)-(6) with a finite-differencescheme 
(Weigand and Beer, 199J). It can be seen that the perturbation 
solution is in good agreement with the numerical calculations. 
also for high values of the cooling parameter B, as it is shown 
in Fig. 4 for B=9.8. 

Figure 5 elucidates the effect of increasing Reynolds number 
on the axial distribution of6 for B=4.2and Pr= 12. compared 
with experimental data of Kikuchi et aI. (I986). It is obvious 
that the ice layer thickness decreases with an increasing Reyn­
olds number. This is due to the increasing heat flux from the 
liquid to the solid-liquid interface for growing values of Re"". 
The calculated results agree well with measurements of Kikuchi 
et al. (1986). It can also be observed that the deviation between 
the numerically calculated ice layers and the perturbation so· 
lution increases with growing Reynolds number. because the 
perturbation Quantity is proponional to Re.,... Therefore, the 
perturbation solution will approximate the numerical solution 
closer for smaller values of (I / 6)(iJ3/00 . 

In case of the experimental results for Re...,.=2300. plotted 
in Fig. 5, the now was Slill laminar. This is because of the 
acceleration of the flow due to converging ice layers. which 
tends to stabilize the laminar boundary layer and shifts the 
transitional Reynolds number to higher values. 

The accuracy of the given perturbation analysis can be 
checked more precisely by comparing the axial velocity dis­
tribution given by Eqs. (27) and (40) with numerically calcu-
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"'" 
latcd values. Figure 6 shows a steady-state ice layer for 
Re~Jo =- 600, Pr '" 12. It can be observed that the numerical so­
lution for ~ and the results obtained by the perturbation anal­
ysis nearly coincide. 

Figure 7 illustrates the development of the axial velocity 
profile for the ice layer shown in Fig. 6. The axial velocity is 
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scaled with the axial mean velocity Uo at the entrance of the: 
chill region. The profiles elucidate the effect of acceleration 
due to converging ice layers for various axial positions. It can 
be seen that the profiles arc flattened for small values o f the 
axial coordinate, while they approach a nearly parabolic shape 
for large values of the axial coordinate. The pro fil es obtained 
by the perturbation analysis are in good agreement with the 
numerical calculations, except for i= I, where the deviation 
between the two solutions is more pronounced. This can be 
attributed to the sharply increasing ice layer thickness near the 
entrance of the test section. Consequently, the term alJ/ax 
adopts higher values in this region and the linearization of the 
conservation equations given by Eq. (19) may lead to some 
error. Nevertheless, the agreement between the numerical cal­
culation and the perturbation solution is very good for i> S. 

Transirnl Development of the Frttzing Fronls. Figures 8 
and 9 illustrate the time-dependent development of the freezing 
fronts at the channel wa1ls for different values of the cooli ng 
parameter B, In the early stage of the freezing process the ice 
layer thickness remains approximately constant over the chan­
nellength, except for the near entrance region, as can be seen 
from Fig. 8 for TZ"O.l. This is evidenced by Eq. (51). Irone 
excludes small values of the axial coordinate x, the first term 
on the right·hand side of Eq, (SI) dominates the second term. 
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This means that for small values of T the growth of the frozen 
layer at the channel walls is dominated by heat conduction in 
the thin ice layer. 

Because there exists no numerical solution concerning the 
Quasi-steady development of the ice layer in a planar channel, 
the given results can only be compared with the approximate 
solution of Weigand and Beer (1992). Figure 10 shows the 
distribution of the absolute deviation between the perturbation 
solution and the approximation during the transient devel­
opment of the ice layer shown in Fig. 8. It is evident that the 
maximum deviation is obtained for steady-state conditions. 
because the solution of Weigand and Beer (1992) coincides 
with the approximation of Lee and Zerkle (1969) for the sta­
tionary case. Moreover it can be seen that the deviation between 
the two solutions is maximum for small values of x/h. This 
can be easily understood if one recognizes that the quantity 
8'O/8i reaches its maximum for low values of the axial coor­
dinate. Because the effect of this term on the distribution of 
the ice layer thickness was ignored in the analysis of Lee and 
Zerkle (1969) and Weigand and Beer (1992), the maximu".:! 
deviation must be in this region. However. the deviation 6.0 
between the two solutions is smaller than 0.05. Therefore. it 
can be stated that the solution given by Weigand and Beer 
(1992) approximates the time-dependent development of the 
freezing fronts in a cooled parallel plate channel relatively well. 

Conclusions 
A quite flexible method has been developed for calculaling 

the velocity and temperature distributions in a planar channel 
with arbitrarily shaped walls under the assumptions that the 
perturbation quantity (I/6}(8'O/a~) is sufficiently smail, The 
applicability of the method was provided by calculating the 
transient development of the ice layers in a parallel plate chan­
nel for Quasi-steady conditions. By comparing the obtained 
steady-state solutions with the numerical calculations of Wei­
gand and Beer (1991) and the experiments of Kikuchi et al. 
(1986), it was demonstrated that the perturbation solution yields 
sufficient accuracy for a wide range of Reynolds numbers and 
cooling parameters B, 

It could be shown that the transformed Navier-Stokes equa-
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tions and the energy equation, for the quasi-steady conditions 
and written in ~, 11 coordinates, contain on!>' powers and de­
rivatives of (l/6)(a'O/uC), but not explicitly 6ft

• Therefore, ap­
plication of this method to the complete conservation equadons 
for quasi-steady conditions is straightforward. 
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