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the transient development of the ice layer thickness inside a cooled planar channel
subjected to laminar flow. Applying the perturbation expansion to the conservation
equations, closed-form solutions for the velocity and temperature distributions in
the fluid for an arbitrarily shaped channel could be derived under the assumption

that the axial variation in solid layer thickness is small. The distributions obtained
for the steady-state ice layer thickness and the velocity were checked by numerical
calculations and compared with the measurements of Kikuchi et al. (1986) and a
generally good agreement was found.

Introduction

Problems of solidification or freezing of liquids inside cold
channels have been encountered in numerous engineering ap-
plications. Because the freezing shut of systems may lead to a
destruction of the equipment (for example, freezing shut of a
water pipe in winter or freezing of molten sodium in a nuclear
reactor), it is advisable to prevent blockage. If solidification
on the cooled walls cannot be suppressed, steady-state con-
ditions must be sought.

Many theoretical and experimental studies have been per-
formed for fluid flow with solidification in circular tubes. An
early investigation was reported by Zerkle and Sunderland
(1968) for the steady-state freezing of laminar flow inside a
horizontal tube. Under the assumption of a parabolic axial
velocity distribution throughout the full axial length of the
tube and with an appropriate coordinate transform, they were
able to reduce the problem to the classical Graetz problem
without solidification. Ozisik and Mulligan (1969) used a slug
flow approximation for the liquid core to analyze transient
freezing in an isothermal circular tube. They applied integral
transforms to obtain the transient development of the ice layer
inside the tube. Bilenas and Jiji (1970) solved the boundary
layer equations applying a finite-difference scheme, but they
used a wide-meshed grid for their calculations. Chida (1983)
calculated numerically the steady-state ice layer thickness, un-
der consideration of axial conduction. Bilenas and Jiji (1970)
and Chida (1983) assumed a fully developed parabolic axial
velocity distribution at the entrance of the cooled section.

Despite its relevance to any important technological and
physical problems, the freezing of liquid flows through a cooled
two-dimensional channel has not been studied as intensively
as the freezing in a cooled circular pipe. An early investigation
of this problem was reported by Lee and Zerkle (1969). They
assumed the axial velocity to be parabolic throughout the whole
chill region, which was in analogy to Zerkle and Sunderland
(1968). With the approximated velocity profile and with an
appropriate coordinate transform, the energy equation could
be reduced to a Graetz problem, and the steady-state ice layer
was calculated. An experimental investigation of the effect of
freezing a liquid in case of laminar flow between two cooled
plates has been performed only by Kikuchi et al. (1986). They
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used water as the working fluid. Both plates were maintained
at the same temperature, which was below the freezing tem-
perature of the water and varied from —2°C to —7°C. A
numerical calculation of the steady-state ice layers for an ar-
bitrary velocity profile at the entrance of the chill region was
given by Weigand and Beer (1991), who solved the boundary
layer equations with the help of a finite-difference method.
For the case of a fully developed parabolic velocity distribution
at the entrance of the cooled channel, the results of Weigand
and Beer (1991) were compared with the experimental findings
of Kikuchi et al. (1986) and a generally good agreement was
found. Bennon and Incropera (1988) studied numerically the
influence of free convection effects on the axial distribution
of the steady-state solid-liquid interface by solving the con-
servation equations for laminar flow without simplified as-
sumptions. The transient development of the solidified crust
in a planar channel has been studied only by Weigand and
Beer (1992). They obtained an approximate analytical solution
for the distribution of the ice layer thickness under the as-
sumption that the axial variation in solid layer thickness could
be neglected. Their analysis is based on the boundary layer
equations.

The subject of this paper is the presentation of an approx-
imate solution of the boundary layer equations with the help
of a regular perturbation method. Under the assumption that
the axial variation in solid layer thickness is small, closed-form
solutions for the velocity and temperature distributions in the
fluid for an arbitrarily shaped channel could be developed.
The given method is quite flexible and can be used to calculate
the velocity and temperature distributions in a channel with
an arbitrary cross section, if the axial variation in the free
channel height is comparatively small. Finally, it can be shown
that the solutions of Zerkle and Sunderland (1969) and Wei-
gand and Beer (1992) can be obtained as the zero-order solution
of the regular perturbation expansion, presented here.

Moreover, it should be pointed out that the present paper
deals solely with smooth ice layers in laminar liquid flow. This
means that the ice layers are assumed to increase monotonously
in thickness with increasing values of the axial coordinate.

Analysis

Basic Equations and Assumptions. Figure I shows the geo-
metric configuration and the coordinate system for a planar
symmetric channel. The fluid enters the chilled region at x=0
with a fully developed laminar velocity profile and with a
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Fig. 1 Physical model and coordinate system

constant temperature 7. In the cooled section, the wall tem-
perature is maintained at a constant value Ty, which is lower
than the freezing temperature T of the fluid. The frozen layers
are generated on both walls as the fluid proceeds along the
channel. Assuming an incompressible, Newtonian fluid with
constant fluid properties, the quasi-steady conservation equa-
tions for the fluid may be written in the following form:

2% g—;=0 (1)
fig-;:+ﬁg—;:= —g—z:«FRL%gi; )
=g§ 3)
with the dimensionless quantities

where 17, denotes the axial mean velocity for ¥=0. The bound-
ary conditions belonging to Egs. (1)-(4) are

the small value of the Stefan number, which is about Ste=0.1
(Cervantes et al., 1990). The conservation of mass in integral
form is given by

5
1=§ ady )
0
where the mass that gets lost by freezing at the channel walls
was neglected as the change in the density between fluid and
solid is very small for water and quasi-steady conditions are
assumed. As a consequence of these assumptions, the resulting
velocity at the freezing front in Eq. (6) is taken to be zero.
In addition to Egs. (1)-(7), the energy equation for the solid
region is required. Assuming constant properties in the solid
region and negligible axial conduction, the heat conduction
equation for the solid phase reduces for quasi-steady conditions
to

7oy _ :
A (8)
with the boundary conditions
)7=3: 83-:1
y=1: 8s=0 9)

The dimensionless temperature s is defined as 0s= (T~ Ty)/
(Tg— Tw). Equations (1)-(6) and Eqs. (8)-(9) are coupled by
the interface energy equation

36s 130 35 AN
3 B3y or [“(af y P=0 (10)
with the following dimensionless quantities:
KkTe=Tw _ _las
% Too T}’ r=FoSte, Fo= P
- T
se=STe=Tw) ),
rs

where B denotes a dimensionless freezing parameter.

x=0: ﬂ=% (-7, p=po, 6=1 Velocity and Temperature Distribution in the Liquid
Phase. The velocity and the temperature distribution in the
F=0: §E=0 5=0 @=0 liquid can be calculated from Egs. (1)-(7). Introducing a
RO ay ) streamfunction, defined by
P=biii=0, 0=0, #=0 ©® L I (12)
By deriving Eqs. (1)-(4), the usual boundary-layer assumptions oy ox
were made, which are a common treatment of the conservation  into Egs. (1)-(7) and applying the coordinate transformation
equations for channel flows (Cebeci and Chang, 1978). The ¥ 1 fap
assumption of quasi-steady conditions, which was incorpo- n=%, E=—m g = (13)
rated into Egs. (1)-(5), is justified for water flow because of & Rey Jo &
———— Nomenclature
Rey, = Reynolds number =#gdh/v 7 = modified vertical coordi-
a = thermal diffusivity Ste = Stefan number, Eq. (11) nate, Eg. (13)
B = dimensionless freezing pa- T = temperature g = dimens:or!less temperature
rameter, Eq. (11) Tr = freezing temperature of the of the fluid=(T-Tg)/
B,, (¢) = functions, Eq. (43) liquid (To—Tp)
Fo = Fourier number Tp = fluid temperature at the en- s = dimensionless temperature
F, = eigenfunctions trance of the solid=(T-Tw)/
h = distance from centerline to Tw = wall temperature (—Tw
wall t = time A, = eigcnvalues_ .
k = thermal conductivity u, v = fluid velocity components v = kinematic viscosity
L = channel length %g = mean velocity at the en- £ = integral coordinate, Eq.
p = pressure trance (13) )
Pr = Prandtl number x, ¥y = coordinates = dgnsxty. )
r, = heat of fusion & = distance from centerline to T = d:menswnlgs time
Re, = Reynolds number= uph/v the solid-liquid interface Y = streamfunction
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to the resulting equations, the following set of partial differ-
ential equations can be derived:

W W ﬁ_la_s W P, &y (14)
dn 3tdy OF an° B ok & ar
%": (15)
336 _ayae_1 3%
3n 9t ot an Prog (16)

The boundary conditions, according to Eq. (6), are given by

=t Ly el O
E‘_O-ﬁ’—z( 31]) l. ﬁ Pos =1

Y a0
n=0: a_zf_o' v=-1, -
s
p=1: 3 =0, y=0, 0=0 (17

Without loss of generality, the streamfunction was assumed
to be zero for n=1. The evaluation of the conservation of
mass in integral form leads to y = —1 for y=0. In Eq. (17)
the inlet boundary condition for i was replaced by a condition
for the stream function at §=0.

The coordinate transform, according to Eq. (13), is very
useful in order to solve the conservation equations, because
the duct with variable distance between the wall and the cen-
terline is transformed into a duct with constant height.

Equation (15) states that the pressure is not a function of
the coordinate 5. Therefore, one obtains the following partial
differential equation for ¢ by differentiating Eq. (14) with
respect to

dn dton” 3 an’ on' b0k dn an”

The last term on the right-hand side of Eq. (18) is of the order
(1/8) (38/3¢). This term represents the effect of acceleration
due to the converging ice layers. For moderate values of the
cooling parameter B this term is relatively small. Therefore,
this quantity will be treated as a perturbation parameter. Let
us assume an expansion for the streamfunction y and also for
the temperature distribution 6 of lhe form

(18)

138 19 1%

'p \"’0'{“5 as "’l+ (3 as 1{': 5652 ‘h"‘ (]9)
135 138 13%

0=0,+ 3% — 0, + (3 E) 0, + T 0+ (20)

whereby the perturbation quantity is a function of £ for a fixed
value of time. Inserting the expansions, according to Egs. (19)
and (20), into the conservation Egs. (16), (18) and into the
boundary conditions (17), results in the following set of partial
differential equations;

Zero-Order Equations (~ 1).
%_83"'“ _9% mzﬁ 2n
oy dtay’ Ot an’ '
Db 36 _dYo 300_ 1 30y
on 0t af an Pr an’ @2

with the boundary conditions

e ¥ S =
e-o.%-z( 3':)—1. fo=1

=0 go=—1. T¥o_o Mo_
1=0:Yo==1, T=0, T2=0
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o

=1: =0, =0, 6,=0
n Vo an o= (23)
First-Order Equations (~ (1/3)(35/3%)).
Qo U oy o _ 3 Dby _bo B
dn dton® an akdy® k Ay’ At ang
M. 3o Yo
o 2o oy A
Wod0 30 1| 36 3y, 3o 36 3y 5%
an 3t Ot on Pran’ an Ot 9 OF )
with the homogeneous boundary conditions
£=0: ¢,=0, 6,=0
o Th_, 00
n=0: yy= EF_O’ o
e doml. e .
p=1: =0, a1 =0, 6,=0 (26)

It should be noted that only the zero-order and first-order
problem are given here. This is done in view of the fact that
only these two problems will be solved subsequently. The ex-
trapolation to higher-order problems is straightforward, be-
cause the perturbation equations can be solved in succession.

The zero-order equation, Eq. (21), for the streamfunction,
with the boundary conditions given by Eq. (23), can easily be
solved. The resulting expression for y is

)

Equation (27) states the fact that the axial velocity profile is
parabolic through the whole chill region. After inserting the
expression for the streamfunction v, into the energy Eq. (22),
the following Graetz problem will be obtained:

3, 50 1 36
20" 5 =P or

Equation (28) can be solved easily by applying the method of
separation of variables to 6, in the form

=Fn)H() (29)

The temperature distribution 6, which satisfies Eq. (28) and
the given boundary conditions according to Eq. (23), is found
to be

@n

(28)

3o=EAnFu(ﬂ)CXP(‘§P£ h1) (30)

The eigenvalues > and the constants 4, are given for example
by Shah and London (1978), It is interesting to note that the
zero-order solution for the velocity and temperature distri-
butions in the fluid represents those given by Lee and Zerkle
(1969) for steady-state conditions. Hence, it can be concluded
that Lee and Zerkle (1969) ignored in their analysis the effect
of acceleration due to converging ice layers on the velocity and
temperature distributions in the fluid and calculated the ther-
mal development of a hydrodynamically fully developed flow
in the transformed (£, ») plane.

Inserting the expression for the streamfunction Vo, Eq. (27),
into Eq. (24), results in the following linear partial differential

equation for y,: ; 2
3 0% 0 3 -y
2 (1= T Tl ™ 97 (1-79)

with the boundary conditions given by Eq. (26). Equation (31)
can be solved with the aid of the Laplace transform

LU, m) = fo Vit Mexp(—sHAE=T (s, m)  (32)

@3
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with respect to the axial coordinate £. This results in an or-
dinary differential equation for the transformed function ¢,

3 &Y - dY 9
QUM +3sh=034s0 - (Y
with the transformed boundary conditions
i d*,
:0: =u, —
n =0 df 0
- dy,
='.!: = ——
n=1: =0, o 0 (34)

Equation (33) can be solved by assuming a series solution for

¢, of the form
EI = Z ﬂz-—mz'- : + Z aquz.
=]

r=

(35)

Inserting the above given power series for ¢, into the differ-
ential Eq. (33) and into the boundary conditions (34), it can
easily be shown that the coefficients a,, for the even-powered
terms are identically zero. Therefore, the first sum appearing
in Eq. (35) represents the complete solution for y,:

E1=E“z.-mb-'

r=1

It is obvious that Eq. (36) automatically satisfies the boundary
conditions on y, for n=0. Using expression (36) for ¢, in Egs.
(33) and (34) results in a system of infinite coupled linear
algebraic equations for the unknown a;, .

The power series solutions for y, converges very rapidly with
an increasing number of terms for arbitrary values of s. There-
fore, only a five-term expansion was used to approximate the
distribution of y,. After calculating the coefficients a,, ..., as,
a rational function for ¥, of s and 7 is obtained. Using partial
fraction expansions, ¥, can be written as

= A(m) B(n)s+C(y) 1

= s+b * (s+a)’+a’ +;fz('1)

with the following abbreviations:

(36)

37

1
So(n) = 7T (—840%° + 33120 — 70567 + 7536n° — 29527)

1
fi(n) T (15759° + 1302 - 83799° + 65527 — 10507)

S2(n) =ﬁ (— 97" +63n°— 999> + 45y)
A () )= bfi () ~ Bfa(n)

W’ + (a—b)
B(n)=-(fi(n) +A(n))
LT
C(n)= =LA ~fkn) (38)
and the constants
a=5.04390800, b= 11.80480144, w=22.57064595 (39)

The inverse Laplace transformation ¥, according to Eq.
(37), can be obtained directly from existing tables of transforms
(see, e.g., Andrews and Shivamoggi, 1988). This results in

Vi(E, n)=A (n)exp(— bf) +exp(— at)
X [B(n) (cos{wE) -f sin(ue))

+% sin(wa] +h(n) (40)

The functions fy(n), fi1(n), and f3(n) satisfy independently the
boundary conditions for =0 and 5= 1, according to Eq. (26).
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Fig. 2 Perturbation velocity d, as a function of y for various values of
the axial coordinate ¢

The function f3(n), which appears as the last term on the right-
hand side of Eq. (40), represents the solution of Eq. (31) for
large values of £. Further, it is interesting to note that the
monotonously decreasing part of the solution A(n)exp (~ bf)
tends more rapidly to zero for increasing values of ¢ than the
second term on the right-hand side Eq. (40), which contains
oscillating terms in £. In order to check the accuracy of the
given solution for y,, the linear partial differential Eq. (31),
with the boundary conditions (26), was solved numerically with
a finite-difference method. The applied implicit finite-differ-
ence scheme was the Keller-box method (Cebeci and Bradshaw,
1984). This method has several very desirable features that
make it appropriate for the solution of parabolic partial dif-
ferential equations. One of them is that it allows nonuniform
£ and 5 spacings by second-order accuracy. Because the box
scheme is a common method for solving parabolic differential
equations, only a brief outline is provided here. First of all,
the parabolic differential equation of order n is reduced to a
system of n first-order equations. These equations were ap-
proximated by difference equations, using central differences
at each nodal point. The ensuing algebraic equations, which
show a block tridiagonal structure, can be solved easily.

The numerical calculations concerning Eq. (31) were per-
formed with the help of a uniform grid in the £ and » directions.
Numerical runs showed that approximately 50 points in the 5
direction and approximately 400 points in the axial direction
(0 =£<1.6) guaranteed sufficient accuracy.

Figure 2 shows the perturbation velocity #,=ady,/dy cal-
culated from Eq. (40), compared with the numerical solution
of Eq. (31). It can be seen that the simple five-term expansion,
according to Eq. (40), approximates the numerical solution
quite well. Only for greater values of the axial coordinate, the
deviation from the numerical calculation is more pronounced.
However, for £—co, the perturbation velocity #;, calculated
from Eq. (40), and the numerically calculated distributions are
identical.

Inserting the expressions for the streamfunctions y, and ¥,
given by Egs. (27) and (40), respectively, into the energy Eq.
(25) for the quantity 8,, the following partial differential equa-
tion for 8, can be obtained by using Eq. (30) for 6;:

3530 186 Sy, o 28,

é.."?.l. ¢ i 2 __z.i 2) 41
+aq§3PrkﬂAnF..(u) exp( Ip: M) @)
The boundary conditions belonging to Eq. (41) are
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(42)

By ignoring all terms on the right-hand side of Eq. (41) it can
be seen that the resulting homogeneous equation reduces to
Eq. (28). Therefore, the solution of Eq. (41) can be assumed
in the form (see, e.g., Myers, 1987)

6= D Bn(§)Fn(n) 3)

m=|

Equation (43) satisfies identically the boundary conditions on
6, for n=0and n = 1 because of the used eigenfunctions F,,(n)
according to Eq. (30). Inserting the expression for 8,, given
by Eq. (43), into Eq. (41) and using the orthogonality relation
for the eigenfunctions F,,(n), results in a linear differential
equation for the functions B,,(£)

dBn(§) 2N,
dt ~ 3Pr

with the abbreviations

2.1
Bm(s>+5K—mSDFm(n:Q(s, ndn  (44)

1
Km=j (1-v%) Fi(n)dy
0

3y 28,2
(_3 Pr )\")

Q(&, ”)=_b"z_lz AnFy (1) exp
LN 2 53 P exp(—3i Ai) (45)

dn &~ 3Pr

The resulting boundary condition for B,,(£) was obtained
from Eq. (42)

n=1
3Pr

£=0: B,,=0 (46)

Equation (44) can be solved analytically. After some routine
but rather longish algebra the following expression for B,, (£)
was obtained:

7 10 N 2
Bm(£)=§_K: ;I LAnFn (1) Fm(7) (exP(“‘gé }\i)

xD, (¢, ﬂ)—exP(—§ f:'g;- )\fn)Dl (0, T.')) dy

4 1 &
+§K,,,Prz

n=1

]
S Ns ApFn(0)Fpm(n) (exp(—g £ Ai)
1} 3 Pr

2
e % >.,=,,) Dy(0, n)) dn

({589

xDy(&, n)~—exp(-2 & xﬁ,)n,(o, n})dn

XD, (£, n)—exp (

4 1 S ("N AFa (1) Fo(n)
*9 Pr"_l.zm#g

Km n VO 2 T2 2
IPr (Am i xn)

3Pr

1
g N, AP (n)Dy(E, 1) dn (47)

+ﬂ—£-exp 2L
9 K,Pr 3pr™) ),

In Eq. (47) the functions D,(£, 1), Dy(%, 1) and Dy(£, 1) were

used. These functions are given by

bA
Di(¢, n)= ) expihis

E(Xi-iinb
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+ ! exp (af)

i(}?—iz)ﬂ: 2+:..:‘
3pr " "

+ [ (B(q) a—2+C(u)£-B(q)w) ((—2 (?_\ﬁq—xiHﬂ)
w w 3Pr

X sin(wt) — wcos(mg)) (ZB('q)a +C(y ))

2 - o
X ( (i:—r (ki, - ?\ﬁ) + a) cos(w§) + wSiﬂwa))]

A" ()

D, (§, n)= exp (bt)
2 _ 22
T Am—N)+b

+ : exp (ak)

2 2
(ﬁ (?_\f,, - ?_\i) +a) +w?

[B' (n) (('j% (AZ- X§}+a) cos(wk) + wsin(mf)) + (C—:ﬂ

+B’ (1) f) ((% (iﬁ. - ii) + a) sin(wk) — cos(w.E))]

9 99 , 9

sl W BN, DI ke,
Dy(& M =1es"280" *247 120"

Inserting Eq. (47) into Eq. (43) results in the solution 8,, which
satisfies the given boundary conditions according to Eq. (42).

(48)

The Temperature Distribution in the Solid Region. With
the boundary conditions (9), the temperature distribution in
the solid phase is easily calculated from Eq. (8). The temper-
ature distribution adopts the following form:

=y

fg=—= 49

5 l = 3 ( )

The temperature gradient at the solid-liquid interface is given
in dimensionless form by

abs 1

= = 50
ay 1-68 o0

The Solid-Liquid Interface. After solving Egs. (21)-(26),
the temperature gradient in the fluid at the solid-liquid inter-
face is known. Therefore, the development of the ice layer
thickness can be calculated from Eq. (10) at every axial po-
sition. Introducing Eq. (50) into Eq. (10) results in

(51)

n=1

in which terms of the order (3%5/3%) were neglected. '
The temperature gradient in the fluid at the solid-liquid
interface, which appears in Eq. (51), is given by

a0| _ab| 1383
|, dn| _, 60k d
with the known functions 36y/35!,-, and 96,/dn!,.,, which
can be calculated from Egs. (30) and (43) by differentiating

the expressions with respect to n and evaluating the resulting
functions at 7=1. It should be noted here that d6y/d6n!,-,

(52)

n=1 7= n=1
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Fig.3 Steady-state ice layer thickness as a function of x/h for Re,, =400,
Pr=10, and various B
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Fig.4 Steady-state Ice layer thickness as a function of x/h for Re,, = 700,
Pr=12, and various B

and 86,/dy1,., are only functions of ¢ and Pr. They do not
depend explicitly on & or Re,.

Equation (51) is a nonlinear integrodifferential equation,
because the derivation of 5 with time has to be taken at constant
.fand the temperature gradient in the fluid at the solid-liquid
Eléar(fr;e is a function of the integral coordinate £, defined in

. (13).

By ignoring terms of the order (35/35) in Eqgs. (51) and (52),
Welg_and and Beer (1992) were able to derive a simple ap-
proximative solution for the transient development of the fro-
zen layer. They obtained the free channel height & as an implicit
function of £/Re,/Pr for a given value of the freezing param-
eter B, The distribution of & for the steady-state solution and
for a parabolic entrance velocity profile was identical to the
solution given by Lee and Zerkle (1969).

Taking terms into account of the order (36/4%) in Eqgs. (51)
and (52), Eq. (51) must be integrated numerically. This was
dqne by using the Runge-Kutta method. Approximately 200
grid points in the axial direction were used for the calculation
of the development of the frozen crust at the cooled channel
walls (0<% =<20). The calculations were performed with a time
step A7 of approximately 10, It must be pointed out that
the calculation of § at each time step _involves an iteration,
because the perturbation quantity (1/8)(36/3%) for the tem-
perature gradient at the solid-liquid interface appears in Eq.
(52) and, therefore, Egs. (51) to (52) are coupled. However,
by performing some numerical calculations, it could be shown
that the perturbation quantity (1/8)(85/8¢), appearing in Eq.
(52), could be approximated with good accuracy by taking the
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AV O experiment
Kikuchi et al (1986)

Rey, #1200 — numerical solution
Re, =2300 - = perturbation method
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Flg.5 Effectof Reynolds number on the axial distribution of 3 for Pr= 12
and B=4.2

zero-order solution of Weigand and Beer (1992). This makes
superfluous the iteration for & at a fixed value of time. The
resulting error is negligible (the ice layers obtained with the
two methods coincide). The steady-state solution was reached,
if

35

dr

L
-4, o L&
<10~ & h

2

(53)

was satisified at the end of the cooled test section.

Results and Discussion

Steady-State Freezing Fronts, The validity of the given
perturbation analysis will be checked for the steady-state so-
lution. This yields an upper limit of error, as (1/5)(35/3%) will
reach its maximum for steady-state conditions. In Figs. 3 and
4 the steady-state ice layer thickness is plotted as a function
of the dimensionless downstream coordinate x/h. It can be
observed that the ice layer thickness increases with growing
values of B for a given Reynolds number. The two figures
elucidate the deviation of the presented perturbation solution
from the numerical calculation. The numerical solution was
obtained by solving Egs. (1)-(6) with a finite-difference scheme
(Weigand and Beer, 1991). It can be seen that the perturbation
solution is in good agreement with the numerical calculations,
also for high values of the cooling parameter B, as it is shown
in Fig. 4 for B=9.8.

Figure 5 elucidates the effect of increasing Reynolds number
on the axial distribution of & for B=4.2 and Pr= 12, compared
with experimental data of Kikuchi et al. (1986). It is obvious
that the ice layer thickness decreases with an increasing Reyn-
olds number. This is due to the increasing heat flux from the
liquid to the solid-liquid interface for growing values of Rey,.
The calculated results agree well with measurements of Kikuchi
et al, (1986). It can also be observed that the deviation between
the numerically calculated ice layers and the perturbation so-
lution increases with growing Reynolds number, because the
perturbation quantity is proportional to Rey,. Therefore, the
perturbation solution will approximate the numerical solution
closer for smaller values of (1/3)(35/3¢).

In case of the experimental results for Reg, = 2300, plotted
in Fig. 5, the flow was still laminar. This is because of the
acceleration of the flow due to converging ice layers, which
tends to stabilize the laminar boundary layer and shifts the
transitional Reynolds number to higher values.

The accuracy of the given perturbation analysis can be
checked more precisely by comparing the axial velocity dis-
tribution given by Egs. (27) and (40) with numerically calcu-
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Fig. 8 Translent development of the freezing front as a function of
x/h

lated values. Figure 6 shows a steady-state ice layer for
Rey, =600, Pr=12. It can be observed that the numerical so-
lution for & and the results obtained by the perturbation anal-
ysis nearly coincide.

Figure 7 illustrates the development of the axial velocity
profile for the ice layer shown in Fig. 6. The axial velocity is
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Fig. 10 Development of the absolute deviation between the periurba-
tion solution and the approximation according to Weigand and Beer
(1992) as a function of x/h

scaled with the axial mean velocity @, at the entrance of the
chill region. The profiles elucidate the effect of acceleration
due to converging ice layers for various axial positions. It can
be seen that the profiles are flattened for small values of the
axial coordinate, while they approach a nearly parabolic shape
for large values of the axial coordinate. The profiles obtained
by the perturbation analysis are in good agreement with the
numerical calculations, except for ¥=1, where the deviation
between the two solutions is more pronounced. This can be
attributed to the sharply increasing ice layer thickness near the
entrance of the test section. Consequently, the term 86/0%
adopts higher values in this region and the linearization of the
conservation equations given by Eq. (19) may lead to some
error. Nevertheless, the agreement between the numerical cal-
culation and the perturbation solution is very good for X>5.

Transient Development of the Freezing Fronts. Figures 8
and 9illustrate the time-dependent development of the freezing
fronts at the channel walls for different values of the cooling
parameter B. In the early stage of the freezing process the ice
layer thickness remains approximately constant over the chan-
nel length, except for the near entrance region, as can be seen
from Fig. 8 for 7=0.1. This is evidenced by Eq. (51). If one
excludes small values of the axial coordinate %, the first term
on the right-hand side of Eq. (51) dominates the second term.

Transactions of the ASME



This means that for small values of 7 the growth of the frozen
layer at the channel walls is dominated by heat conduction in
the thin ice layer.

Because there exists no numerical solution concerning the
quasi-steady development of the ice layer in a planar channel,
the given results can only be compared with the approximate
solution of Weigand and Beer (1992). Figure 10 shows the
distribution of the absolute deviation between the perturbation
solution and the approximation during the transient devel-
opment of the ice layer shown in Fig. 8. It is evident that the
maximum deviation is obtained for steady-state conditions,
because the solution of Weigand and Beer (1992) coincides
with the approximation of Lee and Zerkle (1969) for the sta-
tionary case. Moreover it can be seen that the deviation between
the two solutions is maximum for small values of x/h. This
can be easily understood if one recognizes that the quantity
36/0x reaches its maximum for low values of the axial coor-
dinate. Because the effect of this term on the distribution of
the ice layer thickness was ignored in the analysis of Lee and
Zerkle (1969) and Weigand and Beer (1992), the maximum
deviation must be in this region. However, the deviation Ad
between the two solutions is smaller than 0.05. Therefore, it
can be stated that the solution given by Weigand and Beer
(1992) approximates the time-dependent development of the
freezing fronts in a cooled parallel plate channel relatively well.

Conclusions

A quite flexible method has been developed for calculating
the velocity and temperature distributions in a planar channel
with arbitrarily shaped walls under the assumptions that the
perturbation quantity (1/8)(36/0%) is sufficiently small. The
applicability of the method was provided by calculating the
transient development of the ice layers in a parallel plate chan-
nel for quasi-steady conditions. By comparing the obtained
steady-state solutions with the numerical calculations of Wei-
gand and Beer (1991) and the experiments of Kikuchi et al.
(1986), it was demonstrated that the perturbation solution yields
sufficient accuracy for a wide range of Reynolds numbers and
cooling parameters B.

It could be shown that the transformed Navier-Stokes equa-
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tions and the energy equation, for the quasi-steady conditions
and written in £, n_coordinates, contain ou%y powers and de-
rivatives of (1/8)(86/d£), but not explicitly 8". Therefore, ap-
plication of this method to the complete conservation equations
for quasi-steady conditions is straightforward.
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