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Fluid flow and heat transfer in an axially rotating 
pipe-II. Effect of rotation on laminar pipe flow 
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(Reufued II May 1988) 

Abstuct- The effects of tube rotation on the velocity and temperature distribution, on the friction 
coefficient and on the heal transfer to a fluid flowing laminar inside a tube are examined by analysis. It is 
demonstrated that the rota tion has a destabilizing effect on a laminar pipe flow, which changes to turbulent 
flow. Free convection vortices, that occur, if the pipe wall is heated, disappear with a growing rotation 
velocity of tbe tube. For that purpose a perturbation calculation is performed. By the results of this 

calculation tbe disappearance of the frce convection vortices is demonstrated evidently. 

, . INTRODUCTION 

THE STABIUTY of isothennal laminar pipe flow with 
superimposed rotation bas been investigated by sev
eral authors. By solution of the perturbation equa
tions Pedley (I] demonstrated, that a cylindrically 
symmetric shear flow of an incompressible fluid, such 
as Hagen- Poiseuille now in a circular pipe, is unstable 
to infinitesimal, inviscid disturbances ifit is subjected 
to a rotation about its axis. These results have been 
confirmed experimentally by Nagib et al. (2] . 
Mackrodt (3] examined the stability of Hagen
Poiseuille flow with superimposed rigid body rotation 
against three-dimensional disturbances. By numerical 
solution of the perturbation equations limiting values 
of the flow-rate Reynolds number, Re = 165.76, and 
the rotational Reynolds number, Re. = 53.92, were 
calculated, above which the flow becomes unstable. 
By experiments and by use of a modified mixing length 
theory Kikuyama el al. [4] found a destabilizing effect 
of rotation on laminar pipe How. Reference (5] 
expanded this mixing length model to calculate the 
fluid How and heat transfer in an axially rotating pipe 
with constant wall heat flux. 

If the wall of a non-rotating horizontal pipe, sub
mitted to a small flow rate, is heated, already small 
temperature variations in the fluid cause a secondary 
flow due to buoyancy forces. Morton [6) investigated 
this phenomenon and obtained solutions for the vel
ocity and temperature field. This treatment was 
restricted to small rates ofhcating, which corresponds 
to a small ratio of buoyancy and inertia forces, 
Gr/Re1 « 1, so that the motion due to buoyancy could 
be regarded as secondary flow. Del Casal and Gill [7) 
expanded this solution for Haws with axial density 
variations. Futayami and Mori [81 investigated the 
laminar mixed convection in a horizontal pipe for 

ratios of Gr/ Re1 
:::: 1 by means of an integral method. 

Reference [51 observed the fonoation of convection 
cells in a heated pipe at low flow rates and high tem
perature differences, at ratios of Or /ReI;:::: 0.02. 
Rotation of the tube about its own axis caused a 
disappearance of the convcctioncclls, already at a low 
rota tional speed. 

In the first part of this paper the effect of rotation 
on the velocity and temperature distribution, on the 
friction coefficient and on the heat transfer to a fluid 
flowing inside a rotating pipe, without free convection, 
is investigated. In the second part the interaction 
between free convection effects and rotation is con
sidered. 

2. EFFECT OF ROTATION. IF THERMAL 
BUOYANCY FORCES ARE DISREGARDED 

A systematic study on the effect of rotation on the 
velocity and temperature distribution, on the friction 
coefficient and on the heat transfer to a Huid flowing 
inside a tube was carried out in ref. 19), if the flow is 
initially turbulent. This model is applied in order to 
demonstrate the effect of rotation on laminar pipe 
now. To describe the destabilizing effect on laminar 
pipe flow the turbulence model is modified. 

2.1. MathematicalJormulatiofl 
Since a detailed description of the mathematical 

model is given in ref. (9), only the most important 
equations and particularly the modifications of the 
turbulence model are summarized. 

For fully dcveloped flow conditions and for an 
incompressible fluid the conservation equations in cyl
indrical coordinates, as illustrated in Fig. I, take the 

5.3 
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NOMENCLATURE 

complex constants, i = 1 •... , 6 
constants, i = 1 •... ,6 
specific heat at constant pressure 
pipe diameter 
complex constants. i =- I •... ,6 

B, 
C, 
c, 
D 
D, 
d .. real constants which ar~ the real parts of 

theD/s.i= 1 •...•. 6 

d" real constants which are the imaginary 
parts of the D/s. j = I, . ..• 6 

E Eulerian constant 
complex constants, i:=a 1 •... ,9 E, 

e .. real constants which are the real parts of 
theE/s, i= 1 •...• 9 

e, real constants which are the imaginary 
parts ofthc: E,'s, i = 1, ... ,9 

f, functions of r, j = 1 •... • 4 
Gr Grashof number. pg6TD1

/V
2 

I imaginary unit 
J I Bessel function 
k thennal conductivity 
K., L. tenns of a sum 
L pipe length 
1,1, hydrodynamic and thermal mixing 

length in the rotating pipe 
10, 1,0 hydrodynamic and thennal 

mixing length in the non-rotating 
pipe 

mDl m .. m2 coefficients of the temperature 
distribution (10 

no> n .. n2 coefficients of the axial velocity 
distribution v.o 

N rotation rate, ReJRe 
Nu Nusselt number, 

D oT/ar(r ~ R)/(T.- T.) 
Pr Prandtl number, vIa 
Pr, turbulent Prandtl number,lol/,o 
p pressure 
p' pressure fluctuation 
p. dimensionless time-mean pressure 
4 heat flux density 
qlW heat flux density at the pipe wall 
R pipe radius 
Re Reynolds number, v.D/v 
Re. rotational Reynolds number. v .... D/v 

form: 

axial momentum equation 

ap I a 
0= --+ --(<'T )' iJz r or r.' 

energy equation 

oT I a 
pc,v~ -a = - - 0- (r4,)· z r r 

(I) 

(2) 

Re. Reynolds number based on the friction 
velocity, v.R/v 

; dimensionless coordinate in radial 
direction 

T time-mean temperature 
T' temperature fluctuation 
Tw time-mean temperature of the wall 
Tb bulk temperature 
To time-mean temperature in the centre of 

the pipe 
V,/I v ... V,I time-mean velocity in the radial. 

tangential, and axial directions, 
;=0,1,2 

il,l, V./O VII dimensionless time-mean velocity 
in the radial. tangential, and axial 
directions, j = O. 1. 2 -. v, dimensionless velocity components, 
j = r, tP, Z 

vp tangential velocity of the pipe wall 
v,' velocity fluctuation 
V, mean-axial velocity over the pipe cross-

section 
V, V, W complex functions 
Y. Weber function 
Y+ dimensionless radial distance from the 

pipe wall 
: coordinate in the axial direction 
i dimensionless coordinate in the axial 

direction. 

Greek symbols 
o complex coordinate in the radial 

direction 
t perturbation parameter, Gr/Re1 

6, (1, (1. dimensionless temperature 
iJ' dimensionless temperature fluctuation 
1 coefficient of friction loss 
J.I dynamic viscosity 
J.I, turbulent dynamic viscosity 
v kinematic viscosity 
p density 
t'j shear stress 
~ coordinate in the tangential direction 
IJI stream function. 

For a newtonian fluid with constant properties the 
shear stress tn and the radial component of tbe heat 
flux Vector can be written as 

av, _,_, 
t,.=J.l o, -PV.v. (3) 

aT _ 
4. = -k or + pcpv:T'. (4) 

According to experiments by Kikuyama el al. [41. the 
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r 

FIG. I . Coordinate system. 

distribution of the tangential velocity can be assumed 
to be that of solid body rotation 

(5) 

After some manipulations and after introduction of 
the turbulence model , as described in ref. (9), the axial 
momentum equation and the energy equation can be 
written in the following dimensionless fonn: 

axial momentum equation 

(6) 

energy equation 

; 80 ~~ i ([I _ p'Re ~~(8;')J;80) . (7) 
' of fof ·RR aT OT 

Here f = rl R is the dimensionless radius. Further
more, the following dimensionless quantities are 
introduced in equations (6) and (7): 

v.R 
Re. =, 

9=T-To . 
q_R 

k 

(8) 

(9) 

(10) 

(\I) 

(12) 

(\3) 

The hydrodynamic mixing length I and the thermal 
mixing length I, in the rotating pipe are o~tained from 
the mixing length in a stationary pipe, I.e. from the 
modified Nikuradsc mixing length expression 

~ ~ [1 - e- ' · " '{0.14-00SW -oo{m 
(14) 

the reciprocal of the turbulent Prandtl number 

I 1,0 ~2 ~l ". 
-p ~ -I ~ \.53 - 2.S2i +3.85, -\.48, (15) '. , 

and a semi-empirical expression for the ratio of the 
mixing lengths in a rotating and a stationary pipe, 
whieh was found in ref. [5] 

~ ~ "- ~ 0.4-/ N. 
10 If 0 

(16) 

Further solution of the conservation equations is per
formed in analogy to ref. [9) and will not be described 
again. 

2.2. Results and discussion 
The effects of rotation on the axial and tangential 

velocity distribution for fully developed flow con· 
ditions are shown in Figs. 2 and 3 for different flow
rate Reynolds numbers. Experimental results of 
Kikuyama el al. (4] have been plotted for comparison. 
The validity of the assumption of a linear tangential 
velocity profile is well confinned by the experiments. 
The calculated profiles of the axial velocity are in good 
agreement with the experiments. The shape of the 
axial velocity profile is largely independent of the flow
rate Reynolds number. With increasing rotational 
Reynolds number Re. the parabolic axial velocity pro
file of the Hagen- Poiseuille flow shifts towards that 
of turbulent pipe flow. 

In Fig. 4 the friction factor). is plotted vs the flow
rate Reynolds number Re for various values of the 
rotational Reynolds number Re •. Without rotation, 
Re. = 0, the friction law of the Hagen- Poiseuille flow, 
J. = 64IRe, is valid. With growing rotational speed an 
increase in J. can be observed. 

The influence of rotation on the temperature dis
tribution for fully developed hydrodynamic and ther
mal boundary layers is depicted in Fig. 5. With an 
increasing rotational Reynolds number the laminar 
temperature profiles approach that for turbulent pipe 
flow. Unfortunately there are no experimental tem
perature profiles available. 

In Fig. 6 the Nusselt number is plotted as a function 
of the flow-rate Reynolds number Re with the 
rotational Reynolds number Re. as a parameter. For 
Re. = 0, i.e. for laminar pipe flow without rotation, 
the Nusselt number bas the constant value Nu = 4.36. 
With growing rotational Reynolds number Re. the 
Nusselt number increases. In contrast to the constant 
Nusselt number in the case of no rotation, the Nusselt 
number increases slightly with a growing Reynolds 
number, if Re. > O. 

3. INTERACTION OF ROTATION AND THERMAL 
BUOYANCY FORCES 

Utilizing the profiles of the axial velocity and the 
temperature calculated above, a perturbation cal-
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FIG. 2. Axial velocity distribution as a function of the rotational Reynolds number Re., 

eulalion will be performed. which will describe the 
formation ora secondary flow due to buoyancy forces 
and its decay owing to centrifugal forces in the case 
of pipe rotation. 

3.1 . Mathematical formulation 
Denoting the coordinate system, as illustrated in 

Fig. I, by ;. ~, i as dimensionless radial, tangential 
and axial coordinates, with the corresponding dimen
sionless velocities v:, vI. fj~' and the dimensionless 
temperature at. the equations of conservation for a 
fully developed flow of an incompressible, newtonian 
ftuid in a horiZontal pipe, in consideration of gravi· 
tational forces, take the following fonn: 

continuity equation 

" 

.':L v,. 
I 

OS 

iJ (V:f) av: 
--a;+ iJ4> ~O; 

IRe '6001 

• • 0 
0 QS 

(17) 

• • 

ElIPfi",,,,,nt 
IK'kl,l)'omoJ 
... R, • • '1XlQ 
A R .. -2ODJ 
• R ••• ,ooo 

-1 \0 

radial momentum equation 

iJ ~. ~. :1....,. ~.l iJ -' 2 ( 
~.~ v. _""_' _ ~ __ .L _ Vl~. 
v'o;+;ot/J ; - a;+Re v, 

6: 2 OV:) I Gr 11'. - ---- - - -co,"(I - .)· ;1 ;lOq, 2Re1 't' • 

.. 
v, 
v,. 
I 

OS 

0 
0 

IRe' 10001 

o 

• • 

Experimenl 
Il(illl,l)'o",o) 
OR,., S(X) • 

... R,.' I(IXJ 
4 R,.' 2000 
• R"'4000 

-1 \0 

(18) 

(19) 

FlO. 3. Tangential vdocily distribution as a function nfthe rotalional Reynolds number Re~. 
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axial momentum equation 

(20) 

energy equation 

iJO' v· iJO- 2 ., • ·.C V1it, v, -;::-+--:-~ +I): o=~R P U 
or r v,+, e r 

(2 1) 

with the dimensionless quantities 

w 
IRe ' 6001 

8 
I Re,' O~ 

Rt.' 500 

a. ' lh, " 000 
Rt,' 2000 
Re.'4000 

aa~~----~------~ 
llS 1.0 

. , 
r= - ' 

R' 

" Pr = -
a 

f .D 
Re= -' -

" 

i = r, cJ> . = 

Gr = fJg (T .. - :o)D
l 

= fJgn : Dl 
1'- 1'-

C 
_ 41 •.• R 

0-
k6T Re Pr 

and the Laplacian operator 

(22) 

(23) 

Provided that the buoyancy terms in equations (18) 
and ( \9) arc sma ll as compured to unity, successive 
approximations to the sol ut ion ca n be determined by 
expanding VI·' p' and O· as power series in e = Gr/Re: 

P- = po +epi +e\rJl +p' 

U· = UO+cOI +C"Ol+ O'. (24) 

The turbulent values. v;, {J'. (j' will not be effected by 
the secondary motion, if c« I, as shown by Polyakov 
[IOj, Hence these values are not expanded as power 
series in equation (24). 

Introducing equation (24) into eq ua tions (17)-(21) 

w 
IRe' 10001 

8 
I a 

'00 
a., 

aa~~--------------~ 
QS ID 

- 1 

FIG. S. Temperature distribution as a function of the rotational Reynolds number Re, 10" = (T(I') - nf = 0») 
(T(f: 1) - T(f = O»j. 
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FIG. 6. Nusselt number Nu of the rotating pipe as a function 
of R~ with R~. as a parameter. 

and neglecting tenns in t and £2, yields the zc:roth
orderequalions for the flow in a rotating tube without 
free convection. which have been solved in Section 2. 

The elimination of the pressure in equations (18) 
and (19) and the introduction orthe stream function 

results in first-order equations for.p, vt and fJ, iftenns 
of the order of 6' are neglected 

(26) 

(27) 

2 'IJ l(a""a/1,) 1 a""alT, . 
RePr V 1+; of fJ4J =; at/> iii + Cav, I 

(28) 

and in second-order equations 

(29) 

(30) 

with tbe boundary conditions 

!i)pJIl,l l = finite _ol}ll.21 = finite 
; at/> ~_o • a; ~_o 

v, l,2(i = 0, <p) = finite 

iJ" . ,(f~ 1 .4»~0 

1J .. ,(i ~ O • .p) - finite 

1J,., (f~ 1.4»-0. (32) 

According to experiments by Kikuyama et 01. [4], the 
stream function in the case of no rotation, 1/10. is 
defined by 

(33) 

With this expression equations (26)--(31) can be writ· 
ten in the following fonn: 

• Ref a 1 Re alJo . v I/I. -- -V 1/1. = - --SlOq, 
2 a.p 4 of (34) 

(35) 

(36) 

Without free convection effects, profiles of the axial 
velocity v,o(f) and of the temperature lJo(f) have been 
calculated in Section 2. Since they are the results of a 
numerical calculation, they will be approximated by 
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the following polynomial expressions: 

(Jo = mO+m,r+m2f4 (40) 

vzo=no+n,f2+nzf4. (41) 

The maximum deviation of equations (40) and (41) 
from the numerical results is less than 3%, which is a 
sufficient accuracy for the following considerations. 

Substituting the stream function in equation (34) 
by 

"', - f, (7) sin </> +f,(7) cos </> (42) 

yields two coupled ordinary differential equations 

1",,+21'" 31"+3/, 3 f , f' - f1' fl 1 - r ' 

(43) 

(44) 

with the boundary conditions 

f,(I)-O, f, (0) = finite 

f;(I) - 0, f; (0) = finite 

f,(I) - 0, f2(0) = finite 

fi(l) - 0, fiCO) = finite. (45) 

By use of equation (49) and with the polynomial 
expression for the temperature (equation (40». the 
differential equation (47) can be written as 

f1U"(f)+;U'(f)+ (R~. f2_1) V(r> 

Introducing the coordinate transformation 

(52) 

into equation (51) yields a Bessel differential equation 

~'U"(~)+JU'(~)+W-l)U(~) 

which has the solution 

( 2i )"'] ( 2i )'" +8Rem 2 Re. J-Rem2 Re. Jl 

I, is the Bessel function of the first order 

00 (-I)' (Ii)".' 
J,(Ii) - ,~. ,!(v+ I)! 2 

(53) 

(54) 

(55) 
Introducing the complex function 

V=f,+if2 (46) Y, is the Weber function of the first order 

into equations (43) and (44) and summing up both 
equations results in the following complex ordinary 
differential equation of the fourth order: 

V"" + ~ V'" - ~ V" + ~ V' - ~ V r ;2 fJ f" 

Re.(" 1 , 1) ReiJJo 
+ - V + - V --V = - --2i f fl 40; 

with the boundary conditions 

V(I) - 0, V(O) = finite 

V'(I) = 0, V'(O) - finite. 

(47) 

(48) 

Equation (47) can be reduced to an ordinary differ
ential equation of the second order by introducing the 
following function: 

(49) 

From equation (49) V can be determined as 

(50) 

1· (-I)' (Ii)".' C·' I 'I) - - I - I -+ I-
7f._o ,,!(v+l)! 2 _,s ._,s 

(E = 0.5772 is the Eulerian constant) (56) 

C, and C" are constants which must be determined. 
V(CS) is calculated by the inverse transfonnation 
(equation (50)) 

2i I f I V(Ii) = Re.;j (IiIU(Ii)dli)d6+C,~+C';j (57) 

1 
V(Ii) _ D,J,(O)+D,y,(O)+D';j +D.1i 

+DsJ'+D&J 5
• (58) 

The constants D/ are given in the Appendix. An adap
tion of the solution V(CS) to the boundary conditions 
(equation (48» results in 

V(Ii) = D,J,(o)+D.Ii+D,Ii'+D,Ii'. (59) 

Splitting of the complex function V(6) into the real 
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part and the imaginary part yields the functions!, and 
f~. and the stream function 1/1 1 (i, tjJ) can be detennined 
as 

+dul. 1: L.i"'+1+d"I;+d'l;l+d61;~]COSt/J (60) .-. 
where the constants dlR , d". K. and L. are given in the 
Appendix. 

For Re. -+ 0, which corresponds to the flow in a 
non·rotating pipe, the function 12(1) approaches 
linearly with Re. the value zero. The function fief) 
approaches the solution of Morton {6] 

I .. ,. (- .. ) Rem l (:>6 m':;04 
1mV'I ','I' = --1152 ,+3 - , 

k._O ml 

The corresponding temperature distribution is that of 
the laminar Hagen- Poiseuillc flow, with m, = 4/3 and 
rnl= -1/3. 

The axial velocity distribution is calculated with the 
same procedure as the stream function"'" By use of 
equation (41) and with the statement 

(62) 

equation OS) can be transfonned into two coupled 
ordinary differential equations 

I " II' I I Re' f (2n -')f J +--;; l- ~ ' + - 2 .. "'" - Ren, + 2r 2 , , 

f " If' If Re' l R ( 2n ")f .. + --;; .. - ~2 .. - - 2 J = - e n. + 2r • , , 

with the boundary conditions 

1,(0) - 1,(0) - finite 

1,(1) - 1,(1) - O. 

Introduction of the complex function 

(63) 

(64a) 

(64b) 

(65) 

and transformation of the coordinate i to .5 results 
in the following non-homogeneous Bessel differential 
equation: 

6'W" (6)+6W'(6)+(6'-I)W(6) ~ (8,6' 

+B2.5")J,(c5)+B),P+B .. c5'+B,62 +B,69 (66a) 

with the boundary conditions 

11'(0) ~ finite 

W(J(R;',)) -0 (66b) 

and the constants B, given in the Appendix. The solu
tion of the differential equation (66a), which satisfies 
the accompanying boundary conditions, is 

11'(6) - E,J,(6)+E,6'J,(6)+(E,6+E,6')J.(6) 

+E,6+E1c5 1+E.b'+ E9b7. (67) 

The constants E, are given in the Appendix, too. 
By splitting this solution into the real part and the 

imaginary part, we get the perturbation velocity V.I 

V~I(i'4»=[(eIR+e]Ri2) f K.r>+' .-. 
• 

- (ell+e1l il) L L.r··'+(eCR+e SRi 2
) .-. 

• 
x L K.(41'+2}r'·· I +e6Ri+enP' - (e ... +e"i1) .-. 
x ~ L.(41'+4)r'.-+-1+elR i']Sin lb .-. 
+ [<en +eJ,fl) I K.r'o-+-' +(e'R +e)ki1) .-. 

• • XL L,.r',+1+(e ... +e"i2) L K.(41'+2)r'o-+-l . -. .-. 
+e.,i' +e,ji7 Jcos 4>. (68) 

The constants ell and elk are listed in the Appendix. 
The time-smootbed axial velocity ii, is given by 

(69) 

After some manipulations it can be demonstrated. 
that this solution for Re. _ 0 approaches that of 
Morton (61 for the fluid flow in a non-rotating pipe 
(n,= -2,"2=0) 

r ~ Re
1 

(I -') 
~.r!!oV.' = - 138240 -r 

x (49_51i2 + 19'" -F')1cost/J. (70) 

The temperature distribution (J, can be obtained by 
the same procedure as for the stream function and the 
axial velocity. However. the expressions for (J are very 
lengthy and monstrous. Therefore, they are omitted 
in this paper. 

The following conclusions may be drawn by a 
detailed consideration of the differential equations 
(34)-(39). 
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(I) In the case of no rotation. for Re.-·+ 0, tbe 
perturbations 1/11> vz!> (J .. 1/12. V;1. (Jl attain their 
maximum values. which corresponds to Morton's [6] 
solution. 

(2) It can be seen that"'. approaches linearly the 
limiting value zero for Rf! • ..... 00. Vz! approaches zero 
quadratically with increasing Re •. 

(3) 1/12 approaches zero with Re~, Vzl and O2 
approach zero with Re;. 

Since the perturbations of the second order may be 
negJected already in the case of no rotation [6], they 
may be disregarded for Re. > O. too. For small values 
of Re. (Re. <S;: 200) Morton's solution for the tem
perature distribution [6] may be used as an approxi
mation for fJ. For an increasing rotational speed 
(Re. > 200) the free convection effects on the tem
perature distribution may be neglected, since iJ. 
approaches zero with Re~ . 

R • ."sQ Re.,. tl 32 

R • .,,=20 

R • .,,-24 Re", =100 

R.",- 28 Re",s500 
FIG. 7. Stream function I/J with Re~asa parameter (Re ;: 500. 

t = U.U5). 
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FIG. 8. Tangential velocity as a function of the rotational 
Reynolds number Re •. 

3.2. Results and discussion 
Figure 7 shows the effect of rotation on the free 

convection flow. To demonstrate this effect. stream
lines are plotted for constant Re and £ (Re = 500; 
£ = 0.05) and for different rotational Reynolds 
numbers, 0 ~ Re. ~ 500. Already small temperature 
differences between the heated wall and the fluid cause 
a secondary flow. There exist two counterrotating 
convection cells, flowing upward at the pipe wall and 
downward in the pipe centre. If this convection flow 
is superposed by a clockwise rotation of the tube, the 
corotating left-hand convection cell grows, while the 
counterrotating cell vanishes with growing Re •. This 
effect of tbe growing corotating and the diminishing 
counterrotating convection cell is evident in the range 
20 ~ Re. ~ 40. For Re. ~ 40 the right-hand cell has 
disappeared and the left-hand cell covers the whole 
cross-section. The 'eye' of the convection cell, 
however, is located above the pipe centre. With 
increasing Re. the eccentricity of the cell diminishes 
and for Re. ~ SOO a rigid body rotation is established. 

The effects of the interaction of free convection and 
rotation are shown in Figs. 8 and 9 . In Fig. 8 profiles 
of the tangential velocity in a horizontal sectional 
plane are ploUed with Re. as a parameter. Without 
rotation, for Re. = 0, there is an upward flow near 
the pipe wall and a downward flow near the pipe axis. 
With increasing rotational speed the rotation-induced 
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flow becomes more dominant. For Re" ~ 50 the free 
convection effects have disappeared and there exists 
an almost rigid body rotation . The same effect can be 
observed in Fig. 9, where the radial velocity is plotted 
for different Re" in a vertical plane. With an increasing 
rotational speed the radial velocity decreases. 

In Fig. 10 the axial velocity distribution in a vertical 
and a horizontal plane is plotted with the rotational 
Reynolds number Re. as a parameter. For small 
rotation velocities (Re. ~ 10) the free convection 
effect on the axial velocity below the tube centreline, 
can be clearly detected to be a displacement of the 
velocity maximum in the vertical plane. With increas
ing Re. the velocity maximum shifts towards the 'eye' 
of the vortex, since fluid particles are transported from 
the tube centre to this region (compare with Fig. 7, 
Re. = 40). If Re. increases further, the velocity 
mal(imum shifts back to the tube centre. However. the 
maximum value is smaller than that without rotation. 
which is a consequence of the destabilizing, turbulence 
exciting mechanism of rotation (see Section 2). 

In Fig. 11 the effect of the ratio I: = Gr/Rc 2 on the 
axial velocity profile in a vertical and a horizontal 
plane is demonstrated for a constant Re •. In the 
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vertical plane a displacement of the maximum velocity 
towards the 'eye' of the vortex with an increasing e 
can be observed, as already demonstrated in Fig. 10 
for moderate Re •. 

4. CONCLUSIONS 

In the first part of this paper the effect of rotation 
on velocity a nd temperature profiles, friction and heat 
transfer coefficients of a laminar pipe flow with forced 
convection was investigated. It was demonstrated, 
that the tube rotation causes a destabilization of the 
laminar flow, which becomes turbulent due to 
rotation. 

In the second part of this paper the interaction 
between free convection effects and rotation is con· 
sidered. For small heat flux densities perturbation 
calculations were performed, to obtain profiles of the 
axial, radial and tangential velocity distribution. The 
plots of the velocity profiles and the stream function 
demonstrated tbat the influence of free convection 
vanishes with increasing rotational Reynolds num
ber. which could also be observed in experimental 
investigations. 
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ECOULEMENT ET TRANSFER DE CHALEUR DANS UN TUBE EN ROTATION- II. 
EFFET DE LA ROTATION SUR UN ECOULEMENT LAMINAIRE 

Rbum~Les efrets de la rotation d'un tube horizontal sur la distribution de vil~ cl de temperature ainsi 
que sur Ie coefficient de ftotlcment ct de transfer de chaleur d'un Ccoulement axial lamioaire sont etudies 
analytiquemcnt. NOllS monllons que la rotation du tube a uo efret deslabilisant sur I'ecoulement laminaire 
qui dcvient turbulent. Les cellules de convection naturcUe dues au chauffage de la paroi disparaissent 
cependant avec I'augmentation de Ia vitesse de rotation du tube. La methode de perturbation appliquee 
aux equations de base pennel de monlrer de (aeon significative ceUe disparition des ccllules de convection 

natun:lle. 

STROMUNG UNO WARMEOOERTRAGUNG IN EINEM AXIAL ROTIERENDEN 
ROHR- II. DER EINFLUSS DER ROTATION AUF EINE LAMINARE 

ROHRSTROMUNG 

Zusammenfassung-Der EinftuB der Rotation auf Geschwindigkeits- und Tempe:ralurprofiJe, Reibungs
beiwert und Wanneubergangszahl einer laminaren Rohrstromung wird theoretiscb untersucht. Es wird 
gczeigt, da8 die Rotation eine destabilisierende Wirkung aurdie laminare Stromung ausubt, die aufgrund 
der Rotation um.scbligl und turbulent wird. Die dUTCh dne Beheizung der Rohrwand aufiretenden natur
lichen Konvektionuellen verschwinden jedoch mit einer zunehmenden Drehzabl des Rohres. Hienu wird 
cine Storungsrechnung durchgemhrt. mit defen Ergebnissen das Verschwinden der Konvektionszellen sc:hr 

anschaulieh gezeigt werden kann. 

TEt{EHHE >KHltKOCTH H TEnnOnEPEHOC B AKCHAllbHO BPAIUAIOIUEAC.R 
TPYIiE-Ji. BnHJlHHE BPAIllEHH.R HA RAMHHAPHOE TEt{EHHE B TPY6E 

AaoulIn-AHanKTll'tccXK Kc:cnemcrc. anKIHHe .paweHHI TPytiW Ha npo4lHJlH CIOpocTH M TeNnepa· 
1')'pw, MB 1t0000000HllKCHT lJI'WHI H us TmIIOncpcHoc It naMHHapHOMY ROTOlty mtAlOCTH I Tpy6e. nora
JaHO. 'iTO _palUCHMe D.ecn6Il11H~HpyeT naMHHapHO Te'leHHt B rpy6e. IOTOpoe nepe::tOllKT • 
Typ6yneHTHOI:. 80lHMIalOtWle npH HarpellC crCHO" c.o60.aHoKoHIICXTHBH ... e BH:tpH HC'lt'laIOT C y&eJ1H' 
'IeHHeM CIOpocTH _palUeHH_ Tpy6 .... C noR Ucnloto npollCllcH paC'IeT aD3Myu.teHHoro D.IH.eHM_, pe3ym.-

TaTW IOToporo HarJlalUlO .IleMoHc:TpHp)1OT HC'It3HOBeKHe CB060D.HOIOHIICITHlIH"':t .H:tpeA. 




