
Use of' inherent parallelism in database operations

Abstract

"1'. Imrder., Ch. HU.bel., B. Mitschang
University Kaiserslautern

Non-standard applications of database systems (e.g. CAD) are characterized by
complex objects and powerful user operations. Units of work decomposed from a
single user operation are said to allow for inherent semantic parallelism when they
do not conflict with each other at the level of decomposition. Hence, they can be
scheduled concurrently. In order to support this processing scheme it is necessary
to organize parallel execution by adequate control units. Therefore, client-server
processes and nested transactions are applied to hierarchically structure the DES
operations. On the other hand, the DBS-code itself has to be mapped onto a
multiprocessor system to take advantage of multiple processing units.

1. Introduct:lon
Parallel computer architectures of various kinds - often referred as super
computing - offer huge instruction rates for processing a special sort of
applications. They are implicitly tailored to data-intensive numerical applications
for which such a tremendous demand of processing power is necessary to yield the
required precision of the solution (e.g. finite elements) or the mandatory response
time (e.g. real time applications). For these numerical applications, the
transformation of (parts of) a sequential program - the so-called vectorization -
to an equivalent program, which can take advantage of parallel facilities, is
comparably simple because of the homogeneous data structures used, e.g. the
distribution of a large matrix operation to a SIMD-architecture.
Database operations are also data-intensive and must be executed fast enough to
support an interactive environment - in particular in "future" applications like
engineering (CAD, CAM), or geographic information systems. Their decomposition to
exploit parallelism on complex objects within a single operation is by far more
complicated compared to numerical applications. In the first place, heterogeneous
data structures and their interfering operations appear to be responsible for this
difficulty. Therefore, up to now almost no efforts are made to gain some kind of
"inherent" parallelism. Nowadays commercial database systems (DBS) execute the
operation of a user's transaction (DML-operation) in a strictly sequential manner.
In this context, parallelism at the level of DML-operation is only achieved by
concurrent execution of requests in a multi-user mode.
Database applications do not allow for arbitrary kinds of syntactic parallelism;
they rather require logical serialization of all committed transactions whose
results must be equivalent to the results obtained by some serial schedule. Hence,
a transaction is defined to be a unit of application-oriented work, of
synchronization and of recovery. Its properties can be summarized by the ACID
principle of lHR83] (Atomicity, Consistency, Isolation and Durability). These
requirements usually lead to a processing concept as sketched in Fig. 1. Parallel
execution is only achieved between transactions subject to conflict-free data
references controlled by some synchronization algorithm e.g. locking.

Fig. 1:
Inter-transaction
parallelism

386

Tl

T2

sel'i~l

The use of parallelism within a single DES-operation mainly focusses on two
approaches explored in research projects: data-oriented parallelism for disk search
in SIMD-architectures and parallel processing of relational operators in MIMD
architectures [DW79]. Both approaches have not been particularly successful.
Non-standard applications of DBS manipulate complex objects by powerful operations
(Au.rs). These objects are represented by simpler data structures (sets of hetero
geneous tuples) handled by simpler operations. Hence, the decomposition of complex
objects/operations to simpler ones offers a potential for parallelism to be
investigated.

2. A new approach to para1lel DDS-processing
2.1 MOdel or nBS-operation
Before sketching our 'pproach we introduce a gross DBS-model to explain its
operations. The architecture of a DBS may be conveniently represented by a multi
layer model describing the mapping hierarchy of data. A layer implements the
objects and operations offered at its interface (level) to the above layer thereby
using the services of the subordinate layer. For an NDBS (DBS for non-standard
applications), the model may be illustrated by the type of operations and the level
names indicating the type of objects:

levels layers operations
object level ADT-operations

application layer
data model level !»L-ope rations

data system
record level record/access path op.

access system
page level page operations

storage system
disk level disk accesses

An ADT-operation is processed in the application layer by using a number of DML
operations executed at the underlying layer which, in tum, are supported by primi
tive operations of the next subordinate layer. Each call at one level of implemen
tation invokes a set of primitives at a lower level of control. In current DBS,
typically all (sub-)operations are synchronously called and serially executed.

2.2 Control structures ror system operations
ADT-operations, however, may consume quite a lot of DML-operations for their
execution. For example, we have measured AD~s which have issued more than 104
DML .. s in a CAD-application. In order to reduce response time, efforts should be

387

made to call and distribute these operations in a synchronous or asynchronous
manner and to execute them in parallel. Since the data structures are heterogeneous
and dependent on the operations in quite complicated ways, such an approach must be
planned carefUlly. OUr idea is to decompose an ADT into a sequence of conflict-free
operations. Then, sets of sequence-independent operations may be scheduled in
parallel. Such decomposition units (Dtrs) are roughly equivalent to DML-operations
of nowadays DBS. A set of Dtrs scheduled concurrently is called a parallel
execution unit (PEU) (see Fig. 3). DU's are said to allow for inherent semantic
parallelism when they do not conflict with each other at the level of decompo
sition. Currently, the decomposition is done "manually" (not supported by a
compiler) by preparing sets of procedures for each ADT at the application layer.
This job is facilitated by the fact that the DB-schema at the data model level is
fixed for an application class.
For an ADT-operation, atomic! ty must be provided at the user interface ("all or
nothing" has to be executed in case of arbitrary failures). Since the DBS
processing is quite complex for an ADT (sometimes 107-108 instructions or more and
lots of data references which may be serviced by disk accesses), there is a strong
need for appropriate control structures. Nested system transactions have been
proposed for this purpose [Wa84, WS84]. 'Ihe nesting of sub-transactions (STA's) may
be designed in accordance with the system layers. Fbr example, at the application
layer STA1 is a proper structure to accept/return an ADT-call. The DU's used as
primitives to the subordinate layer are, in turn, embedded into STA2i (l<i<n) to
take care of the atomicity of the service calls. Again, a DU may require some
services from the storage structure layer which are organized by STA3j and so on.
Obviously, the atomicity of STA's greatly facilitates the design of the DBS. Two
additional properties are required for our purpose:
- The operations within an STA must be synchronized against operations of other

users (transaction principle). Furthermore, they must be isolated against the
operations (DU's) within a PEU. Since they run in parallel, they might conflict
at the physical level (common page).

- A committed STAij may be rolled back if a parent STAkl (k<i) fails in order to
reach the "nothing" state.

2.3 Using semantic parallelism- an example
Until now, we have sketched some abstract concepts allowing for decomposition and
parallelization of ADT-operations. In order to demonstrate the practical usefulness
of these approaches, we are going to introduce a simple but illustrative example.
For this purpose, we have chosen the area of geometric solid modeling, where the
user interface is designed for the construction of 3D-workp1eces. Each user
operation refers to solids and is either binary (UNION, DIFFERENCE and
Im'ERSECITON) or unary (TRANSLATION, Ral'ATION and SCALING).
One important representation of such solids, especially for graphical output, is
the so-called boundary representation scheme (BREP). There, each solid is
represented by its faces, which are, in tum, composed of its bordel:'-lines, whereof
each line is limited by its endpoints.
Using this modeling approach, each workpiece is represented by a heterogeneous
structure as depicted in Fig. 2. A generalization of a decomposed ADT-operation
using the above modeled BREP-scheme is shown in Fig. 3, where each DU is represen
ted by a rectangle and the PEtrs are built by means of dotted line rectangles.

388

/;:1~
/\ f2 ~~ •• f4 fS)\

i\'4 ••• eO)\
PI P2 p7 p8

e) semple workp1ece "box· b) fiREP-scnema c) semple occurrencE!

Fig. 2: Boundary representation ·

... ~ ...
/ STA1 """

AOT -operation

~ '~
/ ~

DML-'"""••• ~~j~~;ji ... [ID~.['"'jo~;l] J:~;·~~
record I access
peth operation$

I

Slji,:.t

STA31 ... STA3 , • • •

"F~otcll BREP i nfor rnetio11
for tile venom open ncb·

Fig. 3: Decomposition of' an ADT-operation

'"(;(.omput«o neighbourhood
I nformetlon for edl)es
end poinb"

3. Mapping ot' DBS-layers to sottware structures

ST "*; ... ST "~•

"Store BREP·informetion
f~:~r tile result! no $01l<l "

Now we want to sketch some important concepts and constructs in the field of
programming languages and operating systems necessary for the implementation of the
ideas discussed above.

3.1 Use ot' process structures
'Ihe parallel execution of 'C\rs anticipates the existence of concurrent processing
units typically embodied by processes. From an OS point of view, they are the units
of processor and resource allocation, protection and scheduling. Since these
processes work together for a common job, there is an urgent need for effective
cooperation which requires sui table mechanisms for communication and synchroni
zation, e.g. service calls/results must be distributed/returned or access to shared
data must be controlled efficiently. The concept of remote operations appears to be

adequate for process communication when its semantics is extended for our purpose.
A parallel activation of remote operations is a mandatory option for the concurrent
execution of Dlls within a PEU. An appropriate programming notation to express such
a calling semantics is given by the Parbegin .. .Parend construct combined with the
remote procedure call mechanism (Fig. 4a). Parbegin marks the begin of a set of
parallel calls. Parend determines the "wait for result" point, i.e. the point of
synchronization [AS83].

Our multi-layered architecture model describes the abstract mapping hierarchy of a
DBS. Various ways f'or the DES implementation are discussed in literature: object-,
function- or layer-oriented. Here, we refer to the classic way of layer-oriented

proc ADT -operation (...)

call re;ote OU 1 (...)

Perbegi n

call remote OU 2 (..)

r.all remote DU3 (...)

cell remote ou 4 (.. .)

Per end

cell remote DU:s (. .)

end ADT -operation

e) progremminQ notation of
parallel service cells

389

Fig. 4: Sample program and server structure

server
t~pes

application
server

database
kernel server

flle server

b) server structure for the
DBS-architecture

implementation. The system then has to be divided into parts and allocated to
processes to appropriately support the anticipated parallel execution. We propose a
separation of the mapping hierarchy into application, kernel and file server (Fig.
4b); their cooperation is performed by client-server relationships where a required
service-call is directed to a task (generic processing structure for requests). In
general, several client requests (from one or several processes) are issued con
currently (at each level). Hence, a suitable mapping of the above introduced tasks
to their corresponding server processes must be provided. Among the conceivable
solutions only multi-process/single-tasking (i.e. only one task within one process)
or multi-process/multi-tasking (i.e. several tasks within one process) may be
chosen for each of the three DBS components (Fig. 4b), when the full potential of
parallelism in our hardware structure should be exploited (Fig. 6). Multi-tasking
introduces an additional level of scheduling performed in a process. It is only
justified for reasons of high process switching overhead or by the need to
dynamically create cheap processing structures and tailored scheduling strategies.
The application server offers ADT-operations to the user. An application server
process includes the execution of some model mapping functions and the distribution
of DU's by activating several D~operations. DU's within PEirs may be performed by
asynchronous service calls. 'Ihe kernel server executes D~operations thereby using
primitive operations offered by the file server. This mapping involves functions of
the data system, access path system and parts of the storage system. Finally, the
file server manages the disc accesses. Each of those three server types can be
represented by several processes.
The kernel server works on behalf of one or more users on common data structures
(records, access paths, locking/logging informaton). Message-oriented exchange of
data/control would have an heavy impact on system performance. Therefore, common
memory for these data is an important implementation requirement. Then, some mutual
exclusion mechanism has to be provided to control access to these shared resources.
The frequency of these events makes it necessary to use direct protocols by the
participating process (e.g. semaphore-based).

3.2 Use or fUnctional parallelism
The proposed client-server model exhibits a very simple structure for the sake of
reduced inter-server complexity. As a consequence, especially the kernel server has
a significant internal complexity which may be reduced by introducing some further

390

Per begin Perend

····· ·····················--······--·:Q--

e) a t~nc hronizehon of J18rellel echons et 1 hf.i r end

Fig. 5: Synchronization of parallel actions

updote of record

fork (.. .)/ join(. ..)

····- -- --··· ·0--0--9

····O-i

"''"'"\e--o ----- <>--<
updete of replicehon'
or eceus J18lhs

b).,eeklt~ st~nehronized j)8rellel echons

server types. The expected gain of such subdivisions (e.g. simpler module
structures) will often be paid off by increased communication costs. 'The intent to
exploit parallelism, however, could be a strong motivation. On the other hand, a
refined decomr>Osition of operations and their parallel execution must be carefully
considered for the kernel server, since shrinking operation granules coincide with
a constant overhead for process communication and process switching.
Another use of parallelism, however, may be worth a closer look. Some DES-functions
and actions can be executed 1n parallel without the necessity of strict synchr-o
nization at their end (Fig. 5a). For example, locking and logging/recovery actions,
integrity checking. or access path/replica maintenance [HR85] are candidates for
applying weakly synchronized par-allel operations (Fig. 5b). Only at the end of the
resp. STA or even later in case of deferred execution some acknowledgement has to
be accepted. Obviously the price to pay is a new control structure for keeping
track of such events. In addition, error detection and recovery become more
complex. When a failure occurs, rollback 1s more difficult implying new and
extended mechanisms for error recovery. This approach also allows for an optimistic
attitude when concurrently calling functions. For example, record update can be
initiated together with the request for the corresponding lock. If this
asynchronous locking procedure does not succeed (lock is not granted), the
depending record modifications must be undone. The rationale behind this optimistic
idea is to try parallel actions with the (hopefully low) risk of bad luck.
Functional parallelism of this kind can be utilized to take advantage · of refined
server structures (or client-server relationships between kernel server processes)
without be~ fully compensated by processing overhead. It requires some sort of
inter-process communication to report the delayed end of operation. For this
purpose, a less restrictive method (FORK ••• JOIN (AS83)) compar-ed to
Parbegin ••• Parend seems to be convenient. Nevertheless, the application of
functional parallelism is less clear than the use of parallelism generated. by
semantic decomposition of operations. This idea deserves further attention.

lJ. Hardware architecture for parallel DBS-process~
Thus far, we have introduced the various levels and organizational concepts of our
D~architecture, i.e. the computational model of the -software system:
• the sta~ic view of the DES-architecture expressed by hierarchic layers
• the organization of the execution by a nested transaction concept
• the mapping of the layers to server types
• the use of dynamic relationships (client-server) between process structures of

the same or of different server types.

oppl1couon
server

kernel
server

file
server

391

gtOQrephir.
11ppl. workstations

IIppi.
process • • •

CAD
IIppi.

·············
IIppi.

Fig. 6: Hardware architecture and server allocation

IOQ file

clos.ll,i e~ .. d
mu11i-p<'"OCUSOI'"

s~st•m

As a final step, mapping of processes to a multi-processor system must be accom
plished adequately to preserve the inte~process parallelism as far as possible.
Our "ideal" hardware configuration and server allocation for the proposed type of
parallel processing is illustrated in Fig. 6. This architecture is based on general
purpose processors, for example of type MC 68020, each of them equipped with about
~ MBytes main memory. They are connected by a high bandwidth commtmication system
(bus or ring) of about 10-100 MBits/sec. Some processors are closely coupled by a
common memory partition. It is tailored to the particular processing needs of a DBS
and serves as a common system buffer (having a size of preferably 10-? MBytes). All
processors run an own copy of the OS and the DES-components in their memory. The
user process (e.g. for CAD/VLSI application) is allocated together with an
application server process to a separate processor (e.g. workstation).
The prime mechanism for communication is message-based. Access to shared data by
kernel server processes is extremely frequent; hence, a message protocol would have
severe impact on performance. Therefore, shared data is located in a memory
partition accessible for all kernel and file processes. Exclusive control is
achieved by a semaphore protocol. File and commit processes are able to read/write
pages (data and log information) to/from the system buffer. Kernel processes are
directly referencing the contents of buffer pages by machine instructions.
Since data structures can be manipulated directly, DRS-algorithms for all important
functions (e.g. buffer management, locking, logging) may be designed similar to the
centralized case. Due to the server structure, service calls at various levels and
granules must be distributed and assigned to processes in a suitable way. Hence, it
is necessary to provide a load control function [Re86], in particular for the
kernel server processes. Since these are accessing a common buffer, load control is
comparably simple. Obviously, the use of special purpose processors would have
complicated load control considerably.
All kernel server processes have the same view to the entire database - there is no
need for distributing copies or dedicating processors to database partitions.
Multi-processor database architectures without shared memory - e.g. DB-sharing vs.
DB-distribution systems- are forced to use copies of data or are restricted to
partitioned access [Ha86 J - these properties make access to data and load control
much more difficult. Of course, shared memory is then a limiting factor to

392

system's growth. On the other hand, the potential parallelism gained by decomposing
a single user operation is not unlimited (up to 3-5 DU's in a PEU). In addition,
synchronization between DU's of a PEU (at the physical level) and between user
operations does not allow for arbitrary degrees of parallelism.

5. Conclusions
We have discussed a new approach to exploit parallelism on heterogeneous data
structures. As opposed to homogeneous data structures of numerical applications,
the transformation of a user operation to allow for parallel execution is much more
complicated. We have proposed a decomposition of ADT-operations into units to be
executect concurrently thereby using the inherent sem~tic parallelism.
The parallel execution is aimed at suboperations of a powerful user operation
rather than separate user operations. Therefore, the concept of nested trans
actions (within a single o~eration) is needed to organize the dynamic flow of
control. Based on adequate process and communication concepts two different _kinds
of parallelism are considerea - semantic and functional parallelism with strictly
synchronized and weakly synchronized communication. To maximize parallel actions
the DBS-code has to be mapped appropriately to processes which in turn have to be
assigned to processors ~n a suitable way. For DES-processing of the particular
kind, a closely ¢oupled hardware architecture seems to be mandatory because
references to shared data are very frequent.

6. Ref'erences
AS83 Andrews, G.R., Schneider, F.B.: Concepts and Notations for Concurrent

Programming, in: ACM Computer Surveys, Vol. 15, No. l, March 1983, s. 3-~3.
DW79 DeWitt, D.J .: DIRECT - A Multiprocessor Organization for Supporting

Relational Database Management Systems, in: IEEE Trans. on Computers, Vol.
28, No. 6, 1979, pp. 395-~05.

Ha86 Harder, T.: DB-Sharing vs. DB-Distribution- die Frage nach dem System
konzept zukunftiger DB/DC-Systeme, in: Proc. 9. NTG/GI-Fachtagung
"Architektur und Betrieb von Rechensystemen", Stuttgart, Marz 1986.

HR83 Harder, T., Reuter, A.: Principles of Transaction-Oriented Database
Recovery, in: ACM Computing Surveys, Vol. 15, No.~' Dec. 1983, pp. 287-317.

HR85 Harder, T., Reuter, A.: Architektur von Da.tenbanksystemen fUr Non-Standard
Anwendungen, in: Proc. GI-Fachtagung ''Iatenbanksysteme in :OOro, Technik und
Wissenschaft", Marz 1985, Karlsruhe (eingeladener Vortrag), IFB 9~, S. 253-
286 •

Re86 Reuter, A.: Load Control and Load Balancing in a Shared Database Management
System, in: Proc. lilt. Conf. on D:lta Engineering, Los Angeles, Feb. 1986.

Wa8~ Walter, B.: Nested Transactions with Multiple Commit Points: An Approach to
the Structure of Advanced Database Applications, in: Proc. lOth Int. Conf.
on VLDB, Singapore, 1984,, pp. 161-171.

Ws84 Weikum, G., Schek, H.-J .: Architectural Issues of Transaction Management in
Layered Systems, in: Proc. lOth Int. Conf. on VLDB, Singapore, 1984, pp.
~5~465.

