
Coupling Engineering Workstations to a Database Server 

T. Harder, Ch. HUbel, K. Meyer-Wegener, B. Mitschang 

University Kaiserslautern 
Erwin-Schr0dinger-Stral3e 

D-6750 Kaiserslautern, West Germany 

Abstract 

A DBMS kernel architecture is proposed for improved DB support of 
engineering applications running on a cluster 01 worl<stations. Using 
such an approach, part of the DBMS code - an application-specific 
layer - is allocated close to the corresponding application on a 
workstation while the kernel code is executed on a central server. 
Empirical performance results from DB-based engineering 
applications are reported to justify the chosen DBMS architecture. 

The paper focuses on design issues of the application layer including 
server coupling, processing model and application interface. 
Moreover, a transaction model for long-term database work in a 
coupled workstation-server environment is investigated in detail. 

1. Introduction 

Complex engineering tasks involve many related issues - of prime 
importance is the integrated management of design and product data 
describing all relevant aspects of the construction process as well as 
all essential properties (technological, physical, geometrical) of the 
design objects. Approaches which have combined engineering 
systems with traditional database management systems (DBMS) have 
suffered from a number of deficiencies: Major reasons of 
inappropriate DB support for all kinds of engineering applications are: 

• Classical data models have only a limited capability for modeling 
complex objects; moreover, they provide insufficient operational 
support and integrity control. 

• The transaction model is developed for typical data-processing 
applications. Each transaction as a unit of consistency is assumed · 
to take a few seconds thereby immediately propagating all updates 
to the database. 

• Engineering applications typically require interactive computing 
environments; nowadays, powerful workstations offer tailored 
support for such use. Straightforward coupling of engineering 
systems with DBMS running on a host (server) yields slow (remote) 
reactions when DB services are requested - for a variety of 
reasons. In particular, this kind of coupling is not adjusted to the 
local processing capabilities. Furthermore, it suffers from a severe 
lack of locality of data reference since local buffers are not 
exploited at all. 

In this paper, we discuss an architecture for improved DB support 
tailored to engineering applications and for an integrated processing 
model coupling server and worl<station clusters. To motivate this 
approach, at first we report on our performance experiences in various 
engineering areas which were gained by building sizable prototype 
applications on top of a conventional DBMS. Our empirical results 
suggest the use of the DBMS kernel architecture [HR85,PSSWD87] 
where the top-most layer of the DBMS - called application layer - is 
allocated together with the application program to the specific 
workstation, while the kernel serving multiple application layers is 
running on a server. Our main concern is the design of the application 
layer. We investigate the interface between kernel and application 
layer and develop models of object processing using local buffers 
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thereby preserving high degrees of locality. Furthermore, we propose 
a transaction model adjusted to the workstation-server environment 
and its failure situations. 

2. Performance evaluation cf DB-based engineering 
applications 

Our overall goal is the investigation of suitable system architectures to 
connect engineering applications running on dedicated workstations 
with a DBMS allocated at a central server. To refine the operational 
requirements of such a coupling task, we studied the specific 
problems empirically using various prototype implementations. 
Therefore, we developed three different kinds of DB-based 
applications dealing with geometric objects: 
- a 30-CAD application for volume-oriented geometric mode ling 
- a VLSI design tool supporting optimal chip planning 
- a land information system managing geographic data. 
Our prototype approach and the principal results gained are explained 
by referring to the CAD application. Fig. 1 illustrates the overall system 
architecture consisting of graphic 110 system, CAD application and 
data management component. For our purpose, we focus on the 
issues of data management. Since no appropriate engineering DBMS 
was available, we enhanced a conventional CODASYL DBMS by an 
'additional layer' to obtain more powerful operations and data 
structures at the interface of the data management component (called 
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Fig. 1: Overall architP.cture of a CAD system for geometric modeling 
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application-supporting Interface). Note, the 'additional layer' 
approach only provides functions (tailored to a specffic application) at 
its interface, but not the requried performance, since these functions 
are implemented on top cl an unsuitable DBMS Interface (called 
record-level Interface). 

The CAD application performs the construction of solids upon user 
requests from a graphical I/O interface. The chosen approach is based 
on a volume-oriented scheme called Constructive Solid Geometry 
(CSG (RV82)); the user is guided by menues, selects from predefined 
parametric base volumes and regular operators (union, difference, 
etc.) and, thus, composes his wori<piece in consecutive steps. 

Solids are represented in the DB by CSG trees which describe the 
corresponding history of construction. To facilitate graphical 
representation and special geometric operations, a dual 
representation called boundary representation (BREP) is 
automatically derived and maintained by the evaluator and stored in 
the DB. The required type information for the structure view and the 
geometry view is shown in Fig. 2 schematically as kind of Bachman­
diagram for CODASYL data types - set names are dropped, relation 
records (mapping of n:m-relationships) are represented by small 
circles, cardinality restrictions indicate some structural integrity 
constraints. Note, Fig. 2 only illustrates the most important DB­
schema part; a complete product model governing the construction 
process would include technological, physical and organizational 
submodels as well. 

let us refine our view of the geometry model which Is used to indicate 
severe performance problems of geometric modeling based on 
traditional DBMS approaches. The kernel part of the geometric model 
is given by the record types BREP, Face, Edge, Point and the 
corresponding relationships (most of them are n:m). lt allows for and 
guarantees object modeling without redundancy. However, the 
resulting representations may lead to tedious and poor modeling 
algorithms since implicit information, e.g. all edges belonging to a 
particular track, have to be derived over and over again. Hence, it may 
be advantageous to provide useful redundancy in order to simplify 
the modeling algorithms of the application component. On the other 
hand, such specific, deliberately designed redundancy increases the 
complexity of data management and enhances the mapping 
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overhead thereby influencing the performance of the data 
management component. With the hope of valuable insights, we 
therefore added the redundant record types Track collecting edges 
of particular faces, SNBHD and MNBHD (single and multiple 
neighbourhood) to describe the specific environments of points 
[HHLM87). 

The view given by the DB schema is the one of the record-level 
interface (Rll). The corresponding manipulation language - the 
CODASYL DML - embodies navigational and record-oriented 
operations (e.g. FIND NEXT WITHIN SET) which frequently depend 
on cursor positions and set references. These interface properties 
should be kept in mind when the workload at the Rll created by 
geometric operations is evaluated and interpreted. As compared to 
the RLI, the gain of abstraction at the application-supporting interface 
(AS I) may be made clear by the example operation sketched in Fig. 3. 
The given program is executed at the ASI to generate a cylinder 
approximated by a polyeder. This program, in turn, is invoked at the 
application model interface (AMI) by a single operation POL YCYL(n) 
where n determines the number of lateral faces as an actual 
parameter. 

POL YCYL(n) is used as a first example to reveal the processing 
overhead needed to create the DB representation of cylinders • 
subject to various degrees of approximation. To simplify our 
investigations, we developed a fairly general measurement and 
evaluation tool which recorded events at different levels of 
abstraction. The results for POL YCYL(n) are summarized in Table 1. 

POLYCYL (n) 5 25 50 

AMI 
complete BREP-schema 
ASI 64 304 604 
RLI : a) simple subschema 1958 15078 41828 

b) use of locality -1850 -10800 -25600 
c) use of context knowledge -1450 -7400 - 14800 

Kernel part only 
ASI 39 179 354 
RLI d) eliminated redundacy 1179 6159 114!\4 

Table 1: Call frequencies for the BREP generation of POL YCYL(n) 
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Fig. 3: Cylinder approximated by a polyeder and its generation 
procedure 

Hence, a cylinder generation with 50 lateral faces consumes 604 
operations at the ASI and 41828 operations at the All. 

This vast amount of operations for such simple object creation is so 
incredible that it requires some further explanation and interpretation. 
The costs at the ASI is clearly linear with n, whereas the overhead at 
the RLI exhibits a strong non-linearity. Hence, ASI may be interpreted 
to represent a 'natural' interface for the required kind of application; of 
course, this is not true for All. 

Table 1 additionally indicates some optimization efforts performed 
after thorough analysis of the measurement results. 
a) The initial solution incorporates the subschema concept of 

CODASYL systems with at most one occurrence per record type 
under control and record-oriented manipulation. Rereference 
typically leads to repeated DBMS calls due to lack of preserving 
locality in the working area above RLI. 

b) The ASI-Rll mapping was modified to introduce a working area 
buffer to enhance locality of record reference, that is, more than 
one occurrence per record type was kept in the buffer if needed. 
Hence, many search operations within sets, etc. could be 
achieved without reaccessing the DBMS. 

c) Another great reduction of overhead was realized by specializing 
ASI-operations by explicitly using context knowledge. Since this 
knowledge is application-dependent, it must be made available 
by the application. 

d) In order to show the influence of our modeling redundancy, ·the 
operations related to the kernel part of the geometric model were 
explored separately. However, even this very simple and spartan 
modeling yielded more than 104 DBMS operations. 

~on NDMU 

UNION(CY!..(3), CYL(3)) 16051 

UNION(CY!..(4), CY!..(4)) 20658 

UNION(CY!..(6), CYL(6)) 31432 

Fig. 4: Union of two parameterized solids (POLYCYL's) 

A second example is used to demonstrate the processing overhead 
during construction, that is, the costs for modifying and maintaining 
existing structures. Here, the generic operation is 'UNION(SOLID1, 
SOLID2)' where SOLID2 is derived from SOLID1 by a simple 
displacement. Fig. 4 sketches graphically the kind of operation. To 
facilitate comparison, the chosen solids always produce the same 
topological effects; the cost of the UNION operation (using the simple 
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subschema concept) is listed for a few parameters (POL YCYL is 
abbreviated by CYL). Again, the performance figures indicate a 
tremendous mapping overhead. 

To identify lhe inherent causes of the mapping problem, it was 
attempted to figure out the sources of overhead. As shown in Fig. 5, 
there exist some unique trouble spots. The n:m-relalionships 
especially for Face and Edge as well as for Edge and Point are 
responsible for a huge portion of the overhead. This behavior may be 
explained by successively inserting face-edge representations; in 
case of the front face n (50) edges have to be connected in various 
set occurrences, each one invoking positioning and store operations. 
The comparison of Fig. Sa and 5b reveals some important properties. 
Reference frequencies are not uniformly distributed; they vary 
depending on object types and kind of operation. For example, some 
relationships are not touched at all during object creation, whereas 
they are frequently used during object maintenance. 

Neither processing oplimizations nor reduction of modeling 
redundancy has confined the overhead to a reasonable limit, e.g. for 
interactive construction. Although a fraction of the costs is attributable 
to the properties of the CODASYL DBMS-interface ·for example, 
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frequent positioning of cursors. subschema concept and explicit 
access path navigation - the situation is not fundamentally improved 
by the other classical data models. Note, the relational model also 
requires a DB schema with a relation between two entity types 
associated by an n:m-relationship. Moreover, several thousand 
operations should be expected for POL YCYL(SO) in the relational 
model - less than for the CODASYL model but more expensive ones. 
e.g. joins compared to FIND OWNER/FIND MEMBER. 

3. Overview of the system architecture 

In our other prototype applications, we have obtained similar 
performance results. To drastically reduce the overhead 
accompanying the work in a CAD environment, we were finally 
convinced by the derived performance figures that a better DB· 
approach to engineering applications should obey the following 
principles: 

• The DB-interface to the CAD application should incorporate some 
object orientation, at least as powerful as the given application­
supporting interface (Fig. 1 ). 

• The data model interface should be substantially more powerful 
than the RLI; it should be set-oriented and should embody 
appropriate features for object handling support. Furthermore, 

-:.-=---
- - ----- ------- --objccl·supporting 

private 
database 

inlcrface privale 
datlbasc 

Fig. 6: DBMS kernel archHecture ·overall view 
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tedious and cumbersome modeling of n :m-relationships should be 
avoided. 
~ost important, locality of object processing should be preserved; 
n should support as close as possible the respective application. 

A consequence of these requirements, observations, and ideas is 
~he so-call~d !?BMS kernel architecture [HR85, Da86,PSSWD87], as 
Illustrated m F1g. 6. Although at the first sight similar to the 'additional 
layer' architecture, closer consideration reveals a number of important 
differences. First of all, a strong separation is assumed between 
kernel and applicatio~ layer. The kernel is defined to be application· 
mdependent. it real1zes neutral, yet powerful mechanisms for 
support ing engineering applicat ions which include storage 
techniques for a variety of object sizes, flexible representation and 
access techniques, basic integrity features, etc. 

The application layer (AL) achieves kind of tailoring mechanisms 
useful for specific applications. Since only neutral mechanisms are 
?fle~ed by the ~ernel .. the required orientation towards the application 
1mpiles that object 0~1entation and most semantic issues, e.g. object­
onented representations and operations as well as integr;ty checks 
must be handled within the AL. Hence, the AL refers to lower level 
objects to create and manipulate more powerful application objects. 

The clear division between kernel and AL is necessary for 
simultan~ouslr providing a multiplicity of different application layers 
cooperat.1~g. w1th. the. ~ame kernel , as indicated in Fig. 6. Apparently, 
such a diVJS IO~ s•mpilf•es the allocation of AL's to separate processors 
(e.g. workstallons) and does not prohibit the integration of kernel and 
AL's in a single host environment. 

For our purpose, it is only necessary to identify the various interfaces 
in slightly more detail. The data model interface is characterized as an 
object-supporting interface; it is assumed to incorporate the following 
properties: 
• modeling techniques to specify the structure of a complex or 

composite object type consisting of various component types 
• dynamic composition and decomposition of data structures 

belonging to different types (record types) 
• set-oriented access to fetch or manipulate a set of heterogeneous 

records 
• support for structural integrity checking. 

The interface between engineering application and AL is qualified by 
the term 'object-oriented interface·. it is an higher level interface 
compared to the data model interface of the kernel. Its orientation is 
more towards application objects whereas the data model interface 
offers more or less neutral object support. Some essential properties 
of this interface are: 
• Application objects have an identity; they can be handled as 

integral entities. 
• Such objects have an internal structure; reference to structured 

subcomponents is possible. 
• Data abstraction and encapsulation is provided (user funct ions; 

ADT's) . 
• Objects are persistent. 

Compared to Fig. 1, the expressiveness of the various interfaces is as 
follows: 
• the object-oriented interface is (slightly) more powerful than the 

application-supporting interface 
• the object-supporting interface is much higher than the record­

level interface, but definitely lower than the former application­
supporting interface, since application needs have to be satisfied 
in the AL. 

We have designed the MAD model (Molecule Atom Data model 
[Mi87]) which provides the properties of the object-support ing 
Interface sketched above. Currently, we are implementing a DBMS 
kernel PRIMA which offers the MAD model at its interface; an overview 
of Hs design and architecture is given in [HMMS87]. Hence, we can 
concentrate on design considerations for the AL in the following. 



4. Structure of the appllca!lon layer 

Interactive manipulation of complex engineering objects requires the 
use of ellective communication protocols between kernel and AL as 
well as a large share of local DBMS processing within the AL in order 
to guarantee satisfactory response times. On demand, complex 
objects have to be efficiently extracted and transferred from the 
public DB (managed by the kernel on a server) to the workstation. 
Then, the AL takes care of these objects- usually for a long time; for 
temporary storage, it may use a private DB on an own disk. To refine 
the problem, the following questions have to be considered in more 
detail: 
• How does the workstation (and the application program) get its 

data? 
How does the application program at the workstation manipulate 
these data? 

• How should the changes performed at the workstation be 
communicated back to the server? 

• How should the server database system reflect these changes? 
To answer these questions, we introduce the so-called processing 
model of the AL and some implementation concepts for local buller 
management. 

4.1 Processing model of the appllca!lon layer 

The overall model describing the DBMS activities in the workstation is 
called the processing model of the AL. Its prime purpose is to 
provide a framework for the exploitation of locality. The examples of 
section 2 may convince the reader that locality should be brought 
closer to the application, even in conventional DBMS applications 
(SR84]. Ideally, it is desirable to make a mechanism available that 
enables the application to reference an object directly, for instance 
using the pointer concept of a programming language. 

With such a typical referencing behavior in mind, we propose a 
processing model aimed at high locality of object references . 
Extraction of data from the public DB Is similar to the approach 
described in [LP83]. A design transaction issues a checkout 
request if existing design data is needed. Such a request is used to 
fetch a design object from the public DB. More checkouts may follow 
when additional data is required by the application. All checked out 
data is protected by the kernel against concurrent access. The design 

transaction. 

Summarizing the design transaction, we can identify the following 
characteristics: 

isolation against concurrent design transactions (provided by the 
synchronization capabilities of the server DBMS); 
design cooperation only via already checked in {committed) data; 
possibly n checkout requests (n~O) in combination with no or only 
one checkin request; 
in between there is local manipulation accompanied with the 
accumulation of design data changes. 

Fig. 7 depicts the scheme of such a design transaction following the 
proposed processing model. After the start of the design transaction 
it is allowed to checkout the design data needed, using possibly 
several checkout requests. Then local manipulation is performed on 
the design objects allocated in the object buffer. lt can be structured 
by issuing one of the following requests: 
• SAVE, saving the current design stage; 
• RESTORE, backing out to a previously saved design stage; 
• SUSPEND, interrupting the manipulation activities (implies a 

SAVE); 
• RESUME, continuing an interrupted design transaction. 
Thus, SAVE and RESTORE provide a user-controlled recovery 
concept for the design process, i.e. saving a consistent design stage 
or wiping out the latest actions, while SUSPEND and RESUME 
support design interruption guaranteeing subsequent processing 
without loss of information. 

Structuring a design transaction with these operations introduces 
three dillerent states for the transaction. First, it is simply unknown, 
until the START command is issued. Then it becomes active, that 
means, it is known to the system and it can access and manipulate 
design data. Doing checkout, SAVE, or RESTORE leaves the trans­
action in the active state, whereas SUSPEND moves it to a semi· 
active state. A semi-active transaction continues to hold all the locks 
and preserves all its checked out design data in the private DB. Upon 
a RESUME request, the transaction reenters the active state and 
finds its specific processing environment as it left it. The final END of 
the design transaction checks in the newly constructed design 
objects to the public DB and 'forgets' about the transaction, i.e. turns 
it to the unknown state. 

objects are temporarily stored in the workstation; they are organized in In the following, we want to describe an adequate implementation 
a special main memory structure called object buffer which offers concept for the above introduced general processing model {cf. Fig. 
last operational access and a pointer-like reference mechanism. For 7). Obviously we have to be aware of the following optimization 
recovery purposes and for saving particular design states, copies of criteria: 
the design objects may be preserved in the private DB. A design • minimal number of workstation-server communications 
object is committed to the public DB by a check In request. Since • minimal volume of data transfer 
commit implies giving up the right of unilateral rollback, the separation • distribution of the work to do among workstations and server, 
of checkin and end of design transaction is meaningless. Hence, we avoiding duplicated work. 
argue for the delay of all checkins to the end of the design They are supposed to yield high degree of stte autonomy and 
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optimized worl<station-server cooperation. 

4.2 Implementation of the application layer 

Describing the implementation aspects of our processing model, we 
first introduce the basic software architecture (Fig. 8). The 
functionality of the DBMS kernel interface, which is called object­
supporting interface (OSI), is determined by the MAD model. On top 
of this interface, we have designed a component, called object buffer 
manager (OBM). The main task of the OBM is local handling and 
organization of all object-related information needed by the 
application. Hence, the OBM consists of the preparation component 
and the object buffer. The preparation component is responsible for 
fetching and transferring of data from the DBMS kernel to the object 
buffer and vice versa. The object buffer is a large main memory buffer, 
that realizes the 'near-by-application locality' and supports the 
representation of the molecules. In the MAD model, 'molecules' are 
dynamically defined as sets of 'atoms' (i.e . records, tuples), 
interconnected by relationships with given semantics. A molecule is 
supposed to carry all information that describes a design object. A 
further component of the 013M is the cursor maintenance component 
which supports the processing by a structure-oriented cursor 
management. Hence, the OBM establishes a powerful data handling 
interface (object supporting programming interface) at the workstation 
site. Together with the application dependent program modules lt 
forms the application layer. Fig. 8 shows the basic software 
architecture; in addition, it indicates their allocation to the associated 
hardware components. Furthermore, it illustrates that the interface 
between workstation and server lies inside the OBM layer, that is, our 
design provides an agent of the OBM at the server site. We assume 
that this design decision will facilitate all workstation-server crossing 
operations including checkout and checkin. 

After describing the architectural aspects, we now want to 
characterize the Information necessary for workstation-server 
cooperation in our processing model. First, we have the query, 
defined and later activated with the actual query parameters by a 
program module in the application layer. The power ·for query 
definition Is given by the molecule query language (MOL). Second, 
we have the answer Information Including the query result data 
aggregated by the DBMS kernel. This Information is structured as a 
set of molecules. Third, there is the modification Information 
which comprises all insertions, updates, and deletions made by the 
application layer. lt is encoded as an atom list enhanced by 
modification flags and specific information about the modification 
environment. Fig. 9 sketches the level of abstraction for all three kinds 
of information. lt seems to be clear that the molecule set of the answer 
information is associated with the checkout operation, and the atom 
list of the modification information corresponds to the checkin 
operation. Hence, we have a high level of abstraction to formulate the 
query and to represent the result, and we have a low level to 
propagate the modifications minimizing the amount of data to be 
checked in. 
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Fig. 8: Components of the application layer 
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In the following, we concentrate our discussion on the answer and 
modification information, because these carry the more interesting 
Issues. Especially, the organization and the internal data structures of 
the object buffer will be introduced. The answer information consists 
of a molecule set. Each molecule is composed of a structured set of 
atoms. Each of them is represented by a list of attributes and is 
identified by a special attribute, called atom identifier. Molecule 
identification Is done by identification of the root atom. Fig. 10 shows 
the essential aspects of data structures to represent answer 
information in the object buffer. The molecule list contains the 
identifier of all molecules constituting the result set of the query. A 
special hash function h delivers the corresponding root atom index in 
the atom table. The table entry includes some maintenance 
information. The field modification indicates the type of modification 

molecule list atom table 

I 
h (ID) 

~ ... ID 

area table 

~~aw~s~ 
C main memory 

ba.~e address 

area 
address 

mam memory area 

Fig. 10: Organization of the object buffer 



(insert, delete, update). Two separate address fields determine the 
main memory address of the atom. The area field contains an index of 
an entry in the so-called area table, which holds the base address of 
one main-memory area. This base address incremented by the 
offset field finally yields the atom address within the area. The area 
concept prevents scattering of the main memory by numerous small 
atoms and supports the relocatability of the entire molecule set. 
Relocatability is very useful in such an environment, because the 
molecule set is frequently moved from the main memory to the private 
DB and vice versa (SUSPEND, RESUME, SAVE, RESTORE). In this 
case, relocation is managed quickly by updating only the small area 
table. The relationships constituting the molecule structure are 
represented through special reference attributes in the atoms that 
contain identifiers of other atoms. 

The above sketched data structure represents a single result set of 
just one query. From a logical point of view, it is a snapshot of a 
database partition. So it seems consequent that an atom is not 
represented in a redundant manner, if it belongs to more than one 
molecule within the same result set. On the other hand, an atom is 
redundantly represented in different result sets. Such multiple 
occurrences are known to the programs using the object buffer and 
have to be controlled and managed by them. 

The modification information is embedded in a special main-memory 
area, the so-called modification area. lt contains all inserted, 
updated, or deleted atoms of the result set. Therefore, we have no 
update in place for the first modification of an atom. The updated atom 
is placed into a modification area, the corresponding modification flag 
of the atom table is raised, and the addressing fields are adjusted. 
Then, subsequent modifications of the same atom are executed with 
an update in place semantics. The modification areas provide some 
kind of log information at the atom level and are used for propagation 
of accumulated changes back to the public database (checkin). 

The question we want to discuss now is how data in the object buffer 
is manipulated by the ADTs of the application layer. The atom is the 
smallest unit of data affected by any modification. We need a cursor 
concept to identify a single atom within the atom set defined by a 
molecule and within the molecule set given by a resuH set. Such a flat 
cursor points to only one atom at a time. In principle, it Is sufficient for 
reaching all atoms in the result set, because one can navigate via the 
reference attributes in the atom data. Nevertheless, the processing 
characteristics observed in section 2 have shown that it is useful in 
many situations to have a more complex cursor, for example a 
hierarchical one. Often, there are some hierarchical subunits of 
processing within a molecule. In our implementation, such a 
hierarchical cursor is defined by a list of atom type names, which marks 
the paths for the cursor hierarchy, and by identification of the root 
atom. The concept of hierarchical cursor may be implemented by a 
hierarchy of dependent flat cursors. Navigation via one cursor 
automatically affects the subordinate cursors. The Idea to support 
more descriptive (as opposed to procedural) cursor operations is 
worth more detailed consideration, but it lies beyond the scope of this 
discussion. 

The next question is how all those queries, result sets, molecules, 
cursors, and atoms are reflected in the programming language which 
is used to write application-dependent program modules. In principle, 
there are four different approaches for language binding (LaP83]: 
• call interlace, 
• simple host language extension (e.g. CODASYL COBOL-DML), 
- embedding database languages in general purpose languages 

(precompiler, e.g. SOL), 
• integrated languages (new data types, e.g. PASCAUR). 

The fourth approach has the advantage that the internal and 
temporary data is compatible with the external and persistent data, 
because they have the sarr" !ogical structure. But, it is not the best 
procedure from an implemi.. ,;tation point of view, because a new 
language must be designed, a compiler must be written, and so on. 
So we decided for the third approach designing a host-language 
embedding using a precompiler. 

The use of precompiler statements is sketched in Fig. 11. 11 depicts a 
programming scheme of an ADT definition. 11 includes the declaration 

and the processing of queries, results, and cursors. The declaration 
part is 

ADT: adt_name 

declaration of types and variables for molecules, result set 
of queries and cursors 

Initialization 

assignment of result-set variable (if prefetching is possible) 
initilizing the ADT 

Operation: Operation 1 ( ... parameters ... ) 

assignment and modification of result sets, molecules, and 
atom variables using the cursor capabilities to define and 
process subunits of work 
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Fig. 11: ADT program scheme 

transformed into a cursor definition and a declaration of the 
corresponding internal data structures, e.g. for the atoms constituting 
the molecules. The data structures are derived from the external 
schema of the public DB. In the processing part of the ADT, result 
sets of queries can be assigned to variables of the respective type, 
the so-called result variables. The assignment causes the activation of 
the query and thus a checkout, including the binding of program 
variables to the formal query parameters. Afterwards, the result 
variables can be read and manipulated with the help of the hierarchical 
cursors introduced above. The precompiler transforms these 
operations into accesses to object buffer tables and pointer 
assignments. 

The application dependent ADT's are themselves used at the object· 
oriented interface by application programs (at a higher level) . In 
addition, this interface offers some general and application­
independent operations to organize the designer's activities. For 
instance, a designer can determine the begining, the end, the 
suspension, and the resumption of a design process. Furthermore, 
he can activate an ADT which makes the corresponding ADT 
operations available. The related ADT program (cf. Fig. 11) is loaded 
and its initialization part is executed. Analogously, an ADT can be 
deactivated thereby giving up the right to further execute ADT 
operations. But it does not mean that design objects are made 
available to other designers; note, checkin is postponed until the end 
of the design process. When a designer finally declares the end of 
design process, it is assumed that all the modified design objects are 
to be checked in to the public DB. 

5. Implications of server-workstatlon cooperation on the 
transaction model 

The processing model described in the previous section needs 
support from a transaction model that copes with various types of 
failures and with the issues of concurrencv on shared data. lt has 
been stated frequently that engineering transactions significantly 
differ from conventional transactions (LP83, Ka84, KLMP84, BKK85] . 
They tend to be very long which makes it inadequate to treat failures 
by rollback to the very beginning and to handle conflicting access to 
data objects by locks and waits. Instead there should be 'fire-walls' 
inside a transaction that limit the scope of undoing and provide a 
starting point alter failure. 

Additionally, access to design objects that are 'almost complete' could 
be granted to colleagues working on the same project before the 
transaction ends. But even in that case designers perform work steps 
on an object, during which no one could use it, because it is too 
rough, too incomplete, too fuzzy to be understood. The transaction 
that belongs to such a work step must therefore remain isolated and 
must appear atomic to all other designers. lt preserves the minimum 
consistency required even for colleagues. (The degree of 



consistency is application dependent). This is meant by the term 
'design transaction' and will be the key issue of this section. 

5.1. The user's view of failures and workstatlon 
transactions 

A design transaction, although only a small portion of the whole 
design project, can still be long and needs recovery points inside. 
lt consists of a sequence of interactions, i.e. function calls, that may 
change the state of the system by modifying data. Ideally, creating 
such a new state should also establish a recovery point. But this may 
involve significant overhead. 

A recovery point is intended to cope with failures. This comprises a 
wide range from simple operation failure to power reset. In any case 
the system state is set to the latest recovery point, and the user is 
informed about the type of failure: A transient failure (e.g. deadlock) 
encourages retry of the same operation, whereas in case of a 
permanent failure (e.g. address error in program) this would 
reproduce the failure. Permanent failures can be bypassed 
sometimes by another user action. In general, it is necessary to call for 
the system maintenance. 

Not only the system can do wrong. If the designer realizes that his 
object is not going to satisfy the requirements, he might wish to return 
to an earlier stage of the design, 'wiping out' anything he has added or 
changed since then. Defining these stages as well as selecting the 
one to return to cannot be done by the system. lt must be done 
explicitly by the user and leads to the concept of savepolnts. 
Savepoints are often unified with recovery points [Gr78), but there Is 
no need to do so, and the implementation can be different (imagine a 
version concept to provide savepoints). The system can use 
savepoints as recovery points, since the user will know about the 
related state. But the user cannot use recovery points as savepolnts, 
because he does not know when they are taken. 

As the goal is to hide as many failures as possible or at least minimize 
their effects, there should be much more recovery points than 
savepolnts . Only If this comes out to be too expensive, recovery 
points will be unified with savepolnts. Anyway, it seems appropriate 
that the SUSPEND command introduced in section 4 implies the 
creation of a savepoint. 

Even this abstract view of failure and recovery leads to three different 
concepts in the workstation (Fig. 12): 

- the design transaction holds the locks on the data (in the 
server) to provide isolation and preserves minimum consistency, 

- the recovery transactions that are defined by the recovery 
points and are ideally equivalent to a user operation (a single 
interaction) in order to minimize loss of work after failures. However, 
due to performance considerations usually a sequence of 
operations is secured by a recovery transaction. 

- savepolnts serve as a means for user-initiated rollback to reach a 
previously marked design stage. They confine recovery 
transactions and may be implemented by a version mechanism, 
nested transactions [Mo81], or some specialized technique. 

From the user's point of view, the property of failure atomicity is only 
assigned to recovery transactions. 

design transaction 

w~-~00 =~. ,l~z~~ /\'!~~ 
--------------~------r------------r-- - ~-

clx:dcin{checkout 'I I I -~__j 
Server transacttons • · ~ 

Fig. 12: Transaction nesting in workstation and server derived from 
requirements at the user's interface 

5.2 Transactions across the workstatlon-server boundary 

The user regards the system as a whole. On the next level of 
implementation or refinement there are the workstation and the server 
cooperating to perform the user's operations. Their mode of 
interaction has been introduced in section 4. Along goes a 
refinement of failures: Workstation and server may fail independently, 
in each case the failure may concern just one single operation or the 
whole node, and the failure may be transient as well as permanent. 
Permanent node failures, e.g. hardware failures, are not discussed in 
the following, as they need special treatment by the administration 
(releasing or switching locks in the server to continue on another 
workstation) . The overall goal for the treatment of all other failures is 
mutual masking: An error on the workstation should not bother the 
server and vice versa. This is only possible if recovery actions in one 
node do not include UNDO operations in the other node that is still 
running. How this can be achieved will be discussed for any type of 
failure. 

Before that, a closer look on the private DB in the workstation seems 
appropriate. The data objects can be in different states, as indicated 
by Fig. 13. When they are loaded from the public DB of the server, 
they are supposed to be consistent. And, of course, they are still 
persistent in that they can be loaded again when they are lost due to a 
failure. Any modification turns them into a state of being temporary 
and usually inconsistent. Further modifications may be required to 
reach a new consistent state. But the data remains temporary until a 
SAVE command is issued to create a savepoint. This can be done 
with inconsistent data as well as with consistent data. 
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In the diagram of Fig. 13, data has to be saved before it can be 
checked in to the public DB. And it has to be consistent, otherwise 
the checkin will be repelled. A failure on the workstation or the 
RESTORE command (return to savepoint) put the data back to a 
persistent state, thereby changing the contents of the data (not 
shown in Fig. 13). According to the principle of mutual masking, 
server failures should have no Impact at all on the state of the data. 
And this implies that 
- data checked out is stable in the server 
• data checked in does not get lost unless the workstation explicitly 

requests its UNDO. 

All transitions in this diagram (Fig. 13) require a transaction to be 
active, while a semi-active transaction automatically puts all the data to 
one of the two persistent states (cf. section 4.1). 

A final remark on Fig. 13: 1t does not distinguish recovery points from 
savepoints. If the modify trans~ions correspond to user operations, 

chcckout checkin 

··· ···· ···· ····• 

modify 

failure, 

···· ·· ····· ··· ··· ········· 

SAVE 

failure, ~ RESTORE 
. . . 
··· ···· ····· ··········· ···· ··· ·· ···· ···· ·· ·· ··· ·· ··· 

Fig. 13:State diagram for the data in the workstation's private 
database 



the temporary states disappear. The diagram is more general in that it 
can take into account the internal structure of user operaiions 
consisting of several consecutive modifications. Then, every 
operation ends with an internally generated SAVE defining the end of 
the recovery transaction. 

The concept of wor1<station-server coupling is based on the strong 
locality of engineering wor1<. In the context of transactions, this means 
that most of the recovery transactions will not contain any server calls, 
i.e. checkout or checkin. They should be managed completely by the 
wor1<station without any impact on the server. Of course, this requires 
a local recovery manager as well as local log files. 

The server only knows about the recovery transactions that contain 
server calls. As indicated in Fig. 12, it regards them as checkln or 
checkout transactions. A non-trivial question Is whether the 
server should also know about the context of these transactions, that 
is, about the savepoints and the design transaction. The alternatives 
are to be discussed in detail. 

5.3 Flat or nested transactions In the server 

A straightforward approach treats every checkout or checkln 
transaction as independent and does not take into account the 
internal structure I.e. regards it as 'flat'. The first server call makes a 
recovery transaction on the wor1<station known to the server and 
initiates a checkoul/checkin transaction. Ending the recovery 
transaction then includes an additional server call as part of the two· 
phase commit (2PC, [Gr78]) which is required to guarantee that either 
both transactions end successfully or none of them. Hence, this is the 
two-processors case of a distributed transaction. But after that, the 
server forgets about the checkout/checkin transaction. The 
consequences of this are: 
1 . A failure during a recovery transaction that includes server calls - be 

it on wort<station or server • usually Involves the other system and 
requests UNDO on it. The goal of mutual masking Is missed. 

2. Establishing savepoints (in Fig. 12) and RESTORE processing are 
very complex operations that comprise transactions and 
compensating transactions In the server. 11 can be very expensive. 
Even if only checkout transactions have been performed since the 
savepoint, RESTORE processing must notify the server to make it 
release the related locks. Possibly a good implementation employs 
version management on the server DBMS. 

The simple approach has a much severer consequence. As any1hing 
is committed on the server at the end of the recovery transaction, 
locks to be held on the design objects until the end of the design 
transaction cannot be provided by the server DBMS. Instead. a normal 
data structure (e.g. an OBJECTLOCK relation as In (LP83]) is used to 
keep the locks. lt must be read by any wort<station inside a checkout 
transaction and must be updated to reflect the granted locks. The 
term 'application locks' will be used to refer to this technique. 
Advantages are 
• failures on the server do not affect the results of committed 

recovery transactions. Thus the locks survive failures (persistent 
locks) 

• semantic knowledge can be assigned to locks. As the data model 
does not force objects to be disjoint, in many cases the semantic 
disjointness of objects cannot be derived from the DB schema. 
Then, the DBMS must control.access to all the tuples or atoms in 
detail which imposes an enormous overhead. The only way to 
avoid it is exploitation of semantic knowledge. 

Disadvantages are: 
• locks are not controlled by the DBMS. Access In spite of existing 

locks is not rejected. 

There are some troubles with this concept of simple flat transaction In 
the server, mostly due to the implementation of SAVE and 
RESTORE, the necessity of application locks, and the insufficient 
masking of server failures. 11 has already been stated that the model of 
user interaction leads to a nesting of transactions in the wort<stalion. 
So it is worth investigating whether the concept of nested transaction 
could be expanded to include the server. 
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Nested transactions have been introduced by Moss [Mo81). 
They have been implemented in a number of experimental systems. 
A recent article by one of the authors (HR87] refines the concept by 
distinguishing the synchronous and asynchronous execution of 
subtransactions as well as single call and conversational interlaces. 11 
has also shown that savepoints can be used to reduce the transaction 
UNDO and the amount of work to be repeated after restart. This 
concept can be applied to the wor1<station-server configuration. 
First, there is a nesting above the recovery transaction . If it is 
maintained by the server as well, this has a number of consequences: 

Locks acquired by recovery transactions are not released at the 
end of transaction. They are inherited to the parent transaction. If 
the parent resides on another processor, a local agent is created 
that represents it. The agent will be discussed in more detail. 

• Application locks are no longer needed. More than that, they are 
completely impossible. Getting an application lock is implemented 
as an update of a normal data structure (e.g. an atom) that sets a 
write lock on this piece of data. Since the write lock Is not released 
before the end of the design transaction, other workstations 
cannot read the lock information ·which makes it useless. Hence, 
no semantic knowledge can be used for locking. 

• Implementation of SAVE and RESTORE is much easier, since it 
could be done by opening a new subtransaction and aborting it, 
which is both reflected on the server directly. There is no need for 
compensating transact.ions. 

But what about the persistence of locks? And what is undone by a 
server failure? To answer these questions, the agents have to be 
investigated more thoroughly. Fig. 14a shows the dualism of 
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recovery 
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a) fk11 rerovery transaction 

recovery 
transaction 

design transaction 
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design transaction 

server<all transaction 

b) internally nested recovery transaction 

Workstation 

Server 

Fig. 14: Dualism of transaction nesting hierarchies on workstation 
and server 



transaction hierarchies on the workstation and on the server. A 
recovery transaction up to now is a single transaction that spans both 
processors, I.e. its end is synchronized by a two-phase commit. The 
nesting inside a recovery TA is discussed later. 

The durability of a recovery transaction is subject to the success of its 
parent transaction. But it must be durable as long as the parent 
transaction lives. Therefore, the agent of the parent does not only 
inherit all the locks, but also carries the UNDO and REDO information. 
lt survives all server failures. In other words, as long as there is no 
active subtransaction, the agent is always ready to commit. In some 
way, the agent is always in a state comparable to the semi-active state 
of the design transaction. 1t guarantees the persistence of locks on 
the server and limits the scope of recovery to the recovery 
transaction. 

Still the goal of mutual masking is not reached yet, for a recovery 
transaction also contains a considerable amount of work on the 
workstation that Is destroyed by a server failure. To advance on failure 
masking, the idea of nested transactions can be u!ilized inside a 
recovery transaction as well, making each single server call (usually an 
MOL statement) a subtransaction. Fig. 14a is then modified as shown 
In Fig. 14b. 

The recovery transaction now itself Is represented on the. server by an 
:~gent with the single call transaction as a subtransact•on. A server 
failure causes just the single call to be wiped out. In case of a 
permanent failure a message is sent to the workstation and the 
recovery transaction there • still alive! - can decide what to do. The 
same goes for transient failures, if no input logging is done by the 
server (could be too expensive). A server failure between two calls 
has no effect at all on the workstationl Nevertheless, a severe 
obstacle could be the overhead induced by writing the UNDO and 
REDO information at the end of every single server call. If this turns 
out to be too expensive, one has to go back to flat. recovery 
transactions, diminishing the degree of mutual masking of failures. 
But even thcil the user need not be Involved In the treatment of 
transient failures. 

6. Conclusions 

Engineering applications generate huge workloads for DBMS when 
accurate data models of the design objects are to be maintained by 
them. Convincing advantages, however, vote for DB-based 
approaches. Therefore, advanced DBMS should be designed and 
tailored to specific working environments to support engineering 
applications and to make interactive designer work feasible. The 
difficulty of this goal was demonstrated by a number of performance 
figures derived from realistic prototype applications. 

Our design of providing database management services. for 
engineering applications running on dedicated workstat1ons 
observes the principle of 'near-by-application' locality. Based on the 
DBMS kernel architecture we have introduced and refined the design 
of an application-specific DBMS layer with its processing model and 
implementation. The distribution of DBMS work across server and 
workstation as well as the particularities of engineering applications 
call for a transaction model different from business applications. A 
design transaction exhibiting an Internal structure (nesting) was 
proposed to support long-term designs. Moreover, such a trans­
action model should include the cooperation among workstation and 
server thereby mutually masking all failures as far as possible. 

Our current implementation of the workstation-server coupling will 
provide more Insight in the various issues discussed. Thus, we hope 
to demonstrate the feasibility of our approach and, in particular, of the 
'near-by-application' locality. Furthermore, we will gain more 
experience with the relevant performance problems of engineering 
applications. 
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