
Coupling Engineering Workstations to a Database Server

T. Harder, Ch. HUbel, K. Meyer-Wegener, B. Mitschang

University Kaiserslautern
Erwin-Schr0dinger-Stral3e

D-6750 Kaiserslautern, West Germany

Abstract

A DBMS kernel architecture is proposed for improved DB support of
engineering applications running on a cluster 01 worl<stations. Using
such an approach, part of the DBMS code - an application-specific
layer - is allocated close to the corresponding application on a
workstation while the kernel code is executed on a central server.
Empirical performance results from DB-based engineering
applications are reported to justify the chosen DBMS architecture.

The paper focuses on design issues of the application layer including
server coupling, processing model and application interface.
Moreover, a transaction model for long-term database work in a
coupled workstation-server environment is investigated in detail.

1. Introduction

Complex engineering tasks involve many related issues - of prime
importance is the integrated management of design and product data
describing all relevant aspects of the construction process as well as
all essential properties (technological, physical, geometrical) of the
design objects. Approaches which have combined engineering
systems with traditional database management systems (DBMS) have
suffered from a number of deficiencies: Major reasons of
inappropriate DB support for all kinds of engineering applications are:

• Classical data models have only a limited capability for modeling
complex objects; moreover, they provide insufficient operational
support and integrity control.

• The transaction model is developed for typical data-processing
applications. Each transaction as a unit of consistency is assumed ·
to take a few seconds thereby immediately propagating all updates
to the database.

• Engineering applications typically require interactive computing
environments; nowadays, powerful workstations offer tailored
support for such use. Straightforward coupling of engineering
systems with DBMS running on a host (server) yields slow (remote)
reactions when DB services are requested - for a variety of
reasons. In particular, this kind of coupling is not adjusted to the
local processing capabilities. Furthermore, it suffers from a severe
lack of locality of data reference since local buffers are not
exploited at all.

In this paper, we discuss an architecture for improved DB support
tailored to engineering applications and for an integrated processing
model coupling server and worl<station clusters. To motivate this
approach, at first we report on our performance experiences in various
engineering areas which were gained by building sizable prototype
applications on top of a conventional DBMS. Our empirical results
suggest the use of the DBMS kernel architecture [HR85,PSSWD87]
where the top-most layer of the DBMS - called application layer - is
allocated together with the application program to the specific
workstation, while the kernel serving multiple application layers is
running on a server. Our main concern is the design of the application
layer. We investigate the interface between kernel and application
layer and develop models of object processing using local buffers

0-8186-0820-X/87/0000/0030$01.00 © 1987 IEEE
30

thereby preserving high degrees of locality. Furthermore, we propose
a transaction model adjusted to the workstation-server environment
and its failure situations.

2. Performance evaluation cf DB-based engineering
applications

Our overall goal is the investigation of suitable system architectures to
connect engineering applications running on dedicated workstations
with a DBMS allocated at a central server. To refine the operational
requirements of such a coupling task, we studied the specific
problems empirically using various prototype implementations.
Therefore, we developed three different kinds of DB-based
applications dealing with geometric objects:
- a 30-CAD application for volume-oriented geometric mode ling
- a VLSI design tool supporting optimal chip planning
- a land information system managing geographic data.
Our prototype approach and the principal results gained are explained
by referring to the CAD application. Fig. 1 illustrates the overall system
architecture consisting of graphic 110 system, CAD application and
data management component. For our purpose, we focus on the
issues of data management. Since no appropriate engineering DBMS
was available, we enhanced a conventional CODASYL DBMS by an
'additional layer' to obtain more powerful operations and data
structures at the interface of the data management component (called

graphic
component

application
component

data management
component

graphic system (GKS)

user
interface

application model
interface

application-supporting
interface

record -level
Interface

Fig. 1: Overall architP.cture of a CAD system for geometric modeling

• 0:1

I BREP I
I solid box I

r 6:n I Trace I
point. direction

4:n

3:n Face
face box. plane equation,

~ 2:m status

l :n O:m

I Edge I
()

1:n
status

I SNBHD
kindofNilHD

l :n

1:!.1 MNBHD

I status

,...
~

2:n 3:m

geometry model
Fig. 2: DB schema of the CAD application

O:n, + O:m

r 4:n

Point
coordinate,

I status

v :n

application-supporting Interface). Note, the 'additional layer'
approach only provides functions (tailored to a specffic application) at
its interface, but not the requried performance, since these functions
are implemented on top cl an unsuitable DBMS Interface (called
record-level Interface).

The CAD application performs the construction of solids upon user
requests from a graphical I/O interface. The chosen approach is based
on a volume-oriented scheme called Constructive Solid Geometry
(CSG (RV82)); the user is guided by menues, selects from predefined
parametric base volumes and regular operators (union, difference,
etc.) and, thus, composes his wori<piece in consecutive steps.

Solids are represented in the DB by CSG trees which describe the
corresponding history of construction. To facilitate graphical
representation and special geometric operations, a dual
representation called boundary representation (BREP) is
automatically derived and maintained by the evaluator and stored in
the DB. The required type information for the structure view and the
geometry view is shown in Fig. 2 schematically as kind of Bachman­
diagram for CODASYL data types - set names are dropped, relation
records (mapping of n:m-relationships) are represented by small
circles, cardinality restrictions indicate some structural integrity
constraints. Note, Fig. 2 only illustrates the most important DB­
schema part; a complete product model governing the construction
process would include technological, physical and organizational
submodels as well.

let us refine our view of the geometry model which Is used to indicate
severe performance problems of geometric modeling based on
traditional DBMS approaches. The kernel part of the geometric model
is given by the record types BREP, Face, Edge, Point and the
corresponding relationships (most of them are n:m). lt allows for and
guarantees object modeling without redundancy. However, the
resulting representations may lead to tedious and poor modeling
algorithms since implicit information, e.g. all edges belonging to a
particular track, have to be derived over and over again. Hence, it may
be advantageous to provide useful redundancy in order to simplify
the modeling algorithms of the application component. On the other
hand, such specific, deliberately designed redundancy increases the
complexity of data management and enhances the mapping

I

I

31

Construction-
environment organization model
identifier, date

~O:n
I Synonym I

0:1

O:n

'
O:n

Structure_node
identifier. kind of node
(type or instance), operator

L_.
0

o:m
O:n

Value_list I O:n

Position I transformation
O:n 0:1

Value I
..J Description I

0:1

Parameter I
O.n

structure model

overhead thereby influencing the performance of the data
management component. With the hope of valuable insights, we
therefore added the redundant record types Track collecting edges
of particular faces, SNBHD and MNBHD (single and multiple
neighbourhood) to describe the specific environments of points
[HHLM87).

The view given by the DB schema is the one of the record-level
interface (Rll). The corresponding manipulation language - the
CODASYL DML - embodies navigational and record-oriented
operations (e.g. FIND NEXT WITHIN SET) which frequently depend
on cursor positions and set references. These interface properties
should be kept in mind when the workload at the Rll created by
geometric operations is evaluated and interpreted. As compared to
the RLI, the gain of abstraction at the application-supporting interface
(AS I) may be made clear by the example operation sketched in Fig. 3.
The given program is executed at the ASI to generate a cylinder
approximated by a polyeder. This program, in turn, is invoked at the
application model interface (AMI) by a single operation POL YCYL(n)
where n determines the number of lateral faces as an actual
parameter.

POL YCYL(n) is used as a first example to reveal the processing
overhead needed to create the DB representation of cylinders •
subject to various degrees of approximation. To simplify our
investigations, we developed a fairly general measurement and
evaluation tool which recorded events at different levels of
abstraction. The results for POL YCYL(n) are summarized in Table 1.

POLYCYL (n) 5 25 50

AMI
complete BREP-schema
ASI 64 304 604
RLI : a) simple subschema 1958 15078 41828

b) use of locality -1850 -10800 -25600
c) use of context knowledge -1450 -7400 - 14800

Kernel part only
ASI 39 179 354
RLI d) eliminated redundacy 1179 6159 114!\4

Table 1: Call frequencies for the BREP generation of POL YCYL(n)

I

I I I
I I I I I

' I I I I

~>.J_: I ' I

I I I
I ' I

I '-I ' I ' I I
I I

I I
I

'
I

' I I I
I I I I I

I
I

' I

I

I

I

'
'
I

I

I

I

I

'

I

I
.

' • I • ' ,.,:/ I~~ 1
-·-I I

o I I
I I
I •

I I
I I .
I I
I

I

Polycyl(n):

ADDBREP
ADDFACE

generation of a BREP-record
generation of the two Face-records, one for the
top
face of the POL YCYL, the other for the bottom
face

I I I
' I

' ' ' I
I I

I
I

I

I
'

I

I

I

ADDFACE ...

Loop ADDFACE
Loop ADDEDGE

generation of a Face-record for one side face
generation of one Track-, two Point-, and one
Edge-record as well as the generation of all
corresponding relation records

I

'
I I I I

' ' I
I

' '
I I I

I I
I

I
I •

'
I I I

I I I
I

I
I

I I I I
I I I End Loop

' ' I ' I
I I

I I I I

I
I

I
I

I I
' I Loop CONFACE

stop if all edges of one face are stored
construction of the neighbourhood information
for the common edges of adjacent faces I I

I I I

' ' I I I

'
I I

I I

I I I I

'
I

I

'
I

I
I

' I
I

'

I
I

I I

I ' I
End Loop stop if the side face is "connected" to the top and

bottom face
I I

' '
I I ' '

I

' f- - - -
I

v

I
I

I

' I
I - ~r-1

' I
I

I',

Loop SET_NBHD_OF_POINT

End Loop

construction of the neighbourhood information
for the corner points
stop if all neighbourhood information is stored
stop if all faces of the POL YCYL arc constructed
actualization of the box attributes (solid box and
face box) "'-......._,_ ~---l--"'v

End Loop
UPBREP

Fig. 3: Cylinder approximated by a polyeder and its generation
procedure

Hence, a cylinder generation with 50 lateral faces consumes 604
operations at the ASI and 41828 operations at the All.

This vast amount of operations for such simple object creation is so
incredible that it requires some further explanation and interpretation.
The costs at the ASI is clearly linear with n, whereas the overhead at
the RLI exhibits a strong non-linearity. Hence, ASI may be interpreted
to represent a 'natural' interface for the required kind of application; of
course, this is not true for All.

Table 1 additionally indicates some optimization efforts performed
after thorough analysis of the measurement results.
a) The initial solution incorporates the subschema concept of

CODASYL systems with at most one occurrence per record type
under control and record-oriented manipulation. Rereference
typically leads to repeated DBMS calls due to lack of preserving
locality in the working area above RLI.

b) The ASI-Rll mapping was modified to introduce a working area
buffer to enhance locality of record reference, that is, more than
one occurrence per record type was kept in the buffer if needed.
Hence, many search operations within sets, etc. could be
achieved without reaccessing the DBMS.

c) Another great reduction of overhead was realized by specializing
ASI-operations by explicitly using context knowledge. Since this
knowledge is application-dependent, it must be made available
by the application.

d) In order to show the influence of our modeling redundancy, ·the
operations related to the kernel part of the geometric model were
explored separately. However, even this very simple and spartan
modeling yielded more than 104 DBMS operations.

~on NDMU

UNION(CY!..(3), CYL(3)) 16051

UNION(CY!..(4), CY!..(4)) 20658

UNION(CY!..(6), CYL(6)) 31432

Fig. 4: Union of two parameterized solids (POLYCYL's)

A second example is used to demonstrate the processing overhead
during construction, that is, the costs for modifying and maintaining
existing structures. Here, the generic operation is 'UNION(SOLID1,
SOLID2)' where SOLID2 is derived from SOLID1 by a simple
displacement. Fig. 4 sketches graphically the kind of operation. To
facilitate comparison, the chosen solids always produce the same
topological effects; the cost of the UNION operation (using the simple

32

subschema concept) is listed for a few parameters (POL YCYL is
abbreviated by CYL). Again, the performance figures indicate a
tremendous mapping overhead.

To identify lhe inherent causes of the mapping problem, it was
attempted to figure out the sources of overhead. As shown in Fig. 5,
there exist some unique trouble spots. The n:m-relalionships
especially for Face and Edge as well as for Edge and Point are
responsible for a huge portion of the overhead. This behavior may be
explained by successively inserting face-edge representations; in
case of the front face n (50) edges have to be connected in various
set occurrences, each one invoking positioning and store operations.
The comparison of Fig. Sa and 5b reveals some important properties.
Reference frequencies are not uniformly distributed; they vary
depending on object types and kind of operation. For example, some
relationships are not touched at all during object creation, whereas
they are frequently used during object maintenance.

Neither processing oplimizations nor reduction of modeling
redundancy has confined the overhead to a reasonable limit, e.g. for
interactive construction. Although a fraction of the costs is attributable
to the properties of the CODASYL DBMS-interface ·for example,

r---------1
llREP

757
500

53

Track
7SO

3184

1926 1434 2076

a) generation ol POL YCYL(50) (Fig. 5)

r---~~----~BREP
562 1346r--------9-7_3 __ __,

L.----,.---l
1071

Track
316

24

194

1104

3690
b) UNION(CYL(6), CYL(6))

492 2800

Fig. S:Reference frequencies (# DMLs) for schema objects (non-
optimized case)

frequent positioning of cursors. subschema concept and explicit
access path navigation - the situation is not fundamentally improved
by the other classical data models. Note, the relational model also
requires a DB schema with a relation between two entity types
associated by an n:m-relationship. Moreover, several thousand
operations should be expected for POL YCYL(SO) in the relational
model - less than for the CODASYL model but more expensive ones.
e.g. joins compared to FIND OWNER/FIND MEMBER.

3. Overview of the system architecture

In our other prototype applications, we have obtained similar
performance results. To drastically reduce the overhead
accompanying the work in a CAD environment, we were finally
convinced by the derived performance figures that a better DB·
approach to engineering applications should obey the following
principles:

• The DB-interface to the CAD application should incorporate some
object orientation, at least as powerful as the given application­
supporting interface (Fig. 1).

• The data model interface should be substantially more powerful
than the RLI; it should be set-oriented and should embody
appropriate features for object handling support. Furthermore,

-:.-=---
- - ----- ------- --objccl·supporting

private
database

inlcrface privale
datlbasc

Fig. 6: DBMS kernel archHecture ·overall view

33

tedious and cumbersome modeling of n :m-relationships should be
avoided.
~ost important, locality of object processing should be preserved;
n should support as close as possible the respective application.

A consequence of these requirements, observations, and ideas is
~he so-call~d !?BMS kernel architecture [HR85, Da86,PSSWD87], as
Illustrated m F1g. 6. Although at the first sight similar to the 'additional
layer' architecture, closer consideration reveals a number of important
differences. First of all, a strong separation is assumed between
kernel and applicatio~ layer. The kernel is defined to be application·
mdependent. it real1zes neutral, yet powerful mechanisms for
support ing engineering applicat ions which include storage
techniques for a variety of object sizes, flexible representation and
access techniques, basic integrity features, etc.

The application layer (AL) achieves kind of tailoring mechanisms
useful for specific applications. Since only neutral mechanisms are
?fle~ed by the ~ernel .. the required orientation towards the application
1mpiles that object 0~1entation and most semantic issues, e.g. object­
onented representations and operations as well as integr;ty checks
must be handled within the AL. Hence, the AL refers to lower level
objects to create and manipulate more powerful application objects.

The clear division between kernel and AL is necessary for
simultan~ouslr providing a multiplicity of different application layers
cooperat.1~g. w1th. the. ~ame kernel , as indicated in Fig. 6. Apparently,
such a diVJS IO~ s•mpilf•es the allocation of AL's to separate processors
(e.g. workstallons) and does not prohibit the integration of kernel and
AL's in a single host environment.

For our purpose, it is only necessary to identify the various interfaces
in slightly more detail. The data model interface is characterized as an
object-supporting interface; it is assumed to incorporate the following
properties:
• modeling techniques to specify the structure of a complex or

composite object type consisting of various component types
• dynamic composition and decomposition of data structures

belonging to different types (record types)
• set-oriented access to fetch or manipulate a set of heterogeneous

records
• support for structural integrity checking.

The interface between engineering application and AL is qualified by
the term 'object-oriented interface·. it is an higher level interface
compared to the data model interface of the kernel. Its orientation is
more towards application objects whereas the data model interface
offers more or less neutral object support. Some essential properties
of this interface are:
• Application objects have an identity; they can be handled as

integral entities.
• Such objects have an internal structure; reference to structured

subcomponents is possible.
• Data abstraction and encapsulation is provided (user funct ions;

ADT's) .
• Objects are persistent.

Compared to Fig. 1, the expressiveness of the various interfaces is as
follows:
• the object-oriented interface is (slightly) more powerful than the

application-supporting interface
• the object-supporting interface is much higher than the record­

level interface, but definitely lower than the former application­
supporting interface, since application needs have to be satisfied
in the AL.

We have designed the MAD model (Molecule Atom Data model
[Mi87]) which provides the properties of the object-support ing
Interface sketched above. Currently, we are implementing a DBMS
kernel PRIMA which offers the MAD model at its interface; an overview
of Hs design and architecture is given in [HMMS87]. Hence, we can
concentrate on design considerations for the AL in the following.

4. Structure of the appllca!lon layer

Interactive manipulation of complex engineering objects requires the
use of ellective communication protocols between kernel and AL as
well as a large share of local DBMS processing within the AL in order
to guarantee satisfactory response times. On demand, complex
objects have to be efficiently extracted and transferred from the
public DB (managed by the kernel on a server) to the workstation.
Then, the AL takes care of these objects- usually for a long time; for
temporary storage, it may use a private DB on an own disk. To refine
the problem, the following questions have to be considered in more
detail:
• How does the workstation (and the application program) get its

data?
How does the application program at the workstation manipulate
these data?

• How should the changes performed at the workstation be
communicated back to the server?

• How should the server database system reflect these changes?
To answer these questions, we introduce the so-called processing
model of the AL and some implementation concepts for local buller
management.

4.1 Processing model of the appllca!lon layer

The overall model describing the DBMS activities in the workstation is
called the processing model of the AL. Its prime purpose is to
provide a framework for the exploitation of locality. The examples of
section 2 may convince the reader that locality should be brought
closer to the application, even in conventional DBMS applications
(SR84]. Ideally, it is desirable to make a mechanism available that
enables the application to reference an object directly, for instance
using the pointer concept of a programming language.

With such a typical referencing behavior in mind, we propose a
processing model aimed at high locality of object references .
Extraction of data from the public DB Is similar to the approach
described in [LP83]. A design transaction issues a checkout
request if existing design data is needed. Such a request is used to
fetch a design object from the public DB. More checkouts may follow
when additional data is required by the application. All checked out
data is protected by the kernel against concurrent access. The design

transaction.

Summarizing the design transaction, we can identify the following
characteristics:

isolation against concurrent design transactions (provided by the
synchronization capabilities of the server DBMS);
design cooperation only via already checked in {committed) data;
possibly n checkout requests (n~O) in combination with no or only
one checkin request;
in between there is local manipulation accompanied with the
accumulation of design data changes.

Fig. 7 depicts the scheme of such a design transaction following the
proposed processing model. After the start of the design transaction
it is allowed to checkout the design data needed, using possibly
several checkout requests. Then local manipulation is performed on
the design objects allocated in the object buffer. lt can be structured
by issuing one of the following requests:
• SAVE, saving the current design stage;
• RESTORE, backing out to a previously saved design stage;
• SUSPEND, interrupting the manipulation activities (implies a

SAVE);
• RESUME, continuing an interrupted design transaction.
Thus, SAVE and RESTORE provide a user-controlled recovery
concept for the design process, i.e. saving a consistent design stage
or wiping out the latest actions, while SUSPEND and RESUME
support design interruption guaranteeing subsequent processing
without loss of information.

Structuring a design transaction with these operations introduces
three dillerent states for the transaction. First, it is simply unknown,
until the START command is issued. Then it becomes active, that
means, it is known to the system and it can access and manipulate
design data. Doing checkout, SAVE, or RESTORE leaves the trans­
action in the active state, whereas SUSPEND moves it to a semi·
active state. A semi-active transaction continues to hold all the locks
and preserves all its checked out design data in the private DB. Upon
a RESUME request, the transaction reenters the active state and
finds its specific processing environment as it left it. The final END of
the design transaction checks in the newly constructed design
objects to the public DB and 'forgets' about the transaction, i.e. turns
it to the unknown state.

objects are temporarily stored in the workstation; they are organized in In the following, we want to describe an adequate implementation
a special main memory structure called object buffer which offers concept for the above introduced general processing model {cf. Fig.
last operational access and a pointer-like reference mechanism. For 7). Obviously we have to be aware of the following optimization
recovery purposes and for saving particular design states, copies of criteria:
the design objects may be preserved in the private DB. A design • minimal number of workstation-server communications
object is committed to the public DB by a check In request. Since • minimal volume of data transfer
commit implies giving up the right of unilateral rollback, the separation • distribution of the work to do among workstations and server,
of checkin and end of design transaction is meaningless. Hence, we avoiding duplicated work.
argue for the delay of all checkins to the end of the design They are supposed to yield high degree of stte autonomy and

workstation
site

design transaction
I I

START END

SUSPEND RESUME RESTORE
local mani

t ~~1~~~~ ~ ~~~t~~~- ~~1~~~~~ ~~1~·~-. +

server
site

isolation of design object 1

isolation of design object 2

isolation of design object 3

Fig. 7: Sequence of actions in the processing model

34

optimized worl<station-server cooperation.

4.2 Implementation of the application layer

Describing the implementation aspects of our processing model, we
first introduce the basic software architecture (Fig. 8). The
functionality of the DBMS kernel interface, which is called object­
supporting interface (OSI), is determined by the MAD model. On top
of this interface, we have designed a component, called object buffer
manager (OBM). The main task of the OBM is local handling and
organization of all object-related information needed by the
application. Hence, the OBM consists of the preparation component
and the object buffer. The preparation component is responsible for
fetching and transferring of data from the DBMS kernel to the object
buffer and vice versa. The object buffer is a large main memory buffer,
that realizes the 'near-by-application locality' and supports the
representation of the molecules. In the MAD model, 'molecules' are
dynamically defined as sets of 'atoms' (i.e . records, tuples),
interconnected by relationships with given semantics. A molecule is
supposed to carry all information that describes a design object. A
further component of the 013M is the cursor maintenance component
which supports the processing by a structure-oriented cursor
management. Hence, the OBM establishes a powerful data handling
interface (object supporting programming interface) at the workstation
site. Together with the application dependent program modules lt
forms the application layer. Fig. 8 shows the basic software
architecture; in addition, it indicates their allocation to the associated
hardware components. Furthermore, it illustrates that the interface
between workstation and server lies inside the OBM layer, that is, our
design provides an agent of the OBM at the server site. We assume
that this design decision will facilitate all workstation-server crossing
operations including checkout and checkin.

After describing the architectural aspects, we now want to
characterize the Information necessary for workstation-server
cooperation in our processing model. First, we have the query,
defined and later activated with the actual query parameters by a
program module in the application layer. The power ·for query
definition Is given by the molecule query language (MOL). Second,
we have the answer Information Including the query result data
aggregated by the DBMS kernel. This Information is structured as a
set of molecules. Third, there is the modification Information
which comprises all insertions, updates, and deletions made by the
application layer. lt is encoded as an atom list enhanced by
modification flags and specific information about the modification
environment. Fig. 9 sketches the level of abstraction for all three kinds
of information. lt seems to be clear that the molecule set of the answer
information is associated with the checkout operation, and the atom
list of the modification information corresponds to the checkin
operation. Hence, we have a high level of abstraction to formulate the
query and to represent the result, and we have a low level to
propagate the modifications minimizing the amount of data to be
checked in.

workstation ;
site ;

server
site

..----------,~ object oriented
application depm~ I ._: Interface

abstract dala types •

r.:=======~~ (object supporting)
~=cunor==m=am=· =tcn=an=ce=~l ; programming Interface

~~-----o~~ect __ b_u_rr~ ___ --JI ~

· · .o.~i~. · · · · · · · ·1· · · .14!A · · · ·1
· · -~~e; · · · · · · ·pn;pru;.ti-oo · .

DBMSI:emel

~ object supporting I ~ Interface

Fig. 8: Components of the application layer

35

f
query processor

chcckout
request

I
1....-------~ checkout

data

...._ _______ _,~ checkin

request & data

atom update

MQL-Iike query with
parameter information

answer information ,
molecule set

modification information,
atom set

Fig. 9: Data abstraction levels for cooperation

In the following, we concentrate our discussion on the answer and
modification information, because these carry the more interesting
Issues. Especially, the organization and the internal data structures of
the object buffer will be introduced. The answer information consists
of a molecule set. Each molecule is composed of a structured set of
atoms. Each of them is represented by a list of attributes and is
identified by a special attribute, called atom identifier. Molecule
identification Is done by identification of the root atom. Fig. 10 shows
the essential aspects of data structures to represent answer
information in the object buffer. The molecule list contains the
identifier of all molecules constituting the result set of the query. A
special hash function h delivers the corresponding root atom index in
the atom table. The table entry includes some maintenance
information. The field modification indicates the type of modification

molecule list atom table

I
h (ID)

~ ... ID

area table

~~aw~s~
C main memory

ba.~e address

area
address

mam memory area

Fig. 10: Organization of the object buffer

(insert, delete, update). Two separate address fields determine the
main memory address of the atom. The area field contains an index of
an entry in the so-called area table, which holds the base address of
one main-memory area. This base address incremented by the
offset field finally yields the atom address within the area. The area
concept prevents scattering of the main memory by numerous small
atoms and supports the relocatability of the entire molecule set.
Relocatability is very useful in such an environment, because the
molecule set is frequently moved from the main memory to the private
DB and vice versa (SUSPEND, RESUME, SAVE, RESTORE). In this
case, relocation is managed quickly by updating only the small area
table. The relationships constituting the molecule structure are
represented through special reference attributes in the atoms that
contain identifiers of other atoms.

The above sketched data structure represents a single result set of
just one query. From a logical point of view, it is a snapshot of a
database partition. So it seems consequent that an atom is not
represented in a redundant manner, if it belongs to more than one
molecule within the same result set. On the other hand, an atom is
redundantly represented in different result sets. Such multiple
occurrences are known to the programs using the object buffer and
have to be controlled and managed by them.

The modification information is embedded in a special main-memory
area, the so-called modification area. lt contains all inserted,
updated, or deleted atoms of the result set. Therefore, we have no
update in place for the first modification of an atom. The updated atom
is placed into a modification area, the corresponding modification flag
of the atom table is raised, and the addressing fields are adjusted.
Then, subsequent modifications of the same atom are executed with
an update in place semantics. The modification areas provide some
kind of log information at the atom level and are used for propagation
of accumulated changes back to the public database (checkin).

The question we want to discuss now is how data in the object buffer
is manipulated by the ADTs of the application layer. The atom is the
smallest unit of data affected by any modification. We need a cursor
concept to identify a single atom within the atom set defined by a
molecule and within the molecule set given by a resuH set. Such a flat
cursor points to only one atom at a time. In principle, it Is sufficient for
reaching all atoms in the result set, because one can navigate via the
reference attributes in the atom data. Nevertheless, the processing
characteristics observed in section 2 have shown that it is useful in
many situations to have a more complex cursor, for example a
hierarchical one. Often, there are some hierarchical subunits of
processing within a molecule. In our implementation, such a
hierarchical cursor is defined by a list of atom type names, which marks
the paths for the cursor hierarchy, and by identification of the root
atom. The concept of hierarchical cursor may be implemented by a
hierarchy of dependent flat cursors. Navigation via one cursor
automatically affects the subordinate cursors. The Idea to support
more descriptive (as opposed to procedural) cursor operations is
worth more detailed consideration, but it lies beyond the scope of this
discussion.

The next question is how all those queries, result sets, molecules,
cursors, and atoms are reflected in the programming language which
is used to write application-dependent program modules. In principle,
there are four different approaches for language binding (LaP83]:
• call interlace,
• simple host language extension (e.g. CODASYL COBOL-DML),
- embedding database languages in general purpose languages

(precompiler, e.g. SOL),
• integrated languages (new data types, e.g. PASCAUR).

The fourth approach has the advantage that the internal and
temporary data is compatible with the external and persistent data,
because they have the sarr" !ogical structure. But, it is not the best
procedure from an implemi.. ,;tation point of view, because a new
language must be designed, a compiler must be written, and so on.
So we decided for the third approach designing a host-language
embedding using a precompiler.

The use of precompiler statements is sketched in Fig. 11. 11 depicts a
programming scheme of an ADT definition. 11 includes the declaration

and the processing of queries, results, and cursors. The declaration
part is

ADT: adt_name

declaration of types and variables for molecules, result set
of queries and cursors

Initialization

assignment of result-set variable (if prefetching is possible)
initilizing the ADT

Operation: Operation 1 (... parameters ...)

assignment and modification of result sets, molecules, and
atom variables using the cursor capabilities to define and
process subunits of work

36

Fig. 11: ADT program scheme

transformed into a cursor definition and a declaration of the
corresponding internal data structures, e.g. for the atoms constituting
the molecules. The data structures are derived from the external
schema of the public DB. In the processing part of the ADT, result
sets of queries can be assigned to variables of the respective type,
the so-called result variables. The assignment causes the activation of
the query and thus a checkout, including the binding of program
variables to the formal query parameters. Afterwards, the result
variables can be read and manipulated with the help of the hierarchical
cursors introduced above. The precompiler transforms these
operations into accesses to object buffer tables and pointer
assignments.

The application dependent ADT's are themselves used at the object·
oriented interface by application programs (at a higher level) . In
addition, this interface offers some general and application­
independent operations to organize the designer's activities. For
instance, a designer can determine the begining, the end, the
suspension, and the resumption of a design process. Furthermore,
he can activate an ADT which makes the corresponding ADT
operations available. The related ADT program (cf. Fig. 11) is loaded
and its initialization part is executed. Analogously, an ADT can be
deactivated thereby giving up the right to further execute ADT
operations. But it does not mean that design objects are made
available to other designers; note, checkin is postponed until the end
of the design process. When a designer finally declares the end of
design process, it is assumed that all the modified design objects are
to be checked in to the public DB.

5. Implications of server-workstatlon cooperation on the
transaction model

The processing model described in the previous section needs
support from a transaction model that copes with various types of
failures and with the issues of concurrencv on shared data. lt has
been stated frequently that engineering transactions significantly
differ from conventional transactions (LP83, Ka84, KLMP84, BKK85] .
They tend to be very long which makes it inadequate to treat failures
by rollback to the very beginning and to handle conflicting access to
data objects by locks and waits. Instead there should be 'fire-walls'
inside a transaction that limit the scope of undoing and provide a
starting point alter failure.

Additionally, access to design objects that are 'almost complete' could
be granted to colleagues working on the same project before the
transaction ends. But even in that case designers perform work steps
on an object, during which no one could use it, because it is too
rough, too incomplete, too fuzzy to be understood. The transaction
that belongs to such a work step must therefore remain isolated and
must appear atomic to all other designers. lt preserves the minimum
consistency required even for colleagues. (The degree of

consistency is application dependent). This is meant by the term
'design transaction' and will be the key issue of this section.

5.1. The user's view of failures and workstatlon
transactions

A design transaction, although only a small portion of the whole
design project, can still be long and needs recovery points inside.
lt consists of a sequence of interactions, i.e. function calls, that may
change the state of the system by modifying data. Ideally, creating
such a new state should also establish a recovery point. But this may
involve significant overhead.

A recovery point is intended to cope with failures. This comprises a
wide range from simple operation failure to power reset. In any case
the system state is set to the latest recovery point, and the user is
informed about the type of failure: A transient failure (e.g. deadlock)
encourages retry of the same operation, whereas in case of a
permanent failure (e.g. address error in program) this would
reproduce the failure. Permanent failures can be bypassed
sometimes by another user action. In general, it is necessary to call for
the system maintenance.

Not only the system can do wrong. If the designer realizes that his
object is not going to satisfy the requirements, he might wish to return
to an earlier stage of the design, 'wiping out' anything he has added or
changed since then. Defining these stages as well as selecting the
one to return to cannot be done by the system. lt must be done
explicitly by the user and leads to the concept of savepolnts.
Savepoints are often unified with recovery points [Gr78), but there Is
no need to do so, and the implementation can be different (imagine a
version concept to provide savepoints). The system can use
savepoints as recovery points, since the user will know about the
related state. But the user cannot use recovery points as savepolnts,
because he does not know when they are taken.

As the goal is to hide as many failures as possible or at least minimize
their effects, there should be much more recovery points than
savepolnts . Only If this comes out to be too expensive, recovery
points will be unified with savepolnts. Anyway, it seems appropriate
that the SUSPEND command introduced in section 4 implies the
creation of a savepoint.

Even this abstract view of failure and recovery leads to three different
concepts in the workstation (Fig. 12):

- the design transaction holds the locks on the data (in the
server) to provide isolation and preserves minimum consistency,

- the recovery transactions that are defined by the recovery
points and are ideally equivalent to a user operation (a single
interaction) in order to minimize loss of work after failures. However,
due to performance considerations usually a sequence of
operations is secured by a recovery transaction.

- savepolnts serve as a means for user-initiated rollback to reach a
previously marked design stage. They confine recovery
transactions and may be implemented by a version mechanism,
nested transactions [Mo81], or some specialized technique.

From the user's point of view, the property of failure atomicity is only
assigned to recovery transactions.

design transaction

w~-~00 =~. ,l~z~~ /\'!~~
--------------~------r------------r-- - ~-

clx:dcin{checkout 'I I I -~__j
Server transacttons • · ~

Fig. 12: Transaction nesting in workstation and server derived from
requirements at the user's interface

5.2 Transactions across the workstatlon-server boundary

The user regards the system as a whole. On the next level of
implementation or refinement there are the workstation and the server
cooperating to perform the user's operations. Their mode of
interaction has been introduced in section 4. Along goes a
refinement of failures: Workstation and server may fail independently,
in each case the failure may concern just one single operation or the
whole node, and the failure may be transient as well as permanent.
Permanent node failures, e.g. hardware failures, are not discussed in
the following, as they need special treatment by the administration
(releasing or switching locks in the server to continue on another
workstation) . The overall goal for the treatment of all other failures is
mutual masking: An error on the workstation should not bother the
server and vice versa. This is only possible if recovery actions in one
node do not include UNDO operations in the other node that is still
running. How this can be achieved will be discussed for any type of
failure.

Before that, a closer look on the private DB in the workstation seems
appropriate. The data objects can be in different states, as indicated
by Fig. 13. When they are loaded from the public DB of the server,
they are supposed to be consistent. And, of course, they are still
persistent in that they can be loaded again when they are lost due to a
failure. Any modification turns them into a state of being temporary
and usually inconsistent. Further modifications may be required to
reach a new consistent state. But the data remains temporary until a
SAVE command is issued to create a savepoint. This can be done
with inconsistent data as well as with consistent data.

37

In the diagram of Fig. 13, data has to be saved before it can be
checked in to the public DB. And it has to be consistent, otherwise
the checkin will be repelled. A failure on the workstation or the
RESTORE command (return to savepoint) put the data back to a
persistent state, thereby changing the contents of the data (not
shown in Fig. 13). According to the principle of mutual masking,
server failures should have no Impact at all on the state of the data.
And this implies that
- data checked out is stable in the server
• data checked in does not get lost unless the workstation explicitly

requests its UNDO.

All transitions in this diagram (Fig. 13) require a transaction to be
active, while a semi-active transaction automatically puts all the data to
one of the two persistent states (cf. section 4.1).

A final remark on Fig. 13: 1t does not distinguish recovery points from
savepoints. If the modify trans~ions correspond to user operations,

chcckout checkin

··· ···· ···· ····•

modify

failure,

···· ·· ····· ··· ··· ·········

SAVE

failure, ~ RESTORE
. . .
··· ···· ····· ··········· ···· ··· ·· ···· ···· ·· ·· ··· ·· ···

Fig. 13:State diagram for the data in the workstation's private
database

the temporary states disappear. The diagram is more general in that it
can take into account the internal structure of user operaiions
consisting of several consecutive modifications. Then, every
operation ends with an internally generated SAVE defining the end of
the recovery transaction.

The concept of wor1<station-server coupling is based on the strong
locality of engineering wor1<. In the context of transactions, this means
that most of the recovery transactions will not contain any server calls,
i.e. checkout or checkin. They should be managed completely by the
wor1<station without any impact on the server. Of course, this requires
a local recovery manager as well as local log files.

The server only knows about the recovery transactions that contain
server calls. As indicated in Fig. 12, it regards them as checkln or
checkout transactions. A non-trivial question Is whether the
server should also know about the context of these transactions, that
is, about the savepoints and the design transaction. The alternatives
are to be discussed in detail.

5.3 Flat or nested transactions In the server

A straightforward approach treats every checkout or checkln
transaction as independent and does not take into account the
internal structure I.e. regards it as 'flat'. The first server call makes a
recovery transaction on the wor1<station known to the server and
initiates a checkoul/checkin transaction. Ending the recovery
transaction then includes an additional server call as part of the two·
phase commit (2PC, [Gr78]) which is required to guarantee that either
both transactions end successfully or none of them. Hence, this is the
two-processors case of a distributed transaction. But after that, the
server forgets about the checkout/checkin transaction. The
consequences of this are:
1 . A failure during a recovery transaction that includes server calls - be

it on wort<station or server • usually Involves the other system and
requests UNDO on it. The goal of mutual masking Is missed.

2. Establishing savepoints (in Fig. 12) and RESTORE processing are
very complex operations that comprise transactions and
compensating transactions In the server. 11 can be very expensive.
Even if only checkout transactions have been performed since the
savepoint, RESTORE processing must notify the server to make it
release the related locks. Possibly a good implementation employs
version management on the server DBMS.

The simple approach has a much severer consequence. As any1hing
is committed on the server at the end of the recovery transaction,
locks to be held on the design objects until the end of the design
transaction cannot be provided by the server DBMS. Instead. a normal
data structure (e.g. an OBJECTLOCK relation as In (LP83]) is used to
keep the locks. lt must be read by any wort<station inside a checkout
transaction and must be updated to reflect the granted locks. The
term 'application locks' will be used to refer to this technique.
Advantages are
• failures on the server do not affect the results of committed

recovery transactions. Thus the locks survive failures (persistent
locks)

• semantic knowledge can be assigned to locks. As the data model
does not force objects to be disjoint, in many cases the semantic
disjointness of objects cannot be derived from the DB schema.
Then, the DBMS must control.access to all the tuples or atoms in
detail which imposes an enormous overhead. The only way to
avoid it is exploitation of semantic knowledge.

Disadvantages are:
• locks are not controlled by the DBMS. Access In spite of existing

locks is not rejected.

There are some troubles with this concept of simple flat transaction In
the server, mostly due to the implementation of SAVE and
RESTORE, the necessity of application locks, and the insufficient
masking of server failures. 11 has already been stated that the model of
user interaction leads to a nesting of transactions in the wort<stalion.
So it is worth investigating whether the concept of nested transaction
could be expanded to include the server.

38

Nested transactions have been introduced by Moss [Mo81).
They have been implemented in a number of experimental systems.
A recent article by one of the authors (HR87] refines the concept by
distinguishing the synchronous and asynchronous execution of
subtransactions as well as single call and conversational interlaces. 11
has also shown that savepoints can be used to reduce the transaction
UNDO and the amount of work to be repeated after restart. This
concept can be applied to the wor1<station-server configuration.
First, there is a nesting above the recovery transaction . If it is
maintained by the server as well, this has a number of consequences:

Locks acquired by recovery transactions are not released at the
end of transaction. They are inherited to the parent transaction. If
the parent resides on another processor, a local agent is created
that represents it. The agent will be discussed in more detail.

• Application locks are no longer needed. More than that, they are
completely impossible. Getting an application lock is implemented
as an update of a normal data structure (e.g. an atom) that sets a
write lock on this piece of data. Since the write lock Is not released
before the end of the design transaction, other workstations
cannot read the lock information ·which makes it useless. Hence,
no semantic knowledge can be used for locking.

• Implementation of SAVE and RESTORE is much easier, since it
could be done by opening a new subtransaction and aborting it,
which is both reflected on the server directly. There is no need for
compensating transact.ions.

But what about the persistence of locks? And what is undone by a
server failure? To answer these questions, the agents have to be
investigated more thoroughly. Fig. 14a shows the dualism of

recovery
transaction

recovery
transaction

a) fk11 rerovery transaction

recovery
transaction

design transaction

agents

design transaction

server<all transaction

b) internally nested recovery transaction

Workstation

Server

Fig. 14: Dualism of transaction nesting hierarchies on workstation
and server

transaction hierarchies on the workstation and on the server. A
recovery transaction up to now is a single transaction that spans both
processors, I.e. its end is synchronized by a two-phase commit. The
nesting inside a recovery TA is discussed later.

The durability of a recovery transaction is subject to the success of its
parent transaction. But it must be durable as long as the parent
transaction lives. Therefore, the agent of the parent does not only
inherit all the locks, but also carries the UNDO and REDO information.
lt survives all server failures. In other words, as long as there is no
active subtransaction, the agent is always ready to commit. In some
way, the agent is always in a state comparable to the semi-active state
of the design transaction. 1t guarantees the persistence of locks on
the server and limits the scope of recovery to the recovery
transaction.

Still the goal of mutual masking is not reached yet, for a recovery
transaction also contains a considerable amount of work on the
workstation that Is destroyed by a server failure. To advance on failure
masking, the idea of nested transactions can be u!ilized inside a
recovery transaction as well, making each single server call (usually an
MOL statement) a subtransaction. Fig. 14a is then modified as shown
In Fig. 14b.

The recovery transaction now itself Is represented on the. server by an
:~gent with the single call transaction as a subtransact•on. A server
failure causes just the single call to be wiped out. In case of a
permanent failure a message is sent to the workstation and the
recovery transaction there • still alive! - can decide what to do. The
same goes for transient failures, if no input logging is done by the
server (could be too expensive). A server failure between two calls
has no effect at all on the workstationl Nevertheless, a severe
obstacle could be the overhead induced by writing the UNDO and
REDO information at the end of every single server call. If this turns
out to be too expensive, one has to go back to flat. recovery
transactions, diminishing the degree of mutual masking of failures.
But even thcil the user need not be Involved In the treatment of
transient failures.

6. Conclusions

Engineering applications generate huge workloads for DBMS when
accurate data models of the design objects are to be maintained by
them. Convincing advantages, however, vote for DB-based
approaches. Therefore, advanced DBMS should be designed and
tailored to specific working environments to support engineering
applications and to make interactive designer work feasible. The
difficulty of this goal was demonstrated by a number of performance
figures derived from realistic prototype applications.

Our design of providing database management services. for
engineering applications running on dedicated workstat1ons
observes the principle of 'near-by-application' locality. Based on the
DBMS kernel architecture we have introduced and refined the design
of an application-specific DBMS layer with its processing model and
implementation. The distribution of DBMS work across server and
workstation as well as the particularities of engineering applications
call for a transaction model different from business applications. A
design transaction exhibiting an Internal structure (nesting) was
proposed to support long-term designs. Moreover, such a trans­
action model should include the cooperation among workstation and
server thereby mutually masking all failures as far as possible.

Our current implementation of the workstation-server coupling will
provide more Insight in the various issues discussed. Thus, we hope
to demonstrate the feasibility of our approach and, in particular, of the
'near-by-application' locality. Furthermore, we will gain more
experience with the relevant performance problems of engineering
applications.

39

References

[Anon85] Anon et al.: A Measure of Transaction Processing
Power, Datamation, April issue, 1985.

(Da86) Dadam, P., et al.: A DBMS Prototype to Support
Extended NF2·Relations: An Integrated View on Flat
Tables and Hierarchies, in: Proc. ACM SIGMOD Cont.,
Washington, D.C.-, 1986, pp. 356·367.

[Gr78J Gray, J.N.: Notes on Database Operating Systems,
Operating Systems • An Advanced Course, Lecture
Notes in Computer Science 60, Bayer, R., Graham,
R.M., Seegmuel!er, G. (eds.), Springer Publ. Co., 1978,
pp. 393-481.

[HHLM87] Harder, T., HObel, C., Langenfeld, S., Mitschang, B.:
KUNICAD - A Database System Supported Geometrical
Modeling Tool for CAD Applications (in German),
Springer Publ. Co., lnformatik Forschung und
Entwicklung, Vol. 2, No. 1, 1987, pp. 1-18.

[HMMS87) Harder, T., Meyer-Wegener, K., Mitschang, B., Sikeler,
A.: PRIMA- A DBMS Prototype Supporting Engineering
Applications, SFB 124, Research Report No. 22/87,
Univ. Kaiserslautern, accepted for 13th lnt. Cont. on
VLDB, Brighton, 1987.

[HR85] H~rder, T., Reuter, A.: Architecture of Database
Systems for Non-Standard Applications (in German), in:
Proc. of the GI-Conf. on 'Database Systems for Office,
Engineering, and Science Environments', (Karlsruhe),
Springer Publ. Co., IFB Bd. 94, 1985, pp. 253·286.

(HR87] H~rder, T., Rothermel, K. : Concepts for Transaction
Recovery in Nested Trasactions, IBM Almaden Research
Center, San Jose, CA, accepted for ACM SIGMOD
Coni., San Francisco, 1987.

[Ka84) Katz, R., Weiss, S. : Design Transaction Management, In:
Proc. 19th Design Automation Conf., June 1984,

[KLMP84) Kim, W., Lorle, R., McNabb, D., Plouffe, W.: Nested
Transactions for Engineering Design Data- bases, In:
Proc. 10th lnt. Cont. on VLDB, Singapore, 1984, pp.
355-362.

[laP83] Lacroix, M., Pirotte, A.: Comparison of Database
Interfaces for Application Programming, in: lnf. Systems,
Vol. 8, No. 3, 1983, pp. 217-229.

[LP83) Lorie, R., Plouffe, W.: Complex Objects and Their Use in
Design Transactions, in: Proc. of the Data Base Week:
Engineering Design Applications, 1983, pp. 115-121 .

[Mi87] Mitschang, 8.: MAD- a Data Model for the Kernel of a
Non-Standard Database System (in German), In: Proc. of
the GI-Conf. on 'Database Systems for Office,
Engineering, and Science Environments' (Darmstadt),
Springer Pub!. Co., IFS Bd. 136, pp. 180-195.

[Mo81) Moss, J.E.B.: Nested Transactions: An Approach To
Reliable Computing, M.I.T. Report MIT-LCS-TR-260,
M.I.T., Laboratory of Computer Science, 1981.

[PSSWD87] Paul, H.·B., Schek, H.-J., Scholl, M.H., Weikum, G.,
Deppisch, U.: Architecture and lmplemen- talion of the
Darmstadt Database Kernel System, accepted for ACM
SIGMOD Cont., San Francisco, 1987.

(RV82) Requicha, A.A.G., Voelcker, H.B.: Solid Modelling: A
Historical Summary and Contemporary Assessment, in:
IEEE Computer Graphics and Applications, Vol. 2, No. 2,
March, 1982, pp. 9-24.

[SR84) Stonebraker, M., Rowe, L.: Database Portals ·A New
Application Program Interface, in: Proc. 1Oth lnt. Conf.
on VLDB, Singapore, 1984, pp. 3-13.

