
Using PRIMA-DBMS as a Testbed for Parallel Complex-Object Processing

C. Hiibel, B. Mitschang, M. Gesmann, A. Grasnickel, W. Kafer, H. Schoning, T. Harder

Sonderforschungsbereich 124, University of Kaiserslautern, Germany

{ huebel,mitsch,gesmann,grasnick,kaefer,schoenin,haerder} @informatik. uni-kl.de

Abstract
The PRIMA-DBMS approach is explained by introduc­

ing PRIMA's architecture and query processing frame­
work. The PRIMA-DBMS constitutes a testbed that is flexi­
ble enough to support evaluation and validation of quite a
variation of different strategies for complex-object pro­
cessing taking into account different parallelization levels
and different hardware environments. Thus, PRIMA marks
an important step towards our main research goal con­
cerning measures for efficient complex-object processing:
the measures that are in competition with each other are
query optimization, query evaluation strategies, and mas­
sive storage, that all benefit from parallelism.

The programming environment that supports the paral­
lel DBMS processing is introduced with special emphasis
on its ability for parametrization and configuration. A case
study of the PRIMA testbed illustrates our first investiga­
tions and demonstrates a methodology f or evaluation and
tuning of PRIMA configurations.

1. Motivation

Complex applications, such as design applications,
AI applications, and even enhanced business applica­
tions provoked a lot of research in and evaluation of en­
hanced data models and query languages. The reason for
this is that those applications can benefit significantly
from DBMS that efficiently support complex objec ts.

Basically, there are three orthogonal measures in or­
der to meet the necessary performance requirements.
Firstly, query processing can be tremendously influ­
enced by query optimization. Secondly, efficient evalu­
ation of the optimized query plans depends on a high
performance query evaluation system, and thirdly, ex­
ploitation of massive storage (e.g. cached or material­
ized complex objects, access structures) complements
the previous two. Nowadays and triggered by evolution
in hardware (especially the advent of shared-memory
multiprocessor machines and high bandwidth networks)
parallelism in query processing becomes very attractive

0-8186-2660-7/92$3.00 e 1992 IEEE
38

as a means towards more efficient realization of these
performance measures to query processing. Especially
for complex-object processing .intra-query parallelism
becomes interesting, in addition to the well-known in­
ter-query parallelism.

In order to investigate these performance-crucial
measures, we have developed a DBMS testbed that is
flexible enough to support evaluation and validation of
strategies for complex-object processing considering
different parallelization levels and different hardware
environments. An overview of the basic concepts under­
lying our DBMS-testbed approach and a brief outlook
on some case studies are given in the following chap­
ters.

2. Client/server-based architecture for data­
base processing

DBMS modularization as well as its embedding into
an adequate runtime environment are necessary prereq­
uisites for flexible and parallel database processing. In
this chapter we focus on our DBMS architecture and
query processing concepts, whereas the subsequent
chapter deals with the environment issues.

2.1 PRIMA architecture

The architectural framework of the PRIMA system
[HMMS87], shown in Fig. 1, is composed of a DBMS
kernel with neutral , i.e ., application independent, data
management functions and an application layer provid­
ing application-specific support. The data retrieved
from the kernel is embedded into the application layer
by means of an object-buffer. The object-buffer manag­
er supports fast pointer-like access to the objects loaded.
The kernel is refined by a modular architecture being a
prerequisite for flexibility and extensibility of the com­
ponents and the kernel itself. The kernel provides at its
interface a complex-object data model and language
[Mi89]. The implementation model behind distinguishes
three different layers (i.e. data, access, and storage sys­
tem) for mapping the complex objects (here called mol-

Application

Application Layer

I Object-Buffer I
DBMS kernel

Trans-
Data

System M eta-
action Access Data

manage- System Manage-
ment ~orage ment

ystem

l/0 System

a) Modularized and layered architecture

operations at the user-interface

operations in the application

9ata model operation at the complex-object
Interface

SELECT ... FROM . .. WHERE

operations at the internal record interface
OPEN SCAN . . . NEXT ELEMENT ..

operations at the system buffer interface
READ PAGE ... WRITE PAGE

File-110-operations

b) Decomposition of operations

Fig. 1: PRIMA modularization and operation-decomposition

ecules) onto elementary obJects (called atoms), which in
turn are mapped onto blocks stored on external devices.
For more detailed information on the PRIMA kernel the
interested reader is referred to [HMMS87]. As illustrat­
ed in Fig. I, operations at one layer are decomposed into
operations of the next underlying layer.

Based on the system modularization and on the oper­
ation decomposition we have developed a client/server
model that defines the framework for database process­
ing in PRIMA: in order to do its task, a client can issue
requests for services to be performed by respective ser­
vers. Fig. 2 illustrates a simplified view to the server
components and their client/server relationships. The
data system consists of several servers (not all are
shown in Fig. 2). The Compiler server is responsible for
query compilation and generation of query evaluation

Fig. 2: Decomposition Into server components

39

plans that are executable by the DML-execution server.
Both issue requests to the Meta-Data server and to
themselves (e.g. in case of nested query expressions). In
order to perform query evaluation plans, the DML-exe­
cution server uses Access System services, which in turn
rely on Storage System services. All servers use Trans­
action Management services. The realization of the PRI­
MA client/server model is based on the Remote Cooper­
ation System (short: RCS). It provides the fundamental
functionality that is needed for the implementation of
the client/server model in such a way that both the un­
derlying operating system as well as the actual hardware
are transparent at its interface. More detailed informa­
tion on RCS and on the realization of the client/server
model are given in the next chapter.

2.2 Query Processing in PRIMA

The complex-object data model provided at the ker­
nel interface is called Molecule Atom Data model
(MAD) and its language is called Molecule Query Lan­
guage (MQL). Here, complex objects are assembled
from primitive atoms: molecule construction basically
follows references from one atom to other atoms in or­
der to get the constituent atoms of the complex object.
From a more general point of view this is quite similar
to object assembly in object-oriented databases, where
references between objects are the prevailing represen­
tation scheme for object relationships and therefore used
for assembly [ZM90]. Molecule construction and of
course also molecule qualification are the main tasks of
DML-execution that requests atoms (internal records)
from the Access System server, which in turn uses ser­
vices of the Storage System to retrieve the pages that
contain the atoms needed.

Molecule construction and qualification relics on an
operator approach. That is, DML-execution consists of
operators for complex-object assembly, join, recursion,
sort, etc. The query evaluation plan, that is fed into
DML-execution looks like a graph where the nodes are
the operators and the edges represent the dataflow in the
graph. At this abstraction level it is quite obvious that
inter- as well as intra-operator parallelism (two forms of
intra-query parallelism) can be exploited in addition to
the well-known inter-query parallelism. For example,
operators can be processed in a pipelined fashion or ex­
ecuted in parallel if independent from each other. Fur­
theron, there are a lot of parallel join or sort techniques
as well as several approaches to parallel assembly of
complex objects, e.g. by issuing requests for atoms in
parallel. There are also ways to exploit parallelism in the
Access System server, mainly for maintaining primary
and derived data such as access paths and replicated data
(due to clustering approaches). More detailed informa­
tion on molecule processing in PRIMA can be found in
[HMS91], and [HSS88] contains an overview of con­
ceivable parallelization approaches in complex-object
processing.

2.3 Difference to other approaches

The purpose for developing PRIMA was to get a flex­
ible testbed that allows for detailed investigations in
complex-object processing with special emphasis on
parallelism. Therefore, our research interests deffers
from most others that concentrate e.g. on parallel join or
on sort operations on declustered data relying on relatio­
nal operators and using lots of different hardware plat­
forms [DG90,BA90, LD89/. For complex objects data

40

partitioning does not seem as useful because of the high­
ly meshed structures due to sub-object sharing. Since
complex-object processing has a different flavor than
processing flat relational data, the Volcano project (cf.
[KGM91] and [Gr90]) recently introduced an assembly
operator for complex objects and does also provide par­
allelization concepts by means of the exchange operator
(we can view RCS useful for a realization of Volcano's
exchange operator). There, research emphasis is con­
centrated on operator issues and extensibility in query
evaluation, whereas our approach comprises parallelism
in all system layers since the whole architecture reflec ts
the structures required by the client/server model.

3. Programming environment supporting
parallel/cooperative database processing

As suggested in the previous chapter, the interaction/
cooperation among the components of our PRIMA
DBMS follows the client/server model, i.e., each com­
ponent offers a couple of services that can be activated
from other components to perform their individual func­
tionality. This hierachical service activation leads to a
tree of service activation units as illustrated in Fig.l b.
Following the major goal of our investigations, this tree
has to be executed in parallel whenever the service se­
mantics permits it. Hence, it has to be performed in a
distributed processing environment given by tightly or
closely coupled multiprocessors or by loosely coupled
multi-computers. In order to separate and isolate the
mechanisms that support parallel and cooperative work
in a distributed environment from the application, we
have implemented the above mentioned Remote Coop­
eration System (RCS). It serves as runtime environ­
ment for the PRIMA DBMS [HKS91]. The general re­
quirements that RCS must satisfy can be summarized by
the following three issues related to independent views
to the system:
• Application view: RCS has to support cooperation

and parallel execution of service activations in a
distributed client/server system. The encapsulation
issue enhances the stability of the application pro­
grams w .r.t. the actual realization of RCS functional­
ity.

· • Administration view: It should provide a high de­
gree of hardware as well as software (operating
system) independency in order to allow for porta­
bility and adaptability of RCS and its application
system. This is realized by means of adequate system
configuration facilities .

• Application designer's view: RCS should also sup­
port monitoring and analyzing facilities that allow
for the valuation and tuning of the actual RCS con-

figuration of its application system (i.e., the PRIMA
Dl3MS).
These topics are discussed in more detail through

sections 3.1 to 3.3.

3.1 RCS Characteristics and Functionality

The most important features of RCS seen from an ap­
plication programmers point of view are pointed out in
the following:
• A system component may play server role as well as

client role for other system components at the same
time. E.g., the access component (cf. Fig 2) uses as
client the functionality of the storage component arid
provides its own functionality in a server role to the
DML-execution component.

• Each service request is bracketed between service
initiation and result reception. The activation of a
particular service is performed asynchronously al­
lowing for parallelism among a client activation unit
and all of its initiated services.

• Each server component can accept multiple service
initiations and can perform the associated operations
independently. This feature is used extensively with-·
in the Compiler as well as the DML-execution com­
ponent (cf. Fig. 2) for recursive service activations.
Fig. 3 gives a very simple example of client/server

cooperation based on RCS functions. After local initial-

client­
application

Rc_lnit (...)

Remote_Server_Start (..
.. ..

fpr~parati6f1 ofpar<'un eters
Remote Server
Initiation-(:,.) .. -

RCS
(client-site)

ization (Rc_Init) the client-site connects itself to the ser­
vers needed. Then, the processing starts: client-site ini­
tiates as needed services (Remote_Service_Initiation) at
several server-sites. Optionally, it can activate multiple
services of a single server. On server-site, service acti­
vations are independently accepted (Accept) and pro­
cessed. For client usages, RCS provides functions to
look in a non-blocking manner or to wait (i.e., blocked)
for service results. Fig. 3 shows the wait case (Wait_­
For_Service_Termination) where the client-site re­
sumes when the server-site returns results. At the end of
processing, the client disconnects itself from the con­
nected servers and terminates thereafter.

During service evaluation, dependencies can occur
due to semantic relations among several service activa­
tions (e.g., between fix-page and unfix-page service ac­
tivations of the PRIMA transaction/synchronization ser­
ver) . In order to cope with this kind of dependencies
(not shown in Fig. 3) RCS provides an event mechanism
based on wait/signal event functions. Additionally, RCS
carries out some kind of global storage which is shared
from a logical point of view. That is, data allocated in
global storage can be transmitted from one component
to another with a call by reference semantics. Particular­
ly, it is possible to transmit referenced complex data
structures like lists, trees, etc. simply by allocating their
nodes within global storage. Again, RCS hides the actu­
al realization from the application system.

RCS
(server-site)

server­
application
Rc_lnit (...)

Accept (...)

. .
: . :· ·. iransmissio~/ ·>.

. .
. .

. . -· . ..

Wait_For~ServeL .·. · ··•·•••
Terrni~fti?.? (...)--..--c.·.

Get....~ervei_Result(..:) ·· ;-.+...:.. •.

(*processing ofresults*) .
Remote~Server_End

Rc_Terminate

··•·•· •..•.... •···· > of · ·.·· .. .
·· parameters

(*task ex;ecution*)

(* preparation of results *)

++--Accept (...)

~+--+-- (* Remote_Server
End-execution *)

Fig. 3: A sample schedule of client server cooperation

41

3.2 Parameterization and Configuration

The configuration parameters supported by RCS
comprise the underlying hardware and related Operating
System (OS), as well as the aspects of embedding sys­
tem components (and thus their services) into the OS
processing units.

Until now, RCS allows for use of the following hard­
ware/OS platforms: Sun workstations under SunOS,
Apollo workstations under AEGIS, Sequent shared­
memory mulLiprocessor under Dynix, and Siemens
mainframe under BS2000. That is, all the RCS coopera­
tion primitives show a high degree of hardware/OS in­
dependence, and isolate the application programs (at
least those parts that deal with cooperation) from partic­
ular hardware/OS features (concerning memory and
communication). For performance reasons, RCS tries to
exploit as much as possible existing features (e.g. shared
memory for communication purposes or for realization
of global storage) of the underlying piatform without
making this fact visible to the application programs. Ap­
plication components (that have no other hardware/soft­
ware dependency, e.g. no need of special graphic hard­
ware or software packages) can be attached to different
platforms by easily editing a configuration file when
system starts up.

Besides this kind of configuration, one can change
the embedding of application components into OS pro­
cessing units (i.e. processes). In the standard case, each
application component is mapped to a separate process,
which is the unit of processor attachment. That is, all
service activations of one server are executed by a sin­
gle process; hence, by a single processor. However,
RCS achieves the required processing independence of
multiple server activations by a multi-task mechanism,
i.e. by an intra-process task organization. This means
that parallelism is normally exploited in an inter-server
fashion only. In order to exploit different degrees of par­
allelism, RCS allows for changing this mapping strate­
gy. One can specify multi-server processes as well as
multi-process servers. Selecting the multi-server pro­
cess mapping that is, multiple servers attached to a sin­
gle process, allows for reduced cooperation overhead
between the inner servers, thus compensating the loss of
parallelism. In the other case, i.e., when mapping one
server to multiple processes, the possible parallelism
can be exploited effectively.

The latter case brings up some difficulties since it af­
fects load balancing that marks a sole problem in the
whole DBMS field. Where selecting the multi-process
server mapping, one has to extend in today's implemen­
tation of the RCS the application programs by appropri­
ate load balancing strategies. To improve this situation,

we are working on RCS enhancements that should allow
us to separate load balancing from the remainder appli­
cation and to plug server-specific load balancing strate­
gies into RCS. This feature will significantly improve
the easiness of system configuration since RCS will be
able to hide the kind of server embedding totally from
the application.

3.3 Measuring and Performance-Analysis

Valuation and tuning of distributed and parallel cli­
ent/server application systems require tailored measur­
ing and analyzing support. So far, we have worked on a
suitable performance analysis methodology and imple­
mented adequate measuring and analyzing facilities
within the RCS framework [GHKSS91]. These facilities
allow for the online/offline monitoring of system dy­
namics and load distribution, as well as monitoring of
load dependencies between server, process, and proces­
sor. OfOine monitoring and a further analyzing facility
are based on log-file informations that are generated
during runtime. The main goal of these tools is analyz­
ing relationships between components in a (distributed)
client/server application. A visualization feature helps
in recognizing hints for distribution strategies and opti­
mized system configurations, and in identifying bottle­
necks within the processing behavior of client/server ap­
plication systems.

4. A DBMS Testbed Scenario

It is not clear from the beginning how a good param­
eterization and configuration for parallel complex-ob­
ject processing in PRIMA-DBMS look like. when load
and size of the database, as well as the underlying hard­
ware (and OS) are subject to change. One of the research
issues is to extract some rules that help as guidelines for
parameterization, configuration, and tuning. In ap­
proaching this, we have implemented the measurement
and analysis tools mentioned. A general testing phase of
these tools is already passed and we are now using them
to evaluate the effects of variations of parameterization
and configuration. Right now, we are working on a first
evaluation of different PRIMA configurations.

There are three extreme positions of system configu­
rations to be distinguished:
• The single processor configuration, where all PRI­

MA servers are attached to the same processor.
• The LAN configuration, where each of the PRIMA

components is executed by a separate processor.
• The shared-memory and multiprocessor (SMMP)

configuration, where PRIMA is totally distributed
onto the processors of our Sequent machine.

r-.. - ·,·-··-.. - .. --.... : .. --.. - .. --.. , .. --.. --... - .. --.. ,- .. -·.-· .. - .. , .. _.,_ ... _ .. _,._ .. _ .. _ .. __ ,._ ... _ .. _ ... _ .. , .. - .. _ .. _ ... _,._ ... ___ , __ .,_ .. __ .. _ .. __ .. , .. .
! ! ~UW

! i·;e-ad"},-

JOoo·i,.' !. _\, -~,,·

:

1_.:.·':.:·'!)-../v\)i'i \N\-:;\.;1/·,.·-· ... /'\ •. J.J \._ "' .~ ••.. "'"'·-·d'''\.-··,..~., r · .. ,
s.orn'.i... 1 · \ _ ·· .. ·.-·· ••) •1:.'· ?

: :
~ 1

0.00~ l . : : : : : : : : : j _,,,_ , _ .. ,_ _ _ , _ , .. _, -. _ ,,_,,_ _ .. ,_, , _ _ _ .. _ , _ .. ,, _ .. _ .. ,_ .. ,,_.. .. _ ,._,,_,,_,,._ - ,_ - - ... _ .. , _ ,_ J

0.00 10.00 20.00 30.00 40.00 50.00 60.00 70.00 80.00 90.00 100.00
Fig. 4: Total number of (active/ready) tasks drawn over the observation time

Our first investigations aim at how to find out a LAN
configuration being optimal/good for a given workload.
The following example demonstrates the methodology
that we have applied to tune a system configuration and
to identify some weaknesses of our PRIMA implemen­
tation. Knowing that a "good" configuration lies some­
where between a single processor and a totally distribu~­
ed LAN configuration, we start our evaluations with one
of these extreme positions: initially, each of the PRI­
MA components is carried out by a single process
sharing a single processor (later refered to as WS 1).

The basic heuristics used to find out an optimal sys­
tem configuration are based on two general insights:
• First, multiple processors are needed only if a single

processor is saturated, i.e. it constitutes a bottleneck
in DBMS processing.

• Second, the total response time of a distributed cli­
ent/server system is positively influenced by a uni­
form and homogenous load of each system compo­
nent.
The workload of the example considered is deter­

mined by a small database and a statically defined set of
24 MQL statements with in the mean 6 statements in

paraiiel. The system configuration comprises Transac­
tion Management server, DML-execution server, Access
System and Storage System server, as well as M eta-Data
Management server.

As one might have expected, the applied processor
was overloaded, i.e. the cpu works permanently during
the total observation time (no idle time). Fig. 4 shows
the number of tasks of all PRIMA servers drawn over
the observation time. The mean values for the active as
well as the ready tasks indicates the degree of overload­
ing, since these tasks could be performed concurrently if
additional processors and/or processes would be avail­
able. In other words, it makes sense to distribute some
PRIMA servers to a further processor and/or to change
the mapping strategy for particular servers from a sin­
gle-process to a multi-process mapping. In order to de­
termine which server(s) should be attached to an addi­
tional processor, we must have a closer look at the ser­
ver specific workload characteristics. Doing so, the
DML-execution server is identified, since it significant­
ly influences the system behavior as is illustrated in Fig.
5. The curves indicating the workload of the DML-exe­
cution server (given by the number of active/ready

r , : .. , ,,. -.................. , ,_ , ,_ , , ,, .. _ , .. _._ 1 active

i ~~
10 OOi.. ..j

. • !, I i,i·

... ·.J .. .}\ •. } ····;~··=J\.· .. :.J_r: ·\ _,.r··\ / ,... ~ \···.'\ · ·.-. .. ' :'-~ .. :·=:':=., , .. •.•...••. .:-···· .. \ .. :.

5.00.:'.. ' U '\,,·.~!. ~ 'i' :/ . : ·.····~
·:: ': \ · .. ···· ~·"", ... ····:

!'A \:\.,:V .
0' 0 Ot l ·'.i.:':_~.'~ -... i ~ J L _,, :. _ L - l - L L L ,

0.00 10.00 20.00 30 00 40.00 50.00 60.00 70.00 80.00 90.00 100.00
Fig. 5: Number of (active/ready) tasks performed by the DML-execution server

43

::::r·-··-·····-·-· ---·-~'n·-=········-= ·:::::::::::c====:::::::::::::o:::==,~::::::::::::: :'==::::::::===-=:::=·=:=====-==::::== ·-=-=::.:::::::::·:.::.:::::=.' :::::::::·====: ::.::::· =r·- ···-··::- ~~}-

l !
0.60!··

i
0.40i·

~

in
0.20,':::.. :::

0.00t I :_ ... ! ... ! L ! L L. !.. !.. ' L j
0.00 10.00 20.00 30.00 40.00 50.00 60.00 70.00 80.00

Fig. 6: Saturation degree of WS1 and WS2 (1.00 indicates total processor saturation

tasks) look quite similar to the overall task curves
shown in Fig. 4.

To improve the system behavior, i.e., to reduce PRI­
MA's processing time, we reconfigured and attached
the DML-execution server to a second workstation
(WS2) in our LAN. Besides the 20% reduction of the
overall processing time this decreased the processor
load to 64% in the mean.

Having a closer look at the processor specific work­
load one can identify the new/old bottleneck: the DML­
execution server. The processor that performs this ser­
ver (WS2) is permanently busy (cf. Fig. 6)

There are two measures of improvement:
• Change of mapping strategy, i.e., duplicate the pro­

cess that performs the DML-execution server and at­
tach them to a different processors.

• Analyzation of the inner processing strategy of the
DML-execution server, in order to identify the actu­
al reason for this bottleneck.

lilt: 11rst mt:asurt: auuresst:u ww amt:nuratt: tnt: out­
tleneck situation in any case, the second one may make
additional sense. Fig. 7 illustrates the states of all such
tasks triggered by executing a particular task of the
DML-execution server. Obviously, the DML-execution
task (task identification number one) initiates most of its
subtasks in a synchronous manner. Reviewing the server
implementation one might recognize whether this fact is
problem inherent or it results from an inappropriate im­
plementation. In the latter case one can improve the ser­
ver' s programming by exploiting asynchronity. A fur­
ther look at Fig. 7 shows a misrelation between the peri­
ods in which the task state is ready and in which it is ac­
tive. This may mean that the corresponding servers do
not perform their tasks in the right schedule, since they
work for others (clients) while blocking theDML-execu­
tion task. Further detailed observations may validate
this supposition and a modification of the scheduling

~a~~~~~ntificat ion , , , , ,. , ;:.·.·::.·.·::::.·_:_·_-~·-·_-_-_-_-_-_·_-_-_-_-_·_·_ , l-
. ~

15.00! ..

1 o.ooj ..

s.oo: ..

ready
11111111111111111111111

:

.~ :.. ·-- :.--·······- --:......... "":_-. :_ :.... -
! i l i i ; l ~ i l i J

2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 10.00 sec

Fig. 7: State/time diagram of all tasks triggered by executing a particular task of the DML-execution server

44

strategy will become necessary, what in turn, is easily
achieved by the underlying RCS functionality.

5. Conclusions

So far, this example has sketch some steps of a meth­
odology for optimizing the PRIMA configuration (as
well as its implementation) under the presumption of a
fixed load. By changing the workload we can evaluate
the dependencies between the configuration decisions
and the load characteristics. In order to meet our goal of
finding some general rules for system configuration, we
have to consider additionally the SMMP configuration
case. A preliminary conclusion drawn from our investi­
gations so far, comprises the following, rather abstract
guidelines for optimal setting of system parameters, that
are now validated by further testbed evaluations:
• Data allocation: Especially support for shared data

is crucial. For the LAN configuration it is quite clear
that those components that share data (e.g. Access
server and Storage server share the DB-buffer allo­
cated in RCS global storage) do better share proces­
sors in order not to share data over the network; for
the SMMP scenario this is not so critical since the
DB-buffer (also allocated in RCS global storage) is
supposed to be part of the shared memory so that all
components have fast and cheap access.

o Kind of parallelization: Kind of parallelization de­
termines dataflow characteristics. For example, pipe­
lined processing opts for a 'continuous' stream of
data between server and client, whereas independent
parallel processing just needs result transmission be­
tween both.

o Workload characteristics: As illustrated in the ex­
ample, bottleneck identification and elimination is
very important. If the saturation of processors is
reached, then it is necessary to attach servers to other
processors or if task-saturation for server processes
occurs, then it is worthwhile to replicate this server,
eventually on another processor.
In addition to the investigations for optimal system

parameter settings w .r.t. parallelism, further research
topics under consideration concentrate on the evaluation
of the sole as well as the cumulated effects of the other
measures mentioned, thus working on different query
processing strategies, optimization strategies, and dif­
ferent clustering and indexing techniques.

In this paper we concentrate on complex-object pro­
cessing on the DBMS kernel only. Considering that in
engineering applications the way of processing (in the
application and application layer) is typically deter­
mined by mechanisms like check-out/check-in, local da­
tabases, long-living transactions, etc., for evaluating and

tuning the overall system behavior it becomes important
to consider both application processing and DBMS pro­
cessing. This identifies additional guidlines for further
investigations in our PRIMA framework.

6. Literature

BA90 Boral, H., Alexander, W., Clay, L., Copeland, G.,
Danfurth, S., Franklin, M., Hart, B ., Smith, M .•
Valduriez, P.: Prototyping Bubba, A Highly Paral­
lel Database System, in: K.noweldge and Data En­
gineering, Vol. 2, No. 1, March 1990.

0090 DeWitt, D.J., Ghandeharizadeh, S., Schneider,
D.A., Bricker, A., Hsiao, H.-I., Rasmussen, R.: The
Gamma Database Machine Project, in: Knowledge
and Data Engineering, Vol. 2, No. 1, March 1990.

Gr90 Graefe, G.: Volcano, an Extensible and Parallel
Query Evaluation System, Research Report Uni­
versity of Colorado at Boulder, CU-CS-481-90,
1990.

GHKSS91 Gesmann, M., Htibel, C., Kafer, W., Schoning, H ..
Sutter, B.: Messen und Bewerten paralleler Client/
Server-Architekturen - am Beispiel des kooperie­
renden Non-Standard-Datenbanksystems PRIMA.
in: Proc. der GI/NTG-Fachtagung "Messen, Mo­
dellieren und Bewerten", MMB91, Mtinchen 1991.

HKS91 Hiibel, Ch., Kafer, W., Sutter, B.: Ein Client/Ser­
ver-System als Basiskomponente ftir ein koopcrier­
endes Datcnbanksystem, in: Proc. der GIJITG­
Fachtagung "Kommunikation in Verteilten Syste­
men", K.IVS-91, Mannheim, Feb. 1991.

HMMS87 Harder, T., Meyer-Wegener, K., Mitschang, B.,
Sikeler, A.: PRIMA - A DBMS Prototype Support­
ing Engineering Applications, in: Proc. of the 13th
VLDB, Brighton, 1987.

HMS91 Harder, T., Mitschang, B., Schoning, H.: Query
Processing for Complex Objects, appears in: Data
and K.noweldge Engineering, 1991.

HSSRR Harder, T., Schoning, H., Sikclcr, A .: Parallelism
in Processing Queries on Complex Objects, in:
Proc. of the International Symposium on Databases
in Parallel and Distributed Systems, Austin, Texas,
1988.

HSS89 Harder, T., SchOning, H., Sikeler, A.: Evaluation of
Hardware Architectures for Parallel Execution of
Complex Database Operations, in: Proc. 3rd Annu­
al Parallel Processing Symposium Fullerton, CA,
USA 1989, pp 564-578.

KGM91 Keller, T., Graefe, G., Maier, D.: Efficient Assem­
bly of Complex Objects, Research Report, Univer­
sity of Coloardo at Boulder, CU-CS-502-90, sub­
mitted to SIGMOD '91.

LD89 Lorie, R., Daudenarde, J., Hallmark, G., Stamos, J.
Young, H.: Adding Intra-Transaction Parallelism to
an Existing DBMS: Early Experience, Data Engi­
neering, Vol. 12, No. 1, March 1989.

Mi89 Mitschang, B.: Extending the Relational Algebra to
Capture Complex Objects, in: Proc. 15th lnt.
VLDB Con£., Amsterdam, 1989.

ZM90 Zdonik, S., Maier, D.: Readings in Object-Oriented
Database Systems, Morgan Kaufmann Pub!., 1990.

