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Abstract 
The PRIMA-DBMS approach is explained by introduc­

ing PRIMA's architecture and query processing frame­
work. The PRIMA-DBMS constitutes a testbed that is flexi­
ble enough to support evaluation and validation of quite a 
variation of different strategies for complex-object pro­
cessing taking into account different parallelization levels 
and different hardware environments. Thus, PRIMA marks 
an important step towards our main research goal con­
cerning measures for efficient complex-object processing: 
the measures that are in competition with each other are 
query optimization, query evaluation strategies, and mas­
sive storage, that all benefit from parallelism. 

The programming environment that supports the paral­
lel DBMS processing is introduced with special emphasis 
on its ability for parametrization and configuration. A case 
study of the PRIMA testbed illustrates our first investiga­
tions and demonstrates a methodology f or evaluation and 
tuning of PRIMA configurations. 

1. Motivation 

Complex applications, such as design applications, 
AI applications, and even enhanced business applica­
tions provoked a lot of research in and evaluation of en­
hanced data models and query languages. The reason for 
this is that those applications can benefit significantly 
from DBMS that efficiently support complex objec ts. 

Basically, there are three orthogonal measures in or­
der to meet the necessary performance requirements. 
Firstly, query processing can be tremendously influ­
enced by query optimization. Secondly, efficient evalu­
ation of the optimized query plans depends on a high 
performance query evaluation system, and thirdly, ex­
ploitation of massive storage (e.g. cached or material­
ized complex objects, access structures) complements 
the previous two. Nowadays and triggered by evolution 
in hardware (especially the advent of shared-memory 
multiprocessor machines and high bandwidth networks) 
parallelism in query processing becomes very attractive 

0-8186-2660-7/92$3.00 e 1992 IEEE 
38 

as a means towards more efficient realization of these 
performance measures to query processing. Especially 
for complex-object processing .intra-query parallelism 
becomes interesting, in addition to the well-known in­
ter-query parallelism. 

In order to investigate these performance-crucial 
measures, we have developed a DBMS testbed that is 
flexible enough to support evaluation and validation of 
strategies for complex-object processing considering 
different parallelization levels and different hardware 
environments. An overview of the basic concepts under­
lying our DBMS-testbed approach and a brief outlook 
on some case studies are given in the following chap­
ters. 

2. Client/server-based architecture for data­
base processing 

DBMS modularization as well as its embedding into 
an adequate runtime environment are necessary prereq­
uisites for flexible and parallel database processing. In 
this chapter we focus on our DBMS architecture and 
query processing concepts, whereas the subsequent 
chapter deals with the environment issues. 

2.1 PRIMA architecture 

The architectural framework of the PRIMA system 
[HMMS87], shown in Fig. 1, is composed of a DBMS 
kernel with neutral , i.e ., application independent, data 
management functions and an application layer provid­
ing application-specific support. The data retrieved 
from the kernel is embedded into the application layer 
by means of an object-buffer. The object-buffer manag­
er supports fast pointer-like access to the objects loaded. 
The kernel is refined by a modular architecture being a 
prerequisite for flexibility and extensibility of the com­
ponents and the kernel itself. The kernel provides at its 
interface a complex-object data model and language 
[Mi89]. The implementation model behind distinguishes 
three different layers (i.e. data, access, and storage sys­
tem) for mapping the complex objects (here called mol-
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Fig. 1: PRIMA modularization and operation-decomposition 

ecules) onto elementary obJects (called atoms), which in 
turn are mapped onto blocks stored on external devices. 
For more detailed information on the PRIMA kernel the 
interested reader is referred to [HMMS87]. As illustrat­
ed in Fig. I, operations at one layer are decomposed into 
operations of the next underlying layer. 

Based on the system modularization and on the oper­
ation decomposition we have developed a client/server 
model that defines the framework for database process­
ing in PRIMA: in order to do its task, a client can issue 
requests for services to be performed by respective ser­
vers. Fig. 2 illustrates a simplified view to the server 
components and their client/server relationships. The 
data system consists of several servers (not all are 
shown in Fig. 2). The Compiler server is responsible for 
query compilation and generation of query evaluation 

Fig. 2: Decomposition Into server components 
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plans that are executable by the DML-execution server. 
Both issue requests to the Meta-Data server and to 
themselves (e.g. in case of nested query expressions). In 
order to perform query evaluation plans, the DML-exe­
cution server uses Access System services, which in turn 
rely on Storage System services. All servers use Trans­
action Management services. The realization of the PRI­
MA client/server model is based on the Remote Cooper­
ation System (short: RCS). It provides the fundamental 
functionality that is needed for the implementation of 
the client/server model in such a way that both the un­
derlying operating system as well as the actual hardware 
are transparent at its interface. More detailed informa­
tion on RCS and on the realization of the client/server 
model are given in the next chapter. 



2.2 Query Processing in PRIMA 

The complex-object data model provided at the ker­
nel interface is called Molecule Atom Data model 
(MAD) and its language is called Molecule Query Lan­
guage (MQL). Here, complex objects are assembled 
from primitive atoms: molecule construction basically 
follows references from one atom to other atoms in or­
der to get the constituent atoms of the complex object. 
From a more general point of view this is quite similar 
to object assembly in object-oriented databases, where 
references between objects are the prevailing represen­
tation scheme for object relationships and therefore used 
for assembly [ZM90]. Molecule construction and of 
course also molecule qualification are the main tasks of 
DML-execution that requests atoms (internal records) 
from the Access System server, which in turn uses ser­
vices of the Storage System to retrieve the pages that 
contain the atoms needed. 

Molecule construction and qualification relics on an 
operator approach. That is, DML-execution consists of 
operators for complex-object assembly, join, recursion, 
sort, etc. The query evaluation plan, that is fed into 
DML-execution looks like a graph where the nodes are 
the operators and the edges represent the dataflow in the 
graph. At this abstraction level it is quite obvious that 
inter- as well as intra-operator parallelism (two forms of 
intra-query parallelism) can be exploited in addition to 
the well-known inter-query parallelism. For example, 
operators can be processed in a pipelined fashion or ex­
ecuted in parallel if independent from each other. Fur­
theron, there are a lot of parallel join or sort techniques 
as well as several approaches to parallel assembly of 
complex objects, e.g. by issuing requests for atoms in 
parallel. There are also ways to exploit parallelism in the 
Access System server, mainly for maintaining primary 
and derived data such as access paths and replicated data 
(due to clustering approaches). More detailed informa­
tion on molecule processing in PRIMA can be found in 
[HMS91], and [HSS88] contains an overview of con­
ceivable parallelization approaches in complex-object 
processing. 

2.3 Difference to other approaches 

The purpose for developing PRIMA was to get a flex­
ible testbed that allows for detailed investigations in 
complex-object processing with special emphasis on 
parallelism. Therefore, our research interests deffers 
from most others that concentrate e.g. on parallel join or 
on sort operations on declustered data relying on relatio­
nal operators and using lots of different hardware plat­
forms [DG90,BA90, LD89/. For complex objects data 
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partitioning does not seem as useful because of the high­
ly meshed structures due to sub-object sharing. Since 
complex-object processing has a different flavor than 
processing flat relational data, the Volcano project (cf. 
[KGM91] and [Gr90]) recently introduced an assembly 
operator for complex objects and does also provide par­
allelization concepts by means of the exchange operator 
(we can view RCS useful for a realization of Volcano's 
exchange operator). There, research emphasis is con­
centrated on operator issues and extensibility in query 
evaluation, whereas our approach comprises parallelism 
in all system layers since the whole architecture reflec ts 
the structures required by the client/server model. 

3. Programming environment supporting 
parallel/cooperative database processing 

As suggested in the previous chapter, the interaction/ 
cooperation among the components of our PRIMA 
DBMS follows the client/server model, i.e., each com­
ponent offers a couple of services that can be activated 
from other components to perform their individual func­
tionality. This hierachical service activation leads to a 
tree of service activation units as illustrated in Fig.l b. 
Following the major goal of our investigations, this tree 
has to be executed in parallel whenever the service se­
mantics permits it. Hence, it has to be performed in a 
distributed processing environment given by tightly or 
closely coupled multiprocessors or by loosely coupled 
multi-computers. In order to separate and isolate the 
mechanisms that support parallel and cooperative work 
in a distributed environment from the application, we 
have implemented the above mentioned Remote Coop­
eration System (RCS). It serves as runtime environ­
ment for the PRIMA DBMS [HKS91]. The general re­
quirements that RCS must satisfy can be summarized by 
the following three issues related to independent views 
to the system: 
• Application view: RCS has to support cooperation 

and parallel execution of service activations in a 
distributed client/server system. The encapsulation 
issue enhances the stability of the application pro­
grams w .r.t. the actual realization of RCS functional­
ity. 

· • Administration view: It should provide a high de­
gree of hardware as well as software (operating 
system) independency in order to allow for porta­
bility and adaptability of RCS and its application 
system. This is realized by means of adequate system 
configuration facilities . 

• Application designer's view: RCS should also sup­
port monitoring and analyzing facilities that allow 
for the valuation and tuning of the actual RCS con-



figuration of its application system (i.e., the PRIMA 
Dl3MS). 
These topics are discussed in more detail through 

sections 3.1 to 3.3. 

3.1 RCS Characteristics and Functionality 

The most important features of RCS seen from an ap­
plication programmers point of view are pointed out in 
the following: 
• A system component may play server role as well as 

client role for other system components at the same 
time. E.g., the access component (cf. Fig 2) uses as 
client the functionality of the storage component arid 
provides its own functionality in a server role to the 
DML-execution component. 

• Each service request is bracketed between service 
initiation and result reception. The activation of a 
particular service is performed asynchronously al­
lowing for parallelism among a client activation unit 
and all of its initiated services. 

• Each server component can accept multiple service 
initiations and can perform the associated operations 
independently. This feature is used extensively with-· 
in the Compiler as well as the DML-execution com­
ponent (cf. Fig. 2) for recursive service activations. 
Fig. 3 gives a very simple example of client/server 

cooperation based on RCS functions. After local initial-
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application 
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.. .. 
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ization (Rc_Init) the client-site connects itself to the ser­
vers needed. Then, the processing starts: client-site ini­
tiates as needed services (Remote_Service_Initiation) at 
several server-sites. Optionally, it can activate multiple 
services of a single server. On server-site, service acti­
vations are independently accepted (Accept) and pro­
cessed. For client usages, RCS provides functions to 
look in a non-blocking manner or to wait (i.e., blocked) 
for service results. Fig. 3 shows the wait case (Wait_­
For_Service_Termination) where the client-site re­
sumes when the server-site returns results. At the end of 
processing, the client disconnects itself from the con­
nected servers and terminates thereafter. 

During service evaluation, dependencies can occur 
due to semantic relations among several service activa­
tions (e.g., between fix-page and unfix-page service ac­
tivations of the PRIMA transaction/synchronization ser­
ver) . In order to cope with this kind of dependencies 
(not shown in Fig. 3) RCS provides an event mechanism 
based on wait/signal event functions. Additionally, RCS 
carries out some kind of global storage which is shared 
from a logical point of view. That is, data allocated in 
global storage can be transmitted from one component 
to another with a call by reference semantics. Particular­
ly, it is possible to transmit referenced complex data 
structures like lists, trees, etc. simply by allocating their 
nodes within global storage. Again, RCS hides the actu­
al realization from the application system. 
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3.2 Parameterization and Configuration 

The configuration parameters supported by RCS 
comprise the underlying hardware and related Operating 
System (OS), as well as the aspects of embedding sys­
tem components (and thus their services) into the OS 
processing units. 

Until now, RCS allows for use of the following hard­
ware/OS platforms: Sun workstations under SunOS, 
Apollo workstations under AEGIS, Sequent shared­
memory mulLiprocessor under Dynix, and Siemens 
mainframe under BS2000. That is, all the RCS coopera­
tion primitives show a high degree of hardware/OS in­
dependence, and isolate the application programs (at 
least those parts that deal with cooperation) from partic­
ular hardware/OS features (concerning memory and 
communication). For performance reasons, RCS tries to 
exploit as much as possible existing features (e.g. shared 
memory for communication purposes or for realization 
of global storage) of the underlying piatform without 
making this fact visible to the application programs. Ap­
plication components (that have no other hardware/soft­
ware dependency, e.g. no need of special graphic hard­
ware or software packages) can be attached to different 
platforms by easily editing a configuration file when 
system starts up. 

Besides this kind of configuration, one can change 
the embedding of application components into OS pro­
cessing units (i.e. processes). In the standard case, each 
application component is mapped to a separate process, 
which is the unit of processor attachment. That is, all 
service activations of one server are executed by a sin­
gle process; hence, by a single processor. However, 
RCS achieves the required processing independence of 
multiple server activations by a multi-task mechanism, 
i.e. by an intra-process task organization. This means 
that parallelism is normally exploited in an inter-server 
fashion only. In order to exploit different degrees of par­
allelism, RCS allows for changing this mapping strate­
gy. One can specify multi-server processes as well as 
multi-process servers. Selecting the multi-server pro­
cess mapping that is, multiple servers attached to a sin­
gle process, allows for reduced cooperation overhead 
between the inner servers, thus compensating the loss of 
parallelism. In the other case, i.e., when mapping one 
server to multiple processes, the possible parallelism 
can be exploited effectively. 

The latter case brings up some difficulties since it af­
fects load balancing that marks a sole problem in the 
whole DBMS field. Where selecting the multi-process 
server mapping, one has to extend in today's implemen­
tation of the RCS the application programs by appropri­
ate load balancing strategies. To improve this situation, 

we are working on RCS enhancements that should allow 
us to separate load balancing from the remainder appli­
cation and to plug server-specific load balancing strate­
gies into RCS. This feature will significantly improve 
the easiness of system configuration since RCS will be 
able to hide the kind of server embedding totally from 
the application. 

3.3 Measuring and Performance-Analysis 

Valuation and tuning of distributed and parallel cli­
ent/server application systems require tailored measur­
ing and analyzing support. So far, we have worked on a 
suitable performance analysis methodology and imple­
mented adequate measuring and analyzing facilities 
within the RCS framework [GHKSS91]. These facilities 
allow for the online/offline monitoring of system dy­
namics and load distribution, as well as monitoring of 
load dependencies between server, process, and proces­
sor. OfOine monitoring and a further analyzing facility 
are based on log-file informations that are generated 
during runtime. The main goal of these tools is analyz­
ing relationships between components in a (distributed) 
client/server application. A visualization feature helps 
in recognizing hints for distribution strategies and opti­
mized system configurations, and in identifying bottle­
necks within the processing behavior of client/server ap­
plication systems. 

4. A DBMS Testbed Scenario 

It is not clear from the beginning how a good param­
eterization and configuration for parallel complex-ob­
ject processing in PRIMA-DBMS look like. when load 
and size of the database, as well as the underlying hard­
ware (and OS) are subject to change. One of the research 
issues is to extract some rules that help as guidelines for 
parameterization, configuration, and tuning. In ap­
proaching this, we have implemented the measurement 
and analysis tools mentioned. A general testing phase of 
these tools is already passed and we are now using them 
to evaluate the effects of variations of parameterization 
and configuration. Right now, we are working on a first 
evaluation of different PRIMA configurations. 

There are three extreme positions of system configu­
rations to be distinguished: 
• The single processor configuration, where all PRI­

MA servers are attached to the same processor. 
• The LAN configuration, where each of the PRIMA 

components is executed by a separate processor. 
• The shared-memory and multiprocessor (SMMP) 

configuration, where PRIMA is totally distributed 
onto the processors of our Sequent machine. 
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Our first investigations aim at how to find out a LAN 
configuration being optimal/good for a given workload. 
The following example demonstrates the methodology 
that we have applied to tune a system configuration and 
to identify some weaknesses of our PRIMA implemen­
tation. Knowing that a "good" configuration lies some­
where between a single processor and a totally distribu~­
ed LAN configuration, we start our evaluations with one 
of these extreme positions: initially, each of the PRI­
MA components is carried out by a single process 
sharing a single processor (later refered to as WS 1). 

The basic heuristics used to find out an optimal sys­
tem configuration are based on two general insights: 
• First, multiple processors are needed only if a single 

processor is saturated, i.e. it constitutes a bottleneck 
in DBMS processing. 

• Second, the total response time of a distributed cli­
ent/server system is positively influenced by a uni­
form and homogenous load of each system compo­
nent. 
The workload of the example considered is deter­

mined by a small database and a statically defined set of 
24 MQL statements with in the mean 6 statements in 

paraiiel. The system configuration comprises Transac­
tion Management server, DML-execution server, Access 
System and Storage System server, as well as M eta-Data 
Management server. 

As one might have expected, the applied processor 
was overloaded, i.e. the cpu works permanently during 
the total observation time (no idle time). Fig. 4 shows 
the number of tasks of all PRIMA servers drawn over 
the observation time. The mean values for the active as 
well as the ready tasks indicates the degree of overload­
ing, since these tasks could be performed concurrently if 
additional processors and/or processes would be avail­
able. In other words, it makes sense to distribute some 
PRIMA servers to a further processor and/or to change 
the mapping strategy for particular servers from a sin­
gle-process to a multi-process mapping. In order to de­
termine which server(s) should be attached to an addi­
tional processor, we must have a closer look at the ser­
ver specific workload characteristics. Doing so, the 
DML-execution server is identified, since it significant­
ly influences the system behavior as is illustrated in Fig. 
5. The curves indicating the workload of the DML-exe­
cution server (given by the number of active/ready 
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tasks) look quite similar to the overall task curves 
shown in Fig. 4. 

To improve the system behavior, i.e., to reduce PRI­
MA's processing time, we reconfigured and attached 
the DML-execution server to a second workstation 
(WS2) in our LAN. Besides the 20% reduction of the 
overall processing time this decreased the processor 
load to 64% in the mean. 

Having a closer look at the processor specific work­
load one can identify the new/old bottleneck: the DML­
execution server. The processor that performs this ser­
ver (WS2) is permanently busy (cf. Fig. 6) 

There are two measures of improvement: 
• Change of mapping strategy, i.e., duplicate the pro­

cess that performs the DML-execution server and at­
tach them to a different processors. 

• Analyzation of the inner processing strategy of the 
DML-execution server, in order to identify the actu­
al reason for this bottleneck. 

lilt: 11rst mt:asurt: auuresst:u ww amt:nuratt: tnt: out­
tleneck situation in any case, the second one may make 
additional sense. Fig. 7 illustrates the states of all such 
tasks triggered by executing a particular task of the 
DML-execution server. Obviously, the DML-execution 
task (task identification number one) initiates most of its 
subtasks in a synchronous manner. Reviewing the server 
implementation one might recognize whether this fact is 
problem inherent or it results from an inappropriate im­
plementation. In the latter case one can improve the ser­
ver' s programming by exploiting asynchronity. A fur­
ther look at Fig. 7 shows a misrelation between the peri­
ods in which the task state is ready and in which it is ac­
tive. This may mean that the corresponding servers do 
not perform their tasks in the right schedule, since they 
work for others (clients) while blocking theDML-execu­
tion task. Further detailed observations may validate 
this supposition and a modification of the scheduling 
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Fig. 7: State/time diagram of all tasks triggered by executing a particular task of the DML-execution server 
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strategy will become necessary, what in turn, is easily 
achieved by the underlying RCS functionality. 

5. Conclusions 

So far, this example has sketch some steps of a meth­
odology for optimizing the PRIMA configuration (as 
well as its implementation) under the presumption of a 
fixed load. By changing the workload we can evaluate 
the dependencies between the configuration decisions 
and the load characteristics. In order to meet our goal of 
finding some general rules for system configuration, we 
have to consider additionally the SMMP configuration 
case. A preliminary conclusion drawn from our investi­
gations so far, comprises the following, rather abstract 
guidelines for optimal setting of system parameters, that 
are now validated by further testbed evaluations: 
• Data allocation: Especially support for shared data 

is crucial. For the LAN configuration it is quite clear 
that those components that share data (e.g. Access 
server and Storage server share the DB-buffer allo­
cated in RCS global storage) do better share proces­
sors in order not to share data over the network; for 
the SMMP scenario this is not so critical since the 
DB-buffer (also allocated in RCS global storage) is 
supposed to be part of the shared memory so that all 
components have fast and cheap access. 

o Kind of parallelization: Kind of parallelization de­
termines dataflow characteristics. For example, pipe­
lined processing opts for a 'continuous' stream of 
data between server and client, whereas independent 
parallel processing just needs result transmission be­
tween both. 

o Workload characteristics: As illustrated in the ex­
ample, bottleneck identification and elimination is 
very important. If the saturation of processors is 
reached, then it is necessary to attach servers to other 
processors or if task-saturation for server processes 
occurs, then it is worthwhile to replicate this server, 
eventually on another processor. 
In addition to the investigations for optimal system 

parameter settings w .r.t. parallelism, further research 
topics under consideration concentrate on the evaluation 
of the sole as well as the cumulated effects of the other 
measures mentioned, thus working on different query 
processing strategies, optimization strategies, and dif­
ferent clustering and indexing techniques. 

In this paper we concentrate on complex-object pro­
cessing on the DBMS kernel only. Considering that in 
engineering applications the way of processing (in the 
application and application layer) is typically deter­
mined by mechanisms like check-out/check-in, local da­
tabases, long-living transactions, etc., for evaluating and 

tuning the overall system behavior it becomes important 
to consider both application processing and DBMS pro­
cessing. This identifies additional guidlines for further 
investigations in our PRIMA framework. 
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