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Summary

Various types of ionic complex fluids, e.g. dilute electrolyte solutions, room temperature
ionic liquids (RTILs), ionic liquid crystals and colloidal suspensions, are described theo-
retically in order to infer general, i.e. material-independent, properties. A classification
of ionic complex fluids in terms of the relevant length scales is suggested, including the
Debye length, the molecular size and the size of colloidal particles.

For dilute electrolyte solutions the Debye length is competing with the bulk correlation
length of the solvent. Far away from a critical point of the solvent the Debye length is
the largest length scale so that the ionic complex fluid exhibits plasma-like behaviour
with a screening of electric fields and correlations on the length scale of the Debye length.
Non-trivial consequences are the Jones-Ray effect due to unequal partitioning of ions at
liquid-liquid interfaces as well as the general occurrence of first-order wetting transitions
for short-ranged interactions, irrespective of the order of wetting transitions of the pure,
i.e. salt-free, solvent. Furthermore, the effect of electrowetting is discussed in terms of
density functional theory, which reveals a severe misconception underlying the traditional
interpretation in terms of electrocapillarity. Close to a critical point of the solvent an ionic
complex fluid exhibits the universal critical behaviour of the pure solvent because then
the Debye length appears as a “microscopic” length scale, so that ions contribute only
to sub-leading order. Both regimes are separated in the bulk phase diagram by a narrow
region, where the Debye length and the bulk correlation length of the solvent are similar,
where damped oscillatory instead of monotonic asymptotic decay of the pair correlation
function is present and which is bounded by Kirkwood crossover lines.

In room temperature ionic liquids (RTILs), and particularly in ionic liquid crystals, no
solvent is present and the properties are determined by an interplay between the Debye
length and molecular length scales of the particles. For dense RTILs the Debye length
is (much) smaller than the molecular size so that these systems behave to a large extent
similar to non-ionic complex fluids with genuine short-ranged interactions due to, e.g.,
material-specific chemical bonding which can give rise to the formation of microhetero-
geneities and mesophases. However, general plasma-like properties are observed in dense
RTILs at length scales larger than the particle size. In dilute RTILs the Debye length is
(much) larger than the particle size, because RTILs exhibit a tiny vapour pressure close
to the triple point, which leads to a behaviour similar to a plasma of point-like particles.

In colloidal suspensions typically the size of the colloidal particles, the Debye length as
well as the bulk correlation length of the solvent are relevant in decreasing order. Size
and shape of the colloidal particles is material-independent but geometry-dependent and
these properties give rise to characteristic phases of colloidal crystals and liquid crystals.
Similarities to RTILs and electrolyte solutions occur in colloidal suspensions far away
from critical points of the solvent, where screening of the colloidal surface charge on the
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iv Summary

scale of the Debye length provides the leading correction to the hard particle behaviour.
Close to the critical point of the solvent the critical Casimir force on the scale of the bulk
correlation length dominates over the electrostatic interaction. However, the effective
interaction between colloidal particles can be influenced by ion-solvent couplings, e.g.
due to the unequal partitioning of ions in composition gradients of the solvent at the
colloidal surface or at the fluid-fluid-colloid three-phase contact region of colloids trapped
at fluid-fluid interfaces.

The ionic complex fluids considered in detail here, besides being important for modern
applications, form an exhaustive set of representatives of the various regimes in terms of
the relevant length scales. However, such a general, i.e. material-independent, classifica-
tion is only possible for static properties of complex fluids, whereas dynamic properties
are governed by system-spcific time scales which preclude such generality.



Zusammenfassung

Theoretische Beschreibungen verschiedener ionischer komplexer Fluide, z.B. verdünnte
Elektrolytlösungen, “room temperature ionic liquids” (RTILs), ionische Flüssigkristalle
und kolloidale Suspensionen, werden gegeben, um daraus auf allgemeine, d.h. materialu-
nabhängige, Eigenschaften zu schließen. Es wird eine Klassifikation ionischer komplexer
Fluide vorgeschlagen, basierend auf der Debye-Länge, der molekularen Göße und der
Größe kolloidaler Teilchen.

In verdünnten Elektrolytlößungen konkurriert die Debye-Länge mit der Korrelati-
onslänge des Lösungsmittels im Volumen. Weit weg von kritischen Punkten des Lösungs-
mittels is die Debye-Länge die dominante, sodass das ionische komplexe Fluid plasmaähn-
liches Verhalten mit Abschirmung elektrischer Felder und Korrelationen auf der Längens-
kala der Debye-Länge. Nichttriviale Konsequenzen hiervon sind der Jones-Ray-Effekt auf
Grund einer ungleichmäßigen Partitionierung von Ionen an Grenzflächen zwischen zwei
Flüssigkeiten sowie für kurzreichweitige Wechselwirkungen das allgemeine Auftreten von
Benetzungsübergängen 1. Ordnung , unabhängig von der Ordnung des Benetzungsüber-
gangs des reinen, d.h. salzfreien, Lösungsmittels. Darüberhinaus wird der Effekt der Elek-
trobenetzung im Rahmen der Dichtefunktionaltheorie diskutiert und so ein konzeptioneller
Fehler der tranditionellen Interpretation als Elektrokapillarityätseffekt aufgedeckt. In der
Nähe eines kritischen Punkts des Lösungsmittels zeigt ein ionisches komplexes Fluid das
universelle kritische Verhalten des reinen Lösungsmittels, weil dann die Debye-Länge als
“mikroskopische” Längenskala fungiert, sodass Ionen nur Korrekturen höherer Ordnung
bewirken können. Beide Extremfälle sind im Phasendiagramm durch eine schmale Region
getrennt, wo die Debye-Länge und die Korrelationslänge des Lösungsmittels ähnlich groß
sind, wo die Paarkorrelationsfunktion mit abklingenden Oszillationen statt mit monoton
abfällt und welche durch Kirkwood-Übergänge begrenzt sind.

“Room temperature ionic liquids” (RTILs), und insbesondere ionische Flüssigkristalle,
enthalten kein Lösungsmittel, und ihre Eigenschaften sind durch das Wechselspiel zwi-
schen der Debye-Länge und der molekularen Größe der Teilchen bestimmt. In dichten
RTILs ist die Debye-Länge (viel) kleiner als die molekulare Größe, sodass sich diese Sy-
steme großteils ähnlich verhalten wie nicht-ionische komplexe Fluiden mit ausschließ-
lich kurzreichweitigen Wechselwirkungen, z.B. auf Grund von materialspezifischen chemi-
schen Bindungen, welche zur Bildung von Mikroheterogenitiäten und Mesophasen führen
können. Allgemeine plasmaähnliche Eigenschaften sind bei dichen RTILs dagegen auf
Längenskalen größer als die Teilchengröße zu beobachten. In verdünnten RTILs ist
die Debye-Länge (viel) kleiner als die Teilchengröße, da RTILs in der Nähe des Tripel-
punkts einen verschwindend kleinen Dampfdruck zeigen, was zum Verhalten eines Plasmas
punktförmiger Teilchen führt.

In kolloidalen Suspensionen sind gewöhnlich die Größe der kolloidalen Teilchen, die
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Debye-Länge und die Korrelationslänge des Lösungsmittels in absteigender Reihenfolge
relevant. Größe und Form der kolloidalen Teilchen sind materialunabhängig aber geo-
metrieabhängig und diese Eigenschaften führen zu charakeristischen Phasen kolloidaler
Krisalle und Flüssigkristalle. Ähnlichkeiten zu RTILs und Elektrolytlösungen treten in
kolloidalen Suspensionen weit weg von kritischen Punkten des Lösungsmittels auf, wo
die Abschirmung der kolloidalen Oberflächenladung auf der Skala der Debye-Länge die
führende Korrektur zum Verhalten harter Teilchen liefert. Nahe einem kritischen Punkt
des Lösungsmittels dominiert die kritische Casimir-Kraft auf der Skala der Korrelati-
onslänge über die elektrostatische Wechselwirkung. Die effektive Wechselwirkung zwi-
schen kolloidalen Teilchen kann jedoch beeinflusst werden durch Kopplungenen von Ionen
und Lösungsmittel, z.B. durch ungleichmäßige Partitionierung von Ionen in Konzentrati-
onsgradienten des Lösungsmittels an Kolloidoberflächen oder in der Dreiphasenkontakt-
region von Kolloiden an Fluid-Fluid-Grenzflächen.

Die hier betrachteten ionischen komplexen Fluide sind nicht nur wichtig für moderne
Anwendungen, sondern sie bilden auch einen vollständigen Satz von Repräsentanten der
verschiedenen Regime der relevanten Längenskalen. Eine solche allgemeine, d.h. materia-
lunabhängige, Klassifikation is nur für statische Eigenschaften komplexer Fluide möglich,
wohingegen dynamische Eigenschaften durch systemspezifische Zeitskalen bestimmt sind,
die keine solche Allgemeinheit zulassen.
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Chapter 1

Introduction

Amongst the vast variety of complex fluids it is those containing ionic constituents which
are of primary importance. Ionic complex fluids encompass, e.g., electrolyte solutions,
room temperature ionic liquids (RTILs), ionic liquid crystals, colloidal suspensions and
polyelectrolytes. The omnipresence of ionic complex fluids in nature and technology is
most probably due to the abundance of liquid water, which is a highly polar solvent that
leads to an immediate dissociation of cations and anions.

The formation of freely moving ions in dilute electrolyte solutions, e.g. in physiological
fluids such as the cytoplasm, is essential for many natural processes, e.g. the citric acid
cycle of the aerobic cellular metabolism. Life on earth would not be as it is today without
the primordial soup having been an ionic complex fluid. The complex fluid character of
dilute electrolyte solutions is generated by the presence of a large number of constituents,
whose typically imperfect mutual miscibility gives rise to demixing transitions and mi-
croheterogeneities. By definition the Debye length of dilute electrolyte solutions is much
larger than the molecular sizes of the constitutents so that these ionic complex fluids
exhibit many material-independent properties (see Secs. 2.1, 3.1, 3.2, 4.1, 4.2, 4.3 and
4.4).

Chemical processes involving redox reactions, e.g. in batteries, fuel cells, dye-sensitised
solar cells, electrolysis and metal deposition, take place in ionic complex fluids composed
of the reactants. A current trend in catalysis research is to study RTILs, i.e. (typically
organic) fused salts with melting temperatures around room-temperature [457], as reaction
media, which provide highly polar fluid environments for such applications [7, 165, 464,
470, 481, 483]. RTILs are also used in chemical sythesis as advanced solvents which can
dissolve some water-insoluble materials, e.g. wood (cellulose), stabilise enzymes [463] or
serve in biomass processing [427]. Due to features such as a remarkable thermal stability
and a negligible vapour pressure [31, 273, 346, 467] many applications are conceivable, e.g.
as liquid media under ultrahigh vacuum conditions [31, 273, 425, 459]. All these properties
of RTILs can be viewed as those of ionic complex fluids which exhibit a unique combination
of the electrostatic interaction with the steric interaction of highly unsymmetric particles.
Since RTILs are no solutions but melts, they do not contain a solvent so that, in contrast
to dilute electrolyte solutions, the ionic strength is very high, and hence the Debye length
is much smaller than the particle size. General, i.e. material-independent, properties of
these ionic complex fluids derive from the high charge density (see Secs. 2.2, 3.3 and 3.4).

Whereas the widely studied imidazolium- and pyridinium-based RTILs with short alkyl
chains are isotropic fluids in the bulk, there exist also ionic liquid crystals, i.e. RTILs
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2 Introduction

which exhibit mesogenic behaviour. Due to their self-organised structures, the latter have
attracted some attention for applications as anisotropic conductors [1, 225, 332, 485] or
as templates to synthesize nanoparticles [429, 430]. Various types of ionic liquid crystals
have been prepared [19, 50], which exhibit, e.g., smectic [61, 177, 193, 405], columnar
[404, 486] or even cubic [318, 319] mesophases. As for isotropic RTILs, ionic liquid crys-
tals exhibit high thermal and electrochemical stability [61, 103, 160, 237, 256, 419], which
is advantageous in certain applications. However, the shape-induced complex fluid prop-
erties of ionic liquid crystals as compared to isotropic RTILs are more pronounced, as
the anisotropic particle shapes not only lead to low melting temperatures, but also to the
formation of mesophases (see Secs. 2.3).

Another class of ionic complex fluids whose particles are larger than the Debye length
are colloidal suspensions. By appropriate preparation procedures and experimental con-
ditions one is able to tune the colloidal interactions in a wide range [169, 269, 368, 428].
Consequently many parameters of a colloidal suspension are to be fixed, e.g. the size and
the shape of the colloids as well as strength and functional form of the interaction poten-
tial [112, 260, 413, 484]. Moreover, the number of parameters increases dramatically when
mixtures of different colloidal species are considered. There are two different perspectives
on colloidal suspensions in the context of ionic complex fluids: On the one hand, one
can consider the colloidal subsystem as an ionic complex fluid and treat the solvent as a
structureless, inert and uniform medium, e.g. within the DLVO theory of the stability of
colloidal dispersions [209, 385]. It is discussed in Sec. 2.4 that even binary mixtures of
charged colloidal spheres of equal radii exhibit an extremely rich phase behaviour tuned
merely by the length scale of the screened electrostatic interaction and in Sec. 4.5 that
colloidal platelets share general properties with dilute electrolyte solutions and ionic liquid
crystals. On the other hand, one can consider colloidal particles suspended in an ionic
complex fluid medium, e.g. liquid-liquid emulsions, suspensions of viruses or clay and
macromolecules such as DNA strands or proteins. This point of view raises the question
of the effective interaction between colloidal particles in dependence on the properties of
the ionic complex fluid medium; prominent examples are the effect of the screening of
electric charges by mobile ions [75, 91, 92, 161, 162] and the salt-specific salting-in or
salting-out of proteins in electrolyte solutions (Hofmeister effect) [243]. Frequently occur-
ring situations in soft matter systems whose properties are determined by ionic complex
fluid media and which are to be discussed here are the formation of electrostatically sta-
bilised liquid-liquid emulsions (see Sec. 4.1), the interaction of colloidal particles in an
electrolyte solution close to and far away from a critical point of the solvent (see Sec. 4.6)
and the interaction of colloidal particles trapped at a fluid-fluid interface (see Sec. 4.7).

In the light of all these important systems, which are subjects of numerous research
fields and technological applications, it is decisive to understand the properties of the
ionic complex fluids, which form integral parts of them. Although there is a wide variety
of ionic complex fluids they share general, i.e. material-independent, properties related
to the coupling of mobile ions to additional degrees of freedom of the complex fluids. A
particularly useful scheme, which has already been used above, is the classification in terms
of relevant length scales, one of which is the Debye length related to the ionic strength
of the charged entities. The combination of the ionic character with, e.g., orientational
degrees of freedom, size polydispersity or conformational degrees of freedom leads to a
rich phenomenology of ionic complex fluids, the understanding of which has progressed
enormously in recent years due to improvements in the theoretical descriptions, computer
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simulation techniques and experimental methods. The aim of this thesis is to provide an
exposition of the author’s own contributions to the topic of general properties of ionic
complex fluids from Refs. [24, 35–37, 39–45, 96, 203, 204, 236, 283, 487, 491] and to
put them into the context of contemporary research in this field. From the countless
possible ways to discuss general properties of the various types of ionic complex fluids
mentioned above, the categories “phase behaviour”, “bulk structure” and ”interfacial
properties” are addressed in the following chapters. Each chapter begins with a discussion
of dilute electrolyte solutions followed by ionic complex fluids of high charge density
(RTILs) and/or of large particles (colloids).

The influence of the presence of ionic constituents on the phase behaviour of complex
fluids is discussed in Ch. 2. The considered liquid-liquid demixing transitions of electrolyte
solutions in complex solvents (Sec. 2.1) and the vapour phase of RTILs (Sec. 2.2) represent
the situation of a low ionic strength, i.e. of a Debye length larger than the constituting
molecules. The complementary situation of the particle size being larger than the Debye
length gives rise to the mesogenic properties of ionic liquid crystals (Sec. 2.3) and the rich
phenomenology of crystalline phases of charged colloids (Sec. 2.4).

The influence of ions onto the bulk structure of complex fluids is described in Ch. 3.
The key observation for dilute electrolyte solutions is that the bulk structure of these
ionic complex fluids is usually determined by the Debye length, except close to a critical
point of the solvent, where the diverging bulk correlation length leads to an interesting
crossover from electrolyte-like to critical solvent-like behaviour (Sec. 3.1). An interesting
general observation to be discussed is that ionic impurities, in contrast to non-ionic ones,
can alter the bulk structure of the solvent (Sec. 3.2). For dense ionic fluids a competition
of the electrostatic interaction and the steric interaction due to size and shape of the
particles leads to a crossover between a plasma-like and a dipolar-fluid-like behaviour
which is discussed in terms of the static dielectric function (Sec. 3.3). Commonly it is
the long range of the bare Coulomb interaction which is considered to be the origin of
the peculiar phase behaviour and structural features of ionic systems. However, it can be
shown that at least for dense ionic fluids this is not true in the sense that the same phase
behaviour and structure can also be generated by an appropriate short-ranged interaction
(Sec. 3.4).

Interfacial properties of ionic complex fluids are of particular importance for various
applications so that Ch. 4 is devoted to an extensive discussion of interfaces. General
features of interfaces of ionic complex fluids are related to the interfacial tension (Sec. 4.1),
wetting behaviour (Sec. 4.2), critical adsorption (Sec. 4.3) and electrowetting (Sec. 4.4) in
electrolyte solutions. Again, the phenomenology in this type of systems exhibits a wide
material-independence, as the Debye length is the dominant length scale which exceeds the
molecular size of the constituents. On the other hand, the interfacial struture of colloidal
suspensions is dominated by the particle geometry and the Debye length merely leads to
a correction. Nonetheless, the wetting properties of colloidal suspensions turn out to be
similar to those of dilute electrolyte solutions and ionic liquid crystals (Sec. 4.5). However,
colloidal suspensions can reveal a much richer phenomenology if several length scales
contribute simultaneously. Examples are discussed of non-trivial effective interactions
between colloidal particles immersed in the bulk of an ionic complex fluid (Sec. 4.6) or
trapped at the interface of two immiscible ionic complex fluids (Sec. 4.7).

Based on the systems discussed before, general conclusions on the general properties
of ionic complex fluids are drawn in Ch. 5. It is argued there that the ionic complex
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fluids discussed in Chs. 2–4 are not only interesting from the point of view of particular
applications, but that they form a complete set of representatives of the different classes
of general properties.



Chapter 2

Phase behaviour

As for any thermodynamic system, the phase behaviour of ionic complex fluids comprises
information about the stable bulk phase as function of the relevant thermodynamic fields
as well as the characteristics of phase transitions between the bulk phases. For dilute
electrolyte solutions in complex solvents which exhibit liquid-liquid demixing transitions
the fundamental question is discussed in Sec. 2.1 as to what extent is the presence of ions
modifying the phase behaviour of the pure solvent. Since for dilute electrolyte solutions
the Debye length is exceeding the size of the ions and solvent molecules the phenomenology
is largely material-independent. An experimental finding common to all RTILs, which
are ionic complex fluids that combine electrostatic interactions with highly asymmetric
molecular shapes, is a tiny vapour pressure close to the triple point. The general character
of this phenomenon and its relation to RTILs is explained in Sec. 2.2. Again, the molecular
size and shape is expected to be irrelevant as the Debye length of a highly dilute plasma is
exceedingly large. In contrast, in ionic liquid crystals, which are ionic complex fluids where
electrostatic interactions are combined with anisotropically shaped molecules, the Debye
length is smaller than the molecules. The mesogenic properties as function of the charge
distribution and of the molecular geometry are discussed in Sec. 2.3. Finally, it is shown in
Sec. 2.4 that charged spherical colloids, where the Debye length of the suspending medium
is smaller than the colloids, exhibit an extremely rich phenomenology of crystalline phases
which sensitively depends on the ratio of the Debye length and the colloidal size.

2.1 Electrolyte solutions

Within the early picture due to Arrhenius [8] more than a century ago ions were assumed
to generate only colligative properties of electrolyte solutions, which depend exclusively
on the particle number, e.g. osmotic pressure, freezing point depression and boiling point
elevation [9]. This simple picture was questioned by Bjerrum, Debye and Hückel who
pointed out that electrostatically induced ion-ion correlations are expected to influence the
ion distribution and the equation of state of electrolyte solutions [91, 296]. Since then, the
Debye-Hückel theory has been widely used, e.g. in plasma physics and as an ingredient of
the DLVO theory of colloidal suspensions [385]. Within Debye-Hückel theory the solvent is
considered to be a uniform dielectric continuum which influences the Coulomb interaction
between the ions via a certain permittivity but which is otherwise inert. However, in recent
years the mutual influence of ions and the solvent has been reconsidered by studying
the solubility of ions and the double-layer structure in a near-critical complex solvents

5



6 Phase behaviour

[42, 43, 80, 327, 328, 334, 335], possible salt-induced changes of the structure of complex
solvents [43, 44, 312–314, 388–392] and effects of the inhomogeneities of the permittivity
close to interfaces [29, 329, 401, 436].

These investigations require a model for the solvent at least on the mesoscopic scale
as well as a description of the ion-solvent interaction. To this end one can split the
pair potential between the species into the long-ranged electrostatic monopole-monopole
contribution and into the remaining contributions of shorter range due to the chemical
interactions. In the vast majority of the theoretical studies of dilute electrolyte solutions,
ions are described as point-like particles whose chemical contributions to the interactions
with the solvent are modeled locally within the so-called bilinear coupling approximation
(BCA). This amounts to a local density approximation for the chemical contribution to the
excess free energy which is bilinear in the particle number densities [29, 312–314, 327, 328,
334, 335, 401, 436]. Within the approaches of Refs. [80] and [329] the ion size is accounted
for by means of hard-core exclusion and solvation is modeled by non-local interactions
within random-phase approximation (RPA). The BCA can be considered as the local
version of the RPA, which is expected to be reliable only for interaction energies small
compared with the thermal energy [176]. However, the ion-solvent interaction is typically
of the order of some tens of the thermal energy [208, 286]. Therefore the application of
the BCA or of the RPA to electrolyte solutions is questionable [43].

It has been shown in Ref. [43] that for realistic values of the parameters the BCA and the
RPA indeed lead to unphysical results. Moreover, in order to demonstrate the importance
of the ion-solvent coupling for the properties of an electrolyte solution, an alternative local
density approximation (LDA) has been proposed in Ref. [43] the predictions of which are
in qualitative agreement with experimental results and which does not lead to the artifacts
introduced by the BCA.

The model considered in Ref. [43] is that of a three-dimensional (d = 3) container

Ṽ ⊆ R3 filled with an incompressible binary liquid mixture acting as a (complex) solvent
for cations (+) and anions (−). All solvent particles are assumed to be of equal size
with non-vanishing volume ã3 whereas the ions are considered to be point-like; hence
ions do not contribute to the total packing fraction. The set of dimensionless positions
r = (x, y, z) := r̃/ã for r̃ ∈ Ṽ is defined as V. At r ∈ V the number densities of the solvent
components A and B are given by ˜̺A(r) = φ(r)ã−3 and ˜̺B(r) = (1−φ(r))ã−3, respectively,
with 0 ≤ φ ≤ 1, whereas the number densities of the cations and anions are given by
˜̺+(r) = ̺+(r)ã−3 and ˜̺−(r) = ̺−(r)ã−3, respectively. The walls ∂V of the container
carry a surface charge density σ(r)eã−2 at r ∈ ∂V, where e is the (positive) elementary
charge. The influence of the walls onto the solvent due to short-ranged chemical effects
is captured by surface fields localised at the walls. At r ∈ ∂V, the dimensionless volume
fraction φ(r) of A particles couples linearly to surface fields h(r), where h > 0 (< 0) leads
to a preferential adsorption of solvent component A (B). The equilibrium profiles φ, ̺+,
and ̺− minimise the approximate grand potential density functional kBTΩ[φ, ̺±],

Ω[φ, ̺±] =

∫

V

d3r

{
ωsol(φ(r)) +

χ(T )

6
(∇φ(r))2 +

∑

i=±

[
ω
(i)
ion(̺i(r)) + ̺i(r)Vi(φ(r))

]

+
2πℓB
ε(φ(r))

D(r, [̺±])2
}
−
∫

∂V

d2r h(r)φ(r), (2.1)

with ωsol(φ) = φ(lnφ − µφ) + (1 − φ) ln(1 − φ) + χ(T )φ(1 − φ) and ω
(±)
ion (̺±) =
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̺±(ln ̺±−1−µ±) as the bulk grand potential densities of the solvent and of the ±-ions (in
the low number density limit), respectively. Here kBT is the thermal energy, µφkBT and
µ±kBT are the chemical potential difference (µA − µB)kBT of the solvent particles and
the chemical potentials of the ±-ions, respectively, and ℓBã = e2/(4πε0kBT ) is the Bjer-
rum length for the vacuum permittivity ε0. The temperature-dependent Flory-Huggins
parameter χ(T ) > 0 describes the effective interaction between solvent particles, where

the temperature dependence is usually described by the empirical form χ(T ) = χS +
χH

T
with the system specific entropic contribution χS and the enthalpic contribution χH [383].
For χ(T ) ≥ χ(Tc) phase separation occurs in the pure, salt-free solvent within a certain
range of φ whereas for χ(T ) < χ(Tc) the solvent components A and B are miscible in
any proportion. A positive (negative) enthalpic contribution χH corresponds to an upper

(lower) critical demixing point. The gradient term ∼ (∇φ(z))2 with ∇ = ã∇̃ penalises the
spatial variation of the solvent composition [70]. The ion-solvent interaction is described
within an LDA by the effective ion potential kBTV±(φ) generated by the solvent (see be-
low). The relative permittivity ε(φ(r)) is assumed to depend locally on the composition
of the solvent φ(r) but not on the ion densities ̺±(r), which is justified for small ionic
strengths, i.e. ̺±(r)≪ 1. Here the mixing formula ε(φ) = εAφ+ εB(1− φ) introduced by

Böttcher [55] is used [29, 334, 401]. Using SI-units, the electric displacement D̃ = Deã−2

in Eq. (2.1) fulfills Gauss’ law ∇ ·D(r, [̺±]) = ̺+(r) − ̺−(r), r ∈ V, with fixed surface
charges n(r) ·D(r, [̺±]) = σ(r), r ∈ ∂V, where n is the unit vector perpendicular to ∂V
pointing towards the exterior of V (see Ref. [385]). Note that D(r, [̺±]) is generated by
the ±-ions and the given surface charges σ; it does not depend explicitly on φ. Within
this model, besides being confined, ions interact with the walls only electrostatically.

Note that by using the square-gradient form of Eq. (2.1) the interactions are implicitly
assumed to be short-ranged [131], i.e. van der Waals forces are not taken into account.
Moreover, layering due to packing effects close to walls is also not accounted for by square-
gradient theories. Nonetheless such a description provides reliable results at mesoscopic
scales [131]. Finally, the ionic strength is assumed to be sufficiently low so that one can
neglect short-ranged ion-ion interactions. Therefore the ions interact with each other only
via the electrostatic field. Accordingly, the expression for ω

(±)
ion does not contain additional

Flory-Huggins parameters and there are no square-gradient terms for ̺±.

In Eq. (2.1) the ion-solvent interaction is described, within an LDA, by a solvent-
induced ion potential, V±(φ)kBT . The BCA used in previous investigations (see, e.g.,

Refs. [29, 312–314, 327, 328, 334, 335, 338, 401]) corresponds to the choice V
(BCA)
± (φ) :=

f±φ, where f±kBT = (f±A − f±B)kBT is the difference between the bulk solvation free
energies of a ±-ion in solvents consisting purely of component A, f±AkBT , and purely
of component B, f±BkBT . The solubility contrasts f±kBT are also known as Gibbs free
energies of transfer. In this context the only relevant parameters are the two differences
f± = f±A−f±B because the other two independent quantities f±A +f±B can be absorbed
as shifts in the definition of the chemical potentials µ±kBT of the ions. For bulk systems
the BCA is identical to the RPA [176], which is expected to be reliable only if the coupling
strengths are much smaller than the thermal energy, i.e. |f±| ≪ 1. However, for electrolyte
solutions, this condition is in general not fulfilled. Instead, the Gibbs free energies of
transfer between two liquids are usually of the order of some 10kBT [208, 223, 286].

Figures 2.1(a) and 2.1(b) display the bulk phase diagram for a constant chemical po-
tential (per kBT ) µI := µ+ +µ− of added salt obtained within BCA for the representative
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Figure 2.1: Bulk phase diagrams of a binary liquid mixture with added salt of constant
chemical potential (per kBT ) µI = µ+ + µ− within the BCA V

(BCA)
± (φ) = f±φ [(a) and

(b)] and within the LDA, see Eq. (2.3)) V±(φ) = − ln(1 − φ(1 − exp(−f±))) [(c) and
(d)] in terms of the Flory-Huggins parameter χ and the composition φ [(a) and (c)] or
the chemical potential (per kBT ) µφ = µA − µB conjugate to the composition φ of the
binary solvent [(b) and (d)]. The thick solid lines correspond to the binodals, which
delimit the two-phase coexistence regions in the φ-χ diagrams [(a) and (c)] from below.
The dashed lines are the spinodals and the thin horizontal line in panel (a) is the tie-line
corresponding to the triple point (N) found within BCA. Representative values for the
solubility contrasts per kBT , (f+, f−) = (3, 26), have been chosen. The chemical potential

µIkBT of the salt corresponds to an ionic strength Ĩc = ˜̺± = 10 mM at the critical point
with composition φ = φc ≈ 1

2
. The weak influence of the salt on the phase diagram within

LDA leads to curves in panels (c) and (d) which are, on the present scale, almost (but not
quite) symmetric with respect to φ = 1

2
and µφ = 0, respectively. Whereas the LDA [(c)

and (d)], in agreement with the experimental evidence, exhibits a single critical point (•,
φc,1 ≈ 1

2
, χc,1 ≈ 2), which slightly shifts upon changing the ionic strength (see Fig. 2.3),

the standard BCA [(a) and (b)], in contrast to the available experimental observations,
leads to a second critical point (•, φc,2 ≈ 0.1, χc,2 ≈ 2.1) as well as to a triple point (N).
(See Ref. [43])
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values f+ = 3, f− = 26. This choice is similar to the Gibbs free energies of transfer for
potassium chloride (KCl) from water to acetone: f+ = 2, f− = 23 [286]. The condition of
local charge neutrality ̺+ = ̺− =: I in the bulk implies that the ionic strength I depends
on the chemical potentials µ±kBT of the ions only via the sum µ+ + µ− = µI . For given
uniform composition φ and ionic chemical potential µI the Euler-Lagrange equation of Ω
in Eq. (2.1) with respect to uniform ion densities ̺± = I can be used to express the bulk
ionic strength as [43]

Ibulk(φ, µI) = exp
(1

2
(µI − V+(φ)− V−(φ))

)
. (2.2)

Here Ibulk is independent of the Flory-Huggins parameter χ, i.e. it depends on the tem-
perature T only via the normalizations of µI and V±, which are defined in units of kBT .
In Fig. 2.1 the chemical potential µI of the salt is fixed such that the solvent composition
φ = 1

2
leads to an ionic strength Ĩ = Iã−3 = 10 mM ≈ 0.006 nm−3, where the length

scale ã = 2 Å has been chosen [43]. Due to the absence of gradients, electric fields and
surfaces, the bulk phase diagram is determined by the first, third and fourth term on
the right-hand side of Eq. (2.1). The occurrence of two critical points (•) as well as of a
triple point (N) predicted within BCA is not supported by experimental evidence, which
signals the breakdown of BCA for such large parameters f±. Whereas for most systems
it is experimentally difficult to preclude the occurrence of such a second critical point or
triple point, the experimental resolution is yet sufficiently high to exclude these features
to occur visibly to the extent as predicted by the BCA (Figs. 2.1(a) and (b)).

A more appropriate approximation for the solvent-induced ion potential V±(φ)kBT ,
which is derived in Ref. [43], is given by (see also Fig. 2.2(a))

V±(φ) = − ln(1− φ(1− exp(−f±))). (2.3)

For |f±| ≪ 1 this expression reduces to the correct asymptotic expression V±(φ) ≃
V

(BCA)
± (φ). In the limit f± → ∞, i.e. if ions are insoluble in component A, V±(φ) ≃
− ln(1−φ), which corresponds to the free energy of the ions dissolving entirely in compo-
nent B only, which has the volume fraction 1− φ. Similarly, in the limit f± → −∞, i.e.
if the ions are insoluble in component B, V±(φ) ≃ f± − lnφ, which is the free energy of
the ions dissolving entirely in component A only, which has the volume fraction φ and for
which the solvation free energy is f±. For the same set of parameters as in Figs. 2.1(a)
and (b), Figs. 2.1(c) and (d) display the phase diagram within LDA. In agreement with
experimental observations, within LDA only a single critical point (•) occurs (see, e.g.,
the closed loop-binodals in Ref. [392] with only one lower critical demixing point in the
presence of an antagonistic salt, i.e. with f+ and f− having opposite signs). Hence one can
conclude that the standard BCA, i.e. V (BCA)(φ) = f±φ, introduces artifacts for too large
ion-solvent couplings, |f±| ≫ 1, which are absent within the LDA proposed in Ref. [43]
(see Eq. (2.3)).

If φ deviates slightly from a certain composition φ0 ∈ [0, 1] one has V±(φ) ≃ V±(φ0) +

γ±(φ− φ0) with the effective coupling strengths γ± := V ′
±(φ0) =

1− exp(−f±)

1− φ0(1− exp(−f±))
∈

[
− 1

φ0

,
1

1− φ0

]
instead of f± as in BCA. For, e.g., φ0 = 1/2 one finds γ± = 2 tanh(f±/2) ∈

[−2, 2], i.e. the use of BCA, which corresponds to γ± ≈ f±, is justified only for Gibbs free
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Figure 2.2: Comparison of the solvent-induced ion potential V±(φ) [(a)] and its derivative
γ± = V ′

±(φ) [(b)] within LDA and BCA for ion solubility contrast f± (see the main text).
For small values of f± (see the case f± = 1) the differences between LDA and BCA are
small. For large values of f± (see the case f± = 10) V±(φ) and γ± = V ′

±(φ) become large
at solvent compositions φ ≈ 0.5 within BCA whereas they remain small within LDA.
Within LDA V ′

±(φ = 0) = 1− exp(−f±) and V ′
±(φ = 1) = exp(f±)−1, while within BCA

V ′
±(φ) = f±. (See Ref. [43])

energies of transfer per kBT , f±, not larger than 2 (see Fig. 2.2(b)). However, in previous
investigations BCA has been used even for large values of |f±| [29, 327, 328, 334, 335, 401].

There is experimental evidence [409] that in the phase diagram of a binary liquid
mixture the critical point shifts upon adding salt. The direction as well as the mag-
nitude of the shift depend on the materials properties of the binary liquid mixture
and of the ions. Due to the relations ̺A = φ, ̺B = 1 − φ, ̺+ = ̺− = I the bulk
system, which comprises four particle species, is de facto a binary mixture, charac-
terised by µφ, µI = µ+ + µ−, and χ (i.e. T ). Hence in this three-dimensional space
of thermodynamic variables there is a sheet of first-order demixing phase transitions
(µ

(demix)
φ (µI , χ), µI , χ) bounded by a line of critical points (µ

(crit)
φ (µI), µI , χ

(crit)(µI)) which

translates into (φc, Ic, χc) ≡ (φ(crit)(µI), I
(crit)(µI), χ

(crit)(µI)). For a given chemical poten-
tial µIkBT the critical point (φc, Ic, χc) is determined as the minimum of the Flory-Huggins
parameter χs(φ, Ibulk(φ, µI)) at the spinodal as a function of φ for constant µI . The spin-
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Figure 2.3: Variation of the critical volume fraction φc [(a)] and the critical Flory-Huggins

parameter χc [(b)] as function of the ionic strength Ĩc = Icã
−3 at the critical point for two

representative sets of solubility contrasts: (f+, f−) = (3, 26) and (0, 20). These results
show that both 1

2
−φc and χc−2 depend linearly on Ic and that there are no quantitatively

significant shifts of the critical point upon varying the ionic strength within experimentally
reasonable ranges. On this scale, the phase diagrams for (f+, f−) = (3, 26) (see Figs. 2.1(c)

and (d)) and for (f+, f−) = (0, 20) are almost indistinguishable. Note that φc(Ĩc → 0) = 1
2

and χc(Ĩc → 0) = 2. (See Ref. [43])

odal is defined by the set of points (φ, I, χs(φ, I)) in the bulk phase diagram for which
points (φ, I, χ) with χ > χs(φ, I) exhibit no longer at least a local minimum of the den-
sity functional Eq. (2.1) (see the dashed lines in Figs. 2.1(a) and (c)). Accordingly, at the
spinodal the Hessian matrix of the bulk grand potential density Ω(φ, I)/V corresponding
to Eq. (2.1) has a zero eigenvalue. This condition leads to [43]

χs(φ, I) =
1

2

(
1

φ
+

1

1− φ +

(
V ′′
+(φ) + V ′′

−(φ)− 1

2
(V ′

+(φ) + V ′
−(φ))2

)
I

)
. (2.4)

By inverting the relation Ic = I(crit)(µI) one obtains µI = µ
(crit)
I (Ic). Figure 2.3 displays the

variation of (a) the critical volume fraction φc = φ(crit)(µ
(crit)
I (Ic)) and (b) the critical Flory-

Huggins parameter χc = χ(crit)(µ
(crit)
I (Ic)) as functions of the ionic strength Ĩc = Icã

−3 at
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the critical point within LDA. Without added salt (I = 0) one obtains the critical point
(φc, χc) = (1

2
, 2) of the pure solvent. For the given choice of the parameters (f+, f−) and

for small Ic the critical composition φc decreases and the critical Flory-Huggins parameter
χc increases linearly upon increasing the ionic strength Ic. For small Ic the asymptotically
linear dependence of the critical point (φc, χc) on the ionic strength Ic is in agreement
with experimental evidence [127, 409]. However, the magnitudes of these shifts are tiny,
even for large differences in the solubility contrasts, e.g. (f+, f−) = (0, 20), to the effect
that the bulk phase diagrams are almost indistinguishable within experimentally relevant
ranges of ionic strengths Ĩc . 10 mM. Within the range of ionic strengths considered in
Fig. 2.3 the experimentally observed critical point shifts are also small [409]. However,
significant shifts of the critical temperature Tc have been detected for large ionic strengths
Ĩc ≫ 100 mM [409].

Whether the description of a given electrolyte solution within a local model such as
the LDA of Ref. [43] is justified or not does not depend on the salt alone but on the
combination of salt and solvent. Experimentally observed effects in binary liquid mixtures
due to adding salt, such as the shift of the critical point, depend sensitively on the type
of mixture (compare Ref. [409] for water+2,6-dimethylpyridine and Ref. [389] for heavy
water+3-methylpyridine). Moreover, the measured critical point shifts exhibit a strong
dependence on the size of the ions (compare Ref. [389] for alkali halides and Ref. [390] for
sodium tetraphenylborate). These evidences in combination with the analysis in Ref. [43],
which implies a weak influence of the ionic charge, lead to the conclusion that steric
effects might play an important role for the ion-solvent interaction. This interpretation is
supported by reports of critical point shifts of similar magnitude in binary liquid mixtures
due to adding non-ionic impurities [172]. Consequently it is mostly the property of an
ion to be a structure maker or a structure breaker and only to a lesser extent its electric
charge which determines the influence of a salt onto the phase behaviour of an electrolyte
solution [43]. It will be shown in Sec. 3.2 that this conclusion on the phase behaviour is
in stark contrast to the influence of charges on the structure of ionic complex fluids.

2.2 Vapour pressure of room temperature ionic liq-

uids

One of the peculiar and probably most important properties of room temperature ionic
liquids (RTILs) is a tiny vapour pressure at room temperature: [C4mim][PF6], e.g., has a
vapour pressure of ca. 100 pPa at 298 K [346], whereas water has 3 kPa at the same tem-
perature [258]. This offers the possibility to use RTILs as solvents under ultrahigh vacuum
(UHV) conditions (i.e. for a pressure range 100 nPa . . . 100 pPa [373]), where volatile or-
ganic solvents would evaporate immediately [277, 462]. Whereas RTILs are practically
“non-volatile” at room temperature [462], they can be distilled at higher temperatures
[123], where vapour pressures and enthalpies of vapourisation can be measured [347, 488].

In comparison with non-ionic liquids (NILs, such as benzene and water) with triple
point pressures p3 above 1 Pa (see Tab. 2.1(a)), RTILs exhibit ionic character due to the
Coulomb interaction, which adds to the van der Waals interaction in NILs and which leads
to a decrease of the vapour pressure at room temperature (see Tab. 2.1(b)). However,
inorganic fused salts (IFSs, such as CdCl2 and NaCl), also exhibit ionic character, which
is even stronger than that of RTILs due to the smaller particle size, but the triple point
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(a) NIL T3/K p3/Pa Tb/K Tc/K References
C6H6 278.7 4799 353.2 562.1 [258]
H2O 273.2 611.7 373.1 647.1 [258]

(b) RTIL T3/K p3/Pa Td/K T extr
b /K References

[C4mim][dca] 267 1.5× 10−13 695 719 [129, 145]
[C2mim][NTf2] 271 8.9× 10−12 712 906 [348, 432, 488]
[C8mim][NTf2] 264 7.8× 10−14 698 857 [348, 432, 488]

(c) IFS T3/K p3/Pa Tb/K Tc/K References
CdCl2 837 214 1233 ? [23, 270]
NaCl 1074 46 1738 > 3400 [23, 270, 293]

Table 2.1: Experimental data for characteristic temperatures of (a) non-ionic liquids
(NILs), (b) room temperature ionic liquids (RTILs) and (c) inorganic fused salts (IFSs)
corresponding to the substances discussed in Figure 2.4. T3 and p3 denote the temperature
and the pressure, respectively, at the triple point, Tc is the critical temperature and Td
denotes the temperature for the onset of decomposition of an RTIL [145, 432]. Tb denotes
the standard boiling temperature at ambient pressure p0 = 105 Pa for NILs and IFSs,
whereas the standard boiling temperatures T extr

b for RTILs are estimated by extrapolation
[372] because boiling of RTILs is preempted by decomposition. (See Ref. [40])

pressures of IFSs are above 1 Pa (see Tab. 2.1(c)) — similar to those of NILs. Moreover,
all these trends are not material specific, which points towards general properties of NILs,
RTILs and IFSs.

From the different strengths of the interactions in NILs, RTILs and IFSs one can
infer that the enthalpies of vaporisation ∆vapH(p) > 0 at pressure p are ordered as
∆vapH

NIL(p) < ∆vapH
RTIL(p) < ∆vapH

IFS(p) for NISs, RTILs and IFSs, respectively [40].
Moreover, according to Trouton’s rule [9], the molar entropy of vaporisation ∆vapS(p)
at pressure p is only weakly material dependent, since it is dominated by the transla-
tional and rotational degrees of freedom whereas vibrational and electronic modes and
the structural arrangements contribute only as small corrections [450]. At ambient pres-
sure p0 = 105 Pa the Trouton constant is approximately ∆vapS(p0) ≈ (95 ± 15) J/mol
[212, 270]. Consequently, due to the Clausius-Clapeyron equation [9]

psat(T ) ≈ p0 exp
(
− ∆vapH(p0)

RT
+

∆vapS(p0)

R

)
. (2.5)

one obtains
pNIL
sat (T )≫ pRTIL

sat (T )≫ pIFSsat (T ). (2.6)

The rightmost inequality in Eq. (2.6) is apparently in contradiction with the experimen-
tal finding of triple point pressures p3 for IFSs being much larger than for RTILs (see
Tab. 2.1(b) and (c)). However, that this is indeed not the case can be inferred from
Fig. 2.4, where the vapour pressure curves psat(T ) for non-polar liquid benzene (C6H6,
see Ref. [258]), hydrogen bond forming liquid water (H2O, see Ref. [258]), the RTILs
[C4mim][dca], [C2mim][NTf2] and [C8mim][NTf2] (see Refs. [129, 488]), as well as the
IFSs cadmium chloride (CdCl2) and sodium chloride (NaCl) (see Ref. [23]) are displayed.
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Figure 2.4: Experimental vapour pressures psat(T ) at liquid-vapour coexistence of non-
ionic liquids (NILs), room temperature ionic liquids (RTILs) and inorganic fused salts
(IFSs) as a function of temperature T for the non-polar liquid benzene (C6H6, see
Ref. [258]), the hydrogen bond forming liquid water (H2O, see Ref. [258]), the paradig-
matic RTILs [C4mim][dca], [C2mim][NTf2] and [C8mim][NTf2] (see Refs. [129, 488]), as
well as fused cadmium chloride (CdCl2) and sodium chloride (NaCl) as examples of IFSs
(see Ref. [23]). At low temperatures all curves terminate at the corresponding triple
point temperature T3 (see Tab. 2.1), which is close to the standard melting temperature
of that substance. At high temperatures the boiling curves for the RTILs terminate at
the decomposition temperature Td, whereas the boiling curves of the other liquids end at
their critical points (see Tab. 2.1). Room temperature T0 = 298 K and ambient pressure
p0 = 105 Pa are indicated. (See Ref. [40])

The key observation is, that IFSs crystallise before pIFSsat (T ) reaches small values, whereas
RTILs stay liquid down to room temperature.

It is the unique combination of the melting point to occur around room temperature and
of the ionic character which leads to the observed low triple point pressures of RTILs, and
it is the class of RTILs, which, by definition, comprises systems with both these properties
[40]. The feature of RTILs being liquids even at room temperature has been attributed to
various mechanisms, e.g. frustrated crystallisation due to asymmetric ion shapes, charge
delocalisation, packing inefficiency and conformational degeneracy [194, 250, 359, 410].
Hence, RTILs are necessarily complex fluids due to the additional conformation degrees
of freedom. The combination with the ionic character results in the highly unique and
material-indpendent general property of tiny triple point pressures of these ionic complex
fluids.

2.3 Ionic liquid crystals

A very simple model to study the phase behaviour of ionic liquid crystals can be formulated
in terms of a lattice model, where the ions occupy, according to their size and shape, one
or more adjacent lattice sites; the correspondence to a real RTIL is sketched in Fig. 2.5.

A starting point for a description of the thermodynamic properties of the lattice model
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Figure 2.5: Correspondence of [C6mim][PF6] and a possible representation within the
lattice model.
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Figure 2.6: Comparison of the isobaric phase behaviour of ionic liquid crystals as function
of the length of the chain attached to the charged group. The transitions between isotropic
liquid and vapour phases as well as the transitions between isotopic and anisotropic phases
within the simplistic lattice model of ionic liquid crystals (L denotes the number of lattice
sites repesenting the attached chain) is in qualitative agreement with the experimental
results in Refs. [372] and [177], respectively. Here one lattice site within the lattice model
corresponds approximetely to 3 . . . 4 C-atoms along an alkyl chain. Whereas the lattice
model correctly accounts for the orientational phase transitions, the lattice model is not
appropriate to distinguish the various anisotropic phases inside the regime “mesophases
& crystals”.

can be given by the approximative free energy density functional

F [̺] = F h[̺] +
1

2

∑

i,j

∫
d3r

∫
d3s ̺i(r)̺j(s)

(
U c
ij(r, s) + Ud

ij(r, s)
)

+

∫
d3r fMSA

(∑

i

̺i(r)
)
, (2.7)

where F h denotes a hard-core fundamental measure reference functional for lattice parti-
cles derived along the lines of Ref. [245], long-ranged Coulomb interactions U c and disper-
sion forces Ud are described within random phase approximation (RPA) and short-ranged
Coulomb interactions contribute within local density approximation (LDA) in terms of
the free energy density fMSA of the mean spherical approximation (MSA) of charged hard
spheres [454–456].

A comparison of the isobaric phase behaviour of ionic liquid crystals as function of
the length of the chain attached to the charged group is displayed in Fig. 2.6. The
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Figure 2.7: Schematic side view of two prolate ellipsoids with orientations ω1 and ω2. The
centers of mass of the ellipsoids are located at r1 and r2, respectively, where r12 = |r1−r2|.
Only the projections of the ellipsoids on the plane of the figure are shown and the centers
and main symmetry axes of the ellipsoids are chosen to lie within the plane of the figure.
R is the cross-sectional diameter of the ellipsoids and L is the particle length. The full
circles mark the location of possible charges with valencies zc and zt in the center of the
ellipsoids and at the tails at a distance D from the center, respectively. The energy scale
of the Coulomb pair interaction acting between charged tails and between charged centers
are denoted as γtt and γcc (see Eqs. (2.13) and (2.15)). In addition there is a corresponding
Coulomb pair interaction acting between charged tails and centers. (See Ref. [236])

transitions between isotropic liquid and vapour phases as well as the transitions between
isotopic and anisotropic phases within the lattice model is in qualitative agreement with
the experimental results in Refs. [372] and [177], respectively. One can infer that one
lattice site within the lattice model corresponds approximetely to 3 . . . 4 C-atoms of an
alkyl chain. Whereas the lattice model correctly accounts for the orientational phase
transitions, the lattice model is not appropriate to distinguish the various anisotropic
phases inside the regime “mesophases & crystals” in Fig. 2.6. This can be traced back
to the restriction of particles being located at discrete lattice sites, whereas the stability
of smectic and crystalline phases hinges on packing effects on the scale of fractions of a
lattice site.

A more refined model to study the properties of ionic liquid crystals has been proposed
in Ref. [236]. The intermolecular pair potential is expressed as a sum of the contribution
due to excluded-volume interactions and the contribution due to long-ranged interactions:

U(r12,ω1,ω2) =

{
∞ , r12 < Rσ(r̂12,ω1,ω2)

UGB(r12,ω1,ω2) + UCO(r12,ω1,ω2) , r12 ≥ Rσ(r̂12,ω1, ω2)
.(2.8)

Here the pair potential U(r12,ω1,ω2) between particles 1 and 2 is written as a function
of the intermolecular vector r12 between the centers of mass of the two particles, and their
orientations ω1 and ω2, where r12 = |r12| is the magnitude of r12 = r2− r1 (see Fig. 2.7).
The contact distance Rσ(r̂12,ω1,ω2) depends on the orientations of both particles and
on the unit vector r̂12 = r12/r12 between their centers.
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In Ref. [236] the well-known Gay-Berne pair potential is used as a generalization of
the Lennard-Jones pair potential to fluids consisting of nonspherical particles (see e.g.
Refs. [25, 66, 97–99, 153] and references therein):

UGB(r12,ω1,ω2) = 4ε(r̂12,ω1,ω2) (2.9)

×
[(

r12
R0
− σ(r̂12,ω1,ω2) + 1

)−12

−
(
r12
R0
− σ(r̂12,ω1,ω2) + 1

)−6
]
,

σ(r̂12,ω1,ω2) =

[
1− χ

2

(
(r̂12 · ω1 + r̂12 · ω2)

2

1 + χω1 · ω2
+

(r̂12 · ω1 − r̂12 ·ω2)
2

1− χω1 · ω2

)]− 1
2

, (2.10)

ε(r̂12,ω1, ω2) = ε0
(
1− χ2(ω1 ·ω2)

2
)− 1

2 (2.11)

×
[
1− χ′

2

(
(r̂12 · ω1 + r̂12 ·ω2)

2

1 + χ′ω1 · ω2
+

(r̂12 · ω1 − r̂12 · ω2)
2

1− χ′ω1 · ω2

)]2
.

Here χ = (κ2 − 1)/(κ2 + 1) and κ = L/R, where R is the cross-sectional diameter of
the particle and L is the particle length along the main symmetry axis (see Fig. 2.7).
Accordingly, the parameter κ is a measure of the length-to-breadth ratio of the particle.
The interaction strength ε(r̂12,ω1,ω2) depends on the relative orientations of the particles,
ε0 is a parameter setting the energy scale of the pair interaction, χ′ = (κ′1/2−1)/(κ′1/2+1),
and κ′ = εR/εL. Here εR is the minimum of the potential for a pair of parallel particles
placed side-by-side (r̂12 · ω1 = r̂12 · ω2 = 0) and εL is the minimum for a pair of parallel
particles placed end-to-end (r̂12 · ω1 = r̂12 · ω2 = 1). The pair interaction potential due
to the charges is decomposed into three terms [236]

UCO(r12,ω1,ω2) = Ucc(r12) + Uct(r12,ω1,ω2) + Utt(r12,ω1,ω2) , (2.12)

with

Ucc(r12) = γcc
e−r12/λD

r12
, (2.13)

Uct(r12,ω1,ω2) = γct

[
e−rc+/λD

rc+
+
e−r+c/λD

r+c
+
e−rc−/λD

rc−
+
e−r−c/λD

r−c

]
, (2.14)

Utt(r12,ω1,ω2) = γtt

[
e−r++/λD

r++
+
e−r+−/λD

r+−
+
e−r−+/λD

r−+
+
e−r−−/λD

r−−

]
. (2.15)

Here the distances between the charges are given by

rc± = |r12 ∓ ω2D| , r±c = |r12 ± ω1D| , r±± = |r12 ± ω1D ∓ ω2D| , (2.16)

where D is distance between the center of the particle and the charges at the tails of the
particle (see Fig. 2.7). The Debye screening length is denoted as λD and γcc = zczce

2/ε,
γct = zczte

2/ε, γtt = ztzte
2/ε characterise the energy scale. Here the sites at the center

and the tails of the particle carry the charges zce and zte, respectively. The permittivity is
denoted as ε. Any counterions are considered at the linear response level, i.e. they screen
the electrostatic potential on a scale given by the Debye screening length.

The number density of the center of mass of a particle at a point r with an orientation
ω is written as ̺(r,ω) = ̺ f(r,ω), where f(r,ω) represents a dimensionless distribution
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function and ̺ = N/V is the total number density. Here N is the number of particles and
V is volume. The equilibrium density profile minimises the grand potential functional
(see e.g. Refs.[133, 183–185, 479] and references therein):

Ω[{f(r,ω)}, ̺, T, µ] = kBT̺
(
ln(4πΛ3̺)− 1

)
V + F [{f(r,ω)}, ̺, T ]− µ̺V, (2.17)

where µ is the chemical potential and Λ is the thermal de Broglie wavelength. The
excess (over the ideal gas) free energy functional F [{f(r, ω)}, ̺, T ] is in general a very
complicated, highly non-trivial object, because it is a characterising property of a many-
body problem. F [{f(r,ω)}, ̺, T ] is dealt with in various ways, which specify the explicit
forms of the theory. The Parsons and Lee approach [253, 345] is used in Ref. [236] for
the hard core interaction together with a perturbation expansion for the long-ranged
interaction:

F [{f(r,ω)}, ̺, T ] = kBT̺

∫
dr1 dω1 f(r1,ω1) ln (f(r1,ω1)) (2.18)

+
̺

2

∫
dr1 dω1 f(r1,ω1) (Uref [{f(r,ω)}, ̺, T ] + Uexc[{f(r,ω)}, ̺, T ])

with

Uref [{f(r,ω)}, ̺, T ] = −kBTJ(̺)

∫
dr2 dω2 fM(r12,ω1,ω2)f(r2,ω2) , (2.19)

Uexc[{f(r,ω)}, ̺, T ] = ̺

∫
dr2 dω2 (1− fM(r12,ω1,ω2))U(r12,ω1,ω2)f(r2,ω2) . (2.20)

Here fM(r12,ω1,ω2) is the Mayer function of the hard core pair interaction potential
between two particles. The Mayer function equals -1 if the particles overlap, i.e. r12 <
Rσ(r̂12,ω1,ω2), and is zero otherwise. Note that the range parameter Rσ(r̂12, ω1,ω2)
given by Eq. (2.10) is, to a first approximation, the contact distance between two hard
ellipsoids of elongation κ with orientations ω1 and ω2 (see Ref. [81]). Uref [{f(r,ω)}, ̺, T ]
and Uexc[{f(r,ω)}, ̺, T ] are the effective reference and excess potential, respectively, act-
ing on a particle due to the presence of the remaining particles. The Parsons-Lee modi-
fication amounts to scaling the reference Onsager free energy functional by the function
(see Eq. (2.19))

J(̺) =
1

Vp

4η − 3η2

4(1− η)2
, (2.21)

which incorporates the contributions of many-body hard core interactions in an ap-
proximate way. Here η = ̺Vp and Vp = πLR2/6 are the volume fraction and the
particle volume, respectively. In the case of J(̺) = ̺ the effective reference potential
Uref [{f(r,ω)}, ̺, T ] reduces to the original second-virial Onsager theory. The Parsons-
Lee approach for thermodynamic properties of the isotropic and nematic phases of fluids
consisting of hard ellipsoids or spherocylinders has been found to be in agreement with
simulation data [71, 144, 294, 397].

The equilibrium distribution function f(r,ω) is obtained from minimising the excess
free energy functional F (̺, T, [f ]) with respect to f(r,ω). From f(r, ω) one obtains the
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order parameters

S2 = 〈P2(cosϑ)〉 ,
W0 =

〈
cos

(
2πzd−1

)〉
,

W2 =
〈
P2(cosϑ) cos

(
2πzd−1

)〉
, (2.22)

where P2(x) = (3x2 − 1)/2 is the Legendre polynomial of degree 2 and d is the layer
spacing along the z axis in the case of a smectic A phase. They serve to distinguish
isotropic (S2 = W0 = W2 = 0), nematic (S2 6= 0 and W0 = W2 = 0) and smectic A
(S2,W0,W2 6= 0) structures. By introducing further order parameters it would in principle
also be possible to describe other liquid crystalline and crystalline structures. However,
these additional structures are strongly non-uniform and they occur at high densities,
such that they are not expected to be well described by the approach in Ref. [236], i.e.
one is actually restricted to the three order parameters given in Eq. (2.22).

At first fluid phase equilibria are discussed for non-spherical particles with the inter-
molecular pair potential given by Eq. (2.8). It is convenient to examine the phase be-
haviour in terms of the reduced temperature T ∗ = kBT/ε0, the packing fraction η = ̺Vp,
the dimensionless strengths of the Coulomb interactions Ecc = γcc/(ε0R), Ect = γct/(ε0R),
Ett = γtt/(ε0R) and the reduced Debye screening length λ∗D = λD/R.

The phase behaviour of uncharged particles with the length-to-breadth ratio κ = L/R =
2 and the anisotropy parameter κ′ = 2 of the Gay-Berne potential (solid lines in Figs. 2.8
(a)–(c)) is discussed. The fluid is positionally and orientationally disordered (S2 = W0 =
W2 = 0) in the isotropic phase (I) at low packing fractions η and high enough temperatures
T ∗. Upon increasing the packing fraction, a first-order phase transition to a smectic A
phase (SA) with S2,W0,W2 6= 0 occurs. The isotropic fluid undergoes a vapour-liquid
separation below the critical temperature T ∗

c marked by the solid circles in Figs. 2.8 (a)–
(c). Upon increasing the packing fraction, the phase sequence is vapour (V), isotropic
liquid, and smectic A for temperatures T ∗

t < T ∗ < T ∗
c . Here T ∗

t is the triple point
temperature (thin solid line in Figs. 2.8 (a)–(c)) at which the three phases V, I, and SA

coexist. Increasing the anisotropy parameter κ′ of the Gay-Berne potential at fixed κ leads
to a shift of the vapour-liquid coexistence curve to lower temperatures as is apparent from
Fig. 2.8 (a) where the phase diagram is shown for κ′ = 2 (solid line) and κ′ = 5 (dotted
line). Moreover, the smectic region is pushed to lower packing fractions as κ′ increases.
High values of κ′ favour the side-by-side configuration over the end-to-end configuration
of two parallel particles. Therefore, the packing fractions of the coexisting isotropic and
smectic A phases decrease upon increasing κ′. The relative stability of the side-by-side
configuration decreases as κ′ is lowered and for κ′ = 1 all configurations are equally stable
for parallel particles, i.e. ε(r12,ω1,ω2) = ε0 for κ′ = 1 and ω1 ‖ ω2 in Eq. (2.11).

Figure 2.8 (b) demonstrates that the width of the I-SA phase transition broadens upon
increasing the length-to-breadth ratio of the particles from κ = L/R = 2 (solid line) to
κ = 4 (dash-dotted line). Furthermore, the vapour-liquid coexistence curve is metastable
with respect to the I-SA coexistence for κ = 4. More details concerning the influence of the
length-to-breadth ratio of the particles and the anisotropy parameter of the Gay-Berne
potential on the fluid phase behaviour can be found in Refs. [66, 98].

Now the influence of two like charges (Ett = 45, λ∗D = 50) located at the tails (D/R = 0.9
for κ = D/R = 2 is examined, see Fig. 2.7) on the fluid phase behaviour (dashed line in
Fig. 2.8(c)). The vapour-liquid critical temperature is seen to decrease with increasing the
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Figure 2.8: The influence of the anisotropy parameter of the Gay-Berne potential κ′ in
panel (a), the length-to-breadth ratio of the particles κ = L/R in panel (b) and like
charges at the tails of the particles in panel (c) on the fluid phase behaviour of an ionic
liquid crystal consisting of ellipsoidal particles (see Fig. 2.7). The phase diagrams are
shown as functions of the packing fraction η and the reduced temperature T ∗. The solid
lines in panels (a), (b), and (c) represent the phase diagram for uncharged particles with
κ = 2 and κ′ = 2, while the dotted and dash-dotted lines show the phase diagram for
uncharged particles with κ = 2, κ′ = 5 in panel (a) and κ = 4, κ′ = 2 in panel (b). The
dashed line in panel (c) represents the phase diagram for charged particles with κ = 2,
κ′ = 2, D/R = 0.9, Ett = 45, and λ∗D = 50. The solid horizontal lines in panels (a), (b)
and (c) mark the coexistence of a vapour phase (V) with an isotropic liquid phase (I)
and a smectic A phase (SA) for the uncharged particles with κ = 2 and κ′ = 2, while the
solid circles mark the vapour-liquid critical point. The lower circles in panels (a) and (c)
denote the vapour-liquid critical points corresponding to the phase diagrams represented
by the dotted and dashed lines, respectively. Vapour-liquid coexistence is metastable for
the length-to-breadth ratio κ = 4 in panel (b). The dashed horizontal line in panel (c)
corresponds to V-I-SA three phase coexistence of the fluid consisting of charged particles.
(See Ref. [236])

Coulomb interaction strength and the I-SA coexistence region is shifted to higher packing
fractions. In the high-temperature limit the thermodynamic properties of the fluid are
dominated by the repulsive steric interactions, and the I-SA phase transition tends to that
of the corresponding hard core fluid, with packing fractions ηI = 0.61 and ηSA

= 0.63 at
I-SA phase coexistence. The decrease of the vapour-liquid critical temperature is due to
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Figure 2.9: The influence of the location of two like charges on the fluid phase behaviour
of an ionic liquid crystal consisting of charged ellipsoidal particles with length-to-breadth
ratio κ = L/R = 3 at temperature T ∗ = 1.5. The anisotropy parameter of the Gay-Berne
potential and the Debye screening length are fixed to κ′ = 8 and λ∗D = 50, respectively.
Two like charges are located at the distance D = 1.4R and D = R from the center of
the particles in panels (a) and (b), respectively, while a single charge is located at the
center of the particles in panel (c). Schematic illustrations of the shape of the particles
and the location of the charges (solid dots) are shown in the figures. The phase diagrams
are plotted as functions of the Coulomb pair interaction strengths Ett or Ecc, and the
packing fraction η. The solid lines denote the phase boundaries of thermal equilibrium of
an isotropic (I), nematic (N), and smectic A (SA) phase, while the dashed lines in panel
(b) mark metastable isotropic-nematic phase coexistence. (See Ref. [236])

the repulsive Coulomb pair interaction between the like charged tails of the particles.

Next the effect of varying the location of charges on the particles with a fixed length-
to-breadth ratio L/R = 3 and at a fixed temperature T ∗ = 1.5 is examined. Fluid phases
are shown in Fig. 2.9 as functions of the strength of the Coulomb pair interactions Ett

or Ecc, and the packing fraction η for three different locations of the charges. Two like
charges are located at the distance D = 1.4R and D = R from the center of the particles
in Fig. 2.9(a) and (b), respectively, while a single charge is located at the center of the
particles in Fig. 2.9(c). The length-to-breadth ratio and temperature have been chosen
such that the fluids consisting of uncharged particles (i.e. Ett = Ecc = 0) are isotropic
at low packing fractions and a phase transition to the smectic A phase is observed at
higher packing fractions. There is an important difference between the phase behaviour
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Figure 2.10: Normalised, orientationally averaged density profile n(z) [Eq. (2.23)] in panel
(a) and relative nematic order parameter s(z) [Eq. (2.24)] in panel (b) of an ionic liquid
crystal along the z-axis in the smectic A phase, where d is the layer spacing. The solid
lines represent the profiles for particles with two like charges located at the distance
D = R from the center of the particles (see Fig. 2.9(b)), while the dashed lines show
the profiles for particles with a single charge located at the center of the particles (see
Fig. 2.9(c)). The model parameters are fixed to κ = L/R = 3, κ′ = 8, T ∗ = 1.5, η = 0.67,
and Ett = Ecc/4 = 4000. Therefore, the particles in panels (a) and (b) carry the same
total charge. (See Ref. [236])

of fluids consisting of particles with charges located at D = 1.4R and at D = R. While
for D = R the smectic A phase is the only stable phase at high packing fractions (see
Fig. 2.9(b)), nematic phase ordering (N) with S2 6= 0 and W0 = W2 = 0 is found for
D = 1.4R (see Fig. 2.9(a)). In this case the nematic phase is stable for strong Coulomb
pair interaction down to Ett = 215 at the I-N-SA triple point. In the case of particles
with two like charges located at the distance D = R from the center, there is no stable
nematic phase even at higher Coulomb interaction strengths. In this case the packing
fractions of the coexisting isotropic and smectic A phases (solid lines in Fig. 2.9(b)) de-
crease with increasing Coulomb interaction strength Ett, whereas the packing fractions of
the metastable isotropic-nematic phase coexistence (dashed lines in Fig. 2.9 (b)) increase.

Surprisingly, the nematic phase is stable in the case of a fluid consisting of particles with
a single charge located at the center as is shown in Fig. 2.9(c). The smectic A phase is
preempted by the nematic phase which is stable above the Coulomb interaction strength
Ecc = 10465 at the I-N-SA triple point.

In order to understand the influence of the location of two like charges on the fluid
phase behaviour it is instructive to consider a set of position-dependent order parameters
which quantifies the deviation of the number density from isotropy [179]. The normalised,
orientationally averaged density profile

n(z) = 2π

π∫

0

dϑ sinϑ f(z, ϑ) (2.23)
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and the position-dependent, relative nematic order parameter

s(z) =
π

n(z)

π∫

0

dϑ sinϑ (3 cos2 ϑ− 1)f(z, ϑ) (2.24)

are displayed in Fig. 2.10(a) and (b), respectively. The solid lines show the profiles
for particles with two like charges located at the distance D = R from the center of
the particles (see Fig. 2.9(b)), while the dashed lines display the profiles for particles
with a single charge located at the center of the particles (see Fig. 2.9(c)). The packing
fraction is fixed to η = 0.67 and the Coulomb pair interaction strengths are given by
Ett = Ecc/4 = 4000. Hence the smectic A phase is stable and the particles in panels (a)
and (b) carry the same total charge. The order parameter profiles are periodic functions
with layer spacings d ≈ 3.8R and d ≈ 3.0R for the particles with two like charges at
the tails (solid lines) and the particles with a single charge located at the center (dashed
lines), respectively. The density profiles of the centers of the particles exhibit maxima in
the center of the layers at z = 0 as is apparent from Fig. 2.10(a). Moreover, the density
distribution along the layer axis is sharper for the particles with two like charges at the
tails than that for the particles with a single charge located at the center.

Figure 2.10(b) demonstrates that there is a qualitative difference between the relative
nematic order parameter profiles for particles with two like charges at the tails (solid lines)
and the particles with a single charge located at the center (dashed lines). Whereas s(z)
is rather independent of z in the latter case, the relative nematic order parameter profile
exhibits pronounced oscillations along the z axis in the former case, where particles located
between the layers at |z/d| & 0.4 are oriented with their main body mainly perpendicular
to the z axis, i.e. s(z) < 0. For comparison it is recalled that the value of the nematic order
parameter is s(z) = −0.5 and s(z) = 1.0 for perfect perpendicular and parallel alignment
to the z axis, respecticely. The predominantly perpendicular orientation of particles with
charges at the tails located in between the smectic layers can be understood in terms of a
minimisation of the electrostatic repulsion due to a maximised distance from the particles
in the smectic layers. For particles with the charge in the center the electrostatic energy is
independent of the orientation; hence a parallel alignment of particles in between smectic
layers is favourable, as non-parallel orientations would increase the free energy due to an
increase in the layer spacing. The latter case is comparable with the results of Ref. [445]
on spherocylinders (see Fig. 2 of Ref. [445]), where the majority of inter-layer particles is
aligned parallel to the layer normal. The bimodal orientational distribution described in
Ref. [445] is also expected to be found in the present situation.

Now the effect of varying the length-to-breadth ratio κ = L/R is studied for charged
particles with two like charges located at a fixed distance L/2 − D = 0.1R from the
end of the particles (see Fig. 2.7). Fluid phases are shown in Fig. 2.11 as functions of
the strength of the Coulomb pair interactionEtt and the packing fraction η for a fixed
temperature T ∗ = 2. The length-to-breadth ratio is κ = 3 and κ = 5 in Fig. 2.11(a)
and (b), respectively. Qualitatively similar types of phase behaviour are exhibited by
both systems. The fluids consisting of uncharged particles, i.e. Ett = 0, are isotropic
at low packing fractions and a phase transition to the smectic A phase is observed at
higher packing fractions. Upon increasing the Coulomb pair interaction strength Ett

stable nematic islands in the phase diagrams are found. This nematic phase is bounded
below and above by isotropic and smectic A phases, respectively. Moreover, the location
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Figure 2.11: The influence of the length-to-breadth ratio κ = L/R on the fluid phase
behaviour of an ionic liquid crystal consisting of charged ellipsoidal particles with two
like charges located at a fixed distance L/2 − D = 0.1R from the end of the particles
(see Fig. 2.7). The length-to-breadth ratio is κ = 3 in panel (a) and κ = 5 in panel (b).
The anisotropy parameter of the Gay-Berne potential and the Debye screening length are
fixed to κ′ = 8 and λ∗D = 50, respectively. The phase diagrams are plotted as functions
of the Coulomb pair interaction strength Ett and the packing fraction η for the fixed
temperature T ∗ = 2. The solid lines denote the phase boundaries of thermal equilibrium
of an isotropic (I), nematic (N), and smectic A (SA) phase. In Fig. 2.12 phase diagrams
are shown as functions of the packing fraction and the temperature for the Coulomb pair
interaction strength indicated by the dotted lines. (See Ref. [236])

of the nematic region is seen to move to higher Coulomb pair interaction strength and
lower volume fraction upon increasing the length-to-breadth ratio. The nematic phase
disappears at high values of the Coulomb pair interaction strength when the repulsive
steric interaction is less important. The competition of the steric interaction and the
Coulomb pair interaction leads to the existence of a stable nematic phase for intermediate
values of Ett.

Packing fraction-temperature projections of the fluid phase diagrams for the systems
with Ett = 300 (see the dotted lines in Fig. 2.11) are shown in Fig. 2.12. The stable
isotropic, nematic and smectic A regions are clearly visible for the fluid consisting of the
smaller particles in Fig. 2.12 (a). For the larger particles the isotropic-nematic coexistence
region is metastable with respect to the I-SA coexistence (dashed lines in Fig. 2.12(b)).
For both systems, the low temperature part of the phase diagram is dominated by a wide
two-phase region where the SA phase is in equilibrium with an isotropic phase. Note that
the behaviour is reversed for E

(l)
tt > Ett > E

(s)
tt , where E

(s)
tt = 1099 and E

(l)
tt = 1570 is

the second triple point for the smaller and larger particles, respectively (see Fig. 2.11(a)).
Increasing the length-to-breadth ratio induces the nematic phase in this case.

The model of ellipsoidal particles with point charges may be compared with models of
spherocylinders with line charges [128, 163, 238]. The presence of a direct isotropic-smectic
transition for small length-to-breadth ratios κ = L/R and charges Ett, the decrease of the
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Figure 2.12: Phase diagrams of the same fluids as in Fig. 2.11 in the packing fraction
(η)-temperature (T ∗) plane. The Coulomb pair interaction strength is given by Ett = 300
as indicated by the dotted lines in Fig. 2.11. The length-to-breadth ratio is κ = 3 in
panel (a) and κ = 5 in panel (b). The solid lines denote the phase boundaries of thermal
equilibrium of an isotropic (I), nematic (N), and smectic A (SA) phase, while the dashed
lines in panel (b) mark metastable isotropic-nematic phase coexistence. In panel (a) and
(b) the solid circles denote two state points with equal temperature and pressure. (See
Ref. [236])

packing fraction at the transition upon increasing κ, as well as the increase of the packing
fraction at the transition upon increasing Ett (see Fig. 2.11) are in agreement with the
trends for sphereocylinders as displayed in Figs. 2 and 3 of Ref. [238]. Hence there is
qualitative similarity between the model of point charges at the particle tails and charged
spherocylinders with line charges.

Next the influence of the Coulomb interaction strength on the phase behaviour is con-
sidered. The locations of the various ordering transitions in the case of a fluid consisting
of ellipsoidal particles with a single charge located in the center of the particles and the
length-to-breadth κ = 3 are summarised in Fig. 2.13 for three different Coulomb inter-
action strengths Ecc. From the phase behaviour of the systems shown in Fig. 2.13, it
is apparent that the nematic phase becomes stable with increasing Coulomb interaction
strength. There are I-N-SA triple points for the Coulomb interaction strengths Ecc = 4500
and Ecc = 15000 in Figs. 2.13(b) and (c), respectively, while the I-N coexistence re-
gion is metastable in the case of the weaker Coulomb interaction strength considered in
Fig. 2.13(a). In the high-temperature limit the thermodynamic properties of the fluids
are dominated by the repulsive steric interactions, and the I-SA phase transition tends
to that of the corresponding hard core fluid. As expected the isotropic region becomes
more extensive as the Coulomb interaction strength is increased. In the case of a large
Coulomb interaction strength the long-ranged pair potential is rather independent of the
orientations of the particles because the charges are located in the center of the ellipsoids.
Therefore the locations of phase transitions from the isotropic phase to orientationally
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Figure 2.13: The influence of the Coulomb pair interaction strength Ecc on the fluid phase
behaviour of an ionic liquid crystal consisting of ellipsoidal particles (κ = L/R = 3) with
a single charge located in the center of each particle. The phase diagrams are shown
as functions of the packing fraction η and the reduced temperature T ∗. The solid lines
denote the phase boundaries of thermal equilibrium of an isotropic (I), nematic (N) and
smectic A (SA) phase, while the dashed lines in panel (a) mark metastable isotropic-
nematic phase coexistence. The anisotropy parameter of the Gay-Berne potential and the
Debye screening length are given by κ′ = 8 and λ∗D = 50, respectively. (See Ref. [236])

ordered phases in the low temperature region are shifted to higher packing fractions upon
increasing the Coulomb interaction strength.

In general the total number density of both thermotropic liquid crystals (see e.g.
Ref. [295]) and colloidal suspensions consisting of charged nonspherical particles (see e.g.
Ref. [114]) is smaller in the isotropic phase than in the coexisting nematic or smectic
phase similar to our findings presented in Figs. 2.8, 2.9 and 2.11–2.13. Nevertheless, it
is worthwhile to mention that the density of hard platelike particles in a binary mixture
of thick and thin platelets can be larger in the isotropic phase than in the coexisting ne-
matic phase depending on the chemical potentials [443]. This remarkable phenomenon of
isotropic-nematic density inversion has been investigated using a two-component density
functional theory for hard nonspherical particles [34].

In Ref. [190] isotropic and smectic phases of molecules consisting of two pyridinium
head groups and a biphenylene core (see Fig. 2.14(a)) have been observed. Increasing the
length of the alkyl chains, i.e. increasing n in Fig. 2.14(a), stabilises the smectic phase.
Both the transition temperature from the isotropic to the smectic phase and the layer
spacing in the smectic phase increase with increasing length of the alkyl chains. These
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Figure 2.14: Chemical structure of dipolar amphiphiles with two pyridinium head groups
and a biphenylene core in (a), diquaternary ammonium salts in (b) and diammonium salts
in (c). These molecules exhibit liquid crystalline phases [147, 190, 235]. (See Ref. [236])

results agree with the theoretical results presented in Figs. 2.11 and 2.12. Increasing the
length L of particles with two like charges located at a fixed distance L/2−D from the end
of the particles (see Fig. 2.7) has a stabilising effect on the smectic phase. For example,
the isotropic phase is stable for particles with κ = 3 at the state point denoted by the
solid circle in Fig. 2.12(a), while the smectic A phase is s stable for larger particles with
κ = 5 at the same temperature and pressure marked by the solid circle in Fig. 2.12(b).
Moreover, the calculated layer spacing d increases upon increasing L.

In Ref. [235] the phase behaviour of α−ω diquaternary ammonium salts has been
investigated (see Fig. 2.14(b)). By increasing the spacer length between the quaternary
nitron atoms, more stable smectic phases were obtained in agreement with both the
theoretical results shown in Figs. 2.11 and 2.12 as well as the aforementioned experimental
study on dipolar amphiphiles with two pyridinium head groups and a biphenylene core
[190].

It is known experimentally that slight changes of the molecular structure influence
the occurrence of mesomorphism in ionic liquids [50]. Chemical details are in principle
included in the parameters; however, relating the model parameters to the molecular
structure is complicated. On the other hand, the experimentally found preference of ionic
liquid crystals for the smectic A mesophase [50] is in agreement with the results displayed
in Fig. 2.11 if one realizes that typical coupling strengths Ett = ℓB/R, where ℓB denotes
the Bjerrum length, are not expected to exceed a value of 100.

Thermotropic and lyotropic mesomorphism has been observed for the diammonium
salts shown in Fig. 2.14(c) [147]. Interestingly, a stable nematic phase has been found
for small spacer length (CH2)m. This nematic phase disappeared upon increasing the
spacer length similar to the theoretical findings shown in Figs. 2.12(a) and (b). Moreover,
it is worthwhile to mention that a decrease of the layer spacing of the smectic phase
with increasing temperature has been observed for various ionic liquid crystals [50] in
agreement with the results of the present theoretical approach.

The main trends in the bulk phase behaviour of ionic liquid crystals obtained within the
model above lead to the following general properties of this type of ionic complex fluids:
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(1) The phase diagrams for representative examples of liquid crystals involve a vapour,
an isotropic liquid and a smectic A phase (see Fig. 2.8). Increasing the anisotropy leads to
a shift of the vapour-liquid coexistence curve to lower temperatures (see Fig. 2.8(a)). The
width of the isotropic to smectic phase transition broadens upon increasing the length-
to-breadth ratio of the particles (see Fig. 2.8(b)).

(2) There is a pronounced dependence of the phase behaviour on the location of two like
charges on the ellipsoidal particles (see Fig. 2.9). While for small distances from the center
the smectic A phase is the only stable phase at high packing fractions (see Fig. 2.9(b)), ne-
matic phase ordering is found for large distances (see Fig. 2.9(a)). Moreover, the nematic
phase is stable in the case of a fluid consisting of particles with a single charge located at
the center (see Fig. 2.9(c)). Whereas the relative nematic order parameter profile s(z) is
rather independent of z in the smectic A phase of particles with a single charge located
at the center, it exhibits pronounced oscillations along the z axis in the case of two like
charges at the tails of the particles (see Fig. 2.10(b)).

(3) Increasing the length of the particles with two like charges located at a fixed distance
from the center of the particles has a stabilising effect on the smectic A phase in agreement
with earlier experimental findings (see Figs. 2.11 and 2.12). Moreover, the calculated layer
spacing in the smectic A phase increases upon increasing the length. With increasing
the Coulomb pair interaction strength stable nematic islands in the phase diagrams are
found (see Fig. 2.11). This nematic phase is bounded by isotropic and smectic A phases.
Moreover, the location of the nematic region moves to higher Coulomb pair interaction
strength and lower volume fraction upon increasing the length of the particles.

(4) For particles with a single charge located in the center, the isotropic region in the
phase diagram becomes more extensive as the Coulomb interaction strength is increased
(see Fig. 2.13) similar to earlier theoretical findings for charged platelike particles [35]
(see Sec. 4.5). Moreover, a nematic phase becomes stable with increasing the Coulomb
interaction strength (see Figs. 2.13(b) and (c)). In the case of a large Coulomb interaction
strength the long-ranged pair potential is rather independent of the orientations of the
particles because the charges are located in the center of the ellipsoids.

2.4 Charged colloids

It is known from experiments [260] and computer simulations [28, 53, 200, 201, 289, 489]
that under carefully chosen conditions mixtures of oppositely charged colloids exhibit a
fluid phase and one or more crystalline phases, instead of random aggregation. However,
the location of these phases as well as the types of crystalline phases present depend
sensitively on the details of the interaction potentials, particularly on the range of the
screened Coulomb interaction (Debye length).

Rather simple systems with a low dimension of the phase diagram are present for bi-
nary colloidal mixtures. In the following an example is discussed for the case of oppositely
charged, equally-sized colloids, whose global phase diagrams in terms of the temperature,
the pressure and the composition depends only on the Debye length as a single additional
parameter [41]. The experiments in Ref. [260], e.g., have been performed with posi-
tively charged polymethylmethacrylate (PMMA) and negatively charged silica particles
suspended in an indexed-matched mixture of cyclohexyl bromide (CHB) and cis-decalin,
and the screening length has been adjusted by means of addition of tetrabutylammonium
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structure c/d Kc φcp

CaF2 c 3 3π
√

3/32

CsCl c 2 π
√

3/8

CuAu c 2 π(2 + (c/a)2)
√

1 + 2(a/c)2/24

Cu3Au c 4 π
√

2/6

LSfcc
6 c 7 7π

√
2/48

NaCl c 2 π/6

NbP c 8 π
√

2/6

rbcc d 1 π
√

3/8

rfcc d 1 π
√

2/6

Table 2.2: Candidate solid structures chosen on the basis of Refs. [200, 201, 260, 289].
The second column indicates a crystal (“c”) or a substitutionally disordered solid (“d”).
The third and the fourth columns give the numbers of particles per unit cell Kc and the
closed-packed packing fractions φcp, respectively. The CuAu structure with the aspect
ratio c/a ∈ [1,

√
2] of the underlying tetragonal lattice degenerates to the CsCl structure

in the case c/a = 1. The LSfcc
6 structure has been introduced in Ref. [202]. The NbP

structure was called “tetragonal” in Ref. [201]. (See Ref. [41])

bromide (TBAB). The approach of Ref. [41], which has been inspired by Ref. [448] on
the restricted primitive model (RPM), is based on finding the phase with minimal Gibbs
free energy within a set of candidate structures, where the Gibbs free energy is evaluated
within a mean-field-like formalism which interpolates between the hard-sphere limit at
high temperatures and a Madelung-type description at low temperatures.

Table 2.2 lists the candidate solid structures considered in Ref. [41]. This choice is based
on the structures found in computer simulation studies of the cases x = 0 (see Ref. [200])
and κa = 3, x = 1/2 (see Ref. [201]), as well as on Refs. [260, 289], where the limit
T ∗ → 0 is addressed by means of Madelung energy sums. Moreover, the CsCl (cesium
chloride), CuAu (copper gold), NaCl (sodium chloride), and Cu3Au structures have been
identified in experiments [260, 413]. Table 2.2 indicates whether the solid is crystalline
(“c”) or substitutionally disordered (“d”) and it exhibits the numbers of particles per
unit cell Kc as well as the closed-packed packing fractions φcp. The CuAu structure,
which is described by a tetragonal lattice of aspect ratio c/a ∈ [1,

√
2] and a two-particle

basis, degenerates to the CsCl structure in the case c/a = 1. The structure denoted
by LSfcc

6 was introduced in Ref. [202] and the NbP (niobium phosphide) structure was
called “tetragonal” in Ref. [201]. The former, LSfcc

6 , is expected to occur in size-bidisperse
mixtures [202], which was the motivation to include it in the list of candiate structures
Tab. 2.2.

The phase diagrams for the case κa = 3 in terms of (T ∗, p∗) and (T ∗, φ) at compositions
x = 0, x = 1/4, and x = 1/2 are displayed in Fig. 2.15. Thick solid lines represent
phase boundaries whereas thin horizontal lines in (T ∗, φ) diagrams (panels (b), (d), and
(f)) are tie lines connecting coexisting states. At low temperatures two-phase coexistence
M2 := CsCl + rfcc is found (see Figs. 2.15(c) and (d)).

By construction a fluid-rfcc transition takes place for any κa and x in the limit T ∗ →
∞ at the coexistence pressure p∗coex and volume fractions φf and φrfcc. For T ∗ → 0
and x = 1/2 a CsCl crystal coexists with a dilute gas, because the free energy of the
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Figure 2.15: Phase diagrams for κa = 3 at compositions x in terms of (T ∗, p∗) and (T ∗, φ).
The green dashed lines in panel (f) reproduce the phase diagram of the computer simu-
lation study of Ref. [201]. Labels of pure solid phases correspond to Tab. 2.2. Panels (c)
and (d) exhibit a two-phase coexistence region M2 = CsCl + rfcc. Horizontal thin lines in
panels (b), (d), and (f) are tie lines. (See Ref. [41])

present formalism reduces to Madelung-like energy sums in this limit. A cut of the phase
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diagrams at composition x = 0 is shown in Figs. 2.15(a) and (b), which involves merely the
fluid and the rfcc structures, which is consistent with computer simulation results [200].
Figures 2.15(c) and (d) display a cut at x = 1/4, with an additional Cu3Au phase as well
as the two-phase coexistence region M2. The structures at composition x = 1/4 differ
from those at composition x = 3/4 only by an exchange of the colloid species (1↔ 2).

In order to assess the reliability of the approach, Fig. 2.15(f) compares the calculated
phase diagram (red solid lines) in terms of (T ∗, φ) for κa = 3, x = 1/2 with that ob-
tained by means of free energy calculations using computer simulations in Ref. [201]
(green dashed lines). Both studies agree in the predicted stable structures fluid, rfcc,
CsCl, CuAu, and NbP. The overall topology is similar for both approaches; however,
the formalism in Ref. [41] overestimates the stability of the NbP structure leading to
a fluid-NbP transition (see Figs. 2.15(e) and (f)) which is not observed in the computer
simulation. Moreover, it leads to a fluid-CuAu transition in a very narrow window around
T ∗ ≈ 0.4 but no rfcc-CuAu transition is found, whereas it is the opposite situation with
the computer simulation results. Agreement between mean-field theory and computer
simulation is observed with respect to the order of the phase transitions: The CsCl-CuAu
transition is of second order because the CuAu structure transforms continuously into
CsCl upon c/a→ 1, and the other phase transitions are of first order. Both the rfcc-NbP
and the CuAu-NbP phase transitions are described as “weakly first-order” in Ref. [201],
whereas within the approach of Ref. [41], only the rfcc-NbP transition exhibits a very nar-
row but non-vanishing φ-gap and the CuAu-NbP transitions is strongly first-order (see
Fig. 2.15(f)). The quantitative disagreement in the strength of the first-order CuAu-NbP
transition can be understood on the basis of a smearing out of structural differences due
to fluctuations, which are present in computer simulations but which are not fully ac-
counted for by mean-field theories. This comparison between the formalism of Ref. [41]
and the computer simulation study of Ref. [201] for the special case κa = 3, x = 1/2
shows that, apart from well-known defects of mean-field theories, the theoretical approach
is semi-quantitatively reliable. Moreover, its simplicity gives computational advantages
over computer simulations such that now complete phase diagrams in terms of (T ∗, p∗, x)
as a function of the parameter κa can be determined readily. Interestingly the prefer-
ence of the CsCl structure over the NaCl structure in Fig. 2.15(f) is also found within
the quantitatively more sophisticated approach of Vega, Bresme, and Abascal on the
restricted primitive model (RPM) [448].

Figure 2.16 displays the phase diagram for κa = 3 in terms of (p∗, x) for temperatures
(a) T ∗ = 10, (b) T ∗ = 1, and (c) T ∗ = 0.1. At high temperatures (see Fig. 2.16(a)) only
fluid and rfcc structures are present and the fluid-rfcc transition line becomes independent
of the composition x in the limit T ∗ →∞. At lower temperatures (see Figs. 2.16(b) and
(c)) CsCl, CuAu, Cu3Au, and NbP crystal structures occur at fixed compositions. At
low temperatures and pressures as well as strongly asymmetric mixtures (see Fig. 2.16(c)
for p∗ < 1 and x < 1/4 or x > 3/4) the MSA applied to model the fluid phase leads
to an unphysical artifact which exhibits the apparent coexistence of an almost pure rfcc
crystal with a less pure fluid. The reason for this unphysical phenomenon is that under
these conditions the MSA pair distribution function becomes negative such that an in-
creasing repulsive interaction potential leads to a more and more negative, i.e. attractive,
contribution to the free energy. However, outside of this range of the phase diagram MSA
leads to a physically reasonable description of the fluid phase. The full phase diagram for
κa = 3 in terms of (T ∗, p∗, x) can be inferred from the two-dimensional cuts in Figs. 2.15
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Figure 2.16: Phase diagrams for κa = 3 in terms of (p∗, x) at temperatures (a) T ∗ = 10,
(b) T ∗ = 1, and (c) T ∗ = 0.1 (see also Fig. 2.15). Horizontal thin lines in panels (b) and
(c) are tie lines. (See Ref. [41])

and 2.16.
In order to study the changes of the phase diagram upon changing the screening strength

κa, the phase diagrams for various screening strengths κa ∈ {2, 3, 5, 10} have been calcu-
lated in Ref. [41]. The trends in the variations of the phase diagrams upon changing κa
are found to be monotonic such that it is sufficient to discuss the case κa = 10.

Figures 2.17 displays the phase diagram for κa = 10 in terms of (T ∗, p∗) and (T ∗, φ) at
compositions x = 0, x = 1/4, and x = 1/2. Two-phase coexistence regions M1 := CsCl +
fluid, M2 = CsCl + rfcc, and M3 := CuAu + rfcc are present in Figs. 2.17(c) and (d). By
comparison of Figs. 2.15 and 2.17 one infers a shift of the rfcc phase to lower temperatures
upon increasing κa. This observation can be understood by the fact that the interaction
potential is approaching the hard-sphere potential in the limit κa → ∞. The Cu3Au
phase in Figs. 2.15(c) and 2.17(c) or Figs. 2.15(d) and 2.17(d) shrinks upon increasing κa,
which is partly due to the growing rfcc phase. Figures 2.15(e) and 2.17(e) or Figs. 2.15(f)
and 2.17(f) exhibit an increasing temperature range of stability of the CuAu structure
upon increasing κa. As a consequence the NbP phase, located in between the extending
rfcc and CuAu phases, shrinks upon increasing κa. Moreover, upon increasing κa, the
fluid-NbP transition disappears and an rfcc-CuAu coexistence is established. Finally, the
φ range of the CsCl phase becomes smaller upon increasing κa as can be inferred from
Figs. 2.15(f) and 2.17(f).

In order to make predictions on the conditions to synthesise certain crystal structures, it
is expected within the formalism of Ref. [41] that colloids with strongly screened Coulomb
interaction, i.e. large values of κa, are preferable to prepare CuAu structures, whereas
CsCl, Cu3Au, and NbP crystals are expected to be found most easily in systems of weakly
screened Coulomb interaction. Given a certain crystal structure has been prepared, the
above reasoning leads to the following conclusions: CuAu structures become more whereas
CsCl, Cu3Au, and NbP structures become less stable against temperature variations upon
increasing κa. These considerations show that mixtures of charged colloids are ionic
complex fluids whose rich self-assemblance phenomenology and structural stability can
be tuned by varying the Debye length, i.e. the ionic strength.
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Figure 2.17: Phase diagrams for κa = 10 at compositions x in terms of (T ∗, p∗) and
(T ∗, φ). Labels of pure solid phases correspond to Tab. 2.2. Panels (c) and (d) exhibit
two-phase coexistence regionsM1 = CsCl+fluid, M2 = CsCl+rfcc, and M3 = CuAu+rfcc.
Horizontal thin lines in panels (b), (d), and (f) are tie lines. (See Ref. [41])
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Chapter 3

Bulk structure

The influence of charges onto the structure of complex fluids is described in detail here.
It is well-known that the spatial decay of electric fields in dilute electrolute solutions is
characterised by the Debye length, which is the dominant length scale and which increases
upon decreasing the ionic strength. However, the key observation is that the bulk structure
of ionic complex fluids can be influenced by the competition of the Debye length with
another material-independent length scale: the diverging correlation length close to a
critical point of the solvent (Sec. 3.1). An interesting phenomenon to be discussed in
Sec. 3.2 is that ionic impurities, in contrast to non-ionic ones, can alter the bulk structure
of a solvent, which provides a qualitative difference between ionic and non-ionic complex
fluids. By analysing the dielectric properties of a dense ionic fluid, where the Debye length
is smaller than the particles, one observes a crossover between the well-known plasma-like
behaviour at large length scales and a dipolar-fluid-like behaviour at small length scales
(Sec. 3.3). Furthermore it is shown in Sec. 3.4 that the long-range of the bare Coulomb
interaction is only sufficient but not necessary for the thermal and structural properties
of dense ionic fluids. Rather, the impact of the Coulomb interaction on the properties of
dense ionic complex fluids is due to its valency-dependence, i.e. it is attractive between
equally charged and repulsive between oppositely charged ions.

3.1 Structure of electrolyte solutions close to critical

points

The bulk structure of fluids, which is experimentally accessible by X-ray and neutron
scattering, provides information complementary to those which follow from the bulk phase
behaviour. Within the model of Ref. [43] described in Sec. 2.1, consider a spatially uniform
equilibrium state (φ, I, χ) in the one-phase region of the phase diagram (see Fig. 2.1(c)),
which minimises the density functional Ω in the absence of surfaces, i.e. without the last
term in Eq. (2.1). The corresponding two-point correlation functionsGij(r) = ̺i̺jhij(r) =
̺i̺j(gij(r)−1), i, j ∈ {φ,+,−}, ̺φ := φ, ̺± = I, are obtained from Gij(r) = Gij(r, 0), r =

|r|, with the inverse G−1
ij (r, r′) =

δ2Ω

δ̺i(r)δ̺j(r′)
, where

∑

j

∫

V

d3r′G−1
ij (r, r′)Gjk(r

′, r′′) =

δikδ(r−r′′). The three-dimensional Fourier transforms Ĝij(k) :=
4π

k

∞∫

0

dr rGij(r) sin(kr),
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which are proportional to the partial structure factors [176], are given by [43]

Ĝφφ(k) =
1

L(k)

(
k2 + κ2

)
,

Ĝφ±(k) = − I
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(
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)

(3.1)

with

κ2 :=
8πℓBI

ε(φ)
(3.2)

as the square of the inverse Debye length and the denominator (see Eq. (2.4))

L(k) := (k2 + κ2)
(χ

3
k2 + 2(χs(φ; I)− χ)

)
− I

2
(V ′

+(φ)− V ′
−(φ))2k2. (3.3)

Note that V ′
±(φ) = 0 leads to Ĝφ±(k) = 0, i.e. as expected, the fluctuations of the

solvent composition and of the ion densities are uncorrelated in the absence of ion-solvent
interactions.

Due to the constraint ̺A + ̺B = 1, the correlation functions ĜAA(k), ĜAB(k), and

ĜBB(k) of the number density fluctuations of the A and B particles are related to the

correlation function Ĝφφ(k) by ĜAA(k) = −ĜAB(k) = ĜBB(k) = Ĝφφ(k). In this section

Ĝφφ(k) is referred to as the solvent structure factor. It can be written in the form [43]

Ĝφφ(k) =
Ĝφφ(0)

1 + (λk)2
(

1− g2

1 + (k/κ)2

) (3.4)

with

λ :=

√
χ

6(χs(φ, I)− χ)
(3.5)

and

g2 :=
3(∆γ)2ε(φ)

16πℓBχ
, (3.6)

where ∆γ := γ+− γ− = V ′
+(φ)− V ′

−(φ). The isothermal compressibility, which is propor-

tional to Ĝφφ(0) = (2(χs(φ, I)−χ))−1, diverges ∼ |χ−χc|−γ upon approaching the critical
point (φc, Ic, χc). As expected within the present mean-field theory, one finds the classical
critical exponent γ = 1 instead of γ ≈ 1.24 for the Ising universality class [349]. For a
state point (φ, I, χ) in the bulk phase diagram (see Figs. 2.1(a) and (c)) the length λ is
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an (inverse) measure of the deviation of χ from its value χs(φ, I) at the spinodal. Equa-
tion (3.4) has already been derived in Ref. [334] within BCA, which corresponds to the
linear approximation ∆γ ≈ f+ − f−. For |g| ≤ 1 in Eq. (3.4) the solvent structure factor

Ĝφφ(k) is a monotonically decreasing function of the wave number k, whereas for |g| > 1 at

kmax = κ
√
|g| − 1 a maximum Ĝφφ(kmax) =

Ĝφφ(0)

1− (κλ)2(|g| − 1)2
occurs [44] (see Sec. 3.2).

Hence, if |g| > 1, Ĝφφ(kmax) diverges as function of χ at λ = λunstable = (κ(|g| − 1))−1, i.e.
the spatially uniform bulk state becomes unstable upon approaching the critical point.
Note that in the limits |g| → 0 (no ion-solvent coupling) or κ → 0 (no salt) Eq. (3.4)

leads to the Ornstein-Zernike-like solvent structure factor Ĝφφ(k) = Ĝφφ(0)/(1 + (λk)2).
In this case λ can be identified with the bulk correlation length.

Experimental reports of uniform bulk states close to the critical point of water+2,6-
dimethylpyridine mixtures with KBr, KCl, and Mg(NO3)2 (see Ref. [317]) as well as
distributions of neutron scattering intensities of water+3-methylpyridine with LiCl, NaCl,
KCl, NaBr, and MgSO4, which vary monotonically as function of k (see Refs. [388, 389]),
indicate that in these systems one has |g| < 1. Within the LDA in Sec. 2.1 this latter
relation is expected to be fulfilled: Close to the critical point (φc, χc) ≈ (1

2
, 2) (see Fig. 2.3)

of, e.g., the widely studied binary liquid mixture of 3-methylpyridine (component A,
εA = 10) and water (component B, εB = 80) with a lower critical demixing point at
Tc ≈ 316 K, i.e. ℓB ã ≈ 529 Å, one obtains |g| < 0.3 independent of the type of salt, because
|∆γ| . 4. However, within BCA, i.e. for ∆γ ≈ f+ − f− with typically |f+ − f−| ≫ 1
[208, 286], one has to expect |g| ≫ 1, which, according to the above reasoning, is in sharp
contrast to the available experimental results. It has to be mentioned that experimental
reports [390–392] of “periodic structures” in heavy water+3-methylpyridine mixtures with
sodium tetraphenylborate (NaBPh4) cannot, however, be expected to find a consistent
interpretation in terms of a local ion solvation model, neither within BCA nor within the
LDA, because the anions ([BPh4]

−) are much larger than the solvent particles, such that
in these systems the ion size is expected to be relevant.

The charge-charge structure factor SZZ(k) = (Ĝ±±(k) − Ĝ±∓(k))/I [176], which mea-
sures correlations of fluctuations Z of the local charge density around ̺+ − ̺− = 0, is
obtained by inserting the expressions for Ĝ±±(k) and Ĝ±∓(k) from Eq. (3.1):

SZZ(k) = k2

χ

3
k2 + 2(χs(φ, I)− χ)

L(k)
. (3.7)

The asymptotic behaviour SZZ(k → 0) ≃ (k/κ)2 is the signature for perfect screening
[176]. Further, the case ∆γ = 0 corresponds to the Debye-Hückel limit SZZ(k) = k2/(k2+
κ2).

The asymptotic behaviour of the correlation function Gij(r) =

1

2π2r

∞∫

0

dk kĜij(k) sin(kr) can be inferred from a pole analysis of Ĝij(k), which

amounts to determine the roots of the denominator L(k) defined in Eq. (3.3) [134, 135].
Since L(k) is a polynomial in k of degree four it has four and only four complex roots
kν = k′ν + ik′′ν , k

′
ν = Re(kν), k′′ν = Im(kν), ν ∈ {1, . . . , 4}. Due to the actual structure of

L(k) there are constraints on the locations of the four roots kν in the complex plane
[43]. If L(k = kν) vanishes this holds also for k = k∗ν , because L(k) has real coefficients.
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Figure 3.1: Poles k1, . . . , k4 of the Fourier transform Ĝij(k) of the two-point correlation
functions Gij(r) in the complex plane k = k′ + ik′′ ∈ C, which correspond to the roots
of the denominator L(k) (see Eq. (3.3)). According to the analytic structure of L(k)
(see the main text) only the three distinct situations shown in panels (a)–(c) can occur.
Purely imaginary poles [(a)] correspond to a monotonic decay of Gij(r → ∞) whereas
a pole structure as in panel (b) (|kν| all equal) corresponds to an oscillatory decay of
Gij(r →∞). Purely real poles [(c)] indicate an unstable bulk state, which does not occur
in the one-phase region of the phase diagram in Fig. 2.1(c). The merging of two poles on
the imaginary axis [(d)] corresponds to a Kirkwood crossover point. (See Ref. [43])

Moreover, if L(k = kν) vanishes this also holds for k = −kν , because L(k) is a polynomial
in k2. Accordingly this is also true for k = −k∗ν . This implies the root structure
shown in Fig. 3.1. Three distinct situations can occur. For purely imaginary roots
given by {k1 = ik′′1 , k2 = ik′′2 , k3 = −k1, k4 = −k2} with 0 < k′′1 < k′′2 (see Fig. 3.1(a))
the asymptotic decay of the two-point correlation functions Gij(r → ∞) is monotonic
∼ exp(−k′′1r)/r. For complex roots {k1 = k′1 + ik′′1 , k2 = −k∗1, k3 = −k1, k4 = k∗1} with
k′1, k

′′
1 > 0 (see Fig. 3.1(b)) the two-point correlation functions Gij(r) vary asymptotically

∼ sin(k′1r+ const) exp(−k′′1r)/r giving rise to a damped oscillatory decay. Finally, purely
real roots {k1 = k′1, k2 = k′2, k3 = −k1, k4 = −k2} with 0 < k′1 < k′2 (see Fig. 3.1(c))
indicate an unstable bulk state, i.e. the corresponding point in the phase diagram is
located in between the spinodals. The exponential decay of the two-point correlation
functions (whether monotonically or oscillatory) is consistent with the short range of the
interactions implied by taking a gradient expansion.

Thermodynamic states in the bulk phase diagram with monotonically decaying Gij(r →
∞) are separated from states with damped oscillatory decay of Gij(r →∞) by so-called
Kirkwood crossover lines [259]. Crossing these lines is associated with the merging of two

purely imaginary poles (see Figs. 3.1(a) and (d)) of Ĝij(k) in the upper (and similarly in
the lower) half of the complex plane and with a subsequent emergence of a pair of two poles
(see Fig. 3.1(b)) with equal imaginary parts and with real parts of equal absolute value but
of opposite sign [230]. In the phase diagrams of Fig. 3.2 the Kirkwood crossover lines are
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Figure 3.2: Phase diagrams as in Fig. 2.1 with Kirkwood crossover lines (dotted lines)
within the bilinear coupling approximation (BCA) [(a)] and the local density approxi-
mation (LDA) described in Sec. 2.1 [(b)–(d)]. The parameters correspond to the binary
liquid mixture water+3-methylpyridine (εA = 10, εB = 80, ℓBã = 529 Å); for simplicity
the temperature dependence of the Bjerrum length ℓB is ignored. The chemical potential
µIkBT of the salt is fixed such that at the (slightly shifted) critical point with composition

φ = φc ≈ 1
2

there is an ionic strength Ĩc = 10 mM. Outside the grey regions bounded by
the dotted lines the two-point correlation functions exhibit asymptotically a monotonic
decay, whereas inside these regions damped oscillatory decays occur. Within BCA a large
portion of the phase diagram corresponds to oscillatory decay, whereas within LDA this
occurs only in a narrow band within which the value of the bulk correlation length is close
to that of the Debye screening length. Note the differences in scales for the axes in (a)
and in (b)–(d). (See Ref. [43])

denoted by dotted lines and damped oscillatory decay ofGij(r →∞) occurs at state points
in the grey area enclosed by the Kirkwood crossover lines. The parameters correspond
to the aforementioned binary liquid mixture water+3-methylpyridine (εA = 10, εB = 80,
ℓBã = 529 Å); for simplicity the temperature dependence of the Bjerrum length ℓB is
ignored. The chemical potential µI of the salt is fixed such that there is an ionic strength
Ĩc = 10 mM at the (shifted) critical point. Figures 3.2(a) and (c) correspond to the
parameters (f+, f−) = (3, 26) used in Figs. 2.1(a) (BCA) and (c) (LDA), respectively.
Figure 3.2(b) refers to the case of a strongly antagonistic salt, (f+, f−) = (−20, 20),
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whereas Fig. 3.2(d) relates to the intermediate case (f+, f−) = (0, 20). Within BCA (see
Fig. 3.2(a)), the damped oscillatory decay of Gij(r → ∞) prevails in a large portion of
the phase diagram, and wave lengths of the oscillations as small as the particle size ã can
occur at state points in the center of the grey area. However, within the LDA of Sec. 2.1,
damped oscillatory decay of Gij(r → ∞) is found only in a narrow range of O(∆γI) for

values of χ around χ =
χs(φ, I)

1 + κ2/6
+O((∆γ)2I), which extends into the one-phase region

only in the vicinity of the critical point [43] (see Figs. 3.2(b)–(d)).

For small wave numbers k the structure factor Ĝφφ(k ≪ κ) ≃ Ĝφφ(0)

1 + (λk)2(1− g2) (see

Eq. (3.4)) takes the Ornstein-Zernike form
Ĝφφ(0)

1 + (ξ(OZ)k)2
with the length [43]

ξ(OZ) = λ
√

1− g2 =

√
χ(1− g2)

6(χs(φ, I)− χ)
(3.8)

which is referred to as the Ornstein-Zernike length. This length ξ(OZ) is determined
routinely in scattering experiments by fitting an Ornstein-Zernike expression to scattered
intensities at small momentum transfer [317]. For water+2,6-dimethylpyridine mixtures
with KBr, KCl and Mg(NO3)2 (see Ref. [317]) it has been found experimentally that

the amplitude ξ
(OZ)
0 of ξ(OZ) = ξ

(OZ)
0 |(T − Tc)/Tc|−ν is to a large extent independent of

the considered type of salt and ionic strength. Due to ξ
(OZ)
0 ∼

√
1− g2 this observation

indicates that one has g2 ≪ 1, which, according to the arguments given above, is expected
within the LDA of Sec. 2.1 but is not compatible with predictions following from BCA.

The poles {k1, . . . , k4} of the solvent structure factor Ĝφφ(k) can be expressed in terms
of the Ornstein-Zernike length ξ(OZ) and the inverse Debye length κ. For a monotonic
decay of Gφφ(r → ∞) one has purely imaginary poles kν = ik′′ν with k′′1 = −k′′3 and
k′′2 = −k′′4 , whereas a damped oscillatory decay of Gφφ(r → ∞) is characterised by the
poles at k1 = k′1 + ik′′1 , k2 = −k∗1, k3 = −k1, k4 = k∗1. Close to the critical point (i.e.
for ξ(OZ) → ∞) one finds a monotonic decay of Gφφ(r → ∞) with the decay length
1/k′′1 ≃ ξ(OZ) ∼ |χ−χc|−ν with the mean-field critical exponent ν = 1

2
instead of ν ≈ 0.63

for the Ising universality class [349]. Therefore the electrostatic interactions do not affect
the universal critical exponent, but they can influence the non-universal critical amplitude
ξ
(OZ)
0 [43].

Figure 3.3 displays the real and imaginary parts of the poles kν of Ĝij(k) in the ranges
k′ν = Re(kν), k

′′
ν = Im(kν) ≥ 0 at the critical composition φ = φc ≈ 1

2
for the parameters

corresponding to Fig. 3.2(b). The four poles {k1, . . . , k4} can be expressed in terms of
(k′1, k

′′
1 , k

′′
2). In Fig. 3.3 the two purely imaginary poles k1 and k2 with positive imaginary

parts for monotonically decaying Gij(r →∞) occur as two branches, which merge at the
Kirkwood crossover points (•). The Kirkwood crossover points (•) are characterised by

κξ(OZ) =

√
2

1± g − 1 ≈ 1 (see Ref. [43]). Hence at the Kirkwood crossover points the

inverse decay lengths of Gij(r → ∞) correspond approximately to κ (dashed line) and
1/ξ(OZ) (dotted line). At the critical point (χ = χc, i.e. k′′1 = 0), Gij(r → ∞) decays

as 1/r with a subdominant contribution ∼ exp(−κr
√

1− g2)/r (see Fig. 3.3), i.e. as
anticipated above, the leading decay at large distances is governed by the vicinity to the



Bulk structure 41

k′1

(χc − χ)/10−3
80

0.013

0

φ = φc

k′′1 = k′′2 k′′2

k′′1

k′′2

k′′1

1/ξ(OZ)

κ

(χc − χ)/10−3

86420

0.15

0.12

0.09

0.06

0.03

0

Figure 3.3: Real and imaginary parts of the poles kν = k′ν + ik′′ν , k
′
ν = Re(kν), k′′ν =

Im(kν), ν ∈ {1, . . . , 4}, of the Fourier transform Ĝij(k) of the two-point correlation func-
tions Gij(r) as functions of the deviation χc − χ from the critical point at the critical
composition φ = φc ≈ 1

2
for the parameters corresponding to Fig. 3.2(b). The four poles

k1, . . . , k4 can be expressed in terms of (k′1, k
′′
1 , k

′′
2) (see Fig. 3.1). If Gij(r → ∞) de-

cays monotonically, the poles of Ĝij(k) are purely imaginary (k′1 = 0), giving rise to two
branches k′′1 and k′′2 of positive imaginary parts (see Fig. 3.1(a)). If Gij(r →∞) decays os-

cillatorily, there is only one pole of Ĝij(k) with positive real and imaginary parts (k′′2 = k′′1)
(see Fig. 3.1(b)). The merging of the two branches k′′1 and k′′2 for monotonic asymptotic
decay takes place at the Kirkwood crossover points (•) (see Fig. 3.1(d)). Upon varying φ
these points form the Kirkwood crossover lines (dotted lines in Fig. 3.2). For comparison
the inverse Debye length κ (dashed line) as well as the inverse Ornstein-Zernike length
1/ξ(OZ) ∼ √χc − χ (dotted line, see Eq. (3.8)) are displayed. Within the range of values
of χ leading to an oscillatory decay, depicted by the grey regions in Fig. 3.2, one has
κ ≈ 1/ξ(OZ). Within the range of monotonic decay the decay rate of the leading contri-
bution to Gij(r → ∞) is given by k′′1 whereas that of the subdominant contribution is
k′′2 . For χc − χ ≤ 1.3 × 10−3 the decay rates are k′′1 ≈ 1/ξ(OZ) and k′′2 ≈ κ, whereas for
χc − χ ≥ 4.3× 10−3 the decay rates are k′′1 ≈ κ and k′′2 ≈ 1/ξ(OZ). (See Ref. [43])

critical point, whereas the ion-solvent coupling manifests itself in the corrections to the
leading behaviour. Further away from the critical point the leading contribution decays
∼ exp(−k′′1r)/r with a subdominant contribution ∼ exp(−k′′2r)/r (see Fig. 3.3). The inset

of Fig. 3.3 displays the absolute value of the real parts |k′ν| = k′1 of the poles of Ĝij(k),
which is identical to the wave number k′1 of the oscillatory part of Gij(r) and which is
non-zero within the grey region of Fig. 3.2(b). For the strongly antagonistic salt with
f+ = −20 and f− = 20, in Fig. 3.2(b) the shortest wave length of the oscillations is
given by (2π/k′1)min ≈ 513 (see the inset in Fig. 3.3). The corresponding value of k′′1 is
≈ 0.0873 so that (2π/k′1)min ≈ 45/k′′1 , i.e. Gij(r) ∼ sin(k′1r + const) exp(−k′′1r)/r decays
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already within 1/45 of a period. In less extreme cases of solubility contrasts f±, such as
those in Figs. 3.2(c) and (d), the shortest wave lengths are even larger [43]. Therefore,
within the LDA of Sec. 2.1, the oscillations in Gij(r), if they occur, are not expected
to be experimentally detectable. In contrast, as already mentioned above, within BCA
it is possible that the shortest wave lengths of the oscillations are of the order of the
particle size; such an asymptotic oscillatory decay can be expected to be visible in the pair
distribution function. However, there are no experimental reports of Kirkwood crossover
lines, which is in line with the results obtained within the LDA.

In conclusion, the bulk structure of eletrolyte solutions is determined by the Debye
length far away from the critical point of the solvent and by the bulk correlation length
close to it. The two regimes are connected by a sequence of two Kirkwood crossovers,
which, however, are not expected to be easily detectable in experiments. Whereas ion-
solvent coupling does not modify the universal behaviour close to critical points, e.g.
critical exponents, it can modify non-universal properties, e.g. critical amplitudes.

3.2 Structure of fluids with ionic impurities

The expression Eq. (3.4) of the solvent-solvent structure factor Ĝφφ(k) of an electrolyte
solution has been derived within the particular model of Sec. 2.1 (see Refs. [43, 334]). A
more general point of view is to consider the ions of an electrolyte solution as impurities
in the solvent and to ask for the influence of impurities on the bulk structure of the
solution. In order to address the problem whether and how impurities alter the form of
the fluid structure factor one can derive asymptotic forms of the structure factor by means
of general, model independent arguments [44].

A rather general setting is to consider a spatially uniform fluid mixture of three com-
ponents of which component 1 is referred to as the “solvent” whereas components 2 and
3 are called “impurities”. The interaction potentials Uij(r) between two particles of com-
ponents i and j are assumed to be isotropic and vanishing at infinite particle separation
(r → ∞). Note that no particular asymptotic decay of Uij(r → ∞) is assumed. The
mole fraction xi of component i ∈ {1, 2, 3} may be expressed in terms of the mole frac-
tion x = x2 + x3 of impurities and the composition φ ∈ [0, 1] of the impurities such that
x1 = 1−x, x2 = φx and x3 = (1−φ)x. For ionic impurities with valencies z2, z3 > 0 of the
respective components the constraint z2x2 = z3x3 of local charge neutrality of the bulk
fluid leads to the composition φ = z3/(z2 + z3), whereas the composition φ of non-ionic
impurities is not restricted to a particular value.

For small mole fraction x≪ 1 of impurities and inverse wave numbers 1/q larger than
the particle sizes, the direct correlation functions ĉij(q) can be expanded in a Laurent
series around q = 0 up to terms of O(q2) [44]. In the case of non-ionic impurities, i.e.
z2 = z2 = 0, no pole occurs at q = 0 [44].

In the absence of impurities, i.e. for x = 0, one obtains for the solvent partial structure
factor the well-known Ornstein-Zernike structure factor S11(q) = (1 − ̺(c

(0)
11 + c

(1)
11 q

2))−1,

where where c
(p)
ij is the coefficient of q2p in the expansion of ĉij(q). From the relation

S11(0) > 0, which holds due to the fact that S11(0) is the ratio between the compressibility
of the solvent and that of a gas of non-interacting particles of the same temperature and
density [176], one infers 1 − ̺c(0)11 ≥ 0. Moreover, if the bulk phase diagram of the pure
solvent exhibits critical points and if the pure solvent is uniform throughout the whole
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one-phase region of the bulk phase diagram, i.e. S11(q) for q > 0 does not diverge even

close to critical points, where 1 − ̺c
(0)
11 vanishes, c

(1)
11 < 0 is required. Note that these

conditions are not fulfilled by a fluid of hard spheres, because there is no critical point in
the corresponding bulk phase diagram, which is independent of temperature and which
exhibits only a first-order phase transition.

Considering only the dominant contributions in the mole fraction x ≪ 1 of impurities
leads to the asymptotic form [44, 334]

S11(q) ≃
S11(0)

1 + (ξq)2
(

1− g2

1 + (q/κ)2

) , (3.9)

of the solvent partial structure factor, where

S11(0) =
1

1− ̺(1− x)c
(0)
11 − ̺2x(φc

(0)
12 + (1− φ)c

(0)
13 )2

(3.10)

is related to the compressibility of the solvent [176], ξ =

√
−̺c(1)11 S11(0) is the bulk

correlation length, κ =
√

8πℓBI is the inverse Debye length with I = ̺x(z22φ+z23(1−φ))/2
denoting the ionic strength and the quantity

g2 :=
(c

(0)
12 − c

(0)
13 )2

−4πℓBc
(1)
11 (z2 + z3)2

(3.11)

measures the contrast of impurity-solvent interactions. Whereas expressions equivalent
to Eq. (3.9) have first been derived in Refs. [43, 334] within specific models of electrolyte
solutions, it has been shown that Eq. (3.9) is generally valid [44] (see e.g. Eq. (3.4)).
However, it has to be noted that Eqs. (3.9)–(3.11) apply only in the limit of high dilution
of impurities. Deviations beyond this limit have been recognised in Ref. [367].

Considering S11(q) in Eq. (3.9) one immediately recognises

S11(q) ≃





S11(0)

1− g2(κξ)2 + (ξq)2
, q ≫ κ

S11(0)

1 + (1− g2)(ξq)2 , q ≪ κ.
(3.12)

In particular, for non-ionic impurities, i.e. for κ = 0, the solvent structure factor
S11(q) ≃ S11(0)/(1+(ξq)2) is not altered to leading order in the mole fraction x. However,
ionic impurities due to, e.g., alkali halides of ionic strength I ≈ 1 mM in water at room
temperature, i.e. x ≈ 4 · 10−5, lead to an inverse Debye length κ ≈ 0.1 nm−1, i.e. a Debye
length 1/κ ≈ 10 nm, which is much larger than the particle size.

For ionic impurities it is readily seen that S11(q) is monotonically decreasing with q
if |g| ≤ 1 (see Figs. 3.4(a) and (b)). If |g| > 1 a maximum of S11(q) occurs at q =
qmax = κ

√
|g| − 1. In this latter case S11(qmax) = S11(0)/(1 − (κξ(|g| − 1))2) is finite for

ξ < (κ(|g| − 1))−1 (see Fig. 3.4(c)), whereas S11(q) has a pole for ξ ≥ (κ(|g| − 1))−1 (see
Fig. 3.4(d)). Obviously, whenever |g| > 1, a divergence of S11(q) occurs upon approaching
a critical point, where the bulk correlation length ξ diverges. Hence, by adding ionic
impurities the solvent remains uniform within the whole one-phase region of the bulk
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Figure 3.4: Influence of dilute ionic impurities on the solvent structure factor S11(q). The
bulk correlation length is denoted by ξ, whereas the inverse Debye length is given by
κ. The contrast of impurity-solvent interactions is measured by the parameter |g| (see
Eq. (3.11)). For |g| ≤ 1 (see panels (a) and (b)) a monotonic structure factor is found,
whereas a non-monotonic behaviour with a maximum close to the Debye length 1/κ occurs
for |g| > 1 (see panels (c) and (d)). In the latter situation the maximum diverges at a
sufficiently large but finite bulk correlation length (see panel (d)). (See Ref. [44])

phase diagram if and only if |g| ≤ 1, i.e. if the contrast of impurity-solvent interactions
is sufficiently small. This can be understood in such a way that a contrast of impurity-
solvent interactions (|g| > 0) promotes density fluctuations of finite wave length of the
solvent, which may be enhanced by the long-ranged density fluctuations occurring upon
approaching a critical point.

Fundamental insight is gained by addressing the question on the origin of a sufficiently
strong contrast of impurity-solvent interactions (|g| > 1). Non-monotonic solvent struc-
ture factors have indeed been found in heavy water+3-methylpyridine mixtures in the
presence of sodium tetraphenylborate (NaBPh4) by means of small-angle neutron scatter-
ing (SANS) [267, 390]. However, the same solvent under the same conditions with simple
salt impurities (LiCl, NaCl, NaBr, KCl and MgSO4) led to monotonic solvent structure
factors [388, 389]. This experimental observation implies that the valency of impurity ions
is not expected to be the origin for impurity-induced non-uniformities of the solvent. In
agreement with this, it has been concluded within a theoretical model [43], which is not
plagued by the artifacts present in the model of Ref. [334], that neither the valency nor
differences in solubility give rise to a sufficiently large parameter |g| > 1. The experimen-
tal results of ions in water+3-methylpyridine mixtures can be explained by steric effects,
i.e. due to the property of (ionic) impurities being structure-makers or structure-breakers.
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For molecular-sized impurity particles c
(0)
12 ∼ (R1 + R2)

3 and c
(0)
13 ∼ (R1 + R3)

3 can be
expected, where Ri denotes the extension of a particle of component i. Hence, according
to Eq. (3.11), |g| > 1 may be reached for impurities of significantly different particle sizes
(e.g. Na+ and [BPh4]

−), whereas |g| < 1 for particles of similar size (e.g. simple salts).

It is important to understand that it is not the valency, i.e. the charge, but the long-
ranged character (∼ 1/r) of electrostatic interactions of the impurities which gives rise to
the relevance of the parameter |g| for the formation of a non-uniform solvent structure.
However, whether the solvent becomes non-uniform upon adding ionic impurities is mainly
determined by the size-differences between the impurity particles [44].

While the systems considered so far were composed of molecular particles, it is inter-
esting to consider the colloidal limit, where one of the impurity components (component
2, say) comprises charged colloids, whereas the solvent (component 1) and the second
impurity component (component 3, playing the role of counterions) are of molecular size.
Under these conditions one has to expect c12 ∼ R2

2 and z2 ∼ R2
2, because the colloid-

solvent interaction as well as the colloid charge will be proportional to the surface area of
the colloids. One realises from Eq. (3.11) that |g| remains finite for R2 → ∞. The mag-
nitude of |g| in the colloidal limit is determined by adsorption (i.e. solubility) properties,
which, as mentioned above, usually lead to |g| < 1.

The formation of a non-uniform (microheterogeneous) bulk fluid due to ionic impurities
with sufficiently large contrasts of impurity-solvent interactions is a general feature of ionic
complex fluids. The typical fundamental length scale of such microheterogeneities is of the
order of the Debye length, which depends only weakly on the specific material properties
of the ionic components. The structures formed have been qualitatively described as
“membranes” and “multilamellar vesicles” [393, 394], but a detailed classification is still
an open question.

3.3 Dielectric properties of dense ionic fluids

As RTILs are used as solvents in chemical studies, their polarity is one of the most impor-
tant characteristics because it describes the global solvation capability of the solvent. In
this context an interesting surface force apparatus (SFA) study of the interaction between
a mica and a gold surface in an environment of the pure RTIL [C4mim][NTf2] is reported
in Ref. [154], which, after subtracting the steric repulsion and the van der Waals attrac-
tion from the force data, led to the conclusion of a double layer attraction corresponding
to a Debye length of more than 10 nm. In aqueous electrolyte solutions such large Debye
lengths are brought about by an ionic strength of less than 1 mM, which is puzzeling in the
light of the large ion number density of an RTIL. Hence it has been proposed in Ref. [154]
to view pure RTILs as dilute electrolyte solutions with a few mobile ions in an effective
solvent made of temporarily paired ions. Whereas these SFA data have been doubted
[155, 352], the interpretation of RTILs as dilute electrolyte solutions has attracted some
interest [257]. For non-conducting fluids the static dielectric constant ε is well defined and
precisely measurable (see, e.g., Ref. [32, 306]). However, conducting fluids, such as ionic
fluids, are well-known to perfectly screen external charges at long ranges [175, 422] so
that the corresponding static dielectric constant is infinitely large. On the other hand, it
is also well-known that cations and anions form a characteristic alternating pair structure
at short ranges [175, 422], which, when considering neighbouring cation-anion pairs, is
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Figure 3.5: Sketch of (a) the restricted primitive model (RPM) and (b) the correspond-
ing dumbbell model (DM) with particles being constructed by pairwise gluing together
oppositely charged hard spheres of the RPM. (See Ref. [487])

analogous to the charge separation inside dipolar molecules. Therefore, it appears that
the dielectric properties of dense ionic fluids depend on the length scale.

One possibility is to analyse the response of bulk ionic fluids to a static nonuniform
electric field which spatially varies on a particular length scale [487]. It has to be stressed
that this approach focusses on nonuniform static electric fields, the response onto which is
described in terms of the wavenumber-dependent dielectric function ε(k), whereas numer-
ous experimental studies consider uniform time-dependent fields, which give rise to the
frequency-dependent dielectric function ε(ω) (see, e.g., [86, 278, 465, 466]). Both quan-
tities, ε(k) and ε(ω), are not easily related because the former describes the equilibrium
structure whereas the latter quantifies the dynamics in uniform electric fields.

The dielectric properties of a substance can be interpreted in terms of two well-known
mechanisms [9]: Orientation polarisation refers to the rotation of dipolar moments upon
keeping the magnitude constant, whereas distortion polarisation describes the change of
magnitude of dipolar moments at constant orientations. The according orientation sus-
ceptibility χori(k) and distortion susceptibility χdis(k) both contribute to the total electric
susceptibility χ(k) = ε(k) − 1 = χori(k) + χdis(k). However, in order to infer the dom-
inant polarisation mechanism as a function of the wave number k, one has to somehow
determine the decomposition of the observable χ(k) = ε(k) − 1 into the orientation and
the distortion contribution. Perfect screening in ionic fluids and the according divergence
χ(k) → ∞ in the limit k → 0 [175, 422] corresponds to a dominating distortion polari-
sation in the long-wavelength limit. This long-range behaviour of ionic fluids is in sharp
contrast to that of dipolar fluids, whose electric susceptibility χ(k) attains a finite limit
χ(0) as k → 0.

A decomposition of the electric susceptibility χ(k) of an ionic fluid into the orientation
and the distortion susceptibility χori(k) and χdis(k), respectively, can be achieved as follows
[487]: In addition to determine the electric susceptibility χ(k) of the ionic fluid composed
of freely moving cations and anions, a corresponding dipolar fluid is considered whose
particles are overall charge-neutral dumbbells formed by gluing together pairs of cations
and anions of the ionic fluid. This dipolar fluid does not exhibit distortion polarisation,
i.e. χdis(k) = 0, but only pure orientation polarisation, i.e. χ(k) = χori(k), and the latter
can be expected to be similar to χori(k) of the corresponding ionic fluid at short ranges
[487]. The applicability of this approach can be used for any ionic fluid model.

Whereas various models and force fields for realistic RTILs exist [119], the model used in
Ref. [487] to represent the ionic fluid is the three-dimensional restricted primitive model
(RPM), i.e. a collection of N/2 positively and N/2 negatively charged hard spheres of
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equal diameter σ and equal absolute valencies |z+| = |z−| (see Fig. 3.5(a)). The interaction
potential between two ions of species i and j with i, j ∈ {+,−} at positions ri and rj,
respectively, can be described as

βUij(ri, rj) =





zizjlB
|ri − rj|

, |ri − rj| ≥ σ

∞ , |ri − rj| < σ
(3.13)

with the vacuum Bjerrum length lB = βe2/(4πε0), where e is the elemenatry charge,
β = 1/(kBT ) denotes the inverse temperature and ε0 is the vacuum permittivity.

In Ref. [487] the dielectric properties of the RPM (see Fig. 3.5(a)) are compared with
those of a corresponding dipolar fluid model whose particles are composed of one cation
and one anion of the RPM glued together (see Fig. 3.5(b)). The particles within this
dumbbell model (DM) possess three positional and two orientational degrees of freedom,
in contrast to six translational degrees of freedom of a pair of ions within the RPM.
Obviously, all configurations of N/2 dumbbells correspond to possible configurations of
the RPM with N/2 positive and N/2 negative hard spheres, but not all configurations of
the RPM can be realised within the DM. The interaction energy between two dumbbell
particles is given by the sum of contributions Eq. (3.13) of the constituent charged hard
spheres.

The dielectric properties of ionic and dipolar fluids can be studied by analysing the
linear response of the above models in the presence of a weak static nonuniform external
electric field. Within the linear response regime the dielectric properties are given by
the dielectric function tensor ←→ε (k) or, equivalently, by the electric susceptibility tensor
←→χ (k) =←→ε (k)−1. However, since electrostatic fields are purely longitudinal due to Fara-
day’s law, the polarisation field is also purely longitudinal in isotropic fluids. Therefore,
only the longitudinal components (parallel to the wave vector k)

ε(k) := ε‖(k) =
k · ←→ε (k) · k

k2
and

χ(k) := χ‖(k) =
k · ←→χ (k) · k

k2
= ε(k)− 1 (3.14)

are of relevance [487].
It can be shown [176] that the longitudinal dielectric function ε(k) is related to the

charge-charge structure factor

Szz(k) =
1

N

〈
∑

m

zm exp(−ik · rm)
∑

n

zn exp(ik · rn)

〉
(3.15)

via
1

ε(k)
= 1− 4πlB

k2

N

V
Szz(k). (3.16)

In Ref. [487] the averaging in Eq. (3.15) is obtained by means of grandcanonical Monte
Carlo simulations of the RPM and of the DM in a cubic box of side length V 1/3 = 10σ
with periodic boundary conditions using Metropolis sampling [5, 146, 297] and Ewald’s
method [5, 137, 146].
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Figure 3.6: Charge-charge structure factor of (a) the RPM (Fig. 3.5(a)) and (b) the
DM (Fig. 3.5(b)) for the temperature T ∗ = 1 and various values of the packing fraction
η ∈ {0.08, 0.14, 0.23, 0.3}. (See Ref. [487])

The thermodynamic state of the RPM can be characterised by the packing fraction
η = πNσ3/(6V ) and the temperature T ∗ = σ/lB; the corresponding plasma parameter is
given by Γ = 2η1/3/T ∗.

Figures 3.6(a) and (b) display the charge-charge structure factors Szz(k) of the RPM
ionic fluid and of the DM, respectively. It is apparent that Szz(k) of the ionic fluid
is sensitive to density changes only for very low packing fractions η. The slightly more
pronounced oscillations of Szz(k) within the DM (Fig. 3.6(b)) as compared to those within
the RPM (Fig. 3.6(a)) are perhaps an artifact of the DM, within which two charged hard
spheres are kept exactly at a distance σ, whereas the principal peak of the cation-anion
pair distribution function within the RPM has a finite width [487].

Using Eq. (3.16), Fig. 3.7 displays the inverse dielectric functions 1/ε(k) of the RPM
and of the DM. The perfect screening condition [176, 422] implies 1/ε(k)→ 0 for k → 0
for an ionic fluid due to the asymptotic behaviour of the charge-charge structure factor
[176]

Szz(k)
k→0≃ k

2

κ2
(3.17)
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Figure 3.7: Inverse dielectric functions 1/ε(k) of the RPM ionic fluid (red solid lines, see
Fig. 3.5(a)) and of the DM dipolar fluid (blue dashed lines, see Fig. 3.5(b)) at temperature
T ∗ = 1 and packing fractions η ∈ {0.08, 0.14, 0.23, 0.3}. Whereas 1/ε(k → 0) becomes
small (i.e. ε(k→ 0) becomes large) for the ionic fluid, the dielectric function of the dipolar
fluid approaches a finite value ε(0) for small wavenumbers. The inset in panels (c) and
(d) compares the charge-charge structure factor Szz(k) obtained by means of Monte Carlo
simulations (red circles) with the asymptotic behaviour Eq. (3.17) (black solid line). (See
Ref. [487])

with the Debye length 1/κ being given by κ2 = 4πlBN/V , which is shown in the insets
of Figs. 3.7(c) and 3.7(d). Since the DM can exhibit only orientation polarisation, its
dielectric function ε(k → 0) approaches a finite value of the “dielectric constant” ε(0),
which increases upon increasing the packing fraction η (see Fig. 3.7).

In order to determine the dominant polarisation mechanism in an ionic fluid the inverse
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Figure 3.8: Electric susceptibility χ(k) = ε(k) − 1 of the RPM ionic fluid (red solid
lines, see Fig. 3.5(a)) and of the DM dipolar fluid (blue dashed lines, see Fig. 3.5(b)) at
temperature T ∗ = 1 and packing fractions η ∈ {0.08, 0.14, 0.23, 0.3}. Whereas χ(k →
0) diverges for the ionic fluid due to the perfect screening of the external charges, the
susceptibility of the dipolar fluid approaches a finite value χ(0) for small wavenumbers.
At large wavenumbers |k|σ & 2π the electric susceptibility χ(k) = χori(k) + χdis(k) of
the RPM almost coincides with that of the DM, which, by construction, possesses only
orientation polarisation whose electric susceptibility can be expected to be close to χori(k)
of the RPM (see Fig. 3.5). (See Ref. [487])

dielectric functions 1/ε(k) of the RPM and of the DM in Fig. 3.7 are converted into the
electric susceptibilities χ(k) = ε(k)− 1. Figure 3.8 shows that the electric susceptibility
χRPM(k) = χRPM

ori (k) + χRPM
dis (k) of the RPM, which comprises a contribution χRPM

ori (k)
due to orientation polarisation and a contribution χRPM

dis (k) due to distortion polarisation,
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Figure 3.9: Distortion susceptibilities χRPM
dis (k) (solid lines) and orientation susceptibil-

ities χRPM
ori (k) (dashed lines) of the RPM at temperature T ∗ = 1 for packing fractions

η ∈ {0.08, 0.14, 0.23, 0.3}. Perfect screening corresponds to the divergence of χRPM
dis (k)

in the long wavelength limit |k| → 0. The region of negative distortion susceptibility,
χRPM
dis (k) < 0, can be interpreted as overscreening. At sufficiently large wave numbers

orientation polarisation dominates over distortion polarisation with the crossover wave
numbers increasing with the packing fraction η (see Fig. 3.10). (See Ref. [487])

almost coincides in the range |k|σ & 2π with the electric susceptibility χDM(k) = χDM
ori (k)

of the DM, which, by construction, exhibits only orientation polarisation with suscepti-
bility χDM

ori (k). Since for sufficiently large packing fractions η it can be expected that the
orientation susceptibility χRPM

ori (k) of the RPM is identical to the electric susceptibility
χDM
ori (k) of the DM, i.e. χRPM

ori (k) = χDM
ori (k) for all wavenumbers k, one can infer the

orientation and the distortion susceptibility of the RPM separately [487]:

χRPM
ori (k) = χDM(k),

χRPM
dis (k) = χRPM(k)− χDM(k). (3.18)

Figure 3.9 clearly indicates that, at T ∗ = 1, orientation polarisation is the dominant
mechanism of the RPM at sufficiently large wave numbers k, whereas distortion polar-
isation is dominating at sufficiently small wave numbers k. The weak distortion polar-
isation, i.e. χRPM

dis (k) ≈ 0 at large wave numbers k (see Fig. 3.9) can be attributed to
the impenetrable hard cores of the ions of the RPM. The crossover wavenumber between
distortion-dominated and orientation-dominated polarisation increases with packing frac-
tion η. There is a certain interval of wavenumbers |k|σ ≈ 4 . . . 5 with χRPM

dis (k) < 0
(see Fig. 3.9), which indicates overscreening, which is caused by steric effects, i.e. by the
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Figure 3.10: Crossover wave numbers k×(η, T ∗)σ of the RPM between plasma-like be-
haviour for k < k×(η, T ∗) and dipolar-fluid-like behaviour for k > k×(η, T ∗) as functions
of the packing fraction η and of the temperature T ∗. The crossover wave number k×(η, T ∗)
is defined by equal orientation and distortion susceptibilities, χRPM

ori (k×) = χRPM
dis (k×) (see

Eq. (3.18)). The dots correspond to simulation data whereas the dashed lines are obtained
by means of the simple approximative calculation described in the main text. The latter
captures the correct trends of increasing values k×(η, T ∗)σ upon increasing the packing
fraction η or decreasing the temperature T ∗. (See Ref. [487])

hard ion cores, too. The distortion susceptibility of the RPM diverges for k → 0 accord-
ing to χRPM

dis (k) ∼ 1/k2, which corresponds to the perfect screening property of plasmas
[176, 422]. Hence, the RPM ionic fluid exhibits dielectric properties similar to a dipolar
fluid at short range, whereas it behaves plasma-like at long range.

Figure 3.10 displays the crossover wave numbers k×(η, T ∗)σ (dots •), defined by equal
orientation and distortion susceptibilities, χRPM

ori (k×) = χRPM
dis (k×), as functions of the

packing fraction η and of the temperature T ∗. The RPM exhibits plasma-like behaviour
for k < k×(η, T ∗) and dipolar-fluid-like behaviour for k > k×(η, T ∗). The general trend is
that of increasing values of k×(η, T ∗)σ upon increasing the packing fraction η or decreasing
the temperature T ∗. However, it can be expected that k×(η, T ∗) < 2π/σ for any set of
parameters (η, T ∗) since an external electric field oscillating with a wave length of the ion
diameter σ cannot lead to distortion polarisation, i.e. the crossover χRPM

ori (k×) = χRPM
dis (k×)

has to occur at some smaller wave number [487]. The dashed lines in Fig. 3.10 correspond
to an approximation of k×(η, T ∗)σ with χRPM(k) in Eq. (3.18) being approximated within
the mean spherical approximation (MSA) of the RPM [176] and with χDM(k) in Eq. (3.18)
being approximated by the expression of a single dumbbell particle in an external electric
field. Whereas this simple approximation slightly overestimates the value of k×(η, T ∗)σ,
the general trends of increasing values of k×(η, T ∗)σ upon increasing the packing fraction
η or decreasing the temperature T ∗ are captured correctly. Hence for dense ionic fluids,
e.g. inorganic fused salts (η ≈ 0.5, T ∗ ≈ 1/30) or RTILs (η ≈ 0.5, T ∗ ≈ 1/50), one can
expect plasma-like behaviour in a very wide range of wave numbers k < k× with 2π/k×
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corresponding almost to the size of the ions [487].

The main observation of Ref. [487], that the RPM ionic fluids exhibits dielectric prop-
erties similar to a dipolar fluid at short range whereas it behaves plasma-like at long
range, does not hinge on any peculiar property of the RPM and can hence be expected
to be made for other ionic fluids, too. Moreover, the approach to decompose the elec-
tric susceptibility χ(k) = χori(k) + χdis(k) into a contribution χori(k) due to orientation
polarisation and a contribution χdis(k) due to distortion polarisation by introducing a
corresponding dipolar fluid made of cation-anion compounds applies to the case of other
ionic fluids, too. In general, the structure of the cation-anion compounds comprising the
dipolar fluid corresponding to an ionic fluid can be conjectured on the basis of, e.g., the
pair distribution function, which is routinely calculated for numerous ionic fluid models
(see, e.g., Ref. [120, 339]).

However, these results are restricted to bulk ionic fluids and they cannot be directly
applied quantitatively in the context of the discussion on the interpretation of the above-
mentioned SFA measurements in an RTIL environment [154, 155, 352], which are related to
confined ionic fluids. The reason for this restriction is that the static dielectric function for
non-uniform systems is of the form ε(k,k′) due to the absence of translational symmetry.
On the other hand, the qualitative picture above implies, that strongly confined ionic fluids
tend to behave as dipolar fluids whereas they progressively exhibit plasma-like properties
upon relaxing the confinement. This suggests that the recently debated interpretation
of RTILs as dilute electrolyte solutions [154, 257] might not be simply a yes-no-question
but it might depend on the considered length scale [487]. The general feature, that the
static dielectric properties of ionic complex fluids depend on the length scale, may be
considered complementary to the observation that the quantification of the polarity of
RTILs depends on the intrinsic time scale of the measurement [278].

The conclusion one can draw from the study in Ref. [487] is that ionic complex fluids
behave as a plasma on length scales larger than the molecular size, where steric interac-
tions and chemical bonding dominate. However, if the ionic strength is sufficiently large
such that the Debye length is not larger than the molecular size, e.g. for RTILs in the
liquid phase, this large-scale plasma behaves as a uniform fluid of quasi-non-interacting
particles, because all correlations decay on much smaller (molecular) lengths.

3.4 Effective interaction in dense ionic fluids

It is well-known that the Coulomb interaction acts repulsively for equally-charged and
attractively for oppositely-charged ions and it decays ∼ 1/r, i.e. it is long-ranged. On the
other hand, the thermodynamic limit of globally charge-neutral Coulombic systems exists
[252, 271] because the pair distribution functions of an ionic fluid decay exponentially,
which is called the Stillinger-Lovett perfect screening property [176, 275, 421, 422] and
which is a necessary consequence of the long range of the Coulomb potential [288, 304]. It
is a challenge for more than a century now to develop quantitatively reliable theoretical
descriptions of this peculiar combination of properties. For dilute electrolyte solutions
Debye-Hückel theory [140, 233, 254] is typically a good starting point, whereas for dense
ionic systems ion-pairing is relevant [275, 421]. From experimental work [33, 474–476] as
well as continuum simulations [229, 279, 341, 482], there is evidence that in particular
the critical behaviour of ionic systems is very similar to the Ising universality class, which
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typically applies to systems with short-ranged interactions. This result suggests that the
long-range character of the bare Coulomb potential might be of minor importance for the
critical properties of ionic fluids.

The relevance of the long range of the Coulomb interaction for the whole phase diagram
and the bulk structure has been investigated in Ref. [24], where the lattice restricted prim-
itive model (LRPM) for the Coulomb potential being truncated smoothly on a length scale
1/α and sharply at a cut-off radius rcut has been considered. The long-ranged LRPM is
well-known to exhibit tricritical behaviour at the crossover from a first- to a second-order
phase transition between a charge-ordered and a charge-disordered phase [105, 375]. The
(L)RPM renders the ions as homogeneous charged hard spheres, which is of course not
valid for ionic liquids in general, since they may exhibit charge as well as shape anisotropy.
However, in order to investigate the relevance of the long range of the electrostatic inter-
action for the properties of ionic fluids simple models are sufficient, because the impact
of the long range will not depend on rather short-range features like charge or shape
anisotropy. Upon varying the smooth cut-off decay constant α and the sharp cut-off ra-
dius rcut, the short-ranged LRPM can be tuned from a system void of a charged-ordered
phase via one exhibiting charge-ordered and charge-disordered phases but differing quan-
titatively from the long-ranged LRPM to a model with short-ranged interactions whose
phase behaviour and structure is quantitatively the same as for the long-ranged Coulomb
interaction [24]. Moreover, even the Stillinger-Lovett perfect screening property can be
fulfilled for suitable smooth cut-off potentials, an observation which is not trivial in the
context of short-ranged interactions. Since the characteristic phase behaviour and struc-
ture of ionic fluids can also be found in systems with short-ranged potentials, it can be
concluded that the decisive property of the electrostatic potential in ionic fluids is not the
long range but rather the valency dependence.

Consider the lattice restricted primitive model (LRPM) of univalent cations (valency
z⊕ = +1) and anions (valency z⊖ = −1) with hard cores of diameter σ occupying but not
necessarily exhausting the sites of a three-dimensional simple cubic lattice with lattice
constant σ. Global charge neutrality is guaranteed by an equal number of cations and
anions in the system, and the hard cores ensure that each site is either empty or singly
occupied. Within the original LRPM two ions of species i, j ∈ {⊕,⊖} at a distance r in-

teract, besides the hard core exclusion, via the infinitely-ranged Coulomb potential
lbzizj
r

,

where lb =
e2

4πεkT
is the Bjerrum length with the electronic permittivity ε, the Boltzmann

constant k, and the temperature T , and where r is measured with the Euclidean metric.
One possibility to study the relevance of the long-range character of the Coulomb in-

teraction for the properties of ionic systems is to consider the implications of replacing
the infinitely-ranged Coulomb potential by the truncated Coulomb-like potential [24]

βφp,q(r, zi, zj) =





lbzizj
‖r‖p

erfc(α‖r‖p) , ‖r‖q ≤ rcut

0 , ‖r‖q > rcut

(3.19)

with the inverse temperature β = 1/(kT ), the decay constant α ≥ 0, and the cut-off
radius rcut. By means of Eq. (3.19) two different methods of cutting off the Coulomb
potential can be studied: On the one hand, the factor erfc(α‖r‖p), leads to a smooth
cutting off on the length scale 1/α, and, on the other hand, a sharp cutting off at ra-



Bulk structure 55

dius ‖r‖q = rcut can be considered. Analogous to the short-ranged potentials appear-
ing within the Ewald method [137], the smoothening factors can be chosen as com-
plementary error functions erfc(x) = 2/π

∫∞

x
dτ exp (−τ 2). Obviously, the infinitely-

ranged Coulomb potential corresponds to α = 0, rcut = ∞. Besides the Euclidean norm
‖r‖2 =

√
x2 + y2 + z2 to measure distances, the 1-norm ‖r‖1 = |x| + |y| + |z| and the

supremum norm ‖r‖∞ = max(|x|, |y|, |z|) are considered, which are more adapted to a
lattice model since, for lattice vectors r, they lead to values which are integer multiples
of the lattice constant σ [24]. Since all norms are equivalent in finite dimensions, the
power law ∼ 1/r is asymptotically preserved irrespective of the choice of the norm. The
parameters p and q in Eq. (3.19) describe the norms to be used for measuring the distance
determining the interaction potential and the sharp cut-off, respectively.

In order to discuss the thermal and structural properties of the LRPM with the
truncated Coulomb-like interaction Eq. (3.19), the packing fraction η and the pair dis-
tribution functions gij(r), i, j ∈ {⊕,⊖}, are determined in Ref. [24] for cubic boxes
V := {0, σ, . . . , (L − 1)σ}3, L ∈ N, with periodic boundary conditions using grandcanon-
ical Monte Carlo simulations. The set of all configurations ζ of cations and anions oc-
cupying V can be expressed as the set of all maps ζ : V → {0, z⊕, z⊖}, which result in
the charge ζ(r) ∈ {0, z⊕, z⊖} located at position r ∈ V, i.e. ζ(r) = 0 iff site r is empty,
ζ(r) = z⊕ iff site r is occupied by a cation, and ζ(r) = z⊖ iff site r is occupied by an
anion. Standard Metropolis importance sampling [297] of the grandcanonical Boltzmann
distribution P (ζ) ∼ exp(βµN [ζ ]−βH [ζ ]) with the chemical potential µ, the total number
of ions N [ζ ] = N⊕[ζ ] +N⊖[ζ ] and the Hamiltonian

βH [ζ ] =
1

2

∑

r,r′∈V
r 6=r

′

βφp,q (r− r′, ζ(r), ζ(r′)) (3.20)

on the set of all charge-neutral configurations ζ is applied. Charge neutrality is preserved
during the simulation runs due to insertions and removals of only neutral pairs of cations
and anions, i.e. the number of cations N⊕[ζ ] equals the number of anions N⊖[ζ ].

The packing fraction is the average

η =
〈N [ζ ]〉
L3

(3.21)

and the pair distribution functions are given by

gi,j(r) =
4〈Ni,j(r, [ζ ])〉
Vshell(r)L3η2

(3.22)

with i, j ∈ {⊕,⊖}, r being a distance measured in the 1-norm, Vshell(r) = 4(r/σ)2 + 2
representing the number of all sites in the shell of 1-norm distance r around a site, and
Ni,j(r, [ζ ]) denoting the total number of all ordered pairs (ri, rj) of positions ri, rj ∈ V
being separated by a 1-norm distance r = ‖ri − rj‖1 and such that an ion of species i is
located at position ri and an ion of species j is located at position rj. The pair distribution
functions gi,j(r) are defined in terms of 1-norm distances r because, for the simple-cubic
lattice geometry, this choice is most convenient in order to distinguish charge-ordered and
charge-disordered phases [24].

The structure of the charge-ordered and charge-disordered phase in terms of the pair
distribution functions gi,j(r) is displayed in Fig. 3.11 for the case T ∗ = σ/lb = 2, L =
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Figure 3.11: Pair distribution functions for L = 12, α = 0, rcut/σ = 1 using the 1-norm
(p = q = 1) in Eq. (3.19) at temperature T ∗ = 2 and packing fraction η = 0.37 (a) and
η = 0.90 (b). The red curves represent the pair distribution function for equally charged
ions, while the blue curves represent those of oppositely charged ions. Panel (a) shows
the structure of the charge-disordered phase, which is characterized by a rapid vanishing
of the spatial correlations. Panel (b) displays the case of the charge-ordered phase, where
correlations are long-ranged due to a shell-wise alternating distribution of cations and
anions. (See Ref. [24])

12, α = 0, rcut/σ = 1 using the 1-norm (p = q = 1) in Eq. (3.19). For the charge-
disordered phase, spatial correlations vanish rapidly, while for the charge-ordered phase
one observes long-ranged correlations due to a shell-wise alternating assembly of cations
and anions.

In order to locate the charge-ordered/charge-disordered phase transition, i.e. the λ-line,
in the phase diagram, the staggered order parameter

φ :=

〈
1

L3

∑

r∈V

(−1)||r||1ζ(r)

〉
(3.23)

is considered [24]. Figure 3.12 displays |φ| as a function of the chemical potential µ∗ = βµ
for decay constant α = 0, cut-off radius rcut/σ = 1 and temperature T ∗ = 1.67 for box
sizes L ∈ {12, 18}. For this example, the second-order phase transition, which is expected
to belong to the Ising universality class [211], is located at µ∗ ≈ −1.65.

For a sharp cutting off of the Coulomb potential, i.e. α = 0 in Eq. (3.19), with cut-
off radii rcut/σ ≤ (L − 1)/2, the critical temperature T ∗

c using the 1-norm (p = q = 1)
and the 2-norm (p = q = 2) in Eq. (3.19) is compared in Fig. 3.13 with the critical
temperature Θ∗

c ∈ [0.14, 0.16] of the long-ranged Coulomb system, i.e. for rcut = ∞
[105, 340, 375]. Distinct oscillations of T ∗

c for both 1-norm and 2-norm can be observed,
where the amplitude of the latter is much smaller than that of the former. For both
metrics, no sign of convergence of T ∗

c towards the value Θ∗
c of the long-ranged potential

are observable within the considered range of cut-off radii rcut. Moreover, the amplitude
of the oscillations appears to even increase for the 1-norm. This odd-even-dependence
likewise occurs within the structure for sufficiently large packing fractions: While for
odd values of rcut/σ a charge-ordered phase is realised at large packing fractions, no
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Figure 3.12: Staggered order parameter |φ| (see Eq. (3.23)) as a function of the chemical
potential µ∗ for decay constant α = 0, cut-off radius rcut/σ = 1 using the 1-norm (p =
q = 1) in Eq. (3.19), and temperature T ∗ = 1.67 for box sizes L ∈ {12, 18}. It signals the
second-order phase transition between the charge-disordered (CD) phase, where |φ| ≈ 0,
and the charge-ordered (CO) phase, where |φ| 6≈ 0. In order to account for finite-size
effects, the convention is adopted that the phase transition occurs at |φ| = 0.03, which is
located at µ∗ ≈ −1.65 here. (See Ref. [24])
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Figure 3.13: Critical temperature T ∗
c as a function of the cut-off radius rcut for sharp cut-

off truncation schemes, where the decay constant α = 0 is used in Eq. (3.19). Data points
labeled by ’1-norm’ and ’2-norm’ are obtained by truncation of the Coulomb potential at
distances rcut/σ ≤ (L − 1)/2, where all distances are measured in the respective norms,
i.e. p = q. Moreover, the values within the minimum image approximation (’MIA’) are
displayed, which corresponds to p = 2, q =∞, rcut/σ = (L−1)/2. By comparison with the
critical temperature Θ∗

c ∈ [0.14, 0.16] for the long-ranged Coulomb potential (rcut = ∞)
one observes that the MIA results match the long-range value very well, whereas the 1-
norm and the 2-norm results largely overestimate the critical temperature. (See Ref. [24])
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Figure 3.14: Phase diagrams for 1-norm metric (p = q = 1 in Eq. (3.19)), decay constant
α = 0, box size L = 12, and cut-off radii rcut/σ ∈ {1, 3, 5} compared with that of the
conventional long-ranged LRPM (rcut = ∞ [375]). All these phase diagrams exhibit the
same topology of a charge-ordered and a charge-disordered phase separated by a first-
order phase transition below and a continuous phase transition above a tricritical point
(•). However, for the cases with finite values of the cut-off radius rcut, the tricritical
temperature is about an order of magnitude too high and it increases upon increasing
rcut. (See Ref. [24])

charge-ordering is observed for even values of rcut/σ. This feature can be understood
in terms of simple energy considerations of perfectly charge-ordered configurations [24].
The absence of a charge-ordered phase in the case of even-valued cut-off radii and the
increasing deviation of the critical temperature T ∗

c from that of the conventional LRPM
with long-ranged Coulomb potential, Θ∗

c ∈ [0.14, 0.16] in the case of odd-valued cut-off
radii leads to the conclusion of some major defect of the sharp cut-off scheme.

Figure 3.14 displays the phase diagrams for cut-off radii rcut/σ ∈ {1, 3, 5} (1-norm, p =
q = 1). Close to the critical point, the binodals follow a straight line, which corresponds to
the critical exponent β = 1. Due to this observation and since the λ-line terminates at the
critical point, this critical point actually is a tricritical point (tagged by a black dot). The
long-ranged LRPM qualitatively shows the same phase diagram, including tricriticality.
In accordance with the results of Fig. 3.13, the tricritical point moves upwards to higher
temperatures for larger odd values of rcut/σ; however, the topology of the phase diagram
is not affected. It has already been mentioned that for even values of the cut-off radius
rcut/σ no charge-ordered phase is present so that a phase separation occurs between a
charge-disordered gas and a charge-disordered liquid, and the phase diagram exhibits an
ordinary critical point and no λ-line.

The phase diagram for odd values of the cut-off radius rcut/σ ≤ (L − 1)/2 turned out
to be qualitatively identical to the phase diagram of the conventional long-ranged LRPM,
but the tricritical point is located at a too high temperature T ∗

c , which even increases
upon increasing rcut. Another sharp cut-off scheme is discussed in Ref. [24] which, in the
notation of Eq. (3.19), can be specified by α = 0, q =∞, rcut/σ = (L− 1)/2. This cut-off
scheme is equivalent to the well-known minimum image approximation (MIA) [72, 297],
which disregards all contributions to the interaction energy, which do not correspond to
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Figure 3.15: Comparison of the equations of state and of the pair distribution functions
for odd and even box sizes L. The green and blue dots in the main plot correspond to
results within MIA (p = 2, q =∞, α = 0, rcut/σ = (L− 1)/2 in Eq. (3.19)) and the black
dots are obtained by means of the Ewald method. The same odd-even-effect of L in the
high-density regime is encountered within both methods. Furthermore, the high-density
phase displays decorrelations in the case of odd values of L, whereas the charge ordering
is long-ranged in the case of even values of L. The occurrence of decorrelations in the
high-density phase for odd-valued L can be understood in terms of equally charged ions
at the rim of the simulation box, which interact with each other due to periodic boundary
conditions. (See Ref. [24])

the minimum distance between two ions or their periodic images. For a cubic simulation
box, it can be interpreted such that only those interactions within a cut-off distance
‖r‖∞ ≤ rcut are taken into account, where the cut-off radius rcut has to be chosen such
that the interaction range equals a cube of volume L3 with L = 2rcut/σ + 1. Note, that
the distances, which determine interaction potential, are measured in the p-norm (see
Eq. (3.19)), which is chosen as p ∈ {1, 2}.

Figure 3.13 also displays the critical temperatures T ∗
c within MIA for p = 2, which are

in excellent agreement with the critical temperature Θ∗
c ∈ [0.14, 0.16] of the long-ranged

LRPM. Moreover, the MIA results in Fig. 3.13 can be subdivided into integer and half-
integer values of rcut/σ, which corresponds respectively to odd and even values of the
box size L = 2rcut/σ + 1. A close look at Fig. 3.13 reveals that the values of T ∗

c within
MIA for odd values of L are slightly below those for even values of L, which indicates a
certain odd-even effect of L on T ∗

c . Whereas the odd-even effect of L on T ∗
c is rather weak,

Fig. 3.15 shows for the examples L = 13 and L = 14 that there is a significant odd-even
effect of L on the equation of state and on the structure at large packing fractions. The
reason for mentioning the odd-even effects of L within MIA here is that exactly the same
odd-even effects of L occur for the long-ranged LRPM using the full Ewald method, which
are shown in Fig. 3.15, too. In other words, MIA is such a good approximation of the full
Ewald method that it exhibits even the same odd-even effects [24].

The insets in Fig. 3.15, which show the pair distribution functions at the indicated
thermodynamic states, reveal a distinct charge-ordering behaviour in the high-density
regime for even box sizes L, whereas for odd L a decaying oscillatory behaviour of the
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pair distribution functions can be observed. Although the latter behaviour does not cor-
respond to a genuine charge-ordered phase, it is clearly different from the structure in the
dilute regime, where correlations decay rapidly. What is the reason for this qualitatively
different high-density structure for even and odd box sizes L? In the limit of perfect
charge-ordering at sufficiently high densities, the periodic boundary conditions lead to
destabilizing contributions to the interaction energy for odd values of L, since in this case
there are equally charged ions located at the rim of the simulation box which, due to the
periodicity, are nearest neighbours. This effect does not occur for even box sizes L. Since
this is obviously an effect related to the ‘surface’ of the simulation box, it decreases with
increasing box size L. The same odd-even dependence of the equation of state and of
the structure is observable within the long-ranged LRPM. As a consequence of the above
argumentation, the results for even box sizes L, whether using MIA or the full Ewald
method, can be expected to be more accurate, than for odd box sizes L [24].

It is striking that isotherms within MIA sample the long-range limit rcut →∞ very well
for dilute as well as for dense systems. This indicates that the Hamiltonian of an ionic fluid
with long-ranged Coulomb interaction can be reliably approximated by Eq. (3.20) with
p = 2, q =∞, α = 0, rcut/σ = (L− 1)/2 in Eq. (3.19). In fact, for L = 14, there is almost
no difference between MIA and the full Ewald method with respect to the equations of
state (see Fig. 3.15).

This quantitative agreement can be understood as follows: The contribution to the
energy due to the long-ranged Coulomb potential beyond MIA involves the electrostatic
interaction of the simulation box with its images, which, due to the charge neutrality of
the simulation box, decays at least as a dipole-dipole interaction, i.e. ∼ 1/r3. However,
numerical calculations reveal that the dipole-dipole contribution vanishes and that the de-
cay is actually ∼ 1/r4, which renders the long range contributions beyond MIA absolutely
convergent and, for sufficiently large L, small. The same argument does not apply to the
sharp cut-off potentials, since no charge neutrality inside spheres of radius rcut within
the underlying norm is guaranteed so that the long range contributions beyond those due
to the sharp cut-off potential are due to an effective monopole-monopole interaction, i.e.
∼ 1/r, and, hence, typically not small [24].

Figure 3.16 displays the phase diagram within MIA for rcut/σ = 4.5; those for rcut/σ ∈
{6, 6.5, 9} obtained similarly are not shown here. For all considered cases of rcut, the
phase diagrams are qualitatively and quantitatively in accordance with those obtained by
means of the corresponding full Ewald method. The important point is that the MIA can
be interpreted as a sharp cut-off truncation scheme of the Coulomb potential. The results
discussed above indicate that the long-range character of the electrostatic interaction
may not be necessary for the thermal and structural properties of ionic fluids, because
there is the possibility that the same properties can be generated by suitable short-ranged
interactions. A comparison of the MIA, where rcut/σ = (L− 1)/2, with the sharp cut-off
schemes, where rcut/σ ≤ (L − 1)/2, reveals that the ability of a sharp cut-off scheme to
mimic the properties of the long-ranged LRPM depends delicately on the relation between
the cut-off radius rcut and the size of the simulation box L. However, the simulation box
L is not a physical but rather a technical parameter, and the properties of the LRPM
within reasonable sharp cut-off schemes Eq. (3.19) with α = 0 should be independent of
(large values of) L. Consequently, there are no sharp cut-off schemes which quantitatively
reproduce the thermal and structural properties of the long-ranged LRPM and which, at
the same time, correspond to physically acceptable underlying short-ranged interactions.
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Figure 3.16: Comparison of the phase diagrams of the LRPM within the sharp cut-off
scheme p = q = 1, ασ = 0, rcut/σ = 5 ≤ (L − 1)/2 in Eq. (3.19), the MIA (p = 2, q =
∞, ασ = 0, rcut/σ = 4.5 = (L − 1)/2), the smooth cut-off scheme (p = q = 2, ασ =
0.8, rcut/σ = 5 ≤ (L − 1)/2) and the long-ranged Coulombic interaction (ασ = 0, rcut =
∞). The agreement of the MIA and the smooth cut-off scheme with the case of the
long-ranged interaction is excellent, whereas there are large quantitative deviations of the
sharp cut-off scheme with rcut/σ ≤ (L− 1)/2. (See Ref. [24])

In order to remedy this, potentials Eq. (3.19) with α > 0 can be considered [24], which
correspond to a smooth cutting off of the Coulomb potential on the length scale 1/α.
Note, that this type of functions occurs within the Ewald method as a result of splitting
the total electrostatic potential into a short-ranged contribution, which leads to a sum
in real space, and a long-ranged contribution, which leads to a sum in reciprocal space.
Within the Ewald method, α is adjusted such that, on the one hand, the error due to the
unavoidable truncation of the sums in real and reciprocal space are sufficiently small and
that, on the other hand, the computational effort is acceptable. However, here α controls
the decay length of a genuine short-ranged interaction, which can take, in principle, any
(positive) value. For α→ 0 the sharp cut-off truncation are obtained.

Figure 3.17 displays the critical temperature T ∗
c and the critical packing fraction ηc of

the LRPM with smooth cut-off potentials Eq. (3.19) with p = q = 2, rcut/σ ∈ {1, 5} as
functions of the decay constant ασ. For rcut/σ = 5 a plateau of T ∗

c is present in the
range ασ ∈ [0.4, 1.0], where the critical temperature T ∗

c is quantitatively equivalent to the
critical temperature Θ∗

c of the long-ranged LRPM (see Fig. 3.17(a)). For larger values of
ασ the decay length of the interaction Eq. (3.19) becomes too short, so that even nearest
neighbours barely interact with each other. Hence, for ασ → ∞, one obtains the ideal
gas limit and consequently T ∗

c → 0. For rcut/σ = 1 all contributions beyond the nearest
neighbours are neglected, and no plateau is observable at all. However, the critical packing
fraction ηc ≈ 0.5 appears to be independent of the decay constant α and the cut-off radius
rcut. In addition to the coincidence of the critical points for the appropriate choice of ασ,
a charge-ordered phase at large packing fractions and a charge-disordered phase at small
packing fractions can be found. Ultimately, the phase diagrams of the smooth cut-off
scheme are in quantitative agreement with the long-ranged limit, too (see Fig. 3.16).

The long-range character of the Coulomb interaction is well-known to generate the so-
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c and critical packing fraction ηc of the LRPM with

smooth cut-off potentials Eq. (3.19) with p = q = 2, L = 12, rcut/σ ∈ {1, 5} as functions
of the decay constant ασ. For rcut/σ = 5 the critical temperature T ∗

c exhibits a plateau
around ασ ≈ 0.8 which is close to the critical temperature Θ∗

c of the long-ranged Coulom-
bic system. As in Figs. 3.13, 3.14, and 3.16, the critical temperature T ∗

c within sharp
cut-off schemes (ασ = 0) is an order of magnitude to high. The critical packing fraction
ηc ≈ 0.5 is rather independent of the decay constant α and the cut-off radius rcut. (See
Ref. [24])
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Figure 3.18: Accumulated charge Q(r) (see Eq. (3.24)) up to a distance r in 1-norm
around a positively charged central ion. The Stillinger-Lovett sum rule [176, 275, 421, 422]
requires Q(r) to vanish in the limit of large distances r →∞. This condition appears to
be fulfilled within the charge-disordered phase (here at packing fraction η ≈ 0.3) for the
case of the smooth cut-off potential ασ = 0.7 (p = q = 2, rcut/σ = 5, L = 12) as well as
for the MIA (ασ = 0, p = 2, q = ∞, rcut/σ = 6.5 = (L − 1)/2, L = 14), but not for the
sharp cut-off potential ασ = 0 (p = q = 2, rcut/σ = 1, L = 12). (See Ref. [24])

called Stillinger-Lovett perfect screening property of ionic fluids [176, 275, 288, 304, 421,
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422]. In the present context of an LRPM it corresponds to the accumulated charge [24]

Q(r) := 1 +
η

2

∑

r
′∈V

1≤‖r′‖1≤r

[g⊕,⊕(r′)− g⊕,⊖(r′)] (3.24)

up to a 1-norm distance r around a positively charged central ion to vanish Q(r) → 0
in the limit r → ∞. Figure 3.18 compares the accumulated charge Q(r) for the sharp
cut-off potential with ασ = 0, rcut/σ = 1, p = q = 2, the MIA with ασ = 0, rcut/σ =
6.5, p = 2, q = ∞ and the smooth cut-off potential ασ = 0.7, rcut/σ = 5, p = q = 2
within the charge-disordered phase at packing fraction η ≈ 0.3. For the sharp cut-off
potential, Q(r) appears to converge towards a non-vanishing (positive) value for large radii
r, which corresponds to an imperfect screening of the positive central charge. However,
perfect screening occurs within the MIA and the smooth cut-off potential. This is an
interesting finding since, in contrast to the long-range Coulomb potential, the perfect
screening property is not necessarily fulfilled in systems with short-ranged interactions
[24].

It can be shown for smoothly cut off potentials Eq. (3.19) with rcutα ≫ 1 that the
charge-charge pair correlation function hzz(r) := 2 (g⊕,⊕(r)− g⊕,⊖(r)), which is related to
the accumulated charge Q(r) in Eq. (3.24), decays asymptotically on the length scale of
the Debye length 1/κ with (κσ)2 = 4πη/T ∗ iff κ≫ 2α. Since α > 0 is a constant, which is
chosen to match the phase diagram of the long-ranged Coulomb interaction (see Figs. 3.16
and 3.17) and which does not depend on the thermodynamic state (η, T ∗), the condition
κ≫ 2α > 0 will not be fulfilled at very low packing fractions η and/or high temperatures
T ∗, i.e. the Debye-Hückel limit is not recovered within smooth cut-off schemes. However,
this is not a major defect for two reasons [24]: On the one hand, the remaining parts of
the phase diagram outside the region of the Debye-Hückel limit, particularly in the range
of high densities, e.g. close to the critical point (ηc ≈ 0.5), are reproduced quantitatively
(see Figs. 3.16 and 3.17). On the other hand, the crossover, where the condition κ≫ 2α
begins to be violated, can be shifted to arbitrarily small values of κ by decreasing α, which
can be achieved by accordingly increasing rcut (see Fig. 3.17(a)).

The findings of Ref. [24] can be summarised as follows: Concerning the phase behaviour
and the structure, the LRPM with the smooth cut-off potentials is qualitatively equivalent
to that with long-ranged Coulomb interactions. Moreover, by choosing an appropriate
decay constant α, the short-ranged smooth cut-off potential LRPM becomes even quan-
titatively equivalent to the conventional long-ranged LRPM. The essential difference to
the sharp cut-off schemes is that these statements are independent of the choice of the
actual (large) value of the simulation box L, i.e. the smooth cut-off potentials based
on Eq. (3.19) are candidates of physically meaningful short-ranged interactions. Conse-
quently, the long-range character of the electrostatic potentials is of minor importance for
the thermal and structural properties of dense ionic fluids, since short-ranged interaction
potentials do exist, which lead to the same thermal and structural properties.

It has to be stressed, that the remarkable result of Ref. [24] on dense ionic fluids is
not that the Coulomb potential is screened, i.e. the charge-charge correlation function is
short-ranged [75, 91, 92, 161, 162], but that the long-range character of the bare Coulomb
potential is irrelevant for the phase behaviour and the structure. Rather the relevant
feature of the electrostatic interaction for the behaviour of dense ionic complex fluids is
the valency-dependence, i.e. the property that ions with charges of equal sign repel and
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those with charges of opposite sign attract each other. This property in combination
with material-specific steric and chemical interactions leads to more or less perturbed
alternating charge structures in the bulk [311], at charged walls [300–302] and in between
two electrodes [62–64, 138].



Chapter 4

Interfacial properties

Besides the intrinsic length scales which determine the bulk structure of of ionic complex
fluids (Ch. 3) additional length scales are present at interfaces which influence the struc-
ture formation. Such an additional length scale related to the adsorption properties of
ions in electrolyte solutions leads to the Ray-Jones effect of the surface tension (Sec. 4.1).
Another example is the thickness of an adsorption layer close to an electrode which enters
into the phenomenon of electrowetting (Sec. 4.4). The non-trivial structure formation,
e.g. the unequal partitioning of ions in a non-uniform solvent, can give rise to unexpected
features of the effective interaction between colloidal particles dispersed in an ionic com-
plex fluid (Sec. 4.6). When comparing the Debye length with the size of the particles
two extreme cases occur: in a dilute electrolyte solution the Debye length is larger than
the size of the ions, whereas in a colloidal dispersion the Debye length is smaller than
the size of the colloids. The wetting properties of these types of ionic complex fluids are
discussed in Sec. 4.2 and 4.5. The competition between the Debye length and the bulk
correlation length close to a critical point of the solvent gives rise to the question on the
influence of ions onto the phenomenon of critical adsorption. It is shown in Sec. 4.3 that
electrostatics is modifying the subleading contributions. Finally the effective interaction
between colloidal particles trapped at the interface of two immiscible electrolyte solu-
tions is determined by the structures of the ionic complex fluids at the colloid-fluid and
fluid-fluid interfaces (Sec. 4.7).

4.1 Interfacial tension of electrolyte solutions

Planar electrolyte interfaces

The temporal stability of liquid-liquid emulsions, which is of enormous importance for
applications in, e. g., chemical, pharmaceutical, food and cosmetic industries, largely
hinges on the liquid-liquid interfacial tension [48] modified by surfactants, cosurfactants
and even colloidal particles [13–15, 18, 290, 387]. In order to theoretically understand
and predict the liquid-liquid interfacial tension as a function of additives a first step is
modeling a liquid-liquid interface in the presence of electrolytes but in the absence of
surfactants. Remarkably, the dependence of the liquid-liquid interfacial tension on the
electrolyte concentration is, in contrast to the liquid-gas surface tension [167, 284, 431],
not widely studied. This is quite astonishing because liquid-liquid interfaces have been
investigated for a long time by means of electrocapillary measurements [452]. The few
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reported measurements of the liquid-liquid interfacial tension as a function of the ionic
strength [12, 159, 168] seem to confirm the linear relation at large ionic strengths well-
known from liquid-gas surface tension measurements [292, 468]. At low ionic strengths
the liquid-gas surface tension exhibits the Jones-Ray effect, i.e. a minimum of the sur-
face tension as a function of the ionic strength [216–220, 353, 354], whose analog for
liquid-liquid interfacial tensions has been addressed in the experimental literature only
in Ref. [168]. Theoretical approaches to liquid-gas surfaces are very often based on the
assumption that the gas phase is completely free of ions [284], which leads to a charge
neutral liquid phase. Considering the image charge interaction as dominating the liquid-
gas surface tension at low ionic strength the Onsager-Samaras limiting law can be derived
[69, 116, 263–265, 333]. However, assuming a non-vanishing ionic strength in the gas
phase, Nichols and Pratt found indications that the liquid-gas surface tension in some
instances can also scale with the square root of the ionic strength in the low salt limit
[322]. By means of an elaborate Ginzburg-Landau-like model for liquid-liquid interfaces,
taking ion densities and solvent composition explicitely into account, Onuki observed
such a square root behaviour for the liquid-liquid interfacial tension, too [335–337]. It has
been argued in Ref. [37] in terms of a minimal model that unequal ion partitioning and
charge separation are the key features of liquid-liquid interfaces of electrolyte solutions at
low ionic strength. Onsager-Samaras-like behaviour can be found only in the absence of
unequal ion partitioning and is therefore unexpected for liquid-liquid interfaces.

In Ref. [37] an infinite system is considered which is composed of two homogeneous
solvents A and B located within the half spaces z < 0 and z > 0, respectively, of a
Cartesian coordinate system. In the interior of the solvents the relative dielectric constant
ε(z) at position z is given by ε(z < 0) = εA and ε(z > 0) = εB. Monovalent ions are
distributed in both solvents giving rise to local equilibrium number densities ̺α(z) at
position z with α = + and α = − denoting cations and anions, respectively. Deep in
the solvent phases local charge neutrality holds, i.e. ̺α(−∞) =: ̺A and ̺α(∞) =: ̺B,
which define the partition coefficient p :=

√
̺A/̺B. In general, the solubility of α ions

differs in the two solvents. This effect can be described by solvent-induced potentials
Vα(z) which take the limiting values Vα(−∞) := 0 and Vα(∞) := fα where fα is the
solvation free energy difference of an α ion in solvent B as compared to solvent A (compare
Sec. 2.1). Such a partitioning at liquid-liquid interfaces also finds practical applications,
e.g. for size separation of DNA [170]. Verwey and Niessen [449] assumed the steplike
form V VN

α (z) = fαΘ(z), where Θ denotes the Heaviside function. Such a model ignores
interfacial effects due to an actually smooth dielectric function ε, finite ion size, van der
Waals forces, solvation (structure making and structure breaking) and image charges [284].
All these effects depend on material parameters of the system but they depend, with the
exception of the image charge interaction, not directly on the ionic strength. Moreover,
the image charge interaction decays as O(exp(−2κA,B|z|)/|z|) with κ−1

A,B denoting the
Debye screening length in phase A for z → −∞ and in phase B for z → ∞ [69, 116,
263–265, 284, 333, 335–337], whereas the electrostatic potential is expected to decay
much slower as O(exp(−κA,B|z|)). Hence the image charge interaction is expected to be
negligible outside the interfacial region. A simple account of the mentioned interfacial
effects is given by the shifted Verwey-Niessen potentials Vα(z) := fαΘ(z − s) where the
discontinuity is located at position z = s, similar to the interface model by Johansson
and Eriksson [214]. Note that the electrostatic potential is the only interaction which
is not described by the solvent-induced potentials Vα because it is the longest-ranged
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ionic-strength-dependent interaction. Moreover, the shift of the ion densities with respect
to the solvent composition profile in Onuki’s work [335–337] are compatible with the
introduction of external fields similar to the present solvent-induced potentials Vα. The
location of the discontinuity of the solvent-induced potentials with respect to the dielectric
interface at z = 0 is a property of the solvents and the electrolyte. The analysis of Ref. [37]
in fact revealed that only changing the anion type can shift the discontinuity of Vα to the
opposite side of the interface. Without restriction s ≥ 0 is assumed, i.e. solvent B is
defined as the one where the discontinuity of Vα is located.

In units of the thermal energy kBT , the elementary charge e, and the vacuum Bjerrum

length ℓ =
e2

4πεvackBT
with the permittivity of the vacuum εvac, and within a mean-field

theory ignoring ion-ion correlations, the density functional of the grand potential per unit
surface area

Ω[̺±] =
∑

α=±

∫
dz̺α(z)

(
ln(̺α(z))− 1− µα + Vα(z) + α

1

2
φ(z, [̺±])

)
(4.1)

is to be minimised with respect to the ion density profiles ̺±. Here µα is the chemical
potential of species α and φ(z, [̺±]) is the electrostatic potential at position z, which is a
functional of the ion density profiles ̺±.

The interfacial tension is known to be highly sensitive to details of the interfacial struc-
ture. In terms of the density functional Ω (see Eq. (4.1)) the interfacial tension in excess
of the pure, salt-free liquid-liquid interface is given by ∆γ = Ω[̺+, ̺−] − Ω[̺ref , ̺ref ],
where ̺ref is the steplike reference ion number density profile. For the excess interfacial
tension with respect to the dielectric interface at z = 0 the reference density is defined by
̺ref(z < 0) := ̺A and ̺ref(z > 0) := ̺B which leads to [37]

∆γ = 2(1− p2)s̺B −
φ2
D

√
εBp

2
√

2πD
(n cosh(κis) + sinh(κis))

√
̺B (4.2)

with κ2i := 8π̺A/εB. As the second term on the right-hand side of Eq. (4.2) is of the order
O(−√̺B) for both ̺B → 0 and ̺B →∞ one finds the following asymptotic behaviour of
the excess interfacial tension [37]:

∆γ ≃




−φ

2
D

√
εB

2
√

2π

np

1 + np

√
̺B , ̺B → 0

2(1− p2)s̺B , ̺B →∞.
(4.3)

As n and p are experimentally accessible, one can use Eq. (4.3) to determine φD or s.
The crossover, where the low-density asymptotics ∆γ = O(−√̺B) and the high-density
asymptotics ∆γ = O(±̺B) are of the same magnitude, takes place at the ionic strength
[37]

̺×B :=
φ4
DεAp

2

32πs2(1 + np)2(1− p2)2 . (4.4)

For ̺B > ̺A one finds ∆γ(̺B ≪ ̺×B) < 0 and ∆γ(̺B ≫ ̺×B) > 0, i. e., the excess interfacial
tension vanishes near the crossover. For ̺B < ̺A, on the other hand, ∆γ(̺B) < 0 for all
̺B. As the two bulk ion concentrations ̺A and ̺B are proportional to each other within
the present model, one can choose either one calling it the ionic strength I. Equation (4.4)
leads to a corresponding crossover ionic strength I×.
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These results have been derived from the linear Poisson-Boltzmann equation, which is
expected to be reliable for small Donnan potential |φD| = |f− − f+|/2 ≪ 1. However,
upon solving the non-linear Poisson-Boltzmann equation numerically, one finds the same
asymptotic dependence on the ionic strength I, ∆γ(I ≪ Ĩ×) = O(−

√
I) and ∆γ(I ≫

Ĩ×) = O(±I), as in Eq. (4.3) with a crossover at Ĩ× ≥ I× where the difference Ĩ× − I×
increases with |φD|. Hence the asymptotic scaling of the interfacial tension difference
∆γ with the ionic strength I and the existence of a crossover I× are robust qualitative
features of the linear theory when compared to the non-linear Poisson-Boltzmann theory.
Moreover, by numerical fitting one obtains renormalised parameters φ∗

D and s∗ in Eq. (4.2)
such that ∆γ calculated within non-linear Poisson-Boltzmann theory is reproduced even
quantitatively [37].

As the asymptotic behaviour of the excess interfacial tension ∆γ = O(±I) for I ≫ I×

in Eq. (4.3) involves the parameter s one concludes that the finite size of the interfacial
region is responsible for this asymptotics. This finding is confirmed by published measure-
ments of liquid-liquid interfacial tensions [12] and is in fact well-known from liquid-gas
surface tensions [284, 292, 468]. In contrast, the behaviour ∆γ = O(−

√
I) for I ≪ I× in

Eq. (4.3) can be attributed to the unequal ion partitioning because the prefactor of the
asymptotics contains a term of electrostatic origin which vanishes if φD = 0. The latter
regime, which gives rise to a negative contribution to the interfacial tension, is in contra-
diction to the Onsager-Samaras limiting law O(−I ln(I)) [69, 116, 263–265, 333], which
contributes positively [322]. However, according to the model in Ref. [37], the image charge
interaction is neglected in comparision to the electrostatic potential due to the unequal
ion partitioning, whereas it is the dominating interaction within the Onsager-Samaras
model [69, 116, 263–265, 333]. Therefore it can be concluded that unequal ion partition-
ing, which is expected to be a general phenomenon for liquid-liquid interfaces [335–337],
leads to ∆γ = O(−

√
I) for small I, whereas the absence of unequal ion partitioning gives

rise to ∆γ = O(−I ln(I)) [69, 116, 263–265, 333]. The situation of a liquid-gas surface
with non-vanishing ionic strength in the gas phase investigated by Nichols and Pratt [322]
can be considered as the borderline between both scenarios such that features of both,
the square root and the Onsager-Samaras limiting law, can be visible.

From Eq. (4.4) one infers a high sensitivity of the crossover ionic strength I× from
the low ionic strength regime γ(I ≪ I×) = O(−

√
I) to the high ionic strength regime

γ(I ≫ I×) = O(±I) upon the model parameters φD, s and p, i.e. upon the material
parameters of the system. This obervation is also borne out by the results of Onuki [335–
337]. Hence, depending on the actual system under investigation, I× can be larger or
smaller than the experimentally available range of ionic strength as will be shown in the
following [37].

Figure 4.1 displays the magnitude of the excess interfacial tension |∆γ| of a water-
decaline interface as a function of the ionic strength I in water for three different salts,
KSCN (△), KCl (©), and KI (�), as published in Ref. [168]. The interfacial tension of
a salt-free water-decaline interface is 50.94 mNm−1. The dashed lines are power laws ∼ I
passing through the largest data points for KSCN and KCl, whereas the solid line is a
power law∼ I1/2 passing through the smallest data point for KI. Within the present model
one concludes from Fig. 4.1 that the crossover ionic strength I× for KSCN and KCl is
smaller than 0.01M whereas for KI it is larger than 0.5M. The prediction ∆γ(I ≪ I×) < 0
from Eq. (4.3) is in agreement with the data for KI in Ref. [168]. Finally, the excess
interfacial tension measured in Ref. [168] is negative for KSCN and positive for KCl.
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Figure 4.1: Magnitude of the excess interfacial tension |∆γ| as a function of the ionic
strength I in water of a water-decaline interface for the three salts KSCN (△), KCl (©),
and KI (�) according to Ref. [168]. The interfacial tension of a salt-free water-decaline
interface is 50.94 mNm−1. The dashed lines are power laws ∼ I whereas the solid line is
a power law ∼ I1/2 both derived from the model (see Eq. (4.3)). (See Ref. [37])

Within the model this observation is to be interpreted as follows [37]: For the case of
KSCN (∆γ(I ≫ I×) < 0) one infers p > 1 from Eq. (4.3), and consequently in this
case solvent A is water and solvent B is decaline, because the ionic strength in water
is larger than in decaline. Assuming p ≫ 1 Eq. (4.3) leads to ∆γ(I ≫ I×) ≃ −2sI
with I = ̺A which, for KSCN, yields s ≈ 0.53 nm. Hence the discontinuity of the
solvent-induced potentials Vα for KSCN is located at a distance 0.53 nm on the decaline-
side of a water-decaline interface. Here KSCN acts like a surfactant, which accumulates
at the liquid-liquid interface and which reduces the interfacial tension [303]. For KCl
(∆γ(I ≫ I×) > 0), on the other hand, p < 1 due to Eq. (4.3), i.e. solvent A is decaline
and solvent B is water. Assuming p ≪ 1 gives rise to ∆γ(I ≫ I×) ≃ 2sI with I = ̺B
which, for KCl, leads to s ≈ 0.23 nm. Thus the discontinuity of Vα for KCl is located
at a distance 0.23 nm on the water -side of the water-decaline interface. These findings
suggest a weaker affinity of Cl− for the organic decaline phase than [SCN]−, which agrees
with the structure of these anions. Hence the excess interfacial tension data in Ref. [168]
can be consistently described in terms of Eq. (4.3) with respect to the sign and the power
law in the ionic strength. Moreover, s is, as expected, comparable to the size of the ions
[37].

It can be concluded that at small ionic strength I the excess liquid-liquid interfacial
tension of electrolyte solutions behaves as O(−

√
I) due to an unequal partitioning of ions,

whereas at large ionic strength it behaves as O(±I) due to a finite interfacial thickness.
The occurrence of the asymptotic regimes at low ionic strengths, which is related to
solvation properties and the interfacial structure, is a general property ionic complex fluids
formed by electrolyte solutions, whose solvents cannot be considered as structureless.

Curved electrolyte interfaces

Common wisdom in emulsion science tells that, in order to kinetically stabilise an emulsion
of water and oil, say, surfactants are needed in order to decrease the interfacial tension
thereby decreasing the thermodynamic force causing droplet coalescence [395]. This pic-
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ture has been upset in Refs. [261, 262], where it has been shown experimentally that
in certain additive-free water-oil mixtures micron-sized water droplets in oil may be sta-
bilised electrostatically by absorbing ions present in the system. Several aspects of these
experiments such as the proposed charging of the water droplets due to an unequal parti-
tioning [37, 490, 491] and the formation of a colloidal crystal of water droplets [96] can be
understood theoretically within a simple Poisson-Boltzmann model. However, to under-
stand the rather unimodal size distribution of the water droplets in the above-mentioned
experiments as well as the observation of experimental indications of the existence of
thermodynamically favoured droplet radii in certain emulsions stabilised by nano-sized
colloids [387] requires a radius dependent water-oil interfacial tension because otherwise
the global minimum of the free energy would be attained for one single macroscopic drop
[39]. One is thereby led to the problem of analysing the liquid-liquid interfacial tension
as a function of the droplet radius.

The study of the curvature dependence of liquid-vapour surface tensions has been pi-
oneered by Gibbs [158], Tolman [433] and Kirkwood and Buff [231]. Tolman introduced
a low-curvature expansion of the form γ(a)/γ(∞) ≃ 1/(1 + 2δ/a) ≃ 1 − 2δ/a where a
denotes the radius of curvature, γ(a) is the surface tension of the curved surface, and
γ(∞) is its planar value. The parameter δ, which has the dimension of length, is called
the Tolman length and it can be identified with the spatial distance between the Gibbs
dividing surface and the surface of tension. In the last decades the concept of a curva-
ture dependent liquid-vapour surface tension has been taken up within various studies on
critical phenomena [139], interface elasticity [52] and nucleation [22, 426].

However, whereas in all these investigations the droplet and the surrounding bulk were
composed of the same substance, albeit in different phases, here a mixture of two different
liquids and ions is studied. Moreover, only the excess interfacial tension due to the
electrolyte is of interest here while the two liquids forming droplet and bulk merely act
as external fields onto the ions.

The investigation in Ref. [39] is carried out within the spherical version of the model
studied in Ref. [37] (see Subsec. 4.1). As in Ref. [37] linearisation of the Poisson-Boltzmann
equation offers the possibility of closed analytical expressions for the interfacial tension.
The approximative analytical expressions for the interfacial tension can be shown to at
least qualitatively, in many realistic cases even quantitatively, agree with the numerical
results obtained within the full, non-linear theory.

In the following dimensionless quantities are expessed in units of the thermal energy

kBT , the elementary charge e, and the vacuum Bjerrum length ℓ =
e2

4πεvackBT
with the

permittivity of the vacuum εvac. Dimensional quantities are denoted by the same symbol
as the corresponding dimensionless quantities.

Consider a liquid spherical droplet of radius a and relative dielectric constant εd sur-
rounded by bulk liquid of relative dielectric constant εb. Due to the spherical symmetry
of the setting the only relevant positional variable is the distance r ∈ [0,∞) from the
droplet center. Monovalent cations (+ ions) and anions (− ions) are distributed in both
liquids. The difference in solvation free energy of a ± ion in the droplet with respect
to the bulk liquid is denoted by f±, which, within the Born approximation [60], can be

estimated by f± =
1

2a±

( 1

εd
− 1

εb

)
with the ion radius a±. As derived in detail in Ref. [37]

all interfacial effects due to, e.g., smooth interfaces, finite ion size, van der Waals forces
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and image charges, which are short ranged as compared to the electrostatic potential,
are accounted for by introducing solvent-induced ion potentials V±(r) = f±Θ(a + s − r)
with Θ the Heaviside function. Note that the parameter s, which describes the radial
offset of the discontinuity of the solvent induced ion potentials V± with respect to the
dielectric interface at r = a and which is expected to be of the order of the size of a
molecule or ion [37], can be positive or negative, depending on whether the net effect of
the above-mentioned interfacial effects gives rise to a preference of the fluid structure in
the droplet or in the bulk, respectively. More detailed representations of the interfacial
effects are possible at the expense of more phenomenological parameters [335–337], but
for the sake of convenience and because handy analytical expressions are desired a simple
choice is made in Ref. [39].

A convenient approach to calculate the interfacial tension of the system under considera-
tion is to first determine the equilibrium ion number density profiles ̺± by means of density
functional theory [131–133] and then to infer the interfacial tension from inserting these
equilibrium profiles into the grand potential density functional. Poisson-Boltzmann the-
ory corresponds to the mean-field grand potential density functional (compare Eq. (4.1))

Ω[̺±] = 4π
∑

α=±

∞∫

0

dr r2̺α(r)
(

ln(̺α(r))− 1− µα + Vα(r) +
α

2
φ(r, [̺±])

)
(4.5)

with µα the chemical potential of α ions and φ(r, [̺±]) the electrostatic potential functional
at radius r. The interfacial tension with respect to the dielectric interface at r = a in
excess to the pure, salt-free liquid-liquid interfacial tension between the droplet and the
bulk liquid is determined by

γex =
Ω[̺±]− Ω[̺ref(·, a)]

4πa2

= − 1

a2

∑

α=±

∫

0

d∞r r2
(
̺α(r)− ̺ref(r, a) +

α

2
̺α(r)φ(r, [̺±])

)
. (4.6)

As solutions of the non-linear Poisson-Boltzmann equation in the spherical geometry
can be obtained only numerically, the same holds for the excess interfacial tension γex

in Eq. (4.6). However, upon linearising the Euler-Lagrange equation and the Poisson-
Boltzmann equation one obtains analytical expressions which give rise to an expression
of the droplet charge per surface area of the form

σ(a+ s) =
φD(

1 +
s

a

)2

√
εb̺refb

2π
F (s/a, κba, n, p), (4.7)

with κb :=
√

8π̺refb /εb, n :=
√
εd/εb, p :=

√
̺refd /̺refb and the Donnan potential φD

[2, 20, 121, 122]. The full scaling function F , which is recorded in Ref. [39], appears
somewhat lengthy but is straightforward to obtain in principle.

However, since the effective interfacial width parameter s is usually very much smaller
than the droplet radius and the local Debye lengths, |s| ≪ a, κ(r)−1, the first argument



72 Interfacial properties

of the scaling function F can, within an excellent approximation, be set to zero [39]:

F (0, y, n, p) =

np+
n(p− n)

y
−

(n
y

)2

+ exp
(
− 2y

p

n

)(
np +

n(p+ n)

y
+
(n
y

)2)

1 + np+
1− n2

y
+ exp

(
− 2y

p

n

)(
− 1 + np− 1− n2

y

) . (4.8)

At this level of approximation Eqs. (4.6) and (4.7) reduce to [39]

γex = 2s̺refb (1− p2)− φD

2
σ(a) (4.9)

and

σ(a) = φD

√
εb̺

ref
b

2π
F (0, κba, n, p), (4.10)

respectively. According to Eq. (4.10), the droplet charge per droplet surface area σ(a) is
(almost) independent of the interfacial width s. On the other hand, the excess interfacial
tension γex in Eq. (4.9) comprises a contribution describing the ion exclusion due to the
short-ranged interfacial effects

γexie := 2s̺refb (1− p2), (4.11)

which is (essentially) linear in s and (almost) independent of the droplet radius a, as well
as an electrostatic contribution

γexes := −φD

2
σ(a), (4.12)

which is (almost) independent of the effective interfacial width s.
In order to understand the involved dependence of the scaling function F (0, y, n, p) on

y it is useful to investigate the asymptotic behaviour for large and small values of y.

If y ≫ y×1 := n/p and with y×2 :=
|1− n2|
1 + np

and y×3 := 1 one infers the leading order

asymptotic behaviour [39]

F (0, y ≫ y×1 , n, p) ≃





np

1 + np
(I) y ≫ y×3

np

1 + np
y−1 (II) y×2 ≪ y ≪ y×3

np

1− n2
(III) y ≪ y×2 .

(4.13)

The three cases considered in Eq. (4.13) are exhaustive and mutually exclusive for y ≫ y×1
because y×2 ≤ max(y×1 , y

×
3 ). If y ≪ y×1 , Eq. (4.8) leads to

F (0, y ≪ y×1 , n, p) ≃
p2

3
y. (4.14)

Figure 4.2 displays F (0, y, n, p) for the case y×1 ≪ y×2 ≪ y×3 , where all four asymptotic
regimes I–IV of Eqs. (4.13) and (4.14) are apparent. If y×2 ≪ y×1 ≪ y×3 , however, regime
III in Fig. 4.2 is absent, and a crossover between regimes II and IV takes place at y = y×1 .
Moreover, if y×1 ≫ y×3 regime II is also absent, and F (0, y, n, p) exhibits a single crossover
at y = y×1 between regimes I and IV [39].
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Figure 4.2: Scaling function F (0, y, n, p) as a function of y for the relation y×1 ≪ y×2 ≪ y×3
of the crossover positions (see main text) in a log-log plot. The asymptotic regimes I–IV
corresponding to Eqs. (4.13) and (4.14) are visible. For y×1 ≫ y×2 regime III is absent,
and for y×1 ≫ y×3 also regime II. (See Ref. [39])

(a) O/W

εo n p φD y×1 y×2
5 0.25 0.000285 1.48 876 0.937

7.5 0.306 0.00520 0.956 58.9 0.905
10 0.354 0.0222 0.692 15.9 0.868

(b) W/O

εo n p φD y×1 y×2
5 4 3500 −1.48 0.00114 0.00107

7.5 3.27 192 −0.956 0.0170 0.0154
10 2.83 45.1 −0.692 0.0627 0.0545

Table 4.1: Quantities n, p and φD as well as the crossover values y×1 and y×2 within the
Born approximaion for (a) O/W and (b) W/O systems with the oil dielectric constant
εo ∈ {5, 7.5, 10} and ion radii a+ = 0.36 nm and a− = 0.30 nm. (See Ref. [39])

According to y = κba (see Eqs. (4.7) and (4.10)) the crossover values y×i , i ∈ {1, 2, 3}
correspond to crossover droplet radii a×i , i ∈ {1, 2, 3}, i.e. regimes I–IV can be understood
in terms of length scales of the system. Obviously a×3 = κ−1

b and a×1 = κ−1
d := κ−1

b n/p
equal the Debye lengths in the bulk and in the droplet, respectively. Finally a×2 = |εb −
εd|/(εbκb + εdκd) is a length scale which accounts for the dielectric contrast between bulk
and droplet.

As an example systems are considered with one of the liquids being water with dielectric
constant εw = 80. Moreover, the largely arbitrary but representative choice of ion radii
a+ = 0.36 nm and a− = 0.30 nm is made. Given the dielectric constant of the second
liquid, called “oil”, the parameters n, p and φD are known within the Born approximation.
The cases of an oil droplet in water (O/W) and of a water droplet in oil (W/O) will be
distinguished.
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Figure 4.3: Electrostatic contribution to the excess interfacial tension γexes in mixtures of
oil (εo ∈ {5, 7.5, 10}) and water (εw = 80) as a function of the radius a of an oil droplet in
water (O/W, ascending curves) and a water droplet in oil (W/O, descending curves) with
ion radii a+ = 0.36 nm and a− = 0.30 nm as well as an ionic strength in water Iw = 1 mM.
The thin solid curves are calculated by means of the analytical expressions within the
linear theory whereas the thick dotted curves are obtained by numerically solving the
non-linear Poisson-Boltzmann equation (see Ref. [96]). Upon swapping oil and water
(O/W↔ W/O) the slope of the curves at a−1 = 0 (planar system) changes its sign. (See
Ref. [39])

Figure 4.3 displays the electrostatic contribution to the excess interfacial tension γexes
(see Eq. (4.12)) of oil droplets in water (O/W, ascending curves) and water droplets in
oil (W/O, descending curves) for an ionic strength in water Iw = 1 mM, where Iw := ̺refb

for O/W and Iw := ̺refd for W/O, as a function of the droplet radius a. The analytical
expression Eq. (4.12) within linearised Poisson-Boltzmann theory (thin solid curves) is
compared with numerical results of the non-linear Poisson-Boltzmann theory (thick dot-
ted curves, see Ref. [96]). The slight quantitative differences are due to the linearisation
approximation and they are already present in the planar system (a−1 = 0). The quanti-
ties n, p and φD as well as the crossover values y×1 and y×2 correponding to the curves in
Fig. 4.3 are displayed in Tab. 4.1. Regime III is expected to be absent for the W/O sys-
tems because y×3 > y×1 > y×2 , whereas regimes II and III are absent for the O/W systems
because y×1 > y×3 > y×2 .

Due to Eq. (4.12) the relative change of the electrostatic excess interfacial tension γexes (a)
and the droplet charge per droplet surface area σ(a) with respect to their planar values
γexes (∞) and σ(∞), respectively, are equal, and they exhibit the low-curvature asymptotic
behaviour

γexes (a)

γexes (∞)
=

σ(a)

σ(∞)
≃ G(κba, n, p) , κba≫ y×1 , (4.15)



Interfacial properties 75

where

G(y ≫ y×2 , n, p) = 1− n(1− p2)
p(1 + np)

y−1 −

n(p+ n)2

p(1 + np)2
y−2

1 + sign(1− n)
y×2
y

≃ 1− n(1 − p2)
p(1 + np)

y−1 − n(p + n)2

p(1 + np)2
y−2, (4.16)

which equals an expansion in y−1 up to second order. Hence, the low-curvature expansion
up to second order in a−1 obtained by combining Eqs. (4.15) and (4.16) is expected to
be acurate if κba ≫ y×1 , y

×
2 . Traditionally, empirically motivated expansions in a−1 have

been used to represent the curvature dependence of the interfacial tension without knowing
their applicability a priori. However, it has been argued by König, Roth, and Mecke on
the basis of a morphometrical approach that the deviation of intensive thermodynamic
quantities from their planar values are linear combinations of the mean and the Gaussian
curvature provided the geometrical length scales are much larger than any correlation
length [234], i.e. a ≫ κ−1

d , κ−1
b or equivalently κba ≫ y×1 , y

×
3 . This condition is only

sufficient but not necessary for the validity of the above low-curvature expansion because
it already implies κba ≫ y×2 due to y×2 ≤ max(y×1 , y

×
3 ). For n, p ≫ 1, the low-curvature

expansion is valid if κda≫ 1, independent of the bulk Debye length κ−1
b , because in this

case y×2 ≈ y×1 . This is the case, e.g., for the W/O systems considered in Tab. 4.1.

For the scaling function G(y, n, p) in Eq. (4.15) one straightforwardly recognises the
symmetry G(py/n, 1/n, 1/p) = G(−y, n, p) (see Ref. [39]) which means that swapping
droplet and bulk liquid, i.e. p 7→ 1/p, n 7→ 1/n and κb 7→ κd, while keeping the droplet
radius a fixed has numerically the same effect on function G as inverting the sign of the
droplet radius. Due to this symmetry one concludes for the coefficients of an expansion in
inverse powers of a as in Eq. (4.16) for y = κba that upon swapping droplet and bulk liquid
the odd-order coefficients merely invert their sign, whereas the even-order coefficients do
not change. This phenomenon can be observed in Fig. 4.3, where the slope close to the
planar limit (a−1 = 0), which is proportional to the excess Tolman length due to the
presence of ions, simply changes its sign upon swapping oil and water (O/W ↔ W/O).

Figure 4.4 exhibits the electrostatic contribution to the excess interfacial tension γexes
as a function of the dielectric constant εo of the oil for the ionic strength in water Iw =
1 mM and for various droplet radii a ∈ {50 nm, 100 nm, 250 nm, 500 nm, 1000 nm,∞}. As
in Fig. 4.3, the thin solid curves correspond to the analytic linear theory whereas the
thick dotted curves are the numerical results of the non-linear scheme (see Ref. [96]).
Quantitative agreement is observed, even in the low-εo range where the Donnan potential
φD is not small and the linearisation approximation is not a priori justified. From the
linearised theory one can derive [39] the asymptotic behaviour γexes = O(−(εo − εw)2) for
εo → εw as well as γexes = O(− exp(−const/εo)) for an O/W system and γexes = O(−1/εo)
for a W/O system as εo → 0. This behaviour is apparent in Fig. 4.4, too.

The total excess interfacial tension γex comprises not only the electrostatic part γexes but
also the contribution γexie due to the interfacial effects (see Eq. (4.11)). It is readily seen
that γexie = ±O(s(εw − εo)) for εo → εw and γexie = ±O(s) for εo → 0 where the upper (+)
and the lower (−) sign correspond to an O/W and a W/O system, respectively. Hence,
if s 6= 0, the interfacial effects will dominate over the electrostatic effects in the limits
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Figure 4.4: Electrostatic contribution to the excess interfacial tension in mixtures of oil
and water (εw = 80) as a function of the dielectric constant εo of the oil for droplet
radii a ∈ {50 nm, 100 nm, 250 nm, 500 nm, 1000 nm,∞} of an oil droplet in water (O/W)
and a water droplet in oil (W/O) with ion radii a+ = 0.36 nm and a− = 0.30 nm as
well as the ionic strength in water Iw = 1 mM. The thin solid curves are calculated by
means of the analytical expressions within the linear theory whereas the thick dotted
curves are obtained by numerically solving the non-linear Poisson-Boltzmann equation
(see Ref. [96]). There is quantitative agreement between the linear and the non-linear
theory for the ranges of a and εo considered here. (See Ref. [39])
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Figure 4.5: Total excess interfacial tension in mixtures of oil and water (εw =
80) as a function of the dielectric constant εo of the oil for droplet radii a ∈
{50 nm, 100 nm, 250 nm, 500 nm, 1000 nm,∞} of an oil droplet in water (O/W) and a wa-
ter droplet in oil (W/O) with ion radii a+ = 0.36 nm and a− = 0.30 nm, interfacial width
parameter |s| = 0.33 nm, as well as the ionic strength in water Iw = 1 mM. (See Ref. [39])

εo → 0 for O/W systems and εo → εw for arbitrary systems. Figure 4.5 displays the
total excess interfacial tension corresponding to the parameters used in Fig. 4.4 and an
interfacial width parameter s with |s| = 0.33 nm on the water side of the interface, i.e.
s > 0 for O/W and s < 0 for W/O.

The electrostatic excess interfacial tension γexes as a function of the bulk ionic strength
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Figure 4.6: Electrostatic excess interfacial tension in mixtures of oil (εo = 5) and water
(εw = 80) as a function of the ionic strength in oil (Io) or water (Iw) for droplet radii
a ∈ {0.1µm, 1µm} of an oil droplet in water (O/W) and a water droplet in oil (W/O)
with ion radii a+ = 0.36 nm and a− = 0.30 nm. The O/W system exhibits only the
regimes I and IV (see main text and Fig. 4.2), whereas for the W/O system the regimes
I, II, and IV are present. Upon changing the droplet size a the crossover ionic strengths
shift by a factor a−2. (See Ref. [39])

Ib := ̺refb can be asymptotically described by

γexes ≃
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(4.17)

with the crossover bulk ionic strengths I×bk :=
εb(y×k )2

8πa2
, k ∈ {1, 2, 3}. For a planar system

(a = ∞) the crossovers are at zero ionic strength, hence only the high-ionic strength
regime I in Fig. 4.2 (Ib ≫ I×b1, I

×
b3) is present, which coincides exactly with the electrostatic

contribution to the excess interfacial tension in Ref. [37].
For an oil dielectric constant εo = 5 and a droplet radius a = 1µm the crossover bulk

ionic strengths are I×b1 ≈ 71 mM, I×b2 ≈ 82 nM, I×b3 ≈ 93 nM for an O/W system, where
Ib = Iw is the ionic strength in water, and I×b1 ≈ 7.6 fM, I×b2 ≈ 6.6 fM, I×b3 ≈ 5.8 nM for a
W/O system, where Ib = Io is the ionic strength in oil (see Tab. 4.1). Here, ionic strengths
in oil, Io, and in water, Iw, are related to each other by Io/Iw ≈ 8.1 · 10−8. Figure 4.6
displays γexes as a function of the ionic strength in the physical range Iw ∈ [10−7 M, 10 M]
for the droplet radii a = 1µm and a = 0.1µm. The crossover ionic strengths of the latter
droplet size are larger by a factor 100 as compared to the former because I×bk ∼ a−2. By
inspection of the values of the crossover bulk ionic strengths one expects only the regimes
I and IV of Fig. 4.2 to be present for the O/W system whereas the regimes I, II, and IV
are expected for the W/O system. The occurrence of the regimes I and IV for the O/W
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system and I, II, and IV for the W/O system can be inferred from Fig. 4.6 in conjunction
with Eq. (4.17).

Hence the analytical theory based on a linearised Poisson-Boltzmann theory is in good
(at least) qualitative agreement with the results from the full non-linear theory. It can
therefore be expected that the general conclusions drawn from that linear theory apply
to more elaborate models [335–337], too.

According to Eqs (4.9), (4.11), and (4.12) the excess liquid-liquid interfacial tension is
γex = γexie +γexes where the curvature dependence is essentially only due to the electrostatic
part γexes and not due to the contribution of the short-ranged interfacial effects γexie . While
γex can indeed be negative, thereby decreasing the total interfacial tension, the largest
magnitude |γex| is attained at high ionic strengths where γex ≈ γexie , i.e. where γex is
essentially curvature-independent. One has to conclude that the unimodal droplet size
distribution of W/O emulsions observed in Refs. [261, 262] cannot be explained by the
curvature dependence of the interfacial tension due to electrostatic effects alone. However,
this conclusion does not apply to the experiments in Ref. [387], where highly charged
colloids instead of monovalent ions are present, as the linearised theory is not a priori
justified for multivalent ions or highly charged colloids. In particular, it has been found
that in systems where the ionic strength and the dielectric constant in the droplet are
much larger than in the bulk the range of validity of low-curvature expansions up to
second order in the inverse radius of curvature is independent of the bulk Debye length.

Crystallisation of water droplets

The making and breaking of oil-water emulsions is not only a problem of extreme im-
portance in chemical, oil, pharmaceutical, food, and cosmetics industries, but is also a
scientifically fascinating topic. It is well-known that the intrinsic tendency of oil and water
to demix can be slowed-down or delayed by adding surfactants or colloidal particles to the
mixture. These additives strongly adsorb to the oil-water interface, which lowers the inter-
facial tension (the main driving force for demixing) and/or provides a kinetic barrier that
prevents droplet coalescence [49, 387]. However, it was observed that emulsions of water
droplets dispersed in somewhat polar oils can be stable for a long time (so far for more
than 18 months), without any additives [261]. Moreover, the water droplets, which are
of micrometer dimensions in these experiments, spontaneously form crystalline structures
with lattice spacings of the order of 5 − 15 µm. These observations suggest long-ranged
electrostatic droplet-droplet repulsions due to a net water droplet charge stemming from
a preferential uptake of ions from the oil [261, 262, 490]. Theoretical calculations based
on Poisson-Boltzmann theory for monovalent ions in the geometry of a planar water-oil
interface showed that the order of magnitude of the charge separation process, caused by
the different cationic and anionic Born self-energies in oil and water, is indeed sufficiently
strong to explain the observed stability and crystallisation [262, 490], at least qualitatively.
These predictions are based on the assumption of a pairwise screened-Coulomb potential
of the charged water droplets through the oil and an explicit empirical crystallisation
condition based on simulations [174, 446].

The ionic charge separation at the planar oil-water interface and the resulting crystalli-
sation regime of water droplets dispersed in oil in the high-dimensional parameter space of
salt concentration, dielectric constant of the oil, ionic sizes and self-energies, droplet size
and droplet concentration have been studied in Ref [491]. The analytic solution admitted



Interfacial properties 79

by the nonlinear Poisson-Boltzmann equation in the planar geometry [242, 449] allows
for such a detailed exploration efficiently; the effects of droplet curvature were studied
numerically [96] and analytically [39] (see Subsec. 4.1). Crystallisation of water droplets
is only possible for sufficiently large droplet radii (& 100 nm), sufficiently large water
content (volume fraction & 10−3) and sufficiently (but not too) polar oils with dielectric
constants between 4 and 10.

The liquids are considered as structureless homogeneous linear dielectric media, filling
the two half spaces z < 0 (water) and z > 0 (oil), forming a flat interface at z = 0. The
relative dielectric constant is a step function, ε(z) = εw (z < 0) and ε(z) = εo (z > 0).
The grand potential functional per unit area of the variational density profiles ̺±(z) of
the cations (+) and anions (−) in units of kBT ≡ 1/β is given by [37, 96, 131, 490]

βΩ[̺±] =
∑

α=±

∞∫

−∞

dz ̺α(z)
(

ln
̺α(z)

̺w
− 1 + βVα(z) +

α

2
φ(z, [̺±])

)
, (4.18)

with the self-consistent dimensionless electrostatic potential φ(z, [̺±]), and with the ex-
ternal potential acting on the ions

βV±(z) =





0 , z < 0;
e2

2a±kBT
(

1

εo
− 1

εw
) + g± ≡ f± , z > 0,

representing the Born self-energy and an additional specific solvation energy g± (e.g. due
to hydration, hydrogen bonding, local modification of dielectric constant [280, 335, 336]),
which is set either to 0 or to 4 here in order to study specific effects. The salt concentration
in bulk water is denoted by ̺w, e is the elementary charge, and a± is the ionic radius.
Both φ(z) and V±(z) are gauged to zero in the bulk water phase (z → −∞). Figure 4.7
shows f± as a function of the oil dielectric constant εo, and ionic radius a± (inset), for
g± = 0. Typical values for the self-energies are 5−20 kBT , and self-energy differences are
of the order of 1− 10 kBT for ionic radii differing by, say, 1 Å.

The general solution of the Euler-Lagrange equation is [491]

φ(z) =

{
4 arctanh(Cwe

κwz) , z < 0;
4 arctanh(Coe

−κoz) + φD , z > 0,
(4.19)

with integration constants that follow from the boundary conditions as

Cw =
n+ cosh φD

2
−D

sinh φD

2

,

Co = −1 + n cosh φD

2
−D

n sinh φD

2

, (4.20)

where n ≡ εwκw/εoκo, and D ≡
√
n2 + 2n cosh φD

2
+ 1. An experimental determination of

the ion distributions ̺±(z) at liquid-liquid interfaces has been reported in Refs. [196, 244].
The derivation so far is equivalently presented in [242, 449]. A separation of charge is
found near the interface for unequal self-energies, comprising a cloud of net charge in the
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Figure 4.7: The Born self-energy f± in units of kBT as a function of dielectric constant
εo, for several ionic radii a±, and as a function of the ionic radius at εo = 7.5 (inset). (See
Ref. [491] c© IOP Publishing. Reproduced with permission. All rights reserved)

water phase of typical width κ−1
w and one in the oil phase of typical width κ−1

o , with a
charge per area at the water side given in units of e by [491]

σw =

0∫

−∞

dz(̺+(z)− ̺−(z)) = −8̺w
κw

Cw

1− C2
w

; (4.21)

the compensating charge resides at the oil side as the system is globally neutral.
Consider N oil-dispersed water droplets of radius a in a volume V , such that the

typical droplet-droplet separation is R = (V/N)
1
3 and the water volume fraction is

x = 4
3
πa3N/V = 4

3
π(a/R)3. It is assumed that each water droplet has a charge

Z = 4πa2σw, where σw follows from the nonlinear PB theory (4.21), and that a screened
Coulomb (Yukawa) potential acts between two droplets [491]

VYuk(r) =
(Ze)2

εo

( eκoa

1 + κoa

)2 e−κor

r
, (4.22)

with r the center-to-center separation between the droplets. According to simulation
results, crystallisation of such a Yukawa system occurs if Γ & 106 [174, 446], with the
coupling parameter Γ defined by

Γ ≡ βVYuk(R)(1 + κoR +
(κoR)2

2
). (4.23)

Although this condition has been confirmed only for point-Yukawa systems, it is expected
to hold also for finite droplets as long as VYuk(2a) & 10 kBT and κoa . 1, conditions that
are easily met for micron-sized droplets, provided 4 < εo < 10 as can be seen in Fig. 4.9.

The electrostatic contribution γ to the interfacial tension can be calculated analytically
by evaluating the functional (4.18) with the equilibrium profiles, minus the functional
evaluated with the step profile ̺±(z < 0) = ̺w, ̺±(z > 0) = ̺o [37, 96, 336]. After a
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Figure 4.8: (a) Interfacial charge density as a function of the oil dielectric constant. (b)
Excess interfacial tension as a function of ionic strength, at εo = 7.5. If the interfacial
width s = 0, the planar calculations clearly show a square root behaviour. The sign of γ
is negative. The dashed lines show the numerical results from the PB-theory in spherical
geometry, for water droplets of radius a = 1 µm (WO), and equal sized oil droplets in
water (OW) [96]. The thin lines show the result of the planar linearised PB-theory with
interfacial width s, for which γ has a linear asymptote and positive sign in the high-̺w
limit [37], if s 6= 0. (See Ref. [491] c© IOP Publishing. Reproduced with permission. All
rights reserved)

tedious but straightforward calculation one finds [491]

βγ = −16̺w
κw

Cw

1− C2
w

(Cw − Co) ∼ −
√
̺w, (4.24)

which is symmetric under exchanging w↔ o and where the proportionality to
√
̺w follows

from κw ∼
√
̺w and the fact that Cw and Co are independent of ̺w. Typical values of

the excess interfacial tension are at most O(µN/m), and are therefore vanishingly small
compared to the value of the bare oil-water interfacial tension (O(10 mN/m)).

As standard parameters εo = 7.5, ̺w = 10−3 M, which are close to the experimental
values of [261, 262], g± = 0 and (a+, a−) = (0.36, 0.3) nm are used. The surface charge
density σw of the interface appears to be strongly dependent on the oil dielectric constant,
keeping the ionic radii fixed. Typically it is of the order of O(10−4) elementary charges
per nm2 in the range 10 < εo < 70, and decays rapidly to 10−7 nm−2 for εo = 4, see
Fig. 4.8(a). Numerical calculations in the spherical geometry [96] predict a smaller σw for
oil-in-water droplets, and a larger one for water-in-oil droplets in the regime 4 < εo < 10,
as shown in Fig. 4.8(a) for a radius a = 1 µm. The excess interfacial tension γ differs
correspondingly for finite droplets, Fig. 4.8(b). The linearised PB theory that takes into
account a finite interfacial width s 6= 0 [37] between oil and water agrees quantitatively
with the present results for σw, indicating that the charge separation is hardly dependent
on s = O(10−1 nm), even if the ions are effectively excluded in a band of several tenths of
nanometers. On the other hand, above a certain crossover ionic strength, the same theory
predicts a qualitatively different asymptotic behaviour of the excess interfacial tension,
being positive and proportional to the ionic strength ̺w, Fig. 4.8(b). One can understand
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Figure 4.9: The Yukawa potential at contact and the Debye screening length in oil (inset)
as a function of the oil dielectric constant εo, at ̺w = 10−3 M, (a+, a−) = (0.36, 0, 3).
The contact value VYuk(2a) > 1 kBT only for εo > 4 and droplet radii a > 100 nm. On
the other hand, the range of the Yukawa potential decays rapidly for εo > 10 (inset);
for droplets with a radius a > 100 nm, the value of κoa ≫ 1 above εo & 12. Therefore,
significant long range Coulomb interactions are only expected between 4 . εo . 10. (See
Ref. [491] c© IOP Publishing. Reproduced with permission. All rights reserved)

that as follows: whereas the charge separation is hardly affected by the interfacial width
s, the adsorption of particles, and hence the interfacial tension, is sensitive to the effective
exclusion in a region of width s. As the absolute value of the excess interfacial tension is
vanishingly small compared to the bare oil-water interface, γow = O(10 mN/m), γ will be
considered not to contribute to the stability of the system of interest here.

It can be expected that water droplets in oil can only form crystalline structures if
long range interactions are present (κoa . 10), and if the repulsion is sufficiently strong.
Figure 4.9 shows the Yukawa potential (4.22) at contact, VYuk(2a), for several droplet sizes
as a function of εo, revealing that these two conditions already impose strong restrictions
on the dielectric constant and size of the particles. The inset of Fig. 4.9 shows for instance
that the screening length in oil decays from 10−100 µm at εo = 4 to 100 nm at εo = 12, for
̺w = 1 mM, while the main part of Fig. 4.9 shows contact potentials that exceed 10 kBT
for εo ≃ 6− 12 provided the droplet size is in the micron regime. Thus one only expects
crystallisation to be possible for micron-sized water droplet in oils that are sufficiently
polar (εo & 4) to have enough charge (see also Fig. 4.8(a)), but not too polar (εo . 12) to
have a long enough range κ−1

o of the repulsions. This regime of εo is in remarkably good
agreement with the range found experimentally [261, 262].

The actual parameter regime where droplets are expected to form crystalline structures,
on the basis of Γ > 106, is depicted in Fig. 4.10, where the varied parameters are the ionic
radii a+, a− (Fig. 4.10(a)) and the volume fraction and droplet radius x, a (Fig. 4.10(b)).
The lines show the envelopes of the regimes Γ > 106 for all physically achievable ionic
strengths ̺w. Variations of the external potential βV±(z) by taking a non-zero g± are
seen to result into a significantly modified crystallisation regime. Other solvation effects,
e.g. hydration, hydrogen bonding, local alignment of dipolar fluid molecules, are therefore
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Figure 4.10: (a) The ionic radii (a+, a−) for which Γ > 106 for some physically achievable
ionic strength ̺w. The droplets crystallise in the area between the curves and the horizon-
tal axis (R/a = 10), and between the curves and the vertical axis (R/a = 5), respectively.
The lines can be mirrored in the diagonal since there is a symmetry under a+ ↔ a−,
together with g+ ↔ g−. The thin and dashed lines show the results if one of the ionic
species has an additional solvation energy (independent of ̺w and εo) of g± = 4. The
dielectric constant of the oil is εo = 7.5 and droplet radius a = 1.5 µm. (b) The volume
fractions of water x and droplet radii a for which Γ > 106 for some physically achievable
ionic strength ̺w, for several combinations for g±. (See Ref. [491] c© IOP Publishing.
Reproduced with permission. All rights reserved)

expected to be important for a proper quantitative picture. This has been examined in
Ref. [491] for g± = 4 (Fig. 4.10), which is considerable compared to |f+ − f−| ≃ 2 for the
present parameters but small compared to f± ≃ 12. Figure 4.10(b) shows that micron-
sized droplets, for the standard parameter set, tend to crystallise at x ≃ 10−2 − 10−1,
which is somewhat higher than the experimentally observed regime x ≃ 10−3 − 10−2

[261, 262]. A similarly relatively high theoretical value for the crystallisation volume
fraction was found in [96], where curvature effects were studied, with g± ≡ 0. Combining
these results with those of Fig. 4.10(b) suggests that the experimental results may only be
quantitatively explained by taking both curvature and specific solvation effects (g± 6= 0)
into account (see Subsec. 4.1).

The spontaneous charging of the water droplets might play an important role in the
production and stabilisation of emulsions with rather polar oils, since by a judicious choice
of the type of oil and salt ions, water droplets can be stabilised by these, sometimes
surprisingly strong, electrostatic effects alone [396]. This property is generated by the
combination of electrostatic interactions between the ions and material-specific solvation
properties of the ions which leads to a structuring, i.e. formation of non-uniformities, of
the considered ionic complex fluids.

4.2 Wetting properties of electrolyte solutions

Wetting transitions are surface phase transitions which occur whenever a phase C intrudes
at the interface between two phases A and B, with either A, B and C in thermodynamic
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coexistence or with A as a spectator phase and B and C in thermodynamic coexistence.
As an example, A is an inert substrate and B and C are the gas and the liquid phase,
respectively, of a simple fluid. The thickness of the intruding liquid film can be either
finite (incomplete wetting) or macroscopically large (complete wetting) upon approaching
gas-liquid coexistence along an isotherm. The transition at two-phase coexistence from
incomplete to complete wetting occurs at the wetting transition temperature T = Tw. It
can be either continuous (second-order), in which case the film thickness diverges smoothly
as T → Tw along two-phase coexistence, or discontinuous (first-order), implying a macro-
scopically large jump of the film thickness from a finite value below Tw to a macroscopically
large one above Tw. In the surface phase diagram a first-order wetting transition has a
prewetting line associated with it which is connected tangentially to the gas-liquid coex-
istence line at Tw, extends into the gas phase region, and ends at a critical point. The
richness of wetting phenomena has been covered by various reviews [57, 58, 94, 107, 407].

So far, to a large extent, wetting studies have been devoted to fluids composed of electri-
cally neutral molecules. However, for numerous real systems the presence of ions is either
of crucial importance for wetting phenomena, such as electrowetting [309], or unavoidable
because many substrates release ions once they are brought into contact with polar sol-
vents [136]. For example, electrowetting refers to the change of the contact angle between
a fluid-fluid interface and a substrate as a response to an applied electrostatic potential
difference between the substrate and the fluid bulk (see Sec. 4.4). This effect offers numer-
ous applications in devices based on the manipulation of tiny amounts of liquids, such as
microfluidic devices [361, 437]. Theoretical studies of those systems started back in 1938
when Langmuir developed a model to determine the equilibrium thickness of water layers
on planar surfaces in contact with undersaturated water vapour, based on the calculation
of the repulsive force between two plates immersed in electrolyte solutions [248]. The
typical values for the equilibrium layer thickness as predicted by Langmuir’s formula were
confirmed experimentally [173] and the experimental data were used to analyze the effect
of various contributions to the disjoining pressure onto the stability of the wetting films
[102]. Some years later Kayser generalised Langmuir’s model for the equilibrium thick-
ness of wetting layers to liquid mixtures of polar and non-polar components in contact
with ionisables substrates [226]; in contact with the wetting liquid these substrates donate
ions to the liquid which act as counterions to the emerging opposite charge left on the
substrate with overall charge neutrality. This analysis was followed up by including the
effect of added salt the ions of which do not stem from the substrate [227]. These papers
did not address the issue of wetting transitions at coexistence but rather focused on the
thickness of the wetting layer and the behaviour of the disjoining pressure. For wetting
films of solvents without added salt, i.e. with counterions only, Langmuir [248] and Kayser
[226] found that the film thickness l increases as l ∼ (∆µ)−1/2, with ∆µ = µco − µ, as
the chemical potential µ approaches its value µco at coexistence from the vapour side
(µ < µco). In contrast, wetting films without ions and at neutral substrates but with
van der Waals interactions lead to l ∼ (∆µ)−1/4 or l ∼ (∆µ)−1/3, depending on whether
retardation effects are taken into account or not, respectively [107]. In the case that the
effect of added salt dominates van der Waals interactions Kayser [227] found l ∼ ln(∆µ)
as it holds for short-ranged interactions.

Only recently theoretical investigations concerning wetting transitions of electrolyte
solutions at charged solid substrates have emerged [101, 203, 204, 329, 330]. In Ref. [101]
the effect of adding ions onto the wetting behaviour of the pure solvent was studied by
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using Cahn’s phenomenological theory [57, 94, 107, 407] for the solvent combined with
the Poisson-Boltzmann theory for the ions. This model does not take into account the
solvent particles explicitly, neglecting the coupling between solvent particles and ions.
On the other hand, the model in Ref. [329] takes all three types of particles (solvent,
cations, and anions) explicitly into account in terms of hard spheres of different diameters
with a Yukawa attraction between all pairs and the Coulomb interaction between ions.
The model was studied by using Rosenfeld’s density functional theory [378, 379] combined
with a mean-field approximation for the Yukawa and the electrostatic interactions. Within
this model, the polar nature of the solvent molecules was ignored; it was included in a
subsequent article by the same authors in which the solvent particles were represented
by dipolar hard spheres [330]. However, for technical reasons, the numerical analyses
of these continuum models in which all three types of particles are treated explicitly
on a microscopic level were limited to small system sizes. Therefore Refs. [329, 330]
focused on the case of strong screening of the Coulomb interactions which is provided
by large ionic strengths, i.e. large ion concentrations. However, the approaches used in
Refs. [101, 329, 330] are not reliable for large ionic strengths due to the use of Poisson-
Boltzmann theory for the electrostatic interactions which has been proved to be valid only
for low ionic concentrations [434].

In order to overcome these problems a lattice model for an electrolyte solution exposed to
a charged substrate has been introduced which takes into account all three components via
density functional theory and offers the possibility to study significantly broader interfacial
regions [203].

The solution consists of three components: solvent (0), anions (−), and cations (+).
The coordinate perpendicular to the wall is z. The region above the wall, accessible to
the electrolyte components, is divided into a set of cells the centers of which form a simple
cubic lattice {r} with lattice constant a. The volume a3 of a cell corresponds roughly to
the volumes of the particles, which are assumed to be of similar size. The centers of the
molecules in the top layer of the substrate form the plane z = 0. At closest approach the
centers of the solvent molecules and ions are at z = a. The plane z = a/2 is taken to be
the surface of the planar wall. Each cell is either empty or occupied by a single particle.
This mimics the steric hard core repulsion between all particles. Particles at different sites
interact among each other via an attractive nearest-neighbour interaction of strength u
which is taken to be the same for all pairs of particles. In addition, ion pairs interact via
the Coulomb potential. The solvent particles are taken to carry a dipole moment.

The wall attracts particles only in the first adjacent layer via an interaction potential
of strength uw which is the same for all species. In addition it can carry a homogeneous
surface charge density σ̃ = σea−2 which is taken to be localised in the plane z = a/2
and which interacts electrostatically with the ions; e > 0 is the elementary charge. Since
the focus is on the influence of the ions onto wetting phenomena the more realistic,
long-ranged van der Waals forces which are known to be relevant for wetting transitions
[107] are disregarded first. Within the mean-field theory, the choice of nearest-neighbour
interactions provides a significant computational bonus.

The Bragg-Williams approximation [27, 73, 360, 395] leads to the grand canonical den-



86 Interfacial properties

sity functional

βΩ [{̺i(r̄)}] =
∑

r̄

[
∑

i

̺i(r̄) ln ̺i(r̄) +
(

1−
∑

i

̺i(r̄)
)

ln
(

1−
∑

j

̺j(r̄)
)]

+
1

2
β
∑

r̄,̄r′

r̄ 6=r̄
′

∑

i,j

̺i(r̄)̺j(r̄
′)w (|̄r− r̄′|)− β

∑

r̄

∑

i

uwδz̄,1̺i(r̄)

− β
∑

r̄

∑

i

µi̺i(r̄) + 2πlB

∫

V

d3r̄∗
(
D

(
r̄∗, [̺∗±]

))2

ε(̺∗0(r̄
∗))

. (4.25)

The first term of Eq. (4.25) represents the ideal gas (entropic) contribution to the
Helmholtz free energy, the second term accounts for the hard core interaction and the third
term represents the non-electrostatic nearest-neighbour interaction w (|̄r− r̄′| = 1) = u
within the random phase approximation (RPA) [131]. This approximation is justi-
fied because RPA is reliable in the present situation of vanishing contrast between the
non-electrostatic interactions of the three species [43] (see Sec. 2.1). The strength u
of the nearest-neighbour interaction is expressed in terms of the reduced temperature
T ∗ = 1/(3βu). The last term is the electrostatic energy. The density profiles ̺±(z̄) have
to fulfill global charge neutrality, i.e.

L̄∑

z̄=1

[̺+(z̄)− ̺−(z̄)] + σ = 0, (4.26)

where σ is the surface charge density.
The relative permittivity ε(z̄∗) is taken to depend locally on the solvent density ̺∗0(z̄

∗)
through the Clausius-Mossotti expression [210]

ε(̺∗0(z̄
∗)) =

1 + 2α
3ε0
̺0(z̄

∗)

1− α
3ε0
̺∗0(z̄

∗)
, (4.27)

where α is an effective polarisability of the solvent molecules. In the following its value
is chosen such that ε = 60 for ̺0 = 1; this choice corresponds to a mean value for liquid
water along the liquid-vapour coexistence curve.

For bulk ionic strength ̺+ = ̺− = I = 0 the resulting phase diagram can be determined
analytically and is plotted in Fig. 4.11. The reduced critical temperature is T ∗

c (I = 0) =
0.5 and the critical number density is ̺0,c(I = 0) = 0.5. For I 6= 0 the binodal curves are
determined numerically and the critical points are obtained by determining the maximum
of the corresponding spinodal curves. Within the model the reduced critical temperature
T ∗
c is independent of I whereas ̺0,c(I) = 0.5 − 2I. In agreement with experimental

evidence [409] the shift of the binodal curves is negligibly small for ionic strengths up to
10 mM, i.e. I ≤ 3.9× 10−4.

First the case I = 0 is considered, in which the model reduces to the lattice-gas model
studied by Pandit et al. [342, 343]. In that case, the Euler-Lagrange equation reduces to

ln ̺0(z̄)− ln [1− ̺0(z̄)]− µ∗
0 − βuwδ1,z̄ −

1

3T ∗
[4̺(z̄) + ̺(z̄ + 1) + ̺(z̄ − 1)] = 0, (4.28)
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Figure 4.11: Bulk phase diagram µ0,co(T ) of liquid-gas coexistence in the µ∗
0 − T ∗ plane

for the salt-free (I = 0) case of a pure solvent. If the wetting transition temperature T ∗
w is

above the triple point T ∗
t ≃ 0.21 (for water), three types of paths (A), (B), and (C) are used

to study the wetting behaviour of the model. (A) is a path along gas-liquid coexistence
on the gas side whereas along the paths (B) and (C) two-phase coexistence is approached
along isotherms leading to incomplete (B) and complete (C) wetting, respectively. (See
Ref. [203])

and the ratio uw/u = 3T ∗βuw controls the wetting and drying transitions. For uw/u > 1
the substrate is so strong that it is already wet at T ∗ = 0; in the range 0.5 < uw/u < 1
there is a wetting transition at T ∗

w > 0; and in the parameter range 0 ≤ uw/u < 0.5 a
drying transition occurs. Depending on the value of the ratio uw/u one observes layering
transitions, i.e. one can distinguish the number of discrete layers which are forming upon
reaching thick films. The transition from n to n + 1 layers is first order and shows up
as a jump in the film thickness l. The loci of these discontinuities are layering transition
lines, each ending at a critical point T ∗

c,n. For large n, T ∗
c,n approaches the roughening

transition. However, within the present mean-field theory T ∗
c,n approaches T ∗

c . Since
layering transitions should only occur along or near the melting curve or the sublimation
line, these layering transitions are a special feature of the lattice-gas model used to describe
the liquid and gas phases [107].

In Ref. [203] calculations have been carried out in the parameter range 0.5 < uw/u < 1.
A wider range of the parameter uw/u was studied thoroughly by Pandit et al. [342, 343].
Figure 4.12 shows the effective interface potential ω(l) = Ωs(l) − γg,l − γl,s for three
different temperatures along a path at coexistence [path (A) in Fig. 4.11] for the rather
arbitrarily chosen values uw/u = 0.81 and uw/u = 0.69. Here γg,l and γl,s are the gas-
liquid and liquid-substrate interfacial tensions, respectively, such that by construction at
two-phase coexistence ω(l → ∞) = 0. The equilibrium thickness of the liquid film is
given by the position of the global minimum of ω(l). If l = ∞ is the global minimum
of Ωs(l) the system is wet. In this case, the gas-substrate surface tension is given by
γg,s = Ωs(l =∞) = γg,l + γl,s [107].

In the two cases which have been considered in Fig. 4.12, ω(l) exhibits only a single
minimum, the position of which diverges continuously or via steps of finite size as T ∗ → T ∗

w.
For T ∗ > T ∗

w the position of the minimum is l = ∞ and the system is wet. The wetting
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Figure 4.12: Effective interface potential ω(l) = Ωs(l)−γg,l−γl,s at two-phase coexistence
as a function of the thickness l̃ = la of the adsorbed liquid film for three temperatures in
the salt-free case (I = 0) for uw/u = 0.81 (a) and uw/u = 0.69 (b) . In both cases ω(l)
exhibits only a single minimum, the position of which diverges continuously as T ∗ → T ∗

w.
Accordingly, the system undergoes critical wetting at T ∗

w ≃ 0.856T ∗
c for uw/u = 0.81 and

at T ∗
w ≃ 0.95T ∗

c for uw/u = 0.69. (See Ref. [203])

transition is second order and occurs at the temperature T ∗
w ≃ 0.856T ∗

c for uw/u = 0.81
and at T ∗

w ≃ 0.95T ∗
c for uw/u = 0.69. Within the present model, in which all interactions

are of the nearest-neighbour type only for the pure solvent, the system exhibits a second-
order wetting transition in the entire parameter range 0.5 < uw/u < 1. This observation
is compatible with corresponding Monte Carlo simulations of the Ising model on a cubic
lattice [46, 47]. However, the order of wetting transitions depends sensitively on the range
of interactions as well as on whether a continuous or a lattice model is considered. For
a continuous analogue of the present model, Pandit et al. [343] found a second-order
wetting transition only for 0.5 < uw/u . 0.7 but a first-order one for uw/u & 0.7.

Moreover, lattice-gas models with short-ranged particle-particle interactions and long-
ranged substrate potentials were studied by de Oliveira and Griffiths [331] and Ebner
[124, 125]. In Ref. [331] complete wetting in a system with Tw = 0 was studied within
mean field theory. Ebner reported Tw = 0 or a first-order wetting transition depending on
the strength of the substrate potential [124] and studied the same interaction potentials
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as the ones used in Refs. [124, 331] applying Monte Carlo simulations [125]. Finally,
in systems in which both the particle-particle interactions and the substrate potentials
are long-ranged, critical (i.e. second-order) and first-order wetting can occur for suitable
choices of the interaction potentials [106, 126].

The film thickness l = l̃/a as function of µ∗
0,co(T

∗)−µ∗
0, when bulk coexistence µ0,co(T

∗)
(see Fig. 4.11) is approached along four isotherms from the gas phase [paths of type (B)
and (C) in Fig. 4.11], is plotted in Fig. 4.13. In the case uw/u = 0.81 (Fig. 3(a)) the
isotherms exhibit vertical steps at the aforementioned layering transitions. Above T ∗

w, i.e.
when the substrate is completely wet at coexistence, the isotherms exhibit an unlimited
number of such steps as µ∗

0,co(T
∗) − µ∗

0 approaches zero, while for T ∗ < T ∗
w there is only

a finite number of steps. For uw/u = 0.69 (Fig. 3(b)) layering transitions do not occur
and the film thickness diverges logarithmically for T ∗ > T ∗

w, while for T ∗ < T ∗
w it reaches

a finite value at coexistence.

Within the above concepts the influence of the ionic strength Ĩ = Ia−3 and of the
surface charge density σ̃ = σea−2 on the wetting behaviour of systems with uw/u = 0.81
or uw/u = 0.69 is studied. If the substrate is neutral (σ = 0), the addition of salt changes
neither the order nor the transition temperature of the wetting transition, i.e. there is a
second-order wetting transition at the wetting temperature T ∗

w. This is expected because
within the model all particles have the same size, the ions have the same absolute charge,
and the strength of the particle-particle and of the substrate-particle nearest-neighbour
interactions are the same for all three species. Hence local charge neutrality (̺+(z̄) =
̺−(z̄)) holds due to the exchange symmetry with respect to the ionic components. This
implies that there is no electric field (D(z̄) = 0). If the surface charge becomes non-
zero, the order of the wetting transition changes from second order (σ = 0) to first order
(σ 6= 0) for all values of the charge density σ and ionic strength I studied here, with
σ = 2 × 10−5 (i.e. σ̃ ≈ 0.002 µC/cm2) as the smallest non-zero value considered. This
result is in agreement with previous studies. The influence of ionic solutes on the order
of the wetting transition was studied in Ref. [101] by using Cahn’s phenomenological
theory and in Ref. [329] by using density functional theory for an explicit solvent model
for an ionic solution. Both studies suggest that electrostatic interactions favour first-order
wetting. An explanation for this general property of ionic complex fluids is given below
(see also Ref. [204]).

Figure 4.14 shows examples of the effective interface potential ω(l) in the case of non-
zero surface charge densities, σ = 2 × 10−3 and σ = 2 × 10−4, for two temperatures and
at bulk coexistence [see path (A) in Fig. 4.11]. In both cases, ω(l) has two local minima.
For T ∗ < T ∗

w the global minimum corresponds to a thin film whereas for T ∗ > T ∗
w the

film is macroscopically thick. At the wetting transition temperature T ∗
w the two minima

correspond to the same value of the effectiveinterface potential ω(l). Accordingly, at T ∗
w

the film thickness jumps discontinuously from a finite value below T ∗
w to a macroscopic one

above T ∗
w so that the system undergoes a first-order wetting transition. If σ is decreased

the height of the barrier in ω(l) at the wetting temperature T ∗
w decreases and the minimum

close to the wall is shifted to larger thicknesses (Fig. 4.14(b)). In the case σ = 0, ω(l)
has only a single minimum, like in the salt-free case (see Fig. 4.12), corresponding to a
second-order wetting transition.

In Fig. 4.15 the wetting transition temperature is plotted as function of the surface
charge density for two values of the ionic strength and for uw/u = 0.81. As σ = σ̃a2/e
is increased, the wetting transition temperature T ∗

w decreases due to the strengthening
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Figure 4.13: Film thickness l = l̃/a in units of the lattice constant a as a function
of undersaturation µ∗

0,co(T
∗)−µ∗

0 for the salt-free case (I = 0). Gas-liquid coexistence
µ∗
0,co(T

∗) is approached from the gas phase. (a) uw/u = 0.81: for T ∗ < T ∗
w = 0.856T ∗

c the
system is partially wet and, if at all, there is a finite number of layering transitions; for
T ∗ > T ∗

w the isotherms exhibit an unlimited number of layering transitions as µ∗
0,co(T

∗)−
µ∗
0 → 0 and the first few layering transitions are rounded because for this temperature
T ∗ > T ∗

c,n. (b) uw/u = 0.69: the film thickness diverges logarithmically for T ∗ > T ∗
w =

0.95T ∗
c , while it reaches a finite value at coexistence for T ∗ < T ∗

w. In (b) there are no

layering transitions. Note that with T ∗
c (I) = 1

2
one has µ∗

0,co(T
∗)−µ∗

0 = 2/3
T ∗/T ∗

c

[
µ0,co(T ∗)−µ0

u

]
.

(See Ref. [203])

of the substrate-fluid attraction as the substrate is charged up. This effect is similar
to electrowetting (see Sec.4.4) and it has been observed experimentally with the surface
charge being modified by ion adsorption [310]. For σ 6= 0 the system with a smaller ionic
strength I has always the lower wetting transition temperature T ∗

w because in this case
the screening of the electrostatic forces of the substrate is reduced making them effectively
stronger which favours wetting. As already mentioned above, within the model for σ = 0
the wetting transition temperature is independent of the ionic strength Ĩ = Ia−3. The
trend is the same for uw/u = 0.69. In the case of first-order wetting transitions these
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Figure 4.14: Effective interface potential ω(l) at gas-liquid coexistence as function of the
thickness l = l̃/a of the liquid film for uw/u = 0.69, I = 3.9 × 10−5 (Ĩ = 1mM), and
σ = 2× 10−3 (σ̃ = 0.2µC/cm2) in (a) and σ = 2× 10−4 (σ̃ = 0.02µC/cm2) in (b) for two
temperatures in each case. The effective interface potential ω(l) has two local minima
(one at l < ∞ and one at l = ∞) which have the same depth at T ∗

w. Accordingly, for
both surface charge densities σ the system undergoes a first-order wetting transition. (See
Ref. [203])

results are in qualitative agreement with Ref. [329]. However, the off-lattice model used
therein exhibits also second-order wetting transitions, for which T ∗

w is a non-monotonic
function of σ.

Since the wetting transitions for σ 6= 0 are first order [204] (see below), there is a prewet-
ting line associated with them. The prewetting line is attached tangentially to the gas-
liquid coexistence line at the wetting temperature T ∗

w and bends away from coexistence,
marking the loci of a finite discontinuity in film thickness l = l̃/a. The discontinuity upon
crossing the prewetting line gets smaller as one moves further away from coexistence and
it vanishes at the prewetting critical point. Figure 4.16 shows the film thickness l = l̃/a
for four different isotherms as a function of undersaturation µ∗

0,co(T
∗)−µ∗

0 for uw/u = 0.81
and σ = 2 × 10−3 (σ̃ = 0.2µC/cm2). The film thickness increases for small undersatura-

tion as l ∼ ln(µ∗
0,co(T

∗)− µ∗
0). Accordingly, ω(l) ∼ exp(−2κl), where κ =

√
8πlBI/ε(̺

l
0)

is the inverse Debye length (see inset of Fig. 4.16). This is in agreement with Refs.
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Figure 4.15: Wetting transition temperature T ∗
w as a function of the substrate surface

charge density σ = σ̃a2/e for uw/u = 0.81. The two types of symbols correspond to
distinct values of the ionic strength I = Ĩa3 in the bulk liquid phase (• for I = 3.9× 10−5

(Ĩ = 1mM) and � for I = 3.9×10−4 (Ĩ = 10mM)). Filled symbols correspond to first-order
wetting transitions, while the empty one at σ = 0 corresponds to a second-order wetting
transition, with the corresponding wetting transition temperature being independent of
I. (See Ref. [203])

[227] and [101] for wetting of solvents with added salt. In contrast, for wetting films of
solvents without addition of salt, i.e. with counterions only, one has l ∼ (µco − µ)−1/2

and ω(l) ∼ l−1 [101, 102, 226, 248]. In order to obtain this result, Eq. (4.25) has to be
modified to consider only solvent particles and counterions but leaving out coions. In ad-
dition to the finite thin-thick jumps in film thickness l when crossing the prewetting line
one observes first-order layering transitions similar to those found in the salt-free case for
uw/u = 0.81 (see Fig. 4.13). The addition of the electrostatic interaction leads to a series
of triple points where the layering transition lines meet the prewetting line, as shown in
the surface phase diagram in Fig. 4.17. A similar phase diagram was found by Ebner [124]
using a lattice-gas model for a one-component fluid in which the fluid particles interact
among each other via a Lennard-Jones (6-12) potential and a fluid particle interacts with
the substrate via a (9-3) potential. This is also in line with the prediction by Pandit et al.
[342] for a substrate of intermediate strength, i.e. for 0.5 < uw/u < 1, with interactions
ranging beyond nearest neighbours.

In the case uw/u = 0.81 and for fixed ionic strength I the prewetting lines for various
values of the surface charge density σ have been studied in Ref. [203]. Figure 4.18 shows
the prewetting lines for ionic strength I = 3.9 × 10−5 (Ĩ = 1mM) and for four values
of σ. One can see clearly that as σ decreases, the wetting temperature T ∗

w rises and the
prewetting line becomes shorter. This is in agreement with the fact that in the limit
σ → 0 the wetting transition turns second order. The values of the prewetting critical
points for the lines shown in Fig. 4.18 are given in Tab. 4.2.

Although the lattice model of Ref. [203] differs significantly from the continuum models
used in Refs. [101, 329], it leads to similar conclusions concerning the trend that adding
ions promotes first-order wetting transitions. Accordingly, this result can be considered
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Figure 4.16: The film thickness l = l̃a as a function of undersaturation µ∗
0,co(T

∗)−µ∗
0

along four different isotherms for uw/u = 0.81, I = 3.9 × 10−5 (Ĩ = 1mM), and σ =
2 × 10−3 (σ̃ = 0.2µC/cm2) exhibits a large but finite jump (corresponding to more than
one monolayer) when the prewetting line is crossed and small jumps when the various
layering transition lines are crossed. The film thickness increases for small undersaturation

as l ∼ ln(µ∗
0,co(T

∗)−µ∗
0) where µ∗

0,co(T
∗)−µ∗

0 = 2/3
T ∗/T ∗

c

[
µ0,co(T ∗)−µ0

u

]
. The inset displays the

corresponding asymptotic behaviour of the effective interface potential ω(l) ∼ exp(−2κl)

where κ =

√
8πlBI/(ε(̺

(l)
0 ) is the inverse Debye length. (See Ref. [203])
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Figure 4.17: Surface phase diagram for uw/u = 0.81 and σ = 2× 10−3 (σ̃ = 0.2µC/cm2).
The full line is the prewetting line attached to T ∗

w = 0.864 T ∗
c (N) and ending at the

prewetting critical point (•). The dashed lines correspond to layering transition lines.
They end at layering critical points T ∗

c,n (located at the end of the dashed lines without
being indicated separately), which within the present mean-field theory accumulate for
n → ∞ at T ∗

c instead of at the roughening transition temperature of the gas-liquid
interface on the lattice. (See Ref. [203])
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Figure 4.18: Prewetting lines for four values of the surface charge density σ = σ̃a2/e with
ionic strength I = 3.9 × 10−5 (Ĩ = 1mM) in the bulk liquid phase and for uw/u = 0.81.
The locations of the wetting transitions (N) and of the prewetting critical points (•) are
given in Tab. 4.2. (See Ref. [203])

σ = σ̃a2/e T ∗
w/T

∗
c T ∗

pw,c/T
∗
c µ∗

0,co

(
T ∗
pw,c

)
− µ∗

0,pw,c

2× 10−3 0.804 0.836 4.23× 10−4

4× 10−3 0.77 0.82 1.01× 10−3

6× 10−3 0.734 0.798 1.60× 10−3

8× 10−3 0.682 0.778 2.27× 10−3

Table 4.2: Prewetting critical points (T ∗
pw,c, µ

∗
0,pw,c) for the prewetting lines shown in

Fig. 4.18. The ionic strength in the liquid phase is I = 3.9 × 10−5 (Ĩ = 1mM). T ∗
w

is the transition temperature for first-order wetting. Note that µ∗
0,co(T

∗
pw,c)−µ∗

0,pw,c =
2/3

T ∗
pw,c/T

∗
c

[
µ0,co(T ∗

pw,c)−µ0,pw,c

u

]
. (See Ref. [203])

to be robust. In addition within the lattice approach one is able to study, on the one
hand, wide interfacial regions and therefore small ionic strengths which was not possible
within the model studied in Ref. [329], and, on the other hand, prewetting, providing a
more complete description of the wetting properties of electrolytes. In agreement with
Refs. [101, 227] the growth law of the film thickness for complete wetting along an isotherm
is not changed by adding ions to the solvent, in spite of their long-ranged Coulombic
interaction (Figs. 4.13 and 4.16) . However, if only counterions are considered, which are
donated by the substrate and the charge of which is opposite to that of the wall, the
film thickness varies as l ∼ (µco − µ)−1/2 [101, 226, 248]. Hence, the ionic complex fluid
nature of electrolyte solutions appears clearly in the context of wetting phenomena, but
the features are, to a large extent, of general, i.e. material independent, character, because
they are determined by the Debye length.

As mentioned above electrolyte solutions appear to exhibit in general first-order wetting
transitions, independent of the model. In order to explain this general property one
can resort to the model for an electrolyte solution near a charged wall which has been
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introduced and studied in Ref. [43] (see Sec. 2.1). Hence the starting point in Ref. [204]
is the following grand canonical functional, which is a modification of Eq. (2.1) applied
to the case of a three-dimensional semi-infinte system at z > 0:

βΩ0[φ(r), ̺±(r)] =

∫
d3r

{
φ(r)(ln(φ(r))− βµφ) + (1− φ(r)) ln(1− φ(r))

+ χ(T )φ(r)(1−φ(r)) +
χ(T )

6
(∇φ(r))2

}

− βh1
∫
d2r||φ(r||, z = 0) + β

g

2

∫
d2r||φ(r||, z = 0)2

+

∫
d3r

{∑

i=±

̺i(r) (ln ̺i(r)− 1− βµi + Vi(φ(r)))

+
2πlB
ε(φ(r))

(D(r, [̺±]))2
}
. (4.29)

In the following the fluid solvent at position r with φ(r) < 1/2 is referred to as a “gas”,
whereas for φ(r) > 1/2 it is called a “liquid”. The first and the last integral are taken
over the half-space r = (x, y, z≥0) whereas the second and the third integral run over the
surface z = 0; ̺± (ln ̺± − 1− βµ±) is the bulk grand potential density of the ±-ions in
the low number density limit. Within this model the interaction of the solvent with the
wall is captured by the parameters h1 and g. This implicitly assumes that the fluid-wall
interactions are sufficiently short ranged so that their contributions to Ω0 depend only on
the solvent density φ(r||, z=0) in the vicinity of the wall. This parametrisation has been
used by Nakanishi and Fisher [315] in order to analyze the global surface phase diagram
of the Landau-Ginzburg theory for wetting. V±(φ) is the solvation free energy per kBT of
a ±-ion in the solvent of number density φ. Whereas more realistic expressions of V±(φ)
are discussed in the literature [43] (see Eq. (2.3)), a simple piece-wise constant expression
V±(φ < 1/2) = Vg and V±(φ > 1/2) = Vl with Vg−Vl ≫ 1 is used in Ref. [204]. This choice
guarantees a vanishingly small ionic strength in the gas (φ < 1/2) as compared to the ionic
strength in the liquid (φ > 1/2). Without restriction of generality we choose Vl := 0, which
can be achieved by a redefinition of the ionic chemical potentials (βµ± − Vl 7→ β =: µ̂±;
in the following the hatˆis dropped). The discontinuity of V±(φ) at φ = 1/2 is expected
to not affect the results significantly because only thermodynamic states of liquid-gas
coexistence well below the critical point are considered, for which φ = 1/2 is deep inside
the unstable region of the bulk phase diagram. Note that here no unequal partitioning
of ions in a non-uniform solvent occurs due to V+(φ)− V−(φ) = 0, i.e. due to a vanishing
difference of solubility contrasts of anions and cations between the two phases in the sense
of Ref. [43] (see Secs. 2.1 and 4.6). Moreover, no specific adsorption of ions at interfaces is
considered, i.e. there are no surface fields acting on ̺±. Various empirical expressions for
ε(φ) are in use [55]. However, for the sake of simplicity here a simple piece-wise constant
expression ε(φ < 1/2) = 1 and ε(φ > 1/2) = εl with the relative permittivity εl of the
liquid solvent is adopted. For the same reasons as for the case of the piece-wise constant
expressions V±(φ) (see above), the discontinuity of ε(φ) at φ = 1/2 is expected to be
irrelevant for the present purposes.

In the presence of walls, φ and ̺± vary spatially in normal direction z. Their equilibrium
profiles minimise the full functional Ω0[φ(r), ̺±(r)] in Eq. (4.29) and thus render the
equilibrium state. This procedure can be performed numerically. However, for the present
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purpose, analytic expressions are sought. In order to achieve this goal a Taylor expansion
of the local part in Eq. (4.29) is performed around the sharp-k ink reference density profiles
[107]

φ̄(z) = φsk(z) =

{
φl, 0 ≤ z ≤ ℓ

φg, z > ℓ
(4.30)

and

¯̺±(z) = ̺sk,±(z) =

{
I, 0 ≤ z ≤ ℓ

0, z > ℓ
(4.31)

where ℓ is the position of the discontinuity of the sharp-kink profile φsk(z), and φl and φg

are, respectively, the equilibrium bulk densities of the solvent in the liquid and gas phase
for a bulk ionic strength I in the liquid phase.
At two-phase coexistence and in the limit ℓ ≫ 1/κ the effective interface potential

ω(ℓ) = Ωs(ℓ)− Ωs(∞) at two-phase coexistence is given by [204]

βω(ℓ≫ 1/κ) ≃ (φl − φg)
χ(T )

3ξ

β(h1 − gφl)

βg + χ(T )
3ξ

exp(−ℓ/ξ)

− (φl − φg)
2χ(T )

12ξ

χ(T )
3ξ
− βg

βg + χ(T )
3ξ

exp(−2ℓ/ξ)

+
4πlBσ

2

εlκ
exp(−2κℓ).

(4.32)

The property ξl = ξg at coexistence is a special feature of the present model. In general
ξl 6= ξg so that in this case an expansion of the effective interface potential ω(ℓ) similar
to Eq. (4.32) contains products of powers of exp(−ℓ/ξl) and exp(−ℓ/ξg).

First the case of a pure solvent (i.e. I = 0) near a neutral wall (i.e. σ = 0) and at
gas-liquid coexistence is considered. For such a system the effective interface potential in
Eq. (4.32) reduces to [204]

βω(ℓ) = a0(T ) exp(−ℓ/ξ) + b0(T ) exp(−2ℓ/ξ) (4.33)

with

a0(T ) = (φl − φg)
χ(T )

3ξ

β(h1 − gφl)

βg + χ(T ),
3ξ

(4.34)

and

b0(T ) = −(φl − φg)
2χ(T )

12ξ

χ(T )
3ξ
− βg

βg + χ(T )
3ξ

. (4.35)

For second-order wetting to occur at T = Tw, the coefficient a0(T ) must be negative for
T < Tw, vanish at T = Tw and be positive for T > Tw. As φl > φg, and because φl can
vary only between its value at the triple point φl(Tt) and the critical density φc = φl(Tc),
a0(T ) fulfills the above mentioned conditions if [204]

φc <
h1
g
< φl(Tt). (4.36)
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Here and in the following h1 > 0 and g > 0 are considered. The order of the transition is
determined by the higher-order coefficients in the expansion of ω(ℓ) [107]. If b0(Tw) < 0,
the transition is of first order while second-order wetting can occur if b0(Tw) > 0. Only
in the latter case a0(Tw) = 0 determines the wetting transition temperature, so that

φl(Tw) =
h1
g
. (4.37)

Within the present approach, the wetting transition can be of second order if

βg >
χ(Tw)

3ξ
, (4.38)

and of first order if the inequality is reversed. The separatrix between first- and second-
order wetting (i.e. the loci of tricritical wetting [315]) is given by [204]

βg =
χ(Tw)

3ξ(Tw)
, (4.39)

where

χ(Tw) =
ln(h1/g)− ln(1− h1/g)

2h1/g − 1
. (4.40)

In the case of an electrolyte solution close to a charged wall the effective interface
potential given by Eq. (4.32) has the generic form studied by Aukrust and Hauge [11]
for a model in which both the wall-fluid and the fluid-fluid interaction potentials decay
exponentially but on distinct scales. The electrostatic term aI(T ) exp(−2κℓ) with

aI(T ) =
4πlBσ

2

εlκ
(4.41)

has a coefficient which is always positive; Eq. (4.32) shows that the coefficients a0(T )
(Eq. (4.34)) and b0(T ) (Eq. (4.35)) do not change upon adding ions. Accordingly, the
wetting behaviour will depend on the competition between the Debye length 1/κ and the
correlation length ξ [204]:

(i) 1/κ < ξ: In this case the electrostatic term decays faster than the remaining two
terms in Eq. (4.32). Therefore one obtains the same wetting behaviour as for the
pure solvent.

(ii) ξ < 1/κ < 2ξ: In this case the electrostatic term is the dominant subleading con-
tribution in the expansion. Moreover, because aI(T ) > 0 for all temperatures, the
transition can be second order if a0(T ) satisfies the conditions given by Eq. (4.36).

(iii) 1/κ > 2ξ: In this case, the electrostatic term is the leading contribution. As a
result, if in the pure solvent the wetting transition is of second order, due to adding
ions and due to a nonzero surface charge density at the wall it turns first order or
the wall becomes wet at all temperatures T > Tt.

For the pure solvent it is possible to determine the separatrix between first- and second-
order wetting in terms of the surface parameters h1 and g only. Accordingly, the phase
diagram is of the type shown in Fig. 2(a) of Ref. [315] for g > 0 and of the type shown
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there in Fig. 2(b) for g = 0. On the other hand, for electrolyte solutions this separatrix
depends also on the surface charge density, the ionic strength and the competition between
the Debye and the correlation lengths. As mentioned before the approach neglects the
interaction between ions so that it can be used only for low ion concentrations, e.g. I .
10mM, which corresponds to a Debye length 1/κ & 3nm in water at room temperature.
Thus one typically ends up with case (iii) (1/κ > 2ξ) except in close proximity to the
critical point, where one can reach case (ii) (ξ < 1/κ < 2ξ) and ultimately case (i)
(1/κ < ξ). Therefore, for g > 0 the phase diagram for σ 6= 0 is of the type shown in
Fig. 2(a) of Ref. [315], as for the pure solvent case with g > 0, but the separatrix between
first- and second-order wetting is shifted closer to the critical point upon increasing the
Debye length, i.e. upon decreasing the ionic strength.

The wetting behaviour will be richer if ξl 6= ξg (see the discussion below Eq. (4.32)).
In this case, the possible wetting scenarios will depend on the competition between the
Debye length 1/κ, the correlation length ξg of the gas, and the correlation length ξl of the
liquid. This creates additional cases compared to the ones discussed above (see (i)-(iii)).
Nevertheless, in the present context, far from the critical point case (iii) is still the typical
one with the distinction that here 1/(2κ) competes with the maximum of ξl and ξg.

In the limit σ → 0 one has aI(T ) → 0 so that in this case there is no contribution to
the effective interface potential due to the ions. This is due to the fact that within the
present theory there are no surface fields acting on ̺± if σ = 0. For considering instead
the limit I → 0, i.e. κ → 0, in the expression for aI(T ) one has to use the saturation
value |σ| = σsat(κℓ) (see Ref. [204]), which implies aI(T ) ∼ κ3 → 0 in the limit I → 0 as
for the pure solvent.

In order to understand the influence of the range of interactions in the solvent, systems
are considered in Ref. [204] in which the solvent exhibits attractive long-ranged interaction
potentials among the solvent particles as well as between the wall and the solvent particles.
As before, one is interested in an analytic expression for the effective interface potential
ω(ℓ). Following Ref. [157] the attractive part of the pair potential between the solvent
particles, as it enters the density functional, is modelled as

w̄(r) =
Af

(1 + r2)3
(4.42)

with Af < 0 and the substrate potential as

V (z > 0) = −
∑

i≥3

ui
zi

(4.43)

with u3 > 0 corresponding to an asymptotically attractive interaction. The contribution
∼ u4 is generated, inter alia, by the discrete lattice structure of the substrate or by a
thin overlayer [107] and thus it can be tuned. In Eq. (4.43) V (z) describes properly both
the short- and the long-ranged behaviour of the substrate potential. This can be inferred
from the fact that, with u9 < 0, Eq. (4.43) contains the commonly used 9-3 Lennard-Jones
potential which comprises a short-ranged repulsive part together with a long-ranged at-
tractive one. Therefore V (z) diverges to +∞ for z → 0 and the corresponding asymptotic
behaviour, in this limit, depends on the substrate properties, e.g. V (z → 0) ∼ z−9 for a
9-3 Lennard-Jones substrate potential. Due to this divergence the solvent density φ(z)
must vanish for z → 0. In Ref. [204] this effect is taken into account approximately by
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replacing the short-ranged part of V (z) in Eq. (4.43) by a hard-wall potential positioned
at z = dw; the distances z are still measured from z = 0 [108]. On the other hand, in order
to account for the long-ranged attractive part of V (z) (i.e. for z ≫ dw), only the first two
terms of the sum in Eq. (4.43) are considered [204]. The functional form in Eq. (4.42)
facilitates to carry out subsequent integrals analytically. These long-ranged interactions
are treated as a perturbation of the grand canonical functional in Eq. (4.29):

Ω[φ(r), ̺±(r)] = Ω0[φ(r), ̺±(r)] + ∆Ω[φ(r)] (4.44)

where Ω0[φ(r), ̺±(r)] is given by Eq. (4.29) and

∆Ω[φ(r)] =
1

2

∫
d3r

∫
d3r′w̄(|r− r′|)φ(r)φ(r) +

∫
d3r̺wV (r)φ(r). (4.45)

The integrations run over the half space {r = (x, y, z ≥ dw)}, w̄(r) is given by Eq. (4.42),
and V (r) is given by Eq. (4.43); ̺w is the particle number density of the substrate.
Concerning the interaction between the solvent particles, it turns out that it is most
suitable captured by the quantity [107],

t(z) :=

∫ ∞

z

dz′
∫
d2r′||w̄

((
r′

2
|| + z′

2
)1/2

)
. (4.46)

For large distances and non-retarded van der Waals forces one has

t(z →∞) = −
(
t3
z3

+
t4
z4

+ · · ·
)
, (4.47)

which defines the coefficients t3 > 0 and t4. For the present model this implies [204]

t3 = −πAf

6
, (4.48)

t4 = 0. (4.49)

In a first-order perturbative theory approach the influence of ∆Ω[φ(r)] on the wetting
behaviour of the electrolyte solution can be determined by inserting into Eq. (4.44) the

solutions φ(0)(r) and ̺
(0)
± (r) as obtained from Ω0[φ(r), ̺±(r)]. The superscript (0) denotes

these solutions as the ones obtained from the unperturbed functional Ω0.
Expanding the local part of the grand canonical functional in Eq. (4.44) around the

sharp-kink density profiles in Eqs. (4.30) and (4.31), for ℓ→∞ one obtains the following
form for the effective interface potential [204]:

βω(ℓ→∞) ≃ a1(T )

ℓ2
+
b1(T )

ℓ3
+ · · ·

+ a0(T ) exp(−ℓ/ξ) + b0(T ) exp(−2ℓ/ξ)

+ aI(T ) exp(−2κℓ),

(4.50)

where ellipses stand for further subdominant terms as powers of 1/ℓ. As in the absence
of long-ranged interactions, the ions enter into ω(ℓ) only via the last term. The analytic
expressions for the coefficients a1(T ) and b1(T ) are given in Ref. [204], a0(T ) and b0(T ) are
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given by Eqs. (4.34) and (4.35), respectively, and aI(T ) is given by Eq. (4.41). Correc-
tions to the coefficients a0(T ) and b0(T ) due to the long-ranged interactions (Eqs. (4.42)
and (4.43)) are neglected because these long-ranged interactions are treated as a small
perturbation to the model with short-ranged interactions only. The sign of the coefficients
a1(T ), b1(T ), a0(T ), and b0(T ) can change with T while aI(T ) is always positive.

In the case of a pure solvent, i.e. aI = 0, the necessary conditions for the occurrence of
critical wetting are (see Eq. (4.50) and Ref. [107])

a1(Tw) = 0, a1(T < Tw) < 0, and b1(Tw) > 0, (4.51)

i.e. T (a1) = Tw with T (a1) being defined by a1(T
(a1)) := 0, and, as before, one obtains

conditions for the parameters of the pair potentials [204].
Although necessary, these conditions are not sufficient for critical wetting to occur.

Large negative values of the coefficient a0(T ) of the exponentially decaying contribution
can still lead to a first-order wetting transition even if b1(T

(a1)) > 0. Within the present
model one has a0(T ) > 0 for h1/g > φl(T ) (see Eq. (4.34)). If b1(T

(a1)) < 0 the wetting
transition is always first order. However, in the case of a first-order wetting transition all
details of ω(l), and not only its leading contributions, matter for a reliable description of
the character of the transition and for determining the corresponding wetting transition
temperature. Hence, an asymptotic expansion of ω(ℓ) as in Eq. (4.50) is not conclusive
in the case of first-order wetting.

For wetting of a wall by a one-component fluid with short- and long-ranged interactions
and based on a Cahn type theory, in Refs. [206, 207] a wetting scenario has been predicted
which involves a succession of two interfacial phase transitions upon increasing T . The
first of these two transitions is a discontinuous jump between two finite values ℓ1 and
ℓ2 > ℓ1 of the film thickness ℓ at two-phase coexistence and is referred to as a “thin-thick
transition”. The second one is the standard second-order wetting transition at T = Tw;
in Refs. [206, 207] the possibility of a thin-thick transition preceding a first-order wetting
transition has not been discussed. This wetting scenario can be explained in terms of the
competition between the short- and long-ranged interactions. Such a thin-thick transition
precedes the critical wetting transition only if the short-ranged interactions would give
rise to a first-order wetting transition in the case that the long-ranged interactions were
negligible. Because the present theory involves both short- and long-ranged interactions,
the occurrence of this wetting scenario can be checked for the pure solvent case. In this
case, the separatrix between first- and second-order wetting is given by Eq. (4.39) for the
model with short-ranged interactions only (e.g. for g = 1 the transition will be first order
in the pure solvent case without long-ranged interaction if h1 > 0.49). By choosing a
proper set of parameters one is able to observe the occurrence of this two-stage transition
for the pure solvent for π2Af . 0.55 × 10−19 J, φl(Tw) = u3̺w/t3 = 0.7, u4 = 2.3 × t3,
g = 1, and h1 = 0.76, such that the condition for second-order wetting is satisfied [204].

This thin-thick transition has also been observed for wetting of a wall by a one-
component fluid in models with short-ranged interactions only [205, 247, 356] and with
long-ranged interactions only [106]. Furthermore it has been observed experimentally for
wetting of hexane on water [412]. In Ref. [356] this thin-thick transition has been observed
for a generalisation of the Sullivan model [423], in which in addition to the exponentially
decaying wall-fluid potential a square-well attraction has been included. A thin-thick
transition was also analyzed in Ref. [205] for a Landau theory of wetting which includes
an extra surface term h3 (φ(0))3 linked to the substrate potential (see Ref. [315] and
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Eq. (4.29)). In Ref. [247] it has been shown that the behaviour of the model in Ref. [356]
can be mapped onto that used in Ref. [205]. With that it turns out that the thin-thick
transition predicted in Refs. [356] and [205] involves short-ranged forces only and is due
to the competition between two opposing (effective) surface fields at the same surface, one
favouring wetting and the other favouring drying. Such a competition between surface
fields is not considered in Ref. [204]. Therefore a thin-thick transition does not occur in
the pure solvent case with short-ranged interactions only.

The influence of ions and of surface charges on the wetting behaviour of electrolytes
with solvents governed by short- and long-ranged forces differs qualitatively from the
one discussed above, because in this case the leading contributions to ω(ℓ → ∞) decay
algebraically as function of the film thickness ℓ. Accordingly, the contribution due to
the ions and the charged wall can enter at most as the leading non-algebraic term in the
expansion for ℓ → ∞; this is the case if the Debye length 1/κ is larger than (twice) the
bulk correlation length ξ [204].

One can choose parameter sets (h1, g, u4, T
(a1)) such that the pure solvent with short-

and long-ranged interactions near a charge neutral wall (i.e. for aI(T ) = 0) exhibits a
second-order wetting transition at Tw(I = 0, σ = 0) without being preceded by a thin-
thick transition (i.e. different from the above scenario) [204]. For fixed ionic strength I 6= 0
and upon increasing the surface charge density σ, due to aI(T ) ∼ σ2/

√
I (Eq. (4.41))

ω(ℓ) rises at finite film thickness ℓ to the effect that the wetting transition temperature
Tw(I, σ) decreases for increasing surface charge density σ [203] (see Fig. 4.15). Moreover,
for fixed surface charge density σ the wetting transition temperature Tw(I, σ) decreases
upon decreasing the ionic strength I (i.e. increasing the amplitude σ2/

√
I and the Debye

length 1/κ ∼ 1/
√
I) [203] (see Fig. 4.15). In addition, the positive and monotonically

decreasing (as a function of increasing ℓ) contribution aI(T ) exp(−2κℓ) to ω(ℓ) does lead
to a thin-thick transition preceding the critical wetting transition which is absent without
ions. Figure 4.19 shows the curves for ω(ℓ) corresponding to the temperatures T1 =
0.918 × Tc, T2 = 0.919 × Tc, T3 = 0.92 × Tc, T4 = 0.932 × Tc, and Tw = 0.944 × Tc with
T1 < T2 . Tt−t,w < T3 < T4 < Tw, i.e. the thin-thick transition occurs in between the
temperatures T2 and T3, whereas the critical wetting transition takes place at the wetting
temperature Tw.

However, in the case that the pure solvent exhibits a second-order wetting transition,
which is preceded by a thin-thick wetting transition, the effect of the term due to the ions
and to the surface charge density (aI(T ) 6= 0), in the case 1/κ > 2ξ, is to decrease the
thin-thick wetting transition temperature Tt−t,w and to increase the value of the jump in
film thickness [204].

The case of aI(T ) 6= 0 for a system in which a pure solvent with short- and long-
ranged interactions near a charge neutral wall exhibits a first-order wetting transition is
not discussed here, because within the present approach only the leading contributions of
the effective interface potential for ℓ→∞ are analytically accessible (see Eq. (4.50)) and
reliable knowledge of the behaviour of ω(ℓ) for small ℓ, which is particularly important
for first-order wetting transitions, is lacking. Therefore, in order to be able to analyse the
effect of the ions and of the surface charge density on solvents which without ions exhibit
first-order wetting transitions, more details of the effective interface potential are needed.

The thin-thick wetting transition at two-phase coexistence, which precedes a standard
second-order wetting scenario, has been discussed in the context of wetting in electrolytes
in Ref. [101] for a model of an ionic solution close to a charged wall in which the solvent-
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Figure 4.19: Effective interface potential ω(ℓ) for systems governed by short- and long-
ranged interactions as function of the thickness ℓ of the liquid film at gas-liquid coexistence
in the presence of ions for the case that the pure, i.e. salt-free, solvent exhibits a critical
wetting transition (without being preceded by a thin-thick transition). The parameters
used are Af/kB = −1013K, u3 = 0.7× t3 (i.e. φl(T

(a1) = Tw) = 0.7), u4 = 2.28× t3, g = 1,
h1 = 0.76 × g, I = 1mM , and σ = 0.1µC/cm2 (see main text). The effective interface
potential ω(ℓ) has two local minima (at ℓ1(T ) (see (a) and (b)) and ℓ2(T ) (see (c)) with
ℓ1 < ℓ2 <∞), one of the two being the global one at a given temperature (see (a)). They
have the same depth at T = Tt−t,w ≈ 0.919× Tc (not apparently visible). For T > Tt−t,w

the film thickness ℓ2(T ) is the global minimum and diverges continuously 1/(Tw − T ) as
T → Tw ≈ 0.944 × Tc (see (c)). The global minimum l0(T ) as a function of temperature
is plotted in (d). At Tt−t,w the film thickness exhibits a finite jump and subsequently
diverges smoothly for T ր Tw. Accordingly, the system undergoes a thin-thick wetting
transition at Tt−t,w, followed by a continuous one at Tw. Five different temperatures,
T1 ≈ 0.918 × Tc, T2 ≈ 0.919 × Tc, T3 ≈ 0.92 × Tc, T4 = 0.932 × Tc and Tw are displayed
in (a), (b), and (c) (using a common color code) with T1 < T2 . Tt−t,w < T3 < T4 < Tw.
(Note the different scales of the axes.) The film thickness ℓ is measured in units of a such
that a3 is the volume of a solvent particle. Densities are measured in units of a3. (See
Ref. [204])

solvent and solvent-wall interactions are short-ranged only and the contribution of the ions
to the effective interface potential is calculated by solving the full Poisson-Boltzmann
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equation instead of the linearised one as in Ref. [204]. The thin-thick transition in
Ref. [101] occurs in a restricted region of the parameter space, provided that the transition
in the pure solvent is first order and that 1/κ < 2ξ, i.e. for large ionic strength.

In contrast, in Ref. [204], the combined presence of short- and long-ranged interactions
is taken into account. As discussed above for the case of a pure solvent with short- and
long-ranged interactions, a thin-thick transition will precede a long-ranged critical wetting
transition only if the short-ranged interactions alone would give rise to a first-order wetting
transition in the case that the long-ranged interactions were negligible [206, 207]. This
is precisely the case encountered in the context of the electrolyte solution when solvent-
solvent and solvent-wall long-ranged interactions are taken into account: In the absence
of these long-ranged interactions the transition is first-order if 1/κ > 2ξ, such that ℓ
jumps from ℓ1 to ℓ2 = ∞ (see Fig. 4.19). Once the long-ranged interactions are taken
into account they block the jump of ℓ to ℓ2 =∞ and limit this jump to one with a finite
value ℓ2 <∞. Once ℓ has reached the value ℓ2 a further increase in temperature leads to
the unfolding of the standard wetting scenario under the aegis of long-ranged interactions
at Tw > Tt−t,w. Therefore, the thin-thick wetting transition is the remnant of the first-
order wetting transition that would occur in the electrolyte solution if the long-ranged
solvent-solvent and solvent-wall interactions were negligible [204].

The situation can be summarised as follows:

(i) If in the pure solvent short-ranged interactions favour first-order wetting but addi-
tional long-ranged interactions produce second-order wetting, one finds a thin-thick
transition followed by the continuous wetting transition [204, 206, 207].

(ii) A thin-thick transition can be observed in the pure solvent even if there are only
short-ranged [205, 247, 356] or only long-ranged [106] interactions.

(iii) A solvent with short- and long-ranged interactions which exhibits a second-order
wetting transition without being preceded by a thin-thick transition is considered
in Ref. [204]. Adding ions renders such a short-ranged contribution to the effective
interface potential that the resulting effective short-ranged interactions favour first-
order wetting. This leads to a thin-thick transition preceding the continuous long-
range type wetting transition. This mechanism is analogous to the one in (i).

(iv) If the solvent with short- and long-ranged interactions undergoes a continuous wet-
ting transition, which is preceded by a thin-thick transition, adding ions decreases
the transition temperature of the latter and increases the jump in film thickness.

(v) If the pure solvent is governed by short-ranged interactions only and exhibits a first-
order wetting transition, adding ions can lead to a continuous wetting transition
preceded by a thin-thick transition, provided that 1/κ < 2ξ.

(vi) If the solvent is governed by short-ranged interactions only, adding ions renders a
first-order wetting transition for 1/κ > 2ξ. Adding further long-ranged interactions,
which favour continuous wetting, renders a second-order wetting transition of the
long-range type, preceded by a thin-thick transition.

The analysis in Ref. [204], which is valid in the case of low ion density I, shows that in the
case of short-ranged solvent-solvent and solvent-wall interactions wetting transitions in the
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presence of electrostatic interactions are typically first order [100, 101, 203, 204, 329, 330].
This result can be explained in terms of the competition between the two characteristic
length scales in the ionic complex fluid, i.e. the bulk correlation length ξ in the wetting
liquid phase and the Debye length 1/κ. If 1/κ > 2ξ, which is typically the case for dilute
electrolyte solutions away from (bulk) critical points, a wetting transition at two-phase
coexistence will be always first order irrespective of its order in the pure, i.e. salt-free,
solvent. It is the merit of the analysis of the effective interface potential to provide a
transparent rationale for the pre-eminence of first-order wetting in electrolyte solutions
in terms of competing length scales [204]. Moreover, if in those systems in addition
long-ranged solvent-solvent and solvent-wall interactions, which favour a critical wetting
transition, are present, the analysis reveals the possibility of a wetting scenario which
actually corresponds to a sequence of two wetting transitions: first an electrostatically
induced (i.e. 1/κ > 2ξ) discontinuous jump between two finite wetting film thicknesses
which upon raising the temperature is followed by a continuous divergence of the wetting
film thickness ℓ (see Fig. 4.19).

4.3 Critical adsorption in electrolyte solutions

According to the fluctuation-dissipation theorem the linear density response of a fluid
to a weak external field is determined by the two-point correlation functions of the un-
perturbed system [176]. Therefore, the number density profiles far from a wall exhibit
asymptotically the same type of decay towards their bulk values, i.e. either monotoni-
cally or damped oscillatorily, with the same decay length and periodicity as the two-point
bulk correlation functions Gij(r). (Note that this correspondence does no longer hold in
the presence of algebraically decaying interaction potentials [108], which are not consid-
erd here.) However, from this argument one cannot draw reliable conclusions concerning
their structure close to the wall. Therefore in this latter range the structure is determined
numerically in Ref. [43] (see Sec. 2.1) for particular sets of parameters. Moreover, close to
the wall packing effects due to the finite size of the fluid particles lead to layering which
extends a few particle diameters into the system. However, this kind of structure is not
captured by the square-gradient model in Eq. (2.1).

The solid lines in Fig. 4.20 correspond to the composition φ(z) [(a)], the electrostatic

potential ψ̃(z) = ψ(z)kBT/e with ε(φ)ψ′(z) = −4πℓBD(z) and ψ(z →∞)→ 0 [(b)], the
cation number density ̺+(z) [(c)] and the anion number density ̺−(z) [(d)] in a semi-
infinite dilute electrolyte solution bounded by a wall positioned at z = 0 with surface
charge density σ and surface field strength h, as obtained from numerically minimising
the density functional. The solvent permittivity is chosen to resemble that of a mixture
of 3-methylpyridine (component A, εA = 10) and water (component B, εB = 80). The
composition profiles φ(z) in Fig. 4.20(a) turn out to be monotonic for weak (h = ±0.01)
as well as for strong surface fields (h = ±1). Due to the negative surface charge density σ,
the monotonic electrostatic potential profile ψ(z) in Fig. 4.20(b) is negative with surface

potentials ψ̃(0) of some tens of mV, which is a common order of magnitude [90]. Within
the range 0 ≤ z ≤ 2 close to the wall the electrostatic potential ψ becomes less negative
upon changing the surface field strength from h = 1 to h = −1 due to the increase of the
permittivity as a result of the increase of the volume fraction 1−φ of component B close
to the wall. Similarly, due to the negative surface charge, close to the wall the number
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˜̺ +
/m

M

1050

100

0

h = −1

h = 1
(b)

z = z̃/ã

ψ̃
/m

V

1050

0

−30

−60

h = −1

h = −0.01

h = 0.01

h = 1

(a)

z = z̃/ã
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Figure 4.20: Profiles of the volume fraction φ of solvent component A [(a)], the electro-

static potential ψ̃ (with ψ̃(z →∞)→ 0) [(b)], the cation number density ˜̺+ [(c)], and the
anion number density ˜̺− [(d)] in a semi-infinite system bounded by a wall at z = z̃/ã = 0
with surface charge density σ̃ = −1µC/cm2 and surface field strength h. These results
correspond to Gibbs free energies of transfer f+ = 0, f− = 20, the bulk volume fraction
φb = 0.5 of solvent component A, and the bulk ionic strength Ĩ = ˜̺±b = 10 mM. The
Flory-Huggins parameter χ(T ) is chosen to correspond to that temperature, for which the
bulk correlation length ξ is half of the Debye length 1/κ, which is taken to be temperature
independent (see Fig. 3.3). For the specified surface fields h the solid lines are the numeric
solutions obtained from the density functional model within LDA (see Sec. 2.1). For rea-
sons of clarity in (b) and (c) the full lines for h = ±0.01 are not designated; they can be
nonetheless identified in an obvious way. The dashed lines correspond to the approximate
profiles φ(z), ψ(z), and ̺±(z) introduced in Eqs. (4.52), (4.53), and (4.54), respectively.
Note that ψ(z) and, due to the choice f+ = 0, ̺+(z) are independent of the magnitude
|h|; therefore both in (b) and (c) there is only one dashed line. For z > 2 the approxi-
mate profiles differ only slightly from the ones obtained by a full numerical minimisation.
Density oscillations close to the wall, which are expected in actual fluids, do not occur,
because packing effects are not captured by the present square-gradient approach. (See
Ref. [43])
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density ̺+ of the cations in Fig. 4.20(c) is larger and the number density ̺− of the anions
in Fig. 4.20(d) is smaller than in the bulk. Upon changing the surface field strength from
h = 1 to h = −1, close to the wall the number density ̺+ of the cations decreases and
that of the anions, ̺−, increases. This feature follows partly from the variation of the
electrostatic potential ψ. In addition, for the current choice of parameters the anions
dissolve better in component B than in component A of the solvent (f− > 0), such that
the component B enriched near the surface (see Fig. 4.20(a)) mediates a certain preference
of the anions for the wall.

The dashed lines in Fig. 4.20(a) correspond to the approximate profile [43]

φ(z) = φb +
CGL

sinh((z + z0)/ξ)
, CGL := sign(h)

√
χ

8ξ2
(4.52)

with the extrapolation length z0. Here and in the following ξ ≡ ξ(OZ) (see Eq. (3.8) is
called the bulk correlation length [43]. Close to the critical point 1/ξ corresponds to the
asymptotic decay rate k′′1 of the solvent structure factor Gφφ(r → ∞) ∼ exp(−r/ξ)/r
[43] (see Sec. 3.1). The profile φ(z) is the analytic solution of the semi-infinite Ginzburg-
Landau equation [276] obtained from minimising Ω[φ, ̺±] after expanding up to fourth
order in φ−φb and neglecting the ion-solvent coupling, i.e. assuming f± = 0, which implies
V±(φ) = 0. Within Ginzburg-Landau theory the extrapolation length z0 is fixed by the
boundary condition on φ ′(0) set by the surface field strength h (see Ref. [43]).

The dashed line in Fig. 4.20(b) is the approximate electrostatic potential [43]

ψ(z) = 4 artanh(CPB exp(−κz)), CPB := tanh
(1

2
arsinh

(2πℓBσ

ε(φb)κ

))
, (4.53)

which is the analytic solution of the semi-infinite Poisson-Boltzmann equation [162] for a
uniform permittivity ε(φb) and for neglecting the ion-solvent coupling (i.e. for f± = 0).

Finally, the dashed lines in Figs. 4.20(c) and (d) are the approximate number density
profiles of the ±-ions [43]

̺±(z) = Ib exp(−(±ψ(z) + V±(φ(z))) + V±(φb)), (4.54)

which correspond to the Boltzmann distributions of non-interacting particles in the ex-
ternal fields due to the approximate electrostatic potential ψ(z) and the approximate
composition φ(z); Ib = ̺±(z → ∞). Whereas the composition profile φ(z) (Eq. (4.52))
and the electrostatic potential profile ψ(z) (Eq. (4.53)) are independent of the ion-solvent
coupling V±, the ion number density profiles ̺±(z) (Eq. (4.54)) are not.

At distances from the wall of more than a few particle diameter (z > 2) the approx-
imate profiles φ(z), ψ(z) and ̺±(z) differ only slightly from the ones obtained by the
full numerical minimisation of Eq. (2.1). Closer to the wall the deviations between the
numerical and the approximate profiles are more pronounced, but in this spatial range
the present local model is not conclusive because it neglects the surface layering of ac-
tual fluids. A similar situation occurs within BCA [29] (see Fig. 3(a) therein) shown in
Fig. 4.21. There, at distances z̃ < 2Å, the solvent composition profile φ(z̃) for strong
ion-solvent coupling (f+ = 30, f− = 0, solid line) differs strongly from that in the absence
of ion-solvent coupling (f+ = f− = 0, dashed line). At large distances the deviations are
small. A closer comparison between Fig. 4.21 and Fig. 4.20(a) would require the knowl-
edge of the particle size, which is however not specified in Ref. [29]. A description of the
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Figure 4.21: Composition profiles φ(z̃) within BCA for strong ion-solvent coupling (f+ =
30, f− = 0, solid line) and in the absence of ion-solvent coupling (f+ = f− = 0, dashed
line) taken from Fig. 3(a) in Ref. [29]. Here a solvent with εA = 80 and εB = 20 at

bulk composition φb = 0.09 is considered. The bulk ionic strength is Ĩ = 0.1 mM and the
surface charge density is σ̃ = −16µC/cm2. At distances z̃ < 2 Å from the wall the two
curves differ strongly from each other, whereas the differences are small at large distances.
(See Ref. [43])

presently considered semi-infinite planar system within RPA has been given in Ref. [80].
There the ion-solvent coupling has been treated perturbatively, but the full, numerically
determined profiles φ(z), ψ(z), and ̺±(z) within RPA have not been discussed. However,
by comparing these profiles, as obtained within RPA, with those obtained within BCA
or LDA one could assess the influence of non-locality on the interfacial structure in the
complex fluids studied here.

The approximate ion density profiles in Eq. (4.54) have been used in a grazing-incidence
X-ray fluorescence (GIXF) study of KCl in a mixture of water and 2,6-dimethylpyridine
at critical composition far away from the critical point inside the one-phase region of the
phase diagram [478]. Whereas the experimental results and the theoretically predicted
ion density profiles in Eq. (4.54) exhibit quantitative differences, the causes of which are
probably due to the fact that the theoretical model is not reproducing the phase diagram
quantitatively, there is good qualitative agreement of the interfacial structure of the ionic
complex fluid.

In Ref. [43] critical adsorption at a wall with a strong surface field h and with surface
charge density σ is investigated. The case is considered that in the bulk the binary liquid
mixture is at the critical bulk composition φb = φc in the presence of salt with bulk ionic
strength ̺±b ≡ I = Ic. A surface field h > 0 (h < 0) favours the adsorption of A (B)
particles and leads to a local segregation. In order to obtain an analytical expression
for the excess adsorption Γ(ξ), which captures the full mean-field behaviour to leading
order close to the critical point (ξ → ∞), the density functional Eq. (2.1) is expanded
in two steps in order to derive a Ginzburg-Landau-type description. In the first step the
density functional Ω[φ, ̺±] is expanded up to second order in the deviations ∆̺±(z) :=
̺±(z) − I of the ion densities from their bulk equilibrium values I = Ic. This leads to a
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density functional Ω1[φ,∆̺±]. Minimising Ω1[φ,∆̺±] with respect to ∆̺± renders Euler-
Lagrange equations linear in ∆̺±(z), the solutions of which are functionals ∆̺∗±(z, [φ]) of
the (up to here unknown) solvent composition profile φ. Inserting the solutions ∆̺∗±(z, [φ])
into the density functional Ω1[φ,∆̺±] and, as the second step, expanding Ω1[φ,∆̺

∗
±[φ]]

up to fourth order in the order parameter deviations ϕ(z) := φ(z) − φc leads to the
Ginzburg-Landau-type functional (compare Eq. (4.105)) [43]

H[ϕ]

A
=

∫ ∞

0

dz
(
a
(
ϕ(z)

)2
+ b

(
ϕ(z)

)4
+ c

(
ϕ′(z)

)2
+ U(z)ϕ(z)

)
− hϕ(0) +O((∆γ)2),

(4.55)

where the effective “external” field

U(z) = −κσ∆γ

2
exp(−κz)− 2πℓBσ

2ε′(φc)

(ε(φc))2
exp(−2κz) (4.56)

describes the influence of surface charges σ on the order parameter ϕ. The first term on
the right-hand side of Eq. (4.56) is due to the ion solubility whereas the second term is
due to the dielectric properties of the solvent. Solving perturbatively to first order in U
the Euler-Lagrange equation, obtained from H/A in Eq. (4.55), leads to the equilibrium
order parameter profile ϕeq(z; ξ).

At the critical point (ξ = ∞) and far away from the substrate the equilibrium order
parameter profile ϕeq(z; ξ =∞) decays as [43]

ϕeq(z →∞; ξ =∞) =
sign(h)

2z
+
(
− sign(h)

2
+

9σ∆γ

10κ3
+

9πℓBσ
2ε′(φc)

40κ4(ε(φc))2

) 1

z2
+O(z−3).

(4.57)

The leading contribution sign(h)

√
c/b

z
can be written in the scaling form

sign(h)m0c+(z/ξ+0 )−β/ν with the universal amplitude c+ =
√

2 [141], where the criti-
cal exponents take their mean-field values β = ν = 1

2
[349]. Accordingly, the leading term

in Eq. (4.57) is not affected by the surface charge, the presence of ions or the dielectric
properties of the solvent. However, these materials properties do modify the amplitude
of the subleading contribution (∼ 1/z2).

Close to the critical point (ξ →∞) the excess adsorption Γ(ξ) =
∞∫
0

dz ϕeq(z; ξ) with the

perturbatively obtained profile ϕeq(z; ξ) (see above) is given by [43]

Γ(ξ) = Γ0(ξ) + Γ1(ξ) +O(1/ξ) (4.58)

with

Γ0(ξ) :=
sign(h)

2
ln(2ξ) (4.59)

and

Γ1(ξ) :=
3σ∆γ

8κ2
+

3πℓBσ
2ε′(φc)

16κ3(ε(φc))2
. (4.60)

The leading contribution sign(h)

√
c

b
ln(ξ) can be written in the scaling form ≃

sign(h)m0ξ
+
0 g+(− ln(|t|)) with the universal amplitude g+ =

√
2ν = 1/

√
2 within mean-

field theory [141]. Γ0(ξ) diverges for ξ →∞ whereas Γ1(ξ) remains finite and thus repre-
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Figure 4.22: Comparison of the numerically calculated excess adsorption Γ(ξ) obtained
within the full model (•) (see Sec. 2.1) with the predictions of Eq. (4.58) for the parameters
used in Fig. 4.20 with h = 1. The Debye length κ−1 (marked by an arrow) corresponds

to a bulk ionic strength Ĩ = 10 mM. The term Γ0(ξ) (dotted line, see Eq. (4.59)), which
contains the leading contribution to the excess adsorption and which corresponds to a
vanishing surface charge density (σ = 0), exhibits visible deviations from the numerical
results (•); nonetheless Γ1(ξ)/Γ0(ξ) → 0 for ξ → ∞. Taking into account in addition
the term Γ1(ξ) (see Eq. (4.60)), which exhibits a dependence on the surface charge σ,
quantitative agreement is found between Γ0(ξ) + Γ1(ξ) (solid line) and the numerical
results (•) in the limit ξ → ∞. This finding also implies that those terms which have
been left out upon deriving Eq. (4.55) do not contribute detectably. (See Ref. [43])

sents the first subdominant correction. Figure 4.22 compares the predictions of Eq. (4.58)
with the results obtained by numerically calculating the excess adsorption within the full
model (•) for the parameters used in Fig. 4.20 with h = 1, in particular for large ξ.
Whereas the leading contribution Γ0(ξ) in Eq. (4.59) itself (dotted line) deviates visibly
from the full numerical results (•), there is quantitative agreement between the latter and
Γ0(ξ) + Γ1(ξ) (solid line) in the limit ξ → ∞. Since Γ0(ξ) corresponds to a vanishing
surface charge (σ = 0), the difference between the dotted and the full line in Fig. 4.22
demonstrates the influence of electrostatic interactions on the excess adsorption. The
quantitative agreement of Γ0(ξ) + Γ1(ξ) (solid line) with the numerical results (•) indi-
cates that the terms neglected upon deriving Eq. (4.55) do not contribute detectably to
the leading and the first subleading behaviour of Γ(ξ → ∞). Moreover, for the given
choice of parameters the magnitude of the correction |O(1/ξ)| in Eq. (4.58) turns out to
be smaller than |Γ1(ξ)|, which in turn vanishes relative to Γ(ξ →∞).

Critical adsorption occurs upon approaching the critical point (ξ → ∞), where the
excess adsorption diverges as Γ ∼ ln ξ, which is in agreement with the expected uni-
versal scaling behaviour Γ ∼ ξ1−β/ν [107, 141] for the classical exponents β = ν = 1/2
corresponding to the present mean-field theory. It is apparent from Eq. (4.58) that the
leading contribution Γ0 is not altered by the surface charge, the presence of ions or the
dielectric properties of the solvent. However, these non-universal properties do influence
the subleading contribution Γ1.

The adsorption of critical water+2,6-dimethylpyridine mixtures with KBr of various
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ionic strengths I has been investigated by means of surface plasmon resonance [317]. For
the case of a hydrophobic wall the excess adsorption turned out to be practically indepen-
dent of the ionic strength. This is in agreement with Eq. (4.58) because a hydrophobic
wall is only weakly charged [384] such that the second and third terms on the right-hand
side of Eq. (4.58) are negligibly small.

For the case of a hydrophilic, negatively charged (σ < 0) wall a decrease of the ad-
sorption of water has been measured upon adding salt [317]. Hydrophilic walls can be
expected to be strongly charged [26] such that σ = sign(σ)σsat with the saturation surface
charge density σsat = κε(φc)/(πℓB) [54]. In this case from Eq. (4.58) one obtains [43]

∂Γ

∂I
= − 3

4κ3

(
2 sign(σ)∆γ +

ε′(φc)

ε(φc)

)
. (4.61)

Equation (4.61) assumes only a weak dependence of φc (and thus of ∆γ and of ε(φc)) on

the ionic strength I so that the derivative
dφc

dI
does not appear (see Fig. 2.3(a)).

If 2,6-dimethylpyridine is denoted as the A component and water as the B component
of the binary liquid mixture (i.e. Γ measures the excess of 2,6-dimethylpyridine), at the
lower critical demixing point an experimental value of ε′/ε ≈ −1.2 is found [222, 270].
For this mixture the solubility contrasts for KBr are f+ ≈ 2.5 and f− ≈ 8.4 [208] which
leads to f+ − f− ≈ −5.9 and ∆γ ≈ −0.30. Within LDA Eq. (2.3), from these numbers
one finds ∂Γ/∂I > 0 (i.e. decreasing water adsorption upon adding salt), and the second
(dielectric) contribution on the right-hand side of Eq. (4.61) dominates. In contrast,
within BCA one has ∂Γ(BCA)/∂I < 0 (i.e. increasing water adsorption upon adding salt),
because ∆γ ≈ f+−f− leads to a dominance of the first (ion solubility) contribution on the
right-hand side of Eq. (4.61). Hence the overestimation of the ion-solvent coupling within
BCA leads to a sign of ∂Γ(BCA)/∂I which is not compatible with the aforementioned
experimental findings in Ref. [317], whereas the sign of ∂Γ/∂I within the present LDA is
in agreement with these findings [43]. Since the dielectric properties are experimentally
accessible one could use Eq. (4.61) to determine ∆γ from measurements of the excess
adsorption Γ, e.g. by means of ellipsometry, second harmonic generation (SHG), sum
frequency generation (SFG) or the small angle scattering scattering of X-rays (SAXS)
or neutrons (SANS) [21, 109], as a function of the ionic strength I. A comparison of
this resulting value for ∆γ with the difference f+ − f− of the Gibbs free energies of
transfer (inferred, e.g. from electrochemical methods) would be a direct way to probe
quantitatively the difference between the LDA and the BCA.

In order to further assess the influence of solvation properties by testing the different
predictions following from BCA and LDA additional adsorption measurements for hy-
drophilic walls have been suggested in Ref. [43]. For KBr as salt the arguments above
lead to the assertions that, within LDA, one has ∂Γ/∂I > 0 (i.e. decreasing water adsorp-
tion upon adding salt) independently of the sign of the surface charge σ (because the last
term on the right-hand side of Eq. (4.61) dominates), whereas within BCA ∂Γ(BCA)/∂I is
expected to change sign upon changing the sign of σ (because the first term on the right-
hand side of Eq. (4.61) dominates). More interestingly, using an antagonistic electrolyte
(i.e. with f+ and f− having opposite signs) such as HBr (f+ ≈ −11.2, f− ≈ 8.4 [208], i.e.
∆γ ≈ −4) the first (ion solubility) contribution on the right-hand side of Eq. (4.61) is
dominating such that ∂Γ/∂I and σ are expected to have the same sign [43]. In this case,
upon adding salt, the amount of adsorbed water either decreases or increases depending
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on the sign of the surface charge. This is in contrast to electrowetting where the water
adsorption increases with the magnitude but independent of the sign of the surface charge
[309] (see Sec. 4.4). Within the BCA approach of Ref. [401] the difference for cations and
anions with respect to their solubility contrasts in the two pure solvent components is
neglected (i.e. f+ = f− ≫ 1 so that ∆γ = 0) to the effect that the reported capillary
condensation-like adsorption of water between two equally charged walls at variable dis-
tance should be independent of the sign of the surface charge. The analysis above implies
that the same property is expected to occur for sufficiently small values of |∆γ|, but the
adsorption may depend on the sign of the surface charge if |∆γ| becomes of the order
unity. These differences between BCA- and LDA-based approaches highlight the impor-
tance of solubility for numerous quantitative and sometimes even qualitative properties
of ionic complex fluids.

4.4 Electrowetting

Since the pioneering work of Lippmann [272] and Pellat [350, 351] on the influence of elec-
trostatic potentials on the wetting of substrates by fluids, electrowetting has been simul-
taneously studied to address fundamental issues of surface science, e.g. electrocapillarity
[164], the structure of solid-fluid interfaces [417] or the characterisation of surface states
[195], as well as to develop novel applications, e.g. driving, mixing or shaping of droplets
in lab-on-a-chip devices, optical applications or microelectromechanical systems [309]. In
the past electrowetting at low voltages was commonly interpreted as an electrocapillarity
effect, i.e. it is assumed to hinge on the voltage-dependence of the substrate-fluid inter-
facial tension [30, 51, 88, 93, 221, 232, 309, 350, 351, 370, 371, 411, 416, 417, 438, 469].
A justification for this approach is frequently given in terms of the vast experimental
evidence for systems of uncoated and hydrophobically coated electrodes.

An alternative approach to understand electrowetting in terms of general wetting phe-
nomena [107] described by classical microscopic density functional theory, within which
one has access to the interfacial structure of fluids in terms of non-uniform number density
profiles, has been proposed in Ref. [45]. For example, the contact angle between a fluid-
fluid interface and a substrate surface can be calculated from the number density profiles in
the two coexisting fluid phases which form the fluid-fluid interface. Hence electrowetting,
i.e. the dependence of the contact angle on the electrostatic substrate potential, monitors
the voltage-dependence of the number density profiles, i.e. of the interfacial structure, in
both fluid phases. However, it turned out that the commonly given derivations of the
electrowetting equation [309] are incorrect in that they express the contact angle in terms
of fluid-substrate interfacial tensions, which are descriptors of the interfacial structure of
a single fluid phase in thermodynamic contact with a substrate. In the past it has been
overlooked that the interfacial structure, and thus interfacial quantities, of a fluid can
change upon bringing it into contact with another fluid. Although the interfacial struc-
ture of fluids close to substrates has been deeply examined in the surface science literature
[3, 78, 79, 197, 198, 281, 282], its properties seem to be largely ignored in the context of
electrowetting until recently. By ignoring structural differences which occur at substrate-
fluid interfaces upon bringing two fluids in simultaneous contact with a substrate, one
can interpret electrowetting as a consequence of voltage-dependent interfacial tensions,
which is referred to as the electrocapillarity approach to electrowetting in the follow-
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Figure 4.23: Pellat’s setup [350, 351] of electrocapillary rise of a fluid F1 in a vertical
parallel plate capacitor of width L initially filled with a fluid F2. The meniscus height h
is related to the contact angles ϑ+ and ϑ− by Eq. (4.63). Electrowetting corresponds to a
dependence of ϑ+ and ϑ−, and hence of h, on the voltage U between the plate electrodes.
A closeup of the three-phase contact region marked by the dashed box is depicted in
Fig. 4.24. (See Ref. [45])

ing. However, it turned out that electrowetting cannot be consistently understood as an
electrocapillarity effect [45]. Alternative approaches to interpret electrowetting as a line
tension effect have been proposed [110] but some of the predictions were in disagreement
with experimental data [369].

The approach used in Ref. [45] is to study electrowetting in terms of the the effective
interface potential, which is related to the macroscopic contact angle [107]. Whereas
wetting transitions are concerned with the thickness of wetting films (see Sec. 4.2), the
contact angle is related to the depth of the effective interface potential, which always
vanishes continuously at wetting transitions [107]. It is convenient to consider Pellat’s
classical setup of a vertical parallel plate capacitor [350, 351] because its geometry is pre-
cisely defined, an issue which has been recently raised in a critical discussion of the more
common setup of a droplet on a substrate with the counter electrode being a thin wire
[232]. Although being based on a misconception, the classical derivation of the electrowet-
ting equation within the electrocapillarity approach seems to be a good approximation
for systems investigated up to now, i.e. uncoated or hydrophobically coated electrodes.
However, setups have been proposed for which this is not the case [45].

Consider Pellat’s classical setup [350, 351] depicted in Fig. 4.23. A vertical parallel
plate capacitor of width L is in contact with two immiscible fluids F1 and F2 of mass
densities ̺m1 and ̺m2, respectively. At least one of the fluids F1 and F2 is assumed to
be an electrolyte solution. It is further assumed that ̺m1 > ̺m2 so that both fluids
are separated in the gravitational field with F1 being the lower and F2 being the upper
phase (see Fig. 4.23). Provided the capacitor width L is smaller than the capillary length
[95, 246, 382]

λ =

√
γ12

(̺m1 − ̺m2)g
(4.62)

with the F1-F2 interfacial tension γ12 and the acceleration due to gravity g, the contact
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Figure 4.24: Closeup of the possible geometries of the three-phase contact region formed
by the anodic substrate S+ (and similarly for the the cathodic substrate S−) and two
immiscible fluids F1 and F2 marked by the dashed box in Fig. 4.23. The fluid which is
preferred by the substrates S± is denoted by A, whereas the other, less preferred fluid
is called B. Panel (a) corresponds to the case of an F1-adsorbing (A = F1) substrate
S+, while panel (b) displays the case of an F2-adsorbing (A = F2) substrate S+. Here
it is assumed that both substrates S+ and S− prefer the same fluid. The macroscopic
contact angle ϑ+ (ϑ−) shown in Fig. 4.23 describes the asymptotic inclination of the F1-F2

interface far away from the substrate S+ (S−), whereas close to the substrate S+ (S−) a
film of microscopic thickness ℓ+ (ℓ−) of the preferred fluid A is formed. (See Ref. [45])

angles ϑ+ and ϑ− of phase F1 are related to the meniscus height h by [95, 246, 382]

cosϑ+ + cosϑ− ≃
hL

λ2
for L≪ λ. (4.63)

Depending on the interactions of the fluids F1, F2 and the substrates S+, S−, which are
metal electrodes (represented by the hatched parts in Fig. 4.23) possibly coated with some
dielectric (represented by yellow layers on top of the electrodes in Fig. 4.23), the respective
contact angles ϑ+ and ϑ− can be smaller or larger than π/2, which corresponds to positive
or negative contributions to the meniscus height h. Electrowetting can be detected as the
dependence of the contact angles ϑ+(U) and ϑ−(U), and in turn, via Eq. (4.63), of the
meniscus height h(U), on the electrostatic potential difference U = Ψ+ − Ψ− applied
between the electrodes.

The contact angles ϑ+ and ϑ− in Fig. 4.23 provide a macroscopic description of the fluid-
fluid-substrate three-phase contact region (highlighted by the dashed box in Fig. 4.23 for
the anodic substrate S+). According to the chemical properties of the fluids and the
substrates, the contact of substrate S± with one fluid, henceforth denoted by fluid A,
is more preferable than with the other fluid, henceforth denoted by fluid B. Here it is
assumed that both substrates are chemically equal such that either fluid F1 or fluid F2 is
preferred by both substrates S+ and S−. Consequently, if substrate S± is macroscopically
in contact with the bulk of the less preferred fluid B and if the thermodynamic state is
away from wetting transitions such that the substrate is only partially wet by phase A, a
film of microscopic extension ℓ± > ξ composed of the preferred fluid A forms in between
substrate S± and the bulk of fluid B [107], where ξ denotes the bulk correlation length,
which is of the order of the particle size if the thermodynamic state is away from critical



114 Interfacial properties

points. The microscopic film thickness is experimentally accessible via measurements of
the excess adsorption Γ± by means of optical [21] or scattering [109] techniques. Then the
fluid structure is similar to that of a composition of an S±-A interface at the substrate
surface and a free A-B interface at a distance ℓ± away from the substrate, both being
of typical extension ξ [107]. This structure leads to a surface contribution Ωs,±B(ℓ±) =
γ±A+γ12+ω±(ℓ±) to the grand potential of the system, where γ±A and γ12 denote the S±-
A and F1-F2 interfacial tensions, respectively, and where ω±(ℓ±) is the effective interface
potential [107]. It is important to distinguish Ωs,±B from the interfacial tension γ±B of an
S±-B interface in the absence of phase A [45]. Here Ωs,±B 6= γ±B because the presence
of the preferred phase A leads to a structural change, i.e. the formation of A-films, as
compared to the situation in the absence of phase A. Ignoring the difference between
Ωs,±B and γ±B is equivalent to ignoring the formation of A-films and it is this crucial
misconception which underlies the electrocapillarity approach to electrowetting [45]. In
contrast, if substrate S± is in contact with the bulk of the preferred fluid A, the fluid is
non-uniform only close to the substrate surfaces up to distances ξ, and this interfacial
structure is not modified by the presence of fluid B, hence Ωs,±A = γ±A. Depending on
whether the preferred fluid A is fluid F1 or fluid F2 the substrates S± are referred to as F1-
adsorbing or F2-adsorbing, respectively. A closeup of the fluid-fluid-substrate three-phase
contact region close to substrate S+ marked by the dashed box in Fig. 4.23 is sketched
respectively in Figs. 4.24(a) and (b) for an F1-adsorbing (A = F1) and an F2-adsorbing
(A = F2) substrate.

The macroscopic contact angle ϑ± (see Fig. 4.24) is related to the surface contributions
Ωs,±1, Ωs,±2 and the interfacial tension γ12 of the S±-F1, S±-F2, and F1-F2 interface,
respectively, by Young’s equation [95, 246, 382]

Ωs,±2 = Ωs,±1 + γ12 cosϑ±. (4.64)

It is common to assume Ωs,±α = γs,±α, α ∈ {F1, F2}, but this misconception to ignore the
structural differences of a macroscopic S±-α contact in the presence and in the absence of
additional phases can have significant consequences [45]. The surface contributions Ωs,±1

and Ωs,±2 are related to the depth of the effective interface potential ω+(ℓ) evaluated at
the equilibrium film thickness ℓ = ℓ± by [107]

Ωs,±1 = γ±1, Ωs,±2 = γ±1 + γ12 + ω±(ℓ±) (4.65)

for F1-adsorbing substrates S± (see above the three-phase contact region in Fig. 4.24(a))
and by

Ωs,±1 = γs,±2 + γ12 + ω±(ℓ±), Ωs,±2 = γs,±2 (4.66)

for F2-adsorbing substrates S± (see below the three-phase contact region in Fig. 4.24(b)).
Hence, one obtains [107]

cosϑ± =
Ωs,±2 − Ωs,±1

γ12
= p

(
1 +

ω±(ℓ±)

γ12

)
, (4.67)

where p = +1 for F1-adsorbing and p = −1 for F2-adsorbing substrates S±. This equation
connects the macroscopic contact angle ϑ± with the microscopic structure represented by
the effective interface potential ω±(ℓ) of A-films at substrate S± in macroscopic contact
with bulk fluid B [45].
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Figure 4.25: (a) Far above (Fig. 4.24(a)) or below (Fig. 4.24(b)) the three-phase contact
regions (see Fig. 4.23) the dielectric substrates S+ and S− of thickness d and distance L
are covered by films of the preferred fluid A of microscopic thicknesses ℓ±, which separate
the substrates from the bulk of the less preferred fluid B. (b) Since the separation L
between the substrates S+ and S− is typically the largest length scale, one can consider
the limit L → ∞, which renders the effective interface potential ω±(ℓ) at substrate S±

that of a semi-infinite system. A coordinate axis normal to each substrate is introduced
with the origin z = 0 at the surface and the fluids in the range z > 0. The interface
between the A-film and the bulk fluid B is located at z = ℓ± and the electrode is at
position z = −d, where the electrostatic potential is Ψ± and the surface charge density is
σ±. (See Ref. [45])

The dependence of the effective interface potentials ω±(ℓ±;U) on the electrostatic po-
tential difference U between the electrodes in the setting of Fig. 4.23, together with
Eq. (4.67), leads to the electrowetting equations. However, already without explicit ex-
pressions for the effective interface potentials, one can draw an important conceptual
conclusion from Eq. (4.67): Electrowetting is not an electrocapillarity effect, since no U -
dependent substrate-fluid interfacial tensions, which describe the contact of the substrate
with one fluid, occur on the right-hand side. Instead, electrowetting is related to the
depth of the effective interface potential ω±(ℓ;U), which describes the U -dependence of
the microscopic fluid structure close to the substrate in the presence of two fluids [45].

In order to obtain the effective interface potential ω±(ℓ) of an A-film of thickness ℓ
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at substrate S± in Fig. 4.23, whose value for the equilibrium film thicknesses ℓ = ℓ±
is related to the contact angle ϑ± via Eq. (4.67), one may represent the structure in
Fig. 4.23 far above (for an F1-adsorbing substrate S±, see Fig. 4.24(a)) or below (for an
F2-adsorbing substrate S±, see Fig. 4.24(b)) the three-phase contact region by the quasi-
one-dimensional slab depicted in Fig. 4.25(a). The chemically identical substrates S+

and S−, which comprise metal electrodes coated with dielectric layers of thickness d, are
separated by a distance L and covered with films of thicknesses ℓ+ and ℓ−, respectively,
of the preferred fluid A. Moreover, the electrodes are assumed to be ideally polarised, i.e.
electrochemical reactions do not occur. Even under these conditions the film thicknesses
ℓ+ and ℓ− can differ, if unequal partitioning of ions at the film-bulk fluid interfaces takes
place. This is expected to occur in general due to generic differences in solubility contrasts
[43] (see Sec. 2.1). The macroscopic distance L between the substrates is typically the
largest length scale such that only the limit L→∞ is considered in the following. Hence
the effective interface potentials ω+(ℓ) and ω−(ℓ) at the substrates S+ and S−, respectively,
are those of semi-infinite systems. For each substrate S± a coordinate axis in normal
direction with the origin z = 0 at the substrate surface and the fluid at z > 0 is introduced
(see Fig. 4.25(b)). The interface between the A-film and the bulk of phase B is located
at position z = ℓ± and the electrode is at z = −d, where the electrostatic potential is Ψ±

and the surface charge density is σ±.
Considering the two bulk phases of fluids F1 and F2 outside the capacitor in Fig. 4.23

as particle reservoirs, one is naturally led to a grand-canonical description of the ther-
modynamic state. A starting point for the derivation of the effective interface potential
ω±(ℓ) is the grand potential functional per thermal energy kBT = 1/β and per area A of
the electrode [45]

βΩ[φ, ̺±]

A =
βΩ0[φ]

A +
βdD(0)2

2εvacεS
− βΨ±D(0)

+

∞∫

0

dz

[∑

i=±

̺i(z)

(
ln
̺i(z)

ζi
− 1 + βVi(φ(z))

)
+

βD(z)2

2εvacε(φ(z))

]
(4.68)

in terms of the solvent composition profile φ and the ±-ion number density profiles ̺±.
Here the permittivity εvac of the vacuum, the relative permittivity εS of the substrate S±,
and the fugacities ζ± of ±-ions are used. The density functional Ω0[φ] describes the grand
potential of the pure, i.e. salt-free fluids, and D(z) is the electric displacement.

For films of thicknesses ℓ± > ξ it is natural to approximate the solvent composition
profile φ in Eq. (4.68) within the sharp-kink approximation [107]

ϕℓ(z) :=

{
φ̄A, z < ℓ

φ̄B, z > ℓ.
(4.69)

By minimising βΩ[ϕℓ,∆̺±]/A in Eq. (4.68) with respect to the deviations ∆̺±(z) of

the ion densities ̺±(z) from the ionic strength one obtains the equilibrium profiles ∆̺
(ℓ)
± .

Subtracting the bulk contribution βΩb(φ̄B, IB)/A leads to the surface contribution to the
grand potential [107]

Ωs(ℓ) =
Ω(ℓ, [∆̺

(ℓ)
± ])− Ωb(φ̄B, IB)

A . (4.70)
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Finally, the effective interface potential at substrate S± is given by ω±(ℓ) = Ωs(ℓ)−Ωs(∞)
[107]. Hence, Eq. (4.67) can be written as [309]

cos ϑ±(U) = cosϑ±(0) + η±(U) (4.71)

with the electrowetting number [45]

η±(U) := p
ω±(ℓ±;U)− ω±(ℓ±; 0)

γ12
. (4.72)

Whereas the full expression for the electrowetting number η±(U) depends on the five
possibly largely different length scales λA := 1/(κAεA), λB := 1/(κBεB), λS := d/εS and
λℓ± := ℓ±/εA, where κ2α := 2βe2Iα/(εvacεα) is the square of the inverse Debye length in the
bulk of phase α ∈ {A,B}, the latter two, corresponding to the thicknesses of the A-films
at the substrates S+ and S−, respectively, are typically of similar magnitude: ℓ+ ≈ ℓ−,
i.e. λℓ+ ≈ λℓ−. This case ℓ+ = ℓ− =: ℓ is discussed here, for which the electrowetting
number η±(U) simplifies to [45]

η±(U) =
p

γ12

(
A(ℓ)

8
U2 ± B(ℓ)

2

(A(ℓ)

F (ℓ)
+ 1

)
U

)
. (4.73)

Moreover, the film thicknesses ℓ+ and ℓ− are typically smaller than the Debye lengths
1/κA and 1/κB so that the limiting case λℓ ≪ λA, λB is considered throughout, within
which [45]

A(ℓ) ≃ εvac
Q(ℓ)

λB − λA
λB(λS + λA)

(4.74)

B(ℓ) = − εvac
Q(ℓ)

ψ̄A − ψ̄B

λB
(4.75)

F (ℓ) ≃ εvac
Q(ℓ)

(
λℓ
λ2A

+
1

λB

)
(4.76)

Q(ℓ) ≃ 1 +
λS
λB

+
λℓλS
λ2A

. (4.77)

Equation (4.73) is expected to be valid for sufficiently small voltages |U |. The elec-
trowetting number η±(U) in Eq. (4.73) differs from those in the literature [309] in a
number of aspects: The most obvious difference is the occurrence of a correction term
∼ U , which vanishes exactly only if B(ℓ) = 0 due to a vanishing Donnan potential (Gal-
vani potential difference [2, 20, 121, 122]) ψ̄A − ψ̄B. For ψ̄A − ψ̄B 6= 0, i.e. B(ℓ) 6= 0, the
electrowetting number η±(U) is not minimal at and not symmetric with respect to U = 0.
However, for a sufficiently large voltage |U | the subleading term ∼ U is dominated by the
leading term ∼ U2.

Before discussing the electrowetting number in Eq. (4.73) obtained within the density
functional approach of Ref. [45], the traditional approach based on the assumption of
electrowetting being an electrocapillarity effect [30, 51, 88, 93, 221, 232, 309, 350, 351,
370, 371, 411, 416, 417, 438, 469] is repeated. Here only the classical method based on
Lippmann’s equation is presented. However, calculations using alternative methods, e.g.
based on Maxwell’s stress tensor [224, 309], suffer from the same misconceptions.



118 Interfacial properties

The starting point is Young’s equation (4.64) but with the incorrect assumption Ωs,±α =
γ±α, α ∈ {F1, F2}. In order to obtain the U -dependence of the interfacial tension γ±α one
considers a semi-infinite fluid α bound by a planar substrate S±. The interfacial tension
γ±α changes upon changing the electrostatic potential ψ±α of substrate S± with respect
to that of the bulk of phase α according to Lippmann’s equation [164, 272]

∂γ±α

∂ψ±α
= −σ±α, (4.78)

where σ±α is the surface charge density of substrate S± in contact with phase α. De-
scribing the S±-α interface by means of the potential-independent differential capacitance
CSα = ∂σ±α/∂ψ±α, which is assumed to not depend on S± for chemically identical sub-
strates, and integrating twice with respect to the electrostatic substrate potential ψ±α

using Lippmann’s equation (4.78) leads to

γ±α(ψ±α) = γ±α(0)− CSα

2
ψ2
±α. (4.79)

Young’s equation (4.64) in conjunction with the assumption Ωs,±α = γ±α reads

γ±2(ψ±2) = γ±2(0)− CS2

2
ψ2
±2

= γ±1(ψ±1) + γ12 cosϑ±

= γ±1(0)− CS1

2
ψ2
±1 + γ12 cosϑ±. (4.80)

Noting γ±2(0)− γ±1(0) = γ12 cosϑ±(0) leads to

cosϑ± − cosϑ±(0) =
CS1

2γ12
ψ2
±1 −

CS2

2γ12
ψ2
±2. (4.81)

Using σ±α = CSαψ±α, one obtains ψ±α = ±U/2 from U = ψ+α−ψ−α and σ+α +σ−α = 0.
This leads to the commonly used form of the electrowetting equation [30, 51, 88, 93, 221,
224, 232, 309, 350, 351, 370, 371, 411, 416, 417, 438, 469]

cosϑ±(U)− cosϑ±(0) =
CS1 − CS2

8γ12
U2 =: ηec(U) (4.82)

with the differential capacitances CSα being those of a substrate in macroscopic con-
tact with only one fluid phase α. These differential capacitances CSα can typically
be interpreted as those of a capacitor of capacitance CS = εvacεS/d, representing sub-
strate S±, connected in series with a capacitor of capacitance Cα, representing fluid α:
1/CSα = 1/CS + 1/Cα. If fluid α is an electrolyte solution the fluid capacitance is that
of the electric double layer in a semi-infinite system, Cα = εvacκαεα, whereas for a non-
conducting dielectric fluid Cα = limL→∞ εvacεα/L = 0. Using the length scales defined
above, this leads to

CSα =





εvac
λS + λα

, α electrolyte solution

0, α non-conducting fluid.
(4.83)
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Equations (4.82) and (4.83) represent the interpretation of electrowetting as an electro-
capillarity effect [309]. However, the crucial misconception underlying this interpretation
is to use the approximation Ωs,±α = γ±α and hence the differential capacitance CSα, which
corresponds to a semi-infinite system of a single phase α bound by substrate S±, instead
of accounting for the actual fluid structure at the substrate. The interfacial structure,
and therefore surface quantities such as the surface contribution to the grand potential as
well as the differential capacitance, of substrate S± in macroscopic contact with the bulk
fluid B depend significantly on whether the preferred fluid A is present or not because an
A-film forms in between the substrate S± and the bulk fluid B in the former case whereas
it does not in the latter case. In contrast, these structural properties are naturally ac-
counted for within the density functional approach, which relates the contact angle to
the effective interface potential (see Eq. (4.67)), a quantity which correctly describes the
contact of a substrate with both fluids A and B [45].

The early investigations of electrocapillarity by Lippmann [272] and Pellat [350, 351]
have been performed for metal electrodes without any dielectric coating. At that time
for some decades mercury electrodes became the experimental standard for investigations
of the electric double layer [164]. Pure metal electrodes can be considered as substrates
with thickness d being the smallest length scale: λS ≪ λℓ ≪ λA, λB.

For the case λA ≪ λB, which is typically the case for water-adsorbing substrates, an
aqueous electrolyte solution F1 = A (i.e. p = +1) and an oil F2 = B, one obtains for the
electrowetting number Eq. (4.73)

η±(U) ≃ εvac
8γ12λA

U2 ∓ εvac(ψ̄A − ψ̄B)

2γ12(λA + λℓλB/λA)
U

≃ εvac
8γ12λA

U2, for |U | ≫ 4|ψ̄A − ψ̄B|. (4.84)

Hence, if the voltage |U | is much larger than the Donnan potential (Galvani potential
difference) |ψ̄A − ψ̄B|, the electrowetting number η±(U) agrees with that in Eq. (4.82),
where CS1 ≃ εvac/λA, CS2 = 0 due to Eq. (4.83).

Similarly, for the case λA ≫ λB, which is typically the case for oil-adsorbing substrates,
an oil F2 = A (i.e. p = −1) and an aqueous electrolyte solution F1 = B, one obtains for
the electrowetting number Eq. (4.73)

η±(U) ≃ εvac
8γ12λB

U2 ± εvac(ψ̄A − ψ̄B)

2γ12λA
U

≃ εvac
8γ12λB

U2, for |U | ≫ 4|ψ̄A − ψ̄B|. (4.85)

Again, if the voltage |U | is much larger than the Donnan potential (Galvani potential dif-
ference) |ψ̄A− ψ̄B|, the electrowetting number η±(U) again agrees with that in Eq. (4.82),
where CS1 ≃ εvac/λB, CS2 = 0 due to Eq. (4.83).

Therefore, the formalism (Eqs. (4.73)–(4.77)) confirms the electrocapillarity-based form
of the electrowetting number for the case of uncoated metal electrodes (η±(U) ≃ ηec(U)),
provided the voltage |U | is sufficiently large as compared to the Donnan potential (Galvani
potential difference) |ψ̄A− ψ̄B |. Interestingly, for uncoated metal electrodes it is irrelevant
whether they are F1-adsorbing (water-adsorbing) or F2-adsorbing (oil-adsorbing).

However, a small voltage |U | ≪ |ψ̄A−ψ̄B | or λA ≈ λB, e.g. for two immiscible electrolyte
solutions, leads to electrowetting numbers η±(U) ∼ U , in contrast to ηec(U) ≈ 0 in
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Eq. (4.82) due to CS1 ≈ CS2 according to Eq. (4.83). Since these conditions are rather
special, this scenario is not expected to be of practical relevance, but it might provide a
test for the approach in Ref. [45].

In the last few decades most electrowetting settings used electrodes coated with an
isolating dielectric for technical advantage [30]. Almost all of these studies used drops
of an aqueous electrolyte solution F1 placed on a hydrophobic (ϑ± > π/2) dielectric and
an oil F2 as the environmental fluid in order to achieve large contact angle ranges being
covered by electrowetting [309]. Therefore, typically oil-adsorbing substrates are used,
which, within the present notation, corresponds to A = F2 (i.e. p = −1) and B = F1.
Since the thickness ℓ of the microscopic oil film on the substrates S± is typically smaller
than the Debye length 1/κB of the dilute electrolyte solution B = F1, which in turn is
typically much smaller than the thickness d of the dielectric substrates S±, one identifies
the case λℓ ≪ λB ≪ λS ≪ λA, where a (practically) ion-free oil A = F2 (IA ≈ 0) is
assumed. For this regime Eq. (4.73) is given by [45]

η±(U) ≃ εvac
8γ12λS

U2 ± εvac(ψ̄A − ψ̄B)

2γ12λA
U (4.86)

≃ εvac
8γ12λS

U2, for |U | ≫ 4
λS
λA
|ψ̄A − ψ̄B|.

Since λS/λA ≪ 1, the approximation in the second line of the previous equation almost
always applies. It shows that the electrowetting number η±(U) for water on a oil-adsorbing
dielectric in oil is also in agreement with ηec(U) in Eq. (4.82) with CS1 ≃ εvac/λS, CS2 = 0
due to Eq. (4.83).

Replacing the oil-adsorbing dielectric substrate by a water-adsorbing one leads to the
case A = F1 (i.e. p = +1), B = F2 and λℓ ≪ λA ≪ λS ≪ λB, where again a (practically)
ion-free oil B = F2 (IB ≈ 0) is assumed. For this regime Eq. (4.73) is of the form [45]

η±(U) ≃ 1

Q(ℓ)

(
εvac

8γ12λS
U2 ∓ εvac(ψ̄A − ψ̄B)

2γ12λB

( 1

λS(λℓ/λ
2
A + 1/λB)

+ 1
)
U

)
(4.87)

≃ 1

Q(ℓ)

εvac
8γ12λS

U2, for |U | ≫ 4|ψ̄A − ψ̄B|.

Within the electrocapillarity approach one again expects an electrowetting number
ηec(U) = εvacU

2/(8γ12λS) (see Eqs. (4.82) and (4.83)). However, the electrowetting
number η±(U) within the density functional approach in Eq. (4.87), for sufficiently
large voltage |U | ≫ 4|ψ̄A − ψ̄B|, is actually smaller than ηec(U) by a factor 1/Q(ℓ):
η±(U) ≃ ηec(U)/Q(ℓ).

It is apparent from Eq. (4.77) that Q(ℓ) is not necessarily close to unity, because
the typically small value κAℓ = λℓ/λA ≪ 1 is multiplied with the typically large value
κAdεA/εS = λS/λA ≫ 1. Assuming typical values of, e.g., dielectric layers of thicknesses
d = 1 µm and dielectric constant εS = 2, a Debye length 1/κA = 10 nm in the aqueous
(εA = 80) electrolyte solution F1 = A, and thicknesses ℓ = 1 nm of the electrolyte films on
the substrates, Eq. (4.77) leads to Q(ℓ) ≈ 400. Hence, for this example of electrowetting
on a water-adsorbing dielectric, the analysis leads to electrowetting numbers η±(U) which
are more than two orders of magnitude smaller than expected within the electrocapillarity
approach: η±(U) ≈ 0.0025ηec(U)≪ ηec(U).
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It appears as if no experimental studies of electrowetting on water-adsorbing substrates
have been reported so far. This is remarkable since the preparation of substrates with
prescribed adsorption preferences is a standard procedure in surface science.

Finally, instead of considering an electrolyte solution and an oil, the case of two immisci-
ble electrolyte solutions is discussed. This situation is characterised by λℓ ≪ λA, λB ≪ λS.

If electrolyte solutions F1 and F2 are defined by λF1 ≤ λF2, i.e. εF1IF1 ≥ εF2IF2, the
following three cases have to be distinguished: (i) A = F1 (i.e. p = +1) and B = F2 with
λA ≪ λB, (ii) A = F2 (i.e. p = −1) and B = F1 with λA ≫ λB and (iii) λA ≈ λB.

Case (i) leads to the electrowetting number Eq. (4.73) [45]

η±(U) ≃ 1

Q(ℓ)

(
εvac

8γ12λS
U2 ∓ εvac(ψ̄A − ψ̄B)

2γ12λB
U

)
(4.88)

≃ 1

Q(ℓ)

εvac
8γ12λS

U2, for |U | ≫ 4
λS
λB
|ψ̄A − ψ̄B|.

Hence η±(U) ≃ ηec/Q(ℓ), where, however, the depression factor 1/Q(ℓ) here is typically
much smaller than that for before because typically εBκBd/εS ≫ 1 (see Eqs. (4.77)).

The electrowetting number of case (ii) is given by [45]

η±(U) ≃ λA
λS

(
εvac

8γ12λS
U2 ± εvac(ψ̄A − ψ̄B)

2γ12λA
U

)
(4.89)

≃ λA
λS

εvac
8γ12λS

U2, for |U | ≫ 4
λS
λA
|ψ̄A − ψ̄B|.

This expression bears some resemblance to Eq. (4.86) except of the typically very small
prefactor λA/λS ≪ 1 here.

Therefore, electrowetting is also expected to be strongly suppressed for two immiscible
electrolyte solutions with εF1IF1 6≈ εF2IF2, a condition which is typically fulfilled.

For completeness the rather special case (iii) is mentioned, for which the electrowetting
number reads

η±(U) ≃ ∓pεvac(ψ̄A − ψ̄B)

2γ12λS
U. (4.90)

The main conclusion is that that electrowetting is a consequence not of the voltage-
dependence of the substrate-fluid interfacial tensions, i.e. electrowetting is not an elec-
trocapillarity effect, but of the voltage-dependence of the depth of the effective interface
potential. The traditional electrocapillarity approach to electrowetting is shown to be
compromised by the reliance on the incorrect assumption that the surface structure of a
fluid does not change upon bringing the system into contact with another fluid phase.

The analysis in Ref. [45] of Pellat’s setup for electrowetting studies leads to effectively
four length scales corresponding to the Debye lengths in both fluids, the thickness of the
substrates and the film thicknesses, the latter being assumed to be approximately equal
here, which serve to classify various relevant experimental situations, e.g. uncoated metal
electrodes, water- or oil-adsorbing dielectric substrates or fluids comprising water+oil sys-
tems or immiscible electrolyte solutions. The dependence of the electrowetting number on
these length scales renders electrowetting a general phenomenon with involved structure
formation mechanisms of the underlying ionic complex fluid.
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4.5 Wetting properties of charged colloidal platelets

Platelike colloidal particles play a decisive, constitutive role in fields like agriculture (soil),
construction (concrete), filling (cosmetics, rubber, plastic, etc.), coating (paper) and oil-
drilling (rheological fluids for oilrecovery). This wide range of applicability mirrors a very
rich phase behaviour of suspensions of platelets, including liquid crystalline phases, sol-gel
transitions, aging and flocculation, depending on numerous parameters such as size, shape,
charge, polydispersity of the particles as well as on effective, solvent mediated interactions
which can be tuned, e.g. by the choice of the solvent, ionic strength or pH-value.

On the experimental side, characterisation of bulk phases have been conducted for
several model systems like natural clay [65, 249], laponite [148, 241, 266, 307, 308, 320,
321, 358, 362, 363, 386, 406], sterically stabilised gibbsite [439, 440, 442, 443, 451, 477]
or nickel(II)hydroxide [67, 68] using methods like polarised light analysis [148, 439, 440,
442, 443], light scattering [241, 320, 321], small-angle scattering with neutrons or x-rays
[67, 68, 241, 307, 355, 358, 406], rheological measurements [266, 307, 308] or NMR [362,
363]. For a review of these investigations see, e.g., Refs. [89, 316].

Computer simulations have been performed attempting to elucidate the experimental
findings. In the pioneering work by Veerman and Frenkel [447] NV T Monte Carlo sim-
ulations have been performed for a model of hard cut spheres in order to determine the
phase diagram, which exhibits isotropic, nematic, columnar, cubatic and solid phases, for
various aspect ratios. Later, the same model has been used for NpT Monte Carlo simu-
lations in Ref. [441] to study the influence of the gravitational field. In Ref. [111] NV T
Monte Carlo simulations of infinitely thin hard discs endowed with an electric quadrupolar
moment to mimic distributed charges led to the observation of sol-gel transitions. A more
elaborate model of hard discs with charges located in the equatorial plane has been used
in Ref. [298, 299] to determine the effective interaction between two colloidal particles
by means of NV T Monte Carlo simulations. By means of bead models of charged col-
loidal platelets studied with Brownian dynamics simulations T-shaped configurations and
a slowing down of self diffusion upon increasing the number density or the Debye length
has been found in Ref. [324]. Finally, an extremely rich phase behaviour with isotropic,
nematic, smectic, columnar, cubatic, parquet and solid phases has been found by means
of NpT Monte Carlo simulations of hard cuboids in Ref. [215].

Most theoretical work has been concentrated on the investigation of models of hard
platelets [34, 85, 143, 182, 381, 471, 472] and anisotropically charged discs [4, 82, 178,
180, 268, 376, 377, 380, 435] in spatially homogeneous configurations. However, some the-
oretical investigations of colloidal platelets with spatial inhomogeneities such as interfaces,
surfaces or due to external fields have been undertaken [34–36, 179, 181, 183, 305, 473].
Understanding the influence of surfaces is of particular importance as walls have a strong
influence on this sort of material and electrodes are a common means to manipulate flu-
ids of charged particles. An important theoretical step for understanding such surface
properties requires to determine the corresponding surface phase diagrams which are well
studied for simple fluids [94, 107, 407, 424] but less intensively for ionic complex fluids
involving charges and anisotropically shaped particles [36].

The theoretical description of suspensions of charged platelets is rather complicated due
to long-ranged, anisotropic interactions and many different length scales. Interfaces and
surfaces in such systems add further difficulties induced by the partial loss of translational
symmetry. Under these circumstances it is advisable to start with simplified models.
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Figure 4.26: Macroions M are square cuboids of size DM×DM×LM, DM 6= LM with charge
QM, whereas anions A and cations C are cubes of side length DS with charges QS and
−QS, respectively. The pointlike charges (•) are localized in the centers of the cuboids.
The macroions can adopt three possible orientations Mx, My, and Mz corresponding to
the LM-edges being parallel to the x-, y-, and z-axis, respectively. (See Refs. [35, 36])

In the presented one, the particles are modeled as hard cuboids with pointlike charges
concentrated in their center (see Fig. 4.26). Furthermore, the platelet orientations are
restricted to three mutually perpendicular directions, which is commonly known as the
Zwanzig model [492]. In Ref. [35] the density functional is constructed by functional
integration of the two-particle density with respect to the interaction potential [131],
which is the analogue to a Debye-charging process [91]. The two-particle density can
be obtained, e.g. by interaction site model calculations [178, 180] or expressed in terms
of the potential of mean force which may be approximated by effective pair potentials
[380, 415, 435]. For reasons of computational advantages one can resort to an extension of
the even simpler Debye-Hückel pair distribution function [91] in which the Debye screening
factor is replaced by a spatially varying quantity.

Consider a ternary mixture of charged hard square cuboids with their edges required
to be parallel to the Cartesian axes (Zwanzig model [492]) dissolved in a dielectric sol-
vent (e.g. water) with dielectric constant ε. The solvent is treated as a continuum. For
simplicity, the charges are fixed, monodisperse, and concentrated in the centers of the
particles. The particles of the first component, representing the macroions M, have size
DM × DM × LM, DM 6= LM, and charge QM ≤ 0. Within the Zwanzig approximation,
macroions can take three different orientations, denoted as Mx, My, or Mz corresponding
to whether the LM-edges are parallel to the x-, y-, or z-axis, respectively (see Fig. 4.26).
The second component consists of salt anions A modeled as cubes of side length DA := DS

and charge QA := QS < 0 (see Fig. 4.26). Finally, the third component consists of salt
cations C and counterions guaranteeing overall charge neutrality. They are also described
by cubes with the same side length DC := DS but opposite charge QC := −QS > 0 (see
Fig. 4.26).

The number densities at point r of the centers of macroions with orientation Mx,y,z,
anions, and cations are denoted by ̺i(r), i ∈ {Mx,My,Mz,A,C}, respectively. Note that
the position r ∈ V ⊆ R3, with V denoting the system volume, is a continuous variable
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in contrast to the orientation of macroions, which varies within a discrete set. As an
abbreviation, we introduce ̺(r) := (̺Mx(r), . . . , ̺C(r)).

The system under consideration is coupled to two particle reservoirs: One supplies neu-

tralised macroions (chemical formula CkM, k :=
QM

QS

) and the other neutral salt (chemical

formula CA); µCkM and µCA denote the corresponding chemical potentials. Upon entering
the solvent, these molecules dissociate:

CkM −→ kCQC + MQM , CA −→ CQC + AQA. (4.91)

These equilibrium chemical reactions lead to the following relations between the reser-
voir chemical potentials (µCkM and µCA) and the particle chemical potentials (µi, i ∈
{Mx,My,Mz,A,C}, µMx = µMy = µMz):

µCkM = kµC + µMx,y,z, µCA = µC + µA. (4.92)

The configurations of this system are characterised by the set of number density profiles
̺. The equilibrium states minimise the grand canonical density functional [131]

Ω[̺] =
∑

i

∫

V

d3r ̺i(r) (ln (̺i(r))− 1− µ∗
i ) + F ex[̺], (4.93)

where F ex is the free energy in excess over the ideal gas contribution. Here, the reduced
particle chemical potentials µ∗

i := µi − ln (Λ3
i ) with the thermal de Broglie wavelength

Λi (ΛMx = ΛMy = ΛMz) for particles of class i have been introduced. With the reduced
reservoir chemical potentials

µ∗
CkM

:= µCkM −
(

ln
(

Λ3
Mx,y,z

)
+ k ln

(
Λ3

C

))

µ∗
CA := µCA −

(
ln
(
Λ3

A

)
+ ln

(
Λ3

C

))
, (4.94)

Eq. (4.92) takes the form

µ∗
CkM

= kµ∗
C + µ∗

Mx,y,z
, µ∗

CA = µ∗
C + µ∗

A. (4.95)

If ̺ = ̺eq minimises the density functional in Eq. (4.93), the grand potential
Ω(T, V, µ∗

CkM
, µ∗

CA) = −p(T, V, µ∗
CkM

, µ∗
CA)V with the osmotic pressure p(T, V, µ∗

CkM
, µ∗

CA)
equals Ω[̺eq]. Phase coexistence corresponds to different states with equal values of the
pressure p, the chemical potential µ∗

CkM
of the reservoir of neutralised platelets and the

chemical potential µ∗
CA of the salt reservoir. In particular, coexistence does not imply

equal values of the particle chemical potentials µ∗
i , i ∈ {Mx,My,Mz,A,C}. Rather, coex-

isting bulk phases give rise to a Donnan potential [2, 20, 121, 122] maintaining different
chemical potentials µ∗

i .
The interaction energy Uij(r, r

′) of a particle of class i at position r with a particle
of class j at position r′ comprises a hard-core potential Uh

ij(r, r
′), which prevents the

particles from overlapping, and a contribution U c
ij(r, r

′) due to the charges: U = Uh +U c.
No dispersion forces are considered here [209].

The interactions between the charges are approximated as [35, 36]

U c
ij(r, r

′) :=
QiQj

‖r− r′‖∞
, (4.96)
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where the usual Euclidean norm ‖r‖2 =
√
x2 + y2 + z2 is replaced by the supremum

norm ‖r‖∞ = max(|x|, |y|, |z|) because of computational advantages. Since these two
norms are equivalent, i.e. ‖r‖∞ ≤ ‖r‖2 ≤

√
3 ‖r‖∞, the results are not expected to change

qualitatively due to this approximation. Furthermore, ‖·‖∞-spheres are cubes with their
edges parallel to the Cartesian axes; therefore, the supremum norm is the most natural
and adapted norm in the context of a Zwanzig model for cuboids.

According to Ref. [131], the excess free energy is given by

F ex[̺] = F ex,h[̺] +
1

2

∑

ij

∫

V

d3r

∫

V

d3r′ ̺i(r)̺j(r
′)U c

ij(r, r
′)

1∫

0

dη g
(η)
ij (r, r′), (4.97)

where F ex,h is the excess free energy corresponding to the pure hard-core potential Uh,
and g(η) denotes the (inhomogeneous) pair distribution function for the pair potential
U (η) := Uh + ηU c, η ∈ [0, 1]. In Ref. [35] F ex,h is chosen as the fundamental measure
functional introduced by Cuesta and Mart́ınez-Ratón [83, 84].

As a first step in the investigation of the density functional above, bulk phase diagrams
are determined for various macroion charges QM by solving the bulk Euler-Lagrange
equations.

The macroion and the salt number densities are given by ̺M := ̺Mx + ̺My + ̺Mz and
̺S := ̺A, respectively. In order to detect the formation of liquid crystalline phases of the
macroions, the equilibrium nematic order parameter for the director oriented relative to
the z-direction,

sM :=
3

2

̺Mz

̺M
− 1

2
∈
[
−1

2
, 1

]
, (4.98)

and the equilibrium biaxial order parameter,

qM :=
̺Mx − ̺My

̺M
, (4.99)

have been determined in Ref. [35]. The definition of sM agrees with the well-known
scalar liquid-crystal order parameter S = 〈P2(cosϑ)〉 = 3

2
〈(cosϑ)2〉− 1

2
because within the

Zwanzig model only macroion orientations Mz parallel (cosϑ = 1) and Mx,y perpendicular
(cosϑ = 0) to the z-axis are possible. sM vanishes in an isotropic phase (̺Mx = ̺My =
̺Mz), whereas it is positive in a nematic phase with director parallel to the z-axis (̺Mz >
̺Mx, ̺My). A discrimination of the orientation Mz leads to negative values of sM.

It turned out in Ref. [35] that the biaxial order parameter qM vanishes throughout the
whole inspected range of reduced chemical potentials µ∗

CkM
and µ∗

CA, whereas the nematic
order parameter sM indicates either an isotropic fluid (sM = 0) or a nematic fluid (sM > 0).

Figure 4.27 shows phase diagrams for the parameters (compare Fig. 4.26) DM = 20 ℓB ≈
14 nm, LM = ℓB ≈ 0.72 nm, DS = ℓB ≈ 0.72 nm, QS = −e with QM = 0, QM = 0.25QS,
QM = 0.5QS, QM = 0.75QS, and QM = QS in terms of the macroion packing fraction
ηM = ̺MD

2
MLM and the salt density ̺S. Note that the charges QM and QS have to

be considered as effective ones [10] whose relation to real charges is unknown; a similar
observation has been made in Ref. [299].

One isotropic phase (I) and one nematic phase (N) are found separated by first-order
phase transitions. Whereas for coexisting phases ηM is always smaller in the isotropic
phase than in the nematic phase, ̺S of coexisting phases is higher in the isotropic and
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Figure 4.27: Bulk phase diagrams of mixtures of plate-like macroions (DM = 20 ℓB,
LM = ℓB) and monovalent salt (DS = ℓB, QS = −e) for macroion charges QM = 0 (a),
QM = 0.25QS (b), QM = 0.5QS (c), QM = 0.75QS (d), and QM = QS (e) in terms of the
platelet packing fraction ηM = ̺MD

2
MLM and the salt density ̺S. Note that ̺S = 1 mM

for DS = 0.72 nm corresponds to a salt packing fraction ̺SD
3
S = 2.2 · 10−4. Coexisting

states are connected by (non-horizontal) tie lines. The model exhibits one isotropic (I)
and one nematic (N) phase separated by first-order phase transitions. The salt density of
coexisting phases is higher in the isotropic and lower in the nematic phase (Donnan effect
[2, 20, 121, 122]) as can be inferred from the negative slope of the tie lines. For increasing
macroion charge, the isotropic and the nematic binodals are shifted to larger macroion
packing fractions ηM. With increasing salt density ̺S, the isotropic-nematic binodals for
systems of charged macroions bend towards lower values of the macroion packing fraction.
(See Ref. [35])

lower in the nematic phase. A similar displacement of salt from regions of large concen-
trations of charged macroions is known as Donnan effect [2, 20, 121, 122]. Whereas the
original Donnan effect has been discovered in systems subdivided by membranes which
are impermeable for macroions, here the density difference of the macroions occurs due
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Figure 4.28: Donnan potential ψD [2, 20, 121, 122] between the coexisting nematic (N)
and isotropic (I) bulk phases in mixtures of platelike macroions and salt (see Fig. 4.27).
For fixed macroion charge QM, the Donnan potential decreases with increasing salt density
̺S. For salt densities ̺S ≈ 0.01 mM, ψD decreases with increasing |QM|, whereas for salt
densities ̺S ≈ 1 mM, ψD increases with increasing |QM|. (See Ref. [35])

to two coexisting bulk phases. As for the case of membrane equilibrium, here a Donnan
potential ψD maintains the density gradients between the coexisting phases. Figure 4.28
shows its dependence on the macroion charge QM and the salt density ̺S. ψD decreases
with increasing salt density ̺S. This tendency is intuitively expected as the Donnan effect
becomes more pronounced with increasing macroion charge whereas increasing the salt
density gives rise to a stronger screening of the macroion charge. For fixed salt density
̺S well below ≈ 0.1 mM, ψD decreases with increasing |QM|, whereas this behaviour is
reversed for fixed salt density ̺S above ≈ 0.1 mM.

Upon an increase of the macroion charge |QM|, the isotropic and the nematic binodals
are shifted to larger values of the macroion packing fraction ηM. This may be qualitatively
understood by introducing the notion of an effective shape, which, in the present case,
for macroions is given by a hard core surrounded by a soft ‖·‖∞-sphere, i.e. a cube, with
its linear extension proportional to Q2

M due to the pairwise Coulomb repulsion. For small
macroion charges, the effective shape is still platelike whereas for highly charged colloids,
the effective shape tends towards a cube leading to a shift of the two-phase region to
larger macroion packing fractions.

For fixed macroion charge as well as particle shape and increasing salt density ̺S, the
isotropic-nematic binodals in Fig. 4.27 bend towards smaller macroion packing fractions.
This behaviour is expected intuitively, because high ionic strength causes strong screening
which in turn leads to effectively quasi-hard platelets (see Fig. 4.27(a)).

Based on the bulk properties, one is able to calculate the density profiles at the free
interfaces between the coexisting isotropic and nematic phases by solving the spatially
varying Euler-Lagrange equations. The density and order parameter profiles correspond-
ing to the parameters used in Figs. 4.27 and 4.28 and to a nematic bulk salt density
̺
(N)
S = 2.2 · 10−5 =̂ 0.1 mM are depicted in Figs. 4.29 and 4.30, respectively. The interface
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Figure 4.29: Macroion density profiles at the free interface between coexisting isotropic
(I) and nematic (N) phases for the mixtures of platelike macroions and salt as studied in

Fig. 4.27 at nematic bulk salt density ̺
(N)
S = 2.2 · 10−5 =̂ 0.1 mM. The interface position

z = 0 is chosen such that ̺M(0) = 1
2

(
̺
(I)
M + ̺

(N)
M

)
. The interface width ζ , inferred from

the slope of the density profiles at the interface position z = 0 (see main text), the Debye
length κ−1 and the bulk correlation lengths ξ, inferred from the exponential decay of the
density profiles, decrease monotonically with increasing macroion charge |QM|. The same
behaviour is found for the interfacial tension γ. See also Fig. 4.30. (See Ref. [35])

position z = 0 is chosen such that ̺M(0) = 1
2

(
̺
(I)
M + ̺

(N)
M

)
.

First, and most important, the formalism described above renders stable free interfaces
between coexisting bulk phases. This can be traced back to using the spatially varying
screening factor κ in the expression of g(η) in Eq. (4.97) (see also Refs. [255, 461] for
alternative expressions); trials with spatially constant κ are not successful [35].

For a given density profile ̺M(z) (Fig. 4.29), the corresponding interface width ζ is
defined as the spatial distance between the loci, where the tangent at the density profile
at position z = 0 reaches the values of the nematic bulk density ̺

(N)
M and the isotropic bulk

density ̺
(I)
M , respectively. This interface width ζ decreases monotonically with increasing

macroion charge from ζ = 1.8DM for QM = 0.25QS to ζ = 1.3DM for QM = QS (see
Fig. 4.29). The Debye length κ−1 decreases monotonically from κ−1 = 1.5DM for QM =
0.25QS to κ−1 = DM for QM = QS. Finally, the bulk correlation lengths ξ of the coexisting
isotropic and nematic bulk phases, inferred from the exponential decay lengths of ̺M(z)−
̺
(I,N)
M , also decrease monotonically upon increasing |QM| and the values are by and large

equal to those of κ−1.

The nematic order parameter profiles sM(z) (Fig. 4.30) interpolate almost monotonically
between sM(∞) > 0 in the nematic bulk phase (N) and sM(∞) = 0 in the isotropic bulk
phase (I). Note that sM has been defined for a director in z-direction, i.e. platelets on
the nematic side (z < 0) are preferably oriented parallel to the free interface. At a fixed
position on the nematic side (z < 0), sM(z) decreases with increasing macroion charge
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Figure 4.30: Macroion nematic order parameter profiles sM (Eq. (4.98)) at the free in-
terface between coexisting isotropic (I) and nematic (N) phases for mixtures of plate-

like macroions and salt as shown in Fig. 4.27 at nematic bulk salt density ̺
(N)
S =

2.2 ·10−5 =̂ 0.1 mM. The position z = 0 is fixed by the choice ̺M(0) = 1
2

(
̺
(I)
M + ̺

(N)
M

)
(see

Fig. 4.29). On the nematic side of the free interface, most of the macroions lie parallel to
the interface. For z < 0, sM(z) decreases with increasing macroion charge |QM|. The inset
shows a detailed view of the steepest portions of the nematic order parameter profiles in
the range sM(z) ∈ [0.2, 0.3] indicated by the frame. (See Ref. [35])

|QM|. This behaviour is consistent with the picture of an increasingly isotropic effective
shape introduced before.

The interfacial tensions γ of the interfaces shown in Fig. 4.29 decrease monotonically
from γ = 1.33 · 10−5 =̂ 108 nN ·m−1 for QM = 0.25QS to γ = 6 · 10−7 =̂ 5 nN ·m−1 for
QM = QS, which are comparable to experimental findings for laponite suspensions [443].
The corresponding wetting parameters ω = (4πγξ2)−1 [407] are in the range 6 . . . 340. If
these values for γ are indeed so small, the free isotropic-nematic interfaces are expected
to be strongly affected by capillary wavelike fluctuations which are not captured by the
present theory.

The charge density profiles ̺Q(z) =
∑

iQi̺i(z) displayed in Fig. 4.31 show devia-
tions from local charge neutrality within the interfacial region −4DM . z . 4DM. A
negative charge density occurs on the nematic side (N) and a positive charge density
on the isotropic side (I). Such a local charging is necessary for the appearance of the
non-vanishing Donnan potentials ψD shown in Fig. 4.28. The full electrostatic potential
profiles ψ(z) are depicted in Fig. 4.32. They increase monotonically from the macroion-
rich nematic phase N to the macroion-poor isotropic phase I, maintaining the density
gradients occurring in the interface region. The potential difference ψ(∞)−ψ(−∞) equals
the Donnan potential ψD (see Fig. 4.28).

Hence, the general mechanism in ionic complex fluids of an unequal partitioning of
(macro)ions at interfaces and consequently the occurrence of a Donnan potential between
the coexisting bulk phases is not restricted to systems of molecular constitutents but
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Figure 4.31: Local charge density profiles at the free isotropic-nematic interfaces shown
in Figs. 4.29 and 4.30 using the same parameters and line code. Whereas global charge
neutrality holds, deviations from local charge neutrality occur near the interface with a
negative charge density on the nematic side (N) and a positive charge density on the
isotropic side (I). The corresponding electrostatic potential profile is shown in Fig. 4.32.
(See Ref. [35])
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Figure 4.32: Electrostatic potential profiles at the free isotropic-nematic interfaces shown
in Figs. 4.29-4.31. The potential difference between the nematic and the isotropic bulk
is given by the Donnan potential ψD displayed in Fig. 4.28; it is indicated for QM = QS.
(See Ref. [35])

occurs equally well on colloidal length scales and between liquid crystalline phases.
In Ref. [36] the model fluid in Fig. 4.26 is studied in contact with a hard wall which
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acquired charges upon releasing counterions into the fluid.
An intersting observation in Ref. [36] is an asymptotic decay of the density deviation

∆̺i(z) from the bulk value not faster than proportional to z−3. Moreover, it can be shown
that the deviations ∆̺i(z) exhibit a purely algebraic decay in leading order. Finally, one is
led to the conclusion that the asymptotic Euler-Lagrange equations in conjunction with
the Poisson equation leads to the properties ∆̺i(z → ∞) = O(z−3), ∆ψ(z → ∞) =
O(z−3), and ̺Q(z →∞) = O(z−5).

The asymptotic decay proportional to z−3 of ∆̺i(z) within the model for charged par-
ticles equals the corresponding one for systems governed by isotropic nonretarded van der
Waals forces in Ref. [108]. This behaviour, which is generated by a coupling of electrostatic
and steric interactions, is in sharp contrast to the results obtained within multicompo-
nent Poisson-Boltzmann theories, where point-like ions are considered, which give rise to
exponentially decaying density profiles [164].

Upon solving the Euler-Lagrange equations for mixtures of platelike macroions and
monovalent salt in contact with a charged hard wall, one finds the equilibrium state of
this system.

It turns out that the equilibrium states exhibit rotational symmetry with respect to the
wall normal (z-axis), i.e. ̺Mx = ̺My. Therefore, the local equilibrium structure of the
macroions is captured completely by the two densities ̺Mx and ̺Mz . Equivalently, the
(total) macroion density ̺M := 2̺Mx + ̺Mz and the nematic order parameter along the
z-axis

sM :=
3

2

̺Mz

̺M
− 1

2
∈
[
−1

2
, 1

]
(4.100)

may serve to identify various structures. The definition of sM coincides with the well-
known scalar liquid-crystal order parameter S = 〈P2(cosϑ)〉 = 3

2
〈(cosϑ)2〉 − 1

2
for the

special case of a Zwanzig model, within which the only possible macroion orientations are
parallel (Mz, cos ϑ = 1) and perpendicular (Mx,y, cosϑ = 0) to the z-axis. Therefore,
structures with sM = 0 and sM > 0 are called isotropic and nematic, respectively.

Figure 4.33 displays the bulk and surface phase diagram for the surface charge density
σ = −0.4e/D2

M in terms of the macroion charge QM and the chemical potential difference
∆µ∗

CkM
:= µ∗

CkM
− µ∗IN

CkM
. The solid line (∆µ∗

CkM
= 0) denotes the states of bulk coexis-

tence between the isotropic (I) phase and the nematic (N) phase, corresponding to the
chemical potential µ∗IN

CkM
at coexistence. The bulk equilibrium states for ∆µ∗

CkM
< 0 and

∆µ∗
CkM

> 0 are isotropic and nematic, respectively.
At isotropic-nematic bulk coexistence with isotropic boundary conditions in the bulk

(∆µ∗
CkM

= 0−), two first-order wetting transition points W− and W+ have been found.
The corresponding prewetting lines are so close to the coexistence line such that they
could not be resolved numerically.

Complete wetting by the nematic phase occurs for approaching isotropic-nematic bulk
coexistence from the isotropic side for QM ∈ (QW−

M , QW+

M ). The phenomenon that only
partial wetting is found for sufficiently large macroion charges |QM | may be qualitatively
understood as follows: The macroion number density profiles ̺Mx , ̺My , and ̺Mz close to
the surface are influenced by the hard-core interactions — which give rise to a preference
of nematic order close to the wall —, the macroion-substrate Coulomb interactions pro-
portional to |QM |, and the macroion-macroion Coulomb repulsion proportional to |QM |2.
The latter dominates for large macroion charges |QM | leading to a depression of the values
of the macroion number densities near the wall which in turn prevents the growth of a
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Figure 4.33: Bulk and surface phase diagram of mixtures of platelike macroions (DM =
20ℓB, LM = ℓB) and monovalent salt (DS = ℓB, |QS| = e) for salt density ̺S = 0.1 mM
in contact with a charged hard wall of surface charge density σ = −0.4e/D2

M in terms
of macroion charge QM and chemical potential difference ∆µ∗

CkM
. The bulk equilibrium

states for ∆µ∗
CkM

< 0 and ∆µ∗
CkM

> 0 are isotropic (I) and nematic (N), respectively.
Isotropic-nematic bulk coexistence corresponds to ∆µ∗

CkM
= 0 (solid line). For isotropic

boundary conditions in the bulk at isotropic-nematic coexistence (∆µ∗
CkM

= 0−), two

first-order wetting transition points W− (at QW−

M ∈ [−2× 10−3e, 0]) and W+ (at QW+

M ∈
[0.1e, 0.132e]) have been found. The tolerance intervals are indicated by frames of corre-
sponding widths. Complete wetting by the nematic phase occurs for QM ∈ (QW−

M , QW+

M )
upon approaching coexistence from the isotropic side. For nematic boundary conditions
in the bulk at isotropic-nematic coexistence (∆µ∗

CkM
= 0+), a first-order drying transition

point D− (at QD−

M = −0.35e) has been found. The accompanying predrying line (dashed

line) terminates at a critical point C−
D (at Q

C−

D
M = −0.87e,∆µ

∗C−

D
CkM

= 0.049). Complete
drying by the isotropic phase occurs upon approaching coexistence from the nematic side
for QM < QD−

M . This implies that for QD−

M < QM < QW−

M or QW−

M < QM < e there is
neither complete wetting (by the nematic phase) nor complete drying (by the isotropic
phase). A second drying transition point D+ appears (not shown) for QM sufficiently large
and σ sufficiently small so that there is reentrance of complete drying for large positive
values of QM . (See Ref. [36])

nematic film. For small macroion charges |QM |, ̺Mx , ̺My , and ̺Mz near the surface are
determined by the balance between the hard-core interactions and the macroion-substrate
interactions which lead to complete wetting for attractive walls.

In Fig. 4.33, a first-order drying transition point D− at QD−

M = −0.35e is found
for isotropic-nematic bulk coexistence with nematic boundary conditions in the bulk
(∆µ∗

CkM
= 0+). The first-order character of the drying transition at state point D im-

plies the existence of a predrying line (dashed line in Fig. 4.33), along which the excess
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adsorption of macroions

ΓM :=

∞∫

0

dz (̺M(z)− ̺M (∞)), (4.101)

which is proportional to the thickness of the emerging film, exhibits a finite discontinuity.
The predrying line is expected to meet the isotropic-nematic bulk coexistence line tan-
gentially [186] and it terminates at a critical point C−

D . Complete drying by the isotropic
phase occurs for QM < QD−

M upon approaching isotropic-nematic bulk coexistence from
the nematic side. As for the wetting scenario discussed above, the macroion-macroion re-
pulsion will prevail over the macroion-surface interactions for a sufficiently large macroion
charges |QM |. Therefore, for large |QM |, the formation of an isotropic film is initiated by
the strongly depressed macroion number density close to the surface. Hence one expects
complete drying for sufficiently large macroion charges |QM |. For a surface charge density
σ = −0.4e/D2

M (see Fig. 4.33), partial drying is found for QM ∈ (QD−

M , e], i.e. the expected
second drying transition point D+ is located in the range QM > e. For smaller surface
charge densities σ, indeed two drying transition points have been found within the range
QM ∈ [−e, e] [36].

Within the intervals QM ∈ [QD−

M , QW−

M ] and QM ∈ [QW+

M , QD+

M ] only partial wetting and
drying occurs. In order to validate the topology of the bulk and surface phase diagram
in Fig. 4.33, a modified version of the density functional Eq. (4.93) has been investigated
in which coupling between electrostatics and particle shape has been omitted by setting
g(η) = 1 in Eq. (4.97). An asymptotic analysis leads to exponentially decaying profiles of
∆̺, ∆ψ and ̺Q. The corresponding phase diagram is qualitatively the same as in Fig. 4.33.
In particular, there are also first-order wetting and drying transition points which are
separated by intervals of only partial wetting and drying. Due to the exponentially
decaying electrostatic potential, this modified model is similar to a model of hard rods
interacting with an exponentially decaying wall potential [414]. Whereas Ref. [414] relied
entirely on a numerical approach, which provided them only with evidences of first-order
wetting transitions, it can be shown analytically that the wetting and drying transitions
shown in Fig. 4.33 are of first order (see below).

First the wetting behaviour of the model fluid of platelike macroions and salt in contact
with a charged hard wall is discussed. For a wetting scenario, the boundary conditions
imposed on the solutions of the Euler-Lagrange equations require the isotropic bulk struc-
ture far from the wall. Isotropic-nematic coexistence with such boundary conditions is
denoted as ∆µ∗

CkM
= 0−.

The effective interface potential Ωeff(ζ) := (Ω[̺
ζ
]− Ωb)/|A|, where Ωb denotes the bulk

contribution to the grand potential and the density profiles ̺
ζ

are the solutions of the

Euler-Lagrange equations under the constraint of a prescribed film thickness ζ charac-
terised by the position of the isotropic-nematic interface [107], has been determined ap-
proximately by considering the following subspace of density profiles [36, 108]:

˜̺i,ζ(z) :=

{
̺wn
i (z) , z ≤ ζ/2
̺nii (z − ζ) , z > ζ/2

, (4.102)

where ̺wn(z) and ̺ni(z) correspond to the wall-nematic and the free nematic-isotropic
density profiles with the surface and the interface located at z = 0, respectively. Therefore,
in the interval z ∈ (−∞, ζ/2] the trial density profile ˜̺

ζ
is described by the wall-nematic
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profile whereas in the interval z ∈ (ζ/2,∞) it is given by the free nematic-isotropic profile
shifted to position ζ . Due to ̺wn

i (∞) = ̺nii (−∞), the discontinuity of ˜̺
ζ

at z = ζ/2

vanishes in the limit ζ → ∞. The transition regime around z = ζ/2 does not contribute
to the leading asymptotic terms of Ωeff(ζ →∞) [108].

Substituting the trial density profiles ˜̺
ζ

into the density functional in Eq. (4.93) and

using the asymptotic behaviour of ̺wn and ̺ni leads to the effective interface potential
[36]

Ω̃eff(ζ) = γwn + γni − (̺niM (−∞)− ̺niM (∞))ζ∆µ∗
M + a2ζ

−2 + a3ζ
−3 +O(ζ−4) (4.103)

with the amplitudes a2 and a3 being independent of ζ . Since the density profiles decay
proportional to z−3 towards the bulk values, the results of Ref. [108] can be used directly:
a2 depends only on the particle charges and bulk densities whereas a3, in addition, contains
contributions due to the wall-nematic and the free nematic-isotropic excess adsorption.
The only difference between the density functional in Eq. (4.93) and the one investigated
in Ref. [108] is the presence of the electrostatic term. It can be shown that it merely
contributes a term O(ζ−4) to Ω̃eff(ζ) due to the more rapid asymptotic decay of the
charge density ̺Q(z →∞) = O(z−5).

By inspection one recognises the same leading asymptotic decay of Ω̃eff(ζ) in Eq. (4.103)
as for systems governed by isotropic nonretarded dispersion forces [107, 407]. This re-
sult may appear surprising because the model does not include dispersion forces. The
asymptotic behaviour ∼ z−3 in Eq. (4.103) is ultimately generated by the coupling of
electrostatics and the steric interactions due to the cuboidal particles.

Minimising the effective interface potential Ωeff(ζ) in Eq. (4.103) with respect to the

interface position ζ leads to the (equilibrium) excess adsorption ΓM ∼ (−∆µ∗
CkM

)−
1
3 ր∞

for ∆µ∗
CkM

ր 0 as long as a2 > 0. Evaluating the analytic expression for a2 along the
isotropic-nematic coexistence line, which depends only on bulk quantities (see Ref. [108]),
one finds two wetting transition points — corresponding to W− and W+ in Fig. 4.33 —
with complete wetting, i.e. a2 > 0, in between.

Figure 4.34 displays the excess adsorption ΓM (Eq. (4.101)) as a function of the chem-
ical potential difference ∆µ∗

CkM
< 0 for fixed macroion charges QM . For ∆µ∗

CkM
ր 0,

isotropic-nematic bulk coexistence is approached along vertical thermodynamic paths in
Fig. 4.33. In Fig. 4.34(a) the curves for QM = 0 and QM = 0.1e suggest a divergence of
ΓM in this limit, i.e. complete wetting of the surface by a nematic phase occurs for these
macroion charges. On the other hand, for QM ≤ −0.01e the excess adsorption remains
finite, i.e. partial wetting occurs. The complete wetting curves for QM = 0 and QM = 0.1e
in Fig. 4.34(a) exhibit no discontinuity in the shown range. Thus, the prewetting lines
attached to the first-order wetting transition points W− and W+ must be closer to the
isotropic-nematic coexistence line than the numerically accessible values of ∆µ∗

CkM
.

Figure 4.34(b) compares the analytically obtained asymptotic behaviour for the case
QM = 0 (dash-dotted line) with the corresponding numerical solution (dashed line). The
differences between these curves indicate that the ultimate asymptotic regime is not yet
reached within the numerically accessible range of undersaturations.

The order of the wetting transitions at state points W− and W+ in Fig. 4.33 is deter-
mined by Ω̃eff(ζ) for ∆µ∗

CkM
= 0. Critical wetting occurs for a2 = 0, provided a3 > 0;

if a3 < 0 the wetting transition is of first order and does not necessarily occur at the
point given by a2 = 0 [107, 108]. According to Ref. [108] the analytical expression for
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Figure 4.34: Excess adsorption ΓM of platelike macroions along vertical thermodynamic
paths in Fig. 4.33 characterised by fixed macroion charges QM and parameterised by the
chemical potential difference ∆µ∗

CkM
< 0, which measures the thermodynamic distance

from isotropic-nematic bulk coexistence. (a) The numerically determined excess adsorp-
tion ΓM remains finite upon ∆µ∗

CkM
ր 0 for QM ≤ −0.01e (see also Fig. 4.35), whereas

a divergence is suggested for the macroion charges QM = 0 and QM = 0.1e, i.e. there is
complete wetting of the surface by a nematic film. (b) The comparison of the numerical
solution for QM = 0 (dashed line) with the analytical asymptotic power law behaviour

ΓM ∼ (−∆µ∗
CkM

)−
1
3 (dash-dotted line) (see main text) indicates that the asymptotic

regime is not yet reached within the numerically accessible range of undersaturations.
(See Ref. [36])

a3 contains a contribution due to the wall-nematic excess adsorption, which is influenced
by the surface charge density σ. Therefore, there is the possibility that the order of the
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Figure 4.35: Excess adsorption ΓM of platelike macroions at isotropic-nematic coexistence
with isotropic boundary conditions in the bulk (∆µ∗

CkM
= 0−) (see Fig. 4.33) in terms

of the surface charge density σ. Curves for QM = QM and QM = −QM can be mapped
upon each other by reflecting them at the axis σ = 0. For fixed macroion charge, the
excess adsorption increases with increasing surface charge density. For fixed surface charge
density, the excess adsorption decreases upon increasing |QM |, even for attractive walls.
(See Ref. [36])

wetting transition depends on the surface charge density σ. For the values of σ used in
Ref. [36], however, a3 < 0 has been found throughout, i.e. the wetting transitions at W−

and W+ are of first order.

Whereas the asymptotical analysis above is reliable with respect to the order of the
wetting transitions at W− and W+, this is not the case concerning the location of W−

and W+, because the wetting transitions are of first order [107]. Therefore, numerical
methods have to be used.

In Fig. 4.35 the numerically determined excess adsorption at coexistence is shown as
a function of the surface charge density σ. Without loss of generality, only curves for
negative macroion charges QM are displayed: since the density functional described is
invariant under the simultaneous inversion of the signs of all charges (QM , QS, and σ),
the curve for QM = QM is mapped onto the curve for QM = −QM by reflecting it at the
axis σ = 0.

As expected, the excess adsorption ΓM of the macroions increases with increasing sur-
face charge density σ for fixed macroion charge QM < 0, because the surface becomes
increasingly attractive (or decreasingly repulsive) for the macroions. However, for a fixed
surface charge density σ and sufficiently large macroion charges |QM |, ΓM decreases upon
increasing |QM |, irrespective of the sign of QM , i.e. even for σQM < 0, for which the
wall attracts macroions. This depression of the macroion number density near the surface
occurs because the macroion-macroion repulsion dominates the macroion-surface interac-
tions. From Fig. 4.35 one can indeed infer that there is partial wetting for sufficiently
large macroion charges |QM |.
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Figure 4.36: Excess adsorption ΓM of platelike macroions at isotropic-nematic coexistence
with isotropic boundary conditions in the bulk (∆µ∗

CkM
= 0−) for a surface charge density

σ = −0.4e/D2
M (see Fig. 4.33) as function of the macroion charge QM . It is finite within

the range −QM ≥ 2 × 10−3e which implies the location of the lower wetting transition
point W− (Fig. 4.33) to be within the range QM ∈ [−2 × 10−3e, 0]. (See Ref. [36])

The variation of the macroion excess adsorption ΓM upon QM ր 0 along isotropic-
nematic coexistence is shown in Fig. 4.36. ΓM is finite for −QM ≥ 2×10−3e. On the other
hand, QM = 0 corresponds to hard colloidal platelets for which the occurrence of complete
wetting is well known [181]. Hence the lower wetting transition point W− in Fig. 4.33
is located within the range QW−

M ∈ [−2 × 10−3e, 0]. In order to locate the upper wetting
transition point W+ one may use the fact that the true wetting transitions points W± can
only be located within the interval QM ∈ [−Q∗

M , Q
∗
M ], Q∗

M = 0.1317165(5)e, where ±Q∗
M

are the locations of the wetting transition points inferred from the asymptotic analysis.
This statement follows from the observation that |QM | > Q∗

M leads to a2 < 0 which
renders ζ =∞ as a local maximum of Ωeff(ζ) [107]. Together with the numerically found
complete wetting for QM = 0.1e one concludes that the location of the upper wetting
transition point W+ lies within the range QW+

M ∈ [0.1e, 0.132e].

Finally, Fig. 4.37 displays the increase of nematic film thicknesses upon increasing QM <
0 in terms of the macroion density profiles ̺M .

Next the fluid composed of platelike macroions and salt in contact with a charged
hard surface is studied for nematic boundary conditions at large distances from the wall.
Isotropic-nematic coexistence with nematic boundary conditions in the bulk will be de-
noted as ∆µ∗

CkM
= 0+.

A similar asymptotic analysis as before of the effective interface potential can be per-
formed for drying [36]. By means of this analysis two first-order drying transition points
D− and D+ have been found. Due to the first-order character of the drying transitions,
the loci of D− and D+ have been determined numerically. Note that the upper drying
transition point D+ is not visible in Fig. 4.33 because it is located at QD+

M > e. However,
for sufficiently small surface charge densities |σ| both drying transition points have been
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Figure 4.37: Macroion density profiles ̺M of a mixture of platelike macroions and salt at
isotropic-nematic coexistence with isotropic boundary conditions in the bulk (∆µ∗

CkM
=

0−) for a surface charge density σ = −0.4e/D2
M (see Fig. 4.33). Upon decreasing |QM |,

i.e. upon approaching the wetting transition point W− in Fig. 4.33, a nematic-like film
forms at the surface. (See Ref. [36])

found within the interval QM ∈ [−e, e]. In contrast to the wetting scenario above, one is
able to numerically detect the discontinuity of the excess adsorption at the drying transi-
tions. Moreover, the locations of the predrying lines in the phase diagrams (e.g. Fig. 4.33)
could be numerically determined.

Figure 4.38 displays the macroion excess adsorption ΓM close to a charged hard wall
with surface charge density σ = −0.4e/D2

M as a function of the macroion charge QM ≤ 0.
For −0.35e = QD−

M < QM ≤ 0, the excess adsorption is finite and bounded from below. It
jumps to −∞ at QM = QD−

M . The discontinuity of ΓM corresponds to the occurrence of
a first-order drying transition at QD−

M , which is displayed as state point D− in Fig. 4.33.

A first-order drying transition is accompanied by a predrying line in the surface phase
diagram (see the dashed line in Fig. 4.33), which connects the drying transition point
D− with a critical point C−

D . The predrying line may be parameterised in terms of, e.g.

the macroion charge: ∆µ∗PD
CkM

(QM) for QM ∈ [Q
C−

D
M , QD−

M ) denotes the chemical potential
difference ∆µ∗

CkM
for which the excess adsorption ΓM as a function of QM and ∆µ∗

CkM

exhibits a finite discontinuity ∆ΓM .

Figure 4.39 displays this discontinuity as a function of the macroion charge QM (solid

line). It vanishes according to a power law ∆ΓM ∼ (QM − QC−

D
M )β with the mean field

critical exponent β = 1
2

(dashed line). Beyond mean field theory, one expects an exponent
β = 1

8
, corresponding to the two-dimensional Ising universality class.

Figure 4.40 depicts the formation of an isotropic film upon approaching isotropic-
nematic coexistence for ∆µ∗

CkM
> 0 with macroion charge QM = −0.6e and surface

charge density σ = −0.4e/D2
M . A finite discontinuity of the film thickness upon crossing

the predrying line at ∆µ∗
CkM
≈ 0.03 can be inferred.
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Figure 4.38: Excess adsorption ΓM of platelike macroions at isotropic-nematic coex-
istence with nematic boundary conditions (∆µ∗

CkM
= 0+) for surface charge density

σ = −0.4e/D2
M (see Fig. 4.33) in terms of the macroion charge QM . The excess adsorp-

tion is finite and bounded from below for QM > QD−

M = −0.35e, whereas at QM = QD−

M

it jumps to −∞. It has been verified by a comparison of surface tensions that the nu-
merical solutions with finite excess adsorption correspond to equilibrium structures and
not only to metastable states. The discontinuity of ΓM at QD−

M identifies state point D−

in Fig. 4.33 as a first-order drying transition point. The latter conclusion can also be
drawn from an asymptotic analysis of the effective interface potential (see main text).
(See Ref. [36])

Figure 4.41 displays the salt ion density profile ̺S and the counter ion density profile ̺C
for the case of macroions charge QM = −0.1e and surface charge density σ = −0.4e/D2

M

at isotropic-nematic bulk coexistence with nematic boundary conditions in the bulk
(∆µ∗

CkM
= 0+). The positive counter ions C are attracted and the negative salt ions

S are repelled by the negatively charged wall. This behaviour is found to be qualitatively
independent of the chemical potential difference ∆µ∗

CkM
and the boundary conditions

(isotropic or nematic) in the bulk. Attraction and repulsion are reversed upon reversing
the sign of σ. The number densities close to the charged hard wall follow from a balance
between entropic contributions due to the hard cores as well as energetic contributions
due to the Coulomb interaction. Hence it is not necessarily the ion species of maximal
charge and minimal size which accumulates at the surface (compare the first peaks in
Figs. 4.37, 4.40, and 4.41).

The rather strong variation of the salt and counter ion density profiles close to a strongly
charged wall reveals limitations of the approximation of a fixed macroion charge QM within
the model of Refs. [35, 36] because actually macroion charges adapt according to the local
electrolytic environment by means of charge regulation mechanisms. Therefore, macroion
charges close to and far from a charged wall are expected to differ considerably. However,
in Ref. [36] it is refrained from including a charge regulation model [56, 74, 90, 188, 191,
192, 385, 444].



140 Interfacial properties

∼ (QM −Q
C

−

D

M
)

1

2

∆µ∗

CkM
= ∆µ∗PD

CkM
, σ = −0.4e/D2

M

(QM −Q
C

−

D

M
)/e

∆
Γ

M
D

2 M

0.40.30.20.10

0.5

0.4

0.3

0.2

0.1

0

Figure 4.39: Excess adsorption discontinuity ∆ΓM (solid line) of a mixture of platelike
macroions and salt at the predrying line parameterized by the macroion charge QM for
a surface charge density σ = −0.4e/D2

M (see Fig. 4.33). The excess adsorption difference

vanishes for QM ց Q
C−

D
M = −0.87e according to a power law ∆ΓM ∼ (QM −QC−

D
M )β with

the mean field critical exponent β = 1
2

(dashed line). (See Ref. [36])
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Figure 4.40: Macroion density profiles ̺M of a mixture of platelike macroions with QM =
−0.6e and salt in contact with a surface of charge density σ = −0.4e/D2

M upon crossing
the predrying line at ∆µ∗

CkM
≈ 0.03 (Fig. 4.33). At the predrying line, a quasi-isotropic

film with finite thickness appears at the surface. (See Ref. [36])

Finally, after focussing on the fluid structure above, the electrostatic properties of the
surface due to the contact with the fluid of charged particles is addressed.
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Figure 4.41: Salt ion (S) and counter ion (C) density profile in a mixture of platelike
macroions with QM = −0.1e and salt at isotropic-nematic bulk coexistence with nematic
boundary conditions in the bulk (∆µ∗

CkM
= 0+) in contact with a charged substrate at

z ≤ 0 with surface charge density σ = −0.4e/D2
M (see Fig. 4.33). (See Ref. [36])

−0.4
−0.04

0

0.04

σD2
M
/e = 0.4

∆µ∗

CkM
= 0−, QM = −0.5e

z/DM

∆
ψ
/
m

V

1086420

2

0

-2

-4

-6

-8

-10

Figure 4.42: Electrostatic potential difference profiles ∆ψ relative to the electrostatic
bulk potential in a mixture of platelike macroions with QM = −0.5e and salt at isotropic-
nematic bulk coexistence with isotropic boundary conditions in the bulk (∆µ∗

CkM
= 0−)

(see Fig. 4.33). The slope of ∆ψ at the surface (z = 0) is governed by the surface
charge density σ whereas the bulk value ∆ψ(∞) = 0 is approached proportional to z−3

from below. Hence upon increasing the surface charge, a crossover from monotonic to
non-monotonic electrostatic potential profiles occurs. (See Ref. [36])
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Figure 4.43: Electrostatic surface potential ∆ψ(0) = ψ(0) − ψ(∞) as a function of the
surface charge density σ in a mixture of platelike macroions and salt at isotropic-nematic
coexistence with isotropic boundary conditions in the bulk (∆µ∗

CkM
= 0−) (see Fig. 4.33).

All curves are monotonically increasing but they do not pass through the origin (⊙) at
(σ = 0,∆ψ(0) = 0) if QM 6= 0. Thus, the point of zero (surface) charge (σ = 0) does
not coincide with the isoelectric point (∆ψ(0) = 0). Note that curves for QM = QM

and QM = −QM can be mapped upon each other by reflecting them at the origin. (See
Ref. [36])

The electrostatic potential profile difference ∆ψ(z) := ψ(z) − ψ(∞) relative to the
electrostatic bulk potential ψ(∞) for QM = −0.5e at isotropic-nematic bulk coexistence
with isotropic boundary conditions in the bulk (∆µ∗

CkM
= 0−) is shown in Fig. 4.42. For

large distances z from the surface, ∆ψ(z) decays proportional to z−3. Upon increasing
the surface charge density σ a crossover from monotonic to non-monotonic electrostatic
potential profiles occurs at σ = 0. The slope of the electrostatic potential difference at
the wall is given by the surface charge density: ∆ψ′(0+) = −8σ. On the other hand,
an electric double-layer is formed with a negatively charged layer on the nematic side
and a positively charged layer on the isotropic side if a quasi-free interface between the
isotropic bulk and a nematic film of finite thickness is present [35] (see Fig. 4.31). Thus
∆ψ approaches its bulk value 0 from below, i.e. ∆ψ′(z) > 0 for large distances z from the
surface. Therefore, for σ > 0, i.e. ∆ψ′(0+) < 0, ∆ψ(z) is minimal at some finite distance
0 < z0 <∞, whereas for σ < 0, i.e. ∆ψ′(0+) > 0, ∆ψ attains its minimal value at z = 0.

In the aforementioned case, a quasi-free isotropic-nematic interface is formed at
isotropic-nematic coexistence for a state of partial wetting. Additionally, nematic films of
finite thickness are present for states slightly below isotropic-nematic coexistence. Quasi-
free isotropic-nematic interfaces also occur for nematic boundary conditions in the bulk
close to complete drying. In the latter case, the electrostatic potential decreases upon
approaching the bulk because QM < 0. Moreover, it has been found that the electrostatic
potential is a monotonic function of the distance from the surface if no isotropic-nematic
interfaces form [36].
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Figure 4.43 displays the electrostatic surface potential ∆ψ(0) as a function of the surface
charge density σ at isotropic-nematic coexistence with isotropic boundary conditions in
the bulk (∆µ∗

CkM
= 0−). Curves forQM = QM and QM = −QM can be mapped upon each

other by reflecting them at the origin (⊙). As expected, the surface potential increases
monotonically with the surface charge. However, the points of zero charge (σ = 0) do not
coincide with the isoelectric points (∆ψ(0) = 0), i.e. the curves in Fig. 4.43 do not pass
through the origin (⊙), in contrast to Poisson-Boltzmann theories [164]. This behaviour
arises from the hard-core interaction of the particles, which leads to a depletion attraction
of the larger macroions towards the wall on purely entropic grounds. Therefore, for a hard
and uncharged wall (σ = 0), negatively charged macroions (QM < 0) are accumulated
close to the surface leading to a negative electrostatic surface potential (∆ψ(0) < 0).

The findings of Ref. [36] show that the sign of the electrostatic surface potential ∆ψ(0)
for vanishing surface charge density σ = 0 depends only on the sign of the macroion
charge and not on the boundary conditions in the bulk or the chemical potential difference
∆µ∗

CkM
.

The discussion above shows that fluids of charged colloidal platelets and electrolyte
solutions (Sec. 4.2) share many features of wetting and drying behaviour. However, in
contrast to dilute electrolyte solutions, where the Debye length is larger than the ions, it
is the opposite for colloidal suspensions. This reversed order of the relevant length scales
leads to slight differences in the general characteristic properties of these ionic complex
fluids: The properties of dilute electrolyte solutions are rather material-unspecific due to
the dependence on the Debye length, whereas the properties of colloidal suspensions and
RTILs (in particular ionic liquid crystals, see Sec. 2.3), are strongly dependent on the
particle geometry.

4.6 Colloidal interactions in complex electrolyte so-

lutions

Effective interactions among surfaces in contact with fluid media play a central role for
a variety of topical fields in soft and condensed matter physics, cell biology, colloid and
surface science, and nanotechnology. Since many relevant fluid media contain polar liquids
such as water, their confining surfaces acquire an electric charge due to ion association
or dissociation. As a result, electrostatic forces are known to contribute significantly
to these effective interactions. In addition, a strong and highly temperature-sensitive
solvent-mediated effective force arises upon approaching critical points of the solvent.
This critical Casimir force [150, 239, 240, 408] has recently been reported for a single
colloidal particle close to a wall and immersed in a binary liquid mixture near its critical
demixing point [149, 189, 365]; it is expected to play also a role for the aggregation of
colloidal suspensions [59, 151, 366] and to provide control of the spatial distribution of
colloids in the presence of patterned substrates [152].

Motivated by previous experiments, the interplay between electrostatic and critical
Casimir forces has been investigated in Ref. [42], which turns out to be responsible for
rather unexpected effects in binary liquid mixtures with added salt. Colloids dispersed
in such a solvent have been reported [59] to aggregate at temperatures further away from
the critical demixing point as the ionic strength, i.e. the screening of the electrostatic
forces, is increased. This observation has been confirmed experimentally also for a sin-
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gle colloid near a wall [317]. While it was originally argued [59] that the aggregation
could be completely explained in terms of a simple superposition of the critical Casimir
and screened Coulomb forces (see, however, Ref. [151]), subsequent experimental results
challenged this picture: An attractive colloid-wall interaction has been observed within
a suitable temperature range even though both the electrostatic and the critical Casimir
force are expected to be separately repulsive under these experimental conditions [317].
This observation posed a challenge because there was no obvious mechanism explaining
the emergence of an attraction as salt is added to the solvent: Van-der-Waals attraction,
which is typically rather weak already in the absence of salt [149, 189], is expected to be-
come even weaker upon adding salt due to screening [385] and the formation of aggregates
in the solvent, which might serve as depletion agents, has been ruled out experimentally
[317]. All this pointed towards an important and little explored aspect of the coupling
between electrostatics and the critical fluctuations of the medium. Certain features of
ion-solvent coupling near critical points were investigated before, such as the possibility
of a micro-heterogeneous phase [312–314] and the influence of criticality onto the solubil-
ity of ions [80, 334, 335]. The complementary point of view, i.e. the influence of ions onto
the critical fluctuations of a solvent and therefore onto the critical Casimir effect offered
the possibility of further insight [42].

In order to infer the mechanism responsible for the unexpected attraction mentioned
above, one can derive an approximate Ginzburg-Landau-like description based on a suit-
able extension of standard models [29, 80, 334, 335] which, in contrast to the full original
model, leads to an effective interaction potential between the confining surfaces which can
be interpreted transparently [42]. It turns out that the leading correction to the simple
superposition of critical Casimir and screened Coulomb forces is due to the interaction
of the surface charges with electric double layers generated by the unequal partitioning
of salt ions in a non-uniform solvent. Within this picture the experimental observations
mentioned above can be consistently interpreted.

In Ref. [42] the model described in Sec. 2.1 is applied to an electrolyte solution in
between two planar walls at distance L. The equilibrium profiles φ, ̺+, and ̺− minimise
the approximate grand potential density functional kBTΩ[φ, ̺±],

Ω[φ, ̺±]

A
=

L∫

0

dz

{
ωsol(φ(z)) +

χ(T )

6
φ′(z)2 +

∑

i=±

[
ω
(i)
ion(̺i(z)) + ̺i(z)Vi(φ(z))

]

+ 2πℓBD(z, [̺±])2
}
− h0φ(0)− hLφ(L). (4.104)

While the model in Eq. (4.104) proved to be useful in certain previous investigations
[29, 80, 334, 335], this form is not appropriate for understanding the influence of ion-
solvent coupling on the effective wall-wall interaction potential, because its complexity
precludes analytical approaches and the corresponding high-dimensional parameter space
does not lend itself to numerical scans. Therefore Eq. (4.104) has been used as a starting
point for systematic approximations which simplify the model and thus allows to identify
the mechanism responsible for the leading order contribution of ion-solvent coupling to the
effective wall-wall interaction potential. By analysing the full original model Eq. (4.104)
numerically, one can verified that the approximations used do not alter the results qual-
itatively. Accordingly, the focus is on an approximate grand potential functional for the
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solvent composition alone, which is obtained by expanding Ω[φ, ̺±] in Eq. (4.104) in terms
of the order parameter ϕ := φ− φb and the ion density differences ∆̺± := ̺± − I retain-
ing quadratic contributions as well as terms proportional to ϕ3 and ϕ4 (see also Sec. 4.3).
Here φb and I = ̺±b denote the bulk solvent composition and the bulk ionic strength,
respectively, corresponding to the chemical potentials µφ and µ±. Similar to the Ginzburg-
Landau theory for critical phenomena the expanded density functional no longer restricts
the solvent composition φb+ϕ and the ion densities I+∆̺± to the ranges [0, 1] and [0,∞),
respectively; however, this feature of the approximate density functional is not expected
to influence the resulting effective wall-wall interaction potential qualitatively, because
the monotonicity of the profiles, which has been verified numerically for the full original
model in Eq. (4.104), is preserved. The minimisation of the expanded density functional
with respect to ∆̺± leads to linear, analytically solvable Euler-Lagrange equations for
∆̺±eq(z, [ϕ]), which are functionals of ϕ. Inserting these solutions into Eq. (4.104) one
obtains a Ginzburg-Landau-type functional

H[ϕ]

A
=

L∫

0

dz
{
U(z)ϕ(z) +

t(T )

2
ϕ(z)2 +

g

24
ϕ(z)4 +

χ(T )

6
ϕ′(z)2

}

− h0ϕ(0)− hLϕ(L) +W (L) +O((∆γ)2) (4.105)

with the temperature-like variable t(T ) := 1/φb + 1/(1− φb)− 2χ(T ). Here it is assumed
that the mixture is at its critical composition such that there is no ϕ3-term. The electro-
static effects are contained in the coupling g := 2/φ3

b + 2/(1− φb)
3 + 6I(γ4+ + γ4−), γ± :=

V ′
±(φb) (see Eq. (2.3)), as well as in an “external” field generated by the surface charges
σ0,L [42] (compare Eq. (4.56)):

U(z) := − κ∆γ

2(1 − exp(−2κL))

[
(σ0 + σL exp(−κL)) exp(−κz)+

(σL + σ0 exp(−κL)) exp(−κ(L− z))
]

(4.106)

with the Debye screening length κ−1 = (8πℓBI)−1/2 and ∆γ := γ+ − γ−. The “direct”,
i.e. solely ion-mediated, electrostatic interaction between the walls is given by W (L) :=
(4πℓB/κ)P (κL, σ0, σL) where

P (x, y0, yL) :=
2y0yL + (y20 + y2L) exp(−x)

2 sinh(x)
. (4.107)

The ion-solvent coupling affects the critical point only at order O((∆γ)2) [43].

Upon approaching the critical point the dimensionless bulk correlation length ξ = ξ̃/ã =√
χ(T )/(3t(T )), which characterises the exponential decay of the two-point correlation

function, diverges. Accordingly, on the scale ξ, U(z) is localised at the boundaries and
therefore it merely modifies the surface fields h0,L. Consequently H turns into a standard
ϕ4-theory, which describes the critical behaviour of the Ising universality class [349]. Thus,
within the present model, electrostatic interactions do not affect the universal critical
behaviour of the solvent.

The effective wall-wall interaction potential is defined by ω̃(L) := ω(L)kBT ã
−2 with

ω(L) := (H(L)−H(∞))/A, where H(L)/A is the minimum of Eq. (4.105). In general, for
the critical contribution one has ω(L) = ϑ(L/ξ)/Ld−1 with a universal scaling function
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ϑ(x), which depends only on the relative signs of h0,L [240], with ϑ(x → 0) = const
and ϑ(x→∞) = Cxd−1 exp(−x), where C is a universal, boundary-condition-dependent
constant [240].

For a sufficiently small bulk correlation length, i.e. if ξ ln ξ ≪ L, the term ∼ ϕ4 in
Eq. (4.105) can be neglected relative to the term ∼ ϕ2. The resulting quadratic functional
can be readily minimised and leads to the approximate effective wall-wall interaction [42]

ω(L) = − 3ξ

χ(T )
P (L/ξ, h0, hL) +

4πℓB
κ

P (κL, σ0, σL)

−∆γ
3κξ2

χ(T )
(Q1(κL, κξ)(h0σL + hLσ0) +Q2(κL, κξ)(h0σ0 + hLσL))

+O((∆γ)2) (4.108)

with the function, which is analytical for y > 0,

Qk(x, y) :=
1

y2 − 1

( y exp(−kx/y)

1− exp(−2x/y)
− exp(−kx)

1− exp(−2x)

)
. (4.109)

The approximate effective wall-wall interaction potential ω(L) in Eq. (4.108) has been
found to agree qualitatively with that obtained numerically from the full original model
in Eq. (4.104).

In Eq. (4.108) the term ∼ P (L/ξ, h0, hL) corresponds to the contribution of the surface
fields to the wall-wall interaction in the absence of ion-solvent coupling (∆γ = 0) whereas
the term ∼ P (κL, σ0, σL) is the direct electrostatic wall-wall interaction. The term ∼
(h0σL + hLσ0) is the dominant correction to the effective wall-wall interaction potential,
whereas the term ∼ (h0σ0+hLσL) is small. This dominant correction can be interpreted as
the interaction of the electric double layer due to the unequal partitioning of ions (∼ ∆γ)
in the non-uniform order parameter close to one wall (∼ h0,L) with the the electric double
layer due to the surface charge on the opposite wall (∼ σL,0) (see Fig. 4.44).

The predictions of the model in Ref. [42] for two walls can be readily translated into those
for the wall-sphere and sphere-sphere geometry by means of the Derjaguin approximation,
which is applicable at separations much smaller than the sphere radii [385]. It turns out
that assuming additivity of Casimir and screened Coulomb forces, i.e. independence of the
order parameter from electrostatics, is in general insufficient to explain the experimental
observations, whereas the present model, which includes ion-solvent coupling, leads to a
consistent picture.

First symmetric boundary conditions, (h0, hL) = (−,−), are considered for which the
ion-solvent coupling is masked by the strong direct electrostatic repulsion. This situation
has been investigated experimentally with a suspension of hydrophilic spherical colloids
in a water-oil mixture [59] as well as with a single hydrophilic colloidal sphere in a similar
water-oil mixture near a hydrophilic glass wall [317]. In the presence of salt aggregation
[59] or strong wall-sphere attraction [317] has been observed upon approaching the critical
point of the binary mixture already several Kelvin away from the critical point. Within
the present model, this setting is described by h0 = hL < 0 and σ0 = σL < 0 with the
composition φ expressed as the mole fraction of the non-aqueous component. For a certain
choice of parameters Fig. 4.45(a) displays the effective wall-wall interaction potential ω̃(L).
Since ∆γ ≷ 0 corresponds to f+ ≷ f−, a negative ion-solvent coupling strength ∆γ < 0
describes a salt the cations of which are slightly better soluble in oil than the anions,
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Figure 4.44: Schematic representation of the situation of an uncharged hydrophobic wall
at z = 0 and a negatively charged hydrophilic wall at z = L for ∆γ = γ+ − γ− < 0,
i.e. f+ < f− (see Sec. 2.1). The curve q0(z) corresponds to the charge density which
screens the surface charge of the wall. The curve ϕ(z) denotes the order parameter, i.e.
the deviation of the local composition φ(z) from the bulk value φb. The non-uniformity
of ϕ(z) and the solubility contrast ∆γ 6= 0 give rise to an ion partitioning with charge
density q1(z). Charge density q0(z) leads to a dipolar layer of strength p0 ∼ σL at the
right wall, whereas q1(z) generates a dipolar layer of strength p1 ∼ ∆γh0 at the left wall;
the contribution of q1(z) to the dipolar strength at the right wall can be neglected as
compared to the contribution of q0(z) 6≈ 0. Since the directions of the dipoles are parallel
and both dipolar layers are immersed in an electrolyte solution with Debye length κ−1

and separated by a distance ≈ L, an attraction occurs with strength proportional to
p1p0 exp(−κL) ≈ ∆γh0σL exp(−κL) (see the second line of Eq. (4.108)).

which is expected because the oils used in the experiments, 3-methylpyridine and 2,6-
dimethylpyridine (2,6-lutidine), are Lewis bases [453]. The parameters used in Fig. 4.45
correspond to a critical water-2,6-lutidine mixture (ã = 0.34nm, ℓB = 2.82) with 10mM
salt (1/κ = 7.73). The value ∆γ = −0.2 corresponds to conditions f− ≫ f+ = 3kBT ,
which are reasonable for Gibbs free energies of transfer [287]. Taking the renormalised
surface charges σ0 = σL of the approximate, linearised electrostatics to be equal to the
saturation value±σsat corresponds to having large bare surface charges. Finally, due to the
lack of a reliable microscopic theory, the values of the surface fields h0,L have been chosen
without further analyses. It has been verified, however, that the shapes of the curves ω(L)
do not change qualitatively over a wide range of choices for h0,L. Far away from Tc the
effective wall-wall potential ω(L) exhibits a repulsion due to the direct electrostatic wall-
wall interaction. Upon approaching Tc, ω(L) starts to develop an increasing attraction
due to the critical Casimir effect. Since the change from repulsion to attraction occurs at
κξ ≈ 1, the attraction sets in only very close to the critical point if the ionic strength is
small, whereas this change occurs already considerably far away from the critical point
if the ionic strength is large. Due to the strong direct electrostatic wall-wall interaction
between hydrophilic walls, the ion-solvent coupling does not qualitatively influence the
effective wall-wall potential, so that the assumption of additivity of critical Casimir and
screened Coulomb forces [59, 151] is justified.

The situation is different for antisymmetric boundary conditions, (h0, hL) = (+,−), as
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Figure 4.45: Effective wall-wall interaction potential ω̃ as a function of the scaled wall sep-
aration κL and the scaled bulk correlation length κξ for (a) (−−) and (b) (+−) boundary
conditions; σsat = κ/(πℓB) is the saturation surface charge density. For symmetric (−−)
boundary conditions ω̃ is repulsive far away from the critical point due to the direct elec-
trostatic interaction between the like-charged walls whereas the Casimir force gives rise
to an increasing attraction upon approaching the critical point. For antisymmetric (+−)
boundary conditions ω̃ is repulsive far away from as well as close to the critical point.
Attraction (∼ ∆γ) occurs in an intermediate temperature range due to the ion-solvent
coupling induced by the difference between the solubility contrasts of cations and anions
in the binary solvent. (See Ref. [42])

studied experimentally in Ref. [317] using a single hydrophilic colloid near a hydrophobic
glass plate. Repulsion is observed far away from as well as close to the critical point,
whereas within an intermediate temperature range a strong attraction is found. The
near-critical repulsion is readily understood in terms of the critical Casimir effect for an-
tisymmetric boundary conditions and the repulsion far away from the critical point is of
electrostatic origin. However, the attraction occurring in the intermediate temperature
range cannot be explained within a picture without ion-solvent coupling. Figure 4.45(b)
shows ω̃(L) for a particular choice of non-symmetric surface fields h0 > 0, hL < 0 and
surface charge densities σ0, σL < 0, |σ0| ≪ |σL| corresponding to a weakly charged hy-
drophobic wall, in accordance with the experimentally observed trend of hydrophobic
walls being weakly charged [384]. Far from (κξ ≤ 0.28) and close to (κξ ≥ 0.82) the
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critical point ω̃(L) is repulsive because in Eq. (4.108) the terms ∼ P dominate. Upon
increasing κξ beyond 0.28, i.e. en route towards Tc, attraction occurs (see κξ = 0.39),
which for the chosen parameters is strongest around κξ = 0.46 and which weakens again
closer to Tc (see κξ = 0.59). This attraction is caused by the interaction of the electric
double layer due to the unequal partitioning of ions (∼ ∆γ) in the non-uniform order
parameter close to the hydrophobic wall (∼ h0 > 0) with the electric double layer due to
the surface charge on the opposite, hydrophilic wall (∼ σL < 0). For the attraction to
occur it is essential that the hydrophobic wall is sufficiently weakly charged (|σ0| ≪ |σL|).
The same effect for symmetric boundary conditions but uncharged walls can be expected
to lead to a repulsive interaction, which may stabilise colloidal dispersions [403].

Ion-solvent coupling manifests itself in yet another experiment described in Ref. [317],
in which the surface preference of the solvent has been measured by surface plas-
mon resonance (see Sec. 4.3). It is reported that a hydrophilic surface (h0 < 0) be-
comes less hydrophilic upon adding salt, whereas no changes have been detected for
a hydrophobic surface (h0 > 0). According to Eq. (4.105) the ”external” field U
for a semi-infinite system (L → ∞) acts like an additional, hydrophobic surface field
δh0 = −

∫∞

0
dzU(z) exp(−z/ξ) = ∆γσ0κξ/(2(1 + κξ)) > 0 if ∆γ, σ0 < 0. A hydrophilic

surface becomes less hydrophilic by adding salt or for T → Tc, whereas a hydrophobic
surface is influenced only weakly as |σ0| is small.

This analysis demonstrates, as for critical adsorption in Sec. 4.3, that even though
electrolytes do not alter the universal critical behaviour of polar solvents close to their
critical point, the ion-solvent coupling is relevant further away, provided the direct elec-
trostatic interaction is sufficiently weak. The crossover from an electrostatics- to a critical
Casimir-dominated behaviour is expected to occur near that temperature at which the
bulk correlation length becomes comparable with the Debye screening length. The anal-
ysis makes it transparent how the coupling of critical phenomena and electrostatics can
generate counter-intuitive effects without violating the asymptotic universal behaviour.

A conceivable alternative mechanism for the emergence of an effective attraction in
the case of antisymmetric boundary conditions has been proposed which is independent
of differences in the solubility of cations and anions [364]. It has been argued within
RPA that a charged wall (of either polarity) accumulates an increased number of ions
compared to an uncharged wall. Due to this enhanced total density of ions (which are
hydrophilic independent of their sign) a charged wall should, from a distance, appear
increasingly hydrophilic upon adding salt such that for certain system parameters an
underlying actually hydrophobic character of a wall might be overcompensated and turn
into an effectively hydrophilic wall; actually hydrophilic walls remain so upon adding salt
[364]. Such a salt-induced apparent hydrophilicity, which would occur on the surfaces
of all dissolved colloids, would in turn lead to effectively symmetric boundary conditions
and thus to attractive solvation forces. However, according to Fig. 4.22, even in the
presence of salt the excess adsorption follows the actual preference of the surface field, also
upon approaching Tc. Thus, within LDA Eq. (2.3), salt-induced apparent hydrophilicity
does not occur (i.e. Γ does not become negative). Therefore there is reason to expect
that salt-induced apparent hydrophilicity is an artifact of the BCA and the RPA. In
addition, by means of surface plasmon resonance it has been checked experimentally
that the adsorption preference, in particularly of hydrophobic substrates, is not altered
by adding salt [317]. Therefore, for antisymmetric boundary conditions of the order
parameter, there are doubts that salt-induced apparent hydrophilicity can serve as an
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explanation for the experimentally observed effective attraction within an intermediate
temperature range.

Additional numerical studies within BCA have been performed suggesting that ion-
induced ”precipitation” [328] or non-linearities [402] influence the effective colloid-colloid
interaction. However, the results of Ref. [43] concerning the reliability of BCA point
towards the possibility that those proposed effects are artifacts of the BCA due to an
overestimation of the ion-solvent coupling.

4.7 Colloids at electrolytic interfaces

Colloidal particles, trapped at fluid interfaces by adsorption energies much larger than
the thermal energy, can form effectively two-dimensional colloidal monolayers [357]. Dur-
ing the last two decades these systems have received significant attention both in basic
research as well as in applied sciences. On one hand, these monolayers serve as model
systems for studying effective interactions, phase behaviour, structures, and the dynam-
ics of condensed matter in reduced dimensionality [77, 113, 130, 213, 274, 285, 460]. On
the other hand, self-assembled colloidal monolayers find applications in optical devices,
molecular electronics, emulsion stabilization processes, and as templates in the fabrica-
tion of new micro- and nanostructured materials. Therefore, a reliable description of the
lateral inter-particle interaction at all distances r, which governs the structure formation
of colloids at fluid interfaces, is of primary importance.

In his pioneering work Pieranski [357] showed that the electrostatic repulsion of charged
colloids at such interfaces is dominated by a long-ranged dipole-dipole interaction, due
to an asymmetric counterion distribution in the two adjacent media, in addition to the
screened Coulomb interaction also present in bulk systems. Later both the power-law
and the exponential contributions have been calculated within the framework of linearized
Poisson-Boltzmann theory assuming point-like particles [199]. It turned out that, whereas
the interaction energy for charged particles always decays asymptotically ∼ 1/r3, the
prefactor depends on whether the interaction originates from charges on the polar [344,
357] or on the apolar [16, 17] side of the fluid interface. In addition there are experimental
indications of an attractive long-ranged lateral interaction which cannot be interpreted in
terms of a van der Waals force [323, 418]. Attempts were made to explain it in terms
of a deformation-induced capillary interaction, but a complete and final picture has not
yet been reached [142, 325, 326, 480]. In Ref. [283] the focus is on the electrostatic
contribution to the interaction.

Whereas Pieranski’s work has been extended in numerous directions, almost all subse-
quent studies have discussed exclusively the case of colloidal particles being far away from
each other. In this asymptotic limit the superposition approximation has been assumed
to be reliable, according to which one approximates the actual electrostatic potential (or
interfacial deformation) for a pair of particles by the sum of the potentials (or deforma-
tions) of the two single particles. However, for a dense system or during aggregation,
particles can come close to each other such that this superposition approximation is no
longer justified. For the deformation induced attractive part of the interaction, the valid-
ity of this approximation has been discussed for both large [117, 325, 480] and small [187]
separations. For the repulsive electrostatic interaction, an investigation of small-distance
deviations from the superposition approximation have been reported for the first time in
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Figure 4.46: (a) Cross section of two identical spherical particles trapped at a fluid inter-
face (horizontal blue line) close to each other and with contact angle 90◦. (b) Magnified
view of the boxed region in (a). The two adjacent fluids (“1”, located at x > 0, and
“2”, located at x < 0) forming the interface have permittivities ε1, ε2 and inverse Debye
lengths κ1, κ2, respectively. Since the surface-to-surface distance between the particles is
small compared to their radii, the particle surfaces can be approximated by planes located
at z = ±L which carry charge densities σ1 and σ2 at the surfaces in contact with fluid
“1” and “2”, respectively. According to the model the fluid structures vary steplike at
the surfaces and at the interface. (See Ref. [283])

Ref. [283], although a systematic multipole expansion of the electrostatic potential around
a single inhomogeneously charged particle trapped at an interface has been worked out
before [118].

Considering a simplified problem allows one to assess the quality of the superposition
approximation for the electrostatic interaction between two colloidal particles floating
close to each other at an electrolyte interface (see Fig. 4.46) which offers the possibility to
obtain exact analytic expressions [283]. Accordingly, first, the interface is assumed to be
planar, i.e. no deformations of the fluid interface are considered, which are typically of the
order of nanometers for micron-sized particles [251, 323, 418]. Second, due to the small
particle-particle distances to be studied, the curvature of the colloidal particles is ignored
in the spirit of a Derjaguin approximation [209, 385] by considering the effective interaction
between two charged, planar, and parallel walls. Third, a liquid-particle contact angle
of 90◦ is assumed; this value is encountered for actual systems [291]. An exact analytic
expression for the electrostatic potential of this model has been derived in Ref. [283]
within linearised Poisson-Boltzmann theory, which is then used to calculate the surface
interaction energies per total surface area and the line interaction energy per total length
of the two three-phase contact lines (Fig. 4.46). The main result is the observation of
significant deviations between the exact values of these quantities and those obtained
within the superposition approximation, both at small and even at large distances (see
Figs. 4.48 and 4.49).
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In Ref. [283] a three-dimensional Cartesian coordinate system is considered such that
two charged planar walls, which mimic the colloidal particles, are located at z = ±L
and the fluid interface is at x = 0 (Fig. 4.46(b)). The electrolyte solution present at
x > 0 (x < 0) is denoted as medium “1” (“2”). For simplicity only binary monovalent
electrolytes are considered. Generically the ions and the molecules are coupled such that
the molecular and ion number densities vary on the scale of the bulk correlation length
which is much smaller than the Debye length which sets the length scale for the variation of
the charge density [43] (see Sec. 4.3). Thus the number densities in both media vary only
close to the walls or to the fluid interface at distances of the order of the bulk correlation
length, which, away from critical points, is of the order of the size of the fluid molecules
and of the ions and falls below the length scale to be considered here. Accordingly, the
permittivity ε1 (ε2) and the inverse Debye length κ1 (κ2) in medium “1” (“2”) are uniform
where κi = (2Iie

2/(εikBT ))1/2, i ∈ {1, 2}, with bulk ionic strength Ii (which is the bulk
number density of each ionic species in medium i), Boltzmann constant kB, temperature
T , and elementary charge e > 0. The two walls are assumed to be chemically identical such
that the surface charge densities at both half-planes in contact with medium “1” (“2”) are
given by σ1 (σ2). The local charge density of the ions is not uniform in media “1” or “2”
because this quantity varies on the scale of the Debye lengths, which are typically much
larger than molecular sizes. Since the slab formed by the two walls at z = ±L is a model of
the space in between two colloidal particles trapped at the fluid interface, it is appropriate
to describe the ions within a grand canonical ensemble, the reservoirs of which are given
by the bulk electrolyte solutions far away from the fluid interface. Within a simple density
functional theory, which (i) considers uniform solvents in the upper and the lower half
space, (ii) assumes low ionic strength in the bulk (which facilitates the description of the
ions as point-like particles), and (iii) describes deviations of the ion densities from the bulk
ionic strengths only up to quadratic order, one derives the linearized Poisson-Boltzmann
(PB) equation (∆ − κ2i )Φi = 0 to be fulfilled by the electrostatic potential Φi(x, z) in
medium i ∈ {1, 2}. The corresponding boundary conditions are: (i) the electrostatic
potential should remain finite for x→ ±∞, (ii) the electrostatic potential and the normal
component of the electric displacement field at the fluid interface should be continuous,
i.e. Φ1(x = 0+, z) = Φ2(x = 0−, z) and ε1∂xΦ1(x = 0+, z) = ε2∂xΦ2(x = 0−, z), and (iii)
due to global charge neutrality the normal component of electric displacement field at
the walls correspond to the surface charge densities, i.e. εi∂zΦi(x, z = ±L) = ±σi. It is
important to note that in this model the fluids are confined to the space between the two
walls such that outside the fluid slab the electric field vanishes.

In order to determine the electrostatic potential one can split the whole problem into
three sub-problems [283]: (i) only the fluid interface is present in the absence of any walls,
(ii) two charged walls with homogeneous surface charge densities σ1 and the uniform
medium “1” in between, and (iii) two charged walls with homogeneous surface charge
densities σ2 and the uniform medium “2” in between. By adding the solution of problem
(ii) and the solution of problem (i) for the upper half-space and by adding the solution
of problem (iii) and the solution of problem (i) for the lower half-space, one obtains
potentials in the two media which satisfy all the boundary conditions listed above except
the continuity of the potential at the interface. In order to fulfill also the latter one, one
can construct a correction function which (i) is a solution of the linearized PB equation,
(ii) keeps all boundary conditions unchanged which are already satisfied, and (iii) leads
to continuity of the potential at the interface [283]. This can be achieved by means of 2D
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Fourier transform or Fourier series expansions [420]. The final expression for the exact
electrostatic potential (denoted by superscript “e”) reads [283]

Φe
i (x, z) = Φbi +

j 6=i∑

j∈{1,2}

(−1)jκjεjΦD

κ1ε1 + κ2ε2
e−κi|x| + Φ

(0)
i

cosh(κiz)

sinh(κiL)
+

j 6=i∑

j∈{1,2}

C
(0)
ij (L)e−a

(0)
i (L)|x|

2
+

j 6=i∑

j∈{1,2}

∞∑

n=1

C
(n)
ij (L)e−a

(n)
i (L)|x| cos

(nπz
L

)
, (4.110)

where the explicit dependences of Φ
(0)
i , a

(n)
i (L) and C

(n)
ij (L) on n, L, and the type of

media i and j are given in Ref. [283]. The electrostatic bulk potential Φbi is defined
as Φb1 = 0 and Φb2 = ΦD, with the Donnan potential (or Galvani potential difference
[2, 20, 121, 122]) ΦD between medium “2” and medium “1”, which originates from the
differences of the solubilities of the ions in the two media [37].

The first two terms on the right-hand side of Eq. (4.110) together represent the effect of
the fluid interface in the absence of walls (sub-problem (i)) which corresponds to the limit
L → ∞ at any fixed position z. The third term describes the electrostatic potential of
two uniformly and equally charged walls in the presence of a uniform electrolyte solution
in between (sub-problem (ii) or (iii)). According to Eq. (4.110), up to the constant Φbi,
Φe

i (x, z) reduces to the third term in the limit |x| → ∞, i.e. far away from the fluid
interface. The fourth and the fifth term in Eq. (4.110) correspond to the correction
function which describes the contact of the walls with the fluid interface. Due to the
symmetry of the problem, Φi(x, z) has to be an even function of z, and Φ2(−∞, z) −
Φ1(∞, z) = ΦD for any fixed position z in the limit of large wall separations L → ∞.
Φe

i (x, z) exhibits these properties.
By adding the electrostatic potentials of two single walls, each in contact with the fluid

interface in a semi-infinite geometry with respect to z, one obtains the superposition
approximation (denoted by superscript “s”) [283]

Φs
i (x, z) = 2Φbi+

j 6=i∑

j∈{1,2}

2(−1)jκjεjΦD

κ1ε1 + κ2ε2
e−κi|x| + 2Φ

(0)
i cosh(κiz)e

−κiL+

+

j 6=i∑

j∈{1,2}

∞∫

0

dq Cs
ij(q) cos(qL) cos(qz)e−

√
q2+κ2

i |x|. (4.111)

The explicit expression for Cs
ij(q) is given in Ref. [283]. A comparison between the exact

electrostatic potential Φe
i (x, z) and the superposition approximation Φs

i (x, z) at the plane
of interface (x = 0) is displayed in Fig. 4.47. Moreover, Φs

i (x, z) does not satisfy the
boundary condition which relates the electric displacement field at the walls to the surface
charge densities and Φs

2(−∞, z)− Φs
1(∞, z) 6= ΦD for any fixed position z in the limit of

large wall separations L→∞.
With the electrostatic potential given, the corresponding grand canonical potential can

also be determined both exactly as well as within the superposition approximation. After
subtracting the bulk free energy, the surface and interfacial tensions and the line tension
contributions from the grand potential one obtains the L-dependent part of the grand
potential,

∆Ω(L) = A1ωγ,1(L) + A2ωγ,2(L) + ℓωτ (L), (4.112)
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Figure 4.47: Comparison between the exact expression (superscript “e”, black solid lines,
see Eq. (4.110)) and the superposition approximation (superscript “s”, red dashed lines,
see Eq. (4.111)) of the electrostatic potential Φ(x, z) at the interfacial plane (x = 0) in

units of Φ
(0)
1 = σ1/(κ1ε1) for varying ẑ = κ1z and two slit widths: L̂ = κ1L = 10 (panel

(a)) and L̂ = κ1L = 20 (panel (b)). For the plots typical parameter ratios κ = κ2/κ1 =

0.025, ε = ε2/ε1 = 0.025, σ = σ2/σ1 = 0.1, and ΦD/Φ
(0)
1 = 1.3 have been chosen. Φe and

Φs differ significantly at narrow widths L, and the difference between the two expressions
decreases upon increasing the slit width. In the limit ẑ → ±L̂, both Φe and Φs remain
finite. (See Ref. [283])

for the walls being a distance 2L apart, where A1 and A2 are the total areas of the
two walls in contact with medium “1” and “2”, respectively, and ℓ is the total length
of the three-phase contact lines formed by medium “1”, medium “2” and the walls; by
construction ∆Ω(L → ∞)→ 0. The surface interaction energy per total surface area Ai

(ωγ,i) in contact with medium i ∈ {1, 2} is exactly (superscript “e”) given by [283]

ωe
γ,i(L) =

σ2
i

2κiεi
(coth(κiL)− 1) , (4.113)

and within the superposition approximation (superscript “s”) by [283]

ωs
γ,i(L) =

σ2
i

2κiεi

(
2e−κiL cosh(κiL)− 1

)
. (4.114)

According to Eqs. (4.113) and (4.114), varying σi and εi influences only the amplitude
of ωγ,i whereas its decay rate is solely determined by κi. For large wall separations one

has ωe
γ,i(κiL ≫ 1) ≃ σ2

i

κiεi
e−2κiL and ωs

γ,i(κiL ≫ 1) ≃ σ2
i

2κiεi
e−2κiL, i.e. the superposition

approximation correctly predicts the exponential decay in the large distance limit but, in
contrast to common expectations, the corresponding prefactor is too small by a factor of
2. Moreover, the superposition approximation is qualitatively wrong for small wall separa-
tions (but still large on the molecular scale), because the exact surface interaction potential

diverges in this limit as ωe
γ,i(κiL≪ 1) =

σ2
i

2κiεi

[
1

κiL
− 1 +

κiL

3
+O((κiL)3)

]
, whereas the

superposition approximation stays finite: ωs
γ,i(κiL≪ 1) =

σ2
i

2κiεi

[
1− 2κiL+O((κiL)2)

]
.
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Figure 4.48: (a) Comparison between the exact expression (superscript “e”, black solid
lines, see Eq. (4.113)) and the corresponding superposition approximation (superscript
“s”, red dashed lines, see Eq. (4.114)) of the surface interaction energy ωγ,2(L) per total

surface area of contact between the walls and medium “2” in units of ω
(0)
γ = σ2

1/(κ1ε1)
as a function of L̂ = κ1L. Typical experimental values for the parameter ratios κ =
κ2/κ1 = 0.025, ε = ε2/ε1 = 0.025, and σ = σ2/σ1 = 0.1 have been chosen for the plots
[76, 87, 228, 323, 418]. Obviously ωe

γ,2(L) and ωs
γ,2(L) differ significantly at small distances,

but even in the limit of large wall separations the superposition approximation is too small
by a factor of 2 (see the offset between the two curve in the inset). A similar deviation
is obtained for ωγ,1(L), but due to its very small magnitude (≈ 10−10 × ωγ,2(L), for the
above parameter choices) it is shown in Fig. 4.49. (b) Comparison of the exact expression
(superscript “e”, black solid lines) and the superposition approximation (superscript “s”,
red dashed lines) of the effective line interaction energy ωτ(L) per total length of the three-

phase contact lines between media “1” and “2” and the walls in units of ω
(0)
τ = σ2

1/(κ
2
1ε1)

as a function of L̂. In addition to the same parameters σ, ε, and κ as in panel (a) the

Donnan potential (Galvani potential difference) ΦD/Φ
(0)
1 = 1.3 is used. As for the surface

interaction potential in panel (a), the superposition approximation of the line interaction
potential deviates qualitatively from the exact result at small wall separations and its
absolute value at large distances is too small by a factor of 2. (See Ref. [283])

Thus the superposition approximation underestimates ωγ,i for all L. Since for dilute aque-
ous electrolyte solutions of, e.g. 1 mM (≈ 0.0006 nm−3) ionic strength the Debye length
(1/κi & 10 nm) is much larger than typical molecular size (e.g. L = 1 nm), the exact sur-
face interaction ωe

γ,i(L) and the corresponding superposition approximation ωs
γ,i(L) differ

by at least one order of magnitude: ωe
γ,i(L)/ωs

γ,i(L) ≃ 1/(κiL) & 10. Figures 4.48(a) and
4.49 display a comparison between the exact result (black solid lines) and the superpo-
sition approximation (red dashed lines) for a set of typical experimental values for the
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Figure 4.49: Comparison between the exact expression (superscript “e”, black solid lines,
see Eq. (4.113)) and the superposition approximation (superscript “s”, red dashed lines,
see Eq. (4.114)) for the surface interaction energy ωγ,1(L) per total surface area of contact

between the walls and medium “1” scaled by ωγ,2(L) for varying L̂ = κ1L. Typical
experimental values for the parameter ratios κ = κ2/κ1 = 0.025, ε = ε2/ε1 = 0.025, and
σ = σ2/σ1 = 0.1 have been chosen for the plots. This data set is the same as the one
used for Fig. 4.48, which displays the behaviour of ωe

γ,2 and ωs
γ,2. Obviously ωe

γ,i(L) and
ωs
γ,i(L) differ significantly at small separation distances, but even in the limit of large wall

separations the superposition approximation is too small by a factor of 2 (see the offset
between the two curves in the inset). (See Ref. [283])

ratios σ = σ2/σ1, κ = κ2/κ1, and ε = ε2/ε1.

The line interaction potential ωτ (L) per total length of the three-phase contact line
between media “1” and “2” and the walls has been calculated from Eqs. (4.110) and (4.111)
(see Ref. [283] for explicit expressions). A comparison between the exact result ωe

τ (L) and
the corresponding superposition approximation ωs

τ (L) is displayed in Fig. 4.48(b). Similar
to the surface interaction potentials, ωs

τ (L) differs significantly from the exact result ωe
τ (L)

at small wall separations 2L. For large values of L, its absolute value is too small by a
factor of 2, like the surface contribution.

In Ref. [283] the charge density at the surface of the colloids has been considered to
be constant, forming a boundary condition. However, in actual systems the situation
is slightly different. When two particles approach each other the electrostatic potential
becomes deeper in the region between the particles. Due to that certain charged molecular
surface groups recombine in order to adjust the electrostatic potential. Such a process
can better be described by a charge regulation model [56, 74, 90, 188, 191, 192, 385,
444]. Keeping in mind the actual complexity of the system considered here, one can
briefly discuss the implications of charge regulation by focusing on a simpler system which
consists of an electrolyte between two charged walls without a liquid-liquid interface in
between. For such a system, the electrostatic potential with a surface charge density

σwi(L) at the two walls (which is constant for any fixed L) is given by Φe
wi =

σe
wi(L)

κwiεwi

coshκwiz
sinhκwiL

for the exact calculation (see Ref. [283]) and by Φs
wi =

2σs
wi(L)

κwiεwi
e−κwiL cosh (κwiz) within the

superposition approximation. Here the subscript “wi” stands for the system without
interface and the quantities σwi, κwi and εwi indicate, respectively, the surface charge
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density at the walls, the inverse Debye length, and the permittivity of the medium between
the two planes in the absence of the horizontal interface. The dependence of the surface
charge densities σe

wi(L) and σs
wi(L) on L originates from the charge regulation. This leads

to the following surface interaction energies per total surface area of both walls [283]:

ωe
γ,wi(L) =

(σe
wi(L))2

2κwiεwi
(coth(κwiL)− 1) (4.115)

and

ωs
γ,wi(L) =

(σs
wi(L))2

2κwiεwi

(
2e−κwiL cosh(κwiL)− 1

)
. (4.116)

Note that Eqs. (4.115) and (4.116) are identical to Eqs. (4.113) and (4.114), respectively,
except the fact that here the surface charge density varies with the thickness L of the
slab.

The two limiting cases of small and large L are discussed separately. In the limit κwiL≪
1 one has σe

wi(L) ≃ −sign(q)e
√

2nKL for the exact calculation and σs
wi(L) is constant for

the superposition approximation. K (with units 1/volume) is the equilibrium constant for
the association-dissociation reaction of the surface groups, n denotes the total number of
surface sites per cross-sectional area where a dissociation reaction can take place, and q is
the valency of the solvated ions due to the dissociation reaction at the wall surface. This

implies ωe
γ,wi(L → 0) =

e2nKL

κwiεwi

[
1

κwiL
− 1 +

κwiL

3
+O((κwiL)3)

]
which is nonzero for

L = 0. On the other hand, the nonzero and finite limiting value σs
wi(L→ 0) 6= 0 within the

superposition approximation is clearly unphysical because the charge density is expected
to decrease upon decreasing the inter-particle separation distance L. If by fiat, in order to
avoid this unphysical feature, in Eq. (4.116) one replaces σs

wi(L) by σe
wi(L), in the limit of

small L one finds ωs
γ,wi(L → 0) =

e2nKL

κwiεwi

[
1− 2κwiL+O((κwiL)2)

]
, which vanishes for

L→ 0. In the opposite limit, i.e. for κwiL≫ 1, one finds ωe
γ,wi ≃

(σe
wi(L))2

κwiεwi
e−2κwiL and, by

using the same replacement as above, ωs
γ,wi ≃

(σe
wi(L))2

2κwiεwi
e−2κwiL =

ωe
γ,wi

2
with σe

wi(L) given

in Ref. [283]. Thus for the simple slab system without a liquid-liquid interface, but with
charge regulation, the exact calculation and the superposition approximation are also in
disagreement by a factor of 2 in the large separation limit and they differ qualitatively in
the small separation limit. For the more complicated system with a liquid-liquid interface,
one can expect these discrepancies to persist.

The considerations above show that the effective interation between the two surfaces
(colloids) is determined by the interplay of the Debye lengths 1/κ1 and 1/κ2 in both
media and the Gouy-Chapman lengths 2kBTε1/(e|σ1|) and 2kBTε2/(e|σ2|) of the charged
colloid-fluid interfaces. It has to be noted that this variety of length scales occurs due to
the colloids being hosted at an interface between ionic complex fluids and not between
inert structureless media.
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Chapter 5

Conclusions

In the previous chapters several types of ionic complex fluids have been discussed which
can be classified in terms of the relation of the Debye length to other relevant length scales.
For electrolyte solutions the additional length scale is the bulk correlation length of the
solvent, whereas in the absence of a solvent the Debye length competes with molecular or
colloidal length scales.

For dilute electrolyte solutions the Debye length is competing with the bulk correlation
length of the solvent. Far away from a critical point of the solvent the Debye length
is the largest length scale so that the properties of the ionic complex fluid are rather
material-independent and similar to those of a plasma. In particular the bulk structure
(see Secs. 3.1 and 3.2) and the interfacial behaviour (see Secs. 4.1, 4.2, 4.3, 4.4 and 4.6) is
characterised by the screening of charges. However, the bulk phase behaviour (see Sec. 2.1)
is affected only marginally by the presence of a small amount of ions, as a consequence of
the only short-ranged correlations.

Close to a critical point of the solvent an ionic complex fluids exhibits the universal
critical behaviour of the pure solvent because then the Debye length takes the role of a
“microscopic” length which is smaller than the bulk correlation length (see Secs. 3.1, 3.2,
4.3 and 4.6). It turned out that Kirkwood crossovers, i.e. crossovers between monotonic
and damped oscillatory asymptotic decay of the pair correlation function, take place in
between both regimes when the Debye length and the bulk correlation length are of similar
magnitude (see Sec. 3.1).

In room temperature ionic liquids (RTILs), and particularly in ionic liquid crystals,
no solvent is present and the properties are determined by an interplay between the
Debye length and molecular lengths of the particles. For dense RTILs the Debye length
is (much) smaller than the molecular size so that these systems behave to a large extent
similar to non-ionic complex fluids with genuine short-ranged interactions due to, e.g.,
chemical bonding (see Sec. 3.4). Consequently formation of microheterogeneities due
to the simultaneous presence of polar and apolar parts of the organic molecules and of
mesophases of ionic liquid crystals (see Sec. 2.3) occurs. These features are sensitive to
details of the chemical structure of the molecules. Only electrical observables, such as
the dielectric function (see Sec. 3.3), exhibit material-independent plasma-like signatures
of the freely moving ions at large length scales. In dilute RTILs (see Sec. 2.2) the Debye
length is (much) larger than the particle size, which leads to a behaviour similar to a
plasma of point-like particles.

In colloidal suspensions all three length scales (the size of the colloidal particles, the
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Debye length and the bulk correlation length of the solvent) can be relevant. The size
of the colloidal particles is typically the largest, which leads to the material-independent
but geometry-dependent dominant behaviour of hard particles with characteristic phases
of colloidal crystals (see Sec. 2.4) and liquid crystals (see Sec. 2.3). On the one hand, far
away from a critical point of the solvent, screening of the colloidal surface charge on the
scale of the Debye length provides the leading correction to the hard particle behaviour.
This correction is again material-independent and it gives rise to similarities of colloidal
suspensions with RTILs (e.g. ionic liquid crystals) and electrolyte solutions (see Sec. 4.5).
On the other hand, close to the critical point of the solvent the critical Casimir force
on the scale of the bulk correlation length dominates over the electrostatic interaction
(see Sec. 4.6). However, under certain circumstances more complex structures form at
the surfaces of colloids due to the coupling of ions and the solvent, such as the dipolar
layers of unequally partitioned ions in composition gradients of the solvent, which give
rise to involved effective interactions between colloidal particles (see Sec. 4.6), or the fluid
structure in between colloidal particles trapped at an interface of immiscible ionic complex
fluids, which gives rise to an effecive interaction of the colloids with contributions from
the colloidal surfaces as well as from the fluid-fluid-colloid contact lines (see Sec. 4.7).

The considerations above suggest that the key to understand fine details of soft matter
systems, to which advanced experimental techniques have given access in recent years,
as well as some known but not yet fully understood phenomena, e.g. the aggregation in
colloidal suspensions or the folding of proteins, is to recognise the ionic complex fluid
properties, e.g. of the dispersion medium.

The present thesis is focussed on static general properties of ionic complex fluids, and it
has been shown in the preceding chapters that the classification of static general properties
of complex fluids in terms of competing length scales leads to ionic complex fluids being
of particular interest, because the Debye length is largely material-independent and for
the important case of dilute electrolyte solutions it happens to be well separated from the
molecular length scale below and from the colloidal length scale above. For dynamic prop-
erties there are not only hierarchies of length but also of time scales which determine the
properties. Examples of this situation are well-known for polymers [115, 383], interfaces
of immiscible electrolyte solutions [156, 171, 374, 398–400, 458] and colloidal suspensions
[38, 104, 166, 385]. Due to the multitude of time scales typically present it is common
practice to study the dynamics of complex fluids on individual time scales. However, in
contrast to the typical length scales relevant for static properties, the time scales relevant
for the dynamics of a complex fluid depend sensitively on the system. This essentially
precludes a general, i.e. system-independent, classification. Hence, the existence of three
well-separated major length scale regimes to classify the general, i.e. system-indpendent,
phenomena of complex fluids and the identification of ionic complex fluids as a material
class representing all of them can be expected to be a peculiarity of static properties of
soft matter systems.
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1 Einführung

Unter der großen Vielzahl komplexer Fluide sind diejenigen mit ionischen Konstituenten
von vorrangigem Interesse. Ionische komplexe Fluide beinhalten z.B. Elektrolytlösungen,
“room temperature ionic liquids” (RTILs), ionische Flüssigkristalle, kolloidale Suspen-
sionen und Polyelektrolyte. Das häufige Auftreten ionischer komplexer Fluide in Natur
und Technik geht auf die Gegenwart von flüssigem Wasser zurück, das als hochpolares
Lösungsmittel zur Dissoziation von Kationen und Anionen führt.

Die Bildung frei beweglicher Ionen in verdünnen Elektrolytlösungen, z.B. in physio-
logischen Fluiden wie dem Zytoplasma, ist essentiell für viele natürliche Prozess, z.B.
den Zitronensäurezyklus des aeroben Zellstoffwechsels. Das Leben auf der Erde wäre
nicht von der Art wie es heute anzutreffen ist, wenn die Ursuppe kein ionisches kom-
plexes Fluid gewesen wäre. Der Charakter verdünnter Elektrolytlösungen als komplexe
Fluide wird durch eine große Anzahl verschiedener Teilchen erzeugt, deren typischerweise
unvollständige gegenseitige Mischbarkeit zu Entmischungsübergängen und Mikrohetero-
genitäten führt. Per Definition ist die Debye-Länge einer verdünnten Elektrolytlösung viel
größer als die molekularen Größen der Konstituenten, sodass diese ionischen komplexen
Fluide viele materialunabhängigen Eingenschaften besitzen (siehe Abschn. 2.1, 3.1, 3.2,
4.1, 4.2, 4.3 und 4.4).

Chemische Prozesse, die auf Redox-Reaktionen basieren, z.B. in Batterien, Brennstoff-
zellen und Solarzellen sowie bei Elektrolyse und Galvanisierung, spielen sich in ionischen
komplexen Fluiden ab, die von den Reaktanden gebildet werden. Ein aktueller Trend in
der Katalyseforschung ist es RTILs, d.h. (typischerweise organische) Salzschmelzen mit
Schmelztemperaturen im Bereich der Raumtemperatur [457], als Reaktionsmedien zu un-
tersuchen, die eine hochpolare fluide Umgebung für solche Anwendungen bereitstellen
[7, 165, 464, 470, 481, 483]. RTILs werden ebenfalls als leistungsfähige Lösungsmittel
in der chemischen Synthese verwendet, die wasserunlösliche Materialien, wie z.B. Holz
(Zellulose), lösen, Enzyme stabilisieren [463] oder in der Verarbeitung von Biomasse [427]
eingesetzt werden können. Auf Grund von Eigenschaften, wie z.B. einer hohen thermi-
schen Stabilität und einen vernachlässigbaren Dampfdruck [31, 273, 346, 467], sind viele
Anwendungen denkbar, z.B. als füssiges Medium unter Ultrahochvakuumbedingungen
[31, 273, 425, 459]. All diese Eigenschaften von RTILs können als die ionischer komplexer
Fluide betrachtet werden, die durch eine einzigartige Kombination aus elektrostatischer
und sterischer Wechselwirkung sehr asymmetrischer Teilchen gekennzeichnet sind. Da
RTILs keine Lösungen sondern Schmelzen sind, enthalten sie kein Lösungsmittel, sodass,
im Gegensatz zu verdünnten Elektrolytlösungen, die Ionenstärke sehr hoch und daher
die Debye-Länge sehr viel kleiner als die Teilchengröße ist. Allgemeine, d.h. materialun-
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abhängige, Eigenschaften leiten sich von der hohen Ladungsdichte ab (siehe Abschn. 2.2,
3.3 und 3.4).

Während die vielfach untersuchten Imidazolium- und Pyridinium-basierten RTILs mit
kurzen Alkylketten im Volumen isotrope Fluide sind, existieren auch ionische Flüssig-
kristalle, d.h. RTILs, die mesogenes Verhalten zeigen. Auf Grund ihrer selbstorga-
nisierten Struktur sind letztere von Interesse für Anwendungen als anisotrope Leiter
[1, 225, 332, 485] oder als Formvorlagen zur Synthese von Nanoteilchen [429, 430]. Ver-
schiedene Arten ionischer Flüssigkristalle wurden hergestellt [19, 50], welche, z.B. smekti-
sche [61, 177, 193, 405], kolumnare [404, 486] und selbst kubische [318, 319] Mesophasen
zeigen. Wie auch für isotrope RTILs zeigen ionische Flüssigkristalle hohe thermische und
elektrochemische Stabilität [61, 103, 160, 237, 256, 419], was für manche Anwendungen
von Vorteil ist. Der sterische Einfluss der ionischen Flüssigkristalle auf die Eigenschaften
als komplexe Fluide ist jedoch stärker als bei isotropen RTILs, da die anisotropen Teil-
chenformen nicht nur zu den niedrigen Schmelztemperaturen, sondern auch zur Bildung
von Mesophasen führen (siehe Abschn. 2.3).

Eine weitere Klasse ionischer komplexer Fluide, deren Teilchen größer als die Debye-
Länge sind, sind kolloidale Suspensionen. Mit Hilfe entsprechender Präparationstechniken
und experimenteller Bedingungen ist man in der Lage, die kolloidalen Wechselwirkungen
in einem weiten Bereich einzustellen [169, 269, 368, 428]. Dementsprechend ist eine Viel-
zahl an Parametern festzulegen, z.B. Größe und Form der Kolloide sowie Stärke und
funktionale Form des Wechselwirkungspotentials [112, 260, 413, 484]. Zudem nimmt die
Zahl an Parametern dramatisch zu, wenn Mischungen verschiedener kolloidaler Spezies
betrachtet werden. Es gibt zwei verschiedene Gesichtspunkte auf kolloidale Suspensionen
im Kontext ionischer komplexer Fluide: Einerseits kann man das kolloidale Subsystem
als ionisches komplexes Fluid betrachten und das Lösungsmittel als strukturloses, in-
ertes und homogenes Medium behandeln, wie z.B. im Rahmen der DLVO-Theorie der
Stabilität kolloidaler Dispersionen [209, 385]. In Abschn. 2.4 wird diskutiert, dass selbst
binäre Mischungen geladener kolloidaler Kugeln mit gleichen Radien ein sehr komplexes
Phasenverhalten zeigen, das lediglich durch die Reichweite der abgeschirmten elektro-
statischen Wechselwirkung bestimmt wird, und in Abschn. 4.5, dass kolloidale Plättchen
allgemeine Eigenschaften von verdünnten Elektrolytlösungen und ionischen Flüssigkristal-
len aufweisen. Andererseits kann man kolloidale Teilchen in einem ionischen komplexen
Fluid als Medium suspendiert betrachten, z.B. bei Emulsionen zweier nicht mischbarer
Flüssigkeiten, Suspensionen von Viren oder Ton und Makromolekülen wie DNA-Stränge
und Proteine. Dieser Standpunkt führt zu der Frage nach der effektiven Wechselwirkung
zwischen den kolloidalen Teilchen in Abhängigkeit von den Eigenschaften des ionischen
komplex-fluiden Mediums; bekannte Beispiele sind der Abschirmeffekt elektrischer La-
dungen durch frei bewegliche Ionen [75, 91, 92, 161, 162] und die salzspezifische Modifika-
tion der Löslichkeit (“salting-in” oder “salting-out”) von Proteinen in Elektrolytlösungen
(Hofmeister-Effekt) [243]. Häufig auftretende Situationen in Systemen weicher Mate-
rie, deren Eigenschaften durch ionische komplex-fluide Medien bestimmt sind und die
hier behandelt werden, sind die Bildung elektrostatisch stabilisierter Emulsionen zweier
Flüssigkeiten (siehe Abschn. 4.1), die Wechselwirkung kolloidaler Teilchen in einer Elek-
trolytlösung nahe und weit weg von einem kritischen Punkt des Lösungsmittels (siehe
Abschn. 4.6) und die Wechselwirkung kolloidaler Teilchen an einer Grenzfläche zwischen
zwei Fluiden (siehe Abschn. 4.7).

Angesichts all dieser wichtigen Systeme, die Themen zahlreicher Forschungsgebiete und
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technischer Anwendungen sind, ist es entscheidend, die Eigenschaften der ionischen kom-
plexen Fluide zu verstehen, die einen wesentlichen Bestandteil dieser Systeme ausma-
chen. Obgleich es eine Vielfalt an ionischen komplexen Fluiden gibt, teilen sie allge-
meine, d.h. materialunabhängige, Eigenschaften, die auf der Kopplung der beweglichen
Ionen an weitere Freiheitsgrade des komplexen Fluids beruhen. Besonders zweckmäßig
ist ein Klassifikationsschema, das bereits oben angewendet wurde und das eine Eintei-
lung der relevanten Längenskalen vornimmt, wovon die Debye-Länge eine ist, die die
Ionenstärke der geladenen Konstituenten quantifiziert. Die Kombination des ionischen
Charakters mit, z.B., Orientierungsfreiheitsgraden, Gößenpolydispersität oder Konfor-
mationsfreiheitsgraden führt zu einer reichhaltigen Phänomenologie ionischer komple-
xer Fluide, deren Verständnis dank Weiterentwicklungen der theoretischen Beschreibung,
Computersimulationstechniken und experimentellen Methoden bedeutende Fortschritte
gemacht hat. Ziel dieser Habilitationsschrift ist es die Beiträge des Autors zum Thema
allgemeiner Eigenschaften ionischer komplexer Fluide aus den Arbeiten [24, 35–37, 39–
45, 96, 203, 204, 236, 283, 487, 491] darzulegen und im Kontext aktueller Forschung zu
diesem Thema zu diskutieren. Aus den zahllosen Möglichkeiten, allgemeine Eigenschaf-
ten der verschiedenen oben erwähnten ionischen komplexen Fluide zu diskutieren, wird in
den folgenden Kapiteln eine Einteilung in die Kategorien “Phasenverhalten”, “Struktur
im Volumen” und “Grenzflächen” gewählt. Jedes Kapitel beginnt mit einer Diskussion
verdünnter Elektrolytlösungen, gefolgt von ionischen komplexen Fluiden hoher Ladungs-
dichte (RTILs) und / oder großer Teilchen (Kolloide).

Der Einfluss von ionischen Konstituenten auf das Phasenverhalten komplexer Fluide
wird in Kap. 2 diskutiert. Die dort behandelten Phasenseparationen zweier Elektro-
lytlösungen in komplexen Lösungsmitteln (Abschn. 2.1) und die Gasphase von RTILs (Ab-
schn. 2.2) repräsentieren die Situation kleiner Ionenstärke, d.h. einer Debye-Länge größer
als die konstituierenden Moleküle. Die komplementäre Situation von Teilchengrößen
größer als die Debye-Länge führt zu den mesogenen Eigenschaften ionischer Flüssigkri-
stalle (Abschn. 2.3) und der reichhaltigen Phänomenologie kristalliner Phasen geladener
Kolloide (Abschn. 2.4).

Der Einfluss von Ionen auf die Struktur komplexer Fluide im Volumen wird in Kap. 3
beschrieben. Die wichtigste Beobachtung für verdünnte Elektrolytlösungen ist hierbei,
dass die Struktur dieser ionischer komplexer Fluide im Volumen durch die Debye-Länge
bestimmt ist, ausgenommen in der Nähe eines kritischen Punkts des Lösungsmittels, wo
die divergente Korrelationslänge zu einem interessanten Übergang von elektrolyt-ähnli-
chem Verhalten zum Verhalten des kritischen Lösungsmittels führt (Abschn. 3.1). Eine
interessante allgemeine Beobachtung, die zu besprechen ist, ist die, dass ionische Ver-
unreinigungen, im Gegensatz zu nichtionischen, die Lösungsmittelstruktur im Volumen
verändern können (Abschn. 3.2). Bei dichten ionischen Fluiden führt die Konkurrenz
zwischen der elektrostatischen Wechselwirkung und der sterischen Wechselwirkung auf
Grund von Größe und Form der Teilchen zu einem Übergang zwischen plasma-ähnlichem
und dipolar-fluidem Verhalten, das im Rahmen der statischen dielektrischen Funktion dis-
kutiert werden wird (Abschn. 3.3). Gewöhnlich wird die Langreichweitigkeit der reinen
Coulomb-Wechselwirkung für die Besonderheiten des Phasenverhaltens und der struktu-
rellen Eigenschaften ionischer Systeme verantwortlich gemacht. Für dichte ionische Fluide
kann jedoch gezeigt werden, dass das nicht zutrifft, d.h. dass dasselbe Phasenverhalten
und dieselbe Struktur auch von einer geeigneten kurzreichweitigen Wechselwirkung er-
zeugt werden können (Abschn. 3.4).
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Grenzflächeneigenschaften ionischer komplexer Fluide sind von besonderem Inter-
esse für verschiedene Anwendungen, sodass Kap. 4 einer ausführlichen Diskussion von
Grenzflächen gewidmet ist. Allgemeine Eigenschaften von Grenzflächen ionischer komple-
xer Fluide zeigen sich in der Grenzflächenspannung (Abschn. 4.1), dem Benetzungsverhal-
ten (Abschn. 4.2), der kritischen Adsorption (Abschn. 4.3) und der Elektrobenetzung (Ab-
schn. 4.4) in Elektrolytlösungen. Wiederum zeigt die Phänomenologie dieses Systemtyps
weitgehende Materialunabhängigkeit, da die Debye-Länge als dominante Längenskala die
molukulare Größe der Konstituenten überragt. Andererseits wird die Grenzflächenstruk-
tur kolloidaler Suspensionen durch die Teilchengeometrie dominiert und die Debye-Länge
führt lediglich zu einer Korrektur. Nichtsdestoweniger stellen sich die Benetzungseigen-
schaften kolloidaler Suspensionen als sehr ähnlich zu denen verdünnter Elektrolytlösungen
und ionischer Flüssigkristalle heraus (Abschn. 4.5). Kolloidale Suspensionen können je-
doch eine viel reichhaltigere Phänomenologie besitzen, falls mehrere Längenskalen gleich-
zeitig beitragen. Zu diskutierende Beispiele sind nichttriviale effektive Wechselwirkungen
zwischen kolloidalen Teilchen im Volumen eines ionischen komplexen Fluids (Abschn. 4.6)
oder an der Grenzfläche zwischen zwei nichtmischbaren ionischen komplexen Fluiden (Ab-
schn. 4.7).

Ausgehend von den zuvor diskutierten Systemen werden in Kap. 5 allgemeine Schlussfol-
gerungen über die allgemeinen Eigenschaften ionischer komplexer Fluide gezogen. Es wird
argumentiert, dass die in den Kap. 2–4 diskutierten ionischen komplexen Fluide nicht nur
vom Anwendungsstandpunkt interessant sind, sondern dass sie auch einen vollständigen
Satz von Repräsentanten der verschiedenen Klassen allgemeiner Eigenschaften darstellen.

2 Phasenverhalten

2.1 Elektrolytlösungen

Während im 19. Jahrhundert für Elektrolytlösungen nur die kolligativen Eigenschaften
verstanden wurden [8] und Anfang des 20. Jahrhunderts die Ion-Ion-Korrelationen erkannt
wurden [91, 296, 385], rückte in den letzten Jahren zunehmend die Kopplung zwischen Io-
nen und Lösungsmittel in den Fokus des Interesses. Untersuchungen befassen sich hierbei
mit der Doppelschichtstruktur für komplexe Lösungsmittel nahe eines kritischen Punkts
[42, 43, 80, 327, 328, 334, 335], mit möglichen salzinduzierte Strukturänderungen des
komplexen Lösungsmittels [43, 44, 312–314, 388–392] und mit Effekten auf Grund von
Inhomogenitäten der Permittivität in der Nähe von Grenzflächen [29, 329, 401, 436]. Die
übergroße Mehrheit theoretischer Untersuchungen stützt sich dabei auf die sogenannte bi-
lineare Kopplungsnäherung (BCA) der Ionen-Lösungsmittel-Wechselwirkung, d.h. einer
lokalen Dichtenäherung mit freier Excessenergiedichte, die bilinear in den Teilchenzahl-
dichten ist [29, 312–314, 327, 328, 334, 335, 401, 436]. Die “random-phase approxima-
tion” (RPA) [80, 329] stellt im Prinzip lediglich eine nichtlokale Variante der BCA dar,
von der bekannt ist, dass sie nur für kleine Wechselwirkungsenergien anwendbar ist [176].
Typische Ionen-Lösungsmittel-Wechselwirkungsstärken betragen aber gewöhnlich einige
10 kBT [208, 286], sodass die Verwendung der BCA oder der RPA nicht gerechtfertigt
ist. Tatsächlich wurde in Arbeit [43] im Rahmen einer Dichtefunktionaltheorie (siehe
Gl. (2.1)) gezeigt, dass die BCA und die RPA zu qualitativ falschen Phasendiagrammen
führen können (siehe Abb. 2.1). Außerdem wurde dort eine realistischere Kopplung, die
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neben energetischen auch entropische Beiträge der Ionen-Lösungsmittel-Kopplung berück-
sichtigt, vorgeschlagen (siehe Gl. (2.3)). Diese verbesserte Beschreibung, im Gegensatz
zur BCA und RPA, lässt für verdünnte Elektrolytlösungen auf einen nur schwachen Ein-
fluss von Ionen auf das Phasenverhalten des Lösungsmittels schließen, was im Einklang
mit der experimentellen Erfahrung steht [409].

2.2 Dampfdruck von RTILs

Eines der bemerkenswertesten und wahrscheinlich wichtigsten Eigenschaften von RTILs
ist ein verschwindend kleiner Dampfdruck bei Raumtemperatur: Beispielsweise besitzt
[C4mim][PF6] bei 298 K einen Dampfdruck von ca. 100 pPa [346], während der von Was-
ser 3 kPa beträgt [258]. Dies bietet die Möglichkeit, RTILs als Lösungsmittel unter Ul-
trahochvakuumbedingungen zu verwenden [277, 462]. Bei höheren Temperaturen können
RTILs allerdings destilliert werden [123] und ihr Dampfdruck und Verdampfungsenthalpie
können gemessen werden [347, 488].

Verschwindend kleine Dampfdrücke nahe dem Tripelpunkt werden für alle aprotischen
RTILs beobachtet, aber weder für nichtionische Flüssigkeiten (NILs), z.B. Wasser oder
Benzol, noch für anorganische Salzschmelzen (IFSs) (siehe Tab. 2.1). Es stellt sich somit
die Frage nach dem Grund für das Auftreten kleiner Tripelpunktdrücke genau für die
Materialklasse der RTILs. Eine Begründung wurde in der Arbeit [40] in der Kombina-
tion eines niedrigen Schmelzpunkts (“room temperature”) mit einer starken, ionischen
Wechselwirkung (“ionic liquids”) gefunden (siehe Abb. 2.4).

2.3 Ionische Flüssigkristalle

Qualitativ lässt sich das Phasenverhalten ionischer Flüssigkristalle bereits anhand eines
einfachen Gittermodels (siehe Abb. 2.5) im Rahmen einer Dichtefunktionaltheorie repro-
duzieren (siehe Gl. (2.7)) mit Beiträgen der kurzreichweitigen sterischen Repulsion, der
langreichweitigen Coulomb- und Van-der-Waals-Wechselwirkung und der kurzreichweiti-
gen elektrostatischen Korrekturen wie in der MSA [454–456]. In Abb. 2.6 ist gezeigt,
dass hiermit die Phasenübergänge zwischen isotroper Flüssigkeits- und Gasphase, sowie
zwischen isotropen und anisotropen Phasen qualitativ mit experimentellen Resultaten,
[372] bzw. [177], übereinstimmen.

Ein verfeinertes Modell (siehe Abb. 2.7) wurde in der Arbeit [236] untersucht, bei dem
die nichtelektrostatischen Beiträge zur Wechselwirkung durch ein Gay-Berne Potential
[25, 66, 97–99, 153] (siehe Gln. (2.9)–(2.11)) und die elektrostatische Wechselwirkung
durch ein abgeschirmtes Coulomb-Potential (siehe Gln. (2.12)–(2.15)) beschrieben werden.

Die Phasendiagramme zeigen stets eine isotrope fluide Phase und eine smektische A-
Phase (siehe Abb. 2.8). Abhängig von der Särke und der Position der elektrischen La-
dungen kann auch eine nematische Phase auftreten (siehe Abb. 2.9 und 2.11–2.13). Mit
zunehmender Anisotropie verschiebt sich der Übergang zwischen dem isotropen Fluid und
den Mesophasen zu kleineren Packungsdichten und der Dichtesprung nimmt zu. Für zwei
Ladungen an den Enden der Teilchen tritt eine nematische Phase auf, die bei Verschie-
bung der Ladungen Richtung Zentrum metastabil wird. Bei weiterer Annäherung und
Zusammenführung der Ladungen im Zentrum verschiebt sich die smektische A-Phase zu
größeren Packungsdichten, wodurch die nematische Phase wieder stabil wird.
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2.4 Geladene Kolloide

Es ist aus Experimenten [260] und Computersimulationen [28, 53, 200, 201, 289, 489] be-
kannt, dass entgegengesetzt geladene Kolloide unter bestimmten Bedingungen kristalline
Phasen bilden können statt die sonst übliche regellose Aggregation zu zeigen. Ziel der
Arbeit [41] war es, das globale Phasendiagramm von binären Mischungen entgegengesetzt
geladener kugelförmiger Kolloide mit gleichen Radien und Ladungsbeträgen zu bestim-
men. Dazu wurde in Anlehnung an das Vorgehen der Arbeit [448] das Minimum der freien
Enthalpie auf einer Menge von potentiellen Kristallstrukturen (siehe Tab. 2.2) bestimmt,
wobei die verwendete Näherung der freie Enthalpie zwischen dem Limes harter Kugeln
bei hohen Temperaturen und einer Beschreibung durch Madelung-Summen bei niedrigen
Temperaturen interpoliert.

Die Phasendiagramme in Abb. 2.15–2.17 zeigen eine fluide Phase und kristalline rfcc-
(“random face-centered cubic”), Cu3Au-, CsCl-, CuAu- und NbP-Phasen. Die kristalline
rfcc-Phase bei hohen Temperaturen reicht zu um so tieferen Temperaturen, je kleiner
die Debye-Länge relativ zum Kugelradius ist. Ebenso hängt die Lage der kristallinen
Phasen bei tiefen Temperaturen (Cu3Au, CsCl, CuAu und NbP) empfindlich von diesem
Parameter ab.

3 Struktur im Volumen

3.1 Struktur von Elektrolytlösungen in der Nähe kritischer

Punkte

Die Struktur von Elektrolytlösungen im Rahmen des Dichtefunktionals in Gl. (2.1)
(siehe Arbeit [43]) führt im Volumen auf die Dichte-Dichte-Korrelationsfunktionen Gij(r)
mit i, j ∈ {φ,+,−} mit den Fouriertransformierten (partiellen Strukturfaktoren) in

Gln. (3.1)–(3.3). Daraus folgt der (partielle) Strukturfaktor Ĝφφ(k) des Lösungsmittels in
Gln. (3.4)–(3.6) und der Ladungs-Ladungs-Strukturfaktor SZZ(k) in Gl. (3.7), wobei letz-
terer die für elektrostatische Abschirmung charakteristische Asymptotik SZZ(k → 0) ≃
(k/κ)2 zeigt. Aus den Positionen der Pole von Ĝφφ(k), d.h. der Nullstellen von L(k) in
Gl. (3.3), in der komplexen Ebene k ∈ C (siehe Abb. 3.1) kann das asymptotische Ver-
halten der Struktur der Elektrolytlösung bestimmt werden [134, 135]. Rein imaginäre
Pole (siehe Abb. 3.1(a)) entsprechen der Superposition monoton abfallender Beiträge zu
Gφφ(r → ∞), während Pole mit nichtverschwindenden Realteilen (siehe Abb. 3.1(b))
oszillatorischen Abfall bedeuten. Monotoner Abfall von Gφφ(r → ∞) findet sich weit
weg von kritischen Punkten mit dem führenden, d.h. langreichweitigsten, Beitrag auf der
Skala der Debye-Länge und in der Nähe kritischer Punkte auf der Skala der Ornstein-
Zernike-Länge ξ(OZ) in Gl. (3.8) (siehe Abb. 3.3). Zwischen beiden Grenzfällen, wenn
die Debye-Länge und die Ornstein-Zernike-Länge von ähnlicher Größe sind, tritt oszilla-
torischer Abfall der Korrelationsfunktion auf (siehe Abb. 3.3). Die Übergange zwischen
monotonem und oszillatorischem Abfall von Gij(r →∞) sind durch Kirkwood-Übergänge
[230, 259] (siehe Abb. 3.1(d)) gegeben, die im Phasendiagramm den schmalen Bereich os-
zillatorischen Abfalls begrenzen (siehe Abb. 3.2(b)–(d)). Es zeigt sich so insbesondere,
dass die elektrostatische Wechselwirkung nicht das universelle Verhalten des Lösungsmit-
tels in der Nähe eines kritischen Punkts verändert.
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3.2 Struktur von Fluiden mit ionischen Verunreinigungen

Der Ausdruck Gl. (3.4) des Lösungsmittelstrukturfaktors Ĝφφ(k) einer Elektrolytlösung
wurde im Rahmen des speziellen Modells aus Abschn. 2.1 (siehe die Arbeiten [43, 334])
hergeleitet. In der Arbeit [44] wurde die Situation vom allgemeineren Standpunkt eines
Fluids mit Verunreinigungen betrachtet. Ohne Bezugnahme auf ein spezielles Modell oder
Wechselwirkungspotenital konnte dort die allgemeine Form des Lösungsmittelstrukturfak-
tors hergeleitet werden (siehe Gln. (3.9)–(3.11)). Es zeigt sich damit, dass nichtionische
Verunreinigungen keinen Einfluss auf die Struktur haben, ionische dagegen zu Mikrohete-
rogenitäten führen können (siehe Abb. 3.4). Für ionische Verunreinigungen zeigen dieje-
nigen die Bildung von Mikroheterogenitäten, die aus verschieden großen Ionen aufgebaut
sind. Diese Interpretation findet ihre experimentelle Bestätigung in SANS-Messungen am
System Wasser+3-Methylpyridin mit verschiedenen Salzen [388–390].

3.3 Dielektrische Eigenschaften dichter ionischer Fluide

Da RTILs eine breite Verwendung als Lösungsmittel finden, ist ihre Polarität eines der
wichtigsten Charakteristika. Andererseits legten jüngst Messungen mit Hilfe eines “sur-
face force appatus” (SFA) die Interpretation nahe, dass nur ein geringer Anteil eines
RTILs tatsächlich als frei bewegliche Ionen vorliegt und der Rest aus temporär gebunde-
nen Kation-Anion-Paaren besteht [154]. Während die Messdaten Kritik auf sich zogen
[155, 352], wurde das theoretische Interesse an der Frage nach der Interpretation von
RTILs als effektive verdünnte Elektrolytlösungen geweckt [257]. Die statische Dielektri-
zitätskonstante nichtleitender Fluide ist gut messbar (siehe z.B. die Arbeiten [32, 306]),
wohingegen die dielektrische Funktion leitender, z.B. ionischer, Fluide wegen der Ab-
schirmung elektrischer Ladungen auf großen Längenskalen divergiert [175, 422]. In der
Arbeit [487] wurde demonstriert, dass die statische dielektrische Funktion ionischer Fluide
auf kleinen Längenskalen, d.h. auf der Skala der Teilchengröße, nicht die eines Plas-
mas, sondern die einer dipolaren Flüssigkeit ist. Dazu wurde das “restricted primi-
tive model” (RPM) geladener harter Kugeln gleicher Radien und Ladungsbeträge (siehe
Abb. 3.5(a)) mit einem daraus abgeleiteten Modell eines dipolaren Fluids aus fest ver-
bundenen Kationen-Anionen-Paaren (siehe Abb. 3.5(b)) verglichen. Es zeigte sich, dass
die Orientierungspolarisation des RPM mit der des zugehörigen dipolaren Fluids über-
einstimmt, während sich die Verschiebungspolarisation aus der Differenz der totalen Po-
larisation des RPM und des dipolaren Fluids ergibt (siehe Gl. (3.18)). Daraus ergab sich,
dass auf großen Längenskalen die Verschiebungspolarisation, d.h. plasma-ähnliches Ver-
halten, dominiert, während auf der Skala der Teilchengröße die Orientierungspolarisation,
d.h. Verhalten eines diplaren Fluids, dominiert (siehe Abb. 3.9). Der Übergang zwischen
beiden Grenzfällen verschiebt sich mit zunehmender Packungsdichte und abnehmender
Temperatur zu kleineren Längenskalen (siehe Abb. 3.10).

3.4 Effektive Wechselwirkung in dichten ionischen Fluiden

Bekanntermaßen ist das Coulomb-Potential repulsiv für gleichgeladene und attraktiv für
entgegengesetztgeladene Ionen, und es fällt ∼ 1/r ab, d.h. es ist langreichweitig. An-
dererseits existiert für global ladungsneutrale Coulombsche Systeme der thermodynami-
sche Limes [252, 271], da die Paarverteilungsfunktionen eines ionischen Fluids exponen-
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tiell abklingen. Letztere Eigenschaft wird gewöhnlich in Form einer Stillinger-Lovett-
Summenregel [176, 275, 421, 422] ausgedrückt, die eine notwendige Konsequenz der Lang-
reichweitigkeit des Coulomb-Potentials ist [288, 304]. In der Arbeit [24] wurde für das
“lattice restricted primitive model” (LRPM) gezeigt, dass das Phasenverhalten und die
Struktur im Volumen dichter Systeme auch mit Hilfe eines geeignet gewählten kurzreich-
weitigen Potentials quantitativ reproduziert werden kann (siehe Abb. 3.16). Dies setzt
einen nicht zu langsamen und nicht zu schnellen Abfall des kurzreichweitigen Potentials
voraus (siehe Abb. 3.17). Selbst das Stillinger-Lovett-Abschirmverhalten wird reprodu-
ziert (siehe Abb. 3.18). Demnach ist die Langreichweitigkeit des Coulomb-Potentials für
dichte ionische Fluide nicht notwendig. Wesentlich ist aber seine Valenzabhängigkeit, d.h.
dass es für gleiches Vorzeichen der Ladungen repusiv und für entgegengesetzte attraktiv
wirkt.

4 Grenzflächen

4.1 Grenzflächenspannung von Elektrolytlösungen

Planare Elektrolytgrenzflächen

Im Gegensatz zur Oberflächenspannung einer Elektrolytlösung gegenüber einer Gasphase
(Luft), in der Ionen praktisch unlöslich sind, was zur Zunahme mit der Ionenstärke führt
[69, 116, 263–265, 284, 333], treten bei der Grenzflächenspannung zwischen zwei nicht-
mischbaren Elektrolytlösungen Partionierunseffekte auf Grund von Löslichkeitsunterschie-
den auf [37, 322, 335–337]. In der Arbeit [37] wurde gezeigt, dass daraus sehr allgemein
drei mögliche asymptotische Abhängigkeiten der Grenzflächenspannungsänderung ∆γ ge-
genüber dem salzfreien Lösungsmittel von der Ionenstärke I folgen (siehe Gln. (4.2) und
(4.3)): ∆γ ∼ I, ∆γ ∼ −I oder ∆γ ∼ −

√
I. Für Ionenstärken oberhalb eines Wertes I×

(siehe Gl. (4.4)) tritt eine lineare Abhängigkeit ∆γ ∼ |I|, während darunter ∆γ ∼ −
√
I

gilt. Letzterer Fall ist analog zum Jones-Ray-Effekt [216–220, 353, 354], der sich als Mi-
nimum der Grenzflächenspannung bei kleinen Ionenstärken zeigt. Die Ionenstärke I× am
Übergang dieser beiden Grenzfälle hängt stark von den Löslichkeitseigenschaften der Io-
nen ab (siehe Gl. (4.4)). So zeigt sich z.B. für den Fall einer Grenzfläche zwischen Wasser
und cis-Decalin, dass durch geeignete Wahl der Anionen verschiedener Kaliumsalze alle
Grenzfälle realisiert werden können (siehe Abb. 4.1).

Gekrümmte Elektrolytgrenzflächen

Neben planaren Elektrolytgrenzflächen ist für die Untersuchung von Wasser-in-Öl- oder
Öl-in-Wasser-Emulsionen die Grenzflächenspannung gekrümmter Grenzflächen von Inter-
esse. Eine zur Arbeit [37] analoge Betrachtung [39] kugelförmiger Grenzflächen zwischen
nichtmischbaren Elektrolytlösungen ergab Näherungsausdrücke für die Grenzflächenspan-
nungsänderung (Gl. (4.9)) und die Oberflächenladung (Gl. (4.10)). Die Grenzflächenspan-
nung hängt hierbei mit der Ionenstärke über eine Skalenfunktion (Gl. (4.8)) ab, die bis zu
vier Grenzfälle (Gln. (4.13) und (4.14)) unterschiedlichen Skalenverhaltens aufweist (siehe
Abb. 4.2). Die vier Grenzfälle werden durch drei Übergänge charakterisiert, welche sich
durch Vergleich des Krümmungsradius mit den Debye-Längen beider Elektrolytlösungen
sowie einer Längenskala auf Grund des Kontrasts der Dielektrizitätskonstanten ergeben.
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Das abgeleitete Skalenverhalten des elektrostatischen Anteils der Grenzflächenspannung
(Gl. (4.17)) ist in quantitativer Übereinstimmung mit Berechnungen im Rahmen einer
(nichtlineren) Poisson-Boltzmann-Beschreibung [96] (siehe Abb. 4.3 und 4.4).

Kristallisation von Wassertröpfchen

Die gängigste Methode zur Stabilisierung von Öl-Wasser-Emulsionen ist die Verwendung
von Emulgatoren, d.h. amphiphilen Molekülen, die durch Adsorption an die Grenzfläche
eine Herabsetzung der Grenzflächenspannung oder eine Anhebung der Koaleszenzbarriere
bewirken und so die Entmischungsrate reduzieren [49, 387]. Es wurde allerdings beobach-
tet, dass Emulsionen von Wassertröpfchen in leicht polaren Ölen auch ohne Zugabe von
Emulgatoren sehr stabil sind [261] und dass sich die Wassertröpfchen in einem Kristall-
gitter anordnen [261, 262, 490]. Dieser Befund deutet auf eine langreichweitige Repulsion
zwischen den Tröpfchen hin. In der Arbeit [491] wurde gezeigt, dass im Rahmen eines
Modells einer abgeschirmten elektrostatischen Wechselwirkung (Gl. (4.22)) für Dielektri-
zitätskonstanten des Öls im Intervall [4, 10] und Tröpfchenradien oberhalb 100 nm eine für
Kristallisation genügend starke und genügend langreichweitige Wechselwirkung vorliegt
(siehe Abb. 4.9).

4.2 Benetzungseigenschaften von Elektrolytlösungen

Die Benetzungseigenschaften von Elektrolytlösungen zeigen sich im Zusammenhang mit
der effektiven Wechselwirkung zwischen zwei Oberflächen in einer elektrolytischen Umge-
bung [173, 248], der Stabilität von Benetzungsfilmen [102, 226, 227] und dem Phänomen
der Elektrobenetzung [309]. Systematische Untersuchungen von Benetzungsübergängen in
Elektrolytlösungen wurden allerdings erst kürzlich durchgeführt [101, 203, 204, 329, 330].
Problematisch an den Arbeiten [101, 329, 330] ist allerdings die Betrachtung im Rah-
men der Poisson-Boltzmann-Theorie, d.h. einer Kontinuumsbeschreibung, die für dicke
Benetzungsfilme sehr aufwendig ist und für dünne Benetzungsfilme kleine Debye-Längen,
d.h. für die Poisson-Boltzmann-Theorie zu große Ionenstärken, verlangt. Zur Untersu-
chung allgemeiner Eigenschaften wurde daher in den Arbeiten [203, 204] auf ein Git-
termodell (Gl. (4.25)) zurückgegriffen, das sehr dicke Benetzungsfilme zulässt. Im Rah-
men dieses Modells zeigt das reine Lösungsmittel kontinuierliche Benetzungsübergänge
(siehe Abb. 4.12 und 4.13) und Benetzungsübergänge erster Ordnung für nichtverschwin-
dende Ionenstärke (siehe Abb. 4.14 und 4.16). Mit zunehmender Oberflächenladung
bzw. abnehmender Ionenstärke sinkt die Benetzungstemperatur (siehe Abb. 4.15), was
einer Vergrößerung der Attraktion des Lösungsmittels durch das Substrat entspricht. Die
mit Benetzungsübergängen einhergehenden Vorbenetzungslinien (prewetting lines) deh-
nen sich mit zudehmender Wandladung in das Einphasengebiet des Gases aus (siehe
Abb. 4.18).

Eine allgemeine Beobachtung, die in allen erwähnten Arbeiten [101, 203, 204, 329, 330]
über Elektrolytlösungen gemacht wurde, ist die von Benetzungsübergängen erster Ord-
nung. Im Rahmen eines zu Gl. (2.1) ähnlichen Dichtefunktionals Gl. (4.29) wurde
in der Arbeit [204] gezeigt, dass für kurzreichweitige Wechselwirkungen und nicht zu
nahe an einem kritischen Punkt des Lösungsmittels der führende Beitrag zum effektiven
Grenzflächenpotential durch die elektrostatische Wechselwirkung gegeben ist und auf der
Skala der halben Debye-Länge abfällt (Gl. (4.32)). Nur in der Nähe kritischer Punkte



170 Kurzfassung in deutscher Sprache

wird der führende Beitrag durch die kritische Adsorption wie im reinen Lösungsmittel be-
stimmt. Für die gleichzeitige Anwensenheit kurz- und langreichweitiger Wechselwirkun-
gen des Lösungsmittels zeigt die Arbeit [204] die Möglichkeit eines unstetigen Übergangs
zwischen zwei endlich dicken Benetzungsfilmen als Relikt des elektrostatisch induzierten
Benetzungsübergangs erster Ordnung gefolgt von einem kontinuierlichen Benetzungsüber-
gang auf Grund der langreichweitigen Wechselwirkung.

4.3 Kritische Adsorption in Elektrolytlösungen

Die Profile der Lösungsmittelkonzentration und des elektrostatischen Potentials an einem
Substrat in Kontakt mit einer Elektrolytlösung lassen sich mit Hilfe des Dichtefunktio-
nals Gl. (2.1) bestimmen [43] (siehe Abb. 4.20). Es zeigt sich [43], dass diese sehr gut
durch bekannte funktionale Formen im Rahmen der Ginzburg-Landau- bzw. Poisson-
Boltzmann-Theorie beschrieben werden (siehe Gln. (4.52) und (4.53)). Bei Annäherung
an einen kritischen Punkt divergiert die Korrelationslänge, wodurch auch die Adsorp-
tion an einer Wand divergiert (kritische Adsorption). Dieses Phänomen, bei dem die
Grenzflächenbreite divergiert, ist verschieden von einem Benetzungsübergang, bei dem
ein Benetzungsfilm auftritt, dessen endlich breite Oberfläche sich makroskopisch weit
vom Substrat entfernt. Um das Phänomen der kritischen Adsorption zu erfassen, wurde
in der Arbeit [43] aus Gl. (2.1) ein Funktional vom Ginzburg-Landau-Typ (Gl. (4.55))
abgeleitet, in dem die elektrostatische Wechselwirkung in einem effektiven externen Feld
auftritt (Gl. (4.56)). Der führende, universelle Beitrag zum Lösungsmitteldichteprofil in
Gl. (4.57) ist identisch mit dem des reinen, salzfreien Lösungsmittels, während elektro-
statische Einflüsse nur in den nachrangingen Beiträgen auftreten. Ähnliches gilt für die
Adsorption Gl. (4.58)–(4.60), bei der der führende Beitrag auf universelle Skalenform ge-
bracht werden kann und nur die nachfolgenden nichtuniversellen Beiträge Charakteristika,
wie z.B. die Oberflächenladung, den Löslichkeitskontrast der Ionen und den Kontrast der
Dielektrizitätskonstanten der Lösungsmittelkomponenten, enthalten. Diese nichtuniver-
sellen Beiträge machen sich allerdings quantitativ bemerkbar (siehe Abb. 4.22). Insbeson-
dere die Ionenlöslichkeit hat entscheidenden Einfluss auf das qualitative Verhalten, wie in
der Arbeit [43] an Diskrepanzen der Vorhersagen im Rahmen der standardmäßigen BCA
und der dort vorgeschlagenen Alternative (Gl. (2.3)) gezeigt wurde.

4.4 Elektrobenetzung

Elektrobenetzung wurde erstmals Ende des 19. Jahrhunderts von Lippmann [272] und
Pellat [350, 351] beschrieben und man versteht heute darunter die Abhängigkeit des Kon-
taktwinkels eines Fluids an einem Substrat vom elektrostatischen Potential des Substrat
[309]. In der Vergangenheit wurde Elektrobenetzung als Elektrokapillaritätseffekt, d.h.
mit Hilfe einer Spannungsabhängigkeit der Substrat-Fluid-Grenzflächenspannung inter-
pretiert [30, 51, 88, 93, 221, 232, 309, 350, 351, 370, 371, 411, 416, 417, 438, 469]. In der
Arbeit [45] wurde dagegen argumentiert, dass diese Interpretation nicht mit der allgemei-
nen Theorie der Benetzungsphänomene konsistent ist und es wurden dort experimentelle
Tests vorgeschlagen, um diese Frage zu entscheiden. Tatsächlich stimmen beide Interpre-
tationen mit den ersten Experimenten von Lippmann und Pellat an Metalloberflächen und
mit den heute gängigen Systemen von Elektroden, die mit einem hydrophoben Dielektri-
kum beschichtet sind [30], überein. Für Substrate, an die allerdings eine Elektrolytlösung
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statt eines nichtleitenden Öls adsorbiert, wird nach der Interpretation von Arbeit [45] eine
im Gegensatz zur tranditionellen Elektrokapillaritätsinterpretation verschwindend kleine
Tendenz zur Elektrobenetzung erwartet. Experimentelle Realisierungen solcher Tests ste-
hen aktuell noch aus.

4.5 Benetzungseigenschaften geladener kolloidaler Plättchen

Plättchenförmige kolloidale Teilchen spielen eine entscheidende Rolle, z.B. als Bestand-
teile des Erdbodens und von Beton, Füllmaterialien, Beschichtungen und rheologischen
Fluiden zur Rohölförderung. Die weite Verbreitung dieser komplexen Fluide ist auf ein
reiches Phasenverhalten, z.B. mit Flüssigkristallphasen und Sol-Gel-Übergängen, zurück-
zuführen. Neben experimentellen Untersuchungen verschiedener Suspensionen natürli-
cher und synthetischer Tonmineralien sowie Computersimulationen verschiedener Mo-
dellsysteme wurden v.a. theoretische Arbeiten über harte Plättchen und anisotrop ge-
ladene Scheiben unter räumlich homogenen Bedingungen untersucht. Ziel der Arbei-
ten [35, 36] war die Untersuchung räumlicher Inhomogenitäten elektrisch geladener Plätt-
chen. Hierzu wurde ein vereinfachendes Modell quaderförmiger Teilchen mit diskreten
Orientierungen betrachtet (siehe Abb. 4.26). Die Phasendiagramme zeigen eine isotrope
und eine nematische Phase mit einem Phasenübergang erster Ordnung, dessen Posi-
tion und Dichtedifferenz durch die Ionenstärke und die Plättchenladung festgelegt wird
(siehe Abb. 4.27). An freien Grenzflächen zwischen der isotropen und der nematischen
Phase (siehe Abb. 4.29 und 4.30) findet, wie an Grenzflächen nichtmischbarer Elektro-
lytlösungen (siehe Abschn. 4.1, eine Ladungstrennung statt (siehe Abb. 4.31), die sich in
einem nichtkonstanten elektrostatischen Potential (siehe Abb. 4.32) äußert, dessen Po-
tentialdifferenz zwischen den beiden Volumenphasen durch das Donnan-Potential (siehe
Abb. 4.28) gegeben ist. Die Analogie zu verdünnten Elektrolytlösungen erstreckt sich aber
auch auf Benetzungsphänomene (vgl. Abschn. 4.2), wobei geladene plättchenförmige Kol-
loide in Abhängigkeit von der elektrischen Ladung vollständige oder teilweise Benetzung
eines Substrats durch einen isotropen Flüssigkeitsfilm (bei nematischer Volumenphase)
oder durch einen nematischen Flüssigkeitsfilm (bei isotroper Volumenphase) zeigen (siehe
Abb. 4.33). Die Benetzungsübergänge sind von erster Ordnung (vgl. Abschn. 4.2) und
die Elektrostatik ist geprägt von Wechselspiel der elektrischen und der sterischen Wech-
selwirkung (siehe Abb. 4.42 und 4.43).

4.6 Kolloidale Wechselwirkungen in komplexen Elektrolytlösun-

gen

Sieht man von der schwachen aber langreichweitigen Van-der-Waals-Wechselwirkung ab,
so setzt sich die effektive Wechselwirkung zwischen kolloidalen Teilchen in einer kom-
plexen Elektrolytlösung aus der elektrostatischen Wechselwirkung und der “solvation
force” zusammen. Letztere resultiert bei Annäherung an einen kritischen Punkt der
komplexen Elektrolytlösung (vgl. Abschn. 2.1) in der kritischen Casimir-Kraft [59, 149–
152, 189, 239, 240, 365, 366, 408]. Experimentelle Untersuchungen [317] zeigen, dass die
effektive Wechselwirkung nicht einfach eine Superposition aus elektrostatischer Wechsel-
wirkung und “solvation force” ist: Zwei elektrisch negativ geladene Oberflächen, eine
hydrophile und eine hydophobe, zeigten in einem Zwischentemperaturbereich eine at-
traktive effektive Wechselwirkung. In der Arbeit [42] wurde mit Hilfe des generischen



172 Kurzfassung in deutscher Sprache

Dichtefunktionals Gl. (4.104) systematisch das effektive Grenzflächenpotential Gl. (4.108)
hergeleitet, das die experimentellen Beobachtungen der Arbeit [317] qualitativ reprodu-
zieren kann (siehe Abb. 4.45). Der die Attraktion erzeugende Mechanismus kann dadurch
als die Bildung von dipolaren Schichten auf Grund einer ungleichmäßigen Partitionierung
von Ionen in Lösungsmittelgradient an Wänden interpretiert werden (siehe Abb. 4.44).
Ein solcher Mechanismus setzt ein ionisches komplexes Fluid als Medium voraus.

4.7 Kolloide an Elektrolytgrenzflächen

Kolloidale Teilchen können an Grenzflächen durch Adsorptionsenergien festgehalten wer-
den, die die thermische Energie um mehrere Größenordnungen übersteigen [357]. Solche
adsorbierten kolloidale Teilchen, die sich in lateraler Richtung frei bewegen können, bilden
somit zweidimensionale Fluide. Eines der Hauptthemen im Kontext dieser zweidimensio-
nalen Fluide ist die Strukturbildung und daher die Frage nach der (effektiven) Wech-
selwirkung zwischen den Kolloiden. Während der Wechselwirkungsbeitrag auf Grund
der Grenzflächendeformation sowohl für große [117, 325, 480] wie auch für kleine [187]
Abstände studiert wurde, wurde vor allem der Beitrag zur elektrostatischen Repulsion
für große Distanzen untersucht. Der elektrostatische Beitrag für kleine Distanzen wurde
erstmals in der Arbeit [283] bestimmt (siehe Abb. 4.46), nachdem in der Arbeit [118] das
elektrostatische Potential um ein einzelnes Kolloid in einer Multipolentwicklung darge-
stellt wurde. Die exakte Lösung der linearisierten Poisson-Boltzmann-Gleichung für zwei
planare Wände senkrecht zur Grenzfläche (Gl. (4.110)) kann mit der im Rahmen der Su-
perpositionsapproximation (Gl. (4.111)) verglichen werden (siehe Abb. 4.47). Die daraus
abgeleiteten Wechselwirkungen zwischen den Oberflächen und zwischen den Dreiphasen-
kontaktlinien zeigen markante Unterschiede zwischen den exakten Ausdrücken und denen
im Rahmen der Superpositionsapproximation (siehe Abb. 4.48 und 4.49).

5 Schlussfolgerungen

In den vorangegangenen Kapiteln wurden verschiedene Typen ionischer komplexer Fluide
besprochen, die sich mit Hilfe der Debye-Länge und anderer relevanter Längenskalen klas-
sifizieren lassen. Bei Elektrolytlösungen ist die zusätzliche Längenskala die Korrelati-
onslänge des Lösungsmittels, während bei Abwesenheit eines Lösungsmittels die Debye-
Länge mit molekularen oder kolloidalen Längenskalen konkurriert.

In verdünnten Elektrolytlösungen konkurriert die Debye-Länge mit der Korrelati-
onslänge des Lösungsmittels. Weit weg von einem kritischen Punkt des Lösungsmittels ist
die Debye-Länge die größte Längenskala, sodass die Eigenschaften des ionischen komple-
xen Fluids weitgehend materialunabhängig sind und denen eines Plasma gleichen. Insbe-
sondere sind die Struktur im Volumen (siehe Abschn. 3.1 und 3.2) und das Grenzflächen-
verhalten (siehe Abschn. 4.1, 4.2, 4.3, 4.4 und 4.6) durch die Abschirmung von Ladungen
charakterisiert. Dahingegen wird das Phasenverhalten (siehe Abschn. 2.1), auf Grund der
kurzreichweitigen Korrelationen, nur geringfügig durch die Gegenwart kleiner Mengen von
Ionen beeinflusst.

In der Nähe eines kritischen Punkts des Lösungsmittels zeigt ein ionisches komplexes
Fluid das universelle kritische Verhalten des reinen Lösungsmittels, da dann die Debye-
Länge die Rolle einer “mikroskopischen” Länge spielt, die kleiner als die Korrelationslänge
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ist (siehe Abschn. 3.1, 3.2, 4.3 und 4.6). Es zeigt sich, dass zwischen beiden Extremfällen,
wenn die Debye-Länge und die Korrelationslänge von ähnlicher Größe sind, Kirkwood-
Übergänge, d.h. Übergänge zwischen monotonem und gedämpft oszillatorischem Abfall
der Paarkorrelationsfunktion, stattfinden (siehe Abschn. 3.1).

In “room temperature ionic liquids” (RTILs), und insbesondere in ionischen Flüssig-
kristallen, ist kein Lösungsmittel vorhanden und die Eigenschaften sind durch ein Wech-
selspiel zwischen der Debye-Länge und molekularen Längen der Teilchen bestimmt. Für
dichte RTILs ist die Debye-Länge (viel) kleiner als die molekulare Größe, sodass sich diese
Systeme größtenteils ähnlich zu nichtionischen komplexen Fluiden mit echten kurzreich-
weitigen Wechselwirkungen, z.B. auf Grund von chemischen Bindungen verhalten (siehe
Abschn. 3.4). Eine Konsequenz ist die Bildung von Mikroheterogenitäten auf Grund der
Gegenwart von polaren und unpolaren Teilen der organischen Moleküle und von Meso-
phasen ionischer Flüssigkristalle (siehe Abschn. 2.3). Diese hängen empfindlich von den
Details der chemischen Struktur der Moleküle ab. Lediglich elektrische Observablen, wie
z.B. die dielekrische Funktion (siehe Abschn. 3.3), weisen für große Längenskalen auf eine
materialunabhängige plasmaähnliche freie Bewegung von Ionen hin. In verdünnten RTILs
(siehe Abschn. 2.2) ist die Debye-Länge (viel) größer als die Teilchengröße, was zu einem
Verhalten ähnlich eines Plasmas punktförmiger Teilchen führt.

In kolloidalen Suspensionen können alle drei Längenskalen (die Größe der kolloidalen
Teilchen, die Debye-Länge und die Korrelationslänge des Lösungsmittels) relevant sein.
Die Größe der kolloidalen Teilchen ist typischerweise die größte, was zu materialunab-
hängigem aber geometrieabhängigem dominantem Verhalten harter Teilchen mit charak-
teristischen Phasen kolloidaler Kristalle (siehe Abschn. 2.4) und Flüssigkristalle (siehe
Abschn. 2.3) führt. Einerseits, weit weg von einem kritischen Punkt des Lösungsmittels,
bewirkt die Abschirmung von kolloidalen Oberflächenladungen auf der Skala der Debye-
Länge die führende Korrektur zu Verhalten harter Teilchen. Diese Korrektur ist wie-
derum materialunabhängig und sie bewirkt Ähnlichkeiten von kolloidalen Suspensionen
zu RTILs (z.B. ionischen Flüssigkristallen) und Elektrolytlösungen (siehe Abschn. 4.5).
Andererseits, in der Nähe kritischer Punkte des Lösungsmittels, dominiert die kritische
Casimir-Kraft auf der Längenskala der Korrelationslänge gegenüber der elektrostatischen
Wechselwirkung (siehe Abschn. 4.6). Unter bestimmten Umbständen bilden sich jedoch
noch komplexere Strukturen, wie z.B. die dipolaren Schichten aus Ionen, die in Kon-
zentrationsgradienten des Lösungsmittels ungleichmäßig partitioniert werden, welche zu
einer verwickelten effektiven Wechselwirkung zwischen kolloidalen Teilchen führen (siehe
Abschn. 4.6) oder die Fluidstruktur zwischen zwei kolloidalen Teilchen, die sich an der
Grenzfläche zwischen zwei nichtmischbaren ionischen komplexen Fluiden befinden, welche
eine effektive Wechselwirkung der Kolloide generiert, mit Beiträgen von den kolloidalen
Oberflächen und den Dreiphasenkontaktlinien (siehe Abschn. 4.7).

Die obigen Betrachtungen weisen darauf hin, dass der Schlüssel zum Verständnis der fei-
nen Details von Systemen weicher Materie, die durch Fortschritte in der experimentellen
Technik zugänglich wurden, und einiger bekannter aber noch nicht vollständig verstande-
ner Phänomene, wie z.B. die Aggregation kolloidaler Suspensionen oder die Faltung von
Proteinen, die Berücksichtigung der Eigenschaften ionischer komplexer Fluide, z.B. des
Dispersionsmediums, ist.

Die vorliegende Habilitationsschrift beschränkt sich auf statische allgemeine Eigenschaf-
ten ionischer komplexer Fluide, und es wurde in den vorangegangenen Kapiteln gezeigt,
dass bei einer Klassifikation statischer allgemeiner Eigenschaften komplexer Fluide auf
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Grund der konkurrierenden Längenskalen ionische komplexe Fluide von besonderem In-
teresse sind, da die Debye-Länge weitgehend materialunabhängig ist und im wichtigen
Fall verdünnter Elektrolytlösungen klar nach unten hin gegenüber der molekularen Läng-
enskala und nach oben hin gegenüber der kolloidalen Längenskala abgegrenzt ist. Für
dynamische Eigenschaften gibt es nicht nur eine Hierarchie von Längen-, sondern auch
von Zeitskalen, welche die Eigenschaften bestimmen. Bekannte Beispiele dieser Situa-
tion gibt es für Polymere [115, 383], Grenzflächen nichtmischbarer Elektrolytlösungen
[156, 171, 374, 398–400, 458] und kolloidale Suspensionen [38, 104, 166, 385]. Auf Grund
der Vielzahl an Zeitskalen ist es üblich, die Dynamik komplexer Fluide auf den einzelnen
Zeitskalen zu studieren. Im Gegensatz zu den typischen Längenskalen, die für statische
Eigenschaften relevant sind, hängen die relevanten Zeitskalen für die Dynamik eines kom-
plexen Fluids stark vom System ab. Dies verhindert im Wesentlichen eine allgemeine,
d.h. systemunabhängige, Klassifikation. Daher ist die Existenz von drei klar getrenn-
ten Längenskalenbereichen zur Klassifikation der allgemeinen, d.h. systemunabhängigen,
Phänomene komplexer Fluide und die Identifikation ionischer komplexer Fluide als Mate-
rialklasse, die alle Fälle abdeckt, eine Besonderheit statischer Eigenschaften von Systemen
weicher Materie.
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