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Zusammenfassung

Mit der Formulierung der Theorie zur Quantenmechanik, begann man die Struktur
der Materie auf der atomaren Skala zu verstehen. Die theoretische Beschreibung gilt
für Systeme, die beliebig groß sind und beliebig viele Teilchen enthalten. Wenn Wech-
selwirkungsterme zwischen den Teilchen beachtet werden müssen, werden die internne
und externen Freiheitsgrade miteinander gekoppelt. Dies hat zwar zur Folge, dass neue
komplexe Phänomene vorkommen, wie zum Beispiel Supraflüssigkeit, Supraleitung [1],
Quantenmagnetismus [2] oder die Physik der weichen Materie [3]. Solche Phänomene
sind heutzutage von großem Interesse, da sie viele fundamentale und technische Per-
spektiven erlauben. Es sind aber Systeme, die noch nicht vollständig verstanden sind.
Die Größe des Hilbert Raums wächst exponentiell mit der Anzahl an Teilchen, was die
volle Berechnung vom System schon bei wenigen zehn Teilchen verbietet.

Der aktuelle elegante Umweg um diese Limitierung ist die Durchführung von Quan-
tensimulationen. Das Prinzip von der Quantensimulation ist folgendes: mithilfe von
einem experimentellen Aufbau - der von der Außenwelt isoliert ist, mehrere Teilchen
enthält und deren Eigenschaften bekannt und einstellbar ist - kann man eine Em-
ulation von einem Mehrteilchen-System durchführen. Die Entwicklung von Metho-
den und Technologien zur Kühlung von Atomen und Ionen ist über die letzten 40
Jahren so weit gekommen, dass jetzt in diesem Umfang Quantensimulationen möglich
sind [4]. Zum Beispiel mit Ensemblen von ultrakalten Ionen kann jetzt Quantenmag-
netismus simuliert werden [5], was letztendlich neue Erkenntnisse über Hochtemper-
atursupraleiter bringen könnte. Ein weiteres Beispiel sind Bose-Einstein Kondensate
mit inter-atomaren Wechselwirkungen, die supraflüssige Eigenschaften zeigen [6, 7].

Für neutrale Atome, die kein permanentes Dipolmoment besitzen, erhält man die stärk-
stmögliche inter-atomare Wechselwirkung, wenn sich die Atome in einem sogenannten
Rydberg Zustand befinden. Der Begriff “Rydberg Zustand” beschreibt Zustände, in
denen ein (oder mehrere) Elektron hochangeregt ist (typischerweise n & 20, wobei
n die Hauptquantenzahl ist). Aufgrund der räumliche Trennung des Elektrons vom
Innenteil des Atoms besitzen Rydberg Atome (Atome in einem Rydberg Zustand) ein
großes elektrisches Dipolmoment und wechselwirken daher miteinander. Mithilfe dieser
Wechselwirkung wurden in ultrakalten Ensembles Mehrteilchen-Dynamik und räum-
liche geordnete Strukturen [8] beobachtet. Neue experimentelle Methoden erlauben
außerdem präzise Kontrolle von einzelnen Atomen, die die Realisierung von einem viel-
seitigen Quantensimulator ermöglichen könnten [9].

In den zuvor erwähnte Beispielen mit Rydberg Atomen ist entscheidend, dass die Atome
in kohärenter Art und Weise manipuliert werden können. Auch im Gegenfall dazu,
d.h. mit dominanter Dissipation, kann Mehrteilchen-Dynamik mit Rydberg Atomen
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beobachtet werden. In diesem Fall verhält sich das Ensemble von Atomen üblicherweise
wie klassische Spin-1/2 Teilchen. Es hat dazu geführt, dass ein Phasenübergang in einer
Dampfzelle beobachtet werden konnte, zusammen mit superradianten Zerfällen von
Rydberg Atomen (beide Prozesse sind grundsätlich Mehrteilchen Effekte). Außerdem
wurde die Erzeugung von Aggregaten, die von großem Interesse im Gebiet der Physik
der weichen Materie sind, demonstriert [10, 11]. Solche Aggregate sind Ensembles von
Rydberg Atomen, die nur kurzweitige räumliche Ordnung besitzen. Die kurzweitige
räumliche Ordnung sorgt für eine erhöhte Komplexität vom System [12].

Insgesamt können Rydberg Atome jetzt experimentell mit großer Genauigkeit manip-
uliert werden, und zeigen auch in Dampfzellen Mehrteilchen-Dynamik bei einer Tem-
peratur über Raumtemperatur. Allerdings muss im Fall einer Dampfzelle der großen
Geschwindigkeit thermischer Atome entgegengewirkt werden. Dies erfolgt durch eine
Parameterauswahl die für schnelle Anregungsdynamik sorgt, sodass Dekohärenz durch
die Bewegung der Atome minimiert wird [13]. Außerdem wird dadurch eine sehr
schnelle Modulation von Zuständen erlaubt.

Im Rahmen dieser Arbeit wurden zwei unterschiedliche Experiment zur Untersuchung
von der Anregung von Cäsium Atome zu Rydberg Zustände in einer Glas-Dampfzelle
über Raumtemperatur (T > 100 ◦C) aufgebaut. Der größte Vorteil von einer Dampfzelle
ist, dass es ein viel kleineres System als eine Vakuumkammer für ultrakalte Atome.
Außerdem sind sie kompatibel mit industriellen Methoden der Integration [14]. Trotz
dem Einfluß von der Geschwindigkeit der Atome, wurden mehrere Meilensteine mit
Rydberg Anregungen in Dampfzellen erreicht, wie die Möglichkeit der kohärente Anre-
gung [13], die kohärente Emission von Licht durch einen Vierwellenmischen Prozess [15,
16], und der Auftritt der üblichen van-der-Waals Wechselwirkung zwischen Rydberg
Atomen [17].

In den Experimenten die in dieser Arbeit beschrieben werden, wurden Rydberg Atome
mithilfe eines Zweiphotonen-Schemas angeregt. Die Anregungsbandbreite ist vergle-
ichbar mit frühere Experimenten mit kohärenter Anregung von Rydberg Atomen in
Dampfzellen [13], sodass im Prinzip eine hohe Population im Rydberg Zustand erre-
icht werden kann. Die atomare Dichte ist auch im ersten Experiment so gewählt, dass
die Wechselwirkung zwischen Rydberg Atomen signifikant hoch ist. Die hohe Bandbre-
ite erlaubt im zweiten Experiment die Übertragung von einer Hochfrequenzmodulation
(über 1 GHz) auf die Amplitude von einem transmittierten Lichtfeld.

Das erste Kapitel dieser Arbeit beschäftigt sich mit der theoretische Beschreibung
von Rydberg Atomen. Zuerst werden die grundlegenden Eigenschaften von Rydberg
Atomen wie die energetische Struktur oder die Dipolmomente erwähnt, sowie deren
Skalierungsverhalten mit der Hauptquantenzahl. Der Einfluss von elektrischen Feldern
auf Rydberg Zustände, der sogenannte Stark Effekt, wird dann vorgestellt. Am Ende
wird der Formalismus der Wechselwirkung zwischen Rydberg Atomen beschreiben.
Dies bezieht sich sowohl auf der Dipol-Dipol-Wechselwirkung, als auch auf höhere Ord-
nungen.

In einem Experiment mit einer Dampfzelle erfüllen die Lichtfelder einen doppelten
Zweck: sie sorgen zum einen für die Anregung der Atome, zum anderen deren In-
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tensität nach dem Durchgang durch die Zelle gemessen um die Information über
die Anregung zu extrahieren. Deswegen ist die Wechselwirkung zwischen Licht und
Atomen hier besonders wichtig. Der Formalismus dafür wird im Kapitel 2 detailliert
beschrieben. Der Dichtematrix Formalismus für die Beschreibung der Zustände wird
eingeführt, und die Wechselwirkung mit dem Lichtfeld durch die optische Bloch Gle-
ichungen beschrieben.

Die endliche und große Geschwindigkeit der Atome führt zu inhomogene Verbreiterungs-
mechanismen [18], die prinzipiell nicht direkt mit dem Formalismus vom Kapitel 2 be-
trachtet werden können. Im Kapitel 3 werden die zwei Hauptkonsequenzen der atomare
Bewegung vorgestellt, nämlich der Einfluss vom Doppler Effekt und der Einfluss der
endlichen Durchflugszeit der Atome durch die Lichtfelder.

Kapitel 4 bezieht sich auf das erste Experiment, das im Zuge dieser Arbeit durchgeführt
wurde. Hier sind Rydberg Atome bei einer hohen atomaren Dichte und mit hohen
Verstimmungen und Rabi Frequenzen angeregt worden. Die Anregungsdynamik wurde
durch einen schnellen Photodetektor zeitaufgelöst gemessen. Die experimentelle Ergeb-
nisse haben ein Sättigungsverhalten in der Anzahl an Rydberg Atomen, die angeregt
werden können, gezeigt. Zudem wurde eine Dichte-Abhängigkeit der Signalform fest-
gestellt, die zusammen mit dem Sättigungsverhalten auf Mehrteilchen-Dynamik Effekte
und Wechselwirkungseffekte. Insbesondere war die Betrachtung von Dipol-Quadrupol
Wechselwirkungstermen entscheidend für das Verständnis der Daten. Eine charak-
teristische Zeitskala konnte aus den experimentellen Daten gewonnen werden. Diese
Zeitskala war eine Funktion von folgenden Parametern im Experiment: die Verstim-
mung, die Rabi Frequenz, die atomare Dichte und die Hauptquantenzahl vom Rydberg
Zustand. Die Abhängigkeiten an diesen Parametern konnten mittels Potenzgesetze
angepasst werden. Die experimentelle Ergebnisse wurden mit einem Modell für die Ag-
gregation von Rydberg Atomen verglichen [19, 20]. Die Grundidee von diesem Modell
ist, dass wenn die Anregungslaser vom Rydberg Zustand verstimmt sind und Rydberg
Atome miteinander stark wechselwirken, die Anregung zum Rydberg Zustand in der
Nähe eines vorher angeregten Rydberg Atoms bei einem bestimmten Abstand reso-
nant wird. Dieser Prozess wird als “fazilitierte” Anregung bezeichnet. Des weiteren
entsteht eine räumliche Korrelation zwischen den Rydberg Anregungen, die ähnlich in
der Physik der weiche Materie auftreten. Die resultierenden Ensembles von Rydberg
Atomen, die räumliche Korrelationen zeigen, bilden sogenannte Aggregate von Ryd-
berg Anregungen. Eine notwendige Bedingung für die Gültigkeit dieses Modell ist,
dass die Anregung in einem stark dissipativen Regime stattfinden. Durch die atomare
Bewegung und die resultierende Dekohärenz wird dies im Experiment erfüllt. Aus Sim-
ulationen mit dem theoretischen Modell bei den selben Parametern wie im Experiment
wurde auch eine charakteristische Zeitskala extrahiert. Die absoluten Werte sowie die
Potenzskalierungen von der Zeitskala mit den Parametern stimmt mit den Messungen
überein. Diese Übereinstimmung ist besonders bemerkenswert, da es fundamentale Un-
terschiede zwischen dem Experiment und dem Modell gibt. Insbesondere wird im Mod-
ell ein gefrorenes Gas von Atomen angenommen, während im Experiment die atomare
Bewegung sehr wichtig ist und der Grund für inhomogene Dekohärenz. Außerdem sind
die Wechselwirkungspotentiale in der Tat deutlich Komplexer als die in dem Modell
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angenommenen Potentiale. All dies ist ein starkes Zeichen dafür, dass die unterliegen-
den physikalischen Prozesse sehr robust sind. Sobald es ein Wechselwirkungspotential
gibt, entsteht eine Resonanzbedingung die die “fazilitierte” Anregung erlaubt. Zudem
wurde mit diesem Experiment gezeigt, dass kollektive Anregungsprozesse durch starke
Wechselwirkungen auch in einer Dampfzelle möglich sind.

Das zweite Experiment wird im Kapitel 5 beschrieben. Hier handelt es sich um eine
andere Art von Messung. Ein oszillierendes elektrischen Feld im Radiofrequenzbereich
(RF, bei mehreren GHz) wirkt auf Rydberg Atome durch den Stark Effekt. Hinter-
grund von diesem Projekt ist eine fundamentale Fragestellung: was passiert wenn Ryd-
berg Atome mit schnell oszillierenden Felder moduliert werden? Interessant ist aber
auch eine technische Fragestellung: kann die RF-Modulation von Rydberg Atomen
die Intensität von einem Lichtfeld effizient modulieren? Durch den Stark Effekt vom
elektrischen Feld wird der Rydberg Zustand verschoben, und aufgrund von der Rück-
wirkung von Atomen auf die Intensität des anregenden Lichtfeldes wird diese Ver-
schiebung als eine Modulation der Intensität vom Lichtfeld übertragen. Die zeitliche
Entwicklung von dem System konnte simuliert werden. Mit einem Vergleich zu einer
Floquet Theorie wurden die Ergebnisse der Simulation als Übergänge zwischen “RF-
dressed” Zuständen identifiziert. Das Einsetzen vom oszillierenden elektrischen Feld
erfolgt im Experiment über eine Platine, die mit Methoden der modernen Nachricht-
entechnik entwickelt und hergestellt wurde. Insbesondere wurde darauf geachtet, dass
die Schaltung kompatibel mit den hohen RF Frequenzen ist. Für die Detektion von
der Amplitudenmodulation vom Lichtfeld wurde eine heterodyne Methode benutzt.
Mithilfe eines zweiten Laserfeld wurde die Modulationsfrequenz zu einem Bereich kon-
vertiert, in dem effiziente Photodetektoren benutzt werden konnten. Im Experiment
wurde eine Modulation vom Lichtfeld bis zu einer Frequenz des elektrischen Felders
von 3.6 GHz gemessen (d.h. 7.2 GHz auf dem Lichtfeld durch den quadratischen Stark
Effekt). Dieser Wert kommt aus einer technischen Grenze. Es zeigte sich eine grobe
qualitative Übereinstimmung zwischen theoretischen und experimentellen Ergebnissen.
Die theoretisch erwartete Signal konnten in den experimentellen Ergebnissen erahnt
werden, allerdings mit starken Verzerrungen. Dies deutet auf den möglichen Einfluss
von Wechselwirkungseffekten hin, möglicherweise durch Ladungen in der Zelle. Außer-
dem war die Amplitude der Modulation mehrere Größenordnungen kleiner als von der
Theorie vorhergesagt. Es konnten noch Verbesserungsvorschläge erarbeitet werden,
unter anderen eine Verbesserung von der Platine, die zu homogeneren elektrischen
Feldern führen könnte.

Insgesamt stellen diese zwei Experimente eine gute Basis für zukünftige zeitaufgelöste
Experimente mit Rydberg Atome in Dampfzellen dar. Sowohl Mehrteilchen Dynamik
aus dem Gleichgewicht [21], als auch schnellere Modulation vom Licht, möglicherweise
durch eine Miniatisierung von der Dampfzelle und der Platine können in zukunft un-
tersucht werden.
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Introduction

The internal structure of matter at the atomic scale is very well described and under-
stood since the formulation of quantum mechanics. For a system consisting of more
than one atom, the internal degrees of freedom of the atoms are coupled to the ex-
ternal degrees of freedom by inter-particle interactions. These interactions complexify
the description of systems composed of several atoms. If the dominant energy scale
in the system is given by the strength of the interaction these systems are referred
to as strongly interacting and/or strongly correlated many-body systems. The study
of strongly interacting many-body systems led to the discovery of many novel phe-
nomena such as superfluidity, superconductivity [1], quantum magnetism [2] or soft
matter physics [3]. However, understanding these systems is still challenging to date
because the sizes of the Hilbert space required for the description of these systems are
exceptionally large, causing substantial difficulties in the calculations. In particular,
this is the case for the systems out-of-equilibrium, which show rich physics and will be
a major theme of this thesis.

In the last 40 years the development of lasers and the experimental techniques asso-
ciated with this invention have revolutionized the study of atoms and ions, allowing
for a tremendous control of their interactions between the atoms/ions, but also with
well engineered environment. Right now this methodology developed in the context of
quantum degenerate gases is also expanded to molecular states. They are now essen-
tially platforms isolated from the environment with coherent excitation and tunable
interactions. This enables to emulate and study many-body physics [4] and making
Feynman’s dream of a quantum simulator come true.

There are several experimental techniques that allow for the controlled realization of
many-body systems. One remarkable platform is an array of trapped ions, which hold
the record number of 14 qubits for a quantum computer [22], enough to compute the
factorization 15 = 3× 5. The outstanding experimental single particle control, and by
this over the whole ensemble, in these experiments has also allowed for the simulation
of quantum magnetism [5]. As for atoms, since their first observation, Bose-Einstein
condensates (BEC) have been the subject of a large number of studies. In particular for
non-negligible interactions between the atoms, the BEC show a superfluid behavior [6],
and even shed light on the underlying principles of superfluidity [7].

The strongest possible interaction between neutral atoms (non dipolar) is the interac-
tion between Rydberg atoms [23]. Atoms, in which at least one of the electrons is in
a highly excited state (n & 20, where n is the principal quantum number) are called
Rydberg atoms, and they interact strongly because of the large electric dipole moment
caused by the charge separation of the electronic cloud from the ionic core. In the
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past decade there has been a large experimental effort to make use of this interaction
for the creation of strongly interacting many-body systems. One consequence of the
interaction between Rydberg atoms is the blockade effect [24], where the excitation of
more than one Rydberg atom inside a certain volume is prohibited by the interaction
potential. This can lead to the observation of spatially ordered structures in small
ensembles [8], very much alike crystallization in solid-state systems. It should also
result in a crystalline structure for larger systems [25]. Furthermore there have been
significant results towards the use of systems of Rydberg atoms for quantum compu-
tation [23] and quantum simulation [26]. New techniques of single atom manipulation
are now aiming at the same single particle control as in trapped ion systems, with a
much larger flexibility in the geometry of the ensemble. These systems are promising
candidates for the implementation of highly versatile quantum simulators [9].

Strongly interacting many-body excitation dynamics have also been studied with Ryd-
berg atoms under the presence of strong dissipation, meaning that the system essen-
tially behaves as an ensemble of classical spins. For instance, a nonequilibrium phase
transition associated with superradiant collective fluorescence was observed for an en-
semble of Rydberg atoms in a vapor cell [27]. A related effect is the emergence of
aggregates, ensemble of Rydberg atoms which exhibit short-range order, was demon-
strated in cold atomic clouds [10,11] and for the first time also in thermal vapor [28], as
reported in this thesis . These results illustrate the potential of ensembles of Rydberg
atoms to emulate soft-matter type collective systems [12], whose complexity arises from
the spatial order being only present at short range.

All these examples illustrate the power and versatility of systems of Rydberg atoms
due to their inter-atomic interactions. At the same time, the Rydberg atoms are
very sensitive to the environment, especially to electric fields. This presents some
experimental challenges, as the electric fields have to be very precisely under control.
But it also offers opportunities such as tuning of inter-atomic (Förster) resonances [23],
as a sensing tool for electric fields [29–31].

This thesis

In this thesis we present results of the excitation of Rydberg states in a vapor cell above
room temperature (up to 200 ◦C). Despite the lack of control of the motional degrees
of freedom of the atoms in a thermal gas above room temperature, several important
results have previously been achieved, motivating the study of Rydberg atoms in such
an environment. Vapor cells are small compared to cold atom experiments, they can
be miniaturized [14] and they sustain coherent excitation to Rydberg states [32]. It
was also demonstrated that light can be coherently emitted from an ensemble of Ryd-
berg atoms via four-wave mixing [15, 16], which, combined with the observation of
van-der-Waals interaction [17], paves the way towards a Rydberg-based single-photon
source in a vapor cell.Finally, as mentioned before, many-body interaction effects and
superradiance were observed in a vapor cell [27].
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In the following thesis, we present results on the excitation of cesium atoms to Ryd-
berg states in a very different parameter range than in previous work, and including
methodological and fundamental differences. In a first experiment the atomic densi-
ties and the dephasing rates are up to 2 orders of magnitude larger than in previous
work [10, 11], and the dominant dephasing mechanism is complex and based on the
atomic motion. In a second experiment we have applied an oscillating electric field at
frequencies of several GHz, off-resonant with atomic transitions in contrast to previous
work of this kind [29–31]. Furthermore we focus on a the time-resolved observation in
contrast to the detection of an average signal.

This thesis is organized as follows.

First, in chapter 1 we present the properties of Rydberg atoms that are relevant for the
experiments presented in this thesis. We describe the general properties of Rydberg
atoms and their scaling with principal quantum number. Then we discuss the interac-
tion of Rydberg atoms with their environment: the effect of an external electric field
on Rydberg states is examined, followed by the different aspects of the interaction be-
tween Rydberg atoms. Chapter 2 is devoted to the theoretical basics of the interaction
between atoms and light fields and to the formalism that will be used in the rest of
the thesis. In chapter 3 an implementation of the atomic motion into the theoretical
model is discussed.

As for the experimental part, chapter 4 is dedicated to the measurement of the strongly
correlated excitation of Rydberg aggregates. We present the excitation dynamics of
Rydberg atoms in a vapor cell at large atomic densities. The analysis of the measured
signal reveals many-body dynamics that rely on complex inter-atomic interactions.
The scaling properties of the experimental data against all accessible experimental
parameters is evaluated, and compared to simulation results from a theoretical model
for Rydberg aggregation. In chapter 5 the experimental realization of the modulation
of a light field amplitude is detailed. We first examine in a theoretical model the
interplay between an oscillating electric field and the excitation of atoms to a Rydberg
state. Then we present the setup used to generate a fast electric field modulation of
Rydberg states. Finally, we examine the experimental results, with the focus on the
maximum frequency at which the amplitude of a light field can be modulated using
this scheme.

A brief of the results and a discussion of future prospects for both experiments are
given at the end of the thesis.
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1 Rydberg Atoms

An atom is considered a “Rydberg atom” when one or several of its electrons are excited
to a state with a high principal quantum number n (typ. n & 15). The excited atom is
then in a “Rydberg state”. A consequence of such a high lying state is that the excited
electron is weakly bound and its wavefunction is strongly delocalized from the cloud of
the remaining core of electrons. This gives rise to exaggerated properties [23,33], which
mostly has an impact as an extreme sensitivity to the electromagnetic environment,
such as DC and AC external fields or the almost free electron of another Rydberg atom.
Hence numerous applications of Rydberg atoms in current research arise, spanning from
quantum optics [23] to many-body interacting systems [26] or precision sensing [29].
Although these properties of Rydberg states are very general, we will here restrict
ourselves to the case of alkali atoms, i.e. atoms with only one valence electron which
is then in the highly excited state, and in the course of this thesis only show data
corresponding to cesium atoms.

To start with this chapter summarizes the properties of Rydberg atoms that are relevant
for the work presented in this thesis. First we detail some general properties of single
Rydberg atoms. Then we briefly address Rydberg atoms in an electric field. Finally
we describe in more detail the interaction between Rydberg atoms.

1.1 General Properties

As discovered by Johannes Rydberg, the energies the Hydrogen levels from the ioniza-
tion limit follow a simple formula: −R∞/(n

2(1 + me/mp)), where R∞ is the Rydberg
constant, me is the electron mass, mp is the proton mass, and n is the principal quan-
tum number [33].

Because the spatial probability distribution of the electron of a Rydberg atom is
strongly delocalized from the inner core (a ground state Cs+ ion in the case of ce-
sium), the atomic nucleus of charge +Z is shielded by the Z − 1 inner electrons. Thus
the Rydberg electron essentially sees the core ion as a point charge and the level struc-
ture is in many aspects hydrogen-like. At a closer look this is not exactly true for S,
P, D and F states, i.e. states of azimuthal quantum number L < 4. For these states
the wavefunction of the electron still ‘leaks’ into the ionic core, partly experiencing the
Coulomb potential of the atomic nucleus of charge Z. The shielding is not complete
anymore and the degeneracy over the azimuthal quantum number is lifted. It was
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property scaling typ. value (32S1/2)

binding energy (n∗)−2 17.4 meV
level spacing (n∗)−3 296 GHz
orbital radius (n∗)2 781 a0

dipole moment 〈R7P|er|RnS〉 (n∗)−3/2 0.062 ea0

dipole moment 〈RnS|er|RnP〉 (n∗)2 904 ea0

polarizability (n∗)7 −2.06 MHz/(V/cm)2

C3 coefficient (for one nS and one nP atom) (n∗)4 792 MHz · µm3

C6 coefficient (n∗)11 36 MHz · µm6

Table 1.1: Scaling laws for important properties of Rydberg atoms [23,33]. The typical
values are given for the 32S state of Cs and were obtained using Ref. [34] and the
database of our institute (similar to [35]). Note that the dipole moments here are
the purely radial part of the dipole matrix element. Moreover there is a significant
error bar associated with 〈R7P|er|RnS〉, as the dipole matrix elements including the
7P states typically involve strong relativistic effects [36]. More details on properties
of Rydberg atoms can be found in [37].

empirically determined by Johannes Rydberg that the S, P, D and F series of the alkali
atoms follow the slightly modified Rydberg formula [37]:

Enlj = − R∞
(n∗)2(1 +me/m+)

(1.1)

where m+ is the mass of the nucleus and n∗ = n − δnlj has been introduced as the
effective principal quantum number.1. δnlj is the quantum defect and follows the also
empirically determined (modified) Rydberg-Ritz formula [34]:

δnlj = δ0 +
δ2

(n− δ0)2
+

δ4

(n− δ0)4
+ . . . (1.2)

It is worth pointing out that the (δ2k)k∈N series is specific to each set of quantum
numbers l and j. For instance for S1/2 states [34],

δ0 = 4.0493527

δ2 = 0.238100

δ4 = 0.24688

δ6 = 0.06785

δ8 = 0.1135 (1.3)

Additionally to the energies of the Rydberg states, almost all properties of Rydberg
atoms follow scaling laws versus the effective principal quantum number. Some of
them, of relevance for this thesis, are shown in Table 1.1. Also shown in Table 1.1 are
the values of these parameters for the 32S1/2 state of cesium.

1For simplification purposes, the hyperfine structure is neglected in this chapter. The notation for
generic atomic states is |nlj(m)〉 with generic principal, azimuthal, total angular momentum and
magnetic quantum numbers n, l, j and m respectively.
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1.2 Stark effect

In the presence of an external electric field E = E ε, where ε is the unit polarization
vector of the electric field, the Hamiltonian of the atom has the additional term

HE = −d̂ ·E = −Ed̂ · ε (1.4)

where d̂ = e r̂ is the electric dipole operator and r̂ the position operator of the electron.
Diagonalization of the full Hamiltonian H = H0 + HE, where H0 is the unperturbed
atomic Hamiltonian, yields new, shifted states. This effect is known as the Stark
effect.

Quadratic Stark effect

Let us first consider the case of small electric fields, where the terms of HE are smaller
than the energy spacings between the atomic levels. Then HE can be treated as a
small perturbation of the system. Moreover, in the basis of the bare atomic states
|nljm〉 (defined with ε as the quantization axis), HE does not have diagonal terms,
as 〈nljm|d̂ · ε|nljm〉 = 0 because of the dipole selection rules. Therefore one can use
second order perturbation theory (for L < 4), and the energy shift has to be quadratic
in E:

E (2)
nljm = e2E2

∑
n′l′j′m′ 6=nljm

∣∣∣〈nljm|d̂ · ε|n′l′j′m′〉∣∣∣2
Enlm − En′l′j′m′

(1.5)

=
1

2
αnljmE

2 (1.6)

where the polarizability αnljm is given by

αnljm = 2e2
∑

n′l′j′m′ 6=nljm

∣∣∣〈nljm|d̂ · ε|n′l′j′m′〉∣∣∣2
Enlm − En′l′j′m′

(1.7)

Note that the quadratic Stark effect only applies to states with L < 4. The states
of higher azimuthal quantum numbers are degenerated, and their Stark shift is linear
with the electric field, as can be seen in Figure 1.1.

Stark map

For large enough fields the perturbation theory cannot be used and a full diagonaliza-
tion of the Hamiltonian H has to be performed. In practice, full diagonalization means
that enough states have to be included in the calculation, typically several hundreds.
The results of such a calculation are typically presented in a so-called Stark map. Such
a Stark map for Cesium is shown in Figure 1.1. It is interesting to note in Figure 1.1
that the Stark shift of the 32S state remains quadratic over the almost entire range of
electric field shown here, despite numerous crossings with manifold lines.
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Figure 1.1: Stark map for Cs around the 32S state obtained by full diagonalization
of the Hamiltonian H = H0 + HE (with 484 states). The method used here to
compute this Stark map is similar to the one described in [35]. In (a) we show
the dependence on the electric field of all the nearest L-states (solid lines). The
domains around the S and D state are zoomed in in (b) and (c) respectively. The
solid lines represent the exact dependence on the electric field. The dash-dotted
lines are the extrapolation of the low-field quadratic Stark effect from perturbation
theory (following equation (1.6)) to the whole range of electric fields.
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1.3 Interactions between Rydberg atoms

The interaction between Rydberg atoms is usually reduced to a binary interaction, i.e.
the interaction between two Rydberg atoms. Note that Rydberg atoms are typically
treated quantum mechanically as hydrogen-like systems consisting of an ionic core and
an electron. The radial part of the Hamiltonian for one Rydberg atom consists of a
Coulombic term ∝ 1/r and a centrifugal term ∝ 1/r2 [37], r being the norm of the
position operator r̂ = r× r of the electron, and r is the corresponding unit vector. In
Figure 1.2 we show schematically a system of two Rydberg atoms 1 and 2 composed
of one ionic core and one electron in a Rydberg state. The two atoms are separated by
a distance R. If we want to describe this system of the two atoms (with single atoms
Hamiltonians H1 and H2) one has to add to the unperturbed pair state Hamiltonian
H1 ⊗H2 an interaction potential of the form

V̂int =
e2

4πε0

(
1

R
+

1

R′
− 1

r12

− 1

r21

)
(1.8)

This interaction term consists of the Coulomb interaction between the ionic cores and
electrons of the different atoms. Here R, R′, r12 and r21 are the norms of the position
operators between the different electrons and ionic cores as defined in Figure 1.2. At
large interatomic distance R (1.8) can be rewritten as

V̂int =
e2

4πε0

∞∑
L1,L2=1

L<∑
M=−L<

fL1,L2,M

RL1+L2+1
Q̂L1,M(r̂1)Q̂L2,−M(r̂2) (1.9)

where Q̂L,M(r̂) is the multipole operator for each atom, defined with regard to the
spherical harmonics YL,M as

Q̂L,M(r̂) =

(
4π

2L+ 1

)1/2

rL YL,M(r) (1.10)

r1
r2

r 21

r 12

R

Rʼ

1 2

Figure 1.2: Schematic representation of a system of two Rydberg atoms 1 and 2
(from [38]). Red dots represent the electrons in Rydberg states and blue circles
represent the ionic cores.
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and where

fL1,L2,M =
(−1)L2(L1 + L2)!

[(L1 +M)!(L1 −M)!(L2 +M)!(L2 −M)!]1/2
andL< = min(L1, L2)

The L in (1.10) defines the order of the multipole operator. For instance Q̂1,M are
dipole operators. This is confirmed by the spherical harmonics Y1,M which are exactly

the angular dependence of the classical dipole pattern. Q̂0,0 is the monopole operator

(absent here because the atoms are neutral), Q̂2,M are the quadrupole operators, Q̂3,M

the octopole operators, etc.

The multipole expansion (1.9) can be understood as the Taylor expansion of 1
R′

, 1
r12

and
1
r21

in powers of 1
R

and r̂. More formally, this expansion is valid if the electronic wave-
functions of the two atoms do not overlap, such that exchange and overlap interactions
are negligible [39]. In other words the interaction energy is treated as a perturbation
on the system of the two individual Rydberg atoms. This condition is met if R is larger
than the LeRoy-radius RLR [40]:

RLR = 2
(
〈n1l1j1m1|r̂2

1|n1l1j1m1〉1/2 + 〈n2l2j2m2|r̂2
1|n2l2j2m2〉1/2

)
(1.11)

where 〈n1l1j1m1|r̂2
1|n1l1j1m1〉1/2 is the standard deviation of the position operator r̂1

for atom 1 (resp. 2). It is therefore a measure of the size of the Rydberg electron
wavefunction. Note also that at large R, the aforementioned centrifugal interaction
terms between the two atoms (∝ 1/R2) are negligible with regard to the Coulomb
terms. Thus spin-orbit (and also spin-spin) interactions between the two atoms are
also neglected.

A full diagonalization of the pair state Hamiltonian with interactions H(2) = H1⊗H2 +
V̂int over the basis of pair states |n1l1j1m1, n2l2j2m2〉 yields new, shifted eigenstates.
The result of such a diagonalization is shown in Figure 1.3. The projection of each
eigenstate |Ψ〉 onto the unperturbed pair states yields the admixture of the unperturbed
pair states

ε
|Ψ〉
n1l1j1m1,n2l2j2m2

= 〈.n1l1j1m1, n2l2j2m2|Ψ〉 (1.12)

Dipole-dipole interaction

The expansion nature of (1.9) implies that a truncation is often possible, provided that
the interatomic distance R is large enough. Such a truncation allows to gain insight
in the physical meaning of the different terms. We focus here on first term in (1.9),
which is due to dipole-dipole coupling between the two atoms. It can be rewritten in
the usual form of dipole-dipole interaction [38]:

V̂dd =
d̂1 · d̂2 − 3(d̂1 ·R)(d̂2 ·R)

4πε0R3
(1.13)

where d̂ = er̂ are the respective dipole operators.
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Figure 1.3: Sequence of pair state potentials and state mixing around the 32S,32S pair
state (mj = 1/2 and −1/2) against the interatomic distance R, including interaction
terms up to dipole-dipole, dipole-quadrupole and quadrupole-quadrupole interaction
(top to bottom). (a)-(c)-(e) show the pair state potentials lines of the relevant pair
states around the 32S,32S pair state (eigenvalues of H(2)). (b)-(d)-(f) are density
plots showing the projection (ε32S,32S, see definition in the text) of the shifted states
(eigenvectors of H(2)) onto the unperturbed 32S-32S pair state. Also shown here is
the van-der-Waals potential UvdW

32S,32S (1.14) from [39] (dashed red line). (a)-(b) are

computed using only dipole-dipole interaction (H
(2)
dd is diagonalized). In (c)-(d) the

next order (dipole-quadrupole) is added to V̂int. Finally (e)-(f) include quadrupole-
quadrupole interaction. Note that dipole-octopole interaction has the same order
but couldn’t be included. As can be seen in the figure, this term is anyways negligible
in this range, which is the relevant one for this thesis. The computation method
used here is similar to the one described in [35].
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The pair state Hamiltonian with dipole-dipole interactions is H
(2)
dd = H1 ⊗ H2 + V̂dd.

In the basis of pair states |n1l1j1m1, n2l2j2m2〉, V̂dd is an off-diagonal operator because
of dipole selection rules. Let us first consider the case where the terms of V̂dd are
smaller than the energy spacings between pair states. Then, as in Section 1.2, we can
determine the energy shift on the pair states using second order perturbation theory.

UvdW
n1l1j1m1,n2l2j2m2

=
∑

n′1l
′
1j
′
1m
′
1 6=n1l1j1m1

n′2l
′
2j
′
2m
′
2 6=n2l2j2m2

∣∣∣〈n1l1j1m1, n2l2j2m2|V̂dd|n′1l′1j′1m′1, n′2l′2j′2m′2〉
∣∣∣2

En1l1j1m1 + En2l2j2m2 − En′1l′1j′1m′1 − En′2l′2j′2m′2

(1.14)
which can be rewritten using (1.13) to clearly show the van-der-Waals character of this
perturbative interaction:

UvdW
n1l1j1m1,n2l2j2m2

=
C6

R6
(1.15)

The C6 coefficient is usually not isotropic because the electronic wavefunctions are not
rotationally symmetric (except for S states) [41]. The various angles relative to the
quantization axis determine the angular dependence of the C6 coefficient, such as the
angle of the interatomic axis and the “atomic orientation” through the azimuthal and
magnetic quantum numbers l and m. The values for the C6 coefficients for S, P and
D states, calculated in a basis of molecular states, can be found in [39]. The van-
der-Waals potential for the 32S,32S pair state is shown in Figure 1.3 (b). There the
perturbative character of the van-der-Waals interaction potential becomes clear, since
at small interatomic distance R the deviation from the full diagonalization is visible.

If the interaction energy 〈n1l1j1m1, n2l2j2m2|V̂dd|n′1l′1j′1m′1, n′2l′2j′2m′2〉 between two pair
states is larger than the energy spacing between these two pair states, then the previous
treatment is not valid anymore and the new pair states become strongly mixed and
separated by

Udd
n1l1j1m1,n2l2j2m2

= 〈n1l1j1m1, n2l2j2m2|V̂dd|n′1l′1j′1m′1, n′2l′2j′2m′2〉 =
C3

R3
(1.16)

As for the C6 coefficient, the C3 coefficient is not isotropic. Moreover it is crucial that
C3 does not have a constant sign over space, like any dipole-dipole coupled system.
Otherwise the integrated interaction energy over space would diverge.

Higher order terms

The restriction of binary interaction between Rydberg atoms to dipole-dipole inter-
action V̂dd is in most experiments so far satisfying. The excitation linewidths are
typically small compared to the interaction potentials and level spacings, and thus the
typical interatomic distances are large enough to neglect higher order terms in (1.9).
This has been experimentally demonstrated in the group of Antoine Browaeys [42,43]
and made use of in numerous works based on Rydberg blockade [23] or spatially cor-
related excitation [19] among others. In some cases however it has been critical to
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include dipole-quadrupole [44] and even quadrupole-quadrupole [45] terms. This has
been especially true for cesium atoms. The quantum defects in cesium are very close
to integers (δnS ≈ 4.05) or half-integer (δnP ≈ 3.5, δnP ≈ 2.5) and thus lots of pair-
states are bunched together. For instance in Ref. [44] the 23P3/2,23P3/2 pair state lies
very close to both the 23S1/2,18FJ and 22S1/2,19FJ pair states, with which significant
dipole-quadrupole interaction is observed.

In this thesis, as detailed in chapter 4, we excite cesium atoms to S states. As shown
in Figure 1.3(c) for the 32S,32S pair state, the 31P,31D and 32P,30D pair states are
very close in energy to the 32S,32S pair state, and are coupled by dipole-quadrupole
interaction with strong dipole and quadrupole moments (because the principal quantum
numbers are very close). The influence of these states is clearly visible in Figure 1.3(c)-
(d), where the dipole-quadrupole interaction term is included in H(2), compared to
Figure 1.3(a)-(b), where only dipole-dipole interaction is taken into account. Also one
can notice in Figure 1.3(e)-(f) that the higher order terms like quadrupole-quadrupole
interaction have negligible contributions in this range of parameters.

For a pair state |n1l1j1m1, n2l2j2m2〉 the electronic parity is defined as (−1)l1+l2 [44].
Pairwise interaction between two pair states usually conserve the electronic parity
(cf. dipole-dipole or quadrupole-quadrupole interaction). This condition is violated
for dipole-quadrupole interaction. The total parity of the system should actually be
conserved by any interaction between two pair states. Therefore the rotational parity
has to be also violated such that the total parity (product of electronic and rotational
parities) is conserved. In practice this means that the rotational angular momentum
L also changes. As demonstrated in [44] pair state interaction actually occurs during a
collision between two atoms with impact parameter b, relative velocity v and reduced
mass µ. The maximum rotational angular momentum is ~Lmax = µbv and the energy
splitting between two neighboring rotational states with angular momenta L − 1 and
L reads ∆Erot = L~2/(µb2). Thus the maximum energy splitting between neighboring
states is ∆Erot,max = ~v/b. If this maximum rotational energy splitting is smaller
than the experimental linewidths, the rotational levels can be considered as degenerate
and there is no further interaction term to take into account. In the present case, by
setting v ∼ 200 m.s−1 (at around 400 K) and b = 1µm, since the dipole-quadrupole
interaction starts playing a role at this interatomic distance (see Figure 1.3(d)), one
obtains ∆Erot,max ∼ 2π × 50 MHz. Thus neighboring rotational states are degenerate
with regard to the experimental linewidths (see chapter 4) and no rotational coupling
needs to be considered.

23





2 Atom-Light Interaction

Due to the loose binding of the electron in a Rydberg atom, the overall energy required
to excite an atom to a Rydberg state is on the order of the ionization energy of the
ground state atom. For Alkali atoms, as considered in this thesis, this ionization energy
corresponds to ultraviolet light, which is hard to produce in the lab. The simplest
method to excite Alkali atoms to a Rydberg state in a controlled manner is therefore
to use multi-photon transitions with wavelengths in the visible domain. In contrast
to ultracold atoms, we observe the relevant physics by analyzing the transmission
properties of a probe beam, which requires a careful analysis of the optical response of
a gas driven by several laser fields. This chapter is devoted to describing the interaction
of coherent light fields with an atom, in order to describe both the response of atoms
to a light field and the back-action of these atoms on the light field. As the light
fields used in the experiments are fairly intense, i.e. well above the single photon level,
they can be treated as classical, such that the semi-classical description of atom-light
interaction is well-suited to describe the physical phenomena at stake.

This chapter contains first the general formalism of atom-light interaction. Then we
focus on the specific case of a three-level ladder system with two driving fields, which
is of relevance for this thesis. The subject of atom-light interaction is extensively
described in numerous textbooks [46, 47], as well as in several theses [48, 49] with a
formalism identical to the one used here. Therefore we present here the main concepts
only in a reduced manner, i.e. without the derivation which can be found in the
aforementioned literature. Newer and more essential concepts will be introduced more
in-depth.

2.1 General concepts

Density matrix

An isolated atom, with discrete electronic states with energies ~ωi, is described by the
Hamiltonian H0. This Hamiltonian has ~ωi as its eigenvalues, and |i〉 as its eigenstates,
and it can be expressed in the form

H0 =
∑
i

~ωi|i〉〈i| (2.1)

In the semi-classical model the Hamiltonian accounting for the interaction of a light
field with the atom is simply the potential energy of the atomic electric dipole in the
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electric field of the light field EL

HAL = −d̂ ·EL (2.2)

where d̂ = e r̂ is the electric dipole operator of the atom, as previously defined in
chapter 1. The Hamiltonian for the atomic system in the light field is

H = H0 +HAL (2.3)

The usual and practical way of treating the problem is to consider the density matrix of
the system ρ. The diagonal elements of the density matrix ρii represent the population
of state |i〉, and the off-diagonal elements ρij are the coherence between states |i〉
and |j〉. The density matrix is Hermitian (ρ† = ρ), and verifies tr(ρ) = 0 because
the population is conserved and normalized. This approach has the advantage of
being practical for treating ensembles of atoms, and allows to consider decoherence
mechanisms. Without decoherence, the equation of motion of the density matrix is
called the Von Neumann equation and is a direct derivation from the Schrödinger
equation

∂ρ

∂t
= − i

~
[H, ρ] (2.4)

Homogeneous decoherence mechanisms

In a real environment atoms experience decoherence, additionally to the coherent evo-
lution described by equation (2.4). We focus here only on homogeneous decoherence,
meaning that the mechanisms are the same for every atom, independently of external
properties. Homogeneous decoherence results from stochastic processes (typically vac-
uum fluctuations) and can be separated into two categories: the non-energy-conserving
decoherence or decay, and the energy conserving one or dephasing. The new equation
of motion for the density matrix including decoherence processes is called the Liouville-
von Neumann equation [50] or master equation:

∂ρ

∂t
= − i

~
[H, ρ] + L̂(ρ) (2.5)

where L̂(ρ) is called the Lindblad operator [51]. We can separate the Lindblad operator
into two terms L̂(ρ) = L̂1(ρ) + L̂2(ρ), with L̂1(ρ) accounting for decay processes and
L̂2(ρ) accounting for dephasing processes. The general expression for L̂1(ρ) is [50]

L̂1(ρ) =
∑
i,j

Γij

(
ĈijρĈ

†
ij −

1

2

(
Ĉ†ijĈijρ+ ρĈ†ijĈij

))
(2.6)

where Γij is the decay rate from |i〉 to |j〉 and Ĉij = |j〉〈i| = Ĉ†ji is the corresponding
transition operator. Equation (2.6) can be rewritten in the form

L̂1(ρ) =
∑
i,j

(Γjiρjj − Γijρii) |i〉〈i|

− 1

2

∑
i 6=j

(∑
k

Γik + Γjk

)
ρij|i〉〈j| (2.7)
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where the first summation describes the diagonal terms (population transfer) and the
second summation describes accounts for the decay of the coherences.

For dephasing processes the Lindblad operator reads [50]

L̂2(ρ) = −1

2

∑
i 6=j

γijĈiiρĈjj

= −1

2

∑
i 6=j

γijρij|i〉〈j| (2.8)

where γij = γji is the dephasing rate on the transition between |i〉 and |j〉. Dephasing
can for instance arise from relaxation of type T2 such as spin dephasing, from elastic
collisions, or from the modeling of phase or intensity modulation on driving light field.
One special case is that of dephasing mechanisms acting on the states, such as elastic
collisions. In this case the dephasing process is equivalent to a decay from one level to
itself, and L̂2(ρ) can be written in the same form as the decay Lindblad operator (2.6):

L̂2(ρ) =
∑
i

γi

(
ĈiiρĈ

†
ii −

1

2

(
Ĉ†iiĈiiρ+ ρĈ†iiĈii

))
(2.9)

where γi is the dephasing rate of state |i〉. If only dephasing mechanisms of this form
are relevant, the full Lindblad operator L̂(ρ) takes the same form as (2.7), where the
dephasing accounted for by the addition of the somewhat unphysical decay from a state
to itself with a rate Γii = γi.

Rotating wave approximation

The electric field for a plane wave propagating in z-direction can be written as

EL(z, t) = EL(z, t)εL =
1

2

(
E0L(z, t)ei(ωLt−kLz) + E0L(z, t)∗e−i(ωLt−kLz)

)
εL (2.10)

where εL is the unit vector of the polarization, ωL is the angular frequency of the light
and kL = ωL/c is the wave number. The amplitude E0L may be time dependent, but
its time evolution is assumed to be much slower than the frequency of the light field.
The Hamiltonian accounting for the atom-light interaction thus reads

HAL = − d̂ · εL

2

(
E0L(z, t)ei(ωLt−kLz) + E0L(z, t)∗e−i(ωLt−kLz)

)
(2.11)

This formulation has the inconvenience that the fast oscillating terms of the light field
are present. The time scales of the oscillating terms of the light field are usually very
different from those of the atomic dynamics. These time scales can be separated by
treating the problem in a frame that is oscillating with the frequency of the light fields,
called the rotating frame. The transformation is characterized by the unitary operator
U . The general expression for U can be found in [49], and will be given later for the
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case of a three-level system, and the atomic system is described in the rotating frame
by the new density matrix

ρ̃ = U †ρU (2.12)

Under this transformation, the von Neumann equation governs the evolution of ρ̃ with
a new Hamiltonian defined as

H̃ = U †ρU − i~U †∂U
∂t

(2.13)

The atom-light Hamiltonian in the rotating frame is given by

U †HALU = − d̂ · εL

2

(
E0L(z, t) + E0L(z, t)∗e−2i(ωLt−kLz)

)
(2.14)

The separation of time scales, known as the rotating wave approximation, is then
performed by considering the interaction Hamiltonian averaged over one period of the
electric field (denoted here as 〈·〉t|ωL):

H̃AL = 〈U †HALU〉t|ωL = − d̂ · εLE0L

2
=

~Ω̂

2
(2.15)

where ~Ω̂ = d̂ · εLE0L is the Rabi frequency (operator) The Lindblad operator in
the rotating frame keeps its form, i.e. it is simply given by L̂(ρ̃). For simplification
purposes, only one light field was considered here. The generalization to a larger
number of light fields is straightforward and follows the same steps, and is presented
explicitly in [49]. The system of equations given by the Liouville-von Neumann equation
in the rotating frame with the simplified Hamiltonian H̃AL is also known as the “optical
Bloch equations”.

Back action on the light field

A light field modifies an atomic system in a way governed by the Liouville-von Neumann
equation (2.5). The typical processes are the excitation of the atom via the absorption
of a photon from the light field, and the de-excitation of the atom via stimulated
emission back into the light field. This means that there is a back-action from the
atomic system onto the light field, and that the two are eventually coupled systems.
We present here the main aspects of this back-action, which allows in the experiments
presented here to measure the influence of light fields on the atomic system.

For simplification purposes, we focus here again on a single light field, and assume
that it is far off-resonant for all but one transition between levels |i〉 and |j〉. The
generalization is straightforward and can be found in [49]. In this case H̃AL reduces to
two terms:

(H̃AL)ij = (H̃AL)∗ji = −dijE0L

2
(2.16)

=
~Ωij

2
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where dij = 〈i|d̂ · εL|j〉 is the dipole matrix element of the transition.

The light field propagates through the medium formed by the atoms. This medium has
a polarization density P = N〈d〉, where N is the atomic density and 〈d〉 is the expec-
tation value of the atomic dipole moment. The polarization density can be rewritten
as

P = N〈d〉 = tr(ρ · (d̂ · εL))

= ρijdji + ρjidij

= ρ̃ijdjie
i(ωLt−kLz) + ρ̃jidije

−i(ωLt−kLz) (2.17)

where the usual transformation in the rotating frame U was used, such that the coher-
ences of the density matrix transform as (U †ρU)ij = ρ̃ij = ρije

−i(ωLt−kLz) [49].

The electric field is influenced by the polarization density of the medium, following the
usual wave equation (

∂2

∂z2
− 1

c2

∂2

∂t2

)
EL(z, t) =

1

ε0c2

∂2

∂t2
P (z, t) (2.18)

The polarization density can be written in the form of a plane wave:

P (z, t) =
1

2

(
P0(z, t)ei(ωLt−kLz) + P0(z, t)∗e−i(ωLt−kLz)

)
(2.19)

It is practical to apply a transformation into a co-moving reference frame (ζ, τ), defined
by ζ = z and τ = t − z/c. Under the assumption that the envelopes E0L(ζ, τ) and
P0(ζ, τ) vary slowly with respect to the oscillating terms1, equation (2.18) reduces
to [48,49]:

∂

∂ζ
E0L(ζ, τ) = − iωL

2ε0c
P0(ζ, τ) (2.20)

By combining (2.17), (2.19) and (2.20) one obtains the following equation, coupling
the electric field and the density matrix:

∂

∂ζ
E0L(ζ, τ) = −iωLNdji

ε0c
ρ̃ij(ζ, τ) (2.21)

The interplay between the light field and the atomic system becomes clearer by re-
writing (2.21) in terms of the Rabi frequency Ωij = −dijE0L/~:

∂

∂ζ
Ωij(ζ, τ) = i

ωLN |dij|2

~ε0c
ρ̃ij(ζ, τ) (2.22)

For an ensemble of atoms extended in the propagation direction z of the light field,
the system (atoms, light) is governed by the Liouville-von Neumann equation (2.5) for
the time dependence and equation (2.21) for the spatial dependence. The measured

1Note that this assumption was already applied previously for the rotating wave approximation.
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quantity in the experiments presented in this is the intensity of the light fields I =
(1/2)cε0E0LE

∗
0L. The spatial differential equation for the intensity is

∂

∂ζ
I(ζ, τ) =

1

2
cε0

(
E0L

∂E∗0L

∂ζ
+ E∗0L

∂E0L

∂ζ

)
= cε0 Re

(
E∗0L

∂E0L

∂ζ

)
= N~ωL Re (iΩij(ζ, τ)∗ρ̃ij(ζ, τ)) using (2.21)

= −N~ωL Im (Ωij(ζ, τ)∗ρ̃ij(ζ, τ)) (2.23)

Let us now consider that the ensemble of atoms extends from ζ = 0 to ζ = l. The total
change in intensity over the length of the medium is obtained by integrating (2.23)
over ζ:

I(l, τ)− I(0, τ) = −N~ωL

∫ l

0

Im (Ωij(ζ, τ)∗ρ̃ij(ζ, τ)) dζ (2.24)

Two boundary cases can be identified:

(i) the intensity varies only slightly along the cell, and

(ii) the steady state in the weak probe limit (Ωij � Γ and Ωij(ζ, τ) = Ωij(ζ)) where
the coherence term ρ̃ij is proportional to the Rabi frequency.

In the first case (i), when the intensity varies only slightly along the medium, this means
that propagation effects can be neglected. Then the Rabi frequency and therefore the
density matrix ρ̃ are independent of ζ, and the transformation into the original reference
frame (t,z)is trivial. Without loss of generality, we can assume that the Rabi frequency
is real and positive before interacting with the atoms (i.e. Ωij(ζ = 0, τ) is real), and
equation (2.24) thus reduces to

∆I(t) = −N~ωLlΩij(t) Im (ρ̃ij(t)) (2.25)

In (2.24) we can see that the change in intensity through the medium is essentially
given by the imaginary part of the coherence ρ̃ij. This is very practical because the
density matrix can often be computed with a suitable theory, and (2.25) allows to
compare the experimental and theoretical results directly.

In the second case (ii), i.e. when the Rabi frequency is small compared to the other
relevant energy scales, the coherence is proportional to the Rabi frequency [46]

ρ̃ij ∝ Ωij (2.26)

Equation (2.24) then becomes

∂

∂ζ
I(ζ) ∝ −|Ωij(ζ)|2 Im

(
ρ̃ij(ζ)

Ωij(ζ)

)
= −αI(ζ) (2.27)
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where α is called the absorption coefficient, and contains the parameters of the atomic
system. Note that α ∝ Im (ρ̃ij(t)), such that here as well the change in intensity is
essentially characterized by the imaginary part of the coherence ρ̃ij. The integration
over ζ of (2.27) yields the well-known Lambert-Beer formula

I(l) = I(0) e−αl (2.28)

2.2 Three-level ladder system

In the majority of experiments involving Rydberg states of Alkali atoms, the excitation
to the Rydberg state is performed with a two-photon excitation via an intermediate
state. Such an excitation combines several advantages, among which the possibility
to have light fields in the visible to near-infrared range and relatively large Rabi fre-
quencies. The excitation dynamics of a three-level system remain fairly simple while
offering rich new effects such as electromagnetically-induced transparency (EIT).

|1ñ

|2ñ

|3ñ

Ω23

Δ23

Δ13

Δ12

Γ32

Γ21

Γ31

Ω12

Figure 2.1: Schematic repre-
sentation of a three-level lad-
der system

A typical representation of a three-level ladder sys-
tem is shown in Figure 2.1. It consists of a ground
state |1〉, an intermediate state |2〉 and an excited
state |3〉. If we define the basis of the three states
as

|1〉 :=

1
0
0

 |2〉 :=

0
1
0

 |3〉 :=

0
0
1


such that the system is described by the density ma-
trix

ρ =

ρ11 ρ12 ρ13

ρ21 ρ22 ρ23

ρ31 ρ32 ρ33

 (2.29)

The transitions from |1〉 to |2〉 (also called the probe
transition) and from |2〉 to |3〉 (also called the cou-
pling transition) are respectively driven by two plane
wave light fields with electric fields 2

E12(t) = E12(t)ε12 =
1

2

(
E0,12(t)eiωL,12t + c.c.

)
ε12

E23(t) = E23(t)ε23 =
1

2

(
E0,23(t)eiωL,23t + c.c.

)
ε23 (2.30)

2Without loss of generality, the spatial dependence of the electric field is dropped from here for
convenience. Also the notations are slightly modified for this specific case.
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The full Hamiltonian for this system is given by

H = H0 +HAL

= ~

ω1 0 0
0 ω2 0
0 0 ω3

+

 0 −d12E12(t) 0
−d21E12(t) 0 −d23E23(t)

0 −d32E23(t) 0

 (2.31)

where dij = 〈i|d̂ · εij|j〉 is the dipole matrix element of the transition from |i〉 to |j〉.

The transformation matrix into the rotating frame is

U =

1 0 0
0 e−iωL,12t 0
0 0 e−i(ωL,12+ωL,12)t

 (2.32)

Note that the transformation is now applied with two driving light fields. When we
apply an energy offset of (−~ω1) to the Hamiltonian, or in other words offset the energy
of the ground state to 0, the Hamiltonian the rotating frame reads

H̃ = ~

 0 1
2
Ω12 0

1
2
Ω∗12 −∆12

1
2
Ω23

0 1
2
Ω∗23 −∆12 −∆23

 = ~

 0 1
2
Ω12 0

1
2
Ω∗12 −∆12

1
2
Ω23

0 1
2
Ω∗23 −∆13

 (2.33)

where Ωij = −dijE0,ij/~ are the Rabi frequencies and ∆12 = ωL,12 − (ω2 − ω1), ∆23 =
ωL,23− (ω3−ω2) and ∆13 = ∆12 + ∆23 are the detunings of the light fields with regard
to the transition frequencies. ∆13 in particular is called the two-photon detuning and
is the combined detuning of the two light fields to the excited state |3〉.

The decays from the intermediate and excited states are pictured in Figure 2.1. From
equation (2.6) the Lindblad operator accounting for decay processes has the form

L̂1(ρ̃) =

Γ21ρ̃22 + Γ31ρ̃33 −1
2
Γ21ρ̃12 −1

2
Γ31ρ̃13

−1
2
Γ21ρ̃21 −Γ21ρ̃22 + Γ32ρ̃33 −1

2
(Γ21 + Γ31 + Γ32)ρ̃23

−1
2
Γ31ρ̃31 −1

2
(Γ21 + Γ32 + Γ31)ρ̃32 −(Γ31 + Γ32)ρ̃33

 (2.34)

whereas dephasing processes are accounted for by

L̂2(ρ̃) =

 0 −1
2
γ12ρ̃12 −1

2
γ13ρ̃13

−1
2
γ21ρ̃21 0 −1

2
γ23ρ̃23

−1
2
γ31ρ̃31 −1

2
γ32ρ̃32 0

 (2.35)

The Liouville-von Neumann equation for the three level ladder system can be rewritten
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as the optical Bloch equations for the single entries of the density matrix:

∂

∂t
ρ̃11 = Γ21ρ̃22 + Γ31ρ̃33 − Im (ρ̃12Ω∗12)

∂

∂t
ρ̃12 =

(
−Γ21 + γ12

2
− i∆12

)
ρ̃12 +

i

2
(− (ρ̃22 − ρ̃11) Ω12 + ρ̃13Ω∗23)

∂

∂t
ρ̃13 =

(
−Γ32 + Γ31 + γ13

2
− i (∆12 + ∆23)

)
ρ̃13 +

i

2
(ρ̃12Ω23 − ρ̃23Ω12)

∂

∂t
ρ̃22 = −Γ21ρ̃22 + Γ32ρ̃33 + Im (ρ̃12Ω∗12)− Im (ρ̃23Ω∗23)

∂

∂t
ρ̃23 =

(
−Γ21 + Γ32 + Γ31 + γ23

2
− i∆23

)
ρ̃23 +

i

2
(− (ρ̃33 − ρ̃22) Ω23 − ρ̃13Ω∗12)

∂

∂t
ρ̃33 = −(Γ31 + Γ32)ρ̃33 + Im (ρ̃23Ω∗23) (2.36)

Here we have made use of the Hermitian character of the density matrix (ρ̃∗ij = ρ̃ji).

2.3 Adiabatic elimination of the intermediate state

Despite having technical advantages, the excitation of atoms to Rydberg states via
a three-level ladder system also present some challenges. First the presence of the
intermediate state prevents from reaching the full population in the excited state.
Second the Hilbert space of an ensemble of atoms is much bigger than for two-level
systems. This becomes critical as the number of atoms gets larger, thus limiting the
possibility to compute the response of the system. The usual way to circumvent this
issue is to apply a detuning to the intermediate state that is large compared to the Rabi
frequencies and the two-photon detuning (|∆12| � |∆13|, |Ω12|, |Ω23|). By doing so, the
population of the intermediate state is neglected and the three-level ladder system can
be reduced to an effective two-level system comprising only the ground state and the
excited state.

For the derivation of the effective Hamiltonian H̃eff for this reduced system, we will
follow [52], where it is carried out in the most general manner. Let us consider that
the decays to and from the intermediate state are negligible (i.e. Γ21 ≈ 0, Γ32 ≈ 0),
as well as any dephasing mechanism involving the intermediate state (i.e. Γ22)3. The
Hamiltonian in the rotating frame contains one dominant energy scale−∆12, the energy
of the intermediate state. The approximation at the heart of the adiabatic elimination
is to neglect the temporal evolution associated with this component of the Hamiltonian.
Under this approximation, the evolution of the effective two-level system, described by
the reduced density matrix ρ̃eff =

(
ρ̃11 ρ̃13
ρ̃31 ρ̃33

)
, is governed by the effective Hamiltonian

3This assumption is valid for the experiments presented in this thesis. If decay and dephasing
mechanisms involving the intermediate state cannot be neglected, some correction terms appear
in H̃eff and L̂eff [52].
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H̃ ′eff

H̃ ′eff = ~

(
|Ω12|2
4∆12

1
2
Ωeff

1
2
Ω∗eff −∆13 − |Ω23|2

4∆23

)
where additional detuning terms account for the light shifts of the lasers on the ground
and excited states, and

Ωeff =
Ω12Ω23

4∆12

− Ω12Ω23

4∆23

(2.37)

is the effective Rabi frequency. The Lindblad operator for the effective system is merely
the reduction of the one for full system, which under the current assumptions reads

L̂eff(ρ̃eff) =

(
Γ31ρ̃33 −1

2
(Γ31 + Γ33)ρ̃13

−1
2
(Γ31 + Γ33)ρ̃31 −Γ31ρ̃33

)
(2.38)

As detailed in [53–55], this usual adiabatic elimination presents a strong limitation,
since it is not conserved under the addition of a small overall phase. In other words the
effective Hamiltonian is dependent on the point of zero energy. This problem has been
studied theoretically [53,55], however under the conditions relevant for the experiments
presented here, the energy offset for the ground state |Ω12|2/(4∆12) is small enough to
rewrite the effective Hamiltonian as

H̃eff = ~
(

0 1
2
Ωeff

1
2
Ω∗eff −∆′13

)
(2.39)

where ∆′13 is the effective two-photon detuning defined as

∆′13 = ∆13 +
|Ω23|2

4∆23

+
|Ω12|2

4∆12

(2.40)

In the optical Bloch equations (2.36), the adiabatic elimination amounts to set the time
derivatives of ρ̃12, ρ̃23 and ρ̃22 to zero. It is worth noticing that the relation resulting
from setting (∂/∂t)ρ̃12 = 0 is

ρ12 =
Ω12

2∆12

ρ11 +
Ω∗23

2∆12

ρ13 (2.41)

Moreover, by adapting (2.36) to the effective two-level system we obtain for the time
derivative of the excited state population

∂

∂t
ρ̃33 = Im (ρ̃13Ω∗eff) (2.42)

Combining (2.41) and (2.42) yields

∂

∂t
ρ̃33 = Im

(
2∆12Ω∗eff

Ω∗23

ρ̃12

)
(2.43)

where we have used that the population ρ11 is real, and assumed that Ω12 is also real4.
This gives a measure for the absorption on the transition between the ground and the
intermediate state (2.23), which is proportional to the time derivative of the population
of the excited state.

4This is valid without loss of generality.
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In section 2.1 we presented the effect of homogeneous decoherence mechanisms on an
atomic system, which lead to a broadening of the energy levels with a Lorentzian line
shape. Also relevant for this thesis are the effects of the finite temperature T of the
gas of Alkali atoms. Associated with the finite temperature is a Maxwell-Boltzmann
distributed velocity vector v. Various motional effects arise from this finite velocity,
most of which are velocity dependent on the microscopic scale. These effects often
appear as inhomogeneous broadenings because of the Maxwell-Boltzmann distribution
of the velocity vector, which is not an intrinsic property of the atom, and therefore
cannot be included in the “electronic” description of the atom.

We will focus here on two motional effects arising from a finite velocity and the finite
size of the exciting light field(s) (Gaussian laser beams). Both lead to a broadening of
the of the spectroscopic features, and in each case we discuss how to include them in
a theoretical model. First we will consider the influence of the Doppler effect, which
comes from the component of the velocity vector co-linear to the wave vector of the
light field. Then we will examine the situation where the interaction volume between
the light and the atoms is finite in size. This, combined to the finite velocity of the
atom, leads to a finite interaction time between the atom and the light field.

3.1 Doppler effect

Let us consider an atom in an ideal gas, with a Maxwell-Boltzmann distributed velocity
v. Due to the Doppler effect, if we shine a light field of frequency ωL and wave vector
kL (in vacuum), the atom will see the light field with a shifted frequency ω′L as

ωL,D = ωL − kL · v = ωL − kLv‖

where v‖ is the component of the velocity vector co-linear to the wave vector. Thus
the detuning ∆ij in the Hamiltonian in the rotating frame (2.33) have to be changed
to

∆ij,D = ∆ij − kLv‖ (3.1)

which yields that the response of the atom ρ̃(t, v‖) is dependent on its transverse
velocity. The average response an ensemble of atoms to the light field will then be
given by

〈ρ̃(t)〉v‖ =

∫
ρ̃(t, v‖)N(v‖) dv‖ (3.2)
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where N(v‖) is the Gaussian distribution of the one dimensional velocity component:

N(v‖) =

√
m

2πkBT
e
−
mv2‖
2kBT (3.3)

If we define the Doppler detuning as δD = −kLv‖ we can re-write the previous distri-
bution as a Gaussian distribution of Doppler shifts:

N ′(δD) =

√
m

2πkBT
e
− mδ2D

2k2
L
kBT (3.4)

which has a full width at half-maximum (FWHM), also known as Doppler width, of

γD = |kL|
√

8 ln 2 kBT

m
(3.5)

Doppler effect and adiabatic elimination

For a three-level system, the detunings become

∆12,D = ∆12 − kL,12v‖

∆23,D = ∆23 − kL,23v‖

using the conventions introduced in section 2.2. In the case where the original interme-
diate detuning ∆12 is large, it would be useful to implement the adiabatic elimination of
the intermediate state, as presented in section 2.3. Because the effective Rabi frequency
as well as the additional energy offset in (2.39) depend on the detunings to the inter-
mediate state, it also depends on the transverse velocity v‖ in case of a moving atom.
This includes some complexity to the system, and justify the following examination of
the adiabatic elimination with Doppler effect.

To do so, we integrated numerically1 the master equation (2.5) for the full three-level
and for the reduced system. The detunings were changed to ∆12,D and ∆23,D to include
the velocity, even in the effective parameters of the reduced system. The averaging over
the velocity distribution was included using equation (3.2). The results of these simu-
lations are shown in Figure 3.1(a)-(b), for parameters corresponding to those relevant
in section 4. Noticeably here the detuning to the intermediate state ∆12 is the domi-
nant energy scale, but not by orders of magnitude. Under all these considerations, the
agreement between the two cases is found to be qualitatively good, especially at small
times. As expected, the fast dynamics at short times are not present in the reduced
system. Also there is some mismatch developing over time, as if the effective Rabi fre-
quency was overestimated. By varying the parameters in these simulations, we found
that this mismatch disappears when ∆12 is a more dominant energy scale.

For comparison purposes, we also show in Figure 3.1(c)-(d) the results for a stationary
atom (i.e. v = 0). Noticeably the fast dynamics are very visible, especially for Im(ρ̃12).

1Using a Runge-Kutta algorithm, also used in [13,17].
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P
op

ul
at

io
n

Doppler averaged

(a)

0

0.5

1
Im

(ρ
12

)

Time [ns]

(b)

0 10 20 30
−0.2

0

0.2

Stationary atom (v=0)

(c)

Time [ns]

(d)

0 10 20 30

Figure 3.1: Comparison of the effective and full three-level systems, with and with-
out Doppler effect. In (a) we show the populations of the ground and excited state
obtained from numerical integration of the master equation for the full three-level
system (solid blue line) and for the reduced system after adiabatic elimination of
the intermediate state (dashed black line). The results are also averaged over the
Doppler velocity distribution (3.2). The curves that start around 1 show the popu-
lation of the ground state, those that start at 0 show the population of the excited
state. Also shown is the population of the intermediate state in the full system (solid
red line). In (b) Im(ρ̃12) is shown for the full three-level system (solid blue line) and
for the reduced system after adiabatic elimination of the intermediate state (dashed
black line). The results are also averaged over the Doppler velocity distribution.
(c) and (d) show the same parameters as (a) and (b) respectively, but for a sta-
tionary atom. The parameters used in the simulation were: ∆12 = 2π × 1500 MHz,
∆13 = 0, Ω12 = 2π × 400 MHz, Ω23 = 2π × 745 MHz, L̂ = 0, kL,12 = +2π/455 nm,
kL,23 = −2π/1070 nm, and cesium atoms.

This highlights a damping mechanism of the Doppler averaging. Otherwise the same
characteristics are observed with and without Doppler averaging. This justifies the use
of the adiabatic elimination in a Doppler broadened ensemble of atoms.

3.2 Transit time broadening

The second effect arising from the motion of atoms is a finite time, called the transit
time, during which the atom is present in the region where it can interact with the light
field. If we express the typical velocity of the atoms as v and the size of the interaction
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volume as D, the interaction time is of the form

τ ∼ D

v
(3.6)

If we consider that the gas of atoms is in thermodynamic equilibrium, each time that
an atom leaves the interaction volume, it is replaced by an atom in the ground state.
Therefore it appears logical to treat this effect as a decay to the ground state with a
rate

ΓTT ∼
1

τ
∼ v

D
(3.7)

which can be included in the Lindblad operator (2.7). In order to determine an effective
decay rate representing the different velocity classes in a single number ΓTT, one has
to consider the time scales and the exact geometry of the system [18].

Small transit time broadening

Let us consider the configuration in which a gas of atoms at room temperature is
excited by a laser beam of Gaussian profile. In this case, in contrast to the Doppler
effect, the component of the velocity vector transverse with regard to the exciting light
field is responsible for the effect. The typical decay rate for alkali atoms is on the order
of a few MHz. The typical velocity at room temperature is v ≈ 300 m.s−1. Usually the
beam sizes are D & 10µm, such that ΓTT . 2π × 5 MHz. Therefore the transit time
decay is not the dominant term, and one can consider that the atoms have reached a
steady state when they leave the laser beam.

This situation was extensively studied theoretically and experimentally in [56], and it
was found that a suitable expression for ΓTT is

ΓTT =
1

w0

√
2 log(2)

√
8kBT

πm
(3.8)

where w0 is the waist of the laser beam. Note also that
√

8kBT/(πm) is the mean
velocity of the particles in an ideal gas.
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4 Rydberg Aggregates: Strongly
Correlated Excitation of Rydberg
Atoms

Coherent excitation to Rydberg states and interaction of van-der-Waals type between
Rydberg atoms in a vapor cell was previously observed in our group [13, 17, 48, 49].
These results were obtained using a pulsed amplifier system with a repetition rate of
only 50 Hz. The experiments in this chapter can be seen as a spin-off of this previous
work, using cesium instead of rubidium. Using cesium allows to use an excitation
scheme where the need for a pulsed amplifier is eliminated, therefore allowing for a
much higher repetition rate of the experiment. Here we worked in a regime where
the typical interaction strength is much higher than in reference [17], and were able
to observe correlated excitation phenomena, which lead to the formation of so-called
Rydberg aggregates.

The first section of this chapter is devoted to describing the experimental procedure.
The following section contains the quantitative analysis of the experimental results,
showing a universal scaling behavior. Finally these results will be discussed and com-
pared to a theoretical model for Rydberg aggregation [19,20].

4.1 Experimental procedure

4.1.1 Excitation scheme

The relevant excitation scheme is shown schematically in Figure 4.1(a). The atomic
medium, composed of cesium atoms, is excited from the ground state 6S1/2,F = 4 to
the intermediate state 7P3/2,F

′ = 5 and then to the (excited) Rydberg state nS1/2
1.

The lower transition is driven by a laser2 at a wavelength of around 455 nm. The
Rabi frequency Ω12 is varied between 100 and 1000 MHz, and the detuning to the
intermediate state is kept constant at ∆12 = 2π × 1500 MHz. The stabilization of the
laser uses standard techniques, and was previously described in [57]. For the upper

1In some cases, we will also show results that were obtained with the excitation scheme 6S1/2,F =
3→ 7P1/2,F

′ = 4→ nS1/2. All the technical considerations were the same in both cases.
2The laser is a commercial TA SHG pro system from Toptica.
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transition, the driving laser has a wavelength of around 1070 nm. 3 In detail, depending
on the principal quantum number of the Rydberg state, the wavelength spans from
1055 nm to 1075 nm. The detuning to the Rydberg state ∆′13 (two-photon detuning)
is scanned over several GHz, and the Rabi frequency of the second transition Ω23 is
varied between several hundreds of MHz and 2 GHz. Both lasers have the same linear
polarization, and an estimated linewidth below 5 MHz.

4.1.2 Measurement procedure

The experiments described in this chapter study the excitation dynamics to the Ryd-
berg state. In order to obtain excitation dynamics, the laser driving the upper tran-
sition was shaped into a pulse using a fast Pockels cell4. This Pockels cell actually
contains two electro-optic modulators (EOM), each of which is made of an RTP crys-
tal and controlled with a fast high voltage driver5. The voltage on each EOM is set
for a phase of λ/2, such that the polarization is rotated by 90◦, and is switched on for
1µs by a TTL pulse. We can set the delay between the two TTL pulses using a delay
card5 with a precision below 1 ns. This configuration of delayed polarization rotation
on the two EOMs effectively a rotation of the polarization by 90◦ for a variable time.
After the Pockels cell the beam passes through a polarization analyzer (in practice a
polarizing beamsplitter, see Figure 4.2(a)). When the polarization at the entrance of
the Pockels cell is perpendicular to the main axis of the analyzer, the output light is
a square pulse of variable length (between 1 and 100 ns). Here the pulse length is
always set to 100 ns. The rise and fall time of the pulse is below 1.5 ns. The beginning
of a 100 ns pulse is shown in Figure 4.1(b), displaying an almost square form. The
extinction ratio is less than 1 %, and the efficiency of the system was at the peak of the
pulse around 50 %6. Further characteristics of the pulse system can be found in [58].

At the heart of the experiment is the self-made glass cell containing the cesium atoms,
shown in Figure 4.2(b). The square part is the main part of the cell. It is composed
of two quartz optical flats with a thickness of 1 mm and a size of 5 × 5 cm2 fused
together on the edge with a spacing of 220µm (defined by the U-shaped spacer). It is
connected to the reservoir, a quartz tube which contains a drop of cesium metal. The
cell was evacuated to a pressure below 1 × 10−6 mbar. Then the reservoir was filled
with the cesium drop and sealed off. The temperature of the main part of the cell is
kept constant at 200◦C, and the temperature of the reservoir is varied, usually between
60◦C and 150◦C. The higher temperature in the main part of the cell prevents the
cesium from condensing there, and the reservoir temperature sets the vapor pressure

3We use a commercial DL100 pro design system from Toptica seeding a self-built tapered amplifier
(TA) system, which itself seeds a commercial fiber amplifier from Keopsys (KPS-CUS-BT-YFA-
42-SLM-PM-HIP-111-FA-CO). The available power for the experiment is up to 15 W.

4From the company Leysop
5From the company Bergmann Messgeräte Entwicklung
6This efficiency is rather low, but we speculate that the high powers that were used caused the effi-

ciency to deteriorate. Unfortunately the exact efficiency under the usual experimental operations,
i.e. at high power, could not be measured exactly. However we also found that the peak power of
the pulse scales linearly with the input power.

42



4 Rydberg Aggregates: Strongly Correlated Excitation of Rydberg Atoms

(a) |3ñ:=nS1/2

1070 nm

455 nm
PD

133Cs
Δ13

|2ñ:=7P1/2,3/2

|1ñ:=6S1/2

Δ12

Time [ns]

T
ra

n
sm

is
si

o
n
 s

ig
n
a

l [
1
01

2
 s

−
1
]

 

 
(b)

0 20 40 60
−2

−1

0

1

2

3
Pulse
Transmission signal

Detuning Δ
13

'/(2π) [GHz]

T
im

e
 [
n
s]

(c)

 

 

−2 −1 0 1 2

0

20

40

60

80 T
ra

n
sm

is
si

o
n
 s

ig
n
a
l [

1
01

2
 s

−
1
]

−6

−4

−2

0

2

4

6

Figure 4.1: (a) Schematic energy level diagram for the excitation of 133Cs atoms
to Rydberg states. The detuning to the intermediate state is set to ∆12 =
2π × 1500 MHz. (b) Transmission change of the blue laser (blue curve) when
the infrared pulse is applied (grey-shaded area in the background), as recorded
by the oscilloscope, for the parameters are the following: 32S state, Ng = 37µm−3,
Ω12 = 2π × 170 MHz, Ω23 = 2π × 630 MHz and ∆′13 = 2π × −2 GHz. The corre-
sponding effective two-photon Rabi frequency (2.37) is Ωeff = 27 MHz. (c) Density
plot of the transmission change of the blue laser as a function of time (vertical axis,
from top to bottom) and detuning to the Rydberg state ∆′13 (horizontal axis). The
other parameters are the same as in (b).
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in the whole cell [59]. This configuration allows for a very good control of the atomic
density in the ground state Ng, which is related to the vapor pressure by the ideal gas
law and the multiplicity of the ground state under consideration.

The optical setup is schematically shown in Figure 4.2(a). The 455 nm beam exits an
optical fiber with a diameter of 1.25 mm (1/e2 diameter). It is then focused with a
75 mm lens to a diameter of 35µm inside the cell. The intensity of the blue beam over
the length of the cell is constant since the Rayleigh range of the beam is 2 mm. After
passing through the cell a 30 mm lens collimates the beam, before is is focused again
onto a circular pinhole with a diameter of 25µm. The light that is transmitted through
the pinhole is then imaged onto an ultra fast photo-detector7 in a 2f configuration.
The photo-detector is AC-coupled, and therefore measures the change in transmission
of the blue beam. This optical arrangement effectively images the pinhole to a size
of 12.5µm (2:1 telescope) at the position of the focus inside the cell. The near-field
diffraction pattern from a 12.5µm pinhole is well contained to the size of the pinhole
over a distance of 110µm [60]. Thus the pinhole effectively images a region limited
to its size if its image is in the middle of the 110µm-long cell. Additionally, the size
of the image of 12.5µm ensures that the intensity is almost constant in the imaged
volume (to approx 75 %). The 1070 nm laser beam comes out of the fiber amplifier
with a diameter of 1.3 mm, passes through the Pockels cell and the analyzer. It is then
focused with a 30 mm lens to a diameter of 30µm inside the cell, such that the focal
points of the two beams are overlapped in all three directions. The Rayleigh range of
the 1070 beam is 0.6 mm, which ensures that the infrared intensity is also constant over
the length of the cell. After passing through the cell the infrared beam is collimated
by the 75 mm lens. A sample of it is reflected off of a glass plate and focused onto a
fast photo-diode8, in order to measure the shape of the infrared pulse.

In practice the measurement is performed as individual detuning scans, described in
the following. The frequency of the infrared beam is scanned very slowly (between
100 and 200 s) over the resonance of the Rydberg state. For each pulse of the Pockels
cell, the change in transmission of the blue laser as the infrared laser is switched
on is monitored by a fast oscilloscope9. At the same time the shape of the infrared
pulse, the transmission signal of the infrared laser through a Fabry-Pérot resonator
and the signal controlling the frequency of the infrared laser are also monitored. The
oscilloscope records a bundle of 100 to 300 of these events, computes the average signal
over the bundle and saves only the average. The recording of one bundle lasts a couple
of milliseconds, and therefore the frequency of the infrared laser can be considered to
be constant over the recording time. In Figure 4.1 a typical transmission signal and
infrared pulse are shown. In order to reconstruct a frequency axis for the detuning
∆23 we evaluate the signal from the Fabry-Pérot resonator, using the well defined
free spectral range of 1.5 GHz. Additionally we measure an EIT signal [57,61] over the
scanning range, which allows to set the position of the resonance from the intermediate
to the Rydberg state (∆23 = 0). The determination of the the effective two-photon

7The photodiode is a commercial HSA-X-S-1G4-SI from Femto with a bandwidth of 10 kHz−1.4 GHz
8DET02AFC from ThorLabs, with a bandwidth of 1.2 GHz
9LeCroy MSO 104MXs-B, with a bandwidth of 1 GHz and a sampling rate of 5 GS/s
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Figure 4.2: Sketch of the experimental setup used for these measurements. Inset:
Picture of the glass cell used in the experiment.

detuning ∆′13 is in principle given by equation (2.40), which can be rewritten as

∆′13 = ∆12 + ∆23 +
|Ω23|2

4∆23

+
|Ω12|2

4∆12

(4.1)

However of these quantities, only ∆23 could be calibrated precisely. The contributions
of the two last terms is in the range of ∼ 100 MHz for our experimental settings,
but cannot be determined exactly because we cannot determine the Rabi frequencies
experimentally, as in [13, 17, 48, 49]. Moreover the infrared laser induces an AC Stark
shift ∆AC on the ground state [62, 63], and therefore the detuning to the intermediate
state ∆12 changes when the infrared pulse is shone in. In [60], this AC Stark shift was
estimated to ∆AC ≈ 2π × −500 MHz. In order to lift this uncertainty, the evaluation
of the two-photon detuning axis ∆′13 (including all terms) will be performed using the
experimental data and discussed later.

Furthermore after each detuning scan, a measurement of the atomic number density Ng

in the ground state is performed. For this, we measure and evaluate the transmission
spectrum of another laser beam at around 852 nm, scanned in frequency across the D2-
transition (6S1/2 to 6P3/2). The evaluation follows the method detailed in [64], and was
partly detailed in [57]. Note that we take into account a self-broadening term [48,65].

The result of one detuning scan is shown in Figure 4.1(c) as a density plot. The blue
curve in Figure 4.1(b) is a cut of 4.1(c) for ∆′13 = 2π ×−2 GHz, such that the absorp-
tion peak at ∼ 45 ns appears in blue in 4.1(c). The signal that is observed is directly
proportional to the imaginary part of the coherence ρ̃12, because the intensity varies
only slightly aver the length of the cell (2.25). Since the detuning to the intermediate
state is large compared to the Rabi frequencies, the adiabatic elimination of the inter-
mediate state can be applied, as described in section 2.3. As shown in equation (2.43),
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the imaginary part of the coherence is also proportional to the time derivative of the
Rydberg population. In the present case, this means that the absorption peak at
∼ 45 ns corresponds to atoms that are transferred to the Rydberg state. For each
excited Rydberg atom one photon is removed from the probe resulting in a decrease of
the transmission. Therefore the quantity that is plotted in the following is the change
in photon rate, or the time derivative of the total number of Rydberg atoms in the
sample. This quantity is given the formula

S ′ =
1

η~ωL,12

× S (4.2)

where S is the actual signal measured from the photodiode, ~ωL,12 is the energy of one
455 nm photon and η is the efficiency of the photodiode, which has been characterized
to be η ≈ 850 V/W.

4.1.3 Discussion

There are several striking features in this signal. First we can see a clear excitation
signal to the Rydberg state over more than 5 GHz here (and more than 10 GHz for other
experimental parameters). This is a much larger bandwidth than any Rabi frequency
in the system. Moreover the excitation seems to become slower as the detuning ∆′13

increases, but in a non-interacting two level system, the relevant excitation timescale
is 1/∆′13 for large detunings [46,47].

As can be seen in Figure 4.3, the excitation signal becomes faster for increasing atomic
densities. This is in contradiction with equation (2.25), which states that only the
signal height should depend (linearly) on the density assuming that there are no inter-
atomic interactions in the system. This strongly hints at the influence of many-body
dynamics governing the excitation process.

By integrating the transmission signal over time we obtained the number of photons
scattered when the infrared laser is turned on. Under the assumption that one atom is
excited to the Rydberg state for each absorbed photon, the number of Rydberg atoms
excited in the excitation volume reached approximately 50 000 atoms. This number is
roughly constant over a wide range of experimental parameters, suggesting that there
is a saturation phenomena. Such a saturation is at the heart of experiments exploiting
the Rydberg blockade effect [23]. In the present case it goes beyond the blockade effect
(which happens on resonance), as we see the saturation over a wide range of detuning.
As discussed before, the volume of interest is the volume imaged by the pinhole inside
the cell, essentially a cylinder of diameter 12.5µm and length 220µm. With this we
obtain a saturated density of Rydberg atoms of

Nsat = 1.85µm−3 (4.3)

From the theory of three-level atoms one expects a Rydberg population on resonance of
around 0.2 (see Figure 3.1). However this saturation density is lower than the ground
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state densities in the system by up to two orders of magnitude, again highlighting the
saturation effect.

Finally, in connection to the large bandwidth, we observe a very clear Rydberg ex-
citation signal at large negative detunings. Line broadenings, shifts and many body
dynamics have been observed with Rydberg S-states [10, 11], but only for positive
detunings. These phenomena arose from dipole-dipole interaction between Rydberg
atoms, which is repulsive for S-states [39] (see Figure 1.3(a-b)). However at large
atomic densities, the mean inter-particle distance is so small that the higher order
terms have to be included in the Rydberg-Rydberg interaction potentials. Especially
for S-states in cesium, as shown in Figure 1.3 for the 32S state, the dipole-quadrupole
interaction induces level crossings and state mixing between neighboring pair states.
As a result initially dipole-forbidden pair states with an attractive interaction acquire
some admixture of the unperturbed pair state εnS,nS (visible in blue at negative energies
in Figures 1.3(d) and 4.9) at short inter-atomic distances due to the dipole-quadrupole
interaction. Therefore the Rydberg-Rydberg interaction for S-states in cesium at short
distances also feature attractive components (visible in blue at negative energies in
Figure 1.3(d)), allowing for us to observe an excitation signal at large red detunings.
This will be further discussed in the following sections.

In the following we will mostly examine the signal at negative detunings, where there
is a clear absorption feature that can be evaluated. For the analysis we will mostly
study the characteristic time delay tsat of the absorption feature associated with the
excitation to the Rydberg state (as depicted in Figure 4.3) in order to shed light on
the underlying mechanisms and interactions.

4.2 Scalings

As already shown in Figure 4.1(c) and 4.3, the time scale tsat depends on the detuning
to the Rydberg state ∆′13 and on the atomic ground state density Ng. Here we system-
atically vary experimental parameters independently and evaluate the scaling of tsat in
a power law form as a function of them in the form

tsat ∝ |∆′13|a(Ωeff)b(Ng)c(n∗)d (4.4)

In the following evaluation the parameters of the system will be always such that all but
one are kept constant. When not varied the parameters are the same as in Figure 4.3
except when stated otherwise, i.e. 32S state (n∗ = 27.95), Ω12 = 2π × 166 MHz,
Ω23 = 2π × 745 MHz, ∆′13 = 2π ×−2.2 GHz and Ng = 36µm−3. We determine tsat as
the line center of an asymmetrical Lorentz profile fitted to the transmission signals.

Detuning scaling

The dependence of tsat on the detuning is shown in Figure 4.4(a), plotted against
the detuning between the intermediate state and the Rydberg state ∆23. We fit to
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Figure 4.3: Transmission signals at three different atom number densities Ng in a
waterfall fashion. The vertical axis has been converted to a photon rate. Also shown
is the time delay tsat of the absorption peak used as the characteristic quantity for
the quantitative analysis. Here the parameters were: 32S state, Ω12 = 2π×166 MHz,
Ω23 = 2π × 745 MHz and ∆′13 = 2π × −2.2 GHz, meaning that Ωeff = 50 MHz (for
∆′13 = 0). In comparison to Figure 4.1(b) the averaging was increased by a factor
∼ 10. The grey shaded area in the background is the temporal shape of the infrared
pulse.

the experimental data a power law function of the form |∆23 + ∆
(0)
23 |a, where ∆

(0)
23

is the detuning of the two-photon resonance. The fit results in a = 1.99(14) and

∆
(0)
23 = 2π × 800(170) MHz, where the uncertainty represent the confidence region of

the fit. Note that the fitted value of ∆
(0)
23 is consistent with the expected AC Stark

shift ∆AC ≈ 2π × −500 MHz combined with the small corrections arising from the
Rabi frequency in (4.1). In all the following evaluation, the two-photon detuning axis

is defined as (note that ∆
(0)
23 contains the detuning to the intermediate state ∆12)

∆′13 = ∆23 + ∆
(0)
23 (4.5)

and the detuning scaling can be re-written as

tsat ∝ |∆′13|1.99(14) (4.6)

Rabi frequency scaling

We can now examine the scaling of the characteristic time against the Rabi frequency.
For this we performed detuning scans at various blue Rabi frequencies Ω12. Varying
the blue Rabi frequency was chosen so that the AC Stark shift, which depends on the
infrared power, remains constant. For each value of the Rabi frequency we measure
one detuning scan, and then evaluate tsat at a fixed detuning (∆′13 = 2π ×−2.2 GHz).
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Figure 4.4: Characteristic time tsat as a function of the detuning, Rabi frequency and
ground state density. The experimental parameters are: 32S state (n∗ = 27.95),
Ω12 = 2π × 166 MHz, Ω23 = 2π × 745 MHz, ∆′13 = 2π × −2.2 GHz and Ng =
36µm−3, all but one kept constant. A power law function is fitted to each set
of experimental data. The blue squares represent the experimental data, and the
green lines represent the fits to the data. (a) Detuning scaling of tsat. The power law
function |∆′13|a is fitted in a linear scale, including the position of the two-photon

resonance, to a = 1.99(14) and ∆′13 = ∆23+∆
(0)
23 with ∆

(0)
23 = 2π×800(170) MHz (see

text for details). The error bars for the experimental data represent the confidence
region of the fit of the two photon resonance (i.e. 2π × 170 MHz). (b) Scaling of
tsat when the blue Rabi frequency Ω12 is varied. The horizontal axis is the effective
Rabi frequency Ωeff at the two-photon resonance (see text for details). The fit to
the data is performed in a double logarithmic scale, as (Ωeff)b with b = −2.10(5).
(c) Density dependence of tsat. The error bars for the experimental data represent
the confidence region of the density evaluation. The fit to the data is performed in
a double logarithmic scale, as (Ng)c with c = −1.09(6).
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Figure 4.5: Density scaling of tsat for different Rydberg states. The experimental
parameters are: 30S to 40S state (n∗ = 25.95 . . . 35.95), Ω12 = 2π × 164 MHz,
Ω23 = 2π × 633 MHz, ∆′13 = 2π × −2.2 GHz and Ng = 17 . . . 68µm−3. The error
bars represent the confidence region of the fits. (a) Power law scaling exponent c
(as tsat ∝ (Ng)c) for various effective principal quantum number n∗ (blue squares).
The fitting procedure is the same as in Figure 4.4. The dashed grey is the baseline
for the evaluation of the scaling against the quantum number. (b) Amplitude factor
of the fit of the data to tsat ∝ (Ng)−1 (blue squares). The green line is the fit of the
amplitude factor to (n∗)d with d = −4.8(2).

In Figure 4.4(b) tsat is shown as a function of the effective two-photon Rabi frequency
Ωeff

10, in a double logarithmic scale. We fit a power law scaling to the data and obtain
that

tsat ∝ (Ωeff)−2.10(5) (4.7)

Density scaling

As can be seen in Figure 4.3, tsat also depends of the ground state density. The
evaluation of tsat as a function of Ng is shown in Figure 4.4(c). We find that there is a
power law scaling between tsat and the density as

tsat ∝ (Ng)−1.09(6) (4.8)

Quantum number scaling

As discussed previously the dependence of the dynamics on the atomic density suggests
that many-body dynamics govern the excitation process, with an underlying interaction

10Ωeff is given here at the two-photon resonance, i.e. Ωeff = Ω12Ω23

2∆12
, because the Rydberg atoms are

mostly excited resonantly due to an interaction shift (see section 4.3).
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acting on the Rydberg states. The generic form for the energy of such an interaction
is (see Table 1.1)

V =
Cα
rα

= Cα(Ng)
α
3 (4.9)

where r is the inter-particle distance and Cα depends as a power law on the effective
quantum number n∗. Thus we have V ∝ (n∗)β(Ng)

α
3 , meaning that the excitation

dynamics should also depend on the effective quantum number, with a connection to
the atomic density.

In order to examine the dependence on n∗, we first examine the density scaling for
various Rydberg states. We performed the measurement the density scaling c for nS
states with n = 30 . . . 40, each time with the following atomic parameters: Ω12 =
2π × 164 MHz, Ω23 = 2π × 633 MHz, ∆′13 = 2π × −2.2 GHz and Ng = 17 . . . 68µm−3.
The power law density scaling c is shown in Figure 4.5(a) as a function of the effective
quantum number n∗. In spite of small deviations at low n∗ we find that c is in good
agreement with minus unity for all Rydberg states. Since an interaction potential
acting on Rydberg states depends on both the density and the quantum number (from
equation (4.9)) and c ≈ −1, we now fit the function (Ng)−1 to the data for each Rydberg
state. The fitted amplitude factor tsat × Ng is plotted against n∗ in Figure 4.5(b),
showing a clear dependence of the excitation dynamics on the effective quantum number
as

tsat ∝ (Ng)−1(n∗)−4.8(2) (4.10)
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4.3 Aggregation of Rydberg excitations

To summarize the experimental results, we have observed many-body excitation dy-
namics (from the density dependence), with a strong Rydberg dependence (from the
n∗ scaling). We were able to characterize the effect by measuring power law scalings
of the characteristic time scale as a function of several experimental parameters. In
this section we will introduce the concept and the theoretical description of Rydberg
aggregation (summarized from [19, 20]). We will compare the results of this model to
those of our experiment, and discuss the limitations of the model.

4.3.1 Theory of aggregation

Let us consider an ensemble of N atoms which can be reduced to two level atoms. Each
atom k has a ground state |1k〉 and a Rydberg state |3k〉. These atoms are coupled
(with light) by a Rabi frequency Ωeff

11, and there is a homogeneous dephasing with a
rate of γ13. We also assume that decay processes are negligible. For each atom k the
Hamiltonian in the rotating frame and the Lindblad operator are (see section 2.2)

H(k) = ~
(

0 1
2
Ωeff

1
2
Ωeff −∆′13

)
k

= −∆′13Ĉ
(k)
33 +

1

2
Ωeff

(
Ĉ

(k)
13 + Ĉ

(k)
31

)
and

L̂(k)(ρ̃) = −1

2
γ13

(
0 ρ̃13

ρ̃31 0

)
k

= γ31

(
Ĉ

(k)
33 ρ̃Ĉ

†(k)
33 −

1

2

(
Ĉ
†(k)
33 Ĉ

(k)
33 ρ̃+ ρ̃Ĉ

†(k)
33 Ĉ

(k)
33

))
(4.11)

where Ĉ
(k)
ij = |ik〉〈jk| is the transition operator (as defined in section 2.1) for the k-th

atom. Additionally two atoms k and m excited in the Rydberg state interact with a
potential of the form

Vkm =
Cα

|rk − rm|α
(4.12)

where rk is the position of the k-th atom, and α = 6 (3) for van-der-Waals (dipole-
dipole) interaction (see section 1.3). Also the detuning is assumed to have the same
sign than the interaction potential. The dynamics of the density matrix ρ̃ is governed
by the Liouville-von Neumann equation (2.5), where the Hamiltonian and Lindblad
operator for the system of N atoms with the interaction take the form [19,20]

1

~
H =

1

2
Ωeff

∑
k

(
Ĉ

(k)
13 + Ĉ

(k)
31

)
−∆′13

∑
k

Ĉ
(k)
33 +

∑
k 6=m

VkmĈ
(k)
33 Ĉ

(m)
33

11We use the formalism of section 2.3 for convenience here, and assume that Ωeff is real.
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and

L̂(ρ̃) = γ31

∑
k

(
Ĉ

(k)
33 ρ̃Ĉ

(k)
33 −

1

2

(
Ĉ

(k)
33 ρ̃+ ρ̃Ĉ

(k)
33

))
(4.13)

The key assumption now is that the dephasing is strong compared to the coherent
dynamics in the system, i.e. γ13 � Ωeff/2. Under this assumption the coherences of the
density matrix dephase exponentially fast (on timescales ∼ γ−1

13 ) and can be eliminated,
such that only the populations remain of interest (for the derivation, see [19,20]). The
system then reduces effectively to an ensemble of classical spins configurations, much
easier to compute, where the states are direct products of the no-interacting single
atom eigenstates

∏
k |ik〉i∈{1,3}. The equation governing the system is a classical rate

equation, with a (de-)excitation transition rate for each atom k given by

Γk =
Ω2

effγ31(γ31

2

)2

+

(
−∆′13 +

∑
m 6=k

Vkmnm

)2 (4.14)

where nm is the excitation number for atom m, nm = 1 (0) if the atom is in the Rydberg
(ground) state. The summation essentially adds to the detuning the interaction induces
by all the atoms that are in the Rydberg state. We can define a specific distance, called
the facilitation radius

rfac =

∣∣∣∣ Cα∆′13

∣∣∣∣ 1α (4.15)

Assuming that only one atom is in the Rydberg state, rfac for which the second term
of the denominator vanishes. There is therefore a maximum in the transition rate at a
distance rfac of a Rydberg atom.

The evolution of the system can be computed numerically using a kinetic Monte-Carlo
method. The system can be characterized by the total number of Rydberg atoms
Nryd =

∑
k nk. The interaction term Vkm in (4.13) is an energy shift. Therefore it

is not involved in (2.42), which states that the imaginary part of the coherence is
proportional to the time derivative of the Rydberg population. So equation (2.42) can
be generalized to the imaginary part of the overall coherence 〈ρ̃13〉 as [20]

Im(〈ρ̃13〉) =
∑
k

Γk(1− 2nk) (4.16)

We can also define the total excitation rate as

Γ =
∑
k

Γk (4.17)

and the local excitation rate at each position

Γr =
Ω2

effγ31(
γ31
2

)2
+
(
−∆′13 +

∑
m

Cα
|r−rm|αnm

)2 (4.18)
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Figure 4.6: Principle of the Rydberg aggregation. (a) Interaction induced level shift.
An already excited Rydberg atom (red dot) at the origin produces an energy shift
for the neighboring atoms. At the facilitation radius rfac, the atoms are exactly
shifted in resonance with the excitation laser, red-detuned by ∆′13. The grey shaded
area symbolizes the excitation bandwidth, a Gaussian whose width is given by the
dephasing rate γ31. (b) Top: Typical time evolution of the Rydberg population Nryd

and of the transmission change of the exciting laser during the aggregation process.
Bottom: Snapshots of the aggregation at three different times for a frozen gas in
2D12. Red dots correspond to Rydberg atoms. Blue dots correspond to resonant
atoms. The spatial distribution of the total excitation rate Γr is plotted as a density
plot in the background of each snapshot. The resonant shell, in which the excita-
tion of Rydberg atoms is facilitated, is visible as a dark grey line. (c) Sketch of
the density-density correlation function G2(r) expected for the steady state (corre-
sponding to the snapshot at large time in (b)).

The physics behind this model can be captured as follows. If we consider that the
ensemble of atoms is initially in the ground state and that the excitation field is far-
detuned (|∆′13| � γ31 � Ωeff), each atom has a small probability to be excited. Even-
tually one atom will be excited to the Rydberg state. The situation then changes to the
one shown schematically in Figure 4.6(a). At a certain distance rfac from the Rydberg
atom the Rydberg states of the neighboring atoms are shifted exactly in resonance with
the detuned excitation fields (Cα/r

α
fac = ∆′13), where the excitation (or de-excitation)

is favored. We call the region of space at a distance rfac from a Rydberg atom the
resonant shell, whose width is given by the excitation bandwidth (γ13) and the slope
of the interaction potential.

In Figure 4.6(b) we show the number of Rydberg atoms and the change in transmission
of the exciting lasers ∆I ∝ −Im(〈ρ̃13〉) (using (2.25) and (4.16)). Here one can see that

12Courtesy of Igor Lesanovsky, University of Nottingham, UK.
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the Rydberg population grows increasingly faster as more and more Rydberg atoms
are excited and provide the resonance condition at a distance rfac from themselves.
At the same time the change in transmission, which is proportional to the overall
transition rate, reaches a maximum. Eventually the system is full of Rydberg atoms
and the interaction shift becomes too large overall, such that Nryd saturates and the
transmission converges back to zero. Also shown in Figure 4.6(b) are snapshots of
the aggregation process in a 2D ensemble of atoms. Red dots corresponds to Rydberg
atoms and blue dots correspond to ground state atoms that lie in the excitation shell. In
the background of each snapshot is a density plot of the local excitation rate Γr (4.18).
The dark grey region is the resonant shell, where the excitation rate is large. With the
snapshots one can look at the microscopics of the model. At small time, shortly after
the atom-light coupling is turned on, only few atoms can be excited off-resonantly (left
snapshot). As soon as some atoms are excited, ground state atoms that find themselves
inside the resonant shell (blue dots) can be excited very efficiently as they are shifted
into resonance by the Rydberg atom. The subsequent excitations tend to occur inside
the resonant shell, i.e. at the specific distance rfac, forming aggregates of Rydberg
atoms (middle snapshot). As further atoms are excited, the resonant shell grows and
it becomes more and more probable to excite Rydberg atoms. This translates to the
increase in transmission change. Finally the resonant shell mostly lies outside of the
medium and only few atoms are resonant, leading to the saturation of the Rydberg
number (right snapshot). Because atoms are preferably excited at a distance rfac, the
ensemble of Rydberg atoms exhibit strong spatial correlations. In order to quantify the
spatial correlations we use the density-density correlation function [66] defined as

G(2)(r) =
N2

N2
ryd

∑
i 6=j

ninj1dr(|ri − rj| − r)∑
i 6=j

1dr(|ri − rj| − r)
(4.19)

where 1dr is the indicator function of an interval of width dr around 0:

1dr(x) =

{
1 if |x| ≤ dr/2

0 else

The denominator in (4.19) is the number of pairs of atoms at a distance r (in an
interval of width dr), while in the numerator is the number of pairs of Rydberg atoms
(the ninj term only accounts for the pairs of Rydberg atoms). A typical density-
density correlation function for a 3D ensemble is shown in Figure 4.6(c). At small
distances there are no pairs excited because of the strong and diverging interaction
potential. However a clear peak appears at the facilitation radius, highlighting the
spatially correlated excitations. No structure is visible at large distances, meaning
that there is no long-range order in the system. The absence of long-range order arise
from the isotropic character of the facilitated excitation process, which does not favor
the creation of crystalline arrangements.

Such Rydberg aggregates have been observed recently in cold atoms systems [10, 11].
There is currently a strong interest in understanding these types of dissipative many-
body systems in atomic physics. The hope is to shed light on the underlying physics,
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which could be applied to the field of soft-matter physics. There are also frameworks
used to achieve spatially correlated or ordered states [8, 67–70].

4.3.2 Comparison of theory and experiment

The change in transmission from the aggregation theory (green curve in Figure 4.6)
is very similar to the signals that are observed in the experiment. At time t = 0 it
starts around zero, then shows a peak in absorption before converging to zero again.
We can also define a time tsat for the theoretical signal as the time of the minimum
transmission, and we will compare the scaling law and absolute value of both theory
and experiment, again in the form

tsat ∝ |∆′13|a(Ωeff)b(Ng)c(n∗)d (4.20)

First however we need to verify that our experimental system satisfies the assumptions
of the theoretical model for aggregation.

Prerequisites

The very first assumption is that the atoms can be reduced to two-level atoms, and
that decay mechanisms are negligible on the timescale of interest. The detuning to the
intermediate state is large ∆12 = 2π×−1500 MHz, such that the adiabatic elimination
of the intermediate state can be performed, as shown in section 2.3 and chapter 3.
Moreover only the natural decay from the Rydberg state has to be considered in the
reduced two-level system, and it is for the states of interest here smaller than 100 kHz,
so also negligible. Concerning the transit time decay caused by the finite laser spot
size, equation (3.8) gives for the experimental conditions ΓTT = 2π × 2 MHz, which is
also negligible on the time scale of the experiment.

Δr

rfac

v┴

Figure 4.7: A Rydberg atom
(red) with ground state atoms
(blue) inside the resonant shell
(grey line) of width ∆r. Reso-
nant atoms move outside of the
shell with the perpendicular ve-
locity component v⊥.

Second the aggregation theory presented above as-
sumes that there is strong dissipation, i.e. γ13 �
Ωeff/2. In the experiment motional effects lead to
a very large broadening, both as the Doppler ef-
fect and as a transit time broadening arising from
the atoms flying through the resonant shell. The
Doppler shift δD of the reduced two-level system
is given by the sum of the Doppler shifts on the
two transitions of the original three-level system.
Therefore the effective wave number for the re-
duced system is (kL,23 − kL,12) because the two
lasers are aligned in a counter-propagating man-
ner. The two-photon Doppler width is then

γD = |kL,23 − kL,12|
√

8 ln 2 kBT

m
(4.21)
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and is the minimum apparent width, since average response of the atoms is integrated
over all velocities with the Gaussian weighting distribution (see equation (3.2)). At
200◦C in the experiment we have γD = 2π × 512 MHz.

A transit time dephasing term also needs to be considered. In Figure 4.7 the atoms
that are resonant are shown in blue. Because of their thermal motion, the atoms spend
only a small amount of time inside the resonant shell, where they can be excited. The
interaction time inside the resonant shell is τ = ∆r/|v⊥|, where ∆r is the width of the
resonant shell and v⊥ is the velocity component that is perpendicular to resonant shell.
As for the transit time broadening rate, we then take the value given by the formula

γTT =
〈v⊥〉
∆r

(4.22)

where 〈v⊥〉 = 1√
3

√
8kBT
πm

, which is the one dimensional mean atomic velocity in a thermal

gas. At the temperature of 200◦C in the experiment, this 1D mean velocity is 〈v⊥〉 =
158 m.s−1. Since both broadening mechanisms are Gaussian, the total dephasing rate
is given by

γ13 =
√

(γD)2 + (γTT)2 (4.23)

This amounts to γ13 & 2π× 500 MHz, which is indeed larger than the Rabi frequencies
in the experiment

Implementation

In the aggregation model the density of Rydberg atoms saturates at Nsat ≈ r−3
fac/2 (see

Figure 3 in [19]). Therefore, using the value of Nsat determined experimentally (4.3)
we estimate the facilitation radius to be

rfac = 0.65µm (4.24)

The facilitation radius is actually detuning dependent (see equation (4.15)). In order
to determine an effective interaction potential we assume a detuning of ∆′13 = 2π ×
−1500 MHz. This yields the strength of interaction Cα = ∆′13× rαfac. We consider both
the case of van-der-Waals interaction with C6 = 2π × −109 MHz · µm6, and dipole-
dipole interaction with C3 = 2π×−405 MHz · µm6. These values are used as input for
the simulations of the aggregation model.

Concerning the dephasing rate, it is given by equations (4.22) and (4.23). We also need
the width of the resonant shell ∆r. Assuming only one Rydberg atom as in Figure 4.7,
the excitation rate around this atom is given by

Γ(r) =
Ω2

effγ31(
γ31
2

)2
+
(
−∆′13 + Cα

rα

)2

By solving the equation Γ(rfac ±∆r/2) = Γ(rfac)/2 we obtain the following expression
for ∆r:

∆r =
1

α
rfac

γ13

|∆′13|
(4.25)
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a [|∆13|] b [Ωeff ] c [Ng] d [n∗]

Experiment 1.99(14) −2.10(5) −1.09(6) −4.8(2)
van-der-Waals 2.15(1) −2 −0.86(1) −4.72(5)
dipole-dipole 2.38(0) −2 −0.74(1) −2.95(2)

Table 4.1: Power law scalings for the aggregation time scale tsat. The power law
scalings from the experiment are those determined in section 4.2. For the other two
lines the power law scalings were extracted from simulations in an ensemble of ran-
domly and uniformly distributed atoms with van-der-Waals (ensemble of 103 atoms)
dipole-dipole interaction (ensemble of 153 atoms) respectively, using the parameters
from the experiment and the extracted interaction strengths (see text). The de-
phasing rate was also extracted from the experiment. All uncertainties represent
the confidence region of the fits. No uncertainty is given for the exponent of Ωeff in
the theory, fixed at −2 as by the assumption of strong dephasing.

Equations (3.8), (4.23) and (4.22) yield the following self-consistent equation for for
the motional dephasing rate

〈v⊥〉
γTT

=
1

α
rfac

√
(γD)2 + (γTT)2

|∆′13|
(4.26)

Solving equation (4.26) we obtain the following values for the motional dephasing rate,
total dephasing rate and width of the resonant shell (at ∆′13 = 2π × −1500 MHz),
for the effective van-der-Waals (with ‘vdW’ superscript) and dipole dipole interaction
(with ‘dd’ superscript)

γvdW
TT = 2π × 493 MHz

γvdW
13 = 2π × 711 MHz

∆rvdW = 51 nm

∣∣∣∣∣∣∣
γdd

TT = 2π × 296 MHz

γdd
13 = 2π × 591 MHz

∆rdd = 85 nm

We performed simulations of the aggregation model described above using a kinetic
Monte-Carlo algorithm [12, 19]13 with all atoms in the ground state initially. The
principle of the algorithm is the following. At every time step the transition rates Γk
are computed. The (de-)excitation of one atom is randomly selected, with for each
atom Γk as the transition probability. Then the length of the time step associated with
this transition is also randomly chosen and weighted by the total excitation rate Γ. The
ensemble of atoms was chosen to be a cube of 103 (resp. 153) randomly distributed
atoms for van-der-Waals (resp. dipole-dipole) interaction, at the same atomic density
as in the experiment. The results were averaged over 1000 single realizations of the
evolution of the Rydberg number and change in transmission.

We performed the simulations for the same parameter ranges as in the experiment14,
and evaluated the characteristic time scale tsat (maximum of the transmission change).

13The Computation was performed by Igor Lesanovsky, University of Nottingham, UK
14Varying ∆′13, Ng and Cα and making use of C6 ∝ (n∗)11 and C3 ∝ (n∗)4 (from Table 1.1).
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Figure 4.8: Transmission change (normalized) as a function of time in the experiment
(top panel) and in the simulation with van-der-Waals (middle panel) and dipole-
dipole interaction (bottom panel). The parameters are: 32S state, Ω12 = 2π ×
166 MHz, Ω23 = 2π × 745 MHz, ∆′13 = 2π × −2.2 GHz and Ng = 36µm−3. The
vertical dashed line shows the position of tsat in the experimental signal.

We then fitted power law functions as with the experimental data and extracted the
power law scalings, which are shown in Table 4.1 together with the experimental scal-
ings. Concerning the scaling versus detuning, the fit was performed in a double loga-
rithmic scale, because the two-photon resonance ∆′13 = 0 is well defined in the theory.
For the Rabi frequency, the scaling law tsat ∝ (Ωeff)−2 is actually exact. Because of
the assumption of strong dephasing, (Ωeff)2 is only present in the numerator of the
transition rate in equation (4.14), and is therefore only a proportionality factor for the
time axis.

4.3.3 Discussion

First the very good agreement for the scaling against the Rabi frequency is worth
noticing. It validates the assumption of strong dephasing in the system, in spite of
the dephasing mechanisms arising from motional effects which are essentially inhomo-
geneous (see chapter 3), on contrary to the dephasing actually included in the model.
As for the absolute value tsat, a comparison of the experimental signal with the simu-
lated data (both potentials) is shown in Figure 4.8 (the actual shape of the signal will
be discussed later). The position of the transmission minimum is well reproduced in
the simulation with van-der-Waals interaction15. For the simulation with dipole-dipole

15This is in contradiction with [28], where these results were published. Here we have corrected a
small numerical error in the calculation of the Rabi frequency which made it necessary to rescale
the Rabi frequency in the paper.
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Figure 4.9: Left: Density plot of the 32S,32S admixture ε32S,32S as a function of
the interatomic distance. The molecular quantum number here is M = 0 (i.e.
mj1 = ±1/2 and mj2 = ∓1/2), and interactions up to the quadrupole-quadrupole
order are included [45]. The light green (resp. pink) line depicts the extrapolated
van-der-Waals (resp. dipole-dipole) pair-state potential used in the simulation. 16

Right: Admixture of the 32S,32S pair state (horizontal axis) as a function of the
interaction energy (vertical axis) for the four main potential curves at negative
energies, as defined in the left panel. Line a and b correspond to two 30D3/2, 32P1/2

pair states, line c to one 31P1/2, 31D5/2 pair state and line d to one 31P1/2, 31D3/2

pair state.

interaction there is a small discrepancy, as the excitation dynamics seem to be faster
than in the experiment. We attribute this discrepancy to the long-range character of
the dipole-dipole 1/r3 potential. We noticed that there is a dependence of tsat on the
system size in this case (the larger the system the faster the dynamics) and we assume
that this effect is already present at the system size used here.

Overall the scaling laws and absolute values of tsat in the experiment are compatible
with both van-der-Waals and dipole-dipole interaction potentials in the aggregation
model (although slightly better with the van-der-Waals interaction). It is also worth
noticing that the results from both models differ very little, in spite of the very different
scaling laws of the interaction potentials. The simulations therefore suggest a rather
weak dependence on the actual shape of the interaction potential and that the basic
mechanism of aggregation only relies on the existence of a facilitation radius, i.e. of
an interaction potential and detuned interaction. This is a posteriori justifying the
choice of considering very simplified interaction potentials compared to the actual very
complex interaction potentials (see below).

16These interaction potentials were kindly provided by Donald Booth and James P. Shaffer, University
of Oklahoma.
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Figure 4.10: (a) Excitation sequence of three atoms, showing first the nS Rydberg
atom, then the n′P-n′′D pair, and the subsequent nS atom. Red (blue) dots rep-
resent Rydberg (resonant ground state) atoms, and the grey circles represent the
simplified resonant shells of the individual atoms. (b) Interaction potentials around
the 31P1/2, 31D3/2 pair state. The 31P1/2, 31D3/2 admixture ε32S,31P is depicted as a
density plot. The molecular quantum number here is M = 0 (i.e. mj1 = ±1/2 and
mj2 = ∓1/2). Interactions up to the dipole-quadrupole order are included. The light
green (resp. pink) line depicts the extrapolated van-der-Waals (resp. dipole-dipole)
pair-state potential used in the simulation. (c) Same as (b) for the 31P1/2, 31P1/2

pair.

Interaction potentials

As already mentioned, the observation of an excitation signal at negative detunings is
made possible by state mixing with several molecular lines, which lead effectively to
an attractive potential. We will focus on the 32S state for the following discussion,
and we verified that the situation is similar for other states with principal quantum
numbers. The admixture of the 32S,32S pair state ε32S,32S is shown again as a density
plot in Figure 4.9, along with the admixture against the interatomic distance. For
comparison purposes the effective interaction potentials used in the simulation are also
shown. The agreement between the effective potentials and the real potentials is quite
good at least for the 31P1/2, 31D3/2 line.
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The admixture of the 32S-32S pair state onto the molecular lines of pair states of
the form n′P-n′′D is made possible by the dipole-quadrupole interaction term which
is weak but resonant (as discussed in section 1.3). The admixture ε32S,32S allows for
the laser excitation from the 7P3/2 state, which would otherwise be dipole forbidden.
The excitation of such a pair occurs on the basis of an atom in the 32S state. Once
such a pair is created, it is actually mainly of the form n′P-n′′D, with an amplitude
of 1 − ε2

32S,32S > 0.95. For the subsequent excitation steps one has to consider the
interaction potentials of the 32S state around such a pair. We can reduce this to
binary interactions and consider the potentials for the 32S-n′P and 32S-n′′D pair states.
We have computed these interaction potentials, which are shown in Figure 4.10. The
potentials for the S-D pair state shows a lot of state mixing because of the proximity
of high angular momentum states. It is mostly repulsive with a rather small van-
der-Waals interaction potential (CS-D

6 ≈ 2π × 11 MHz · µm6), and does show some
attractive components due to small state mixing, as for the 32S-32S pair state. For
the S-P pair state the situation is quite different. An S-P pair is resonant with its
permutation P-S, which is exactly the case of resonant dipole-dipole interaction with
an interaction potential of the form C3/r

3. Here there is one attractive branch with
CS-P

3 ≈ 2π×−242 MHz · µm3, which remains quite clear in spite of strong state mixing
on other molecular lines. So for the excitation of the second atom in Figure 4.10(a) the
excitation of a 32S-n′P pair is favored because it does not rely solely on the admixture
of the 32S state.

It is nearly impossible to exactly include all the relevant states and interaction po-
tentials in the aggregation model presented in section 4.3.1. However we have seen
that the results of the model show very little sensitivity to the interaction potential
(on the basis of two exemples). Nevertheless one aspect of the complex interactions
needs to be discussed. The admixture ε32S,32S is actually the reducing the transition
probability from one 32S atom to a n′P-n′′D pair, such that the Rabi frequency should
be rescaled by ε32S,32S exactly on this excitation step. Because of the nature of the ag-
gregates, which enclose previously excited atoms, we can estimate that at most every
second excitation is performed via this process. For the other excitation possibilities
(direct off-resonant excitation from the ground state or around a 31P atom), the Rabi
frequency does not require to be rescaled. An attempt to include these would be to
rescale the Rabi frequency by a factor of (ε32S,32S)1/2 ≈ 0.3, and therefore rescale the
time axis by (ε32S,32S)−1 ≈ 10 in the simulation results from Figure 4.8. This however
does not seem to be necessary. A precise account of the effect of the admixture would
require further study.

Signal form

One striking difference between the experimental and simulated results is the shape of
the transmission signal, both at small times (the simulated signals show a sharp jump
at t = 0) and in the temporal width of the signal. The origin of the sharp jump has
been identified to be an artifact of the model [20]. The single excitations at small times
are independent of the environment because there is no Rydberg interaction yet. Thus
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they retain some quantum nature such that the transmission change should start at
zero.

Additionally the way in which the dephasing was included in the model may explain the
discrepancy in the signal form. The actual broadening in the experiment is caused by
the Doppler effect (with a Gaussian profile) and the transit time broadening caused by
the motion through the resonant shell. Determining the actual line profile of the transit
time broadening is very complex, as it depends on the profile of the resonant region [18]
and has to be integrated over the velocity distribution. It is however neither Gaussian
nor Lorentzian (as for Γk in equation (4.14)). In order to gain some insight into this we
modified the model by modifying ad hoc the transition rate Γk from a Lorentzian shape
to a (pseudo-)Voigt profile. For this we first determined a Voigt profile, ensuring that
the width of the profile and the integrated profile are the same than the Lorentzian
profile. This ensures that the width of the resonant shell and the total rate around a
single Rydberg atom are conserved. In order to limit the computational effort the Voigt
profile was approximated by a pseudo-Voigt profile (defined as the sum of a Lorentzian
and a Gaussian profile). The pseudo-Voigt profile was optimized to the Voigt profile
by ensuring the following conditions: the value at large detuning, the center value, the
width and the integrated value are the same for the Voigt and pseudo-Voigt profile.
Note that this modification of the model is not formally justified to account for the
experimental situation in the model.
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Figure 4.11: Comparison of the
model with a Lorentzian and a
pseudo-Voigt line profile.

The results of the simulation with a Lorentzian
profile and a pseudo-Voigt profile (for the same pa-
rameters and van-der-Waals interaction) are shown
in Figure 4.11. There is a clear difference between
both line profiles at t = 0. The reason is that
the signal at small times is essentially given by the
excitation rate at large detunings, which is larger
with a Lorentz profile because it does not converge
to zero as fast as a Voigt profile. Hence the more
pronounced jump at t = 0. The different line pro-
file however does not seem to provoke a narrowing
of the transmission signal.

In Figure 4.8 the small overshoot in the experi-
mental signal before the system reached the steady-state (at t ≈ 40 ns) is also not
reproduced by the theoretical model. Remnants of coherent Rabi oscillations can be
ruled out given the large dephasing rates and large detunings with respect to the single
atom resonance.

Overall, explaining all these small discrepancies would require a much more involved
theoretical treatment which would have to include the atomic motion, the real interac-
tion potentials and probably the full quantum treatment of the Liouville-von Neumann
equation for multiple atoms. It is even remarkable that the rather simple model of a
frozen gas presented here can account so well for the physics happening in the rather
“dirty” environment of a vapor cell. These results are complementary to the previous
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work on Rydberg aggregates in cold atoms [10, 11] as it demonstrates the validity of
the theoretical framework over very different range of parameters.

Finally, in the following we will address two aspects that do not prove crucial in the
understanding of the physics, but provide some valuable insight.

Spatial correlations

The fundamental takeaway of the comparison between the aggregation theory and
the experimental results is that facilitated excitation, as shown in Figure 4.6(a) is
occuring. The formation of aggregates with the spatial correlations is a corollary of the
facilitated excitation, because the excitations are favored at a specific distance from
Rydberg atoms. In a frozen gas of atoms, as is the case in the theoretical model, these
aggregates are long-lived. In the experiment however the atoms move around very fast,
which makes the spatial correlations vanish.

We can still try to make an estimation of how large aggregates can be before the spatial
correlations disappear. For this we consider the situation used for the simulation with
van-der-Waals interaction. The time scale defining a “frozen gas” in this situation is
the time spent by the atoms inside the resonant shell, given by tf = (γTT)−1 ≈ 0.32 ns.
In order to estimate the size of the aggregates that can be formed during this time,
i.e. the number of subsequent excitations around the same position, or around the
same seed atom, we use a simplified model. The experimental parameters are the
following: 32S state , Ω12 = 2π×166 MHz, Ω23 = 2π×745 MHz, ∆′13 = 2π×−2.2 GHz
and Ng = 88µm−3 (as in Figure 4.3). This gives for the aggregation model C6 =
2π ×−109 MHz · µm6 and γvdW

13 = 2π × 711 MHz.

Let us first consider the one seed atom around which the aggregate will be formed.
The resonant shell is a sphere of radius rfac = 0.65µm and width ∆rvdW = 51 nm,
which contains νres = Ng × 4πr2

fac∆r = 20.7 atoms in average. As further atoms are
excited in an aggregate, the size of the resonant shell grows. If we approximate an
aggregate containing n atoms to a sphere whose volume is the volume occupied by
n atoms separated by the facilitation radius, the entire shell of the n-atom aggregate
contains n2/3 × νres atoms. The excitation rate of one atom in the resonant shell is
Γrfac = Ω2

eff/γ13 ≈ 2π × 3.5 MHz and therefore the excitation rate of the (n)-th atom
of an aggregate is Γn = (n − 1)2/3 × νresΓrfac . We define the probabilities Pn(t) that
aggregates of n atoms has formed around the seed atom at the time t. Under the
assumption that the atoms are excited one by one, at each time an n aggregate can
be formed from an (n − 1)-aggregate with a rate Γn−1Pn−1(t), and an n-aggregate
can become a (n + 1)-aggregate with a rate ΓnPn(t), such that the total probability
is conserved (

∑
n Pn = 1). The probabilities Pn(t) obey the following ensemble of

equations:

∂nPn = Γn−1Pn−1 − ΓnPn

= νresΓrfac
(
(n− 1)2/3Pn−1 − n2/3Pn

)
(4.27)
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n 1 2 3 4 5 6

Pn(tf) 0.86 0.12 0.014 0.0014 0.00012 0.000010
ηn 4490 636 72 7.1 0.64 0.054

Table 4.2: Probabilities Pn(tf) of creating an n-atom aggregate in an interval tf and
typical number of n-atom aggregates ηn for Nfac = 5000 facilitating atoms, similarly
to the experimental situation.

This ensemble equations can be solved numerically. In Table 4.2 the probabilities Pn(tf)
of having an aggregate consisting of up to 6 atoms after the flying time tf of the atom
through the shell are listed.

The number of n-atom aggregates that are formed during the time tf during which
the gas can be considered to be frozen is given by ηn = Nfac × Pn(tf), where Nfac is
the number of Rydberg atoms which can act as seeds. There are eventually 50000
Rydberg atoms excited in our medium. Assuming that these atoms form a sphere of
density Nsat = r−3

fac/2, the outer shell of this sphere contains Nfac ≈ 5000 atoms. The
estimation of the number of n-atom aggregates for our experimental configuration ηn
is listed in Table 4.2. Here we can see that in each experimental run up to approx. one
aggregate consisting of 5 atoms is formed.

These estimations are performed under the most strict assumptions because of the
definition of tf with the width of the resonant shell. In reality the spatial correlations
probably tend to decay from a density-density correlation function as shown in Fig-
ure 4.6(c) to unity over a longer time. If for instance we define tf = 〈v⊥〉

rfac/2
, the time

needed for an atom to travel over half the facilitation radius, the spatial correlations
would not be completely washed out. For this critical time we obtain that aggre-
gates of up to 10 atoms with somewhat weaker correlations would be formed in the
experiment.

Effect of charges

Because of the loose binding energy of the electron in a Rydberg state (see Table 1.1),
Rydberg atoms is susceptible to become ionized, for instance through collisions. Col-
lisionnal ionization of Rydberg atoms has been a tool to measure the population of
Rydberg states [71], to the expense of additional decoherence on the order of 50 MHz.
It was also found that ionization tends can occur as an avalanche process, resulting in
the ionization of all Rydberg atoms and the creation of a plasma [72,73]. Because ion-
ization mechanisms can have such dramatic effects on Rydberg atoms, it is necessary
to examine how it can have an influence in the present experiment.

Let us first consider the effect of single charge on the aggregation mechanism. The
electric field produced by a single charge (Cs+ ion or electron) is given by Coulomb’s
law (EC(r) = e/(4πε0r

2)). At a distance rfac = 0.65µm the electric field is EC(rfac) =
34 V/cm. As shown in Figure 1.1, at this electric field strength the Stark effect for the
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32S state of cesium is still very well described by the quadratic Stark effect. Then the
energy shift exerted by the charge onto the Rydberg state is given by

VC(r) =
1

2
α32SE(r)2

=
α32S

2

(
e

4πε0

)
1

r4
(4.28)

where r is the distance between the charge and the Rydberg atom and α32S is the
polarizability of the 32S state. VC(r) is a potential energy shift of the form C4/r

4

with C4 = 2π×−214 MHz · µm4 and VC(rfac) = 2π×−1190 MHz. This potential shift
has a similar form and amplitude to the van-der-Waals and dipole-dipole potentials
that were extracted from the experimental data. In other words a charge generates
an interaction potential on the Rydberg states that is very similar to the interaction
between Rydberg atoms and therefore also allows for facilitated excitation.

If charges would be present in the excitation volume before the infrared laser is shone
on, it would allow for direct resonant excitation because of the potential VC(r). The
requirement for off-resonant excitation would be lifted and the excitation dynamics
would be very fast [74]. Therefore the number of charges initially is limited.

The full ionization of the Rydberg atoms during the aggregation process can only occur
once Rydberg atoms have been excited. From [72] the time scale for the transition of
an ensemble of Rydberg atoms to a plasma is approximately 100 ns, i.e. in our exper-
imental conditions at t ≈ tsat + 100 ns. Therefore it is not a factor in the experiments
presented above.
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States

Transitions between Rydberg states have typically very large electric dipole moments.
On the other hand is the energy spacing much smaller and therefore are Rydberg atoms
very sensitive to DC and AC electric fields. In the special case of oscillating electric field
in the radio-frequency (RF) to microwave (MW) range, i.e. from 1 MHz to 100 GHz,
spectroscopy of Rydberg atoms can be used to measure the strength of the electric field
in a very precise way [30,31,75], and is even callibration free as all relevant paramters
can be calculated from first principles. If a non-resonant RF field is applied, side bands
appear in the atomic spectrum through the interaction between the Rydberg atoms
and the electric field, which can be resolved spectroscopically via the measurement of
the EIT spectrum in a vapor cell [76]. In the experiments described in this chapter the
goal is to make use of the resulting modulation of the amplitude of the excitation light
field when passing through a vapor cell, a quantity that is averaged out in previous
experiments involving Rydberg atoms in MW electric fields. One goal is to study how
the modulation of the Rydberg gas by an RF field leads to side bands in the optical
field, similar to the electro-optical effect in an EOM (electro-optical modulator). In
addition this method provides a new way to probe the properties of a driven Rydberg
gas. A quite special case can be reached when the modulation frequency reaches the
classical Kepler frequency of the electron in a Rydberg state (which is the transition
frequency between two Rydberg states), new physics might appear, maybe in relation
to ponderomotive forces in modulated optical lattices [77]. But this will not be studied
here. Overall one might label this section with the question: How fast can a Rydberg
atom follow an applied AC-field?

In the first section we describe the theoretical framework for the description of the
modulation of a light field by the interaction between Rydberg atoms and an oscillating
field. The experimental realization and first measurements are presented in the second
section.

5.1 Theoretical aspects

5.1.1 Periodic Hamiltonian

We consider an atom that can be described as a three level system in a ladder config-
uration, as shown in Figure 5.1, driven by two light fields as described in section 2.2,
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|1ñ:=6S1/2

|2ñ:=7P1/2

|3ñ:=23D3/2

Δ13

Δ12

1070 nm

459 nm

ωRF

133Cs

Figure 5.1: Energy level diagram for the excitation to the Rydberg state |3〉 in the
presence of an oscillating electric field of frequency ωRF.

where the excited state is a Rydberg state. An oscillating electric field is applied in
the medium, of the form

ERF(t) = ERF(t)εRF = E0,RF cos(ωRFt)εRF (5.1)

where ωRF is the angular frequency, E0,RF is the electric field amplitude and εRF is
the unit vector of the polarization of the electric field1. We assume that the modu-
lation frequency is much smaller than the transition frequencies of any dipole-allowed
transition involving the three states. Also the electric field amplitude is supposed to
be small enough such that the Stark shift of the excited (Rydberg) state is quadratic.
The Stark shift associated with the ground and intermediate state can be neglected
because of their very small polarizability. Then, following equation (1.6), the effect of
the electric field on the system is a Stark shift of the Rydberg level which is given as

E (2)
|3〉 =

1

2
α|3〉E

2
0,RF cos2(ωRFt)

=
∆RF

2
+

∆RF

2
cos(2ωRFt) (5.2)

where

∆RF =
1

2
α|3〉E

2
0,RF

Here α|3〉 is the polarizability of the Rydberg state and ∆RF is the amplitude of the
Stark energy shift. Because of this energy shift of the Rydberg state the Hamiltonian
of the system changes to

H̃(t) = ~

 0 1
2
Ω12 0

1
2
Ω∗12 −∆12

1
2
Ω23

0 1
2
Ω∗23 −∆13 + ∆RF

2
+ ∆RF

2
cos(2ωRFt)

 (5.3)

1In the following the light fields and the oscillating electric field have the same polarization such that
the quantization axis is not modified by the electric field.
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which is periodic in time, of period T = π
ωRF

. As shown in [78], in the presence of

decoherence (L̂(ρ̃) 6= 0) the density matrix ρ̃(t) of this system converges at large time
to a periodic pseudo steady state of the same period as the the Hamiltonian

ρ̃(t) =
t→+∞

ρ̃(t+ T ) (5.4)

5.1.2 Simulation method

In order to compute the pseudo steady-state of the system we follow the method
presented in [78], which we will summarize in the following.

Let us re-write the density matrix as a vector, defined for instance as

ρ(t) =


ρ̃11(t)
ρ̃12(t)

...
ρ̃33(t)

 (5.5)

The conservation of the population for ρ(t) is given by

n̂ρ(t) = 1 with n̂ =
(
1 0 0 0 1 0 0 0 1

)
(5.6)

The Liouville-von Neumann equation (2.5) is a linear differential equation for the ele-
ments of the density matrix. Thus it can be written for ρ(t) as

∂ρ(t)

∂t
= Λ̂(t)ρ(t) (5.7)

where Λ̂(t) is a linear operator, which is determined by H̃(t) and the Lindblad operator
of the system L̂. This linear operator is also periodic in time (Λ̂(t) = Λ̂(t + T )).
Equation (5.7) is integrable, and the result of the integration can be written in the
following general form using the propagator Â(t2, t1), which is determined by Λ̂(t):

ρ(t2) = Â(t2, t1)ρ(t1) (5.8)

and in particular

ρ(t+ T ) = Â(t+ T, t)ρ(t) (5.9)

At large time ρ(t) is periodic (5.4), so equation (5.9) becomes

ρ(t) = Â(t+ T, t)ρ(t) (5.10)

In order to determine the propagator, which only needs to be determined over one
period, the time interval corresponding to one period [t0, t0 + T ] is split in N intervals
(tN = t0 + N). The number of intervals is determined so that in each sub-interval

69



Part II. Experimental Results

S
ta

rk
 s

hi
ft 

[M
H

z]

0

500

1000

1500

Im
(ρ

12
) 

[a
rb

.]

Time [ns]
0 0.25 0.5

−0.5

0

0.5

Figure 5.2: Simulation of Im(ρ̃12(t)) (lower panel) over one period of the electric

field modulation (E (2)
|3〉 (t), upper panel). The modulation is ωRF = 2π × 1000 MHz

and ∆RF = 2π × 1520 MHz. The parameters are Ω12 = 2π × 12.6 MHz, Ω23 =
2π × 1240 MHz, ∆13 = 2π × 0 GHz, Γ21 = 2π × 1.18 MHz and ΓTT = 2π × 5 MHz.

[tk−1, tk] the linear operator can be approximated to a constant value Λ̂(t) ≈ Λ̂(tk−1).
Over each interval the integration of equation (5.7) yields

Â(tk−1, tk) = e(tk−tk−1)Λ̂(tk−1)

and thus

Â(t0, tk) =
k∏

m=1

e(tm−t0)Λ̂(tm−1) (5.11)

which is the propagator over the discretized interval. By solving the system of equations
(5.6)-(5.9) at any t0 and using equations (5.8) and (5.11) one can determine the full
density matrix of the pseudo steady state.

5.1.3 Simulation results

In Figure 5.2 we show the result of the numerical computation of the pseudo steady
state of the imaginary part of the coherence ρ̃12(t) (observable in the experiment).
This atomic response is essentially a sinusoidal signal with a frequency 2ωRF. In the
following we will consider only the complex valued amplitude of the Fourier component
at the frequency 2ωRF, defined as

s(2ωRF) = 2

∫ t0+T

t0

Im(ρ̃12(t))e−2ωRFit dt (5.12)

The experiment that will be described below in more detail is performed in a vapor
cell at room temperature. Thus the averaging over the Doppler velocity classes has to
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Figure 5.3: Amplitude of the Fourier component at 2ωRF. The upper panel shows the
amplitude |s(2ωRF)| (normalized to the maximum value) as a density plot against the
detuning and the parallel velocity of the atoms v‖. The lower panel is the integration
over the Doppler velocity distribution. The parameters for the simulation are: ωRF =
2π×1318 MHz, ∆RF = 2π×1520 MHz, Ω12 = 2π×12.6 MHz, Ω23 = 2π×1240 MHz,
Γ21 = 2π × 1.18 MHz and ΓTT = 2π × 5 MHz. The wave vectors of the light fields
are kL,12 = +2π/459 nm, kL,23 = −2π/1070 nm. The labels and the green dashed
lines highlight features that are discussed in the main text.

be performed. In Figure 5.3 the absolute value of the Fourier component s(2ωRF) is
shown when the detuning to the Rydberg state is varied, against the atomic velocity
and integrated over the atomic velocity. Three peaks of modulation can be seen at
∆13 ≈ 2π × −1700 MHz (labeled A), 2π × 1000 MHz (labeled C) and 2π × 3100 MHz
(labeled D). In the density plot these peaks correspond to resonances that show an
almost linear dependence between ∆13 and v‖ with a slope of (kL,12 + kL,23)−1. This
linear behavior corresponds exactly to the additional two-photon detuning due to the
Doppler effect given by: (kL,12 + kL,23)v‖ (see section 3). The separation between these
three resonances is consistent with 2ωRF = 2π × 2636 MHz.

The avoided crossing visible at ∆13 ≈ 2π × 1500 MHz and v‖ ≈ 600 m/s (labeled E)
arises from the coupling between the one photon resonance on the lower transition
(v‖ = ∆12/kL,12) and the two-photon resonance between the ground state and the
Rydberg state.

Moreover the amplitude of the modulation vanishes at ∆13 ≈ 2π×−500 MHz (labeled
B). This feature is visible in the density plot also with a linear behavior with a slope
of (2kL,12 + kL,23)−1.
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Figure 5.4: Schematic representation of the Floquet manifolds |i, n̄〉, where i repre-
sents the unperturbed atomic state and n̄ represents the number of RF photon pairs
dressing the atomic state.

Floquet transitions

In order to explain the three modulation peaks and the point where the amplitude van-
ishes one needs to introduce a new theoretical framework where the RF electric field
dresses the atomic levels in terms of so-called Floquet states. Since the Hamiltonian
is periodic in time the solution of the Schrödinger equation can be expressed as a lin-
ear combination of periodic pseudo eigen-solutions. This is called the Fourier-Floquet
method [79–82]. The system can be described in an basis of pseudo eigenstates called
Floquet states |i, n̄〉 in a similar manner than dressed states in the quantum electrody-
namics formalism, where the for the same i the states |i, n̄〉 are separated by 2ωRF. n̄
can be seen as the number of RF photon pairs exchanged with the oscillating electric
field. The relevant Floquet states are shown schematically in Figure 5.4.

In the present case the detuning to the intermediate state is fixed. The two outer
peaks of the signal in Figure 5.3 represent the resonant two-photon transitions to a
Floquet state with a non-vanishing number of photon pairs |1, 0̄〉 → |2, n̄〉 → |3,−1̄〉
(at ∆13 ≈ 2π × −1700 MHz, labeled A) and |1, 0̄〉 → |2, n̄〉 → |3,+1̄〉 (at ∆13 ≈
2π × 3100 MHz, labeled D). In those cases there is a net detuning of ±2ωRF which is
compensated by the absorption or emission of a pair of RF photons from the oscillating
electric field. Including the velocity component, the resonance condition here yields
v = (∆13 ± 2ωRF)/(kL,12 + kL,23). This fits to the slope observed in the density plot of
Figure 5.3.

The central modulation feature in Figure 5.3 (labeled C) sits at an almost vanishing
two-photon detuning to the Rydberg state. The qualitative explanation is the following.
Due to the non-vanishing detuning to the intermediate state (assumed positive here) the
transition |1, 0̄〉 → |2,+1̄〉 → |3, 0̄〉 is favored with regard to |1, 0̄〉 → |2,−1̄〉 → |3, 0̄〉
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because both single transitions are closer to resonance. This favored transition includes
the exchange of a pair of photons, and therefore a modulation on the light field. The
two-photon resonance condition yields here v = ∆13/(kL,12 +kL,23), which also matches
the slope of the feature at ∆13 = 2π×1000 MHz and v = 0 in Figure 5.3 (labeled C).

Finally the vanishing modulation (labeled B) happens when the condition ∆13 = −∆12.
Here two two-photon transitions need to be considered.

� |1, 0̄〉 → |2, 0̄〉 → |3,−1̄〉 with a detuning ∆12 on the lower transition and a
two-photon detuning of 2ωRF −∆12

� |1, 0̄〉 → |2,+1̄〉 → |3, 0̄〉 with a detuning −2ωRF + ∆12 on the lower transition
and a two-photon detuning of −∆12

These transitions have exact opposite detunings, therefore the phase factor associated
to them oscillates with opposite phase and the modulation of the light field due to
these two transitions interferes destructively. Alternatively, these transitions involve
+1̄ and −1̄ pairs of RF photons, which cancel each other.

This qualitative argumentation does not take into account the coupling of the light
fields on the original unperturbed atomic levels, which give rise to the avoided crossings
in Figure 5.3 (as at label E). These avoided crossings explain the slight deviation of the
position of the peaks from being exactly separated by ±2ωRF. A more careful treatment
of the system in the Floquet basis allows to take these couplings into account. It also
gives a better explanation for the central peak which arises from state mixing between
Floquet states caused by the light fields and the oscillating electric field. More details
about this can be found in [79–82].

5.2 Experimental realization

In this section we first show how the RF electric field is applied to the atoms confined
in a millimeter-sized vapor cell. Then we discuss how the data is obtained. Finally we
present the experimental results, which are compared with results from the simulation,
and discuss in the end the prospects of this approach to electro-optics via Rydberg
states for future work.

5.2.1 RF Modulation

The scope of the experiments presented in this chapter is to study the back-action
on the light field from the high frequency electric field modulation of Rydberg states.
Here high frequency refers to at least several GHz. At a frequency of 1 GHz, the
vacuum wavelength is already as small as 30 cm, which is on the order of the size
of the experimental setup presented here. At such high frequencies extra care has to
be taken in the design of the electrical circuits guiding the RF electric field to avoid
damping and reflections.
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Figure 5.5: (a) Definitions of dimensions of a microstrip waveguide. The dielectric in
the middle has a relative permittivity εr. (b) Sketch of the PCB with the glass cell,
as simulated. The laser beams are shown for illustrative purposes.

Applying a electric field to a certain region of space is usually performed by a pair of
electrodes, one of which receiving a electromagnetic (voltage) signal while the other is
electrically grounded. The pair of electrodes amounts to a capacitor with a capacity C
and the impedance of this capacitor is given by Z = 1/iCω, where ω is the frequency
of the electric field applied. If ω or C are small enough the signal is fully reflected
at the electrode, ensuring a maximal potential difference and electric field amplitude
between the electrodes. The second requirement for a maximal electric field amplitude
is that the signal is fully transferred from the source (with its internal impedance,
here Z0 = 50 Ω) to the electrode. For this the impedance of the transmission lines
has to be matched to that of the source, which ensures maximal transmission of the
electromagnetic signal, very much like index matching in the optical domain.

PCB board

The goal here is to apply an oscillating electric field with a frequency of up so several
GHz from the outside of a glass cell. The glass cell used here has an outer section of
5.7 mm × 5.7 mm and an inner section of 3 mm × 3 mm. The glass cell is positioned
between two square electrodes with a section of approx. 5 mm× 5 mm separated by a
distance a = 6 mm, made out of 200µm-thick copper sheets. One electrode is grounded
with a matched 50 Ω termination. For maximal transmission from the source of the
RF electromagnetic field to the electrodes, the source is connected to the electrodes
via a microstrip waveguide printed circuit board (PCB) (see Figure 5.5(a)) which is
designed with a characteristic impedance ZPCB of 50 Ω. A view of the PCB, with the
electrodes and the glass cell in-between, is shown in Figure 5.5(b). The PCB with the
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Figure 5.6: S-parameters for the input used in the experiment, measured and simu-
lated.

simple microstrip waveguide is cut in the middle, where the cell is placed. The two
electrodes are connected (in practice soldered) to each stripline end on both sides of the
cell. The PCB was etched from a substrate with a copper layer of thickness d = 17µm
on both sides of a dielectric material of thickness D = 0.81 mm and relative dielectric
permittivity εr = 3.38. The outer dimensions of the PCB are 30 mm × 25 mm. SMA
connectors are connected to the two outer ends of the microstrip.

The characteristic impedance ZPCB of the microstrip waveguide is a complex function
of d, D, εr and the width of the stripline W (as defined in Figure 5.5(a)) [83, 84].
In order to characterize ZPCB and the properties of the response of the PCB was
simulated in the program CST Studio Suite. The 3D model is exactly the one depicted
in Figure 5.5(b), that is including a cut-out section of the glass cell. The characteristic
impedance computed by CST is ZPCB = 50.3 Ω, in very good agreement with the design
impedance of 50 Ω.

Additionally the standard set of quantities to be measured is called the S-parameters.
Here our PCB has two so-called ports, one at each end of the microstrip waveguide, in
which a signal can be sent or received. The S-parameters describe the returned signal
on each port when a signal is sent into one of the ports, i.e. Sij is the ratio of the signal
received at the port i by the signal sent at port j. For our PCB with two ports 1 and
2 with port 2 having a matched termination, S11 is the fraction of the signal that is
reflected back to port 1, and S21 is the fraction of the signal that is transmitted from
port 1 to port 2. These S-parameters can be simulated in CST and measured with a
vector network analyzer2 in the actual experimental configuration. The simulated and
measured S11 and S21 are shown in Figure 5.6. The agreement between measurement
and simulation is very good at rather low frequency, up to a transmission resonance

2Rohde & Schwarz ZVL13
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Figure 5.7: Simulated distribution of the amplitude of the electric field E0,RF inside
the cell as a 2D density plot (lower panel) and as a cut in the middle of the cell (upper
panel), where the laser field passes through (white dashed line in the density plot).
Over the path of a laser through the cell, the electric field variation is sufficiently flat
to be considered constant. The frequency of the RF field is ωRF = 2π × 100 MHz.

visible at ωRF = 2π×4.8 GHz. In particular S11 being close to unity and S21 very small
corroborates the fact that the electromagnetic wave is reflected at the first electrode.
In the simulation the position of this resonance depends on the outer dimensions of the
PCB. Above this frequency the wavelength become smaller than the size of the PCB,
inducing unwanted geometry constrained resonance effects.

Electric field generation

The RF electric field is generated by a signal generator (Rohde & Schwarz SMY02 or
Windfreak SynthUSBII) connected to a high power amplifier (Mini-Circuits ZHL-1-
2W+ or ZHL-5W-422+). The maximum frequency for these components is 4.4 GHz.
The output power of the amplifier is set to 1 W with an uncertainty of ∼ 0.3 W by
measuring in with a Spectrum Analyzer (Hameg HMS3000 or Anritsu MS2668C). The
amplifier is connected to the PCB via a 1 m long low-loss coaxial cable. Because there
is full reflexion at the electrode, the transmission line from the amplifier to the electrode
has an open end. In this case the voltage at the open end is given by [83]

VE = 2VA cos

(
ωRFl

v

)
(5.13)
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where l is the length of the transmission line v is the propagation velocity of the
electromagnetic wave in the transmission line and VA is the output voltage of the
amplifier. Therefore the maximum voltage at the electrode is only obtained for ωRF =
2πnv
l

, where n is an integer. The propagation velocity is complex to determine, but the
set of RF frequencies for which the voltage at the plate is maximum could be determined
by maximizing two quantities: (i) the radiated power from the transmission line and
(ii) the measured modulation signal.

For a power of 1 W the output voltage of the amplifier is of the form VE = V0 cos(ωRFt)
with V0 = 10 V. Using the equation above and the amplitude of the oscillating electric
field between the electrodes is roughly given by

E0,RF ≈
2V0

a
= 33 V/cm (5.14)

where a = 6 mm is the distance between the electrodes. The actual spatial distribution
of the electric field can be obtained from CST, and is shown in Figure 5.7 for the inner
part of the cell, at a frequency of ωRF = 2π × 100 MHz. In the middle of the cell,
where the lasers are adjusted, is in very good agreement with the rough estimation.
The small discrepancy arises from the finite size of the electrodes. It is also interesting
to note that the electric fields exceeds the estimated values at other positions. This
is a consequency of having the back plane of the PCB, which is grounded, very close
to the electrodes which increases the electric field. The presence of the glass cell also
has an influence on the electric field distribution because of the high relative dielectric
permittivity εr = 3.8, which tends to localize the electric field. Because the electric
field is not constant over the cell and the alignment of the beams cannot be guarantied
to pass through the cell at the middle point, the estimated value for the electric field
amplitude E0,RF ≈ 33 V/cm is a good approximation.

Moreover we found through simulations that the electric field amplitude becomes
smaller at larger frequency, up to a factor 5 at 4 GHz. We also found that the voltage
difference between the electrodes becomes smaller, which means that the electromag-
netic wave is not perfectly reflected at the electrode at large frequencies. One possible
explanation for this is that the electrodes behave more and more as antennas as the
wavelength becomes on the order of their dimension, thus reducing the optimal reflec-
tion of the electromagnetic wave. Nevertheless we will first neglect this effect in the
following simulations, and then discuss its possible implications.

Overall this type of printed circuit board allows for applying RF fields with a frequency
of up to ωRF = 2π × 4.5 GHz. Improvements in the bandwidth could be obtained by
adding an impedance matching of 50 Ω very close to the electrodes. This would possibly
reduce the parasite resonances visible in Figure 5.6. It would also allow for a perfect
transmission of the electromagnetic wave to the electrode; and the electrode would
effectively perform a measurement of the voltage at the impedance matching. The
influence of the back plane could also be reduced by etching the metallic layer before
the electrode, possibly improving the electric field homogeneity. And finally possible
antenna-like behavior may be reduced by using smaller geometries.
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Figure 5.8: Schematic power spectrum against frequency of the modulated light (in
blue) and of the heterodyne beam (in violet). The bandwidth of the detector only
allows for the detection of the beating between the two components on the right.

5.2.2 Measurement scheme

Heterodyne detection

As discussed in section 5.1 the theory predicts that the imaginary part of the coherence
ρ̃12 contains oscillating components with frequencies that are multiples of 2ωRF (we will
focus exclusively on the 2ωRF component). From equations (2.21) and (2.25) the electric
field of the laser driving the lower transition carries the same modulation after passing
through the cell. Because of the limitations of the PCB, the uppermost frequency of
the modulation on the amplitude of the light field is 2ωRF = 2π × 9 GHz. As we want
also to detect very small modulations at very large frequencies we cannot just rely on
ordinary photo-diodes.

In order to circumvent this limitation we use a second laser that has a well defined
frequency detuning ∆H with regard to the modulated light field of frequency ωL. Such
a measurement method is called heterodyning, and is a very common technique in
quantum optics to measure small electric field amplitudes. The frequency detuning
is chosen such that |∆H − 2ωRF| is smaller than the bandwidth of the detector. The
signal that is detected then contains modulation terms only associated to the mixing
between one modulation side band and the heterodyne light field, and is background-
free. The power spectrum of the modulated light field with the two modulation side
bands is shown schematically in Figure 5.8, together with the power spectrum of the
heterodyne laser.

More formally the electric fields of the modulated lasers can be written as

EL(t) = EL(t)εL = E0L [1 + Amod cos [2ωRFt]] cos [ωLt] εL

EH(t) = EH(t)εH = E0H cos [(ωL + ∆H)t] εH (5.15)

where Amod is the strength of the modulation. By ensuring that the two light fields
have the same polarization, the signal detected by the photo detector is proportional
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to the square of the sums of the electric fields, which is given by

(EL(t) + EH(t))2 =
1

2

{
E2

0L + E2
0LA

2
mod + E2

0H

+ 2E2
0LAmod cos [2ωRFt] + E0LE0H cos [∆Ht]

+ E0LAmodE0H [cos [(∆H + 2ωRF)t] + cos [(∆H − 2ωRF)t]]

+ E2
0LA

2
mod cos [4ωRFt] + fast oscillating terms

}
(5.16)

where the fast oscillating terms are oscillating with multiples of the optical frequency
ωL. Considering the small bandwidth of the photodetector, only the following terms
remain:

(EL(t) + EH(t))2 |PD =
1

2

{
E2

0L + E2
0LA

2
mod + E2

0H

+ E0LAmodE0H cos [(∆H − 2ωRF)t]

}
(5.17)

where the only oscillating component is the beating between one side band and the
heterodyne light field.

Besides this frequency conversion of the modulation, the other advantage of the hetero-
dyne detection method is that the measured signal is isolated from cross-talk parasite
signals of the oscillating electric field on the photodetector.

Experimental setup and measurement procedure

The lasers and the frequency stabilization and calibration methods used for the exper-
iment described in this section are the same as in section 4.1.

For the experiment described here the excitation scheme is shown in Figure 5.1. The
ground state is the 6S1/2,F = 3 state and the intermediate state 7P1/2,F

′ = 4. The
Rydberg state is 23D3/2, in order to make use of the polarizability of D-states, which is
much larger than for S-states (see Figure 1.1(c)). The choice of the 7P1/2 intermediate
state has the advantage of greatly simplifying the level structure of the Rydberg state:
only the level with J = 3/2 can be optically addressed and the two |mj| sublevels
have polarizabilities of the same sign. Because both lasers are linearly polarized, the
larger coupling from the ground state occurs to the sublevels of the Rydberg state with
|mj| = 1/2. Therefore we will restrict ourselves to these sublevels, whose polarizability
is α23D3/2,1/2 = 2.79 MHz/(V/cm)2. The amplitude of the energy shift with 1 W of
input RF power is (using equation (5.2))

∆RF = 2π × 1520 MHz (5.18)

The detuning of the blue laser (at 459 nm) is kept constant at ∆12 = 2π × 1300 MHz,
and its Rabi frequency is set to Ω12 = 2π × 12.6 MHz. The detuning to the Rydberg
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Figure 5.9: Schematic representation of the optical setup. The cell is quadratic with
a inside width of 3 mm.

state ∆13 is scanned over approx. 15 GHz around the resonance, and the Rabi frequency
of this laser is Ω23 = 2π × 1240 MHz.

A schematic representation of the optical setup is shown in Figure 5.9. The blue laser
is collimated to a diameter of 1.2 mm (1/e2 diameter), and the infrared to a diameter of
∼ 2.5 mm. Both lasers are overlapped in a counter-propagating manner with dichroic
mirrors and focused with 100 mm lenses to a diameter of 50µm. The Rayleigh rage
of the infrared beam is 1.8 mm, which ensures an almost homogeneous longitudinal
profile of the laser beams at the focus within the cell. Both lasers are horizontally
polarized. The blue beam is then sent to the photodetector after passing through a
non-polarizing beamsplitter. The photodetector3 is an avalanche photodiode amplified
with an effective gain of 2.5 × 104 V/W at 459 nm and a 3 dB upper bandwidth of
1 GHz.

The heterodyne laser is a self built4 diode laser in an external cavity configuration.
Both lasers are sent onto a fast photodiode (8 GHz bandwidth), and the beat signal
of the two lasers is digitally phase locked to a reference signal [85]. The detuning
of the heterodyne laser to the original blue laser ∆H can be as large as 7.2 GHz. It
is set such that |∆H − 2ωRF| = 2π × 100 MHz, which is inside the bandwidth of the
photodetector.

The cell that is used in the experiment is 3 mm long5 and connected to a cylindrical
reservoir where a drop of metallic cesium sits. It was fabricated similarly to the cell
described in section 4.1. It is surrounded by the PCB placed at the focus such that
the electric field between the electrodes is perpendicular to the laser beams. In this
configuration the polarization of the laser beams is the same as the one of the RF field,

3APD210 from Menlo Systems
4The diode laser is a Nichia NDBA116T.
5101.015-QS from Hellma Analytics
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which simplifies the definition of the quantization axis. Both the PCB and the cell are
placed inside an oven heated at 160◦C to ensure that there is no cesium condensation
in the cell. The reservoir is heated separately to a temperature of 120◦C (except when
mentioned differently), such that the ground state density6 is Ng = 22µm−3.

The measurement was performed as follows. First the RF frequency is set, as well as
the corresponding detuning of the heterodyne laser such that ∆12 = 2π × 1300 MHz.
The infrared laser is scanned very slowly (100 s) over the resonance to the Rydberg
state. As the infrared laser is scanning, a fast oscilloscope records multiple snapshots of
the the beatnote signal (from equation (5.17)) for 1µs with a sampling rate of 5 GS/s
and a bandwidth of 200 MHz. Additionally an independent EIT signal to the Rydberg
state, the signal controlling the detuning ramp and the signal of the infrared through
a Fabry-Pérot resonator are recorded.

The frequency axis is calibrated using the signal from the Fabry-Pérot resonator, and
the resonance position of the upper transition (∆23 = 0) is determined from the EIT
signal to obtain the values for ∆23. The two-photon detuning is here simply determined
as ∆13 = ∆12 + ∆23. The amplitude of the modulation s(2ωRF), the observable in this
experiment, is performed by performing a Fourier transformation of every 1µs long
beatnote signal around the frequency |∆H − 2ωRF| = 2π × 100 MHz (±10 MHz) and
averaged. It can be seen for one set of parameters in Figure 5.10(b). Note that the
background signal at ∼ 0.75 is the noise floor of the signal, caused by the photon shot
noise on the photodetector.

5.2.3 Results and interpretation

The results of the measurements at various modulation frequencies are shown in Fig-
ure 5.10. First the maximum modulation frequency at which a modulation signal
could be observed is ωRF = 2π × 3.6 GHz. This maximum value corresponds roughly
to all the maximum bandwidths of the electronics in the setup (heterodyne lock, RF
generation/amplification and PCB).

The amplitude of the intensity modulation on the blue laser is found to be in the range
of 10−6 − 10−4, depending on the modulation frequency. The modulation amplitude
expected from the simulations and equation (2.25) is supposed to be around 500 times
larger7.

6Here the density is estimated from the vapor pressure [59]. An accurate measurement in the
experimental conditions is not necessary as no quantitative analysis involving the density will be
performed.

7Note that in previous work on time-resolved excitation of Rydberg atoms in vapor cells [13, 17],
although the shape of the signal matched the theoretical expectations, the amplitude of the trans-
mitted signal was a fit parameter and no quantitative comparison was performed between theory
and experiment. There is therefore no baseline measurement on the amplitude of the transmitted
signal that verifies the theoretical prediction from equation (2.25).
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Figure 5.10: (a) Density plots of the modulation amplitude of the transmission of
the blue laser |s(2ωRF)| as a function of the modulation frequency ωRF and the
two-photon detuning ∆13, measured (top) and simulated (bottom). The data is
rescaled to the maximum of the signal for each detuning scan, and the noise floor is
substracted. The parameters are: ∆12 = 2π×1300 MHz, Ω12 = 2π×12.6 MHz, Ω23 =
2π × 1240 MHz, ∆RF = 2π × 1520 MHz, Ng = 22µm−3. (b) Modulation amplitude
at ωRF = 2π×1318 MHz, measured and simulated. Both traces are rescaled to their
maximum signal. The black dashed lines in the background highlight the positions
of modulation maxima in the measured signal.
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Figure 5.11: Density plots of the simulated modulation amplitude |s(2ωrmRF )| as a
function of the two-photon detuning ∆13 and the Rabi frequency of the upper tran-
sition Ω23 (top) and the amplitude of the energy shift ∆RF. The data is rescaled to
the maximum of the signal for each detuning scan and the color scale is logarithmic.
The black dashed lines display the position of the signal in Figure 5.10(b). The
parameters for the simulation are: ∆12 = 2π × 1300 MHz, Ω12 = 2π × 12.6 MHz,
Ω23 = 2π × 1240 MHz (except for the upper panel), ∆RF = 2π × 1520 MHz (except
for the lower panel), Γ21 = 2π × 1.18 MHz and ΓTT = 2π × 5 MHz.

Regarding the detuning dependence of the signal, it is clear that the simulation do not
match the results of the experiment, but several features can be highlighted. In Fig-
ure 5.10(a) there is one dominant branch of modulation maxima in both the experiment
and the simulation. Their detuning position increase with the modulation frequency,
although not linearly in the experiment. Several satellite feature can be identified in
the measured signal, but it is not possible to match them to the satellite maxima from
the simulation. The modulation amplitudes are plotted for ωRF = 2π × 1318 MHz
in Figure 5.10(b), where it is clear that the positions of the signal maxima in the
experiment do not match the expected positions from the simulation. Moreover the
spacings between these maxima is not consistent with 2ωRF, as the simulations predict
(see section 5.1). Overall there seems to be some kind of an inhomogeneous shift and
distortion of the signal in the experiment.

Let us now analyze possible explanations for these discrepancies. Because of the Gaus-
sian profile of the laser beams, the Rabi frequencies are not constant inside the cell.
In order to gain insight into the influence of this, we performed simulations at various
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Figure 5.12: Modulation amplitude at different ground state atomic densities Ng.
The color code of each curve depicts the value of the ground state density. The
parameters are ωRF = 2π × 515 MHz, ∆12 = 2π × 1300 MHz, Ω12 = 2π × 12.6 MHz,
Ω23 = 2π × 1240 MHz, ∆RF = 2π × 1520 MHz.

Rabi frequencies of the infrared laser Ω23 (see Figure 5.11). We find that the shape
of the modulation signal only varies slightly and at Rabi frequencies that are signif-
icantly larger than the experimental value. Also no significant shift of the signal is
observed. Then, as seen in Figure 5.7 the electric field is not homogeneous inside the
cell. In order to understand the possible influence of this inhomogeneity we carried out
simulations for different values of the Stark energy shift ∆RF (see Figure 5.11). The
modulation signal is overall shifted as ∆RF/2, which is due to the quadratic Stark shift
in equation (5.2). Additionally for higher electric fields two satellite modulation max-
ima appear at large positive and negative detunings, which might explain why mostly
more than three features are visible in Figure 5.10. However the spacings between the
peaks always remains constant at approx. 2ωRF, hence the distortions observed cannot
be explained by inhomogeneities of the electric field alone.

The maximum population of the Rydberg state is approx. 1 % in the simulation for
the parameters of Figure 5.10(b). Combined with the ground state density, the es-
timated density of Rydberg atoms is Nryd = 0.22µm−3. At such high densities an
intrinsic optical bistability arises due to inter-atomic interactions [27, 86]. Although
the origin of the underlying interaction remains unknown, it has necessarily a repul-
sive component in the present case. Indeed van-der-Waals interaction for D-states is
mostly repulsive [39], dipole-dipole interaction has both repulsive and attractive com-
ponents (see section 1.3), the polarizability is positive for D-states (for the interaction
between Rydberg atoms and charges, see sections 1.2 and 4.3). The distortions and
shifts that we observe in the modulation signal are to larger detunings, which fits to a
repulsive interaction. The intrinsic optical bistability, as an interaction effect between
the atoms, in strongly dependent on the atomic density. We performed a series of
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measurements at various atomic densities. The results are shown in Figure 5.12. We
found that the modulation increases almost linearly with the density, as expected from
equation (2.25). Interestingly, apart from a small modification of the ratio between
the two peaks, there is no significant distortion or shift of the signal as the density is
increased.

Finally if some interaction effect due to the presence of charges is relevant here, it is
possible that the motion of the free electrons in the oscillating electric field needs to be
taken into account. Much like a plasma, the effect of the motion of the electrons would
be frequency-dependent and might lead to the distortions that we observe, and to a
shielding, which explains the amplitude of the modulation being much smaller than
expected from the simulations. A full understanding of these effects in our system will
require further investigation.
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The work discussed in this thesis describes two separate experiments, both of them
concerning the excitation of cesium atoms to Rydberg states in a vapor cell above
room temperature. A common point was to explore the excitation dynamics in ranges
of parameters that remained unexplored to date. In particular the choice of the atomic
species combined with the unusual excitation scheme allowed for driving atomic tran-
sitions with continuous wave lasers and still achieving high Rabi frequencies. This is
necessary in order to counteract the broadening induced by the Doppler effect, and
in our case to achieve densities of Rydberg atoms that are relatively large. In one
experiment we made use of the strong and very complex interactions between Rydberg
atoms, which allowed for correlated excitation dynamics at large detunings. In the
second experiment the Rydberg excitation was performed in the presence of a high-
frequency oscillating electric field. By making use of the sensitivity of Rydberg atoms
to external fields, the modulated energy shift of the Rydberg state induced by the
electric field could be mapped on the intensity of a transmitted light field.

Overall the use of vapor cells allowed for the observation of already known phenomena,
but in an environment that is small and offers a potential for integration [14,87]. These
specific experimental conditions offered new insight into the physics of the excitation
of Rydberg atoms at large bandwidth.

Let us now for each the experiments described in this thesis summarize the results and
discuss future prospects.

Rydberg aggregation

Time-resolved measurement of the excitation dynamics to Rydberg states were per-
formed in a vapor cell, using a two-photon excitation scheme with a large detuning to
the intermediate state. The atomic densities Ng ranging from 10µm−3 to 500µm−3

much larger compared to previous results in thermal vapor [17, 27, 88] and non-BEC
cold atomic gases [10,11,89]. At large detunings (above 1 GHz) to red from the Rydberg
state we observed excitation dynamics to the Rydberg state that are inconsistent with
a model for non-interacting atoms. Moreover a saturation behavior of the maximum
density of Rydberg atoms was extrapolated from the data, with a constant saturated
density over a wide range of experimental parameters. A characteristic time scale
for the excitation process was extracted, and found to depend on all experimentally
accessible parameters (Rabi frequency, detuning, atomic density and principal quan-
tum number). In particular the dynamics became faster when the atomic density was
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increased, which, combine with the saturation behavior, suggested that many-body
excitation dynamics took place. The characteristic time scale also depended on the
Rydberg state that was chosen in the experiment, which hinted at the crucial influ-
ence of interactions involving Rydberg atoms. The experimental data was analyzed by
evaluating power law scaling behavior of the characteristic time scale on all relevant
experimental parameters independently.

In order to understand these experimental results, a theoretical model for the aggre-
gation of Rydberg excitations was introduced [19, 20]. The idea of this model is that
when Rydberg atoms are excited off-resonantly and that there is strong dephasing
noise, the interaction from a Rydberg atom onto the Rydberg states of surrounding
atoms shifts these Rydberg states towards resonance with the laser. It results in a
strongly facilitated excitation of Rydberg atoms at a specific distance which depends
on the interaction potential and the detuning. The subsequent excitations therefore
happen inside a “resonant shell” at a fixed distance from already excited Rydberg
atoms, such that the excitations are spatially correlated. The large dephasing noise
controls the width of the “resonant shell”, ensuring that there are indeed atoms for
which the excitation is facilitated. Formally the large dephasing noise allows for a
reduction of the equation governing the excitation of an ensemble of atoms in these
conditions to a master equation for an ensemble of classical quasi spin-1/2 particles.

The crucial parameters for the theoretical model could be extracted from the experi-
ment. In particular the large dephasing noise in the experiment was attributed to the
thermal atomic motion as a combination of Doppler broadening and transit-time broad-
ening. The interaction potentials were extracted directly from the saturated density of
Rydberg atoms. Using a kinetic Monte-Carlo algorithm simulations of the model were
performed for the parameters of the experiment, and two simplified implementations
of the interaction potentials. The resulting excitation dynamics showed a similar shape
to what was observed experimentally. As for the experimental data a characteristic
time scale for the excitation dynamics was extracted from the simulation, which re-
vealed power law scaling behaviors as a function of the experimental parameters. The
power law exponents were in very good agreement with those of the experimental data.
Furthermore the characteristic time scales of the experiment and the simulations were
similar in absolute value, which in combination with the power laws demonstrated that
the excitation dynamics observed in the experiment is indeed facilitated excitation.

There were significant fundamental differences between the experimental situation and
the theoretical model, such as the considerable simplification of the interaction poten-
tials in the model. Furthermore the ensemble of atoms in the model were a frozen gas.
The consequences of the atomic motion being crucial in the experiment are two-fold.
First, as mentioned before, the dephasing mechanism is complex and inhomogeneous.
Second the spatial correlations only exist for very short time intervals. Yet the agree-
ment between the experimental results and the simulation results are very good, which
is a testimony of the robustness of the underlying physics. In other words the only
requirement for facilitated excitation and the formation of aggregates are (i) that there
is some interaction potential, and (ii) that the dephasing noise (whatever its nature) is
strong. Overall it is remarkable that strong interaction effects and collective excitation

90



dynamics of Rydberg atoms can be observed in the rather “dirty” environment. This
is promising for future work in our group focusing on making use of the interaction
between Rydberg atoms for the realization of a single-photon source.

Outlook

The spatial correlations resulting from the facilitated excitation (see Figure 4.6(c))
draw comparisons between Rydberg aggregation and soft-matter system. Since the
motion of the atoms is so prominent in our experiment however, it is not possible for
us to observe the short-range order. One way to make use of the spatially correlated
excitation would be to imprint extrinsically some spatial order and study how the
excitation dynamics are modified. In practice this could be realized by having one
of the excitation laser to be either in a 3D-lattice configuration, or in a 2D array of
addressed spots [90]. In such a configuration the excitation of Rydberg atoms can
only happen at specific positions in space. Facilitated excitation in such a system can
only happen if its characteristic distance matches the distance of the imprinted order,
and thus probes the ordered structure imprinted by the laser. Because of the atomic
motion in a thermal gas, the atoms would continuously fly through spots where they
can be excited, hence inducing a competition of time scales between the excitation rate
and the motional decay rate through the spots. A theoretical study in this conditions
showed promising possibilities for the observation and study of non-equilibrium phase
transitions [21].

A second potential application of these results is the probing of local interactions
between Rydberg atoms and their environment because the aggregation is so dependent
on the interaction potentials. If the excitation is performed close to a surface and that
the surface interacts with the Rydberg atoms there will be instantaneous facilitated
excitation close to the surface, thus removing the need for slow off-resonant excitation.
The excitation signal would be greatly altered by the surface, which could be used to
characterize the interaction between Rydberg atoms and the surface.
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Modulation of Rydberg states

The second experiment presented in this thesis consisted in the modulation of the
amplitude of a transmitted light field. Cesium atoms in a vapor cell were excited to a
Rydberg state with a two-photon excitation scheme. The vapor cell was placed inside
the electric field produced by a pair of electrodes. A radio frequency signal was applied
to the electrode to create the potential difference. The electrodes were positioned on
a printed circuit board designed using high frequency technologies, which is crucial
to ensure impedance matching along the transmission line and paves the way for a
possible future miniaturization and integration of the system.

A heterodyne measurement technique was used to improve the sensitivity to amplitude
modulations of the light field that are small and at high frequencies (several GHz). A
second light field with a frequency offset close the modulation frequency was sent at the
same time to the photodetector, whose bandwidth was smaller than the modulation
frequency but which offered a large gain. The mixing of the two light fields by the
measurement of the intensity converted the frequency of the modulation signal to a
value detectable by the detector.

The goal was to reach modulation frequencies as high as possible. We were able to
observe modulation of the light field up to a frequency of the electric field of 3.6 GHz.
Because of the quadratic Stark shift this means that the side bands on the light field
were actually at frequencies up to 7.2 GHz. This maximum frequency roughly corre-
sponds to the bandwidth of all the electronic elements involved in the measurement,
and is thus an absolute limit for the current setup.

Simulations were performed for three-level atoms and a periodic energy shift of the
Rydberg state. The results of the simulations could be characterized using the frame-
work of the Floquet theory, in which the atomic levels are dressed by the oscillating
field. The comparison of the experimental results to the simulations yielded only some
limited qualitative agreement and understanding. In particular the amplitude of the
modulation signal is expected to be much larger. Moreover the distortions of the ex-
perimental modulation signal suggests that interaction effects might play a role and
calls for further investigation.

Outlook

As the modulation frequency reached the technical limits of the detection method, we
have not discovered any fundamental frequency limitations for this scheme. In order
to reach higher modulation frequencies, several technical barriers need to be lifted.
First, a detailed understanding of geometry effects for the PCB and the electrodes
is necessary. Especially the resonance at 4.8 GHz needs to be understood and the
design modified as to push it to larger frequencies. There a miniaturization of the
cell might be necessary. Performing the experiment in a hollow-core fiber would also
be an option [87, 91]. The other barrier is in the detection scheme. The maximum
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frequency offset allowed by the digital phase lock was reached. In order to detect
higher modulation frequencies a new scheme needs to be implemented. A possible
solution would be to use a cascade of several phase locked lasers. As for the generation
of the oscillating electric field, the fundamental limit in the current setup is set by
the RF amplifier, which has a bandwidth of 4.5 GHz. The amplifier was required in
order to reach 1 W of power. For the same Stark shift, higher lying Rydberg state
would require less power because of their increased polarizability. However one would
also need to ensure that no disturbing interaction effects perturb the measurement.
Finally the influence of charges in vapor cells with Rydberg atoms has to be further
understood, as electrons are strongly influenced by oscillating electric fields.
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[29] Sedlacek, J.A., Schwettmann, A., Kübler, H., Löw, R., Pfau, T., and Shaffer, J.P.,
Microwave electrometry with Rydberg atoms in a vapour cell using bright atomic
resonances, Nature Physics 8, 819–824 (2012).

[30] Anderson, D., Miller, S., Raithel, G., Gordon, J., Butler, M., and Holloway, C.,
Optical Measurements of Strong Microwave Fields with Rydberg Atoms in a Vapor
Cell, Physical Review Applied 5, 034003 (2016).

[31] Miller, S.A., Anderson, D.A., and Raithel, G., Radio-frequency-modulated Ryd-
berg states in a vapor cell, arXiv:1601.06840 (2016).
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ern direkt arbeiten zu dürfen. Als erster Fabian Ripka, der mit mir als Masterstudent
während dem wichtigsten Teil im Labor (der Kampf um das Verständnis!) gearbeitet
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Hilfsbereitschaft. Das Verwaltungspersonal bekommt auch ein großes Danke von mir:

105



Danksagung

Beatrice, Karin O., Karin H., Astrid, Oliver, Nadine, Susan, Katrin. Ihr macht unser
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und für die Möglichkeit, an etwas anderes als Physik zu denken. Und natürlich geht
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