
Protocols for the
Efficient Dissemination of
Context-Aware Messages

Von der Fakultät für Informatik, Elektrotechnik und Informationstechnik
der Universität Stuttgart zur Erlangung der Würde eines Doktors der

Naturwissenschaften (Dr. rer. nat.) genehmigte Abhandlung

Vorgelegt von

Lars Christian Geiger

aus Nürtingen

Hauptberichter: Prof. Dr. rer. nat. Dr. h.c. Kurt Rothermel
Mitberichter: Prof. Dr. rer. nat. Jörg Hähner

Tag der mündlichen Prüfung: 19. Juli 2016

Institut für Parallele und Verteilte Systeme (IPVS)
der Universität Stuttgart

2016

Acknowledgments

First of all, I would like to thank my doctoral advisor, Prof. Kurt Rothermel, for the
opportunity to work on this challenging topic in his research group. Without his
guidance, support, and many interesting discussions over the years, this dissertation
would not have been possible. Furthermore, my thanks go to the co-reviewer of
my thesis, Prof. Jörg Hähner, for taking the time to read this document and for his
feedback.

I also want to mention some of the people that I had the privilege to meet and
work with during my time at the Distributed Systems group and the Nexus project.
Especially Frank Dürr always took the time to discuss my research, sometimes to the
detriment of his own full schedule. I would also like to thank (in alphabetical order)
Andreas Brodt, Nazario Cipriani, Dominique Dudkowski, Andreas Grau, Ralph
Lange, Faraz Memon, Stamatia Rizou, and Harald Weinschrott for the inspiring
discussions and the fun I had during my time as a doctoral researcher. Also, I
am grateful to Annemarie Rösler, Martina Guttroff, Sabine Thielmann, and Martin
Brodbeck for supporting me with administrative duties and thus allowing me to
focus on my research. Additionally, during my time at the Distributed Systems
group I had the chance to work with a number of talented and enthusiastic students.
I greatly enjoyed the opportunity and I am thankful to all of you for that.

I would also like to mention and thank the German Research Foundation, whose
funding for the SFB 627 Nexus allowed me to work on my research in the first place.

And last but certainly not least, I would like to thank my parents Werner and
Monika, my sister Ramona, and all my closest friends for their support and patience
both during my undergrad studies and my doctoral work. They put up with my
lack of time and my irritability but hardly ever complained. I am deeply grateful
for having all of you in my life.

3

Contents

Acknowledgments 3

Abstract 9

Zusammenfassung 11

1 Introduction 13
1.1 Motivation . 13
1.2 Background . 15

1.2.1 Technological Trends . 15
1.2.2 Paradigmatic Trend: Context-aware Computing 16
1.2.3 SFB 627: Nexus . 17
1.2.4 Context-aware Communication 18

1.3 Focus and Contributions . 21
1.3.1 Focus . 21
1.3.2 Contributions . 23

1.4 Structure . 24

2 Foundations 27
2.1 Context-based Communication: Contextcast 27
2.2 Requirements for Contextcast . 28
2.3 Classification of Related Work . 29

2.3.1 Classification Criteria . 29
2.3.2 Related Work . 31

2.4 System Model . 46
2.4.1 ContextHost . 47
2.4.2 ContextNode . 48
2.4.3 ContextRouter . 49
2.4.4 Overlay Network . 49

3 Contextcast Semantics 53
3.1 Contexts & Messages . 53

3.1.1 Client Contexts . 54
3.1.2 Contextual Messages . 55

5

Contents

3.2 Matching . 56
3.2.1 Operators . 57

3.3 Dissemination . 59
3.3.1 Perfect Dissemination . 59
3.3.2 Dissemination in a Distributed System 60
3.3.3 Directed Dissemination Reference Algorithm 62

4 Directed Contextcast Forwarding using Coarse Client Context Information 69
4.1 Overview . 69
4.2 Requirements . 70
4.3 Contextcast Forwarding with Coarse Location Information 72

4.3.1 Service Area Approximation . 72
4.3.2 Forwarding . 75

4.4 General Aggregation of Client Context Information 78
4.4.1 Aggregated Context Information 80
4.4.2 Pairwise Context Aggregation 81
4.4.3 Aggregation Selection: Context Similarity 84
4.4.4 Continuous Context Aggregation 92
4.4.5 Optimized Aggregation Candidate Selection 96

4.5 Evaluation . 97
4.5.1 Coarse Location Information . 97
4.5.2 General Aggregation . 101

4.6 Related Work . 109
4.7 Summary . 112

5 Directed Forwarding using Adaptively Propagated Client Context Information 115
5.1 Overview . 115
5.2 Requirements . 117
5.3 Adaptive Propagation of Client Contexts 117

5.3.1 Incomplete Context Knowledge 118
5.3.2 System Load Statistics . 120
5.3.3 Per-link Adaptive Context Propagation 125

5.4 Evaluation . 131
5.4.1 Setup . 131
5.4.2 Load Reduction: Impact Of Propagation Threshold 132
5.4.3 Load Reduction: Impact Of Message & Update Rates 133
5.4.4 Stabilization: Impact Of Exponential Moving Average 135
5.4.5 Stabilization: Impact Of Window Length 136
5.4.6 Analysis . 137

5.5 Related Work . 138

6

Contents

5.6 Summary . 140

6 Temporal Addressing in Contextcast 143
6.1 Overview . 143
6.2 Requirements . 145
6.3 Temporal Contextcast . 146

6.3.1 Temporal Extension for Contextcast 147
6.3.2 Historical Messages . 152
6.3.3 Future Messages . 166
6.3.4 Hybrid Messages . 172

6.4 Evaluation . 173
6.4.1 Historical Messages . 173
6.4.2 Future Messages . 181

6.5 Related Work . 184
6.6 Summary . 187

7 Conclusion 189
7.1 Summary . 189
7.2 Outlook . 191

List of Figures 195

List of Tables 197

List of Abbreviations 201

Bibliography 205

7

Abstract

Context-aware applications are able to react and adapt to the context of their
users. This context includes, for instance, location, properties of the user or their
surroundings, nearby devices, etc. Over the last years, powerful mobile devices, i.e.,
smartphones or tablet computers, have become an important part in many people’s
computing life. Most of these devices maintain a continuous high-speed network
connection, allowing to provide distributed applications with an uninterrupted
stream of data. Additionally, a huge number of sensors, both in these mobile
devices and deployed in our surroundings, enable the creation of comprehensive
context models. Such large-scale context models open up new possibilities for the
development of context-aware applications by providing access to relevant context
information from providers all over the world.

However, until now, applications need to query the context model for relevant in-
formation or register for events or messages; it is not possible to “push” information
to the mobile devices, neither from the infrastructure nor from other mobile devices.
To support application developers, we propose Contextcast, a novel communication
paradigm that allows for the dissemination of context-aware (or contextual) mes-
sages in a system of context-aware routers. This includes the fundamental semantics
to address clients using context constraints and a reference dissemination scheme
for such messages.

To enable Contextcast to grow to scales similar to the context-aware systems
that it is intended to be used with, we also propose a couple of optimized routing
approaches. They are designed to reduce the number of maintenance messages
that are necessary for the dissemination of contextual messages. One optimized
routing algorithm uses coarse context information to reduce the amount of context
updates propagated to routers. To this end, routers use the similarity of contexts
to automatically find groups of similar clients, whose information can then be
propagated as a single, coarse context. While this reduces the amount of context
information to be propagated, the resulting information loss causes more messages
to be forwarded, since routers no longer possess exact information to match against
the constraints in contextual messages. A configurable similarity threshold allows
for various trade-offs between the coarseness of the context information and the
resulting additional message load. The second orthogonal routing approach relies
on statistics to determine the characteristics of contexts and messages in the system.

9

Abstract

Without context knowledge, routers must assume the presence of a matching recipi-
ent and forward a message speculatively to disseminate it to all recipients. Using
statistics, routers can determine how often certain messages occur and then calcu-
late the benefit of propagating contexts corresponding to these messages. Several
parameters enable an administrator to adjust how fast the system reacts to changes,
depending on the observed messages and context updates.

Additionally, temporal support extends Contextcast with a powerful mechanism
that allows application developers and clients to address messages to certain con-
texts in the past or future. This includes an additional context attribute time and a
constraint with various, easy to use temporal operators. We also propose efficient
routing approaches for historical and future messages. Routing historical messages
focuses on efficient routing while effectively protecting the clients’ privacy, i.e., their
respective context history. The routing approach for future messages delays for-
warding messages until a matching context is registered, thus preventing needlessly
forwarded messages.

10

Zusammenfassung

Kontextbezogene Anwendungen sind in der Lage, auf den Kontext ihrer Nutzer zu
reagieren und sich entsprechend anzupassen. Dieser Kontext umfasst beispielsweise
den Ort, Eigenschaften der Nutzer oder ihrer Umgebung, Geräte in der Nähe,
etc. In jüngerer Zeit wurden leistungsstarke mobile Geräte ein immer wichtiger
Aspekt der Computernutzung vieler Menschen. Die meisten dieser Geräte verfügen
dabei dauerhaft über eine schnelle Verbindung mit dem Internet. Diese versorgt
Verteilte Anwendungen mit einem kontinuierlichen Strom an Daten. Zusätzlich
erlaubt eine große Anzahl an Sensoren, sowohl in mobilen Geräten als auch in
unserer Umgebung, die Erstellung von umfassenden Kontextmodellen. Solche groß
angelegten Kontextmodelle erlauben den Zugriff auf Kontextinformationen von
Anbietern auf der ganzen Welt. Dadurch ermöglichen sie neue Möglichkeiten für
die Entwicklung kontextbezogener Anwendungen.

Bis jetzt müssen Anwendungen relevante Informationen aus dem Kontextmo-
dell abrufen oder sich für Ereignisse oder Nachrichten registrieren; es ist nicht
möglich Informationen mittels eines “Push”-Verfahrens zu den mobilen Geräten
zu übermitteln, weder aus der Infrastruktur noch von anderen mobilen Geräten.
Zur Unterstützung mobiler Anwendungen und deren Entwickler schlagen wir
Contextcast vor, ein neuartiges Kommunikationsparadigma, das die Verbreitung
kontextbezogener Nachrichten mit Hilfe von kontextbezogenen Routern ermöglicht.
Dies umfasst die grundlegende Semantik um Nutzer zu adressieren sowie einen
Referenz-Verteilalgorithmus für solche Nachrichten.

Um Contextcast in ähnliche Regionen skalieren zu können wie die kontextbe-
zogenen Systeme, in denen es genutzt werden soll, schlagen wir außerdem eine
Reihe optimierter Vermittlungsverfahren vor. Sie sind darauf ausgelegt die Anzahl
der Verwaltungsnachrichten in Zusammenhang mit der Vermittlung kontextbezoge-
ner Nachrichten zu reduzieren. Einer dieser optimierten Vermittlungsalgorithmen
nutzt grobe Kontextinformation um die Menge an Kontextupdates, die zu Routern
propagiert werden müssen, zu reduzieren. Zu diesem Zweck nutzen Router die
Ähnlichkeit von Kontexten um automatisch Gruppen ähnlicher Nutzer zu erken-
nen, deren Information dann als einzelner, grober Kontext propagiert werden kann.
Obwohl dadurch die Menge an propagierter Kontextinformation verringert wird,
müssen auf Grund des Informationsverlusts mehr Nachrichten übermittelt werden:
Router besitzen keine exakten Informationen mehr, die sie für ihre Weiterleitungsent-

11

Zusammenfassung

scheidung gegen die Prädikate in der Adressierung kontextbezogener Nachrichten
auswerten können. Eine konfigurierbare Ähnlichkeitsschwelle erlaubt die Grobheit
der Kontextinformation und die daraus resultierende zusätzliche Nachrichtenlast
gegeneinander abzuwägen. Der zweite, orthogonale Ansatz verwendet Statistiken
um die Charakteristika von Kontexten und Nachrichten im System zu ermitteln.
Ohne Kontextwissen müssen Router die Anwesenheit eine passenden Empfängers
annehmen und eine Nachricht spekulativ weiterleiten, um alle Empfänger zu er-
reichen. Mit Hilfe der Statistiken kann ein Router bestimmen, wie oft bestimmte
Nachrichten auftreten und daraus den Nutzen bestimmen, den die Propagation
von Kontexten zu diesen Nachrichten hätte. Mehrere Parameter ermöglichen einem
Administrator einzustellen, wie schnell das System auf Veränderungen reagiert,
abhängig von den beobachteten Nachrichten und Kontextupdates.

Darüber hinaus erweitert eine temporale Unterstützung Contextcast um einen
mächtigen Mechanismus, der es Anwendungsentwicklern und Nutzern erlaubt,
Nachrichten an Kontexte in der Vergangenheit oder Zukunft zu adressieren. Dies
beinhaltet ein Attribute time, sowie ein entsprechendes Prädikat mit einer ganzen
Reihe einfach zu verwendender temporaler Operatoren. Wir schlagen auch effiziente
Verteilverfahren für historische und zukünftige Nachrichten vor. Die Verteilung histo-
rischer Nachrichten hat ihren Schwerpunkt dabei auf der effizienten Verteilung, die
gleichzeitig effektiv die Privatsphäre der Nutzer schützt, d.h. ihren Kontextverlauf.
Der Ansatz zur Verteilung zukünftiger Nachrichten verzögert solche Nachrichten,
bis ein passender Kontext registriert wird und verhindert so die Verteilung von
Nachrichten, für die sich nie ein passender Kontext anmeldet.

12

Chapter 1

Introduction
A journey of a thousand miles begins
with a single step.

(Laozi)

1.1 Motivation

Manhattan, downtown, September 15th 2016, during the evening rush hour. Tens of
thousands of people are on their way home after work or are going out. Most of
them carry a powerful mobile device, all equipped with previously unimaginable
computing power and numerous sensors that constantly gather information about
their vicinity. All maintain a high-speed connection to the Internet, either via
cellular connections or wireless access points scattered throughout the city. Via
this connection, the devices are constantly exchanging information with a huge,
distributed context model, jointly operated by Internet Service Providers (ISPs),
various other companies, Nonprofit Organizations (NPOs), and private individuals.
Invisibly working in the background, numerous applications process this data to
provide valuable services and information to the device owners.

Suddenly, a driver loses control of his vehicles on the Brooklyn Bridge, crashing
into two other motorists before finally coming to a stop. The lanes leading to
Brooklyn are blocked after the crash. This causes the streets in the financial district
to become clogged by all the people heading out of Manhattan. Within minutes, the
traffic in this part of the city would come to a halt.

A traffic control system is constantly monitoring and analyzing the enormous
amount of data available in the context model; a continuous query provides it with
a stream of anonymous motion patterns from people in the city. Within seconds, it
matches the sudden slowdown in the area to a traffic jam situation, pinpointing the
problem to the Brooklyn Bridge. A context-aware workflow is set in motion, which
notifies a human operator about the problem since it occurred during rush hour.

13

Chapter 1 Introduction

Traffic Control Message:
Location ∈ <polygon>
Transport = /vehicle/motorized
Destination = Brooklyn
Time ∩ [16:27,17:57]
Payload = <information about
 blocked bridge and
 alternative routes>

Study Group Message:
Location ∈ <polygon>
Type = Student
Class = „Operating Systems“
Payload = <information about
 study group>

© OpenStreetMap & contributors

Figure 1.1: Contextcast messages in downtown Manhattan

After that, it starts directing traffic away from the Brooklyn Bridge to alleviate the
beginning traffic jam.

The traffic control system sends out a context-aware message (or a Contextcast)
to inform people in the area of the problem and alternate routes. The message is
addressed to all people in the area south of Houston street, driving a motor vehicle,
with a destination somewhere in Brooklyn. Its payload contains a traffic warning
for Brooklyn Bridge and directs drivers (or their navigation systems) to use either
the Manhattan Bridge or the Williamsburg Bridge to get to Brooklyn (cf. Figure 1.1).
The mobile devices transfer the information into the on-board computer of the car
and therefore into the satellite navigation system, which then offers the driver an
alternative route.

Additionally, the experienced operator has estimated that a crash of this severity
takes at least an hour to clear and has thus set the validity time of the message from
now to 90 minutes into the future. Thus, anybody entering the target area in these
90 minutes or getting into their car to drive over the Brooklyn Bridge also receives
the message once their context changes and matches the message.

At the same time, just a little bit further north, a group of students at New York
University is preparing for an exam the following day with a late night study session.
They send out a message to all students close to the campus, who attended the same
class, to join them for the study session (see Figure 1.1). This uses a different kind
of context, the information about the classes a student attends, which is part of a
student’s social network profile. Thus, the same Contextcast system scales from a

14

1.2 Background

small, local message dissemination on a university campus to a large scale system
with several hundred thousand possible recipients in downtown Manhattan.

These scenarios show how the rapid progress in various areas such as mobile
computing and communication, as well as the spreading of context-aware comput-
ing contributes to novel and useful services in the future. In contrast to current
techniques such as (IP-based) Multicast or Publish/subscribe, addressing clients via
their contexts frees users from the burden of explicitly selecting interesting messages
by joining or subscribing. Often, this is even impossible, since it may not be known
in advance what kind of messages and what information are going to occur in a
network.

However, missing pieces to enable such a large-scale context-aware communication
are (1) a method that allows senders to address recipients using constraints on
their context attributes, and (2) efficient dissemination algorithms to deliver such
context-aware messages. A communication system designed using these building
blocks offers a valuable service for context-aware applications on a large scale.

This dissertation focuses on the development of these mechanisms and the design
of a context-aware communication system for use in (but not limited to) large-scale
context-aware system such as Nexus (see Section 1.2.3). In this chapter, we provide
an overview of the background for and the challenges addressed in this dissertation.

First, we discuss the background and related technologies in more detail in
Section 1.2. Second, Section 1.3 shows the focus and contributions of this dissertation.
Finally, in Section 1.4, we outline the contents of the following chapters, in which
we present the results of this dissertation.

1.2 Background

1.2.1 Technological Trends

The development of a Contextcast system has been supported mainly by two ongoing
technological trends: miniaturization and wide availability of mobile Internet connectivity.

For almost half a century now, Moore’s Law [Moo65] has closely approximated
the development of integrated circuits. This has led to the wide availability of
ever smaller and more powerful mobile devices, including notebook computers,
tablet computers, or smartphones. At the same time, these devices have gotten
more and more abilities to sense their surroundings. A modern smartphone comes
equipped with a Global Positioning System (GPS) sensor, acceleration and gyration
sensors, light sensors, microphones, etc. All of these enable a device to capture
context information about its owner and use the gathered data for context-aware
applications.

15

Chapter 1 Introduction

Additionally, all such mobile devices include technology to establish a high-speed
connection to the Internet. Cellular network connections, such as the 3rd generation
Universal Mobile Telecommunications System (UMTS) are widely available today
and offer bandwidths of several hundred kbit/s and up to 7.2 Mbit/s with High-
Speed Downlink Packet Access (HSDPA). Its successor, Long Term Evolution (LTE),
will further raise this towards peak downlink rates of 100 Mbit/s. Another positive
influence is that prices for data transferred via cellular connections has dropped
dramatically in recent years, thus allowing people to maintain a continuous Internet
connection, independent of their current location. In certain areas—mostly public
places such as airports or cafés—Wireless Local Area Network (WLAN) hotspots
are available, which provide a faster and often even cheaper alternative. The IEEE
802.11n standard, successor to 802.11a and 802.11g, allows data transfer rates of up
to 450 Mbit/s and is seeing adoption in newer devices, while devices equipped with
one of its predecessors are in wide use today. Therefore, more and more people
possess at least one device which maintains a more or less continuous, high-speed
connection to the Internet.

1.2.2 Paradigmatic Trend: Context-aware Computing

A continuous connection to the Internet provides users and applications with access
to various information gathered by sensors in our surroundings. This, combined
with the information captured by small personal devices, has given rise to a new
class of applications: context-aware systems. Context-aware systems improve the
user experience, e.g., by presenting relevant information or by executing certain
tasks without explicit interaction.

There exist various definitions for the terms “context” and “context-aware”;
the predominant one states that “Context is any information that can be used to
characterize the situation of an entity. An entity is a person, place, or object that is
considered relevant to the interaction between a user and an application, including
the user and applications themselves.” And “[a context-aware system] uses context to
provide relevant information and/or services to the user, where relevancy depends
on the user’s task.” [DA99] In particular, this definition of context includes the user’s
location. Context-aware systems can therefore be viewed as a natural extension
of Location-based Services (LBSs), which use only the current location to provide
relevant information and services.

To provide their functionality, context-aware applications access the relevant
information in a context model. Existing context models, however, use their own
formats and communication mechanisms [BDR07] or provide information for a
specific application only [BCQ+07]. One reason is that the complexity of managing
such models increases with the scope (local vs. global) and the level of detail (coarse

16

1.2 Background

World Wide Space

Platform Services Core Services

Applications

Sensor
Data

Historical
Data

Static
Data

Context
Explorer

Messaging
Client

Visualization
Client

Context
Information
Layer

Federation
Layer

Application &
Middleware
Layer

Distributed Data
Processing

Contextcast Context
Broker

Context
Reasoning

Operator
Repository

Reasoning
Templates

Context-aware
Workflows

Middleware
Services

FN

CP

FN

Platform Services

FN

App

CP

FN

App

FN

App

FN

MWS

Figure 1.2: The Nexus architecture [LCG+09]

vs. fine). This fragmentation limits the reuse of information for different context-
aware applications and causes information and functionality to be duplicated in
different models.

1.2.3 SFB 627: Nexus

As we have stated in the previous section, context-aware applications need to model
context to provide their functionality. Application-specific, limited models, however,
are inefficient due to the necessary duplication of functionality and information. The
collaborative research center1 627 “Nexus”, funded by the Deutsche Forschungsge-
meinschaft (DFG), developed technologies to provide a detailed, large-scale context
model [GBH+05, REF+06]. The project deals with the modeling of and efficient
access to global, fine grained context information for different context-aware appli-
cations.

At the core of the project lies the Nexus architecture, which provides a detailed,
large-scale context model. It is shown in Figure 1.2 and described in more detail
in [LCG+09]. The system is divided into three main layers (or tiers), which we
present here in a short overview: Context Information Layer, Federation Layer, and
Application & Middleware Layer.

1German: Sonderforschungsbereich (SFB)

17

Chapter 1 Introduction

• The Context Information Layer contains Context Providers (CPs) from different
data providers. They provide access to various forms of context information,
such as static, sensed, or historical data. Each CP usually only contains some
part of the global model, e.g., a company can provide detailed floor plans
and sensor information for their building(s), while another company provides
global map data, but much less detailed.

• The Federation Layer in the middle provides various services. These are usually
distributed among the available Federation Nodes (FNs). We can distin-
guish two types of services: Platform Services, which are typically used by
applications, such as Contextcast or Context Reasoning, and Core Services,
which provide functionality for Platform Services, such as the Context Bro-
ker [LDR10], a distributed system to discover relevant context providers for
query processing.

• The Application & Middleware Layer at the top primarily hosts the various
context-aware applications. They can access the services provided by the
Federation Layer to Additionally, Nexus provides support for Context-aware
Workflows as part of its Middleware Services (MWSs). This allows designers
to split off parts of an application’s logic into one or more context-aware
workflows.

Among the services in the Federation Layer of the Nexus platform is a context-
based communication mechanism (or Contextcast). It allows messages addressed
to clients with a specific context and handles the efficient dissemination of these
messages. This service and its efficient implementation are the main topics of this
dissertation.

1.2.4 Context-aware Communication

Context-aware communication, or Contextcast, provides context-aware applications
with the means to disseminate messages to a group of recipients with a certain
context. This enables senders to address otherwise unknown recipients. In particular,
Contextcast does not require explicit addresses, such as Internet Protocol (IP) ad-
dresses. In this regard, Contextcast differs from other communication forms, which
employ explicit (group) addresses for their messages. Instead, contextual messages2

specify constraints on the context attributes of clients. Messages are delivered to the
clients whose context attributes match these constraints. A network of context-aware

2We use the terms “contextual messages” and “context-aware messages” interchangeably throughout
this dissertation.

18

1.2 Background

routers is responsible for the efficient dissemination of the contextual messages to
their recipients.

A typical scenario for this new communication paradigm is the dissemination
of warning messages. This includes warnings about high pollen counts in an
area for people with particular allergies or the traffic warning from Section 1.1.
The Contextcast system is responsible for the delivery to the motorists in an area
with a particular destination. Clients automatically receive the messages, without
having to constantly query the system for information. Other possible uses include
information about cultural events, appropriate for a person’s interest and schedule,
or advertisement messages, for people in the vicinity of a store that match the store’s
customer profile.

In addition to these informative, unidirectional messages, which are sent out
by organizations or companies, another possible use for Contextcast is as a basis
for a context-aware instant messaging system (see, e.g., [DPG+08]). Such a system
provides clients with a bidirectional, context-aware messaging. This can be used,
for instance, for the example from Section 1.1, to invite people that are currently on
campus to a study group matching their academic major and semester.

Contextcast has some obvious similarities to other communication schemes but
improves upon them in various ways. We give a short overview of the state of the
art here and provide a much more detailed classification and discussion of related
work in Section 2.3.

Related Communication Mechanisms

Group Communication (or multicast). This communication paradigm allows one
or more senders to address a message to a group of recipients (hence the name). The
group is specified using a group address or identifier. Recipients explicitly join the
group(s) of messages they wish to receive. Routers efficiently disseminate messages
to all group members using a dissemination tree; messages are only duplicated at
branching points in the tree, thus minimizing the message load.

This technique has two drawbacks compared to Contextcast: First, it requires
clients to join the group(s) they are interested in. Providing a context-aware com-
munication system on this basis would entail a knowledge of all groups and a
specification of the context that each one represents. Only then can clients join and
leave groups depending on their current context. Contextcast, in contrast, requires
no action on the part of the recipients; it provides senders with a very expressive
way to specify recipients in terms of their context. Second, and related to the
previous point, specifying recipients using their context provides a very fine-grained
addressing scheme. A message can address a single client or all the clients in a
country. Even if it were possible to automatically map recipients to one or more

19

Chapter 1 Introduction

groups according to their context, this would not scale to the same fine granularity.
Replicating such a fine-grained addressing using groups would require a group for
every element of the power set of all clients (except the empty set and the set of all
clients). This is obviously not scalable beyond a few participants.
Geographical Communication (or geocast). Geocast also allows addressing and
disseminating messages to a group of recipients. The groups, however, are implicitly
formed by the presence of clients inside of the target area of the message. Similarly
to multicast, the actual message dissemination usually takes place along a tree of
routers to minimize the overhead of duplicate messages.

Arbitrary geometrical shapes as target area allow for a very fine-grained speci-
fication of recipient groups. The granularity of the addressing scheme is limited
only by the precision of the positioning system used to determine client location.
Symbolic addresses, such as “building V.38, room 2.308”, may not be as fine-grained
but correspond more closely to the human perception of areas.

While geocast offers a fine-grained addressing of clients according to their location
and an efficient dissemination of messages, it lacks the ability to address other
context attributes. Also, the message dissemination of geocast systems commonly
relies on the containment relation present in locations. Since arbitrary context
attributes do not satisfy this property, the scheme cannot be extended easily to
support such attributes.
Event-based Systems (or Publish/subscribe). Publish/subscribe (Pub/sub) sys-
tems, especially the content-based variety, provides consumers with an expressive
way to specify and receive interesting events based on the events’ content. As such,
it is very similar to the way that contextual messages are addressed using constraints
on context attributes. We therefore model our context-aware routing approach after
the concepts of content-based Pub/sub.

However, content-based Pub/sub systems require clients to subscribe to interest-
ing events. Translating arbitrary context attributes into filters for event content is
difficult to impossible. Contextcast, in contrast, lets senders specify the intended
recipients using their context attributes. It thus removes the complications that arise
from mapping context attributes to event subscriptions.

In its pure form, content-based routing relies solely on client subscriptions on
event content and does not consider the recipient context when disseminating events.
There are, however, approaches that aim to extend the Pub/sub approach to become
context-aware.

First, Location-dependent subscriptions allow clients to incorporate their location
into subscriptions. The approach does not support client context other than loca-
tion, though. Second, developed independently from our approach, a context-aware
Pub/sub system aims to incorporate the context of both producers and consumers.
Any node (both producers and consumers) can specify their context: Events can

20

1.3 Focus and Contributions

contain constraints on consumer context in addition to the data of the event; sub-
scriptions can specify constraints on producer context in addition to constraints on
event data. While Contextcast also employs constraints on the recipient context, its
semantics are simpler and purely sender-centric: only contextual messages contain
constraints, while recipients only specify their context, not additional constraints on
message content. Despite context-aware Pub/sub providing a similar functionality
as Contextcast, we focus on the efficiency of the routing algorithms for contextual
messages. This is particularly important for client contexts, which are very dynamic
in nature. In addition, Contextcast provides a temporal extension for contextual
messages, allowing senders to address clients with a particular context some time in
the past or future. The focus of this extension is an efficient as well as privacy-aware
dissemination of such messages.

1.3 Focus and Contributions

Following the examples and the discussions in the previous sections, we are now
able to specify the focus and contributions of this dissertation.

1.3.1 Focus

Regarding the scope of this dissertation, we can identify a number of main aspects:
functionality, system size, system structure, location model, and context quality.

The trends we discussed in the previous section suggest an increasing focus on
context-aware computing, freeing user attention for more important tasks. Con-
textcast provides programmers with the communication functionality to develop
innovative context-aware applications and services. To this end, Contextcast needs
to be both flexible and easy to use to become a useful tool for application developers.
Regarding functionality, this dissertation therefore focuses on a communication
infrastructure with a relatively simple Application Programming Interface (API) so
developers do not need to concern themselves with the actual implementation of the
system. Additionally, we introduce an intuitive but powerful addressing mechanism,
allowing recipients to be specified using constraints on context attributes. This
allows to determine recipients using constraints similar to the informal “people with
the major computer science” or “people who like jazz music”. A temporal addressing
scheme further increases this flexibility, allowing the specification of recipients that
matched a set of constraints at some time in the past or will match it in the future.

System size refers to the scale of a Contextcast system. The Nexus project (see
Section 1.2.3), which provides the surroundings for Contextcast, envisions a future
of large-scale, shared context models. The information in these models ranges from

21

Chapter 1 Introduction

very coarse to very detailed. To support context-aware application and services in a
large-scale system such as Nexus requires a communication framework that also
scales well to a large number of clients. Thus, we focus on a distributed system of
context-aware routers, which can be extended easily to support more clients. Such a
system, however, requires scalable routing approaches to deliver a given message
to the clients matching its addressing. In particular, the routing algorithms need to
keep both the message dissemination and maintenance load low.

System structure is concerned with the network structure of our context-aware
communication system. Both currently prevalent mobile data connections, cellular
and WLAN, both offer a wireless connection to a fixed, wired network infrastructure.
Thus, the focus of this dissertation is on a Contextcast system in such a fixed network
infrastructure instead of, e.g., wireless ad-hoc networks. In general, for economical
and practical reasons, a global context-aware communication framework should
exploit existing infrastructure, such as the Internet. Previous attempts to add
functionality on the IP layer, however, have proven to move very slowly, if at all, e.g.,
the introduction of multicast mechanisms beyond individual ISPs [CRSZ02]. For
this reason, this dissertation presents an approach for context-aware communication
that does not require the modification of existing routers. Instead, we use an overlay
network of context-aware routers to disseminate messages. This functionality can be
incorporated in future IP routers, supplementing or replacing nodes in the overlay.

The location model plays an important role, due to the special role of location as
primary context (cf. [RBB03]). We employ location to structure the Contextcast system,
to exploit local clusterings of similar clients in the physical world. There exist a
number of different location models, from geometric models, such as World Geodetic
System 84 (WGS84) [Nat97], over symbolic models [Leo98], where certain areas
become logical locations, to hybrid models, which combine the two [DR03]. Both
symbolic and hybrid models increase the complexity over a simpler geometric model.
To limit the complexity in this respect, we have chosen a geometric location model
based on WGS84. This model is sufficient to demonstrate the general principles
in developing a Contextcast system. Also, it does not limit the system, as a more
complex model can be substituted when necessary. (As we are discussing in
Chapter 3, all that is required is a definition of the attribute, e.g., a symbolic location
model, as well as the supported operators for this attribute, such as a containment
operator.)

Naturally, whenever we observe or describe the physical world, certain inac-
curacies are present in the data. There are various reasons for those, such as the
inaccuracy of a GPS sensor or simply outdated information. While these inaccuracies
may result from different sources, we can group them under the term context quality.
In this dissertation, we handle the aspect of context quality in particular through the
development of routing algorithms for imperfect information. In particular, these

22

1.3 Focus and Contributions

algorithms work with coarse, aggregated or incomplete data to lower the overall
system load and thus improve Contextcast’s scalability.

1.3.2 Contributions

The goal of this dissertation is the design of a context-aware communication system,
to provide context-aware systems with a means to disseminate messages using con-
straints on context attributes. Such a system provides the developers of large-scale
context-aware applications and services with a valuable communication platform
that does not rely on traditional communication patterns. Due to the scale of
such systems, a particular focus of this work is the efficiency and scalability of the
developed mechanisms.

The particular contributions can be derived from the focus discussed in the
previous section and summarized as follows:

1. We provide a semantic definition for a context-aware communication system
that allows for arbitrary context attributes and constraints on these attributes.
These constraints allow for a context-aware addressing of messages.

2. We introduce a reference message dissemination algorithm for a distributed
system of context-aware routers. This algorithm delivers messages to all those
access networks where matching recipients have registered their information.
It achieves this using the minimum number of forwarded copies of a message
in the given network topology.

3. We present an optimization to the reference dissemination algorithm to im-
prove the scalability of the system. It reduces the number of context updates
that are necessary for the maintenance of context information on routers, thus
lowering the system load. To this end, it allows routing context-aware mes-
sages using coarse context knowledge. This coarse information is automatically
derived from client contexts and their similarity.

4. A second, orthogonal improvement of the routing algorithm optimizes the
nodes that context information is maintained on. Using statistics, the routers
determine the direction where particular message classes originate. Only
contexts that may match these messages need to be forwarded in this direction.
Again, this reduces the amount of update messages to improve the system
scalability.

5. We detail an extension to the basic Contextcast semantics, allowing senders to
address messages to recipients with a matching context some time in the past
or future. This includes storage and indexing of client contexts, complete with

23

Chapter 1 Introduction

privacy preserving measures, as well as efficient routing mechanisms for these
messages.

6. We provide performance analyses to validate the dissemination algorithms
that we introduced for a context-aware communication system.

The author has developed the basic concepts of Contextcast, its semantics and
the reference dissemination algorithm (items 1 and 2), as well as the optimized
dissemination approaches using coarse context information and adaptively prop-
agating context information (items 3 and 4, respectively). He has also performed
an evaluation of these optimized algorithms using a prototype he implemented
(item 6). The concepts for adding support for temporal relations to Contextcast
have been developed by the author; this work was performed in collaboration with
Ronald Schertle, who also performed their evaluation, during his Diplomarbeit
(item 5). Throughout the process, Frank Dürr contributed to the refinement of all
these approaches via discussions and reviews.

1.4 Structure

The structure of this thesis follows the basic design of the Contextcast system: It
starts with the semantic definitions and the reference dissemination algorithms that
form the foundation of such a context-aware communication system. After that,
it shows two approaches that improve the scalability of the system by reducing
the update load that is required to maintain the routing information. Finally, it
introduces an extension to the Contextcast paradigm, allowing the addressing of
clients with a certain context some time in the past or future. The following provides
a more detailed overview of these items.

Chapter 2 presents the necessary foundations for a context-based communication
system. We start by introducing the notion of context-based communication, fol-
lowed by a discussion of the requirements for a large-scale Contextcast system. After
that, we give an overview of related work and classify the approaches according
to various criteria; in particular, we focus on the improvements that Contextcast
offers over other related concepts. Finally, we show the system model that serves
as the basis for the remainder of this thesis. Some of these concepts have been pre-
sented in a previous paper at the IEEE International Conference on Communications
2009 [GDR09].

In Chapter 3, we introduce the basic, formal semantics of context-aware commu-
nication. This includes a definition of the primitive elements of such a system, client
contexts and contextual messages, as well as the matching semantics between the
two. The latter is particularly important since it specifies how and which contexts

24

1.4 Structure

are addressed. After that, we discuss the dissemination semantics in a distributed
system of context-aware routers and provide a reference algorithm for a directed
dissemination of contextual messages using client context information. We end the
chapter with a short discussion of the system load caused by the reference dissemi-
nation, in particular the update load caused by maintaining context information on
routers. This motivates the advanced routing algorithms we present in the following
two chapters. Parts of this work have also been included in [GDR09].

Chapter 4 contains the first of two optimized routing algorithms for Contextcast. It
is based on the idea that using coarser information for routing contextual messages
allows the routers to reduce the amount of context updates. We introduce this
concept using the example of coarser location information. While the approach works
well for location with the inherent discretization of our system design, it falls short
for context attributes in general. To overcome this limitation, we show a generalized
approach where routers exploit similarities between contexts to aggregate multiple
contexts into a single, coarser representation. We also discuss how messages are
disseminated with the inherent loss of such coarser context information. For both
algorithms, we therefore present simulation results that show the update and
message load and compare it to the reference dissemination algorithm. We also
present results of how the aggregation affects system load over time, i.e., whether
clients connecting and disconnecting leads to a noticeable decrease in efficiency
due to the aggregations degenerating. The approach has been introduced in parts
in a paper at the 6th Euro-NF Conference on Next Generation Internet (NGI)
2010 [GDR10].

The second advanced routing approach is the topic of Chapter 5. At its core
lies the idea that it is unnecessary to maintain every context throughout the router
network. If a context is used less often for forwarding a message than it is updated,
it is more efficient to simply “flood” such messages—potentially without a matching
recipient—instead of constantly updating the context information. To aid in this
decision, we present a number of statistics that each router maintains for client
contexts and messages. We also show how these statistics can be used to calculate
the benefit of a piece of context information, i.e., how many messages it prevents
at what cost in update load. The routers then use this benefit to adaptively decide
whether a piece of information lowers the overall load on a given link. Again,
forwarding messages without context knowledge causes a certain amount of need-
lessly forwarded message, thus counteracting the reduction achieved by the adaptive
propagation of contexts. We show simulation results to highlight the reduced system
load that is possible with the adaptive propagation of contexts. Additionally, we
show how the system reacts to changes in message addressing, thus requiring a
different set of context information for efficient operation. Parts of this work have
been included in a previous paper at the 7th International Conference on Wireless

25

Chapter 1 Introduction

and Mobile Computing, Networking and Communications (WiMob 2011) [GDR11].
Chapter 6 extends our Contextcast system to allow for a temporal addressing of

contexts, both historical and future ones. Addressing historical contexts requires
some form of context archive, which poses a serious privacy concern. We show
how contexts are stored locally in access networks and how Virtual Identities are
used to protect the clients’ privacy. Additionally, we present a multi-step routing
approach to first find matching contexts, then resolve their identities and then
deliver a message, either directly or via a mailbox. We also introduce a routing
mechanism for future messages, which exploits the propagation of contexts to
delay message forwarding until a matching context registers with the system. For
historical messages, we present simulation results that show how collecting the local
results can significantly improve the load of the historical routing algorithm. For
the routing of future messages, we provide an analytical evaluation of the storage
requirements for delaying messages. Some concepts have been introduced in a paper
at the 6th Annual International Conference on Mobile and Ubiquitous Systems:
Computing, Networking and Services (MobiQuitous 2009) [GSDR09].

Finally, Chapter 7 concludes the dissertation with a summary of our contributions
and an outlook on promising future research directions.

26

Chapter 2

Foundations
A successful man is one who can lay a
firm foundation with the bricks others
have thrown at him.

(David Brinkley)

2.1 Context-based Communication: Contextcast

A context-based communication system—or Contextcast—offers an infrastructure
that provides context-aware message dissemination for applications and clients in
context-aware systems. In the following paragraphs, we provide an intuitive notion
of the concepts, which should suffice as basis for the discussions in this chapter; we
formally define contextual messages, contexts, the matching between the two, etc.
in Chapter 3.

Contextcast as a communication framework is intended for (but not limited to) use
in large-scale context-aware systems. It allows contextual messages to be addressed
and disseminated using the recipients’ contexts instead of explicit addressing via,
e.g., IP addresses or group names/addresses. Applications interact with such a
system by registering contexts and sending messages with constraints on clients’
contexts. This paradigm offers great flexibility—no need to create particular recipient
groups in advance—while at the same time being simpler for users—applications
can derive the context of a user themselves or the users can describe it in terms of a
number of attributes.

As such, it differs from traditional multicast or Pub/sub approaches, which
require joining a recipient group, subscribing to certain events, and/or explicit
addressing of recipients by senders. When using Contextcast, an application or a
client does not need to join or subscribe, instead they simply register one or more
contexts that describe this client; this registration can also happen automatically
by deriving a client’s context from a set of observed conditions, e.g., by sensors
in a smartphone or their surroundings. Similarly, when sending messages, an

27

Chapter 2 Foundations

application developer or a user can simply use context constraints to specify which
clients should receive a particular message. The system is responsible for the
delivery of the message. Thus, Contextcast can serve as the binding component
between different parts and services in large-scale context-aware applications.

Similarly to Pub/sub systems, the Contextcast paradigm decouples senders and
recipients in three main aspects (see [EFGK03]): (1) space decoupling: senders and
recipients do not need to know each other nor do they even need to know how
many senders or recipients, respectively, are involved for a particular type of
message, (2) interaction decoupling: both sending and receiving messages takes place
asynchronously, thus not blocking senders and recipients, and (3) time decoupling:
through the temporal extension we introduce in Chapter 6, senders can specify a
temporal constraint on messages, thus not requiring senders and recipients to be
connected to the system at the same time.

Additionally, the dissemination mechanism is transparent to application develop-
ers and users: An application can send and receive messages simply by connecting
to the system, sending messages and registering contexts, respectively. The activities
that lead to messages being delivered are of no concern to developers or users.

In the next section, we discuss various requirements for a large-scale context-
aware communication system. They serve to better understand the challenges
one faces when designing a framework such as Contextcast. They also reflect the
guiding principles in the design of Contextcast, which we introduce in the remaining
chapters.

2.2 Requirements for Contextcast

On the basis of the previous examples and discussion, we can now introduce the
basic building blocks and requirements for our Contextcast system. Obviously, an
integral part of Contextcast is a formal specification of the communication paradigm.
This includes (1) a specification of client contexts, which are used as recipients
for contextual messages, (2) a definition of the messages in such a system and,
in particular, the way contextual messages are addressed, and (3) the matching
semantics between the two, i.e., which message needs to be delivered to which client.
All these form the basis of a context-aware communication system and we formally
define them in Chapter 3.

However, while the semantics pertain to the effectiveness of a Contextcast system,
the following requirements focus on the efficiency and scalability of such a system.
We present solutions to these points in the later chapters, as laid out in Section 1.4.

1. Efficient Contextcast Message Forwarding aims to limit the forwarding of mes-
sages towards actual recipients. For reasons of scalability, Contextcast uses a

28

2.3 Classification of Related Work

network of nodes for message dissemination. Broadcasting messages in such a
network would ensure that all clients receive a message, in particular those
whose context matches the addressing. It would, however, severely restrict the
system’s scalability. Messages should therefore only be forwarded to nodes
that have matching recipients connected or are on the path to a node with
matching recipients. To this end, nodes require information about connected
clients and their context(s).

2. Efficient Update Propagation complements the previous routing approach. Nodes
require client context information for efficient forwarding decisions. Broadcast-
ing all context updates limits the system’s scalability similarly to broadcasting
messages. Therefore, in the interest of scalability, it is necessary to keep the
amount of propagated context updates low. To this effect, the approach needs
to reduce redundant information in context updates. Also, it should only
propagate context updates to nodes that need it for their routing decision, i.e.,
towards senders of messages that a context might match later.

3. Support for Temporal Addressing extends the notion of client contexts to a tem-
poral component. It allows to address client contexts that occur at some point
in the past or future. This also augments the system with a comprehensive
temporal decoupling. Temporal Contextcast requires an extension of the mes-
sage semantics to include temporal constraints. Particular care must also be
taken to ensure that the privacy of clients is not compromised, especially with
regard to their archived historical contexts.

2.3 Classification of Related Work

In its essence, Contextcast is a group communication mechanism. It allows senders
to address and disseminate messages to a group of recipients, specified via their
context. This makes it similar to other communication systems that also offer
m : n communication patterns. There are, however, a number of aspects that set
Contextcast apart from similar technologies. In this section, we describe these
criteria and subsequently use them to classify related work.

2.3.1 Classification Criteria

Implicit Addressing

Contextcast uses implicit addressing to specify the recipients of a message. Implicit
addressing means that recipients are not specified in terms of their (explicit) network

29

Chapter 2 Foundations

addresses. Instead, Contextcast enables senders to define the set of recipients using
constraints on their context attributes. Since these constraints can be rather complex,
this allows for a very fine-grained specification of the recipients of a message. Explicit
addressing, in contrast, uses the network addresses or an address of a recipient group
to explicitly specify recipients, usually independent of their context attributes.

There are a number of advantages of using implicit over explicit addressing: First,
implicit addressing decouples senders and recipients. A sender does not require
detailed information about a particular recipient, which may be used to profile
clients. Instead, they simply specify the context constraints and the Contextcast
system takes care of the message dissemination. Nor do recipients need to know
about possible messages or senders, they merely register with the system to receive
messages addressed to them. Second, implicit addressing provides very fine-grained
recipient groups. An addressing can be as specific as to address only a single client
or as broad as to address most of the clients on a continent. To support such a
fine granularity for explicit addressing would either require listing every recipient
in every message or creating an enormous amount of recipient groups to address
(basically one group for each element of the power set of the set of all clients). This
poses a serious scalability limitation for explicit addressing schemes. Additionally,
if a system with explicit addressing uses group addresses, these groups need to be
established before addressing them, so clients can actually join the groups.

One disadvantage of implicit addressing, though, is an added overhead during
message dissemination. Contextcast routers cannot simply lookup a single network
or group address when making their forwarding decision, they need to evaluate
the context constraints. This requires that the system knows about clients and their
contexts, i.e., client context updates need to be propagated to the routers. This
puts a significant load on the routing infrastructure, especially with dynamic client
contexts. However, in our opinion, the added flexibility far outweighs this drawback.
In this dissertation, we also focus on algorithms to cope with this update load that
is generated by context updates.

Sender-centric Dissemination

Contextcast provides a sender-centric communication model. This means that
senders specify the intended recipients of their messages. Such a recipient specifica-
tion can, e.g., be a group address in explicit addressing or constraints on context
attributes in implicit addressing. Such a sender-centric model requires little or no
action on behalf of the recipients, thus allowing users to focus their attention on
more important tasks.

The opposite is recipient-centric dissemination, where recipients specify what
kind of messages they are interested in. This usually happens by clients joining a

30

2.3 Classification of Related Work

multicast group or subscribing to a certain subject. Such a scheme, however, requires
(1) that clients know about possible messages, and (2) subscribe to the ones they are
interested in. The advantage, though, is that clients receive exactly the messages
they have subscribed to.

A sender-centric communication frees users from this responsibility and allows
senders to specify the intended recipients. And if a message is mistakenly delivered
to a recipient, the receiving process can simply drop it, without informing the
user—but possibly after sending feedback to prevent such messages in the future.

Complex Addressing Support

Contextcast provides a powerful scheme for addressing recipients. First, a message
can specify an arbitrary set of constraints on context attributes. Only clients whose
context matches these constraints receive the message. Other systems’ support for
such context information is either very limited or missing completely. Geocast, e.g.,
can address clients at specific locations, but does not provide any other context
information for addressing.

In addition to this flexible context addressing, Contextcast also provides temporal
predicates to further enhance its addressing power. Using these temporal predicates,
which we discuss in detail in Chapter 6, senders can augment the addressing with
temporal constraints. Thus, such messages address only clients whose contexts at
some time in the past or the future match the addressing. Again, most other systems
lack this ability when addressing messages.

2.3.2 Related Work

Our approach for a context-based communication system and the corresponding
algorithms and protocols are related to a number of works in different fields.
First, there are the multicast or group communication approaches, in particular
on the network and application layer. The latter ones use an overlay approach on
top of an IP infrastructure and are therefore similar to the overlay approach we
present for Contextcast. Second, there are the various geographic routing methods,
which include geocast, the management of spatial information or Peer-to-Peer (P2P)
approaches with a coordinate structure. These techniques enable routing according
to location, which is one part of a client’s context, but fall short when it comes to
addressing other context attributes. Third, there are various Pub/sub approaches,
in particular content-based systems, which enable clients to select events according
to constraints on arbitrary event attributes. This is closest to the context constraints
we present for Contextcast, however, it requires clients to select events, whereas in
Contextcast senders use these constraints to select recipients for their messages.

31

Chapter 2 Foundations

We present each of these areas in detail and classify it according to the criteria we
introduced in the previous section. This section is intended as a general overview of
related work. In later chapters, where we present additional optimizations for our
system, we also present additional related work for each particular approach.

Multicast Communication

Multicast approaches in their broadest sense allow for one or more senders to
address messages to a group of recipients, usually a subset of all hosts in a net-
work [CD85]. They are also sometimes referred to as group communication mecha-
nisms. Messages are sent to a group address or identifier and recipients are associated
with one or more of these groups [Pow96]. Such a communication can take place on
the Data Link Layer (for Local Area Networks (LANs)), the Network Layer, or the
Application Layer. Since we consider an Internet-wide communication scheme, we
focus our discussion on the latter two.
Network Layer. The famous “End-To-End Arguments” [SRC84] are that function-
ality should be added to higher layers in a network unless an implementation at a
lower level greatly improves performance. The authors of [DC90] reason that for
this performance benefit multicast should be implemented in the Network Layer.
Various other authors, e.g., [BFC93, Moy94, DEF+96], have since researched efficient
multicast dissemination in the Network Layer.

They all employ a tree-structure to efficiently disseminate messages to the group
members. There are, however, two different basic types of such dissemination trees.
Source-based tree approaches, e.g., [Moy94], maintain a separate dissemination tree
for each sender. Such a source-based tree can be constructed to be optimal for each
sender and a given group. Shared tree approaches, such as [BFC93], in contrast, use
a single tree for each group. These shared trees are usually rooted at a (central)
rendezvous node, towards which both messages and group joins are forwarded.

While this is usually does not lead to optimal trees for every sender, maintaining
a single shared tree per group is less costly than maintaining one for every pair
of sender and group. Because of the less costly maintenance, Contextcast—as we
introduce in Section 2.4—also employs an undirected, acyclic graph as its shared
dissemination structure.
Application Layer. While the previously mentioned works focus on multicast
protocols at or below the network layer, for various reasons their adoption in
existing infrastructures proved rather slow [CRSZ02]. For this reason, a number
of alternatives to IP multicast were researched. (The authors of [ESRM03] provide
an overview of these alternative approaches.) One particular class of alternatives
are Application Layer Multicast / Application Level Multicast (ALM) approaches
(sometimes also referred to as Overlay Multicast), which do not rely on modifications

32

2.3 Classification of Related Work

to the existing infrastructure. Instead, their operation is overlaid on top of existing
IP infrastructure. End systems form the dissemination tree(s) and handle the
forwarding of multicast messages. Numerous authors, e.g., [PSVW01, RHKS01,
BBK02, CRSZ02, Cha03], have explored such approaches.

There are different methods how these approaches establish the dissemination
tree [ESRM03]. On the one hand, mesh first approaches begin by connecting all
participants in a meshed network. Then a subset of nodes and connections is selected
to establish a particular dissemination tree. Examples include Narada [CRSZ02]
or Scattercast [Cha03]. Tree first approaches, on the other hand, directly connect a
node to a parent node in the dissemination tree, based on metrics such as latency
or available bandwidth. Yoid [Fra00] or Overcast [JGJ+00] belong to this group.
(Also see [HASG07] for a much more comprehensive overview of different ALM
approaches.)

Since modifying the network layer proved so difficult and slow, our Contextcast
approach also focuses on an Application Layer implementation: Our dissemination
network, which we introduce in Section 2.4, consists of end systems, operated by
ISPs, NPOs, cell phone providers, etc. Over time, newer network components may
offer this functionality as well and thus augment or replace the overlay network.

All such multicast approaches allow an efficient dissemination of messages to a
group of recipients. However, they all use some form of previously defined groups
for communication. Building a Contextcast system on this basis would require a
mapping of client contexts to multicast group addresses. It would also need some
type of scalable lookup service for this mapping. Even if such a service was available
or could be constructed, it would hardly provide the fine-grained granularity that
Contextcast aims to achieve: A concrete implementation might restrict the number
of such groups. Internet Protocol Version 4 (IPv4) multicast addresses, e.g., are in
the range from 224.0.0.0 to 239.255.255.255, or, to put it differently, use 28 bits. Thus,
the system would need to map each client to one or more of these 228 = 268 435 456
groups, which match their context. But even if this number was much higher (as
it is for Internet Protocol Version 6 (IPv6)) or even unlimited (with arbitrary group
identifiers), it still would not be feasible: Let R be the set of all possible recipients,
with |R| = n. To achieve the same fine grained addressing as Contextcast would
mean maintaining 2n − 2 groups (one for each element of P(R) \ {∅, R}). This is
obviously not scalable.

Explicit Multi-unicast (Xcast) [BFI+07] does away with multicast groups and the
signaling and management overhead. Instead, each recipient is listed in a message.
Messages are forwarded along an ad-hoc tree, with a router looking up the neighbor
via which to reach each recipient. Whenever a message is duplicated for two or
more links, the router splits the recipient set according to which recipient it can
reach via each of the links. Such an explicit enumeration of recipients works well

33

Chapter 2 Foundations

for small groups (cf. also Small Group Multicasting [BFM00]). It does not scale well
for a large-scale context-aware communication system such as Context. Also, this
approach would still require a scalable directory service to lookup all the matching
recipients. As we mentioned before, this in itself is not a simple task.
Summary. All these multicast protocols use explicit addressing and combine
sender-centric dissemination (the sender addresses a given group) with a recipient-
centric one (clients need to join a group). They offer no support for recipient context
or a temporal addressing.

Geographical Addressing and Routing

Similar to the multicast approaches we discussed before, geographical addressing
and routing also allows the addressing of groups of recipients and the corresponding
dissemination of messages. In contrast to multicast, though, the senders specify
recipients not by a group address or identifier but by their current location in-
stead. We distinguish three main areas: geographical messages (commonly simply
called “geocast”), distributed management of spatial information, and P2P Systems
structured using an underlying coordinate system.
Geocast. Some of the earlier works in this area were presented in [Fin87] based on
Cartesian addresses (or indeed any form of coordinates for which a metric distance
can be calculated) and a corresponding routing approach. Another group pursued
the idea further and presents various methods for geographical routing: (1) GeoRIP,
GeoOSPF, and GeoBP extend IP routing mechanisms to allow for a geographical
routing, (2) a geographical multicast approach, which maps locations to multicast
groups, (3) a directory approach, where recipients (or rather, their subnets) are
looked up in the Domain Name System (DNS) system, and (4) an overlay approach,
which uses end systems for the dissemination of geographical messages. GeoRIP
and GeoOSPF [Nav01] extend the Routing Information Protocol (RIP) [Mal98] and
Open Shortest Path First (OSPF) [Moy98] protocols with location information for
geographical routing, respectively. GeoBP [Nav01] uses a “broadcast and prune”
approach, which is most similar to Distance Vector Multicast Routing Protocol
(DVMRP) [WPD88]. All three rely heavily on the underlying IP infrastructure and
its routing protocols. Contextcast, in contrast, should not depend on any underlying
routing infrastructure since this limits the flexibility if the underlying structures
change in the future.

The geographical multicast approach [IN96] maps locations to one or more
multicast groups. The authors propose Protocol Independent Multicast Sparse
Mode (PIM-SM) [DEF+96] for the actual dissemination of messages, which floods
the information about each group throughout the network. This, combined with
the large amount of groups necessary for fine-grained geocast leads to a large

34

2.3 Classification of Related Work

amount of management traffic. The authors also address this point and propose a
hierarchical approach, where only the group information for larger areas are propa-
gated network-wide. Hierarchically coded addresses nevertheless ensure that all
groups can be reached from every node. While this approach suits the containment
relation of the location attribute, it does not handle a context-aware addressing very
well. The recipients can have arbitrary attributes and values, often with no useful
containment relation that could be exploited. The necessary number of groups for a
fine-grained addressing, as we have already argued for multicast approaches, would
simply not be scalable.

The directory-based approach [IN99] uses DNS to look up all the access nodes
whose service area intersects the target location. A message is then sent to all
those access nodes using regular unicast mechanisms. There are some performance
and scalability problems for such an approach: DNS with its structure following
administrative domains instead of geographical ones is rather inefficient for such a
lookup. Even if we assume that this problem can be solved, the sending of several
(identical) unicast messages places a substantial load on the network. And as with
the geographical multicast approach there is still the open question how Contextcast
with its attributes other than location could use such a system.

The overlay network approach [NI97] achieves geographical routing on top of an
existing IP infrastructure. The overlay network consists of GeoRouters, which forward
geographical messages. Access networks contain GeoNodes, which connect clients
in their service area to the overlay network. A client wishing to participate runs a
local service, the GeoHost, which acts as a local endpoint for applications using the
geocast service. The GeoRouter network is structured hierarchically, with routers
higher up in the hierarchy covering the service areas of all routers below them. A
router forwards a message to all its child routers whose service area intersects with
the target of the geocast message until it reaches the GeoNodes. Also, a message
is forwarded to a node’s parent if the target area is not completely contained in
the node’s service area. Such a hierarchical design works well for the geographical
containment with location, however, it does not easily allow other, arbitrary context
attributes.

The Nimbus framework, described in detail in [Rot05], provides a platform for var-
ious location-aware services. Among others, it also offers a semantic geocast [Rot03]
service to applications. It differs from the previous approaches mainly in the fact that
locations are not addressed using geographical coordinates but using semantic (or
symbolic) locations instead. It is built on top of a Location Server Infrastructure (LSI),
which manages mobile clients’ current position. Since the LSI manages the positions
of mobile clients, it could also be categorized as a system for the management of
spatial information. However, as the geocast implementation relies heavily on the
LSI’s architecture, we choose to present it here. The Location Servers are intercon-

35

Chapter 2 Foundations

nected in a tree topology, mirroring the containment relation of locations. Nimbus’
LSI allows several such hierarchies, reflecting different organization schemes, e.g.,
continents, countries, cities, etc. as opposed to an organization via geographical
features such as mountains, rivers, etc. In addition to the usual parent-child relation
in a hierarchy, (partially) overlapping locations between different hierarchies can
have “associations”. This enables, e.g., an association of the geographical feature of
a particular mountain with the state it is in; thus, a router can forward a message
addressed to the mountain also to the router of the associated state, reaching clients
that are connected to an associated location in a different hierarchy. It also supports
shortcut links for a more efficient forwarding of geocast messages. However, Nimbus
is also limited to locations, it does not support arbitrary context attributes.

The geocast system presented in [Dür10] also offers geographical messages. It
supports symbolic, geometric, and hybrid addresses, through an advanced location
model [DR03]. The architecture of the system resembles the GEO system by Navas
and Imielinski: The actual message dissemination is handled by an overlay network
of Geocast Routers, with Geocast Message Servers providing access to clients in
a certain area [DBR05, DBR06]. The Geocast Routers are connected in a tree that
approximates the lattice structure of the location model. Forwarding in this network
takes place in two phases: First, a given message is routed to a router in the target
area. Second, the message is distributed to all Geocast Routers and Message Servers
in the target area. For the first phase, there generally exist multiple paths between
a router and the target area in a lattice model. Thus, the first phase calculates a
least ascending path between the sender and recipient. This reduces the load on the
routers higher in the lattice, which would become the bottleneck if the system were
to route every message, e.g., via the world router. It then searches for a known router
on this path, choosing the one closest to the target area if several exist, and forwards
the message. In the second phase, the Geocast Routers use flooding to disseminate
the message to all routers whose service area is completely within the target area.
To further lower the load on routers higher up in the hierarchy, the authors enhance
the overlay network by additional dynamic shortcut links [DR08]. Routers maintain
these links adaptively to some distant locations that are addressed often. When such
a shortcut exists, a message can then be forwarded directly, without ascending in
the tree. As a geocast system, however, the approach supports (symbolic, geometric,
and hybrid) location addresses only, no additional context attributes.

Generally, all the geocast systems we have discussed in this section provide an
addressing for a recipient’s location attribute only. In contrast to our context-aware
communication, they do not consider additional context attributes. Neither can
these additional attributes be added to any of the systems in a simple manner since
they usually rely on the hierarchical nature of locations to improve the efficiency of
their approach.

36

2.3 Classification of Related Work

Distributed Management of Spatial Information. The focus of such systems is
the distributed storage and retrieval of information with a relationship to a spatial
location. First, there are the Location Service [Leo03] and the Source Description
Class (SDC) Tree [LDR10, Lan10], which were developed in the Nexus research
project. (For an overview of Nexus, see Section 1.2.3.) The Location Service uses
a spatial partitioning to manage mobile objects. The objects are stored in Location
Servers; the selection of concrete servers uses the position of the object and the
server’s service area. To allow for efficient query resolution, the servers are inter-
connected in a hierarchical fashion, modeling the spatial containment of locations.
When a server receives a query, it checks which of its children intersect the query
area and forwards it to those children. If its own service area does not fully cover
the query area, it also forwards it to its father in the hierarchy (which covers a
larger service area). This forwarding ensures that eventually all Location Servers
whose service area intersects the query area receive the query. The SDC Tree and
its accompanying description formalism extend this idea. Instead of limiting the
description of a server’s information to location, they allow a description using
several defined classes. These defined classes describe information by a base class
and zero or more relations and constraints, one of which may be location. Each node
in the SDC Tree has a node class associated. The tree itself is structured using the
subsumption relationship of defined classes, with each node class subsuming the
node classes of its children. While the defined classes with its attribute constraints
is somewhat similar to a client context in Contextcast, its design is very specific for
describing the information a source can provide. Usually, this is very narrow, e.g., a
server might provide floor plans for the Museum of Natural History but probably
will not contain a temperature map of downtown Manhattan. Client contexts in
close proximity, in contrast, can be rather diverse. Also, such descriptions are by
their nature mostly static, in contrast to client contexts, which can change often.

RectNet [Heu05] is a similar system for the management of spatial objects. It
partitions the space in rectangular areas, which are managed by a single server
or cluster head. Partitions are split dynamically when the load of a cluster head
gets too high. Two new cluster heads then manage the two new partitions, while
the original cluster head becomes their parent in a tree, forwarding queries to its
children. This leads to a similar hierarchical structure as for the Nexus Location
Service, with inner nodes forwarding queries along the tree to the leaf nodes. In
addition, it offers a flat routing mechanism, with nodes connecting to their spatial
neighbors. This is similar to the Content Addressable Network (CAN) P2P system,
which we are discussing later in this section. The focus of RectNet is clearly a spatial
message distribution, similar to the geocast methods we have discussed previously.
As such, it does not use additional context attributes for message addressing and
dissemination.

37

Chapter 2 Foundations

The same author has presented another system called ContextCast [Heu02], whose
name is similar to the system we introduce here. Its design is very similar to RectNet:
It uses a global context space G ⊂ Zn, n ∈ N. A context space S is is a subcube
S∗ of this global context space G with a unique name. Cluster heads manage
the individual context spaces. Whenever a cluster head is in danger of becoming
overloaded, its space is split into 2n subspaces, each with a newly appointed cluster
head, which become the children of the original cluster head. The routing uses the
resulting tree to reach all context spaces that intersect a query region; in contrast
to RectNet, there is no flat routing scheme. While the author focuses on a location
service, a context space can contain more dimensions to represent additional context
properties of a client. At first glance, this could be used to place client contexts in
such a context space and then address cubes in this space. However, it is unclear
how G ⊂ Zn would support arbitrary context attributes that do not map easily into
Z, such as a type hierarchy or strings. Another difficulty is the placement of client
contexts which specify only some of these n attributes. Where does the system place
such a context in the missing dimensions?
P2P Systems with Coordinate Structure. A Content Addressable Network (CAN)
is an indexing scheme for information in P2P system [RFH+01]. Its design is
similar to the ContextCast or RectNet systems by Heutelbeck we described before:
CAN uses a virtual d-dimensional Cartesian coordinate space [0, 1]d, which—for
the purpose of message forwarding—forms a d-torus. This coordinate system is
partitioned among the nodes that form the system, with each node responsible for
its partition. A CAN is able to store arbitrary (key, value) pairs. To this end, a
key is mapped to a point P in the d-dimensional coordinate system using uniform
hash functions. The pair (key, value) is then stored on the node that is responsible
for the partition that contains P. Storing and retrieving a pair relies on routing in
the CAN as follows: Every node maintains a list of its neighboring zones and the
IP address of the node responsible for each zone. A store or retrieve request to
the coordinates of the destination point Pd is greedily forwarded to a neighboring
zone (and thus the node responsible for it) that is closer to Pd than the current
node. Due to the d-dimensional structure, it is very easy to map, e.g., 2-dimensional
GPS coordinates into such a space and thus use an object’s physical coordinates for
routing. Also, just as for Heutelbeck’s ContextCast, one could propose mapping
other context attributes into additional dimensions of this d-dimensional space.
However, this would lead to the same difficulties with the mapping of certain types
and the absence of attributes that we described before.

Globase.KOM [KLS07] is a P2P system, which manages the position of the partici-
pating peers. Each peer has a physical GPS coordinate, which is directly represented
in the system. Globase.KOM uses a superpeer structure, i.e., only a subset of

38

2.3 Classification of Related Work

nodes—the superpeers—handle queries. The system dynamically detects areas of
high load in a zone and clusters the nodes in this area into their own child zone
and appoints a new superpeer for each zone. A superpeer maintains connections
to its parent superpeer and to all its child superpeers. This leads to the familiar
tree structure, with child nodes contained in the zone of their parent. A regular
peer connects to the superpeer that manages the region it is located in. Routing a
message in this structure also follows the usual pattern: To lookup a given location,
a node queries the superpeer it is associated with. Each superpeer then checks if
the queried location is inside its own zone. If it is, the superpeer also checks if it is
inside the zone of one of its children. It then forwards the request either to the child
superpeer or directly to the responsible node. If not, it forwards the request to its
parent superpeer (which covers a larger area; if necessary, this is repeated until the
root, which covers the whole area). In addition to this lookup operation, the system
also supports range queries and nearest-neighbor queries. Again, Globase.KOM
does not provide any means to address peers other than their location. As we
have argued before, it is very difficult incorporating context attributes into such
a tree structure that is explicitly based on physical location and the containment
relationship of areas.
Summary. All these geographical addressing and routing approaches offer implicit
addressing and a sender-centric dissemination. They do not, however, support more
complex addressing involving context attributes other than location or any temporal
relations.

Publish/subscribe: Topic-based and Type-based

Due to the large nature of the Internet, distributed systems have also grown more
complex and more dynamic over the years. This required a more flexible commu-
nication paradigm than synchronized point-to-point connections between hosts.
Pub/sub or event-based systems [BBMS98] provides such a looser interaction
scheme between nodes. Recipients (or subscribers) can express their interest in
certain events and are notified by the system when a sender (usually called pub-
lisher) generates a matching event. An event manager as middleware is responsible
for notifying all subscribers about the events matching their subscriptions.

The main strengths of event-based systems are a time, space, and synchronization
decoupling of senders and recipients [EFGK03]:

• Space decoupling: Publishers do not need to know about Subscribers and
vice versa. An event service is responsible to match generated events to
subscriptions and ensure their delivery.

39

Chapter 2 Foundations

• Time decoupling: It is not necessary for the publishers and subscribers to interact
at the same time. In particular, a subscriber might receive an event when the
publisher is no longer connected to the system.

• Synchronization decoupling: Both producing events and notification about events
happen asynchronously. That is, neither publishers nor subscribers are blocked
by the interaction.

This decoupled interaction scheme of Pub/sub systems make them well suited for
use in mobile environments with intermittent connectivity [HGM04]. Contextcast
provides a very similar communication scheme with the same decoupling properties.

The authors of [EFGK03] distinguish three different types of Pub/sub systems,
depending on the form that subscriptions are specified: Topic-based, Type-based,
and Content-based. We discuss the first two approaches in this section. Content-
based Pub/sub is more similar to Contextcast, thus we discuss it in detail in its own
section.
Topic-based Publish/subscribe. The first Pub/sub systems were based on topics
(or subjects). Senders publish events, specifying their topic by keywords, and recipi-
ents can subscribe to these topics. Examples of such systems include iBus [AEM99]
or TIBCO Rendezvous [TIB08].

Topics are very similar to groups used in group communication, thus the chal-
lenges and problems are very similar as well. Subscriptions to a particular topic are
equivalent to becoming a member of a group for this topic; and publishing an event
with a given topic is the same as sending a message to a group for this topic. In
addition, most topic-based Pub/sub systems extend the flat addressing of distinct
groups using a hierarchy of topics [OPSS93, EFGK03]. This allows to arrange topics
using a containment relationship. Subscribing to a particular topic in the hierarchy
then also subscribes to its subtopics. But even with this extension, it is still very
difficult to accurately replicate a client’s context with subscriptions to a limited
number of topics and offer the same fine-grained addressing that Contextcast aims
for.

To summarize, topic-based Pub/sub uses explicit (keyword) addressing, a dissem-
ination that is both sender-centric and recipient-centric, but provides no additional
addressing concepts using context attributes or temporal constraints.
Type-based Publish/subscribe. Events for a common topic often exhibit structural
similarities in addition to the similarities in content. Therefore, type-based Pub/sub
systems classify events according to their type, with subscriptions specifying interest
in certain types, e.g., [EGD01]. These types can then be represented by classes and
objects, allowing for a closer integration of the language and the middleware. In
particular, it enables static type checking at compile time.

40

2.3 Classification of Related Work

Another example of such a system is Hermes [PB02, Pie04], which the authors
call a type- and attribute-based Pub/sub system. In their model, every event has an
associated type, which ties it to a programming language’s type. Each type has a set
of attributes, i.e., the contents of the event. Despite this, the strong connection with
programming language types limits the use of attributes to the respective event type.
The model is therefore less flexible than content-based Pub/sub (discussed in the
next section), which can mix arbitrary attributes in a single event.

With respect to our classification, type-based Pub/sub is very similar to topic-
based systems: Addressing uses explicit (type) information, the dissemination
is both sender- and recipient-centric, but again it offers no support for context
addressing or temporal constraints.
Summary. Both the topic-based and the type-based Pub/sub systems offer an
explicit addressing via the event topic or its type, mixed sender-centric addressing,
but no support for contextual or temporal addressing.

Publish/subscribe: Content-based

The expressiveness of topic-based and type-based Pub/sub, despite extensions such
as hierarchical topics or support for wildcard subscriptions, is limited. Content-
based Pub/sub, described, e.g., by [CRW00], in contrast, overcomes this limitation
by a subscription scheme that directly uses an event’s actual content, not some topic
or type.

Most content-based Pub/sub systems use a common definition of events and sub-
scriptions, which we briefly introduce here [SA97, Car98, CRW00, FJL+01, Müh01,
FJLM05]. Informally, an event is a set of attributes, each of which is a (name, value)
pair. A subscription contains a set of constraints on these attributes, usually in
the form (name, operator, value), describing matching events. Some systems, such
as Siena, also explicitly include the attribute type in the definition, thus an at-
tribute becomes (type, name, value) and constraints become (type, name, operator,
value) [Car98, CRW00]. Multiple constraints in a subscription are usually combined
using an implicit logical AND (i.e., a given event must match all constraints) but
could also use explicit logical operations for more complex subscriptions (such as
in Elvin [SA97]). We use a scheme very similar to these proven and wide-spread
definitions for our Contextcast system, which we introduce in Chapter 3.

Due to scalability considerations, content-based Pub/sub systems are usually
built as distributed systems. A network of brokers handle event dissemination to
all clients with a matching subscription. This dissemination can employ a variety
of different routing strategies, described in [Müh02]: The simplest strategy is a
flooding of events with a local filtering performed by the subscribers. Broadcasting
events, however, limits the scalability of the system, especially if each subscriber is

41

Chapter 2 Foundations

only interested in a small percentage of events. Thus, a number of more advanced
content-based routing strategies exist that evaluate subscriptions to limit dissemination
of messages. In general, these filter-based routing approaches forward subscription
information between brokers, which use them for their forwarding decisions.

The approaches differ in the way they handle redundancies between different
subscriptions, thus reducing the amount of information that is maintained by the
brokers:

• The Simple Filter-Based Routing floods each new and canceled subscription into
the broker network. Each broker therefore knows all subscriptions and can
forward events to neighboring brokers accordingly.

• Routing based on Filter Identity (“identity-based routing”) removes identical
subscriptions from the routing process: A subscription F is not sent to a
neighbor if another identical subscription G was forwarded to that neighbor.

• Routing based on Filter Covering (“cover-based routing”) extends this to sub-
scriptions to subset of events: A subscription F is not forwarded to a neighbor
if another subscription G was already forwarded that matches a superset of
events of F.

• Routing based on Filter Merging (“merge-based routing”) extends the idea of
filter covering further. Merging does not solely rely on client subscriptions but
can generate subscriptions that are a superset of client subscriptions: A set of
(client) subscriptions {F1, . . . , FN} is not forwarded to a neighbor if a broker
forwards a subscription G instead, such that the events matched by G are a
superset of all the events matched by F1, . . . , FN.

Additionally, the routing strategies can also include advertisements to further im-
prove the handling of routing information [Car98]. Advertisements are descriptions
of possible events, which are broadcast by producers. The brokers can then use this
information to forward subscription information only towards interesting producers
(using any of the previously described routing strategies).

Contextcast’s context-based routing is based on these content-based routing
strategies. Section 3.3.3 presents a reference context-based routing algorithm that
is modeled after the simple filter-based routing. Chapter 4 shows an improved
routing algorithm that is a generalization of the identity-based, cover-based, and
merge-based strategies. In Chapter 5, we introduce a mechanism for adaptive
routing information, which generalizes the idea of explicit advertisements.

Numerous content-based Pub/sub systems have been developed over time, such
as Elvin, Gryphon, Siena, JEDI (Java Event-based Distributed Infrastructure), Rebeca,

42

2.3 Classification of Related Work

and PADRES. They are similar in many ways, but vary in details due to different
focuses of the various systems.

Elvin [SA97] originally started out as a centralized server, which delivered all
events to all attached clients. Over time, it evolved into a server architecture
that handles subscriptions and the dissemination of events according to client
subscriptions. One focus was support for federation, thus servers can become
clients of one another. Such a system can be scaled rather easily, by simply adding
additional servers to handle client subscriptions and interconnecting these servers.
However, the authors never detail how such a system disseminates events among the
servers and to subscribers. Subscriptions in Elvin are complex boolean expressions
on the attributes of an event. The available attributes are limited to integer, floating
point, and string types, with associated comparison operators. Because of the
flexibility of the event structure, the authors considered additional types unnecessary.
Even though, it is possible to extend the system with additional data types.

Gryphon [BCM+99] utilizes a network of brokers to disseminate events to sub-
scribers. Their focus is the efficient dissemination of events to all subscribers. To this
effect, they describe a distributed version of the link matching algorithm (detailed
in [ASS+99]): Instead of directly computing the subset of all subscribers that need
to receive an event, each broker only computes to which of its neighbors it needs to
forward a given event. To compute these neighbors efficiently, each broker maintains
a Parallel Search Tree (PST) of client subscriptions. This PST is then searched for
each event to determine the links over which the event needs to be forwarded.
However, to compute this PST, each subscription needs to be broadcast. It is thus a
system that uses the simple filter-based routing as discussed before.

Siena [CRW99, CRW01] also relies on a network of brokers to disseminate events.
The authors introduce different topologies that can be used to connect the brokers:
a hierarchical client/server architecture, an acyclic P2P architecture, or a general
P2P architecture. These architectures differ in their tendency to overload individual
nodes, their resilience to node failures, and the complexity of the management of
the broker network. In addition, the authors describe two routing approaches: The
first one broadcasts subscriptions and is thus identical to the previously discussed
simple filter-based routing. The second one broadcasts advertisements and then
only forwards subscriptions towards producers of matching events. In [CW03],
they introduce the Siena Fast Forwarding (SFF) algorithm, which can efficiently
disseminate events based on subscription information. SFF uses a counting approach,
similar to [YGM94], to determine the set of subscriptions that a given event matches.
In [KCW11], the authors extend Siena with support for 2D spatial objects, which can
be used in both events and subscriptions. They also present an indexing approach
to efficiently evaluate spatial relations between objects, which is necessary for an
efficient forwarding of events in such a system.

43

Chapter 2 Foundations

JEDI [CNF01] builds on the notion of Active Objects (AOs), which interact with
each other by sending and receiving events. A JEDI event consists of the event name,
a set of strings, and further event parameters. An event dispatcher is responsible to
deliver an event to all the clients that are interested in it. The authors present both a
centralized and a distributed implementation of the event dispatcher. The distributed
version uses a hierarchy of distribution servers, in which both subscriptions and
events are routed towards the root as a kind of rendezvous node. This poses the
same problem of overloading higher servers as in Siena’s hierarchical architecture.

Rebeca [Müh02] uses a network of brokers connected in an acyclic topology for
event dissemination. This simplifies the algorithms since nodes do not need to
worry about duplicate events via additional paths. It makes the design vulnerable to
failures of nodes, though. The author also presents and compares several alternative
routing strategies, which we already discussed before. The authors of [FGKZ03]
extend Rebeca with “location-dependent subscriptions”, allowing consumers to
incorporate their current location into subscriptions. The approach does not support
client context beyond simple position information, though.

PADRES [FJLM05] employs an overlay network of brokers as well. It relies
on the same scheme of publish-subscribe-advertise as Siena: Advertisements are
broadcasts and subscriptions then forwarded towards those producers that may
generate interesting events. Of particular interest in PADRES is the possibility to
subscribe to past events in addition to the common future events in other Pub/sub
systems [LCH+07]. To enable this, PADRES brokers store events in a database upon
publication. Later, when a subscription to past events is issued, the brokers can
re-publish the matching events from their database. We discuss this in more detail
in Chapter 6, when presenting the temporal extensions to Contextcast.
Summary. Content-based Pub/sub provides implicit addressing via the event
content and recipient-centric addressing using subscriptions. In its pure form,
content-based Pub/sub does not allow specifying a recipient context. There are,
however, some efforts to extend the content-based routing approach with context
information. We discuss these approaches in the following section. One Pub/sub
system, Rebeca, offers support for a small part of the client’s context, the loca-
tion. Another system, PADRES, provides a form of temporal addressing, allowing
subscribers to access past events.

Publish/subscribe: Context-aware

Apart from the previously mentioned extension to Rebeca [FGKZ03], with its
location-dependent subscriptions, plain content-based Pub/sub offers no support
for recipient contexts when disseminating events.

44

2.3 Classification of Related Work

The authors of [CdC05] present a similar extension, offering location-awareness
in Pub/sub systems: Consumers register their position, in addition to any sub-
scriptions, with the middleware. The location information is forwarded between
the brokers, which maintain location tables in addition to subscription tables. The
location table contains the locations of all of a broker’s clients as well as all the
locations it can reach via one of its neighbors. Producers can publish events to
recipients in certain areas only. In the outlook of the paper, they also present a
vision to generalize this approach to a context-based routing approach.

In [CM08], they sketch a system for “Context-aware Publish/subscribe”, devel-
oped independently of our approach. They detail this approach further in [CMM09].
In particular, they introduce a fire monitoring system as an example, which benefits
from context-aware Pub/sub. Based on this example, they argue a reversal of the
matching semantics compared to content-based Pub/sub. Traditionally, events in
content-based Pub/sub contain data in the form of (key, value) pairs. Subscriptions
are the clients’ constraints on these data, specifying interesting events. The authors
show that their fire monitoring example requires the inclusion of a datum (the
recipient’s location) in a subscription. Also, publishers need to specify a constraint
in events to select matching recipients. Therefore, in addition to regular events
and subscriptions, their interface includes a setContext() function to inform the
Pub/sub system about the context of a node. Subscriptions are augmented to also
contain constraints on the context of the sending node. Events contain the usual data
as (key, value) pairs as well as additional constraints on client context. Semantically,
this leads to a system that is neither fully sender-centric nor fully recipient-centric.
Both publishers and recipients can specify constraints on event data and contexts.

The authors also introduce their Shortest Path Context Forwarding (SPCF) routing
algorithm. It relies on a link state protocol to learn the broker topology and calculates
a shortest path tree rooted at each broker. Each node maintains two routing tables:

1. A context table, which contains for each broker the set of contexts of its clients.

2. A content table, which stores for each broker Bp each context cp of the clients
connected to Bp and each neighboring node N a list of content subscriptions
and contexts from clients that are in a subtree below the neighbor N in the
shortest path tree rooted at Bp (i.e., for which N is the next hop).

Message forwarding then becomes a two step process. The first broker looks
up the client contexts that match the constraint of the event in the context table
and encodes the resulting brokers in a Bloom filter [Blo70], which is appended to
the event. Then, each node checks the relevant entries in the content table for this
originating node, context, and each neighbor to find a matching subscription. The

45

Chapter 2 Foundations

Bloom filter from the first step is used to limit the search only to those subscriptions
with a matching context.
Summary. This context-aware Pub/sub is similar to our Contextcast approach but
also different in many ways. First, we argue a similar reversal of the semantics in
Chapter 3. The Contextcast system, however, uses simpler, purely sender-centric
semantics. Messages contain only constraints on client contexts and a single message
payload, while clients only register their contexts, which are then used to deliver the
messages. This frees users from the responsibility of explicitly selecting interesting
messages. Second, Contextcast focuses on efficient routing algorithms, presented in
Chapter 4 and Chapter 5, to reduce the amount of load placed on the system by the
maintenance of client context information. This is especially important with regard
to the dynamic nature of client contexts. Context-aware Pub/sub does not consider
these issues. Third, Contextcast includes an extension for temporal addressing and
dissemination of messages to clients with a certain context sometime in the past or
future. This is not possible with context-aware Pub/sub. Additionally, temporal
Contextcast focuses on questions of privacy combined with efficient message delivery
for such messages. We present this extension in Chapter 6.

Summary

In this section, we presented an overview of various communication mechanisms
similar to Contextcast. We used the criteria detailed in Section 2.3.1 to classify
these different approaches. Table 2.1 shows the results of this classification at a
glance, contrasting Contextcast to similar, related communication paradigms. No
other approach offers the same combination of implicit addressing, sender-centric
dissemination, and flexible addressing supporting both client context and a temporal
addressing of clients.

2.4 System Model

In this section, we are introducing the Contextcast system model, which forms the
basis for all the algorithms and improvements we are discussing in later chapters.

The Contextcast system consists primarily of three components, which form the
Contextcast overlay network. These resemble Geocast overlays such as GEO [IN99]
or the system of Dürr et al. [DBR06] in name and functionality. Similar concepts can
also be found in various distributed content-based Pub/sub systems.

• ContextHosts are running on the client devices. They provide the interface
between applications and the Contextcast system.

46

2.4 System Model

Related Implicit Sender-centric Complex Addressing

Work Addr. Dissemination Contextual Temporal

Multicast No Mixed No No

Geocast Yes Yes Location No

Topic-/Type-b. Pub/sub No Mixed No No

Content-based Pub/sub Yes No No/Location No/Past

Context-aware Pub/sub Yes Mixed Yes No

Contextcast Yes Yes Yes Yes

Table 2.1: Classification of Related Work

• ContextNodes are basically Contextcast routers but also provide access to the
clients in their service areas.

• ContextRouters provide the actual dissemination of contextual messages from a
sender to the addressed clients.

Figure 2.1 shows an overview of these components and the Contextcast system.
Their functionality is detailed in the following sections.

2.4.1 ContextHost

A ContextHost is the local endpoint of the Contextcast system. Every client connect-
ing to the network runs an instance of the ContextHost component. An application
that wants receive contextual messages registers with the ContextNode. The Con-
textHost manages all these local application registrations and in turn connects to a
ContextNode to receive contextual messages. Also, applications wanting to send
such a message do so via their local ContextHost.

When a ContextHost receives a message from the network, it checks its addressing
against the known context(s) before it delivers it to applications. This step is
necessary since ContextHosts may receive messages that do not match their client
context(s). This happens especially when the connection between a ContextHost
and a ContextNode uses a broadcast medium, such as a WLAN connection. But
even in the case of a wired connection, ContextNodes may deliver a message to all
ContextHost using a broadcast in their subnet for efficiency reasons.

47

Chapter 2 Foundations

Figure 2.1: Schematic overview of the Contextcast system

Since its functionality and implementation are rather straightforward, we do not
discuss the ContextHost component further in this dissertation. Instead, we focus
on the efficient dissemination of messages in the overlay network.

2.4.2 ContextNode

A ContextNode is, in essence, a ContextRouter (see the following section) with
the additional task of delivering messages to clients in an access network. For this
purpose, each ContextNode has a certain service area assigned. This service area can
simply be specified as a polygon of WGS84 coordinates or using a different model,
e.g., on based on symbolic coordinates. All that is required is that it is possible
to check a given position for containment within a service area. Clients within a
ContextNode’s service area connect to this ContextNode.

The concept of a service area results mainly from the use of wireless connections
for mobile clients. However, for uniformity, we also extend this concept for wired
connections to the ContextNodes. Additionally, we assume a certain local similarity
of contexts, which is well represented in this design. Students on a campus, e.g., all
have the type student, are all of a similar age, and for each of the different majors
there are a number of students studying it. This similarity may not always be as
pronounced but the concept of a service area in a wired network does not have any
negative impact, either. Thus, ContextNodes that do not offer a wireless connection
to clients have a service area assigned as well.

48

2.4 System Model

If the service areas of two or more ContextNodes overlap and a client is in the
overlapping region, it can connect to any one of the ContextNodes. The ContextHost
can base its selection on any number of factors, such as the bandwidth to each of
the ContextNodes or the cost of data traffic for each link.

2.4.3 ContextRouter

The ContextRouters are responsible for the global dissemination of a message to
all ContextNodes which have clients with matching contexts connected. The exact
nature of the context-based routing information and the forwarding decision is part
of a concrete context-based routing algorithm. We present a basic version of such
a routing algorithm in Section 3.3.3. To avoid a broadcast of contextual messages,
it uses information about contexts that can be reached via each link to achieve a
directed forwarding only towards recipients matching the addressing of a particular
message.

The management of such routing information can cause a considerable amount of
traffic, though, especially with highly dynamic client contexts. Thus, Chapter 4 and
Chapter 5 introduce optimizations to the basic context-based routing, which reduce
this traffic and thus improve the scalability of the Contextcast system.

2.4.4 Overlay Network

Contextual message dissemination in Contextcast is performed by a distributed
system of ContextRouters. History has shown that changes to the Internet infrastruc-
ture usually happen rather slowly, probably due to the cost involved. Examples are
the slow adoption of IPv6 or support for IP layer multicast. Therefore, Contextcast
uses an overlay network of ContextRouters, which can be deployed without changes
to the actual underlying infrastructure. Future network layer routers may implement
this functionality, though, and thus provide Contextcast as a core service.

The ContextHosts are running on end systems while the ContextNodes and
ContextRouters are operated by ISPs, cell phone providers, individuals, etc. Context-
Routers and ContextNodes utilize general-purpose hardware, so these nodes are
more powerful with regard to storage capacity and processing power than IP routers.
In the future, the functionality of ContextRouters and ContextNodes may become
part of IP routers.

The Contextcast nodes are connected using virtual links in an overlay network.
The overlay links deliver messages in any order and and with an unbounded delay
δ. While individual nodes and links of the underlying network can fail, we assume
that its routing mechanism eventually (typically rather quickly) provides alterna-
tive paths. Due to the strong decoupling of senders and recipients, which makes

49

Chapter 2 Foundations

end-to-end guarantees difficult, the goal of Contextcast is a best-effort message
dissemination. If an application requires more than a best-effort service, Con-
textcast can be extended with a system of sequence numbers, acknowledgments and
retransmissions.

While the underlying routing mechanism shields Contextcast from failures to
a certain extent, failures of overlay links or nodes can still cause message loss
or a partitioning of the Contextcast network. We therefore choose an approach
very similar to the mesh first method for multicast dissemination trees as employed
by Narada (see [CRSZ02]), which we discuss further in Section 2.3.2: each node
maintains a set of overlay links (with an upper limit of k links), effectively creating a
mesh of Contextcast nodes; this increases the system’s robustness to such overlay
failures.

A new node is incorporated into the mesh of Contextcast nodes in the following
way: it establishes a (temporary) link to an existing node, e.g., via a well-known
DNS entry, and then sends a Contextcast message to the ContextRouters requesting
a connection. This message is addressed to an area surrounding the new node’s
current location. From the list of responding servers, the new node randomly selects
at most k nodes that have not yet reached their connection limit and establishes a
(permanent) connection with them. (If less than k nodes respond or have free links
available, the new node can repeat its message with a larger target area, effectively
using an expanding ring search to find suitable nodes to connect.) This method
to establish the mesh links ensures that links are favored between geographically
close neighbors, which allows the system to exploit local similarities between clients.
Other, more advanced methods of selecting and establishing links would also be
possible such as measuring the proximity of two nodes by the similarity of the
locally connected recipients instead of the geographical distance.

On the basis of this mesh network, the nodes determine a minimum spanning
tree as follows: they continuously exchange topology information using link-state
advertisements (see, e.g., [MRR80]). With this information, all nodes can decide on
a single node r as the root of a single shared spanning tree for the overlay network.
This can be the node with the lowest unique identifier, the one with the most
available resources, etc. With the complete topology information available, each
node can compute the same minimal spanning tree rooted at node r. This spanning
tree forms an acyclic graph, which somewhat simplifies our context-based routing
algorithms: the nodes need not consider duplicate messages caused by cycles, etc.
In Chapter 3, we are going to show, however, how the propagation of client contexts
can be used to construct individual spanning trees per access network.

The nodes in the overlay exchange periodic heartbeat messages with their neigh-
bors in the minimum spanning tree to detect failures. If an overlay node or link fails,
the meshed topology remains connected, even though the acyclic graph may not.

50

2.4 System Model

Repeating the above algorithm for the updated meshed network then ensures that
the nodes compute a new acyclic topology without the failed node. Once the new
spanning tree is complete after a failure, the nodes adjacent to the failure point can
resend context information to cause an update of the routing information in other
nodes. Later, if or when a failed node recovers, it can then be reconnected to the
mesh as a new node and integrated into the Contextcast spanning tree again.

51

Chapter 3

Contextcast Semantics
Man’s achievements rest upon the use
of symbols...

(Alfred Korzybski)

This chapter introduces the fundamentals for our Contextcast system: the basic
building blocks, user contexts and messages, the addressing semantic, and the dis-
semination. Together, these form a basic context-aware communication mechanism
and serve as the starting point for the various algorithms and improvements we
introduce in the following chapters.

In Section 3.1, we formally define client contexts and contextual messages. Sec-
tion 3.2 specifies how client contexts are matched with messages to determine the
recipients of a message. After that, we discuss the dissemination semantics and
introduce a reference dissemination algorithm in Section 3.3.

3.1 Contexts & Messages

Contexts and messages form the primitives of a the Contextcast system. Client
contexts describe clients of the system as a set of context attributes while contextual
messages transport information to a set of recipients, specified as constraints on the
context attributes. The Contextcast system is responsible to deliver each message to
the addressed recipients.

The definitions of client contexts and contextual messages, which we present in
this section, are to some extent similar to the definitions of events and subscrip-
tions in content-based Pub/sub [ASS+99, CRW00, Müh01]. As we have discussed
in Section 2.3.2, however, the semantics of Contextcast allow for a more natural
addressing of clients by the senders via addressing constraints in the messages. In
contrast, recipients in a Pub/sub system need to select interesting notifications by a

53

Chapter 3 Contextcast Semantics

WGS84: location = 40.704989709835 N, 74.01199257043 W
Hierarchy: transport = /vehicle/motorized/car
WGS84: destination = 40.683087227208 N, 73.951669689687 W

Table 3.1: Example of a context C

WGS84: location ∈ <polygon Manhattan>
Hierarchy: transport ⊆ /vehicle/motorized
WGS84: destination ∈ <polygon Brooklyn>

Payload: payload = <information ...>

Table 3.2: Example of a message M

subscription in advance. This semantic difference has an important impact on the
definition in the following sections.

Picking up the example from Section 1.1, Table 3.1 and Table 3.2 show a client
context and a message, respectively. The context describes a client somewhere in
Manhattan’s financial district, driving in a car, who is on the way to a destination in
Brooklyn. The corresponding traffic control message addresses clients inside of a
given polygon in downtown Manhattan, driving some kind of motor vehicle, and
with a destination in a polygon in Brooklyn. (For better readability, we present both
the context and the message slightly different from the formal definitions, which we
use in the following sections; the difference is purely cosmetic, though.)

3.1.1 Client Contexts

The definition of client contexts has its roots in the Augmented World Model (AWM)
of the Nexus project (also see Section 1.2.3). The AWM provides a global shared
world model for context-aware applications. It employs an object-oriented data
model: attributes are grouped together to objects to describe entities [GBH+05].

A client context (or context for short in later sections), as shown in the example in
Table 3.1, is such a set of context attributes. It represents the current context of the
entity it is attached to, i.e., usually a user of the system. For reasons of privacy, a
client can register several contexts, each describing a different aspect.

Definition 3.1 (Context). A context C is a set of context attributes αi: C = {α1, . . . , αk}.
Each of these attributes αi is a tuple consisting of the type, name, and value of the
attribute: αi = (typeαi

, nameαi , valueαi).

For the attribute location we have shown in Table 3.1, the formal notation is
therefore α1 = (WGS84, location, (40.704 989 709 835 N, 74.011 992 570 43 W)).

54

3.1 Contexts & Messages

Contextcast supports arbitrary attribute types, such as WGS84 [Nat97] coordi-
nates, simple numeric types integer or float, strings, or structured attributes based on a
hierarchy of values (e.g., to specify a means of transport hierarchy as in Table 3.1).
The actual value that an attribute can take depends on its type. For WGS84 coor-
dinates, e.g., possible values are points defined by a pair of latitude and longitude
or regions, specified as polygons by a sequence of coordinate points. Both of these
values are used in the example. For numeric types, it can be a single value, a set, or
a range of values. Other types restrict the allowed values accordingly as well. In
this chapter, we assume that values in contexts are single values for each type, e.g.,
a point in WGS84 coordinates. In Chapter 4, we show how this can be extended to a
set of values, an interval, or ranges, e.g., an area defined by pairs of latitude and
longitude.

Contextcast can be extended to support additional types beyond the ones men-
tioned; all that is required for a new type are a specification of the allowed values
and a set of matching operators that can be used when addressing messages. The
latter requirement is discussed in more detail in Section 3.2.1.

In some algorithms in this dissertation, the names and types of attributes are
important, whereas the actual values of these attributes is irrelevant. For instance,
this is the case when determining the set of attributes that two contexts share (see,
e.g., Section 4.4.3). We use the notation Attributes(C) if we want to refer to the set
of attributes that make up C without their particular value, i.e., only their type and
name.

While we support arbitrary attribute names and types, such a system in practice
requires a model of supported attributes for application developers to be useful. This
includes attribute names, types, as well as their respective matching operators. Such
a system can be provided, e.g., by the AWM of the Nexus project, it can be specified
by a concrete Contextcast implementation, or some entirely different source.

Section 3.2.1 introduces a minimal attribute model that is used throughout this
dissertation.

3.1.2 Contextual Messages

Recall from Table 3.2 that messages in the Contextcast system differ from notifica-
tions in Pub/sub systems in one important aspect: Notifications in Pub/sub contain
all information implicitly in the attributes of the notification, it is up to the recipients
to select interesting events via an appropriate subscription. In contrast, Contextcast
messages specify the recipients of the message explicitly but this specification typi-
cally does not convey any additional information. As such, a Contextcast message
consists of an addressing that determines the recipients of the message and the

55

Chapter 3 Contextcast Semantics

actual information, which is simply an opaque payload for the purpose of message
dissemination.

Definition 3.2 (Contextual Message). A (contextual) message M consists of a con-
textual addressing (see Definition 3.3) and an (application-specific) payload.

The addressing determines the recipients of the message via a set of constraints
that the recipient’s attributes need to match to receive the message. The details
of the matching semantics between a contextual message and client contexts are
discussed afterwards in Section 3.2.

Definition 3.3 (Contextual addressing). The addressing of a message M is a set of
constraints φi: {φ1, . . . , φl}. Similar to context attributes, a single constraint φi is a
tuple with the type and name of the constrained attribute, an operator, and a value
against which the operator is evaluated: φi = (typeφi

, nameφi , operatorφi
, valueφi).

The constraint on the destination from the example shown in Table 3.2 is thus
represented as φ3 = (WGS84, destination,∈, <polygon Brooklyn>).

In essence, the statements from Definition 3.1 regarding type, name, value, and
operators of an attribute apply accordingly. Also, like the previously mentioned
Attributes(C), Attributes(M) refers to the set of all attributes that are constrained
by M, without the actual operator and value that are used to constrain the attribute.

3.2 Matching

Building on the definitions of client contexts and messages in a Contextcast system,
we can now discuss the matching semantics between the two. This determines
whether a client with a given context is to receive a message. While the definitions
are straight-forward, a distributed system poses more challenges for determining a
message’s recipient set, though; we therefore discuss it in Section 3.3.

Let M denote a message, whose addressing contains a number of constraints
{φ1, . . . , φl}. For each one of these, it is possible to determine whether a given
context C matches it:

Definition 3.4 (Single constraint matching). A context C matches a constraint φi—
denoted as C @ φi—if and only if (1) ∃αi ∈ C : typeαi

= typeφi
∧ nameαi = nameφi

and (2) valueαi operatorφi
valueφi = true.

In other words, for a context C to match φi, C needs to contain the constrained
attribute, determined by its type and name, and evaluating the matching operator
yields true (we are discussing matching operators in more detail in the following

56

3.2 Matching

section). Note that the notation “C @ φi” was chosen to reflect the fact that every
constraint φi defines a subset of all possible contexts, i.e., those contexts matching
φi.

Using Definition 3.4, we can now define the matching with the complete address-
ing of a Contextcast message M:

Definition 3.5 (Message matching). A context C matches a message M with ad-
dressing {φ1, . . . , φl}—again denoted as C @ M to convey the fact that a message
determines a subset of client contexts—if and only if ∀φi ∈ {φ1, . . . , φl} : C @ φi.

Put differently, a context C matches a message M if and only if it matches all the
addressing constraints. Thus, all constraints must be fulfilled for a context to match
a message.

It is straight-forward to extend this addressing with a logical disjunction: A
message can contain multiple sets of addressing constraints. For a context to match
one such set, all the constraints in the set must be fulfilled (a logical conjunction).
The sets themselves are connected by a logical disjunction, though. I.e., a context C
matches a message M if it matches at least one of the addressing sets of M. In the
evaluation of our concepts, we use only a single set of addressing constraints and
send a message potentially multiple times instead of a single message with multiple
addressing sets. In practice, this means that the results incur a slight overhead
compared to the more powerful approach of messages with multiple addressing
sets.

3.2.1 Operators

As mentioned in Section 3.1.1, the definition of matching operators can be part
of the specification of a particular Contextcast implementation or it can reuse an
existing type system, e.g., provided by the Nexus AWM. When defining attribute
types, such as a type hierarchy representing a client’s mode of transport, a designer
must specify the possible operators and their evaluation. Obviously, the matching
operators for common data types should reflect established usage to conform to a
client’s expected behavior.

While a comprehensive attribute model is beyond the scope of this dissertation
and also not required for the presented concepts, for consistency we are providing a
minimal model that is used in the remainder of this work. However, throughout the
dissertation, we give hints regarding particular requirements when extending this
minimal system.

WGS84 Attributes (e.g., location) The type WGS84 is used to specify points in the
WGS84 coordinate system, i.e., GPS coordinates.

57

Chapter 3 Contextcast Semantics

In our simple model, WGS84 attributes support only the operator ∈ to test
for containment: The operator ∈ yields true if and only if the client’s location
coordinate is within a specified polygon.

In the example from Table 3.1 and Table 3.2, the constraint WGS84: location ∈
<polygon Manhattan> yields true if the client’s coordinate in somewhere
within the polygon in Manhattan.

Integer and Float Attributes (e.g., age or speed) Numerical types are used to describe
numerical properties, either integer or float.

Such attributes support the usual number of comparison operations for ordered
sets, i.e., <, ≤, =, ≥, and >, with their usual evaluation.

Hierarchy Attributes (e.g., transport) The type Hierarchy is used for attributes whose
values represent some kind of hierarchical relationship. This could, e.g., be
a type-like hierarchical relationship such as a client’s mode of transport. In
such a hierarchy, a parent node is more general than its children. For example,
a node “car” could have the child nodes “sedan” or “convertible” and the
siblings “bicycle” and “pedestrian”. Obviously, the semantics of a specific
attribute depend on the actual hierarchy that is associated with it.

In our model, Hierarchy attributes support the operators = and ⊆. The
operator = is used to test two nodes for equality, i.e., it evaluates to true if
and only if the compared values represent the same node. The operator ⊆ is
used to test if a node is a descendant or equal to another node:

Hierarchy transport : A ⊆ B =

{
true if A is a descendant of or equal to B
false else.

The constraint Hierarchy: transport ⊆ /vehicle/motorized in Table 3.2 would
thus evaluate to true since “Hierarchy: transport = /vehicle/motorized/car”
is a direct descendant of /vehicle/motorized. It would also evaluate to true
for a hypothetical “transport = /vehicle/motorized/car/sedan”, with a sedan
being a more specialized type of a car.

Temporal Attributes (e.g., time) Temporal attributes are used, e.g., to model the tem-
poral validity of a context. This type and the attribute time are part of an
extension to Contextcast to support a temporal addressing and dissemination
of messages. They are introduced in more detail in Chapter 6.

58

3.3 Dissemination

3.3 Dissemination

In a distributed Contextcast system as described in Section 2.4, delivering a contex-
tual message to the clients can be modeled as a two phase process: In the first phase,
the Contextcast system needs to determine the set of access network with matching
recipients connected. A copy of the message is forwarded to each of these access
networks. Once a message has been forwarded to a ContextNode, in the second
phase each one can deliver it locally to the matching clients in its service area. In
this dissertation, we focus on the first part, the efficient dissemination of messages
in a distributed system.

Since clients can register and deregister contexts any time, the set of ContextNodes
with matching recipients depends on the time a message is sent as well as the time
it takes to propagate the message throughout the network. In the following sections,
we discuss such a dissemination of a contextual message in more detail; we introduce
the notion of a perfect dissemination and then extend this definition to cope with the
actual conditions in a distributed system, such as an unbounded link delay.

3.3.1 Perfect Dissemination

Let Mt0 be a contextual message sent at time t0 and LocalContexts(N,t) refer to the
set of contexts registered at node N at time t.

Definition 3.6 (Dissemination). A dissemination forwards a message M to a subset of
ContextNodes NM, including the origin ContextNode No.

Definition 3.7 (Perfect Dissemination). A dissemination is called a perfect dissemina-
tion if and only if the following condition holds for any message Mt0 :

N ∈ NMt0
⇔ (∃C ∈ LocalContexts(N, t0) : C @ Mt0

∨ (∃Ndest∃C ∈ LocalContexts(Ndest, t0) : C @ Mt0 ∧ N is on
the path from N0 to Ndest along the spanning tree))

(3.1)

In other words, a dissemination is called perfect if and only if a message is
forwarded exactly to the subset of ContextNodes with (a) either at least one context
C connected at time t0 such that C @ Mt0 or (b) on the path to such a node along the
spanning tree. (Obviously, in addition to the nodes N ∈ NMt0

, the origin node No
always possesses a copy of the message, even though there may not be a C @ Mt0

present there.)
A perfect dissemination is the optimal scheme for disseminating a message to

all recipients, therefore the name: Only those ContextNodes that have a match-
ing context registered actually receive a message for local delivery to their clients;

59

Chapter 3 Contextcast Semantics

additionally, nodes on the path to these nodes also receive the message for for-
warding. Forwarding it to fewer ContextNodes means that some clients do not
receive a message, forwarding it to additional ones without matching clients wastes
bandwidth.

We call these messages that are falsely forwarded false negatives and false positives,
respectively: A false negative is a message that is not forwarded, even though a
matching recipient exists, while a false positive is one that is forwarded, despite
the fact that there is no matching recipient. (The next section offers a more formal
definition of the concepts of false positives and negatives in a distributed Contextcast
system.)

In the absence of failures, a perfect dissemination is almost trivial in a system with
a single, centralized ContextNode: Whenever a message is submitted to this node
for dissemination, it has already reached the only and thus all ContextNodes in the
system, which includes the ones with matching clients registered. It is, however,
rather difficult to achieve in a distributed system with unbounded link delay, as we
are discussing in the following section.

3.3.2 Dissemination in a Distributed System

Even without failures, determining the set of ContextNodes for a perfect dissemina-
tion of a message Mt is difficult in a distributed Contextcast system: Clients register
their context with any ContextNode in the network, messages can originate from
any node as well. To forward messages from any source to the ContextNodes with
matching client contexts, there exist a spectrum of approaches in such a system,
with the following two marking the extreme ends:

1. Without context knowledge available on the routers, a message is broadcast
to all nodes in the network; this way, all nodes where matching contexts
are registered receive the message. However, typically also nodes without
matching clients and not on the path to a node with matching clients receive
the broadcast message, thus violating the perfect dissemination and causing
unnecessary network load in the form of false positives.

2. With context information available on the ContextRouters, they can forward
messages to only the access networks with matching clients, therefore achieving
a perfect dissemination. However, with an unbounded delay δ, a ContextRouter
cannot conclude from its lack of knowledge of a matching recipient in an access
network that indeed there is no such recipient; the information could simply
be still being transmitted. While this could be overcome by storing messages
until a matching recipient is known, this would require storing messages
indefinitely.

60

3.3 Dissemination

Neither broadcasting nor storing messages indefinitely are practical in a system
intended for large-scale deployment. One could experimentally determine an
average delay δ, e.g., as the arithmetic mean of the 95 % of messages with the
lowest delay, and derive a limit how long a node needs to store a message when
determining matching recipients. However, this introduces other difficulties such
as clients disconnecting while waiting for the context information to reach a node.
Instead, the following definition of a “Localized Perfect Dissemination” relaxes the
requirements of a “Perfect Dissemination” for a single node in a distributed system.
The underlying assumption for this definition is the typically low delays in modern
networks, while at the same time accepting a certain amount of false negatives
(from a global perspective) caused by propagation delays for client contexts. A
“Localized Perfect Dissemination” is also the semantics of the reference algorithm
we are introducing in Section 3.3.3.

Let Mt be a contextual message that a node N received at time t, let Contexts(N,t)
refer to the set of contexts known at node N, also at time t, and let Origin(C) refer
to the node from which N received C.

Definition 3.8 (Localized Perfect Dissemination). Let {N1, . . . , Nk} be the set of
ContextRouters with a direct link to node N (the neighbors of N) and Mt a message
received at time t from node NM. A localized perfect dissemination forwards a message
Mt exactly once to each element of a subset NMt ⊆ {N1, . . . , Nk} \ NM, for which
the following condition holds:

Ni ∈ NMt ⇔ ∃C ∈ Contexts(N, t) : C @ Mt ∧ Origin(C) = Ni. (3.2)

To illustrate this definition, recall our example from the beginning of the chapter:
Assume that a node N has three neighbors {N1, N2, N3}. Further assume that from
N3 it has received the context C shown in Table 3.1, thus informing N that N3 can
reach the client represented by this context. (Note that it is irrelevant whether C is
directly registered at N3 or whether N3 is simply a node on the path to the access
network where C is registered. We are discussing context propagation in more detail
in Section 3.3.3.) When N receives the message M shown in Table 3.2 from N1, it
achieves a localized perfect dissemination by forwarding it to N3: N1 already has
the message, whereas N does not have any information about a matching recipient
that can be reached via N2, leaving N3 and the context C it has received from it as
matching recipients.

Definition 3.8 differs from Definition 3.7 in that it takes only local information—
both in space and time—into account: only contexts of which a ContextRouter has
knowledge at the time it forwards a message determine to which of its neighbors
to forward it. The consequence for the routing process in a distributed Contextcast
system is that a context Ci must have been forwarded all the way to the source of

61

Chapter 3 Contextcast Semantics

a message M (with Ci @ M) to establish the necessary knowledge on intermediate
routers before routers can forward M all the way to the access network of Ci. (N.b., a
client that registered Ci may still receive M, though, even if Ci wasn’t forwarded all
the way to the source of M. Intermediate routers may forward the message towards
Ci due to a different context Cj from another ContextNode, with Cj @ M, until it
reaches a node that already has knowledge about Ci.)

In other words, in a localized perfect dissemination, a message is only forwarded
to a neighboring router if the forwarding node knows of at least one matching
context that can be reached via this neighbor at the time of forwarding. These
forwarded messages provides a lower bound for the message load in the system: If
any one of these messages is not forwarded, one or more clients do not receive the
message, even though their context matches it.

Based on this discussion, we can provide formal definitions for falsely forwarded
messages.

Definition 3.9 (False negative). A false negative on a link is a message M that is not
forwarded to a neighbor Ni, even though there is at least one matching recipient C
that can be reached via Ni, i.e., ∃C ∈ Contexts(N) : C @ M ∧ Origin(C) = Ni.

Definition 3.10 (False positive). A false positive on a link is a message that is for-
warded to a neighbor Ni, despite there being no matching recipient C that can be
reached via Ni, i.e., ∀C ∈ Contexts(N) ∧ Origin(C) = Ni : C 6@ M. Therefore, Ni
drops the message without forwarding or delivering it.

Since the Contextcast network forms an acyclic graph, for any node N and any
given Context C there is only one path via which to reach C from N. The union of all
these paths from N to all Ck with Ck @ M is the minimum dissemination tree for a
given message M. (An example for these paths and the resulting dissemination tree
is shown in Figure 3.1b.) The following section introduces a reference dissemination
algorithm for Contextcast, which provides a localized perfect dissemination. It also
shows how a minimum dissemination tree is constructed from the local information
available to the ContextRouters.

3.3.3 Directed Dissemination Reference Algorithm

In this section we present a reference algorithm to disseminate a message to the
ContextNodes with matching client contexts. It employs client context information
to directedly forward messages from senders to ContextNodes with matching
recipients. The directed forwarding prevents the broadcasting of messages, which
would limit the scalability of the system. As we are going to show, the design of the
algorithm provides a localized perfect dissemination of Contextcast messages.

62

3.3 Dissemination

Context Propagation

For a localized perfect dissemination, a ContextRouter needs to know which client
contexts can be reached via its neighbors. That way, the router can forward a
message only to those neighbors via which a matching recipient can be reached. To
this end, all context updates (newly registered, changed, and deregistered contexts)
are propagated into the network. Each ContextRouter maintains a routing table
with entries (C, NC), recording a context C and the neighbor NC from which it has
received that context. Every incoming context update is entered in this routing
table before propagating the information to all neighbors, except the one that it was
originally received from. Algorithm 3.1 shows these steps in detail.

Algorithm 3.1 Client Context Propagation

Require: A context update C, received from neighbor NC or a local client.
Ensure: (C, NC) entered in routing table and C propagated.

if not a context from a local client then . Received from neighbor NC
Record (C, NC) in routing table

end if
for all N ∈ Neighbors \ NC do . Propagate to neighbors

Propagate a copy of C to N
end for

Propagating all context updates in this manner establishes a forwarding tree
towards every client context. Each ContextNode is the source for the propagation of
all its connected client contexts. At the same time, in the resulting forwarding tree,
each client context Ci (and therefore the ContextNode with which it is registered)
is a sink for all messages M : Ci @ M. Figure 3.1a shows an example of two such
trees for contexts C1 and C2. The arrows next to the nodes and links denote routing
table entries for the nodes, i.e., which context can be reached via which link. As one
can see, each forwarding tree establishes a path from every overlay node to the one
where the respective context is registered. This tree is then used when forwarding a
message to establish a dissemination tree for each individual message, as we are
detailing in the following section.

Message Forwarding

When a ContextRouter receives a message Mt at time t, it determines to which of
its neighboring routers it needs to forward Mt, using the information in its routing
table. To prevent forwarding a message twice to the same neighbor, the router
maintains a list of neighbors to which it has already forwarded Mt during the

63

Chapter 3 Contextcast Semantics

process. It iterates over every entry (C, NC) in its routing table. If the ContextRouter
has already forwarded Mt to NC or it has received Mt from NC, it continues with
the next entry. It compares the context C from every entry with the addressing of
Mt If C @ Mt, it forwards a copy to the neighbor NC, from which had received C.
This sequence is shown in Algorithm 3.2.

Algorithm 3.2 Message Forwarding

Require: A message Mt, received from neighbor NM or a local client, at time t.
Ensure: Mt forwarded according to a localized perfect dissemination.

boolean array[neighbors] forwarded← [false,. . . ,false]
for all (C, NC) ∈ Routingtable do . Check all known contexts

if forwarded[NC] = true ∨ NC = NM then
Continue

end if
if C @ Mt then

Forward a copy of Mt to NC
forwarded[NC]← true

end if
end for

The forwarding Algorithm 3.2 achieves a localized perfect dissemination (cf. Defi-
nition 3.8): A message Mt is forwarded to a neighbor if and only if a ContextRouter
has a routing table entry with a context C from that neighbor, such that C @ Mt,
and if it has not received Mt from it.

While it achieves a localized perfect dissemination, matching every locally known
context against a newly received message is obviously not an efficient way to deter-
mine to which neighbors to forward a message. However, efficiently determining
the objects that match a set of constraints has been studied extensively in the area
of databases (e.g., the Generalized Search Tree (GiST) [HNP95].) Another approach
from Pub/sub systems employs an index of the constraints in subscriptions and
a match-counting algorithm for forwarding notifications [CW03]. A Contextcast
system can adopt a similar scheme for contexts, allowing routers to efficiently lookup
the set of matching contexts and with it determine the neighbors from which it
has received these contexts. Thus, for the remainder of this work, we assume that
a suitably fast algorithm is used for the local forwarding decision of the routers;
instead, we focus on the distribution and maintenance of the information that is
needed for this decision. To not make matters more complicated than necessary,
though, our algorithms are presented with the simpler approach of comparing all
known contexts with a message.

64

3.3 Dissemination

Figure 3.1b shows an example of the reference algorithm forwarding a message
M along the two trees for C1, C2 @ M, which were established with Algorithm 3.1
and shown in Figure 3.1a. The ContextRouters forward the message along partial
dissemination trees towards the origin of each context Ci @ M. These partial
dissemination trees form a path between the origin of M and the origin of each
Ci @ M. The union of all these partial dissemination trees form the dissemination
tree for M. Please note that, even though a link may be part of several partial
dissemination trees, M is forwarded only once per link.

The figure also illustrates, though, that a message sent at time t might not be
delivered to every matching context that was registered with the system at time
t, which we mentioned in the previous section. Even with the relaxed definition
of a localized perfect dissemination, this happens when a matching context C has
not been propagated all the way to the sender of a message M. E.g., if the context
C2 in the figure is not propagated all the way to the origin of M when it is sent,
an intermediate ContextRouter might not forward M towards C2. This results in
C2 missing M, even though C2 may have been registered well before the message
sending time t. In the example, it is sufficient, though, if C2 has been propagated to
a node on the path towards C1. M is forwarded to that node due to the context C1,
from where then two copies are forwarded toward C1 and C2, respectively.

Due to these complications in a distributed system, the routing algorithms we
present implement a best-effort service for Contextcast delivery. Chapter 6 shows
an approach that explicitly takes temporal aspects into account. It overcomes the
limitations resulting from the propagation delay but suffers from drawbacks such as
an increased overhead due to the necessary protection of privacy or an increased
message delay.

System Load

As we mentioned before, the reference dissemination algorithm indeed provides a
localized perfect dissemination. I.e., a ContextRouter forwards a message only to a
neighbor if there is at least one matching recipient in that direction. And, since a
message is forwarded over a link at most once, it also disseminates a given message
to all recipients with the minimum amount of forwarded messages in the overlay.

The process has one shortcoming, though, which limits its scalability: every
context update needs to be broadcast in the Contextcast overlay network. Let us
assume that clients registered with the system have an average update rate u 1

s (both
context registrations and deregistrations), and that there are m clients connected at a
given time. Then each router must process mu 1

s updates every second. Furthermore,
in a network of n routers—connected in an acyclic topology—a single context needs
to be propagated to every router, causing a system-wide update load nmu 1

s .

65

Chapter 3 Contextcast Semantics

C1

C1

C1 C2

C1 C1

C1 C1

C1
C1

C2 C2

C2

C1

C1

C2

C2

C2

C2 C2

C2

C2

Contextcast
overlay network

Forwarding trees after
context propagation

(a) Recipient-specific forwarding trees resulting from the propagation of two contexts, C1 and C2,
registered at different ContextNodes

C1

C2

MResulting dissemi-
nation tree

C1

C1 C2

C1 C1

C1 C1

C1
C1

C2 C2

C2

C1
C2

C2 C2

C2

C2

M M

(b) Message forwarding of M along partial forwarding trees from two contexts C1 and C2, with
C1, C2 @ M, and the resulting dissemination tree

Figure 3.1: Context propagation and message forwarding in Contextcast

66

3.3 Dissemination

However, while Algorithm 3.1 and Algorithm 3.2 provide a localized perfect
dissemination (in the absence of failures), this update load is obviously limiting the
scalability of the Contextcast system.

In Chapter 4 and Chapter 5, we therefore introduce two approaches to lower this
update load and increase the scalability of Contextcast. Both are adaptive with
regard to the properties of client contexts and messages that occur in the system,
thus reducing the update load in the average case. The first of the two approaches,
which we detail in Chapter 4, focuses on the update load caused by the number m of
clients in the system. It uses coarser context information for routing, which allows
routers to no longer propagate the context updates of all m clients in the network
and/or reducing the contexts’ update rate u 1

s because of the coarser information.
The second approach in Chapter 5 is aimed at the broadcast of client contexts.
Instead of propagating a context to all n routers, thus incurring an update load
nmu 1

s , it adaptively propagates context information only to certain routers.
The effectiveness of these approaches depends on the specific contexts and mes-

sages that occur. However, if the conditions are not favorable, both approaches
gracefully degenerate to the reference algorithm introduced in this chapter. In addi-
tion, we provide experimental evaluations, which serve to determine the conditions
under which the approaches work well and to provide an insight into the reduction
of update load possible in a real world scenario.

67

Chapter 4

Directed Contextcast Forwarding using
Coarse Client Context Information

All animals are equal, but some
animals are more equal than others.

(George Orwell, ‘Animal Farm’)

4.1 Overview

As we have discussed in the previous chapter, maintaining complete context knowl-
edge on every ContextRouter limits the scalability of the Contextcast system. As we
are going to show in this chapter, one way to reduce this update load is to propagate
coarser context information. This serves two purposes: first, it combines several
client contexts into a single, coarse context to propagate, thus reducing the number
m of clients that are known in the network. And second, an individual context
update is propagated in the network only if the context changes sufficiently, such
that it is no longer covered by the coarser representation, thus lowering the average
update rate u of the clients.

Such a change needs to be transparent for applications, though, to ensure that
existing applications maintain their functionality, independent of the routing op-
timization employed in the network. To this end, the change must not alter the
semantics of the system, which we described in Chapter 3, at least from the applica-
tions’ point of view.

In a system with mobile clients, this idea suggests itself particularly for the location
attribute. This attribute may cause a steady stream of updates, depending on the
sensing frequency and the accuracy of the location system, for every client context.
Allowing uncertain values—i.e., areas in the case of location or, more generally
speaking, ranges—reduces the load caused by such updates.

Another reason why the location attribute lends itself for such an approach is
the system architecture with ContextNodes and their service area coverage; they

69

Chapter 4 Coarse Client Context Information

provide an inherent discretization for the location attribute. Thus, we first introduce
the idea using the location attribute as an example and discuss the required changes
to Contextcast for such a coarse attribute. Other attributes, however, can cause a
large number of updates and thus place a high update load on the system as well.
Propagating coarser information for other attributes is not as straight-forward as
for location, though. Thus, later in this chapter, we also present a more generalized
approach, which uses the similarity of client contexts to automatically determine
appropriate discretizations of attributes. They are then used to aggregate similar
contexts, which directly reduces the number m of context to propagate into the
network.

To this end, in this chapter we first describe the requirements for a routing with
coarse context information in Section 4.2. Next, we introduce two approaches to
reduce the update load in the system in Section 4.3 and Section 4.4. The first one
reduces the update rate for an individual attribute—location—and serves as a simpler
example of what is required when modifying Contextcast to handle approximate
information. The second one aggregates similar contexts into one update to reduce
the overall number of updates. It is a generalization of the first approach that applies
to arbitrary attribute types. Then, we show the results of an evaluation of these
techniques in Section 4.5. After that, we discuss related work in Section 4.6, before
concluding this chapter with a short summary in Section 4.7.

4.2 Requirements

From the informal description in the previous section, we can deduce a number of
important requirements for using coarser client contexts in Contextcast.
Reduction of Updates. The scalability of the Contextcast system depends on
the number of messages and updates that are transmitted in the network. The
reference dissemination we introduced in Section 3.3.3 causes the minimum number
of forwarded messages: a message is forwarded to a neighbor if and only if there
is a matching recipient reachable via this neighbor. It requires a high amount of
context information on every router in the network, though, and thus a large volume
of updates to keep this information up-to-date. The primary goal of this approach
is therefore a reduction of updates compared to the reference algorithm.

The use of coarser information for forwarding messages may introduce false
positives, though. Our approach needs to balance the reduced update load from the
coarse context information against the false positives it causes. Therefore, the goal
is a good trade-off between the reduction of updates and increased false positives;
ultimately, we aim for a reduction of overall system load, i.e., the combination of
updates and false positives.

70

4.2 Requirements

Implementation Transparency. The details of the Contextcast routing algorithms
need to be transparent from an application developer’s point of view. Client
applications require a stable interface, regardless of the routing algorithms that are
used to disseminate messages. Otherwise, any future optimization of Contextcast
routing would break all existing applications.

For this reason, applications that interface with Contextcast must be able to
function without modification with a routing strategy based on approximated
values. In particular, applications must still be able to specify exact values when
registering a context. Any optimization to use approximated values therefore must
take place internally at the ContextRouters.
Preserving Delivery Semantics. Similarly to the Contextcast interface in the previ-
ous requirement, application developers must also be able to rely on the semantics of
Contextcast, regardless of the routing algorithms. Unfortunately, reducing updates
by propagating approximate information also means that ContextRouters make their
forwarding decision on the basis of approximate information. In particular, a router
may no longer be able to determine exactly to which neighbors it needs to forward
a given message for a localized perfect dissemination. In this case, a message might
not reach all ContextNodes with clients whose context matches it. This results in
clients missing messages that actually addressed their context.

To this end, the reference dissemination from Algorithm 3.2 needs to be adapted
to handle this loss of information: The general idea is to forward a message to a
neighboring router if there might be a matching recipient that can be reached via this
neighbor, based on the approximate information. Messages can always be filtered
out by a downstream router if there was indeed no matching recipient.
Continuous Operation. Clients can connect to and disconnect from the Contextcast
system as well as update their context at any time. This happens for different
reasons, such as entering an area of bad wireless connectivity, devices switching
into a standby state to preserve energy, or simply because one or more attributes
change. The system needs to handle these connections, disconnections, and updates
of clients efficiently. In particular, an aggregation approach must not recalculate the
aggregation scheme for all contexts every time an update occurs. Otherwise, the
complexity of the aggregation scheme itself would quickly overload Contextcast
nodes, despite the lower number of updates propagated in the Contextcast network.

71

Chapter 4 Coarse Client Context Information

4.3 Contextcast Forwarding with Coarse Location
Information

Current consumer-grade GPS hardware offers sensing frequencies of up to 5 Hz
and an accuracy of 2.5 m (see [u-b11]). Propagating such exact location information
into the network of ContextRouters would generate a significant amount of update
load in Contextcast, even at the relatively slow pace of pedestrians of around 1.5 m

s
(see [WL89]). Since each update is effectively broadcast to all routers, these updates
severely limit the scalability of the Contextcast system using the reference routing
we introduced in Section 3.3.3.

One approach to reduce this update load and thus improve the scalability is to
adapt a reporting protocol. Instead of the actual position of a user, such a protocol
transmits a position and a guaranteed maximum deviation from it. Thus, the user’s
reported position never deviates more than a specified upper bound from the actual
one, while potentially producing significantly less updates, depending on the actual
movement of the user.

In the next section, we present a similar approach for the location attribute, which
also guarantees an upper bound for the location error. Our approach specifically
exploits the design of our system, with ContextNodes and their associated service
areas. Also, the introduction of coarse location serves as an example for the necessary
changes when we extend the support for approximated information to the other
attributes in Section 4.4.

4.3.1 Service Area Approximation

The reference dissemination algorithm for Contextcast, which we presented in
Section 3.3.3, relies on exact context information, including a client’s location. This, in
conjunction with contexts propagated to every ContextRouter, achieves a localized
perfect dissemination. Formally, let Ct and Ct+1 be two subsequent context updates
for a client C, which contain an exact location:

Ct : WGS84: location = Pt

. . .

Ct+1 : WGS84: location = Pt+1

. . .

Both locations Pt and Pt+1 are (exact) points in a coordinate system such as WGS84,
R2, or R3. Obviously, a position that is registered with the system inherently deviates

72

4.3 Contextcast Forwarding with Coarse Location Information

from the actual position; it cannot always be identical to the actual position. While it
is possible to reduce this deviation by using more accurate sensors and increasing the
reporting frequency, this also increases the amount of updates that are propagated
to the ContextRouters.

The problem of maintaining such accurate point location information in a system
with mobile clients is well known from the area of Moving Objects Databases
(MODs). A MOD tracks and manages the positions of a set of moving objects. To
this end, moving objects transmit updates containing their location to the MOD.
However, sending such updates incurs a certain communication cost in such systems.
Over the years, various methods of reducing the number of such updates and
therefore the corresponding communication cost have been studied (e.g., [WSCY99,
LR01, ČJP05]).

One way to reduce the amount of position updates is the use of a reporting
protocol such as Distance-based Reporting (DBR) [LR00, LR01]. DBR transmits a
user’s location ~p(t) at time t to the MOD. After that, it monitors the actual position
~a(t′) of the client at time t′ > t. If the actual position deviates more than a threshold
δ from the last reported position, i.e.,∣∣~a(t′)− ~p(t)

∣∣ > δ,

the protocol sends ~a(t′) to the server as the object’s new position. Thus, with no
update messages lost, DBR guarantees that a position as reported by the MOD never
deviates more than δ from the actual position.

In Contextcast, clients register with a ContextNode N whose service area they
are located in. For the “Localized Perfect Dissemination” from Section 3.3.3, this
information is then propagated into the network, starting from N. Once a client
leaves the service area of one ContextNode and enters the service area of another
one, the client needs to register with the new ContextNode Nnew. This information
is then again propagated into the network, informing ContextRouters that this
particular client can now be reached via Nnew. Thus, moving from one service
area to another one requires that an update is broadcast into the network. (In
fact, it requires two updates, one deregistering the context starting from the old
ContextNode, N, and one registering at the new one, Nnew.) These context updates
when leaving one service area and entering another one are mandatory, since they
inform the routers about a new attachment of a client at a ContextNode.

We adopt the DBR approach for Contextcast, but adapt it to our particular system
design: we use the service area as the reporting threshold and thus the tolerated
uncertainty. Thus, instead of propagating exact location information, the system
propagates a modified context C′ with a coarse location, which corresponds to
the ContextNode’s service area A1 (with A1 specified as a polygon of WGS84

73

Chapter 4 Coarse Client Context Information

coordinates, e.g.).

C′t : WGS84: location = A1

. . .

As long as a client remains within one service area, there is no need to update
the client’s context, at least not due to movement. At some time t′, when the client
moves out of the old and into a new service area A2 and thus connects to a different
ContextNode, an update is required anyway.

C′t′ : WGS84: location = A2

. . .

The ContextNodes are responsible to replace an exact location with the approxi-
mated one to ensure that the optimization is applied to unmodified clients as well.
Newer clients can directly register an approximate location if that is desired. In that
case, a ContextNode does not replace the already approximate information. The
complete process, shown in Algorithm 4.1, fulfills the first two requirements as well
as the fourth one we listed in Section 4.2. First, it reduces the rate of updates in
the system, since movement-related updates are no longer propagated as long as a
client remains within one service area. The only movement-related updates that are
still sent are those that occur when a client moves from one ContextNode to another.
Second, it does not require any changes to the clients. The replacement of an exact
location attribute with the approximation of the current ContextNode’s service area
takes place transparently on said ContextNode. Clients can continue to register and
update contexts containing exact location information with a ContextNode. However,
while these context updates with exact location remain in a service area and are
not propagated into the network, they still consume power on the client and may
congest a shared wireless medium. Therefore, it is desirable to enable (future) clients
to also directly register an approximated location of the current service area to reduce
power and bandwidth consumption in the access networks. Third, the replacement
of a context’s location happens once for every new context update that is sent to
a ContextNode, without affecting any other client context. Also, it does not affect
context invalidations that are propagated into the network. Thus, the approach also
fulfills the requirement of an efficient continuous operation.

In the next section, we show how the forwarding algorithm has to be adjusted to
fulfill the third requirement, a preservation of the delivery semantics despite using
approximate location information for the forwarding decision.

74

4.3 Contextcast Forwarding with Coarse Location Information

Algorithm 4.1 Client Context Propagation with Coarse Location

Require: A context update Cu, received from neighbor NC or a local client; the
service area Alocal in case of a ContextNode.

Ensure: (Cu, NC) entered in routing table and C propagated.
if not a context from a local client then . Received from neighbor NC

Record (Cu, NC) in routing table
else . Received locally

if Cu contains location attribute∧ location is exact then
Replace location with: location = Alocal

end if
end if
for all N ∈ Neighbors \ NC do . Propagate to neighbors

Propagate a copy of Cu to N
end for

4.3.2 Forwarding

As we have argued in Section 4.2, the delivery semantics of Contextcast needs to
be preserved when optimizing the routing strategy. The reference forwarding we
presented in Algorithm 3.2 evaluates a message’s constraints against all known
contexts to determine the neighboring routers that a message needs to be forwarded
to. It delivers a message to all neighbors that can reach one or more matching
recipients. Since ContextRouters no longer have exact values for a client’s location
attribute, the forwarding algorithm must ensure that clients with matching contexts
do not miss messages due to the optimization. To this end, the evaluation of
location constraints needs to be modified to handle the approximate location and
still match all the client contexts it would have matched if the routers had exact
location information. The necessary changes are rather straight-forward, though, as
the following example shows.

First, let C1 and C2 represent two clients, who have each registered a context with
an exact location attribute of position P1 and P2, respectively. Both P1 and P2 are
simple WGS84 latitude, longitude, and altitude coordinates. P1 and P2 are within the
service area of the same ContextNode, to which both C1 and C2 are connected. (For

75

Chapter 4 Coarse Client Context Information

Service area

M

Target location

Clients

C1 C2

© OpenStreetMap & contributors

Figure 4.1: Evaluating location constraints with approximate client locations

clarity, we have omitted other context attributes of C1 and C2 from this example.)

C1 : WGS84: location = P1

. . .

C2 : WGS84: location = P2

. . .

Second, let M be a message that contains a constraint on the target location φlocation.
(Again, we have omitted other constraints from M, since they provide no additional
insights in the example. We assume that both C1 and C2 match any constraints in M
other than the one on location.)

M : WGS84: location ∈ <polygon of target location>
. . .

Thus, whether the two contexts match the constraints of M is determined by the
location constraint alone. Let C1 be within the target location of M, while C2 is
outside. This means that C1 @ M and C2 6@ M. This situation is also depicted in
Figure 4.1.

The information of C1 and C2 is propagated to the ContextRouters. As we
described in Section 4.3.1, the ContextNode replaces the exact location in C1 and C2
with its own service area A1 before propagation—creating C′1 and C′2:

C′1 : WGS84: location = A1

. . .

C′2 : WGS84: location = A1

. . .

76

4.3 Contextcast Forwarding with Coarse Location Information

Thus, the ContextRouters have to make their forwarding decision based on the
approximate information in C′1 and C′2. The location constraint in M has not changed,
however.

To achieve that every client with C @ M receives M, nodes need to evaluate the
location constraint in messages differently. According to Definition 3.4, the location
constraint of M, φlocation : location ∈ <polygon of target location>, is evaluated for
the contexts C1 and C2 as

P1 ∈ <polygon of target location>→ true

and

P2 ∈ <polygon of target location>→ false.

For a point location such as P1 and P2, this is simply a test whether the point is
contained within the described area, i.e., the polygon.

However, with client positions approximated by an area, the evaluation becomes
more complicated. Thus, evaluating the constraint for C′1 and C′2, with the approxi-
mate location A1, in both cases results in the expression

location ∈ <polygon of target location>
⇔ A1 ∈ <polygon of target location>.

Even if the definition of the operator ∈ for on location is extended to apply to
two areas instead of a point and an area, this example shows that the distinction
between C1 and C2 is lost: Since both C′1 and C′2 result in the evaluation of the same
expression, either both yield true or both yield false.

Obviously, since C1 @ M, the result of the evaluation must be true, otherwise C1
would miss this message. Unfortunately, if C1 were not present and a ContextRouter
evaluates the same expression for C′2, they forward M anyway, despite C2 6@ M. This
is an example of an unnecessarily forwarded messages due to the information lost
in the service area approximation.

To achieve that this expression indeed yields true, we extend the definition of the
operator ∈ of the location attribute as follows:

Definition 4.1 (Evaluation of operator ∈ with coarse location). Let A1, Atarget be
two areas, e.g., A1 is a ContextNode’s service area (and thus also used as coarse
location in client contexts), Atarget is the target location of a message. The comparison
A1 ∈ Atarget is then evaluated as

A1 ∈ Atarget ⇔ ∃P : P ∈ A1 ∧ P ∈ Atarget

⇔ A1 ∩ Atarget 6= ∅.

77

Chapter 4 Coarse Client Context Information

In other words, with coarse location attributes, the evaluation results in true if
and only if there is a possible location within the coarse client location that would
match the constraint, i.e., there is a non-empty intersection of the two areas.

In the following section, we show how this concept of coarser values for individual
attributes can be extended to attributes other than location.

4.4 General Aggregation of Client Context Information

Reducing the update rate of client contexts using coarse information is similar to
approaches that have been researched in the area of Pub/sub systems: routing
schemes with filter covering and merging [Müh02]. The idea behind these two
concepts is to propagate only a very general subscription in the system and thus
reduce both the number of subscriptions and their update rate. (The key difference
between the two is the origin of the the propagated, coarse subscription: informally
speaking, given a set of client subscriptions, covering selects one of them that is the
superset of the other ones, whereas merging creates a new, previously non-existent
subscription, as the superset of the given client subscriptions. For a more detailed
discussion of covering and merging, refer to Section 4.6.)

Approximating a client’s location with the service area of the ContextNode it
is connected to resembles a routing scheme with covering in Pub/sub systems.
The approach is limited to a single attribute with particular properties, though.
First, movement usually causes small, localized changes in location: a client rarely
disappears in one place and reappears far away from its last position. As long as
a client maintains a connection to the system, their location changes little between
updates (at least if the location is described using a geometric location model such
as WGS84). (The obvious exception to this is a client who is disconnected from the
Contextcast network for the duration of a journey, e.g., when traveling by plane;
such a situation occurs relatively rarely, though.) Second, the responsibility of
ContextNodes for a defined service area inherently provides a discretization of the
attribute value. All clients that are within the same service area are in close proximity
to each other. This discretization serves as a readily-available approximation of
clients’ positions.

Other attributes in Contextcast do not necessarily offer the same properties. An
attribute transport, which describes a client’s method of transportation, can change
from “/pedestrian” to “/public/metro” to “/motorized/car”, all during their way
home from work. Due to these potentially large changes, it is rather difficult to
approximate such a value. Also, it is unclear how such an approximated value
would look like. But even for an attribute such as age, for which an approximation
might seem easier, the answer is not that obvious. Assume, e.g., four client contexts,

78

4.4 General Aggregation of Client Context Information

with an age attribute of 22, 24, 28, and 30 years, respectively. Should the system
propagate them (informally) as “some clients between 20 and 25” and “some clients
between 25 and 30”? Or rather as “some clients between 20 and 30”?

To solve these challenges, we are going to show an aggregation approach that
determines similar contexts and propagates an aggregated view of these contexts
into the network. This is a generalization of the merging routing scheme used in
Pub/sub systems, applied to Contextcast, as we are discussing in Section 4.6. The
assumption behind these aggregated contexts is that clients are not all completely
different. Whenever there are similarities between some clients, this can be exploited
to combine the information of two or more clients. We also assume that such
similarities accumulate at certain locations. On a university campus, most of the
clients will be of type student; they are also all of a similar age. For each academic
major, there is a set of clients who have chosen this major, etc. Similar arguments
can be made for other locations.

An aggregation of client contexts is beneficial to the scalability of Contextcast in
two ways: First, an aggregation of contexts reduces the number of contexts that
are propagated to the routers. It combines similar contexts into an aggregated
view and propagates this coarser representation to the routers. Second, like the
location approximation using a ContextNode’s service area, such an aggregation also
reduces the rate of context updates that are propagated into the network. If a context
is propagated as an aggregated context, any update of this context only needs to
be propagated if it falls outside of the aggregation it is part of. For the location
attribute, this means that a context moves outside of the approximated area, i.e., the
ContextNode’s service ares. In the example of the age attribute from before, if the
oldest client turns 31, its context update falls outside of the aggregation (regardless
of which of the two example aggregations was in fact chosen). For other attributes,
this depends on the actual aggregation, as we are showing in the following sections.

While this approach reduces the number of contexts that need to be propagated to
the ContextRouters as well as having lower update rates for the aggregated contexts,
such an aggregation introduces false positives into the system. The reason is the
same as for coarse location, ContextRouters may no longer be able to evaluate exactly
whether a given aggregation contains a client context that matches a message. Thus,
the effectiveness of this approach depends strongly on the similarity of contexts
and the precision of the resulting aggregations. They determine how precise the
forwarding of messages is with regard to the actual registered client contexts.
Section 4.5.2 contains an experimental evaluation of the effects of various conditions
on the update and false positive load in the Contextcast system.

Conceptually, aggregating client contexts in Contextcast is similar to filter covering
and merging in Pub/sub systems. We discuss this relationship in more detail in
Section 4.6.

79

Chapter 4 Coarse Client Context Information

4.4.1 Aggregated Context Information

The main idea behind the aggregation of client contexts is a reduction of update load
by (1) reducing the update rate through coarse values, and (2) combining several
client contexts into one aggregated context. For the discussion of our aggregation
approach, we distinguish two types of contexts: First, the contexts that clients
register with a ContextNode are called singleton contexts. Such a singleton context
precisely describes the context of an individual client, before any approximation
or aggregation. Second, aggregated contexts result from an aggregation of a number
of contexts. These can either be singleton contexts, other, previously aggregated
contexts, or a mixture of both.

Both singleton and aggregated contexts describe clients in our system and can
therefore be used with the reference forwarding algorithm from Section 3.3.3. How-
ever, similarly to the handling of approximated location information, the matching
of messages with aggregated contexts must be adapted due to the uncertainty that
an aggregation introduces. The necessary changes depend on the actual method
of aggregating contexts. We are showing such an aggregation method as well as
the changes to the matching algorithm in section 4.4.2. With this approach, instead
of propagating a large number of singleton contexts, the system can propagate a
smaller number of aggregated contexts to represent a set of singleton contexts.

An abstract way to define such an aggregation is in terms of the addressed clients:
If at least one of a set of contexts matches a given message then the aggregation of
these contexts must match the message as well. This ensures that a client does not
miss a message whose addressing matches its context due to an optimized routing
algorithm based on aggregated contexts (a “false negative”, see Definition 3.9). This
fulfills our requirement that an optimization to the routing algorithm must not alter
the semantics of Contextcast (see Section 4.2). Formally, an aggregation of client
contexts is defined as follows:

Definition 4.2 (Aggregation of client contexts). Let C be a set of Client Contexts
{C1, . . . , Cn}. An Aggregation C′ of these contexts is a set of contexts

{
C′1, . . . , C′k

}
(where typically k � n, to achieve a reduction in update load) for which the
Aggregation Condition holds.

Definition 4.2 is on purpose formulated in a way that abstracts from the actual
method used to compute an aggregation. All that is required is that the Aggregation
Condition in Definition 4.3 holds for such a set of contexts.

When aggregating contexts, singleton or composite, information is usually lost. A
larger number of client contexts is represented by a smaller number of aggregated
client contexts. This also affects the forwarding decisions of ContextRouters. The
following Aggregation Condition, however, ensures that such an information loss

80

4.4 General Aggregation of Client Context Information

does not lead to clients missing messages even though their context matches a
message (i.e., false negatives).

Definition 4.3 (Aggregation Condition). Let C = {C1, . . . , Cn} and C′ ={
C′1, . . . , C′k

}
be two sets of contexts and let M be an arbitrary Contextcast mes-

sage. We call C′ an aggregation of C if and only if the following condition holds:

∀M(∃Ci ∈ C : Ci @ M)→ (∃C′j ∈ C′ : C′j @ M).

In other words, if a context in C matches M, at least one context in the aggregation
C′ must also match M. This ensures that a router forwarding on the basis of
aggregated information C′ forwards to at least the same neighbors as with the
unaggregated information C.

As a downside of the aggregation of client contexts, however, ContextRouters can
no longer achieve a localized perfect dissemination, due to the loss of information.
Before, with exact context information, a message was forwarded to a neighbor if and
only if there was at least one matching recipient reachable via this neighbor. With
aggregated client contexts, the ContextRouters perform forwarding based on the
aggregated information that was propagated to them. Because of the Aggregation
Condition, all that is required for an aggregation is that an unaggregated context
Ci ∈ C : Ci @ M is also represented in an aggregation such that ∃C′j ∈ C′ : C′j @ M.

The aggregation of contexts is therefore a trade-off between a reduction of update
load and an increase in message load due to these false positives. To lessen the
impact of these additional false positives, we base our aggregation strategy on the
similarity of client contexts. This ensures that very little information is lost when
aggregating contexts. Section 4.5.2 shows that the reduction in updates outweighs
the additional load from false positives in our scenario.

After providing the basic definitions of our context aggregation approach, the next
section shows an algorithm which provides an aggregation for a pair of contexts. As
we argued before for approximated location data, the matching of such aggregated
contexts against messages needs adaptation. Thus, we are also showing the necessary
changes for the evaluation of constraints with aggregated contexts.

4.4.2 Pairwise Context Aggregation

Based on the discussion in the previous section and the matching semantics we
introduced in Section 3.2, we can now present an approach to aggregate client
contexts. It is designed to aggregate two contexts into one, a decision that was
influenced by the Continuous Context Aggregation algorithm, which we present in
Section 4.4.4.

81

Chapter 4 Coarse Client Context Information

Aggregation

The Pairwise Context Aggregation (PCA) shown in Algorithm 4.2 aggregates two
arbitrary contexts into one. The algorithm achieves this in two steps: First, every

Algorithm 4.2 Pairwise Context Aggregation

Require: Two contexts C1 and C2 (singleton contexts or already aggregated ones).
Ensure: An aggregated context Caggreg.

function aggregatePairwiseContexts(C1, C2)
Caggreg ← ∅
for all αi,1 ∈ C1 do . Add attributes that are only in C1 or in both

if ∃αj,2 ∈ C2 : typeαi,1
= typeαj,2

∧ nameαi,1 = nameαj,2 then
αmerged ← (typeαi,1

, nameαi,1 , valueαi,1 ∪ valueαj,2)

Caggreg ← Caggreg ∪ αmerged
else . Attribute only present in C1

Caggreg ← Caggreg ∪ αi,1 . Insert in aggregated context unmodified
end if

end for
for all αj,2 ∈ C2 do . Add remaining attributes that are only in C2

if @αk ∈ Caggreg : typeαj,2
= typeαk

∧ nameαj,2 = nameαk then
Caggreg ← Caggreg ∪ αj,2

end if
end for

end function

attribute that occurs in only one of the contexts C1 and C2 is added to the aggregated
context without modification. Second, for every attribute that occurs in both C1 and
C2, it merges the values and adds the merged attribute to the aggregated context.

Obviously, this merging of attribute values needs to be defined for the different
attribute types in a Contextcast system. We are showing example merging strategies
for important attribute types, which we also discussed in Section 3.2.1. These were
also used in our prototype in Section 4.5.2. Together with the discussions in the
previous sections, these can be easily adapted to other attribute models if desired.

• For example, for WGS84 locations, a merged value can be the bounding rectan-
gle of both positions. Or, as a more precise alternative, a polygon that closely
approximates the original positions or areas.

• For ordered, numerical types, the merged value can be the set of all values.
Alternatively, if the number of elements is large and their density high, it can
be a closed interval from the smallest to the largest value.

82

4.4 General Aggregation of Client Context Information

• Similarly, for an attribute based on a tree of values, such as a type hierarchy,
a merged value can be the set of all values. Or, for a large number of dense
elements, it can be a common ancestor of the nodes in the tree.

Since the algorithm can aggregate both singleton and already aggregated contexts,
the definition of such a merging of values must take care that it also supports values
that resulted from a previous pairwise aggregation. For example, for an ordered,
numerical type, the result of merging an interval [v1, v2] with an individual value v3
depends on the value of v3:

merge ([v1, v2] , v3) =

[v1, v3] for v2 ≤ v3

[v3, v2] for v3 ≤ v1

[v1, v2] for v1 < v3 < v2

Constraint Matching for Aggregated Contexts

Similarly to the approximate location we introduced in Section 4.3, ContextRouters
must be able to handle such merged attribute values when evaluating message
constraints. This depends on the actual merging that takes place when aggregating
contexts. Based on the discussion in that section and the example merging strategies
we provided, we are showing the changes that are necessary here.

Similarly to the evaluation of the inexact location of the service area approximation,
constraints on such merged attribute values must yield true if there might exist a
value in the merged attribute that fulfills the constraint.

• We have already discussed the evaluation of a location attribute that is specified
as a region instead of a point in Definition 4.1.

• For an ordered, numeric attribute with a set of values this is the case if the
constraint evaluates to true for any element of the set. If the value is specified
as a range of values, a constraint yields true if there is a value within the
range that evaluates to true for a given constraint.

• For an attribute based on a hierarchy, with a value represented as a set of
nodes in the hierarchy, a constraint yields true if it yields true for any of the
values in the set. If the merged value is a common ancestor instead, there is
no simple universal answer. The evaluation of the constraint depends on the
comparison operator and its semantics for that attribute. The designer of the
attribute system, in this case, needs to specify the evaluation of all constraint
operators when dealing with aggregated values.

83

Chapter 4 Coarse Client Context Information

An application of Algorithm 4.2 to two contexts, together with the changes to
matching discussed here, results in an aggregation according to Definition 4.2. I.e.,
the resulting context fulfills the Aggregation Condition from Definition 4.3.

Proof. Let C1 and C2 be two contexts that are used as input to Algorithm 4.2, and
Caggreg the result of this algorithm. Furthermore, let M be a message with addressing
{φ1, . . . , φk, φk+1, . . . , φl} (1 ≤ k ≤ l) and, without loss of generality, let C1 @ M.
(N.b. nothing is said whether C2 @ M.) The constraints {φ1, . . . , φk} are constraints
on attributes that occur only in C1, {φk+1, . . . , φl} are constraints on attributes that
occur in C1 and also in C2. (Obviously, according to Definition 3.4 and Definition 3.5,
since C1 @ M there must be a matching attribute in C1 for every constraint in M.
Some of the attributes, however, may also appear in C2.)

Algorithm 4.2 adds all attributes that occur only in C1 to Caggreg unmodified.
Therefore, since C1 @ M, ∀φ ∈ {φ1, . . . , φk} : Caggreg @ φ. (Similarly, it also adds all
attributes that occur only in C2 to Caggreg unmodified. They are, however, irrelevant
for the purpose of this proof.)

Furthermore, Algorithm 4.2 adds all attributes that occur in both C1 and C2 to
Caggreg as well; their values, however, are merged to represent the values that were
present in the two original contexts. The merged value for such an attribute contains,
in particular, the value of the corresponding attribute in C1. Also, the constraint
evaluation was adjusted accordingly, such that ∀φ ∈ {φk+1, . . . , φl} : Caggreg @ φ

holds.
Therefore, ∀φ ∈ {φ1, . . . , φl} : Caggreg @ φ and thus Caggreg @ M.

The algorithm can aggregate a set of arbitrary contexts into a single aggregated
context according to Definition 4.2. To this end, the system repeatedly aggregates
two contexts until only one remains. Since the result of each of these repeated
pairwise aggregation fulfills Definition 4.3, it holds that the result of its repeated
application to a set of contexts also fulfills Definition 4.3.

PCA is the basis of the aggregation strategy that we present in the remainder of
this section.

4.4.3 Aggregation Selection: Context Similarity

While the repeated application of the pairwise context aggregation from Algo-
rithm 4.2 aggregates a given set of contexts into a single one, it obviously needs to
be applied to similar contexts: For example, if we aggregate a context with an age
of 8 with one with an age of 80, the resulting information loss might be enormous
(a context with age = [8, 80]). This would lead to a large amount of false positive
messages, namely all messages addressed to an age between 8 and 80. Regarding
the location attribute, a similar argument can be made for aggregating the contexts

84

4.4 General Aggregation of Client Context Information

of one client in Europe and one client in Australia. Therefore, the question remains
“how to select a good set of (similar) contexts for aggregation?” This requires a
means to measure the similarity between client contexts.

Looking at the application of Algorithm 4.2, we can identify two types of un-
certainty that it introduces into aggregated contexts. Both of them can cause false
positives during the forwarding decision:

1. New attribute combinations: Attributes that previously did not occur together
in one context may end up together in an aggregated context. However, all
constraints in a message must match for a message to be forwarded and
ultimately delivered to clients. Therefore, these additional combinations can
lead to aggregations matched by messages that would not have matched the
individual contexts.

For example, let C1 = {α1} and C2 = {α2} be two contexts, and Caggreg =
{α1, α2} be the result of aggregating the two. Also, let M be a message with
constraints on both α1 and α2, i.e., M = {φ1, φ2}. Further, each of the attributes
in C1 and C2 matches the corresponding constraint. But C1 6@ M and C2 6@ M,
since each context is missing one of the two attributes. However, Caggreg @ M,
due to the newly introduced combination of α1 and α2 in one context.

2. Uncertain values: Attributes that occur in two or more contexts have their values
merged. This may create new values for attributes, which were not present in
any of the individual contexts. Again, this can lead to constraints matching
an aggregated attribute value, which would otherwise not have matched the
individual, unaggregated values. For example, let C1 = {α1 = value1} and
C2 = {α1 = value2} be two contexts, and Caggreg = {α1 = [value1, value2]} be
the result of aggregating the two. Also, let M be a message with a constraint
on α1, i.e., M = {φ1 = value3}, with value1 < value3 < value2. Then C1 6@ M
and C2 6@ M, due to the values of the attribute. However, Caggreg @ M, due to
the newly introduced values in the range [value1, value2].

We therefore propose to measure the overall similarity of client contexts by two
components, a structural similarity for their respective attribute sets and a value
similarity for the values of the attributes occurring in both contexts.

Structural Similarity

The structural similarity measures how similar two contexts are in terms of their
attribute combinations. We adopt the well-known and widely used Jaccard index J
(see [Jac01]) to express this similarity. It defines the similarity of two sets A and B as

85

Chapter 4 Coarse Client Context Information

the number of elements that occur in both over the total number of distinct elements
in both sets:

J(A, B) =
|A ∩ B|
|A ∪ B|

With this definition, we can measure the structural similarity of two contexts
using the number of attributes shared by the two contexts over the total number of
attributes:

Definition 4.4 (Structural Similarity). Let Attributes(C) denote the set of attributes
(without values) that occur in a context C. The structural similarity Sstructural between
two contexts C1 and C2 can then be expressed as

Sstructural(C1, C2) =
|Attributes(C1) ∩ Attributes(C2)|
|Attributes(C1) ∪ Attributes(C2)|

. (4.1)

Obviously, for Attributes(C1) = Attributes(C2), i.e., C1 and C2 contain-
ing the same set of attributes, albeit with probably different values, this re-
sults in Sstructural(C1, C2) = 1, i.e., the highest structural similarity. In contrast,
Attributes(C1) ∩ Attributes(C2) = ∅, i.e., C1 and C2 do not share any attribute,
results in Sstructural(C1, C2) = 0, i.e., the lowest structural similarity.

Value Similarity

As its name implies, the value similarity measures how similar two contexts are in
terms of the values of their attributes. For point values of an attribute with a defined
distance measure the similarity can easily be defined, e.g., as the reciprocal of the
distance between two values. This can easily be extended for objects that contain
numerous attributes with point values, which are often used in data analysis. In
this case, the objects are numerical vectors and their (dis)similarity can be expressed,
e.g., by a distance measure in Rn. (See, e.g., [JMF99] or [XWI05] for an overview of
clustering approaches.)

This concept cannot be easily applied to the similarity of contexts in our Con-
textcast system, though. First, two contexts need not be defined on the same set
of attributes. Second, client contexts can contain attributes that do not have a
meaningful distance measure defined, such as a type hierarchy, or whose values
are not simple points but value ranges. Contexts in Contextcast are therefore more
similar in nature to the symbolic objects described by Gowda and Diday in [GD92].
The attribute types in Contextcast, in particular, are very similar to the classification
they provide. We have therefore adapted their classification of different attribute
types from [GD92] as well es their defined similarity measures:

• Quantitative Attributes

86

4.4 General Aggregation of Client Context Information

– continuous ratio values, e.g., velocity.

– discrete absolute values, e.g., age.

– interval values, e.g., duration.

• Qualitative Attributes

– nominal (unordered), e.g., color or gender.

– ordinal (ordered), e.g., designation.

• Structured Attributes

– tree-ordered sets, e.g., a type hierarchy.

Generally, the system we present can support arbitrary types. All that is required
is that the designer of the attribute model provides a definition of both a similarity
measure for a type’s values (i.e., a function (v1, v2) 7→ [0; 1]) and an aggregation
scheme for the values.

The similarity of two values of an attribute depends on the respective class of
the attribute. The authors in [GD92] and subsequently [GR95] describe a method
to compute the similarity for the attributes of these types, with the exception of
structured variables, which they mention as one possible type but never detail. From
this information, they then compute the similarity between two symbolic objects by
adding the similarity values of all attribute-wise similarities.

We closely follow the approach in [GR95] for the attribute similarity of client
contexts. However, there are three notable differences: First, Gowda et al. mention
that the composite objects need not be defined on the same set of attributes but
never detail how it affects the computation of similarity. As we have shown in
Section 4.4.3, the attribute sets that make up two contexts are incorporated in the
computation of the structural similarity in Contextcast. We show later in this section
how to use both the structural and value similarity of two contexts to compute their
overall similarity. Second, they simply add the value similarities of all attributes that
occur in both objects to calculate the resulting similarity of the objects. Obviously,
this leads to higher similarities the more attributes two objects share. As we are
discussing later in this section, this runs contrary to an intuitive notion of similarity.
Third, they do not describe a similarity measure for structured attributes, which are
an important part in our system. We therefore provide a similarity definition for
this type of attributes.

According to [GR95], independent of the type of an attribute αi, we can compute
the value similarity as the sum of three components:

• Sposition(αi,1, αi,2): Similarity due to position

87

Chapter 4 Coarse Client Context Information

• Sspan(αi,1, αi,2): Similarity due to span

• Scontent(αi,1, αi,2): Similarity due to content

The similarity due to position is used to describe the relative position of two values
on a real line. The component due to span measures the relative size of two attribute
values, without considering common parts. The similarity due to content indicates
the common parts between two values.

The similarity components for position, span, and content are all in [0, 1]. However,
a simple addition of the three components often results in a similarity S > 1. In
particular, since not all attribute types employ all three components to measure
similarity, this would distort the results for different attribute classes. We therefore
propose a small change, which defines the value similarity of a single attribute αi as
the arithmetic mean of these three components:

Svalue(αi,1, αi,2) =
Sposition(αi,1, αi,2) + Sspan(αi,1, αi,2) + Scontent(αi,1, αi,2)

3
. (4.2)

Thus, the value similarity of a given attribute is also in [0, 1], independent of whether
a particular attribute class uses only one, two, or all three of the above components.
Quantitative Attributes. According to [GD92, GR95], the similarity of quantitative
interval types can be computed from the similarity due to position, span, and content:

The similarity due to position is defined as

Sposition(αi,1, αi,2) = 1− |αi,1,l − αi,2,l|
Uαi

,

with αi,1,l, αi,2,l the lower bounds of αi,1 and αi,2, respectively, and Uαi the maximum
interval of the attribute αi.

Similarity due to span is defined as

Sspan(αi,1, αi,2) =
lαi,1 + lαi,2

2 · ls
,

with lαi,1 , lαi,2 the length of the intervals αi,1 and αi,2, respectively, i.e., the difference
of the upper and lower bound; and ls the span length of intervals αi,1, αi,2, i.e.,
ls = |max(αi,1,u, αi,2,u)−min(αi,1,l, αi,2,l)|, where αi,1,u, αi,2,u are the upper bounds of
αi,1, αi,2, respectively.

The similarity due to content is defined as

Scontent(αi,1, αi,2) =
inters

ls
,

with inters the length of the intersection of αi,1 and αi,2.

88

4.4 General Aggregation of Client Context Information

The resulting normalized similarity for quantitative interval types is therefore

Svalue(αi,1, αi,2) =
Sposition(αi,1, αi,2) + Sspan(αi,1, αi,2) + Scontent(αi,1, αi,2)

3
. (4.3)

Figure 4.2 illustrates these three components with two quantitative interval
type attributes, age1 and age2. Let the attribute age be an integer attribute
with a value range 0 ≤ x ≤ 120. Also, let age1 = {x ∈ Z | 23 ≤ x ≤ 26} and
age2 = {x ∈ Z | 25 ≤ x ≤ 30}. Using the previous formulae, Sposition, Sspan, and
Scontent can be calculated as:

Sposition(age1, age2) = 1−
|age1,l − age2,l|

Uage
= 1− |23− 25|

120− 0
= 1− 2

120
=

118
120

,

Sspan(age1, age2) =
lage1

+ lage2

2 · ls
=

(26− 23) + (30− 25)
2 · (30− 23)

=
8

14
,

Scontent(age1, age2) =
inters

ls
=

26− 25
30− 23

=
1
7

,

which results in a total value similarity of:

Svalue(age1, age2) =
Sposition(age1, age2) + Sspan(age1, age2) + Scontent(age1, age2)

3

=
118
120 +

8
14 +

1
7

3
=

713
420
3

=
713

1260
≈ 0.566.

The other quantitative attributes types, ratio and absolute values, are special cases of
the quantitative interval type, with αi,1,l = αi,1,u, αi,2,l = αi,2,u, lαi,1 = lαi,2 = inters = 0.
Qualitative Attributes. As shown in [GD92, GR95], the similarity of qualitative
attributes can be measured as the similarity due to span and content, since there is
no meaningful measure of position.

Let lαi,1 be the length or number of elements in αi,1, lαi,2 accordingly for
αi,2. Let also inters = number of elements common to αi,1 and αi,2, and ls =
combined span length of αi,1 and αi,2 = lαk,1 + lαk,2 − inters.

The similarity due to span is then defined as:

Sspan(αi,1, αi,2) =
lαi,1 + lαi,2

2 · ls
.

The similarity due to content is defined as:

Scontent(αi,1, αi,2) =
inters

ls
.

89

Chapter 4 Coarse Client Context Information

Sposition

Sspan

age1
22 23 24 25 26 27 28 29 30 31

age2
22 23 24 25 26 27 28 29 30 31

age1,l

age2,l

Scontent age1
22 23 24 25 26 27 28 29 30 31

age2
22 23 24 25 26 27 28 29 30 31

age1
22 23 24 25 26 27 28 29 30 31

age2
22 23 24 25 26 27 28 29 30 31

lage1

lage2

ls

inters

Figure 4.2: Value similarity for a quantitative interval attribute age

For qualitative attribute types, the total value similarity is therefore the arithmetic
mean of Sspan and Scontent

Svalue(αi,1, αi,2) =
Sspan(αi,1, αi,2) + Scontent(αi,1, αi,2)

2
. (4.4)

Structured Attributes. Contextcast supports structured attributes with an under-
lying hierarchy of values, such as a type hierarchy. We obtain the similarity of
such values by their proximity in the hierarchy over the total size of the hierarchy.
Formally, let n1, n2 be two nodes that correspond to the values of an attribute αi in
a given hierarchy and h the height of this hierarchy. Let L(n) denote the level of
a node n in this hierarchy. Then, the similarity between n1 and n2—and thus the
value similarity for αi—is computed using the sum of the distance of n1 and n2 from
their first common ancestor a over twice the height h of the hierarchy:

Svalue(αi,1, αi,2) = Sp(n1, n2)

= 1− (L(n1)− L(a)) + (L(n2)− L(a))
2 · h = 1− L(n1) + L(n2)− 2L(a)

2 · h (4.5)

Overall Value Similarity. We mentioned before that Gowda et al. simply add the
value similarities of the attributes that two objects—or contexts in our case—share.

90

4.4 General Aggregation of Client Context Information

C1 = C2: α1 = 2
α3 = 42

C3 = C4: α4 = 12
α7 = 8

α11 = 2

Table 4.1: Example: Value similarity of pairs of identical contexts

This leads to unintuitive results. In the case of identical contexts, for instance, this
can lead to two identical contexts being “more identical” than another two, also
identical contexts. Table 4.1 shows such an example of identical contexts C1 and C2
as well as C3 and C4.

Obviously, since the pairs share the same attributes, Sstructural(C1, C2) =
Sstructural(C3, C4) = 1. Simply summing up the value similarities for the pairs,
however, leads to unexpected results: Since the values of the attributes in the con-
texts are identical, the value similarity for α1, α3, α4, α7, and α11 equals 1. Thus, a
simple addition means that Svalue(C1, C2) = 2 and Svalue(C3, C4) = 3. Thus, C3 and
C4 would be considered “more similar” than C1 and C2, which is nonsensical for
pairs of identical contexts.

Therefore, we use the arithmetic mean of the value similarities of all attributes
that two contexts C1 and C2 share to compute the value similarity of the two.

Definition 4.5 (Value Similarity). Let Ashared denote the attributes that C1 and
C2 have in common: Ashared = Attributes(C1) ∩ Attributes(C2) = {α1, ..., αk}
(without loss of generality). The value similarity Svalue between the two contexts C1
and C2 can then be expressed as

Svalue(C1, C2) =

{
∑k

i=1 Svalue(αi,1,αi,2)
k , for Ashared 6= ∅

0, else
. (4.6)

Combined Structural and Value Similarity

For the overall similarity of two contexts, we combine the structural and the value
similarity as follows: multiply structural similarity of the two contexts with the
arithmetic mean of the value similarity of all attributes that occur in both contexts.
Formally, with attributes α1, ..., αk occurring in both C1 and C2 and n attributes in
the aggregated context, this leads to

S(C1, C2) = Sstructural(C1, C2) ·
1
k

k

∑
i=1

Svalue(αi,1, αi,2)

=
k
n
· 1

k

k

∑
i=1

Svalue(αi,1, αi,2) =
1
n

k

∑
i=1

Svalue(αi,1, αi,2)). (4.7)

91

Chapter 4 Coarse Client Context Information

This multiplication of the two components matches the intuitive notion that for
contexts with identical attribute sets, thus Sstructural(C1, C2) = 1, the result is the
arithmetic mean of the value similarity. For contexts with disjoint attribute sets,
and thus Sstructural(C1, C2) = 0, the overall similarity is 0, independent of the value
similarity (which is also 0, since there are no overlapping attributes).

4.4.4 Continuous Context Aggregation

Clients can register and deregister contexts at any time and the design of a context-
aware communication mechanism needs to account for this. Based on the pairwise
aggregation defined in Section 4.4.2 and the similarity measure from Section 4.4.3,
we propose the following algorithms. These algorithms are designed to provide a
continuous aggregation of new, similar contexts and a disaggregation of removed
contexts to fulfill the continuous operation requirement from Section 4.2.
Context Addition. The algorithm we propose for adding a new context is similar
to centroid-linkage algorithms in cluster analysis (see, e.g., [XWI05]). Using the
similarity measure from the previous section, the system can compute the similarity
between pairs of contexts, either singleton ones or the results from a previous
aggregation. We can then aggregate a newly added context with an existing one
as follows: When a ContextRouter receives a new context Cadd from one of its
neighbors, it computes the similarity between Cadd and all other contexts in the
routing table for this neighbor. If the highest similarity between Cadd and an existing
context Cmax exceeds a configurable similarity threshold, Sth, the system aggregates
Cadd and Cmax. If the similarity is not above the threshold, Cadd is considered too
different from any existing context and must therefore be added to the routing table
without aggregation.

The similarity threshold Sth serves as a parameter for the operation of Algo-
rithm 4.3. It determines how similar two contexts must be before they are aggregated
and thus whether the routers have a very fine view of client contexts, with a high
update rate, or a rather coarse view, with a low update rate. This allows to trade
off context update load against false positive load. By adjusting its value, either
manually by a human administrator or autonomously, one can optimize the system
for the observed contexts and messages. We evaluate reasonable values for Sth under
different scenarios in Section 4.5.

If Cadd is aggregated with Cmax and the resulting context Cnew differs from
Cmax, Cnew must be propagated as an update for Cmax. In this case, we call Cadd
a “defining context” for Cnew. This is important for the context removal; when
a defining context is removed from an aggregation, we need to recompute the
aggregation from the remaining parts. For this purpose, a router stores individual

92

4.4 General Aggregation of Client Context Information

contexts that it aggregates but only propagates their aggregation(s) to its neighbors.
Algorithm 4.3 shows this sequence in detail.

Algorithm 4.3 Context Addition

Require: A newly added context Cadd, received from neighbor NC.
Ensure: The information of Cadd is added to the routing table.

local context store← local context store∪ Cadd . Stored for recalculation
Smax ← 0 . The highest similarity value
Cmax ← ∅ . The most similar context
for all (Ci, Ni) ∈ routing table do

if Ni 6= NC then . Entry from a different neighbor
continue

end if
Si ← S(Cadd, Ci)
if Si > Smax then

Smax ← Si
Cmax ← Ci

end if
end for . Cmax now contains the most similar context
if Cmax 6= ∅ ∧ Smax > Sth then

Cnew ←aggregatePairwiseContexts(Cmax, Cadd) . Algorithm 4.2
if Cnew 6= Cmax then . Adding Cadd has changed Cmax

Mark Cadd as defining context for Cnew.
Replace (Cmax, NC) in the routing table with (Cnew, NC).
Propagate Cnew as update for Cmax to all neighbors except NC

end if
else

Record (Cadd, NC) in routing table
Propagate Cadd to all neighbors except NC

end if

Algorithm 4.3 fulfills the first four requirements we list in Section 4.2:

1. It reduces the rate of updates as the merging of attribute values creates value
ranges instead of exact values. Thus, updates need only be propagated if an
update falls outside of an aggregation, i.e., adds a new attribute or the value
of an attribute is no longer covered by the range of the aggregated values.
Additionally, the value ranges are derived automatically from the similarity
of client contexts; otherwise, the system would quickly degenerate to use
aggregated contexts that contain ranges for every value that an attribute can

93

Chapter 4 Coarse Client Context Information

take. Also, since multiple clients are represented by a single context, it also
reduces the amount of contexts that is propagated to the routers.

2. The context aggregation is completely transparent for applications. An existing
application can continue to register contexts with exact values, the Context-
Routers aggregate similar ones when propagating the information into the
network. However, the approach does not prevent updated clients from reg-
istering contexts with inexact values, for example to increase privacy by not
revealing exact information about a client.

3. It preserves the existing Contextcast delivery semantics due to the adjusted
evaluation of constraints for aggregated values. A message is forwarded to
at least all the ContextNodes as with exact client contexts; but because of
the information loss when aggregating contexts, they might be forwarded to
additional nodes that do not have a matching recipient connected.

4. The application of a centroid-linkage algorithm to aggregate a new context
update allows for an efficient continuous operation. In particular, it does not
require that a router reanalyzes all components of existing aggregations once
an update arrives. Such a continuous re-clustering (see Section 4.6) of client
contexts would place an enormous load on ContextRouters due to the dynamic
nature of client contexts.

Context Removal. The removal algorithm for contexts (e.g., when a client discon-
nects from the system) complements Algorithm 4.3. Basically, when a context Crem
is supposed to be removed from the routing table, a ContextRouter first checks
whether Crem is a singleton context or part of an aggregation. A singleton context
can simply be removed from the routing table and its removal propagated to neigh-
bors. If the context is part of an aggregation, the removal depends on whether
it is a defining context for this aggregation. If it is not (i.e., its addition had no
effect on the aggregation), its removal does not affect the aggregation either. If it
is a defining context, the algorithm needs to recalculate the aggregation from the
contexts it contains, and potentially propagate an update for the aggregation. See
Algorithm 4.4 for a detailed description.

Algorithm 4.4 complements Algorithm 4.3, especially with regard to the efficient
continuous operation requirement when contexts need to be removed. If a context
was part of an aggregation, removing it requires only a recalculation of this particular
aggregation, other aggregations are not affected, thus also fulfilling the fourth
requirement.
Aggregation Degeneration. While our aggregation approach supports a continu-
ous aggregation and disaggregation of client contexts, its results depend on the order

94

4.4 General Aggregation of Client Context Information

Algorithm 4.4 Context Removal

Require: A context Crem received from NC to remove from the routing table.
Ensure: The information of Crem is removed from the routing table.

if Crem is a singleton context then
Remove Crem from the routing table
Forward Crem to all neighbors except NC

else . Crem is part of an aggregation Caggreg
if Crem is defining context for Caggreg then

Recalculate Caggreg from local context store . Cf. Algorithm 4.3
Propagate an update of Caggreg to all neighbors except NC

else
Do nothing

end if
end if
local context store← local context store \ Crem . Remove obsolete context

of context additions and removals. For example, given a suitable sequence of context
registrations, an aggregation may grow to represent a very generic context, i.e., a
combination of many attributes with wide ranges of values. Similarly, removing
contexts from an aggregation may lead to aggregations that are too generic, due to
values no longer present in an attribute’s value range.

In both cases, an aggregation may incorrectly match many messages, thus causing
a lot of false positives in the network. This obviously runs contrary to the goal of
lowering the overall network load. Such a degeneration of aggregated contexts is
rather easy to detect, though.

In Chapter 5, we present a number of statistics that ContextRouters maintain for
the adaptive propagation of client contexts. Among those statistics is the rate of false
positive messages that each propagated context generates. We can easily extend
this approach to aggregated contexts; i.e., if a router detects that a propagated,
aggregated context causes too many false positive messages, this aggregation has
degenerated in some form.

Once an aggregated context Cdegen is identified as causing too many false positives,
the ContextRouter can correct the situation: The router marks Cdegen so as not to
aggregate any more contexts with Cdegen. Then treat all the contexts that make up
Cdegen as new contexts, aggregating them again if possible, but in a randomized
order. This way, the individual contexts are either aggregated with other, more
similar (composite) contexts or propagated as singleton contexts if they are too
dissimilar from all other contexts. Finally, the neighbors that had received Cdegen
are informed that Cdegen is no longer valid. Algorithm 4.5 details these steps.

95

Chapter 4 Coarse Client Context Information

Algorithm 4.5 Re-Aggregation

Require: A degenerated context Cdegen.
Ensure: The information of Cdegen is added to the routing table, possibly aggregated

with other contexts.
Mark Cdegen as deprecated . No longer a candidate for aggregation
for all Ccomponent ∈ Cdegen do . In random order

Add Ccomponent as a new context . Do not consider Cdegen for aggregation
end for
Invalidate Cdegen with all neighbors that it was propagated to

4.4.5 Optimized Aggregation Candidate Selection

For a newly added context, a node must calculate its similarity with all other contexts,
aggregated or singleton contexts, that are attached to the same link. Especially when
there are a large number of contexts attached to a link, this calculation can cause a
rather large amount of load for the node. However, it is possible to simplify this
calculation by first selecting a suitable set of aggregation candidates.

The similarity of two contexts consists of the product of the structural and the
value similarity. By employing the concept of Bloom filters [Blo70], it is possible to
calculate an upper bound of the structural similarity very efficiently: Let bi be a bit
string, which represents the structure of a context Ci as follows: Every attribute in
Ci is hashed to a position in bi, which is set to 1. Also, let |bi| be Hamming weight
of bi, i.e., the number of 1 bits in bi. Then, the structural similarity between Cexisting
and Cadd can be expressed as

Sstructural(Cexisting, Cadd) =
|A(Cexisting) ∩ A(Cadd)|
|A(Cexisting) ∪ A(Cadd)|

≈

∣∣∣bCexisting ∧ bCadd

∣∣∣∣∣∣bCexisting ∨ bCadd

∣∣∣ (4.8)

Binary AND and OR can be computed very fast on conventional computer systems;
for counting the 1 bits, efficient algorithms exist and some processors even offer a
dedicated machine instruction such as POPCNT. The hashing of attribute names to
bit positions can be done once and cached.

From this structural similarity, we can now derive a set of candidate contexts as
follows: for a given similarity threshold Sth, we exclude a context from the candidate
set (and thus skip the calculation of the value similarity) if the structural similarity
is smaller than Sth: From the condition S = Sstructural · Svalue > Sth, we can derive
that also Sstructual > Sth (for the highest possible value similarity, Svalue = 1).

However, the hashing of attribute names can lead to collisions and thus a higher
structural similarity value. Thus, for two contexts with a similarity above the

96

4.5 Evaluation

threshold, the algorithm needs to recalculate the structural similarity based on the
actual attribute sets instead of their bit string representations, in addition to the
value similarity.

4.5 Evaluation

To determine the impact of using coarse information for Contextcast routing, we
simulated both the approach based on approximated locations (see Section 4.3) as
well as the general aggregation of client contexts (see Section 4.4). We compare the
resulting number of updates and messages to the reference routing we presented in
Section 3.3.3.

4.5.1 Coarse Location Information

Setup

To evaluate the performance of the location aggregation, which we described in
Section 4.3, we have implemented a prototype to determine the savings in messages
of the approach. We simulate an overlay network of 1 000 ContextRouters, connected
with 2 000 links in total. The links are established according to a Waxman [Wax88]
model. Two nodes u and v are connected in this model with probability

P(u, v) = α · e
−d(u,v)

βL ,

with 0 < α ≤ 1, 0 < β ≤ 1, d(u, v) the Euclidean distance between u and v, and L
the maximum distance between any two nodes.

In this network, we simulate 1 000, 2 500, 5 000, 7 500, and 10 000 mobile clients.
Since we only consider the effects of the location attribute, we fix the values of other
context attributes and simulate only the movement of clients with these attributes.
(This also means that we do not simulate any updates caused by changes in attributes
other than location.)

The clients follow an incrementally changed random motion [HP98], a variant
of a random walk mobility model; their starting points are uniformly distributed
over the simulation area. We simulate clients with a low average speed typical for
pedestrians. The simulated system covers a total area of 10 000 units× 10 000 units,
which we then divide up into 400 squares (resulting in an edge length of 500 units
per square). On average, 60 % of these are selected as access networks and each
access network is assigned a router within its area as ContextNode.

Each of the clients sends random messages with an average rate of one message
every 18 s; the target location of these messages are random squares with an edge

97

Chapter 4 Coarse Client Context Information

length of 0.5 to 1.5 times the edge length of an access network square (500 units).
The target locations are uniformly distributed over the total simulation area. The
other addressing constraints are set to the fixed attribute values, therefore only the
location is relevant for determining matching recipients.

In this system, we then simulate our approach approximating client location by
the access nodes’ service areas (Service Area Approximation (SAA)) and compare it
to a number of Distance-based (Reporting) (DB) approaches; with distance-based
reporting, a client updates its location in the system once the distance from its last
reported position exceeds a given threshold (cf., e.g., [Leo03, FLR07]). The DB
approaches use a number of different distance thresholds, denoted as DBn, where
n corresponds to the distance threshold; i.e., DB20 denotes a distance threshold of
20 units. The one end of the range, DB20, provides a higher location accuracy. This
takes the typical accuracy of GPS into account, without producing unnaturally high
update rates by reporting movement of 1 unit or less. The other end of the range,
DB500, uses a distance threshold of 500 units. This is the same as the edge length
of the service areas for the SAA, which results in a similar location uncertainty for
SAA and DB500.

In all approaches the clients also send an update both when entering and leaving
an access network. This also means that, if the distance threshold were significantly
higher than the size of an access network, the distance-based reporting would behave
practically identical to SAA: a moving client leaves a service area, which causes
an update, before it reaches the distance threshold. An update is not sent during
movement inside an access network, since their size is smaller than the reporting
threshold. Thus, a node sends an update only when leaving one service area and
entering another one.

The run time of such an experiment is limited to 900 s; thus, every client sends
50 messages on average during the experiment. We run each experiment 10 times,
with different network topologies, client movement, and Contextcast messages. In
each run, we measure the number of propagated updates and forwarded contextual
messages and calculate the arithmetic mean and the standard deviation of the
simulation runs.

Network Load Against Number of Clients

Figure 4.3 and Figure 4.4 illustrate the measured update and message load for SAA
and DB250 (as one representative of the various DB approaches), respectively.

As one can see from Figure 4.3, the amount of updates is proportional to the
number of clients. This is an obvious result of the approach as any additional client
creates additional updates according to its movement pattern.

98

4.5 Evaluation

 0
 1x107
 2x107
 3x107
 4x107
 5x107
 6x107
 7x107

 1000 2500 5000 7500 10000

U
pd

at
e

lo
ad

 [u
pd

at
es

]

Users

Updates SAA
Updates DB250

Figure 4.3: Update load against number of clients

Similarly, Figure 4.4 also shows that the message load is roughly proportional to
the number of clients. The reason for this is the same as for the update load: each
client sends a message at an average rate of one message every 18 s. Thus, if the
number of clients doubles, so does the amount of messages sent. It is, however, not
perfectly proportional. For lower number of clients, we measure less messages then
one would expect. In particular, for DB250 and 1 000 clients, we observe significantly
less than 1

10 of the messages compared to 10 000 clients. This is due to the lower
density of clients: with fewer clients, messages generally need to be forwarded to
fewer access nodes since chances are higher that there is no recipient in a message’s
target location.

Also note that—in terms of absolute numbers—the scenario is clearly dominated
by the update load. This is due to updates being broadcast throughout the Con-
textcast system, whereas message are disseminated using a directed forwarding.
This limits the amount of forwarded messages toward those service areas where
matching recipients exist. We show two approaches to limit this broadcast of updates
in Section 4.4 and Chapter 5.

Network Load against Coarseness of location

As can be seen from Figure 4.5, increasing the distance threshold of the DBn
approaches lowers the amount of location updates in the system significantly. DB500
shows an almost 89 % lower amount of updates in the system compared to DB20.

The number of forwarded messages for the various DBn approaches remains
more or less constant, independent of the distance threshold n. This is due to the
routers being unaware of the inherent uncertainty of the location information that

99

Chapter 4 Coarse Client Context Information

 0
 100000
 200000
 300000
 400000
 500000
 600000
 700000
 800000
 900000

 1000 2500 5000 7500 10000

M
es

sa
ge

 lo
ad

 [m
es

sa
ge

s]

Users

Messages SAA
Messages DB250

Figure 4.4: Message load against number of clients

results from the distance-based reporting. In essence, the routers treat the location as
exact, forwarding if and only if a client’s location is indeed inside the target location
of a message.

SAA, in contrast, further reduces the amount of updates by 24.4 % compared
to DB500 (or 91.6 % less updates when compared to DB20). The reason for this
improvement is the fact that, while SAA sends an update only when leaving or
entering a service area, the DB approaches sometimes send an update while they
remain inside the same service area. For DB500, this happens when a client moves
roughly along the diagonal of the quadratic service areas. Obviously, with lower
distance thresholds, this happens more often.

At the same time, SAA increases the amount of messages that are forwarded in the
system by almost 56 % compared to DB500. This is a result of the semantic changes to
handle uncertain locations. With SAA, routers need to forward a message whenever
a clients (uncertain) location overlaps with the target location of the message. Not all
of these potential recipients are inside the target location, though. These additional
messages place an additional load on the server, but it is required to ensure that all
matching recipients indeed receive a given message.

The number of forwarded updates is significantly higher than the number of
forwarded messages (in the order of 103 for DB20 and still 102 for DB500), though.
This means that, overall, the reduction of updates greatly outweighs the false
positives introduced by the approximated location.

These results have shown that the approximation of client location greatly reduces
the amount of update messages in the system. Also, this reduction in update
messages outweighs the introduction of false positives (cf. the last requirement in
Section 4.2). As the message rate increases, though, the effect of false positives

100

4.5 Evaluation

 100000

 1x106

 1x107

 1x108

 1x109

 20 50 100 250 500 SAA

Lo
ad

 [f
or

w
ar

de
d

pa
ck

et
s]

Distance treshold for DBn approaches, SAA

Updates DBn
Messages DBn

Updates SAA
Messages SAA

Figure 4.5: System load for DBn and SAA approach

would also increase until finally the false positives outweigh the savings in updates.
However, the simulation shows that the message rate would have to increase by 102

or more to outweigh the savings achieved by location approximation. This would
mean more than 5 messages every second from each client, which is unreasonably
high in the scenarios we envision for a Contextcast.

Encouraged by these positive results for coarse location, we generalized the ap-
proach to all types of context attributes, not only location. In the following section,
we present evaluation results of the performance impact of using aggregated client
contexts for forwarding in Contextcast.

4.5.2 General Aggregation

Setup

We have implemented our method for aggregating contexts, described in Algo-
rithm 4.2, Algorithm 4.3, and Algorithm 4.4 in a prototype implementation The
simulation serves to examine the performance of the approach and to determine the
influence of the similarity threshold parameter Sth.

Since our approach reduces the load in the overlay, we have chosen to implement
the prototype in the PeerS im [MJ09] network simulator.

101

Chapter 4 Coarse Client Context Information

For the simulation, the Contextcast network topology consists of 400 Context-
Routers, which are connected to form an undirected acyclic graph. Links are
constructed according to the Heuristically Optimized Trade-off model (cf. [FKP02]):
the nodes are sequentially added and uniformly distributed over an area of size
[0, 1] × [0, 1], with the first node n0 being the root node of the network graph.
A newly added node ni establishes a connection to an existing node nj, which
minimizes the weighted distance metric

fi(j) = γ · dij + hj,

where dij is the Euclidean distance between the nodes i and j and hj is the network
distance, i.e., the number of hops, from node j to the root node n0. The parameter γ

of this weighted distance was selected as γ =
√

n for a network of n nodes. (The
authors of [FKP02] use α for this parameter, however in Contextcast α designates a
context attribute.) According to [FKP02], this leads to an Internet-like power-law
distribution for the node degrees.

A fraction of 60 % of these nodes are then selected as access nodes for recipients
of Contextcast messages and assigned a rectangular service area. The edge lengths
of these service areas are uniformly distributed between 0.04 and 0.06. Each service
area is then placed such that the corresponding ContextNode is in its center. Any
service area that extends beyond the [0, 1] interval in either direction is cut off to
remain within the boundaries of the simulation.

Not all routers with degree 1 are assigned an access network, however. But, even
though this means no client is ever connected to such a node, they can still be
used to send messages, e.g., by corporations or NPOs. For example, a provider of
commercial messages might operate its own overlay node to send its messages but
no client ever connects to such a pure message source.

For the simulation, we use a simplified attribute model. It contains an attribute
location, 3 structural attributes and 7 quantitative attributes. The hierarchy for each of
the structural attributes is generated randomly with a height uniformly distributed
between 2 and 5 and between 0 and 3 children per node. Each quantitative attribute
has its own value range as well as an associated normal distribution with distinct
means and standard deviations for each attribute.

Based on the this model, we simulate client contexts in the following way: on
average, there are 2 400 clients connected to the system in total, which corresponds
to 10 in each ContextNode’s service area on average. Each of these contexts has an
associated location, assigned such that it is identical to its access network’s service
area. With probability 0.5, a context contains a structural attribute; this is selected
uniformly out of the three structural attributes in the model. Additionally, each
context contains either 2 and 3 quantitative attributes, again uniformly chosen out
of the 7 quantitative attributes of our model.

102

4.5 Evaluation

The value for a structural attribute is chosen by descending into the associated
hierarchy, at each node uniformly choosing one of the children; the probability to
further descend into the hierarchy is chosen such that it favors deep nodes. In the
case of a type hierarchy, this corresponds to favoring a detailed type specification
over a more general one. The values of the quantitative attributes are chosen
according to the normal distribution associated with each attribute.

For the simulation, we chose three scenarios: a message-dominated one, a bal-
anced one, and an update-dominated one. The rates of messages (rm) and updates
(ru) in these scenarios have the ratios rm : ru = 5 : 1, rm : ru = 3 : 3, and rm : ru = 1 : 5,
respectively. Updates are generated randomly, according to the following instruc-
tions: for a fraction of 70 % of all updates, the update results from a change of
a single attribute. If the attribute that is being changed is the location, a node
uniformly selects one of its ten nearest neighboring ContextNodes and connects to
it, updating its location; for the other attributes, the values are changed in the same
manner as they are created for new contexts. For the remaining 30 % of updates, a
uniformly selected context is removed and a different random context—created in
the previously described way—added. This models clients changing their contexts
as well as leaving and new ones joining the system, respectively.

Context messages are also sent randomly and created similar to context updates:
they contain constraints on location, with p = 0.5 on a structured attribute, and
between 0 and 2 on quantitative attributes, again selected from the attribute model
described before.

For our evaluation, we run five simulations with different random seeds and
compute the arithmetic mean of the simulation runs, to account for random effects;
unless stated otherwise, the standard deviation of these runs was negligible. To
quantify the performance of our approach, we measure the amount of context
updates and false positive messages.
Update Messages. As we discussed previously, aggregating client contexts con-
ceals some of the clients’ updates from the network, thus lowering the update load
on routers. Therefore, we measure the number of updates that the routers actually
forward to their neighbors, both with and without an aggregation of client contexts.
We denote u the number of updates that are propagated in the unaggregated case
and ua the number of updates propagated with the aggregation of similar contexts
performed.
False Positives. Besides the load of update messages, an aggregation of contexts
causes load in the overlay network by transmitting messages without matching
recipients, i.e., false positives. False positive messages can always be filtered closer
to the recipient with more detailed knowledge, however. In the worst case, this may
only be possible at the access node or on a client’s mobile device. We therefore
measure the amount of false positive messages, fp, caused by the loss of routing

103

Chapter 4 Coarse Client Context Information

information when aggregating contexts. N.b., the reference Contextcast routing does
not forward false positive messages.

Update Load Reduction: Impact of Similarity Threshold

Similarly to coarse location information, we evaluate the impact of an aggregation of
client contexts by comparing the amount of false positives caused by the aggregation
to the reduction in updates. We carry out simulations with similarity thresholds Sth
of 0.5, 0.6, and 0.7. These similarity thresholds allow an administrator to adjust the
granularity of the aggregation from coarse routing information to more detailed,
respectively.

Each experiment covers a time of 3 000 simulation cycles; however, for the results,
we limit the simulation time to 2 500 cycles. The first 500 cycles of the simulation
contain a warm-up phase, during which the contexts are first registered with the
system; this generates a significant amount of updates, however, no messages are
sent during that time. Limiting the evaluation to the cycles 500 to 3 000 eliminates
the warm-up phase from the measurements.

Figure 4.6, Figure 4.7, and Figure 4.8 show the results for the update-dominated,
the balanced, and the message-dominated scenario, respectively.

As was to be expected, forwarding with aggregated context information causes
a certain amount of false positives. The figures show that lowering the similarity
threshold increases the number of false positives: going from Sth = 0.7 to 0.6
increase the amount of false positives by 337.4 % in the update-dominated scenario,
by 253.1 % in the balanced scenario, and by 222.2 % in the message-dominated
scenario. Lowering it from 0.6 to 0.5 causes only a further increase by 36.1 %, 57.4 %
and 70.4 %, respectively.

The smaller increase when lowering Sth from 0.6 to 0.5 can easily be explained:
there is an upper limit on the amount of false positives for any given message, no
matter how coarse the aggregation of the contexts actually is. The upper limit is a
result of the target location of every message. As soon as a message is delivered
to all access networks whose service area intersects a message’s target location the
delivery is complete. Thus, the maximum number of false positives any message
can cause results simply from delivering it to all access networks that overlap the
target location.

Overall, the increase in false positives fits the intuition that a coarser aggregation
provides ContextRouters with a fuzzier knowledge about client contexts. Therefore,
the dissemination trees cannot be pruned as early as with complete, unaggregated
knowledge on each router. As such, messages get forwarded to routers with
better, less aggregated knowledge or even to the access networks before it can be
determined that they have no matching recipient.

104

4.5 Evaluation

Looking at the decrease in updates, i.e., the difference between the number
of updates without and with aggregation, we can see similar results in all three
scenarios. Aggregating contexts causes a clear reduction of update load in the
system. A similarity threshold Sth = 0.6 saves between 4.5 and almost 9.8 times
the amount of updates than aggregating with Sth = 0.7. However, lowering the
threshold further to 0.5, we observe that this effect reverses. If the system aggregates
contexts too aggressively, the update load increases again, almost halving the savings
that were achieved with Sth = 0.6. The reason for this effect is that a similarity
threshold that is too low causes rather different contexts to be aggregated. When
such dissimilar contexts get aggregated, there is a high probability that a context that
is added to another one is actually a defining context for the resulting aggregation.
Thus, another update needs to be propagated further into the network, causing
more update load instead of reducing it.

When we compare the numbers for false positives and updates, we can see that
by aggregating similar contexts, the amount of saved updates vastly outweighs the
amount of false positives it introduces. In our simulated scenario, the amount of
additional false positives is less than 0.1 % of the reduction of updates our approach
achieves. In other words, only a system with much more contextual messages or
much less updates due to quasi-static client contexts (either one by a factor in the
order of 103) would not benefit from an aggregation of client contexts.

Compared to the reference dissemination (compare Section 3.3.3), our approach
lowers the system load by between 18 % and almost 25 % on average for Sth = 0.6,
with some scenarios achieving a reduction up to almost 30 %. Thus, the approach
fulfills the last requirement from Section 4.2, a reduction of overall system load.

Also, these numbers were observed for the random contexts of the simulation.
In a live Contextcast system, we expect clients that are close to each other to be
more similar to one another. This allows an aggregation of contexts to work more
efficiently, thus improving these results further.

Aggregation Quality over Time

Due to the dynamic nature of client contexts, new contexts are continuously regis-
tered, some existing ones removed, and others changed. This, in turn, also means
that contexts are added to and removed from aggregations all the time. This might
lead to a degeneration of the aggregations over time and thus a gradual increase in
the number of false positives. (However, since the aggregations are becoming more
general, this effect would also reduce update messages further.) To investigate this
behavior, we simulate the three scenarios from before with a similarity threshold
sth = 0.5. This low threshold value leads to many contexts being aggregated. This

105

Chapter 4 Coarse Client Context Information

 100

 1000

 10000

 100000

 1x106

 1x107

Sth = 0.7 Sth = 0.6 Sth = 0.5

Sy
st

em
 lo

ad
 [f

or
w

ar
de

d
pa

ck
et

s]

Similarity threshold Sth

Update-dominated (rm = 1, ru = 5)

Additional false positives
Saved updates

Figure 4.6: Effect of Sth in the update-dominated scenario

 100

 1000

 10000

 100000

 1x106

 1x107

Sth = 0.7 Sth = 0.6 Sth = 0.5

Sy
st

em
 lo

ad
 [f

or
w

ar
de

d
pa

ck
et

s]

Similarity threshold Sth

Balanced (rm = 3, ru = 3)

Additional false positives
Saved updates

Figure 4.7: Effect of Sth in the balanced scenario

106

4.5 Evaluation

 100

 1000

 10000

 100000

 1x106

 1x107

Sth = 0.7 Sth = 0.6 Sth = 0.5

Sy
st

em
 lo

ad
 [f

or
w

ar
de

d
pa

ck
et

s]

Similarity threshold Sth

Message-dominated (rm = 5, ru = 1)

Additional false positives
Saved updates

Figure 4.8: Effect of Sth in the message-dominated scenario

also results in a large number of changes to aggregations over time and thus should
show any degeneration effect on context aggregations rather clearly.

Figure 4.9 shows the false positives during the simulation run time. To better
indicate a general trend and reduce small spikes, the false positives during each
simulation cycle were smoothed using a Simple Moving Average (SMA) over 25
cycles. For all scenarios, the experiment shows a time with no false positives in the
beginning, the length of which differs between the scenarios. This is caused by the
warm-up phases in the beginning. Their length is determined by the time it takes to
register the given number of contexts with the context update rate given for each
experiment. During this warm-up, no messages are sent and thus no false positives
can occur.

In our experiments, the average of false positives stays relatively constant for all
three scenarios during the remaining simulation time. No noticeable increase in
false positives occurs over time. Therefore, even after 3 000 cycles, i.e., after about
15 000 updates in the scenario with the highest update rate, there is no discernible
negative effect on the quality of the aggregations in our system.

However, it is possible that a larger change in client contexts or a particular
sequence of context updates still lead to a degeneration of one or more aggregations.
For example, this could happen if successive context updates cover an ever larger

107

Chapter 4 Coarse Client Context Information

 0

 1

 2

 3

 4

 5

 0 500 1000 1500 2000 2500 3000

Fa
ls

e
po

si
tiv

e
lo

ad
 [f

al
se

 p
os

iti
ve

s]

Simulation time [cycles]

Update-dominated (rm = 1, ru = 5)
Balanced (rm = 3, ru = 3)

Message-dominated (rm = 5, ru = 1)

Figure 4.9: Degeneration of aggregations over time

part of an attribute’s value range. This way, aggregating such updates leads to a
context aggregation that is continually increasing in size until, finally, it matches
practically every message.

A ContextRouter can, however, remedy such a degeneration easily: With the
technique we present in Section 5.3.2, a router detects the number of false positives
caused by contexts that it has propagated. When an aggregation causes many false
positives, the router that created the aggregation can dissolve it and re-aggregate
its partial contexts; each router keeps the partial contexts it aggregates to handle
context removal. To prevent the same degeneration, the router needs to randomize
the order, in which these partial contexts are then re-aggregated. As a result, some
of the partial contexts may then be added to different, more suitable aggregations,
while others may form new, smaller ones, which describe the actual client contexts
more precisely.

Analysis

Recall, the goal of an aggregation of contexts, which we introduced in this chapter,
is twofold. First, instead of m individual contexts that need to be propagated in
the system, coarser aggregated contexts are propagated and used for disseminating

108

4.6 Related Work

Contextcast messages. Second, this coarser information also reduces the update rate
u 1

s
Our approach is adaptive with regard to the similarity of the actual contexts in

the system and how well they can be aggregated, i.e., the similarity threshold. If
we assume that all clients in the system can be classified into one of k aggregations,
the total number of client contexts that need to be propagated in the system then
becomes 1

k m.
Additionally, let us assume that each client update causes an update to one of the

aggregations to be propagated throughout the network with a probability pu. Thus,
the new update rate in the system becomes puu 1

s .
Since all updates are in a worst-case still broadcast to all n nodes in the network,

we can estimate a new average update rate, depending on k and pu as:

Average update rate = n
1
k

mpuu
1
s

Besides the update rate, the aggregation of contexts also causes a certain amount
of false positives. We assume that each node receives an average rate of false
positives of fp 1

s . This leads to an additional false positive load in the network of:

Average false positive rate = n fp
1
s

4.6 Related Work

Since context-based routing is similar to content-based routing, it seems natural to
apply concepts from the field of Pub/sub systems in Contextcast. As we mentioned
in Section 2.3, the author of [Müh02] describes various routing strategies, which
aim to lower the load of the broker network caused by the subscription propagation.
Routing schemes based on “covering” or “merging” (or both) of client subscriptions
have become fairly common in content-based Pub/sub systems.

Both approaches are based on the idea that a broker does not need to propagate a
more precise subscription if a more general one was already propagated. The more
general subscription will match the same events (and more) that the more precise
one matches. Thus the node receives a superset of events that it had received from
propagating the more precise subscription.

A “Routing based on Filter Covering” relies on subscriptions “covering” other ones.
Formally, this is defined as one subscription matching a superset of events of another
one, thus fully covering the more precise subscription. In terms of subscriptions,
this is the case, for instance, when subscriptions specify attribute constraints with
values within a range of values. Let a, b, c, d ∈ R, such that a ≤ b ≤ c ≤ d. Then a

109

Chapter 4 Coarse Client Context Information

predicate requesting events with values ∈ [b, c] matches a subset of events of one
requesting values ∈ [a, d], simply because [b, c] ⊆ [a, d].

Client contexts in Contextcast, however, specify exact values for their context
attributes. They are, in other words, point values in a context space, defined by their
attributes and values. Two contexts are therefore either identical (which is actually
one, albeit rare, form of covering) or differ in one or more attributes. In the latter
case, neither context represents the other ones values, simply due to the nature of
exact values for context attributes.

For one context attribute, location, the impact of value ranges, i.e., inexact loca-
tions, has been well studied. Especially the tracking of moving objects such as in
MODs benefits from allowing an amount of uncertainty for the position of mobile
objects. Reporting protocols allow clients to reduce their update rates while still
maintaining well-defined semantics for inexact position information. Examples of
such reporting protocols include distance-based reporting [Leo03, FLR07] or Dead
Reckoning (DR) [WSCY99, ČJP05].

Distance-based reporting periodically compares a client’s actual position ~a(t′)
at time t′ with the last reported position ~p(t) at a time t < t′. Once the distance
d = |~a(t′)− ~p(t)| exceeds a threshold δ, the client reports a new position to the
server. When a client approaches the limit δ, it must increase the sensing frequency
of its location systems, to accurately detect the object leaving the uncertainty area.
The authors of [FLR07] extend this approach with an early reporting, which trades
off the energy needed for an early update against the energy needed for continuous
high-frequency position sensing while d is close to δ.

Dead Reckoning transmits a user’s current location together with a prediction
function for future positions. The server can then compute a client’s position ~p(t) at
time t from the prediction. The client can also determine its actual position~a(t) at
time t with one of its location systems, e.g., GPS. If the deviation d(t) = |~a(t)− ~p(t)|
exceeds some specified upper bound δ, the client sends an updated location and
prediction function to the server.

Thus, such reporting protocols guarantee that an object’s position as reported by
the MOD never deviates more than δ from the actual position. Applications relying
on position information can therefore—and must—adjust their operation to handle
this uncertainty.

Inexact attribute values with a guaranteed range such as from reporting protocols
allow us to extend Contextcast with a method similar to “cover”. While this works
well for the location attribute, other attributes are more difficult. Particularly the
point-like nature of client contexts requires a more flexible approach similar to “filter
merging”, or “merging” for short. “Merging” allows a broker in Pub/sub to replace
a number of subscriptions with a single, newly created one. Formally, this merged

110

4.6 Related Work

subscription covers all of the initial subscriptions, i.e., it matches a superset of events
of the combined individual subscriptions.

Applying this idea to Contextcast allows us to “merge” several similar point-like
client contexts by describing a superset of values of the context attributes. For
attributes whose values form a partially ordered set this can be the range of values
of that attribute. However, it also needs to take other types of data into account.
For instance, a type attribute based on a class hierarchy, which is important in our
system, needs to be handled differently than, for instance, a quantitative attribute
such as age.

Merging contexts in this fashion requires a reasonable selection of similar contexts
for aggregation. This is closely related to the clustering of data items (cf. [XWI05] for
an overview). However, existing clustering approaches can not be simply transferred
to Contextcast, as it has a couple of special requirements: First, clustering algorithms
with a predefined number k of clusters, such as the k-Means algorithm [Mac67], are
not useful for Contextcast. Since the optimum number k of clusters is not known a
priori, such an approach would require a method to determine a reasonable number
k. Obviously, repeating the calculation for different values of k and then determining
an appropriate value places unnecessary load on the nodes. Second, clients can
join and leave the Contextcast system at any time. This eliminates those clustering
algorithms that require random access to the data being clustered, e.g., the ISODATA
algorithm [BH67]. Similarly, algorithms that use a random sampling of the data
such as CLARA [KR05] cannot reliably determine a representative sampling of the
data due to continuous addition and removal of contexts.

A continuous addition of new elements is possible with algorithms such
as BIRCH [ZRL96] or more specialized stream clustering algorithms (e.g.,
STREAM [OMM+02]). Neither can, however, remove old elements from the data.
CluStream [AHWY03] exploits a subtractive property of the data to generate a clus-
tering for an arbitrary time window. However, such a subtractive property does not
hold for the client contexts in our system.

Also, many clustering algorithms are tailored for objects in Rn or at least for
objects with an explicit metric or distance function. They cannot be adapted easily
for client contexts with their various different attributes, which may not provide
a natural notion of distance or similarity. In particular, such measures, if they
are available, are not easily comparable between different attributes. For instance,
how does a distance of 500 m of location compare to a distance of 10 a of age?
Gowda et al. [GD92] have researched clustering of “symbolic objects”, i.e., objects
represented by a set of attributes, with potentially different types. These symbolic
objects are therefore very similar to client contexts in Contextcast. Based on their
results we have derived a similarity measure for our contexts in Section 4.4.

111

Chapter 4 Coarse Client Context Information

4.7 Summary

In this chapter, we showed a technique to improve the scalability of Contextcast by
propagating coarser context information. This reduces the load caused by context
updates since only updates that fall outside of a coarse value need to be propagated.
The presented approach ensures that the semantics of Contextcast is maintained by
forwarding a message to at least the same set of recipients as the reference algorithm
we presented in Chapter 3.

A specific context attribute, the client’s location, can be easily approximated by
the service area that the client is currently in. As long as the client moves within
this service area, their location does not need to be updated on the ContextRouters.
Since routers no longer have the exact location of clients, routers cannot determine
whether a context satisfies a given location constraint. Therefore, a message needs
to be delivered if a client’s coarse location overlaps with the target location of the
message; the client’s exact location may be inside the overlapping area.

For arbitrary context attributes, such a discretization into coarser values is not
readily available. We have shown an approach that propagates aggregated, less
precise context information. If contexts are aggregated, the number of context
updates that need to be propagated is lowered. Instead of several individual
contexts, an aggregated context is propagated. The aggregation automatically
determines an appropriate discretization of the various attributes’ value ranges.

Aggregating context information in this manner, however, causes a loss of in-
formation. Previously separate attributes occur together in an aggregated context
and attribute values become coarser. To minimize the amount of information loss,
routers aggregate only similar contexts. The similarity of contexts is measured by
two components: the structural similarity, which measures how many attributes two
contexts have in common; and the value similarity, which measures the similarity of
the values for an attribute that two contexts have in common. A similarity threshold
allows an administrator to configure how aggressively the algorithm aggregates
context information.

While aggregating similar contexts minimizes the information loss, it cannot
completely eliminate it. Thus, the imprecision of aggregated contexts needs to
be considered in the forwarding decision: when evaluating constraints against
aggregated context information, routers forward a message if there is a potential
recipient—according to the aggregated information—that can be reached via a link.
This leads to an increase in message load since routers forward messages even
though a router later in the forwarding process may determine (using more precise
information) that no recipient actually matches the addressing. This false positive
load is necessary, however, to ensure that no matching recipient misses a message
due to the imprecisions introduced in the aggregation.

112

4.7 Summary

In our evaluation of these approaches, we found that the approximated location
lowered the amount of update messages by more than 24 % compared to a distance
based-reporting with a similar threshold. At the same time, while it increases the
message load in the system, the effect is not very pronounced for the update and
message rates that occur in a Contextcast system. The more general aggregation of
contexts that, which applies to all attribute types, reduces the overall system load by
between 18 % and 25 %, with some scenarios achieving a reduction of up to 30 %.
This result is largely due to a massive decrease in update load, while the resulting
increase in false positive load has only a small impact for the message and update
rates in our system.

113

Chapter 5

Directed Forwarding using Adaptively
Propagated Client Context Information

Perfection is achieved, not when there
is nothing more to add, but when
there is nothing left to take away.

(Antoine de Saint-Exupéry)

5.1 Overview

In the previous chapter, we discussed an approach to reduce the update load in
the Contextcast system by combining the information of similar clients and making
the information coarser in the process. The approach takes the similarity of client
contexts into account, thus lowering both the number m of contexts to propagate as
well as the update rate for these contexts.

Despite the savings shown in Section 4.5, the system still maintains complete
context information, i.e., every context update is still propagated to all n Context-
Routers in the system in some form (possibly aggregated, though). This complete
information and the necessary updates limit the scalability of the system. Without
this context knowledge, a directed routing of contextual messages would not be
possible, though: messages would have to be broadcast to reach every matching
recipient. This shifts the scalability bottleneck from the update load to a message
broadcast load, which does not scale, either.

However, since every context is propagated to every router, this means that a
context may also be propagated to a number of routers that never require the
information for a forwarding decision. For example, if context C1 in Figure 5.1 never
matches any message that is sent at routers R2 or R3, it is not necessary to propagate
the information of C1 from node R1 towards R2 and R3. Even if there is occasionally
a message M : C1 @ M, maintaining the information on R2 and R3 may cause more

115

Chapter 5 Adaptively Propagated Client Context Information

C1

C1

C1 C1

C1 C1

C1
C1

C1

R3

R2

R1

Figure 5.1: Routing table entries

updates than simply flooding M towards R1 when it occurs. Depending on the rates
of updates for a context and of such messages, this may even be the case if M turns
out a false positive and is discarded at R1.

In this chapter, we therefore present an adaptive propagation approach. It has
the same goal of reducing the update load in Contextcast, however, it is orthogonal
to the aggregation of client contexts we discussed in Chapter 4. An adaptive
propagation takes both the update load of a piece of context information and the
false positive load into account to decide whether to propagate this information to
a neighboring router. The rationale behind it is to limit the propagation of client
contexts only towards sources that send out messages that the propagated contexts
may match; and also only if they do so at a high enough rate that maintaining
context information is actually beneficial to the system. I.e., the message rate must
be higher than the corresponding context information updates. This enables routers
on the paths between the source and recipients to employ context information for a
directed forwarding, thus pruning the dissemination tree. Routers that do not have
the necessary knowledge to evaluate the constraints of a particular message fall back
to speculative forwarding, i.e., they assume the presence of a matching recipient.
Such a speculatively forwarded message is a potential false positive if there is no
actual recipient matching the addressing.

In this chapter, we first discuss the requirements for such an approach in Sec-
tion 5.2. Then, we introduce the detailed approach in Section 5.3. It builds on a
monitoring of the system to determine both the load caused by context updates as
well as by messages. This information is then used to determine whether propa-
gating a client context is beneficial to the system. After that, we present the results
of an evaluation we performed to show its effectiveness in Section 5.4. Finally, we
discuss related approaches in Section 5.5, before closing with a short summary in
Section 5.6.

116

5.2 Requirements

5.2 Requirements

The general goal of using an adaptive propagation is the same as for using coarse
information: It aims to improve the scalability of the system by reducing the
amount of updates that are propagated to the routers; of course, just like in the
previous chapter, the approach must not alter the Contextcast semantics. Due to the
similar goals, the requirements are also very similar to the previous chapter (for
details, please refer to Section 4.2): (1) Reduction of Updates, (2) Implementation
Transparency, (3) Preserving Delivery Semantics, and (4) Continuous Operation.
However, there is an additional requirement, Distributed Operation.
Distributed Operation. The Contextcast system consists of a network of inter-
connected routers, which independently forward messages from a source to all
ContextNodes with matching recipients. Adaptively propagating client contexts
towards sources whose messages they may match exploits local differences in mes-
sages. The decision which contexts to propagate and which not therefore needs to be
a localized one. It must not depend on a global view of the system. While collecting
such a state is possible, it would introduce another performance bottleneck into the
system. This would run contrary to the benefit achieved by the adaptive propagation
approach.

5.3 Adaptive Propagation of Client Contexts

As we discussed previously, in Contextcast we can observe two types of load on the
overlay links: message load, which results from the dissemination of messages, and
context update load, which is caused by the propagation of context information to
routers. Message load can be further divided into legitimate message load (those
messages for which a recipient exists) and false positive message load. The legitimate
message load is required if the system is to retain its previous delivery semantics;
otherwise clients with a matching context would not receive messages.

False positive load, however, is generated whenever the system forwards a mes-
sage for which no matching recipient exists. As we discussed in Chapter 4, this
happens when a node has imprecise information, e.g., due to coarse or otherwise
incomplete knowledge about contexts, and must assume the presence of a matching
recipient in the direction of a link to preserve the delivery semantics of Contextcast.
We call such a message that is forwarded due to a presumed matching recipient a
speculatively forwarded message.

Therefore, while it is possible to reduce update load by not propagating context
knowledge, such an approach requires a certain amount of speculatively forwarded
messages. This, in turn, also increases the amount of false positives, since not

117

Chapter 5 Adaptively Propagated Client Context Information

every speculatively forwarded message finds a matching recipient in the end. Thus,
the goal is to minimize the overall system load, i.e., from Contextcast messages—
particularly false positives—and context updates.

Obviously, this depends on the actual messages and client contexts that occur in
the system: Propagating context information is only useful for attributes/attribute
combinations that actually occur in constraints. At the same time, we need to
consider the dynamic of contexts, which requires updates to keep propagated
information current. Our approach therefore monitors the routing and adapts it
to the actual messages and client contexts in the system. The general idea is to
propagate context information if and only if it reduces the overall combined message
and update load. In other words, the reduction in false positives must outweigh the
additional update load for the context information.

However, since the system no longer propagates each context, the ContextRouters
need to be able to make their routing decision based on incomplete context infor-
mation. To this end, every router must be able to decide when it has the necessary
information for a directed forwarding: If a router’s knowledge is sufficient, it eval-
uates a message’s constraints for a directed forwarding; otherwise, it falls back to
speculative forwarding.

In the following sections, we present the necessary changes to handle such
incomplete knowledge, statistics to estimate and measure the load of context updates
and false positives, as well as the algorithms that use these statistics to adaptively
forward context information when it benefits overall load.

5.3.1 Incomplete Context Knowledge

As we have shown in Section 3.3.3, a directed forwarding decision is straightforward
with global context knowledge available to ContextRouters: A router forwards a
message over a link if and only if it knows of a matching recipient in that direction.
However, for our adaptive context propagation, the system must be adjusted to
maintain its semantics without this global knowledge. The following simple example
illustrates the challenges that occur when routing messages without global context
knowledge.

Figure 5.2 shows a small system of two ContextRouters R1 and R2. R1 is also
a ContextNode and within its service area are contexts C1, C2, C3, and C4. R1
forwards only two of these contexts, C2 and C4, to node R2, where this information
is entered into the routing table together with R1 as the next hop. If R2 now
evaluates a message that would match only C1, it does not forward it since R2 does
not know about C1. Without additional care, this would either require falling back
to broadcasting every message since routers would have to assume the presence of a
matching recipient or clients would not receive messages even though their context

118

5.3 Adaptive Propagation of Client Contexts

R1 R2

Service Area

C2
C4

C4

C2
C1

C3

Figure 5.2: Forwarding with incomplete information about client contexts

matches it or clients would not receive messages even though their context matches
it.

To prevent this, every router must be able to decide whether it has sufficient
knowledge to evaluate a given message’s constraints or needs to fall back to spec-
ulative forwarding. We enable this in Contextcast by introducing the concepts of
(complete) composite contexts.

Definition 5.1 (Composite context). A composite context Ccomp contains context in-
formation for a certain set of context attributes Ap = {αi : i ∈ {1, . . . , k}} that are
selected for propagation to a neighbor N.

Definition 5.2 (Complete composite context). Let M be an arbitrary message that
has constraints on a subset of the attributes in Ap and CR a context known to R. A
complete composite context contains a router R’s complete context knowledge for a set of
context attributes Ap if the following holds true:

∃CR : CR @ M→ Ccomp @ M (5.1)

In other words, another ContextRouter that has received a complete composite
context Ccomp for Ap can evaluate all messages with constraints on the attributes in
Ap or a subset thereof against Ccomp instead of against individual client contexts. If
there is no such complete composite context against which to evaluate a message,
it can not use a directed forwarding and instead needs to fall back to speculative
forwarding.

Obviously, to ensure that routers can use this information for a directed forward-
ing, only complete composite contexts must be propagated between routers, since
only these provide the complete knowledge for a given attribute set. Regular client
contexts can no longer be used for a directed forwarding, since there might always
be another matching context that was simply not propagated. This in turn would
mean falling back to speculative forwarding.

A router that has propagated a complete composite context Ccomp based on a
selected attribute set Ap is responsible that Ccomp contains all its knowledge for Ap
and that Ccomp is updated when necessary, i.e., when its own context knowledge

119

Chapter 5 Adaptively Propagated Client Context Information

changes from updates it receives. (We discuss the actual attribute selection and how
it is based on observed messages and client contexts in Section 5.3.2.)

With this definition, we can examine the example from Figure 5.2 again. Instead
of individual contexts C2 and C4, R1 would have propagated a complete composite
context Ccomp for an attribute set Ap. Based on Ap and the constraints in a message,
R2 can decide for every message whether to evaluate it against Ccomp or whether to
speculatively forward it.

Since a complete composite context represents a node’s complete context informa-
tion for an attribute set Ap, it typically contains information of several clients as well
as other composite contexts. Generally, it is constructed from all contexts that contain
information on one or more attributes that are elements of Ap. Algorithm 5.1 shows
the sequence to create such a composite context for an attribute set Ap from all
known contexts of a node. First, the node calls the function createPartialCon -
text (shown in Algorithm 5.2) for each locally registered context, which creates
a partial context by removing all attributes that are not in Ap. If the result is not
an empty context, it is merged into the composite context for Ap. Second, it finds
all composite contexts in its routing table that contain information about one or
more attributes of Ap. For each of these, it then iterates over the partial contexts it
contains and again calls createPartialContext for each one. Again, if this
results in a non-empty context, it is merged into the composite context for Ap.

The merging of partial contexts into a composite contexts can be a simple list
of the partial contexts or a more sophisticated scheme, such as an aggregation of
the partial contexts. The only requirement is that the scheme fulfills Definition 4.3,
the aggregation condition. This ensures that a message that matches any of the
partial contexts also matches the resulting composite context. This is obviously
the case for a simple list (since all partial contexts are available verbatim) and also
for an aggregation as described in Chapter 4. In our prototypical evaluation (see
Section 5.4), we have implemented a simple list of partial contexts.

5.3.2 System Load Statistics

In this section, we present a number of statistics, which we use to determine attribute
sets Ap whose propagation is beneficial to the system, i.e., that reduce false positives
resulting from speculative forwarding. Additionally, the statistics enable routers
to identify composite contexts that are no longer useful because messages in the
system have changed sufficiently. In this case, the load to update the contexts is
higher than simply forwarding a message speculatively when it occurs. Such a
context needs to be invalidated to stop the updates it causes, thus again lowering
overall system load.

120

5.3 Adaptive Propagation of Client Contexts

Algorithm 5.1 Composite Context Creation

Require: An attribute set Ap selected for propagation to neighbor Np.
Ensure: A composite context Ccomp for Ap.

Ccomp ← ∅
for all Clocal ∈ {C : C was registered locally} do

Clocal,partial ← createPartialContext(Clocal,Ap)
Append Clocal,partial to Ccomp . Does nothing if Clocal,partial = ∅

end for
for all (Ci, Nj) ∈ Routingtable do

if Nj = Np then . Entry originally received from Np
continue

end if
if ∃α ∈ Ci : α ∈ Ap then . Contains one or more attributes from Ap

for all Cpartial ∈ Ci do . Cpartial = Ci if Ci is a singleton context
Cpartial,new ← createPartialContext(Cpartial,Ap)
Append Cpartial,new to Ccomp . Does nothing if Cpartial,new = ∅

end for
end if

end for

Algorithm 5.2 Partial Context Creation

Require: A (non-composite) context C and an attribute set Ap.
Ensure: A composite context Cpartial with only attributes from Ap.

function createPartialContext(C,Ap)
Cpartial ← ∅
for all α ∈ C do

if α ∈ Ap then
Cpartial ← Cpartial ∪ α

end if
end for
return Cpartial

end function

121

Chapter 5 Adaptively Propagated Client Context Information

All the measurements we introduce here are taken during time windows of length
tw. The purpose of this time window is to ensure that a sufficient number of
messages and updates is observed, to reduce the effect of minor fluctuations. An
administrator can and should adjust the length of the time window depending on
the rate of observed events.

For now, these measurements may seem rather abstract. We are showing in
Section 5.3.3 how they are used to select attribute sets for propagation and invalidate
older, no longer useful context information.

False Positive Rate

The false positive rate fp is a measure of how many false positives arrive at a node
of a certain type. It corresponds to the amount of false positive load that could be
avoided in the system by propagating context information.

Whenever a router receives a Contextcast message M, with constraints {φ1, . . . , φk}
(corresponding to attributes {α1, . . . , αk}), one of two things can happen:

(1) The router knows another entity to which it needs to send M. This can be
either a neighboring router or a matching recipient in its own access network.

(2) The router does not need to forward the message to a neighbor and knows no
local recipient.

In case (1), M is a legitimate message since the router either has a matching recipient
in its access network or knows about one that can be reached via a neighboring
router. In case (2), M is a false positive message, which could have been avoided had
the last hop router had the necessary context information to prune the dissemination
tree.

For a given constraint combination {φ1, . . . , φ1}, the false positive rate for the
attribute combination {α1, . . . , αk} during a time window tw can be counted directly
as:

fp ({α1, . . . , αk}) =
number of false positives for {α1, . . . , αk} during tw

tw
(5.2)

In other words, whenever a router identifies a message as a false positive, it
increases a counter for this particular attribute combination. In theory, this would
require counting false positives for the power set of the possible context attributes.
In practice, however, we expect the number of relevant attribute combinations, i.e.,
those that are actually used for addressing messages, to be much lower. We further
discuss the overhead of these statistics in Section 5.3.2.

For instance, assume a ContextRouter receives 749 messages with constraints on
the attributes {α1, α2, α5} over a 10 s window. Of these, 146 are false positives, i.e.

122

5.3 Adaptive Propagation of Client Contexts

the node discards the messages without forwarding them or delivering them to a
locally connected client. Thus, the false positive rate for this attribute combination
is:

fp ({α1, α2, α5}) =
146
10 s

= 14.6
1
s

.

Context Update Rate

The context update rate u reflects the amount of load that results from propagating
and updating a certain piece of context information.

Similar to the false positive rate, it can be observed directly for an existing
composite context C as:

u (C) =
number of updates for C during tw

tw
(5.3)

However, when considering an attribute set for propagation from the attribute
combinations that are used in addressing, it is necessary to estimate the resulting
update rate: since no composite context with this attribute combination exists, yet,
it cannot be observed directly. In this case, the update rate can be estimated from
the update rates of each of the attributes in the set. (From every context update
that a router receives, it can derive the changed attribute(s) and increase an update
counter(s) for the particular attribute(s).) Formally, the update rate of an attribute
set Ap = {α1, . . . , αk} can be estimated as the sum of the updates observed for its
individual attributes:

u
(
Ap
)
= u ({α1, . . . , αk}) =

∑k
i=1 observed number of updates for αi during tw

tw
(5.4)

Furthermore, let us assume that the ContextRouter from the example in the
previous section observes 17 updates for α1, 36 for α2, and 45 for α5. Based on
these numbers, it can estimate the context update rate for this particular attribute
combination as:

u ({α1, α2, α5}) =
17 + 36 + 45

10 s
=

98
10 s

= 9.8
1
s

.

As one can see from this example, propagating a composite context for this particular
attribute combination would prevent more false positives than it would take to keep
the information up-to-date. A ContextRouter that receives such a newly created
composite context can then directly observe the update rate for this particular
context.

123

Chapter 5 Adaptively Propagated Client Context Information

Distribution Prune Rate

The distribution prune rate p is a measure of the usefulness of a piece of context
information after it has been propagated.

When a node propagates context information to a neighbor, it no longer receives
the corresponding false positive messages; after all, this is the reason behind the
propagation of the information. Context constraints in messages may change over
time, though. This can lead to the messages that originally caused the propagation
of some context information to no longer occur in the network. Unfortunately, it
is impossible for a node to determine whether a lack of false positives is the result
of the information it propagated or the result of a change in message addressing.
Thus, a node may still update context information it propagated to a neighbor even
though the false positive messages it is supposed to stop no longer occur regularly
(or even at all).

To determine whether a context C is still useful, we therefore measure its distribu-
tion prune rate at the pruning node by counting the number of messages that are
pruned using the information of C:

p (C) =
number of pruned messages for C during tw

tw
(5.5)

Coming back to the example from the previous sections, we further assume that
another ContextRouter has received a composite context Ccomp for {α1, α2, α5} from
a neighbor. In a later 10 s time window, this node observes a distribution prune rate
of 37 messages for this context, resulting in a prune rate of:

p
(
Ccomp

)
=

37
10 s

= 3.7
1
s

.

If the observed update rate remained largely unchanged at, e.g., 9.3 1
s , we can see

that the context is no longer useful, as keeping it updated now far outweighs any
savings from not forwarded false positives.

Based on these considerations and measurements, we are introducing a per-link
adaptive context propagation approach in Section 5.3.3.

Smoothing

To limit the influence of short term changes in messages and updates, we smooth
the measurements over time. Since a node may maintain a rather large number of
candidates, we aim to limit the amount of history needed for these measurements.
We therefore use an exponential moving average with a factor β to smooth our
measurements, since its calculation only requires the current measurements as

124

5.3 Adaptive Propagation of Client Contexts

well as the previously calculated value. Thus, e.g., the smoothed false positive
rate fpS,t (A) for an attribute set A = {α1, . . . , αk} at time t is calculated from the
observed values at time t and previously smoothed values from time t− 1 as:

fpS,t ({α1, . . . , αk}) = β fpt ({α1, . . . , αk}) + (1− β) fpS,t−1 ({α1, . . . , αk}) (5.6)

The same applies to the calculation of the smoothed context update rate uS,t(C) and
the smoothed distribution prune rate pS,t(C).

By adjusting β, an administrator can place more emphasis on the measurements
of the current time windows, thus reacting quickly to changes, or they can reduce
the influence of the current window, thus smoothing out the measurements with
past observations.

Overhead of Measurements

The impact of the statistic on the routers is minor. For the false positive rate, an
implementation can use, e.g., Bloom filters to efficiently lookup and store false
positive numbers for the observed attribute sets. Also, the nodes can regularly
remove information about attribute sets, for which they have not registered a false
positive in some time. This cleans out rarely addressed attribute combinations and
keeps size of the statistic manageable.

The statistics for contexts that a node has received increases the size of each
context by a fixed amount: two counters for the number of prunes and updates
in the current observation window and two floats for the respective rates that are
updated after the window ends.

Additionally, each router maintains an update rate for each individual attribute
that is used in contexts. This is used to estimate an update rate for an arbitrary set
of attributes. Since there is a fixed number of defined attributes in a Contextcast
system, the space requirements for the individual attribute update rate statistic is
also limited.

5.3.3 Per-link Adaptive Context Propagation

Using the measurements we describe in the previous section, we can now present
the details of our adaptive context propagation algorithm, the necessary changes in
message forwarding and our approach to invalidate old context information.

Benefit of Context Information

As we described in Section 5.3.2, each node observes for each composite context
how often a message was not forwarded due to the information in the composite

125

Chapter 5 Adaptively Propagated Client Context Information

context, i.e., the prune rate. Additionally, it monitors the update rates for all the
composite contexts it has received.

Using a composite context’s prune rate as well as its update rate, each node can
calculate the benefit of a certain piece of context information that it has received
from a neighboring router.

Definition 5.3 (Benefit of a Composite Context). Let Ccomp be a composite context.
Using Equation 5.5 and Equation 5.3, a router can calculate the context benefit
B(Ccomp) as the smoothed distribution prune rate pS(Ccomp) over the smoothed
context update rate uS(Ccomp):

B
(
Ccomp

)
=

pS(Ccomp)

uS(Ccomp)
(5.7)

Intuitively, the context benefit gives us a measure for the amount of messages
saved by a composite context Ccomp versus the load that is necessary to keep the
information up-to-date.

This works well for a composite context that a node has received from a neighbor.
However, when considering a set of attributes Acand = {α1, . . . , αk} for propagation,
a node can neither determine the prune rate nor the update rate directly. Thus, we
need to approximate both numbers using the rate of false positives it receives and
the estimated update rate for the attribute set, derived from the observed update
rates of individual attributes. Using these two numbers, we can estimate the benefit
of propagating a composite context for a given attribute set.

Definition 5.4 (Benefit of a Composite Context for a Candidate Attribute Set). Let
Acand = {α1, . . . , αk} be an attribute set that is considered for propagation. Using
Equation 5.2 and Equation 5.4, a router can calculate the attribute set benefit B(Acand)
as the smoothed false positive rate fpS(Acand) over the smoothed update rate
uS(Acand):

B (Acand) =
fpS(Acand)

uS(Acand)
=

fpS({α1, . . . , αk})
uS({α1, . . . , αk})

(5.8)

Obviously, only composite contexts with B(C) > 1 benefit the load of the system,
as they enable routers to prune more messages than the load generated by their
respective updates. The same applies to candidate attribute setsAcand: the composite
contexts for those with B(Acand) > 1 save more false positives than the load that
is required to keep the resulting composite context up-to-date. We show in the
following section how ContextRouters use these numbers to decide which context
information to propagate as a composite context.

126

5.3 Adaptive Propagation of Client Contexts

Selecting Attribute Sets for Propagation

The previous section described a measure for the benefit of propagating some
context information. The nodes still need a way to actually select an attribute set for
the propagation of a composite context. Obviously, it is not scalable to compute the
power set of all attributes and consider each element, i.e., every possible attribute
combination. Thus, the routers need a more efficient method to select candidate sets
for propagation.

For this reason, our selection of candidate attribute sets is based on the observed
sets of attributes used in constraints and their respective propagation benefit: After
each time window, every router updates its local statistics for the received false
positives. Then, it calculates the expected propagation benefit B(A) for each attribute
set that is recorded in its statistics using Equation 5.8.

For those attribute sets that have a benefit above a propagation threshold Bth,P it
then creates a composite context and propagates that towards the neighbor. The
propagation threshold limits context propagation to those candidates that actually
offer an (adjustable) benefit over simple speculative forwarding. An administrator
should observe the fluctuation in the calculated benefits in a given system and
derive a suitable propagation threshold Bth,P > 1. In particular, it should be high
enough that these fluctuations do not result in B > Bth,P in one cycle and B < Bth,P
(or worse, B < 1) closely afterwards. Otherwise, the system propagates candidates
where, in one time window, the false positives outweigh the updates enough to
justify propagating a composite context; and in the next time window, the updates
dominate, thus contradicting the decision to propagate the candidate set.

Additionally, a newly propagated attribute set Anew may be a superset of another
attribute sets Ak. Since a composite context for Anew contains all the information
of composite contexts for its subsets, a node can then stop updating the composite
context for Ak. The node receiving the new composite context can also determine
all subset composite contexts and remove them from its routing table. These steps
are summarized in Algorithm 5.3

After such a propagation, the node must update the composite context in the
future; at least until it is invalidated because the messages have changed sufficiently
so the information is no longer useful.

Message Forwarding

As we hinted at before, this requires only very minor changes to the message for-
warding algorithm. Algorithm 5.4 shows a modification of Algorithm 3.2, which can
handle incomplete context knowledge and composite contexts: Routers perform a

127

Chapter 5 Adaptively Propagated Client Context Information

Algorithm 5.3 Composite Context Propagation
Require: A list FPstats of candidate attribute sets for neighbor N.
Ensure: Composite context for the attribute sets with sufficient benefit propagated

to N.
Cprop ← ∅ . For which attribute sets to propagate a composite context
for all Acand,i ∈ FPstats do

if B(Acand,i) > Bth,P then
skip← false
for all A ∈ Cprop do

if Acand,i ⊆ A then . Already going to propagate a superset of Acand,i
skip← true
continue

else if A ⊆ Acand,i then
Cprop ← Cprop \ A

end if
end for
if not skip then

Cprop ← Cprop ∪ Acand,i
end if

end if
end for
for all A ∈ Cprop do

Propagate a composite context for A to N
end for

128

5.3 Adaptive Propagation of Client Contexts

directed forwarding if they have the necessary knowledge to evaluate the constraints
of a Message M. Otherwise, they fall back to speculative forwarding.

Algorithm 5.4 Message Forwarding with Composite Contexts

Require: A message M, received from neighbor NM or a local client.
Ensure: M forwarded to at least the same neighbors as Algorithm 3.2.

boolean array[Neighbors] directed← [false,. . . ,false]
boolean array[Neighbors] forwarded← [false,. . . ,false]
for all (Ccomp, NC) ∈ Routingtable do . Directed forwarding

if forwarded[NC] = true ∨ NC = NM then
continue

end if
if Attributes(M) ⊆ Attributes(Ccomp) then . Sufficient knowledge

directed[NC]← true . for a directed forwarding to NC
if Ccomp @ M then

Forward a copy of M to NC
forwarded[NC]← true

end if
end if

end for
for all N ∈ Neighbors do . Speculative forwarding

if directed[N] = false then . for remaining neighbors
Forward a copy of M to N

end if
end for

If a node knows several composite contexts Ccomp,1, . . . , Ccomp,k, such that ∀i ∈
{1, . . . , k} : Attributes(M) ⊆ Attributes(Ccomp,i), it can use any of these contexts
to evaluate M’s constraints. They all contain complete knowledge for their respec-
tive attribute set, i.e., in particular also the attributes that are constrained in M.
Algorithm 5.4 uses the first one in the routing table.

Obviously, the evaluation whether Ccomp @ M depends on the structure of Ccomp.
In the case of a simple list of partial contexts, as we discussed in Section 5.3.1,
Ccomp @ M if and only if

∃Cpartial ∈ Ccomp : Cpartial @ M.

Context Invalidation

After some time, the false positive messages that a composite context prevented
may no longer occur (or only very rarely). In this case, the continuing updates of

129

Chapter 5 Adaptively Propagated Client Context Information

this composite context by its originating node cause unnecessary load in the system.
We must therefore invalidate such a composite context, which again lowers the
overall system load. Obviously, the messages this context stopped, should they occur
occasionally in the future, are then propagated speculatively, potentially leading to
an increased false positive load.

Similar to the propagation of a composite context, a router sends back an inval-
idate message for a composite context whose benefit drops below a configurable
invalidation threshold Bth,I. E.g., a value Bth,I < 1 causes the invalidation of all those
contexts that cause more update load than the false positives they prevent. This is
shown in detail in Algorithm 5.5.

Algorithm 5.5 Composite Context Invalidation
Require: The list of all composite contexts received from neighbors.
Ensure: All contexts invalidated for which the updates dominate the system load.

for all (Ccomp, NC) ∈ Routingtable do
if B(Ccomp) < Bth,I then

Send invalidation message for Ccomp to NC
end if

end for

Propagation/Invalidation Hysteresis

If the two values for the propagation threshold Bth,P and the invalidation threshold
Bth,I are too close or the same, the system would become unstable and respond
to small changes in message or update behavior. These small fluctuations might
raise or lower a given context’s benefit above or below the threshold, causing a
propagation or invalidation, respectively. Having these two values configurable
separately serves as a hysteresis for the propagation and invalidation of composite
contexts.

This way, an administrator can configure the system to only propagate a composite
context if it saves, e.g., 30% more false positives than the updates it causes (Bth,P =
1.3). And the same administrator might also configure it to invalidate those contexts
which save 10% less false positives compared to the necessary updates (Bth,I = 0.9).

130

5.4 Evaluation

5.4 Evaluation

5.4.1 Setup

We have implemented our adaptive approach, shown in Algorithm 5.3, Algo-
rithm 5.4, and Algorithm 5.5, in a prototype implementation to evaluate its perfor-
mance. As the goal of the presented approach is a reduction of the overall load on
the ContextRouters in the overlay network, we have implemented our prototype in
the PeerS im [MJ09] network simulator.

For the simulation, the network consists of 500 ContextRouters, uniformly placed
on an area of [0, 1]× [0, 1] and connected according to the Heuristically Optimized
Trade-off model (cf. [FKP02]). The nodes are added sequentially, the first being
the root node of the network, n0. A newly added node ni connects to a previously
added node nj, which minimizes the weighted distance metric γ · dij + hj, where
dij is the Euclidean distance between the nodes ni and nj and hj is the network
distance, i.e., the number of hops, from node nj to the root node n0. We selected
the weight parameter γ =

√
n for a network of n nodes (the authors of [FKP02]

use the letter α, which designates an attribute in Contextcast). This leads to an
acyclic undirected network graph, in which the node degrees exhibit an Internet-like
power-law distribution (cf. [FKP02]).

A fraction of 60 % of these nodes are then selected as access nodes (ContextNodes).
They get assigned a rectangular service area with edge lengths between [0.05, 0.06).
Each service area is then placed on the simulation area with its corresponding
ContextNode in the center. Areas extending beyond the [0, 1] interval in either
direction are cut off to remain within the boundaries of the simulation. This leaves a
number of routers with degree 1 without an access network. Even though no client
can ever connect to such a node, they can still send messages, e.g., a provider of
commercial messages might operate its own overlay node as gateway. Thus, they
are still useful and not a dead end in the network.

We simulate an average of 9 000 clients in the system, each with a location
identical to its access network’s service area (cf. Chapter 4). Additionally, each
contains between six and twelve numeric attributes, uniformly chosen out of a set of
30 different ones. The values of the numeric attributes follow normal distributions
with different means and standard deviations for each attribute.

The network load is determined by the rates of updates and messages. To not
favor either update or message load, we simulate update and message rates of 5 per
simulation cycle, each.

Updates are generated according to the following instructions, which models
clients both changing their context and clients leaving and new ones joining the
system: A fraction of 70 % of all updates results from a change of a single, uniformly

131

Chapter 5 Adaptively Propagated Client Context Information

Parameter Value
of routers 500

γ
√

500
of access nodes 300

of clients 9 000
of numeric attributes/client 6–12 (uniform distribution)

average update rate 5/cycle
of numeric constraints/message 1–3 (uniform distribution)

average message rate 5/cycle

Table 5.1: Summary of simulation parameters

selected attribute. If the changed attribute is the client’s location, the simulation
uniformly selects one of its ten nearest neighboring ContextNodes as its new access
node; the value of a numeric attribute is changed in the same manner as it is created
for new contexts. For the remaining 30 % of updates, a uniformly selected context
disconnects and a different random context—created in the previously described
way—connects to the system.

Context messages originate from 1
10 of our routers, which are chosen as senders

uniformly from all routers. They are created in a manner similar to context updates:
A fraction λ = 0.5 contains a target location with edge length between 0.2 and 0.3.
In addition, they contain between one and three numeric constraints; the selection
of the numeric constraints follows a Zipf distribution, with parameter s = 1.5
and using different attribute permutations for the different senders. This ensures
that messages of a sender show a bias towards similar addressing, which is the
underlying assumption behind our adaptive approach.

For our evaluation, we compare our adaptive algorithm (designated A in the
results) with a baseline approach (designated B), which corresponds to the reference
algorithm from Section 3.3.3 and propagates all context updates into the network.
We look at both the steady-state and dynamic performance of our adaptive approach.
For each experiment, we run ten simulations with different random seeds and then
compute the arithmetic mean of the simulation runs. Unless stated otherwise, the
standard deviation of the different runs is negligible. Table 5.1 contains an overview
of our setup.

5.4.2 Load Reduction: Impact Of Propagation Threshold

To illustrate the merit of our approach, we compare the adaptive context propagation
with the baseline over a sampling period of 1 000 simulation cycles. We observe the

132

5.4 Evaluation

system in a steady state to ensure that the initial propagation of client contexts does
not put the baseline approach (see Section 3.3.3) at a disadvantage.

Figure 5.3 shows the update and message load for the adaptive and the baseline
approach for various propagation thresholds Bth,P. The invalidation threshold Bth,I was
set to a constant 0.9 for this experiment.

The results show that our adaptive approach reduces the overall load by between
42 % and 43 % compared to the baseline algorithm. Looking at the individual load
elements, one can see that the adaptive approach lowers the amount of updates by
between 87 % and 94 %. At the same time, since nodes no longer have complete
context information, they need to fall back to speculative forwarding for more
messages, thus increasing the number of forwarded messages by 614 % up to 709 %.
The difference in message load is a result of false positives, of course, since the
baseline approach forwards and delivers a message if and only if there is a matching
recipient. However, even with this increase in messages, the overall load on the
system is almost cut in half, due to the reduction in updates. This meets our
expectations, since one of the major goals in the design of this algorithm is to trade
off update load against additional false positives, while preserving the “no false
negatives” semantics. Context invalidations play virtually no role in this experiment
since the system is in a steady state and messages do not change significantly
enough.

The propagation threshold Bth,P determines what context information is forwarded
between routers. The higher this number, the fewer information neighbors exchange,
thus increasing false positive load, while at the same time reducing the amount of
update load. In this scenario, with each node using a relatively similar attribute
set for all its messages, the system soon reaches a steady state: all nodes have
propagated composite contexts for the prevalent messages in the system. The
attribute sets of these composite contexts have a high benefit value. Thus, with
a lower threshold, the system establishes additional composite contexts for rarely
addressed attribute sets. They increase update load without actually pruning many
additional distribution trees; higher thresholds removes these from the system
without causing a large number of additional messages, thus lowering the overall
system load. For very high thresholds, the effect reverses and the additional false
positives start dominating the total system load.

5.4.3 Load Reduction: Impact Of Message & Update Rates

As the previous experiment showed, our adaptive approach reduces update load at
the expense of an increase in message load. If a given percentage of all forwarded
messages are overhead in the form of false positives, increasing the message sending
rate also increases the absolute amount of false positives. To investigate the influence

133

Chapter 5 Adaptively Propagated Client Context Information

 0

 500000

 1x106

 1.5x106

 2x106

 2.5x106

 10 20 30 40 50 60 70 80 90 100

Sy
st

em
 lo

ad
 [f

or
w

ar
de

d
pa

ck
et

s]

Propagation threshold Bth,P

Updates
Messages

Baseline updates
Baseline messages

Figure 5.3: System load for various values of the propagation threshold Bth,P

of the message rate on our system, we observe the system with Bth,P = 1.5, a constant
update rate ru = 5/cycle and message rates rm ∈ {5, 7.5, 10, 12.5, 15}, for 1 000 cycles
in a steady state.

Figure 5.4 shows the amount of messages and updates for the different message
rates, for the adaptive (A) and baseline approaches (B). As the figure shows and as
one would expect, higher message rates increase the message load on the system,
both legitimate and false positive messages. Once the message rate reaches 2.5 times
the update rate, the overall load of the adaptive approach is higher than the overall
load of the baseline algorithm. This is hardly surprising, since our algorithm is
tailored more to handling dynamic context attributes such as location or mode of
transportation. It is less well suited for rather static attributes (e.g., subscriptions to
news feeds).

Also, the figure shows that the higher message load causes an increased number
of updates for the adaptive approach. While this may seem strange, considering the
constant update rate in the experiment, the effect can easily be explained. Due to the
higher message rates, more attribute combinations reach the propagation threshold
and thus the routers create composite contexts for these combinations.

134

5.4 Evaluation

 0

 500000

 1x106

 1.5x106

 2x106

 2.5x106

 3x106

 3.5x106

 4x106

A B A B A B A B A B

Sy
st

em
 lo

ad
 [f

or
w

ar
de

d
pa

ck
et

s]

Updates
Messages

rm=15rm=12.5rm=10rm=7.5rm=5

Figure 5.4: System load for update rate ru = 5 and various message rates rm

5.4.4 Stabilization: Impact Of Exponential Moving Average

The continuous measurements enable our system to adapt to changes in the ad-
dressing of messages. To measure how quickly our system adapts, we introduce a
drastic change after 2 500 simulation cycles: As we explained in Section 5.4.1, every
sender constructs messages using a certain preference of attributes. Technically,
this is implemented as a Zipf distribution over a permutation of attributes. In
this experiment, for the first 2 500 cycles, the nodes are limited to select numeric
constraints from the first 15 attributes. At 2 500 cycles, each node selects a new
permutation of the attributes from the second half of the available 30 attributes.
Thus, at this instant, the complete addressing in the system changes, requiring the
distribution of new composite contexts to match the new messages.

To measure the impact of the parameter β of the exponential moving average,
we vary this parameter between 0.5 and 0.8, with a constant window length of 100
cycles. Figure 5.5 shows the amount of messages and new composite contexts over
time for β = 0.5 and β = 0.8. (To maintain the legibility of the figure, we omit the
measurements for values other than 0.5 and 0.8; the curves show the same trend,
they just differ in the absolute number of messages. Also, the figure shows the
average load per cycle for periods of 25 cycles, again to increase legibility by filtering

135

Chapter 5 Adaptively Propagated Client Context Information

out short-term changes.)
As we can see for both values, at 2 500 cycles the amount of messages increases

sharply due to speculatively forwarded messages; at this time, previously established
composite contexts can no longer be used for directed forwarding. It then decreases
again as new composite contexts are propagated and used to reduce the speculatively
forwarded messages. The higher β shows a quicker reaction, with more new
composite contexts and a faster reduction of message load, since the influence of
the newest measurement on the moving average is higher. It also exhibits a lower
overall number of messages (i.e., speculative forwarding) once the system stabilizes
since nodes propagate composite context faster; with a lower value β, the same false
positive needs to be observed for several observation windows before the benefit
is high enough to actually propagate a composite context. Note that, due to the
window length of the adaptive approach of 100 cycles, updating the statistics and
establishing new composite context happens only every 100 cycles. Therefore, the
graph shows composite context load as spikes every 100 cycles and no composite
contexts in between that.

An administrator should set β to the highest possible value that still sufficiently
filters out transient changes in message addressing. This choice allows for both a
quick adaptation to changes and an overall lower load due to reduced speculative
forwarding.

5.4.5 Stabilization: Impact Of Window Length

We also observe the stabilization for different window lengths tw ∈ {25, 50, 75, 100}
(in simulation cycles). We introduce the same change to the system as in the previous
section, i.e., after 2 500 simulation cycles all senders radically alter their message
patterns. Thus, the previously established composite contexts become useless and
the routers need to propagate new ones.

Figure 5.6 shows how the window length tw influences the time it takes for the
system to react to changes. Again, for legibility, we limited the figure to tw = 25
and tw = 100. (Note that, since we are showing average load for 25 cycle periods
as before, for tw = 25 we see new composite contexts established in every 25 cycle
period. In contrast, we only see a spike in composite contexts for the first 25 cycle
period for tw = 100, as statistics are only updated every 100 cycles.) A higher
window length, i.e., 100 cycles, requires a longer period of speculatively forwarded
messages after the change. This is due to the fact that with tw = 25, the nodes
can establish the first new composite contexts more quickly, after only 25 cycles,
which then immediately reduce message load. With tw = 100, in contrast, the nodes
need to speculatively forward for 75 more cycles before establishing new composite
contexts. However, for tw = 100, we also see that the system establishes more new

136

5.4 Evaluation

 0

 500

 1000

 1500

 2000

 2500

 2000 2500 3000 3500 4000 4500 5000

A
ve

ra
ge

 s
ys

te
m

 lo
ad

 [p
ac

ke
ts

/c
yc

le
]

Simulation time [cycles]

Messages, β=0.5
Composite Contexts, β=0.5

Messages, β=0.8
Composite Contexts, β=0.8

Figure 5.5: Stabilization for different values of β

composite contexts over a 100 cycle period. Thus, even though a drastic change
causes more speculatively forwarded messages for higher tw at first, the number
decreases faster as well and reaches an overall lower amount. This is caused by a
better observation of messages over the longer time window.

Just as for β, we recommend that an administrator sets tw to the highest value
that offers a good balance between agility when reacting to changes and longer
observations and thus more accurate statistics. Obviously, this depends on the
rate of messages and updates that nodes observe. E.g., if a router receives only
5 messages per second, the window needs to be longer than if it receives 1 000
messages per second.

5.4.6 Analysis

Recall, the goal of the adaptive propagation of contexts is a reduction of context
broadcast load in the network, at the cost of message broadcast load.

Our approach adapts to the actual messages and contexts in a system. Let us
assume that on average, a fraction α of all messages is sent speculatively. These
messages find a matching recipient and are not false positives or the rate of false

137

Chapter 5 Adaptively Propagated Client Context Information

 0

 500

 1000

 1500

 2000

 2000 2500 3000 3500 4000 4500 5000

A
ve

ra
ge

 s
ys

te
m

 lo
ad

 [p
ac

ke
ts

/c
yc

le
]

Simulation time [cycles]

Messages, tw=25 cycles
Composite Contexts, tw=25 cycles

Messages, tw=100 cycles
Composite Contexts, tw=100 cycles

Figure 5.6: Stabilization for different window lengths tw

positives is below the context update rate. This, in turn, means that a fraction (1− α)
of messages is sent directed and thus the result of propagated composite contexts.

For the broadcast messages, the system load caused by context updates is 0. At the
same time, the broadcast messages incur at most a false positive load that is below
the context update rate u 1

s . Otherwise, the algorithm would simply propagate a
composite context and thus move that particular message type into the other group.
For the directed messages, the system incurs the previously mentioned context
update rate of nmu 1

s .
Combining these two results leads to an overall system load from false positives

and composite context updates of

Average forwarding load = (αnu + (1− α)nmu)
1
s

.

5.5 Related Work

As we discussed in Section 2.3, the idea of context-based routing (or Contextcast)
is similar to content-based routing. For scalability reasons, content-based Pub/sub
systems such as Siena [Car98, CRW00], REBECA [Müh01], PADRES [FJLM05], etc.,

138

5.5 Related Work

are built as distributed systems: a network of brokers delivers notifications from
sources to all interested, i.e., subscribed, clients.

The author of [Müh02] distinguishes various routing strategies for content-based
networks; most other systems have adopted these or similar schemes. They all
require that certain information is broadcast in the network, to allow event deliv-
ery between arbitrary nodes. The methods differ in what type of information is
propagated in the network, though.

• The simplest method floods events in the network, thus every event reaches
every broker and also every client connected to a broker. The clients can then
filter out events that they are not interested in. Obviously, broadcasting events
scales badly in systems with high event rates.

• The second scheme, routing based on subscriptions, floods the information
about client subscriptions to the brokers. Thus, every broker can use the sub-
scriptions to determine to which neighboring broker(s) it needs to forward an
event. This is conceptually identical to the directed forwarding in Contextcast,
which we describe in Section 3.3.3. It is based on the assumption that sub-
scription changes occur less frequently than events. In this case, the scalability
is increased by flooding the lower rate subscriptions and then disseminating
events only towards brokers with a matching subscription from one of their
clients.

Optimizations allow to reduce redundancies in client subscriptions, such as
removal of identical subscriptions, cover, or merge. But the basic principle
of propagating the information of all subscriptions to all brokers remains the
same. We have shown a similar approach for Contextcast with the propagation
of coarse context information in Chapter 4.

• Third, the flooding of subscriptions can still cause a rather high load in the
network. The use of advertisements provides a further improvement to this
scheme [Car98]. Advertisements describe the notifications that a source sends
out. Each source of events broadcasts advertisements for all its events. With
advertisements, brokers can forward subscriptions only towards those sources
that may produce a matching event. Thus routing paths are established only
between sources and clients with subscriptions to their respective events.
Again, since the system now broadcasts advertisements, the assumption is that
advertisements do not change as fast as subscriptions.

In Pub/sub systems, advertisements proved to significantly improve the scala-
bility [MFGB02]. Since Contextcast routing is similar to the filter-based routing

139

Chapter 5 Adaptively Propagated Client Context Information

strategies of content-based networks, it stands to reason that Contextcast also bene-
fits from a description of possible contextual messages. With such an optimization,
ContextRouters can propagate context information only towards sources of messages
that a given context matches.

Contextcast, however, offers support for senders that send only a single message
of a particular type. In such a scenario, advertisements as used by Pub/sub offer
no tangible benefit, since broadcasting the message places essentially the same load
on the network as broadcasting an advertisement. And after an advertisement, the
routers must still propagate contexts and finally disseminate the message, adding
further to the load in the network.

The adaptive propagation of client contexts, which we introduced in this chapter,
is a generalization of advertisements in Pub/sub. We use the observation of spec-
ulatively forwarded false positives as a form of implicit advertisements: Without
context information, ContextRouters must forward speculatively to preserve Con-
textcast’s delivery semantics. These speculatively forwarded messages represent the
messages that occur in the system. Thus, instead of explicit descriptions of messages,
ContextRouters rely on the observed false positive messages. Using these, contexts
can be propagated towards the sources of messages. The nodes that possess the
necessary context information to evaluate the constraints of a message can use a
directed forwarding.

Additionally, advertisements in Pub/sub systems optimize the establishing of
subscription paths statically: The propagation of subscriptions is limited towards
sources of matching events, but all subscriptions get propagated. The process does
not take the actual load generated by subscriptions and events into accounts. For
instance, for events of a particular advertisement that occur only rarely, it might
be better to broadcast these events than to forward quickly changing subscriptions
towards the source. Our adaptive approach, in contrast, bases its context propagation
decision on both the rate of messages as well as the rate of context updates. This
way, a propagation of client contexts in Contextcast takes place only when it benefits
the overall system load.

5.6 Summary

In this chapter, we presented an approach to increase the scalability of context-aware
routing by adaptively propagating context information. The adaptive propagation
of routing information reduces the network load caused by context updates. It is a
replacement for the reference algorithm we introduced in Chapter 3. To maintain
the semantics of Contextcast, it ensures that a message reaches at least the same
recipients as when disseminated using the reference algorithm.

140

5.6 Summary

The algorithm achieves this by propagating context information that can be used
for a directed forwarding for types of messages that occur often. This way, routers
have the necessary context information to prune the distribution tree for these
frequent message types. Message types that occur rarely, in contrast, are forwarded
speculatively, since it would place more load on the system to keep the required
context information up-to-date than simply suffer an occasional false positive for
such rare messages.

To this end, the routers record statistics for incoming messages and updates. From
these numbers, each router can deduce how many false positives a piece of context
information prevents and how many updates are required to keep it updated. The
quotient of these numbers is the benefit of a piece of context information. The
adaptive propagation algorithm uses this benefit to propagate composite contexts to
neighbors if their benefit exceeds a configurable propagation threshold. At the same
time, if a certain class of messages no longer occurs, the benefit of the corresponding
context information is low; it requires more updates than the false positives it sup-
posedly prevents. In this case, a router can invalidate a piece of context information
once its benefit falls below an also configurable invalidation threshold.

Our evaluation of these concepts have shown that they reduce the overall system
load by over 40 % compared to the reference dissemination algorithm. This reduction
is largely a result of the drastic reduction of context updates for client contexts that
are rarely addressed. This reduction is offset to a certain degree by false positives
that occur due to the necessary speculative forwarding.

We have also shown that the system can react if the prevalent message types
change over time. An administrator can adjust the parameters of the algorithm to
react more quickly to such changes or to better filter out single bursts of a particular
type of messages, depending on the observed messages and their changes over time.

141

Chapter 6

Temporal Addressing in Contextcast

Time is at once the most valuable and
the most perishable of all our
possessions.

(John Randolph)

6.1 Overview

Contextcast allows to efficiently disseminate messages to clients with a specific
context. Due to the complexities of determining the temporal relation between two
events in a distributed system, e.g., a client registering a context and another one
sending a contextual message, Contextcast so far uses an implicit temporal semantic.
Figure 6.1 illustrates this with three contexts C1, C2, and C3, each registered with
the system during a certain time interval (marked for C1 in the example with t1 and
t2). Only the context C1 can match a message M sent at time tM in our previously
described Contextcast system; C2 was deregistered before tM, thus the client is no
longer connected, which prevents message forwarding and delivery. In contrast,
the system has no knowledge about C3 yet and for obvious reasons does not store
the message for a later delivery. Even in the case of C1, M might not reach the
client—despite it being sent while C1 is registered—because the information was not
propagated to the necessary routers before tM. We have discussed the reasons for
this in Section 3.3 and introduced the notion of a localized perfect dissemination.

However, explicit temporal specifications open up a number of new use cases:
For example, the person writing the minutes of a meeting can distribute the fin-
ished, digital version via a Contextcast message to all people who attended the
meeting. Such a message would be addressed to “the people that were in room
0.108, yesterday, between 13:00 and 15:00”. Another example is a fashion store,
which uses Contextcast to send out a questionnaire as part of its marketing strategy.
The message is addressed to all “people passing by during the next three weeks
starting the next day, are female, and are between 15 and 35 years old”. This is the

143

Chapter 6 Temporal Contextcast

time

Context C1

Context C2

Context C3

tM

t1 t2

Figure 6.1: Validity periods of three contexts C1, C2, and C3 over time

audience that the store caters to and whose feedback can be used to improve the
shopping experience and hopefully also the store’s revenue.

As we discussed in detail in Section 2.3, such information distribution is not
possible using a Pub/sub system or a Multicast approach: it would require that
the participants explicitly subscribe to future notifications or join a corresponding
group for many different kinds of messages. While this might be possible for the
example of a meeting, it is obviously not practical except for very few subscriptions.
And it is definitely not possible for the multitude of other possible messages one
might conceive such as the store example. In contrast, Contextcast’s sender-centric
approach does not require clients to explicitly register for messages they might be
interested in; the sender determines the intended recipients of a message with the
addressing constraints of a message.

The temporal extension to Contextcast, which we present in this chapter, greatly
increases the flexibility of our system. It allows to address contexts that—in addition
to other constraints—satisfy a given temporal constraint, both in the past and the
future. Such a temporal constraint effectively decouples senders and recipients
temporally: they do not need to be connected to the system at the same time, nor
does the approach require an established forwarding path of matching context
information between the sender and recipient. Note, however, that this is an
extension: some messages simply do not require this additional flexibility and may
be only relevant at some point in time.

From this initial description, it becomes clear that the previously shown ap-
proaches to disseminate Contextcast messages—maintaining context information on
routers throughout the system to evaluate context constraints—are not feasible for a
temporal Contextcast: To be able to address past contexts, all routers would have
to store every context that was ever registered with the system. Additionally, they
would need to map these historical contexts to entities in the present. Similarly, for

144

6.2 Requirements

messages addressing clients with a certain context in the future, the system must
store messages until the right time, which the approaches in the previous chapters
do not provide.

This leads us to two main challenges that we need to address when extending
Contextcast with a temporal aspect: First, the system needs a method to specify the
temporal constraints that client contexts must fulfill in order for them to match a
message. Second, a temporal Contextcast requires efficient mechanisms to distribute
messages to the addressed contexts. Referring back to Figure 6.1, this includes
messages that address contexts connected to the system before the time tM a
message M is sent (historical contexts, such as C2) as well as contexts connecting to
the system after a message is sent (future contexts, such as C3). We call the messages
addressing these two types of contexts historical and future messages, respectively, and
show efficient dissemination approaches for both. Thus, additional measures must
prevent such a violation of privacy. When addressing future contexts, messages
need to be stored for delivery to a matching recipient some time in the future. Thus,
it requires an efficient method to store future messages to ensure, e.g., that messages
are not forwarded or duplicated needlessly when no future recipient ever matches
a message. Otherwise, future messages may cause a large amount of unnecessary
false positive message load.

In the remainder of this chapter, we show the necessary changes to Contextcast
for this additional flexibility. We start by describing the requirements for a temporal
Contextcast system in detail in the following section. Section 6.3 introduces the
changes to Contextcast, a system of temporal constraints that are used for the
temporal addressing of Contextcast messages, an archive of historical contexts, as
well as the routing algorithms for addressing both historical and future contexts.
We provide an evaluation of the performance and scalability of our approach in
Section 6.4. After that, Section 6.5 discusses related work before we summarize this
chapter in Section 6.6.

6.2 Requirements

The goal of a temporal extension of Contextcast is to increase the flexibility of the
system by allowing messages to explicitly specify the temporal aspect of the dissem-
ination semantic. This complements the existing implicit semantics of disseminating
to clients who have currently registered and propagated a context at the time a
message is sent. Furthermore, such an extension of the functionality needs to be
efficient as to not place too much additional load on the system. This leads us to the
following requirements for a temporal Contextcast system:

145

Chapter 6 Temporal Contextcast

Temporal Contextcast Semantics. Obviously, if Contextcast is to have the ability
to address messages with temporal constraints, it needs a corresponding attribute,
with a set of temporal predicates that can be used to constrain matching contexts.
These predicates should be as natural as possible to use, i.e., to specify that a
time span such as the validity of a context [tr; td) is before another one, a predicate
“[tr; td) < [a, b]” (read as “[tr; td) before [a, b])” is easier to use than testing on interval
boundaries such as td < a, particularly for users, but also for application developers.
Efficient Temporal Routing. Depending on the contexts needed to evaluate a
temporal Contextcast message, a message falls into one of three categories, which
determines its dissemination: historical messages address only historical contexts,
future messages address only contexts in the future, and hybrid messages address
contexts both in the past and in the future. Both historical and future messages require
efficient routing approaches: First, for historical messages the system needs access to
historical contexts, i.e., it requires methods to efficiently store and retrieve historical
client contexts (see also the next two requirements) and efficient ways to deliver
messages to the corresponding entities even if they are no longer connected. Second,
for future messages, it is not known beforehand when or even if a client context will
match a message. Thus, the system must take care to not produce false positives in
case there is never a matching recipient. This would again waste bandwidth and
place unnecessary load on the overlay nodes and links. Finally, hybrid messages
can be treated as both a historical and future message, which can then be processed
efficiently by the nodes.
Efficient Retrieval of Historical Context Information. Disseminating messages
to historical contexts requires a method to determine matching recipients. The
scalability of the approach depends on efficient lookup of historical, matching
contexts. We discuss this lookup as part of the routing algorithms for historical
messages in Section 6.3.2.
Privacy-aware Storage of Historical Contexts. Archiving historical client contexts
is necessary to find the ones matching a given historical message. However, such
a history of contexts obviously raises privacy concerns: if an attacker gains access
to this data, they may build complete client profiles and abuse the information in
various ways. This needs to be addressed in the design of the system; in particular,
the system needs to make profiling clients from this stored information difficult.

6.3 Temporal Contextcast

In this section, we discuss the various additions and changes to Contextcast to
support temporal constraints in context-aware communication. These are derived
from the requirements in the previous section and include (1) a representation of

146

6.3 Temporal Contextcast

Figure 6.2: Evolution of a sample context C over time

the temporal validity of client contexts as well as a temporal addressing mechanism
for Contextcast, which supports both historical and future contexts, (2) an efficient
routing strategy for historical messages, together with the necessary privacy-aware
archival of client contexts, and (3) an efficient reactive routing approach for future
messages.

6.3.1 Temporal Extension for Contextcast

Context Evolution over Time

One of the key aspects of Contextcast and the driving force behind the approaches
we have shown so far is the ever-changing nature of user contexts: The attributes
that form a user’s context are updated constantly and the system needs to account
for these changes. Otherwise, Contextcast could simply register a client once, e.g., as
part of a multicast group, and then use this information to disseminate all messages.

Figure 6.2 shows an example of the evolution of a single client’s context C over
time. At time t0, it is registered with the system, with the attributes 1 and 2 and
their respective values. At t1, attribute 1 changes its value, followed by a new value
for attribute 2 at t2. A third attribute is added to C at t3. From t4 on, attribute 1 is no
longer a part of C. And finally, at t5, the context C is deregistered from the system.

From this example, it becomes clear that it is possible to regard the evolution of
client contexts in one of two ways:

1. As a sequence of contexts that are valid for a certain period of time; in the
example in Figure 6.2, this view is marked as contexts C1 through C1

′′′′.

147

Chapter 6 Temporal Contextcast

2. As a single context whose attributes are individually marked with timestamps
to denote this evolution and the time that each attribute and its value are valid.
This view is denoted with C2 in the Figure.

Functionally, these two alternatives are equivalent: in both cases one can easily
determine whether a given context matches a set of constraints including a temporal
one. Additionally, a single context with timestamped attributes can be transformed
into a sequence of contexts trivially. The other direction is more difficult, though,
as the individual contexts need not have any property linking them together, thus
making the reconstruction of a single context difficult to impossible.

Privacy-awareness among users and corporations has increased recently, especially
after the revelation of global government surveillance programs such as PRISM
([Tox14]). Context-aware systems have access to a large amount of private informa-
tion such as a user’s location. It is therefore necessary to take appropriate measures to
protect such information, e.g., by partitioning the information and limiting access to
the individual parts [Wer15]. Having a single context with time-stamped attributes
is equivalent to readily available, long-term context profiles of users. Therefore,
we expect that choosing such a temporal context representation would negatively
affect Contextcast’s adoption. Also, in Contextcast, clients can deregister and newly
register a context at any time, without a connection between the two such as a
context identifier. Based on these considerations, we treat the evolution of a context
as a sequence of individual contexts (C1 through C1

′′′′ in Figure 6.2). To express this
fact, we introduce a new context attribute time, which models the temporal extent of
a context.

Definition 6.1 (Context Attribute Time). The attribute time of a client context defines
the temporal interval

[
tregister, tderegister

)
the context was registered with the system

and thus valid. Its type is “UTC” (Coordinated Universal Time) and a point value
can be specified in the format “2014-01-14T09:00:00Z”.

For any client context, the interval
[
tregister, tderegister

)
(or [tr, td) for short) is

implicitly defined as the time the context was registered with the system (tregister)
and the time it was deregistered (tderegister). Excluding the deregistration time from
the interval prevents ambiguities when contexts change over time: in Figure 6.2, C1 is
valid during [t0, t1), C1

′ during [t1, t2), etc. Additionally, since therefore also tr 6= td,
this definition prevents contexts that have a temporal extent—or duration—of 0, i.e.,
which would not exist at all.

As before, contexts in Contextcast are registered explicitly but deregistration
can happen either explicitly as well, triggered by an application, or implicitly, for
instance, because a client loses its network connection. The latter is the case, e.g.,
when moving into an area without network coverage or when entering a state of

148

6.3 Temporal Contextcast

lowered power consumption. Thus, tr is always known for any given client context
that is registered with the system while td is unknown until the client actually
deregisters. Additionally, a context can obviously only be deregistered after having
been registered first, i.e., tr < td.

We further assume that the time on all nodes is synchronized using a method such
as the Network Time Protocol (NTP) [MMBK10]. This ensures that all nodes have a
sufficiently precise clock to evaluate the time constraints of messages; in particular,
[Min99] finds that NTP nodes on the Internet are synchronized to within a mean
offset of 8.2 ms, with a standard deviation of 18 ms. If an application requires
a higher precision than that of NTP, the best-effort nature of Contextcast in all
likelihood does not satisfy the application’s requirements either.

Temporal Constraints for Contextcast

In addition to the temporal extents of client contexts, a temporal Contextcast requires
suitable addressing predicates to restrict the set of recipients according to a temporal
relation. Picking up the example from Section 6.1, a temporal Contextcast message
might address “all clients who pass through the shopping mall between January
14th, 9:00, and January 28th, 17:00, and whose age is below 30”. In addition to the
constraints for location and age, this message also contains a temporal constraint,
“between January 14th, 9:00, and January 28th, 17:00” Thus, only contexts that match
the temporal restriction in addition to the other two match this message.

The concept of time and the temporal relation between events has long been stud-
ied in various fields such as database management systems or artificial intelligence.
One of the most influential approaches has been the work of Allen [All83]: Typically
used statements about temporal relations are both relative and contain some amount
of uncertainty: “He discovered that his wallet was missing after he got home” or
“The accident happened yesterday during the afternoon rush hour”. Allen therefore
introduces a temporal representation based on intervals and a set of 13 temporal
relations. These relations are the symmetrical equals (=) as well as the relations before
(<), meets (m), overlaps (o), during (d), starts (s), and finishes (f), together with their
respective inverse (>, mi, oi, di, si, fi).

We have adapted and refined the relations from [All83] to be used as predicates for
the time attribute in contextual message constraints. These predicates are designed
to be as expressive as necessary while at the same time easy to use for developers
and users of the Contextcast system. To this end, our relations differ from Allen’s in
the following points:

1. We have introduced an uncertainty threshold in the equals and meets relation
to allow for uncertainty when specifying a temporal constraint; these two pose

149

Chapter 6 Temporal Contextcast

the most difficulties when using exact times, but it is straight-forward to add
similar uncertainty values to the other predicates should the need arise.

2. We have combined Allen’s meets m relation and its inverse mi, since X mi Y ⇔
Y m X; we have opted to keep the before-inverse (bi) relation as a relation
after in Contextcast, though, since it is commonly used to describe temporal
relations in human interaction.

3. We have renamed Allen’s overlaps and its inverse to “ends-in” and “starts-in”
to make their semantics clearer.

4. Additionally, we have introduced two new relations, overlaps and excludes, to
allow for an easy way to describe that a context was valid at some point during
an interval or was not valid during that interval, respectively, without having
to combine multiple temporal constraints with logical operations.

5. As per a note in Allen’s original work, we have collapsed Allen’s relations d, s,
f into a relation during (Allen’s dur) and the relations di, si, fi into a relation
contains (Allen’s con).

This results in the 10 predicates for the time attribute listed in Table 6.1. In addition
to the predicates and their syntax, the table also shows the corresponding Allen
relation as well as the semantics of these predicates, i.e., the respective comparisons
of points in time. ContextRouters use these comparisons internally to evaluate
the time constraints. Please note the differing syntax and semantics for the meets
predicate, which depends on its use as either Allen’s m or mi relation.

The predicates are generally self-explanatory, however, we are discussing a number
of examples in more detail, namely the predicates before, equals, overlaps, and during:

• The predicate before (time < [a, b]) specifies that a client context had to be both
registered and deregistered before the interval [a, b]. It is thus equivalent to:

time < [a, b] ⇔ [tr, td] < [a, b] ⇔ td ≤ a.

• Another example is the predicate equals, which is a little more complicated
compared to the others. It tests two intervals [tr, td] and [a, b] for equality.
However, since usually no two time intervals are exactly the same, the com-
parison contains an additional tolerance, z, for applications to specify. This is
used for a fuzzy comparison on interval boundaries, i.e.,

[tr, td] ≈z [a, b] ⇔ |tr − a| ≤ z ∧ |td − b| < z.

In other words, two intervals are considered equal if their start points and end
points are each less than the time z apart.

150

6.3 Temporal Contextcast

Predicate Syntax Allen relation Evaluation

before: time < [a, b] < ⇔ td ≤ a
after: time > [a, b] > ⇔ b < tr

equals: time ≈z [a, b] = ⇔ |tr − a| ≤ z ∧ |td − b| < z
meets: time ‖z [a, b] m ⇔ |td − a| < z

[a, b] ‖z time mi ⇔ |b− tr| ≤ z
ends-in: time ∈ ei [a, b] o ⇔ tr < a ∧ a < td ∧ td ≤ b
starts-in: time ∈ si [a, b] oi ⇔ a ≤ tr ∧ tr ≤ b ∧ b < td

overlaps: time∩ [a, b] – ⇔ tr ≤ b ∧ a < td

excludes: time 6= [a, b] – ⇔ td ≤ a ∨ b < tr

during: time ⊆ [a, b] dur ⇔ a ≤ tr ∧ td ≤ b
contains: time ⊇ [a, b] con ⇔ tr ≤ a ∧ b < td

Table 6.1: Temporal predicates and their evaluation by Contextcast

• As we mentioned before, the newly introduced overlaps predicate can be used
to test whether a context was valid at any point within an interval. This
corresponds to

[tr, td] ∩ [a, b] ⇔ tr ≤ b ∧ a < td.

In other words, the context must have been registered before or at the end as
well as deregistered after the beginning of [a, b]. This way, the two intervals
have at least one point in common.

• The last example is the related predicate during to test whether a given context
was valid during a time that lies completely within the interval [a, b]. It is
equivalent to

[tr, td] ⊆ [a, b] ⇔ a ≤ tr ∧ td ≤ b,

i.e., both registration and deregistration must be within the bounds of [a, b].

Please note that the two predicates, after and excludes, both match contexts that are
registered after a certain point in time. In particular, this allows for new matching
contexts to be registered arbitrarily far in the future. Messages with these temporal
constraints would therefore accumulate in the system. As we are discussing in
Section 6.4.2, we recommend that administrators limit the lifetime of such messages
or disallow the use of these predicates in their system altogether.

151

Chapter 6 Temporal Contextcast

6.3.2 Historical Messages

In broadest terms, to route a historical message the Contextcast system needs to
(1) be able to lookup historical contexts and determine those matching the constraints
of a given message, (2) have a mechanism to determine the actual user for a matching
historical context, and (3) deliver the message to the users determined from the first
two steps.

Coming back to the example of the minutes of a meeting (cf. Section 6.1) with
constraints on the location and the time of the meeting, the routing takes place as
follows: First, the system determines all the contexts that fulfill the location and time
constraints of the message. These contexts represent the participants of the meeting.
Second, it must determine the actual clients of the system that these contexts are
associated with. Third, and finally, they deliver the message to the clients: Either
directly if they are currently connected to the system; or indirectly via the client’s
mailbox if they are not.

From this broad description, we can see a number of challenges for the routing of
historical messages: The system must have a method to archive historical contexts
accompanied by an efficient lookup to determine the historical contexts that match
a given message. Additionally, the system must have the means to resolve archived
contexts to clients while still protecting the privacy of the users. And finally, it
needs an efficient mechanism to deliver a message to a large number of matching
recipients.

In the following sections, we discuss these individual items in detail and present
our approach for each. Together, they provide an efficient, privacy-aware routing
mechanism for historical Contextcast messages. We then use this as the basis for a
number of improvements, which help to further reduce network load from historical
message routing.

Archiving Historical Contexts

As mentioned before, disseminating a historical Contextcast message requires deter-
mining the set of historical contexts that match the constraints of a given message.
This in turn requires an archive of historical context data, from which to lookup the
matching ones.

There are two natural choices for the archival of historical client contexts: The
first possibility is a separate archive, e.g., in a (classical) database management
system. Thus, the lookup of matching contexts benefits from extensive research in
this field. However, because of the frequency of Contextcast messages and context
updates in particular, for scalability this database management system would have
to employ powerful, expensive hardware or follow a divide-and-conquer approach

152

6.3 Temporal Contextcast

such as a distributed database management system [ÖV11]. The second option
is an archive of context information integrated into the Contextcast system in a
distributed manner. This method is similar to a distributed database management
system, yet its advantages are a finer control over the actual distribution of the
data and the ability to integrate the context lookup into the dissemination of
historical messages. We therefore propose a context archive that is integrated in
the Contextcast overlay network, with full control over the distribution of historical
contexts and the necessary lookup algorithms to determine matching recipients for
historical messages.

The organization of the context archive, i.e., how contexts are distributed across
the various nodes, directly affects both the effort to lookup matching contexts and
the effort to archive contexts. Contextcast’s design with ContextNodes’ service
areas and clients with mobile devices also has a number of important implications
for the archival location of historical contexts: First, contexts are registered and
originate in the access networks; the ContextNodes therefore have access to a pristine
version of all locally registered contexts, before any aggregation (cf. Chapter 4), and
independent of whether it is propagated in the network or not because of an adaptive
propagation approach (cf. Chapter 5). Second, and related to the first point, a context
is available directly in the access network, without additional communication.
Archiving a context somewhere else in the network occurs additional overhead, both
at registration and deregistration. Third, the service areas of the contexts nodes
partition the network spatially and serve as a readily available spatial index. The
system can employ this information to efficiently route messages to the locations
where potentially matching contexts are archived, which we are discussing in more
detail in the following section.

Based on these points and the resulting advantages, we propose a spatially
partitioned distributed context archive for Contextcast:

Definition 6.2 (Spatially Partitioned Context Archival). For historical message dis-
semination, a ContextNode archives all contexts that clients register in its service
area, together with the time interval

[
tregister, tderegister

)
for each context.

Besides the mentioned advantages of a spatially partitioned archive, it is also
possible to further enhance the context lookup with additional indexes. These could
be used, e.g., when a message contains a location constraint with a huge area or
none at all. We are discussing this option and its overhead further in Section 6.3.2.
Also, archiving contexts locally at the ContextNodes requires additional storage,
which was not necessary in the previous approaches, thus increasing the hardware
requirements for ContextNodes.

Based on the model of time-stamped contexts in combination with a spatially
partitioned archive of contexts, the question of archival time also has a straight-

153

Chapter 6 Temporal Contextcast

forward answer: The system learns of a new context the moment a client registers
it (tregister). The context is then available in the access network and throughout the
Contextcast network as a currently registered context until deregistration. After
deregistration at time tderegister, the context must be available in the archive for
historical message dissemination. Thus, any context must be archived at some
point during

[
tregister, tderegister

]
. Archiving the contexts when tderegister is known

provides the lowest overhead: Any earlier archival requires an additional update
when tderegister becomes known. Also, since archiving a context in the same access
network where it was registered is practically instantaneous, archiving at time
tderegister does not introduce any adverse delays before the context is available for
historical message dissemination.

Note, though, that adding a context to an index for an attribute other than location
is more complex: Distributed indexes for these attributes rarely place a user’s context
information on the same node where the client connects to the system because of
their location. Since adding a context to the index in this case requires transmitting
information to the responsible node, there is a certain delay before the information
is available at that node. If the system uses the index to lookup contexts during this
delay, it may miss a context, thus causing false negatives. It is therefore advisable
to add context information to such an index some time before tderegister to ensure
that the information is available at tderegister, when the system can no longer rely
on currently registered information. This requires at least an additional message
from the ContextNode at tderegister to update the time attribute. Since the update
message is needed in this case anyway, the system may as well add a context to
another index as early as tregister.

Resolving Contexts to Clients

The next obstacle when disseminating messages to historical user contexts is the
mapping from matching historical contexts to current clients so the message can be
delivered. These clients may have changed their context or may not be connected to
the system any longer.

Such a mapping is easily achieved with a unique user identifier (ID) included
in all client contexts. The downside of such an unambiguous mapping from client
contexts to entities is that it allows to create comprehensive movement and context
profiles of clients, though. This would most certainly lead to a bad acceptance of the
system due to privacy concerns. (Please note, these unique IDs are not necessary in
the original system, as messages are simply delivered to anonymously connected
clients with a matching context. Because the clients are still registered, the system
has an implicit mapping from registered contexts to the connected clients that
registered them.)

154

6.3 Temporal Contextcast

To improve client privacy, we envision a system of (globally unique) Virtual
Identities (VIDs) for client contexts in Contextcast (compare, e.g., [WBS+05]). On
their own, these VIDs cannot be used to identify a particular entity, as they provide
no connection to physical entities and can frequently be changed. Clients can
potentially choose a new VID every time they register a context with the system.
This achieves two things: First, it makes obtaining a complete history of a single
entity’s context difficult since no pair of contexts with different VIDs can reliably be
determined to relate to the same entity. Second, no attacker can reliably resolve an
archived context’s VID to the corresponding entity since there is nothing connecting
the VID an entity. Unfortunately, to deliver historical messages to clients that are
offline or have changed their VID it is still necessary to have such a mapping from
VIDs to entities in the system.

Therefore, in Contextcast, we rely on trusted third parties, called Trusted Nodes
(TNs), to create virtual identities for entities and resolve them for message delivery.
A TN can be a client’s cell phone provider or ISP, which are usually trusted implicitly,
or even an independent service offering such VID management. The TNs only store
a mapping VID 7→ entity, they do not need to know a client’s context. With this
mapping, the system can resolve a client from the VID in a context that matches a
particular message and then deliver this message to that client.

When resolving VIDs to entities, the system needs to determine the TN responsible
for a given VID. This can be achieved, e.g., by encoding the TN in the VID itself:
[timestamp]@[Fully Qualified Domain Name (FQDN) of the TN]. The timestamps,
which each TN hands out, are strictly monotonically increasing. The combination of
a timestamp with the TN’s FQDN ensures that VIDs are globally unique without
giving away details about the actual entities. Additionally, using timestamps instead
of simpler sequence numbers prevents leaking activity information from individual
TNs, such as a long time between the occurrence of two subsequent VIDs.

Basic Historical Message Routing

As mentioned before, routing a historical message consists of three conceptual
phases: (1) the Context Lookup, in which the system determines the historical
contexts that match the given message, (2) the VID Resolution, in which the system
resolves the historical contexts to the actual clients of the system, and (3) the actual
Message Delivery, in which the message is routed to the clients whose historical
context matches the message. In the following paragraphs, we detail each of these
phases.
Context Lookup. During the Context Lookup phase, the ContextRouters employ
an index for one or more attributes to route a message to all the access networks
where potentially matching contexts are archived. Because of the reasons given

155

Chapter 6 Temporal Contextcast

in Section 6.3.2 and its status as primary context [RBB03], we show an approach in
Contextcast that uses the location attribute for this first phase. The benefit is that every
context possesses a location (where it was registered) and that the ContextNodes’
service areas serve as a readily available index.

Routing a message according to a target location is in essence a geocast (compare,
e.g., Section 2.3 or [Dür10]). To forward messages to the access networks, each
router needs information about the geographical coverage of the other nodes in the
network, i.e., the information what locations can be reached via each of its link. This
can be achieved in several ways, e.g., via a special context that each ContextNode
propagates, which contains its own service area and which allows other routers to
compute shortest paths and bounding areas for its neighbor routers.

In the following algorithms, ServiceArea(N) denotes the service area of a Context-
Node N, while ServiceArea(l) denotes the cumulative area that can be reached
via a link l. Algorithm 6.1 shows the pseudo code for this phase. When routing
a historical message, each router first checks whether this message was received
and thus processed before. While this does not happen in an acyclic network, such
a test allows an extension to arbitrary topologies in the future. Then it forwards
the message via each link for which the service area of the link intersects with the
message’s target location.

If a router is also responsible for an access network, i.e., a ContextNode, and its
service area overlaps with M’s target location, it continues with determining the
locally archived, matching contexts. To this end, it determines for each context
whether it matches the constraints and then adds the VID to the result set accordingly.
The set eliminates all obvious duplicate VIDs, which can happen when a context is
registered several times in one access network, e.g., due to repeated disconnects of
its wireless connection.

There exist efficient methods for the local storage of multi-attribute data in a
database management system and retrieve those records matching a certain set
of constraints. Anyone operating a ContextNode can choose from any number of
approaches to store and lookup context information. However, the efficiency of
local database lookups is not the focus of this dissertation, the interested reader is
referred to [GMUW08, KE13].
Virtual Identity Resolution. During the second phase, the VID Resolution phase,
the system determines the actual client associated with each historical, matching
context. The ContextNodes that have archived contexts matching M send copies of
the message to the Trusted Nodes responsible for one of the matching contexts’ VIDs
from the previous phase. The pseudo code for this step is shown in Algorithm 6.2. It
creates a set of all TNs that are responsible for subsets of the given VIDs. For each of
these TNs, the ContextNode creates a copy M′ of M, tags it with the corresponding
subset of VIDs that the TN is responsible for, and forwards M′ to this TN. Thus, a

156

6.3 Temporal Contextcast

Algorithm 6.1 Context Lookup

Require: A ContextRouter N and a historical Contextcast message M.
Ensure: M forwarded over all links whose cumulative service area intersects with

M’s target location and mVID the set of VIDs of the locally stored contexts that
match M, i.e., mVID = {Set of VIDs of locally archived contexts : CVID @ M}.
if M was not received before then . Does not happen in acyclic networks.

for all l ∈ {links of N} do
if ServiceArea(l) ∩ locationM 6= ∅ then . Intersects with target location

forward M via l
end if

end for
if (N is a ContextNode) ∧ (ServiceArea(N) ∩ locationM 6= ∅) then

mVID← ∅
for all C ∈ {locally stored contexts} do . Naive iteration.

if C @ M then
mVID← mVID∪ (VID of C)

end if
end for

end if
end if

157

Chapter 6 Temporal Contextcast

single message is sent from a given ContextNode to each of the TNs responsible for
one or more VIDs of matching contexts.

Algorithm 6.2 VID Resolution

Require: A historical Contextcast message M and a set mVID of the VIDs of contexts
matching M.

Ensure: M sent to the Trusted Nodes for all VIDs in mVID.
TNs← ∅ . The TNs responsible for one or more VIDs
for all VID ∈ mVID do

TNs← TNs ∪ Trusted Node for VID
end for
for all TN ∈ TNs do

Create a copy M′ of M
Tag M′ with VIDs that TN can resolve
Send M′ to TN

end for

While the algorithm resolves the VIDs from phase one, it has its shortcomings: For
instance, it sends a copy of the message M as a unicast message to each of the TNs,
which causes a high network load if clients employ many different TNs. One way
to reduce the number of these messages is a multicast approach, which duplicates
message in the network as needed. This is not a trivial task, though, as the group of
TNs depends on the set of matching contexts and the resulting VID set, which in
turn would require a vast number of multicast groups. Additionally, due to their
movement, a client may have their matching context archived in multiple access
networks, thus causing the same VID to be resolved from several ContextNodes.
To reduce this effect, we are showing an optimized variant that can suppress such
duplicate VIDs resolutions that result from the clients’ mobility.
Historical Message Delivery. Once a message reaches a Trusted Node, the TN can
lookup the associated VIDs it contains and deliver the message to the corresponding
clients; Algorithm 6.3 shows this message delivery. It starts by looking up the entity
represented by a given VID. If the corresponding client is currently connected to
the system (under a potentially different VID registered with this TN), the TN can
deliver the message directly to that client. If the client is not connected to the system
or the TN is not aware of it, for instance because the client is using a different TN,
the message is delivered to the client’s mailbox. We assume that clients poll their
mailbox in regular intervals.

In the absence of failures, the algorithm delivers a message to a single client at most
once from one TN. This even works if several VIDs of a physical entity may have
matched M, as long as all those VIDs were registered with the same TN. If a client

158

6.3 Temporal Contextcast

Algorithm 6.3 Historical Message Delivery

Require: A historical message M tagged with a set mVID of matching contexts’
VIDs.

Ensure: M delivered to all matching recipients.
for all VID ∈ mVID do

R← physical entity corresponding to VID . Recipient R
if not R has already received M then

if R is currently connected then
Deliver M directly to R.

else
Deliver M to R’s mailbox.

end if
end if

end for

obtains multiple VIDs from different TNs and then registers contexts with these
VIDs, they may receive a message multiple times: To ensure the privacy properties
of using VIDs as pseudonyms for physical entities, TNs must not cooperate. Thus, if
multiple contexts from one client match a message and different TNs are responsible
for delivery, each of these TNs needs to deliver the message; they do not know about
the other TNs or other matching contexts.

Optimized Historical Message Routing

The algorithms in the previous paragraphs served as an introduction of the general
concepts of historical message routing. They have a few shortcomings, though,
which we are going to address in the following paragraphs.
Optimized Context Lookup with Duplicate VID and TN Removal. As client
contexts generally represent mobile users, a client can move from one access network
to another one at any time. This results in having the same context archived in
several access networks. Since each ContextNode looks up matching contexts locally,
independent of other nodes, during the Context Lookup phase, a message with a
target location spanning the service areas of multiple ContextNodes may match the
same context in each of these access networks. The previously shown algorithm—
which we from now on call the Simple Historical (SH) algorithm—starts the VID
Resolution directly with the local lookup results. The same VID is therefore resolved
from all these access networks, without consolidating duplicate VIDs from different
access networks. As a result, several ContextNodes send a given message to the
same TN for the same matching context.

159

Chapter 6 Temporal Contextcast

In addition to the duplicate VID resolution resulting from single contexts archived
at several nodes, also contexts from different clients that use the same TN cause
overhead: While the there may exist a great many number of TNs, in reality we
expect many clients to rely on third-party operated TNs that are provided, e.g.,
by their ISP. Thus, the set of VIDs of the contexts matching a given message may
need to be resolved by only a few well-known TNs. If these VIDs are the results
from different access networks, starting the VID resolution from each one (the SH
algorithm) causes a message to be sent to the same TN multiple times from different
access nodes.

To avoid these two types of overhead, we introduce the Fully Consolidating
Historical (FCH) algorithm: it collects the matching VIDs for a given message from
the access networks and consolidates them by removing obvious duplicates, i.e.,
identical VIDs. After this step, the algorithm starts the VID Resolution from the
node where the results were collected, removing duplicate TNs in the process.

To this end, we record the distribution tree for the messages so the results can be
returned along the same tree: Every time a ContextRouter forwards a message to
more than one neighbor (i.e., children in the distribution tree) or to a single neighbor
but needs to perform a local lookup, it records its own ID in the message. This
sequence marks all the branching points in the distribution tree down to the leaves,
i.e., all the nodes where results from subtrees or local lookups can be collected. See
Figure 6.3 for an example of a message and its distribution tree, with branching
points recorded in the message.

With the information about the distribution tree, leaf nodes can return the results
from locally archived contexts to the previous node where the distribution tree
branched. This router then consolidates the results, i.e., unifies the sets of VIDs
from all its subtrees with its local results, and sends the result back to the previous
branching point in the tree. Again, this router consolidates the VID sets and so
on until the results reach the first branching point (node A in Figure 6.3). At
this point, the node has the consolidated results from all access networks with
potentially matching contexts. This node can then start the VID Resolution, sending
the message to the set of unique TNs that are responsible for the matching VIDs.
(For succinctness, we omitted the discussion of lost results from subtrees. Obviously,
the system needs a mechanism, e.g., timeout and/or retransmit, to prevent these
situations.)

Between these two extremes SH and FCH, one can also imagine variations that
collect the results but limit the level up to which to collect the results. We call
these algorithms Partially Consolidating Historical (PCH). The nodes that collect
results from their subtrees are called “consolidation points”. An additional number
n = 1, 2, 3, . . . denotes the consolidation point where we collect the results. Thus,
PCH1 is identical to the FCH algorithm, as the consolidation point is the first

160

6.3 Temporal Contextcast

A

Target location of M

B

{A} {A, B}

M

Source
C {A, C}

Figure 6.3: A historical message M’s distribution tree, with branching points
recorded in the message along the route

branching point. PCH2 collects the results at the second branching points (nodes B
and C in Figure 6.3), PCH3 at the third (which does not exist in the example), and
so on. As one can see from the example, PCH<n> usually results in several nodes
being the n-th branching point in their respective subtrees. Thus, multiple nodes
collect the results for their subtree and start the VID resolution, but fewer than if
each ContextNodes starts it. Algorithm 6.4 shows the pseudo code to collect the
results from the subtrees until we reach the intended consolidation point.

Algorithm 6.4 Optimized Context Lookup

Require: A branching point N of the Context Lookup distribution tree, a historical
Contextcast message M, and a consolidation depth k.

Ensure: mVID = {Set of all VIDs : CVID @ M} collected at consolidation point.
mVID← Consolidated results from all subtrees
if the k-th branching point is an ancestor of N in the distribution tree then

Send mVID to previous branching point.
else . Consolidation point reached or less than k branching points on this path.

Start VID Resolution.
end if

Collecting the resulting VIDs suppresses duplicates from different ContextNodes.
However, it also causes an increase in end-to-end message delay because of the

161

Chapter 6 Temporal Contextcast

time it takes to collect and reconcile the results from the different subtrees as
well as an additional messages. Thus, the choice of algorithm—SH, FCH, PCH2,
PCH3, ...—depends on the mobility of the clients, i.e., the amount of duplicate VIDs,
the diversity of TNs, as well as the additional processing load on the nodes that
is acceptable. (The additional delay introduced by this consolidation is irrelevant
in practice since the addressed contexts are historical and therefore the delay is
typically small compared to the age of the context.) An administrator can select a
suitable algorithm based on the observed conditions in a Contextcast system.

But even with this optimization to the Context Lookup, it is impossible to avoid all
duplicate messages: Since a client can change VIDs at any time to increase privacy,
not all duplicate VIDs can be recognized as such. This is a disadvantage of the
chosen level of privacy. But as each Trusted Node receives only one copy for all
matching VIDs, this only increases the message size. The Trusted Nodes are able to
discover and reconcile all the different VIDs for every physical entity.
Optimized VID Resolution using Multicast. A second drawback of the previ-
ously presented approach is the sending of unicast messages to each Trusted Node
during the VID resolution. As a result, the same message is forwarded multiple
times over links that the different unicast paths share. This places unnecessary
additional load on the network.

One solution to reduce the load from these messages is to employ a form of
multicasting (cf. Section 2.3). However, for any given message the VID set of
matching recipients must be transmitted to an element of the power set of all
TNs, P ({TNi : i = 1, . . . , n}). This would require establishing 2n separate multicast
groups for every combination of n TNs. If we assume that there are very few TNs
in the system, this might actually be possible. But even for only 10 TNs, it requires
more than 1 000 multicast groups. And with the open nature of the Nexus platform
(cf. Section 1.2.3), anybody can operate a TN, even individual clients of the system.
Thus, as we already argued in Section 2.3, such a large number of groups poses a
scalability problem.

So, instead of relying on a network or application layer multicast mechanism with
pre-populated groups, we adapt Explicit Multi-unicasts (Xcast, cf. [BFI+07]) to route
such messages along the overlay network. An Xcast message contains the set of all
the recipients of a message, i.e., the TNs in our case. From this, the routers construct
the distribution tree on the fly, based on available unicast routing information. In
the process, they duplicate the message and partition the recipient sets as needed.
This scheme avoids the large amount of multicast groups at the expense of a more
complex message forwarding and larger messages.

Algorithm 6.5 shows how a ContextRouter—the consolidation point from the
previous section—determines the TNs that are responsible for the VIDs resulting
from the Context Lookup. After that, it tags M with the VIDs that matched this

162

6.3 Temporal Contextcast

message and the corresponding TNs and sends it via an explicit multi-unicast to the
TNs.

Algorithm 6.5 Multicast VID Resolution

Require: A historical Contextcast message M, a set of matching VIDs mVID col-
lected from subtree.

Ensure: M sent to all Trusted Nodes responsible for all VIDs that matched M.
TNs← ∅
for all VID ∈ mVID do

TNs← TNs ∪ Trusted Node responsible for VID
end for
Tag M with sets TNs and mVID
Send M via an explicit multi-unicast to all elements in TNs

Employing explicit multi-unicasting instead of multiple unicasts for VID reso-
lution allows ContextRouters to exploit shared links between the various unicast
paths. The routers partition the recipient set, i.e., the set of TNs, according to the
unicast next hop information for each TN. Algorithm 6.6 shows the necessary steps.
For each neighbor, a router tests whether this neighbor is the next hop for a subset
of TNs. If it is, it forwards a copy of the message, tagged with the subset of TNs
and the subset of VIDs that these TNs can resolve to this neighbor.

Algorithm 6.6 Explicit Multi-unicast Forwarding

Require: A VID resolution multicast message M with the recipient set TNs and the
set of matching VIDs mVID, e.g., created by Algorithm 6.5.

Ensure: M forwarded to the next hops towards all TNs listed in M.
for all N ∈ Neighbors do

Reachable← {TN ∈ TNs : N is next hop for TN}
TNs← TNs \ Reachable . Remove those we reach via N
HandledVIDs← {VID ∈ mVID : VID can be resolved by TN ∈ Reachable}
mVID← mVID \ HandledVIDs . Remove those we handle in this loop
if HandledVIDs 6= ∅ then

Create a copy M′ of M without the original sets TNs and mVID
Tag M′ with recipient set Reachable and matching VID set HandledVIDs
Forward M′ to N

end if
end for

Additional Attribute Indexes. During the Context Lookup, Contextcast deter-
mines matching contexts, which are stored on the ContextNodes. To this end, it

163

Chapter 6 Temporal Contextcast

employs a spatial index created by the ContextNodes’ service areas and a message’s
target location. The reasons behind this design choice are scalability and simplicity:

1. Contexts are stored distributedly, so no single node becomes a bottleneck
during the Context Lookup.

2. Storing contexts in the service area where they were initially registered requires
no communication overhead to transmit the information to a different storage
node.

The approach has a drawback, though: It requires all messages to have a target
location. Without it, the Context Lookup would require a broadcast to all service
areas to lookup matching recipients. Due to location’s importance as primary context,
we consider this a minor limitation. However, even if a location constraint is enforced
for temporal messages, it may cover a large area, thus requiring many messages
to lookup matching contexts in the targeted service areas. In the extreme case, the
location might be so large that the lookup effectively becomes a broadcast.

Contextcast can incorporate distributed indexes for context attributes other than
location to complement the existing spatial index in the routing of historical messages:
For an index on an additional attribute αi, the system maps αi’s value range to a set of
nodes, e.g., by means of a Distributed Hash Table (DHT) such as Chord [SMLN+01],
Pastry [RD01], Tapestry [ZKJ01], or CAN [RFH+01]. The nodes then store a copy of
the contexts whose value of αi are within their respective value range. (In principle,
the nodes need not store the actual context data, instead they could simply store a
reference to a node storing the data. Because of the relatively small size of a client
context, the savings would be negligible. However, it would prevent the Contextcast
system from locally evaluating all constraints of a message against a stored context,
adding another indirection and further increasing the message load in the Context
Lookup.)

During the Context Lookup the system can use such an index to find matching
contexts for the corresponding constraint, e.g., when the location constraint is unsuit-
ably large or not present. Similarly to using location as described in Section 6.3.2, the
system routes a historical message to the nodes who are responsible for values that
would match the constraint on αi. These nodes then evaluate their stored contexts
against the message constraints to determine the set of matching recipients.

While such additional indexes can be used instead of the spatial index in the
Context Lookup, their maintenance, i.e., updating contexts or adding new ones,
generates overhead as well. Storing—as well as retrieving—an item in a DHT
requires routing to the node responsible for the corresponding key. Therefore, any
update of a context with an attribute αi means routing the update to the node
responsible for this particular value of αi. In typical DHTs (e.g. Chord [SMLN+01]

164

6.3 Temporal Contextcast

or Pastry [RD01]), the route length and thus the number of messages is ∈ O(log N),
with N the number of nodes in the network. (There are algorithms that achieve
shorter routes at the cost of a higher node degree, e.g., CAN [RFH+01].) The
reference algorithm (see Section 3.3.3) broadcasts all contexts in the network, in
particular if a context contains αi, the information also reaches the node responsible
for this context’s value of αi. Additional attribute indexes therefore would not incur
any overhead when a system used the reference algorithm. However, with the
optimizations we have introduced in Chapter 4 and Chapter 5, the system to no
longer propagates all contexts in their pristine form through the network: They may
get aggregated with other contexts or only forwarded when there is a sufficient
amount of false positives. Since it cannot rely on other propagation mechanisms,
an additional distributed index for αi causes a O(log N) message overhead for each
context update with this attribute in the system. In contrast, the spatial index on
the contexts’ location does not suffer such an overhead. Every context is stored on
the node where the client connected to the system due to their physical presence in
the service area. This requires no additional messages for maintaining a spatially
partitioned context store and the communication overhead is therefore ∈ O(1).

Despite the different maintenance overhead, we expect the spatial index and any
DHT-based distributed attribute index to behave similarly in the Context Lookup. In
both cases, the system routes a historical message to the nodes responsible for values
that satisfy the constraint for the corresponding attribute, duplicating messages as
necessary to form a distribution tree. This distribution tree, especially its size, i.e.,
width and depth, depends on a number of aspects:

1. The selectivity of the actual constraint and consequently the number of nodes
in the index that may have matching contexts; these are the leaves in the
distribution tree.

2. How well an index preserves locality, i.e., whether similar values are stored on
the same node or closely connected ones, which is obviously a strong point of
the spatial index.

3. The average route length in the index, which determines the depth of the
distribution tree and which depends on the degree of the participating nodes.

Depending on these factors, especially the selectivity, the spatial index may work
well for the Context Lookup or it might be preferable to employ other attribute
indexes. If historical messages are relevant only in smaller areas and this fact is
reflected in their location constraint, the spatial index is a natural choice for the
Context Lookup. Should the spatial index prove inadequate, Contextcast can easily
be extended with additional indexes as outlined in this section. However, additional

165

Chapter 6 Temporal Contextcast

indexes must incorporate the other two factors, i.e., the preservation of locality and a
low average route length. While typical DHTs achieve the latter one with an average
route length of O(log(N)), the selected mapping of attribute values to nodes needs
to account for the locality of values.

In fact, one can even imagine an adaptive mechanism similar to the one we have
shown in Chapter 5, which would observe historical messages and the performance
of the spatial index. Such an approach would compare other attributes that are
commonly used in historical messages, estimate the effort required to maintain a
distributed index for each such attribute, and compare the effort to the potential
message savings for this index when used instead of or in addition to the spatial
one. Based on the result, the system can set up additional indexes to be used for the
Context Lookup; for each historical message, it can then determine a suitable index
based on the constraints used in the message and their respective selectivity.

6.3.3 Future Messages

By their definition, future messages are delivered to matching contexts after they
have been sent. In some ways, this makes the dissemination of future messages very
similar to the approaches we have shown in the previous chapters: After a future
message has been sent, the system can match new contexts against it continuously,
as if the message was sent just at that very moment. This removes the need to lookup
historical contexts and the added complexity of VIDs; if a client is still connected
to the system when their context matches a message, it can be delivered directly.
Thus, future messages are conceptually simpler than historical ones. A few of the
predicates, however, depend on the time a context is deregistered for evaluation
(cf. Table 6.1). In this case, a VID resolution is necessary. And if the user is no longer
connected, e.g., with a newer context, it also requires a delivery via the client’s
mailbox.

Obviously, the Contextcast system cannot know in advance for a given future
message if or where in the network a client’s context is going to match the message’s
constraints. Disseminating messages in advance and storing copies throughout the
network or even in every access network has the advantage of low latencies when a
match occurs; but it generates false positives if no client registers a context at some
time in the future, which matches the temporal and other constraints of the message.
In the next section, we therefore present a reactive routing approach to prevent such
false positives for future messages.

166

6.3 Temporal Contextcast

Reactive Forwarding of Future Messages

As stated before, forwarding messages that never find a matching recipient places
unnecessary, false positive load on a Contextcast system. To avoid this, Contextcast
employs a reactive forwarding strategy for future messages: A message is recorded
and only forwarded once a matching context is actually registered with the system.

This is possible due to a particular property of the Contextcast system (compare
Section 3.3.3): ContextRouters propagate information about all newly registered and
updated contexts as well as deregistered contexts in the network. Thus, if a context
C matches a message M (C @ M) sent at time t, C either was already propagated
throughout the system at time t, or it is propagated throughout the system some
time after t. (Please note that such a context C may be propagated either as is
or, as we discussed in Chapter 4, as part of an aggregation C′. However, any
aggregation that fulfills the aggregation condition—see Definition 4.3—guarantees
that C @ M ⇒ C′ @ M.) This particular property allow us to store messages very
close to message senders, reacting to future contexts when clients register/deregister.

This recording of messages could even take place directly on the mobile device
of a sender. Thus, a message would never leave a client’s device if no matching
recipient ever registers a context, causing no load at all. However, this would,
prevent a sender from disconnecting from the network, for instance, to save energy.
Therefore, in our approach, the first infrastructure node that a client connects to
stores a message, i.e., typically a ContextNode.

Algorithm 6.7 shows the recording and reactive routing for future messages. For
a new message, the ContextRouter determines for each neighbor whether one of
the current contexts matches the message. If this is the case, it tags the message
with the matching VIDs and forwards it accordingly. (Tagging the message with
matched VIDs speeds up the matching and forwarding process: routers can skip the
matching if the message has to be forwarded to a neighbor because of one of these
already matched recipients.) If there is none and thus the message is not forwarded
right away or if there may be future clients in its own service area, the node has to
record it for potentially matching contexts in the future. These additional copies in
the network avoid repeatedly forwarding the same message from the node with the
original copy of the message.

Besides new future messages, whenever a ContextRouter receives a context regis-
tration or a deregistration, it must evaluate the context against the recorded future
messages; this is shown in Algorithm 6.8. They forward a message if (1) the new
context matches the message’s constraints, and (2) it has not been forwarded over
that particular link before. This reactive forwarding is a trade-off between unneces-
sary forwarding and increased delay for the first recipient when a matching client
finally registers.

167

Chapter 6 Temporal Contextcast

Algorithm 6.7 Future Message Forwarding and Storing

Require: A future Contextcast message M, received from router NM.
Ensure: M forwarded to all neighbors with currently matching contexts and possi-

bly stored locally.
if M was not received previously then

children← ∅
for all N ∈ Neighbors \ NM do

if ∃C ∈ {contexts reachable via N}: C @ M then
Create a copy M′ of M
Tag M′ with the VIDs of matching contexts
Forward M′ to N

else if (location 6∈ M) ∨ (ServiceArea(N) ∩ locationM 6= ∅) then
children← children∪ N . Potential recipients in the future

end if
end for
if children 6= ∅ ∨ ServiceArealocal ∩ locationM 6= ∅ then

Store M for future contexts
end if

end if

Algorithm 6.8 Reactive Forwarding of Future Messages

Require: A registration or deregistration of a context C, received from router NC.
Ensure: ∀M : C @ M⇒ M forwarded to NC or C is recorded for later delivery.

if C is propagated due to a deregistration then
for all M ∈ {stored messages : depending on td ∧ not forwarded to NC} do

if C @ M then
Collect VID of C for delivery later . compare Section 6.3.2

end if
end for

else . Registration
for all M ∈ {stored messages : independent of td ∧ not forwarded to NC} do

Create a copy M′ of M
Tag M′ with the VID of C
Forward M′ to NC

end for
end if

168

6.3 Temporal Contextcast

A

Target location of M

B

Matching contexts

M

Source
C

C

Figure 6.4: Reactive forwarding of future messages: Initially stored at the source; at
B and in two access networks after the matching contexts are registered

Figure 6.4 shows an example for this approach and the resulting distribution
tree for a given message. The message is first stored by the sender directly (or
rather the sender’s access node). Once the two matching contexts are registered and
propagated through the network (shown for one of the contexts by the arrows in
the figure), the reactive algorithm forwards the message to the two access network.
There, they are delivered to the two clients as well as stored in each access network
for further recipients in the future. Node A on the delivery tree has already
forwarded it to all nodes where potential matching clients could register and thus
does not need to store a copy of the message. Node B, however, has a neighbor
where matching clients could register in the future and has not forwarded it to this
neighbor, thus it stores the message as well. Because of this, whenever a new context
or an update of an existing one gets propagated in the network, B must also match
the context against the stored message(s) and forward the ones the new context
matches.

Expiration of Future Messages

A reactive approach requires additional storage space for future messages. The
system does not need to store messages indefinitely, though; it can remove stored
messages when no newer contexts can match the message. An example for this is
a message that is addressed to some contexts before an interval [a, b] in the future.

169

Chapter 6 Temporal Contextcast

Predicate Syntax Expiration

before: time < [a, b] tnow > a
after: time > [a, b] —
equals: time ≈z [a, b] (tnow ≥ (b + z))

∨ ((tnow > (a + z)) ∧ (∀c ∈ C : |tr − a| > z))
meets: time ‖z [a, b] tnow ≥ (a + z)

[a, b] ‖z time tnow > (b + z)
ends-in: time ∈ ei [a, b] (tnow > b) ∨ ((tnow ≥ a) ∧ (∀c ∈ C : tr > a))
starts-in: time ∈ si [a, b] tnow > b
overlaps: time∩ [a, b] tnow > b
excludes: time 6= [a, b] —
during: time ⊆ [a, b] tnow > b
contains: time ⊇ [a, b] (tnow ≥ b) ∨ ((tnow > a) ∧ (∀c ∈ C : tr > a))

Table 6.2: Expiration conditions for temporal predicates

Once the current time tnow is past the beginning of the interval, a, no newer contexts
can match the temporal predicate. Similar conditions apply to the other predicates,
some of which, in addition to the current time tnow, also depend on the set C of
contexts that are known at that time. Table 6.2 lists these expiration conditions for
the various temporal predicates.

The predicates after and excludes are slightly more challenging, though: Any
contexts that are valid after the specified time match them, therefore clients matching
such messages could occur arbitrarily far in the future. As a consequence, routers
would have to store such messages forever. As a result, we recommend that
Contextcast operators define a maximum message lifetime for these predicates or
disallow their use altogether. In fact, depending on the actual values for a and b,
other predicates can also cause long message lifetimes. To avoid having to store
messages for years, we recommend a maximum lifetime for all future messages.

However, in a distributed system of ContextRouters, these expiration conditions
are not as simple: Client contexts can take an arbitrary time to be propagated through
the system. To account for this, routers cannot simply delete future messages when
their expiration condition is fulfilled. Instead, they need to distinguish these three
cases:

(1) It has forwarded a message to all neighboring routers where possible recipients
can register and no local context can match the message (either because the
node is not responsible for an access network or because of the message’s

170

6.3 Temporal Contextcast

constraints). In this case, the router can safely delete the message, as all nodes
where matching recipients might connect in the future already have a copy.

(2) A node has recorded a message for a potentially matching context in the
direction of a neighboring router, but the expiration condition of the message
is fulfilled. In this case, it can schedule the message for removal after a certain
time. This time can be empirically deduced from the observed delay in the
network; for instance, removal could take place after the time in which, e.g.,
95 % of messages traverse the network, accepting a certain message loss for
exceptionally high delays.

(3) While there are still neighboring routers where a matching client might connect
and the expiration condition of a message is not fulfilled, a node keeps the
recorded message to reactively propagate in the future.

Reactive Forwarding with Adaptive Propagation of Client Context Information

Reactive forwarding of future messages relies on every new context being prop-
agated in the system. With the adaptive forwarding of client contexts, which we
introduced in Chapter 5, routers no longer propagate every context, only those that
improve network load by allowing routers to prune the distribution tree. In the
following paragraphs, we are showing how this affects the reactive forwarding of
future messages.

One implication of the adaptive context propagation is that routers need a method
to distinguish between “no matching context exists” and “no matching context has
been propagated to me”. The solution we presented in Chapter 5 is the concept
of composite contexts. A composite context contains a neighbor’s knowledge for a
certain set of attributes, i.e., from all contexts it has received with these attributes.
Thus, if a router has received a composite context for a superset of the attributes
used in the constraints of a particular message, it can evaluate the constraints against
this composite context.

The same reasoning allows a ContextRouter to delay a message and not forward
it to a neighbor immediately: as long as a node possesses a composite context with
an attribute set that is a superset of a given future message (except for the attribute
time), it will receive information about possibly matching contexts in the future.

Without the necessary composite contexts, the system must speculatively dissemi-
nate future messages, to make sure that they reach all clients despite their context
not being propagated in the network. If these speculatively propagated messages
never reach a matching recipient, they can be recorded as false positives, just like
messages without a temporal constraint. Thus, the analysis of false positives versus
update load works independent of whether a message contains a time constraint; if

171

Chapter 6 Temporal Contextcast

the future messages contribute too many false positives, the system will establish a
corresponding composite context, thus allowing the reactive forwarding for a certain
class of future messages.

In the unlikely case that messages in the system are highly diverse, with hardly any
similarities in their constraints, their forwarding due to a lack of composite contexts
can cause a sizable amount of false positives. They may even exceed the update
load of the client contexts. This is no different from messages without temporal
constraints, though. In this extreme case, it is advisable that an administrator
deactivates the adaptive propagation of contexts in the system.

6.3.4 Hybrid Messages

As mentioned in the introduction, we refer to “hybrid messages” as messages
whose time constraint addresses both historical and future messages. An example
for this is a message M sent at time tM = 10:45 that contains a time constraint of
time ∩ [10:15; 11:15]. (The times in the example were shortened on purpose, as a
complete date and time specification would only add to the complexity without
additional insight.) This constraint matches client contexts that were registered some
time during the half hour before or after the message is sent.

From this description, it becomes clear that such messages need to be treated
separately as a historical and a future message: The historical part of the message
needs to lookup archived client contexts, whereas the future part needs to be stored
and reactively forwarded once a new, matching context is registered.

Even though Contextcast treats historical and future messages separately, there
is a synergy between the two parts that can be exploited for hybrid messages. We
can combine the routing of the historical part of such a message with Algorithm 6.7:
when a router receives a message during the historical message routing, either
during Context or VID Lookup, it also processes it as a future message; if necessary,
it can store it for future clients as per Algorithm 6.7. This achieves a certain dispersal
of a future message before any actual reactive forwarding. ContextRouters record
the fact that they have forwarded a hybrid message during their historical message
routing part, just like regular reactive forwarding of future messages.

The benefit of the approach is twofold: First, it reduces the delay of future
messages as they have already been forwarded to a node closer to the recipient
during the historical dissemination. Second, it saves bandwidth for the future
message part, since the message has already been partially disseminated and stored
on additional nodes. Routing the historical part is unavoidable, so any reuse of the
results of this directly benefits the system in the reactive forwarding of the future
part.

172

6.4 Evaluation

6.4 Evaluation

In the next sections, we take a closer look at the approaches to disseminate historical
and future messages. In particular, we examine the message load, delay, and storage
space requirements of our approaches.

6.4.1 Historical Messages

The approach for routing historical Contextcast messages we presented in Sec-
tion 6.3.2 is strongly tailored to the protection of privacy of the clients while re-
ducing the resulting overhead. To this end, contexts contain VIDs and the system
suppresses duplicate messages resulting from the mobility of the clients and their
ability to change VIDs at will. In the following sections, we are discussing the
actual network load caused by the dissemination of historical messages as well as
the resulting trade-offs: longer message delay caused by the duplicate suppression
and increased message size resulting from the explicit addressing of TNs in the
VID Resolution. Also, we are giving an estimate of the storage requirements for
archiving historical contexts.

Setup

To examine the efficiency of our approach, we implemented a prototype with
support for temporal Contextcast in the simulator PeerS im [MJ09] and use it to
evaluate our algorithms. As the basis for our experiments, we set up an overlay
topology of n = 10 000 routers, which are uniformly distributed over a normalized
area [0, 1]× [0, 1]. The links between the routers are established using a Heuristically
Optimized Trade-off [FKP02], i.e., nodes are added to the system sequentially; a new
node ni connects to an existing node nj that minimizes the weighted sum γ · dij + hj,
where dij is the Euclidean distance between ni and nj and hj is the network distance
to the first node that was placed. We choose the parameter γ = 20, which is less
than

√
n =
√

10 000 = 100, and therefore, according to [FKP02], leads to a strong
clustering of routers. We expect to see similar clusters in real Contextcast systems,
corresponding, e.g., to local networks operated by different network providers.

From these 10 000 routers, 70 % are then selected as access nodes. Access nodes
are usually closer to the edge of the network, i.e., nodes with few neighbors are
more likely to be access nodes. To achieve this distribution of access nodes, we sort
the nodes by their degree and use a Zipf distribution to select the ContextNodes.
The probability of selecting the x-th node out of N is then given as

P(X = x) =
x−s

∑N
n=1

1
ns

.

173

Chapter 6 Temporal Contextcast

For 10 000 nodes, we selected the distribution parameter s ≈ 0.95 to achieve a
distribution where a randomly chosen node is with probability 0.8 from the first
20 % of the list. Additionally, for historical messages, 300 overlay nodes were also
selected uniformly to act as Trusted Nodes.

In the following section, we show the effect of consolidating the recipient set for
historical messages by comparing the message load for the various approaches we
have introduced in Section 6.3.2.

Message Load

For the evaluation of our approach, we focus on the Context Lookup and VID
Resolution, especially on the optimizations that suppress duplicates. We compare
the different algorithms which we introduced in Section 6.3.2:

1. The Simple Historical (SH) algorithm does not suppress duplicate VIDs. It
starts the VID resolution with the local results from each ContextNodes.

2. The Fully Consolidating Historical (FCH) algorithm provides the other extreme.
It collects the results from all subtrees (and thus all ContextNodes inside the
target location) at the first router where the distribution tree branched. With
the complete result set, this router can easily eliminate obvious duplicate VIDs
from the result set and then send only a single explicit multi-unicast message
to the Trusted Nodes.

3. A number of algorithms PCH<n> (n = 2, 3, 4) provide different levels between
these two extremes by specifying the consolidation points for the local result
sets. These algorithms cannot fully eliminate duplicates and therefore several
branching points send multicast messages to the TNs. (For n = 1 this degener-
ates to the FCH algorithm, while for n > max. depth of the distribution tree this
is identical to the SH algorithm, i.e., no consolidation.)

We evaluate these algorithms in several simulations with random historical mes-
sages. The target locations are squares, with edge lengths varying from 0.05 to 0.25.
The messages contain additional constraints, but due to the nature of the simulated
contexts, these actual constraints do not affect the simulation. (We describe the
actual client contexts in the following paragraph.) As the ContextNodes in the
experiment are uniformly distributed over the simulated area, the size of the tar-
get location directly affects the number of ContextNodes that may have matching
contexts. Figure 6.5 shows the average number of ContextNodes that handle each
message over the edge length of the target location. As one would expect, the number
of ContextNodes is proportional to the area of the target location, i.e., the square of
the edge length.

174

6.4 Evaluation

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0.05 0.1 0.15 0.2 0.25

Lo
ca

l C
on

te
xt

 L
oo

ku
p

ef
fo

rt
 [C

on
te

xt
N

od
es

]

Target location edge length

Experiment
7000 x2

Figure 6.5: Average number of ContextNodes handling Context Lookup for certain
target location sizes

175

Chapter 6 Temporal Contextcast

To reduce the complexity of the simulation, we chose to not simulate individual
client contexts and their attributes; many of these contexts that we simulated would
never match any message. Thus, their accurate simulation would greatly increase
the runtime of each experiment, without contributing to the results. Instead, for
each sent historical message, the simulation creates matching contexts as follows:
On each of the ContextNodes whose service area intersects with the target location
for a particular message, between 0 and 300 matching contexts are created. Since
we create contexts to match a particular message, they match by definition every
constraint of the message. Thus, constraints other than on client location do not
influence the results of our simulations.

Each of these matching contexts has a different Trusted Node that is responsible
for its VID resolution. The selection of TNs again follows a Zipf distribution to
account for the fact that usually only a few TNs (20 %) are very popular, i.e., they
serve the majority of all clients (80 %).

Note, however, that in each service area is at most one matching context per
TN, while in reality there are usually several different matching contexts that are
handled by the same TN. This simplification does not affect our results, though,
since ContextNodes already perform a local duplicate suppression: a message
is only forwarded to each TN once, independent of how many contexts that are
registered with this TN actually match the message.

Figure 6.6 and Figure 6.7 present our simulation results of these algorithms.
As our focus is on the effects of duplicates in the system, we show the message
load caused by the different algorithms. The number of messages is shown as the
arithmetic mean of ten simulation runs, with errorbars indicating the minimum and
maximum number of messages during these runs.
Messages for the Consolidation of Local Results. Figure 6.6 shows the number
of messages that result from the consolidation of the local results for the different
consolidation levels and for different target area sizes.

Obviously, the FCH algorithm produces the highest message load, which is lower
for the algorithms PCH2 through PCH4, since these do not return the local results
all the way to the first branching point. Compared to FCH, PCH2 saves between
35 % for target locations of 0.05 edge length and 2.93 % for 0.25 edge length. Similarly,
PCH3 reduces the number of messages from the collection of results by between 90 %
for smaller target locations edges of 0.05 and 19.25 % for 0.25 edge length, compared
to FCH. Finally, PCH4 lowers the amount of collection messages compared to FCH
by between 100 % for 0.05 target locations and 58.16 % for 0.25.

Clearly, the larger the target location, the more messages it takes to fully col-
lect and subsequently consolidate the results of the Context Lookup, since more
access networks have potentially matching recipients. In these cases, limiting the
consolidating depth can significantly lower the amount of associated messages.

176

6.4 Evaluation

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0.05 0.1 0.15 0.2 0.25

C
on

so
lid

at
in

g
lo

ad
 [m

es
sa

ge
s]

Target location edge length

FCH
PCH2
PCH3
PCH4

Figure 6.6: Consolidating message load (without VID resolution)

Overall Number of Messages for Historical Routing. Despite the FCH algorithm
requiring more messages to collect the results from all access networks, it performs
very well due to its ability to eliminate duplicate VIDs and TNs. Figure 6.7 indicates
that the total message load (i.e., collecting the results and VID Resolution) is lowest
for the FCH algorithm. The overall load is between one and two orders of magnitude
higher for the SH algorithm, which does not eliminate duplicate VIDs and TNs.

PCH4, which collects local results at the 4th branching point, performs marginally
better than SH, at least for location sizes of 0.1 and above. This is due to the fact
that—for the simulated topology—most distribution trees rarely have more than
four branching points, unless the target location is huge. Thus, in these trees, almost
no collection and consolidation of results occur. Also note that, for very small target
locations, i.e., 0.05, the results of SH, PCH4, and PCH3 are almost identical. This is
due to the fact that with smaller target locations, the distribution trees rarely have
more than three branching points, which makes PCH4 and PCH3 virtually identical
to the SH algorithm. For edge lengths 0.1 and above, PCH3, which collects the
results at the 3rd branching point, performs between 50 % and 65 % better than
PCH4. Similarly, PCH2 outperforms PCH3 by between 52 % up to 82 %.

These results show that collecting the results is dominated by the effect of VID
Resolution and the explicit multi-unicast messages in the overall message load.

177

Chapter 6 Temporal Contextcast

102

103

104

105

106

 0.05 0.1 0.15 0.2 0.25

C
on

so
lid

at
in

g
lo

ad
 in

cl
ud

in
g

V
ID

 r
es

ol
ut

io
n

[m
es

sa
ge

s]

Target location edge length

FCH
PCH2
PCH3
PCH4

SH

Figure 6.7: Overall historical message load (including consolidating and VID resolu-
tion)

178

6.4 Evaluation

Therefore, collecting and consolidating the results of the Context Lookup signifi-
cantly lowers the message load during the VID Resolution phase of the algorithm.
The effect is stronger the more completely the results are collected, i.e., for smaller n
in PCH<n> or for FCH. As a result, a Contextcast networks should perform a full
consolidation before starting the VID Resolution.

Delay

Obviously, consolidating the results of the Context Lookup adds a delay when
routing a historical Contextcast message: First, the results need to be transmitted
back to a branching point of the distribution tree. Second, the branching node
collects all the TNs from the results. Third, once it has collected the results from all
its subtrees, the node can start an explicit multi-unicast to all the TNs with matching
recipients.

Our experiments showed that—for the given network topology—FCH in fact
increases the average delay for historical messages by 5 overlay hops. We do
not expect this delay to be problematic, though. Any increased delay is largely
irrelevant since a historical message addresses past contexts, usually several minutes
or hours old, perhaps even older. Any additional delay—even if it were in fact
several seconds instead of only 5 overlay hops—is not going to affect the delivery in
any significant way: Such a delay is relatively small compared to the age of most
addressed historical contexts. Either a client is still connected when the message
is finally delivered to the resolved entity, then delivery can happen directly to the
client’s device. Or the client is disconnected from the system, in which case the
message is delivered to the client’s mailbox. The probability that a client actually
disconnects during an additional delay introduced by 5 overlay hops, thus forcing
the delivery via the mailbox instead of a direct delivery, is negligible.

Messages Size

Another potentially problematic aspect is the size of the historical messages in the
FCH or any of the PCH<n> algorithms. When collecting the results from all access
networks with matching VIDs, the header of the explicit multi-unicast message
contains the TNs for all matching VIDs. Therefore, the size of a header of such
messages increases with the number of matching recipients or rather the number
of distinct TNs for these VIDs. However, the number of addressed TNs is limited
by the total number of TNs operated in the system, which we expect to be several
hundred in reality. Thus, the overhead of the message addressing is still small
compared to the size of the message data.

179

Chapter 6 Temporal Contextcast

Additionally, the header also includes the set of all VIDs whose context matched
the message for the VID resolution. Otherwise, the TNs would need to maintain
their own context store for all their clients to determine all matching contexts.
First, this duplicates the functionality of the Context Lookup, which already takes
place at the ContextNodes (or on another node in the access network). Second,
and more importantly, another copy of the client context at its TN compromises
the privacy that VIDs provide in the first place. When storing a context under a
pseudonym such as the VID in the access network, the ContextNode has no access
to the information of what actual client it belongs to. This maintains the anonymity
of the client represented by the VID and its associated context. Regular changes of
the VID ensure that even cooperating nodes can not easily create a context profile of
a client. This changes, however, if a TN has access to the contexts of its clients. The
TN can then easily map the contexts to the actual entities, thus profiling its clients.
While TNs are trusted to a certain extent, their knowledge needs to be limited to
what is required for their particular task, i.e., mapping VIDs to actual clients. This
eliminates a source of potential abuse in the system.

While this set of matching VIDs is necessary, it also adds to the size of the explicit
multi-unicast header. The number of VIDs is limited by the amount of clients with
a matching context, though, and how often a client actually changes its VID. Also,
it corresponds directly to the selectivity of the message constraints such as the
size of the target location or the time constraint. If the amount of VIDs becomes
problematic for the size of a historical message, a Contextcast system can always
impose reasonable limits on these aspects. E.g., a temporal message may only
address a certain maximum area, its temporal constraint may not specify more than
a certain period of time, or clients may not change VIDs at a rate above a given limit.
This way, a temporal Contextcast message matches fewer VIDs, which in turn helps
to maintain a manageable header size for the explicit multi-unicast.

Storage Space for Context Archival

In the approach shown, the ContextNodes need to archive the historical contexts
of their clients locally. The actual storage requirements depend on the number
of clients and the update rate of contexts. We assume that a co-located database
is used for the purpose of context storage. Such a database is easily capable of
50,000 inserts of client contexts (i.e., newly registered or changed client contexts)
per day; most commercial database systems should be able to handle many more.
Such a number of inserts should be sufficient even for popular locations with many
transient visitors. With an average size of 2 KB per insert, which is a rather large
estimate, this amounts to 100 MB of context data every day. This is well within reach

180

6.4 Evaluation

of today’s storage and database technology. Thus, the system should easily scale to,
e.g., 10 000 clients with an average of 5 updates per day in a single access network.

If desired, an operator of a Contextcast system can also limit the availability
of historical context information to a certain point in the past, e.g., only the last
three years. All older contexts could then be removed from the local database,
thus limiting the amount of stored data. With the estimate above, this brings the
storage requirement down to 3× 365 days× 100 MB/day = 109 500 MB ≈ 106.93 GB.
Even with replicated storage, this is well possible with today’s storage technology.
Considering these numbers, it is even possible to maintain part of this information
in main memory for faster access; even though this may not be necessary since delay
is of relatively little concern when addressing past client contexts.

In addition to the storage for past client contexts, the Trusted Nodes must also
maintain the mapping of VIDs to actual clients. Because of the simplicity of the
stored information, the space requirements for TNs is negligible, though. Addition-
ally, if the system limits the storage of old client contexts, this also places a limit
on the amount of storage required for storing old VID mappings. Beyond that, if
this proves too much data still, the TNs can limit the rate of new VID registrations.
E.g., they could offer a basic service with only a certain number of VID registrations
during a given time and offer services with higher rates for those customers with
increased privacy requirements.

6.4.2 Future Messages

The reactive forwarding of future messages we presented in Section 6.3.3 reduces
network load when no client in an access network ever registers a matching context.
At the same time, it requires that nodes in the network store copies of messages for
potential future recipients. In addition, because messages are only forwarded after a
matching recipient is registered, it also increases the message delay. Thus, in the
following sections, we provide an analysis of these questions:

1. How does the reactive forwarding affect network load?

2. What are the storage requirements for the reactive forwarding of future mes-
sages?

3. What is the effect of reactive forwarding on the delay between registering a
context and receiving a future message?

Message Load

Obviously, a reactive forwarding minimizes the amount of false positives. The actual
number of saved messages depends on (1) the actual addressing of messages, (2) the

181

Chapter 6 Temporal Contextcast

client contexts in the system, and (3) the network topology, i.e., how many false
positives a system would have forwarded without it.

Let M be a future Contextcast message; let Ccand = {C1, . . . , Ck} be the set of all
contexts that are registered in a single access network inside of M’s target location
in the time frame that matches M’s temporal constraint; and finally, let A denote
the event ∀C ∈ Ccand : C 6@ M.

Thus, let P(A) = p f denote the probability of A, i.e., that none of a set of candidate
contexts matched the contexts matched the constraints of M. Consequently, P(Ā) =
1− p f is the probability that there is at least one matching recipient in the candidate
set Ccand. This in turn requires that M is forwarded to this access network.

In a system with contexts that have uniformly distributed locations, we can deduce
from this that a given message needs to be forwarded only to a fraction 1− p f of the
access networks intersecting the addressed area to be delivered to a client. Compared
to the simpler approach, which forwards the message to every ContextNode whose
service area intersects the target location, storing messages close to the source
ContextNode avoids forwarding the message to p f of the access networks.

How much this actually reduces network load depends on the network topology
and the resulting distribution tree. In the worst case this could nullify any saving
from the reactive forwarding (e.g., if the topology were just a linear sequence of
routers), in reality we expect the topology to be rather tree-like and thus more
favorable for our approach.

Also, as we argued in Chapter 4, we expect a certain clustering of similar clients at
geographic locations. Thus, once a context matching a certain message is registered
at a ContextNode and the message forwarded to this ContextNode, it is then already
stored locally for all matching contexts that register at the same ContextNode at
a later time. Additionally, it may also be stored at close branching points, thus
reducing the necessary message load if a matching context registers at a nearby
ContextNode.

Storage Space on ContextRouters

The reactive forwarding of future messages increases the storage requirement for
individual nodes on the path between sender and ContextNodes in the target
location.

However, the approach does not lead to higher storage requirements for the
system as a whole; in fact, the overall storage requirements are the same or lower:
An inner node in the distribution tree stores a message if and only if (1) there is at
least one ContextNode with potentially matching future contexts within one of its
subtrees, and (2) it has not forwarded the message towards this ContextNode, yet.

182

6.4 Evaluation

Thus, for each ContextNode in a distribution tree that stores a copy for the
reactive forwarding at least one ContextNode does not need to store this message.
The approach saves more storage space if it stores a message at an inner node for
multiple subtrees (and therefore leaves) with potentially matching future contexts.

Again, the approach particularly benefits from the locality in our Contextcast
overlay network coupled with local similarity of clients: When two or more Context-
Nodes’ service areas intersect the target location of a future Contextcast message, a
message is forwarded to an access network once a matching context is registered
there. At the same time, the message is stored at a nearby node along the path
matching clients in neighboring service areas.

In absolute numbers, the storage requirements for the reactive routing depends
only on the messages. As we discussed in Chapter 2, the Contextcast network of
overlay routers consists of server-type computer hardware until appropriate support
may be provided by common IP router vendors. A ContextRouter with current
technology therefore may well have access to 100 GB of persistent storage space.
With average message sizes of 100 KB, each router can store 1 000 000 messages
at any time. This is a conservative estimate, as most payloads will likely be less.
Additionally, messages can always reference additional content to be loaded on
demand for particularly bandwidth-intensive applications; this also benefits clients
that are only interested in some messages of a particular type, not all of them.

The majority of temporal predicates limits the lifetime of messages, as there is
a definitive point after which no context can match the temporal constraint (see
Table 6.2). However, depending on the actual constraint, this can still be arbitrarily
far in the future. An operator of a Contextcast system can and should additionally
impose a maximum message lifetime to limit the required storage capacity for future
messages. If the message lifetime is limited to a maximum of 60 days, the storage
capacity and message size estimates equate to more than 5500 new future messages
per day that each ContextRouter can store. This maximum lifetime is rather long,
considering that the content of most messages is outdated long before 60 days have
passed.

If a ContextRouter runs out of storage space at any time, it can forward messages
towards the leaves in the distribution tree. Routers further down then become
responsible to store the messages for future recipients. This process can be repeated
until a message reaches a router that can still store new messages. If there is none, it
eventually reaches an access network, where additional storage space is available
because of the need to store historical user contexts.

If a ContextRouter forwards messages for this reason without a known recipient,
it should prefer to forward newer messages. The rationale is that if an older message
didn’t find a recipient until such a time, the probability is higher that it will not find
one in its remaining lifetime. Thus forwarding it at this time would likely lead to

183

Chapter 6 Temporal Contextcast

an increase in false positive load. Obviously, one can imagine other, more complex
ways to select messages in such a case, such as statistics on context properties to
estimate the probability of a given message finding a matching recipient in the
future. However, this is a topic for future research.

Message Delay

Compared to a proactive approach that disseminates future messages ahead of time,
our reactive approach suffers an increased message delay for the first matching
recipient in an access network. This delay depends on the path between the message
source and the recipient. At most, it is the round-trip time between message source
and recipient: First, the newly registered context is forwarded throughout the
network until it reaches a ContextRouter where the message is stored for future
recipients. Second, the message is then forwarded to the matching recipient; this step
takes advantage of the tag with matching VIDs to speed up the forwarding towards
already matched recipients. Of course, this may be shorter if the message has
been partially disseminated before and a copy is stored on one of the intermediate
ContextRouters.

In general, we consider the reactive forwarding delay negligible since (1) it only
occurs for the first matching recipient in an access network, and (2) it is typically
much smaller than the delay between sending a future message and the registration
of a matching recipient. In theory, it might happen that a recipient disconnects
again before a reactively forwarded future message is delivered. In practice, such
extremely short connection spans are highly unlikely, though. They would affect the
system negatively in many other areas as well.

6.5 Related Work

The systems that we discussed in Section 2.3 largely neglect the issue of time. Most
of the systems provide only implicit temporal support in their semantics.

Multicast approaches, both infrastructure-based, such as [BFC93, DEF+96], and
application layer approaches, such as [CRSZ02, Cha03], provide no support for
temporal relations. Messages are sent to those recipients that had joined a group
at the time a message is sent to this group. It is, however, not possible to restrict
messages to a certain time period, e.g., to all clients that had already joined 5 min
ago. Additionally, it is usually required that the join message has been propagated to
the sender of a message. This is due to the same reasons we discussed in section 3.3.2
for a distributed Contextcast system: Intermediate routers require this information
to forward messages accordingly towards the members of a group.

184

6.5 Related Work

Similarly, geographical addressing and routing approaches, such as [Nav01, Rot03,
Dür10, Heu05, KLS07], rely only on the time a message is sent for its delivery: a
message is delivered to those recipients that are within the target area at the time the
message reaches an access network. Due to the delay when forwarding a message,
this is usually some time after the message was sent. It is, however, not possible
to restrict recipients temporally, i.e., only those that are in the target area during a
certain time period. However, due to the nodes’ assignment of service areas, these
systems do not require a client’s information to be propagated before a message can
be disseminated.

The same applies to Pub/sub systems in general. Almost all such systems
are based on an implicit “future” semantics. Subscriptions, either topic-based
such as [TIB08], type-based such as [EGD01, PB02, Pie04], or content-based such
as [SA97, Car98, CRW00], implicitly subscribe to events that happen after the
subscription is issued, i.e., in the future. (As before, delivery in a distributed
Pub/sub system also requires that subscriptions are propagated to the sources
before brokers can forward matching events.) Almost no Pub/sub system allows
temporal restrictions in subscriptions, other than the implicit “future” semantics
mentioned before.

PADRES, introduced in [FJLM05], is a Pub/sub system, though, that supports
clients to also retrieve notifications of past events [LCH+07]. The authors achieve
this by storing past events in databases and allowing subscriptions to specify
temporal predicates. Similarly to what we present in this chapter, this allows
clients to subscribe to historical events, future events, and hybrid events, which
are a combination of historical and future events. In their approach, the databases
themselves are merely subscribers, issuing subscriptions for the events they want
to archive. This allows the system to store a subset of past events on databases
and partition the event space among databases flexibly. The broker system handles
subscriptions, either with or without temporal constraints, in the usual fashion,
routing them towards the senders established by advertisements. This way, brokers
can update their notification forwarding tables with the subscription or, in the case
of a subscription to historical events, one or more databases with matching events
can return the results of the query.

This design is similar to our approach in Section 6.3.2. However, due to the
differences between Contextcast and Pub/sub, Contextcast needs to store historical
contexts, not messages, which are the equivalent of events in Pub/sub. This, together
with the need to deliver messages to historical clients, poses a privacy challenge
that is not present in a Pub/sub system. In PADRES, the stored events contain
no information that clients could not have obtained by simply subscribing to and
storing them themselves.

For scalability and simplicity, the temporal Contextcast approach we presented

185

Chapter 6 Temporal Contextcast

archives historical contexts spatially partitioned directly on the ContextNodes where
a client had registered its context, i.e., where the contexts had originated in the
system. When disseminating historical messages, a spatial index is used to forward
a message to the service areas with potentially matching contexts. It is possible to
extend Contextcast with distributed indexes similar to a Distributed Hash Table such
as Chord [SMLN+01], Pastry [RD01], Tapestry [ZKJ01], or CAN [RFH+01]. Such
an index can then be used if a message contains an overly large location constraint
or none at all. The routing performance of a DHT-based index is expected to be
comparable to that of the spatial index, provided the mapping of attribute values
to nodes preserves the locality of the attribute values. The maintenance of such
indexes causes additional overhead, though, to place the item on the corresponding
node for the chosen partitioning of the values. One can therefore even imagine an
adaptive approach where the system compares the spatial index and alternative
attribute indexes and establishes additional indexes if the spatial index performs
poorly due to the prevalent location constraints in the system.

While most Pub/sub systems restrict subscriptions to single events, especially in
large scale systems clients may be interested in the occurrence of a set of events.
An extension to this paradigm is Complex Event Processing (CEP), with complex or
composite events that are published whenever a certain set of events is detected [PSB03,
PSB04]. A specialized composite event language provides the means to specify the
set of interesting events and their relation. For instance, an application may be
interested in a composite event generated by a sequence of events A and B, i.e., A
occurs before B. Or a timing, i.e., event B (not) occurring within a period of time
after event A. However, due to the different goal, such composite event detection
provides only limited temporal support, suitable for their particular purpose.

The authors of [DFST11] present a system that can efficiently correlate live event
streams with archived ones. To this end, instead of computing all possible patterns,
the system computes all possible patterns on one side (e.g., the live stream) but
only the necessary pattern on the other side. However, the focus lies again on the
correlation of events with certain relations, not temporal aspects of subscriptions or
event dissemination.

The support for addressing historical and future contexts in Contextcast requires a
representation of time and temporal relations to specify matching clients temporally.
One of the most well-known and influential approaches in this area is the work
of [All83]; it goes beyond classical approaches in database management systems,
which index facts by their date, i.e., a representation of time that allows for a
temporal ordering of facts with simple operations such as comparisons on integer
timestamps [Bru72, Hen74], or systems based on before/after chains such as [Bru72],
which allow for the easy expression of relative, imprecise temporal relations but
quickly reach their limits as the amount of temporal information grows. To overcome

186

6.6 Summary

these difficulties, Allen’s system works with intervals as primitives and a system
of 13 relations to express temporal relationships, on which he builds an inference
approach for temporal knowledge.

Based on these relations, we have developed a set of temporal predicates and
incorporated in our system (see Section 6.3.1 for details). They allow Contextcast
to express imprecise temporal relations in a very natural way, thus making these
predicates easy to use for human users of our system.

6.6 Summary

In this chapter, we showed how to extend Contextcast with support for temporal
concepts. This extends the original paradigm in two useful ways beyond the original
semantics we presented in Chapter 3: First, it allows to send historic Contextcast
messages to entities that had a certain context in the past, without the need for
explicit recipient addresses or client subscriptions. Second, it enables senders to
address Contextcast messages to entities that register a given context some time
in the future. In addition to the semantic changes, we have shown algorithms
to efficiently disseminate both historic and future messages on the basis of our
Contextcast overlay network.

The delivery of historic messages requires a history of client contexts. We use
a distributed storage of historic context information in the respective access net-
works; the service area coverage serves as a geographical index over these stored
contexts. To eliminate the possibility of client profiling, the stored contexts use
Virtual Identities (VIDs) to identify the corresponding client. A number of trusted
third parties, the Trusted Nodes (TNs), are responsible for creating the VIDs and for
resolving the corresponding clients during message delivery. The historic routing
algorithm avoids duplicate VIDs and sends only a single message to each of the TNs.
To accomplish this, the FCH algorithm collects all results from the Local Context
Lookup phase, removes duplicate VIDs and addresses the message to each of the
TNs that has matching contexts registered.

Future messages can delay message forwarding until a matching context is reg-
istered in the network. To this end, ContextRouters determine the downstream
routers in the dissemination tree according to the target location. They can then
store messages for as long as there is no matching recipient known from one of its
subtrees. This ensures that messages are not forwarded when no matching context
is ever registered.

In the evaluation of these concepts we found that the collection of local results
in the FCH algorithm reduces the overall network load by between 88 % and 99 %
compared to the SH algorithm; compared to the PCH<n> algorithms, which do

187

Chapter 6 Temporal Contextcast

not fully collect the local results, it can still save between 74 % and 98 % of overall
network load. This is due to the FCH algorithm’s ability to eliminate both duplicate
VIDs and TNs before the VID Resolution phase. The storing of future messages
at nodes close to the sender minimizes the amount of unnecessarily forwarded
messages if no matching context is ever registered. It causes, however, a slightly
increased delay when the first matching clients registers in an access network. The
approach does not require additional storage in the overlay network, though: for
every ContextRouter that stores a message, there is at least one access network
where potential matching recipients may register in the future, which does not need
to store the message for these potential recipients at that time.

188

Chapter 7

Conclusion
Ceterum censeo Carthaginem esse
delendam

(Cato Censorius)

In this chapter, we provide an overview of the results of this thesis and an outlook
on possible research directions in this field.

7.1 Summary

The continuously increasing power of mobile devices along with more and more
sensors to capture a client’s context enables an ever increasing number of context-
aware applications and services. One such service, which can be used as a foundation
for other context-aware services and applications, is a context-aware communication
mechanism or Contextcast. It facilitates senders to disseminate messages to clients
with a specified context.

We presented and classified related approaches to efficiently disseminate messages
to a set of recipients and showed their respective shortcomings for their use in con-
textual message dissemination. Based on these results, we developed the Contextcast
system and its individual parts: First, client contexts, which represent a client’s
current context in terms of a set of context attributes. Second, messages, which
specify the set of recipients using constraints on context attributes and also contain
a payload with application specific data. Third, the semantics that matches client
contexts to the addressing of contextual messages. And fourth, a reference dissemi-
nation algorithm, which uses client context information for a directed dissemination
of messages towards recipients that match the addressing.

One drawback of the reference dissemination algorithm, though, is its requirement
for complete and up-to-date context information on all the ContextRouters. In a
global system with many clients, this requirement causes the propagation of a

189

Chapter 7 Conclusion

large number of context updates, thus severely limiting the system’s scalability.
To increase the system scalability while preserving Contextcast’s semantics, we
developed two improved routing mechanisms which reduce the amount of context
information and context updates.

The first advanced routing scheme uses coarser context information for routing.
For the clients’ location, such a coarser representation is readily available via the
ContextNode’s service area coverage. It is more challenging to find a coarse rep-
resentation for other context attributes, though. To overcome this challenge, we
proposed a scheme to derive a coarse representation automatically from the similar-
ity of client contexts. To this end, ContextRouters can collect similar contexts into
a single, aggregated one. Obviously, the effectiveness of routing with aggregated
context information depends on the similarity of currently registered clients. If there
are many similar contexts, they can easily be replaced by a single aggregated context.
However, if all contexts are rather distinct, more contexts need to be propagated
to the routers separately, thus lowering the benefit over the reference algorithm
from Chapter 3. In the extreme, all pairwise contexts are sufficiently different so
no aggregation occurs. In this case, the aggregated routing scheme is practically
identical to the reference algorithm, which propagates each context individually.

The trade-off when using aggregated context information for directed forwarding,
however, is that ContextRouters need to forward a message if there is an aggregation
that contains a potentially matching context; some of these messages might not
reach a matching recipient in the end, thus becoming a false positive. Despite this,
using aggregated context information lowers the overall system load, i.e., updates
and messages, by between 18 % and 25 %, in some scenarios up to almost 30 %,
compared to the reference dissemination; this improvement was achieved even
though there was no pronounced similarity of client contexts.

The second advanced approach is orthogonal to using aggregated context in-
formation for Contextcast routing; it adaptively propagates client contexts only
towards message sources whose messages may match that particular context. To this
end, nodes record statistics about the observed messages and contexts. From this
information, they can derive whether the propagation of a given piece of context
information is beneficial to the overall system load: The routers compare the load it
takes to keep a piece of context information up-to-date to the load that is generated
when a particular class of messages is forwarded speculatively without context
knowledge, simply on the assumption that a matching recipient exists in a direction.

Similarly to the directed forwarding with aggregated information, this speculative
forwarding ensures that the Contextcast semantics remains intact. But in the same
way, these speculatively forwarded message may not reach a matching recipient
eventually, thus increasing the overall system load again after lowering the amount
of updates. In our experiments, the adaptive propagation of contexts lowers the

190

7.2 Outlook

overall system load by more than 40 %; this is largely the result of a strong decrease
in update load with a moderate increase in message load due to false positives.

In addition to the basic semantics we presented in Chapter 3, we also extended
Contextcast to allow for a temporal addressing of recipients. This allows us to
overcome the implicit “right now” semantics, which would disseminate a message
only to those clients that are connected to the system at the time the message is sent
and whose context had already been propagated to the message source. A newly
introduced time attribute allows senders to add a temporal constraint to messages,
which recipients must also match for a message to be delivered to them. A set of
corresponding temporal predicates provides clients and application developers with
a very intuitive way of specifying the temporal constraint.

Besides the required semantic modification, we also presented optimized routing
algorithms for such temporal messages. historical message routing, i.e., messages
addressing historical contexts, focuses on the privacy of clients and an efficient
lookup of recipients despite the overhead necessary to protect the clients’ privacy. To
this end, routers collect the matching clients (or rather, their Virtual Identities (VIDs))
and eliminate duplicate VIDs and Trusted Nodes. Our experiments showed that
this is able to reduce the network load by between 88 % and 99 %, compared to a
simple version that does not remove such duplicates. Future message routing, in
contrast, does not require any particular privacy consideration since messages can
be delivered directly once a client connects in the future and their context matches a
message. However, to prevent the system from forwarding messages that no context
ever matches in the future, we employ a reactive forwarding system, where routers
store copies of the message for potentially matching recipients later on. We analyzed
this approach and showed that it does not increase the required storage capacity
and merely moves the stored messages from the ContextNodes in the target location
to nodes in the overlay. This obviously reduces the network load if no matching
context registers in an access network during a messages time constraint.

In conclusion, the presented Contextcast semantics and the corresponding routing
algorithms provide the basis of a contextual communication mechanism. It enables
an efficient and flexible message dissemination scheme, which can be incorporated
in large-scale context-aware systems such as Nexus [GBH+05, REF+06, LCG+09].

7.2 Outlook

There are several possible paths to extend the work presented in this thesis in future
research.

191

Chapter 7 Conclusion

Self-tuning Routing Algorithms

The presented routing algorithms based on coarse context information and adaptive
propagation of information are already designed to adapt to the observed con-
texts and messages: First, our aggregation of client contexts derives the coarser,
aggregated contexts from the observed singleton contexts. Second, the adaptive
propagation of context information relies on statistics of message addressing and
context updates to determine what context information benefits overall system load
in a directed forwarding.

In both approaches, an administrator can influence the algorithm by adjusting
parameters. The similarity threshold Sth influences how coarse or fine the routers
aggregate contexts. Similarly, the propagation and invalidation threshold, Bth,P and
Bth,I, respectively, determine by how much a composite composite must lower or
increase the system load before it is propagated or invalidated, respectively.

An automated adjustment of these parameters would allow the system to au-
tonomously react to changes in message and context update rates: With low message
and high update rates, system load is dominated by updates. Message load, in
contrast, is low, thus also false positives have little effect. In this case, lowering
the similarity threshold decreases the update load by propagating coarser contexts;
similarly, a higher propagation threshold causes routers to propagate fewer com-
posite contexts, which need to be kept up-to-date. At the same time, these changes
increase the amount of false positives slightly, due to the coarser context information
or increased speculative forwarding. This is of little consequence for low message
rates, though. In the opposite case, for high message and low update rates, a higher
similarity threshold or a lower propagation threshold provides routers with better
information for a directed forwarding. This reduces the amount of false positives
and speculative forwarding. The required update load due to the finer and further
propagated context information is largely irrelevant for low update rates.

(Network) Distance-aware Context Information

In its current form, the proposed context aggregation is unaware of the distance be-
tween message sources and clients. Thus, client contexts are propagated throughout
the network, independent of the distance from the node where they are registered.
In practice, this causes a high update load far from a context’s origin, with little
benefit to the directed forwarding. A message originating on another continent,
for instance, could be forwarded speculatively until it is closer to the target access
networks. The dissemination tree in such a case usually starts rather linear and
branches close to the destination, i.e., somewhere on the destination continent. The
load caused by speculatively forwarding a message closer to the target nodes is

192

7.2 Outlook

small compared to the load caused by keeping a large number of client contexts
up-to-date throughout the network.

We can exploit this in a couple of ways. First, the network distance of contexts from
their source can be incorporated in the aggregation process. Thus, contexts that have
been propagated farther into the network get aggregated more aggressively, leading
to coarser context information farther away from the context origin. Second, the
adaptive propagation of client contexts already incorporates a similar idea implicitly.
Routers far from the actual destination access networks hardly ever regard a message
as false positive, as long as there is only a single matching recipient for it in the end.
Thus, they establish fewer composite contexts for a directed forwarding farther from
the destination.

The routing could be improved further, however, by introducing a hierarchical
network design for Contextcast. Then, routers can limit the precise propagation of
contexts to smaller domains (towns, states, or maybe countries). On a larger scale
(countries and continents), they can maintain a few indexes of highly selective or
often used attributes, such as location. These are then used to forward a message
closer to far away destination, where more precise routing information is available.

Negative Comparisons with Partial Information

When using incomplete information for forwarding, routers must assume a matching
recipient to avoid false negatives. To overcome this limitation, we introduced the
concept of composite contexts, which contain complete knowledge for a given set of
attributes. This complete knowledge can then be used to deduce the absence of a
matching value for some attributes.

A different approach would be to allow a new kind of routing information, which
provides nodes with the knowledge that a particular value or combination does not
exist somewhere. A prime example for this is the location attribute: if routers have
the information of what locations can be reached over a link, they can test the location
constraint, directly pruning all branches which have no overlap with the destination
location. The concept can be applied to any highly selective attribute, though. If a
router continuously receives messages addressed to people of age 61, for which it
has no knowledge of matching recipients, it might propagate the information that
“there are no recipients of age 61 reachable via this link”. Keeping such a piece of
information up-to-date causes less load than propagating complete knowledge of
all contexts that contain the age attribute.

193

Chapter 7 Conclusion

Aggregation of Historical Contexts

In its proposed form, the delivery of historical Contextcast messages requires a
complete history of client contexts. While Virtual Identities (VIDs) protect clients’
privacy, the complete history raises the complexity of the management and the local
lookup. We have already proposed to limit the availability of historical context
information for storage space reasons.

An alternative solution would be the adaptation of the aggregation concept, which
was developed for current routing information, to historical context information.
This would allow ContextNodes to aggregate older context information to lower the
amount of stored data and improve the lookup of matching contexts. Obviously, this
introduces a certain amount of false positives due to the uncertainty that results from
the aggregation. This approach, however, allows historical Contextcast messages
without imposing a limit for the age of contexts that can be addressed. And since
messages that address very old contexts are usually rather rare, the additional false
positive are mostly negligible.

194

List of Figures

1.1 Contextcast messages in downtown Manhattan 14
1.2 The Nexus architecture [LCG+09] . 17

2.1 Schematic overview of the Contextcast system 48

3.1 Context propagation and message forwarding in Contextcast 66

4.1 Evaluating location constraints with approximate client locations 76
4.2 Value similarity for a quantitative interval attribute age 90
4.3 Update load against number of clients 99
4.4 Message load against number of clients 100
4.5 System load for DBn and SAA approach 101
4.6 Effect of Sth in the update-dominated scenario 106
4.7 Effect of Sth in the balanced scenario . 106
4.8 Effect of Sth in the message-dominated scenario 107
4.9 Degeneration of aggregations over time 108

5.1 Routing table entries . 116
5.2 Forwarding with incomplete information about client contexts 119
5.3 System load for various values of the propagation threshold Bth,P . . . 134
5.4 System load for update rate ru = 5 and various message rates rm . . . 135
5.5 Stabilization for different values of β . 137
5.6 Stabilization for different window lengths tw 138

6.1 Validity periods of three contexts C1, C2, and C3 over time 144
6.2 Evolution of a sample context C over time 147
6.3 A historical message M’s distribution tree 161
6.4 Reactive forwarding of future messages 169
6.5 Average number of ContextNodes handling Context Lookup for cer-

tain target location sizes . 175
6.6 Consolidating message load (without VID resolution) 177
6.7 Overall historical message load (including consolidating and VID

resolution) . 178

195

List of Tables

2.1 Classification of Related Work . 47

3.1 Example of a context C . 54
3.2 Example of a message M . 54

4.1 Example: Value similarity of pairs of identical contexts 91

5.1 Summary of simulation parameters . 132

6.1 Temporal predicates and their evaluation by Contextcast 151
6.2 Expiration conditions for temporal predicates 170

197

List of Algorithms

3.1 Client Context Propagation . 63
3.2 Message Forwarding . 64
4.1 Client Context Propagation with Coarse Location 75
4.2 Pairwise Context Aggregation . 82
4.3 Context Addition . 93
4.4 Context Removal . 95
4.5 Re-Aggregation . 96
5.1 Composite Context Creation . 121
5.2 Partial Context Creation . 121
5.3 Composite Context Propagation . 128
5.4 Message Forwarding with Composite Contexts 129
5.5 Composite Context Invalidation . 130
6.1 Context Lookup . 157
6.2 VID Resolution . 158
6.3 Historical Message Delivery . 159
6.4 Optimized Context Lookup . 161
6.5 Multicast VID Resolution . 163
6.6 Explicit Multi-unicast Forwarding . 163
6.7 Future Message Forwarding and Storing 168
6.8 Reactive Forwarding of Future Messages 168

199

List of Abbreviations

AO Active Object

ALM Application Layer Multicast / Application Level Multicast

API Application Programming Interface

AWM Augmented World Model

CAN Content Addressable Network

CEP Complex Event Processing

CP Context Provider

DB Distance-based (Reporting)

DBR Distance-based Reporting

DFG Deutsche Forschungsgemeinschaft

DHT Distributed Hash Table

DNS Domain Name System

DR Dead Reckoning

DVMRP Distance Vector Multicast Routing Protocol

FCH Fully Consolidating Historical

FN Federation Node

FQDN Fully Qualified Domain Name

GiST Generalized Search Tree

GPS Global Positioning System

HSDPA High-Speed Downlink Packet Access

201

List of Abbreviations

ID identifier

IEEE Institute of Electrical and Electronics Engineers

IP Internet Protocol

IPv4 Internet Protocol Version 4

IPv6 Internet Protocol Version 6

ISP Internet Service Provider

JEDI Java Event-based Distributed Infrastructure

LAN Local Area Network

LBS Location-based Service

LTE Long Term Evolution

LSI Location Server Infrastructure

MOD Moving Objects Database

MWS Middleware Service

NPO Nonprofit Organization

NTP Network Time Protocol

OSPF Open Shortest Path First

P2P Peer-to-Peer

PCA Pairwise Context Aggregation

PCH Partially Consolidating Historical

PIM-SM Protocol Independent Multicast Sparse Mode

PST Parallel Search Tree

Pub/sub Publish/subscribe

RIP Routing Information Protocol

SDC Source Description Class

202

SAA Service Area Approximation

SFB Sonderforschungsbereich

SFF Siena Fast Forwarding

SH Simple Historical

SMA Simple Moving Average

SPCF Shortest Path Context Forwarding

TN Trusted Node

UMTS Universal Mobile Telecommunications System

UTC Coordinated Universal Time

VID Virtual Identity

WGS84 World Geodetic System 84

WLAN Wireless Local Area Network

203

Bibliography

[AEM99] Marcel Altherr, Martin Erzberger, and Silvano Maffeis, iBus - A Software
Bus Middleware for the Java Platform, Proceedings of the Workshop on
Reliable Middleware Systems of IEEE SRDS’99, 1999, pp. 43–53.

[AHWY03] Charu C. Aggarwal, Jiawei Han, Jianyong Wang, and Philip S. Yu, A
Framework for Clustering Evolving Data Streams, Proceedings of the 29th
international conference on Very large data bases, VLDB’03, VLDB
Endowment, 2003, pp. 81–92.

[All83] James F. Allen, Maintaining Knowledge about Temporal Intervals, Commu-
nications of the ACM 26 (1983), no. 11, 832–843.

[ASS+99] Marcos K. Aguilera, Robert E. Strom, Daniel C. Sturman, Mark Astley,
and Tushar D. Chandra, Matching Events in a Content-based Subscription
System, Proceedings of the eighteenth annual ACM symposium on
Principles of distributed computing, PODC ’99, ACM, 1999, pp. 53–61.

[BBK02] Suman Banerjee, Bobby Bhattacharjee, and Christopher Kommareddy,
Scalable Application Layer Multicast, Proceedings of the 2002 confer-
ence on Applications, technologies, architectures, and protocols for
computer communications, SIGCOMM ’02, ACM, 2002, pp. 205–217.

[BBMS98] John Bates, Jean Bacon, Ken Moody, and Mark Spiteri, Using Events
for the Scalable Federation of Heterogeneous Components, Proceedings of
the 8th ACM SIGOPS European workshop on Support for composing
distributed applications, EW 8, ACM, 1998, pp. 58–65.

[BCM+99] Guruduth Banavar, Tushar Chandra, Bodhi Mukherjee, Jay Nagarajarao,
Robert E. Strom, and Daniel C. Sturman, An Efficient Multicast Protocol
for Content-Based Publish-Subscribe Systems, Proceedings of the 19th
IEEE International Conference on Distributed Computing Systems,
ICDCS’99, IEEE Computer Society, 1999, pp. 262–272.

[BCQ+07] Cristiana Bolchini, Carlo A. Curino, Elisa Quintarelli, Fabio A. Schreiber,
and Letizia Tanca, A Data-oriented Survey of Context Models, ACM SIG-
MOD Record 36 (2007), no. 4, 19–26.

205

Bibliography

[BDR07] Matthias Baldauf, Schahram Dustdar, and Florian Rosenberg, A survey
on context-aware systems, International Journal of Ad Hoc and Ubiqui-
tous Computing 2 (2007), no. 4, 263–277.

[BFC93] Tony Ballardie, Paul Francis, and Jon Crowcroft, Core Based Trees (CBT),
ACM SIGCOMM Computer Communication Review 23 (1993), no. 4,
85–95.

[BFI+07] Rick Boivie, Nancy Feldman, Yuji Imai, Wim Livens, and Dirk Ooms,
Explicit Multicast (Xcast) Concepts and Options, RFC 5058 (Experimental),
November 2007.

[BFM00] Rick Boivie, Nancy Feldman, and Christopher Metz, Small Group Mul-
ticast: A New Solution for Multicasting on the Internet, IEEE Internet
Computing 4 (2000), no. 3, 75–79.

[BH67] Geoffrey H. Ball and David J. Hall, A clustering technique for summarizing
multivariate data, Behaviorial Sciences 12 (1967), no. 2, 153–155.

[Blo70] Burton H. Bloom, Space/Time Trade-offs in Hash Coding with Allowable
Errors, Communications of the ACM 13 (1970), no. 7, 422–426.

[Bru72] Bertram C. Bruce, A Model for Temporal References and Its Application in a
Question Answering Program, Artificial Intelligence 3 (1972), 1–25.

[Car98] Antonio Carzaniga, Architectures for an Event Notification Service Scalable
to Wide-area Networks, Ph.D. thesis, Politecnico di Milano, December
1998.

[CD85] David R. Cheriton and Stephen E. Deering, Host Groups: A Multicast
Extension for Datagram Internetworks, ACM SIGCOMM Computer Com-
munication Review 15 (1985), no. 4, 172–179.

[CdC05] Gianpaolo Cugola and Jose Enrique Munoz de Cote, On Introducing
Location Awareness in Publish-Subscribe Middleware, 25th IEEE Inter-
national Conference on Distributed Computing Systems Workshops,
ICDCSW’05, IEEE Computer Society, 2005, pp. 377–382.

[Cha03] Yatin Chawathe, Scattercast: an adaptable broadcast distribution framework,
Multimedia Systems 9 (2003), no. 1, 104–118.

[ČJP05] Alminas Čivilis, Christian S. Jensen, and Stardas Pakalnis, Techniques
for Efficient Road-Network-Based Tracking of Moving Objects, IEEE Transac-
tions on Knowledge and Data Engineering 17 (2005), no. 5, 698–712.

206

Bibliography

[CM08] Gianpaolo Cugola and Matteo Migliavacca, On Context-Aware Publish-
Subscribe, Proceedings of the International Conference on Distributed
Event-based Systems, DEBS ’08, 2008, (Fast abstract), pp. 1–2.

[CMM09] Gianpaolo Cugola, Alessandro Margara, and Matteo Migliavacca,
Context-Aware Publish-Subscribe: Model, Implementation, and Evaluation,
IEEE Symposium on Computers and Communications, ISCC 2009,
IEEE, July 2009, pp. 875–881.

[CNF01] Gianpaolo Cugola, Elisabetta Di Nitto, and Alfonso Fuggetta, The JEDI
Event-Based Infrastructure and Its Application to the Development of the
OPSS WFMS, IEEE Transactions on Software Engineering 27 (2001),
no. 9, 827–850.

[CRSZ02] Yang-hua Chu, Sanjay G. Rao, Srinivasan Seshan, and Hui Zhang,
A Case for End System Multicast, IEEE Journal on Selected Areas in
Communications 20 (2002), no. 8, 1456–1471.

[CRW99] Antonio Carzaniga, David S. Rosenblum, and Alexander L. Wolf, Inter-
faces and Algorithms for a Wide-Area Event Notification Service, Technical
Report CU-CS-888-99, Department of Computer Science, University of
Colorado, October 1999, revised May 2000.

[CRW00] , Content-Based Addressing and Routing: A General Model and its
Application, Technical Report CU-CS-902-00, Department of Computer
Science, University of Colorado, Boulder, CO 80309, USA, January
2000.

[CRW01] , Design and Evaluation of a Wide-Area Event Notification Service,
ACM Transactions on Computer Systems (TOCS) 19 (2001), no. 3, 332–
383.

[CW03] Antonio Carzaniga and Alexander L. Wolf, Forwarding in a Content-
Based Network, Proceedings of the 2003 Conference on Applications,
Technologies, Architectures, and Protocols for Computer Communica-
tions, SIGCOMM ’03, ACM, 2003, pp. 163–174.

[DA99] Anind K. Dey and Gregory D. Abowd, Towards a Better Understanding
of Context and Context-Awareness, Technical Report GIT-GVU-99-22,
Graphics, Visualization and Usability Center and College of Computing,
Georgia Institute of Technology, 1999.

207

Bibliography

[DBR05] Frank Dürr, Christian Becker, and Kurt Rothermel, Efficient Forwarding
of Symbolically Addressed Geocast Messages, Proceedings of the 14th
International Conference on Computer Communications and Networks,
ICCCN’05, IEEE, October 2005, pp. 77–83.

[DBR06] , An Overlay Network for Forwarding Symbolically Addressed Geo-
cast Messages, Proceedings of the 15th International Conference on
Computer Communications and Networks, ICCCN’06, IEEE, October
2006, pp. 427–434.

[DC90] Stephen E. Deering and David R. Cheriton, Multicast Routing in Data-
gram Internetworks and Extended LANs, ACM Transactions on Computer
Systems (TOCS) 8 (1990), no. 2, 85–110.

[DEF+96] Stephen Deering, Deborah L. Estrin, Dino Farinacci, Van Jacobson,
Ching-Gung Liu, and Liming Wei, The PIM Architecture for Wide-Area
Multicast Routing, IEEE/ACM Transactions on Networking (TON) 4
(1996), no. 2, 153–162.

[DFST11] Nihal Dindar, Peter M. Fischer, Merve Soner, and Nesime Tatbul, Ef-
ficiently Correlating Complex Events over Live and Archived Data Streams,
Proceedings of the 5th ACM International Conference on Distributed
Event-based Systems, DEBS ’11, ACM, 2011, pp. 243–254.

[DPG+08] Frank Dürr, Jonas Palauro, Lars Geiger, Ralph Lange, and Kurt Rother-
mel, Ein kontextbezogener Instant-Messaging-Dienst auf Basis des XMPP-
Protokolls, 5. GI/ITG KuVS Fachgespräch Ortsbezogene Anwendun-
gen und Dienste, Sonderdruck Schriftenreihe der Georg-Simon-Ohm-
Hochschule Nürnberg, vol. 42, Georg-Simon-Ohm-Hochschule Nürn-
berg, September 2008, pp. 23–28.

[DR03] Frank Dürr and Kurt Rothermel, On a Location Model for Fine-Grained
Geocast, Proceedings of the 5th International Conference on Ubiqui-
tous Computing 2003, Lecture Notes in Computer Science, vol. 2864,
Springer-Verlag Berlin Heidelberg, 2003, pp. 18–35.

[DR08] , An Adaptive Overlay Network for World-wide Geographic Messag-
ing, Proceedings of the 22nd IEEE International Conference on Ad-
vanced Information Networking and Applications, AINA 2008, IEEE,
March 2008, pp. 875–882 (Englisch).

208

Bibliography

[Dür10] Frank Dürr, Geographische Kommunikationsmechanismen auf Basis von
feingranularen räumlichen Umgebungsmodellen, Dissertation, Universität
Stuttgart, 2010.

[EFGK03] Patrick Th. Eugster, Pascal A. Felber, Rachid Guerraoui, and Anne-
Marie Kermarrec, The Many Faces of Publish/Subscribe, ACM Computing
Surveys (CSUR) 35 (2003), no. 2, 114–131.

[EGD01] Patrick Th. Eugster, Rachid Guerraoui, and Christian Heide Damm, On
Objects and Events, Proceedings of the 16th ACM SIGPLAN conference
on Object-oriented programming, systems, languages, and applications,
OOPSLA ’01, ACM, 2001, pp. 254–269.

[ESRM03] Ayman El-Sayed, Vincent Roca, and Laurent Mathy, A Survey of Pro-
posals for an Alternative Group Communication Service, IEEE Network 17
(2003), no. 1, 46–51.

[FGKZ03] Ludger Fiege, Felix C. Gärtner, Oliver Kasten, and Andreas Zeidler,
Supporting Mobility in Content-Based Publish/Subscribe Middleware, Mid-
dleware 2003, ACM/IFIP/USENIX 2003 International Middleware Con-
ference, Lecture Notes in Computer Science, vol. 2672, Springer-Verlag
Berlin Heidelberg New York, June 2003, pp. 103–122.

[Fin87] Gregory G. Finn, Routing and Addressing Problems in Large Metropolitan-
scale Internetworks, ISI Research Report ISI/RR-87-180, Information
Sciences Institute, University of Southern California, March 1987.

[FJL+01] Françoise Fabret, H. Arno Jacobsen, François Llirbat, Joăo Pereira, Ken-
neth A. Ross, and Dennis Shasha, Filtering Algorithms and Implementation
for Very Fast Publish/Subscribe Systems, ACM SIGMOD Record 30 (2001),
no. 2, 115–126.

[FJLM05] Eli Fidler, Hans-Arno Jacobsen, Guoli Li, and Serge Mankovski, The
PADRES Distributed Publish/Subscribe System, Proceedings of the 8th In-
ternational Conference on Feature Interactions in Telecommunications
and Software Systems, ICFI’05, IOS Press, 2005, pp. 12–30.

[FKP02] Alex Fabrikant, Elias Koutsoupias, and Christos H. Papadimitriou,
Heuristically Optimized Trade-Offs: A New Paradigm for Power Laws in the
Internet, Automata, Languages and Programming, Lecture Notes in
Computer Science, vol. 2380, Springer-Verlag Berlin Heidelberg, 2002,
pp. 110–122.

209

Bibliography

[FLR07] Tobias Farrell, Ralph Lange, and Kurt Rothermel, Energy-efficient Track-
ing of Mobile Objects with Early Distance-based Reporting, Proceedings of
the Fourth Annual International Conference on Mobile and Ubiquitous
Systems: Networking and Services, MobiQuitous 2007, IEEE, August
2007, pp. 1–8.

[Fra00] Paul Francis, Yoid: Extending the Internet Multicast Architecture, Unpub-
lished paper, available at http://www.aciri.org/yoid/docs/index.html
[online 2015-11-04], ACIRI, 2000.

[GBH+05] Matthias Grossmann, Martin Bauer, Nicola Hönle, Uwe-Philipp Käp-
peler, Daniela Nicklas, and Thomas Schwarz, Efficiently Managing Con-
text Information for Large-Scale Scenarios, Proceedings of the Third IEEE
International Conference on Pervasive Computing and Communica-
tions, PERCOM ’05, IEEE, 2005, pp. 331–340.

[GD92] K. C. Gowda and E. Diday, Symbolic Clustering Using a New Similarity
Measure, IEEE Transactions on Systems, Man and Cybernetics 22 (1992),
no. 2, 368–378.

[GDR09] Lars Geiger, Frank Dürr, and Kurt Rothermel, On Contextcast: A Context-
Aware Communication Mechanism, Proceedings of the IEEE International
Conference on Communications, ICC ’09, IEEE, June 2009, pp. 1–5.

[GDR10] , Aggregation of User Contexts in Context-based Communication, Pro-
ceedings of the 6th Euro-NF Conference on Next Generation Internet,
NGI 2010, IEEE, June 2010, pp. 1–8.

[GDR11] , Adaptive Routing in a Contextcast Overlay Network, IEEE 7th Inter-
national Conference on Wireless and Mobile Computing, Networking
and Communications, WiMob 2011, IEEE, October 2011, pp. 97–104.

[GMUW08] Héctor García-Molina, Jeffrey D. Ullman, and Jennifer Widom, Database
Systems: The Complete Book, 2nd ed., Prentice Hall Press, 2008.

[GR95] K. C. Gowda and T. V. Ravi, Divisive clustering of symbolic objects using
the concepts of both similarity and dissimilarity, Pattern Recognition 28
(1995), no. 8, 1277–1282.

[GSDR09] Lars Geiger, Ronald Schertle, Frank Dürr, and Kurt Rothermel, Tem-
poral Addressing for Mobile Context-Aware Communication, Proceedings
of the 6th Annual International Conference on Mobile and Ubiquitous
Systems: Computing, Networking and Services, MobiQuitous 2009,
IEEE, July 2009, pp. 1–10.

210

Bibliography

[HASG07] Mojtaba Hosseini, Dewan Tanvir Ahmed, Shervin Shirmohammadi,
and Nicolas D. Georganas, A Survey of Application-Layer Multicast Proto-
cols, IEEE Communications Surveys & Tutorials 9 (2007), no. 3, 58–74.

[Hen74] Gary G. Hendrix, Modeling simultaneous actions and continuous processes,
Artificial Intelligence 4 (1974), no. 3, 145–180.

[Heu02] Dominic Heutelbeck, Context Spaces — Self-Structuring Distributed Net-
works for Contextual Messaging and Resource Discovery, On the Move to
Meaningful Internet Systems 2002: CoopIS, DOA, and ODBASE, Lec-
ture Notes in Computer Science, vol. 2519, Springer-Verlag, November
2002, pp. 248–265.

[Heu05] , Distributed Space Partitioning Trees and their Application in Mobile
Computing, Dissertation, Fernuniversität Hagen, 2005.

[HGM04] Yongqiang Huang and Héctor García-Molina, Publish/Subscribe in a
Mobile Environment, Wireless Networks 10 (2004), no. 6, 643–652.

[HNP95] Joseph M. Hellerstein, Jeffrey F. Naughton, and Avi Pfeffer, Generalized
search trees for database systems, Proceedings of the 21th International
Conference on Very Large Data Bases, VLDB ’95, Morgan Kaufmann
Publishers Inc., June 1995, pp. 562–573.

[HP98] Z. J. Haas and M. R. Pearlman, The performance of a new routing protocol
for the reconfigurable wireless networks, Proceedings of the 1998 IEEE
International Conference on Communications, ICC ’98, IEEE, June 1998,
pp. 156–160.

[IN96] Tomasz Imielinski and Julio C. Navas, GPS-Based Addressing and Routing,
RFC 2009 (Experimental), November 1996.

[IN99] , GPS-Based Geographic Addressing, Routing, and Resource Discov-
ery, Communications of the ACM 42 (1999), no. 4, 86–92.

[Jac01] Paul Jaccard, Etude comparative de la distribution florale dans une portion
des alpes et du jura, Impr. Corbaz, 1901.

[JGJ+00] John Jannotti, David K. Gifford, Kirk L. Johnson, M. Frans Kaashoek,
and Jr. James W. O’Toole, Overcast: Reliable Multicasting with an Overlay
Network, Proceedings of the 4th conference on Symposium on Operat-
ing System Design & Implementation, OSDI’00, USENIX Association,
2000, pp. 14–14.

211

Bibliography

[JMF99] A. K. Jain, M. N. Murty, and P. J. Flynn, Data clustering: a review, ACM
Computing Surveys (CSUR) 31 (1999), no. 3, 264–323.

[KCW11] Athanasios Konstantinidis, Antonio Carzaniga, and Alexander L. Wolf,
A Content-Based Publish/Subscribe Matching Algorithm for 2D Spatial Ob-
jects, Middleware 2011, ACM/IFIP/USENIX 2011 International Mid-
dleware Conference, Lecture Notes in Computer Science, vol. 7049,
Springer-Verlag Berlin Heidelberg, December 2011, pp. 208–227.

[KE13] Alfons Kemper and André Eickler, Datenbanksysteme: Eine Einführung,
9th ed., De Gruyter Oldenbourg, 2013.

[KLS07] Aleksandra Kovačević, Nicolas Liebau, and Ralf Steinmetz, Glo-
base.KOM - A P2P Overlay for Fully Retrievable Location-based Search, 7th
IEEE International Conference on Peer-to-Peer Computing, P2P 2007,
IEEE, September 2007, pp. 87–96.

[KR05] Leonard Kaufman and Peter J. Rousseeuw, Finding Groups in Data: An
Introduction to Cluster Analysis, Wiley Series in Probability and Statistics,
Wiley-Interscience, 2005.

[Lan10] Ralph Lange, Scalable Management of Trajectories and Context Model De-
scriptions, Dissertation, Universität Stuttgart, December 2010, p. 202.

[LCG+09] Ralph Lange, Nazario Cipriani, Lars Geiger, Matthias Großmann, Har-
ald Weinschrott, Andreas Brodt, Matthias Wieland, Stamatia Rizou, and
Kurt Rothermel, Making the World Wide Space Happen: New Challenges
for the Nexus Context Platform, Proceedings of the 7th Annual IEEE In-
ternational Conference on Pervasive Computing and Communications,
PerCom ’09, IEEE Computer Society, March 2009, pp. 1–4.

[LCH+07] G. Li, A. Cheung, Sh. Hou, S. Hu, V. Muthusamy, R. Sherafat,
A. Wun, H.-A. Jacobsen, and S. Manovski, Historic Data Access in
Publish/Subscribe, Proceedings of the 2007 inaugural International Con-
ference on Distributed Event-Based Systems, DEBS ’07, ACM, 2007,
pp. 80–84.

[LDR10] Ralph Lange, Frank Dürr, and Kurt Rothermel, Indexing Source De-
scriptions based on Defined Classes, Proceedings of the 14th International
Database Engineering and Applications Symposium (Montreal, QC,
Canada), IDEAS ’10, ACM, August 2010, pp. 245–256.

212

Bibliography

[Leo98] Ulf Leonhardt, Supporting Location-Awareness in Open Distributed Sys-
tems, Ph.D. thesis, Imperial College of Science, Technology and
Medicine, University of London, May 1998.

[Leo03] Alexander Leonhardi, Architektur eines verteilten skalierbaren Lokationsdi-
enstes, Dissertation, Universität Stuttgart, June 2003.

[LR00] Alexander Leonhardi and Kurt Rothermel, A Comparison of Protocols for
Updating Location Information, Technical Report 2000/05, Department of
Computer Science, Universität Stuttgart, March 2000.

[LR01] Alexander Leonhardi and Kurt Rothermel, A Comparison of Protocols
for Updating Location Information, Cluster Computing 4 (2001), no. 4,
355–367.

[Mac67] J. MacQueen, Some methods for classification and analysis of multivariate ob-
servations, Proceedings of the 5th Berkeley Symposium on Mathematical
Statistics and Probability, 1967, pp. 281–197.

[Mal98] Gary Scott Malkin, RIP Version 2, RFC 2453 (Standard), November 1998,
Updated by RFC 4822.

[MFGB02] Gero Mühl, Ludger Fiege, Felix C. Gärtner, and Alejandro Buch-
mann, Evaluating Advanced Routing Algorithms for Content-Based Pub-
lish/Subscribe Systems, Proceedings of the 10th IEEE International Sym-
posium on Modeling, Analysis and Simulation of Computer and
Telecommunications Systems, MASCOTS 2002, IEEE, 2002, pp. 167–176.

[Min99] Nelson Minar, A Survey of the NTP Network, Unpublished paper, avail-
able at http://alumni.media.mit.edu/ nelson/research/ntp-survey99/
[online 2015-11-04], December 1999.

[MJ09] Alberto Montresor and Márk Jelasity, PeerSim: A scalable P2P simulator,
Proceedings of the IEEE 9th International Conference on Peer-to-Peer
Computing, P2P’09, IEEE, September 2009, pp. 99–100.

[MMBK10] D. Mills, J. Martin, J. Burbank, and W. Kasch, Network Time Protocol
Version 4: Protocol and Algorithms Specification, RFC 5905 (Proposed
Standard), June 2010.

[Moo65] Gordon E. Moore, Cramming more components onto integrated circuits,
Electronics 38 (1965), no. 8, 114–117.

213

Bibliography

[Moy94] John T. Moy, Multicast Routing Extensions for OSPF, Communications of
the ACM 37 (1994), no. 8, 61–66, 114.

[Moy98] , OSPF Version 2, RFC 2328 (Standard), April 1998, Updated by
RFC 5709.

[MRR80] John M. McQuillan, Ira Richer, and Eric C. Rosen, The New Routing
Algorithm for the ARPANET, IEEE Transactions on Communications 28
(1980), no. 5, 711–719.

[Müh01] Gero Mühl, Generic Constraints for Content-Based Publish/Subscribe, Coop-
erative Information Systems, Lecture Notes in Computer Science, vol.
2172, Springer-Verlag Berlin Heidelberg, September 2001, pp. 211–225.

[Müh02] , Large-Scale Content-Based Publish/Subscribe Systems, Dissertation,
TU Darmstadt, 2002.

[Nat97] National Imagery and Mapping Agency, Department of Defense World
Geodetic System 1984 – Its Definition and Relationships With Local Geodetic
Systems, NIMA Technical Report TR8350.2, Geodesy and Geophysics
Department, National Imagery and Mapping Agency, July 1997.

[Nav01] Julio Cesar Navas, Geographic routing in a datagram internetwork, Ph.D.
thesis, Department of Computer Science, Rutgers University, 2001.

[NI97] Julio C. Navas and Tomasz Imielinski, GeoCast – Geographic Addressing
and Routing, Proceedings of the 3rd annual ACM/IEEE international
conference on Mobile computing and networking, MobiCom ’97, ACM,
1997, pp. 66–76.

[OMM+02] Liadan O’Callaghan, Nina Mishra, Adam Meyerson, Sudipto Guha, and
Rajeev Motwani, Streaming-Data Algorithms For High-Quality Clustering,
Proceedings of the 18th International Conference on Data Engineering,
IEEE, March 2002, pp. 685–694.

[OPSS93] Brian Oki, Manfred Pfluegl, Alex Siegel, and Dale Skeen, The Information
Bus®–An Architecture for Extensible Distributed Systems, ACM SIGOPS
Operating Systems Review 27 (1993), no. 5, 58–68.

[ÖV11] Tamer Özsu and Patrick Valduriez, Principles of Distributed Database
Systems, Third ed., Computer science, Springer New York Dordrecht
Heidelberg London, 2011.

214

Bibliography

[PB02] Peter R. Pietzuch and Jean M. Bacon, Hermes: A Distributed Event-Based
Middleware Architecture, Proceedings of the 22nd International Con-
ference on Distributed Computing Systems Workshops, ICDCSW’02,
IEEE, 2002, pp. 611–618.

[Pie04] Peter R. Pietzuch, Hermes: A Scalable Event-Based Middleware, Ph.D.
thesis, Queens’ College, University of Cambridge, February 2004.

[Pow96] David Powell, Group communication, Communications of the ACM 39
(1996), no. 4, 50–53.

[PSB03] Peter R. Pietzuch, Brian Shand, and Jean Bacon, Framework
for Event Composition in Distributed Systems, Middleware 2003,
ACM/IFIP/USENIX 2003 International Middleware Conference, Lec-
ture Notes in Computer Science, vol. 2672, Springer-Verlag Berlin
Heidelberg New York, 2003, pp. 62–82.

[PSB04] Peter R. Pietzuch, Brian Shand, and Jean Bacon, Composite Event Detec-
tion as a Generic Middleware Extension, IEEE Network 18 (2004), no. 1,
44–55.

[PSVW01] Dimitrios Pendarakis, Sherlia Shi, Dinesh Verma, and Marcel Waldvo-
gel, ALMI: An Application Level Multicast Infrastructure, Proceedings of
the 3rd conference on USENIX Symposium on Internet Technologies
and Systems, USENIX Association, 2001, pp. 49–60.

[RBB03] Kurt Rothermel, Martin Bauer, and Christian Becker, Digitale Weltmod-
elle – Grundlage kontextbezogener Systeme, Total vernetzt – Szenarien
einer informatisierten Welt (Friedemann Mattern, ed.), Xpert.press,
Springer-Verlag Berlin Heidelberg, 2003, pp. 123–141.

[RD01] Antony Rowstron and Peter Druschel, Pastry: Scalable, decentralized
object location, and routing for large-scale peer-to-peer systems, Middleware
2001, Lecture Notes in Computer Science, vol. 2218, Springer-Verlag
Berlin Heidelberg, 2001, pp. 329–350.

[REF+06] Kurt Rothermel, Thomas Ertl, Dieter Fritsch, Paul J. Kühn, Bernhard
Mitschang, Engelbert Westkämper, Christian Becker, Dominique Dud-
kowski, Andreas Gutscher, Christian Hauser, Lamine Jendoubi, Daniela
Nicklas, Steffen Volz, and Matthias Wieland, SFB 627 – Umgebungsmod-
elle für mobile kontextbezogene Systeme, Informatik – Forschung und
Entwicklung 21 (2006), no. 1, 105–113.

215

Bibliography

[RFH+01] Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard Karp, and
Scott Shenker, A Scalable Content-Addressable Network, Proceedings of
the 2001 conference on Applications, technologies, architectures, and
protocols for computer communications, SIGCOMM ’01, ACM, 2001,
pp. 161–172.

[RHKS01] Sylvia Ratnasamy, Mark Handley, Richard Karp, and Scott Shenker,
Application-Level Multicast Using Content-Addressable Networks, Net-
worked Group Communication, Lecture Notes in Computer Science,
vol. 2233, Springer-Verlag Berlin Heidelberg, October 2001, pp. 14–29.

[Rot03] Jörg Roth, Semantic Geocast Using a Self-Organizing Infrastructure, Innova-
tive Internet Community Systems, Lecture Notes in Computer Science,
vol. 2877, Springer-Verlag Berlin Heidelberg, 2003, pp. 216–228.

[Rot05] , A Decentralized Location Service Providing Semantic Locations,
Habilitationsschrift, Fachbereich Informatik, FernUniversität Hagen,
October 2005.

[SA97] Bill Segall and David Arnold, Elvin has left the building: A pub-
lish/subscribe notification service with quenching, Proceedings of the 1997
Australian UNIX Users Group Conference, September 1997.

[SMLN+01] Ion Stoica, Robert Morris, David Liben-Nowell, David Karger, M. Frans
Kaashoek, Frank Dabek, and Hari Balakrishnan, Chord: A Scalable Peer-
to-peer Lookup Service for Internet Applications, ACM SIGCOMM Com-
puter Communication Review – Proceedings of the 2001 SIGCOMM
conference 31 (2001), no. 4, 149–160.

[SRC84] Jerome H. Saltzer, David P. Reed, and David D. Clark, End-to-End
Arguments in System Design, ACM Transactions on Computer Systems
(TOCS) 2 (1984), no. 4, 277–288 (English).

[TIB08] TIBCO, TIBCO Rendezvous, Product Datasheet, 2008.

[Tox14] Bob Toxen, The NSA and Snowden: Securing the All-seeing Eye, Commu-
nications of the ACM 57 (2014), no. 5, 44–51.

[u-b11] u-blox AG, MAX-6 u-blox 6 GPS Modules – Data Sheet, Product Datasheet,
September 2011.

[Wax88] Bernard M. Waxman, Routing of multipoint connections, IEEE Journal on
Selected Areas in Communications 6 (1988), no. 9, 1617–1622.

216

Bibliography

[WBS+05] Benjamin Weyl, Pedro Brandão, Antonio F. Gómez Skarmeta,
Rafael Marin Lopez, Parijat Mishra, Christian Hauser, and Holger
Ziemek, Protecting Privacy of Identities in Federated Operator Environ-
ments, Proceedings of the 14th IST Mobile & Wireless Communications
Summit, June 2005, pp. 1–5.

[Wer15] Marius Wernke, Privacy-aware Sharing of Location Information, Disserta-
tion, Universität Stuttgart, 2015.

[WL89] D. Jim Walmsley and Gareth J. Lewis, The Pace of Pedestrian Flows in
Cities, Environment and Behavior 21 (1989), no. 2, 123–150.

[WPD88] David Waitzman, Craig Partridge, and Stephen E. Deering, Distance
Vector Multicast Routing Protocol, RFC 1075 (Experimental), November
1988.

[WSCY99] Ouri Wolfson, A. Prasad Sistla, Sam Chamberlain, and Yelena Yesha,
Updating and Querying Databases that Track Mobile Units, Distributed and
Parallel Databases – Special issue on mobile data management and
applications 7 (1999), no. 3, 257–387.

[XWI05] Rui Xu and Donald Wunsch II, Survey of Clustering Algorithms, IEEE
Transactions on Neural Networks 16 (2005), no. 3, 645–678.

[YGM94] Tak W. Yan and Héctor García-Molina, Index Structures for Selective
Dissemination of Information Under the Boolean Model, ACM Transactions
on Database Systems 19 (1994), no. 2, 332–364.

[ZKJ01] Ben Y. Zhao, John Kubiatowicz, and Anthony D. Joseph, Tapestry: An
Infrastructure for Fault-tolerant Wide-area Location and Routing, Report No.
UCB/CSD-01-1141, Computer Science Division, University of Califor-
nia, Berkeley, April 2001.

[ZRL96] Tian Zhang, Raghu Ramakrishnan, and Miron Livny, BIRCH: An Effi-
cient Data Clustering Method for Very Large Databases, Proceedings of the
1996 ACM SIGMOD international conference on Management of data,
SIGMOD ’96, ACM, 1996, pp. 103–114.

217

Erklärung

Hiermit erkläre ich, dass ich die beigefügte Dissertation selbstständig verfasst und
keine anderen als die angegebenen Hilfsmittel genutzt habe.

Ort, Datum Unterschrift

219

	Titlepage
	Acknowledgments
	Contents
	Abstract
	Zusammenfassung
	1 Introduction
	1.1 Motivation
	1.2 Background
	1.2.1 Technological Trends
	1.2.2 Paradigmatic Trend: Context-aware Computing
	1.2.3 SFB 627: Nexus
	1.2.4 Context-aware Communication

	1.3 Focus and Contributions
	1.3.1 Focus
	1.3.2 Contributions

	1.4 Structure

	2 Foundations
	2.1 Context-based Communication: Contextcast
	2.2 Requirements for Contextcast
	2.3 Classification of Related Work
	2.3.1 Classification Criteria
	2.3.2 Related Work

	2.4 System Model
	2.4.1 ContextHost
	2.4.2 ContextNode
	2.4.3 ContextRouter
	2.4.4 Overlay Network

	3 Contextcast Semantics
	3.1 Contexts & Messages
	3.1.1 Client Contexts
	3.1.2 Contextual Messages

	3.2 Matching
	3.2.1 Operators

	3.3 Dissemination
	3.3.1 Perfect Dissemination
	3.3.2 Dissemination in a Distributed System
	3.3.3 Directed Dissemination Reference Algorithm

	4 Directed Contextcast Forwarding using Coarse Client Context Information
	4.1 Overview
	4.2 Requirements
	4.3 Contextcast Forwarding with Coarse Location Information
	4.3.1 Service Area Approximation
	4.3.2 Forwarding

	4.4 General Aggregation of Client Context Information
	4.4.1 Aggregated Context Information
	4.4.2 Pairwise Context Aggregation
	4.4.3 Aggregation Selection: Context Similarity
	4.4.4 Continuous Context Aggregation
	4.4.5 Optimized Aggregation Candidate Selection

	4.5 Evaluation
	4.5.1 Coarse Location Information
	4.5.2 General Aggregation

	4.6 Related Work
	4.7 Summary

	5 Directed Forwarding using Adaptively Propagated Client Context Information
	5.1 Overview
	5.2 Requirements
	5.3 Adaptive Propagation of Client Contexts
	5.3.1 Incomplete Context Knowledge
	5.3.2 System Load Statistics
	5.3.3 Per-link Adaptive Context Propagation

	5.4 Evaluation
	5.4.1 Setup
	5.4.2 Load Reduction: Impact Of Propagation Threshold
	5.4.3 Load Reduction: Impact Of Message & Update Rates
	5.4.4 Stabilization: Impact Of Exponential Moving Average
	5.4.5 Stabilization: Impact Of Window Length
	5.4.6 Analysis

	5.5 Related Work
	5.6 Summary

	6 Temporal Addressing in Contextcast
	6.1 Overview
	6.2 Requirements
	6.3 Temporal Contextcast
	6.3.1 Temporal Extension for Contextcast
	6.3.2 Historical Messages
	6.3.3 Future Messages
	6.3.4 Hybrid Messages

	6.4 Evaluation
	6.4.1 Historical Messages
	6.4.2 Future Messages

	6.5 Related Work
	6.6 Summary

	7 Conclusion
	7.1 Summary
	7.2 Outlook

	List of Figures
	List of Tables
	List of Algorithms
	List of Abbreviations
	Bibliography

