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Zusammenfassung

Wir betrachten die KdV-Approximation und die Whitham-Approximation für
ein räumlich periodisches Boussinesq-Modell. Wir zeigen Abschätzungen der Dif-
ferenz zwischen der KdV- beziehungsweise der Whitham-Approximation und echten
Lösungen des ursprünglichen Modells, welche garantieren, dass diese Amplituden-
gleichungen korrekte Vorhersagen über die Dynamik des räumlich periodischen
Boussinesq-Modells über die natürlichen Zeitskalen machen. Der Beweis basiert
auf Blochwellenanalysis und Energieabschätzungen.

Abstract

We consider the KdV-approximation and the Whitham approximation for a spa-
tially periodic Boussinesq model. We prove estimates of the difference between
the approximations and true solutions of the original model, which guarantee that
these amplitude equations make correct predictions about the dynamics of the spa-
tially periodic Boussinesq model over the natural time scales. The proof is based
on Bloch wave analysis and energy estimates. It is the first justification result of
the KdV or Whitham approximation for a dispersive PDE posed in a spatially
periodic medium of non-small contrast.
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Chapter 1

Introduction

There exists a zoo of amplitude equations which can be derived via multiple scaling
analysis in the long wave limit for various dispersive wave systems possessing
conserved quantities. Among these amplitude equations, we consider two which
are independent of the small perturbation parameter, namely the KdV equation
and the Whitham equation. It is the purpose of this thesis to discuss the validity
of these approximations for a spatially periodic Boussinesq model with non-small
contrast.

1.1 The KdV approximation

The KdV equation occurs as an approximation equation in the description of small
temporal and spacial modulations of long waves in various dispersive wave systems.
Examples are the water wave problem or the equations from plasma physics, cf.
[CeSa98]. For instance for the Boussinesq equation

∂2
t u(x, t) = ∂2

xu(x, t)− ∂4
xu(x, t) + ∂2

x(u(x, t)2) (1.1)

where x ∈ R, t ∈ R, and u(x, t) ∈ R with the ansatz

u(x, t) = ε2A(X,T ), (1.2)

where X = ε(x + t), T = ε3t, A(X,T ) ∈ R, and 0 < ε � 1 a small perturbation
parameter, the KdV equation

∂TA = −1

2
∂3
XA+

1

2
∂X(A2) (1.3)

can be derived by inserting (1.2) into (1.1) and equating the coefficients in front of
ε6 to zero. There exist various justification results. Estimates that the formal KdV
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approximation and true solutions of the various formulations of the water wave
problem stay close together over the natural KdV time scale have been shown for
instance in [Cra85, SW00, SW02, BCL05, Du12]. Such results are a non-trivial
task since solutions of order O(ε2) have shown to be existent on an O(1/ε3) time
scale. For (1.1) a possible approximation result is formulated as follows:

Theorem 1.1.1 Let T0 > 0 and let A ∈ C([0, T0], H5(R)) be a solution to the
KdV equation (1.3). Then there exists an ε0 > 0 and a constant C > 0, such that
for every 0 < ε < ε0 we have solutions u ∈ C([0, T0], H1(R)) of the Boussinesq
equation (1.1) with

sup
t∈[0,T0/ε3]

‖u(·x, t)− ε2A(ε(·x + t), ε3t)‖H1(R) ≤ Cε7/2.

For this special problem, the proof is rather short and very instructive for the
subsequent analysis. Therefore, we recall it in Section 2.

The last years have seen some attempts to justify the KdV equation in more
complicated geometrical situations, including periodic media. It has been justified
in [Igu07] for the water wave problem over a periodic bottom with long wave
oscillations of the bottom of magnitude O(ε2). The result is also included in
[Cha09], where general bottom topographies of small amplitude have been handled.
The result is based on [Cha07], where other amplitude systems have been justified.

In case of oscillations of the bottom of magnitude O(1), no approximation
result has been given in existing literature. The situation in this case is much more
complicated due to feared resonances which may occur in the spatially periodic
case and which are not present in the spatially homogeneous case or in case of small
amplitude oscillations of the bottom. As a first attempt to solve this question for
the water wave problem, we consider a spatially periodic Boussinesq equation

∂2
t u(x, t) = ∂x(a(x)∂xu(x, t))− ∂2

x(b(x)∂2
xu(x, t)) + ∂x(c(x)∂x(u(x, t)2)) (1.4)

with x ∈ R, t ≥ 0, u(x, t) ∈ R, and spatially 2π-periodic coefficient functions
a, c ∈ C1(S1) and b ∈ C2(S1) satisfying

min

{
inf
x∈R

a(x), inf
x∈R

b(x)

}
≥ C > 0.

Moreover, a, b and c need to satisfy another one-dimensional condition given later
on. It is satisfied, e.g. if c is also a positive function and a, b and c are even. For
this equation, we derive the KdV equation and prove an approximation result,
which is formulated in Theorem 3.4.1. It guarantees that the KdV equation makes
correct predictions about the dynamics of the spatially periodic Boussinesq model
(1.4) over the natural KdV time scale. A common way to prove this would be to
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Figure 1.1: The left panel shows the curves of eigenvalues over the Fourier wave
numbers as it appears for the water wave problem [Cra85, SW00, SW02, BCL05,
Igu07, Du12]. The middle panel shows the finitely many curves of eigenvalues as it
appears for the poly-atomic FPU system [CS11, CCPS12]. The right panel shows
the infinitely many curves of eigenvalues over the Bloch wave numbers as it appears
for the spatially periodic Boussinesq model (1.4). The KdV equations describe the
modes at the wave numbers k = 0 with vanishing eigenvalues. One of the two curves
describes wave packets moving to the left, the other curve wave packets moving to the
right.

generalize a method which has been developed in [CS11] and which has already
been applied to the poly-atomic FPU problem in [CCPS12]. However, for fixed
Bloch/Fourier wave number the present problem is infinite-dimensional in contrast
to the systems considered in [CS11] and [CCPS12]. As a consequence, the normal
form transform, which is a major part of the proof, would be much more demanding
from an analytic point of view.

Interestingly, for the spatially periodic Boussinesq equation we were able to
find an energy which allowed us to incorporate the normal form transform into
the energy estimates. Using these coordinates the dangerous terms can be shown
to be sufficiently small. The presented result is the first justification result of the
KdV approximation for a dispersive PDE posed in a spatially periodic medium of
non-small contrast.

1.2 The Whitham approximation

There is another long wave limit which leads to a non-trivial amplitude system.
With the ansatz

u(x, t) = A(X,T ), (1.5)
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where X = εx, T = εt, A(X,T ) ∈ R, and 0 < ε � 1 a small perturbation
parameter, we obtain

∂2
TA = ∂2

XA+ ∂2
XF (A), (1.6)

where F (A) = A2 which can be written as a system of conservation laws

∂TA = ∂XB, ∂TB = ∂XA+ ∂XF (A), (1.7)

in the following called the Whitham system. The only rigorous approximation
result we are aware of is [DS09], where the periodic wave trains of the NLS equation
are approximated over the natural Whitham time scale. As mentioned above,
such results are a non-trivial task, since solutions of order O(1) have shown to
be existent on an O(1/ε) time scale. For (1.1) a possible approximation result is
formulated as follows:

Theorem 1.2.1 Let T0 > 0 and let A ∈ C([0, T0], H3(R)) be a solution of (1.6)
such that

sup
T∈[0,T0]

‖A(·, T )‖L∞ <
1

2
.

Then there exists a C > 0, such that for all ε > 0 we have solutions u ∈
C([0, T0/ε], H

1(R)) of (1.1), such that

sup
t∈[0,T0/ε]

‖u(·, t)− A(ε·, εt)‖H1(R) ≤ Cε3/2.

As already mentioned, for this special problem the proof is rather short and
very instructive for the subsequent analysis. Therefore, it will be given in Chapter
2, where we examine the situation for constant coefficient functions.

In the beginning of Chapter 3, we give main definitions and statements of the
one-dimensional Bloch wave theory before we prove existence and uniqueness of
local solutions for our spatially periodic Boussinesq system (1.4). The Bloch wave
theory will be used to derive the dispersion relation, which we will use in order to
construct our approximations. We formulate and prove our main approximation
statement for the periodic Boussinesq model. Instead of using the Bloch wave
theory we go back to physical space and construct bounded quantities which give
us the control of the H2(R)-norm of the error term.

10



Chapter 2

The Spatially Homogeneous Case

This chapter contains first definitions and a sketch of a proof of Theorem 1.1.1
and Theorem 1.2.1. As already mentioned, it is rather short and very instructive
for the subsequent analysis. For the Boussinesq model (1.1) we have local exis-
tence and uniqueness of solutions in every Sobolev space Hs with s > 1/2. In
detail, (u(·x, t)|t=0, ∂tu(·x, t)|t=0) ∈ Hs(R)×Hs−2(R) implies (u(·x, t), ∂tu(·x, t)) ∈
Hs(R) ×Hs−2(R) as long as the solution exists. The local existence and unique-
ness of solutions combined with the subsequent estimates yields the existence and
uniqueness of solutions for all t ∈ [0, T0/ε

3] in the KdV case and all t ∈ [0, T0/ε]
in the Whitham case. The residual

Res(u)(x, t) = −∂2
t u(x, t) + ∂2

xu(x, t)− ∂4
xu(x, t) + ∂2

x(u(x, t)2)

measures how much a function u fails to satisfy the Boussinesq model (1.1) and
appears later on as part of the inhomogeneity in the equation for the error.

In the beginning we give some fundamental definitions.

2.1 Fourier transform

The spaces L2(R) and L2(S1), are given by the sets of all measurable functions u
on R and S1 such that

‖u‖2
L2(R) =

∫ ∞
−∞
|u(x)|2 dx < ∞, and ‖u‖2

L2(S1) =

∫
S1

|u(x)|2 dx < ∞.

These spaces are Hilbert spaces with the inner products

〈u, v〉L2(R) =

∫ ∞
−∞

u(x)v(x) dx , and 〈u, v〉L2(S1) =

∫
S1

u(x)v(x) dx.
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The Schwartz space on R is the function space

S(R) = {u ∈ C∞(R) : ∀α, β ∈ N0 : sup
x∈R

∣∣xα∂βxu(x)
∣∣ <∞}.

The Schwartz space S(R) is a dense subspace of L2(R). In this work, the continuous
Fourier transform of a function u ∈ S(R) is given by the function

(FRu)(k) = û(k) :=
1

2π

∫ ∞
−∞

e−ikxu(x)dx.

Since this defines an automorphism on S(R) it is possible to extend the Fourier
transform on L2(R). The discrete Fourier transform of a 2π-periodic function u is
given by the sequence (ûk)k∈N where

(FS1u)k = ûk :=
1

2π

∫
S1

e−ikxu(x)dx

is called the k-th Fourier coefficient of u. Products of elements u, v ∈ L2(R) or
u, v ∈ L2(S1) are being mapped to the convolution terms

(û ? v̂)(k) =

∫ ∞
−∞

û(m)v̂(k −m)dm,

or (û ? v̂)k =
∑

k∈Z ûmv̂k−m, respectively. For an s ∈ R+
0 the spaces Hs(R) and

Hs(S1) are given by

Hs(R) = {u ∈ L2(R) : ‖u‖2
Hs(R) =

∫ ∞
−∞

(1 + k2)s|û(k)|2 dk <∞}

and
Hs(S1) = {u ∈ L2(S1) : ‖u‖2

Hs(S1) =
∑
k∈Z

(1 + k2)s|ûk|2 <∞}

and are Hilbert spaces with the inner products

〈u, v〉Hs(R) =

∫ ∞
∞

(1 + k2)s û(k)v̂(k) dk,

and
〈u, v〉Hs(S1) =

∑
k∈Z

(1 + k2)s ûkv̂k.

For a fixed s > 1/2 these spaces are Banach algebras, i.e., products of elements in
Hs(R) or in Hs(S1), remain in Hs(R) or in Hs(S1), and the embeddings Hs(R) ↪→
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C(R), and Hs(S1) ↪→ C(S1) are continuous mappings. This means that there
exists a C > 0 such that for every element u of Hs(R) or of Hs(S1), there exists
a continuous representative ũ ∈ C(R) or in ũ ∈ C(S1), respectively, such that

‖ũ‖C(R) ≤ C‖u‖Hs(R), or ‖ũ‖C(S1) ≤ C‖u‖Hs(S1).

The images of theses spaces under the (continuous or discrete) Fourier transform
are denoted by L2(s) and `2(s). For convolutions of functions defined on the real
line we have the estimates

‖û ? v̂‖L2(s) ≤ ‖û‖L1(s)‖v̂‖L2(s), and ‖û ? v̂‖L2(s) ≤ C‖û‖L2(s)‖v̂‖L2(s),

where the first estimate holds for every s ≥ 0, while the last estimate requires
s > 1/2. Similarly, with the same conditions to s, on the unit circle we have the
estimates

‖û ? v̂‖`2(s) ≤ ‖û‖`1(s)‖v̂‖`2(s) and ‖û ? v̂‖`2(s) ≤ C‖û‖`2(s)‖v̂‖`2(s).

For natural s the norms on Hs(S1) and on Hs(R) defined above are equivalent to
the norms (∑

n≤s

‖∂nxu‖2
L2(R)

)1/2

and

(∑
n≤s

‖∂nxu‖2
L2(S1)

)1/2

which are easier to handle and hence will be used instead in the appropriate cases.

2.2 Local existence and uniqueness of solutions

In this subsection we show local existence and uniqueness for solutions to the
Boussinesq equation (1.1) for initial conditions (u(0, ·x), v(0, ·x)) ∈ Hs(R)×Hs(R)
for s > 1/2 where

v(t, x) := (−∂2
x + ∂4

x)
−1/2∂tu(t, ·x).

In order to apply a fixed point argument we write (1.1) as

∂2
t u = (∂2

x − ∂4
x)︸ ︷︷ ︸

−Λ2

u+ (∂2
x(u

2))︸ ︷︷ ︸
F̃ (u)

where Λ : Hs+2(R) → Hs(R) is given in Fourier-space by its symbol ω̃(k) =
|k|
√

1 + k2 and is a positive self-adjoint operator in L2(R). We remark that, since
FΛ and F∂x are multiplication operators, they commute and so Λ is self-adjoint
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in every Hs(R). The non-linear mapping F̃ : Hs+2(R)→ Hs(R) is continuous and
locally Lipschitz continuous (for s > 1/2). Using the new coordinates we have the
first order system

∂tu = Λv,

∂tv = −Λu+ Λ−1∂2
x(u

2)

in the phase space Hs(R)×Hs(R). We can write this system as

∂tw = iΩw + F (w) (2.1)

where w = (u, v) and

Ω =

(
0 −iΛ
iΛ 0

)
: H2(R,C)×H2(R,C)→ L2(R,C)× L2(R,C)

is continuous and again self-adjoint in every Sobolev space Hs(R,C)×Hs(R,C).
The nonlinear mapping F (w) = F (u, v) is given by

F (u, v) =

(
0

Λ−1∂2
x(u

2)

)
.

We recall Stone’s Theorem [P83, Theorem 1.10.8]:

Theorem 2.2.1 (Stone) Let X be a complex Hilbert space. Then the linear op-
erator

iΩ : dom(Ω) ⊂ X → X

is the generator of a strongly continuous one-parameter group of unitary operators
T (t) : X → X if and only if Ω is a self-adjoint operator in X.

For Hs(R,C)×Hs(R,C) we define the subspace of real valued functions

Y s := Hs(R,R)×Hs(R,R).

By Stone’s Theorem iΩ generates a strongly continuous group of unitary operators
T (t) in Hs(R,C)×Hs(R,C) which in the following is denoted by T (t) = eiΩt. Note
that iΩ is Y s−valued on Y s+2. Hence Y s is an invariant subspace with respect to
the flow T (t) such that the restriction T (t)|Y s : Y s → Y s is a strongly continuous
group of contractions on Y s. The non-linear mapping F is a locally Lipschitz
continuous mapping Y s → Y s if Y s is a Banach algebra. Hence, for our arguments
s > 1/2 is needed. Next, we show local existence and uniqueness of solutions
in Y s. In detail, for an arbitrary initial condition w(0) = (u(0), v(0)) ∈ Y s this
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argument uses the existence of a unique fixed point of the mapping

G(w)(t) = eiΩtw(0) +

∫ t

0

eiΩ(t−s)F (w(s)) ds

in the complete metric space

M :=
{
w ∈ C(I, Y s) : w(0) = (u0, v0) , ‖w‖C(I,Y s) ≤ 2‖w(0)‖Y s

}
where I = [0, t0] with t0 < 0 suitably chosen below and where the metric in M
is being induced by the canonical norm in C0(I, Y s). The non-linear mapping F
can be expressed by a continuous linear mapping N such that we have F (u, v) =
N(0, u2). In a first step we show that G maps M to M . We have

‖G(w)‖C(I,Y s) ≤‖w(0)‖Y s + t0‖N‖Lin(Y s)Cs‖w‖2
C(I,Y s) ≤ 2‖w(0)‖Y s

if t0 ≤ (Cs‖N‖Lin(Y s)‖(u0, v0)‖Y s)−1. Next we show the contraction property:

‖G(w)−G(w̃)‖C(I,Y s) ≤t0‖N‖Lin(Y s)Cs‖w − w̃‖C(I,Y s)2‖(u0, v0)‖Y s

≤1

2
‖w − w̃‖C(I,Y s)

if t0 ≤ (4Cs‖N‖Lin(Y s)‖(u0, v0)‖Y s)−1. Hence we have the following local existence
and uniqueness statement:

Lemma 2.2.2 For every s > 1/2 and every initial condition

(u(0),Λ−1∂tu(0)) ∈ Y s

there exists a t0 > 0, a finite constant C > 0 and a solution u ∈ C([0, t0], Y s) for
the spatially homogeneous Boussinesq equation (1.1) such that

sup
t∈[0,t0]

‖(u(t),Λ−1∂tu(t))‖Y s ≤ C.

2.3 The KdV case

For the KdV approximation

ε2ψ(x, t, ε) = ε2A(ε(x+ ct), ε3t)

we find for the residual

Res(ε2ψ) = −ε4c2∂2
XA−2cε6∂T∂XA−ε8∂2

TA+ε4∂2
XA−ε6∂4

XA+ε6∂2
X(A2) = −ε8∂2

TA
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if we choose c2 = 1 and A to satisfy the KdV equation (1.3) for c = 1, and the
KdV equation

∂TA =
1

2
∂3
XA−

1

2
∂X(A2)

for the reverse direction c = −1. Using the KdV equation the residual term ∂2
TA

can be expressed as a spacial derivative

∂2
TA =

1

2
∂T (−∂3

XA+ ∂x(A
2)) =

1

2
∂X∂T (−∂2

XA+ A2)

=
1

4
∂X

(
∂5
XA− ∂3

X(A2)− A(∂3
XA) + A∂X(A2)

)
.

Hence ∂−1
x can be applied to the residual and we find

sup
t∈[0,T0/ε3]

‖∂−1
x Res(ε2ψ(·, t))‖Hs(R) = sup

t∈[0,T0/ε3]

‖∂−1
x ε8∂2

TA(ε(·x+ct), ε3t)‖Hs(R) ≤ Cε13/2.

Therefore ∂5
XA ∈ Hs(R) is necessary. For this A ∈ Hs+5(R) is sufficient. The

formal error of orderO(ε7) is reduced by a factor ε−1/2 due to the scaling properties
of the L2-norm. The difference ε7/2R = u− ε2ψ satisfies the error equation

∂2
tR = ∂2

xR− ∂4
xR + 2ε2∂2

x(ψR) + ε7/2∂2
x(R

2) + ε−7/2Res(ε2ψ).

Obviously 2∂2
x(ε

2ψR) is the dangerous term since it seems to lack one ε-power in
order to stay bounded. One possible idea is to try to eliminate this term using an
appropriate transformation

U = R +M(ε2ψR)

where M is a linear mapping. Unfortunately, as we will see in Chapter 4, using
this ansatz the dangerous terms can not be transformed away completely.

Yet in our case another method can be applied. For simplicity reasons we
restrict ourselves to the case R(0, ·x) = 0. We multiply the error equation with
−∂t∂−2

x R and integrate it w.r.t. x and find the energy

E(t) =
1

2

∫
R
(∂t∂

−1
x R)2 + (1 + 2ε2ψ)(R)2 + (∂xR)2dx. (2.2)

For the time derivative we find

∂tE =

∫
(∂tε

2ψ)R2 + (2ε7/2R∂xR− ∂−1
x Res(ε2ψ)) · ∂−1

x ∂tRdx = O(ε3)

where we use ∂tψ = O(ε) and ∂xψ = O(ε) in C([0, T0/ε
3], C(R)). In detail the
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functional E is an upper bound for the squared H1-norm for

0 < ε < ε0 :=

(
2 sup
T≤T0
‖A(·X , T )‖C0

)−1/2

and satisfies

∂tE ≤ Cε3E + Cε7/2E3/2 + Cε3E1/2 ≤ 1

2
Cε3(2 + E + E(εE)1/2)

where we used the trivial estimate
√
x ≤ 1 +x. Note, that if E(t) can be bounded

over the long time interval [0, T0/ε
3] by Sobolev’s embedding theorem we have

a O(1)-bound for R in C(R). Gronwall’s inequality yields in this situation the
required bound.

Lemma 2.3.1 Let E be a non-negative function and C, T0, ε > 0, such that

∂tE ≤
1

2
Cε3(2 + E + E(εE)1/2)

is satisfied. Then we have E(t) ≤ eCT0 − 1 for all t ≤ T0/ε
3.

Proof: For T0 > 0 choose M := eCT0 − 1. Then while E ≤M we have εE ≤ 1 for
all ε < 1

M
such that E satisfies

∂tE ≤ Cε3 + Cε3E = Cε3(1 + E)

and E(t) ≤ eCε
3t − 1 ≤ eCT0 − 1 = M for all t ≤ T0/ε

3 follows.

2.4 The Whitham case

For the Whitham approximation ψ(x, t) = A(εx, εt) we find for the residual
Res(ψ) = −ε4∂4

XA if we choose A to satisfy the Whitham equation (1.6). Therefore

sup
t∈[0,T0/ε3]

‖∂−1
x Res(ψ(·, t, ε))‖Hs = sup

t∈[0,T0/ε3]

‖∂−1
x ε4∂4

XA(ε·, εt)‖Hs ≤ Cε5/2,

such that A ∈ Hs+3 is necessary. Again, the formal error of order O(ε3) is reduced
by a factor ε−1/2 due to the scaling properties of the L2-norm. The difference
ε3/2R = u− ψ satisfies

∂2
tR = ∂2

xR− ∂4
xR + 2∂2

x(ψR) + ε3/2∂2
x(R

2) + ε−3/2Res(ψ).
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We multiply the error equation with ∂t∂
−2
x R, integrate it w.r.t. x, and find

∂t

∫
R
(∂t∂

−1
x R)2 + (1 + 2ψ)R2 + (∂xR)2 dx = O(ε) (2.3)

where again we used ∂tψ = O(ε). The energy

E =

∫
R
(∂t∂

−1
x R)2 + (1 + 2ψ)R2 + (∂xR)2 dx

is an upper bound for the squared H1-norm for ψ sufficiently small. In detail

sup
t∈[0,T0/ε3]

sup
x∈R
|ψ(x, t)| < 1/2

is needed. The energy E satisfies

∂tE ≤ CεE + Cε3/2E3/2 + CεE1/2 ≤ 1

2
εC(2 + E + E(εE)1/2).

From now on the argumentation from Lemma 2.3.1 from the KdV case can be
applied:

Lemma 2.4.1 Let E be a non-negative function and C, T0, ε > 0, such that

∂tE ≤
1

2
Cε(2 + E + E(εE)1/2)

is satisfied. Then we have E(t) ≤ eCT0 − 1 for all t ≤ T0/ε.

Proof: For T0 > 0 choose M := eCT0 − 1. Then while E ≤M we have εE ≤ 1 for
all ε < 1

M
such that E satisfies

∂tE ≤ Cε+ CεE = Cε3(1 + E)

and E(t) ≤ eCεt − 1 ≤ eCT0 − 1 = M for all t ≤ T0/ε follows.
In the spatially homogeneous case, justification of the KdV approximation as

well as justification of the Whitham approximation can be done with one single
energy estimate. In both cases multiplying the error equation by ∂t∂

−2
x R and

integrating it with respect to x yields an energy which gives the control of the
‖ · ‖H1-norm of the error. For the spatially periodic case we will need to use
another energy, which then will give us the control of the H2-norm of the error.

18



Chapter 3

The Spatially Periodic Boussinesq
Model

3.1 Preliminaries

In this section we introduce the Bloch transform. It generalizes the standard
Fourier theory and will be used for the derivation of the dispersion relation.

Definition 3.1.1 The Bloch transform of a function u ∈ L2(R,C) is the function

Bu ∈ L2([−1/2, 1/2], L2(S1,C))

given by

Bu(`)(x) =
∑
k∈Z

eikxû(k + `). (3.1)

Note that by construction we have Bu(x, `+ 1) = e−ixBu(x, `). The embedding

Id : L2(S1 × [−1/2, 1/2])→ L2([−1/2, 1/2], L2(S1))

is an isometric isomorphism such that we can define ũ(x, `) := Bu(`)(x) for sim-
plicity reasons. For fixed ` the function ũ(·x, `) is in L2(S1) and the k-th Fourier
coefficient of ũ(·x, `) is given by û(k + `) such that we have

(FS1(Bu)(`)(·x))k = (FRu) (k + `).

Therefore, we write ûk(`) := û(k + `). Bloch transform maps L2(R,C)-functions
to families of L2(S1,C)-functions. Definition (3.1.1) is motivated by the represen-
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tation

u(x) =

∫
R
ei`xû(`) d` =

∑
k∈Z

∫ 1/2+k

−1/2+k

ei`xû(`) d`

=
∑
k∈Z

∫ 1/2

−1/2

eikxei`xû(k + `) d` =

∫ 1/2

−1/2

ei`x
∑
k∈Z

eikxû(k + `)︸ ︷︷ ︸
= ũ(x,`)

d`.

Lemma 3.1.2 Bloch transform is an isometric isomorphism between L2(R,C)
and

L̃2 := {ũ ∈ L2([−1/2, 1/2], L2(S1,C))}

where the inner product is given by

〈ũ, ṽ〉L̃2 :=

∫ 1/2

−1/2

〈ũ(·x, `), ṽ(·x, `)〉L2(S1,C)d`.

The inverse mapping is given by

(
B−1ũ

)
(x) =

∫ 1/2

−1/2

ei`xũ(x, `) d`. (3.2)

Proof: Let u, v be Schwartz functions. Then we have

〈ũ, ṽ〉L̃2 =

∫ 1/2

−1/2

〈ũ(·, `), ṽ(·, `)〉L2(S1,C) d` = 2π

∫ 1/2

−1/2

∑
k∈Z

ûk(`)v̂k(`) d`

= 2π
∑
k∈Z

∫ 1/2

−1/2

û(k + `)v̂(k + `) d` = 2π

∫ ∞
−∞

û(`)v̂(`) d` = 〈u, v〉L2(R).

Using this isometric character the continuity and bijectivity follow from the dense-
ness of S(R) in L2(R). �

Bloch transform maps the derivative of a function u to the shifted derivative (∂x+
i`)ũ what motivates the definition

∂ := ∂x + i`.

Due to the isomorphism Hs(S1,C) −→ `2(s) the spaces Hs(R) and

{ {ûk(·`)}k∈Z ∈ L2(R, `2(s)) : ûk(`+ 1) = ûk+1(`)}
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are isomorphic under B. For every s ≥ 0 the Bloch transform is an isomorphism
between Hs(R) and

H̃s := {ũ ∈ L2([−1/2, 1/2], Hs(S1,C))}. (3.3)

Lemma 3.1.3 Bloch transform of a product u · v is given by

B(u · v)(`)(x) = (ũ ? ṽ)(x, `) =

∫ 1/2

−1/2

ũ(x,m)ṽ(x, `−m) d`. (3.4)

Proof: By construction we have ũ(`+ 1, x) = e−ixũ(`, x). Hence

B(u · v)(`)(x) =
∑
k∈Z

eikx(û ? v̂)(k + `) =
∑
k∈Z

eikx
∫ ∞
−∞

û(m)v̂(k + `−m) dm

=
∑
k∈Z

eikx
∑
n∈Z

∫ 1/2

−1/2

û(n+ m̃)v̂(k + `− n− m̃) dm̃

=

∫ 1/2

−1/2

∑
n∈Z

û(n+ m̃)
∑
k∈Z

eikxv̂(k + `− n− m̃)︸ ︷︷ ︸
=ṽ(`−n−m̃,x)=einxṽ(`−m̃,x)

dm̃

=

∫ 1/2

−1/2

∑
n∈Z

einxû(n+ m̃) · ṽ(`− m̃, x) dm̃

=

∫ 1/2

−1/2

ũ(m̃, x)ṽ(`− m̃, x) dm̃. �

Bloch transform is an invariant mapping with respect to multiplication with
2π-periodic functions:

Lemma 3.1.4 Let u ∈ L2(R). If χ ∈ L∞(S1) then B maps χ · u on χ · B(u).

Proof: The statement follows from

B−1(χ · ũ)(x) =

∫ 1/2

−1/2
ei`x(χ(x) · ũ(x, `)) d` = χ(x)

∫ 1/2

−1/2
ei`x · ũ(x, `) d` = χ(x) · u(x). �

For justification it is essential that we give a bound not only for the so called
residual Res(ε2ψ) of the approximation but also for ∂−1

x Res(ε2ψ). Therefore we
will need useful characterizations for the existence of ∂−1

x Res(ε2ψ).
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Lemma 3.1.5 Let ṽ ∈ L̃2. Then the equation ṽ = ∂w̃ has a solution w̃ ∈ L̃2 if
and only if g̃ ∈ L2((−1/2, 1/2),C) where

g̃(`) =
1

`

∫
S1

ṽ(`, x) dx.

Proof: Let w̃ be a solution to ṽ = ∂w̃. Then we have ŵk(`) = 1
i(k+`)

v̂k(`) and

‖w̃‖2
L̃2 =

∑
k∈Z

∫ 1/2

−1/2

1

(k + `)2
|v̂k(`)|2 d` =

∫ 1/2

−1/2

1

`2
|v̂0(`)|2 d`+

∑
k 6=0

∫ 1/2

−1/2

1

(k + `)2
|v̂k(`)|2 d`.

Since ṽ ∈ L̃2, the last term on the right hand side is bounded, e.g. by 4‖ṽ‖2
L̃2

.
Hence the left hand side of the equation from above is finite if and only if∫ 1/2

−1/2

1

`2
|v̂0(`)|2 d` <∞.

This is equivalent to 1
(·`)
v̂0(·`) = g(·`) ∈ L2(−1/2, 1/2). �

In Bloch space the periodic Boussinesq equation (1.4) is given by

∂2
t ũ(x, `) = ∂(a∂)ũ(x, `)− ∂2(b(x)∂2)ũ(x, `) + ∂(c∂)(ũ(x, ·`) ? ũ(x, ·`)). (3.5)

Before we address the derivation of the approximation for the periodic Boussinesq
equation (1.4), we prove local existence and uniqueness of solutions in physical
x-space. For simplicity reasons, we will restrict ourselfves to the case s ∈ N.

3.2 Local existence and uniqueness

In this subsection we show local existence and uniquiness for the first order sys-
tem corresponding to the periodic Boussinesq equation. Therefore we rewrite the
spatially periodic Boussinesq equation into

∂2
t u = ∂x(

D2︷ ︸︸ ︷
a− ∂x(b∂x))∂xu+ ∂x(c∂x)u

2.

Here D2 = a − ∂x(b∂x) is a positive definite self-adjoint operator and possesses
a positive self-adjoint square root D : H1(R) → L2(R) which is a continuous
operator and the corresponding quadratic form is equivalent to the square of the
H1(R)−norm. Hence D−1 is a continuous mapping from L2(R) to H1(R). Setting
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v := D−1∂−1
x ∂tu we find the first order system

∂tw = iΩw + F (w)

where

w =

(
u
v

)
, Ω :=

(
0 −i∂xD

−iD∂x 0

)
, F (u, v) =

(
0

D−1(c∂x)u
2

)
.

For this equation we consider the phase space Y s = (Hs(R,R))2 where the inner
product in Y s is defined by

〈w1, w2〉s := 〈(I + Ω2)s/2w1, (I + Ω2)s/2w2〉L2(R)×L2(R).

Note that, in analogy to the case of constant coefficients, since Ω is self-adjoint
in Y s + iY s = Hs(R,C) ×Hs(R,C) by Stone’s Theorem iΩ generates a strongly
continuous semigroup of contractions T (t) =: eiΩt in Y s + iY s, and, with the same
arguments as for the proof for the case of constant coefficients, Y s is invariant with
respect to T (t). In the next step we need the continuity of the non-linear mapping
F :

Lemma 3.2.1 For s ∈ N the non-linear mapping F is locally Lipschitz-continuous
as a mapping Y s → Y s if c ∈ Cs−1(S1).

Proof: We have

‖D−1c∂x(u
2 − ũ2)‖Hs ≤ ‖D−1‖Lin(Hs−1,Hs)‖c∂x‖Lin(Hs,Hs−1)(C‖u− ũ‖Hs‖u+ ũ‖Hs)

≤ C‖D−1‖Lin(Hs−1,Hs)‖c‖Cs−1(S1)‖u− ũ‖Hs‖u+ ũ‖Hs . �

Lemma 3.2.2 For every s ∈ N and every initial condition (u(0),D−1∂−1
x ∂tu(0)) ∈

Y s there exists a t0 > 0, a C > 0 and a solution u ∈ C([0, t0], Hs(R,R) for the
spatially periodic Boussinesq equation (1.4) where c ∈ C1(S1) such that

sup
t∈[0,t0]

‖(u(t),D−1∂−1
x ∂tu(t))‖Y s ≤ C.

Proof: We consider the mapping

G(w) = eiΩtw0 +

∫ t

0

eiΩ(t−s)F (w)(s)ds (3.6)

in the complete metric space

M :=
{
w ∈ C(I, Y s) : w(0) = (u0, v0) , ‖w‖C(I,Y s) ≤ 2‖w(0)‖Y s

}
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where I = [0, t0] and where the metric in M is being induced by the canonical norm
in C(I, Y s). Again the non-linear mapping F can be expressed by a continuous
linear mapping such that we have F (u, v) = (0,D−1(c∂x)u

2) = N(0, u2) with a

continuous linear mapping N =

(
0 0
0 D−1(c∂x)

)
∈ Lin(Y s, Y s) if ĉ ∈ `1(s− 1). G

maps M to M :

‖G(w)‖C(I,Y s) ≤‖w(0)‖Y s + t0‖N‖Lin(Y s)Cs‖w‖2
C(I,Y s) ≤ 2‖w(0)‖Y s

if t0 ≤ (Cs‖N‖Lin(Y s)‖(u0, v0)‖Y s)−1. Next we show the contraction property:

‖G(w)−G(w̃)‖C(I,X s) ≤t0‖N‖Lin(Y s)Cs‖w − w̃‖C(I,Y s)2‖(u0, v0)‖Y s

≤1

2
‖w − w̃‖C(I,Y s)

if t0 ≤ (4Cs‖N‖Lin(Y s)‖(u0, v0)‖Y s)−1. �

3.2.1 Spectral properties of the linear operator

For the derivation of the KdV and the Whitham equation, we need the dispersion
relation. We consider the linear operator

L(∂x) = ∂x(a∂x)− ∂2
x(b∂

2
x) (3.7)

in L2(R) and domain H4(R) where a ∈ C1(R) and b ∈ C2(R) are even positive
periodic functions such that

min

{
inf
S1
a , inf

S1
b

}
> 0.

L(∂x) is self-adjoint and negative semidefinite, which implies that the spectrum
is a subset of R−0 . In the case of a = b = 1 the linear operator can be studied
using Fourier transform and is given by a multiplication operator in Fourier space,
uniquely determined by its symbol −ω(k)2 = −k2(1 + k2). In case of non-constant
but periodic a and b the linear operator can be studied using Bloch transform in
the Bloch space

L̃2 = {ũ ∈ L2([−1/2, 1/2], L2(S1,C))}

with the inner product

〈ũ, ṽ〉L̃2 =

∫ 1/2

−1/2

〈ũ(`), ṽ(`)〉L2(S1,C) d`.
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Since the non-linearity and the spectrum possess a more complex structure in
the case of non-constant periodic coefficients the derivation of the corresponding
approximations is much more demanding. The Bloch transform B maps L(∂x) to
the linear operator

L̃(∂) := BL(∂x) = ∂(a∂)− ∂2(b∂2) (3.8)

which defines a linear continuous mapping H̃4 → L̃2, where

∂ = ∂x + i`

and where H̃s is defined in (3.3). We also refer to [DAS15] where the multi-
dimensional generalization of the operator ∂(a∂) is being observed as the right

hand side of a second order system. For fixed ` ∈ [−1/2, 1/2] the operator L̃(∂) is
self-adjoint and negative semidefinite in L2(S1) with domain H4(S1). For each pair

(λ, f̃) where λ is an eigenvalue of L̃(∂x) and f̃ is an eigenfunction corresponding
to λ there exist analytic mappings

λ : [−1/2, 1/2]→ R, f̃ : [−1/2, 1/2]→ H4(S1),

such that λ(0) = λ and f̃(0) = f̃ . The curves of eigenvalues λ can intersect,
the number of intersecting curves in a given ` is equal to the dimension of the
eigenspace of λ(`). An introduction to general Bloch wave theory is given in
[DLPSW11]. In case of constant a(x) = a0 and b(x) = b0 the eigenfunctions
are given by fk(`)(x) = 1√

2π
eikx and the curves of eigenvalues are given by

λk(`) = −ωk(`)2 = −(k + `)2(a0 + b0(k + `)2).

In case of non-constant coefficient functions a and b these curves can split up
(Fig. 3.1). The eigenspace of L̃(∂x) corresponding to the zero eigenvalue is one-

dimensional since the corresponding equation L̃(∂x)f̃(x) = 0 implies the equation∫
S1

a(x)|∂xf̃(x)|2 + b(x)|∂2
xf̃(x)|2 dx = 0

such that ∂xf̃ = 0 follows. In order to satisfy the claim ‖f̃‖L2(S1,C) = 1 we choose

f̃(x) = (2π)−1/2. Hence there exist one unique smooth curve

λ(·`) = −ω(·`)2 ∈ C∞([−1/2, 1/2],R)
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Figure 3.1: The left panel shows a sketch of the curves of eigenvalues over the
Bloch wave numbers as they appear for the case of constant coefficient functions. The
curves cross in |`| = 1/2 and ` = 0. The right panel shows a possible configuration
of the spectral situation for the spatially periodic Boussinesq model over Bloch wave
numbers. The curves can split up and cross in different `. Spectral gaps can occur.

of eigenvalues and one unique curve of corresponding eigenfunctions f̃(`)(·x) ∈
C∞([−1/2, 1/2], C∞(S1,C)) satisfying

∀` ∈ [−1/2, 1/2] : L̃(∂)f̃(`) = −ω(`)2f̃(`), (ω(0), f̃(0)) =

(
0,

1√
2π

)
.

Due to L̃(∂) = L̃(∂) we have−ω(−`)2f̃(−`) = L̃(∂)f̃(−`) = L̃(∂)f̃(−`) such that

obviously f̃(−`) is the curve of eigenvalues corresponding to −ω(−`)2. The unique

character of these curves then implies −ω(−`)2 = −ω(`)2 and f̃(−`) = f̃(`).

Definition 3.2.3 We define the corresponding spaces and generalized projections:

i) Let λ(`) = −ω(`)2 be the unique curve of eigenvalues satisfying λ(0) = 0 and

let f̃(`) be the corresponding curve of eigenfunctions satisfying ‖f̃(`)‖L2(S1,C) =
1. The coordinate function P (·`) ∈ C∞([−1/2, 1/2], (L2(S1,C)′) is given by

P (`)ũ = 〈ũ, f̃(`)〉L2(S1,C).

The function Q(·`) ∈ C∞([−1/2, 1/2], Lin(L2(S1,C))) is given by

(Q(·`)ũ)(x) = ũ(x)− (P (`)ũ)f̃(`)(x).
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ii) For fixed ` the subspace Ṽ (`) ⊂ L̃2 is given by

Ṽ (`) := {ṽ ∈ L2(S1,C) : P (`)ṽ = 0}

and the subspace Ũ(`) ⊂ L2(S1,C) is defined by Ũ(`) = Ṽ (`)⊥L2(S1,C) .

iii) The subspace Ṽ ⊂ L̃2 is defined by

Ṽ := {ṽ ∈ L̃2 : ṽ(·x, `) ∈ Ṽ (`)}

and Ũ := Ṽ ⊥L̃2 .

Note: We have Ũ = {ũ ∈ L̃2 : ũ(·x, `) ∈ Ũ(`)}. Moreover L̃(∂)|Ṽ (`) : Ṽ (`)→ Ṽ (`)

is an invertible operator. Inserting the second order Taylor polynomial f̃(0) +

`f̃ ′(0) + 1
2
`2f̃ ′′(0) of f̃(`) with respect to ` where

f̃ (n)(0)(·x) := ∂n` f̃(`)(·x)|`=0

into the eigenvalue equation L̃(∂)f̃(`) = −ω2(`)f̃(`) and using ω(0) = 0, ω(−`)2 =

ω(`)2, f̃(0)(x) = (2π)−1/2 and f̃(−`) = f̃(`), which implies that the even `-

derivatives of f̃(`) in ` = 0 are purely real functions w.r.t. x, while the odd
`−derivatives are purely imaginary functions w.r.t. x, we obtain the equations

0 =i∂xaf̃(0) + L̃(∂x)f̃
′(0)

0 =(−a+ ∂2
xb)f̃(0) + i

(
{a, ∂x} − 2{∂x(b∂x), ∂x}

)
f̃ ′(0) +

1

2
L̃(∂x)f̃

′′(0)

where {A,B} := AB + BA is the so called anti-commutator of A and B. Since

∂xa ∈ Ṽ (0) we can rewrite these equations to

f̃ ′(0) = − if̃(0)L̃(∂x)
−1(∂xa), (3.9)

1

2
L̃(∂x)f̃

′′(0) = (a− b′′)f̃(0)− i(∂x(a·) + a∂x·)f̃ ′(0) (3.10)

− 2i(∂x(b∂
2
x·) + ∂2

x(b∂x)·)f̃ ′(0).

The linear operator L̃(∂x) maps odd functions to odd functions and even functions
to even functions. Since a is even, the right hand side of (3.9) is an odd function and

we find f̃ ′(0) to be an odd and, as already expected, purely imaginary function.

Using this information we find from (3.10) that f̃ ′′(0) is even and, hence, that

∂xf̃
′′(0) is odd. This will be needed for the derivation of the KdV equation and
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the Whitham equation. Since ω(`)2 is smooth and even, there exists a constant
C > 0 such that

|ω(`)2 − ω′(0)2`2 − 1

3
ω′(0)ω′′′(0)`4| ≤ C|`|6. (3.11)

Next, consider

β(`,m, `−m) = −
∫
S1

c∂(f̃(m)f̃(`−m))∂f̃(`) dx. (3.12)

This term appears in the non-linear part since we have

P (`)∂(c∂)(Pũ(·`) ? P ũ(·`)) =

∫ 1/2

−1/2

β(`,m, `−m)ũ(m)ũ(`−m) dm.

Since ∂f̃(`) = i`f̃(0) + ∂(f̃(`) − f̃(0)) and since β(·, ·, ·) is bounded, we find
β(`,m, `−m) = O(`). This means that there exists a C > 0 such that

|β(`,m, `−m)| ≤ C|`|

uniformly in m. Plugging the second order Taylor polynomial into (3.12) after a
straight forward computation we find that there exist smooth functions hj1,j2(`,m)
such that

β(`,m, `−m)

`
= − `µ1 + im(`−m)µ2 +

∑
j1+j2=3

hj1,j2(`,m)`j1mj2 (3.13)

where µ1 = 1√
2π

∫
S1 c(x)α2(x)dx and µ2 =

∫
S1 c(x)α(x)α̃(x)dx and where

α(x) := f̃(0)− i∂xf̃ ′(0) and α̃(x) := ∂x(f̃
′(0)2 − f̃(0)f̃ ′′(0)). (3.14)

The integrand of µ2 is an odd function such that this term vanishes and so we
have the estimate

|`−1(β(`,m, `−m) + µ1`
2)| ≤ C |`3 +m`2 +m2`+m3|. (3.15)

Further computations need the following lemma, which uses the elementary scaling
properties of the L2−norm:

Lemma 3.2.4 Let Â ∈ L2(n)(R).

i) Let ũ(x, `) = `nÂ(ε−1`)g̃(`)(x) where g̃ ∈ C([−1/2, 1/2], L2(S1,C)). Then
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we have

‖ũ‖L̃2 ≤ εn+1/2 · sup
`∈[−1/2,1/2]

‖g(`)(·)‖L2(S1,C) · ‖Â‖L2(n)(R).

ii) Let ṽ(x, `) = Â(ε−1`)g̃(`)(x). For a given γ ∈ Cn([−1/2, 1/2], L2(S1,C))
we have a Cγ and an ε0 > 0 such that for all ε < ε0 we have

‖

(
γ(·`)−

∑
m<n

(·`)m

m!
γ(m)(0)

)
ṽ‖L̃2 ≤ Cγε

n+1/2‖Â‖L2(n)(R).

3.3 Derivation of the approximations

3.3.1 Derivation of the KdV equation

The residual measures how much a function fails to satisfy the periodic Boussinesq
equation (1.4).

Definition 3.3.1 The (Boussinesq) residual of a function

u ∈ C([0, t0], H4(R,C)) ∩ C2([0, t0], L2(R,C))

is the function ResBous(u) ∈ C([0, t0], L2(R,C)), in the following just Res(u),
given by

ResBous(u)(x, t) := −∂2
t u(x, t) + L(∂x)u(x, t) + ∂x(c∂x)u

2(x, t). (3.16)

For
ũ ∈ C([0, t0], H̃4) ∩ C2([0, t0], L̃2)

the residual is the function ResB(ũ) ∈ C0([0, t0], L̃2), in the following just Res(ũ),
given by

ResB(ũ)(x, `) := BRes(B−1ũ)(x, `). (3.17)

The residual of the approximation appears in the equation for the difference be-
tween the true solution and its approximation as an inhomogeneity. Hence, the
aim is to construct an approximation such that the residual is small in a certain
sence. In detail, for our justification the estimates

‖Res(ε2ψ)‖L2 ≤ Cε13/2 and ‖∂−1
x Res(ε2ψ)‖L2 ≤ Cε13/2
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are needed. In case of constant a and b the ansatz for the KdV-equation is

ε2ψ̂(k, t) = εÂ

(
k

ε
, ε3t

)
eiω
′(0)kt

where −ω2(k) is the symbol of L(∂x) in Fourier space. In the spatially periodic
case a first ansatz is given by

ε2ψ̃(x, `, t) = εÂ

(
`

ε
, ε3t

)
eiω
′(0)`tf̃(`)(x)χ(`) (3.18)

where χ(·`) is the characteristic function on [−δ/2, δ/2] and where |δ| ≤ 1/2 is so
small that the first curve of eigenvalues is separated from the rest. Plugging (3.18)
into (3.17) gives the equation

Resũ(x, `) =

(
− ε7∂2

T Â(ε−1`, ε3t)− 2iω′(0)ε5(ε−1`)∂T Â(ε−1`, ε3t) (3.19)

− 1

3
ω′(0)ω′′′(0)ε5(ε−1`)4Â(ε−1`, ε3t)

+ (ω′(0)2`2 +
1

3
ω′(0)ω′′′(0)`4 − ω(`)2)εÂ(ε−1`, ε3t)

)
eiω
′(0)`tf̃(`)χ(`)

+ ε2

∫ 1/2

−1/2
β(`,m, `−m)Â

(
m

ε

)
Â

(
`−m
ε

)
χ(m)χ(`−m) dm︸ ︷︷ ︸

(?)

eiω
′(0)`tf̃(`)

where Resũ(x, `) := 〈ũ(·x, `), f̃(`)(·x)〉L2(S1,C) and (?) is given by

(?) =

∫ δ/2

−δ/2
β(`,m, `−m)Â

(
m

ε

)
Â

(
`−m
ε

)
χ(`−m)dm

=

∫ δ/2

−δ/2
−`2µ1Â

(
m

ε

)
Â

(
`−m
ε

)
χ(`−m)dm

+

∫ δ/2

−δ/2

(
β(`,m, `−m) + `2µ1

)
Â

(
m

ε

)
Â

(
`−m
ε

)
χ(`−m)dm

=

∫ δ/2

−δ/2
−`2µ1Â

(
m

ε

)
Â

(
`−m
ε

)
dmχ(`)

+ µ1`
2

∫ δ/2

−δ/2
Â

(
m

ε

)
Â

(
`−m
ε

)
(χ(`)− χ(`−m))dm (3.20)

+

∫ δ/2

−δ/2

(
β(`,m, `−m) + `2µ1

)
Â

(
m

ε

)
Â

(
`−m
ε

)
χ(`−m)dm. (3.21)
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Lemma 3.3.2 Let s > 1/2 and Â ∈ L2(s). Then we have∥∥∥∥∥
∫ ∞
δ/ε

Â(M)Â

(
·`
ε
−M

)
dM

∥∥∥∥∥
L2([−1/2,1/2])

≤ εs+1/2δ−s‖Â‖2L2(s).

Proof: For M ≥ δ/ε we have 1 ≤ Mε
δ

such that we can estimate∥∥∥∥∥
∫ ∞
δ/ε

Â(M)Â

(
·`
ε
−M

)
dM

∥∥∥∥∥
L2([−1/2,1/2])

≤ ε1/2

∥∥∥∥∥
∫ ∞
δ/ε

Â(M)Â(·L −M)

(
εsM s

δs

)
dM

∥∥∥∥∥
L2(R)

≤ εs+1/2δ−s‖Â‖2L2(s)(R). �

For (3.21) using (3.15) we find

|(3.21)| ≤
∫ 1/2

−1/2

∣∣∣∣β(`,m, `−m) + `2µ1

∣∣∣∣ · ∣∣∣∣Â(mε
)
Â

(
`−m
ε

)∣∣∣∣ dm
≤ Cε5

∫ 1/2ε

−1/2ε

∣∣∣∣ ( `ε
)4

+

(
`

ε

)3

M +

(
`

ε

)2

M2 +

(
`

ε

)
M3

∣∣∣∣ · ∣∣∣∣Â(M)Â

(
`

ε
−M

)∣∣∣∣ dM
and so using Lemma (3.2.4) the L2([−1/2, 1/2])− norm of (3.21) can be estimated
by Cε11/2‖∂4

XA
2‖L2(R) ≤ Cε11/2‖A‖2

H4 . For (3.20) we have g(`,m) = χ(`)− χ(`−
m) = 0 for |`−m| ≤ δ/2. Hence the L2([−1/2, 1/2])−norm can be estimated by

∫ δ

−δ
µ2

1`
4

∣∣∣∣∣
∫ δ/2

−δ/2
Â

(
m

ε

)
Â

(
`−m
ε

)
g(`,m)dm

∣∣∣∣∣
2

d`

≤
∫ δ

−δ
µ2

1`
4

(∫ δ/2

−δ/2
|Â
(
m

ε

)
| ·
(
|`−m|
δ/2

)n1

·
(
|m|
δ/2

)n2

|Â
(
`−m
ε

)
|dm

)2

d`

≤Cε2n1+2n2+7

∫ δ/ε

−δ/ε
L4

(∫ δ/(2ε)

−δ/(2ε)
|Â(M)| · |L−M |n1|M |n2 · |Â(L−M)|dM

)2

dL

≤Cε2n1+2n2+7

∫ ∞
−∞

L4

(∫ ∞
−∞
|Â(M)| · |L−M |n1|M |n2 · |Â(L−M)|dM

)2

dL

=Cε2n1+2n2+7‖ |B̂| ? |Ĉ| ‖2
L2(2) ≤ C ′ε2n1+2n2+5‖B̂‖2

L2(2)‖Ĉ‖2
L2(2)

≤C ε2n1+2n2+7‖Â‖L2(n1+2)‖Â‖L2(n2+2)
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where B̂(K) = Kn1Â(K) and Ĉ(K) = Kn2Â(K). Putting all together if we
choose n1 = n2 = 2 and A ∈ C([0, T0], H6(R)) to satisfy the KdV equation

∂TA(X,T ) = −ω
′′′(0)

6
∂3
XA(X,T ) +

µ1

2ω′(0)
∂X(A2(X,T )) (3.22)

we find the estimate ‖Resu‖L̃2 ≤ Cε15/2. Since we have that P (`)Res(ũ) = O(`)

we also find the estimate ‖∂−1Resu‖L̃2 ≤ C ′ε13/2. For the corresponding comple-
mentary part we find

‖Resv‖2L̃2 = ‖Q∂(c∂)((ε2ψ̃) ? (ε2ψ̃))‖2
L̃2 ≤ ‖∂(c∂)(ε2ψ̃) ? (ε2ψ̃)‖2

L̃2 (3.23)

=

∫ 1/2

−1/2

∫
S1

∣∣∣∣∣
∫ 1/2

−1/2
ε2Â

(m
ε

)
Â

(
`−m
ε

)
∂(c∂)(f̃(m)f̃(`−m))χ(m)χ(`−m)dm

∣∣∣∣∣
2

dx d`

≤
∫ δ

−δ

∫
S1

∣∣∣∣∣
∫ δ/2

−δ/2
ε2Â

(m
ε

)
Â

(
`−m
ε

)
∂(c∂)(f̃(m)f̃(`−m))dm

∣∣∣∣∣
2

dx d`

≤ ε7

∫ δ/ε

−δ/ε

∫
S1

∣∣∣∣ ∫ δ/(2ε)

−δ/(2ε)
Â (M) Â (L−M)×

(∂x + iεL)(c(∂x + iL))(f̃(εM)f̃(ε(L−M)))dM

∣∣∣∣2dx dL
≤ ε9

∫ ∞
−∞

∫
S1

(∫ ∞
−∞
|Â (M) Â (L−M) | |L| |f̃(0)∂x(f̃(0)− i∂xf̃ ′(0))|dM

)2

dx dL+O(ε11)

≤ C ′ε9‖ |Â| ? |Â| ‖2L2(1)(R) +O(ε11) ≤ Cε9

where we used f̃(m)f̃(`−m) = f̃(0)2 + i`f̃(0)f̃ ′(0) + higher order terms. In order

to estimate the L̃2−norm of ∂−1Resv we can use the following lemma:

Lemma 3.3.3 ∂(·`)−1 : Ṽ → L̃2 is a continuous operator.

Proof: Let ṽ ∈ Ṽ . We have

|1
`

∫
S1

ṽ(`, x) dx| =|
√

2π

`

∫
S1

ṽ(`, x)f̃(0) dx|

=|
√

2π

`

∫
S1

ṽ(`, x)(f̃(`)− (f̃(`)− f̃(0)) dx|

=|
√

2π

∫
S1

ṽ(`, x)
f̃(`)− f̃(0)

`
) dx|

≤
√

2π sup
ξ∈[−1/2,1/2]

‖f̃ ′(ξ)‖L2(S1,C)‖ṽ(`, ·)‖L2(S1,C)
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where we used P (`)ṽ(x, `) = 0 in L2(S1,C). Hence using Lemma (3.1.5) and the
triangle inequality we find

‖∂−1ṽ‖L̃2 ≤
(√

2π sup
ξ∈[−1/2,1/2]

‖f̃ ′(ξ)‖L2(S1,C) + 2

)
‖ṽ‖L̃2 . �

We have ‖∂−1Resv‖L2 ≤ Cε9/2 which is too large for our purposes. A better
approximation is needed and will be given in the following subsection.

Improved approximation

In order to find a better approximation we extend our first ansatz to

ε2ψ̃(x, `, t) = (ũ(x, `, t) + ṽ(x, `, t))eiω
′(0)`t

where ũ(x, `, t) =

(
εÂ

(
`
ε
, ε3t

)
f̃(`)(x)

)
χ(`) and ṽ(·x, `) ∈ V (`) for |`| < δ and

= 0 otherwise. Since we have that

Res(ũ+ ṽ) = Res(ũ) +Res(ṽ) + 2∂(c∂)(ũ ? ṽ)

we find

∂−1Res(ε2ψ̃)(x, `, t) = ∂−1
(
Q(`)Res(ũeiω

′(0)`t)− (ω(`)2 + L̃(∂))ṽeiω
′(0)`t

)
+ 2Q(`)c∂(ũ ? ṽ)eiω

′(0)`t +Q(`)c∂(ṽ ? ṽ)eiω
′(0)`t

+ ∂−1
(
ω(`)2 − `2ω′(0)2

)
ṽeiω

′(0)`t + ∂−1P (`)Res(ũeiω
′(0)`t)

− 2iω′(0)`∂−1∂tṽe
iω′(0)`t − ∂−1∂2

t ṽe
iω′(0)`t.

If we choose

ṽ(x, `, t) =
(
ω2(`) + L̃(∂)

)−1

Q∂(c∂)(ũ ? ũ)(x, `, t)χ(`)

we find the estimate ‖ṽ‖H̃s ≤ ‖∂(c∂)(ũ? ũ)‖H̃s−2 ≤ Cε9/2 for s > 1/2. The approx-

imation is well defined since the L̃2-adjoint of the operator (ω(`)2+L̃(∂))−1∂(c∂) ∈
Lin(H̃2, H̃4) possesses a continuous linear extension L̃2 → L̃2.

Lemma 3.3.4 Let s > 1/2. Then for ũ, ṽ ∈ H̃s we have ‖ũ?`ṽ‖H̃s ≤ C‖ũ‖H̃s‖ṽ‖H̃s

and ‖ũ ?` ṽ‖H̃s ≤ C‖ũ‖L1([−1/2,1/2],Hs(S1,C))‖ṽ‖H̃s .
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Proof: The first estimate follows directly from the corresponding estimate ‖uv‖Hs ≤
C‖u‖Hs‖v‖Hs in physical space. For the second one we have

‖ũ ?` ṽ‖H̃s = ‖ ‖(ũ ?` ṽ)‖Hs(S1,C) ‖L2([−1/2,1/2])

≤ C‖ ‖ũ‖Hs(S1,C) ?` ‖ṽ‖Hs(S1,C) ‖L2([−1/2,1/2])

≤ C‖ ‖ũ‖Hs(S1,C) ‖L1([−1/2,1/2]) · ‖ ‖ṽ‖Hs(S1,C) ‖L2([−1/2,1/2])

= C‖ũ‖L1([−1/2,1/2],Hs(S1,C))‖ṽ‖H̃s . �

Using these inequalities we finally find the estimates

‖(Qc∂)(ũ ? ṽ)‖L̃2 ≤ C‖ũ‖L1([−1/2,1/2],H1(S1,C))‖ṽ‖H̃1 ≤ Cε13/2,

‖(Qc∂)(ṽ ? ṽ)‖L̃2 ≤ C‖ṽ‖L1([−1/2,1/2],H1(S1,C))‖ṽ‖H̃1 ≤ Cε19/2,

‖∂−1∂2
t ṽ‖L̃2 ≤ C‖∂2

t (ũ ? ũ)‖L̃2 ≤ Cε19/2,

‖∂−1(ω(`)2 − `2ω′(0)2)ṽ‖L̃2 ≤ C‖(·`)4(ũ ? ũ)‖L̃2 ≤ ε17/2,

‖(·`)∂−1∂tṽ‖L̃2 ≤ Cε17/2

and so, taken all together, we can estimate the residual terms in physical space by

‖Res(ε2ψ)‖L2 ≤ Cε13/2 and ‖∂−1
x Res(ε2ψ)‖L2 ≤ Cε13/2.

Remark 3.3.5 Note that for the derivation of the KdV equation we only need local
spectral properties, more precisely the values of ω′(0) and ω′′′(0) and the quadratic
structure of the non-linearity. The global spectral behavior will be involved in the
justification part, where we will need the equivalence of the quadratic form corre-
sponding to the linear operator and the squared H2(R)−norm.

3.3.2 Derivation of the Whitham equation

In order to derive a Whitham equation

∂2
TU = ∂2

XU + ∂2
XF (U) (3.24)

with a continuous mapping F : H2 −→ H2 we make the ansatz

ψ̃(x, `, t) =
(
ε−1Â+ B̂

)( `
ε
, εt

)
f̃(`)χ(`) (3.25)

+ (Û + εV̂ )

(
x,
`

ε
, εt

)
(3.26)
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where Û(·x, `) ∈ V (0) and where

Â(L) =
1

2π

∫
R
e−iLyA(y)dy, B̂(L) =

1

2π

∫
R
e−iLyB(y)dy,

Û(x, L) =
1

2π

∫
R
e−iLyU(x, y)dy, V̂ (x, L) =

1

2π

∫
R
e−iLyV (x, y)dy.

Solving the residual equations

Resũ(x, `, t) = 〈Res(ψ̃)(·x, `, t), f̃(`)(·x)〉L2(S1,C)

= (−ε∂2
T Â− ε2B̂)

(
`

ε
, εt

)
− ω′(0)2L2(εÂ+ ε2B̂)

(
`

ε
, εt

)
+ 〈∂(c∂)(ψ̃ ? ψ̃)(·x, `, t), f̃(`)(·x)〉L2(S1,C) +O(ε5/2)

and going back to the physical y-space we find the equations

∂2
TA(y) = ω′(0)2∂2

yA(y) + µ∂2
y(A

2(y))−
√

2

π
∂y

(
A(y)

∫
S1

U(x, y)γ(x)dx

)
∂2
TB(y) = ω′(0)2∂2

yB(y) + 2µ∂2
y(AB)(y)−

√
2

π
∂y

(
B(y)

∫
S1

U(x, y)γ(x)dx

)
−
√

2

π
∂2
y

(
A(y)

∫
S1

V (x, y)c(f̃(0)− i∂xf̃ ′(0))dx

)
+ 2∂y

(
∂yA(y)

∫
S1

if̃ ′(0)U(x, y)γ(x)dx

)
− ∂y

∫
S1

U2(x, y)γ(x)dx

(3.27)

where γ(x) = ∂x(c(x)α(x)) and where α is defined in (3.14). The complementary
equations for the residual give for the correctors the equations

0 = L̃(∂x)Û +G1(Â, B̂, Û , V̂ ) (3.28)

0 = L̃(∂x)V̂ + LL̃′(0)Û +
1

2
G2(Â, B̂, Û , V̂ ) (3.29)

where Gi(Â, B̂, Û , V̂ ) = ∂iεG(ε)(Â, B̂, Û , V̂ )|ε=0 and

G(ε)(Â, B̂, Û , V̂ )(T, x, L) = Q(εL)(∂x + iεL)c(∂x + iεL)(ψ̃ ? ψ̃)(εT, x, εL).
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For (3.28) we find in physical space

0 = L̃(∂x)U(x, y) +

√
2

π
A(y)Q(0)∂x(c∂x)U(x, y) +

√
2

π
∂y(A

2(y))Q(0)γ(x).

Using Q(0)|V (0) = Id we find the solution

U(x, y) = − 2

√
2

π
A(y)∂yA(y)

(
Id +

√
2

π
A(y)L̃(∂x)

−1∂x(c∂x·)

)−1 (
L̃(∂x)

−1γ
)

(x)

= − 2

√
2

π
A(y)∂yA(y)

∞∑
n=0

(
−
√

2

π
A(y)L̃(∂x)

−1∂x(c∂x·)

)n (
L̃(∂x)

−1γ
)

(x).

Here we used that we have
√

2
π
A(y)∂x(c∂xL̃(∂x)

−1·) ∈ Lin(L2). Hence its L2-

adjoint
√

2
π
A(y)L̃(∂x)

−1∂x(c∂x·) is a linear continuous operator such that for suf-

ficiently small A in C([0, T0], C(R)) we have

‖
√

2

π
A(y)L̃(∂x)

−1∂x(c∂x·)‖Lin(L2(S1)) = ‖
√

2

π
A(y)∂x(c∂xL̃(∂x)

−1)‖Lin(L2(S1)) ≤ q < 1.

For the last non-linear term in the equation for A we find

A(y)

∫
S1

U(x, y)γ(x)dx = −2

√
2

π
∂y

(
A3(y)

∞∑
n=0

cn(y)

n+ 3

)

where

cn(y) =

∫
S1

(
−
√

2

π
A(y)L̃(∂x)

−1∂x(c∂x)

)n

L̃(∂x)
−1γ(x) · γ(x)dx

≤ qn ‖L̃(∂x)
−1‖Lin(Ṽ (0),L2(S1))‖γ‖

2
L2(S1).

Using this we finally find the Whitham equation

∂2
TA(y) = ω′(0)2∂2

yA(y) + ∂2
y

(
µ1A

2(y) +
4

π
A3(y)

∞∑
n=0

cn(y)

n+ 3

)
. (3.30)
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The remaining equation (3.29) for V can be solved with respect to V for small A
and B (in C([0, T0],R)). In detail for

H(Â, B̂, Û , V̂ ) = LL̃′(∂x)Û + L̃(∂x)V̂ +G1(Â, B̂, V̂ )

we have H(0, 0, 0, 0) = 0 and

H(0, 0, δṼ ) = δL̃(∂x)Ṽ +O(δ2) = δ∂V̂H(0, 0, 0, 0)(Ṽ ) +O(δ2).

Since L̃(∂x)|V (0) : V (0) → V (0) is an invertible operator, for sufficiently small A

and B (in L2) we find V̂ = V̂ (Â, B̂) such that H(Â, B̂, V̂ (Â, B̂)) = 0. Using this
information, for B, we find a linear inhomogeneous equation.

Lemma 3.3.6 Let T1 > 0 and let A ∈ C([0, T1], H4) be a solution to the Whitham
equation (3.30) such that

sup
T≤T1,y∈R

|A(y)|
√

2

π
‖L̃(∂x)

−1∂x(c∂x·)‖Lin(V (0),V (0)) ≤ q < 1. (3.31)

Let T0 ≤ T1 and let B ∈ C([0, T0], H4) be a solution to (3.27) and let T0, µ and B

be chosen so small that the equations from above can be solved for Û and V̂ . Then
there exists a C > 0 such that for all eps > 0 we have

sup
t∈[0,T0/ε3]

‖Res(ψ)(·x, t)‖L2(R) ≤ Cε3/2 and sup
t∈[0,T0/ε3]

‖∂−1
x Res(ψ)(·x, t)‖L2(R) ≤ Cε3/2.

Remark 3.3.7 Note that, in contrast to the KdV case, in the Whitham case we
have additional conditions ‖A‖C([0,T1],C(R)) < C and ‖B‖C([0,T0],C(R)) < C where C
is so small that we can solve the equations for A and B.

3.4 Justification of the KdV approximation and

the Whitham approximation

3.4.1 The main result

Our approximation result for the KdV approximation and the Whitham approxi-
mation is as follows:

Theorem 3.4.1 Consider the spatially periodic Boussinesq equation (3.32) where
a ∈ C1(S1) and b ∈ C2(S1) are positive even functions and where c ∈ C1(S1,C)
satisfies the condition ∫

S1

c(x)α(x)α̃(x) dx = 0
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where α and α̃ are defined in (3.13).

i) Let T0 > 0 and let A ∈ C([0, T0], H6(R)) be a solution to the KdV equation
(3.22). Then there exists an ε0 > 0 and a C > 0 such that for every 0 <
ε < ε0 we have solutions u ∈ C([0, T0/ε

3], H2(R)) of our spatially periodic
Boussinesq equation (1.4) with

sup
t∈[0,T0/ε3]

‖u(·x, t)− ε2f̃(0)A(ε(·x + ω′(0)t), ε3t)‖H2 ≤ Cε5/2.

ii) There exists a C1 > 0 such that for all T0 > 0 and every solution A ∈
C([0, T0], H4(R)) of the Whitham equation (3.30) with ‖A(·X , T )‖L∞ ≤ C1

we have for all ε ≥ 0 solutions u ∈ C([0, T0/ε], H
2(R)) of (1.4) with

sup
t∈[0,T0/ε3]

‖u(·x, t)− f̃(0)A(ε·x, εt)‖ ≤ Cε3/2.

Note, that the condition on c is satisfied, if e.g. c is a positive and even function.
Mind also the difference of the formulations with respect for the dependencies on
the perturbation parameter ε.

In the previous section we constructed the KdV approximation and improved
approximations, which allow us to make the residual small enough for our purposes.

3.4.2 Justification of the KdV approximation

We write the solution u of the spatially periodic Boussinesq equation

∂2
t u(x, t) = ∂x(a(x)∂xu(x, t))− ∂2

x(b(x)∂2
xu(x, t)) + ∂x(c(x)∂x(u(x, t)2)) (3.32)

as a sum of the approximation ε2ψ plus some error ε7/2R, i.e., u = ε2ψ + ε7/2R
where R satisfies the equation

∂2
tR =L(∂x)R + 2∂x(c∂x(ε

2ψR)) + ε7/2∂x(c∂x(R
2)) + ε−7/2Res(ε2ψ). (3.33)

Obviously, the underlined term is the dangerous one and may be the generator
of unbounded growth with respect to the perturbation parameter ε since it is of
order ε2 on a O(ε−3)−timescale. The energy from the spatially constant case
cannot be applied directly and needs to be modified in a non-trivial way. In order
to adapt the arguments we need to write the equation for the error as a first order
system ∂tZ = ΛZ+O(ε3) such that we can define the energy using the linear skew
symmetric operator Λ.
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Normal form transform

First, we want to discuss a possible normal form transform in order to choose ap-
propriate coordinates, using which the dangerous terms can be shown to be small.
This is a common way to eliminate disturbing terms, e.g. in the justification of the
non-linear Schrödinger equation for a spatially periodic wave equation considered
in [BSTU06]. We don’t give an exact proof for the provided statement since the
method using the normal form transform already fails in the much more simple
case of constant coefficients.

As before, for every (−ω2, f̃) ⊂ C × (L̃2\{0}) where L̃(∂x)f̃ = −ω2f̃ we have

C∞−curves of eigenvalues −ω(`)2 and eigenfunctions f̃(`)(·x) with

L̃(∂)f̃(`)(·x) = −ω2(`)f̃(`)(·x) and (ω(0), f̃(0)(·x)) = (ω, f̃).

Let J be an index set to any complete set of eigenfunctions to L̃(∂x) such that

every ũ ∈ L̃2 possesses a unique representation

ũ(t, x, `) =
∑
i∈J

〈ũ(t, ·x, `), f̃i(`)(·x)〉L2(S1,C)︸ ︷︷ ︸
=ũi(t,`)

f̃i(`)(x).

In these coordinates the Boussinesq equation is given by

∂2
t ũi(x, `) = −ωi(`)2ũi(x, `) +

∫ 1/2

−1/2

∑
j1,j2∈J

βij1,j2(`,m, `−m)ũj1(m)ũj2(`−m) d`

where

βij1,j2(`,m, `−m) :=

∫
S1

f̃j1(m)f̃j2(`−m)∂(c∂)f̃i(`)dx.

Every linear mapping M : L̃2 → L̃2 is uniquely determined by the values on the
corresponding eigenspaces such that we have the generalized matrix representation

M(`)f̃i(`) =
∑
i,j

mi,j(`)f̃j(`).

For the normal form transform we choose the ansatz

R = R+M(2ε2ψR).

The coordinate functions

r̃i(`) = 〈R̃(·x, `, t), f̃i(`)(·x)〉L2(S1,C) resp. τ̃i(`) = 〈R̃(·x, `, t), f̃i(`)(·x)〉L2(S1,C)
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satisfy the relations

r̃i(`) = τ̃i(`) +

√
2

π

∑
k∈J

mki(`)

∫ 1/2

−1/2

εÂ
(m
ε
, 0
)
τ̃k(`−m)dm+O(ε3)

in L1([−1/2, 1/2]) for i ∈ J. We have

r̃i(`) = τ̃i(`) + 2〈M(ε2ψ̃ ?` R̃(·x, ·`, t)), f̃i(`)〉L2(S1,C)

= τ̃i(`) + 2〈M

(∑
k∈J

〈ε2ψ̃ ?` R̃(·x, ·`, t), f̃k(`)〉L2(S1,C)f̃k(`)

)
, f̃i(`)〉L2(S1,C)

= τ̃i(`) + 2〈
∑
k∈J

〈ε2ψ̃ ?` R̃(·x, ·`, t), f̃k(`)〉L2(S1,C)

∑
j∈J

mk,j(`)f̃j(`), f̃i(`)〉L2(S1,C)

= τ̃i(`) + 2
∑
k∈J

∑
j∈J

〈ε2ψ̃ ?` R̃(·x, `, t), f̃k(`)〉L2(S1,C)mk,j(`)〈f̃j(`), f̃i(`)〉L2(S1,C)

= τ̃i(`) + 2
∑
k∈J

〈ε2ψ̃ ?` R̃(·x, `, t), f̃k(`)〉L2(S1,C)mk,i(`)

and

〈ε2ψ̃ ?` R̃(·x, `, t), f̃k(`)〉L2(S1,C)

=〈
∫ 1/2

−1/2

(εÂ(ε−1m, ε3t)f̃(m)eiω
′(0)mt +O(ε3))×∑

j

r̃j(`−m)f̃j(`−m), f̃k(`)〉L2(S1,C)dm

=

∫ 1/2

−1/2

εÂ(ε−1m, ε3t)f̃(0)r̃j(`−m)dm×

〈f̃j(`), f̃k(`)〉L2(S1,C) +O(ε3)

=εf̃(0)

∫ 1/2

−1/2

Â(ε−1m, 0)r̃j(`−m)dm+O(ε3).

Hence using ε∂tÂ = ε4∂T Â, ωj(` −m) = ωj(`) + O(m) and f̃j(`) = f̃j(0) + O(`)
we find in lowest order the set of equations

∂2
t τ̃j(`) = − ω2

j (`)τ̃j(`) +

√
2

π

∑
j,k∈J

sj,k(`)

∫ 1/2

−1/2
εÂ
(m
ε
, 0
)
τ̃k(`−m)dm+O(ε3)
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where

sj,k(`) = mjk(`)

(
ω2
k(`)− ω2

j (`)

)
−
∫
S1

c∂f̃j(`)∂f̃k(`)dx.

Here sj,j(`) = 0 is needed to eliminate the diagonal elements, but this implies∫
S1

c(x) |∂f̃j(`)(x)|2 dx = 0

and hence cannot be satisfied if infS1 c > 0. As we see, the diagonal elements
cannot be eliminated with our ansatz.

Energy estimates

In this section we give the proof to the main theorem 3.4.1. First we note that the
two terms on the right hand side of (3.33) can be written as

∂x(a∂xR)− ∂2
x(b∂

2
xR) + 2∂x(cε

2ψ∂xR) + 2∂x(c(∂xε
2ψ)R). (3.34)

The last one of these terms is of order O(ε3) in L2(R) due to the long wave
character of the approximation ε2ψ. If we choose a + 2cε2ψ > C > 0 uniformly
in time the first three terms can be written as ∂xB∂xR where B is the self-adjoint
positive definite operator

B = (a+ 2cε2ψ)− ∂x(b∂x).

Hence there exists a positive definite self-adjoint square root A, that means a
positive-definite self-adjoint operator A with A2 = B. The associated operator
norm

‖ · ‖H̃n = ‖An · ‖L2

is equivalent to the Hn-norm and A−1 is a continuous linear mapping from L2 to
H1. In fact for fixed time A2 is a sectorial operator and we have the estimate

‖(λ+A2)−1‖Lin(L2,L2) ≤
1

λ+ C?
, 2C? = inf

S1
a(·x)

for λ > 0 if we again choose ε to be sufficiently small. We can show even more:

Lemma 3.4.2 For A = (a + 2cε2ψ − ∂x(b∂x))1/2 there exists an α ∈ R and an
ε0 > 0 such that for all ε < ε0 we have the estimate

∀t ∈ [0, T0/ε
3] : ‖(ω2 +A2)−1‖Lin(H̃2,H̃2) ≤

1

ω2 + α2
.
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Proof: Consider the equation u = (ω2 +A2)v. We have

‖u‖H̃2‖v‖H̃2 ≥ 〈u, v〉H̃2 = 〈(ω2 +A2)v, v〉H̃2 ≥ ω2‖v‖2
H̃2 + 〈A2v, v〉H̃2

≥ (ω2 + α2)‖v‖2
H̃2

where we used

|〈A2v, v〉H̃2| = 〈(a+ 2cε2ψ − ∂x(b∂x))A2v,A2v〉L2

= 〈(a+ 2cε2ψ)A2v,A2v〉L2 + 〈b∂xA2v, ∂xA
2v〉L2︸ ︷︷ ︸

≥0

≥

(
inf
x∈S1

a(x)− 2 sup
x∈S1

c(x) · sup
x∈R

sup
t∈[0,T0/ε3]

ε2|ψ(x, t)|

)
· ‖A2v‖2

L2

≥ 1

2
inf
x∈S1

a(x) · ‖v‖2
H̃2 > 0

if ε0 is chosen such that

2‖ε2
0ψ(t, ·)‖C0(R) ≤

infS1 a(x)

2 supS1 c(x)
(3.35)

such that ‖v‖H̃2 = ‖(ω2 +A2)−1u‖H̃2 ≤ (ω2 + α2)−1‖u‖H̃2 follows. �

The equation for the error is given by

∂2
tR = ∂x(A2∂xR) + 2∂x(c(∂xε

2ψ)R) + ε7/2∂x(c∂x(R
2)) + ε−7/2Res(ε2ψ). (3.36)

In order to show the boundedness of solutions to (3.36) with respect to the per-
turbation parameter ε we use energy estimates. Multiplication of (3.36) by ∂tR
and integration with respect to x gives

1

2
∂t

∫
(∂tR)2dx =−

∫
A∂xR · A∂t∂xRdx− 2

∫
c(∂xε

2ψ)R · ∂t∂xRdx

+ ε7/2

∫
∂x(c∂x)R

2 · ∂tRdx+ ε−7/2

∫
Res(ε3ψ) · ∂tRdx.

Here for the first term on the right hand site we have∫
A∂xR · A∂t∂xRdx =∂t

1

2

∫
(A∂xR)2dx− 1

2

∫
∂tA∂xR · A∂xR +A∂xR · ∂tA∂xRdx

=∂t
1

2

∫
(A∂xR)2dx− 1

2

∫
(∂tAA+A∂tA)∂xR · ∂xRdx
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=∂t
1

2

∫
(A∂xR)2dx− 1

2

∫
(2c∂t(ε

2ψ))∂xR · ∂xRdx

such that we have

1

2
∂t

∫
(∂tR)2+(A∂xR)2dx =

∫
(2c∂t(ε

2ψ))∂xR · ∂xRdx− 2

∫
∂x(c(∂xε

2ψ)R) · ∂tRdx

+ ε7/2

∫
∂x(c∂x)R

2 · ∂tRdx+ ε−7/2

∫
Res(ε3ψ) · ∂tRdx

≤ 2‖c∂tε2ψ‖L∞︸ ︷︷ ︸
≤Cε3

‖R‖2
H2 + 2 ‖∂x(c(∂xε2ψ)R)‖L2︸ ︷︷ ︸

≤Cε3‖c‖C1‖R‖H1

‖∂tR‖L2

+ ε7/2‖c‖C1‖R2‖H2‖∂tR‖L2 + ε−7/2‖Res(ε2ψ)‖L2︸ ︷︷ ︸
Cε4

‖∂tR‖L2

≤Cε3(‖R‖2
H2 + ‖R‖H2‖∂tR‖L2

+ ε1/2‖R‖2
H2‖∂tR‖L2 + ε‖∂tR‖L2).

The quadratic form on the left hand side of this inequality can not bound every
term on the right hand side, we additionally need control of ‖R‖L2 and of ‖∂tR‖L2 .
Multiplication of both sides of (3.36) with −∂−1

x A−2∂−1
x (∂tR) and integration with

respect to x gives

1

2
∂t

∫
(A−1∂−1

x ∂tR)2dx =

∫
((∂tA−1)∂−1

x ∂tR) · (A−1∂−1
x ∂tR)dx

+

∫
(A−1∂−1

x ∂2
tR) · (A−1∂−1

x ∂tR)dx

=
1

2

∫
((∂tA−1)∂−1

x ∂tR) · (A−1∂−1
x ∂tR) + (A−1∂−1

x ∂tR) · ((∂tA−1)∂−1
x ∂tR)dx

−
∫
R∂tRdx︸ ︷︷ ︸

= 1
2
∂t‖R‖2

L2

− 2 ·
∫

(c∂x(ε
2ψ)R) · (A−2∂−1

x ∂tR)dx︸ ︷︷ ︸
≤ 2 supt≤T0/ε

3 ‖c∂x(ε2ψ)‖L∞‖R‖L2‖A−2∂−1
x ∂tR‖L2

− 2ε7/2

∫
cR∂xR · (A−2∂−1

x ∂tR)dx︸ ︷︷ ︸
≤ 1

2
‖c‖L∞‖∂xR‖2L2‖A−1∂−1

x ∂tR‖L2

− ε−7/2

∫
(∂−1
x Res(ε2ψ)) · (A−2∂−1

x ∂tR)dx.︸ ︷︷ ︸
≤Cε3‖A−2∂−1

x ∂tR‖L2

Using the relation ∂t(A−1) = −A−1(∂tA)A−1 and the estimate

‖A−2∂−1
x ∂tR‖H2 ≤ ‖A−1∂−1

x ∂tR‖H2
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we find∫
((∂tA−1)∂−1

x ∂tR)(A−1∂−1
x ∂tR)dx =− 1

2

∫
((∂tA)A+A(∂tA))︸ ︷︷ ︸

=2c∂t(ε2ψ)·

(A−2∂−1
x ∂tR)

× (A−2∂−1
x ∂tR)dx

≤ sup
t≤T0/ε3

‖c∂t(ε2ψ)‖L∞‖A−2∂−1
x ∂tR‖2L2

≤Cε3‖A−1∂−1
x ∂tR‖2L2 .

Finally we find

1

2
∂t

∫
(A−1∂−1

x ∂tR)2 +R2 dx ≤ Cε3(1 + ‖R‖L2 + ‖∂xR‖2
L2) · ‖A−2∂−1

x ∂tR‖L2 .

Again, the quadratic form on the left hand side of this inequality can not bound
every term on the right side, we additionally need control of ‖∂xR‖L2 . But, for
the sum of both quadratic forms

E(t) :=
1

2

∫
(A−1∂−1

x ∂tR)2 +R2 + (∂tR)2 + (A∂xR)2dx

we find

∂tE(t) ≤C̃ε3(E + ε1/2E3/2 + εE1/2) ≤ 1

2
Cε3(2 + E + ε1/2E3/2).

Now we can apply Lemma 2.3.1: For a given T0 > 0 let M := eCT0−1. Then for all
ε < ε0 := 1

M
while E < M we have εE < 1 such that E satisfies ∂tE ≤ Cε3(1+E).

Hence we have E(t) ≤ eCε
3t − 1 ≤M and

sup
t≤T0/ε3

E(t) ≤ eCT0 − 1 = M.

We can extend Theorem 3.4.1:

Lemma 3.4.3 With the assumptions from Theorem 3.4.1 we have

sup
t≤T0/ε3

‖u(t, ·x)− ε2f̃(0)A(ε(·x + ω′(0)t), ε3t)

− ε3f̃(0)(L̃(∂x)
−1a′)∂XA(ε(·x + ω′(0)t), ε3t)‖C(R) ≤ Cε7/2.

Proof: We have

ε2ψ(t, x) =

∫ 1/2

−1/2

ei`xεÂ(`ε−1, ε3t)eiω
′(0)`tf̃(`)χ(`)dl +O(ε7/2)
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=

∫ 1/2

−1/2

ei`xεÂ(`ε−1, ε3t)eiω
′(0)`t̃(f(0) + `f̃ ′(0) + . . . )χ(`)dl +O(ε7/2)

=

∫ 1/2

−1/2

εÂ(`ε−1, ε3t)eiω
′(0)`t+i`xf̃(0)d`

− if̃ ′(0)ε2

∫ 1/2

−1/2

i(`ε−1)Â(`ε−1, ε3t)d`+O(ε7/2)

= f̃(0)ε2A(ε(x+ ω′(0)t), ε3t)

+ f̃(0)(L̃(∂x)
−1a′)ε3∂XA(ε(x+ ω′(0)t), ε3t) +O(ε7/2)

where we used f̃ ′(0) = −if̃(0)(L̃(∂x)
−1a′)(x). �

3.4.3 Justification of the Whitham approximation

In case of Whitham approximation we consider the energy

E(t) :=
1

2

(
‖∂tR‖2

L2 + ‖Ã−1∂−1
x ∂tR‖2

L2 + ‖R‖2
L2 + ‖Ã∂xR‖2

L2

)
(3.37)

where Ã2 := a+ 2ψc− ∂x(b∂x) for sufficiently small approximation ψ is a positive
self-adjoint operator. Note the relationship to the energy used for the KdV case.
Using the estimates from the justification of the KdV equation we find

∂tE = ε(E + ε1/2E3/2 + εE1/2) ≤ 1

2
Cε(2 + E + ε1/2E3/2)

such that an application of Lemma 2.4.1 gives the boundedness for E on the cor-
responding O(ε−1)−timescale. Also note, that we only need estimates we already
proved in the justification part for the KdV equation.

3.5 Straightforward justification using a two pa-

rameter semigroup

Instead of multiplying the error equation by seemingly random terms and integrat-
ing with respect to x, the energy from above can be derived from a skew symmetric
first order representation in a straightforward way using the variation of constants
formula. Consider again equation (3.34) and rewrite this to

∂tZ = ΛZ + ε3F (t, Z) (3.38)
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where Z = (R,P = A−1∂−1
x ∂tR), Λ =

(
0 ∂xA
A∂x 0

)
and

F (t, Z) = G(t, R, P ) = (0, H(t, R, P ))

where

H(t, R, P ) = 2A−1(c(∂xε
−1ψ)R)︸ ︷︷ ︸

I

−ε−3A−1∂tAP︸ ︷︷ ︸
II

+ ε1/2A−1(2cR∂xR)︸ ︷︷ ︸
III

+ ε−13/2A−1∂−1
x Res(ε2ψ)︸ ︷︷ ︸
IV

and

Λ =

(
0 ∂xA
A∂x 0

)
.

Lemma 3.5.1 Let A ∈ C([0, T0], H6(R)) satisfy the KdV equation (3.22) and
c ∈ C1(S1). Then we have

‖H(t, Z)‖H2 ≤ C(‖Z‖H2×H2 + ε1/2‖Z‖2
H2×H2 + 1).

Proof: In Hn(R)×Hn(R) we use the equivalent inner product

〈u, v〉H̃n := 〈Anu,Anv〉L2 .

The advantage of this inner product, of course, is, that A is self-adjoint with
respect to it. First of all note that we have the equivalence of the norms uniformly
in time. In detail fix T0 > 0 and let A ∈ C2([0, T0], H6(R)) be a solution to the
corresponding KdV equation. Next fix ε0 > 0 given in 3.35. Then we have

∀t ≤ T0/ε
3 : min{1

2
inf
S1
a, inf

S1
b} · ‖u‖2

H1 ≤ ‖Au‖2
L2 ≤ max{3

2
sup
S1

a, sup
S1

b} · ‖u‖2
H1

and the main statement follows by iteration. First note that for (I) we have

‖A−1(c∂xε
−1ψ)R‖H̃2 = ‖c(∂xε−1ψ)R‖H̃1 ≤ C‖c‖C1(S1)‖∂xε−1ψ‖C1(R)‖R‖H1

≤ C‖c‖C1(S1)‖∂xε−1ψ‖C1(R)‖R‖H2 ≤ C‖R‖H2 ≤ C‖R‖H̃2

since by construction we have ‖∂xε−1ψ‖C1(R) ≤ C. For (III) we find

‖ε1/2A−1(2cR∂xR)‖H̃2 = ‖ε1/2c∂xR
2‖H̃1 ≤ ε1/2C‖c‖C1(S1)‖R‖2

H̃2 .
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For the last residual term (IV ) the required estimates have already been made in
the previous section. In order to show the estimate for (II) we recall the formula
for fractional powers of closed operators: For a γ ∈ (0, 1) the operator B−γ is
defined by

B−γU =
sin(γπ)

π

∫ ∞
0

λ−γ(λ+B)−1Udλ. (3.39)

Choosing B = A2 and γ = 1/2 we find the formulas

A−1U =
1

π

∫ ∞
0

λ−1/2(λ+A2)−1Udλ, and A−1U =
1

π

∫ ∞
−∞

(ω2 +A2)−1Udω,

respectively. Hence we can express A in terms of A2. This is useful since we have
control over the time derivative of A2 in H2. In order to estimate (II) we need to
deal with the time derivative of A−1. We recall that from Id = AA−1 we have the
formula ∂tA = −A∂t(A−1)A. Applying this principle twice, first to A−1 and then
to (ω2 +A2)−1, we find

‖A−1∂tAP‖H̃2 = ‖∂t(A−1)AP‖H̃2

=
1

π

∥∥∥∥∫ ∞
−∞

(ω2 + A2)−1
(
2c∂t(ε

2ψ)(ω2 +A2)−1AP )
)
dω

∥∥∥∥
H̃2

≤ 1

π

∫ ∞
−∞
‖(ω2 + A2)−1

(
2c∂t(ε

2ψ)(ω2 +A2)−1AP )
)
‖H̃2 dω (3.40)

These terms can be estimated using the following lemmas.

Lemma 3.5.2 For every positive definite self-adjoint operator X in a Hilbert space
H such that

‖(λ+X)−1‖Lin(H) ≤ (λ+ 1)−1.

we have ‖Xµ(λ+X)−1‖Lin(H) ≤ 4
π
(λ+ 1)µ−1 for µ ∈ [0, 1], λ ≥ 0.

Proof: Let Xu = λv + Xv. Since X is positive and self-adjoint and due to the
assumed estimate, X−1 is a continuous and also positive definite and self-adjoint
operator in H and possesses a positive definite self-adjoint square root X−1/2 which
is also a continuous operator in H. Then we have

‖v‖2
H =〈u− λX−1v, v〉H = 〈u, v〉H − λ‖X−1/2v‖2

H ≤ ‖u‖L2‖v‖H
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which proves the case µ = 1. Using formula (3.39) in the case 0 < µ < 1 we find

Xµ(λ+X)−1 =Xµ−1X(λ+X)−1 (3.41)

=
sin(π(µ− 1))

π

∫ ∞
0

λ̃µ−1X(λ̃+X)−1(λ+X)−1dλ̃

=
sin(π(1− µ))

π

∫ λ+1

0

λ̃µ−1

(
X(λ̃+X)−1

)
(λ+X)−1dλ̃ (3.42)

+
sin(π(1− µ))

π

∫ ∞
λ+1

λ̃µ−1(λ̃+X)−1

(
X(λ+X)−1

)
dλ̃ (3.43)

where we can now use the first result in order to estimate the operator norm of
(3.42) by

| sin(πµ)|
π

∫ λ+1

0

λ̃µ−1(λ+ 1)−1dλ̃ =
| sin(πµ)|

πµ

λµ

(1 + λ)
≤ | sin(πµ)|

πµ
(1 + λ)µ−1.

The operator norm of (3.43) can be estimated by

| sin(πµ)|
π

∫ ∞
λ+1

λ̃µ−1(λ̃+ 1)−1dλ̃ ≤ sin(πµ)

π

∫ ∞
λ+1

λ̃µ−2dλ̃ ≤ | sin(πµ)|
π(1− µ)

(1 + λ)µ−1.

Altogether we have

‖Xµ(λ+X)−1‖Lin(H) ≤
| sin(πµ)|
πµ(1− µ)

(λ+ 1)µ−1 ≤ C(λ+ 1)µ−1 (3.44)

where C = 4
π

is an optimal choice. �
Generalization of this lemma by scaling of X gives the following lemma:

Lemma 3.5.3 For every positive definite self-adjoint operator X in a Hilbert space
H there exists an α > 0 such that

‖(λ+X)−1‖Lin(H) ≤ (λ+ α)−1

and we have a C > 0 such that ‖Xµ(λ+X)−1‖Lin(H) ≤ 4
π
(λ+α)µ−1 for µ ∈ [0, 1],

λ ≥ 0.

Proof: Choose

α := inf
v 6=0

〈Xv, v〉H
‖v‖2

H

> 0.

The operator Y := 1
α
X satisfies the estimate

‖(λ+ Y )−1‖Lin(H) ≤ (λ+ 1)−1
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such that we can use Lemma (3.5.2) and find

‖Xµ(λ+X)−1‖Lin(H) = αµ−1‖Y µ(λα−1 + Y )−1‖Lin(H)

≤ Cαµ−1(λα−1 + 1)µ−1 = C(λ+ α)µ−1. �

Finally, we can estimate the right hand side of (3.40) by

(3.40) =
1

π

∫ ∞
−∞
‖A2(ω2 +A2)−1

(
2c∂t(ε

2ψ)(ω2 +A2)−1AR
)
‖L2dω

≤ 1

π

∫ ∞
−∞
‖A2(ω2 +A2)−1‖Lin(L2)2‖c∂t(ε2ψ)‖L∞(R)‖(ω2 +A2)−1AR‖L2dω

≤Cε3

∫ ∞
−∞
‖(ω2 +A2)−1AR‖L2dω = Cε3

∫ ∞
−∞
‖(ω2 +A2)−1A−1R‖H̃2dω

≤Cε3

∫ ∞
−∞

(ω2 + α2)−1dω ‖R‖H̃2 = Cε3‖R‖H̃2 ≤ Cε3‖Z‖H2×H2 . �

In order to apply the variation of constants formula we need an estimate for the
evolution system. Consider the linear non-autonomous equation

∂tZ(t) = Λ(t)Z(t) (3.45)

where λ(t) =

(
0 ∂xA(t)

A(t)∂x 0

)
. For a fixed t0 by Stone’s theorem Λ(t0) is the

generator of a strongly continuous group T (t, t0) of unitary operators onH2(R,C)×
H2(R,C). In the terminology from [P83] (p. 134 and following) we have the
stability constants ω = 0 and M = 1. Moreover we have ‖Z‖H2(R,C)×H2(R,C) ≤
‖Z‖H4(R,C)×H4(R,C) and H4(R,C) is Λ(t0)-admissible, i.e. H4(R,C) is an invariant

subspace of T (t, t0) such that the restriction T̃ (t, t0) of T (t, t0) to H4(R,C) is a
strongly continuous group of unitary operators on H4(R,C).

Lemma 3.5.4 The solution to (3.45) is given by Z(t) = T (t, t0)Z(t0) where the
evolution system T (t, s) is a mapping R+

0 ×R+
0 → Lin(H2(R,C)×H2(R,C)) which

satisfies the following conditions:

i) ∀Z ∈ H2 ×H2 : limt→s,+ T (t, s)Z = Z,

ii) ∀t0 ≤ t1 ≤ t2 : T (t2, t0) = T (t2, t1)T (t1, t0).

iii) We have ∂tT (t, s) = Λ(t)T (t, s), ∂sT (t, s) = −T (t, s)Λ(s) and

‖T (t, s)Z‖H2(R,C)×H2(R,C) ≤ eCε
3(t−s)‖Z‖H2(R,C)×H2(R,C).
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Proof: The first two points and the rules for the derivatives follow directly from
[P83, Theorem 3.1]. In order to show the boundedness of the evolution system
T (t, s) with respect to the O(ε3)−time scale, first, we define X2 = H2(R,C) ×
H2(R,C) with the inner product 〈Z, Z̃〉X2 = 〈(Id − Λ(t)2)Z, Z̃〉L2(R,C)×L2(R,C).
Again we have equivalence of the norms uniformly in time on the O(ε3)−time
scale. Using [Λ(t), Id− Λ(t)2] = 0 in a straight forward computation we find

∂t‖Z(t)‖2
X2 = 〈∂t(Id− Λ(t)2)Z(t), Z(t)〉L2×L2

= 〈∂t(Id− ∂xA2∂x)R,R〉L2 + 〈∂t(Id−A∂2
xA)P̃ , P̃ 〉L2

= −2〈c(∂tε2ψ)∂xR, ∂xR〉L2 + 〈∂xAP, ∂x(∂tA)P 〉L2 + 〈∂x(∂tA)P, ∂xAP 〉L2

≤ 2‖c‖C(S1)‖∂tε2ψ‖C(R)‖R‖2
H1 + 2‖∂xAP‖L2‖∂x(∂tA)P‖L2

≤ Cε3‖Z(t)‖2
X2 + C‖Z(t)‖X2‖A−1∂tAP‖H2 ≤ Cε3‖Z(t)‖2

X2

where the last estimate has been derived in the proof for the boundedness of the
non-linearity. �

Mild solutions of (3.38) with Z(t0) = Z0 are given by

Z(t) = T (t, t0)Z0 + ε3

∫ t

t0

T (t, s)F (Z(s), s)ds.

For the rest of the proof, for simplicity reasons, we will assume t0 = 0 and Z(0) =
Z0 = 0. Let z(t) = ‖Z(t)‖H̃2×H̃2 . In order to apply a Gronwall argument we
estimate z(t) using the formula from above by

z(t) =

∥∥∥∥∫ t

0

T (t, s)F (Z(s), s)ds

∥∥∥∥
Hs×Hs

≤
∫ t

0

eCε
3(t−s)‖F (Z(s), s)‖Hs×Hsds

≤
∫ t

0

1

2
eCε

3(t−s)ε3(2 + z(s) + ε1/2z2(s))ds ≤ Cε3t+
1

2
Cε3

∫ t

0

(z(s) + ε1/2z(s)2)ds

where we used exp (Cε3(t− s)) ≤ eCT0 ≤ C for t, s ∈ [0, T0/ε
3]. Choose M :=

eCT0 − 1 and ε < ε0 := M−2. Then z satisfies the inequality

z(t) ≤ Cε3t+ Cε3

∫ t

0

z(s)ds.
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as long as z(t) < M . Solutions to this can be estimated using Gronwall’s inequality
by

z(t) ≤ Cε3t+ C2ε6

∫ t

0

seCε
3(t−s)ds

= Cε3t+ C2ε6

(
−s
Cε3

eCε
3(t−s)

∣∣∣∣t
0

+
1

Cε3

∫ t

0

eCε
3(t−s)ds

)
= eCε

3t − 1 ≤M

for all [0, T0/ε
3]. Hence we have shown the boundedness with respect to the long

time interval [0, T0/ε
3].

3.6 Discussion

Differences between the KdV and the Whitham case arise already in the case of
constant coefficients, when, in the KdV case, for any T0 > 0 and every solution A
to the corresponding KdV-equation the needed conditions for justification can be
satisfied by choosing a sufficiently small ε. This is not the case for the Whitham
approximation. Here we need to choose T0 and solutions A such that

sup
t<T0

‖A(·X , T )‖C0(R) < 1/2.

Essential differences between the constant coefficient case and the case of pe-
riodic coefficients come from the increased complexity of the underlying analysis
induced by the use of the Bloch transform. As a result of this need the equa-
tions for the correction term become much more demanding. Moreover, while in
the KdV case the equation for the approximation is uncoupled from the equa-
tions for the correctors, in case of Whitham’s approximation, at first glance, we
have nonlinear coupling of these equations. Nevertheless, the equations can be re-
duced to one autonomous equation for the approximation and a set of autonomous
differential-algebraic equations for the correctors.
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