
Equalization and Blind Signal
Combining Algorithms for Mobile
Television Broadcast Reception

Von der Fakultät Informatik, Elektrotechnik und
Informationstechnik der Universität Stuttgart zur

Erlangung der Würde eines Doktor-Ingenieurs (Dr.-Ing.)
genehmigte Abhandlung

Vorgelegt von

Rana Hesham Abdelmonem Ahmed

aus Kairo

Hauptberichter: Prof. Dr.-Ing. J. Speidel
Mitberichter: Prof. Dr.-Ing. B. Yang
Tag der mündlichen Prüfung: 19. Januar 2016
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Abstract

Mobile TV reception through orthogonal frequency division multiplexing (OFDM) based
terrestrial networks such as digital video broadcast-terrestrial standard (DVB-T) and its
second generation DVB-T2 imposes many challenges on the receiver equalizer block. In
this thesis, we deal with the problem of inter-carrier interference (ICI) in an OFDM
receiver, due to a time-varying multi-path channel. We show that taking the ICI fre-
quency selectivity into account, a better trade-off between performance and complexity
can be reached in single input single output (SISO) and single input multiple output
(SIMO) receivers. In addition, our simulation results suggest that exploiting spatial
diversity, especially using ICI-aware antenna receiver diversity combining techniques, is
a very effective technique to mitigate ICI. We also study several concatenations of re-
ceiver diversity combining and SISO ICI cancelers. Simulation results suggest that the
best Doppler resistance can be achieved using an ICI-aware receiver diversity combining
technique followed by an ICI canceler.

In the second part of this thesis, we investigate a special architecture of receiver
diversity combining, which works independently of the underlying broadcasting standard.
Blind identification using multi-channel frequency least mean squares (MCFLMS) is
carried out to estimate the channel without using pilots. We also introduce several
enhancements on MCFLMS to allow better tracking of fast time-varying multi-path
communication channels. Our simulation results show that modified blind maximum
ratio combining (MRC), even with no synchronization information, can reach a very
close performance level to that of the classical MRC with genie-aided channel knowledge
(GACN).

Kurzfassung

Digitale Fernsehübertragungssysteme wie DVB-T und DVB-T2 arbeiten mit orthogo-
naler Mehrträgermodulation OFDM. Dieses Modulationsverfahren stellt sehr hohe An-
forderungen an den mobilen Empfänger. Die vorliegende Arbeit beschäftigt sich mit
dem Einfluss und der Verringerung von Interkanalinterferenz-Störungen (ICI), welche
durch die zeitvariante Mehrwegeausbreitung bei Mobilempfang verursacht wird. Es
wird gezeigt, dass eine Berücksichtigung der Frequenzselektivität des Spektrums der
ICI zu einem besseren Kompromiss zwischen Leistungsfähigkeit und Komplexität bei
Empfängern mit einer Antenne (SISO) und bei Empfängern mit mehreren Antennen
(SIMO) führt. Darüber hinaus zeigen die vorgestellten Ergebnisse, dass ICI sehr effek-
tiv durch Ausnutzung der räumlichen Diversität durch Empfänger unterdrückt werden
kann, welche die verschiedenen Empfangssignale geeignet verknüpfen (Diversity Com-
bining). Auch die Kettenschaltung aus Diversity Combining und ICI-Entzerrung wird
für verschiedene Varianten vorgestellt. Simulationen zeigen, dass die größte Robustheit
gegenüber dem Doppler-Effekt durch eine Anordnung aus Diversity Combining unter
Berücksichtigung von ICI gefolgt von ICI-Entzerrung erzielt werden kann.

Im zweiten Teil der Arbeit wird eine spezielle Empfänger struktur mit Diversity Com-
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bining untersucht, welche unabhängig vom verwendeten Rundfunkstandard ist, was einen
großen technischen Vorteil darstellt. Unter Verwendung eines Verfahrens zur blinden
Systemidentifikation (Multi-Channel Frequency Least Mean Squares, MCFLMS) wird
der Kanal ohne Verwendung von Pilotträgern blind geschätzt. Es werden außerdem
mehrere Erweiterungen des MCFLMS-Verfahrens vorgestellt, die eine verbesserte Nach-
führung der Kanalschätzung von sich schnell ändernden Mehrwegekanälen ermöglichen.
Simulationen zeigen, dass ein vorgeschlagenes, modifiziertes blindes Maximum-Ratio-
Combining (MRC)-Verfahren ohne jegliche Synchronisation sehr nahe an die Leistungs-
fähigkeit von klassischen MRC-Verfahren mit perfekter Kanalkenntnis herankommt.

xxii



1. Introduction

1.1. Motivation

The mobile wireless industry has undergone a great progress in device capability over
the recent years; in response to the ever growing requirements and expectations of users
and mobile operators. Such a progress has enabled new exciting services to emerge such
as mobile TV. Consumers now have appropriate sized screens, through their tablets
and smart phones, to receive mobile TV broadcasting. Commercial trials have revealed
strong consumer interest according to [Mas06]. Nowadays, users can easily buy mobile
TV tuners to work in vehicles or on their hand-held devices; to follow live events like foot-
ball matches, the Oscars, etc. However, most of the widespread digital terrestrial broad-
casting standards, such as the Digital Video Broadcast-Terrestrial Standard (DVB-T),
were not initially designed to serve mobile reception with high terminal speed. Therefore,
many challenges are encountered with the mobile environment. In fact, many voices have
called for providing mobile TV services through the cellular systems, which are especially
designed to deal with the mobile environment.

Cellular systems have been initially designed for unicast services. On the one hand, an
advantage of providing broadcast services through the cellular network is that users can
access content on-demand, rather than following a fixed schedule. Another advantage is
the ability to adapt the transmission parameters depending on the user settings instead
of designing the system based on the worst case user. On the other hand, a major
disadvantage is the poor scalability as the number of users increase in the network
[GB13]. To deal with these limitations, third generation partnership project (3GPP) has
defined a broadcast extension, called multimedia broadcast multicast service (MBMS)
for existing and upcoming 3GPP networks. MBMS introduces new point to multi-
point (p-t-m) radio channels and multi-cast support in the core network. In [HHH+07],
the limitations of using unicast technology to provide mobile TV reception is studied
and a hybrid unicast-broadcast delivery scheme is proposed. Although it gained a lot of
attention, MBMS has not been practically deployed so far. Its long term evolution (LTE)
version Enhanced Multimedia Broadcast Multicast Service (eMBMS), on the other hand,
seems more promising where several broadcasters such as Verizon [Flo14] have announced
they are trialling or deploying eMBMS.

This thesis discusses the challenges faced at the equalization stage in mobile TV
orthogonal frequency division multiplexing (OFDM) based broadcast reception with a
special focus on the problem of inter-carrier interference (ICI). ICI is a special kind of
interference which occurs due to the time varying channel in a mobile OFDM receiver.
ICI is a major challenge especially in mobile broadcasting, with the relatively small car-
rier spacings. For example, on an 8 MHz channel, the carrier spacing in DVB-T can be

1



1.1. MOTIVATION

either 1.116 kHz in the 8k mode or 4.47 kHz in the 2k mode, i.e, at least 3 times smaller
than that of LTE which is 15 kHz. Because of this very small carrier spacing, DVB-T
and Second Generation Digital Video Broadcast-Terrestrial Standard (DVB-T2) systems
are very sensitive to temporal channel variations.

As we shall see, one elegant solution to such a problem and a general technique to
boost a wireless system performance is to employ multiple antennas at the receiver side,
i.e., antenna receiver diversity. In such case, the information message is sent via a single
antenna at the transmitter side and later captured via multiple appropriately spaced1

antennas at the receiver side, i.e., a single input multiple output (SIMO) system. In this
context, we shall observe that ICI-aware diversity combining, which seek maximizing the
signal to interference plus noise ratio (SINR) can deliver a significant improvement in
Doppler resistance. We show that even, with no special ICI consideration, a significant
improvement in the Doppler resistance is observed when using 2 antennas instead of one.

Sending the same copy of information over M independent different channels, and
with no special ICI consideration, the received signals can be combined using four prin-
cipal types of algorithms, which differ in the amount of channel state information (CSI)
required, used complexity and performance [SA05]:

1. maximum ratio combining (MRC): which assigns different weights to the received
signals coming from the different antennas, depending on the channel strength
experienced over each antenna.

2. equal gain combining (EGC): which assigns the same weights to all the received
signals coming from the different antennas.

3. selection diversity (SD): only processes the received signal obtained from the
strongest channel.

4. switch and stay combining (SSC): a variant of SD, which selects the strongest
branch at a certain point of time and does not scan further for the strongest
branch until the received power drops below a certain threshold.

The most promising performance of which is that of MRC. For equally likely transmitted
symbols and in the absence of correlation among the antennas, MRC produces a total
signal-to-noise ratio (SNR) per symbol, Γt, at the output of MRC given by [Stu96] Γt =∑M

m=1 Γm, where Γm denotes the SNR of the diversity branch on the mthantenna and M
is the number of receive antennas. However, in order to achieve this gain, MRC requires
full knowledge of the channel coefficients’ amplitude and phase information. Other
algorithms require less information, such as information about the strongest branch,
phase angle of the channel coefficients, etc., but at the expense of an inferior performance.
To acquire this information, standard dependent blocks have to be placed before the

1The spacing is to guarantee the received signals have gone through independent fading channels.
Typically, a spacing distance dant >

λw
2

is required, where λw is the wavelength used for transmission
[PNG08].
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combining stage which performs this task. This means that, for example, a receiver with
a single antenna can’t be easily modified to a SIMO receiver. In such case the whole
architecture has to be rebuilt.

In the second part of this thesis, we discuss a standard independent receiver diversity
combining scheme proposed in [AES13, EAS13]. The proposed architecture acts as a
universal combining stage that can be placed between the receiver front end and the
demodulator block. Our goal is to decouple the combining stage from the system based
demodulator. The proposed architecture is very advantageous for system on chip design,
for example in receivers which are designed to receive transmit signals from different
standards. Moreover, an existing single input single output (SISO) receiver can be
easily extended to a SIMO receiver, by adding the standard independent combining unit
between the multiple antennas and the SISO demodulator. With these advantages, extra
processing power and time delay latency are expected. Broadcasting systems, however,
are known for having less restrictions on latency compared to cellular communication
systems and thus we are left with the processing power as our concern. The combining
stage should combine the received distorted signals using MRC, producing a signal with a
higher SNR. The standard based demodulator removes the distortion from the combined
signal.

1.2. Organization of the Thesis

This thesis is organized as follows. In Chapter 2, we start by presenting the mathematical
model of the time-varying channel model considered in this work. We then introduce the
motivation and introduction to the class of multi-carrier signals, which serves as a basis
for discussion in later Chapters. We then give a brief overview of the most common
digital broadcasting systems around the world, to focus finally on the Digital Video
Broadcast (DVB) family of standards. We give a brief overview of this standard and
describe how channel and noise estimation are conducted in our system implementation.

In Chapter 3, the problem of ICI due to mobile reception of an OFDM signal is
investigated in detail. We lay down a mathematical model which describes how ICI
can be modeled and computed in practice. We also focus on the problem of ICI in
a time-varying frequency selective channel, i.e., a double selective channel. From the
observations obtained in this section, we are able to introduce two receiver enhance-
ments in [ALS14, AES15]. We then move to introduce two well known classes of SISO
ICI cancelers, namely minimum mean squared error (MMSE) ICI canceler and parallel
interference canceler (PIC). Within this context, we present a proposed enhancement
to an MMSE- inter-carrier interference canceler (ICIC) namely MMSE-adaptive sliding
window (ASW) ICIC.

Chapter 4 deals with the problem of ICI mitigation in a multi-antenna receiver. We
present several algorithms proposed in the literature for multi-antenna receiver signal
combining including the classical MRC scheme which does not consider ICI in its opera-
tion. Other discussed approaches consider ICI in the combining stage, leading to a better
ICI mitigation performance, compared to MRC, at the expense of higher complexity and
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memory requirements. Within this context, we present a modified approach for MRC,
where ICI is not directly considered but which assumes ICI to be a source of colored
noise. We then investigate the possible gains from concatenating several combining al-
gorithms with ICI cancelers. We compare between two possible architectures, depending
on the order of SIMO combining and ICI cancellation, namely SIMO combining first or
ICI cancellation first. In our comparisons, we rely on coded bit error ratio (BER) results
obtained from testing the abovementioned algorithms on a DVB-T system.

In Chapter 5, we discuss a proposed blind maximum ratio combining (BMRC) ar-
chitecture. The proposed unit uses blind channel identification (BCI), in particular
multi-channel frequency least mean squares (MCFLMS), to compute the channel co-
efficients used for building the weighting vectors for MRC. We describe in detail the
challenges obtained when applying the proposed algorithm on practical communication
systems and the solutions proposed. At the end, we present coded BER results for the
proposed architecture with the proposed enhancements tested on a DVB-T2 system.

We end this thesis, by the conclusions in Chapter 6 with a summary of our main results.
We draw from these results the possible directions we believe could be investigated in
future work.
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2. Overview of Transmitter and Wireless
Channel Model

In this Chapter, we give an overview of the transmitter and channel model used in
this work. We deal with the equivalent baseband channel after radio frequency (RF)
demodulation. We start by laying the mathematical model of the multi-path time-
varying channel impulse response. From this point, we derive a motivation for the well
known class of multi-carrier signals. Finally, we present a brief overview of the main
digital terrestrial/hand-held broadcasting systems around the world, with special focus
on the DVB-T and DVB-T2 systems deployed widely in Europe, Australia, most of Asia
and Africa[Rei05].

2.1. Fundamentals

2.1.1. Multi-Path Time Varying Channel Model

The channel fading can be described by two different spatial scales [Rap96, Skl]:

1. large Scale Fading: due to motion over large areas. Large scale models describe
the path loss due to the distance between the transmitter and the receiver and the
surrounding environment hills, buildings, etc.

2. small Scale Fading: due to motion over a limited scale of few wavelengths. The
received signal is typically the sum of many reflections coming from different direc-
tions. The phases are random and therefore the components change significantly
even with a small motion over a fraction of a wavelength.

In this work, we describe the fading of a channel, assuming that the receiver antenna
remains within a limited trajectory, i.e., large scale fading can be assumed as a constant
[Skl]. In general, two main phenomena govern the statistics of small scale fading :

1. time delay spreading of the received signal (“ echoes”) caused by multi-path prop-
agation delays.

2. time varying behavior of the channel impulse response, due to relative motion of
transmitter, receiver and/or surrounding scatterers. For the rest of this work, we
assume only the receiver antenna is in motion.

In an environment with no direct line of sight (LOS) between the transmitter and the
receiver, i.e., a non line of sight (NLOS) environment, the envelope of the received signal
can be described by a Rayleigh probability density function (PDF)
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2.1. FUNDAMENTALS

pr (r) =
r

ER
exp

(
−r2

2ER

)
; r ≥ 0, (2.1)

where ER is the average received signal power. Such a channel is called Rayleigh fading
channel. With direct LOS between the transmitter and the receiver, the envelope of the
received signal is described by the Rician PDF

pr (r) =
x

ER
exp

(
−
(
r2 +A2

R

)
2ER

)
J0

(
ARr

ER

)
; r ≥ 0 & AR ≥ 0, (2.2)

where AR is the peak amplitude of the dominant LOS signal and J0 (x) is the Bessel
function. It is worth noting that a Rayleigh distribution is just a special case of the
Rician distribution with AR = 0. The time-varying Rayleigh channel model can be
computed as

h̃ (t, τ) =
L−1∑
l=0

α̃ (t, l) δ (τ − lT ) , (2.3)

where

α̃ (t, l) =

Ns∑
i=1

a (i, l) exp (j2πfDit) , (2.4)

where L is the total number of channel taps, a (i, l) is the complex valued channel
weight due to ith scatterer at the delay lT and Ns is the total number of scatterers.
a (i, l) ≥ 0 ∀l = 0, ....L − 1 and a (i, l) = 0 ∀l < 0 and l ≥ L. Therefore, the
channel impulse response is that of a finite impulse response (FIR) filter. Each scatterer
i contributes to the summation with a ray incident from an angle θi and therefore different
Doppler frequency shift (due to the motion) fDi = fD,max cos θi. The maximum Doppler
frequency fD,max is given by

fD,max =
fcv

c
, (2.5)

where fc is the carrier frequency, v is the velocity of the user and c is the speed of
light. For more information about the time-varying multi-path channel model in (2.3),
we refer to [Jak74]. h̃ (t, τ) can be considered as a function ideally sampled in τ direction
providing the samples α̃ (t, l); l = 0, 1, ....L−1. Sampling of h̃ (t, τ) with T spaced Dirac
impulses in t direction yields

h̃s (t, τ) =

L−1∑
l=0

α̃ (t, l) δ (τ − lT )

∞∑
n=−∞

δ (t− nT )

=

∞∑
n=−∞

L−1∑
l=0

α̃ (nT, l) δ (τ − lT ) δ (t− nT ) , (2.6)
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with the corresponding two-dimensional discrete impulse response

h (n, l) = α̃ (nT, l) . (2.7)

With α̃ (nT, l) from (2.3) we finally get

h (n, l) =

Ns∑
i=1

a (i, l) exp (j2πfDinT ) n ∈ Z, l = 0, 1, ...., L− 1 (2.8)

Taking the two dimensional (2D) N -point based fast Fourier transform (FFT) on
h (n, l) on the two dimensions n and l, and restricting n to the interval [0, N − 1],
results in [STJ08]

HF (d, k) =
1

N

N−1∑
n=0

N−1∑
l=0

h (n, l) exp

(
−j

2π

N
(nd+ lk)

)

=
1

N

N−1∑
n=0

N−1∑
l=0

Ns∑
i=1

a (i, l) exp (j2πfDinT ) exp

(
−j

2π

N
(nd+ lk)

)

=
1

N

N−1∑
n=0

L−1∑
l=0

Ns∑
i=1

a (i, l) exp

(
−j

2πkl

N

)
exp

(
j2πn

(
−d
N

+ fDiT

))
,(2.9)

where −N2 ≤ d <
N
2 and 0 ≤ k ≤ N − 1, k, d ∈ Z.

The variation of HF (d, k) along the dimension d represents the spreading in the
Doppler frequency domain because of the relative motion of the receiver. As we shall
see in Chapter 3, this spreading is the source of ICI. Spreading in the delay domain is
controlled by the multi-path channel, as mentioned above.

Interestingly, both phenomenon have a dual relationship to each other. On the one
hand, the time delay spreading of the received signal due to a multi-path channel con-
trols the channel coherence bandwidth, i.e., the frequency range over which the channel
frequency response HF (d, k) can be approximated to be constant. A 50% coherence
bandwidth can be computed as [Rap96] Bc = 1

5τmax
, where τmax is the maximum chan-

nel impulse response delay spread. On the other hand, the Doppler frequency spread
controls the coherence time, i.e., the period of time over which the channel impulse re-
sponse h (n, l) can be assumed to be constant. A 50% coherence time interval can be
computed as [Rap96] Tc = 9

16πfD,max
.

2.1.2. Multi-Carrier Transmission

The idea of OFDM has emerged a long time ago as early as the 1966 paper of Chang
[Cha66]. However, it was only considered for practical implementation when an efficient
implementation was proposed using the FFT. For more information about the history
of the development of OFDM, the interested reader can refer to [Wei09].
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Figure 2.1.: Spectrum overlap of 7 subcarriers within an OFDM symbol

In general, if the symbol duration Ts is much larger than the maximum delay spread
Ts >> τmax or alternatively the signal bandwidth is much smaller than the coherence
bandwidth Bs << Bc, the channel is considered as a “flat” channel, i.e., the received
signal can be considered to be a version of the transmitted signal weighted by a complex
scalar factor. Thus very low equalization effort is required. Indeed, this is exactly the
basic idea of an OFDM system. The idea is to divide the total bandwidth of the signal
Bs into smaller subchannels Bsc = Bs

N , referred to as subcarriers, and transmit the
information in parallel over these subchannels. If the number of subchannels, N , is large
enough such that Bsc << Bc, the channel experienced over every subchannel is “flat”and
hence a zero-forcing (ZF) equalizer is sufficient to remove the distortion in the frequency
domain. In the literature, it is common to refer to subchannels as subcarriers and to the
subchannel bandwidth Bsc as the subcarrier spacing ∆f . From here on, for convenience,
we stick to this notation.

To provide the required orthogonality between the subcarriers:

1. The subcarriers are arranged in the frequency domain such that the frequency
spacing between the subsequent subcarriers is ∆f = 1

Ts
= 1

NT , where T is the
elementary period between two successive samples in the time domain. As shown
in Figure 2.1, such an arrangement guarantees that at the frequency sampling point
of any subcarrier k, no other contribution from any other subcarrier k

′ 6= k exists.

2. Every OFDM symbol is appended at the beginning by a guard interval (GI) which
in practice contains a duplicate of the last NGI samples of the OFDM symbol and
hence is referred to as cyclic prefix (CP), where NGI ≥ L− 1.

The first requirement is sufficient to guarantee that subcarriers do not interfere with
each other, at k ∈ Z, over a flat fading channel. With this requirement, every subcarrier
within an OFDM symbol is located at an integer multiple of a basic frequency 1

Ts
.

Since the dot product between two different sinusoids which are integer multiples of a
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(a) OFDM transmitter block diagram
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(b) OFDM receiver block diagram

Figure 2.2.: OFDM transmitter and receiver block diagrams

fundamental frequency, 1
Ts

, over a whole period (inverse of the fundamental frequency,
i.e., Ts) is zero, orthogonality is satisfied over the symbol time Ts. This can be indicated
in the following equation (see Chapter 11 in [Bul00])

ˆ Ts

0
sin

(
mπt

Ts

)
sin

(
nπt

Ts

)
dt = 0 ∀m,n ∈ Z,m 6= n. (2.10)

The second requirement is necessary to guarantee the orthogonality over frequency
selective fading channels. The CP has two advantages: first it avoids inter-block in-
terference (IBI) between successive OFDM symbols. IBI can also be avoided with a
zero GI between successive OFDM symbols. Second, it guarantees the orthogonality
between each subcarrier and all the delayed versions (because of the echoes) of neighbor
subcarriers and thus avoiding ICI. Another point of view to interpret the role of the
CP is that, with it included, the received part of the OFDM symbol can be modeled as
a circular convolution between the transmitted signal and the communication channel
impulse response, which allows to map the time domain convolution to a multiplication
in the frequency domain after applying an FFT operation [OSB99]

s (n) ~ h (n)⇔ S (k)H (k) , (2.11)

which greatly simplifies the task of the equalizer block since it now deals with equal-
izing a flat fading channel instead of a multi-path channel, assuming Bsc << Bc as
mentioned above.

In Chapter 3, we put down the mathematical model of the received OFDM signal,
where the role of the CP is once again highlighted. The block diagrams of the OFDM
transmitter and receiver are shown in Figures 2.2a and 2.2b, respectively.

9
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2.2. Digital Terrestrial Broadcasting Systems

Figure 2.3 shows a map of the used terrestrial broadcasting systems around the world1.
The most widely used system in Europe, Africa, Australia and most of Asia is the
DVB-T system depicted in blue. Though initially designed for fixed rooftop antennas, it
is reported that in networks dimensioned for portable indoor reception (e.g. Germany)
it could be possible to provide commercial services to vehicles [GB13, Rei05]. In this
case, techniques such as receive antenna diversity, hierarchical modulation and Appli-
cation Layer– Forward Error Correction could increase the robustness of transmission
[LSGBGC12].

The North American Advanced Television Systems Committee 2.0 (ATSC 2.0) A/53
[ATSa], developed in the early 1990s as one of the first digital terrestrial broadcasting
standards, is based on a single carrier transmission scheme which uses vestigial side-
band (VSB) modulation. The physical layer of the mobile handheld standard ATSC 2.0
A/153 was enhanced by more robust channel coding, time interleaving and more frequent
training symbol sequences. ATSC 2.0 A/153 [ATS09] is also designed to be backward
compatible with the A/53 fixed system. In March 2013, a call for proposals was made
for the next Advanced Television Systems Committee 3.0 (ATSC 3.0) standard [ATSb].
In October 2013, Advanced Television Systems Committee (ATSC) announced the sum-
mary of responses [ATS13], including a proposal from the DVB. Most of the responses,
including LG Electronics, Zenith and Harris Broadcast, Samsung and Sony, Technicolor
and DVB proposed a multi-carrier based standard for the next generation broadcast tele-
vision standard in North America. In particular, many proposals are based on DVB-T2.

The digital terrestrial broadcasting system in China Digital Terrestrial Multimedia
Broadcast (DTMB), [dtm06] supports both single-carrier and multi-carrier modulation.
A pseudo-noise (PN) sequence is used as a frame header to mitigate intersymbol in-
terference (ISI) instead of a CP. In addition, Chinese Mobile Multi-Media Broadcast
System (CMMB) is a mixed satellite/terrestrial broadcasting system designed to provide
TV and radio services to vehicles and handheld devices with small screens. CMMB is
based on OFDM modulation to mitigate multi-path fading.

T-DMB employed in South Korea and Integrated Services Digital Broadcasting-Terrestrial
(ISDB-T) employed in Japan and South America have been successfully deployed for
portable reception [CLB+07, FA08]. Except for a time interleaver and splitting the fre-
quency band into 13 segments, ISDB-T is quite similar in architecture to DVB-T. Being
the most widely deployed system in Europe, Asia and Africa and given the fact that
solutions developed for mobile DVB-T and DVB-T2 reception can also be adopted in
ISDB-T and next generation ATSC 3.0, we shall focus in this thesis on the DVB-T and
DVB-T2 standards.

1The map, however, does not include Terrestrial Digital Media Broadcasting (T-DMB), the digital
terrestrial broadcasting system in South Korea.
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DVB-T
ATSC
ISDB-T
DTMB

Figure 2.3.: Map of the employed terrestrial broadcasting standards worldwide from
[Wik15].

2.3. DVB Family of Standards

DVB is a collection of international open standards for digital television, they include
transmission over

1. Satellite: Digital Video Broadcast-Satellite Standard (DVB-S), Second Genera-
tion Digital Video Broadcast-Satellite Standard (DVB-S2) and Extended Second
Generation Digital Video Broadcast-Satellite (DVB-S2X)

2. Cable television: Digital Video Broadcast-Cable Standard (DVB-C) and Second
Generation Digital Video Broadcast-Cable Standard (DVB-C2)

3. Terrestrial television: DVB-T and DVB-T2

4. Handheld devices: Digital Video Broadcast Handheld Standard (DVB-H) and
Digital Video Broadcast Next Generation Handheld (DVB-NGH)

In this thesis, we focus on mobile reception from terrestrial or handheld devices, For
more information about the rest of the family of standards, the interested reader can
refer to the comprehensive overview in [Rei05].

2.3.1. Digital Video Broadcasting-Terresterial (DVB-T/DVB-T2)

In Figure 2.4, we can see the block diagram of a DVB-T system [ETS09a, ETS11]. Reed
Solomon codes are used as outer channel coding scheme. For input bit-error rate less
than 2× 10−4, Reed Solomon codes are able to reduce the bit-error rate to about 10−11

[ETS11]. Convolutional codes are used as inner channel coding schemes. A convolutional
interleaver is added as an outer interleaver with an interleaving depth DI = 12. An inner
frequency interleaver is built as a group of joined blocks of de-multiplexer, bit interleaver
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Figure 2.4.: DVB-T transmitter

and symbol-interleaver. After that comes the quadrature amplitude modulation (QAM)
mapper which allows for 4, 16 and 64QAM modulation schemes. Three types of reference
information exist within a normal DVB-T OFDM symbol

1. transmitter parameter signalling (TPS) subcarriers are used for signaling parame-
ters related to the transmission scheme

2. scattered pilot (SP) subcarriers are uniformly spaced inside an OFDM symbol and
are used for channel estimation, as we shall see in section 2.4.

3. continual pilot (CoP) subcarriers, where ’continual’ means they occur at all OFDM
symbols. They are mainly used for fine synchronization and as we shall see later,
for noise estimation.

SPs and CoPs are modulated according to a pseudo-random binary sequence (PRBS),
wPRBS (k), corresponding to their respective carrier index k. They are also boosted
with a power of 16

9 . For more information about how to build the reference sequences,
the interested reader can refer to [ETS09a, ETS11].

In Figure 2.5, we can see the block diagram of a DVB-T2 transmitter, which in com-
parison to a DVB-T transmitter has the following enhancements/features:

1. stronger channel codes: Using the capacity achieving low density parity check
(LDPC) codes. A“quasi-error” free performance is achieved after Bose, Chaudhuri,
and Hocquenghem (BCH) encoder, when the BER after LDPC is < 10−7 [ITU12,
ETS09b]. To keep simulation times reasonable, some references consider a BER of
10−4 after LDPC, which corresponds to a BER of 10−7 after BCH [Sch, SS13].

2. addition of a time interleaver whose depth can reach 1023 frames to provide better
time diversity in mobile channels [GVGBC10].

3. eight possible pilot patterns (PP1 to PP8) with different pilot spacings, to cope
with the needs of transmission over different channels.

4. rotated constellations and distributed multiple input single output (MISO) tech-
nique, based on the Alamouti code.

The abovementioned enhancements (and others which are not mentioned here but can
be found in [DVB09, GB13]) allowed DVB-T2 to achieve 50% capacity increase over its
predecessor [GB13, VBT+09], at the expense of a significant increase in complexity and
chip size. That is why the DVB Consortium has introduced the T2-Lite profile [ETS09b],
which supports only a subset of DVB-T2 modes that are best suited for mobile reception.
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Figure 2.5.: DVB-T2 transmitter

In both standards DVB-T and DVB-T2, a guard band exists in the normal OFDM
symbol, i.e., out of the N subcarriers only Na subcarriers carry information and the rest
are null subcarriers. Guard bands are required to limit adjacent channel interference as
explained in Clause 4.3.2 in [ETS11]. The active subcarrier then consist of Ndata data
subcarriers and Npilots pilots.

2.3.2. Digital Video Broadcasting-Handheld (DVB-H/DVB-NGH)

DVB-H reuses the physical layer of DVB-T with some enhancements over the link layer.
This enabled DVB-H to share the network infrastructure of DVB-T [FA08]. The intro-
duced enhancements are mostly over the link layer, and they include a power saving
technique, which is quite useful for handheld devices known as time slicing and addi-
tional forward error correction (FEC) at the link layer. Although DVB-H was officially
endorsed by the European Commission, commercial DVB-H services have been progres-
sively switched off after being deployed in some European countries, because of the lack
of a successful business model [GB13].

In 2009, the DVB group announced a call for technologies for the second generation of
DVB-H, i.e., DVB-NGH. The standard was published in 2013. Further gains compared
to the existing DVB-T2 are achieved via exploring the diversity in the three dimensions,
by incorporating long time interleaving, time frequency slicing (TFS) and multiple input
multiple output (MIMO) technology. Additional features can also be found extensively in
[GB13, DVB12]. A major advantage of DVB-NGH is its ability to co-exist with DVB-T2
infrastructure thanks to the future extension frame (FEF)s of DVB-T2 [ETS09b]. FEFs
are, according to the DVB-T2 specifications, silent periods of time which can be used
to transmit something other than DVB-T2. This feature is introduced in the system to
allow for co-existance with future modified systems.

2.3.3. DVB-T/T2 and DVB-NGH Channel Models

In [DVB09, ETS09a, NGH10], a list of the channel models for the terrestrial/handheld
standards can be found. Among those, the following two channels are the most relevant
to this work:

1. typical urban 6-tap channel (TU6) channel: defined originally in [COS89]. It
emulates the terrestrial propagation in an urban channel. It comprises 6 taps which
follow the classical Jakes Doppler spectrum. In Table 2.1, the channel power delay
profile of the TU6 channel is listed.

13



2.4. CHANNEL ESTIMATION IN DVB-T/T2

Tap number Delay [ usec] Power[ dB]

1 0.0 −3

2 0.2 0

3 0.5 −2

4 1.6 −6

5 2.3 −8

6 5 −10

Table 2.1.: Typical urban 6 tap channel power delay profile

2. mobile TU6 based single frequency network (SFN). SFN is a network in which sev-
eral transmitters are modulated with the same signal and broadcast at the same
frequency. Owing to the robustness of OFDM against multi-path channels, the
received signals from different transmitters can contribute constructively to the
received OFDM signal as long as the maximum delay lies within the guard interval
length. The maximum delay then determines the maximum allowed distance be-
tween transmitters within an SFN. Mobile TU6 based SFN emulates the terrestrial
propagation in an urban area in an SFN, where it is the sum of all independent
TU6 channel models, each representing a transmitter. We refer to this channel as
single frequency network typical urban 6 tap channel (SFN-TU6). In [NGH10],
SFN-TU6 is defined for the cases of two transmitters: double typical urban 6 tap
channel (2TU6) and three transmitters: triple typical urban 6 tap channel (3TU6).
In this work, we will be only interested in the 2TU6 channel defined with parame-
ters τ2 and k2, which describe the delay and the gain of the second channel relative
to the first one, given in sec and dB, respectively. In the z domain, the channel
transfer function of the resultant 2TU6 channel can be written as

H2TU6 (z) = HTU6,1 (z) + 10(0.1k2)HTU6,2 (z) z
−τ2
T , (2.12)

where HTU6,1 (z) and HTU6,2 (z) are two independent realizations of the TU6 channel
from two different transmitters.

2.4. Channel Estimation in DVB-T/T2

In DVB-T/T2, the transmitted pilots used for channel estimation are scattered in the
time and frequency domain as shown in Figure 2.6, and hence the name“scattered pilots”.
The pilot density is controlled via the parameters Dx and Dy, which control the pilot
spacing in frequency and time respectively. The pattern shown in Figure 2.6 is for Dx = 3
and Dy = 4, which corresponds to the pilot pattern used in DVB-T and the PP1 pilot
pattern used in DVB-T2. For more information about how the different pilots patterns
in DVB-T/T2 can be built, the reader can refer to [ETS09a, ETS11, ETS09b, DVB09].

Channel estimation in DVB-T/T2 can be done using interpolation algorithms as in
[MOP07, LC06, AK05] or using domain transfer methods [YS12]. In domain transfer
methods, inverse fast Fourier transform (IFFT) is applied on the pilot symbols to get
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Figure 2.6.: SPs arrangement in DVB-T/T2

the channel impulse response (CIR) in the time domain. Noise reduction on the CIR
is possible because the number of SPs in one OFDM symbol is larger than the number
of channel taps 2 L, therefore suppressing the noisy taps at the end can lead to noise
reduction. The channel frequency response (CFR) can be obtained by applying FFT on
the obtained CIR. However, if the number of SPs is not a power of 2, as in our system
because of the guard band, this technique can fail as explained in [Kow14, MOP07].
Therefore, in our work we do not consider further domain-transfer methods.

2.4.1. Channel Interpolation

Using the received SPs, the CFR can be estimated using interpolation algorithms. Using
the sampling theorem, an upper bound for the pilot spacing in the time and frequency
domains, for reliable construction of the CFR, is computed as [MOP07]

Df ≤
1

τmax∆f
(2.13)

Dt ≤
1

2fD,max (N +NGI)T
. (2.14)

Practically the distance should be reduced to half of that in (2.13) and (2.14) [MOP07,
HKR97] to relax the requirements of the used interpolation filter, i.e., (2.13) and (2.14)
can be re-written as

2This point will be clearer with the discussion presented next in section 2.4.1, where the maximum
allowable distance between two pilots for successful channel estimation is studied.
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Df ≤
1

2τmax∆f
(2.15)

Dt ≤
1

4fD,max (N +NGI)T
. (2.16)

Note that the number of SPs per OFDM symbol NSP is equivalent to

NSP =

⌊
N

Df

⌋
, (2.17)

and given the fact that the denominator in (2.15) can be written as τmax∆f = TL∆f =
TL
NT = L

N , (2.15) can be rewritten as

Df ≤
N

2L
. (2.18)

Equations (2.17) and (2.18) can be merged together as

NSP =
N

Df
≥ 2LN

N
= 2L, (2.19)

which proves the aforementioned point at the beginning of this section concerning the
relationship between the number of SPs and the channel length.

Channel estimation by interpolation requires a first step of obtaining initial channel
estimates at the SPs positions. This can be done as

Ĥ (k) =
R (k)

S (k)
, ∀k ∈ ΩSP (2.20)

where ΩSP is the set which holds the indices of the SPs subcarrier positions, R (k) and
S (k) are the received and transmitted signals at subcarrier position k, respectively.

As a second step, an interpolation is performed. Interpolation can be done in both
time and frequency directions simultaneously or in two cascaded stages. In the cascaded
scheme, performing time interpolation first provides additional reference points (i.e. a
more denser grid) for the next step of frequency domain interpolation. In our case, how-
ever, with a fast time-varying channel and long FFT sizes, the pilot spacing in the time
domain can no longer guarantee enough correlation between the reference points. For
example, at a Doppler shift fD,max = 100 Hz, FFT size of N = 8192 subcarriers, a guard
interval of NGI = 2048 samples and an elementary period T = 7

64 usec (8 MHz channel),
Dt ≤ 1

4fD,max(N+NGI)T = 2.23 which is smaller than the smallest pilot spacing in the

most dense pilot pattern PP1. Therefore, we consider only 1D frequency interpolation
schemes in this thesis.

Interpolation schemes include:

1. polynomial based interpolation: In general, as described in [Kow14], polynomial
based interpolation (piece-wise or spline) can be implemented as a filtering tech-
nique, which can be more computationally efficient. Polynomial based interpola-
tion schemes can be classified into
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a) piece-wise interpolation: The CFR is divided into NSP−1
io

segments, where io
is the order of the polynomial used. For example, in linear interpolation, the
channel is estimated as a linear function on the interval between every two
consecutive SPs.

b) spline based interpolation as in [KHJ03, CEPB02, FAPBRB+11]. The CFR
is divided into NSP − 1 segments, Qb∀b ∈ [1, NSP − 1].
Figure 2.7 shows the difference between piece-wise interpolation and spline
based interpolation. As shown, piece-wise interpolation results in abrupt
changes in the slope of the fitted polynomials at the junction of the segments,
since the channel estimate on each segment is calculated independently of the
other segments. Spline based interpolation, on the other hand, can overcome
such a problem by enforcing extra continuity constraints on the fitted curve
[FAPBRB+11]. For a spline polynomial of order io, up to the (io − 1)st deriva-
tives of the polynomial at every segment are forced to be continuous at the
junctions. For example using third order spline polynomial interpolation, the
algorithm puts the constraint of continuity on the 0th, 1st and 2nd derivative
of the polynomial at the junctions as follows:

Qb (kb+1) = Qb+1 (kb+1)

Q̇b (kb+1) = Q̇b+1 (kb+1)

Q̈b (kb+1) = Q̈b+1 (kb+1) , (2.21)

where Q̇b and Q̈b are the first and second derivatives of the estimated channel
at the bth segment and kb+1 is the common scattered pilot between the two
consecutive segments Qb and Qb+1. First order spline interpolation reduces to
linear interpolation

2. low pass interpolation: For example in [LC06], a 1-D raised cosine filter is used to
estimate the CFR. In general, the bandwidth of the low pass filter should achieve
a trade-off between capturing the CFR and noise suppression.

3. Wiener interpolation [Hay01]: which gives the best performance. Based on an
MMSE criteria, the optimum Wiener filter coefficients needed to estimate the sub-
carrier k can be found as

U(NSP×1) (k) = R−1

Ĥp,(NSP×NSP )
P(NSP×1) (k) , (2.22)

where RĤp
is the autocorrelation matrix of Ĥ at the pilot subcarriers positions. RĤp

can be built as
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Figure 2.7.: Piece-wise Interpolation vs cubic spline

RĤp
=


E
{
Ĥp (0) Ĥ∗p (0)

}
E
{
Ĥp (0) Ĥ∗p (1)

}
. . . E

{
Ĥp (0) Ĥ∗p (NSP − 1)

}
E
{
Ĥp (1) Ĥ∗p (0)

}
E
{
Ĥp (1) Ĥ∗p (1)

}
. . . E

{
Ĥp (1) Ĥ∗p (NSP − 1)

}
...

...
. . .

...

E
{
Ĥp (NSP − 1) Ĥ∗p (0)

}
E
{
Ĥp (NSP − 1) Ĥ∗p (1)

}
. . . E

{
Ĥp (NSP − 1) Ĥ∗p (NSP − 1)

}

 ,
(2.23)

where Ĥp is a NSP × 1 vector of the estimated channel at the pilot subcarrier positions,
from (2.20). P (k) is the cross-correlation vector between the channel at the current
subcarrier position k and the channel at the SP positions. P (k) can be computed as

P (k) =


E
{
Ĥp (k) Ĥ∗p (0)

}
E
{
Ĥp (k) Ĥ∗p (1)

}
...

E
{
Ĥp (k) Ĥ∗p (NSP − 1)

}

 . (2.24)

In practice, RĤp
and P (k) are computed given some knowledge about the channel

model. It is common to assume an exponential delay profile and a Jakes Doppler spec-
trum to compute the channel auto-correlation in frequency and time domain respectively.
In this case, knowledge of the maximum delay spread τmax and the maximum Doppler
shift fD,max are required to build the matrices RĤp

and P (k) . In reality, these pa-
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rameters can be estimated with some error. In [Kow14], the effect of a mismatch in the
estimation of these parameters is investigated. Because of its need to acquire information
about the channel, Wiener interpolation is not further considered in this thesis.

As concluded in [Kow14, KHJ03], higher order polynomial interpolation can better
track more frequency selective channels (or equivalently can support larger pilot spacing)
compared to first order polynomial linear interpolation. However, higher order polyno-
mial interpolation show higher sensitivity to additive white Gaussian noise (AWGN)
and Doppler shifts 3. In addition, higher order polynomial interpolation require higher
complexity. Low pass filtering based methods can achieve a good suppression behavior
if the filter bandwidth, frequency shift and roll-off factor are properly optimized for the
estimated channel [Kow14]. Because our focus in this work is on developing low complex-
ity algorithms for noisy mobile channels and to avoid the need of optimizing too many
variables, we only use simple first order linear interpolation for channel estimation.

2.5. Noise Estimation in DVB-T/T2

Noise information after equalization is needed as an input to the demapper block for the
computation of the log-likelihood ratio (LLR) information, needed in channel decoding.
In addition, some equalization schemes require knowledge of the noise information, es-
pecially in multiple antenna reception, as we shall see in Chapter 3. In [ZM09, ZM10], a
preamble based SNR estimation method is proposed. In [Li10], a low complexity blind
algorithm is used to estimate the SNR of an OFDM signal. In this thesis, we compute
the noise information per OFDM symbol using CoPs and we refer to this scheme as
pilot assisted noise estimate (PANE). Conventionally, SNR information at the channel
output is estimated per OFDM symbol for DVB-T/T2 signals as in [GEV12], which is
valid as long as the white noise assumption is valid. The estimated noise variance per
OFDM symbol can then be estimated as

σ̂2 =
1

NCoP

∑
ι∈ΩCoP

σ2 (ι) (2.25)

where ΩCoP is the set containing the indices of all NCoP CoPs and NCoP is the total
number of CoPs per OFDM symbol and σ2 (ι) is the noise information at the ιth CoP
subcarrier position and is computed as

σ2 (ι) = ‖R (ι)−H (ι, ι)S (ι)‖2 . (2.26)

In section 4.4, we discuss an enhanced combining scheme which utilizes the colored
nature of the ICI noise, where we propose a way to compute σ̂2 (k).

3As we shall see later, Doppler shift can also be regarded as a type of Gaussian noise.
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3. Mobile Reception of Multi-Carrier
Signals

3.1. Mobile Orthogonal Frequency Division Multiplexing

OFDM has emerged as an attractive modulation scheme in high speed communica-
tion systems. Its robustness against frequency selective channels and simple transciever
structure made it the technique of choice in many digital broad-band applications, for
example asymmetric digital subscriber line (ADSL), LTE and DVB. In section 2.1.2, we
explained the motivation and the basic idea of an OFDM system, where the QAM sym-
bol stream is de-multiplexed into N parallel low rate substreams, which are modulated
over N subcarriers. The bandwidth of each subcarrier is small enough, Bsc << Bc, to
assume a flat (non-selective) channel. Although the sent subcarriers overlap in time and
frequency, the waveforms are designed to be orthogonal as discussed in section 2.1.2.

However, because of the poor localization characteristics of the rectangular impulse
adopted, OFDM is sensitive to timing and frequency offsets. In addition, long FFT
sizes renders the OFDM symbol sensitive to the time selectivity of the mobile channel.
Time variations corrupt the orthogonality of the OFDM subcarriers, resulting in ICI.
This has been a motivation for a new class of non-orthogonal waveforms which possesses
better localization characteristics and are more immune against time-varying channels
[WJK+14], currently investigated for the upcoming 5th generation mobile network (5G)
standard.

In a wireless environment, the multi-path channel is time varying because of the
mobility of the user giving rise to ICI. ICI could also arise because of unknown carrier
frequency offset. This is, however, out of the scope of this thesis. In large FFT sizes,
the total ICI impacting one subcarrier is the result of interferences from a large number
of N − 1 subcarriers. Therefore, based on the central limit theorem (CLT), as noted in
[HM11] and many references within, ICI is usually approximated as a source of Gaussian
noise for large FFT sizes.

In this Chapter, we discuss the ICI model in an OFDM system due to a time varying
multi-path channel. We describe some common receivers to deal with the ICI problem
in SISO and SIMO systems.

3.1.1. Inter-Carrier Interference

At the transmitter side of an OFDM system, the time domain output of the IFFT block
is given by
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s (n) =
1√
N

N−1∑
k=0

S (k) e
j2πkn
N , (3.1)

where S(k) is the frequency domain QAM symbol at subcarrier k, and N is the FFT
size. We assume the QAM symbols S(k) to be i.i.d. symbols with unit energy,

ES = E
{
|S (k)|2

}
= 1. (3.2)

Pilot subcarriers are boosted, as mentioned earlier in section 2.3.1, according to
[ETS11, DVB09]. At the transmitter side, a cyclic prefix is inserted between succes-
sive OFDM symbols. If the channel impulse response is shorter than the length of the
guard interval, as mentioned in section 2.1.2, ISI is eliminated.

At the receiver side, the sampled time domain signal is

r (n) = s (n) ? h (n, l) + x (n)

=
L−1∑
l=0

h (n, l) s(n− l) + x (n) , (3.3)

where ? is the convolution operator, h (n, l) is the lth tap of the time varying multi-
path FIR channel model at the nth time instant, L is the multi-path channel length and
x(n) is the AWGN signal in the time domain with noise variance σ2. We assume the
channel power is normalized to 1 thus the SNR at the receiver side, Γ, is defined as
Γ = −10 log σ2.

Applying FFT at the receiver side (after removal of the cyclic prefix), we get the
frequency domain signal

R (k) =
1√
N

N−1∑
n=0

r(n)e
−j2πkn
N

=
1√
N

N−1∑
n=0

L−1∑
l=0

h (n, l) s(n− l)e
−j2πkn
N +

1√
N

N−1∑
n=0

x (n) e
−j2πkn
N︸ ︷︷ ︸

X(k)

, (3.4)

where X (k) is the AWGN spectral component at subcarrier position k with noise vari-
ance σ2. Plugging (3.1) into (3.4)
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R (k) =
1

N

N−1∑
n=0

L−1∑
l=0

N−1∑
k′=0

h (n, l)S
(
k
′
)
e

j2πk
′
(n−l)
N e

−j2πkn
N +X (k)

=
1

N

N−1∑
n=0

L−1∑
l=0

h (n, l)S (k) e
−j2πkl
N

+
1

N

N−1∑
n=0

L−1∑
l=0

N−1∑
k′ 6=k

h (n, l)S
(
k
′
)
e
−j2πk

′
l

N e
−j2π(k−k

′
)n

N +X (k)

= S (k)
L−1∑
l=0

havg (l) e
−j2πkl
N +

1

N

N−1∑
k′ 6=k

S
(
k
′
)N−1∑
n=0

L−1∑
l=0

h (n, l) e
−j2πk

′
l

N e
−j2π(k−k

′
)n

N +X (k) ,

= S (k)H (k)︸ ︷︷ ︸
desired

+

N−1∑
k′ 6=k

S
(
k
′
) 1

N

N−1∑
n=0

L−1∑
l=0

h (n, l) e
−j2πk

′
l

N e
−j2π(k−k

′
)n

N

︸ ︷︷ ︸
ICI

+X (k) , (3.5)

where havg (l) = 1
N

∑N−1
n=0 h (n, l) is the average value of the time varying channel tap

index l. H(k) is a scaled version of the FFT of havg (l) by a factor of
√
N . In fact, H(k)

is equivalent to HF (d, k) given in (2.9), for d = 0, i.e, H(k) = HF (0, k).
The first term thus indicates the contribution of S (k) on R (k). The second term

is the interference of every other sent subcarrier S
(
k
′
)

on R (k). In case of a static

channel, i.e., channel is no longer dependent on n, h (n, l) = h (l), the second term will
vanish since

1

N

N−1∑
n=0

L−1∑
l=0

h (n, l) e
−j2πk

′
l

N e
−j2π(k−k

′
)n

N =
L−1∑
l=0

h (l) e
−j2πk

′
l

N
1

N

N−1∑
n=0

e
−j2π(k−k

′
)n

N

=

L−1∑
l=0

h (l) e
−j2πk

′
l

N δ(k − k′), (3.6)

which is zero for k
′ 6=k.

The ICI includes the term 1
N

∑N−1
n=0

∑L−1
l=0 h (n, l) e

−j2πk
′
l

N e
−j2π(k−k

′
)n

N , which we can
recognize as the 2D N based FFT transform of the time-varying multi-path channel

h (n, l) presented in (2.9) as HF
(
d, k

′
)

, with d referred to as subcarrier off-diagnal

distance defined as d = k − k′ . Thus,

HF
(
k − k′ , k′

)
=

1

N

N−1∑
n=0

L−1∑
l=0

h (n, l) e
−j2πk

′
l

N e
−j2π(k−k

′
)n

N (3.7)
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represents the interference of subcarrier k
′

on subcarrier k.

In the rest of this thesis, we shall use H
(
k, k

′
)

instead of HF
(
k − k′ , k′

)
to indicate

the ICI effect of subcarrier k
′
on subcarrier k. Equation (3.5) can then be written as

R (k) = H (k, k)S (k) +
∑
k′ 6=k

H
(
k, k

′
)
S
(
k
′
)

+X (k) ∀k,= 0, 1, . . . , N − 1. (3.8)

Equation (3.8) can be written in a matrix form as follows

R(N×1) = H(N×N)S(N×1) + X(N×1), (3.9)

where R is the output vector of the FFT at the receiver side, S is the vector of the QAM
symbols at the transmitter side and X is the vector of the noise subcarriers. H is the
frequency domain channel matrix given by

H = FNgCPFH
N , (3.10)

where gCP is the original (N ×N) time delay channel matrix after dropping the CP,
which can be constructed as gCP (n, l) = h (n, (n− l)N ). FN is the (N ×N) normalized
FFT matrix, built as

F (r, c) =
1√
N
e
−j2πrc
N . (3.11)

In the case of a static channel, gCP is a circulant matrix built as [WBZS10]

gCP =



h (0) 0 . . . 0 h (L− 1) . . . h (1)
...

. . .
. . .

. . .
. . .

...
...

. . .
. . .

. . . h (L− 1)

h (L− 1)
. . . 0

0
. . .

. . .
. . .

...
...

. . .
. . .

. . . 0
0 . . . 0 h (L− 1) . . . . . . h (0)


(3.12)

and hence is diagonalizable by the FFT matrix. This is due to the fact that the eigen-
vectors of a circulant matrix are the columns of a Fourier matrix of the same size. This
means that in (3.8), H

(
k, k

′
)

= 0 ∀k 6= k
′

and hence there is no ICI. In case of a time

varying channel, the off-diagonal coefficients of the matrix H are no longer zero, result-
ing in ICI. The higher the Doppler shift, the higher the magnitudes of the off-diagonal
coefficients and the more effective the ICI is. In Figures 3.1 and 3.2, the coefficients
of the normalized channel matrix Hn are depicted for a flat fading channel at different
normalized Doppler shifts fD,norm of 1 × 10−4 and 0.2 respectively, where fD,norm is
defined as
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Figure 3.1.: The coefficients in the channel matrix H using a frequency flat fading channel
and at a normalized Doppler frequency of 1e-4

fD,norm =
fD,max

∆f
. (3.13)

The elements inside the channel matrix Hn are normalized with respect to the main

diagonal, Hn

(
k, k

′
)

=
H
(
k, k
′)

H(k, k) .

As can also be noted, most of the energy outside the main diagonal in H is concentrated
in the few off-diagonals around the main diagonal, and decreases steadily as the distance
from the main diagonal increases. This property is proven to be very useful, since the
matrix can often be approximated by its banded version, where only a limited number
of 2D diagonals, around the main diagonal, need to be considered rather than the whole
(N ×N) matrix. In such case, D denotes the number of diagonals in each direction
around the main diagonal. As we shall see, this approximation can significantly reduce
the complexity of the receiver equalization step. The higher the Doppler shift, the more
energy is ’leaked’ outside the main diagonal, and hence a higher value of D has to be
considered for a more accurate approximation of the matrix H.

We can also notice the existence of high energy regions at the edges of the matrix.
This is because of the circular nature of the ICI, the subcarriers at the edge of the OFDM
symbol interfere with those at the beginning of the OFDM symbol. In other words, the
subcarrier at the 0th position receives equally strong interference from the subcarriers at
positions N − 1 and 1.

3.1.2. Inter-Carrier Interference in a Frequency Selective Channel

From (3.8), the interference signal I (k) can be written as
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Figure 3.2.: The coefficients in the channel matrix Hn using a frequency flat fading
channel and at a normalized Doppler frequency of 0.2

I (k) = R (k)−H (k, k)S (k)−X (k) =
∑
k′ 6=k

H
(
k, k

′
)
S
(
k
′
)
. (3.14)

The expected value of the ICI power can then be written as

E
{
|I (k)|2

}
= E {I (k) I∗ (k)}

= E

∑
k′ 6=k

H
(
k, k

′
)
S
(
k
′
) ∑
k′ 6=k

H∗
(
k, k

′
)
S∗
(
k
′
) . (3.15)

Assuming an uncorrelated source with zero mean, E
{
S (k)S∗

(
k
′
)}

= 0 ∀k 6= k
′
and

no correlation between H
(
k, k

′
)

and S
(
k
′
)

E
{
|I (k)|2

}
= E

∑
k′ 6=k

∣∣∣H (k, k′)∣∣∣2 ∣∣∣S (k′)∣∣∣2


= ESE


N−1∑
k′ 6=k

∣∣∣H (k, k′)∣∣∣2
 (3.2)

= E


N−1∑
k′ 6=k

∣∣∣H (k, k′)∣∣∣2
 . (3.16)

Equation (3.16) indicates that the colored nature of the ICI power stems from the
colored nature of the off-diagonal ICI coefficients. In Figure 3.3, we show the magnitudes
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Figure 3.3.: The coefficients in the channel matrix Hn of the TU6 channel and at a
normalized Doppler frequency of 0.2

of the normalized coefficients of Hn

(
k, k

′
)

for a frequency selective channel, namely the

TU6 channel, defined in section 2.3.3, using an 8k FFT. Unlike the Toeplitz structure in
the 2D flat fading channel matrix shown in Figure 3.1 and 3.2, the frequency selectivity
of the channel matrix shown in Figure 3.3 is clearly visible in the main diagonal as well
as in the off-diagonal coefficients.

In Figure 3.4, we plot the normalized ICI power computed as |Inorm (k)|2 = |I(k)|2
1
N

∑N−1
k=0 |I(k)|2

for a 64 point FFT OFDM symbol at a normalized Doppler frequency fD,norm = 0.2 for a
64QAM constellation, where I (k) is computed using (3.14). The frequency selectivity of
the interference signal is clearly visible in the doubly selective channel (frequency selec-
tive and time selective) compared to the flat fading time varying channel. In other words,
different subcarriers undergo different levels of ICI in a doubly selective channel. This
observation served as a motivation for two proposed receiver architectures namely: an
MMSE-ASW ICIC explained in section 3.2.1.1 and an enhanced MRC scheme explained
in section 4.4.

3.1.3. Inter-Carrier Interference Modeling

Various models have been proposed to describe ICI in mobile OFDM systems. We fol-
low models based on Taylor expansions [pMGLHB07, MC05, Ser12]. Up to a normalized
Doppler shift of 20%, a linear approximation is sufficient [MC05] over a time duration
Ts . It uses information about the time evolution of the average channel havg (l) between
two successive OFDM symbols. Therefore we consider only a first order Taylor approx-
imation. In the following, we derive a piece-wise linear channel model with a constant
slope over the time duration 2Ts (previous and next OFDM symbols) to approximate
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the channel time variations1.
Starting with (3.3), the time domain received signal can be written as

r (n) =
L−1∑
l=0

h (n, l)
1√
N

N−1∑
k=0

S (k) e
j2πk(n−l)

N + x (n)

=
1√
N

N−1∑
k=0

L−1∑
l=0

h (n, l) e
−j2πkl
N︸ ︷︷ ︸

Hk(n)

S (k) e
j2πkn
N + x (n)

=
1√
N

N−1∑
k=0

Hk (n)S (k) e
j2πkn
N + x (n) , (3.17)

where Hk (n) is the CFR of subcarrier k at time index n. The channel information
acquired through the pilot assisted channel estimate (PACE) represents the time domain
average channel throughout the N time instants havg(l) [Kaz11]. In addition, it can be
demonstrated that the mean squared error (MSE) E

[
|havg(l)− h (n, l) |2

]
is minimized

for n0 = N
2 -1≈ N−1

2 [MC05]. Therefore, we consider linearization of Hk (n) around the
middle point n0 using Taylor series expansion as:

Hk (n) ≈ Hk (n0) + Ḣk (n0) (n− n0) . (3.18)

where Ḣk (n0) is the first derivative of the CFR of subcarrier k at time index n0. Plugging
(3.18) in (3.17) and applying FFT, the received signal at subcarrier position k can be
approximated as [pMGLHB07]

1With the longer duration over which the channel is assumed constant, we expect an upper limit of
10% normalized Doppler shift over which the linear approximation is valid.
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R (k) =
1√
N

N−1∑
n=0

r(n)e
−j2πkn
N

=
1

N

N−1∑
k′=0

N−1∑
n=0

Hk′ (n)S
(
k
′
)
e
−j2π

(
k−k
′)
n

N +X (k)

(3.18)
≈

N−1∑
k′=0

Hk′ (n0)S
(
k
′
) 1

N

N−1∑
n=0

e
−j2π

(
k−k
′)
n

N︸ ︷︷ ︸
δ(k−k′)

+
1

N

N−1∑
k′=0

Ḣk′ (n0)S
(
k
′
)N−1∑
n=0

(n− n0) e
−j2π

(
k−k
′)
n

N +X (k)

≈ Hk (n0)S (k) +

N−1∑
k′=0

Ḣk′ (n0) Ξ
(
k, k

′
)
S
(
k
′
)

+X (k) , (3.19)

where the leakage coefficient Ξ
(
k, k

′
)

is written as

Ξ
(
k, k

′
)

=
1

N

N−1∑
n=0

(n− n0) e
−j2π

(
k−k
′)
n

N . (3.20)

Ḣk′ (n0) Ξ
(
k, k

′
)
S
(
k
′
)

denotes the ICI effect of subcarrier k
′

on subcarrier k. Note

that Ξ (k, k) = 0. For small values of

∣∣∣k−k′ ∣∣∣
N , Ξ

(
k, k

′
)

can be approximated as [Ser12,

STJ08]

Ξ
(
k, k

′
)
≈ 1

−j sin

(
2π(k−k′)

N

) ≈ N

−j2π (k − k′)
=

N

−j2πd
, (3.21)

It can be noticed how the value of the leakage coefficient Ξ
(
k, k

′
)

decreases as the

absolute value of the off-diagonal distance |d| increases. This is intuitively satisfying
since closer subcarriers have stronger interference effect compared to further ones.

The channel derivative of each subcarrier, Ḣk′ (n0) , can be obtained as:

Ḣk′ (n0) =
H

+1

k′
(n0)−H−1

k′
(n0)

2N
, (3.22)

where H
+1

k′
(n0) and H

−1

k′
(n0) are the estimated channel coefficients from the following

and previous OFDM symbols respectively. As mentioned earlier, these coefficients can
be estimated using PACE. Equation (3.22) indicates that in order to compute the ICI
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coefficients based on first order Taylor expansion, three OFDM symbols have to be
buffered, such that the ICI coefficients of the middle OFDM symbol are computed.

Comparing (3.8) with (3.19), the ICI coefficient H
(
k, k

′
)

can be computed using

(3.21) and (3.22) as

H
(
k, k

′
)

= Ḣk′ (n0) Ξ
(
k, k

′
)

(3.21,3.22)
≈ j

H+1
(
k
′
, k
′
)
−H−1

(
k
′
, k
′
)

4π (k − k′)

= κ
v
(
k
′
)

k − k′
, k 6= k

′
(3.23)

whereH+1
(
k
′
, k
′
)

= H
+1

k′
(n0) , H−1

(
k
′
, k
′
)

= H
−1

k′
(n0) ,κ = j

4π , v
(
k
′
)

= H+1(k
′
, k
′
)−

H−1(k
′
, k
′
) .

3.2. Algorithms for Single Input Single Output Equalizers

At the receiver side, the PACE block is used to estimate the channel coefficients which
represent the elements on the main diagonal of the channel frequency matrix. In a
static environment, the channel frequency matrix consists only of that main diagonal.
Therefore, only a simple ZF operation is needed to recover the symbol estimates. In a
mobile environment, using only ZF, and thereby neglecting the ICI, would result in an
error floor in the BER which increases as the Doppler shift increases.

From (3.21), we can see that the magnitude of the off-diagonal coefficients decreases
with 1

|d| , as the distance from the main diagonal d increases. This is demonstrated
in Figures 3.1 and 3.2. As mentioned earlier, this banded structure of the channel
frequency matrix allows us to ignore the off-diagonal coefficients after a certain offset
D from the main diagonal, as shown in Figure 3.5. In this section, we introduce the
classical equalizer algorithms, which we apply to mitigate ICI in OFDM signals, namely
MMSE based equalization and PIC. In this work, we also refer to an equalizer block
which considers ICI (not ZF) as ICIC. We rely on the aforementioned linear model in
(3.23) to calculate the off-diagonal coefficients in the channel frequency matrix.

3.2.1. Minimum Mean Squared Error ICIC

Recalling the linear model in (3.9)

R(N×1) = H(N×N)S(N×1) + X(N×1). (3.24)

An MMSE receiver seeks minimizing the mean square error given by

||S(N×1) − Ŝ(N×1)||2, (3.25)
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Figure 3.5.: Banded Matrix Structure and Sliding Window

where Ŝ = W̃H
f,(N×N)R.

W̃f,(N×N) is the MMSE receiver matrix computed as [Kay93]

W̃f,(N×N) = (HHH + CNoise)
−1H, (3.26)

where H is the Hermitian operator and CNoise is the noise covariance matrix, set as
CNoise = σ2I in an AWGN environment. More elaboration about how CNoise is built in
our system can be found in section A.1.

With large FFT sizes, such as N = 8k, the complexity of computing the matrix
W̃f,(N×N) according to (3.26) becomes prohibitive. A more practical approach is to

use a sliding window of size (2D + 1× 4D + 1) [LKAD06] like the one shown in Figure
3.5. In this approach, the algorithm iterates over all subcarriers from 0 to N − 1, each
iteration centering the window over the corresponding subcarrier and thus considering
only 2D sub- and super off-diagonals while ignoring the rest. The corresponding system
model can then be written as

R̄(2D+1×1)(k) = H̄(2D+1×4D+1)(k)S̄(4D+1×1)(k) + X̄(2D+1×1)(k), (3.27)

where the window of received subcarrier symbols R̄(k), the vector of sent symbol sub-
carriers S̄(4D+1×1)(k) and the vector of noise subcarriers X̄(k) are defined as

R̄(k) =


R(k −D)

:
R(k)

:
R(k +D)

 , (3.28)

S̄4D+1×1(k) =


S(k − 2D)

:
S(k)

:
S(k + 2D)

 (3.29)

and
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X̄(k) =


X(k −D)

:
X(k)

:
X(k +D)

 . (3.30)

The MMSE receiver matrix is then computed only for a subchannel matrix H̄ of size
(2D + 1× 4D + 1) instead of that of size (N ×N)

W̃f,(2D+1×4D+1) (k) = (H̄ (k) H̄H (k) + C̄Noise,(2D+1×2D+1))
−1H̄ (k) . (3.31)

The subchannel matrix H̄ is written for D = 1 as

H̄ (k) =

 H (k − 1, k − 2) H (k − 1, k − 1) H (k − 1, k) 0 0
0 H (k, k − 1) H (k, k) H (k, k + 1) 0
0 0 H (k + 1, k) H (k + 1, k + 1) H (k + 1, k + 2)

 .
(3.32)

The overall complexity of the windowed MMSE-ICIC approach is then O(N(2D+1)3)
compared to O(N3) when the full matrix is used as in (3.26). In this case, however, the
noise variance includes the variance of the AWGN plus the residual ICI power due to the
unconsidered interferers outside the window range. The reader can refer to Appendix A
for more information.

The windowed MMSE-ICIC is applied differently to every subcarrier. Therefore the
filtering vector W̃f,(2D+1×1) is computed as

W̃f,(2D+1×1) (k) = (H̄ (k) H̄H (k) + C̄Noise,(2D+1×2D+1))
−1Hmain,(2D+1×1) (k) , (3.33)

where Hmain,(2D+1×1) (k) =

 H (k − 1, k)
H (k, k)

H (k + 1, k)

 is the middle column of H̄ (k) and thus

W̃f,(2D+1×1) (k) is the middle row of W̃f,(2D+1×4D+1) (k) in (3.31). The sent symbol on
subcarrier k is estimated as

S̃(k) = W̃H
f,(2D+1×1) (k) R̄(k). (3.34)

After filtering with W̃f,(2D+1×1), S̃(k) still needs to be normalized as follows

Ŝ (k) =
1

W̃H
f,(2D+1×1) (k) Hmain,(2D×1) (k)

S̃ (k) . (3.35)
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3.2.1.1. Adaptive Sliding Window MMSE ICIC

In [ALS14], we have proposed an MMSE ICIC with an adaptive sliding window, namely
MMSE-ASW ICIC.

The idea of MMSE-ASW ICIC is to adopt a different window size in a frequency selec-
tive channel depending on the degree of ICI to which each subcarrier is subjected relative
to the power of the signal part such that a better trade-off between BER performance
and complexity is achieved. In [ALS14], we choose the window size depending on the
signal to interference ratio (SIR) at subcarrier position k, ΥD (k) , which we define as the
ratio of the squared magnitude of the main diagonal element |H (k, k) |2 of the channel
matrix at subcarrier position k to an interference function ID (k)

ΥD (k) =
|H (k, k) |2

|ID (k) |2
, (3.36)

We define the interference function ID (k) as the average interference magnitude ob-
tained from the two interferes that are D subcarriers apart from the current subcarrier
position k in both directions (k ±D)

ID (k) = 0.5 (|H (k, k +D) |+ |H (k, k −D) |) . (3.37)

The interference function is specifically defined as in (3.37) such that the SIR function
is monotonically increasing with the number of subcarriers considered D, i.e., the signal
to interference ratio function should increase as D increases. Using (3.23), the SIR
function can be written as

ΥD (k) =

(
|H (k, k) |

0.5 κ
D | (v (k +D) + v (k −D)) |

)2

≈
(

4πD|H (k, k) |
|v (k) |

)2

, (3.38)

where in the last step, we assumed v (k −D) ≈ v (k) ≈ v (k +D), which is equivalent
to assuming a flat fading channel response at subcarrier positions k−D to k+D. This
assumption is justified for D (k) << N . Given a certain SIR threshold, Υth, the optimum
D has to satisfy

4πD (k) |H (k, k) |
|v (k) |

>
√

Υth (3.39)

The required D (k) can then be determined as

D (k) = round

(
|v (k) |

√
Υth

4π|H (k, k) |

)
. (3.40)

Using (3.40), the MMSE-ASW algorithm chooses the window size parameter D (k)
adaptively for each subcarrier k.
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Step Complexity
(number of complex

multiplications)

Matrix Multiplication
H̄ (k) H̄H (k)

(2D + 1)3

Matrix Inversion(
H̄ (k) H̄H (k) + C̄Noise,(2D+1×2D+1)

)−1

2(2D+1)3+3(2D+1)2−5(2D+1)
6

Matrix Multiplication(
H̄ (k) H̄H (k) + C̄Noise,(2D+1×2D+1)

)−1
.

Hmain,(2D+1×1) (k)

(2D + 1)2

Filtering and Normalization
1

W̃H
f,(2D+1×1)

(k)Hmain,(2D+1×1)(k)
W̃H

f,(2D+1×1) (k) R̄(k)
2(2D + 1) + 3

Table 3.1.: Complexity of MMSE equalizer per subcarrier

3.2.1.2. Complexity Analysis

In this section, we assess the complexity vs BER performance of the MMSE-ASW ICIC .
In Table 3.1, we compute the number of complex multiplications required by an MMSE
ICIC which considers D subcarriers, assuming Gauss elimination is used for matrix
inversion. We follow the steps in (3.33) to (3.35).

We assume the division operation such as the one in (3.40) to be more complex than a
multiplication operation. We make a reasonable assumption that one division operation
is three times more complex than one multiplication operation, such that the cost of
computing D (k) is taken into consideration. D (k) can be determined through one

division operation |v(k)|
|H(k, k)| , where D (k) can then be determined using a lookup table

in a second step. Therefore, an extra factor of 3 is added to the complexity of the
MMSE-ASW algorithm. In the case when D (k) = 0 is chosen by the MMSE-ASW
ICIC, a simple ZF is applied with a complexity of one division operation, i.e., three
multiplications.

3.2.1.3. Results on MMSE-ASW ICIC

In this section, we present simulation results for a DVB-T system for MMSE ICIC
with fixed window size (FWS), MMSE-FWS ICIC (where the same D is chosen for
all subcarriers) and for the proposed MMSE-ASW ICIC . The simulation settings are
summarized in Table 3.2. We consider a Doppler frequency of 160 Hz, which corresponds
to a velocity of 288 km/h assuming a carrier frequency of 600 MHz. The simulated
channel is a TU6 channel. A maximum value of Dmax = 2 is set for the MMSE-ASW
algorithm, which means the BER performance of the MMSE-ASW ICIC (Dmax = 2 )
can not be better than that of the conventional MMSE-FWS ICIC which uses D = 2
for all subcarrier signals. On the other hand, because MMSE-ASW ICIC is allowed
to use D = 2 on some subcarriers, the BER performance can be better than that of
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Parameter Setting

System DVB-T

BER after Viterbi decoding in dependency of Doppler/SNR

CSI PACE using linear interpolation

noise estimation PANE after MMSE

Doppler shift 160 Hz

SNR 30 dB, noise free

Modulation 4 QAM , 16 QAM

Coding Viterbi channel decoding with code rate(2/3) traceback
depth=252

OFDM 8k FFT , NGI = 2048 samples,
Na = 6817 subcarriers Ndata = 6048 subcarriers

Channel TU6 channel

ICIC MMSE-FWS:D = 0, 1, 2.
MMSE- ASW:Dmax = 2

PIC:D = 1, 2, 3

Table 3.2.: Simulation parameters used to produce results in Figures 3.6 and 3.10

a conventional MMSE-FWS ICIC which uses D = 1 over all subcarriers. PACE is
conducted to obtain the main diagonal channel coefficients, using frequency only linear
interpolation.

In Figure 3.6, the histograms of the selected values of D (k) based on (3.40) for different
values of Υth are displayed in a noise-free environment and at SNR = 30 dB, respectively.
We notice that as Υth increases, a higher D is chosen more frequently by the algorithm.

To be able to analyze both the BER performance and the complexity of the proposed
algorithm compared to that of the classical MMSE ICIC approach, we consider Figure
3.7. Every point in the plot carries information about the BER and complexity of MMSE-
FWS or MMSE-ASW algorithms. The x-axis is the consumed complexity (number of
multiplications) whereas the y-axis depicts the BER. At a Doppler frequency of 160 Hz
and a noise free environment in Figure 3.7a, we observe that the MMSE-ASW ICIC with
Υth = 4.5 dB has both better BER performance and less complexity compared to those
of the conventional MMSE-FWS ICIC (D = 1). Using a threshold of Υth = 4.5 dB, only
an average number of 13 multiplications are required as opposed to 51 multiplications
needed with the conventional approach using fixed (D = 1) for all subcarriers. Therefore,
about 74% reduction in complexity can be achieved at a Doppler frequency of 160 Hz
using MMSE-ASW ICIC with Υth = 4.5 dB. In a noisy environment, at Γ = 30 dB,
MMSE-ASW ICIC with Υth = 4.5 dB proves to be again of a better performance and
less complexity compared to the conventional MMSE-FWS ICIC(D = 1) as shown in
Figure 3.7b, where it achieves almost the same complexity gain.

At a lower SNR, Γ = 20 dB, the quasi-error free BER occurs at a lower Doppler shift
of fD,max = 140 Hz, as shown in Figure 3.8. As the SNR decreases, a higher threshold
is needed to deliver the same performance as that of MMSE-FWS ICIC with D = 1,
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Figure 3.6.: Histograms of selected values of D (k) based on (3.40) for different values of
Υth, fD,max = 160 Hz using 4QAM modulation. Rest of simulation settings
summarized in Table 3.2

namely a threshold of Υth = 5 dB, as shown in Figure 3.8a.
In a hardware implementation of MMSE-ASW ICIC, it might be required to fix the

complexity of the equalization step, i.e., assign fixed percentages of the subcarriers to
a bank of MMSE equalizers with different window sizes. This restriction should reduce
the degree of freedom of the MMSE-ASW ICIC equalizer on choosing the appropriate
window size freely based on Υth. Therefore, we expect lower gains with a fixed complexity
MMSE-ASW ICIC compared to those observed in Figures 3.7 and 3.8a.

3.2.2. Parallel Interference Canceler

A well known class of ICI cancelers is that of a PIC [ZZB05, MTV07a]. Figure 3.9
depicts the architecture of such a scheme.

The first stage of the ICIC is a ZF stage, which outputs initial estimates of all sent
symbols ŜZF (k). The second stage involves using the estimated symbols ŜZF (k) and
the off-diagonal estimates H(k, k + d) to eliminate the ICI on every received subcarrier
R(k) as follows

R̂(k) = R(k)−
D∑

d=−D,d6=0

H(k, k + d)ŜZF (k + d). (3.41)

The final output is obtained in the final stage by applying ZF on the ICI canceled
received symbol estimates R̂(k) as:

Ŝ(k) =
R̂k)

H(k, k)
(3.42)
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Figure 3.7.: BER vs complexity plot fD,max = 160 Hz using 4QAM modulation. Rest of
simulation settings summarized in Table 3.2
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Figure 3.8.: BER vs complexity plot fD,max = 140 Hz and Γ = 20 dB using 4QAM
modulation. Rest of simulation settings summarized in Table 3.2
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Figure 3.9.: architecture of PIC

In section 4.7.1.1, we shall elaborate again on this equalizer in the context of ICI
cancellation in a multi-antenna receiver system.

3.2.3. Summary of Results of SISO ICI Equalizers

In Figure 3.10, we can see the BER performance vs Doppler shift and SNR using different
equalizers. The simulation settings can be found in Table 3.2. As shown, ICI appears
as an error floor especially through the performance of the ZF equalizer, which totally
neglects the ICI, as shown in Figure 3.10a. In the rest of this thesis, we mainly rely on
simulation results in dependency of the Doppler shift as the one shown in Figure 3.10b,
where the improvement of one equalizer over the other is clear through the Doppler gain
(achieving the same BER at a higher Doppler shift).

As shown, the best performance is achieved using MMSE-FWS ICIC with D = 2,
at the expense of the highest complexity (192 multiplications per subcarrier operation
according to Table 3.1). MMSE-FWS ICIC with D = 2 can achieve more than 20 Hz
gain, around the quasi-error free BER, compared to a simple ZF equalizer which totally
ignores ICI. Considering the same number of off-diagonals, D = 2, the PIC shows a
worse BER performance than the corresponding MMSE with a gain of ∼ 7 Hz at a much
lower complexity. Increasing the number of the considered off-diagonals in a PIC beyond
D = 3 does not yield a much better gain, which can be inferred from the marginal gain
obtained by increasing D from D = 2 to D = 3 as shown in Figure 3.10b. Therefore,
in the rest of this thesis, we shall consider a PIC with D = 3 and a MMSE-FWS ICIC
with D = 1, bearing in mind that the latter is of higher computational complexity.
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3.2. ALGORITHMS FOR SINGLE INPUT SINGLE OUTPUT EQUALIZERS
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Figure 3.10.: BER comparison of several SISO equalizers. Using 16QAM modulation.
Rest of simulation settings summarized in Table 3.2
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4. Algorithms for Mobile SIMO Reception
of Multi-Carrier Signals

In this Chapter, we investigate employing multiple antennas at the receiver side to
achieve a better ICI mitigation in a time-varying channel. First, we start with a static
multi-antenna receiver environment, where the received signal vector across the M dif-
ferent receive antennas can be written as

Ř (k) = Ȟ (k, k)S (k) + X̌ (k) , (4.1)

where the M × 1 received signal vector Ř (k), channel vector Ȟ (k, k) and noise vector
X̌ (k) can be written as

Ř (k) =

 R1 (k)
...

RM (k)

 (4.2)

Ȟ (k, k) =

 H1(k, k)
...

HM (k, k)

 , (4.3)

and

X̌ (k) =

 X1 (k)
...

XM (k)

 , (4.4)

where Xm (k) is the AWGN sample from antenna m at subcarrier position k with noise
variance σ2, as defined in (3.4), i.e., in this work, we consider the SNR per receive
antenna instead of the total SNR at the receiver side. In general, the output signal of a
linear SIMO combiner can be written as

S̃(k) = W̃H (k) Ř (k) , (4.5)

where the M × 1 weighting vector W̃ (k) can be written as

W̃ (k) =

 W̃1 (k)
...

W̃M (k)

 . (4.6)
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4.1. MAXIMUM RATIO COMBINING

Throughout this Chapter, We focus on the different methods used to set the weighting
vector W̃ (k).

4.1. Maximum Ratio Combining

In an environment where all antennas suffer from the same noise level and have spatially
uncorrelated channel paths 1, the weighting vector of the MRC W̃mrc (k) can be written
as

W̃mrc (k) = Ȟ (k, k) =

 H1(k, k)
...

HM (k, k)

 , (4.7)

and thus the estimated signal can be set as

S̃(k) = W̃H
mrc (k) Ř (k) =

M∑
m=1

H∗m(k, k)Rm (k) . (4.8)

Using (4.8), we can see how the antenna paths with higher channel power have more
weight into the combined signal, which is intuitively satisfying since those antenna paths
are more reliable. The conjugate operator applied on the channel coefficient H∗m(k, k)
can be seen as a way to coherently combine the received signals, i.e., avoid the case
where destructive interference can occur in the summand.

The final estimated signal still has to be normalized as follows

Ŝ (k) =
S̃(k)

W̃H
mrc (k) Ȟ (k, k)

(4.9)

Alternatively, the weighting vector can be normalized as

Ŵmrc (k) =
W̃mrc (k)

W̃H
mrc (k) Ȟ (k, k)

, (4.10)

where the final estimated signal is then written as

Ŝ (k) = ŴH
mrc (k) Ř (k) . (4.11)

In general, any normalized linear SIMO combiner can be written as

Ŵ (k) =
W̃ (k)

ε (k)
, (4.12)

where the normalization factor ε (k) can be written as

ε (k) = W̃H (k) Ȟ (k, k) , (4.13)

1In this work, we assume that the receiver antennas are spatially uncorrelated.
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4.1. MAXIMUM RATIO COMBINING

which we are going to use in all subsequent combiners.
In [HO02], the weighting vector of the MRC was derived in the case of asymmetric

noise levels across the different antennas as

W̃MRC (k) = Č−1
NoiseȞ (k, k) =

 σ2
1

. . .

σ2
M


−1  H1(k, k)

...
HM (k, k)

 , (4.14)

where ČNoise is the (M ×M) autocorrelation matrix of the input AWGN noise vector
across the M antennas and can be written as

ČNoise = E
{
X̌ (k) X̌H (k)

}
. (4.15)

Consequently, the combined signal with MRC is set as

S̃(k) =

M∑
m=1

H∗m(k, k)

σ2
m

Rm (k) . (4.16)

Compared to (4.8), we can now see how the reliability of the information delivered
across the different antennas Rm (k) is weighted with the channel to noise power ratio
rather than the channel power only.

In Figure 4.1, we show the gain of using antenna receiver diversity to mitigate ICI,
using 2 antenna MRC and SISO ZF receivers. For a fair comparison, we fix the total SNR
at the receiver side (sum of SNR of both receive antennas, 100.1Γ = 100.1Γ1 + 100.1Γ2) in
the SIMO case to the SNR of the one receive antenna in the SISO case. The average noise
level in both channels is also assumed to be identical. In the rest of this work, we show
results for M = 2 antenna receivers. As shown in Figure 4.1a, as the Doppler frequency
increases, the Doppler frequency gain (i.e., Doppler frequency achieved at a given BER)
of MRC compared to SISO ZF increases. The simulation settings are summarized in
Table 4.6. Similarly, a much lower error floor is encountered with MRC compared to
SISO ZF.
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4.1. MAXIMUM RATIO COMBINING
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Figure 4.1.: Gain from receive antenna diversity combining using M = 2 receive anten-
nas. Simulation settings are summarized in Table 4.1.

Parameter Setting

System DVB-T

BER after Viterbi decoding in dependency of
Doppler shift and total SNR

CSI PACE using linear interpolation

noise estimation fed to demapper after MRC using (4.41)

SNR 30 dB

Modulation 64QAM

Coding Viterbi decoding(2/3) traceback depth=252

OFDM 8k FFT , 2k samples GI

∆f = 1.116 kHz, Na = 6817 subcarriers,
Ndata = 6048 subcarriers

Channel 2× 1 spatially uncorrelated TU6 channels

OFDM receiver MRC

Table 4.1.: Simulation Parameters used in Figure 4.1
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4.2. OPTIMUM COMBINING

4.2. Optimum Combining

In a time-varying environment, (4.1) can be rewritten as

Ř (k) = Ȟ (k, k)S (k) +

Dsimo∑
d=−Dsimo, d 6=0

Ȟ (k, k + d)S (k + d) + X̌ (k) , (4.17)

In [STJ08, Ser12], an expression for an ICI-aware linear SIMO combiner was indepen-
dently derived. The expression is based in both cases on a combiner which takes into
consideration knowledge of the ICI to maximize the SINR instead of maximizing the
SNR, as in MRC. In [STJ08], the linear combiner is derived based on the concept of
optimum combining in [Win84], derived initially for a co-channel interference problem.
In [Ser12], the expression for the weighting coefficients is derived as a special MMSE
combiner, referred to in the publication as gSINR. In [Ser12], a simplified combiner is
further derived, referred to in the publication as gSDCC .

In this thesis, we refer to the original combiner in [STJ08] as optimum combining (OC),
with a weighting filtering vector W̃OC (k), and to the simplified version of [Ser12] as
simplified Doppler compensation combining (SDCC), with a weighting filtering vector
W̃SDCC (k). First, we start with the derivation of the OC combiner. The combining
vector takes ICI into consideration in the following optimization problem

W̃OC (k) = arg min
W̃(k)

E{|W̃H (k) Ř (k)− S (k) |2}. (4.18)

Solving (4.18) with the MMSE criteria leads to the following detector:

W̃OC (k) =

 Dsimo∑
d=−Dsimo, d 6=0

Ȟ (k, k + d) ȞH (k, k + d) + Ȟ (k, k) ȞH (k, k) + ČNoise

−1 ×

Ȟ (k, k) , (4.19)

where Dsimo is the number of frequency off-diagonal coefficients considered in a SIMO
combiner to differentiate it from D the number of frequency off-diagonal coefficients
considered in the SISO equalizers. Further approximation on (4.19) leads to (see (6.42)
in [Ver98]):

W̃OC (k) =

 Dsimo∑
d=−Dsimo, d 6=0

Ȟ (k, k + d) ȞH (k, k + d) + ČNoise

−1

Ȟ (k, k)

= Z−1 (k) Ȟ (k, k) , (4.20)

where, in general, the interference plus noise matrix Z (k) can be written as the summa-
tion of the ICI covariance matrix ČICI (k) and the noise covariance matrix ČNoise defined
in (4.15)
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4.3. SIMPLIFIED DOPPLER COMPENSATION COMBINING

Z (k) = ČICI (k) + ČNoise, (4.21)

with ČNoise set ideally as

 σ2
1

. . .

σ2
M

 in an AWGN environment. For more infor-

mation about how ČNoise is built in our system, the interested reader can refer to section
4.5.2. The ICI covariance matrix ČICI (k) is built as

ČICI (k) =

Dsimo∑
d=−Dsimo,d 6=0

Ȟ (k, k + d) ȞH (k, k + d) , (4.22)

where the off-diagonal channel vector Ȟ (k, k + d) can be written as

Ȟ (k, k + d) =

 H1(k, k + d)
...

HM (k, k + d)

 , (4.23)

where Hm(k, k + d) is the interference of subcarrier k + d on subcarrier k, received by
antenna m.

4.3. Simplified Doppler Compensation Combining

In [Ser12], a simplified diversity combiner which takes ICI into consideration is proposed.
Computation of the matrix ČICI (k) according to (4.22), requires 2Dsimo vector multi-
plications, each vector of dimension M × 1. This operation requires 2M2Dsimo complex
multiplications and hence grows linearly with the number of off-diagonals considered
Dsimo. Assuming sufficient frequency correlation in the CFR, the off-diagonal coefficient
H (k, k + d) in (3.23) can be approximated as

H (k, k + d) = κ
v (k + d)

d

≈ κ
v (k)

d
=
H (k + 1, k)

d
. (4.24)

Hence, the spatially stacked off-diagonal channel vector Ȟ (k, k + d) can be approxi-
mated as

Ȟ (k, k + d) ≈ 1

d

 H1(k + 1, k)
...

HM (k + 1, k)

 . (4.25)

The ICI covariance matrix in (4.22) can be approximated as
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4.3. SIMPLIFIED DOPPLER COMPENSATION COMBINING

ČICI (k) =

Dsimo∑
d=−Dsimo,d 6=0

Ȟ (k, k + d) ȞH (k, k + d) ,

≈

 Dsimo∑
d=−Dsimo, d 6=0

(
1

d

)2
 Ȟ (k + 1, k) ȞH (k + 1, k)

= κ2

 Dsimo∑
d=−Dsimo, d 6=0

(
1

d

)2
 V̌ (k) V̌H (k) , (4.26)

where V̌ (k) can be written as

V̌ (k) =

 v1 (k)
...

vM (k)

 , (4.27)

where vm (k) is as defined in (3.23). Therefore, the simplified OC weighting vector can
be written as

W̃SDCC (k) =

κ2

 Dsimo∑
d=−Dsimo, d 6=0

(
1

d

)2
 V̌(M×1) (k) V̌H

(M×1) (k) + ČNoise

−1

Ȟ (k, k)

=
(
cSDCCV̌(M×1) (k) V̌H

(M×1) (k) + ČNoise

)−1
Ȟ (k, k) , (4.28)

with

cSDCC = 2κ2
Dsimo∑
d=1

(
1

d

)2

. (4.29)

W̃SDCC (k) is the SDCC weighting vector. Comparing (4.19) with (4.28), we can see
the great reduction in complexity. The complexity of computing (4.28) is almost inde-
pendent of the selected value of Dsimo, except for the complexity of computing cSDCC
which can be computed once offline. The approximation made in (4.26) is equivalent
to assuming vm (k −Dsimo) = · · · = vm (k +Dsimo), i.e., a certain coherence band-
width is assumed in the frequency domain, which is the same assumption we made in
the derivation of MMSE-ASW ICIC in (3.38). In Figures 4.2 and 4.3, we can see the
performance loss encountered because of the approximation in (4.26) on a frequency
selective 2TU6 channel, defined in section 2.3.3, using PACE and genie-aided channel
knowledge (GACN). The simulation settings are summarized in Table 4.2.

The authors then go on to further simplify the expression in (4.28). Applying the

matrix inversion lemma (MIL) on the inversion step
(
cSDCCV̌(M×1) (k) V̌H

(M×1) (k) + ČNoise

)−1
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4.3. SIMPLIFIED DOPPLER COMPENSATION COMBINING

Parameter Setting

System DVB-T

BER after Viterbi decoding in dependency of Doppler shift

CSI PACE using linear interpolation, GACN

SNR 30 dB

Modulation 64 QAM

Coding Viterbi decoding (2/3) traceback depth=252

OFDM 8k FFT , 0.25GI ,
Na = 6817 subcarriers Ndata = 6048 subcarriers

Channel 2× 1 spatially uncorrelated 2TU6 channels
(τdelay = 0.05GI, k2 = −3 dB)
(τdelay = 0.15GI, k2 = −3 dB)

OFDM Receiver OC, SDCC:Dsimo = 1, 10, 15.

Table 4.2.: Simulation Parameters used to produce results in Figures 4.2 and 4.3
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Figure 4.2.: Performance of OC vs SDCC for different values of Dsimo in a 2TU6 channel
with (τdelay = 0.05GI, k2 = −3 dB) and linear interpolation PACE. Simula-
tion settings are summarized in Table 4.2.
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Figure 4.3.: Performance of OC vs SDCC for different values of Dsimo in a 2TU6 chan-
nel with (τdelay = 0.15GI, k2 = −3 dB) and GACN. Simulation settings are
summarized in Table 4.2.

yields

W̃SDCC (k) =
(
cSDCCV̌ (k) V̌H (k) + ČNoise

)−1
Ȟ (k, k)

≈ 1

σ2
(I− cSDCCV̌ (k) V̌H (k)

σ2 + cSDCC ||V̌ (k) ||2
)Ȟ (k, k)

≈ Ȟ (k, k)− cSDCCV̌H (k) Ȟ (k, k)

σ2 + cSDCC ||V̌ (k) ||2
V̌ (k) (4.30)

where in the second step CNoise is approximated as CNoise ≈ σ2IM . In the third step,
the constant term 1

σ2 is eliminated because in any case W̃SDCC (k) is going to be further
normalized as in the OC (see (4.12) ).

Comparing (4.30) with (4.28), we see how the complexity is reduced from O(M3) to
O(M) when the direct matrix inversion is avoided. However, a pitfall of (4.30) is that
the last approximation in (4.30) assumes that all antennas have the same noise statistics,
which is rarely the case in practice. Therefore, the reduction in complexity is expected
to come at the cost of an inferior BER performance in practice when all antennas suffer
from different noise levels. In this work, we use the non-approximated version of SDCC
in (4.28).

The authors in [Ser12] then go on to present an even more simplified version which
assumes a noise free reception, namely approximated zero forcing (aZF).

W̃aZF (k) = (I− V̌ (k) V̌H (k)

||V̌ (k) ||2
)Ȟ (k, k) . (4.31)
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4.4. ENHANCED MRC WITH COLORED NOISE INFORMATION

4.4. Enhanced MRC with Colored Noise Information

In a mobile channel, the induced ICI presents itself as a source of Gaussian noise as
mentioned earlier in this Chapter. Therefore, even in cases where both antennas have
the same AWGN level, both antennas will encounter different level of total noise+ICI in
a frequency selective mobile channel. In [HHDCC00], the authors proposed a modified
MRC scheme for a time varying channel, where the SINR per antenna is computed, %m
and used to modify the corresponding MRC weights. SINR per antenna can be written
as %m = ES

σ2
t,m

, where σ2
t,m is the total noise variance σ2 + σ2

ICI on antenna m, which

can be computed through PANE as explained in section 2.5. Therefore, (4.14) can be
rewritten as

W̃MRC (k) = Č−1Ȟ (k, k) =

 σ2
t,1

. . .

σ2
t,M


−1  H1(k, k)

...
HM (k, k)

 , (4.32)

where Č is the total noise+ICI covariance matrix.
In [AES15], we proposed an enhanced MRC scheme which considers the SINR per

antenna and frequency bin, i.e., %m (k). As we shall show in this section, significant gain
can be achieved from considering the frequency variation of the noise covariance matrix,
i.e., Č (k) instead of Č.

Equations (4.32) and (4.16) can then be rewritten as

W̃eMRC (k) = Č−1 (k) Ȟ (k, k) =

 σ2
t,1 (k)

. . .

σ2
t,M (k)


−1  H1(k, k)

...
HM (k, k)

 (4.33)

and

S̃(k) =

M∑
m=1

H∗m(k, k)

σ2
t,m (k)

Rm (k) . (4.34)

Windowed Noise Estimation for DVB-T/T2 In [YA05], the problem of noise esti-
mation in the presence of strong interference is considered. The authors assume a fully
known OFDM symbol at the receiver side and propose to estimate the noise via a 2D
moving average window in time and frequency.

Because of the lack of the temporal correlation between the channel impulse response
samples in fast fading channels and the use of long OFDM symbols, we rely on the
continual pilots to capture the total noise frequency selectivity in the frequency domain
only. In Figure 4.4, we can see the noise power per continual pilot computed according to
(2.26) for an 8k FFT DVB-T signal. The number of continual pilots, 132, is significantly
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Figure 4.4.: Noise power captured by CoPs in a SISO TU6 channel, Γ = 30 dB and
fD,norm = 0.13

smaller than the total number of active subcarriers, 6817. However, as we can see the
total noise frequency selectivity can be captured well, using only the continual pilots.

In [AES15], we proposed to obtain a localized estimate of the noise power per subcar-
rier on each antenna, by considering only a window of the continual pilots around every
subcarrier instead of one global average noise variance value per OFDM symbol, and to
feed these values to the MRC to optimize its weights accordingly. Using a rectangular
window of q continual pilots centered around the kth subcarrier, the average input noise
power at subcarrier position k can be computed as

σ̂2
t (k) =

1

q

∑
ι∈ΩkCoP (ι)

σ2 (ι) , (4.35)

where σ2 (ι) is computed as in (2.26) and Ωk
CoP contains the indices of q continual pilots

centered around the kth subcarrier.
In Figure 4.5, we can see the MSE (normalized with respect to the maximum MSE)

for different Doppler frequency shifts and channel lengths. We can see that, on the one
hand, in a flat fading channel or in a static channel, where the total noise power is
white, a larger window size gives a better performance. On the other hand, the higher
the Doppler frequency shift in the frequency selective channel, the smaller the optimum
window size should be. Thus, the optimum window size depends on the ratio of the
colored noise to the total noise. The contribution of the colored noise increases as the
Doppler shift increases or the frequency selectivity increases. Therefore, the optimum
window size depends on the channel frequency selectivity, SNR and Doppler shift.

In [YA07], an MMSE filtering technique is proposed to deal with noise estimation in
the presence of colored noise. The filtering coefficients are derived as a function of the
noise covariance matrix and the AWGN noise power. In reality, such statistics need to
be estimated which puts an overhead at the receiver side. In [AES15], we proposed to
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Figure 4.5.: Normalized MSE in a SISO receiver with respect to the maximum MSE, for
fD,norm = 0 and 0.2, 16QAM modulation and 8k FFT.

decrease the dependency of the performance of (4.35) on the window size by applying
a simple weighting criterion depending on the distance of the considered CoP from the
current subcarrier position. We therefore modify (4.35) as

σ̂2
t (k) =

1∑
ι∈ΩkCoP (ι)A (k, ι)

∑
ι∈ΩkCoP (ι)

A (k, ι)σ2 (ι) , (4.36)

where we choose the weighting function A (k, ι) as

A (k, ι) =
1

|k − ι|
. (4.37)

In Figure 4.6, we can see the actual input noise power (shown in blue). Using a window
size of q = 13 CoPs (shown in red), the noise power can be tracked in a better way than
by just setting it to the average noise power value as in (2.25) σ̄2 = 1

NCoP

∑
ι∈ΩCoP

σ2 (ι)
(shown in black), where NCoP is the number of CoPs per OFDM symbol. We can also
see that even a better tracking capability can be achieved using a window size of q = 100
samples combined with the proposed weighting criterion in (4.36) (shown in green).

In Figure 4.7, we compare the performance of MRC with different noise information
according to (4.7),(4.32) and (4.33). The simulation settings are summarized in Table 4.3.
As we can see, significant gain (∼ 10 Hz) can be achieved by considering the frequency
variation of the ICI component using (4.33). In section 4.7.3, we show further results for
different noise window sizes.
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Figure 4.6.: Estimated Noise power captured in a SISO receiver by continual pilots
in a TU6 channel Γ = 30 dB , 64QAM and fD,norm = 0.13

Parameter Setting

System DVB-T

BER after Viterbi decoding in dependency of Doppler shift

CSI PACE using linear interpolation, GACN

SNR 30 dB

Modulation 64QAM

Coding Viterbi decoding (2/3) traceback depth=252

OFDM 8k FFT , NGI = 2048 samples,
Na = 6817 subcarriers, Ndata = 6048 subcarriers

Channel 2× 1 spatially uncorrelated TU6 channels

OFDM Receiver MRC: (4.7),(4.32) and (4.33)

Table 4.3.: Simulation Parameters used to produce results in Figure 4.7
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Figure 4.7.: Performance of MRC in a TU6 channel with different noise considerations.
Simulation settings are summarized in Table 4.3.

4.5. Noise Estimation for SIMO Combining

4.5.1. Output Noise Estimation

After SIMO combining, the output noise can be written as

σ̂2
t (k) = W̃H (k)E

{
X̌t (k) X̌H

t (k)
}

W̃ (k) , (4.38)

where

X̌t (k) =

 Xt,1 (k)
...

Xt,M (k)

 (4.39)

withXt,m (k) as the total input noise+ICI distortion induced on subcarrier k and antenna
m.

In the case of OC (or SDCC), the estimate of total input noise+ICI induced on one
subcarrier is available through the interference plus noise matrix Z (k) defined in (4.21).
Therefore, the estimated output noise can be written as:

σ̂2
t (k) = W̃H

OC (k) Z (k) W̃OC (k)

= ȞH (k, k) Z−1 (k) Z (k) Z−1 (k) Ȟ (k, k)

= ȞH (k, k) Z−1 (k) Ȟ (k, k) = W̃H
OC (k) Ȟ (k, k) . (4.40)

In the case of MRC, the estimate of total noise+ICI induced on one subcarrier is
available through the total noise+ICI covariance matrix Č (k), defined in (4.33)
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σ̂2
t (k) = W̃H

mrc (k) Č−1 (k) W̃H
mrc (k)

= ȞH (k, k) Č−1 (k) Č (k) Č−1 (k) Ȟ (k, k)

= ȞH (k, k) Č−1 (k) Ȟ (k, k)

= W̃H
mrc (k) Ȟ (k, k) . (4.41)

From (4.41) and (4.40), we can see that the general equation for computing the output
noise variance after combining can be written as

σ̂2
t (k) = W̃H (k) Ȟ (k, k) . (4.42)

4.5.2. Input Noise Estimation

As shown in (4.21), knowledge of the noise covariance matrix ČNoise is needed to build
the interference plus noise matrix Z (k). In addition, the noise information is also needed
to build the MMSE filtering vector in (3.26). This information can be obtained through
PANE. However, in a mobile environment, practical PANE will capture the combined
effect of noise plus ICI power. In our implementation, we use (4.43) to (4.45) to separate
the ICI power from the total noise power captured through PANE:

1.

σ̂2
ici (k) =

D∑
d=−D,d6=0

|H (k, k + d)|2
(4.24)
≈ κ2

 D∑
d=−D, d6=0

(
1

d

)2
 |H (k, k + 1)|2

(4.43)

2.
σ̂2
m (k) = σ̂2

t,m (k)− σ̂2
ici, (4.44)

3.

ČNoise (k) =

 σ̂2
1 (k)

. . .

σ̂2
M (k)

 , (4.45)

where σ̂2
t,m (k) is obtained from the PANE. In Figure 4.8, we can see the effect of the

way the noise covariance matrix ČNoise (k) is built on the BER performance of the SDCC
combiner. As shown, the best performance is achieved when genie-aided information of
the actual noise variance is used to build the noise covariance matrix as ČNoise = σ2IM ,
∀k, observed through the green curve.

If no separation is applied, i.e., the noise covariance matrix is set as ČNoise (k) = σ̂2
t,1 (k)

. . .

σ̂2
t,M (k)

, significant degradation is encountered, through the black
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Figure 4.8.: BER performance of SDCC vs Doppler shift at Γ = 30 dB. Simulation
settings summarized in Table 4.4

curve. By estimating the average ICI power through (4.43), a much better performance
is obtained (red curve), which, however, still lags behind the performance of the optimum
setting for ČNoise (k) by around 70 Hz, indicating a room for significant improvement by
a better estimation of ČNoise (k).

In Figure 4.9, we can see the same comparison vs SNR. As shown, a smaller error
floor is encountered, in the displayed SNR range, by estimating the average ICI power
through (4.43) (black curve vs red curve). However, significant degradation from the
ideal case is also clear.
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Figure 4.9.: BER performance of SDCC vs SNR at fD,max = 150 Hz. Simulation settings
summarized in Table 4.4

Parameter Setting

System DVB-T

BER after Viterbi decoding in dependency of Doppler frequency
shift/SNR

CSI PACE using linear interpolation

SNR 30 dB

Doppler frequency shift 150 Hz

Modulation 64QAM

Coding Viterbi decoding (2/3) traceback depth=252

OFDM 8k FFT , NGI = 2048 samples,
Na = 6817 subcarriers, Ndata = 6048 subcarriers

Channel 2× 1 spatially uncorrelated TU6 channels

OFDM Receiver SDCC, Dsimo = 10

Table 4.4.: Simulation Parameters used to produce results in Figures 4.8 and 4.9
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4.6. Concatenation of SIMO Receivers with ICI Cancelers

In this section, we examine how ICI cancelers can be combined with SIMO diversity
receivers. Depending on the order of processing, two architectures are investigated:

1. ICI cancellation first : ICIC→Combining.

2. Combining first: Combining→ICIC.

We rewrite (3.8) considering only a limited number of 2D interferers. The received signal
at subcarrier position k on antenna m can be written as

Rm (k) = Hm (k)S (k) +
D∑

d=−D,d6=0

Hm(k, k + d)S(k + d) +Xm (k)

=
[
Hm(k, k −D) .. Hm(k, k) .. Hm(k, k +D)

]

S(k −D)

:
S(k)

:
S(k +D)


(2D+1×1)

+ Xm (k)

= Hf,m (k) S̄(2D+1×1)(k) +Xm (k) , (4.46)

where Hf,m (k) is the ICI frequency vector on antenna m. Throughout this section,
we shall use this model for the derivation of the equivalent channel after filtering the
received OFDM signal in the frequency domain (MMSE ICIC) or in the spatial domain
(MRC, SDCC or OC ).

4.6.1. Combining after ICIC

In the first architecture, depicted in Figure 4.10, an ICI cancellation block is placed
on each antenna prior to the combining stage. In this case, the equivalent channel is
recomputed after a bank of ICI cancelers, using knowledge of the set of filter coefficients
W̃f,m and knowledge of the input ICI channel coefficients Hm (k, k + d).

The derivation of an equivalent channel H̃ (k, k + d) for d > 0 after ICIC assumes
that the ICIC operation can be represented as a filtering operation, as in an MMSE
ICIC. When dealing with non-linear equalizers like PIC introduced in section 3.2.2 or
successive interference cancellation (SIC) as in [MTV07b], the equivalent channel can
not be computed for d > 0. Thus in this work, for a second combining stage which
requires knowledge of the off-diagonal coefficients (OC or SDCC), we only consider a
first stage of MMSE equalization. However, a first stage of PIC or SIC can still be used
as a prior stage to MRC with Dsimo = 0, i.e., MRC→PIC can be considered, since MRC
requires only knowledge of the main diagonal coefficients.
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Figure 4.10.: ICI Cancellation Before SIMO Combining

Equivalent Channel after MMSE filtering with SISO ICI Equalization Vector Re-
calling (3.27), the windowed linear model of the received signal can be written as

R̄m(k) = H̄m(k)S̄(4D+1×1)(k) + X̄m(k), (4.47)

where R̄m(k), S̄(4D+1×1)(k) and X̄m(k) are as defined as in (3.28), (3.29) and (3.30),
respectively.

After filtering with an ICI equalization vector, the output filtered non-normalized
estimated symbol is

S̃m(k) = W̃H
f,m(k)R̄m(k),

= W̃H
f,m(k)H̄m(k)︸ ︷︷ ︸

H̃f,m(k)

S̄4D+1×1(k) + WH
f,mX̄m(k)︸ ︷︷ ︸
X̃m(k)

,

= H̃f,m (k)


S(k − 2D)

...
S(k)

...
S(k + 2D)

+ X̃m (k) , (4.48)

where W̃f,m(k) = W̃f,(2D+1×1) defined in (3.33) on antenna m. Comparing (4.48) with

the original model in (4.46), we can conclude that the equivalent channel of length 4D+1
can be written as

H̃f,m (k) =
[
H̃m(k, k − 2D) .. H̃m(k, k) .... H̃m(k, k + 2D)

]
= W̃H

f,m(k)H̄m(k)
(4.49)
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Figure 4.11.: ICI Cancellation After SIMO Combining

As we can see, the equivalent channel after frequency filtering is of length 4D + 1,
which means the number of interferers considered is doubled from 2D to 4D. In other
words, by filtering the received sequence, the length of the effective channel has increased
by the length of the filter, which is intuitively satisfying.

4.6.2. ICIC after Combining

In the second architecture, depicted in Figure 4.11, the combining stage is followed
by an ICIC. In this case, the equivalent channel after the SIMO diversity receiver
needs to be recomputed before the ICI cancellation stage. We should also note that the
first stage (in both architectures ICIC→combining and combining→ICIC) should not
normalize the intermediate output signal, which we shall refer to here as S̃(k). Instead
the normalization is carried out in the second stage.

Equivalent Channel after SIMO Combining Using (4.5), the non-normalized output
of the SIMO combiner can be written as

S̃(k) = W̃H
(M×1) (k) Ř (k) . (4.50)

Using (4.46) and (4.2), S̃(k) can be written as

S̃(k) = W̃H
(M×1)

 Hf,1 (k)
...

Hf,M (k)


M×2D+1

S̄(2D+1×1)(k) + W̃H
(M×1)

 X1 (k)
...

XM (k)


= H̃f,(1×2D+1) (k) S̄(2D+1×1)(k) + X̃ (k) , (4.51)

where Hf,m (k) is the ICI frequency vector at the mth antenna built as
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Hf,m (k) =
[
Hm (k, k −D) .. Hm (k, k) .. Hm (k, k +D)

]
. (4.52)

Comparing (4.51) with the original model in (4.46), we see that the equivalent channel
can be computed as

H̃f,(1×2D+1) (k) = W̃H
(M×1) (k)

 Hf,1 (k)
...

Hf,M (k)


(M×2D+1)

. (4.53)

Alternatively, the (D + d)th element in H̃f,1×2D+1 (k) , which is the interference of
subcarrier k + d on subcarrier k can be computed as

H̃ (k, k + d) = W̃H
(M×1) (k) Ȟ(M×1) (k, k + d) , (4.54)

where Ȟ(M×1) (k, k + d) is built as in (4.25).

4.7. Summary of Results for SIMO receivers

4.7.1. Results on Concatenation of MRC Receiver with PIC

In this section, we compare simulation results of the two architectures PIC→MRC vs
MRC→PIC. In Table 4.5, we list the settings used in these simulations.

In Figure 4.12, the BER of PIC→MRC vs MRC→PIC is compared in two different
settings:

1. the ZF QAM symbol estimates are fed into the ICI subtraction block in Figure 3.9
(green curves).

2. the genie aided QAM symbols (actual transmitted QAM symbols) are fed into the
ICI subtraction block in Figure 3.9 instead of the estimated QAM symbols at the
output of the ZF block (red curves).

As we can see, in the case when the ICI subtraction block is fed with the genie aided
symbols, the order of MRC and ICIC does not affect the BER curves, where both red
starred and red squared curves overlap. However, in the realistic case, when the estimates
given to the ICI subtraction block are obtained from the ZF block, a performance gap
of around 15 Hz is observed, where the architecture MRC→PIC can deliver a better
performance.

In Figure 4.13, the frequency domain channel is shown on antenna 1 vs the equivalent
channel after MRC. We can see that as expected after combining, the equivalent channel
does not suffer from spectral nulls and therefore applying ZF after such a channel transfer
function produces more reliable QAM symbol estimates. Indeed the reliability of the
initial QAM symbol estimates fed into the ICI subtraction block is the main reason
behind the performance gap shown in Figure 4.12 between the two architectures.
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Parameter Setting

System DVB-T

BER after Viterbi decoding in dependency of Doppler shift

CSI PACE using linear interpolation

noise estimation PANE after PIC , (4.41) after MRC

SNR 30 dB

Modulation 64QAM

Coding Viterbi decoding (2/3) traceback depth=252

OFDM 8k FFT , NGI = 2048 samples,
Na = 6817 subcarriers Ndata = 6048 subcarriers

Channel 2× 1 spatially uncorrelated TU6 channels

ICIC PIC:D = 3. MMSE:D = 1

OFDM Receiver PIC→MRC, MRC→PIC
MMSE→MRC and MRC→MMSE

Table 4.5.: Simulation Parameters used to produce results in Figures 4.12 to 4.20
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Figure 4.12.: MRC→PIC vs PIC→MRC. Simulation settings summarized in Table 4.5.
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Figure 4.13.: Magnitude of frequency domain channel on first antenna vs equivalent fre-
quency domain channel after MRC at fD,max = 150Hz and Γ = 30 dB

4.7.1.1. Results on Enhanced PIC →MRC

In this work we propose several measures to monitor or increase the reliability of the
initial QAM symbol estimates applied to the second stage of the PIC block in Figure
3.9 (ICI subtraction block). These measures include:

1. Dropping unreliable QAM symbols: Unreliable QAM symbols can be detected (and
later dropped) using

a) QAM symbol based threshold: QAM symbols which exceed a certain thresh-
old in amplitude are considered unreliable.
At subcarrier positions where the frequency domain channel magnitude |H (k, k)|
is small (below noise+ICI level), the ZF QAM symbol estimates have a large
amplitude and in turn this lead to error propagation when those unreliable
QAM symbols are fed to the ICI subtraction block in Figure 3.9. There-
fore, QAM symbols whose real or imaginary components exceed a threshold
adrop are dropped, i.e., set to zero and therefore not considered in the ICI
subtraction step.

b) channel based threshold: another approach to detect unreliable QAM symbols
is to identify the positions where the frequency domain channel magnitude
|H (k, k)| is low. An SIR threshold Υth is set, where all QAM symbols with

low SIR, Υ1 (k) = |H(k, k)|2

|H(k, k+1)|2 < Υth, are dropped. The SIR function was

initially defined in MMSE-ASW ICIC in (3.36), where it was used to set
D (k).
In Figure 4.14, we can see the BER of enhanced PIC→MRC via channel
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and QAM symbol based dropping after initial ZF stage. We can see, in the
zoomed plot at the relevant BER (1e−4 as explained in Chapter 2) in Figure
4.14b, that the channel and symbol based dropping reduced the gap between
PIC→MRC and MRC→PIC from around 15 Hz to around 4 Hz and 6 Hz,
respectively. Using the settings in Table 4.5, a threshold of Υth = 6 dB gives
a slightly better performance than Υth = 3 dB or Υth = 9 dB. With symbol
based dropping, the best threshold is found to be adrop = 1.25.

2. noise reduction by applying hard decision on the initial symbol estimates at the
input to the ICI subtraction block.

3. noise reduction by saturating the initial QAM symbol estimates’ real and imaginary
components at a value of asat, before input to the ICI subtraction block.
In Figure 4.15, we can see that the performance gap between PIC→MRC and
MRC→PIC is bridged via applying hard decision or saturation on the initial QAM
symbol estimates’ real and imaginary components at a value of asat. Applying hard
decision requires knowledge of the QAM constellation used and in addition, extra
computations because of the used slicer. Using normalized 64QAM symbols, the
maximum magnitude of the real or the imaginary component of a QAM symbol is
amax = 1.0801. As shown in 4.15b, applying a saturation at asat = amax, gives even
a better performance than applying hard decision, because of the error propagation
implicit in the latter scheme. Therefore, we do not further consider hard decision as
a means to enhance the PIC stage. As we can see, by saturating at asat = 2 > amax,
a slightly worse performance is encountered compared to saturating at asat = amax,
which is intuitively satisfying, since more estimation noise is suppressed in the latter
case.

4. replacing ZF stage by an MMSE-ICIC stage: in Figure 4.16a, we can see the BER
of enhanced PIC→MRC via replacing the initial ZF stage with an MMSE-FWS
ICIC of D = 1 stage. The result in Figure 4.16b shows that applying MMSE-ICIC
as an initial stage (MMSE-ICIC →PIC→MRC) gives a better performance than
MRC→PIC, at the expense of higher complexity. Applying an enhanced PIC stage
(with MMSE-ICIC initial estimation) after MRC (MRC→MMSE-ICIC→PIC) re-
sults in better performance than (MMSE-ICIC→PIC→MRC), as shown in Fig-
ure 4.16b. The gap, however, between MRC→MMSE-ICIC →PIC and MMSE-
ICIC →PIC→MRC is reduced to around 4 Hz compared to the 15 Hz gap between
MRC→PIC and PIC→MRC. Seeking a trade-off between performance and com-
plexity, we also investigated applying an MMSE-ASW ICIC as an initial ICIC
stage with Dmax = 1, i.e., the initial ICIC stage has an option of applying either
ZF or MMSE-ICIC with D = 1 depending on the SIR at every subcarrier posi-
tion and the given Υth. Applying MMSE-ASW ICIC with Υth = 8 dB gives a
comparable performance to MRC→MMSE-FWS ICIC→PIC on only 18% of the
subcarriers, as shown in the BER Figure 4.16b and the histogram in Figure 4.17. In
Figure 4.18, we can see that using PIC→MRC with initial stage of MMSE (MMSE-
ICIC→PIC→MRC), a better BER performance can be achieved compared to that
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Figure 4.14.: Enhanced PIC →MRC via channel and symbol based threshold symbol
dropping after first ZF stage. Simulation settings summarized in Table 4.5
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Figure 4.15.: Enhanced PIC→MRC via saturation and hard decision after ZF at quasi-
error free BER. Simulation settings summarized in Table 4.5
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of MMSE-ICIC→MRC, which is intuitively satisfying.

Approaches based on 1a, 2 and 3 require that the QAM constellation used is known
at the receiver side. This requirement might not be feasible, for example in the case
when different QAM constellations are used on the different subcarriers. Channel based
dropping eliminates the need to know the used QAM constellation, however, the opti-
mum SIR threshold Υth will depend on the channel domain channel. Using an initial
MMSE-ICIC stage does not require knowledge of the QAM constellation nor parameter
optimization, but it comes at the cost of higher complexity.

In Figure 4.19, we can see a comparison of all proposed enhancements of PIC→MRC
against the architecture MRC →PIC. We can see that the gap between the two archi-
tectures depend on the quality of the initial QAM symbols fed to the ICI subtraction
stage as follows:

1. with genie-aided QAM symbols, both architectures give the exact same perfor-
mance.

2. with ZF receiver, the Doppler frequency gap is ∼ 15 Hz as mentioned earlier.

3. with enhanced initial QAM symbol estimation, via an initial MMSE-ICIC stage or
via QAM symbol saturation, the gap reduces to around 4 Hz.

4.7.2. Results on Concatenation of MRC Receiver with MMSE ICI Canceler

In Figure 4.20, we can see the performance of MMSE-ICIC→MRC vs the performance
of MRC→MMSE-ICIC. Unlike the comparison in Figure 4.12, we can see that the order
of combining and ICI cancellation does not affect the BER performance when the ICI
cancellation is done using MMSE-ICIC.

Though a concatenation of MMSE-ICIC equalizer followed by an SDCC or an OC
combining stage is possible, as discussed in section 4.6.1, a limited Doppler frequency gain
can be achieved with this architecture, as shown in Figure 4.21, where the architecture
MMSE-ICIC →SDCC gives almost the same performance as MMSE-ICIC→MRC and
even a worse performance than SDCC standalone. An analysis of this architecture can
be found in Appendix B for the interested reader.

4.7.3. Results on Enhanced MRC with Colored Noise Information

In Figures 4.22 to 4.27, the BER of the enhanced MRC using (4.41) vs the noise window
size q is shown. The simulation parameters used are summarized in Table 4.7.

Compared to the conventional solution, where all CoPs are averaged to get one noise
variance value per OFDM symbol (performance highlighted in circles), we can see how
the noise windowing can lead to a lower error floor at fD,max = 150 Hz for 4 and 16QAM
and at fD,max = 90 Hz for 64QAM, as shown in Figures 4.25 to 4.27. Same behavior is
observed at a constant SNR= 30 dB, in Figures 4.22 to 4.24.
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Figure 4.16.: Enhanced PIC→MRC via an initial MMSE-ICIC stage. Simulation settings
summarized in Table 4.5.
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Figure 4.17.: Histogram of selected D by ASW-ICIC in ASW-ICIC→ICI-C. Simulation
settings summarized in Table 4.5.
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Figure 4.18.: MMSE-ICIC→MRC vs PIC→MRC with initial stage of MMSE-ICIC. Sim-
ulation settings summarized in Table 4.5.
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(b) Zoomed BER plot

Figure 4.19.: MRC→PIC vs PIC→MRC at the relevant BER. Simulation settings sum-
marized in Table 4.5
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Figure 4.20.: MRC→MMSE-ICIC vs MMSE-ICIC→MRC at the relevant BER. Simula-
tion settings summarized in Table 4.6.

Parameter Setting

System DVB-T

BER after Viterbi decoding in dependency of Doppler shift

CSI PACE using linear interpolation

noise estimation fed to demapper after MRC using (4.41)

SNR 30 dB

Modulation 64QAM

Coding Viterbi decoding (2/3) traceback depth=252

OFDM 8k FFT , 2048 samples GI

∆f = 1.116 kHz, Na = 6817 subcarriers,
Ndata = 6048 subcarriers

Channel 2× 1 spatially uncorrelated TU6 channels

OFDM Receiver MMSE→MRC,MMSE-ICIC→SDCC and SDCC.
MMSE:D = 1, SDCC:Dsimo = 10

Table 4.6.: Simulation Parameters used to produce results in Figure 4.21
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Figure 4.21.: Performance of MMSE-ICIC→OC. Simulation settings summarized in Ta-
ble 4.6.

At low SNR, very small window sizes (such as q = 5 samples) can lead to a worse
performance, as shown in Figures 4.25 to 4.27.

We can also see that the weighting proposed in (4.36) has significantly decreased the
dependency of the BER performance of the enhanced MRC on the selected noise window
size. The curves with the proposed weighting criterion in (4.36) have a much flatter shape
than the curves with the rectangular weighting according to (4.35). In addition, they
exhibit lower BER in comparison to their non-weighted counterparts.

In Figure 4.28, we see the BER performance of conventional MRC and enhanced MRC
with weighted CoP PANE at q = 100 CoPs for TU6 and 2TU6 channels, using 4QAM,
16QAM and 64QAM modulation. The used 2TU6 channel (explained in section 2.3.3)
had a delay of τ2 = 0.15NGIT ≈ 0.134 msec and k2 = −3 dB. As we can see, using
a weighted noise window of q = 100 CoPs is effective over a wide Doppler frequency
range and with even a higher frequency selective channel. We can see in Figure 4.28 a
flattening of the BER curve at low Doppler shifts for 4QAM. The error floor is caused by
the very high frequency selectivity of the channel which the linear channel interpolation
is not able to track accurately.

Figure 4.29 shows the BER vs Doppler frequency shift of MRC with weighted CoP
PANE at the input to MRC for TU6 and 2TU6 channels using GACN and 64QAM
modulation. Because GACN is used, we do not see the error floor obvious as in Figure
4.28. We can clearly see that the Doppler gain obtained from colored noise estimation
decreases as the frequency selectivity increases, from around 9 Hz gain in a TU6 channel
to around 4 Hz gain in a 2TU6 channel. This is intuitively satisfying because with the
increase in the frequency selectivity, the sparse arrangement of the continual pilots is no
longer capable of capturing the frequency variation of the total noise+ICI power.
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Parameter Setting

System DVB-T

BER after Viterbi decoding
in dependency of window size q

CSI PACE using linear interpolation

Noise estimation fed to demapper after MRC using (4.41)

SNR 30 dB

Doppler shift (fD,max) 150Hz and 90Hz

Modulation 4QAM ,16QAM and 64QAM

Coding Viterbi decoding (2/3) traceback depth=252

OFDM 8k FFT , NGI = 2048 samples
,Na = 6817 subcarriers Ndata = 6048 subcarriers

, ∆f = 1.116 kHz

Channel 2× 1 spatially uncorrelated:
TU6 channel

2TU6 channel: τ2 = 0.15NGIT ≈ 0.134 msec
and k2 = −3 dB.

Table 4.7.: Simulation Parameters used to produce the results in Figures 4.23 to 4.27
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Figure 4.22.: BER vs noise window size for different Doppler shift values at SNR= 30 dB
using 4QAM
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Figure 4.23.: BER vs noise window size for different Doppler shift values at SNR= 30 dB
using 16QAM
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Figure 4.24.: BER vs noise window size for different Doppler shift values at SNR= 30 dB
using 64QAM
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Figure 4.25.: BER vs noise window size for different Doppler shift values at fD,max =
150 Hz using 4QAM
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Figure 4.26.: BER vs noise window size for different SNR values at fD,max = 150 Hz
using 16QAM
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Figure 4.27.: BER vs noise window size for different SNR values at fD,max = 90 Hz using
64QAM
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Figure 4.28.: BER of MRC vs Doppler shift with colored noise estimation at the input
to MRC for TU6 and 2TU6 channels

f
D,max

 [Hz]
80 100 120 140 160 180 200

B
E

R

10-6

10-5

10-4

10-3

10-2

10-1

64QAM q=100(weighted) 2TU6
64QAM all CoP 2TU6
64QAM q=100(weighted) TU6
64QAM all CoP TU6

(a)

f
D,max

 [Hz]
80 100 120 140 160

B
E

R

10-4

10-3

64QAM q=100(weighted) 2TU6
64QAM all CoP 2TU6
64QAM q=100(weighted) TU6
64QAM all CoP TU6

(b) Zoomed plot at quasi-error-free BER.

Figure 4.29.: BER of MRC vs Doppler shift with colored noise estimation at the input
to MRC for 2TU6 channel with GACN
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Figure 4.30.: BER of PIC→MRC with colored noise estimation after PIC

4.7.3.1. Enhanced PIC→MRC Using Windowed CoP PANE

In Figure 4.30, we demonstrate the advantage of using windowed CoP PANE on the
architecture PIC→MRC. We apply windowed CoP PANE (using noise window size
q = 100 CoPs plus weighting according to (4.36) and (4.37)) before and after the PIC
block (green and black curves, respectively) as shown in Figure 4.30 and as marked in
the block diagram in Figure 4.31.

Interestingly, as we see in Figure 4.30, both approaches (computing the colored noise
before and after the PIC block) yield the same BER and both are better than considering
all CoPs in PANE (shown in magenta and red curves).

Since γin and γout are very close in value as shown in Figure 4.32, the overall perfor-
mance of estimating the noise variance before and after the PIC block are very close.
In order to explain why estimating the noise variance before and after the PIC block
yields the same performance, we define the noise+ICI inter-channel ratios (across the
two antennas) at the input and output of the PIC as

γin (k) =
‖Xt,1 (k)‖2

‖Xt,2 (k)‖2
(4.55)

γout (k) =

∥∥∥X̃t,1 (k)
∥∥∥2

∥∥∥X̃t,2 (k)
∥∥∥2 (4.56)

As shown in Figure 4.32, the signals γin (k) and γout (k) are very close in value and are
both colored because of the effect of the ICI . Indeed, this signal is a crucial parameter
in determining the weights of the MRC according to (4.33). To make this point clearer,
we rewrite (4.32) for 2 antennas as
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Figure 4.31.: Simplified architecture of the PIC→MRC with the BER result, shown in
Figure 4.30, the locations of PANE are marked

W̃MRC (k) = ˇ̃C−1 (k) ˇ̃H (k, k) =

[
σ̃2
t,1 (k)

σ̃2
t,2 (k)

]−1 [
H̃1 (k, k)

H̃2 (k, k)

]
=

1

σ̃2
t,2 (k)

[
E {γout (k)}

1

]−1 [
H̃1 (k, k)

H̃2 (k, k)

]
. (4.57)

Since eventually the weighting filter coefficients are going to be normalized, the scalar
factor in (4.57) σ̃2

t,2 (k) can be ignored, then, the remaining influencing factor is the ratio
between the single weights given to each antenna relative to each other, E {γout (k)}.

In Figure 4.33, we can see the MSE between the genie aided noise+ICI inter-channel
ratio and the estimated noise+ICI inter-channel ratio averaged over all frequency sub-
carriers for successive OFDM symbols. Noise+ICI inter-channel ratio estimation using
weighted windowed PANE with q = 100 CoPs is compared against conventional PANE
after PIC. Clearly, using a weighted windowed PANE gives a better estimate of the
noise+ICI inter-channel ratio and hence a better estimate of the MRC weights, which
shows that the total noise is still colored even after applying PIC.

On the other hand, if we look at Figure 4.34, where the MSE of noise estimation after
PIC is shown, we can see that bypassing the estimated noise does not yield a better
MSE, i.e., σ2

in is not in principal a good estimate of σ2
out. However, since, as explained

earlier, γin is a good estimate of γout and since the weighting filter vector of the MRC
block depends mainly on the noise+ICI inter-channel ratio and not necessarily on the
quality of the estimated noise+ICI value, we find a similar BER performance in the case
when the noise variance is estimated at the input to the PIC and bypassed to the MRC
block, or estimated after the PIC block.
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Figure 4.32.: Inter-channel noise+ICI ratio before and after PIC, γin and γout, for one
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Figure 4.33.: |γout − γGANE |2 for successive OFDM symbols
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Figure 4.34.: MSE of noise variance estimation PIC→MRC with colored noise estimation
after PIC

4.7.3.2. Enhanced MRC→PIC Using Windowed CoP PANE

In Figure 4.35, we can see the Doppler gain provided by applying windowed CoP PANE
on the architecture MRC→PIC. We apply windowed CoP PANE (using a noise window
size q = 100 CoPs plus weighting according to (4.36) and (4.37)) before MRC and after
PIC.2 As we can see, around 13 Hz gain can be achieved by applying windowed CoP
PANE before MRC in MRC→PIC (squared magenta curve vs black curve), which is
a little bit higher than the gain achieved by applying windowed CoP PANE on the
architecture MRC standalone. However, applying windowed CoP PANE after PIC in
MRC→PIC can only achieve a marginal gain (squared green curve vs squared magenta
curve).

4.7.4. Comparisons

In Figures 4.36 and 4.37, we can see BER comparisons of all the different receiver diver-
sity architectures discussed so far. We do not add the results for MMSE-ICIC→MRC
since it overlaps with the results for MRC→MMSE-ICIC, as shown in Figure 4.20. The
simulation parameters are listed in Table 4.8. As we can see, using PACE in Figure
4.36, the best performance can be achieved using the architecture SDCC→PIC, which
gives a significant Doppler gain of around 95 Hz compared to the classical MRC which
does not consider ICI at all. Thus, assuming a carrier frequency of fc = 600 MHz, MRC
can handle a receiver moving at a speed of 153 km/h while the architecture SDCC→PIC
allows for reception till a speed of 324 km/h.

2Note that ICI cancellation using PIC does not require knowledge of noise variance, therefore the way
the noise variance computed after MRC does not affect the performance.

80



4.7. SUMMARY OF RESULTS FOR SIMO RECEIVERS

f
D,max

 [Hz]
80 100 120 140 160 180 200

B
E

R

10-6

10-5

10-4

10-3

10-2

10-1

MRC->PIC (all CoP)
MRC(q in=100 weighted)-->PIC

MRC(q in=100 weighted)-->PIC(qout=100 weighted)

MRC (all CoP)
MRC(q in=100 weighted)

Figure 4.35.: BER of MRC→PIC with colored noise estimation at the input to MRC
and after PIC

Applying windowed CoP PANE before MRC gives a gain around 10 − 15 Hz in the
architectures MRC→PIC, PIC→MRC and MRC standalone.

With GACN in Figure 4.37, we can see almost the same relative performance as in
Figure 4.36, only in a slightly higher frequency range, which is intuitively satisfying.
We can thus conclude that this relative performance observed in Figure 4.36 will still
apply using a better channel estimation method than that of linear interpolation used
throughout this thesis.
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Figure 4.36.: Comparison of all different architectures using PACE
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Figure 4.37.: Comparison of all different architectures using GACN
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Parameter Setting

System DVB-T

BER after Viterbi decoding
in dependency of Doppler

CSI PACE using linear interpolation, GACN

noise estimation PANE after PIC and MMSE, (4.41) after MRC

SNR 30 dB

Modulation 64 QAM

Coding Viterbi decoding (2/3) traceback depth=252

OFDM 8k FFT , NGI = 2048 samples,Na = 6817 subcarriers
Ndata = 6048 subcarriers

Channel 2× 1 spatially uncorrelated TU6 channels

OFDM Receiver PIC:D = 3. MMSE-ICIC:D = 1. OC:Dsimo = 10

Table 4.8.: Simulation Parameters used to produce results in Figures 4.36 and 4.37
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5. Blind Maximum Ratio Combining

5.1. Motivation

In Chapter 4, we investigated exploiting the receiver diversity to mitigate the effect of ICI.
There exists a huge literature on the issue of receiver diversity combining [SA05, Stu96].
Some approaches require only partial CSI knowledge, e.g, EGC, while others expect full
CSI knowledge, e.g, MRC. In the case of spatially uncorrelated channels with AWGN,
the highest gain is obtained using MRC. In the absence of interference and assuming
equally likely transmitted symbols, the total conditioned SNR per symbol is given as
the summation of SNR on all individual antennas [SA05, Stu96]. In Figure 5.1, a block
diagram of a conventional receive diversity scheme is shown. The signal s (t) is transmit-
ted over M uncorrelated channels hm(t, τ), m ∈ [1,M ] . The received signals rm (t) are
combined using knowledge of the CSI acquired at the receiver side using PACE. There-
fore as we can see, at each antenna part of the demodulator circuit has to be duplicated
to perform standard-dependent operations such as synchronization, pilot extraction and
channel estimation. The design of these blocks strongly depends on the communica-
tion signal structure, e.g, the synchronization depends on the framing structure, the
demodulation is applied differently for single-carrier or multi-carrier signals, the pilot
information is embedded depending on the used standard and thus extracted differently,
and so on.

In [AES13], we proposed a receiver architecture which has the advantage of being
transmit signal independent. Only limited information about the underlying system is
required for receive signal combining, therefore such a unit can be employed in almost
any standard.

The architecture of the proposed scheme is shown in Figure 5.2. In order to work
independently of the underlying standard, blind maximum ratio combining (BMRC) re-
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Figure 5.1.: Pilot-assisted signal combining
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Figure 5.2.: Blind receive antenna signal combining

lies only on the received signals to acquire CSI instead of PACE. To get an estimate of
the channel only through the received signals, we propose to use blind channel identi-
fication (BCI) [AES13, EAS13]. In section 5.2, the proposed architecture is described.
Afterwards, we elaborate on the BCI methods in sections 5.3 and 5.5.

5.2. Blind Maximum Ratio Combining

As we shall see in sections 5.3 and 5.5, BCI is carried out in the time domain. Similarly,
blind receiver diversity combining is also done in the time domain. To proceed, we first
put down the system model for the time domain received signal vector for an observation
window of B samples as

rm (n) = gm (n) s (n) + xm (n) , (5.1)

where rm (n) is an B × 1 vector of the received samples at antenna m and time index
n. gm (n) is the time domain Toeplitz channel matrix of size B × B + L − 1. s (n) is
an B + L − 1 × 1 vector of sent samples and xm (n) is the vector of noise samples at
antenna m and time index n. Assuming an observation window of size B = 5 samples
and an FIR channel transfer function of order 2 (L = 3), the received vector rm (n) can
be written as
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rm (n)

rm (n− 1)
rm (n− 2)
rm (n− 3)
rm (n− 4)

 =


hm(n, 0) hm(n, 1) hm(n, 2) 0 0 0 0

0 hm(n, 0) hm(n, 1) hm(n, 2) 0 0 0
0 0 hm(n, 0) hm(n, 1) hm(n, 2) 0 0
0 0 0 hm(n, 0) hm(n, 1) hm(n, 2) 0
0 0 0 0 hm(n, 0) hm(n, 1) hm(n, 2)




s (n)
s (n− 1)
s (n− 2)
s (n− 3)
s (n− 4)
s (n− 5)
s (n− 6)


+


xm (n)

xm (n− 1)
xm (n− 2)
xm (n− 3)
xm (n− 4)

 . (5.2)

where the channel is assumed constant over the whole block in (5.2), i.e., hm(n, l) ≈
hm(n − 1, l) ≈ ... ≈ hm(n − B, l). At a receiver equipped with M antennas, the
concatenated received vector from all antennas can be written as

ř (n) =

 r1 (n)
...

rM (n)


(MB×1)

= ǧ (n) s (n) + x̄ (n) , (5.3)

where the concatenated channel matrix ǧ (n) can be written as

ǧ (n) =

 g1 (n)
...

gM (n)


(MB×B+L−1)

(5.4)

There is a fundamental difference between the models in (5.1) and (5.3), as the channel
matrix is no longer a ”fat” or a landscape matrix. If M > 1 and B > L − 1, ǧ (n) is a
”tall”or a seascape matrix, i.e., the linear model in (5.3) is an overdetermined system and
therefore the signal vector s can be exactly recovered. It is also clear that the longer the
observation window B or the higher the number of antennas M , the more equations are
available in the system and thus a better estimate can be obtained for the signal vector
s in an AWGN environment. This confirms our observation that linear equalization is
indeed enough in a SIMO system. For more information, the interested reader can refer
to [PS08].

Performing an least squares (LS) criteria on (5.3) yields

ŝ (n) = ǧ† (n) ř (n)

=
(
ǧH (n) ǧ (n)

)−1
ǧH (n) ř (n)︸ ︷︷ ︸ . (5.5)
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5.2. BLIND MAXIMUM RATIO COMBINING

If we examine the underlined part of (5.5), we can write it down as

ǧH (n) ř (n) =
M∑
m=1

gHm (n) rm (n)︸ ︷︷ ︸
h∗m(n,−l)?lrm(n)

, (5.6)

which can also be seen as a convolution between each received signal at time index n, i.e,
rm (n) and the corresponding matched filter of this particular antenna, i.e., h∗m (n,−l)
over the dimension l. This is also the original definition of a receiver that applies MRC
in the time domain [SA05]. Therefore, as seen in Figure 5.3, we perform MRC in time
domain using matched filters.

The distortion introduced by the channel and later by the diversity combiner (bank
of matched filters) can then be removed in the second part of the demodulator. A
disadvantage of time domain combining is that the distortion introduced by the matched
filters will result in an effective channel impulse response with double the actual channel
length. In case the receiver is using a time domain equalizer, this will complicate the
receiver architecture. However, in case of OFDM frequency domain equalization, as
long as the effective channel length does not exceed the guard interval, the equalization
process remains uncomplicated.
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Figure 5.3.: Blind receive antenna signal combining using matched filters
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5.3. Blind Channel Identification

Blind deconvolution algorithms can be classified into [Hay00]

1. Algorithms based on higher order statistics (HOS)

2. Algorithms based on second order statistics (SOS)

Algorithms based on HOS, include for example the famous constant modulus algorithm
(CMA) [God80] or algorithms based on higher order cumulants [Hay00]. The main
disadvantage of relying on higher order statistics is their slow rate of convergence, which
makes them unsuitable to identify a time-varying channel. Hence, we shall not consider
this family of algorithms in our investigations.

Algorithms based on SOS were first proposed in [TXK91], where oversampling at the
receiver side is used to create the temporal diversity needed for the algorithm to converge.
Similarly, in [HLT94] an SOS algorithm based on LS solution is used to blindly identify
a SIMO channel. The approach makes use of the cross relations between the outputs
of the antennas. Hence, it acquired the name cross relations (CR). To explain the idea
behind the CR, we refer to Figure 5.4, where two antennas are placed at the receiver side
to obtain two received signals rm and rm′ . In the absence of noise, the received signals
can be written as

rm = hm ? s

rm′ = hm′ ? s, (5.7)

where hm and hm′ are the communication channels between the transmit antenna and

the receive antennas m and m
′

and s is the sent signal.
The idea of cross relations is based on the observation that

rm′ ? hm = rm ? hm′ . (5.8)

Therefore, based only on the received signals rm and rm′ , the CR approach tries to
find the signals hm and hm′ which would make (5.8) satisfied. In this search, only the
received signals rm and rm′ are used, thus it is a blind approach. This estimate can only
be obtained up to a scalar ambiguity which can be explained by the fact that (5.8) is

Figure 5.4.: SIMO model with 2 antennas
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still satisfied even if both sides are multiplied by an arbitrary complex scalar factor. In
[GXK95, TXK91], a least squares solution was first proposed to solve the problem of
CR.

In [MDM95], the authors introduced a subspace approach inspired from a direction of
arrival (DOA) estimation algorithm, namely the multiple signal classification (MUSIC)
algorithm. In [Hua96], a two step maximum likelihood (ML) solution is designed for
the problem of CR. The interested reader can refer to [Sal11], for more information
on SOS based identification methods. Although all the aforementioned batch solutions
can achieve very good performance, they all require very high complexity since they
include eigenvalue decomposition (EVD) or singular value decomposition (SVD) steps
which require high complexity. In this work, seeking a low complex solution, we are
interested in a frequency domain iterative implementation of the CR approach, namely
the MCFLMS solution proposed in [HB03, HBC03].

5.3.1. Multi-Channel Frequency Least Mean Squares

To explain the MCFLMS algorithm we first introduce the iterative vector form of (5.8)
at time index n

rT
m′

(n) hm = rTm (n) h
m

′ , (5.9)

where rm′ (n) and hm can be defined as

rm′ (n) =

 rm′ (n)
...

rm′ (n− L+ 1)

 (5.10)

and

hm =

 hm (0)
...

hm (L− 1)

 . (5.11)

A CR error signal can be defined as

emm′ (n) = rT
m′

(n) hm − rTm (n) hm′ , (5.12)

where m,m
′ ∈ {1, 2, ...M} ∀m 6= m

′
. Accordingly, a cost function can be defined as

the summation of the squared CR error among all M antennas

jCR (n) =
M−1∑
m=1

M∑
m′=m+1

∣∣emm′ (n)
∣∣2 . (5.13)

The problem can then be formulated as

ˇ̂
h = arg min

ĥ
E {jCR(n)} , (5.14)
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under the constraint
∥∥∥ˇ̂
h
∥∥∥ = 1.

The stacked channel impulse response,
ˇ̂
h, can be written as

ˇ̂
h =

[
ĥT1 . . . ĥTM

]T
.

As mentioned earlier, because of the scalar ambiguity, the output of such an optimization
is usually a scalar multiple of the actual channel impulse response. Therefore, the output

of the optimization should be normalized such that
∥∥∥ˇ̂
h
∥∥∥ = 1, to avoid excessively large

scalar ambiguity factors.
In [HB02], the authors proposed to use the least mean square (LMS) algorithm to solve

the optimization problem in (5.14), namely multi-channel least mean squares (MCLMS).
In [HB03, HBC03], the authors proposed using frequency domain block adaptive filtering
to solve the same problem. This approach has the advantage of requiring significantly
less computational complexity than the time domain solution, [Hay01].

In this work, we focus only on the frequency domain solution, namely the MCFLMS
algorithm. MCFLMS operates in block-wise mode, i.e., one iteration includes processing
a block of B samples. The CR error in the frequency domain can be written as

Eu
mm′

= W01
(B×2B)

(
Du
mW10

(2B×B)Ĥm′ −Du
m′

W10
(2B×B)Ĥm

)
, (5.15)

where Du
m is a diagonal matrix of size 2B × 2B composed of the FFT of the buffered

2B received samples on antenna m

Du
m = diag

F2B

 rm (uB −B)
...

rm (uB +B − 1)


 , (5.16)

where the FFT matrix F2B is as defined in (3.11). The frequency domain masks
W01

(B×2B) and W10
(2B×B) are used to emulate the overlap-save technique and are defined

as

W01
(B×2B) = FB

[
0B IB

]
F−1

2B, (5.17)

W10
(2B×B) = F2B

[
IB
0B

]
F−1
B . (5.18)

Similar to (5.13), a cost function can be computed in the frequency domain as

JuCR =
M−1∑
m=1

M∑
m′=m+1

||Eu
mm′
||2. (5.19)

The frequency domain gradient of the cost function with respect to the mth subchannel
and the uth iteration of the algorithm is computed as

∇mJuCR =
∂JuCR
∂Ĥ∗m

=

M−1∑
m′=1,m′ 6=m

(
W01

(B×2B)D
u
m′

W10
(2B×B)

)H
Eu
m′m

(5.20)
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The update equation of the estimate of the mth subchannel is then written as

Ĥu
m = Ĥu−1

m − µ∇mJuCR

= Ĥu−1
m − µW10

(B×2B)

M∑
m′=1,m′ 6=m

Du∗
m′

W01
(2B×B)E

u
m′m

, (5.21)

where µ is the step size parameter and the frequency domain masks W10
B×2B and

W01
2B×B are defined as

W10
(B×2B) = FB

[
IB 0B

]
F−1

2B =
(
W10

(2B×B)

)H
, (5.22)

W01
(2B×B) = F2B

[
0B

IB

]
F−1
B =

(
W01

(B×2B)

)H
. (5.23)

The estimate of the mth subchannel is then computed as

Ĥu
m = Ĥu−1

m − µW10
(B×2B)

M∑
m

′
=1

Du∗
m′

W01
(2B×B)E

u
m′m

. (5.24)

After every estimation step u, the estimated channel has to be further normalized such

that
∥∥∥ ˇ̂
Hu
∥∥∥ =

∥∥∥∥∥∥∥
 Ĥu

1
...

Ĥu
M


∥∥∥∥∥∥∥ = 1.

In general, there are two identifiability conditions associated with this problem [GXK95],
i.e., conditions on the signal sent and the channel in order for the channel impulse re-
sponse to be identifiable

1. The channels have to be co-prime, i.e., no common zeros. This requirement is clear
if we rewrite (5.8) in the Z domain

Rm′ (z)Hm (z) = Rm (z)Hm′ (z) . (5.25)

As we can see, in case the two channels Hm (z) and Hm′ (z) share a common zero

such that Hm (z) = H
′
m (z) (z − zs) and Hm′ (z) = H

′

m′
(z) (z − zs). If we substi-

tute the formulas back in (5.25), we find that the shared zeros cancel each other
and hence any arbitrary zero can also satisfy the equation in (5.25). Therefore,
this particular zero can not be identified. A similar case arises in case the channel
order is overestimated, i.e., the number of zeros is overestimated. For example, if
the actual channel length L is overestimated by L

′
> L, an arbitrary polynomial of

degree L
′ − L multiplied by both sides of (5.25) will still make the equation satis-

fied. That is why channel order overestimation is regarded as a common challenge
in this problem [dCS04].
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2. The second requirement is concerned with the source signal, where the source signal
has to have enough excitation modes to cover the whole transmission bandwidth.
This is a typical requirement in system identification problems. Mathematically,
it is equivalent to the auto-correlation matrix of the transmit signal Rss being of
full rank.

In reality, these conditions are not always satisfied, which threats the convergence of the
algorithm. In section 5.5, we shall explain some enhancements added to the algorithm
to guarantee a stable and accurate performance.

5.4. Assessment Criteria

As mentioned earlier, the problem of BCI based on the principal of CR has an inher-
ent ambiguity. In [MBS98], the authors discuss the philosophy of evaluating estimated
impulse responses for applications in which the overall scaling or gain is irrelevant such
as blind identification algorithms. In this work we use normalized root projection mean
squared error (NRPMSE) criteria to evaluate the performance of the BCI algorithm.
This error measure reflects that we are only able to estimate h up to an arbitrary scalar
factor, assuming correct knowledge of channel length. In general, the BCI estimate can
be put in this form

α (n)
ˇ̂
h (n) = ȟ (n) + xest (5.26)

We are interested in assessing the noise power of xest relative to the channel power.
Therefore, the scalar ambiguity is derived as

α̂ (n) =
ˇ̂
hH (n) ȟ (n)
ˇ̂
hH (n)

ˇ̂
h (n)

(5.27)

The NRPMSE can be derived as

||ȟ−
ˇ̂
hH (n) ȟ (n)
ˇ̂
hH (n)

ˇ̂
h (n)

ˇ̂
h (n) ||2 (5.28)

The NRPMSE can also be equivalently derived using the frequency domain variables,

i.e.,
ˇ̂
Hu and

ˇ̂
H.

In [EAS13], a new criteria is proposed to assess how good the estimate for the combin-
ing process is. In our system, we use the blind estimate only in the combining stage. The
rest of the equalization should be handled by the standard dependent equalizer. In other
words, our idea of a “good” channel estimate is much wider than the classical case. For
example, in case of channel order overestimation, the NRPMSE can diverge due to the
additional ambiguity of a possible delay time, that is common for all channel estimates
ĥ (n, l). Furthermore, a common delay of all channel estimates has no influence on the
combining performance. For this purpose, a new assessment criterion is proposed, that
measures the average SNR loss of BMRC compared to perfect MRC. First, we define the
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output SNR after combining the received signals with ĥ (n) according to MRC assuming
AWGN with zero mean and same variance for all receive antennas. For convenience, we
compute the output SNR in the frequency domain. After MRC, the combined signal is

Ŝ (k) =
ˇ̂
HH (k)

ˇ̂
H (k)S (k) +

ˇ̂
HH (k) X̌ (k) (5.29)

Γout

(
ˇ̂
Hu
)

=

B−1∑
k=0

ˇ̂
HûH (k) Ȟ (k)E

{
|S (k)|2

}
ȞH (k)

ˇ̂
Hû (k)

ˇ̂
HûH (k)E

{
X̌ (k) X̌H (k)

} ˇ̂
Hû (k)

=
B−1∑
k=0

ˇ̂
HûH (k) Ȟ (k) ȞH (k)

ˇ̂
Hû (k)

σ2
∥∥∥ ˇ̂
Hû (k)

∥∥∥2 , (5.30)

where
ˇ̂
Hû (k) contains the estimated channels from all M antennas at the kth frequency

bin and uth block index. The last step assumes unit energy symbols, E
{
|S (k)|2

}
=

ES = 1 as discussed in the beginning of Chapter 3.
The output SNR loss can then be computed as

Γloss

(
ˇ̂
Hû
)

=
Γout

(
ˇ̂
Hû
)

Γout
(
Ȟ
) (5.31)

Note that in the division step the noise variance σ2 present in (5.30) will disappear

in (5.31), and thus Γloss

(
ˇ̂
Hû
)

measures only how far the estimate
ˇ̂
Hû from the actual

channel estimate Ȟ is.

5.5. Enhanced Multi-Channel Frequency Least Mean Squares

In this section, we describe several enhancements applied to the MCFLMS proposed
in [HB03, HBC03] to make it more suitable for tracking time-varying communication
channels.

5.5.1. Adaptive Step Size

In the update equation of MCFLMS in (5.24), a static step size parameter µ is used.
The choice of µ greatly affects the convergence behavior of the algorithm. An excessively
large value of µ can lead to divergence, whereas if µ is chosen to be too small very slow
convergence is encountered, which might be too slow to track a time-varying channel.
In [GHN06, HBC05], a variable step size MCLMS approach is presented. The idea is
further generalized to be applied in the MCFLMS in [HH07]. In these publications,
the idea is to adapt the step size so that the distance between αĤu+1

m , where α is the
scalar ambiguity factor defined in (5.26), and the actual channel Hm is minimum at each
iteration. A cost function is defined as
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Figure 5.5.: Power delay profile in dB of the TU6 channel

Juµ =
(
Hm − αĤu+1

m

)H (
Hm − αĤu+1

m

)
. (5.32)

In a second step, the step size is optimized by setting

∂Juµ
∂µu

= 0. (5.33)

This optimization results in the variable step size formula [HH07]

µu =
ˇ̂
HûH

||∇JuCR||2
∇JuCR (5.34)

where ∇JuCR =

 ∇JCR,1...
∇JCR,M

.

5.5.2. Sparse Cross Relations

Especially at high data rates, many of the encountered communication channels are
typically sparse. This means that these channels span a large delay in which only few
taps are significant in amplitude. As an example, the TU6 channel shown in Figure 5.5
spans a delay of 46 samples, using the sampling time of a DVB-T signal in an 8 MHz
channel bandwidth, but only 6 of those taps are active.

In [AEBAML11, AEBAM08], the sparseness of the communication channel is ex-
ploited inside the MCFLMS estimation for better performance. The sparseness of the
communication channel can be measured using the l1 norm

||ȟ||1 =

L−1∑
l=0

|h (l) |, (5.35)
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Figure 5.6.: Amplitude values of the estimated MCFLMS channel taps at SNR = 10 dB,
fD,max = 0 Hz and N = 512 samples

where as the sparseness of a channel increases, the l1 norm value decreases assuming a
constant channel power value. The idea adopted in [AEBAML11, AEBAM08] is to add
a penalty cost function to the cross relation cost function in (5.13) as follows

jSCR (n) = jCR (n) + λs||ȟ||1, (5.36)

such that the algorithm is forced to look for the most sparse solution. The modified
update equation is then [AEBAML11, AEBAM08]

ĥi (n) = ĥi (n− 1)− µ∇jCR − λsḣ (n) (5.37)

where ḣ (n) is the derivative of the l1 norm and can be computed as

ḣ (l) = sign(h (l)) l = 0, ...,M (L− 1) . (5.38)

5.5.3. Channel Tap Masking

As mentioned in section 5.5.2, exploiting the sparseness of the communication channel
can significantly enhance the tracking capability of the MCFLMS algorithm. For exam-
ple, in Figure 5.5, we can see that prior knowledge of the location of the 6 significant taps
can significantly help reduce the estimation noise, since most of the taps are inactive.
The problem is that such an information is not readily available at the receiver side. In
[EAS13], a heuristic approach is proposed to identify those significant taps in a first step
and create a mask to suppress the estimation noise at the locations of the non-significant
taps in a second step.

In Figure 5.6, we can see how the amplitude of the estimated channel varies over time
for a significant (left) and a non-significant tap (right). As we can see, the non-significant
tap has a much smaller estimated magnitude. To distinguish a significant tap, one idea
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Figure 5.7.: Estimated phase information of the estimated MCFLMS channel impulse
response taps at SNR = 10 dB, fD,max = 0 Hz and N = 512 samples

would be to set a threshold based on the magnitude value of the estimated tap. The
problem with such an approach is that the choice of the threshold will be very sensitive
to the SNR and the choice of the step size.

However, by looking at Figure 5.7, we can see another feature by which we can distin-
guish significant and non-significant taps. Namely, the phase information, more precisely,
the temporal variation in the phase information. As we can see in Figure 5.8b, where the
variations in phase and amplitude values of the estimated MCFLMS channel impulse re-
sponse taps are displayed, the phase information of the non-significant taps exhibits large
non-monotonous changes compared to the variations recorded for a significant channel
tap. On the locations of the non-significant taps, the algorithm is tracking the phase of
the AWGN noise component, i.e., an uncorrelated random variable which is uniformly
distributed over the range [−π, π], hence the very fast change in the estimated phase at
these locations.

In [EAS13], we propose to monitor the average magnitude of these phase variations as a
way to distinguish the significant taps from the non-significant ones. A channel tap mask
is built based on comparing these values to a predetermined threshold. The masking
operation, carried out in each MCFLMS iteration, is summarized in the following steps:

1. at the uth iteration of the algorithm, compute the phase difference ∆φu (l) for the
lth tap as

∆φum (l) = ∠ĥum (l)− ∠ĥu−1
m (l) (5.39)

2. compute a time moving exponential average change value ∆φ̄um (l) as

∆φ̄um (l) = λmask∆φ̄
u−1
m (l) + (1− λmask) |∆φum (l) | (5.40)

where λmask is the forgetting factor parameter of the averaging process, λmask ∈
]0, 1].
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Figure 5.8.: Variations in phase (blue line) and amplitude (red line) values of the esti-
mated MCFLMS channel impulse response taps at SNR = 10 dB, fD,max
= 0 Hz and N = 512 samples

3. compare ∆φ̄um (l) to a predetermined threshold kφ. If ∆φ̄um (l) > kφ, the lth tap
is judged as a non-significant tap and is then set to zero. The resulting impulse
response is used for the next iteration step.

After every iteration step, the mask is re-calculated such that if a new echo appears in
the channel impulse response which was previously regarded as a non-significant tap, the
algorithm is able to detect the new significant channel tap relying on the average phase
difference.

In Figures 5.9 and 5.10, zoomed-in plots on the SNR after MRC are shown for the
cases of no blind coefficient masking, with blind coefficient masking, genie-aided coef-
ficient masking and perfect CSI respectively. Comparing Figure 5.9a and 5.9b, we can
observe the enhancement brought by the blind coefficient masking, where it significantly
smoothed out the response and resulted in higher SNR. No significant degradation
can be found in Figure 5.9b compared to Figure 5.10, which proves that the proposed
methodology explained above to distinguish the significant taps from the non-significant
taps is successful.

5.5.4. Out-of-band Noise Reduction

It is common for communication signals to have null bands in the frequency domain to
follow some restrictions on a spectral mask. For example, in DVB-T and DVB-T2, out
of the N subcarriers, only Na subcarriers carry information and the rest are set to zero
as explained in section 2.3.1. Such a signal structure violates the second identifiability
condition mentioned in section 5.3.1, namely the fact that the sent signal does not excite
the whole bandwidth. As an example, we refer to Figure 5.11 where the sent signal in
green excites only half of the transmission bandwidth. In the null bands, although CSI
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Figure 5.9.: Output SNR after combining
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Figure 5.10.: Output SNR after combining – continued
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Figure 5.11.: Spectrum of sent signal, actual and estimated channel at SNR = 5 dB and
fD,max = 0.1 Hz

is not needed, the algorithm is misled by the noise components in those regions and is
trying to track them. As shown, the channel estimate (in red) diverges from the actual
CFR (in blue).

We notice that, especially at low SNR the estimated channel tends to have high values
in the non excited regions, resulting in the divergence behavior of the MCFLMS. In
[AES13], we proposed to monitor the energy of the estimate in those null bands and to
apply a weighting factor on the estimated channel in the out-of-band regions. Once the
ratio of the power in the out-of-band regions to that in the active regions exceeds a certain
threshold, konr, the weighting factor is applied, such that the ratio between the out-of-
band energy to the in-band energy remains at konr. In Figures 5.12 and 5.13, we can
see the effectiveness of the proposed weighting approach with Na = 4096 subcarriers,
B = 64 samples and with coefficient masking. In this simulation, we suppress the
estimated channel power in the out-of-band region at a threshold value of konr = 1.85.
As we can see, as the number of iterations increases, the simulation curve which does
not apply out-of-band noise reduction experiences a worse performance, which can lead
at some point to algorithm instability.
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Figure 5.12.: NRPMSE in the case weighting is used vs the case when it is not used at
SNR = 5 dB and fD,max = 0.1 Hz and λs = 1
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Figure 5.13.: Output SNR loss in the case weighting is used vs the case when it is not
used at SNR = 5 dB and fD,max = 0.1 Hz and λs = 1
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5.6. Coded BER Results

In Figure 5.14, we compare the coded BER after LDPC decoder in a DVB-T2 system
with different receiver settings. The common simulation settings are listed in Table 5.1.

The lower bound is obtained when GACN is used in combining (circled black curve).
We can observe the degradation in performance when synchronization information is
not available at the BMRC (dashed green curve). When synchronization information is
available at the BMRC block, the matched filters in Figure 5.3 use the same (averaged)
channel to combine every block within one OFDM symbol. However, when this informa-
tion is not available, the BMRC block combines every block within the OFDM symbol
with a different estimate of the channel corresponding to the current block, u, ĥum. This
in turn results in severe ICI since the estimate differs with every iteration (block oper-
ation). We can therefore observe around 1 dB performance loss because of the lack of
synchronization information between the dashed green and dashed blue curves.

Interestingly, when the masking operation is applied, the gap due to lack of synchro-
nization information almost disappears, as we can observe following the starred blue and
starred green curves. This is because when the masking is applied successfully, the small
noisy taps which change quite fast are suppressed, and hence a smoother CIR across
iterations can be obtained, which can significantly reduce ICI. As we can observe, using
the masking technique, we could come to around 0.25 dB from the lower bound even
with no synchronization information.
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Parameter Setting

System DVB-T2

BER after LDPC decoding in dependency of Doppler frequency shift

Architecture MRC→ZF

CSI used in ZF equalizer GACN

Doppler shift 100 Hz

Modulation 16QAM

Coding LDPC nLDPC = 16K code rate=(1/2)

OFDM 8k FFT , 0.25GI , Na = 6817 subcarriers, Ndata = 6208 subcarriers

Channel TU6 channel

MCFLMS B = 512 samples, µu as in (5.34), λs = 0.003, kφ = π
4 , konr = 1.85

Table 5.1.: Simulation Parameters used to produce results in Figure 5.14
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Figure 5.14.: BER performance for a TU6 channel and fD,max = 100 Hz
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6. Conclusions

Nowadays, user mobility and receiver power consumption are two major challenges in
wireless communications, in which OFDM became recently a dominant key technology.
OFDM is used in the current and upcoming wireless standards, such as DVB, LTE and
the upcoming 5G standard. In this thesis, we have studied the ICI problem encountered
at the OFDM receiver due to a time-varying channel.

Our aim was to focus on solutions with low complexity which can enable proper
reception at high user speeds and which works for a wide range of channel frequency
selectivity. To this end, we presented several methods to mitigate the effect of ICI, with
a special focus on techniques with reduced complexity.

We observed that, in a doubly selective channel (time and frequency selective), ICI
resulting from the time selectivity affects the different subcarriers depending on the
frequency selectivity of the channel. In other words, in a doubly selective channel, dif-
ferent subcarriers have to be handled differently. From this observation, we developed
an enhanced MMSE equalizer which considers different number of off-diagonal coeffi-
cients around each subcarrier, depending on the distortion to which the subcarrier is
exposed. The proposed equalizer shows a very good trade-off between performance and
complexity, as discussed in Chapter 3.

Antenna receiver diversity has proven to be an effective technique for ICI mitigation.
Therefore, in Chapter 4, we have studied classical diversity combining techniques such
as MRC, which is the optimum receiver in the absence of interference. We have also
studied a combining technique, OC (along with its simplified version SDCC), proposed
in [Ser12, STJ08], which takes ICI into consideration. We have also considered the
concatenation of different combining techniques with SISO ICI cancelers. We found the
best performance is achieved by a concatenation of the ICI-aware diversity combiner
OC (or SDCC) followed by an ICIC. Using this architecture, around 95 Hz Doppler
performance gain can be achieved, compared to classical MRC which does not consider
ICI at all. Throughout these investigations, we used a simple linear interpolation scheme
for channel estimation. However, after testing the discussed algorithms using GACN,
the same conclusions are still viable, which suggests that using a better CSI method
than linear interpolation shall provide the same relative performance.

During these investigations, we found the performance of the ICI-aware diversity com-
biner OC (or SDCC) to be very sensitive to the way the noise covariance matrix is built.
Throughout this thesis, we followed an approach where we relied on CoPs to provide
the total noise+ICI value, and in a next step we subtracted a rough estimate of the ICI
obtained through the off-diagonal coefficients, as explained in section 4.5.2. This method
provided around 30 Hz Doppler gain, as shown in Figure 4.8, compared to the case when
no separation is done, i.e, the total noise+ICI value is assigned to the noise covariance
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matrix. However, a significant degradation of around 70 Hz Doppler gain is observed
relative to the case when the correct AWGN noise level is known and is assigned to the
noise covariance matrix. Therefore a huge room for improvement against Doppler vari-
ations exists and can be achieved with better estimation of the noise covariance matrix
in the ICI-aware diversity combiner OC (or SDCC) .

Taking into account the effect of ICI, in the combining or SISO ICI cancellation step,
requires the computation of the off-diagonal coefficients, which in turn requires buffering
at least three OFDM symbols. For receiver designs where this requirement is hard to be
met, we have proposed an enhanced MRC scheme, in section 4.4 which assumes ICI to be
a source of colored noise, which is taken into consideration in building the MRC filtering
vector. The idea is again based on the aforementioned observation of the frequency
selective distortion to which the different subcarriers are exposed in a doubly selective
channel. We have proposed to compute the colored noise using CoPs, which are part of
the transmit stream of the DVB-T and DVB-T2 systems.

In the second part of this thesis, we have discussed a special architecture for receiver
diversity combining. The proposed architecture does not assume a special transmit signal
structure and thus allows for the reception of various broadcasting signals from different
standards. To perform diversity combining using MRC, blind channel identification
using MCFLMS was employed. We found that in its native form, MCFLMS, is incapable
of tracking some channels, depending on the transmit signal structure. Therefore, we
applied several modifications, in Chapter 5, to yield an enhanced MCFLMS. We found it
advantageous to exploit the sparseness of the channel structure. Applying the proposed
scheme on a DVB-T2 system, we found that a blind combining scheme can come very
close to the performance of conventional combining using GACN, with around 0.2 dB
SNR performance gap. This, however, comes at the expense of very high computational
cost, which suggests the possibility of using a sub-optimum version of the MCFLMS
algorithm, which provides a trade-off between complexity and performance.
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A.1. Input Noise Estimation for MMSE Equalizer

In section 4.5.2, we explained how we estimate the input noise estimation matrix ČNoise

needed to build the OC filtering vector. In this section, we follow the same steps in
(4.43) to (4.45) to estimate the input noise estimation matrix CNoise, needed to build
the MMSE filtering vector.

Figures A.1b and A.2 show the BER performance of a SISO MMSE equalizer using dif-
ferent settings for C̄Noise,(2D+1×2D+1) vs different Doppler shifts and SNRs, respectively.
Ignoring the ICI power in the total estimated noise power (black curve) delivers the worst
performance, as was the case in the SDCC equalizer. As mentioned earlier in section
3.2.1, because the used MMSE equalizer considers only 2D diagonals around the main
diagonals and ignores the rest of the off-diagonals, the noise covariance matrix should
ideally be set as C̄Noise,(2D+1×2D+1) =

(
σ2 + σ2

resICI (2D)
)
I2D, where σ2

resICI (2D) is the
residual ICI power outside the 2D sub- and super-diagonals. We used the formula to
estimate the residual ICI power from [MH01]

σ̂2
resICI (2D) = 1− 1

N2
a

(1 + 2D)Na + 2

Na−1∑
n=1

(Na − n)
sin
((
D + 1

2

)
2π
Na
n
)

sin
(
π
Na
n
) J0 (2πfD,maxTn)

 .
(A.1)

As shown in Figures A.1b and A.2, using C̄Noise,(2D+1×2D+1) =
(
σ2 + σ2

resICI (2D)
)
I2D+1

(green curve) delivers a better performance than C̄Noise,(2D+1×2D+1) = σ2I2D+1 (magenta
curve). Interestingly, using (4.45) delivers the best performance (black curve), which sug-
gests a better approximation for the residual ICI power than the one in (A.1) should be
found.

In general, we find the MMSE equalizer much less sensitive than the SDCC combiner
to the mis-estimation of the noise covariance matrix in (3.26).
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Figure A.1.: AWGN estimation in MMSE equalizer at SNR= 30 dB, 16QAM and TU6
channel. Simulation settings can be found in Table 3.2.
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Figure A.2.: AWGN estimation in MMSE equalizer at fD,max = 150 Hz, 16QAM and
TU6 channel
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A.2. PANE after ICI Cancellation

Equations (2.25) and (2.26), reproduced here for convenience,

σ2 (ι) = ‖R (ι)−H (ι, ι)S (ι)‖2 . (A.2)

σ̂2 =
1

NCoP

∑
ι∈ΩCoP

σ2 (ι) (A.3)

assume that the input to the noise estimation block are the raw output symbols re-
ceived from the communication channel. Therefore, the noise to be estimated is AWGN
and a simple averaging is sufficient to get a good estimate of it.

In the case when the noise estimation is done after processing and normalizing the
received signal, the output noise is no longer white. Therefore, before applying (A.3),
the output symbols have to be de-normalized or equivalently the estimated noise at pilot
positions have to be de-normalized. The steps done to perform noise estimation on the
estimated symbols, to be forwarded to the demapper block, then goes as follows:

1.

σ2 (ι) =
∥∥∥Ŝ (ι)− S (ι)

∥∥∥2
, (A.4)

2.

σ̂2
a =

1

NCoP

∑
ι∈ΩCoP

χ2 (ΩCoP (ι))σ2 (ι) , (A.5)

3.

σ̂2 (k) =
σ̂2

a

χ2 (k)
, (A.6)

where χ (k) is a de-normalization factor which depends on the kind of processing done.
For example, in the case of a ZF equalizer, χ (k) = H (k, k) . When using MMSE
equalizer, we estimated χ (k) ≈ W̃H

f,(2D+1×1) (k) CNoise,(2D+1×2D+1) (k) W̃f,(2D+1×1) (k),
where the frequency noise covariance matrix is built from the estimated total input noise

to the MMSE equalizer as CNoise,(2D+1×2D+1) (k) =

 σ̂2
t (k −D)

. . .

σ̂2
t (k +D)

.

Using a PIC equalizer, we used the de-normalization factor used in a ZF equalizer, i.e.,
χ (k) ≈ H (k, k), since no linear filtering step is involved in this equalizer.
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B. MMSE→OC

In Figure B.1, we can see the equivalent channel after applying MMSE on the whole
received vector of FFT size N = 256 according to (3.26). As we can see, the pattern is
different from that observed before in the 2D FFT plots of channel matrix in Figures
3.1b, 3.2b and 3.3b, where the energy among the off-diagonals does not steadily decrease
as the distance from the main diagonal increases.
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Figure B.1.: Equivalent channel after full MMSE equalization in a TU6 channel at
fD,norm = 0.2

The same behavior is also encountered when using a windowed MMSE equalizer,
with D = 2, as shown in Figures B.2a and B.2b on a TU6 channel and a flat channel
respectively. We can clearly see, especially in Figure B.2b, that the energy is no longer
concentrated in the few off-diagonal coefficients around the main diagonal.

In Figures B.3a and B.3b, the magnitude of the interference off-diagonal coefficients
are shown after MMSE equalization at fD,norm = 0.2, using D = 1 and D = 2 in a
flat fading channel, respectively. As shown, after filtering with an MMSE equalizer, the
position of the most significant interferer on subcarrier k changes from the neighboring
subcarriers k+1 and k−1 (via the off-diagonal coefficients H (k, k + 1) and H (k, k − 1)
respectively) to the interference from subcarriers k−D− 1 and k+D+ 1 (through the
off-diagonal coefficients H (k, k −D − 1) and H (k, k +D + 1)). This can be explained
easily if we consider the structure of the MMSE equalization as a filtering operation
with a filter whose main tap exists in the middle according to (3.31), i.e., a delay of D
samples is caused because of the filtering operation.
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Figure B.2.: Equivalent channel after MMSE fD,norm = 0.2
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Figure B.3.: Off-diagonal coefficients of the equivalent channel after MMSE
fD,norm = 0.2
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This behavior has a significant impact on the BER behavior in the case when the
MMSE block is followed by an SDCC diversity combiner(MMSE→SDCC), since in this
case the approximation used in (4.24) is no longer valid in this case. The SDCC combiner
uses the output equivalent channel of MMSE to build the interference matrix ČICI.
Equation (4.24) assumes that the strongest interference comes from the neighboring
subcarrier k± 1 and that the power of the interference decays with 1

d2
, therefore in such

a case, the ICI part of the interference+noise matrix Z = ČICI + ČNoise is significantly
underestimated. As shown in Figure B.4, the performance of MMSE→SDCC is close
to that of MMSE→MRC because of the underestimation of the interference matrix.
MMSE→OC gives a better performance than MMSE→SDCC because it considers all off-
diagonal coefficients instead of just the one originating from the neighboring subcarrier.

However, as shown in Figure B.4, MMSE→OC still gives a worse performance than
OC standalone, which might be attributed to the fact that after MMSE equalization,
the input noise to the OC block is colored (because of the filtering operation). As we
see in Figure 4.8, OC is quite sensitive to the way the noise covariance matrix ČNoise (k)
is built. Therefore, inaccurate computation of the noise variance information leads to a
significant degradation in performance.
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Figure B.4.: Performance loss between MMSE→SDCC and MMSE→OC

Our solution to this problem is to identify the strongest interferer at H̃ (k, k +D + 1)
and to pass it as an input to the SDCC combining block, which computes the ICI
covariance matrix as

ČICI (k) =

 D∑
d=−D, d6=0

(
1

d

)2
 ˜̌H (k, k +D + 1) ˜̌HH (k, k +D + 1) , (B.1)
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where ˜̌H (k, k +D + 1) =

 H̃1(k, k +D + 1)
...

H̃M (k, k +D + 1)

, instead of as in (4.26). As shown

in Figure (B.5), following the approach in (B.1), a better performance is reached (blue
curve), however, it still lags in performance behind MMSE→OC. Though the strongest
interferer is correctly chosen at H̃ (k, k +D + 1), the implicit assumption of the lin-
ear decay rate in the SDCC block according to (4.24) is no longer accurate in (B.1),

H̃ (k, k +D + d+ 1)
?
≈ 1

dH̃ (k, k +D + 1), which results in the observed degradation.
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