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Zusammenfassung 

 

Ich arbeite seit dem September des Jahres 2012 in der Forschungsgruppe Mikro-, Nano- 

und Molekulare Systeme des Max-Planck-Instituts in Stuttgart. Die Forschungsgruppe hat 

zuletzt eine Technik zur physikalischen Gasabscheidung verbessert, die auch als 

Glanzwinkeldeposition bekannt ist. Diese Technik ermöglicht die gleichzeitige Ausbreitung 

von Nanostrukturanordnungen auf nano-strukturierten Substraten via mizellarer 

Blockcopolymer-Nanolithographie mit einer programmierbaren, dreidimensionalen Kontrolle 

über die Formgebung in einem Maßstab im Nanometerbereich.  

Aus der breiten Auswahl an Materialien, die mit dieser Technik angeordnet werden können, 

weisen Metalle einzigartige Eigenschaften in ihrer Interaktion mit elektromagnetischen 

Feldern auf. Die Plasmaresonanzen, die durch die hohe Dichte freier Elektronen 

hervorgerufen werden, können dazu genutzt werden, die Interaktion mit optischen Wellen zu 

intensivieren. Als Teil meiner Promotion habe ich die Effekte der Lichtabsorption mit 

zirkularer Polarisation auf kolloidalen Suspensionen und Beschichtungen untersucht, die als 

Anordnung spiralförmiger Nanopartikel auftreten, welche durch die Nutzung von plasmon 

aktive Metallen angeordnet werden. Wir haben gezeigt, dass diese Nanopartikel sehr 

ausgeprägte chirooptische Eigenschaften haben können. Mithilfe spezifischer Anordnungen 

verschiedener Metalle wie Gold, Silber und Kupfer können diese spektral justiert werden. 

Hierzu werden die geometrischen Formparameter der spiralförmigen Nanostrukturen der 

verwendeten Metalle angepasst. 

Des Weiteren habe ich das Zusammenspiel von Magnetismus und Plasmonen untersucht. 

Da die Streuung freier Elektronen und das ferromagnetische Feld in der selben größen 

ordnung liegen, wird der Eintritt interessanter Phänomene erwartet. Es ist mir gelungen, ein 

Metamaterial herzustellen, in dem zum ersten Mal die Präsenz eines magnetochiralen 

Dichroismus in Raumkonditionen nachgewiesen werden konnte. 

Das finale Ziel zukünftiger Forschungsprojekte in diesem Bereich wäre es festzustellen, ob 

die dünnen Filme plasmonischer Nanohelices dazu verwendet werden können, ein 

Metamaterial herzustellen, das einen negativen Brechungsindex für sichtbares Licht hat. 

 





List of symbols and abbreviations

L-,L -/R-,R- left/right handed

OR optical rotation

ORP optical rotatory power

CB circular birefringence

CD circular dichroism

CP circular polarization

NCD natural circular dichroism

MCD magnetic circular dichroism

MChD magneto-chiral dichroism

i imaginary unit

` complex variable

< / ′ real component of a complex number

= / ′′ imaginary component of a complex number

GLAD glancing angle deposition

DDA dipole-dipole approximation

UV ultra-violet

VIS visible
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IR infra-red

× vector multiplication

· scalar multiplication

~ 3-dimensional vector

←− 3x3 tensor

∇ 3-dimensional vector gradient operator

� d’Alembert or wave operator

→ variable substitution

ε0 vacuum permittivity

µ0 vacuum permeability

c speed of light in vacuum

SmA smectic-A phase

π Pitagora’s constant

µ- micro-, 10−6

n- nano-, 10−9

◦C Celsius degrees

◦K Kelvin degrees

ppm 1 part per million

NP nano-particle

σ electrical conductivity or scattering cross section

Q efficiency of a cross section

FFT fast-Fourier transformation
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CCG complex conjugate gradient optimization method

BCML block copolymer micellar nano-lithography

I intensity of an electromagnetic wave

SEM scattering electron microscopy

TEM transmission electron microscopy or transverse electric mode

KK Kramers-Kronig

laser light amplification by stimulated emission of radiation

HWP half-wave plate

QWP quarter-wave plate

LC/LCC liquid crystal/ LC compensator

BD beam displacer

SQUID superconducting quantum interference device

HAADF high angle annular dark field

PMT photo-multiplier tube
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Preface

Chirality

”I call any geometrical figure, or group of points, ’chiral’, and say that it has

chirality if its image in a plane mirror, ideally realized, cannot be brought

to coincide with itself”, Lord Kelvin [1]

Chirality is a geometrical property. Something which is chiral is not

invariant under parity, and can be distinguished in its left (L-) and right

(R-) handed enantiomers.

The fundamental forces of the universe are not invariant under parity

[2, 3] and life itself is also not. In fact, almost all biological matter is made

of L-amino acids and R-sugars. Parity violation in the weak force may be

the reason for homochirality of life on Earth, but this is still being debated

as the force is very weak [4]. Most theories of the chirality of life assume

that homochirality is a combination of chance and self amplification.

In terms of biological functionality, two enantiomers of the same molecule

can present quite remarkable differences. The enantiomer of a chiral molecule

may bind differently to a receptor and present different effects. In case of

drugs it may be then of crucial importance which one of the enantiomers

is present [5]; as an example, one enantiomer of ethambutol is used for the

treatment of tubercolosis while the other enantiomer causes blindness [6].

Which methods do we have to differentiate between two enantiomers

of the same molecule? One way to analyse and to be able to distinguish

between two enantiomers is by their response to light and in particular to
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polarized light, which is the basis for optical activity phenomena. However,

the interaction of chiral molecules with polarized light is generally weak.

Much larger chiroptical effects can be seen in artificial chiral nanostructures,

which are the focus of this thesis.

Optical activity

Optically active materials are known since the beginning of the 19th cen-

tury as materials that are capable of introducing a rotation of the plane of

polarization of a linearly polarized beam [7]. However the optical rotation

(OR) is only one of the optical activity phenomena which in general should

be related to the sensitivity of a material to interact with different states of

polarization. Of particular interest is the information about the three di-

mensional microscopic charge distributions in the structure of matter that

can be probed by optical means and plays an important role in chemistry

and biochemistry.

The absorption and refraction of electromagnetic waves can be described

with the complex material-dependent index of refraction (ñ = n′ + in′′). A

material is optically active when ñ is different depending on the different

states of polarization that are measured. In an isotropic chiral medium the

refractive index difference for the two circular polarization components is

a signature of a chirality and can be written as δñ = ñL − ñR. For exam-

ple circular birefringence (CB) will be proportional to the real component

(CB ∝ <[δñ]) and circular dichroism (CD) to the imaginary component

(CD ∝ =[δñ]).

The question that rises naturally is: ”How a certain material can be sen-

sitive to the different states of polarization of light?”. In case of molecular

structures, this question can be addressed with a semiclassical description

of the electromagnetic interactions in matter, where electromagnetic fields

are modelled classically and the molecules can be described quantum me-

chanically; a detailed description of this theory can be found in the Chapter
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2 of Ref. [7]. The theory permits one to calculate indices of refraction for

molecular systems. The electric and magnetic multipolar moments deter-

mine the optical activity of a certain material. In most of the cases we

are describing light-matter interactions where the interaction energy term

is a perturbation with respect the whole energy of the system, therefore

the three dimensional structure of molecules or of other scatterers such as

nanostructures, determine the multipole moments that can be present.

The microscopic three dimensional shape of scatterers and their arrange-

ment in space determines the difference in refractive indices for left and

right circularly polarized light and therefore also the propagation of different

circular polarization states. In addition, the size of the constituents of the

material are important. Depending on the relative size of the constituents

one either observes Rayleigh scattering or for larger structures Mie scatter-

ing [8]. We are interested in visible light of the order of λ ' 5 × 10−7 m,

as this is the range of the wavelength of the electromagnetic waves that

are visible to the human eye. In comparison, the physical dimensions of a

molecule of water (H2O) is of the order of 10−10 m. The optical activity for

visible light that is found in molecular systems is usually very small. For ex-

ample the circular dichroism, the difference of absorbed intensity of the two

circular polarization states, is typically not more than of the order of 10−3 of

the total absorbed intensity. This can be directly related to the difference of

more than three orders of magnitude between the scale of the molecule and

the wavelength of visible light. Molecules experience very small gradients of

the electromagnetic field and therefore therefore the higher order multipolar

response (magnetic-dipolar and sometimes also electric-quadupolar) which

underlies optical activity phenomena is very small in molecules. It follows

that larger structures experience stronger gradients of the fields and can

thus show larger multipolar moments and thus optical activity phenomena.

Larger structures will give rise to Mie scattering.
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Chiral nanostructures for photonics

Most nanostructures are chemically synthesized, but they tend to be highly

symmetrical and achiral. A recent advance in physical vapor deposition per-

mits the growth of chiral thin films and chiral nanocolloids. The method is

described in more detail in [9]. The method is better known as glancing an-

gle deposition (GLAD) and the improvements that have been implemented

in the new system have been published in Ref. [9]. This fabrication tech-

nique permits in particular to obtain nanohelices [10] with hybrid material

composition and functionalities, deposited on arrays using large substrates

(wafer scale) and that can be structured with good uniformity and with

geometrical details on the order of ten nanometers.

There is a size difference between molecules and visible wavelengths.

Nanofabrication techniques can be adopted to obtain designed meta-molecules

[11] or meta-materials [12], with interesting optical properties. One focus

of this thesis is the relation between shape of the nanostructured material

and the polarization of light [13]. In particular in the case of metals, in the

form of nanoparticles that can be shaped with sizes comparable to the mean

free electronic collision length, the dynamics of the free electrons at opti-

cal frequencies is largely described by the boundaries of the particle itself.

The collective motion of the free electron plasma, known as the plasmon

resonance, can be excited by visible light [14, 15] and sustain a multipolar

resonance. In this sense the nanoparticle can form a potential cavity for

the effective electric field experienced by the free electrons. As the electric

field is a vectorial field, transversal to the direction of propagation of the

electromagnetic wave, the polarization of the field can drive the different

resonant modes of the free electron plasma in the nanoparticle. When the

symmetry in the shape of the metal nanoparticle is broken (i.e. not spheri-

cal), the modes of resonance can be strongly affected by the orientation of

the particles with respect to the polarization of the electromagnetic wave

[16].
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Following these concepts, metal nanoparticles can then concentrate the

light far below the diffraction limit [17] and the resonant modes can be tuned

with the shape of the nanoparticles [18]. Unique applications have been

envisioned for plasmonic devices, such as enhanced photovoltaic devices [19],

in high sensitive biological sensors [20, 21]. Since the optical response of a

medium depends on its shape, it is possible to design materials with optical

properties that are not naturally found. Such metamaterials should also

permit the construction of a material with negative index of refraction due

to chirality [22]. This requires a very large optical activity in an artificial

medium, which is discussed in Chapter 2. In order to characterize the

medium a polarization interferometer is developed in Chapter 3, while in

Chapter 4, the particular fabrication method and specific measurements

are discussed for the first chiral metamaterial to show indications of the

possibility to a obtain negative index of refraction.

Outline of the thesis and the results obtained

In this work arrays of metal nanohelices are fabricated with the GLAD

technique to explore and optimize chiral metamaterials [10], with an optical

activity that is tunable from the UV to the IR.

Chiral metamaterials deposited for example with copper, have been

demonstrated to be able to give rise to large circular dichroism (CD) and

these results have been reported in the Letter in Ref. [23]. The discrete

dipole approximation (DDA) is used to simulate the optical response of

these nanohelices.

In order to measure and determine the absolute value of the chiral index

of refractions ñL and ñR, a polarization interferometer was built, which uses

a stabilized laser light at the specific wavelength of 633 nm. In order to test

the setup a know optically active liquid crystal was characterized using the

interferometer and the results were published in Ref. [24].

Under the assumption that the films are uniaxial (which is only partially
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fulfilled), the films for the first time show that a negative refractive index due

to chiralty is possible at visible wavelengths. A positive index of refraction

for one circular polarization approaching the atmospheric air (n′L ' 1.1)

and the other polarization is possibly negative (n′R ' −0.2).

Finally, using magnetic metals, a thin film with both large natural and

magnetic optical activity is grown that permits the detection of magneto-

chiral dichroism in absorption for visible light through arrays of ferromag-

netic nanohelices. The results were published in Ref. [25]. Conclusions will

be drawn in Chapter 6.

6



Chapter 1

Introduction

1.1 Theoretical background

1.1.1 Classic field theory of electromagnetism.

In vacuum.

Maxwell’s equations were the first consistent field theory obtained from the

classical laws of electricity and magnetism. In free space the differential

Maxwell’s equations read as [26]:

∇ · ~E = 0, (1.1)

∇× ~E = −∂
~B

∂t
, (1.2)

∇ · ~B = 0, (1.3)

∇× ~B = µ0ε0
∂ ~E

∂t
. (1.4)

where ~E and ~B are the electric and magnetic fields, t is time and ε0 =

1/µ0c
2 ' 8.854 · · · × 10−12 F · m−1 and µ0 = 4π × 10−7 H · m−1 are in

turn the vacuum permittivity and permeability, and c the speed of light in

vacuum [27]:

c =
1

√
ε0µ0

' 299792458 m · s−1. (1.5)
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In the presence of matter

In presence of matter and therefore electrical charges (ρ ≡ volume charge

density) and currents ( ~J ≡ current density), Maxwell’s equations read as

∇ · ~D = ρ, (1.6)

∇× ~E = −∂
~B

∂t
, (1.7)

∇ · ~B = 0, (1.8)

∇× ~H = ~J +
∂ ~D

∂t
. (1.9)

where the displacement field ~D, the magnetizing field ~H and the current

density ~J are additional auxiliary fields that describe the behaviour of par-

ticular substances under the influence of the electromagnetic field. These

are called the constitutive relations and are determined often through a

simple linear relation. In case of isotropic and uniform materials:

~D = ε ~E = ε0 ~E + ~P , (1.10)

~H =
1

µ
~B =

1

µ0

~B − ~M. (1.11)

with σ being the specific conductivity, ~P the polarization and ~M the mag-

netization. A particular material’s response to the external fields is deter-

mined then by the dielectric permittivity and permeability associated with

it as ε = ε0εr and µ = µ0µr, where the subscript r respectively indicates

the relative permittivity and the relative permeability. These determine

the relative proportion to the vacuum constants (ε0, µ0) and quantify the

secondary fields that are generated by the presence of the specific material

in presence of the vacuum fields.

In the general case however, the constitutive relations are only approx-

imatively simple and linear. The dispersive relations could still be written

as before but with ←→σ , ←→ε , ←→µ being now tensorial, dispersive and non-

linear relations. Some materials can be bianisotropic materials [28] and the

fields
(
~D, ~H

)
will be dependent both on

(
~E, ~B

)
through two more coupling
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tensors
←→
ξ and

←→
ζ , as formulated in Ref. [29]: ~D

~H

 =

←→ε ←→
ξ

←→
ζ ←→µ −1

 ~E

~B

 =

 ←→ε · ~E +
←→
ξ · ~B

←→
ζ · ~E +←→µ −1 · ~B

 . (1.12)

As the constitutive relations should also satisfy Lorentz reciprocity the fol-

lowing symmetries will be present in the tensors [30]:

←→ε =←→ε T , ←→µ =←→µ T ,
←→
ξ = −

←→
ζ T , (1.13)

where the superscript T represents the matrix transpose. The permittiv-

ity (←→ε ) and permeability (←→µ ) tensors describe in turn the dielectric and

magnetic response of the material. Bianisotropic materials are described

by the magnetoelectric tensors that relate the polarization to the magnetic

field and the magnetization to the electric field [28]. In complex notation
←→
ξ and

←→
ζ will be of the form

←→
ξ =←→χ − i←→κ ,

←→
ζ =←→χ + i←→κ , (1.14)

In case of a reciprocal medium the real part ←→χ = 0, and the constitutive

equations will then read as ~D

~H

 =

 ←→ε −i←→κ

+i←→κ ←→µ −1

 ~E

~B

 . (1.15)

Here the ←→κ is the chirality parameter and is non-zero if the material lacks

mirror and inversion symmetry.

The constitutive equations can also be written in another form known

as the Drude-Born-Fedorov (DBF) constitutive equations [31]:

~D =←→ε ( ~E +
←→
β ∇× ~E), (1.16)

~H =←→µ −1( ~B +
←→
β ∇× ~B). (1.17)

These are much commonly used in case of reciprocal chiral media and have a
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different representation from the canonic constitutive relations in Eq. (1.12).

Therefore the permittivity and permeabilities are defined differently, we

refer here directly to the Appendix A of Ref. [31] for the relations between

the two representations. What is interesting for the subsequent discussion is

the explicit connection between the response fields to a perturbing harmonic

field in chiral media. The presence of structural chirality in metals for

instance is expected to show the full form of the constitutive relations of

the Maxwell’s equations (1.7) and (1.9).

Wave equations and index of refraction

Let’s introduce now the wave equation of a propagating harmonic electro-

magnetic field, in the form of a d’Alambert equation of the electric and

magnetic fields, through which is possible to define an index of refraction

that characterizes the response of the medium. From Eq. 1.7 and 1.9 and

the definition of the auxiliary fields in Eq. 1.10 and 1.11 the wave equations

[26]:

� ~E = ∇2 ~E − εµ ∂
2

∂t2
~E = ∇2 ~E − n2

c2

∂2

∂t2
~E = 0, (1.18)

� ~B = ∇2 ~B − εµ ∂
2

∂t2
~B = ∇2 ~B − n2

c2

∂2

∂t2
~B = 0, (1.19)

can be obtained for homogeneous, isotropic, and linear media, where n =
√
εrµr stands for the index of refraction of the material. The solutions of

these differential equations are given in the general form with a planar wave,

in case of the electric field

~E(~r, t) = ~E0e
i(~k·~r−ωt), (1.20)

where, given the spatial and the time coordinates as (~r, t), ~k = 2π
λ
k̂ = 2π

λx
x̂+

2π
λy
ŷ + 2π

λz
ẑ is the wave-vector perpendicular to the plane of constant phase

of the propagating field with wavelength λ = λ0
n

and angular frequency

ω = c/λ0. ~E0 is the space-time independent part, which determines the

amplitude, the phase and the polarization of the wave. Maxwell’s vector
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Eq.s (1.7) and (1.9) can be written for harmonic fields, respectively as [32]

~k × ~E − ω ~B = 0 (1.21)

~k × ~H + ωε ~E = −iσ ~E ⇔ (1.22)

⇔ ~k × ~B + µ(ωε0εr + iσ) ~E = 0 (1.23)

Redefining the relative permittivity (εr) in a new form, which explicitly

includes the electric conductivity (σ) of a material where the wave with

angular frequency ω is being propagated, with the substitution

ε̂r −→ εr + iσ/(ε0ω) (1.24)

Eq. (1.23) can be rewritten as

~k × ~B + ωε0ε̂rµ~E = 0 (1.25)

This parametrization is particularly meaningful for conducting media,

for instance metals. In the representation of the fields with complex num-

bers, the index of refraction is also complex (ñ), with a real component n′

and an imaginary component n′′:

ñ = n′ + i n′′ (1.26)

To understand the effect of the complex index of refraction, let’s consider a

plane wave being propagated through a certain medium along the ẑ direc-

tion. The electric field induced by the propagation of the wave will result

in [33]:

~E(z, t) = <[ ~E0 e
i(k̃z−ωt)] =

= <[ ~E0e
i(2π(n′+in′′)z/λ0−ωt)] =

= e−2πn′′z/λ0 <[ ~E0e
i(2πn′z/λ0−ωt)]

(1.27)

where λ0 is the wavelength of the wave being propagated in vacuum. The

effect of n′ and n′′ is now evident as the imaginary part will determine the

exponential decay of the field’s amplitude, where the real part is responsible

for a phase change a wave experiences, when it propagates through the

material. In general, the index of refraction will also be dispersive, so that

ñ = ñ(ω) and so will be its wave-vector k̃(ω) = 2πñ(ω)
λ0

.
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Group and phase velocity

The speed of propagation of the photons, the carriers of the electromagnetic

field, is in vacuum equivalent to c in any frame of reference. A different sit-

uation is when we consider the propagation in media filled with matter.

The electromagnetic charges and currents that are on the way of an incom-

ing radiation, which is intended as a superposition of many photons, are

driven by the interaction with the fields induced by the radiation and when

accelerated, will generate secondary electromagnetic fields in response to

the incoming radiation. The resultant field is then a superposition of both

the primary and secondary fields. The secondary field will not only have a

different amplitude but also a difference in phase depending on the electro-

dynamics of the different materials. The real part of the index of refraction,

as defined in Eq.s (1.18) and (1.19), determines the speed of propagation

of the electromagnetic wave in a certain material. Strictly speaking, in a

dispersive medium this implies also that different frequencies will propagate

at different velocities. For a wave-packet with a frequency distribution, the

electric field for ω ∈ (−∞,∞) is

~E(~r, t) = <
[∫ ∞
−∞

~E0(ω)ei(
~k(ω)·~r−ωt)dω

]
(1.28)

For electromagnetic waves, the vacuum wavelength λ0 and the wave-

length in a medium are related by:

n′ =
λ0

λ
=

c

vp
(1.29)

where <[ñ] = n′ and where vp is the phase velocity of the wave:

vp =
λ

T
=
ω

k
=

c

n′
, (1.30)

with the period T = 2π
ω

, the time taken for a complete oscillation of the

field at the angular frequency ω. The group velocity (vg) as discussed for

example in Ref. [34] or [32], can be computed as:

vg =
dω

dk
=

c

n′ + ω ∂n′

∂ω

. (1.31)
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This corresponds to the velocity of propagation of the maximum of the

wave-packet.

0.4 0.6 0.8 1.0 1.2 1.4 1.6

1.000275

1.000280

1.000285

wavelength [μm]

n'

(a)

0.4 0.6 0.8 1.0 1.2 1.4 1.6

2.99704×108

2.99706×108

2.99708×108

2.99710×108

wavelength [μm]

ve
lo
ci
ty

[m
·
s
-
1
]

vp

vg

(b)

Figure 1.1: (a) Real part of the index of refraction (n′) of air at 15 ◦C,

101325 Pa and with 450 ppm CO2 content [35]. (b) Phase (vp) and group

(vg) velocities as calculated from the values shown in (a).

After recalling some notion of electrodynamics, is clear that the electromag-

netic response of matter is depending on the materials and the geometry of

how it is structured. For example, bulk gold is not considered a magnetic

material but when wound in a solenoidal shape it will have a magnetic in-

ductance! The field response of a certain body is described by εr and µr

while the response to electromagnetic waves, is described with the index

of refraction. As electromagnetic waves are coupled harmonic electric and
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magnetic fields, it is clear how these quantities are connected as explicitly

stated from Eq.s (1.18) and (1.19).

Let’s for example consider atmospheric air, the index of refraction of air

has been precisely measured and fitted with an empirical dispersion func-

tion. Accurate studies on atmospheric air’s dispersive properties are found

in Ref.s [35–37] and imported here from the publicly available database,

accessible from this webpage [38]. Throughout this thesis all frequency-

dependent permittivities and refractive index data are taken from Ref. [38].

A Sellmeier equation for the dispersion of the index of refraction for dry air

at 15 ◦C, 101325 Pa and with 450 ppm CO2 content, is given by the relation

[38]:

n′(λ0) = 1 +
0.05792105

238.0185− λ−2
0

+
0.00167917

57.362− λ−2
0

(1.32)

where λ0 = 2πc
ω

is the wavelength in vacuum. These values are plotted

in Figure 1.1a Despite the small dispersion vairp and vairg depend on the

frequency (ω), as is shown in Fig. 1.1b.

As is discussed in the next section, there are some materials where the

physics of the interaction between light and matter becomes more compli-

cated and n′ can even have values very close to zero.

1.1.2 Optics of metals

As it is evident from the substitution that was introduced in (1.24), εr

depends on the electric conductivity of the material so that εr = εr(ω, σ).

Rakić et al. [39] compared various measurements of the complex dielectric

constants for 11 different metals of interest for optoelectronic applications;

they fit two different mathematical models to the experimental data for

the electromagnetic spectrum from the UV to the mid-IR. The theoretical

models used are the Lorentz-Drude (LD) and the Brendell-Bormann [40]

(BB) models. In both εr(ω) = εfr (ω) + εbr(ω) is written as combined
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Figure 1.2: Dielectric function (real and imaginary components) of silver

(Ag). Adapted and reprinted from Ref. [39].

contribution from free (f) and bound (b) electrons. In case of the LD theory

this is modelled with a discrete set of semi-quantum damped oscillators

accounting for the intraband transitions based on the Lorentz model for

insulators. In contrast, εbr in the BB theory it is modelled by a Gaussian

distribution of a superposition of an infinite number of harmonic oscillators.

In Figure 1.2 the results from both models are plotted together with the

measurements published in Ref.s [41–43].

Using a MATLAB code implemented from Meierbachtol [44] it is possible to

plot the model. Figure 1.3 shows a comparison between the real part of the

index of refraction (n′), obtained from the BB model’s fit as optimized in

Ref. [39], with other two datasets from measurements published in Ref. [45]

and [46]. It is evident that the BB model fails as soon as UV wavelengths

are considered.

After these considerations about silver it should be clear that the elec-

trodynamics inside metals can have some interesting properties. The first

problem that we should address now is how some metals have low values of

n′ and a high absorption and therefore also high values of n′′. In response

to a time-dependent field [14] like
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Figure 1.3: Real component of the index of refraction (n′) in the visible

spectrum. The fit of BB model [39, 44] for Ag compared with two inde-

pendent measurements from Palik, E.D.[45] and Johnson, P.B. and Christy,

R.W.[46].

.

~E(t) = <[ ~E(ω)e−iωt] (1.33)

referring to the Drude model of free electrons, the equation of motion of the

electrons results in

d~p

dt
= −~p

τ
− e ~E(t) (1.34)

where, τ is the relaxation time and it describes the mean time of free motion

between two consequent collisions, that each free electron will experience.

Looking for steady-state solutions of the form

~p(t) = <[~p(ω)e−iωt] (1.35)

the electric conductivity takes the form [14]
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σ(ω) =
σ0

1− iωτ
, σ0 =

ne2τ

m
. (1.36)

As discussed in Ref. [14] within the model of a free gas of electrons (electric

charge e and mass m) with volume charge density n, assuming only electron-

electron collisions without long range interactions.

The effect of the magnetic field ~H is ignored because typically the term

in ~H in the equation of motion for the electrons [14]

d~p

dt
= −~p

τ
− e ~E − e~p

m
× ~H (1.37)

is a ratio of v/c of the effect of the term in ~E, where here v is referred to

velocities associated with collective motions of all the electrons, which also

for large current densities, are not larger than ∼ 10−3 m/s.

If one writes the motion of the electrons that follow the field induced by

the electromagnetic wave, i.e. for solutions of the form e−iωt, the complex

dielectric function is given by [14]

ε(ω) = 1 + i
σ

ε0ω
. (1.38)

Substituting (1.36), it is possible to recognize the bulk plasma frequency of

the metal [14]:

ω2
p =

ne2

mε0
, (1.39)

which corresponds to the zero crossing of ε(ω).

As it is possible to recognize, comparing these results to the measured

values in the just discussed case of silver (Figure 1.2), the free electron model

is an idealized model and the case of real metals can easily vary, where elec-

tronic interactions or lattice interactions, as well as many other effects can
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soon change the properties of the electric conductivity spectrum. The real

case is much more complicated than the ideal one and at the present day,

first principle models are limited. The same distinction already noted be-

tween the dynamics of the free electrons and bounded electrons present in a

metallic phase can bring a difference in the electrodynamics. In particular,

for a fortuitous convergence, the free electron model works surprisingly well

in the case of most alkali metals, while it is mostly insufficient for describing

the electrodynamics of other materials [14]. The comparison between the

frequency of oscillation of the fields induced by the propagation of light,

must compare with the typical relaxation time of the electrons. In fact, in

connection with the free electron model, it is possible to visualize that be-

tween two successive collisions, the electrons are, in a first approximation,

in free motion under an oscillating field. Qualitatively, if then the product

ωτ >> 1, we are surely in this case and the free electrons are also then

behaving as they were bounded electrons. They are oscillating around a

steady position, driven by the field induced by the propagation of light; ωp

is formally the frequency at which the whole electron plasma follows with a

phase the oscillation of the field. This phenomenon of wave-induced collec-

tive oscillation mode of the free electron plasma, is therefore the definition

of a quasi particle, called a plasmon.

The empirical BB model used previously to fit the measured values of the

dielectric function in the case of silver, models in fact the optical response as

from a series of oscillators that reproduce well the electrodynamic properties

of the metal for frequencies below the plasmonic resonance.

If we should consider a smaller piece of a metal comparable or even

smaller with respect to the wavelength of visible light, i.e. a nanoparti-

cle (NP), the electromagnetic fields have to be treated as non-local. The

displacement of the free electrons against the ionic crystal structure, can

create in the proximity of the NP’s physical boundaries, fields that are up

to ∼ 102 times stronger than the incoming fields, which are then confined

according to the shape of the metallic NP. In this case we can think the
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domain of motion of the free electrons plasma is imposed by the physical

boundaries of the NP, which can work in fact as a potential cavity for the

free electrons respect to a dielectric background medium. In this way one

can then also think to squeeze or release an overall effective potential, that

is then imposed by the same physical structure of the NP.

The properties of the electrodynamics in metal NPs have been the sub-

ject of study and a very active field of research as it envisions possibilities

for applications in many fields. By itself is a subject of research, both as

broad source of information about the electrodynamics and in connection to

the technical applications offered, the properties of scattering of light from

nanoparticles is nowadays an established field of research that spans from

physics, to chemistry, medicine and materials engineering. Unfortunately,

the physics of the electromagnetic scattering of light from sub-wavelength

objects is complicated and in general, it is impossible to obtain analytical

solutions of the set of Maxwell’s equations except than for highly symmetric

scatterers. In fact, analytical solutions have been found only for spherical

nano-particles, ellipsoidal or infinite rods, all based on the formal solutions

of the Maxwell’s Equations for spherical objects, best known as Mie’s scat-

tering [8, 15, 47].

1.1.3 Light scattering from a metal nanoparticle

The solutions of the Maxwell’s equations formally calculated by Mie [47]

well describe the physics of the scattering of electromagnetic waves from

a sphere of arbitrary size. The theory of Mie scattering is presented in

numerous books [8] and is applied to a broad range of experiments, for

example to interpolate a distribution for the size of water drops in the

atmosphere, useful for describing the phenomenon of rainbow formation

[48] or more technical problems related the size distribution of raindrops

encountered during the modelling of radar echoes [49]. Another example

closer to our interests is the application of Mie’s theory for the description

of the light scattering through stained glass; in fact, the antique methods
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of preparation of these glasses, employ fine powders of plasmonic metals

such as copper, gold or silver mixed in the furnace which together with the

silica, result in a suspension of metal nanospheres in the glasses that scatter

the light transmitted through it. This was the first application Mie himself

found for his theoretical results [47] and permitted him to determine the

mean size of the metal NPs corresponding plasmonic peak of absorption of

light.

The results of Mie scattering can be used to calculate the cross sections

of the scattering (σsca) and absorption (σabs) of light, as a function of the

radius of the sphere and the relative index of refraction. Most commonly

the important quantity is an extinction efficiency which is defined as

Qext = Qsca +Qabs =
σsca
πr2

+
σabs
πr2

, (1.40)

where r is the radius of the sphere.

The intensity of the transmitted light, with incoming intensity I0 can then

be calculated as

I = I0 Qext. (1.41)

In a suspension with volume density η, then the Qext will be proportional

to η and the intensity will drop inversely to the thickness of material l

I = I0 · e−η l S Qext , (1.42)

with S representing the probed surface area of the material. Here the ef-

ficiency factors can be written with respect to x = 2πr
λ

, and are equivalent to

Qext =
2

x2

∞∑
n=1

(2n+ 1)<(an + bn), (1.43)

an and bn are written in terms of the Riccati-Bessel functions [8] for the

20



fields in function of the angular polar coordinates. As usual in a medium

(with index of refraction n) different from vacuum, the wavelength of light

will be equivalent to λ = λ0
n

, with λ0 the equivalent wavelength in vacuum.

Unfortunately, if the scattering on NPs with arbitrary shapes is consid-

ered (for example helical shapes), there exists no formal analytical solution

to Maxwell’s equations. The only way to make calculations, is then by nu-

merical optimization methods. Different numerical methods are available.

In this thesis the dipole-dipole approximation (DDA) method is considered.

1.2 Numerical method

The numerical method adopted here is based on the DDA. In particu-

lar DDSCAT 7.2.2 has been used, which is a freely available open-source

Fortran-90 software package. DDSCAT can calculate the absorption and

scattering of electromagnetic waves by targets with arbitrary shape and

complex index of refraction. The shape of a specific object can be recon-

structed as an evenly spaced lattice of polarizable points and the theory

and its implementation of DDSCAT are available in the Ref.s [50–52].

The DDA provides a method to obtain approximate solutions to the

Maxwell’s equations. As the same authors motivate in Ref. [51]: ”Nature

provides the physical inspiration for the DDA: in 1909 Lorentz showed that

the dielectric properties of a substance could be directly related to the po-

larizabilities of the individual atoms of which it was composed, with a par-

ticularly simple and exact relationship, the Clausius-Mossotti (or Lorentz-

Lorenz) relation, when the atoms are located on a cubic lattice. We may

expect that, just as a continuum representation of a solid is appropriate on

length scales that are large compared with the interatomic spacing, an array

of polarizable points can accurately approximate the response of a contin-

uum target on length scales that are large compared with the interdipole

separation”.

A target with arbitrary shape can be reconstructed by N polarizable points,
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with definite position ~rj , j ∈ {1 . . . N}. In DDSCAT the ~rj are on a cu-

bic lattice with spacing d. The electromagnetic scattering problem can be

solved for an incident planar wave as in (1.20), with ~Einc
j = ~E(~rj, t) at each

polarizable point of the target. If each point of the target’s array has a

defined dipole electric polarizability, αj, such that its polarization results

[51]:

~Pj = αj ~Ej , (1.44)

then the total electric field, including the contributions from all the other

N − 1 polarizable dipoles at the point ~rj is

~Ej = ~Einc
j −

∑
k 6=j

←→
A jk

~Pk , (1.45)

with each of the
←→
A jk being represented by a 3 × 3 matrix:

←→
A jk =

ei
~k· ~rjk

~rjk

[
k2(r̂jkr̂jk − I3) +

ikrjk − 1

r2
jk

(3r̂jkr̂jk − I3)

]
, (1.46)

where rjk = |~rj −~rk| and r̂jk = (~rj −~rk)/rjk. If one defines the
←→
A jj ≡ α−1

j ,

the problem is solved by finding the polarizations Pj that satisfy the 3N

linear equations: ∑
k 6=j

←→
A jk

~Pk = ~Einc
j . (1.47)

These Pj polarizations can then be used to calculate the σext, σsca, σabs [51].

Initially, the polarizability of the points representing the target object

were initially described with the Clausius-Mossotti polarizability, as is dis-

cussed in section 3.B in Ref. [51]. In DDSCAT, instead, a modified po-

larizability, with the lattice dispersion relation (LDR) [53], is used instead,

which corrects for radiative reaction and is optimal for wave propagation

on an array of dipoles to reproduce the corresponding dispersion relation,
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assuming to be interested in a continuous medium instead of the point array

representation of the target in the simulator software.

The equation (1.47) can be solved with a number of complex-conjugate

gradient (CCG) methods [50]. Further, as the targets are represented from

cubic arrays of polarizable points, the fast Fourier transforms (FFT) turn

out to be ideal transformations that can effectively reduce the number of

iterations required for the CCG method to optimize the solutions of the

equations, as discussed in detail in Ref. [54].

Apart from the correct physical geometry of the target object, the two

most important parameters to be carefully chosen are the data for the index

of refraction and the number of dipoles N used to create the target, or

more explicitly, is the cubic lattice spacing d that has to be provided to

the software. DDSCAT [52] suggests to use at least N & 104 points for

the target’s model. As this is the most sensitive parameter in terms of the

computational time needed, a series of tests were carried out.

To test the reliability of this order of magnitude, DDSCAT simulations

for scattering and absorption of visible light on a spherical NP with variable

size, where compared to the Mie’s theory. In Figure 1.4 are shown some

representative results of the DDSCAT simulations compared to Mie theory

(as from 1.1.3: Qext is plotted with a straight red line and Qsca with a broken

green line). The material of the NP was chosen to be gold and the frequency

dependent complex index of refraction is imported for DDSCAT from the

dataset from Ref. [46]. The medium’s index of refraction was assumed to

be ñ = 1.33 (water). The number of dipoles used to construct the sphere’s

3D model was kept constant with N = 41851. For the radius (r) spanning

from r = 5 nm to r = 500 nm, the failure of the results of DDSCAT was

demonstrated qualitatively for r & 80 nm. The results of DDSCAT show

in fact that above ∼ 50 nm the effect of absorption (Qabs = Qext −Qsca) is

larger than the scattering.

Further, another series of calculations had ran also for gold nano-spheres

with different sizes, this time also varying the number of polarizable points
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from 100 to. 106. These revealed again that forN & 104, the mean variance

between the values obtained from DDSCAT and the Mie’s theory, tend to

a minimum. Further in terms of performance of the computer clusters that

were used for the calculations, was observed that for larger target models,

obtained with N ∼ 106, would require computation times of the order of

different weeks, to be completed for each single wavelength and each single

orientation.

Let’s point out again that the magnetic interactions are completely ig-

nored in DDSCAT, however this reveals to be particularly useful to prove

the presence of optical activity, due to structural chirality imposed by nano-

helix particles. The connection with the magneto-electric coupling in the

DBF constitutive equation (1.16), which is described by the factor propor-

tional to rot
(
~E(~r, t)

)
is in this regards immediate. In Chapter 2 are shown

comparisons between CD spectra calculated with DDSCAT and measure-

ments carried on real samples, fabricated with GLAD. It is proven that is

in fact the structural chirality of the nanohelices to induce the strong opti-

cal activity that is observed. In case of calculations performed on a finite

nano-helical object, no theoretical model exists to compare to. Therefore

the possibility to estimate the goodness of the simulations can be proven

only in comparison to direct experimental measurements.

1.3 Fabrication method

To be able to obtain thin films with precise nanostructures using a wide

range of materials, a glancing angle deposition (GLAD) method was adopted

for the scope of this thesis. A good review of this method was published

from Taschuk et al. in Ref. [55]. First scientific publications using the

idea of oblique angle deposition are recorded since the ending period of the

19th century [56, 57], while glancing angle deposition uses a similar idea

but adds the control on the substrate’s orientation. This permits control

over the columnar deposition and in the modern GLAD systems, real time
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sensor feedback and computer controlled motorized positioning stages for

the substrate, have improved the shape control of the deposited structures

and their quality.

A newly improved GLAD system which is in function at the MPI-IS

[9], provides an elegant method to fabricate arrays of nanostructures with

programmable geometrical structures using a physical vapour deposition

process. This GLAD system in particular, uses liquid nitrogen cooling of

the samples holder, to control the temperature of the sample during the

deposition process. This is particularly helpful to achieve a control regarding

the condensation of the evaporated materials that are to be used during the

deposition [58].

One key feature that is very relevant for this improved GLAD system,

is the adoption of substrates which have been precedently patterned on the

deposition surface with ordered arrays of monodispersed spherical nanopar-

ticles. The patterned surfaces are obtained in most of the cases with gold

nanospheres, which are deposited using a technique known as block copoly-

mer micellar nanolithography (BCML) [59]. C. Miksch helped with the

preparation of all the GLAD substrates which were used in this work. The

use of these patterned substrates permits a seeding of the condensing ma-

terials on the surface, to start the directional shadowed growth at grazing

angles of incidence of the physical vapour with respect to the sample’s sur-

face.
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Figure 1.4: Some of the spectra for Qext (blue) and Qabs (purple) selected

for a comparison between the results of numerical simulations obtained with

DDSCAT 7.2.2 and Mie’s theory Qext (red straight line) and Qabs (green

broken line). The calculations consider the physics of scattering on a gold

spherical nanoparticle with different radius (r) in water (ñ = 1.33). The

total number of polarizable points is set to N=41851.
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Chapter 2

Chiral plasmonic metamaterials

Parts of this chapter have appeared in the publication

Appl. Phys. Lett. 103, 213101 (2013). [23]

Of a number of potential chiral shapes, the helix has been identified

to be the ideal shape for far-field chiroptic response [60]. A few examples

with different geometries for chiral plasmonics have been previously studied:

stereo metamaterials [61], the effective helical ordering of multi-layer twisted

metamaterials [62], plasmonic oligomers [63], and solid Au helices fabricated

by 2-photon lithography [64]. E-beam lithographic methods allow high-

resolution complex patterns and shapes to be defined, but they generally

only permit 2D structures and require long processing times, yielding only

small sample areas. Direct laser two-photon lithography permits true 3D

shapes to be realized, but the method provides relatively low resolution

(pixel resolution∼ 100 nm) and gives similarly low yields. Also the polymer

has to be replaced by a plasmonic metal in an additional process. Due to

the long processing times and low yields of these techniques, systematic

studies of the geometric effects on chiroptical response have been lacking.

In 2013 the findings of this chapter were reported in the letter in Ref.

[23]. The GLAD fabrication technique [9] allows for the reproducible growth

of aligned and well separated sub-wavelength chiral plasmonic nanohelix
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arrays when combined with substrate patterning and temperature control.

The flexibility of the dynamic physical deposition growth process allows

the tuning of the chiroptical response of helical chiral metamaterials in the

visible and the systematic exploration of the effect of helix morphology and

spacing.

2.1 Circular Dichroism

Circular dichroism (CD) is a measurement of the difference in the absorp-

tion of the two orthogonal circular polarization (CP) states of light. CD

spectroscopy is a very important analytical tool that can be used to deter-

mine the handedness of chiral molecules in solution. Similarly it can also be

used to determine the chirality of uniaxial films. If the intensity of incoming

light is I0 = (IL + IR)/2 and the transmitted intensity of left handed (LCP)

and right handed (RCP) circular polarizations are respectively IL and IR

then CD is given by the following relation:

CD =
∆I

I0

= 2
IL − IR
IL + IR

. (2.1)

For an isotropic or uniaxial optically active material the complex index

of refraction ñ = n′ + in′′ is different for LCP and RCP and is given by

ñL,R = ñ0 ± δñ/2 = (n′0 ± δn′/2) + i(n′′0 ± δn′′/2), with δñ = ñL − ñR. The

extinction of light is related to the imaginary component of the index of

refraction n′′, thus CD will be proportional to δn′′.

We now explore the factors that affect the strength of the optical ac-

tivity in thin film metamaterials that exhibit a plasmonic resonance, first

considering the CD for transmission of light along the axial direction of

the helical structures. Numerical simulations were used to model the in-

teraction of CP light with the nanohelix structures and were compared to

measurements in samples that can be fabricated using GLAD. The arrays

of plasmonic nanohelix samples were grown on glass substrates to allow for

the transmission of light.
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2.2 Numerical simulations

It is known that the shape of plasmonic nanoparticles directly affects the

scattering of electromagnetic waves. DDSCAT 7.2 is a publicly available

Fortran-90 code for the calculation of the scattering and absorption of ar-

bitrarily shaped objects with complex indices of refraction. The software

constructs the volume of an object as an array of equally spaced polarizable

point dipoles and calculates the interaction with a monochromatic plane

wave and includes the mutual interaction between each point dipole.

Figure 2.1: A schematic of the point array model of a helix used for numer-

ical simulations. The four shape parameters of the helix are indicated. The

minor diameter is the transverse diameter of the wire, the major diameter

is the diameter of an imaginary cylinder about which the helix is coiled, the

pitch is the length of one single full turn and the height is the distance from

the top to the bottom.

An array of point dipoles of a helix is shown in Figure 2.1 which also

shows the geometrical parameters defining the helix’s morphology: the mi-

nor diameter (2r) is the transverse diameter of the wire that ideally forms

the solid body of the structure, the major diameter (2a) is the diameter
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of the imaginary cylinder which is coaxial with the helix and extends to

the center of the wire. The pitch (P ) is the length of one single full turn

of the helix and finally the height (h) is the distance from the top to the

bottom. Previous numerical analysis of plasmonic nanohelices, predicted

a CD spectral dependence upon P; namely, as P increases, the differential

absorption maximum is expected to red-shift [65], although the helix major

radius a has been shown to give a larger effect than the pitch [66].

Figure 2.2: Calculated CD spectra for a left handed Cu helix for light

propagation along the axis of the helix. The spectra from top to bottom

are obtained by altering the pitch P = 20, 40, 60, 80, 100 nm. The height

h = 116 nm, the major radius a = 20 nm, and the minor radius r = 8 nm

are kept constant.

The shape of a plasmonic nanoparticle influences its optical properties.

Therefore, one expects also that the CD spectrum is influenced by the shape

of the helix. To explore these effects systematically, series of simulations
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were conducted, in which each of the helix’s shape parameters was varied

while the others were held constant. The CD spectra have been calculated

for visible light incident along the axis of a single left handed copper helix.

The material properties are introduced from measurements of the complex

index of refraction of copper [46].

Figure 2.3: Calculated CD spectra for a left handed Cu helix for light

propagating along the axis of the helix. From top to bottom, the major

radius is varied ranging from a = 18 nm to a = 38 nm at steps of 2 nm.

The other dimensions are held constant: h = 116 nm, P = 40 nm and

r = 8 nm.

In Figure 2.2 the computed CD spectra for a left handed helix with

h = 116 nm, a = 20 nm, r = 8 nm for five different pitch lengths P =

20, 40, 60, 80, 100 nm are shown. The positive peak of the CD corresponding

to a dominant absorption of LCP seems to be much more sensitive to the

variation of P in terms of the expected red-shift and the broadening of the
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peak. In particular it is interesting to note the appearance of different peaks.

For example for the spectrum calculated for the helix with P = 40 nm

there are two peaks at λ = 924 nm and λ = 1161 nm, which correspond

to higher modes of the plasmonic resonance that can be sustained on the

helical structure. The helix with P = 60 nm exhibits the largest magnitude

of the CD response. As shown in the next section, this result is also seen in

the experimental data.

The pitch of the helix seems not to affect the position of the absorption

peaks in a simple way but instead has the role of tuning the coupling of

different resonance modes. The effect of the shift in wavelength can more

clearly be seen if one observes the series of calculations shown in Figure 2.3,

in which the major radius (a) was varied while holding all other parame-

ters constant. With increasing a, the CD spectrum red-shifts and the CD

signal increases in magnitude. In order to facilitate the comparison, the

incremental ratio ζ = ∆λ[nm]
∆a[nm]

was calculated for the two peaks of the CD,

which result in ζLCP ∼ 11 and ζRCP ∼ 5; the ∆λ is the shift in wavelength

of the peak for the complete ∆a = 20 nm variation of the major radius.

The opposite trend is instead observed when considering an increase of

r, the effect of which is shown in Figure 2.4. The increase of r causes the

CD to blue-shift. In this case the sensitivity to the minor radius results in

ζLCP ∼ −46 and ζRCP ∼ −36, where ζ is this then calculated from the two

peaks of CD with respect to the variation of r as ζ = ∆λ[nm]
∆r[nm]

.

Finally, altering the height (h) of the helices does not influence the spec-

tral response but only causes an increase of the magnitude as is qualitatively

shown in Figure 2.5.

The calculations presented so far have been for a single helix and have

not considered the optical responses of nanohelix arrays, where, for exam-

ple, the mutual coupling of adjacent helices and thus the surface density are

expected also to influence the optical activity. There have been already pre-
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Figure 2.4: Calculated CD spectra for a Cu helix for light propagating along

the axis of the helix. From top to bottom, the minor radius is varied ranging

from r = 5 nm to r = 15 nm at steps of 2 nm. The other dimensions are

held constant: h = 116 nm, P = 40 nm and a = 28 nm.

vious studies that have considered the effect of the spacing of the array [67];

their conclusion is that a more packed array of helices is expected to aug-

ment the magnitude of the CD. However there could be a limit to this trend

given the mutual interaction between adjacent plasmonic structures. This

aspect will be discussed in more detail, after considering the experimental

data recorded from GLAD samples fabricated on substrates patterned so to

obtain a set of different spacing between the nanohelices.

2.3 Sample fabrication and characterization

The samples for chiroptical measurements are fabricated on glass slides

with a thickness of ∼ 200 µm. A nanolithography process, block copolymer
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Figure 2.5: Calculated CD spectra for a left handed Cu helix for light

propagating along the axis of the helix. The height is varied ranging from

h = 100 nm to h = 250 nm. Here are shown selected lengths with h =

100 nm, 170 nm, 250 nm) The other dimensions are constant: P = 40 nm,

a = 28 nm and r = 8 nm.

micellar lithography (BCML), allows an entire glass slide to be patterned

with Au nanodots in a relatively rapid manner [59]. This results in equally

spaced nanoseed arrays, which are arranged on a hexagonal geometry. The

BCML-patterned substrates have been prepared by C. Miksch. The GLAD

depositions were carried out by the author together with J.G. Gibbs who

also analysed the helix morphologies and critical dimensions with scanning

electron microscopy (SEM). Figure 2.6 shows a schematic that defines the

dimensions for individual nanohelices (a). An inset with the structural de-

tails for a co-deposited metal alloy of Cu/Ag is shown in (b), where each

image on the raster was chosen at a different orientation to reveal clearly the

three-dimensional helix morphology. For this particular sample P = 54 nm,

a = 16 nm, and r = 14 nm for a 2-turn helix. The tunable hexagonal lattice

spacings of average separation, ϕ, defines the separation between individual

helices, as shown in Figure 2.6(c). The seed size affects the final helix minor

radius.

In order to measure the chiroptical tunability of these helical metama-
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Figure 2.6: (a) Model of a plasmonic nanohelix showing the critical dimen-

sion for pitch, major radius, and minor radius as P, a, and r, respectively;

(b) On right: 5 SEM images of different individual Cu/Ag helices at differ-

ent orientations to show morphology; top image enlarged; scale bar 50 nm;

(c) schematic of an array of helices with the edge of the hexagonal pattern

marked as ϕ. Figure reprinted from [23].

terials (all the measurements were carried out together with J.G. Gibbs)

different sets of samples have been grown, varying the shape or the mutual

spacing of the helices. During the depositions, the substrates were placed

in the GLAD vacuum chamber, which was evacuated to 10−6 mbar. The

substrate holder was tilted to a grazing angle so that the substrate surface

normal forms an angle of (∼ 85◦) with the vapour flux direction. This large

angle ensures that the growth of the material will be restricted to the nan-

odots on the substrate due to the shadowing effect [58]. The substrate is

rotated by a motor during the deposition, as is necessary for helix formation.

The rate at which the motor rotates, is controlled by a computer which re-

lates the amount of material being deposited to the angular frequency of the

spinning substrate. Therefore, the rotation rate controls the helix pitch (P )

and the major radius (a), which are proportional to each other. Figure 2.7

shows cross section SEM images of five samples of copper nanohelix arrays

with varying P ; the length is held constant at h ∼ 100 nm. It is clear that

the morphologies are different for each pitch, P = 20, 40, 60, 80 and 100 nm

in Figures 2.7 (a)-(e), respectively. The length of the helix arrays is held
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constant in order to reduce effects of broadening of the wire radius, r, which

is typically seen with GLAD films and also to try to keep the absorption

constant.

Figure 2.7: Side-view SEM images of 5 different pitch sizes for Cu nanohe-

lices: (a) 20 nm, (b) 40 nm, (c) 60 nm, (d) 80 nm, (e) 100 nm. Scale bar is

100 nm. Figure reprinted from [23].

It is evident that P ∝ a in the GLAD process. The proportionality

between P and a is derived by taking multiple measurements from cross-

section SEM images like the ones shown in Figure 2.7, and the results are

fitted linearly by the approximate relation a ∝ 0.3P , as derived from the

plot shown in Figure 2.8.

2.4 Circular dichroism measurements and com-

parison with simulations

The CD responses were reported in degrees of ellipticity defined by tan θ =

2 IL−IR
IL+IR

. It follows that pure circular and linear polarization states corre-

spond to tan θ = ±1 and tan θ = 0, respectively. Even for small probe

beams our measurements are made on many millions of nanohelices aligned

in the same direction with a typical surface number density of ∼ 240 µm−2.
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Figure 2.8: Relationship between the major diameter (2a) of Cu nanohelices

against the pitch (P). Figure reprinted from [23].

The numerical analysis of the plasmonic nanohelices, discussed in section

2.2, predicts a CD spectral dependence upon P and a; namely, as P in-

creases a increases too, the CD peaks are expected to red-shift [65]. Here

the relationship of P ∝ a with respect to the resulting CD spectrum is

explored experimentally using Cu helix arrays. These results are to be

compared with numerical simulations. The helices on each substrate are

h = 110 nm in total height but with varying P (Figure 2.7). The deposi-

tion process with different P does lead to some morphological variations in

size and shape. For example, as the structure becomes longer, the minor

radius of the helix expands slightly. This effect is well known for the GLAD

technique and depends on the material that is deposited [68]. It is impor-

tant to note that r has been shown numerically to have a large effect on the

optical response. All helix arrays are grown here to the same overall length

and nominally only P is gradually increased from 20 nm to 100 nm, in

increments of 20 nm. The broadening of the minor radius should therefore

be uniform across all samples. However, to reproduce correctly the spectra

which were measured, it was necessary to consider the relationship between

a ∝ 0.3P in the numerical simulations too.
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2.4.1 Pitch and major radius

Figure 2.9a shows the absolute CD spectra measurements carried out on

samples of Cu helices aligned along the direction of the incident light. From

the normalized spectra in Figure 2.9b the negative CD peaks red-shift with

increasing P . The short-wavelength peak is negative and quite pronounced

in all of the samples, and for P = 80nm there is −6◦ of ellipticity at

λ = 700 nm.

Figure 2.9: (a) CD spectra for Cu helices on a glass substrate with five

different lengths of pitch (P ) indicating a red-shift with respect to an in-

crease in P, as measured from samples with P = 20, 40, 60, 80, 100nm; (b)

normalized CD spectral peaks for the same Cu nanohelices; (c) normalized

CD from the numerical simulations carried for the five Cu helices. Here the

inset shows the negative peak position vs. pitch size for experiment and

simulation in black and red, respectively. Figure reprinted from [23].
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This is orders of magnitude larger than what is typically measured for

molecules, where CD measurements are usually reported in mdeg. A broad-

ening of the spectral width is also clearly visible. The peak is dramatically

shifted and it is also the only peak which could be analysed in this spectral

range with the JASCO-810 spectropolarimeter, as the positive peak for the

P = 80 and 100nm are red-shifted to the IR. Figure 2.9b and Figure 2.9c

compare the normalized results of the experimental data and the numeri-

cal simulations, respectively. Taking into account the mutual dependence

a ∝ 0.3P , there is a very good agreement between the two, with regards

to the shift in the CD peak. This means that the appearance of the CD

spectrum is due to the shape of the helices. Further, if one calculates the

quantity ζRCP = ∆λ/∆a as the slope of the line fitting the data shown the

in inset of Figure 2.9 (c), this results in ζRCP ' 7.5, which is slightly higher

than the equivalent ζRCP calculated from the numerical simulations for an

independent variation of the major radius, a, in section 2.2 and consistently

shows a smaller contribution to the red-shift given from the joint effect of

a ∝ P in the real GLAD samples.

2.4.2 Lattice spacing

The effect of varying the separation between individual helices is explored

experimentally. In this case, Cu/Ag alloy nanohelix arrays are used. By

growing Cu/Ag alloy structures, as opposed to pure Cu presented in Figure

2.7, it is possible to move the CD peak to shorter wavelengths, because

the plasmon resonance of Ag occurs at shorter wavelengths compared with

Cu. Increasing the spacing between helices is expected to reduce the total

extinction. In what follows we will focus on the relationship of the optical

density (OD) and the CD to the surface density of the helices by changing

the seed spacing with BCML. Wu et al. used the finite-difference time-

domain (FDTD) method to study left-handed (here not the chiral sense)

helical metamaterials with the aim of producing an effective circular po-

lariser. They showed that the quality of a helical metamaterial polariser
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of this form improves by increasing the length of the helix, decreasing the

diameter, and/or increasing the spacing between helices [67].

Coupling the deposition process with BCML permits us to alter each of

these parameters. Changing the spacing permits the strength of the overall

absorption to be adjusted, which is useful in the case of plasmonic materials

that are lossy [69]. Figure 2.10(a) shows that by increasing the spacing of

the seed pattern, samples show less total OD, as is expected. The total

extinction is measured for five lattice spacings ϕ = 53, 62, 69, 76, 81nm. The

OD in Figure 2.10(a) decreases noticeably for ϕ = 53, 62, 69, 76 nm, but

then increases again for ϕ = 81nm. SEM observations indicate that if ϕ >

80 nm, nanohelix formation between seeding points becomes significant,

and helix surface density begins to increase indicating that the spacing can

only be adjusted to values between about ϕ = 50–80 nm, although smaller

separations could be used.

Figure 2.10: (a) Total extinction curve for linearly polarized light for

substrates with Cu/Ag alloy nanohelices with different seed spacings of

ϕ = 53, 62, 69, 76, 81nm; inset: SEM top-view with scale-bar 200 nm for

ϕ ∼ 76 nm spacing; (b) the effect of changing seed separation on CD which

is greatest for the most closely-packed helices and decreases with increas-

ing distance until ϕ = 76 nm; the optical activity for ϕ = 81 nm again

increases due to the inability of the seeding at large distances to properly

shadow adjacent seeds. Figure reprinted from [23].
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Although increasing ϕ does in fact reduce loss, the CD decrease can be

seen in Figure 2.10b . Also, the spectral peaks red-shift with decreasing

ϕ which may be a result of plasmonic coupling [70, 71]. The decreased

optical activity with increasing ϕ presumably occurs due to the reduction

in surface density of the nanohelices, as is expected. The CD begins to

increase for the ϕ = 81nm case as the larger spacing leads to ‘random’

unseeded helices forming in between the seed points. However, although

this increase is present, the degree of the optical activity does not reach the

same magnitude as for either ϕ = 62 or 69nm which are in fact properly

seeded and regularly ordered, suggesting improved uniformity and structural

fidelity. Also, the spectral peaks are more clearly defined in the case of

properly seeded nanohelix arrays. From these observations it is possible to

conclude that nanoseeding makes a significant difference in the quality of

each helix array and its respective chiroptical response. However, there is

an inevitable trade-off between loss and strength of the CD. The strongest

signals arise in the most closely packed, regularly ordered helix arrays, but

in this case loss is also highest.

2.5 Discussion

In conclusion, it has been demonstrated that the optical activity of chiral

plasmonic nanohelices can be tuned by adjusting the deposition parame-

ters of a dynamic shadowing growth physical vapor deposition technique,

and the chiroptic spectral responses are altered by adjusting the individ-

ual helix shape and the spacing between the helices. Spectral red-shifting

for larger pitches, which is linearly proportional to the helix major radius,

is complimented by numerical simulations using DDSCAT. Also, a trade-

off between increasing optical activity and simultaneously increasing loss

is inevitable for plasmonic materials. Optical activity is larger with closer

helix spacing, but these samples also show the greatest loss. Nevertheless,

it is clear that regular ordering is indeed important for sample quality. The
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wafer-scale fabrication of tunable hybrid and plasmonic nanostructures will

enable possible applications such as chiral light modulation and chiral sens-

ing as well as other photonic systems to be explored. These results prove

that the optical activity in chiral-plasmonic metamaterials can be tuned and

maximized during the GLAD fabrication. The extinction is determined by

the imaginary part of the index of refraction, but the real and imaginary

components of the index of refraction are dimensionless quantities that re-

late directly to the observables of CD and OR, which are analytical in the

wavelengths domain and therefore connected by the general relations of

Kramers-Kronig. As clearly discussed in Ref. [72], these relations permit

a comparison between the real and imaginary component of δñ. The gen-

eralized KK-relations that consider the logarithm of the observables and

that include a Blaschke multiplier, permit a direct conversion between OR

and CD spectra. However, in practice the KK transform is not accurate

in the visible due to insufficient experimental data at shorter wavelengths.

For the specific interests of this thesis, it follows that the presence of strong

CD implies also the presence of strong CB. The direct measurement of the

index of refraction ñL
R

is not a simple measurement. In Chapter 3 it will

be shown how a laser interferometer can be adoperated for these measure-

ments. In Chapter 4 the refractive indices describing the nanohelix arrays

will be examined in more detail.
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Chapter 3

Circular polarization laser interferometer

Existing methods for direct measurement of circular birefringence (CB) like

optical rotation, only give information about the difference of the refractive

indices for left- and right- circularly polarized light δn = (nL − nR). A

new type of polarization interferometer was therefore developed based on

the design of the Jamin-Lebedeff interferometer [73, 74] to be able to de-

termine independently nL and nR. The Jamin-Ledebeff interferometer uses

linearly polarized light and has been used to measure the refractive index

of a pigmented biological tissue [75], or crystals [76] and also in the case of

metamaterials [77].

In this chapter, Jones calculus is used to analyse the physical principles of

the laser interferometer setup. The operation of the circularly polarization

interferometer is tested on a uniaxial cholesteric liquid crystal sample. The

measurements presented herein have been carried out with the help of Dr.

A. Sanchez-Castillo and have in part been published in [24]. A direct mea-

surement of nL,R, the real part of the indices of refraction in the region of

Bragg reflection, could be obtained as a function of temperature and thus

during the phase change of the LC from cholesteric to isotropic.
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Figure 3.1: Scheme of the circular polarization setup, the various optical

components are explained in the text. Figure adapted and reprinted from

[24].

3.1 Jones model of the laser interferometer

The interferometer’s scheme is shown in Figure 3.1. The radiation source

used in this setup is a HeNe laser, which is used in its intensity stabiliza-

tion mode. In this section each single optical component is described and

its function is analysed in order to describe the working principle of the

interferometer. In the following the formalism of the Jones calculus is used

without recalling all the mathematical model that set the connection with

electrodynamics. The general model of the Jones calculus is discussed in

Ref.s [34, 78, 79].

3.1.1 Preparation of two coherent beams with orthog-

onal polarization

The euclidean spatial system of reference that is used here is a right handed

one, with the unit vectors F ≡ (x̂, ŷ, ẑ) that form a complete basis for it.

The laser light is with its wave-vector ~k parallel to the direction ẑ with

a linear polarization along the x̂ axis. The laser beam is transmitted first

through a polariser (P) and then through a half-wave plate retarder (HWP1)

before being separated by 4.2mm along the ŷ direction in two beams with

orthogonal polarization states by a beam displacer calcite crystal (BD1).

With this set of optics one can first project the initial linear polarization

from the laser along the direction of the axis of polarization of P rotated by

an angle θ with respect to x̂. The Jones matrix for a polariser oriented by

44



an angle θ on the (x̂, ŷ) plane is:

P (θ) = R(−θ)P (0◦)R(θ) =

 cos2 θ sin θ cos θ

sin θ cos θ sin2 θ

 (3.1)

where P (0◦) is

P (0◦) =

1 0

0 0

 (3.2)

and R represents the 2D rotation transformation

R(θ) =

 cos θ sin θ

− sin θ cos θ

 . (3.3)

For a retardation plate rotated by the azimuthal angle θ:

W (θ) = R(−θ)W0 R(θ) (3.4)

where

W0 =

e−iΓ/2 0

0 eiΓ/2

 (3.5)

where Γ represents the phase retardation between the fast and slow axis

introduced by the wave-plate. In the case of a quarter wave-plate it is im-

portant to be able to distinguish the fast axis from the slow axis of the

crystal, in order to know the sign of the circular polarization that is gener-

ated.

Let’s explicitly calculate what is the effect of the different optics. Before P

the Jones vector of the x̂-polarized light in the (x̂, ŷ) plane is simply:

|J >=

Jx
Jy

 = ~E0/| ~E0| =

1

0

 , (3.6)
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Figure 3.2: Action of a quarter waveplate with θ = 45◦, on incident linearly

polarized beams along the x̂ or ŷ directions. c marks the orientation of the

slow (extraordinary) axis of the crystal. Figure adapted and reprinted from

[78].

and after P:

~E1 =

 cos2 θ sin θ cos θ

sin θ cos θ sin2 θ

 ~E0 =

= | ~E0| cos θ

cos θ

sin θ

 .

(3.7)

P can be used to control the total intensity of the transmitted beam, which

will be given by the projection of the amplitude of | ~E0| cos θ along the di-

rection of the transmission axis of P. After the HWP1 the electric field of

the beam will result in:
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~E2 = R(−θ)

cos2 ψ − sin2 ψ 2 sinψ cosψ

2 sinψ cosψ sin2 ψ − cos2 ψ

R(θ) ~E1

= R(−θ)

cos 2ψ sin 2ψ

sin 2ψ − cos 2ψ

R(θ) ~E1.

(3.8)

Defining now the basis F ′ ≡ (x̂′, ŷ′, ẑ′) rotated along the ẑ axis by θ so that

x̂′ ‖ ~E1 one can see the effect of the half wave-plate rotated with the fast

axis by an angle ψ. An incoming linear polarization state which is oriented

along the x̂′ axis, is then rotated by −2ψ.

Figure 3.3: Frame of reference and positive azimuthal angle ψ between the

x̂′ axis and the extraordinary axis of the wave-plate. Figure adapted and

reprinted from [78].

BD1 splits splits the light into two parallel beams separated by 4.2mm that

are respectively polarized along the x̂ and ŷ direction. The two components

of the Jones vector written with respect to the F basis, resulting from the

combined action of P and HWP1, are then written as

~E2 = | ~E0| cos θR(−θ)

cos 2ψ

sin 2ψ


= | ~E0| cos θ

cos θ cos 2ψ − sin θ sin 2ψ

sin θ cos 2ψ + cos θ sin 2ψ

 .

(3.9)

47



The combined selection of θ and ψ can then be used to obtain two parallel

coherent beams with orthogonal linear polarizations with the same intensity.

3.1.2 From two beams with orthogonal linear polar-

izations into orthogonal circular polarizations

One single quarter wave-plate is used for the two incident beams with mu-

tually orthogonal linear polarizations, so that they are transformed in two

circular polarizations of opposite hand. For this the quarter wave-plate

QWP1 should be oriented with its axis at 45◦.

The Jones matrix in the case of a quarter wave-plate retarder (Γ = π/2)

with its fast axis rotated by an angle θ with respect to x̂, will result in

W (θ) =

 cos2 θ + i sin2 θ (1− i) cos θ sin θ

(1− i) cos θ sin θ i cos2 θ + sin2 θ

 (3.10)

For the wave-plate rotated by θ = 45◦:

W (45◦) =
1

2

1 + i 1− i

1− i 1 + i

 (3.11)

which acts on the Jones vector for the two states of incoming linear polar-

izations

W (45◦)

1

0

 =
1

2

1 + i

1− i

 = (1− i)

 1

−i

 (3.12)

W (45◦)

0

1

 =
1

2

1− i

1 + i

 = (1 + i)

1

i

 (3.13)

Instead, in the case of the wave-plate rotated by θ = −45◦
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W (−45◦) =
1

2

1 + i i− 1

i− 1 1 + i

 (3.14)

and the two orthogonal linear polarizations along x̂ and ŷ will result in

W (−45◦)

1

0

 =
1

2

1 + i

i− 1

 = (1− i)

1

i

 (3.15)

W (−45◦)

0

1

 =
1

2

i− 1

i+ 1

 = −(1 + i)

 1

−i

 (3.16)

This means that the left-circular polarization (LCP, with unit vector de-

fined as |L >= 1√
2

1

i

) and right-circular polarization (RCP, with unit

vector defined as |R >= 1√
2

 1

−i

) are generated at the same time. In the

case of a quarter wave-plate retarder, the distinction of the slow axis from

the fast axis is crucial in order to know the absolute sign (hand) of the cir-

cular polarization. This is seen by writing down the Jones matrix for a λ/4

wave-plate rotated with the fast axis by θ = 45◦ + 90◦, which is equivalent

of inverting the two axes of the retarder. The Jones matrix results in:

W (45◦ + 90◦) =
1

2

1 + i i− 1

i− 1 1 + i

 = W (−45◦) (3.17)

Now we know how the two separated parallel beams with orthogonal linearly

polarized can be transformed into two orthogonal circular polarizations us-

ing one single quarter wave-plate retarder. Is it also possible to return the

two beams from circular to linear polarizations with another quarter wave-

plate? In order to demonstrate this we calculate the effect of the quarter

wave-plate rotated by θ = −45◦ applied to the results of (3.12) and (3.13):
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W (−45◦)

(1− i)

 1

−i

 =
1− i

2

1 + i i− 1

i− 1 1 + i

 1

−i

 = 2

1

0


(3.18)

W (−45◦)

(1 + i)

1

i

 =
1− i

2

1 + i i− 1

i− 1 1 + i

1

i

 = 2

0

1

 (3.19)

This demonstrates that the two beams recover the same linear polarization

that they had just before the QWP1 when they propagate into a second λ/4

wave-plate, which we call QWP2, with an equivalent and opposite rotation

of the azimuth angle in the direction of propagation of the beams. The

same scalar multiplier resulting in front of the final linearly polarized states,

means that there is no relative phase difference between the two beams

introduced by the combined action of QWP1 and QWP2 with opposite

rotations of the azimuthal angles with respect to frame F .

3.1.3 Recombination of the two beams and interfer-

ence

The laser beams that have been separated after BD1 can be recombined

using an equivalent calcite beam displacer that we call BD2. Both of the

BDs are mounted on anti-vibration and optical translation stages. To obtain

the right alignment of the linear polarizations of the beams to the crystal

plane of the BD2 crystal it is necessary to use a second λ/2 wave-plate

retarder (HWP2), which is positioned between QWP2 and BD2 and that

rotates the two polarizations by 90◦.

Before any measurement can be carried, the interferometer needs to be

set in its offset condition: it is crucial that, without any sample aligned in

the interferometer, the two beams are propagated through all the optical

elements without any difference in phase. With all the optical elements

in position, maximizing the interference of the two beams while acting on
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the translation stages where the BDs are mounted, gives the possibility to

finely align the mutual orientation of the calcite crystals of BD1 and BD2.

This procedure can be used to obtain the same optical pattern of the two

beams in the overall dynamics of the laser beams between the source and

the detector. When the two beams are in a fully constructive interference

condition, the interferometer is set at offset.

BD2 then recombines the two beams, but the polarization of the out-

coming beams is orthogonal and therefore cannot interfere. The interference

of the two beams can be measured when a second polariser (analyser, A) is

used to project the polarization of both of the beams along the same direc-

tion (Eq. (3.7)). Then a photodetector can be used after A oriented with

the transmission axis at the azimuthal direction θ, as previously defined

with respect to the F frame of reference, to obtain a measurement of the

intensity I(θ) of the interference of the two coherent beams.

3.1.4 Measurement of the phase retardation from a

material in the path of one of the beams

Once the interferometer is at offset then the two beams have the same in-

tensity and accumulate the same phase when propagated from the source

to the detector. In what follows the electric field results from the composi-

tion of the two linearly polarized waves along x̂ and ŷ that are propagated

after BD2, are written as ~Ex and ~Ey as monochromatic planar waves with

angular frequency ω = 2πc/λ. The vector sum of the two electric fields

generated by the two coherent laser beams will be of the form

~E = ~Ex cos(ωt− ~k · ~z) + ~Ey cos(ωt− ~k · ~z). (3.20)

At the detector z = 0

~E = ~Ex cos(ωt) + ~Ey cos(ωt) (3.21)
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Assuming that the ŷ-polarized beam passes a material and acquires the

phase retardation (Γ) when it reaches z = 0, so that

~E = ~Ex cos(ωt) + ~Ey cos(ωt+ Γ) (3.22)

The vectorial sum of the electric field of the two beams will be an elliptical

polarization with a precise handedness and ellipticity. In particular Figure

3.4 summarizes the polarization state corresponding to different phase re-

tardations of the wave polarized along ŷ. In the case that | ~Ex| = | ~Ey|, for

Γ = (2k + 1)π/2, the polarization will be circular.

Figure 3.4: Various elliptical polarization waves for different phase delays

Γ. Figure adapted and reprinted from [34].

With the nanohelix arrays that are produced in the GLAD system on

SiN suspended films can also be deposited. The interferometer can be used

to measure the chiral index of refraction of the metamaterial, obtained with

such an array of plasmonic nanohelices. If one of the beams between the

QWPs, is propagated through a chiral metamaterial film and the other beam

is propagated through an equivalent clean SiN substrate (i.e. with the same

thickness), the phase accumulated because of the transmission through the
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metamaterial can be measured directly. This phase difference (Γ) will be in

function of the index of refraction (n) of the metamaterial as

Γ =
2π(n− nref )d

λ
(3.23)

with d the thickness of the nanostructured film of nanohelices deposited and

nref is the real part of the index of refraction of the reference material which

is present on the reference beam of the interferometer, when no specific

reference is present this will be the index of refraction of air nref = nair.

Once circular polarizations are generated between QWP1 and QWP2, as

described in section 3.1.2, the amplitude of the outcoming beams can be set

to be equal acting on the HWP1 as described previously in section 3.1.1. Γ

can be measured acting on a linearly birefringent crystal (compensator, C):

one is having a full-wave polarization dependent compensator, for instance

an LCC-1113A from THORLABS that can add a phase depending on which

of the polarization axes is aligned along its slow axis. What is actually being

measured is the intensity (Iout) after A, which projects the two orthogonal

linear polarization at the output of the preceding set of polarization optics,

along the same direction along A. In terms of the two intensities Ix = ‖ ~Ex‖2
2

and Iy = ‖ ~Ey‖2
2

, the intensity of the interfering beam with A positioned at

an azimuthal angle θ will be:

I(θ) = Ix cos2 θ + Iy sin2 θ + 2
√
IxIy sin θ cos θ cos Γ (3.24)

Ix = Iy = I0 can be obtained by acting on the HWP1. When A is positioned

with the polarization axis at either ±45◦, then:

I( ±45◦) = I0(1± cos Γ). (3.25)

It is more convenient to measure a photocurrent for a destructive interfer-

ence than for a constructive interference and the choice of the angle of A

53



(between ±45◦) helps by introducing or not introducing a phase of half a

wave between the two interfering beams.

3.1.5 Characterization of a liquid crystal compensator

and the wave-plates

LCC-1113A

The liquid crystal variable retarder LCC-1113A can act as a variable re-

tarder, depending on its applied voltage, with phase retardation introduced

between its fast and slow axis from < 0.1 waves to > 1 full wave. When the

empty interferometer is set at offset and with the LCC-1113A aligned with

the fast and slow axes along the direction of the two orthogonal x̂, ŷ polar-

izations propagated out of BD2, then it is possible to characterize the re-

tardation introduced by the variable compensator in function of the applied

voltage. Unfortunately the characterization data provided by the supplier

(THORLABS ), did not match the experimentally observed retardations.
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Figure 3.5: Measurements of the interferometer’s photocurrent, showing

the effect of the action of the LCC-1113A.

The linear birefringence of the LCC is characterized as it follows: first

the LCC is positioned along the path of the two collinear laser beams after

BD2, with the slow and fast axes respectively aligned with the axes of linear
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polarization (x̂, ŷ). Then a voltage is applied to the device, which will re-

sult in a change of the linear birefringence between the two axes. The wave

with polarization along the slow axis will thus experience a higher index

of refraction and will travel slower. The birefringence can be decreased by

raising the applied voltage. A voltage V between 0 V and 25 V can be se-

lected on the LCC’s driver. At the polarization interferometer’s wavelength

the measurement of the interference, recorded after the A is shown in Figure

3.5.

A very small birefringence is observed at high voltages (V = 25 V),

where the photocurrent is maximal. A minimum corresponding to a half-

wave retardation is observed at the applied voltage of ' 3.5 V . The max-

imum around ' 2.2 V , corresponds to a full-wave retardation. A phase

retardation of ∼ 1.4 waves is then observed for . 1.4 V . Figure 3.6 shows

the corresponding values of retardation for the LCC-1113A.
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Figure 3.6: Measurement of the retardation of the liquid crystal compen-

sator. In orange are shown the measurements obtained from the laser in-

terferometer, black and blue lines are analytical fits that best characterize

the LCC-1113A.

Using Wolfram Mathematica an analytical relation has been fitted using

a model of the retardation for Γ(V ) of this form:

Γ(V ) =
A

(V − V0)α
+B (3.26)
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With the given 4 free parameters (A,B, V0, α), two main domains can

be identified where the model is consistent with the measured phase retar-

dation, marked in Figure 3.6 with the black and blue functions. The fitting

parameters are given in Table 3.1 for different domains of Vd.
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Figure 3.7: Measurements of the phase introduced with the LCC-1113A. A

detail of the difference between the modelled response and the measurements

at applied driver’s tensions 10 V < Vd < 25 V

For values Vd > 12 V The model is slightly less consistent, but in practice

these values correspond to values of introduced retardation that are not

useful for the subsequent measurements as they correspond to very small

retardations of a fraction of wave of 0.05 < Γ < 0.1. On the other hand,

for values of Vd < 1.6 V as is shown in Figure 3.5, the LCC-1113A reaches

a constant value of Γ ∼ 1.4 waves.

Important for the purpose of the interferometry measurements, is the

alignment of the different wave-plate retarders, including the LCC, and this

is described in the next section.

Axes of the wave-plate retarders

Crucial for the purposes of the subsequent measurements is the orientation

of the retarders. The determination of the axes of the wave-plates is easily

obtained with a coupled cross polariser configuration. However, the correct
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Applied voltage (Vd) A B V0 α

1.6 V < Vd < 2.1 V 3.6 0.059 −0.9 1.1

2.1 V < Vd < 12 V 12.3 0.063 −0.8 2.3

Table 3.1: Calculated parameters for the best fit for the model of the

retardation of the LCC-1113A to the measured values from the polarization

interferometer.

distinction between the fast and slow axes, in particular for the QWPs is of

crucial importance in the polarization interferometer.

The wave-plates used in this interferometer are all zero-order wave-plates

already mounted. These optics come with a marking on the mount but it

is not sufficient to rely on this marking. In principle, one could determine

the handedness of the circular polarization state by introducing a circular

absorber. However, the circular dichroism of most samples is generally too

weak to be useful.

Based on the phase difference introduced in reflection between the in

plane and the out of plane linear polarizations characteristic of a metal

surface, Logofatu [80] reported a method for the determination of the fast

and slow axis of a wave-plate. This method was adopted in this work for the

determination of the axes of birefringence of the quarter wave-plates. The

metal surface used here was obtained by sputtering 500 nm of aluminium

on a silicon substrate by Reinhart Völker. The direction of the slow and

fast axis of birefringence were then determined by the method described in

Ref.s [80, 81], for each wave-plate used in the polarization interferometer.

In Figure 3.8 is shown a scheme of the setup used for the determination

of the slow and fast axis of the wave-plates used in the interferometer. The

HeNe laser was also adoperated here. In turn, all the QWP1, QWP2 and

the LCC (with an applied voltage corresponding to a quarter-wave retarder)

where measured with either of the birefringence axes oriented along the

component p̂ (out of plane) or ŝ (in plane), defined with respect to the

surface of the aluminium mirror. The laser beam is incident at an angle of
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Figure 3.8: Scheme of the optics used to determine the fast and slow axis

of the wave-plate retarders. Reprinted from [80].

∼ 30◦ on the mirror’s surface. The laser light is first propagated through a

polariser oriented at −45◦ with respect to the (ŝ, p̂). The reflected beam is

then propagated through an analyser and the photocurrent is measured by

a photodetector. If the real part of the index of refraction of the metallic

surface (n′Al(633 nm) = 1.2675 [39]) is bigger than n′ > 1.0, then when the

fast axis of the probed quarter wave-plate is oriented along ŝ, the detected

photocurrent is always higher than the case when the slow axis is along ŝ.

3.2 Circular polarization interferometer mea-

surements on a cholesteric liquid crystal

Parts of this section have appeared in the publication

Optics Express, Vol. 22, Issue 25, pp. 31227-31236 (2014). [24]

The interferometer setup was first tested on isotropic solutions (sugar /

salt) at different concentrations and gave consistent results with the known

models of index of refraction.

Subsequent tests were carried out on a cholesteric liquid crystal (CLC),

a cholesteryl oleyl carbonate commercially available from Sigma Aldrich.

The optical properties of this compound are known [82, 83]. However a

direct measurement of the index of refraction depending on the state of
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Figure 3.9: Schematic representation the liquid crystals of rod-like

molecules. (a) Nematic phase: the molecules are oriented along the director

n. (b) Cholesteric phase: spatially twisted alignment with the molecules

aligned along helical director lines (red line) with single-turn length P. (c)

Typical LC cells can form over several µm and have considerable number

of turns.Figure reprinted from [24].

circular polarization not been obtained previously. LCs may be described as

partially ordered fluids, where the simplest liquid crystalline phase is called

the nematic phase where the rod-like molecules tend to align along a certain

director (n) (Figure 3.9). In the cholesteric phase instead, the molecules

align along a director that is now with a helical shape [84]. These different

phases will also have different optical polarization properties. In particular,

optical activity will be expected and therefore a measurable difference in

the index of refraction depending on the circular state of polarization, due

to the circular birefringence (therefore different velocities of transmission

of the wave) with consequent optical rotatory power (ORP) and selective

Bragg reflection [85–88].

The dispersion relation of the CLC is shown in Figure 3.10, where the

normal modes of propagation k1 and k2 respectively for left and right handed

polarization states, are schematically represented (Figure 3.10c) together

with the effect of the Bragg reflection and ORP in proximity of the Bragg

regime. The RCP is expected here to be transmitted almost unperturbed,

while the LCP should be strongly reflected (Figure 3.10a). As it was also

observed in Ref. [89], where the domain of wavelengths λ ∈ [650, 720] nm

was considered, a transmission of ' 100% for RCP and a reflection of ' 95%

for LCP are expected in this material. As represented qualitatively in Figure

3.10b k1 changes sign at the frequency ωB and therefore in the ORP an

inversion point appears, which changes the sign of the rotation angle of

59



Figure 3.10: (a) Schematic representation of propagation of light, with or-

thogonal circular polarizations (LCP or RCP), on a CLC with left-handed

alignment. In this case RCP is transmitted unperturbed, while LCP is

mostly reflected. ki, kr and kt, represent respectively the wavevectors of

the incident, reflected and transmitted light. (b) In the proximity of the

Bragg regime a peak of reflection, corresponding to the k1 mode appears

(solid line) and the difference in the velocities of propagation of the cir-

cular polarizations results in a strong optical rotatory power (ORP). (c)

Schematic representation of the normal modes of propagating waves in the

CLC. Four polarized modes are present, respectively for k1 and k2 being

respectively left and right-handed polarized modes, propagating forward

(solid lines) and backward (dashed lines). The stop band that appears at

the crossing of the four modes is where the Bragg diffraction is present.

Figure adapted and reprinted from [24].

the polarization. In terms of a superposition of two orthogonal circularly

polarized waves of equal amplitude, this results in a rotation experienced

by the resulting linear polarization. This effect of ORP is conventionally

measured in units of rad/mm [90]

ρ =
1

2
(k1 − k2) =

π

λ
(nL − nR) (3.27)

where δn = (nL − nR) is due to the circular birefringence of the material.

In principle ρ can be measured by simply measuring the angle of rotation

of an incoming monochromatic wave with linear polarization and dividing

by the thickness of the material, however this gives information about the

difference δn. The absolute values of nL and nR remain undetermined. Al-
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though the dispersion relations are theoretically modelled [91], these have

never been measured directly. The polarization interferometer can be used

to obtain these values.

To obtain the values of nL and nR at the operating wavelength of the HeNe

laser, two identical CLC cells are positioned in the two arms of the interfer-

ometer, between the QWP1 and QWP2 (3.1), so that the two orthogonally

polarized laser beams are propagated through each separately. One of the

cells is used as the reference, and is kept at a constant temperature Tref in

the isotropic phase, where nL = nR ≡ nref = 1.49804.

The other CLC cell can be controlled in temperature using a Peltier plate

system with a current driver, equipped with a PID controller with feedback

control from a thermoresistor which gives control of the temperature within

an error of δT = ±0.05 ◦C. The phase of the CLC can be controlled by

changing the temperature of the cell.

The interferometer is set to offset, by setting the temperature of the two

cells equal. Any eventual spurious contribution from the glass substrates

is therefore also nulled in this way, so that in this condition the measured

phase difference will be Γ = 0. Using then Equation (3.23) we can assume

that the two index of refractions nL,R(T ), depending which state of circular

polarization is set to be propagated on the temperature controlled ”sam-

ple” CLC cell, can be obtained with this formula, after measuring the phase

difference Γ(T ):

nL,R(T ) =
λ

2πd
ΓL,R(T ) + nref . (3.28)

One of the main experimental difficulties have been refractive index fluctu-

ations due to air convection that is created inside the closed sample area,

by the temperature difference between the ”sample” and the ”reference”

cell. A small ventilation system had to be designed to overcome the prob-

lem, by stabilizing the temperature and extracting the heat. As clearly

shown in Figure 3.11, where the mass density is plotted against the tem-

perature of the sample, the expected phase transition temperatures for the
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cholesteryl oleyl carbonate [82, 83] are expected at TI−Ch ∼ 36 ◦C for the

isotropic–cholesteric transition and at TCh−Sm ∼ 20 ◦C for the cholesteric-

smectic transition.

Figure 3.11: Mass densities for cholesteryl oleyl carbonate showing the

phase changes depending on the temperature. Reprinted from [83].

3.2.1 Results

For the discussion of the results a reduced temperature scale is used, de-

fined with respect to the isotropic-cholesteric temperature, which is defined

as (TI−Ch − T ). In function of the temperature of the sample we can mea-

sure the transmission of the laser (λ0 ' 633 nm) intensity to observe the

behavior of the samples and gain information about the phase transition

temperatures of the actual samples that are positioned in the interferome-

ter. If all the optics of the interferometer except A are removed after the

sample, is possible to measure the transmission depending on the incoming

polarization state that can be selected on QWP2 (Figure 3.1).

In Figure 3.12 the results of these measurements are plotted (the insets

i-iv show actual optical camera pictures acquired from a ∼ 5 mm side at

different temperatures around the phase transition temperature. From the
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Figure 3.12: Temperature dependence of the phase retardation (Γ) mea-

sured at λ ' 633 nm. Adapted and reprinted from [24].

sample’s colour, under normal illumination with incandescent light). From

the data we can recognize the cholesteric-smectic transition and the Bragg

reflection domain, where only LCP of the two polarization components is

reflected. A further general ∼ 12 % loss in intensity can be attributed to

the glass interfaces of the cells containing the liquid crystal. In the smectic

phase scattering strongly dampens any transmission [92].

The phase retardation as a function of the temperature, measured with

the interferometer are shown in Figure 3.13, showing large changes in phase

(Γ(TI−Ch − T )) for impinging LCP (set with QWP1). Almost no influence

is seen for the same measurements when RCP light is selected. For a change

in temperature of about ∼ 0.05 ◦C from 14.45 ◦C to 14.50 ◦C, the mea-

surements show the presence of an inversion point for LCP, as expected

qualitatively at ωB (Figure 3.10b). This abrupt change might be connected

with the reorientation of the major axis of nearly circular polarized modes

in the CLC. This is expected [84, 93] and probed qualitatively also in the

interferometry experiments [24].

From the measurements of Γ it is then straightforward to calculate the

corresponding index of refractions nL,R that were sought, using the equation
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in (3.28). The results are plotted in Figure 3.14. While the value of nR ≈

nref for any temperature in the cholesteric phase, nL changes at the Bragg

resonance of about δnL ' (1.5005− 1.4955) = 5.0 · 10−3.

Figure 3.13: Temperature dependence measurements of the transmission

of polarized light with λ ' 633 nm. Adapted and reprinted from [24].

Figure 3.14: Temperature dependence of the index of refraction for left (nL)

and right (nR) handed circular polarization at λ ' 633 nm. Interrupted

lines are two guide the eye. Adapted and reprinted from [24].

As an additional control, the measurements of optical rotation (OR) of

a linearly polarized laser light have been carried and are to be compared

with the interferometer related data of nL and nR, simply using the relation

found in the equation in (3.27) and assuming the thickness of the sample of
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25 µm ρ(T ) the two measurements compare consistently as is shown in the

plot in Figure 3.15.

Figure 3.15: Temperature dependence of the ORP (ρ) as measured from

measurements of optical rotation of linearly polarized laser light compared

to the values calculated from the measurements of the circular polarization

index of refractions nL and nR obtained with the polarization interferome-

ter. Reprinted from [24].
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Chapter 4

Chiral negative index metamaterial

Half a century ago (1967) V. Veselago theoretically analysed the possibility

to have materials that would have both an electric permeability (εr) and a

magnetic permeability (µr) that is negative [94], which means the medium

has a negative real component of index of refraction(n′). Up to this point,

materials were only believed to posses a positive index of refraction. The

experimental observation of a metamaterial with n′ < 0 was first obtained

more than three decades later (2001) by Shelby et al. [95].

In 2004 Pendry showed [22] that a negative index of refraction can also

be obtained in a chiral medium without a magnetic response. Many exper-

iments have since explored chiral negative index metamaterials (ChNIM).

Wang et al. show how an array of split ring resonators, conveniently wired

and aligned to obtain coupled layers of 2D metamaterials, can be arranged

on 3D chiral unit cells [96]. Another approach is to use metal structures

where now the chirality is inherently present in the shape, such as a helix.

The fabrication is more complicated. Gansel et al. did not explore a nega-

tive index both numerically [66] and experimentally [64] examined a chiral

metamaterial of gold helix arrays that can be used as a circular polariser in

the IR.

In Chapter 2 has been shown that a chiral metamaterial deposited with

the GLAD system using a plasmonic metal, shows a large optical activity

that is also tunable by accurately designing the geometrical parameters of
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the helical unit structure. In particular the structures are small enough, that

the optical activity can be tuned from the IR to the UV. The samples can

be produced in a fast manner on very large substrates. In Chapter 3 it was

shown how a laser interferometer can be used to measure the phase that

a circularly polarized light component acquires when it propagates along

a uniaxial optically active material. Here we present the measurement of

the index of refraction of chiral metamaterials, deposited on a transparent

substrate as a thin film of sculptured 3D helix arrays.

4.1 Index of refraction of an optically active

material

The easiest way to probe the presence of circular optical activity is by

measuring a CD spectrum. By the Kramers-Kronig relations it follows that

such a sample must also show a circular birefringence. During a GLAD

deposition the same glass substrates used for the copper helices shown in

Chapter 2 can be used. Instead, if other metals with stronger plasmonic

resonances are used, the strength of the optical activity is expected to be

enhanced.

If we assume a medium with optical activity, then for an isotropic

medium or a uniaxial medium that is observed along the optical axis:

ñL,R = ñ0 ±
δñ

2
, (4.1)

where

ñ0 =
ñL + ñR

2
. (4.2)

The =[δñ] can be determined measuring the CD, while the <[δñ] can

be obtained from a measurement of the CB, which is canonically obtained

with a measurement of the angle of rotation of the polarization axis of a

linearly polarized light beam transmitted through the material, which is a

measurement of the optical rotation (OR). As clearly described in Ref. [97]
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for the specific case of a cholesteric liquid crystal, the CD and OR spectra

are connected by the Kramers-Kronig relations.

In Chapter 3, it has already been discussed how nL and nR can be mea-

sured using the laser polarization interferometer, which works at a wave-

length of λ0 ≈ 633 nm.

Let’s assume now that a material has ‖ δñ
2
‖ > ñ0. It follows that one

of the two indices for circular polarized light should become negative. In

particular, the real part of the index of refraction <[ñ] = n′ will, following

Pendry’s prediction, become negative in such a chiral metamaterial.

4.2 Fabrication of a chiral plasmonic meta-

material with subwavelength thickness

First a suitable material (metal) has to selected. Silver and gold are the

best candidates as they show a strong free electron density and conse-

quently strong plasmonic resonance. Bulk optical properties suggest that

at λ0 = 633 nm the n′Ag ≈ 0.051 and n′Au ≈ 0.143 [98], so the n′0 can be

expected to be low. Although gold is easy to deposit in the GLAD sys-

tem to obtain good quality nanohelix structures, previous attempts for the

growth of nanohelices with silver did not give good results. This is proba-

bly because of the higher diffusivity of silver atoms, which does not result

in defined structures when used in the evaporation system of the GLAD

chamber. To reduce the adatom surface diffusion during the condensation

process of the physical vapour incident on the target substrate, a small

amount of titanium has been co-evaporated. The volume ratio estimated

from the quartz crystal monitors positioned inside the evaporation cham-

ber is about 4 − 5%. Co-evaporating this small amount of titanium has a

dramatic effect on the quality of the resulting structures [99].

The fabrication of nanohelix arrays with both gold and silver is also pos-

sible. The results from numerical simulations and measurements of CD and

CB on a large number of samples suggests that silver nanohelices tuned to
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have a maximum of OR at the working wavelength of the laser interferome-

ter have a larger CB and a lower bulk refractive index <[ñ] at the plasmon

resonance.

(a)

(b)

Figure 4.1: CD spectra measurements showing the effect of the change of

the pitch (P) and the spacing of the helices (ϕ), obtained with different

preparation of the seeded glass substrates during the BCML procedure. (a)

Film of total height of 100 nm with P = 50 nm (black) and P = 75 nm

(red). (b) Single turn helices with P = 150 nm, with different spacings

(ϕ). The inset is a top-view SEM micrograph of the BCML hexagonally

patterned substrates where the double arrow marks ϕ; scale bar is 100 nm.

CD spectra can give useful information about the optical activity present

in the material and are fast to acquire (with the JASCO 810 spectropo-

larimeter). In Figure 4.1a are shown the CD spectra for two different sam-
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ples obtained depositing silver helices of h = 100 nm total height, with

respective pitch lengths (P ) from P = 50 nm (black) and P = 75 nm

(red). Increasing P results in a red-shift of the negative CD peak from

λ = 460 nm to λ = 520 nm. Another parameter which results in an en-

hancement of the optical activity is given by the packing density of the

deposited helical structures. Reducing the distance of the nanodot seeds

during the BCML process shows that the corresponding CD spectra (see

Figure 4.1b) increase in strength. The same deposition of a 1 turn helix

with P = 150 nm, with two substrates with different spacing (ϕ) between

the seeds doubles the CD response when the distances are reduced from

ϕ = 80 nm (black) to ϕ = 25 nm (red).

OR measurements of the samples deposited in the GLAD system on

glass, have been obtained using the Jasco spectropolarimeter. The light

from the lamp source and a monochromator is linearly polarized using a

Fresnel stack. The spectral resolution is adjusted from 0.01 nm to 15 nm

to permit enough light to reach the detector. After the light is transmitted

through the sample a second polarizer was rotated to find the intensity min-

imum on a photomultiplier tube (PMT). The intensity of the transmitted

light is correlated with the orientation of the second polarizer. This gives

a measurement of the angle of rotation of the polarization and therefore of

the OR of the sample which is positioned between the two polarisers.

Figure 4.2 shows the results of OR measurements of 2 turn silver nanohe-

lices with P = 150 nm, deposited on glass substrates patterned with gold

seeds of about a diameter ∼ 7 nm and a spacing of ϕ ∼ 25 nm.

The OR can also be measured with the same configuration of crossed

polarisers, using a laser source instead of the lamp and monochromator.

Compared to the beam from the lamp of ∼ 1 cm2 the laser results in a

probe beam of < 1 mm2. This is interesting because it gives the possibility

to measure the whole surface of the deposited samples with a much higher

spatial resolution. The same sample measured previously (Figure 4.2) shows

local variations in the measurements of OR with a variation depending
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Figure 4.2: Optical rotation measurements of visible linearly polarized light

through a thin film of silver nanohelices with total height of 300 nm and

pitch length 150 nm. The helices are deposited on a glass substrate pat-

terned with BCML procedure with gold nanodots of 7 nm diameter, hexag-

onally arranged with separations of 25 nm. The different colors in the plot

are for different measurements performed rotating the sample in the di-

rection parallel to the direction of propagation of the probing light, with

respect to the direction of the polarization. Refer to the legend of the plot

for the angle of rotation for each set of measurement.

on the position of the sample of roughly 50%. The variation of the OR

depends on the area probed by the laser beam ( TEM00, with a waist of

about ∼ 0.7 mm ). This suggests that the whole metamaterial formed by a

nanostructured coating on the glass substrate was not of a high quality. The

reason for this lack of uniformity is, however, not due to any inhomogeneity

of the fabrication process but rather the quality of the substrate, which

shows a residual birefringence and also a variation in thickness. The latter

is problematic of any interferometric measurements. The inhomogeneity

results from the roughness of the substrate’s surface as the shadowing of

the physical vapour at grazing angles of the GLAD technique is sensitive

to the small deviations from an ideal flat surface; second, for optical probes
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also the small variations of the surface or the strain in the glass substrate

may show strong polarization effects.
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Figure 4.3: Transmission of λ0 ≈ 633 nm laser beams on a glass substrate

half sputtered with 40 nm gold film. The inset at the bottom-right of the

plot shows a scheme of the sample, the probing beams of the interferom-

eter and the direction along which the sample is moved during different

measurements.

Although relatively easy to handle and inexpensive, the glass substrates

are not appropriate for the sensitive measurements that are to be carried out

in the laser interferometer for the determination of the index of refraction

of the metamaterials, as the following simple experiment demonstrates: the

transmission of normal incident linearly polarized laser light at λ0 ≈ 633 nm

has been measured through one of the glass substrates. The substrate was

sputtered on one half with a gold film of thickness 40 nm and the other

half of the surface of the glass substrate was left clean (sample prepared by

Reinhard Völker). The surface has been also analysed after sputtering by

Christian Kappel in ZYGO New View 5000 white light interferometer, to

probe the flatness of the surface. The result of C. Kappel shows that the

roughness on the side of the sputtered gold was lower than the resolution

offered by the white light interferometer, which means < 1 nm. Figure 4.3

shows the measurements carried independently of the relative intensity of

the two beams being transmitted through the clean and gold sputtered half
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of the sample in the interferometer. For this measurement the QWPs were

removed and linearly polarized light is normally incident on the surface. The

sample was then moved to a new position and re-measured. The interference

of the two beams has been measured as well, following the method described

in Chapter 3. The index of refraction of the gold film (assuming a thickness

of 40 nm) has been calculated as a function of the position of the probing

laser beams on the sample (Figure 4.4). The variations in these results,

prove that the BK7 glass substrates are not suitable for sensitive refractive

index measurements, as the effect of thickness variation of the glass is larger

than the expected difference due to the circular birefringence. Substrates

of defined thickness are needed.
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Figure 4.4: Index of refraction at λ0 ≈ 633 nm of gold as calculated from

the measurements with the laser interferometer on a glass substrate, half

sputtered with 40 nm gold film, see text for details about the measurements.

The straight horizontal lines mark the values of the index of refraction of

gold according to Ref. [39]. The inset at the bottom-right of the plot shows

a scheme of the sample, the probing beams of the interferometer and the

direction along which the sample is moved during different measurements.

For the aforementioned reasons silicon nitride membranes were chosen

as substrates for interferometric measurements. The substrates are com-

mercially available from Silson Ltd (Blisworth, Northampton, NN7 3DW,

England) were therefore adopted. C. Miksch prepared all the windows with
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BCML patterning for the samples to be deposited with the GLAD system.

Different thicknesses of the suspended film were tested and the minimum

safe thickness that has the mechanical strength to ”survive” the BCML

and GLAD process has been identified to be 150 nm. The dichroism and

birefringence of these films have been measured after the BCML process-

ing to identify inhomogeneity or any optical anisotropy (strain), but such

effects could be detected within the sensitivity of the optical analysis in-

strumentation. At the same time, the BCML process had been refined and

for these new substrates of suspended SiN films, it was possible to obtain

BCML patterned gold dots of diameter 3 nm with a mean separation on

the hexagonal pattern of ϕ = 20 nm. Figure 4.5 shows a SEM image of one

of these patterned SiN windows. For visual clarity the smallest dots and

spacings are not shown here.

GLAD was performed on the SiN substrates (like the ones shown in

Figure 4.5). The result is a thin film of a metamaterial structured as a

closely packed array of silver nanohelices with interstitial separations that

are below 10 nm.

As shown in Figure 4.6 the chiral metamaterial film, deposited with the

GLAD system is a silver - titanium alloy ( 96% : 4% ), that results in a

highly packed array of nanohelices. Using such a dense film with Ag reduces

the amount of air between the helices and thus will cause the effective n′0

to be as small as possible near the plasmon frequency. The subsequent

measurements are based on films similar to the one shown in Figure 4.6 and

show that the CB are large enough to generate negative indices of refraction.

4.3 Interferometric measurements.

The optical activity present in plasmonic helical nanostructures can be large.

In the previous section it was shown how a thin film deposited with the

GLAD technique, could be tuned to λ0 ≈ 633 nm, which is the wavelength

of the laser polarization interferometer.
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Figure 4.5: Top view SEM image of a suspended silicon nitride film of

150 nm, patterned with gold dots arranged on a hexagonal pattern using

BCML. The mean distance of the gold dots is ϕ = 68 nm, while the diameter

of each dot is 7 nm. Image credit C. Miksch. Above the image is a schematic

representation of a lateral central section of the suspended film. Yellow is

gold, blue is silicon nitride and black is the silicon frame.

The use of the SiN windows which possess only small openings and the

strong absorption present in the silver films make it necessary to focus the

light for any transmission measurements. This makes standard spectropo-

larimeter for OR rotation and CD measurements not useful as typically the

optical aperture at the center of the SiN suspended films is a square of edge

(l) between 1.0 mm ≤ l ≤ 3.0 mm. However, single wavelength measure-

ments with a laser are still possible in the polarization interferometer. The

whole thickness variation of the suspended 150 nm SiN films is specified as

10 % by Silson Ltd.

Assuming uniaxial symmetry, a maximum optical rotatory power ( de-

fined as ρ =OR/d, which can be measured in units of deg · µm−1 and where

d is the thickness of the metamaterial), a maximum of ρ ≈ 380◦ · µm−1

have been measured on these samples. To compare with other optical

metamaterials, which are reportedly the materials with the highest rota-

76



Figure 4.6: Side view SEM image (5◦ tilted) of a chiral metamaterial film,

deposited with GLAD system as a silver - titanium alloy (96:4), which

is nanostructured as an array of standing 2 turn nanohelices of 300 nm

total height. The patterned substrate, obtained with BCML, is with gold

nanodots of 3 nm diameter, arranged on a hexagonal pattern with 15 nm

mean distances.

tory powers that might exist, Decker et al. have realized in coupled bilayers

of twisted-crosses of gold ρ ≈ 46◦ · µm−1 [100] or again by using instead

twisted split-ring resonators a ρ ≈ 146◦ · µm−1 [101]; with another tech-

nique Gorkunov et al. have instead milled silver films holes of start-screws

through which they reported ρ ≈ 330◦ · µm−1 [102]. This indicates that

in presence of such an enormous optical activity in a medium of 300 nm

thickness a δn′ = n′L − n′R ≈ 1.3 should be expected.

The absolute values of n′L and n′R can be measured using the laser

interferometer. The metamaterial shown in Figure 4.6, deposited on a

5 mm×5 mm SiN windows with a central aperture of 2.0 mm×2.0 mm was

positioned after the QWP1 in one arm of the interferometer. A clean SiN,

with the same thickness (150 nm) was positioned in the second arm and used

to compensate the phase difference given by propagation through the sub-

strate. Rotating QWP1 can switch the polarization between LCP and RCP.

Results from the corresponding interferometric measurements are shown in
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Figure 4.7: Measurements carried out with the circular polarization laser

interferometer (λ0 ≈ 633 nm) as a function of the voltage set on the driver

of the LCC-1113A. Inset: detail for the lower values of the applied voltage,

with the normalized values of the measured interference of the two beams

of the interferometer.

4.7. The applied Voltage on the LCC-1113A, drives the liquid crystal po-

larization compensator (compare to Figure 3.5). The values of accumulated

phase Γ for each one of the states of polarization LCP and RCP, can then

be calculated using the calibration of the LCC (see Section 3.1.5). Finally,

after retrieving values of the phase retardation (advancement) measured for

LCP or RCP being transmitted through sample, the following indices of

refraction are obtained with the help of equation (3.23):

n′L = +1.1 (4.3)

n′R = −0.2 (4.4)

Under the assumption of uniaxiality, these results suggest that the chiral

samples can give rise to a negative index of refraction at visible wavelengths.
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The index of refraction can be positive or negative, depending on the po-

larization of light. The relevance to observe such a kind of behaviour inside

a material is schematically shown in Figure 4.8, where the evolution of the

electromagnetic wave is computed at a specific time, differentiating at the

first interface with two colours the two cases corresponding to the values of

n′ = {−0.2, +1.1}.

Figure 4.8: Conceptual representation of the transmission of a wave in a

slab of material. The incoming wave (black) is represented propagating

from left to right. In particular here are represented two cases of a wave

experiencing the real part of the index of refraction n′ = +1.1 (red) or

n′ = −0.2 (blue) during the propagation in the material, delimited by the

vertical dashed lines. Losses are neglected on purpose.

However, as can be observed from the measurements of OR plotted in

Figure 4.2, the films are not perfectly uniaxial therefore ñR and ñL are

then not, in principle, uniquely defined. In what follows the assumption of

uniaxiality will be examined and discussed in more detail.

4.4 Symmetry considerations.

Evidence of an anisotropy of the optical activity is present in the analysis

of the arrays of nanohelices. Exhaustive sets of measurements both of the

CD and OR show that the metamaterial films are not uniaxial. Consider

the plot in Figure 4.2, which shows the results of OR measurements in

transmission through 2-turn silver helices of total height 300 nm deposited
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on a glass substrate, with BCML patterning of gold dots with 25 nm mean

spacing distance and 7 nm diameter.Indicated in the figure is the angle by

which the sample is rotated while the direction of the incident polarization

is kept fixed. A similar orientation dependence is found with 1-turn helices

of a total height now of 150 nm (Figure 4.9).

3 0 0 4 0 0 5 0 0 6 0 0 7 0 0 8 0 0- 1 5

- 1 0

- 5

0

5

1 0

1 5

OR
 (d

eg
)

w a v e l e n g t h  ( n m )

 0  d e g
 1 0  d e g
 2 0  d e g
 3 0  d e g
 4 0  d e g
 5 0  d e g
 6 0  d e g
 7 0  d e g
 8 0  d e g
 9 0  d e g

Figure 4.9: Optical rotation measurements of linearly polarized light

through a thin film of silver nanohelices with total height of 150 nm and

pitch length 150 nm. The helices are deposited on a glass substrate pat-

terned with BCML procedure with gold nanodots of 7 nm diameter, ar-

ranged on hexagonal patterns with separations of 25 nm. Different colors

are used for different measurements performed rotating the sample with re-

spect to the direction of polarization. Refer to the legend of the plot for the

angle of rotation for each set of measurements.

Unfortunately, the absence of a specific model for the propagation of

light in a nanostructured non-uniaxial (possibly triclinic) material does not

help in interpreting this behaviour. However, it is possible to make some

general observations by analysing the dependence of the optical activity on

the azimuthal angle of these metamaterials. First, it is evident that a com-

bination of circular optical activity and a linear optical activity is present in

the film, and they can result in effects which are comparable in magnitude.
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The 90◦ periodic dependence, which is evident from the OR spectra is a clear

indication of this. Further, the spectral dependence of OR, that appears

more clearly in Figure 4.9, suggests also that this combination of linear and

circular optical activities, might be directly connected with the different

modes of collective electronic resonances that can be sustained on these sil-

ver nanostructures. and which have been thoroughly simulated numerically

with DDSCAT and visualized in case of an isolated freely suspended silver

helix by Zhang [65, 103].

In order to determine all circular and linear birefringences and dichro-

isms that may be present, the samples have been sent to the Kahr Group at

New York University, who operate a Stokes polarimeter [104]. This permits

the independent retrieval of the rank 4 Müller matrix, therefore the deter-

mination of the different components of optical activity (i.e. CD, CB, LD,

LB). Figures 4.10 and 4.11 show the results of the measurements, which

were carried by the Kahr group at New York University using the 4-PEM

polarimeter, on three samples obtained during the same GLAD deposition,

together with other three samples that were measured with the polarization

interferometer at the MPI-IS in Stuttgart. Within the sensitivity of the

interferometer, no variations could be observed between the three different

samples. Comparisons can be made between the measurements using the

interferometer and the Stokes polarimeter.

Unfortunately, the Stokes polarimetric measurements indicate that the

nanohelix films have triclinic symmetry. The films can therefore not be de-

scribed by a unique refractive index ñL,R for LCP and RCP. The directions

of the LB and LD are independent and do not share a common axis as

can be seen in Figure 4.10c where the difference angle (delta) is plotted.

However, the amplitude of LD and LB, as is observed from the Figures

4.10a and 4.10b are strongly reduced at the working wavelength of the in-

terferometer. Correspondingly this is the wavelength for which the samples

were programmed to present a maximal CB (Figure 4.11b). From the same

measurements of CB, using the definition of ORP in the equation in 3.27, it
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is possible to estimate that −0.8 ≥ δn′ ≥ −1.3, which compares well with

the δn′ = n′L− n′R = −1.3 that is measured in the interferometer under the

assumption of uniaxiality.

4.5 Final discussion.

In conclusion, evidence has been found of a chiral metamaterial realized as a

nanostructured subwavelength thin film coated on flat surfaces and obtained

with glancing angle deposition, where the real component of the index of

refraction can be negative. The origin of this is a strong circular birefrin-

gence which at the plasmon resonance frequency is greater than the real

part of the mean refractive index n′0. The shape and material composition

was optimized to yield maximal circular birefringence at λ0 ' 633 nm.

Independent polarimetry measurements reveal also that the system is

not perfectly uniaxial, but triclinic. However, the linear optical activity is

more than an order of magnitude weaker than what results for the circular

optical activity. The metamaterial considered may therefore be approxi-

mated as a quasi-uniaxial sample.

The different steps taken towards maximizing the circular optical ac-

tivity and minimizing the linear optical activity described in this chapter,

revealed a sensitivity to the structure of the nanohelices and their spacing.

The unusual damping of the linear optical activities may most probably be

explained by analysing the near field interaction arising from the plasmonic

resonance of the nanohelices and identifying planar symmetries arising from

the mode of the resonance that can be sustained inside the metamaterial.

The spacing of the helices seems also to have an important role in this.

Further steps in the fabrication process might then be able to reduce even

further LD and LB and help to grow perfectly uniaxial chiral negative index

films.
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(b) Linear birefringence (LB).
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(c) Difference (delta) between the direction of linear

dichroism and linear birefringence.

Figure 4.10: Results for the linear optical activity from the polarimetry

measurements carried out by the Kahr group at New York University. Three

samples (marked with different colours and markers) that were deposited

together with the samples shown in Figure 4.7).
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(a) Circular dichroism (CD).
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(b) Circular birefringence (CB).

Figure 4.11: Results for the circular optical activity from the polarimetry

measurements carried by the Kahr group at New York University on three

samples (marked with different colours and shapes) that were deposited

together with the samples with n′L = +1.1 and n′R = −0.2 (referred to the

measurements shown in Figure 4.7).
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Chapter 5

A ferromagnetic-plasmonic-chiral metamate-

rial

Parts of this chapter have appeared in the publication

ACS Photonics 1(11), pp1231-1236 (2014) [25]

In this chapter a metamaterial analogous to the previous GLAD de-

posited nanohelix arrays is considered, which can also have additional opti-

cal properties if the nanohelices are also ferromagnetic. The elements which

are found in a ferromagnetic phase at ambient condition are iron, nickel,

cobalt and few rare earth elements. The spontaneous magnetic ordering

is due to an ordered arrangement of the single magnetic moments present

inside the material, where an internal interaction called the exchange in-

teraction favours all the magnetic moments to line up. This is opposed by

the thermal agitation, which at higher temperatures overwhelms the ex-

change interaction. The critical transition temperature between an ordered

(ferromagnetic) and a disordered phase of the magnetization is the Curie

temperature (Tc).

As the critical dimensions of a magnet approaches the ferromagnetic

domain size, structural morphology becomes increasingly important in re-

lation to its magnetic properties, in fact magnetic domain formation may

be influenced [105]. For ferromagnetic nanoparticles, or nanomagnets, the

magnetic domain size and the electron transport scattering length can both

85



be of the same length scale as the size of the particles themselves. Such

nanoscale magnetic materials are interesting due to possible applications

as high-density data storage media or for the study of more fundamental

properties such as magnetic vortex formation [106, 107]. Nanoscale mate-

rials are particularly compelling because multiple properties can arise from

the same morphological confinement.

The samples that will be considered in detail here are deposited with

nickel (Ni), which is ferromagnetic at standard condition. Ni nanoparticles

can also support surface plasmon resonances [107–109], therefore a geomet-

ric constraint in nanoscale Ni, not only limits the formation of multiple fer-

romagnetic domains but can also lead to localized plasmon resonance. Since

the properties of a nanomagnet are highly geometry dependent, structural

asymmetries can be expected to induce corresponding asymmetries even in

its magnetic properties.

On the side of GLAD deposition was also found that, in the case of Ni

and Co, the deposition process is particularly facilitated. This is because

it is found to be working at best with the substrate at room temperature,

therefore no liquid nitrogen cooling is required for nanohelix fabrication.

Experiments that reveal the direct coupling of magnetic and optical prop-

erties of chiral Ni nanomagnets are shown and discussed in this chapter.

Strong optical activity to visible light is detected and its dependence to

an external magnetic field is measured. In particular, the coupling of the

nanoparticle’s chirality to the field and the simultaneous absence of par-

ity and time reversal symmetry, leads to a higher order optical response

known as magnetochiral dichroism (MChD) [110], which manifests itself as

a tunable, polarization-independent absorption effect.

5.1 Magneto-chiral asymmetry

When a nanostructured material has a chiral asymmetry, it will interact

differently with the two CP states of light, which are themselves chiral
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[60, 63, 111–115]. As geometrical shape is called chiral when it cannot

be superimposed in its mirror image with any possible reorientation, this

also means that chirality is sensitive to a parity transformation along a

symmetry axis (P). To describe the various contributions to the optical

activity in absorption, we need to refer to the general multipolar expansion

of the radiation-matter interaction [7].

Figure 5.1: The effect of a parity transformation (P ) does not conserve

the chirality. As shown in this graphics the transformed shape has inverted

handedness.

In the multipolar interaction approximation, a chiral distribution of

charges could be sensitive only to those interactions that have an asym-

metry with respect to the P transformation. An electric dipole (~δ) is odd

under a P transformation while a magnetic dipole (~µ) is even under a parity

transformation. For simplicity, the interaction Hamiltonian (H int) can be

written as

H int ≈ −~δ · ~E − ~µ · ~B (5.1)

This model is useful to motivate the presence of different contributions to

the optical activity. Chiral media exhibit natural circular dichroism (NCD),

which is the CD without the presence of external fields. Similarly, any

medium in the presence of a magnetic field (parallel to the direction of light

propagation) will also show differential absorption proportional to the field

strength, i.e., magnetic circular dichroism (MCD). The former is mediated
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by the imaginary component of the product of an electric-dipolar–magnetic-

dipolar (~δ ·~µ) transition moment, whereas the latter is a function of a prod-

uct of two electric-dipolar and one magnetic-dipolar transition moments

(~δ ·~δ ·~µ). It is interesting to point out that whereas NCD is dependent upon

the chirality of the medium, MCD is not. These effects can be summarized

by expanding the generalized dielectric function ε depending on the wave-

vector ~k and the magnetic field ~B [116],

ε
L /R
± (ω,~k, ~B) = ε(ω) ± αL /R(ω)k ± β(ω)B + γL /R(ω)~k · ~B + . . . (5.2)

where +,− correspond to LCP and RCP, respectively, while L and R

denote the chirality of the medium. The first term in the multipolar inter-

action picture originates from an electric-electric-dipolar interaction (~δ · ~δ).

The term with α is responsible for the natural optical activity (natural

circular birefringence (NCB) and NCD) and is due to the magnetic-dipole

electric-dipole interaction (~µ · ~δ). In the same picture, β is the electric-

electric-magnetic dipole tensor (~δ · ~δ · ~µ) that underlies the Faraday effect

and MCD. The term with γ, characterizes the additional effect of a mag-

netic field in the presence of a chiral medium, and it depends on the chiral

sense and the relative orientation between ~k and ~B, but not on the polar-

ization of light. In the multipolar approximation this last term originates

from a magnetic-magnetic-electric dipole tensor (~µ · ~µ · ~δ). It manifests

itself in absorption as magnetochiral dichroism (MChD) which is a cross-

effect of NCD and MCD, it has already been observed previously in chiral

crystals and molecules [110, 117–119], but never in a nanostructured ma-

terial. If we consider the dipolar operators and the combination of their

symmetry under P transformations then, the tensors α and γ are non-zero

only if the medium is chiral and it changes sign with the handedness of the

enantiomorph. Because MChD is a cross-term, it is expected to be strong

in systems that show substantial NCD and MCD [120]. In ferromagnetic-

plasmonic nanohelices both NCD and MCD should be enhanced, thus giving
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large values for MChD.

Figure 5.2: Tilted side view SEM showing a sample of GLAD nanohelices

with Sm:Co=1:4.

5.2 Ferromagnetic nanohelices

In the GLAD chamber we are able to grow nanohelices with a broad range

of materials. Also Ni, Co and Fe may be chosen, which are all in a fer-

romagnetic phase at standard conditions. In this section nanohelix arrays

and magnetometry carried out on samples made of Co or co-deposited with

Sm-Co and Ni.

5.2.1 Co and Sm-Co

It was attempted to fabricate a metamaterial of SmCo alloy which is known

to have some of the strongest ferromagnetic coercivities [121], but unfor-

tunately no evidence of the formation of the typical values of the strong

ferromagnetic ordering of this alloy could be observed.

Figure 5.3 shows superconducting quantum interference device (SQUID)

measurements carried out on two different samples with h = 220 nm, P =

145 nm, a = 50 nm and r = 10 nm grown on silicon substrates with Au

BCML patterns. One of the samples is deposited with only Co, the other is

the result of a co-evaporation of Sm and Co, with the ratio of co-evaporated

material of Sm:Co=1:4. A side view of the sample deposited with the Sm-

Co co-evaporation is shown in the SEM micrograph in Figure 5.2. As is

possible to see from the comparison of the magnetization curve with the

only Co nanohelices shown in Figure 5.3, the expected increase due to the
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Figure 5.3: SQUID magnetometry measurements along the direction nor-

mal to the plane of the sample, showing the hysteresis curve of two samples

coated with helix array metamaterial deposited with similar characteristics.

Red data corresponds to a sample where the deposition was carried out with

Co, while the black data corresponds to a sample where the deposition was

carried out with a co-evaporation of Sm:Co=1:4. The main plot shows a

magnified view of the magnetization curves for values of the external mag-

netic field below the saturating field. Saturation occurs at ∼ 0.35 T for

SmCo and ∼ 0.70 T for Co.

co-evaporation of Sm-Co is not observed in the coercivity of the curve. The

saturation magnetization density (msat) is reduced by
msat

SmCo

msat
Co
' 0.62.

5.2.2 Nickel

As already anticipated, also Ni can be evaporated in the GLAD system

which results in the growth of nanohelix arrays with good structures. Ni

has been found to condense in smoother and more homogeneous structures

when no nitrogen cooling of the substrate was adopted during the GLAD

method.

As is clearly visible in the comparison of the resulting structures shown

in Figure 5.4, when the deposition is carried out with cooling of the substrate

this clearly deteriorates the resulting nanostructures.
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Figure 5.4: A comparison of the structural results of two samples with Ni

nanohelices grown in the GLAD system. (a) liquid nitrogen cooling of the

substrate is not adopted during deposition (b) liquid nitrogen cooling with

the cooling being adopted during deposition.

Ni has proven to work so well in the GLAD system to permit a test of

the limit of miniaturization. This resulted in the fabrication of the smallest

nanohelix structure, with a pitch size of about P ' 20 nm which has been

published in Ref. [10]. As a means of comparison the DNA double helix

has a pitch length of its helical structure observed to be of about ∼ 3.4 nm

[122].

For the optical measurements two BCML patterned glass substrates

(with Au nanodots of about 17 nm diameter with a spacing of about 75 nm)

have been deposited with Ni nanohelix arrays, one left-handed L being the

approximate enantiomer of the other, which is right-handed R and are both

shown in Figure 5.5. The growth parameters of the two samples for the he-

lices are identically set to h = 100 nm, P = 50 nm but with the only

difference of the rotation sense of the substrate holder during the deposi-

tion. Also a clean glass has been deposited with an unstructured bulk nickel

film of the same thickness for comparison.

Oxidation of the nickel nanohelices has been found to be negligible, when

all the other measurements shown in this chapter have been carried out over

a period of several months. The magnitude and the spectral dependence of

the optical absorption measurements (i.e. CD) were unchanged for repeated

measurements during this time. A high-angle annular dark field scanning

transmission microscopy (HAADF-STEM) of the samples is shown in Figure

5.5, detached from the substrate through a short process of ultrasound

91



Figure 5.5: SEM side view picture of the two Ni nanohelix samples: (a) are

left-handed, (b) are right-handed. Figure adapted and reprinted from [25].

sonication thanks to M. Alarcón-Correa. HAADF-STEM was performed

thanks to T.C. Lee and the results can give precious information about the

composition of the materials through the secondary emitted radiation using

energy-dispersive X-ray analysis (STEM-edx). A typical result is shown

in the false colour Figure 5.6, with the different materials marked with

different colours: (Au) panel shows clearly the BCML gold nanodot where

the structure has been grown, (Ti) shows the thin titanium layer deposited

right before the deposition of the Ni, (O) shows the presence of oxigen, which

seems only to cover the external shape of the nickel helix and finally (Ni)

clearly identifies the predominance of nickel atoms forming the nanohelix

shown in this image. For both L and R films a saturation field of ∼ 0.16 T

is observed, a saturation magnetization of 5×10−2emu mm−3 and a coercive

field of ∼ 0.0140 T.

SQUID magnetometry of the samples has also been carried out. The

magnetization curve acquired for the L is shown in Figure 5.7, which shows

the typical hysteresis present in the ferromagnetic phase. The dimensions of

an individual Ni structure are on the same order as the superparamagnetic

domain size which leads to long, but finite, Néel relaxation times. Measure-

ments of the remanent magnetization relaxation time shown in Figure 5.8

(τ ∼ 1.5×103 s), suggest that the structures have a mean magnetic domain
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Figure 5.6: High-angle annular dark field scanning transmission electron

microscope (HAADF STEM) image (top-left) of a typical Ni nanohelix and

the corresponding false-color elemental maps obtained by STEM-edx spec-

tral mapping, confirming all the intended elemental composition within the

nanostructure. Scale bar = 20 nm. Figure adapted and reprinted from [25].

size of 18 nm according to the Néel-Arrhenius model. This agrees well with

the measured helical wire diameter of r ∼ 20 nm.

5.3 Optical absorption measurements

In this section are shown all the optical measurements in absorption of vis-

ible light, which is propagated on normal incidence on the nickel samples

structured as arrays of nanohelices two turns in a film of about 100 nm and

compared with an unstructured film of the same thickness, fabricated as

described in the previous section. Independent measurements were carried

out for each one of the contributions from the various effects underlined in

Equation 5.2 for the dielectric constant of a magnetic and chiral metama-

terial. The absorbance of each sample, A(B = 0), necessary for calculating

the g factors, was measured in transmission for unpolarized light using a

Cary 4000 UV-VIS spectrometer. The unperturbed CD which corresponds

to the NCD was measured in a standard JASCO 810 spectropolarimeter.

Then MCD was obtained from measurements of the CD using an AVIV

42 MCD spectropolarimeter coupled to an Oxford Instruments Spectromag

SM4000-10 in the group of Prof. van Slageren at the Univ. of Stuttgart
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Figure 5.7: Magnetization curve measured parallel to the axis of the left

handed nanohelices obtained with a SQUID magnetometer. The bottom-

right inset shows the wide field magnetization curve with saturation at ∼

0.16 T. Figure adapted and reprinted from [25].

together with Y. Rechkemmer, which provides magnetic fields from −10 T

to +10 T along the direction of propagation of light. Finally direct measure-

ments of the MChD acquired with a custom built setup can be compared

with what is theoretically expected from the data of NCD and MCD for a

cascaded cross effect of the two.

5.3.1 Unpolarized light absorbance and natural circu-

lar dichroism

The glass substrates with the deposited nickel films in the GLAD system

were measured under normal incidence and the results are shown in Figure

??.

The NCD was measured with the JASCO 810 for L and R nanohelices

and for the unstructured (plain) film made of nickel. Here a Hamamatsu

R316 photomultiplier tube (PMT) was used as photodetector. The results

are shown in Figure 5.10 in units of absorbance. As expected the L shows

dominant LCP absorption and R shows dominant RCP absorption, while

there is no NCD present in the unstructured film. The nickel nanohelices
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Figure 5.8: Magnetization relaxation measurement from the left handed

nickel nanohelices in the SQUID magnetometer. A fit of the curve with

the Néel-Arrhenius model suggests τ ∼ 1.5 × 103 s and a corresponding

magnetic domain size of 18 nm.

show a NCD peak which is as broad as the whole visible range. The magni-

tude of the optical activity can be compared directly with the measurements

of the copper helices seen in the Chapters 2 and 4. In units of ellipticity the

dominant absorption of LCP, for the L nickel helices at the wavelength of

570 nm is of 1319 mdeg. The corresponding peak of RCP for the R sample,

is found at the wavelength of 545 nm and measures 1415 mdeg. This is

about 4 times smaller in magnitude compared to the copper nanohelices al-

ready considered previously, but is still large compared to the CD observed

for example in chiral molecules.

5.3.2 Magnetic circular dichroism

MCD is not sensitive to the chirality of the sample but only proportional to

~B and the CP of the electromagnetic wave. As the nickel samples are in a

ferromagnetic phase and are immersed in an external magnetic field ~H, the

magnetization ( ~M ) of the samples will generate a field which is ~B = µ ~H,

where µ is known as the magnetic permeability of the material. CD mea-

surements are obtained from the AVIV 42 coupled to an Oxford Instruments
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Figure 5.9: Absorbance of visible light at normal incidence on the two

helical nanostructured nickel films, measured in the Cary 4000 UV-VIS

spectrometer.

Spectromag SM4000-10. In Figure 5.11 are shown the CD spectra recorded

from the unstructured nickel film as a function of the applied magnetic field.

The CD from a material with chiral asymmetry will be a combination NCD

+ MCD. For the nickel nanohelices one has to subtract the NCD, in order

to calculate the direct effect of MCD. In Figure 5.12 the MCD (in units

of absorbance) for all three of the samples are shown; for clarity only the

effects at the saturation and zero of ~M (−0.30 T, 0.00 T, +0.30T) are se-

lected. In fact for any of the samples considered here, a positive field induces

a positive contribution from the MCD to the whole CD, while a negative

field induces a negative contribution. The slightly different magnitudes of

the effect between the three samples is due to differences in the density,

thickness and morphology of the films. Due to the strong absorption in the

glass substrate measurements are restricted to λ < 350 nm.

5.3.3 Magneto-chiral dichroism

The magneto-chiral dichroism was measured using a custom setup depicted

schematically in Figure 5.13. The monochromatic light from the Jasco 810c

96



3 0 0 4 0 0 5 0 0 6 0 0 7 0 0 8 0 0 9 0 0
- 0 , 0 4

- 0 , 0 2

0 , 0 0

0 , 0 2

0 , 0 4

 

 

NC
D (

ab
so

rba
nc

e)

w a v e l e n g t h  ( n m )

 L H
 R H
 p l a i n

Figure 5.10: Natural circular dichroism spectra recorded under normal inci-

dence on structured left (LH) and right (RH) handed 2-turn Ni nanohelices

are shown in the red top curve and black bottom curve respectively, and an

unstructured plain Ni film is shown as a control and shows no NCD as is

expected. Figure adapted and reprinted from [25].

is depolarized and aligned in the central hole, which runs axially with respect

to the of electrical windings from one side of an electromagnet. The elec-

tromagnet was built with copper wires windings around a double-E shaped

ferrite core support (EPCOS PM 114/93). A central gap was created with

a ring spacer at the centeral core of the ferrite magnet( ∼ 2.3 mm ), where

a glass slide can be positioned so that is placed in the magnetic field and

at the same time can be probed with the light which is aligned through the

axial aperture in the ferrite core. The light propagated through the electro-

magnet is collected with a similar optical fiber bundle and redirected to the

photomultiplier tube of the Jasco spectropolarimeter. The electrical current

in the coils of the electromagnet is generated by a current amplifier (HU-

BERT AMP1250-16) which is driven by a 10Hz sinusoidal waveform genera-

tor (Hewlett Packard 33120A). The current running the electromagnets can

be modulated as an AC magnetic field along the direction of propagation of

the probing light with tunable amplitude proportional to the peak-to-peak

voltage of the HP 33120A. The electromagnet has been found to be able to

dissipate the heat in air, up to the magnetic fields of ∼ 0.3 T. For electrical
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Figure 5.11: CD spectra recorded from the unstructured nickel film (plain)

for external magnetic fields generated along the wave-vector of the propa-

gated light. On the right side of the plot the amplitude of the external field

is indicated.

currents required to generate fields of higher magnitude the temperature

of the coils grows very rapidly compared the acquisition time typical for

the measurement routine, in order to acquire MChD measurements at mul-

tiple wavelengths. Finally a Stanford Research lock-in amplifier (SR830)

synchronized with the same signal of the HP 33120A, is used to detect the

small difference of transmitted light being propagated parallel or antiparallel

with respect to the magnetic field (Tω), generated from the electromagnet,

where the sample is positioned. In this way, the difference in absorbance

called MChD = A( ~B �� ~k)− A( ~B �� ~k)) can be calculated.

If the effects are measured as difference in absorbance, it could be very

challenging to make comparisons with other materials or between different

effects. So if the absorbance differences are

NCD = CD( ~B = 0) = A− − A+ , (5.3)

MCD = CD( ~B)−NCD , (5.4)

MChD = A( ~B �� ~k)− A( ~B �� ~k)) (5.5)
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Figure 5.12: CD spectra recorded from the unstructured nickel film (plain)

for external magnetic fields generated along the wave-vector of the propa-

gated light. On the right side of the plot is indicated at the end of each

curve the amplitude of the external field. Figure adapted and reprinted

from [25].

then, a useful quantity that can be calculated is known as the dissimetry

factor (gNCD, gMCD, gMChD). If the unperturbed absorbance of unpolar-

ized light is A = A−( ~B=0)+A+( ~B=0)
2

, the anisotropy factors are defined as:

gNCD =
NCD

A
, (5.6)

(5.7)

gMCD =
∂

∂ ~B

MCD

A
, (5.8)

(5.9)

gMChD =
∂

∂ ~B

MChD

A
. (5.10)

No detailed theory exists to model magneto-chiral dichroism on metal-

lic helices at optical wavelengths. Existing models for long wavelengths

on metallic helices [123] or for free electrons on a helix [124] cannot ac-

count for the experimentally observed spectra. Yet it is useful to con-

sider that to the general first-order approximation, it is expected that

gMChD ≈ 1
2
gNCD gMCD [116]. In Figure 5.14 the values of gMChD calcu-
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Figure 5.13: Schematics of the setup used for the magneto-chiral dichroism

measurements.

lated from the direct measurements performed for the detection of MChD

are shown and compared with the values calculated from the values ob-

tained from gNCD and gMCD. It is remarkable that although the mag-

nitude of the effect is consistent with the one expected from NCD and

MCD, the wavelength of the actual MChD resonances are much shorter

and are located in correspondence of the zero-crossing observed in the MCD

spectra. As also previously discussed in Ref. [117], this is a confirmation

that the pure MChD is observed here and not a cascaded effect. A slope

of gMChD = (6.8 ± 0.3) × 10−4 T−1 at 380 nm for the RH helices and

gMChD = (7.3 ± 0.7) × 10−4 T−1 for the LH helices. In term of absorption

of light at the peak of the MChD resonances, this is about ∼ 10−4 the

total absorbed light, but is detected in transmission through a metamate-

rial with a total thickness of 100 nm, at room temperature. Other MChD

measurement have required the use of cryogenic equipment and about a

hundred-fold stronger magnetic fields, yet the magnitude of the gMChD is

comparable with previous observations.

Regarding the nanohelices samples that have been produced with Co and

SmCo, the MChD measurements show a slightly smaller effect. Figure 5.15

shows the results of the measurements of the MChD as recorded from the

MChD setup as a comparison of the MChD present in the nickel nanohelix

metamaterials. All the samples are left handed (LH) helices. However,

with respect to the two turn nickel helices of 50 nm pitch, the cobalt and
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Figure 5.14: Dissimetry factor gMChD calculated from the measurements

carried out on left handed and right handed nickel nanohelices arrays coated

on glass windows. The connected data points are the result of direct mea-

surements, while the scattered points are theoretically calculated values

from the measurements of NCD and MCD (gMChD ≈ 1/2 gNCD gMCD).

Figure reprinted from [25].

samarium cobalt samples are about ∼ 90 nm of pitch with one and half

turns. This was necessary to red-shift the optical activity to the visible

range for the cobalt based samples. However the g factors can still be

compared as they are scaled to the total absorbances for each sample.

The difference between the different samples is clearly evident, which

can at present not be quantitatively understood. There is no convincing

explanation to the lack of MChD in the cobalt based samples. From a

quantitative analysis of hysteresis curves, which were already shown in Fig-

ures 5.3 and 5.7, the saturation magnetization is just a little less than 103

times for the cobalt sample. Following the indication of the theory, also

the MCD and MChD should be correspondingly larger with respect to the

nickel sample, than what is measured (MCD spectra for the cobalt based
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Figure 5.15: Results of the measurements carried on three different samples

of nanohelix metamaterials deposited with glancing angle deposition method

using nickel, cobalt and a coevaporation of samarium and cobalt. All the

samples are lef handed (LH) helices, the pitch of the cobalt and samarium

cobalt samples are about ∼ 90 nm with one and half turns, this was necessay

to red-shift the optical activity in the visible range.

samples are not shown here). Surprisingly the results of the measurements

reveal a smaller effect in the cobalt sample, even though the magnetization

and the magnetic susceptibility are about three orders of magnitude larger.

If this was given by the larger coercive field in the cobalt based samples,

this would in fact correspond to damping of the measured signal, which for

low values of the external AC magnetic field, would correspond to an out of

phase contribution to the detected Tω. However, considering for example

explicitly the ratio between the value of the coercive fields of the Co and

Ni samples this results only ∼ 5 times larger in the case of the Co sample

and therefore irrelevant compared to the magnetic susceptibility calculated

at the saturation field for the two samples.
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5.4 Final discussion

Chiral metamaterials deposited with GLAD have been demonstrated to be

found in a ferromagnetic phase. In particular, nickel and cobalt nanohelix

arrays have been designed to present strong NCD in transmission of visible

light and measured with SQUID magnetometry to measure the magnetiza-

tion curve in response to external magnetic fields, which reveals the presence

of ferromagnetism. The combined presence of NCD and MCD have been

observed in these hybrid chiral metamaterials. In presence of both of these

optical activities, a higher order effect, the magneto-chiral optical activity is

expected to be present. In particular, MChD in transmission of visible light

was detected in metamaterials of nickel and cobalt at room temperature

and using perturbing AC magnetic fields relatively limited in amplitude.
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Chapter 6

Conclusion.

The optical activity of chiral metamaterials has been the main focus of

this thesis. A unique glancing angle deposition method initially triggered

the interest to explore the possibility to obtain metamaterials, with a very

strong chiroptical response in the visible part of the electromagnetic spec-

trum. This method permits to process entire wafer-scale samples, which

could be deposited with arrays of helices where the shape parameters and

the chemical composition could be programmed.

The two orders of magnitude size difference existing between natural

molecular dimensions and the wavelength of visible light could be filled

with fabricated nanostructures and the observed strong, resonant optical

response was discussed in terms of scattering of electromagnetic waves. In

particular, the use of plasmonic metals was demonstrated to enhance the

optical activity that could be present in macroscopic materials in the form

of nanosculptured thin films or colloidal suspensions.

Standard techniques of chiroptical spectroscopy were adopted initially

to measure the dependence on the circular polarization state of light in

absorption. The physical role of structural chirality was considered, com-

paring the experimental results with results of a numerical method. The

nanohelices’ shape and dimension were demonstrated to determine directly

the spectral dependence and the magnitude of the optical activity, due to

the dispersive coupling of the plasmonic resonance.
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Apart from the chiroptical response in absorption this thesis also ex-

plored the effect of chiral metamaterials on the real part of the index of re-

fraction. This motivated the construction of a dedicated polarization laser

interferometry setup, which could measure the index of refraction of chi-

ral materials and the phase shift of left and right circularly polarized light

components. In a uniaxial sample the circular birefringence as well as the

absolute magnitude of the polarization-dependent refractive index compo-

nents can be determined with the polarization interferometer. To test the

interferometer, a cholesteric liquid crystal sample was examined and the

measurements indicate a consistency with other experimental results and

theoretical models.

The interferometer was then used to characterize the nanohelix meta-

material surfaces. Near the plasmon resonance the real part of the index

of refraction becomes small, and this suggests that when the circular bire-

fringence is large enough, the index of refraction could become negative for

one of the two circular polarization components. To determine the small

indices of refraction it became necessary to eliminate the contribution from

the substrate on which the nanohelices are grown. This was achieved by

using SiN windows. Silver nanohelices with 2 turns and an overall height of

∼ 300 nm showed a plasmon resonance at ∼ 633 nm. At this wavelength

their circular birefringence was estimated to approach δn′ ' −1.3. Near

the plasmon resonance the real part of the refractive index of silver is only

n′Ag ' 0.05. This suggests that the index of refraction can be negative for

a dense uniaxial film. Measurements from the interferometer indicate that

under the approximation of uniaxiality the chiral metasurfaces can support

a negative index of refraction. However, Muller matrix polarimetry mea-

surements from a collaboration partner, showed that the surfaces are not

uniaxial, but triclinic which complicates the analysis and does not permit

the extraction of an overall index of refraction. In the future a finer tuning of

the nanohelices will likely permit to produce a perfectly uniaxial metamate-

rial. Structural uniformity and stoichiometric control are most probably the
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keys to reach this purpose. The use of other materials such as aluminium

or alkali metals is also expected to increase the optical activity which could

be used to obtain magnitudes higher than the thin film metamaterials con-

sidered in this thesis, to be then used then to obtain isotropical suspensions

with negative index of refraction due to chirality.

Finally, chiral Ni nanohelices that were ferromagnetic at room tempera-

ture were fabricated. The simultaneous presence of natural optical activity

and strong magnetic circular dichroism meant that the 100 nm thick chi-

ral films also showed magnetochiral dichroism, which is otherwise a small

effect. The chiral films showed the presence of a large band of MChD of

gMChD ' 7 × 10−4 around the wavelength of 400 nm.

Chiral nanohelix films give rise to large chiroptical effects in absorption

and in refraction, and should permit the realization of a negative index

medium due to chirality in the visible.
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