
An Industrial Case Study on the Evaluation of a Safety
Engineering Approach for Software-Intensive Systems

in the Automotive Domain

Asim Abdulkhaleqa,∗, Sebastian Vösta,b, Stefan Wagnera, John Thomasc

aInstitute of Software Technology, University of Stuttgart, Germany
bBMW Group, Munich, Germany
cMIT, Cambridge, MA, U.S.A

Abstract

Safety remains one of the essential and vital aspects in today’s automotive sys-
tems. These systems, however, become ever more complex and dependent on
software which is responsible for most of their critical functions. Therefore,
the software components need to be analysed and verified appropriately in the
context of software safety. The complexity of software systems makes defining
software safety requirements with traditional safety analysis techniques difficult.
A new technique called STPA (Systems-Theoretic Process Analysis) based on
system and control theory has been developed by Leveson to cope with complex
systems. Based on STPA, we have developed a comprehensive software safety
engineering approach in which the software and safety engineers integrate the
analysis of software risks with their verification to recognize the software-related
hazards and reduce the risks to a low level. In this paper, we explore and evalu-
ate the application of our approach to a real industrial system in the automotive
domain. The case study was conducted analysing the software controller of the
Active Cruise Control System (ACC) of the BMW Group.

Keywords: STAMP, STPA, safety analysis, automotive software system,
verification

1. Introduction

Safety is an important property of today’s complex systems. Modern sys-
tems have achieved greater capabilities through growing reliance on increasingly
capable software. Software has become a crucial part of modern safety-critical
systems, and the amount of software in such systems is increasing. For exam-5

ple, a modern BMW 7 series car has something close to 100 million lines of
software in it and runs on more than 100 microprocessors [1]. Modern vehicles

∗Corresponding author, Asim Abdulkhaleq
Email. Asim Abdulkhaleq@informatik.uni-stuttgart.de

Preprint Version October 28, 2016

come with various complex systems (e.g. electronic stability control, navigation
systems) which rely on software to control the main functions. An unforeseen
behavior of software may result in catastrophic consequences such as injury or10

loss of human life, damaged property or environmental disturbances. Over the
last ten years, the number of accidents and losses related to software flaws has
increased. The Toyota Prius and the General Motor airbag are two commonly
known software problems that occurred in the automotive domain in the last
five years. Recently, Google’s self-driving car and the Tesla autopilot are the15

two latest software-related accidents in the automotive domain.
Software safety is a crucial aspect during the development of modern safety-

critical systems. However, safety is a system-level property; therefore, soft-
ware safety must be considered at the system level to ensure the whole sys-
tem’s safety [2]. Furthermore, the software design and implementation must20

be verified against the software safety requirements which are identified during
safety analysis at the system level. Software components in modern software-
intensive systems and their interactions with other components, and especially
their complexity, become a challenge in ensuring the safety of the whole sys-
tem. In particular, the safety analysis and verification of each of these software25

components at the system level are demanding. For this issue, Abdulkhaleq,
Wagner and Leveson [3] proposed a comprehensive approach to safety engineer-
ing of software-intensive systems based on STPA called STPA SwISs (STPA
for Software-Intensive Systems), which combines the STPA safety analysis ac-
tivities with the verification and testing activities. The STPA SwISs approach30

offers seamless safety analysis and verification activities to help the software and
safety engineers to recognize the associated software risks at the system level.

To support the safety engineering process based on STPA, we developed an
extensible platform called XSTAMPP [4]. XSTAMPP1 is an open-source plat-
form written in Java based on the Eclipse Plug-in-Development Environment35

(PDE) and Rich Client Platform (RCP). XSTAMPP supports performing the
main steps of STPA and automatically transforms the STPA-generated safety
requirements into formal specifications in LTL (Linear Temporal Logic) [5].

1.1. Problem Statement

STPA is a rather new technique, however. Little is yet known about its40

difficulties and benefits in the context of software safety, especially in the au-
tomotive domain. Moreover, the STPA SwISs safety engineering approach is
based on STPA and the STPA SwISs approach has not yet been evaluated with
a real industrial software system.

1.2. Research Objectives45

The overall objective of this research is to explore the application of the
STPA SwISs approach for safety engineering based on STPA using a real in-
dustrial system in the automotive domain. This objective includes deriving

1http://www.xstampp.de

2

 http://www.xstampp.de

appropriate software safety requirements at the system level and generate safety-
based test cases directly from the information derived during the STPA safety50

analysis to recognize the software risks.

1.3. Contribution

We contribute an investigation of the application of STPA SwISs in terms
of deriving the software safety requirements at the system level by STPA SwISs
and deriving safety-based test cases for each STPA-generated software safety55

requirement. We started by applying STPA to the system specifications of ACC
stop-and-go to derive the software safety requirements at the system level. We
used XSTAMPP [4] to document the results of applying STPA and transformed
the STPA safety requirements automatically into formal specifications in LTL.
Based on the results of STPA, we constructed a safe behavioral model of the60

ACC as a Simulink statechart. To ensure the correctness of the resulting model
and STPA results, both are reviewed by two BMW experts. Furthermore, we
automatically converted the safe behavioral model into SMV (Symbolic Model
Verifier) [6] by using our tool STPA TCGenerator (STPA Test Case Generator)2

which is a model-based safety testing tool. We also verified the SMV model65

against the STPA results by using the NuSMV model checker [7]. We used the
safe behavioral model as input to STPA TCGenerator to generate safety-based
test cases. Finally, we selected 20 of the generated safety-based test cases to be
executed on the ACC system.

1.4. Context70

We conducted the case study at the German company BMW Group, which
is a luxury automobile and motorcycle company. We applied the STPA SwISs
approach to the BMW active cruise control system with stop-and-go function
of the new car model. The case study was performed at the headquarters of the
BMW Group in Munich, Germany.75

1.5. Outline

The remainder of this paper is structured as follows: The background of the
safety analysis, software verification and our previous work on the comprehen-
sive approach for safety engineering for software-intensive systems are presented
in section 2. Related work is discussed in section 3. The case study design and80

how to apply the STPA SwISs approach to the active cruise control system with
stop-and-go are presented in Section 4. The results are presented in section 5.
Finally, conclusions and future work are provided in section 6.

1.6. Terminology

We define the most relevant terms in Tab. 1 to ensure a consistent termi-85

nology in this paper.

2https://sourceforge.net/projects/stpastgenerator/

3

 https://sourceforge.net/projects/stpastgenerator/

Table 1: Terminology

Terminology Definition

Accident Accident (Loss) results from inadequate en-
forcement of the behavioral safety constraints
on the process [2].

Hazard Hazard is a system state or set of conditions
that, together with a particular set of worst-
case environmental conditions, will lead to an
accident [2].

Unsafe Control Actions The hazardous scenarios which might occur
in the system due to provided or not provided
control action when required [2].

Safety Constraints The safety constraints are the safeguards
which prevent the system from leading to
losses (accidents) [2].

Process model variables The process model variables are the safety-
critical variables of the controller in the con-
trol structure diagram (e.g. internal variables,
internal states, interaction and environmental
variables) which have an effect on the safety
of issuing the control actions [2] [8].

Causal Factors Causal factors are the accident scenarios that
explain how unsafe control actions might oc-
cur and how safe control actions might not be
followed or executed [2] [8].

Safety-based Test Cases The safety-based test cases are set of the test
cases which are automatically generated from
information derived during the STPA safety
analysis process.

2. Background

2.1. STPA Safety Analysis

Developing a safe software demands that the development process of software
shall take into account the complexity of software components; especially on90

how to define appropriate software safety requirements and how to verify the
software design and implementation. The complexity of software makes defining
appropriate software safety requirements difficult by traditional safety analysis
techniques such as Fault Tree Analysis (FTA) [9] and Failure Mode and Effect
Criticality Analysis (FMECA) [10]. Rather than focusing on creating software95

safety requirements, most traditional techniques focus on failures and analyze an
existing design with some or all of the requirements already defined. Previous

4

Figure 1: STPA SwISs: A comprehensive safety engineering approach for software-intensive
systems

work has identified a number of limitations of traditional automotive safety
analysis techniques when it comes to complex software behavior [11] in terms of
identifying unsafe interactions between systems, anticipating human error and100

other behaviors dependent on human interaction, identifying design flaws, and
producing requirements To overcome these limitations, a new safety analysis
approach called STPA [2] has been developed. STPA is a unique safety analysis
created for complex systems, including software-intensive systems. The STPA
safety analysis process is carried out in three major steps: (1) Establish the105

fundamentals of the analysis (e.g. system description, system-level accidents,
system-level hazards, safety and design requirements) and draw a high-level
safety-control structure diagram in which the system is viewed as interacting
components; (2) identify the potentially unsafe control actions of the system
that could lead to one or more system-level; and (3) Identify accident scenarios110

that explain how unsafe control actions might occur and how safe control actions
might not be followed or executed.

2.2. STPA SwISs: A Comprehensive Safety Engineering Approach for Software

Software is an integral part of the system and it must deal with the hazards
identified during safety analysis at the system level to ensure the whole system’s115

safety. Moreover, the software implementation and design must also fulfill the
software safety requirements. STPA is a new technique, however. It has not yet
been placed in the software development process of safety-critical systems and
used for software verification. Traditionally, formal verification and testing are
complementary approaches which are used in the development process to verify120

the functional correctness of software. To address the aforementioned challenges
of software safety, Abdulkhaleq, Wagner and Leveson [3] developed a compre-
hensive safety engineering approach based on STPA for software-intensive sys-

5

tems. The approach offers seamless safety analysis and verification activities.
This will allow the software and safety engineers to work together to derive125

the software safety requirements at the system level, verify them and generate
safety-based test cases. Instead of the exhaustive testing of all software com-
ponent behavioral, which is not possible, the approach focuses on identifying
appropriate software safety requirements that must be tested and/or verified
to ensure that the software components satisfy these requirements. Figure 1130

shows the proposed approach for safety engineering based on STPA. To help in
identifying unsafe control action and safety requirements, context tables were
used as proposed by Thomas [12].

The STPA SwISs approach as described in [3] is carried out in the following
major steps: Step 1: Deriving the software safety requirements at the system135

level by applying STPA to the system specification and requirements. Step
2: Modeling STPA results with a safe behavioral model. A safe behavioral
model is a UML statechart notation constrained by the STPA results. Step 3:
Verifying the safe behavioral model against the STPA results by using model
checking to ensure that the safe behavioral model satisfies the STPA-generated140

safety requirements. Step 4: Generating and executing safety-based test cases.
This step is divided into two steps: (4.1) Using the safe behavioral model as an
input to the model-based testing tool to generate safety-based test cases (e.g.
STPA TCGenerator); and (4.2) Executing the safety-based test cases on the
system under analysis and generating the safety verification report. This report145

shows the results of software safety verification activities of each software safety
requirement derived by STPA, the list of the generated safety-based test cases,
the test coverage measure, the traceability metric between the STPA results
and the generated safety-based test cases.

The output of the safety engineering approach is a safety report which the150

engineers will use to modify the software design and implementation to ensure
the safe operation of the software.

3. Related Work

In this section, we will describe our primary work as follows: Abdulkhaleq
and Wagner [13] applied STPA to a well-known example of a safety-critical155

system in the automotive domain: adaptive cruise control (ACC). ACC is an
automotive feature that allows a vehicle’s cruise control system to adapt the
vehicle’s speed to the traffic environment. This case study was performed based
on an existing case study with MAN Truck & Bus AG [14] in which the authors
conducted an exploratory case study applying safety cases for the ACC system.160

We compared the results of STAMP/STPA with the safety cases on the same
system.

Thomas [15] introduced an extended approach to STPA with the purpose
of identifying unsafe control actions in STPA Step 1 based on the combinations
of process model variables of each controller in the control structure diagram.165

A combination of process model variables is called a context. Two contexts of
control actions are proposed: Provided control action and not provided control

6

action. The control action will be hazardous only in a certain context. The
main problem of context tables is the difficulty in defining the combination for
a large number of values of the process model variables which have an effect on170

the safety of control actions. To solve this problem, Abdulkhaleq and Wagner
[16] developed an algorithm based on the concept of combinatorial testing [17] to
automatically generate the context tables and to allow safety analysts to identify
a minimal combination of process model variables. The safety analysts can add
and apply constraints and Boolean relations to the generated context tables to175

ignore some unnecessary combinations from these tables. Furthermore, they
explain how to automatically generate the hazardous rules and refined unsafe
control actions based on the results of the context table. The hazardous rules
will be automatically translated into the refined safety constrains and expressed
them into formal specifications in LTL. Both algorithms are implemented as an180

Eclipse plug-in called XSTPA3 (Extended Approach to STPA) which integrates
with the XSTAMPP platform.

In [18], Abdulkhaleq and Wagner proposed a safety verification methodology
based on the STPA safety analysis. We applied STPA to vehicle cruise control
software to identify the software safety requirements at the system level and185

verify these safety requirements at the design level. Abdulkhaleq and Wagner
[16] also extended the software safety verification approach by investigating the
possibility of verifying the software safety requirements based on the model
extracted directly from the source code of the software. They integrated the
STPA safety analysis with a software model checker.190

Recently, Abdulkhaleq and Wagner developed a safety-based test case gen-
erator tool called STPATCGenerator 4which generates test cases based on the
results of STPA safety analysis results which are modeled in a Simulink state-
flow. Furthermore, they developed an Eclipse plug-in called STPA verifier 5 to
verify the STPA safety requirements with model checking tools such as SPIN195

[19] and NuSMV [7] in XSTAMPP. The STPA-generated safety requirements
in XSTAMPP are automatically transformed into formal specifications in LTL
(linear Temporal Logic).

4. Case Study Design

In the following, we will describe the case study design which contains the200

main research questions that drive the case study, data collection and analysis
procedures, as well as how we ensure the validity of the results. Our case study
design follows Runeson and Höst’s guidelines [20].

4.1. Study Goal and Research Questions

The goal of this case study is to explore the applicability and feasibility of205

the STPA SwISs approach of software safety engineering based on STPA in a

3http://www.xstampp.de/xstpa.html
4http://www.xstampp.de/STPATCGenerator.html
5http://www.xstampp.de/STPAVerifier.html

7

http://www.xstampp.de/xstpa.html
http://www.xstampp.de/STPATCGenerator.html
http://www.xstampp.de/STPAVerifier.html

real industrial environment. We use two research questions to structure the
study design.

RQ1) How effective is using the STPA SwISs approach to derive
the software safety requirements at the system level? This research210

question focuses on investigating how STPA SwISs helps to derive the appro-
priate software safety requirements at the system level to help the software and
safety engineers to recognize the software risks.

RQ2) How useful is generating the safety-based test cases from
the STPA results? We want by this research question to investigate how the215

safety-based test cases generated from STPA results can help to test the system
against each software safety requirement to ensure that the system satisfies the
STPA software safety requirements.

4.2. Case and Subjects Selection

We select one case which is representative of an automotive system and with220

which the subjects have experience. The subjects in this case study were all
authors and 1 internal ACC system expert at BMW who contribute in different
roles. Two of the authors contribute in performing the case study at the location
of BMW. Asim Abdulkhaleq works in the role of STPA safety analysis and safety
engineering expert. Sebastian Vöst acts as the automotive system requirements225

and testing expert and assumes the role of system analyst and tester. The
internal ACC system architecture expert takes the role of ACC system designer.
Stefan Wagner and John Thomas act as the software and safety engineering
experts. They assume the roles of supporting the case study and review the
results at different stages.230

We chose the active cruise control system with stop-and-go function as a
case study object because it is a software-intensive system with strong safety
implications.

4.3. Data Collection Procedures

The case study follows the 4 steps of the STPA SwISs approach to de-235

rive the software safety requirements and generate and execute the safety-based
test cases on the system environment. Specifically, we apply the approach to
the specification document of the active cruise control system with stop-and-go
function. We use the XSTAMPP software tool to document the safety analy-
sis results which are exported as PDF files and Excel sheets. We also use the240

reports generated by formal verification and testing approaches (e.g. STPA ver-
ifier and STPA TC Generator). These reports include the verification results
of each STPA safety requirement, the generated safety-based test cases and the
test execution results.

4.4. Analysis Procedure245

The following section describes the top-down process for applying the STPA
SwISs safety engineering approach to the software controller of the active cruise
control system in this case study (shown in Fig. 2):

8

Figure 2: Case study work packages, deliverables and tool support

Deriving the Software Safety Requirements. At first, the safety analyst investi-
gates the existing documents about the case study object, its functional require-250

ments, and its system specification. From these documents, the safety analyst
establishes the fundamentals of the analysis (e.g. a list of the system-level acci-
dents that the software can contribute to, a list of the system-level hazards that
may lead to one or more of the system-level accidents) and builds a safety control
structure diagram of the ACC system and its environment. The safety control255

structure diagram is a high-level abstraction diagram that contains the main
components which interact with the ACC software controller and the necessary
information about the input, software control actions and feedback signals. The
control structure diagram is visualized by XSTAMPP. One of the internal ACC
system designers reviews the control structure model and the STPA-generated260

software safety requirements and provides feedback to the safety analyst. Based
on his feedback and improvement suggestions, the safety analyst modifies the
diagram. The safety analyst uses the final control structure diagram to guide
the safety analysis process to derive the software safety requirements based on
the STPA SwISs approach which is described in the following sub-steps: (1)265

For each software control action that is a safety-critical action, identify the po-
tentially unsafe control actions; (2) Translate the unsafe control actions into
informal textual safety requirements; (3) Augment the process model and its
variables (states) which affect the safety of one or more control actions of the

9

software controller in the control structure diagram; (4) Generate the combina-270

tion sets of the process model variable values using context tables, which can
be generated using XSTAMPP. Evaluate each control action and whether it is
hazardous to provide or not provide the control action in each context. (5)
Refine the informal textual safety requirements based on the hazardous combi-
nation sets; and (6) Automatically generate the formal specification in LTL of275

the refined safety requirements by using XSTAMPP. The results of these steps
are reviewed by the ACC system expert at BMW.

Modeling of STPA results. Second, the safety analyst builds the safe behavioral
model of the software controller of the ACC system from the system specifica-
tions and STPA results. The safe behavioral model is a Simulink state chart280

model which contains the relevant process model variables (states) and tran-
sitions which is labeled by the STPA software safety requirements. The safe
behavioral model was also reviewed by the ACC system designer and tester.
The resultant model is reviewed by the ACC system testing expert at BMW.

Verifying the safe behavioral model. Third, the safety analyst transforms the285

safe behavioral model into the SMV (Symbolic Model Verifier) specification
model [6, 21]by using the STPA TCGenerator tool. Then the safety analyst
verifies the SMV model against the STPA results by using the NuSMV model
checker to ensure that the SMV model satisfies all STPA-generated software
safety requirements.290

Generating safety-based test cases. Fourth, the safety tester uses the XML spec-
ification of the safe behavioral model and the STPA project, which is created by
XSTAMPP as input to the STPA TCGenerator tool to generate the safe model
test and generate test cases for each STPA software safety requirement. The
system tester determines the range of test data for each safety-critical variable295

(process model variable). The STPA TCGenerator tool automatically generates
the traceability matrix between the software safety requirements and the safe
test model and automatically generates the safety-based test cases from this
model. The generated test cases are saved automatically in an Excel sheet. The
generated safety-test cases are reviewed by the ACC testing expert at BMW.300

Test execution of the safety-based test cases on the ACC system environment.
Finally, we define criteria of selection safety-based test cases in which each
generated software safety requirement should be tested at least in one test case.
The safety analyst and system tester will conduct the execution of the test cases
based on the final implementation of the ACC software system on the BMW305

car model.

4.5. Measurements

To answer the research questions, we investigate the safety analysis and
the verification and test case generation reports. Moreover, we investigate the
execution results of the safety-based test cases.310

10

To answer RQ1, we first summarise the results of deriving software safety
requirements. We calculate the total number of the STPA-generated software
safety requirements which are derived at the system level and the unsafe software
scenarios which are reported by following STPA SwISs approach.

To answer RQ2, we investigate the list of the generated unsafe scenarios
to evaluate whether these scenarios describe real unsafe scenarios in the ACC
system. We investigate the list of test cases generated and the test execution
report to evaluate how useful it is to generate test cases directly from the safety
analysis. Finally, we calculate the coverage of the software safety requirements
by the generated test cases generated by counting the total number of STPA-
generated software safety requirements covered by safety-based test cases. We
measure the Software Safety Requirements (SSR) coverage in the generated
safety-based test cases by using the following equation:

SSR Coverage =
|#STPA SSR covered by Test Cases|
|#STPA Software Safety Requirements|

(1)

4.6. Validity Procedure315

To ensure internal validity, we define an extensive review role after each
step. All generated software safety requirements, the control structure diagram
of ACC, the safe behavioral model, the SMV model and the safety-based test
cases are reviewed by the experts of the approach, the ACC system, and software
and system safety. The experts provide valuable feedback and comments to320

ensure that all steps were conducted correctly and the results obtained were
practically reasonable and acceptable.

An external validity considers on how the proposed approach can be general-
ized to any software systems within the same industry or in a different industry.
We perform a single case study with one company, nevertheless, we choose an325

automotive software of the well-known safety-critical system that has strong
safety requirements. To ensure the external validity threat further studies on
applying the STPA SwISs approach to different software systems in different
industry domains are needed.

5. Results330

In this section, we first present a detailed description of the case we se-
lected. Then, we describe the results of the case study and answer the research
questions.

5.1. Case Study Description

We carried out the case study on an automotive software system of the335

German company BMW Group. Active Cruise Control with stop-and-go (ACC)
6 is an extended version of the adaptive cruise control system which keeps the

6http://www.bmw.com/articles/active_cruise_control_stop_go.html

11

http://www.bmw.com/articles/active_cruise_control_stop_go.html

Figure 3: The block diagram of BMW’s ACC System with stop-and-go function

vehicle at a safe distance from the vehicle in front at all times. It keeps the
vehicle speed constant within a range of 30 to 210 km/h and automatically
adapts the following distance to the vehicle in front. The stop-and-go function340

controls the speed when the car slows down to a standstill and restarts the engine
automatically after a short interval (< 3 seconds). When there is a traffic jam
or the traffic comes to a halt, the ACC system with stop-and-go will apply the
brakes until the vehicle comes to a standstill and then automatically will move
on as soon as the road is clear.345

The ACC system with stop-and-go has four main components (shown in
Fig. 3) : 1) ACC software controller unit which receives data from the object
detection unit to automatically adapt the vehicle’s speed (e.g. accelerate or
decelerate or fully stop or resume speed) to the traffic environments in a critical
situation. 2) Object detection unit which contains two components: (2.1) radar350

sensor with a long-range of up to 150 m which continually measures the distance
between the vehicle and the objects ahead; and (2.2) a front-mounted camera
on the rear-view mirror to provide an enhanced interpretation of the traffic
situation ahead. 3) A brake system unit which is an actuator that receives a
deceleration command from the ACC software unit to reduce the current speed355

by the deceleration ratio. 4) A motor system unit which is an actuator that re-
ceives an accelerate signal command from the ACC software unit to increase the
current speed of the vehicle by the acceleration ratio. The ACC system gets the
data/feedback from different sensors (e.g. gear sensor, door-locks sensors, the
driver belt sensor, gas pedal sensor, brake pedal sensor and activation preventer360

sensor. The ACC system sends acoustic and optical warnings to the driver to
take action.

5.2. Deriving software safety requirements at the system level

Before applying STPA SwISs to the active cruise control system with stop-
and-go function, we established the fundamentals of the analysis. We used365

12

Figure 4: The safety control structure diagram of the ACC system with stop-and-go function

the XSTAMPP tool to document the results of this step. All the results and
materials of this case study are available on our repository 7. Here we summarise
our results as follows: We identified 6 system-level accidents which the software
of the ACC system can lead or contribute to (shown in Tab. 2). We also
identified 9 system-level hazards which can lead to the accidents (shown in Tab.370

3). We linked the system-level hazards to the accidents.
We drew the high-level safety control structure diagram of the ACC system

(shown in Fig. 4). The diagram shows the main components which interact with
the ACC system. The main components of this diagram are: 1) ACC software as
a controller component, which controls the controlled process (vehicle) by issuing375

control actions to the actuators; 2) The motor system and brake system are
the actuator components which implement control actions of the ACC software
controller; 3) The vehicle is the controlled process which is controlled by an
ACC software control while the ACC system is active; and 4) a set of sensor
components which send feedback about the status of the controlled process to380

the controller. The ACC software controller issues two safety-critical control
actions: acceleration signal and deceleration signal to control the speed of the
vehicle. We used this diagram to identify the potentially unsafe control actions
of an ACC software controller in the ACC system.

We identified 21 unsafe control actions for the safety-critical control actions385

(shown in Tab. 4): acceleration signal (10 unsafe control actions) and decel-
eration signal (11 unsafe control actions). We evaluated each item in table 4
to check whether it can contribute or lead to any system-level hazards. If an
item is hazardous, we assign one or more system-level hazards to it. Otherwise,

7https://sourceforge.net/projects/sptaswiss-casestudy/files/

13

https://sourceforge.net/projects/sptaswiss-casestudy/files/

Table 2: Examples of the system level accidents

ID Accident Description

1 ACC Stop & Go vehicle collides
with a moving vehicle in the lane
while the ACC system is active.

If there is a vehicle slowing down
in the front of the ACC Stop &
Go and the ACC vehicle does not
reduce the speed or even bring a
vehicle to the complete stop.

2 A vehicle is approaching too
close behind the ACC Stop & Go
vehicle and suddenly the ACC
stop & Go vehicle is stopped
without illuminating the brake
light.

A vehicle is approaching behind
the ACC Stop & Go vehicle and
suddenly the ACC stop & Go ve-
hicle is stopped while the vehicle
behind is too close without illu-
minating the brake light

Table 3: Examples of system level hazards

ID Hazards Accidents

1 ACC Stop & Go system does not keep a safe distance
from a slowed-down object in front.

1,3, 4, 5

2 ACC Stop & Go system provides an unintended accel-
eration while the moving vehicle is too close.

1,3, 4

3 ACC Stop & Go system does not stop the vehicle when
the traffic comes to a halt and the speed of the forward
vehicle is zero (stationary).

3,4

4 ACC Stop & Go system does not keep a safe distance
from the non-fixed objects in its lane.

5

we assign not hazardous to it. We translate each hazardous item manually to390

the corresponding software safety requirement. Table 5 shows examples of the
informal textual software safety requirements.

To understand how each unsafe control action can occur and to identify the
accident causes, we identify the safety-critical process model variables of the
ACC software controller (shown in Fig. 5). The ACC software controller has a395

process model with 11 critical process model variables. These variables have an
effect on the safety of the control actions. We classify the process model variables
into three types of process model variables (shown in Tab. 6) as follows:

• Internal state variables which indicate the internal states of the soft-
ware controller of the system such as ACCMode which is a process model400

variable that indicates the status of ACC (active or inactive)and states
which is a process variable indicating the operational modes of the ACC
system. It has five states: stop, standby, accelerate, cruise and decelerate.

14

Table 4: Examples of potentially unsafe control action acceleration of the ACC software
controller

Not providing
causes hazard

Providing
causes hazard

Wrong timing
or order causes
hazard

Stopped too
soon or applied
too long

ACC software
controller does not
provide the accel-
eration signal when
the road is clear
and the vehicle
ahead is so far.
[Not Hazardous]

UCA1.1. ACC
software con-
troller provides
unintended
accelerate sig-
nal when a
slowed down
object ahead
is too close.
[H-1][H-2]

UCA1.3. ACC
software con-
troller provides
an acceleration
signal before the
ACC is engaged
and there is an
object in the
lane approach-
ing too close.
[H-2]

UCA1.4. ACC
software con-
troller provides
acceleration
signal to motor
unit too long
which increases
the current
speed beyond
the desired
speed.[H-6]

Table 5: Examples of corresponding software safety constraints at system level

UCA ID ID Corresponding Safety Constraints

UCA1.1 SR1.1 The ACC software controller should not provide
an acceleration signal when a slowed down vehicle
ahead is approaching too close.

UCA1.3 SR1.4 The ACC software controller should not provide
an acceleration signal before the ACC system is
engaged.

UCA1.4 SR1.3 The ACC software controller should increase the
speed within the limit range of speed value (30
...210 km/h).

• Internal variables which change the status of the controller such as
timeGap which is calculated by an ACC software controller based on the405

front speed, current speed and front distance between the ACC vehicle
and a vehicle in front of it and currentSpeed which indicates the current
speed of the ACC vehicle.

• Interaction Interface variables which receive and store the data or
command or feedback from the other components in the system such as410

Brake status which indicates the status of the brake pedal, Gas Pedal
which indicates the status of the gas pedal, resume cancel button which
indicates the status of the resume cancel button that actives ACC with last
desired speed or deactivates ACC (inactive), ACC button which indicates
the status of the ACC button, and the Activation preventer which is an415

15

Figure 5: The safety control structure diagram of the ACC system with the safety-critical
process model variables

aggregated variable that indicates the status of ACC activation preventer
sensors (e.g. driver belt, door lock, gear, etc.). The ACC activation
preventer is a set of the ACC deactivation variables. If the driver presses
any ACC activation preventer button, then the ACC will be automatically
deactivated or can not be activated.420

Based on the concept of context table which is proposed by Thomas [15] and its
improvements by Abdulkhaleq and Wagner [16, 3], we refine the unsafe control
actions in table 4 based on the process model variables. First, we identify the
dependencies between the control actions and the process model variables which
have an effect on the safety of the control action to generate the context table425

for each control action (shown in Fig. 6).
Second, we identify the combination sets of relevant values of the process

model variables (context) for each control action (shown in Tab. 7) to determine
whether or not the control action in this context will be hazardous. We examine
the combinations set in two contexts: Provided control action causes hazard and
Not Provided control action causes hazard. The total number of all combination

16

Table 6: The dependency matrix between the control actions and the process model variables

Control Action Relevant process model variables Context

Acceleration
Signal

Activation Preventer, Brake, Cur-
rentSpeed, GasPedal, States, TimeGap

Provided/ Not
Provided

Deceleration
Signal

Activation Preventer, Brake, Cur-
rentSpeed, GasPedal, States, TimeGap

Provided/ Not
Provided

sets between the process model variables is calculated by the following equation:

Total. No = Activaiton Preventer x GasPedal x states x TimeGap x

CurrentSpeed x BrakeStatus (2)

For the ACC stop-and-go software controller, the total number of all combi-
nation sets of process model variables is = 2 x 2 x 5 x 5 x 6 x 2 = 1200 com-
binations of the process model variable values. To automatically generate the
combinations and reduce their number, we used XSTPA8 plugin in XSTAMPP430

which uses the combinatorial testing algorithm [17] to automatically generate
the context table and identify a minimal combination of process model vari-
ables for large and complex systems. XSTPA also automatically refines the
unsafe control actions which are identified in STPA Step 1 and transforms the
hazardous combinations in context tables into the LTL specifications.435

To reduce the number of combination sets in XSTPA, we select the combi-
natorial testing algorithm (e.g. pairwise algorithm). The pairwise algorithm is
a testing criterion which requires that for each pair of process model variables
of the software controller, every combination of valid values of these two vari-
ables be covered by at least one combination set. The algorithm takes the two440

longest variable values. For example, the ACC stop-and-go software controller
has the following process model variables: the currentSpeed (6 values) and states
(5 values) are the two longest variables values. Based on that, we reduce the
total number of combinations as = 6 x 5 = 30 combinations. Next, we generate
the context tables with 30 combinations for each control action (acceleration,445

deceleration) in two contexts: provided and not provided.
We use two strategies to generate the context tables and ignore irrelevant

combinations:

• Assumption 1: We assume that the ACC system is active and all the
sensors which make the ACC system automatically deactivate are off.450

• Assumption 2: We assume that the ACC system is active and one of
the sensors (e.g. brake pedal) which deactivates the ACC system is on.

Table 7 shows examples of the context table of providing the control action
acceleration signal. The hazardous rules are automatically generated from the

8urlhttp://www.xstampp.de/XSTPA.html

17

Table 7: Examples of the context table of providing the control action acceleration signal

Process model variables Hazardous ?

Activation
preventer

States CurrentSpeed TimeGap at
any
time

too
early

too
late

Off Decelerate >DesiredSpeed Unknown no no no

Off Stop Unknown ==0 yes yes yes

Off Standby Unknown ==DesiredTime no no no

Off Accelerate >DesiredSpeed <DesiredTime yes no no

Off Cruise ==DesiredSpeed >DesiredTime no no no

context table. We evaluated each hazardous rule and linked it to one or more455

unsafe control actions which are identified in STPA Step 1 to automatically
refine the unsafe control actions with the process model variables and generate
the refined software safety requirements. We identified 86 refined unsafe control
actions for the ACC control actions. For example, the unsafe control action
UCA1.1 ACC software controller provides unintended acceleration signal when a460

slowed down object ahead is too close can be refined as RUCA1.1: ACC software
controller provides the acceleration signal while ACC activation preventer is off,
the brake pedal is not pressed, the state is stop, the gas pedal is not pressed,
the current speed is unknown and time gap is ==0 . These 86 refined unsafe
control actions are automatically transformed into the refined software safety465

requirements by our tool XSTAMPP/XSTPA. For example, the RUCA1.1 can
be transformed into the refined software safety requirement RSSR1.1 as The
acceleration signal must be not provided any time or too late or too early when
activation preventer is off, the brake pedal is not pressed, the state is stop, the
gas pedal is not pressed, the current speed is unknown and time gap is ==0.470

Table 8 shows examples of the refined software safety requirements based on
process model variables which were generated by XSTPA.

For each refined software safety requirement, an LTL formula will be gen-
erated automatically. For example, the LTL formula of the RSSR1.1 can be
expressed as:475

LTL1.1 = [] ((ActivationPreventer==off && brake==off && states==stop
&& gaspedal=off && currentspeed==unknown && timegap==0) −> ! (Con-
trolAction==accelerationsignal))

The LTL formulae will be used to verify the safe test model against the
STPA results. Table 9 shows examples of the generated LTL formulae of the480

software safety requirements.
We also identified 123 causal scenarios that lead to the 21 unsafe control

actions which are found in STPA Step 2 by analysing the control loops in the
control structures diagram in Fig. 5. Table 10 shows examples of the causal

18

Table 8: Examples of refined software safety constraints based on process model variables

RUCA ID Refined Software Safety Constraints LTL

RUCA1.1 RSSR1.1 The ACC software controller should not pro-
vide an acceleration signal when the activation
preventer is off, the state is Stop, the gas pedal
is not pressed, the brake pedal is not pressed,
the current speed is unknown and the time
gap is equal 0.

LTL1.1

RUCA1.2 RSSR1.2 The ACC software controller should not pro-
vide an acceleration signal when the activation
preventer is off, the state is stop, the gas pedal
is not pressed, the brake pedal is not pressed,
the current speed is less than desired speed
and the time gap is less than desired time.

LTL1.2

RUCA1.3 RSSR1.3 The ACC software controller should not pro-
vide an acceleration signal when the activa-
tion preventer is off, the state is Decelerate,
the gas pedal is not pressed, brake pedal is
not pressed, the current speed is greater than
the desired speed and the time gap is less than
the desired time.

LTL1.3

scenarios of the ACC stop-and-go controller. For example, a causal scenario of485

the unsafe control action UCA1.1: ACC software controller provides unintended
accelerate signal when a slowed down vehicle ahead is too close. is defined as
CS1.1: The ACC software controller receives incorrect data from radar in front
which leads to wrong estimation of time gap while a vehicle ahead is too close.

5.3. Modeling STPA Results490

After deriving the software safety requirements of the ACC stop-and-go sys-
tem, we created a Simulink/Matlab stateflow model to visualize the STPA re-
sults with a safe behavioral model (shown in Fig.6). The safe behavioral model
contains the process model variables of the ACC software controller (shown in
Fig. 5) and shows the relationship between the process model variables and495

hierarchy levels between the process model variables and its values. This model
constrains the transitions between the process model based on the STPA results.
The model contains 18 states (4 super-states and 14 sub-states) and 23 tran-
sitions. The model has different types of state decomposition: AND STATE
(with dashed line) which shows the parallel relation that allows all sub-states to500

be active and OR STATE (with solid lines) which shows the exclusive relation
that allows only one state to be active at a time.

19

Table 9: Examples of the corresponding LTL specifications of the software safety requirements

ID LTL Formulas

RSSR1.1 [](((ActivationPreventer==off) && (Brake==Notpressed)
&&(States==Stop) && (GasPedal==NotPressed) && (Cur-
rentSpeed==Unknown) && (TimeGap==0))−> !(controlAc-
tion==accelerationsignal))

RSSR1.2 [](((ActivationPreventer==off) && (Brake==Notpressed)
&&(States==Accelerate) && (GasPedal==NotPressed) &&
(CurrentSpeed¡DeisredSpeed) && (TimeGap<DesiredTime))−>
!(controlAction==accelerationsignal))

RSSR1.3 [](((ActivationPreventer==off) && (Brake==Notpressed)
&&(States==Decelerate) && (GasPedal==NotPressed)&&
(CurrentSpeed¿DeisredSpeed) && (TimeGap<DesiredTime))−>
!(controlAction==accelerationsignal))

5.4. Verifying the safe behavioral model against the STPA results

To check the correctness of the safe behavioral model which is constructed
within Simulink’s stateflow against the STPA process model and the STPA-505

generated software safety requirements, we first used the Matlab command line
to derive the XML specifications of the safe behavioral model of the ACC stop-
and-go system. The XML specifications are saved in an XML file called ACC-
StopandGo.xml. Second, we used the STPA TCGenerator tool to automatically
transform the safe behavioral model into the verification model in an SMV510

(Symbolic Model Verifier) model. The tool takes two input files: An STPA
project of the ACC system which documents the results of step 1 and the XML
specification file of the safe behavioral model. The tool will parse both files and
generate the SMV model which maps all states, transitions, and data variables
of the safe behavioral model and the LTL formulae of STPA-generated software515

safety requirements to SMV model specifications and automatically save them
to a file named ACCStopandGo.smv.

To verify the generated SMV model against the STPA software safety re-
quirements, we used the STPA verifier plug-in 9 which is an Eclipse plug-in to
verify the STPA safety requirements with model checking tools such as SPIN520

and NuSMV. As a result, all LTL formulae of the STPA-generated software
safety requirements are stratified except 5 of them are not stratified and coun-
terexamples are generated. We updated the safe behavioral model based on the
counterexample results and generated an updated SMV model. We verified the
updated SMV model against the LTL formulae. Finally, all LTL formulae were525

stratified by the updated SMV model.

9http://www.xstampp.de/STPAVerifier.html

20

http://www.xstampp.de/STPAVerifier.html

Table 10: Examples of the causal factors for the ACC stop-and-go controller

Component Causal Factor Hazard
Links

Missing input: The data of one sensor: brake
pedal/clutch pedal/ gear stick/ Activation
preventer/ current speed is issued by the ACC
software controller, but it does not receive by
the actuators.

[H-1][H-3][H-
4]

ACC Stop-
Go System

Incorrect feedback: The ACC controller re-
ceives incorrect data from the sensor brake
pedal/clutch pedal/ gear stick/ Activation
preventer/ speed

[H-1][H-6]

(Controller) Missing input: The ACC controller does not
receive data of the status of the driver’s seat
belt.

[H-1][H-6][H-
2]

Inadequate Control Algorithm: The ACC con-
troller issues the acceleration signal instead
of the deceleration signal when the vehicle in
front is too close in the lane.

[H-2][H-6][H-
1]

5.5. Generating safety-based test cases

To automatically generate safety-based test cases, we use the safe behav-
ioral model which is constructed from the STPA safety analysis results and
validated the STPA-generated safety requirement as input to STPA TCGen-530

erator. STPA TCGenerator parses Simulink’s stateflow of the safe behavioral
model recursively by considering Simulink’s statechart notations (super state
decompositions AND STATE and OR STATE) to automatically transform the
statechart notations into the extended finite state machine notations to generate
the safe test model. As a result, the safe test model contains 14 states (after535

removing the super states) and 56 transitions (after maintaining the transitions
of super states by considering the state decomposition type). STPA TCGenera-
tor automatically provides the traceability matrix between the STPA-generated
software safety requirements and the safe test model. It also shows the input
variables of the safe test model (e.g. currentspeed, timeOut, timegap, etc.) with540

their data type, initial, minimum, maximum values to allow the user to set the
test input data and the test configuration.

We set the STPA TCGenerator with the test configurations as follows (shown
in Fig. 7): the number of test steps to 20; the test algorithm is the random
walk with depth-first and breadth-first search; the test coverage criteria are545

the state-based, transition-based and STPA software safety requirements test
coverage criteria; and the stop condition is STPA software safety requirements.
We also set the input value for each test data variable: desiredspeed (30–210

21

Figure 6: The safe behavioral model of the ACC stop-and-go software controller

kmh), deisredTimegap (2,4 seconds), Timegap (0–10 seconds), currentspeed(0–
210 kmh), power (true), brakepedal (false–true), gaspedal (false–true) and Ac-550

tivation preventer (false–true).
As a result, we generated 40 test suites with a total of 230 test cases within

100.0% state coverage, 82.59% transition coverage, and 100 % STPA safety re-
quirement coverage. 180 out of the 230 test cases are safety-based test cases
which have a relation with one or more STPA safety requirements in the trace-555

ability matrix. The test cases are automatically saved in a CSV file.

5.6. Execution of the safety-based test cases

Based on the available resources (time and hardware) from our industrial
partner, we were allowed to execute only 20 test cases. We selected 20 test
cases out of 180 which are more relevant for the critical control actions of the560

ACC software controller and the STPA-generated software safety requirements.
We executed the selected test cases by driving the car on the highway. The
safety analyst and system tester conducted the execution of the test cases on
the car model G11 series 7. They drove first from the university of Stuttgart
to the highway because they could not perform the test in the city due to the565

safety reasons and the BMW car model was under test. The test was performed
in a realistic environment on a German highway under cloudy weather. Table
11 shows the examples of the selected safety-based test cases with the execution
results. As a result, the ACC stop and go system succeed with 18 out of 20
safety-based test cases. One test scenario was difficult to test. The test scenario570

22

Figure 7: The test configuration view in the STPA TCGenerator

was to test the stop function when there is a traffic jam and the vehicle in
front moved slowly. As a requirement, the ACC stop-and-go will automatically
restart the engine and move off the vehicle, if the stop lasts from 0 to 3 seconds,
otherwise it will automatically stop the vehicle until the vehicle in front starts
moving again. For this situation, we used a timer to calculate the time of the575

stop. But it was difficult to measure the stop time of the vehicle in front within
1 or 2 seconds and move again. In another test scenario, we recognized that if
the ACC stop-and-go is in the deceleration state (currentspeed > desired speed
and there is a vehicle is in front) and the driver pressed ACC button, then the
vehicle speed is immediately decelerated too slowly to avoid a collision.580

5.7. Discussion

We summarised all results of the case study presented in this paper (shown
in Tab. 12). Based on the results of the case study, we answered our research
questions as follows: For research question RQ-1, we identified 6 system-level
accidents to which the ACC software can contribute to and 9 system-level haz-585

ards. We also identified 21 unsafe control actions. Furthermore, we identified
86 refined unsafe scenarios that describe different hazardous events in which the
ACC software transits the ACC system into hazardous behaviors. We automat-
ically identified 86 refined software safety requirements based on the process
model variables of the control actions of the ACC software controller: acceler-590

ation and deceleration signals. We also identified 35 accident causes that the
ACC software controller can contribute to. The evaluation of STPA SwISs sub-
stantiates that: 1) the STPA-based analysis approach helps us to identify the
hazardous situations of the ACC software controller at the system level and
develop detailed software safety requirements; 2) and it help us to transform595

the informal software safety requirements into formal specifications in LTL to
be used for the verification purpose.

23

Table 11: Examples of the selected test cases and the test execution results

#No. #Precondition #Post-condition Road status #Test
Result

1 currentspeed=100
DesiredSpeed=83
DesiredTimeGap=2.4
TimeGap>=2.4
Gaspedal=true
Brakestatus=false
Power=true
ACC Button=false
Resume Cancel=false
ActivatPreven.=false
currentstate=Accelerate

controlAction=
accelerationsignal
State= Accelerate

No vehicle in
the lane

Success

2 currentspeed=0
DesiredSpeed=70
DesiredTimeGap=2.4
TimeGap=0.0
Gaspedal=false
Brakestatus=true
Power=true
ACC Button=false
Resume Cancel=false
ActivatPreven.=false
currentstate=stop
timeOut=1.0

controlAction=
none, State=Stop

A vehicle in
front in the
lane

incomplete

5.8. Answer the Research Questions

To investigate research question RQ-2, the results reveal that we could gen-
erate 180 safety-based test cases from the results of research question RQ-1. All600

software safety requirements which are identified in step 1 are covered in at least
one safety-test case. We obtained 100% for the Software Safety Requirements
(SSR) coverage in the generated safety-based test case. That means we can
test the ACC system against each software safety requirements with different
test cases to measure the safety of the whole system. Deriving test cases di-605

rectly from the safety analysis results allows us to focus the testing effort to
test the critical risky situations. We were able only to execute 20 out of 180
safety-based test cases, however, we could recognize different situations of ACC
software behaviors.

24

Table 12: A summary of the case study results

ID Item Total. No

1 System Level Accidents 6

2 System level Hazards 9

3 Unsafe control actions 21

4 Corresponding software safety constraints 21

5 Refined unsafe control actions 86

6 Refined software safety constraints 86

7 Causal factors 35

8 Generated LTL formuale 86

9 Generated test cases 230

10 Safety-based test cases 180

6. CONCLUSIONS AND FUTURE WORK610

In this paper, we conducted an industrial case study on evaluation STPA
SwISs approach. STPA SwISs combines the safety analysis activities based on
STPA safety analysis with the verification and testing activities. We applied the
STPA-based analysis approach to the software controller of the BMW Active
Cruise Control System (ACC) at the BMW Group in Munich. The first main615

contribution is to investigate how to identify the hazardous control actions of the
ACC software controller and develop the detailed software safety requirements.
The second contribution is to show how to transform the STPA-generated soft-
ware safety requirements into the formal specifications in LTL to be used in the
verification activities. The third contribution is to generate the safety-based620

test cases directly from the results of the safety analysis to test the ACC system
against the STPA-generated software safety requirements. The results showed
that the practical effectiveness, scalability and applicability of the approach.

As a limitation, we could only execute a few generated safety-based test
cases. Furthermore, we were not able to test some of the test case scenarios to625

recognize some of the unsafe behaviors such as a bicycle moving in front of the
ACC vehicle in the lane or a small stationary obstacle in the lane (e.g. stone).

As a future work, we plan to evaluate the results of this case study with the
BMW experts by gathering from them quantitative and qualitative data.

Acknowledgment630

The authors would like to express gratitude to Mr. Joham Achatz, ACC
system architecture expert at BMW, for his very careful review of the control

25

structure diagram and process model, and for the comments and suggestions
that ensued.

The authors also would like to thank Kornelia Kuhle, University of Stuttgart,635

for her feedback on the text.

References

[1] M. Broy, Challenges in automotive software engineering, in: Proceedings
of the 28th International Conference on Software Engineering, ICSE ’06,
ACM, New York, NY, USA, 2006, pp. 33–42.640

[2] N. Leveson, Engineering a Safer World: Systems Thinking Applied to
Safety, Engineering Systems, MIT Press, 2011.

[3] A. Abdulkhaleq, S. Wagner, N. Leveson, A comprehensive safety engineer-
ing approach for software-intensive systems based on STPA, 2015 European
STAMP Workshop at Amsterdam University of Applied Sciences.645

[4] A. Abdulkhaleq, S. Wagner, XSTAMPP: An eXtensible STAMP platform
as tool support for safety engineering, 2015 STAMP Conference, MIT, 2015.

[5] A. Pnueli, The temporal logic of programs, in: Proceedings of the 18th
Annual Symposium on Foundations of Computer Science, SFCS ’77, IEEE
Computer Society, Washington, DC, USA, 1977, pp. 46–57.650

[6] K. L. McMillan, Symbolic Model Checking, Kluwer Academic Publishers,
Norwell, MA, USA, 1993.

[7] A. Cimatti, E. M. Clarke, F. Giunchiglia, M. Roveri, NUSMV: A new
symbolic model checker, STTT 2 (4) (2000) 410–425.

[8] J. Thomas, F. Lemos, N. Leveson, Evaluating the safety of digital instru-655

mentation and control systems in nuclear power plants, MIT Technical
Report.

[9] W. Vesely, F. Goldberg, N. Roberts, D. Haasl, Fault tree handbook
(NUREG-0492), U.S. Nuclear Regulatory Agency.

[10] FMECA, Design analysis procedure for Failure Modes, Effects and Criti-660

cality Analysis (FMECA), Society for Automotive Engineers.

[11] R. S. Martnez, System theoretic process analysis of electric power steering
for automotive applications, Master’s thesis, MIT, U.S.A (2015).

[12] J. Thomas, Extending and automating a systems-theoretic hazard analysis
for requirements generation and analysis, Ph.D. thesis, MIT (4 2013).665

[13] A. Abdulkhaleq, S. Wagner, Experiences with applying stpa to software-
intensive systems in the automotive domain, 2013 STAMP Conference at
MIT, Boston, USA.

26

[14] S. Wagner, B. Schatz, S. Puchner, P. Kock, A case study on safety cases
in the automotive domain: Modules, patterns, and models, in: 2010 IEEE670

21st International Symposium on Software Reliability Engineering, 2010,
pp. 269–278.

[15] J. Thomas, Extending and automating a systems-theoretic hazard analysis
for requirements generation and analysis, SANDIA National Laboratories
report 2012-4080.675

[16] A. Abdulkhaleq, S. Wagner, Integrated Safety Analysis Using Systems-
Theoretic Process Analysis and Software Model Checking, Computer
Safety, Reliability, and Security: 34th International Conference, Springer
International Publishing, Cham, 2015, pp. 121–134.

[17] D. Kuhn, R. Kacker, Y. Lei, Introduction to Combinatorial Testing, Chap-680

man & Hall/CRC Innovations in Software Engineering and Software De-
velopment Series, Taylor & Francis, 2013.

[18] A. Abdulkhaleq, S. Wagner, A Software Safety Verification Method Based
on System-Theoretic Process Analysis, Computer Safety, Reliability, and
Security: SAFECOMP 2014 Workshops, Springer International Publishing,685

Cham, 2014, pp. 401–412.

[19] G. J. Holzmann, The model checker spin, IEEE Trans. Softw. Eng. 23 (5)
(1997) 279–295.

[20] P. Runeson, M. Höst, Guidelines for conducting and reporting case study
research in software engineering, Vol. 14, Springer US, 2009, pp. 131–164.690

[21] A. Cimatti, E. M. Clarke, F. Giunchiglia, M. Roveri, Nusmv: A new sym-
bolic model verifier, in: Proceedings of the 11th International Conference
on Computer Aided Verification, CAV ’99, Springer-Verlag, London, UK,
UK, 1999, pp. 495–499.

27

	Introduction
	Problem Statement
	Research Objectives
	Contribution
	Context
	Outline
	Terminology

	Background
	STPA Safety Analysis
	STPA SwISs: A Comprehensive Safety Engineering Approach for Software

	Related Work
	Case Study Design
	Study Goal and Research Questions
	Case and Subjects Selection
	Data Collection Procedures
	Analysis Procedure
	Measurements
	Validity Procedure

	Results
	Case Study Description
	Deriving software safety requirements at the system level
	Modeling STPA Results
	Verifying the safe behavioral model against the STPA results
	Generating safety-based test cases
	Execution of the safety-based test cases
	Discussion
	Answer the Research Questions

	CONCLUSIONS AND FUTURE WORK

