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Abstract

Following the invention of computers, it was always a dream to obtain translations

automatically. If we give a machine a sentence it should return a sentence in an-

other language expressing the same meaning. In the subfield of statistical machine

translation (SMT), this translation is achieved with the help of statistical models.

Those models use large text collections to automatically learn basic translation units

that model the translation from a source sentence into a target sentence. The basic

translation units can be single words or phrases consisting of multiple words. Other

approaches, called syntax-based SMT, use rules of some formal grammar as their

basic translation units.

Syntax-based SMT systems easily allow the use of linguistic annotations. Rules

can contain nonterminal symbols which can encode linguistic annotations. Further-

more, one can decide whether such annotations are used for both the source and

target language, for one language only, or if those annotations are excluded all-

together. The integration of linguistic annotations yielded mixed results. In some

cases translation quality significantly improves whereas in others it seems to hurt

coverage and thus overall translation quality. While the use of annotations for both

languages generally did not result in good translation quality, the use for one lan-

guage only showed improvements. However, the best results are often obtained by

a syntax-based SMT system that excludes all linguistic annotations.

The underlying formal grammars vastly vary with respect to their expressive

power. Synchronous context-free grammars are widely used but more powerful for-
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malisms like synchronous tree substitution grammars or local multi bottom-up tree

transducers (`MBOT) have also been proposed for translation. In this thesis, we

introduce a translation model that is based on `MBOTs. Our work focuses on au-

tomatically learning the basic translations units for `MBOTs with varying linguistic

annotations. We implemented an already existing algorithm that extracts the mini-

mally required basic translation units for an `MBOT model with linguistic annota-

tions for both the source and the target language. Furthermore, we present three

implementations of algorithms which extract more than the minimally required ba-

sic translation units. These algorithms are designed for `MBOT models with (1) lin-

guistic annotations on both sides, (2) linguistic annotations for the target language,

and (3) no linguistic annotations at all.

For all `MBOT models, we present an evaluation in terms of translation quality.

In addition, we conduct various analyses that illuminate certain positive aspects of

an `MBOT system and we explain the impact of these aspects to SMT.
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Deutsche Zusammenfassung

Auf die Erfindung des Computers folgte der Traum, Übersetzungen automatisch zu

erhalten. Wenn man einer Maschine einen Satz gibt, soll sie einen Satz in einer

anderen Sprache ausgeben, der weiterhin die ursprüngliche Bedeutung hat. In

der Teildisziplin der statistischen maschinellen Übersetzung (SMÜ) wird die Über-

setzung mit Hilfe statistischer Modelle erreicht. Diese Modelle benutzen große

Textsammlungen, um automatisch die Übersetzungseinheiten zu lernen, die die

Übersetzung eines Quellsatzes in einen Zielsatz modellieren. Die Übersetzungs-

einheiten können einzelne Wörter sein oder Phrasen, die aus mehreren Wörtern

bestehen. Andere Ansätze, syntax-basierte SMÜ genannt, benutzen Regeln einer

formalen Grammatik als ihre Übersetzungseinheiten.

Syntax-basierte SMÜ-Systeme erlauben auf einfache Weise das Benutzen von lin-

guistischen Annotationen. Regeln können Nichtterminalsymbole enthalten, welche

linguistische Annotationen kodieren können. Linguistische Annotationen können

wahlweise für die Quell- und Zielsprache verwendet werden oder nur für eine der

beiden Sprachen. Es ist auch möglich, gar keine linguistischen Annotationen zu

benutzen. Das Einbinden linguistischer Annotationen führte zu gemischten Ergeb-

nissen. In manchen Fällen wurde die Übersetzungsqualität erheblich verbessert,

während in anderen Fällen eine Verschlechterung beobachtet wurde. Das Einbinden

von linguistischen Annotationen für Quell- und Zielsprache zeigt generell keine

gute Übersetzungsqualität, für das Einbinden für nur eine Sprache hingegen sind

Verbesserungen bestätigt worden. Die besten Ergebnisse liefern jedoch meistens

syntax-basierte SMÜ-Systeme ohne linguistische Annotationen.
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Die zugrundeliegenden formalen Grammatiken variieren stark im Hinblick auf

ihre Mächtigkeit. Weitestgehend werden synchrone kontext-freie Grammatiken ver-

wendet, aber auch mächtigere Formalismen wie Baumsubstitutionsgrammatiken

oder lokale, aufsteigende Mehrfachbaumübersetzer (`MBOT) wurden für die

Übersetzung vorgeschlagen. In dieser Arbeit stellen wir ein Übersetzungsmodell

basierend auf `MBOTs vor. Unsere Arbeit konzentriert sich auf das automatische

Lernen der Übersetzungseinheiten für `MBOTs mit variierenden linguistischen An-

notationen. Wir haben einen zuvor vorgeschlagenen Algorithmus implementiert,

der das Minimum an benötigten Übersetzungseinheiten für ein `MBOT-Modell mit

linguistischen Annotationen für die Quell- und Zielsprache extrahiert. Desweiteren

präsentieren wir drei Algorithmen, welche in der Lage sind, sinnvolle zusätzliche

Übersetzungseinheiten zu extrahieren. Diese Algorithmen sind auf `MBOT-Modelle

mit (1) linguistischen Annotationen für Quell- und Zielsprache, (2) linguistischen

Annotationen auf der Zielsprache und (3) keinerlei linguistischen Annotationen

zugeschnitten.

Für jedes unserer `MBOT-Systeme präsentieren wir eine Auswertung bezüglich

der Übersetzungsqualität. Zusätzlich stellen wir verschiedene Analysen vor, die be-

stimmte positive Aspekte eines `MBOT-Modells beleuchten und aufzeigen, wie SMÜ

von diesen Aspekten profitieren kann.
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Chapter 1

Introduction

1.1 Statistical Machine Translation

Following the invention of computers, it was always a dream to obtain transla-

tions automatically. If we give a machine a sentence it should return a sentence

in another language expressing the same meaning. Traditionally, translations are

performed by professionals who need to be well-trained for this task. But with

the advent of computers, people started to focus on machine translation (MT), i.e.

automatically obtained translations. Initially, the computer was only supposed to

execute programmed rules to perform translation, which required deep knowledge

of both languages and the crafting of hand-written rules.

Over the years, the processing power of computers significantly increased and

large text collections in multiple languages became available. Furthermore, some

of those texts were available with the same content for different language pairs,

nowadays called a parallel corpus. It contains two texts where text E consists of

the sentences from a source language and the text F consists of the sentences of a

target language. A parallel corpus is usually sentence-aligned, i.e. the i-th sentence

of E is a translation of the i-th sentence of F and vice versa. The sentences shown

in Figure 1.1 (ignoring the splines connecting the words for the moment) form an
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Introduction

example for such a sentence pair 〈e, f〉 from a parallel corpus. This gave rise to

the subfield of statistical MT (SMT) with the aim of achieving machine translation

via the application of statistical models. Usually, the process is broken down to the

sentence level, so we aim for a sentence-by-sentence translation. We start with the

acquisition of basic translation units which breaks down the process even further.

Over time, various models have been proposed that differ with respect to their basic

translation units. The first SMT systems were the word-based models of Brown et al.

(1990, 1993). Their basic translation units are words and the outputs are word-by-

word translations. The underlying algorithm learns from the sentence pairs 〈e, f〉 of

the parallel corpus which words in e and f are most likely translations of each other.

We display an example translation in Figure 1.1. The links between the words indi-

cate that, for example, ‘concludes’ generated ‘sind’ and ‘beendet’, and ‘explanations’

translates into ‘Erklärungen’.

that concludes the explanations of vote

damit sind die Erklärungen zu den Abstimmungen beendet

Figure 1.1: An example for an English-to-German word-based translation.

From another point of view, we can say that a word-based model generates

through its translation step an alignment between words. Thus, if we translate a

sentence pair 〈e, f〉 of a parallel corpus, we obtain an additional word-alignment A.

Hence we obtain a word-aligned parallel corpus with sentence pairs 〈e, A, f〉. In fact,

the translation shown in Figure 1.1 constitutes a word-aligned sentence pair. The

phrase-based translation systems (Koehn et al., 2003) are based on word-aligned

sentence pairs. In these systems, the basic translation units are phrases. Those

phrases can consist of a (not necessarily linguistic) sequence of words. Further-

more, those systems are enhanced with distortion and reordering models which are

useful for local reorderings. Phrase-based systems often yield translations that are

more fluent when compared to those of word-based systems.
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1.1 Statistical Machine Translation

president václav klaus has again commented on the problem of global warming

das problem der globalen erwärmung hat präsident václav klaus wieder kommentiert

Figure 1.2: An example for a long distance reordering.

Certain language pairs mandate rather complicated restructuring of the sentence

during translation. Consider the sentences shown in Figure 1.2 where large parts

of the English sentence need to be reordered in the German sentence. For exam-

ple, the German counterpart of ‘on the problem of global warming’ is realized at

the beginning of the German sentence. Another interesting point is the part ‘has

again commented’. The German translation is ‘hat wieder kommentiert’ but the

German grammar requires to first realize ‘hat’, then the translation of ‘president vá-

clav klaus’, and finally, ‘wieder kommentiert’. But reorderings over a long distance

are hard to obtain for phrase-based systems. Thus, researchers started focusing on

formalisms that can model these kinds of reorderings in a more natural way. This

resulted in syntax-based models, where the translation is modeled recursively. Here,

the basic translation units are called rules. Rules are based on some grammar for-

malism, and the formalism allows to encode long distance reorderings inside these

rules. Quite a lot of grammar formalisms with varying expressive power have been

proposed. One of the most successful approaches is the hierarchical phrase-based

system (Chiang, 2007), which is formally based on synchronous context-free gram-

mars (SCFG) (Aho and Ullman, 1969) using the simple nonterminal X to mark

places, where rules can be applied recursively. We illustrate some SCFG rules in

Figure 1.3. Rule r1 models the translation of ‘concludes’ into ‘sind [. . . ] beendet’ by

letting the sequence [. . . ] be filled with some other material. A translation given

these rules can be obtained by starting with r1 in which we synchronously replace

X1 with r2. Next, we can synchronously substitute X2 with r3.

Other authors suggest to include linguistic annotations for the source and the

15
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r1 :
X

X1 concludes X2

→
X

X1 sind X2 beendet

r2 :
X

that
→

X

damit

r3 :
X

the explanations of vote
→

X

die Erklärungen zu den Abstimmungen

Figure 1.3: Some example SCFG rules.

target sentences which results in tree-to-tree models. These models require a con-

stituent parser being applied to both languages. A constituency parser generates a

syntax tree for a sentence. It starts with the identification of the part-of-speech tag

for each word and then recursively builds syntactic categories over certain words

until the whole sentence is annotated. We show an example of a word-aligned

sentence pair with English and German parse trees in Figure 1.4. Each word is an-

notated by its part-of-speech tag (‘concludes’ is an ‘VBZ’, ‘vote’ is an ‘NN’) and over

those the syntactic categories are spanned, like ‘DT NNS’ is a nominal phrase ‘NP’

or ‘APPR ART NN’ constitutes a prepositional phrase ‘PP’. The complete sentence is

assigned the category ‘S’. The syntactic categories (also called labels) are then used

as the nonterminals inside the SCFG rules instead of the simple nonterminal X. But

this did not lead to any improvements, contrary it showed that those systems are

too restrictive to obtain translations of good quality (Lavie et al., 2008; Ambati and

Lavie, 2008).

The restrictions of SCFG-based tree-to-tree models can be weakened by using

syntactic annotations only on one side of the rules (string-to-tree models and tree-to-

string models). Another possibility is to use a more powerful formalism than SCFG.

Most formalisms (including SCFGs) allow only for continuous translation. A formal-

ism that models discontinuous translation is the synchronous tree sequence substi-

tuition grammar (STSSG) of Zhang et al. (2008) and Sun et al. (2009) that allows
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1.1 Statistical Machine Translation

S

NP

DT

that

VP

VBZ

concludes

NP

NP

DT

the

NNS

explanations

PP

IN

of

NN

vote

S

PROAV

damit

VAFIN

sind

NP

ART

die

NN

erklärungen

VP

PP

APPR

zu

ART

den

NN

abstimmungen

VVPP

beendet

Figure 1.4: Sentence pair with both-sided parses and word-alignment.

( VBZ

concludes
,

PP

PP

)
→
( VAFIN

sind
,

VP

PP VVPP

beendet

)

Figure 1.5: An example STSSG rule.

a sequence of trees. We show an example rule in Figure 1.5, where we have a se-

quence of two trees for both the English side and the German side of the rule. The

most important observation is that this model allows for discontinuities by having a

gap between the trees. Comparing the English tree sequence with the English parse

of Figure 1.4 it is obvious that one part of the tree – (NP (DT the) (NNS explana-

tions)) – is not given in this rule. Accordingly, the German counterpart – (PP (APPR

zu) (ART den) (NN Abstimmungen)) – is also not given in this rule. By allowing

discontinuities, the rules become more flexible and can capture certain linguistic

phenomena more elegantly. For a continuous translation system, a similar transla-

tion can only be obtained with a large and specific rule. Contrary, the STSSG rule

of Figure 1.5 can achieve this translation with a smaller rule which furthermore

allows for a flexible application as it is not in a specific context.
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Introduction

This thesis contributes to the field of syntax-based statistical machine transla-

tion. The underlying formalism is the shallow local multi bottom-up tree transducer

(`MBOT) of Braune et al. (2013) which in turn is a variant of the local multi

bottom-up tree transducer of Maletti (2011). An `MBOT offers a middle ground

between SCFGs and STSSGs. On the one hand, it allows only shallow rules similar

to SCFG rules and in contrast to STSSG rules. But on the other hand, it offers dis-

continuities by allowing a sequence of trees inside its rules for the target language

side, which can be seen as a restricted version of STSSG rules and an extension

of SCFG rules. This work mainly focuses on the acquisition of the basic translation

units for `MBOTs in different settings.

Tree-to-Tree `MBOT models We implemented the rule extraction algorithm

of Maletti (2011) that obtains a set of minimal tree-to-tree `MBOT rules. We evalu-

ated our translation system on a English-to-German translation task gaining signif-

icant improvements over a tree-to-tree SCFG baseline.

It is known that minimal rules are in general not well suited for machine trans-

lation. Hence, we presented and implemented the first parameterized non-minimal

tree-to-tree `MBOT rule extraction algorithm. An evaluation on three different trans-

lation tasks shows that the non-minimal tree-to-tree `MBOT systems outperform

the minimal tree-to-tree `MBOT system in terms of translation quality, but they do

not improve over a tree-to-tree SCFG system.

String-to-Tree `MBOT models Our evaluation of the tree-to-tree `MBOT systems

confirms that tree-to-tree models are too restrictive in comparison to models includ-

ing no linguistic annotation. As string-to-tree models yield better translation quality

in general, we presented and implemented a non-minimal string-to-tree `MBOT rule

extraction algorithm. Our evaluation on three translation tasks shows significant

improvements over the respective string-to-tree SCFG baselines.

Having obtained such significant improvements, we wanted to evaluate another
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1.1 Statistical Machine Translation

two language tasks. But for those target languages (Russian and Polish), only

dependency parsers are available which might return non-projective dependency

parse trees. Consequently, we apply a (non-projective) dependency parser on our

target languages and applied a lifting technique that not only projectivizes the non-

projective parses but also documents the lifts in the labels. Next, we transformed the

dependency tree structures into constituent-like tree structures. Then we were able

to obtain our string-to-tree `MBOT systems. Our evaluation confirms that transla-

tion systems based on `MBOTs are quite suitable for such translation tasks.

String-to-String `MBOT models The last logical step is to move to a setting sim-

ilar to the hierarchical phrase-based system. We also presented and implemented a

parameterized rule extraction algorithm to obtain a set of (non-minimal) string-to-

string `MBOT rules. We evaluated our translation system on two translation tasks

and showed that our `MBOT achieves comparable results to the hierarchical SCFG

baseline system.

Analysis of Discontinuity For all three settings and all translations tasks, we will

present an analysis of the rules used in the evaluations. We will explain which

kinds of discontinuous rules exist and how the use of those rules changes across the

different settings. Furthermore, we try to estimate their impact on the translation

quality.

Large-Scale Experiments without Restrictions All our performed experiments

can be considered as large-scale. The sizes of our used parallel corpora are suitable

for well-known shared tasks like WMT. We do not heavily restrict the number of

words per sentence of our parallel corpora, and we do not restrict the test sets

at all. Furthermore, to the best of our knowledge, this is the first discontinuous

translation system which does not restrict the number of discontinuities per rule.
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Kaeshammer (2015) limits the parallel corpus and the test set to 30 words per

sentence. Zhang et al. (2008) and Sun et al. (2009) use a very small parallel corpus

and additionally limit the test set to 50 characters per sentence. We will explain

their work more thoroughly in Section 2.2.

1.2 Outline of the Thesis

In Chapter 2 we start with the introduction of the underlying mechanisms of statis-

tical machine translation. We will explain which data we need and we will give

a proper introduction to synchronous context-free grammars. Furthermore, we

present the three major processes of statistical machine translation — training, tun-

ing, and evaluation. In addition, we will introduce necessary components like the

language model and the decoder, and explain the traditional syntax-based transla-

tion model. We conclude this chapter by giving an overview of related work.

We will present the theoretical background of this thesis, namely shallow local

multi bottom-up transducers (`MBOTs) in Chapter 3. As these kinds of transducers

are in general build on trees, we will give a formal definition for such structures.

Next, we will introduce the already existing decoder for `MBOTs and present the

translation model for this system. Furthermore, we will repeat the formal rule ex-

traction algorithm for such transducers and show which kinds of rules are extracted.

This work presents the first implementation of the algorithm and, hence, its first

evaluation. Our experiment shows a significant improvement over a baseline sys-

tem. Additionally, we will analyze the translations to prove that `MBOT rules are

useful.

In Chapter 4 we will first motivate our new approach on `MBOTs. We will still

be exploring the tree-to-tree setting but with non-minimal rules. We will present

the first parameterized rule extraction for non-minimal tree-to-tree rules and de-

pict a pseudo-algorithm. Naturally, we also evaluate this setting on three different

translation tasks. More precisely, we evaluate against the minimal `MBOT of Chap-
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ter 3 as well as against a baseline system. As before, we will give an analysis of the

translations to provide insight of the usefulness of such non-minimal rules.

Next, we will explore the `MBOT in the string-to-tree setting in Chapter 5. This

new setting makes it necessary to adapt our theoretical model, which we will il-

lustrate first. We will thoroughly explain the rule extraction algorithm. Of course,

we evaluate this setting on three translation tasks and will present our findings.

Again, we analyze the translations to show how much the system relies on our

`MBOT rules. Furthermore, we will try our string-to-tree `MBOT on two additional

translation tasks. Our additional target languages are Eastern European languages

(Russian and Polish). For these languages, only dependency parsers are available.

But the parse trees of dependency parsers are in general not suited for our transla-

tion system that requires constituency parse trees. Further complications can occur

from non-projective parse trees which do not allow for a hierarchical tree represen-

tation. Hence, we present our approach on how to obtain projective dependency

parse trees and then further convert them into constituent-like tree representations.

The evaluation shows that the string-to-tree `MBOT is much more suited for these

translation tasks than a continuous translation system.

In Chapter 6 we will present our translation system based on string-to-

string `MBOTs. We start by presenting the required adaption of our theoretical

model for this setting. Next, we show how to obtain a set of string-to-string `MBOT

rules by explaining the underlying rule extraction algorithm. We will evaluate our

system against a baseline system on two translation tasks and analyze the transla-

tions with respect to the usefulness of discontinuous rules.

We will further analyze our `MBOT systems in the various settings in Chapter 7.

First, we show how many sentential forms were obtained, and we try to estimate

the use of discontinuous rules as truly discontinuous. We conclude this chapter with

an qualitative analysis of the translations for which we gained significant improve-

ments.

Finally, in Chapter 8 we will conclude this thesis by summarizing the contribu-
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tions as well as repeating our conclusions from the analysis of the use of discon-

tinuous rules. Furthermore, we give an overview of different approaches to explore

and possibly improve the `MBOT translation system in future work.
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Chapter 2

Background

In this chapter, we present the three major steps required to obtain statistical trans-

lation systems — training, tuning, and evaluation. We start with the formal intro-

duction to synchronous grammars and then show how to obtain a set of rules for the

different syntax-based models. Furthermore, we introduce important components

like the language model and the decoder. Finally, we show the standard features for

syntax-based translation systems and describe the tuning and evaluation process.

We conclude this chapter with an overview of related work.

2.1 Syntax-based Statistical Machine Translation

Synchronous Context-free Grammars Aho and Ullman (1969) present the

earliest synchronous grammars nowadays called synchronous context-free gram-

mars (SCFG). We slightly adjust the original definition. Recall from the intro-

duction that we use a parallel corpus with sentences from two different lan-

guages. Furthermore, we want to use the syntactic annotations from a parser.

The names (labels) of the syntactic categories differ from language to language,

so we distinguish between source nonterminals (the source language labels) and

target nonterminals (the target language labels). Thus, our SCFG have the form
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G = (Vs, Vt,Σ,∆, R, Ss, St), where

• Vs is a finite set of source nonterminals,

• Vt is a finite set of target nonterminals,

• Σ is a finite set of source symbols (lexical elements of the source language),

• ∆ is a finite set of target symbols (lexical elements of the target language),

• R is a finite set of rules,

• Ss ∈ Vs is the source start nonterminal, and

• St ∈ Vt is the target start nonterminal.

A sentential form of G is a triple (α, β,Π) where α ∈ (Vs ∪ Σ)∗, β ∈ (Vt ∪ ∆)∗,

and Π is a permutation on nonterminal occurrences in α and β such that the i-

th nonterminal occurrence in α is linked to the Π(i)-th nonterminal occurrence

in β. A rule is an object (As, At)→ (α, β,Π) where As and At are source and target

nonterminals, respectively, and (α, β,Π) is a sentential form.

Given a set of rules R, the rewrite relation ⇒ is defined on sentential forms.

Suppose that (α1, β1,Π1) is a sentential form of G, in which As is the i-th nonter-

minal occurrence in α1 and At is the Π1(i)-th nonterminal occurrence in β1, and

r = (As, At) → (γ, δ,Π) is a rule of R, then a combined sentential form (α2, β2,Π2)

can be constructed by

• replacing the i-th nonterminal occurrence in α1 by γ to obtain α2,

• replacing the Π(i)-th nonterminal occurrence in β1 by δ to obtain β2, and

• defining Π2 as follows.

If γ has m nonterminal occurrences with m ≥ 0, then Π2 is defined by:

∀j < i : Π2(j) =

Π1(j) if Π1(j) < Π1(i)

Π1(j) +m− 1 otherwise
(2.1)

∀j > i : Π2(j +m− 1) =

Π1(j) if Π1(j) < Π1(i)

Π1(j) +m− 1 otherwise
(2.2)
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2.1 Syntax-based Statistical Machine Translation

∀d with 1 ≤ d ≤ m : Π2(i+ d− 1) = Π1(i) + Π(d)− 1 (2.3)

We also write (α1, β1,Π1) ⇒
r

(α2, β2,Π2). Equations 2.1 and 2.2 define the new

permutation for nonterminals that were present in the sentential form and Equa-

tion 2.3 defines the permutation of the nonterminals present in the rule. A deriva-

tion is obtained by recursively rewriting the initial sentential form (Ss, St, [1]) with

rules of G. When all nonterminals are replaced, a final sentential form (σ, δ, ∅) is

obtained, which contains a string pair σ, δ where σ ∈ Σ∗ and δ ∈ ∆∗.

It is obvious that a SCFG can model translation. Let us illustrate a SCFG by an

example with the following rules:

r1 : (S, TOP) → (DT VP, PDS VP, [1,2])

r2 : (VP, VP) → (VBZ AP, VAFIN ADJP, [1,2])

r3 : (AP, ADJP) → (JJ RB, ADV ADJA, [2,1])

r4 : (DT, PDS) → (That, Das)

r5 : (VBZ, VAFIN)→ (is, ist)

r6 : (JJ, ADJA) → (true, wahr)

r7 : (RB, ADV) → (actually, tatsächlich)

The grammar shows that the same nonterminal ‘VP’ is used for verbal phrases in

both languages but, for example, an adjective phrase is called ‘AP’ in English and

‘ADJP’ in German. We start a derivation for the grammar given above with (S, TOP,

[1]) and obtain the following derivation:
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(S, TOP, [1])

D1 : ⇒
r1

(DT VP, PDS VP, [1, 2])

D2 : ⇒
r4

(That VP, Das VP, [1])

D3 : ⇒
r2

(That VBZ AP, Das VAFIN ADJP, [1, 2])

D4 : ⇒
r3

(That VBZ JJ RB, Das VAFIN ADV ADJA, [1, 3, 2])

D5 : ⇒
r5

(That is JJ RB, Das ist ADV ADJA, [2, 1])

D6 : ⇒
r6

(That is true RB, Das ist ADV wahr, [1])

D7 : ⇒
r7

(That is true actually, Das ist tatsächlich wahr)

As illustration, we show how to compute the new permutation Π4 for the com-

bined sentential form obtained in derivation step D4. The nonterminal ‘VBZ’ in

the sentential form D3 with permutation Π3 is not replaced and we compute its

new permutation by Equation (2.1) because it occurs before the replaced nonter-

minal. Hence, Π4(1) = Π3(1) = 1 because Π3(1) = 1 < Π3(2) = 2. To compute

the permutation for the nonterminals present in rule r3 with permutation Π, we

use Equation (2.3). For the nonterminal ‘JJ’ we obtain Π4(2) = Π4(2 + 1 − 1) =

Π3(2)+Π(1)−1 = 2+2−1 = 3 and the permutation for ‘RB’ is Π4(3) = Π4(2+2−1) =

Π3(2) + Π(2)− 1 = 2 + 1− 1 = 2. This results in the new permutation [1, 3, 2].

Besides SCFG, there are many more types of synchronous grammars like Syn-

chronous Tree Adjoining Grammars (Shieber and Schabes, 1990) or Synchronous

Tree Substitution Grammars (Eisner, 2003). A detailed introduction to synchronous

grammars is given by Chiang (2006).

2.1.1 Training

Training is the process of deriving a set of rules from a given word-aligned parallel

corpus and assigning those rules a probability. In the following, we explain how to

obtain rules for the hierarchical phrase-based model, the string-to-tree model and

the tree-to-tree model. Finally, we show how to compute the translation probabili-
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That is true , actually

Das ist tatsächlich wahr

Figure 2.1: A word-aligned sentence pair.

ties and lexical probabilities.

Hierarchical Phrase-based Model

Chiang (2005, 2007) presents the hierarchical phrase-based model. It aims to com-

bine the power of the phrase-based approach with a syntactic formalism. However,

it is only formally syntax-based but not linguistically motivated. It is based on a

SCFG but there is only one nonterminal X. The approach requires a simple (i.e.

non-parsed) word-aligned parallel corpus C which consists of word-aligned sen-

tence pairs 〈e, A, f〉. An example of such a pair is shown in Figure 2.1. Rules are

extracted for each pair of C, so in the following let 〈e, A, f〉 be a word-aligned

sentence pair which contains a source language sentence e, a target language sen-

tence f , and an alignment A ⊆ [1, `e] × [1, `f ], where `e and `f are the lengths of

the sentences e and f , respectively, and [i, i′] = {j ∈ Z | i ≤ j ≤ i′} is the span

(closed interval of integers) from i to i′ for all positive integers i ≤ i′. A source

phrase e is simply a span [i, i′] ⊆ [1, `e] and correspondingly, a target phrase f is a

span [j, j′] ⊆ [1, `f ].

Rule extraction is based on initial phrase pairs that are consistent with the align-

ment (see Definition 1). Given this notion, we present a formal definition of the ex-

tracted hierarchical SCFG rules in Definition 2 based on Chiang (2007) and Hoang

(2011).

Definition 1 Given a word-aligned sentence pair 〈e, A, f〉, a pair 〈[i, i′], [j, j′]〉 is

an initial phrase pair of 〈e, A, f〉 if and only if for all (k, k′) ∈ A: k ∈
[i, i′] if and only if k′ ∈ [j, j′].
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For convenience reasons, the permutation of Aho and Ullman (1969) is replaced

by indices, which define the alignment between the nonterminal symbols in the

sense that equally indexed nonterminals are related by the permutation. Thus, the

subscripts indicate which nonterminals in α and γ have to develop synchronously.

Following, we display rule r3 of our example grammar in both variants.

Permutation: (AP, ADJP)→ (JJ RB, ADV ADJA, [2,1])

Indices: (AP, ADJP)→ (JJ1 RB2, ADV2 ADJA1)

Definition 2 The set G of rules extracted from C is the smallest set satisfying the

following conditions:

1. Initial rules:

If 〈[i, i′], [j, j′]〉 is an initial phrase pair for some 〈e, A, f〉 ∈ C, then (X,X) →
(e[i, i′], f [j, j′]) is an initial rule, and in particular a rule.

2. Subtraction step:

If r = (X,X)→ (α, γ) is a rule and (X,X)→ (α′, γ′) is an initial rule such that

α = α1α
′α2 and γ = γ1γ

′γ2, then (X,X) → (α1Xkα2, γ1Xkγ2) is a rule, where

k is an index (nonterminal alignment) not used in r.

Extracting all rules leads to an unmanageable number of rules as already pointed

out by Chiang (2005, 2007) and he suggests to apply the following constraints:

(1) Initial rules (X,X)→ (α, γ) are limited to a length of 10 terminals in α and γ.

(2) A rule (X,X)→ (α, γ) is limited to five symbols (nonterminals and terminals)

in α.

(3) In the subtraction step, α′ must have length greater than one.

(4) A rule (X,X)→ (α, γ) can have at most two nonterminal occurrences in α.

(5) It is prohibited for a rule (X,X) → (α, γ) to have adjacent nonterminal occur-

rences in α.

(6) A rule must have at least one pair of words that was aligned in some aligned

sentence pair.

We display some hierarchical SCFG rules in Figure 2.2 that can be extracted
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r1 :
X

That
→

X

Das
r2 :

X

true
→

X

wahr
r3 :

X

That is
→

X

Das ist

r4 :
X

true , actually
→

X

tatsächlich wahr
r5 :

X

is true , actually
→

X

ist tatsächlich wahr

r6 :
X

is X
→

X

ist X
r7 :

X

X is X
→

X

X ist X

Figure 2.2: Some extractable hierarchical SCFG rules.

from the sentence pair shown in Figure 2.1. Throughout this thesis, we keep on

illustrating rules in this tree-like representation (where appropriate). Furthermore,

we refer to the tree left of the arrow as the left-hand side of a rule and we call the

tree to the right of the arrow the right-hand side of a rule. Let us return to the rules

in Figure 2.2. We show some initial rules in the first and second row and the rules in

the bottom row are obtained by the subtraction step. For example, r6 is obtained by

subtracting r4 from r5. We indicate the alignment between nonterminals (indices k)

by links.

Hoang et al. (2009) implemented the rule extraction algorithm from Definition 2

in MOSES (Koehn et al., 2007). The constraints stated above are also implemented

and define the baseline system in our experiments of Section 6.5.

String-to-Tree Models

These kinds of models require a word-aligned parallel corpus C with a constituency

parse tree for the target language side. An example entry of a word-aligned sen-

tence pair with target tree parse is depicted in Figure 2.3. The rule extraction

algorithm for this setting is based on the one for hierarchical SCFG with some

modifications (see Definition 3).

Definition 3 The set G of rules extracted from C is the smallest set satisfying the
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That is true , actually

TOP

NP

PDS

Das

VAFIN

ist
ADJ

ADJP

ADV

tatsächlich

ADJA

wahr

Figure 2.3: A word-aligned sentence pair with target parse tree.

r1 :
X

That
→

PDS

Das
r2 :

X

true
→

ADJA

wahr
r3 :

X

true , actually
→

ADJP

tatsächlich wahr

r4 :
X

That is true , actually
→

TOP

Das ist tatsächlich wahr

r5 :
X

That is X
→

TOP

Das ist ADJP
r6 :

X

X is X
→

TOP

PDS ist ADJP

Figure 2.4: Some extractable string-to-tree SCFG rules.

following conditions:

1. If 〈[i, i′], [j, j′]〉 is an initial phrase pair for some 〈e, A, f〉 ∈ C and the span [j, j′]

is governed by a syntactic category B in the target-side parse for f , then

(X,B)→ (e[i, i′], f [j, j′]) is a rule.

2. If r = (X,B) → (α, γ) is a rule and 〈[i, i′], [j, j′]〉 is an initial phrase pair

for some 〈e, A, f〉 ∈ C, where the span [j, j′] is governed by a syntactic cate-

gory B′, such that α = α1 e[i, i
′] α2 and γ = γ1 f [j, j′] γ2, then (X,B) →

(α1Xkα2, γ1B
′
kγ2) is a rule, where k is an index not used in r.

We display some initial rules for the word-aligned sentence pair in Figure 2.3 in the

first and second row of Figure 2.4. Rule r5 is obtained by subtracting r3 from r4. By

subtracting both r1 and r3 from r4 we obtain r6.
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S

NP

DT

That

VP

VBZ

is

ADJP

JJ

true

,

,
ADVP

RB

actually

TOP

NP

PDS

Das

VAFIN

ist
ADJ

ADJP

ADV

tatsächlich

ADJA

wahr

Figure 2.5: A word-aligned sentence pair with source and target parse tree.

This model is also implemented in MOSES (Koehn et al., 2007; Hoang et al.,

2009) and the same constraints as for hierarchical SCFG rule extraction can be

applied. We use a system with such rules as a baseline system in our experiments

of Section 5.5.

Tree-to-Tree Models

For tree-to-tree models, both sides of the word-aligned parallel corpus C require

syntactic parse trees. In Figure 2.5 we display our running example for the task at

hand. We formally define rules in Definition 4, which is again a modification of the

hierarchical (and string-to-tree) SCFG rules.

Definition 4 The set G of rules for C is the smallest set satisfying the following con-

ditions:

1. If 〈[i, i′], [j, j′]〉 is an initial phrase pair for some 〈e, A, f〉 ∈ C and the span [i, i′]

is governed by a syntactic category B in the source-side parse for e and the

span [j, j′] is governed by a syntactic category B′ in the target-side parse for f ,

then (B,B′)→ (e[i, i′], f [j, j′]) is a rule.

2. If r = (B,B′) → (α, γ) is a rule and 〈[i, i′], [j, j′]〉 is an initial phrase pair

for some 〈e, A, f〉 ∈ C, where the span [i, i′] is governed by a syntactic cate-
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r1 :
DT

That
→

PDS

Das
r2 :

JJ

true
→

ADJA

wahr
r3 :

RB

actually
→

ADV

tatsächlich

r4 :
S

That is true , actually
→

TOP

Das ist tatsächlich wahr

r5 :
S

DT is JJ , actually
→

TOP

PDS ist tatsächlich ADJA

Figure 2.6: Some extractable tree-to-tree SCFG rules.

gory D and the span [j, j′] is governed by a syntactic category D′, such that

α = α1 e[i, i
′] α2 and γ = γ1 f [j, j′] γ2, then (B,B′) → (α1Dkα2, γ1D

′
kγ2) is a

rule, where k is an index not used in r.

Rules r1–r4 shown in Figure 2.6 are examples for initial rules for the word-

aligned and bi-parsed sentence pair of Figure 2.5. Rule r5 is obtained in the sub-

traction step by subtracting rules r1 and r2 from rule r4.

MOSES (Koehn et al., 2007; Hoang et al., 2009) also provides an implementation

of this rule extraction and the same constraints as for hierarchical SCFG rule extrac-

tion can be applied. But the parse trees for both the source and the target language

side act as natural constraints and typically, constraints (4)–(6) are not enforced. In

our experiments in Section 4.4 we use a baseline system based on these tree-to-tree

SCFG rules.

Glue Grammar All syntax-based translation systems require a so-called glue

grammar to ensure that a translation can always be generated. The glue gram-

mar allows to concatenate partial translations without any reordering, i.e. the rules

are combined sequentially whenever a recursive application is not possible. To en-

sure a smooth glue rule application, the input sentences are wrapped into tags,

<s> and </s>. This wrapping makes it necessary to have standard glue rules

which allow for sequential rule combination and top glue rules which are used
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g1 :
X

<s>
→

Q

<s>
g2 :

X

X X
→

Q

Q PDS
g3 :

X

X </s>
→

Q

Q </s>

g4 :
X

<s> X </s>
→

Q

<s> TOP </s>

Figure 2.7: Top row: standard glue rules. Bottom row: top glue rule.

when the translation constitutes a full derivation. We display some glue rules for

tree-to-tree and string-to-tree SCFG models in Figure 2.7. We will explain the appli-

cation of such rules in Section 2.1.3. The glue rules are generated while extracting

SCFG rules from a parallel corpus.

Bidirectional Translation Probabilities

After all rules are extracted from each sentence pair of a parallel corpus, we need

to estimate the impact for each rule. To this end, we count how often a rule α→ γ

(in our tree representation) with left-hand side α and right-hand side γ has been

extracted. This number is stored in count(α, γ). Given this count, we can compute

ϕ(γ|α) =
count(α, γ)∑
γ′ count(α, γ

′)
,

i.e. to estimate the probability of γ given α we compute the relative frequency by

normalizing over all rules with the same left-hand side. Let us illustrate this in

an example. Consider Table 2.1, where we collected some counts and omitted the

root labels, which are always X. For example, we have the counts for the English

‘the X’ being translated into the three German variants ‘der X’, ‘die X’, and ‘das

X’, respectively. In total, we have extracted 100 rules that translate ‘the X’ into

some γ. We compute ϕ(der X|the X) = 50
100

= 0.5, ϕ(die X|the X) = 20
100

= 0.2, and

ϕ(das X|the X) = 30
100

= 0.3.

Similarly, we estimate ϕ(α|γ) by computing the relative frequency by normaliz-
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α γ counts(α, γ)
of X der X 10
of the X der X 40
the X der X 50
the X die X 20
the X das X 30

Table 2.1: Collected counts for (α, γ).

ing over all rules with the same right-hand side. In this case, we have to look at the

γ-column of Table 2.1. Consider that we want to compute how probable it is for

‘der X’ to be generated by ‘of X’, ‘of the X’, and ‘the X’, respectively. In total, we have

again 100 rules and ϕ(the X|der X) = 50
100

= 0.5, ϕ(of the X|der X) = 40
100

= 0.4, and

ϕ(of X|der X) = 10
100

= 0.1.

Bidirectional Lexical Translation Probabilities

The extracted rules can consist of terminal and nonterminal symbols. The transla-

tion probabilities computed above treat all symbols equally and do not distinguish

between terminals and nonterminals. But it is also of interest, how well the termi-

nals on the left- and right-hand side match. Recall that we extract the rules from a

parallel corpus of word-aligned sentence pairs 〈e, A, f〉, so we have the word align-

ment A. For each input word σ ∈ Σ and output word δ ∈ ∆ we can thus count how

often e[i, i] = σ and f [j, j] = δ for (i, j) ∈ A in some 〈e, A, f〉 ∈ C. We can collect the

counts for all word pairs (σ, δ) and compute the relative frequencies, which result

in the word translation probabilities w(δ|σ). The lexical translation probability of a

right-hand side γ given a left-hand side α and lexical alignment A is computed by

lex(γ|α,A) =

|γ|∏
j=1

1

|{i|(i, j) ∈ A}|
∑

(i,j)∈A

w(γj|αi) ,

i.e. for all lexically aligned word pairs (αi, γj) where αi is present in α and γj is

present in γ, we take the product of their respective word translation probabilities.
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2.1 Syntax-based Statistical Machine Translation

IT specialists focus on NULL

IT-Spezialisten konzentrieren sich auf

Figure 2.8: Illustration of word-alignments and special NULL token.

If a word δ is aligned to multiple words σ, then the average of the corresponding

word translation probabilities is computed. In case of words δ which have no align-

ment to any word σ, the alignment to a special NULL word is assumed and scored.

We illustrate this in an example. Consider the word-alignments given in Figure 2.8,

where the word ‘IT-Spezialisten’ is aligned to two words, ‘IT’ and ‘specialists’, and

‘sich’ is aligned to NULL. The lexical translation probability is computed by

lex(γ|α,A) =
1

2

(
w(IT-Spezialisten|IT) + w(IT-Spezialisten|specialists)

)
· w(konzentrieren|focus)

· w(sich|NULL)

· w(auf|on)

2.1.2 Language Model

Another important component of a translation system is the language model. It sup-

ports the modeling of the target language and is therefore obtained from text writ-

ten in the target language.1 Its assistance to the translation process is threefold.

First, it ensures that the translations are fluent. Furthermore, it helps to decide

whether a given word order is grammatically correct or not and in this manner

affects word reordering. Finally, it can provide the right word choice. Formally, a

1Beside the data from the parallel corpus, one can use additional data taken from monolingual
sources.
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language model computes the probability p(W ) of a string W = w1 . . . wm. Typi-

cally n-gram language models are used, in which the estimation process predicts

the probability of one word given a preceding sequence of (n− 1) words. The order

of the language model is defined by m and the probabilities are computed by a

Markov chain:

p(W ) =
m∏
i=1

p(wi|wi−(n−1), . . . , wi−2, wi−1) ,

where we assume that wj = 2 for j ≤ 0.

The estimation of the probability p(wi|wi−(n−1), . . . , wi−2, wi−1) is straightforward

with

p(wi|wi−(n−1), . . . , wi−2, wi−1) =
count(wi−(n−1), . . . , wi−2, wi−1, wi)∑
w count(wi−(n−1), . . . , wi−2, wi−1, w)

,

i.e. we count how often the string wi−(n−1) . . . wi−2wi−1 is followed by the word wi

and divide by the sum of all counts, where any word w follows the string. This

equation only assigns a non-zero value to an n-gram that occurs in the training

data. This is not desired and the empirical counts are adjusted via a smoothing

technique. The Modified Kneser-Ney smoothing of Chen and Goodman (1998) uses

three different discount values that get subtracted from the raw counts of the n-

grams. These discounts are then used to assign non-zero probabilities to unseen

n-grams.

2.1.3 Decoder

The actual translation of a source sentence into a target sentence is done by the

decoder. For most syntax-based translation systems, the decoder generates a trans-

lation via a chart parser. The parser works in a bottom-up fashion. First, for each

source word the rule-table is looked up for a corresponding rule. More precisely,

each contiguous span of the source sentence is looked-up by increasing length and

(possibly) multiple rules are added to the corresponding chart cell matching this
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[1,7]
X

[1,6] [2,7]
X X

[1,5] [2,6] [3,7]
X X X

r4, r5, r6

[1,4] [2,5] [3,6] [4,7]
X X X X

[1,3] [2,4] [3,5] [4,6] [5,7]
X X X X X

r3

[1,2] [2,3] [3,4] [4,5] [5,6] [6,7]
X X X X X X

[1,1] [2,2] [3,3] [4,4] [5,5] [6,6] [7,7]
X X X X X X X

r1 r2

<s> That is true , actually </s>

Table 2.2: Chart parse for hierarchical and string-to-tree SCFG systems.

span. In the iteration, a chart entry for a larger span can build on the chart entries

for its strict subspans.

For models based on hierarchical SCFGs and string-to-tree SCFGs, each chart

cell is created by assuming that each span is covered by ‘X’. We illustrate this in

Table 2.2, where we want to translate the input sentence ‘That is true , actually’

(spanning chart cell [2,6]) which is augmented with tags that are introduced to

allow for easy glue rule application. We will illustrate an application of glue rules

later on and first focus on showing an example of how to use string-to-tree SCFG

rules. Given the chart in Table 2.2, the parser starts its iteration on the bottom row.

For each cell, the decoder tries to find a rule. Assuming that only the rules from Fig-

ure 2.4 are given, the rules r1 and r2 can be applied in chart cells [2,2] and [4,4],

respectively. For all other words, no matching rule is given. In the next iteration

step, the decoder looks for rules matching two consecutive chart entries. This pro-

cess is repeated until the decoder arrives in chart cell [1,7]. Let us move on with
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TOP

Das ist tatsächlich wahr

TOP

Das ist ADJP

tatsächlich wahr

TOP

PDS

Das

ist ADJP

tatsächlich wahr

Figure 2.9: The resulting target parse trees in the string-to-tree decoding.
.

our illustration. If we want to find all possible rules that derive the whole sen-

tence spanning [2,6], still assuming that only the rules from Figure 2.4 are given,

we have three candidate rules, i.e. r4, r5, and r6. The rule r4 simply generates the

whole target sentence given the source sentence by matching all the terminals.

Rule r5 matches the terminals in chart cell [2,2], chart cell [3,3], and the ‘X’ in

chart cell [4,6], where previously rule r3 was applied. We underlined the necessary

components in Table 2.2. Finally, we can also apply rule r6 that matches the ‘X’ in

chart cell [2,2] (previously applied r1), the terminal ‘is’ in [3,3], and the ‘X’ in chart

cell [4,6] (previously applied r3). We boxed the necessary components in Table 2.2.

The rules that generate the best translation depend on their scores. Note that the

use of different rules leads to quite different parse trees for the target sentence. We

display the generated parse trees for the target sentence in Figure 2.9. It is note-

worthy, that the generated parse trees for the translations are (typically) not part of

the output of the translation system. The decoder returns the sentences only. The

target parse nonterminals are only used by the decoder as constraints on which

rules can be applied. Hence, the labels of the target parse tree have the same role

as in constituent parsing and help to ensure the correct syntactic structure of the

target sentence.

For models based on tree-to-tree (and tree-to-string) SCFGs, the parse of the

source sentence is taken into account. Beside the nonterminal ‘X’, each chart cell is

additionally created with the corresponding label if that span is covered by a node

in the parse tree. We show this in Table 2.3, where the labels of the source parse

tree are given. The source labels act as a constraint on which rules can be applied.

For example, for ‘true’ the labels ‘JJ’ and ‘ADJP’ are licensed by the parse tree. The
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2.1 Syntax-based Statistical Machine Translation

decoder will look up only rules where the root symbol matches either label. Given

the rules from Figure 2.6, only rule r2 matches and this rule is added to the chart

cell. If we want to derive the whole source sentence, we have two possible rules,

r4 and r5. Rule r4 generates the whole target sentence by matching the source label

‘S’ in chart cell [2,6] and all terminals present in the input sentence. Rule r5 uses

the previously applied rule r1 in chart cell [2,2], the terminal ‘is’ in [3,3], r2 in

chart cell [4,4] as well as the terminals given in chart cells [5,5] and [6,6]. This is

made possible by a special feature of the MOSES decoder. As explained above, the

label of the source parse tree functions as a constraint. Hence, for the label ‘S’ only

rules with this root symbol are considered. But there is no matching criterion for the

nonterminal children. When rule r3 is applied, the decoder only checks whether the

chart cells [2,2] and [4,4] are covered by a rule but completely ignores the labels

in these cells.

Glue Rule Application For our decoding example from Table 2.3 we were able

to obtain a complete derivation in chart cell [2,6] by recursively applying our rules

for the input sentence. Now we need to combine it with a top glue rule to match

the augmented sentence spanning [1,7]. To this end, we apply glue rule g4 from

Figure 2.7. It combines the terminal ‘<s>’, the label ‘S’, and the terminal ‘</s>’

and the chart parse is complete. Since the recursive application can fail at any point

in the chart, glue rules are generally applied to ensure the success of the translation

process. Hence, glue rule g1 is applied in chart cell [1,1]. In the same manner, glue

rule g2 is applied in chart cell [1,2] using previously applied glue rule g1 and the

nonterminal ‘X’ given in chart cell [2,2]. To be precise, for each chart cell [1,n-1]

this glue rule is applied (as indicated in Table 2.3). For span [1,n], glue rule g3 (see

Figure 2.7) concatenates the ‘X’ in chart cell [1,n-1] with the end tag </s>, thus

ensuring a successful translation.

In a realistic scenario, for each contiguous span any number of rules may apply.

Each applicable rule triggers another chart entry. Hence, it is possible to end up

with thousands of chart entries. To keep the size of the chart cells manageable, the
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[1,7]
X

g4, g3

[1,6] [2,7]
X X
g2

[1,5] [2,6] [3,7]
X S, X X
g2

[1,4] [2,5] [3,6] [4,7]
X VP, X X X
g2

[1,3] [2,4] [3,5] [4,6] [5,7]
X X X X X
g2

[1,2] [2,3] [3,4] [4,5] [5,6] [6,7]
X X X X X X
g2

[1,1] [2,2] [3,3] [4,4] [5,5] [6,6] [7,7]
X DT, NP, X VBZ, X JJ, ADJP, X , , X RB, ADVP X
g1 r1 r2 r3

<s> That is true , actually </s>

Table 2.3: Chart parse for tree-to-tree and tree-to-string SCFGs.
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2.1 Syntax-based Statistical Machine Translation

MOSES decoder uses a CYK+ parser with cube pruning and integrated language

model scoring to prune unlikely translations.

An extensive overview of the general decoding process can be found in Koehn

(2010) and a detailed description of the MOSES decoder is given in Hoang (2011).

2.1.4 Syntax-based Translation Model

Given a source language sentence e, the task of the translation model is to find the

best corresponding target language translation f̂ ; i.e.,

f̂ = arg maxf p(f |e) = arg maxf
p(f, e)

p(e)
= arg maxf p(e|f) · p(f) .

The best translation f̂ is defined by the probability of the translation model p(f |e).
Using Bayes’ rule we can decompose this probability into p(e|f) and the language

model probability p(f) as indicated.

The standard syntax-based translation model computes p(e|f) using the follow-

ing features.

(1) backward translation probability ϕ(e|f)

(2) forward translation probability ϕ(f |e)
(3) backward lexical translation probability lex(e|f)

(4) forward lexical translation probability lex(f |e)
(5) Word penalty: models the output length in terms of number of words. It is

modelled as a simple counter, i.e. e1 ≈ 2.718.

(6) Rule penalty: models the usage of rules. Either many (smaller) rules are used

to obtain a translation or fewer (bigger) rules are used. Similarly to the word

penalty, it is modelled by e1.

(7) Glue grammar: models the usage of glue rules. Either the translations are ob-

tained by recursive application of rules or glue rules are used to concatenate

partial translations sequentially. Again, this is modelled as a simple counter.
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This way, we can say that the translation process is guided by eight (including

the language model) components. In the next step, weights λm are introduced that

allow one to scale the contribution hm for each component hm(·).

p(f |e) ≈ arg maxf

8∏
m=1

hm(·)λm .

As this leads to quite low weights, it is rewritten into a log-linear model

p(f |e) ≈ arg maxf

( 8∑
m=1

λmhm(·)
)
.

2.1.5 Tuning

Tuning is an optimization process that aims at finding the optimal weights for the

features λm of the log-linear model. As a prerequisite, we need another parallel

corpus called the tuning set. This set is typically small (1,000–3,000 sentences) and

should be distinct from the parallel corpus used for training. The tuning algorithm

starts with a random seed of weights for the features and decodes the complete tun-

ing set. The output is not only one translation but a list with the n-best translations.

The translation quality of the n-best list is measured by some metric and the tuning

algorithm adjusts the weights based on this metric. Then, the tuning set is decoded

again with the adjusted weights, generating another n-best list, which in turn is

measured. This process is repeated until some convergence criterion is satisfied.

There are multiple tuning algorithms and there are many metrics for translation

quality. In our experiments, all systems are tuned with Minimum Error Rate Train-

ing (Och, 2003) on the BLEU metric (Papineni et al., 2002).

For a detailed overview of tuning algorithms see Neubig and Watanabe (2016).
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2.1.6 Evaluation

After and in the tuning process, we need to measure the quality of a translation sys-

tem. The final score of a system is reported on another small parallel corpus called

the test set. This set consists of source sentences and reference sentences, which

were translated by human translators. The source sentences are decoded with the

optimized weights λm for the features of the log-linear model. The Bilingual Eval-

uation Understudy (BLEU) metric (Papineni et al., 2002) estimates the translation

quality by comparing the output of the translation system to the human reference.2

It computes the modified n-gram precision for any n by first counting all n-grams

countn(o) of a system-generated sentence o and its corresponding maximum count

in the reference sentence r. If a counti(o) is higher than the reference count, it gets

clipped by the maximum reference value. Next, matchn(r, o) counts how many n-

grams in o match r. Furthermore, a brevity penalty is applied that penalizes output

translations that are shorter than the reference. Typically, the maximum order of n

is set to 4 and BLEU-4 can be computed by

BLEU-4(r, o) = min(1, e(1− |r|
|o| )) ·

4∏
n=1

(matchn(r, o)

countn(o)

) 1
4
.

Through the usage of n-grams, BLEU captures adequacy and fluency. If a trans-

lation uses the same words as the reference (unigrams), the output becomes ad-

equate. If a translation matches longer n-grams with the reference, the output is

considered to be fluent.

2.2 Related work

In this section we show work by other authors that present rule extraction algo-

rithms based on different grammar formalisms. We distinguish between hierarchi-

2The tuning algorithm also uses this metric to optimize the weights.
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cal models, string-to-tree models, and tree-to-tree models. Furthermore, we arrange

them according to the underlying formalism.

2.2.1 Hierarchical Models

Kaeshammer (2015) uses a translation system based on synchronous linear context-

free rewriting systems (SLCFRS) which can be seen as a direct extension of SCFG

to discontinuous constituents. The rule extraction algorithm is based on Chiang

(2007) but instead of extracting only continuous constituents, also discontinuous

constituents are extracted. Beside the constraints for hierarchical rule extraction

(see Section 2.1.1), the author also restricts the number of words between discon-

tinuous blocks, does not allow unaligned blocks, and allows only two discontinuous

blocks. The training corpus was length-ratio filtered up to 30 words as was the test

set. An evaluation for different settings of discontinuities was conducted. It shows

that on a German-to-English translation task, a system with discontinuities on the

left-hand side of the rules performs best. It performs even better than a hierarchical

phrase-based system.

2.2.2 String-to-Tree Models

Synchronous Tree Substitution Grammars

Galley et al. (2004) present an algorithm that extracts minimal string-to-tree STSG

rules. For a given source string S, a target tree T , and an alignment A, the au-

thors want to learn the set of rules ρA(S, T ). To this end, they create an alignment

graph G. This graph consists of the target tree T which is augmented with nodes

for each element of S. The edges between leaf nodes t ∈ T and s ∈ S are defined

by the alignment A. To extract rules from G, they propose a two-step algorithm:

1. Compute the frontier set of the alignment graph.

2. For each node of the frontier set, compute the minimal frontier graph frag-
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ment rooted at that node.

To compute the set of frontier nodes, every node n in the graph is labeled with its

span and complement span. The span is defined by the indices of the first and last

word of S that is covered by n. The complement spans of n are the union of the

spans in S of all nodes n′ in G that are neither descendants nor ancestors of n. If

the spans and complement spans of n do not overlap, then n is a frontier node.

A frontier graph fragment is defined as a graph fragment where the root and all

sinks are in the frontier set. Given this algorithm, the authors are able to extract

minimal string-to-tree STSG rules. A rule is said to be minimal if the frontier graph

fragment is a subgraph of every other frontier graph fragment with the same root.

The focus of their contribution is to give a mathematical theory and provide an

efficient algorithm. Therefore, the authors provide results on the coverage of their

model and they analyze some properties of the transformation rules. But there is

no evaluation in terms of translation quality.

Further work on this topic is done by Galley et al. (2006). In this paper, they ex-

tend the algorithm of Galley et al. (2004) to extract composed (i.e. non-minimal)

string-to-tree STSG rules and propose probability estimates and a training proce-

dure for weighting these rules. Their experiments on two translation tasks (Arabic-

to-English and Chinese-to-English) show that their system lags only 6.4 BLEU points

behind a then state-of-the-art phrase-based system.

DeNeefe et al. (2007) evaluated a system using minimal STSG rules with a sys-

tem using composed STSG rules and found that the system using the composed

rules improves over the system using minimal rules only.

Marcu et al. (2006) present SPMT which is based on extended tree-to-string

transducers (xRS) of Knight and Graehl (2005). In their simplest model (SPMT

model 1), given a tuple (Π, F, A), they extract xRS rules that are consistent with

the source phrase F [i, j], the target syntactic tree Π, and the alignment A. For each

source phrase span, the algorithm traverses the target parse tree until it (a) finds

a node that governs that span and creates a fully lexical rule or (b) in case that
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the node has children not licensed by that span, those children will be realized as

nonterminals in the rule. The algorithm considers all possible source phrases and is

therefore adapted from the phrase-based rule extraction (Koehn et al., 2003) and

those rules are called minimally syntactified, lexicalized, phrase-based compatible xRS

rules. To obtain minimal non-lexicalized rules, they follow the approach of Galley

et al. (2006). SPMT model 2 extracts additional rules for case (b). The algorithm

creates a pseudo-label that governs only the nodes that are consistently aligned.

Furthermore, there is a composed variant for both models but composition is al-

lowed only once. They conducted experiments on Chinese-to-English translation

tasks. Their experimental results show that SPMT model 2 performs best. Overall,

all four variants show improvements over a phrase-based system.

Synchronous Context-free Grammars

Zollmann and Venugopal (2006) present a syntax-augmented machine translation

system (SAMT). Their aim is to enrich phrase-based rules with syntactic annotations

on the target side. To this end, they extract phrase pairs from a bilingual word-

aligned corpus. Then they use a constituent parser to generate a parse tree for each

target sentence. To annotate a phrase pair (α, γ), γ is matched with the target parse

tree. If the phrase is covered by a syntactic category C, then a rule is generated

with this label. Otherwise, the rule is generated with an extended category of the

form C1 + C2, C1/C2, or C2\C1. The extended categories indicate that γ spans two

adjacent syntactic categories, a partial syntactic category C1 missing a C2 to the

right, or a partial syntactic category C1 missing a C2 to the left, respectively. As those

rules are still completely lexical, the authors adhere to the method of Chiang (2006)

to recursively obtain a set of SCFG rules with nonterminals. The experiments show

that their system improves over a phrase-based baseline.

Further work on the topic of SAMT was done by Almaghout et al. (2011) who

use annotations from Combinatory Categorial Grammar (CCG) of Steedman (2000)

and by Hanneman and Lavie (2013) who coarsen the set of CCG labels by clustering
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bilingual labels and then removing the source side labels.

Williams and Koehn (2012) extract rules based on Synchronous Tree Substi-

tution Grammars as presented by Galley et al. (2004, 2006) (we explained their

algorithm in the paragraph Synchronous Tree Substitution Grammars at the begin-

ning of this section). Their work differs with respect to handling composed rules.

Rules are only composed if the rule depth does not exceed three, the node count

is not higher than 15, and the rule size is not bigger than three. Furthermore, the

authors remove unary rules and apply scope pruning as presented by Hopkins and

Langmead (2010) to eliminate rules in order to receive a subgrammar that can be

parsed in cubic time. The last step includes the removal of all internal nodes inside

a rule and consequently, the rules are now in fact SCFG rules.

2.2.3 Tree-to-Tree Models

Synchronous Context-free Grammars

Lavie et al. (2008) extract rules from a word-aligned and bi-parsed parallel corpus.

To obtain these rules, they first use a node alignment algorithm. The goal is the

identification of aligned node pairs in the source and the target tree which are

consistent with the word alignments between the yields of both nodes in the pair. In

a first step, they obtain syntax-based sub-sentential phrases by extracting all aligned

constituent nodes along with their yields from both trees. The second step extracts

minimal synchronous tree fragment pairs. Each aligned node pair is treated as a tree

decomposition point. Their algorithm operates on a top-down traversal of the parse

trees. Each aligned node pair triggers a decomposition. The last step converts the

rules into synchronous context-free rules by removing the internal tree structure.

Hence, only the syntactic label of the roots of the tree fragments and the nodes

on the fragment’s frontier are kept. The authors do not give any BLEU scores but

mention that their approach lags behind state-of-the-art phrase-based systems.

Ambati and Lavie (2008) improved on this work. The authors claim that the lexi-
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cal coverage of the model is too weak. They identified the non-isomorphic structure

of the parse trees of different languages as the main source for the coverage issue.

Hence, they apply a non-isomorphic parse tree restructuring technique. The first

step creates additional parse nodes that conform with the word alignment and the

source parse tree and project the label from the source parse tree into the target

parse tree. The second step merges some of these nodes as the structure now con-

tains two trees – the original one and the projected tree. This way, they end up with

one final tree structure. Their experiments show that their restructuring method

does improve translation quality significantly compared to the system of Lavie et al.

(2008), but a simple phrase-based system is still better.

In Ambati et al. (2009) the non-isomorphic parse tree restructuring technique is

applied to both the source and the target parse tree. Their experiments show that

this yields the best translation quality compared to the both approaches presented

above. Yet, this system does not beat a phrase-based translation system.

Synchronous Tree Substitution Grammars

Zhang et al. (2007) use elementary tree-based structure alignments to model the

translation process. They call their rules PETs which are pairs of elementary trees

with alignment information. A PET is defined as a triple 〈ξs, ξt, Ã〉, where ξs is a

source elementary tree, ξt is a target elementary tree, and Ã is the alignment be-

tween leaf nodes of the two elementary trees. The authors differentiate between

initial PETs in which all leaf nodes are terminals and abstract PETs, otherwise. Their

rule extraction includes two steps: (1) extraction of initial PETs, and (2) extraction

of abstract PETs by removing smaller initial PETs from bigger ones. Rule extraction

was done on a parallel corpus containing 9,000 sentence pairs. Their evaluation

showed a significant improvement over a phrase-based system (Koehn, 2004a).

Liu et al. (2009) propose a system that uses packed forests on the source and tar-

get language side to overcome the parse errors that usually occur in 1-best parses.

Their rule extraction algorithm is adapted from Galley et al. (2004) and based on

48



2.2 Related work

three steps: (1) identifying correspondences between nodes in forest pairs, (2) iden-

tifying minimal rules, and (3) inferring composed rules. For (1) they identify and

mark the frontier nodes in both packed forests. To obtain the set of minimal rules,

the authors define a frontier tree pair as a triple 〈ts, tt,∼〉, where ts is a source fron-

tier tree, tt is a target frontier tree, and ∼ is a one-to-one correspondence between

the frontier leaves of ts and tt. A frontier tree pair is said to be minimal if and only

if it is a subgraph of any other frontier tree pair that shares the same root. To obtain

composed rules they compose two or more minimal rules. Their experiments show

that using packed forests does improve significantly over the same system using

only 1-best parse trees. Furthermore, they evaluated how much of an improvement

can be gained by using bigger parse forests. The result shows that the BLEU scores

do not improve much when having packed forests with over 1M parses per sen-

tence.

Synchronous Tree Sequence Substitution Grammars

Zhang et al. (2008) propose a tree-to-tree model based on tree sequence align-

ments. A tree sequence is an ordered sub-tree sequence that covers a phrase or a

consecutive tree fragment in a parse tree. They define a tree sequence translation

rule r as a pair of aligned tree sequences r = 〈TS(f j2j1 ), TS(ei2i1), Ã〉, where TS(f j2j1 )

is a source tree sequence covering span [j1, j2] in the source parse tree TS(fJ1 ), and

TS(ei2i1) is a target tree sequence covering span [i1, i2] in the target parse tree TS(eI1),

and Ã are the alignments between leaf nodes of the tree sequences. They extract

rules in two steps: (1) extraction of initial rules, i.e. rules where all leaf nodes are

terminals, (2) extraction of abstract rules by removing one or more smaller ini-

tial rules from a bigger initial rule. To control the number of rules, the authors

set three constraints for both initial and abstract rules: (1) depth of a tree is not

greater than h = 4, (2) number of nonterminals as leaf nodes is not greater than

c = 3, and (3) number of trees in a sequence is not greater than d = 4. Additionally,

there is a fourth constraint for initial rules only: a rule has at most seven lexical
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elements as leaf nodes. They extracted rules from the FBIS corpus (less than 500K

sentence pairs) and limited their tuning and test sets to 50 lexical elements per sen-

tence. Their experiments on a Chinese-to-English translation task show significant

improvements over a phrase-based, a SCFG-based, and a STSG-based system.

Sun et al. (2009) extended this work by proposing a translation model based on

non-contiguous tree sequence alignments. Instead of allowing only continuous tree

fragments, they use additionally non-contiguous tree sequence pairs where the se-

quence consists of subtrees and gaps. A non-contiguous tree sequence translation

rule is defined as r = 〈TS(f(M
jk2
jk1

)), TS(e(N
il2
il1

)), Ã〉, where TS(f(M
jk2
jk1

)1≤k≤m) is

a non-contiguous source tree sequence covering the span set M = {[jk1 , jk2 ] | k =

1, . . . ,m} in the source parse tree TS(fJ1 ), TS(e(N
il2
il1

)1≤l≤n) is a non-contiguous tar-

get tree sequence covering the span set N = {[il1, il2] | l = 1, . . . , n} in the target

parse tree TS(eL1 ), and Ã are the alignments between leaf nodes in the source and

target non-contiguous tree sequences. As in Zhang et al. (2008), they use initial

and abstract rules. The initial rules are obtained by (a) extracting for contiguous

source tree sequences the contiguous and non-contiguous target tree sequences,

and (b) extracting for contiguous target tree sequences the non-contiguous source

tree sequences. Abstract rules are derived similarly as in Zhang et al. (2008). Addi-

tionally, they use the following constraints to limit the number of rules: (1) depth

of a tree is not greater than h = 6, (2) number of nonterminals as leaf nodes is not

greater than c = 6, (3) number of trees in a sequence is not greater than d = 4,

(4) number of lexical elements in an initial rule is not greater than l = 6, and

(5) maximal number of gaps g in a rule (left-hand side: g = 1; right-hand side:

g = 0). Rules were again obtained from the small FBIS corpus and the tuning and

test sets were also restricted to sentences containing up to 50 lexical elements. Their

evaluation of a Chinese-to-English translation task shows significant improvements

over baselines provided by a phrase-based system and the continuous STSSG-based

model of Zhang et al. (2008).
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Chapter 3

Minimal Tree-to-Tree `MBOT

This chapter starts with the introduction of the theoretical background and the main

generative model, namely shallow local multi bottom-up tree transducers (`MBOT).

We present an algorithm that allows us to obtain such transducers from data, in-

troduce the full translation model, and sketch a decoder for `MBOT. Finally, an

English-to-German translation task is used to evaluate the performance of the

`MBOT model.

3.1 Shallow Local Multi Bottom-up Tree Transducers

In this section, we present the theoretical generative model used in this approach

to syntax-based machine translation. Essentially, it is the local multi bottom-up tree

transducer of Maletti (2011) but with one additional restriction. Multi Bottom-up

Tree Transducers (MBOT) were first introduced by Arnold and Dauchet (1982) and

Lilin (1978). The local multi bottom-up tree transducer restricts MBOT to a form

that is particularly useful in statistical machine translation by replacing the finite-

state behaviour by the common locality tests.
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of 22211
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vote22221

Figure 3.1: Example tree t with various illustrations. Positions are indicated and we
have t(21) = VBZ. The subtree marked in blue is t|221. The yield is emphasized.

Formal Definition of Trees As syntactic parse trees are utilized in this approach,

we first give a formal introduction to trees. Given an alphabet Σ of labels, the

set TΣ of all Σ-trees is the smallest set T such that σ(t1, . . . , tk) ∈ T for all σ ∈ Σ,

integers k ≥ 0, and t1, . . . , tk ∈ T . Intuitively, a tree t consists of a labeled root

node σ followed by a sequence t1, . . . , tk of its subtrees. A tree t ∈ TΣ is shallow if

t = σ(t1, . . . , tk) with σ ∈ Σ and t1, . . . , tk ∈ Σ, i.e. a tree is shallow if its height is 2.

A node inside a tree is addressed by its position, which is a word consisting of

positive integers. Formally, the positions pos(t) ⊆ N∗ of a tree t = σ(t1, . . . , tk) are

inductively defined by pos(t) = {ε} ∪ pos(k)(t1, . . . , tk), where

pos(k)(t1, . . . , tk) =
⋃

1≤i≤k

{iw | w ∈ pos(ti)} .

In plain words, the root of a tree is addressed with the position ε (the empty word).

The position iw with i ∈ N addresses the position w in the ith direct subtree of the

root. In this way, each node in the tree is assigned a unique position. We augment

each node of the tree given in Figure 3.1 with its position. Let t ∈ TΣ and w ∈ pos(t).

The label of t at position w is t(w), and the subtree rooted at position w is t|w. These

notions are also illustrated in Figure 3.1. A position w ∈ pos(t) is a leaf (in t) if

w1 /∈ pos(t). In other words, leaves do not have any subtrees. If all leaf nodes of a

tree are concatenated (from left-to-right), then we obtain the yield of the tree. The

yield of the example tree t in Figure 3.1 is illustrated by emphasizing all leaf nodes.
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Given a subset N ⊆ Σ, we let

leafN(t) = {w ∈ pos(t) | t(w) ∈ N, w leaf in t}

be the set of all leaves labeled by elements of N . When N is the set of nonterminals,

we call them leaf nonterminals. We extend this notion to sequences t1, . . . , tk ∈ TΣ

by

leaf
(k)
N (t1, . . . , tk) =

⋃
1≤i≤k

{iw | w ∈ leafN(ti)}.

Let w1, . . . , wn ∈ pos(t) be (pairwise prefix-incomparable) positions and t1, . . . , tn ∈
TΣ. Then t[wi ← ti]1≤i≤n denotes the tree that is obtained from t by replacing (in

parallel) the subtrees at wi by ti for every 1 ≤ i ≤ n.

Shallow Local Multi Bottom-up Tree Transducers Now we introduce the model,

which is a minor variation of the local multi bottom-up tree transducer of Maletti

(2011). Let Σ and ∆ be the input and output symbols, respectively, and let

N ⊆ Σ ∪ ∆ be the set of nonterminal symbols. Essentially, the model works

on pairs 〈s, (t1, . . . , tk)〉 consisting of a source tree fragment s ∈ TΣ and a se-

quence t1, . . . , tk ∈ T∆ of target tree fragments.1 Such pairs are sentential forms

of rank k, where k indicates the number of target tree fragments. The sentential

form 〈s, (t1, . . . , tk)〉 is shallow if all tree fragments s, t1, . . . , tk in it are shallow.

Together with a sentential form we typically have to store an alignment between

nonterminal leaves. Given a sentential form 〈s, (t1, . . . , tk)〉 of rank k and 1 ≤ i ≤ k,

we call ti the ith translation of s. An alignment for this sentential form is an injective

mapping ψ : leaf
(k)
N (t1, . . . , tk)→ leafN(s)×N such that if (w, i) ∈ ran(ψ),2 then also

(w, j) ∈ ran(ψ) for all 1 ≤ j ≤ i. In other words, if an alignment requests the

ith translation, then it should also request all previous translations.

1Formally, tree fragments are trees. We use this notion to differentiate between two concepts.
Whenever we use the notion of tree, we refer to a complete parse tree. On the other hand, a tree
fragment is only a part of a tree.

2ran(f) for a mapping f : A→ B denotes the range of f , which is {f(a) | a ∈ A}.
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ρ1 :
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DT NNS
→
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ART NN

)
ρ2 :

VP
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,

2

NP

NP

,

3

VP

PP VVPP

)

ρ3 :
S

NP VP
→
( 1

S

PROAV VAFIN NP VP

)

Figure 3.2: Sample `MBOT rules.

Definition 5 A shallow local multi bottom-up tree transducer (`MBOT) is a finite

set R of rules together with a mapping c : R→ R such that every rule ρ , written s→ψ

(t1, . . . , tk), contains a shallow sentential form 〈s, (t1, . . . , tk)〉 and an alignment ψ for

it.

The components s, (t1, . . . , tk), ψ, and c(ρ) are called the left-hand side, the right-

hand side, the alignment, and the weight of the rule ρ = s →ψ (t1, . . . , tk). Fig-

ure 3.2 shows three example `MBOT rules with annotated rank k and alignment

between nonterminals indicated by links (but without weights). Overall, the rules

of an `MBOT are similar to the rules of an SCFG (synchronous context-free gram-

mar), but our right-hand sides contain a sequence of tree fragments instead of just

a single tree fragment. In addition, the alignments in an SCFG rule are bijective

between leaf nonterminals, whereas our model permits multiple alignments to a

single leaf nonterminal in the left-hand side (see ρ2 and ρ3 of Figure 3.2).

Next, we define the traditional bottom-up semantics3 to combine rules to form

derivations. We need one final notion. Let ρ = s →ψ (t1, . . . , tk) be a rule and

w ∈ leafN(s) be a leaf nonterminal (occurrence) in the left-hand side. The w-

3The derivations of a (multi) bottom-up tree transducer are typically defined in a bottom-up
fashion. This is in opposition to standard synchronous grammars (see Section 2.1) and top-down
transducers. An equivalent top-down semantics can be found in Maletti (2011).
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rank rk(ρ, w) of the rule ρ is

rk(ρ, w) = max {i ∈ N | (w, i) ∈ ran(ψ)} .

For example, for the rules in Figure 3.2 we have

• rk(ρ1, 1) = 1 and rk(ρ1, 2) = 1,

• rk(ρ2, 1) = 2 and rk(ρ2, 2) = 2, and

• rk(ρ3, 1) = 1 and rk(ρ3, 2) = 3.

Definition 6 The set τ(R, c) of weighted sentential forms of an `MBOT (R, c) is the

smallest set T subject to the following restriction: If there exist

• a rule ρ = s→ψ (t1, . . . , tk) ∈ R,

• a weighted sentential form 〈sw, cw, (tw1 , . . . , twkw)〉 ∈ T for every w ∈ leafN(s) with

– rk(ρ, w) = kw,4

– s(w) = sw(ε),5 and

– ti(w
′) = tvj (ε) with ψ(iw′) = (v, j) for every iw′ ∈ leaf

(k)
N (t1, . . . , tk),6

then 〈s′, c′, (t′1, . . . , t′k)〉 is a weighted sentential form, where

• s′ = s[w ← sw | w ∈ leafN(s)],

• c′ = c(ρ) ·
∏

w∈leafN (s) cw, and

• t′i = ti[w
′ ← tvj | ψ(iw′) = (v, j)] for every 1 ≤ i ≤ k.

Rules that do not contain any nonterminal leaves are automatically weighted

sentential forms with their associated rule weight.7 Otherwise, each nonterminal

leaf w in the left-hand side of a rule ρ must be replaced by the source tree frag-

ment sw of a sentential form 〈sw, cw, (tw1 , . . . , twkw)〉, whose root is labeled by the

same nonterminal. In addition, the rank rk(ρ, w) of the replaced nonterminal should

match the number kw of target tree fragments in the selected weighted sentential
4If w has n alignments, then the sentential form selected for it has to have suitably many target

tree fragments.
5The labels have to coincide for the source tree fragment.
6Also the labels for the target tree fragments have to coincide.
7And consequently, a member of set τ(R, c).
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Figure 3.3: Simple rule application.

form. Finally, the nonterminals in the right-hand side that are aligned to w should

be replaced by the translation that the alignment requests, provided that the non-

terminal matches with the root symbol of the requested translation. The weight of

the new sentential form is obtained simply by multiplying the rule weight and the

weights of the selected weighted sentential forms. The derivation is finished when

all introduced leaf nonterminals are substituted and the complete source sentence

is derived. This requires that all discontinuities introduced by the model have to be

resolved, hence the last applied rule needs to be continuous (see ρ3 in Figure 3.2 for

a rule that dissolves discontinuities). Therefore, the final weighted sentential form

is of the form 〈s, c, (t)〉. The overall process is illustrated in Figures 3.3 and 3.4.

3.2 Rule Extraction

To obtain the set R of `MBOT rules, we implemented the rule extraction algorithm

of Maletti (2011) which is repeated in Algorithm 1. The algorithm extracts rules

from the sentence pairs of a word-aligned and bi-parsed parallel corpus, which
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Figure 3.4: Complex rule application.
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Figure 3.5: Word-aligned bi-parsed sentence pair.
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means that parses are available for both the source and the target language sen-

tences. An example of such a sentence pair is presented in Figure 3.5. The algo-

rithm yields a unique decomposition of the sentence pair into tree fragments that

do not overlap. To extract a rule for a given node in the source parse tree, the

algorithm selects the minimal set of alignments that are necessary to obtain con-

sistently aligned subtrees, which means that all alignments from descendants point

into subtrees selected on the other side. For efficiency reasons, it selects the largest

subtrees compatible with this selection of alignments. This approach is performed

bottom-up and already extracted rules are removed from the parse trees. This triv-

ially yields that each lexical item occurs in exactly one extracted rule. Such rules

that only add context when necessary (or unaligned) are generally called minimal.

Algorithm 1 Rule extraction for minimal tree-to-tree `MBOT rules
Require: word-aligned tree pair (s, t)
Ensure: `MBOT rules R
1: while there exists a maximal non-leaf node p ∈ pos(s) and minimal p1, ..., pk ∈ pos(t)

such that s|p and (t|p1 , ..., t|pk) have a consistent alignment do
2: add rule ρ = s|p →ψ (tp1 , ..., tpk) to R with the nonterminal alignments ψ
3: s← s[p← s(p)] // excise left-hand side of ρ from s

4: t← t[pi ← t(pi)]1≤i≤k // excise right-hand side of ρ from t

5: establish alignments according to position
6: end while

Let us explain the algorithm step by step. Given a sentence pair, we extract rules

by looking for the maximal non-leaf node in the source tree and the minimal nodes

in the target tree which have a consistent alignment (line 1). Consistent with the

alignment means that no leaf node (terminal or nonterminal) from s|p is aligned to

a leaf node outside of (t|p1 , ..., t|pk) and vice versa. In line 2 we add rules fulfilling

this requirement to the rule set R. If the rule contains nonterminal leaf nodes, we

add their alignment information to the rule. After obtaining a new rule ρ, we excise

the left-hand side of ρ from the source tree (line 3) by replacing the subtree located

at s|p with the nonterminal at s(p). Finally, in line 5 we establish the alignments be-

tween the newly introduced leaf nonterminals in the parse trees according to their

position. These steps are repeated until all minimal rules are extracted. Figure 3.6
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illustrates this procedure for one rule.

All rules that are extractable from the sentence pair of Figure 3.5 are shown in

Figure 3.7. Note that these rules are not necessarily shallow. Thus, for each ex-

tracted rule s|p →ψ (t|p1 , ..., t|pk), we obtain its shallow counterpart flat(s|p) →ψ(
flat(t|p1), . . . , flat(t|pk)

)
, where flat(u) removes all intermediate nodes (all nodes

except the root and the leaves). The shallow rules corresponding to their non-

shallow variants of Figure 3.7 are shown in Figure 3.8.

As explained in Section 2.1.1, all syntax-based machine translation systems re-

quire a glue grammar. A translation system based on `MBOT requires an additional

`MBOT glue grammar. This grammar ensures that rules with discontinuous target

tree fragments can be used in a continuous fashion, i.e. the root nodes of the tar-

get tree fragments are concatenated as siblings under a special nonterminal. The

`MBOT glue rules are collected only from completely lexical rules. As the trans-

lation process is performed in a bottom-up chart, it suffices to ensure that those

can be used continuously on the first (lexical) level. For larger spans, the standard

glue rules (see Figure 2.7 in Section 2.1.1) can handle the partial translations. An

example `MBOT glue rule is given in Figure 3.9.8

3.3 MBOTMOSES Decoder

The model presented above is implemented in the syntax-based component of the

MOSES open-source toolkit (Koehn et al., 2007; Hoang et al., 2009). The stan-

dard MOSES syntax-based decoder handles SCFG rules only; i.e, rules with one

single tree fragment on the source and the target language side. Roughly speaking,

SCFG rules are `MBOT rules with exactly one target tree fragment. The MBOT-

MOSES branch supports `MBOT rules, in which arbitrarily many target tree frag-

ments are allowed.

8In a MOSES system, the special nonterminal is ‘X’ whereas our special nonterminal is ‘ROOT’.
The standard and top glue rules for our system are also generated with ‘ROOT’.
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Figure 3.6: Illustration of the rule extraction algorithm.
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Figure 3.7: Extracted (even non-shallow) rules. We obtain our rules by making
those rules shallow.
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Figure 3.8: Non-shallow rules and their shallow counterparts.
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Figure 3.9: `MBOT glue rule (right) for the discontinuous rule displayed on the left.
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Figure 3.10: Illustration of LM scoring.

The MBOTMOSES syntax-based decoder uses a CYK+ chart parsing algorithm

in which each source sentence is parsed and contiguous spans are processed in a

bottom-up fashion. A rule is applicable9 if the left-hand side of it matches the non-

terminal assigned to the full span by the parser and the (non-)terminal assigned to

each subspan.10 In order to speed up the decoding process, cube pruning (Chiang,

2007) is applied to each chart cell in order to select the most likely hypotheses

for subspans. The language model (LM) scoring is directly integrated into the cube

pruning algorithm. Thus, LM estimates are available for all considered hypotheses.

However, language model scoring inside the cube pruning algorithm was adapted

to accommodate `MBOT rules. Because the target tree fragments can remain dis-

continuous after hypothesis creation, LM scoring has to be done individually for

each target tree fragment. If a rule has rank k, then k strings w1, . . . , wk are used to

collect the lexical information. These strings can later be used discontinuous, so all

of them are LM-scored separately.

Figure 3.10 illustrates the LM scoring of a sentential form where a rule of rank 3

is applied (the construction of the sentential form is illustrated in Figure 3.4). When

processing the rule, an LM estimate is computed by expanding all nonterminal

leaves of the three target tree fragments rooted at (1) VAFIN, (2) NP, and (3) VP.

This results in collecting in wi the following lexical material:

• w1: sind

• w2: die erklärungen

9Note that the notion of applicable rules differs from the default in MOSES.
10Theoretically, this allows that the decoder ignores unary parser nonterminals, which could also

disappear when we make our rules shallow; e.g., the left-hand side of ρ in Figure 3.3 can be matched
by a rule with left-hand side NP(the, explanations).
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• w3: zu den abstimmungen beendet

Note how the nodes for VAFIN and VVPP are assembled from a (discontinuous) sen-

tential form. This means that the terminals have been considered as independent

until now. So far, the LM scorer could only score their associated unigrams. After

application, the terminal leaf of VAFIN is still scored as a unigram but at least the

terminal leaf of VVPP becomes part of a bigger target tree fragment. This results in

a LM estimate computed by score = LM(w1) · LM(w2) · LM(w3). Clearly, the LM

scores get more accurate for larger spans and when the last rule is applied11, the

complete output tree is generated and the LM scores are computed over the yield

of said output tree.

A slightly more detailed overview can be found in Braune et al. (2013) and a

detailed description is available in Braune (2015).

3.4 Translation Model

As usual, the task of the decoder is to find the best corresponding target language

translation f̂ of the source language sentence e licensed by the translation model

and the language model, i.e.,

f̂ = arg maxf p(f | e) = arg maxf p(e | f) · p(f)

The probability p(f) is provided by the language model for the target side and

the probability p(f |e) by the `MBOT model. We estimate p(e | f) · p(f) by a log-

linear model (Och, 2003) of features hm(·) with weights λm scored on sentential

forms 〈s, (t)〉 of our extracted `MBOT M such that the yield of s reads e12 and the

yield of t reads f .

11This is either a rule where the root nodes for the left- and right-hand side are start symbols
of the source and target parse tree or a top glue rule. Both rules share the characteristic of having
rank 1, hence there are no more discontinuities at this point and the complete output is scored.

12Actually, s must embed in the parse tree of e; see Section 3.3.
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p(f |e) ∝ max
〈s,(t)〉

10∏
m=1

hm
(
〈s, (t)〉

)λm
The features are scored on a sentential form 〈s, (t)〉 by scoring them on the rules

used to build it and taking the product of the such obtained values. Our model

uses the following features hm(s →ψ (t1, . . . , tk)) for a general rule ρ = (s →ψ

(t1, . . . , tk)
13:

(1) the backward translation probability ϕ
(
s|(t1, . . . , tk)

)
,

(2) the forward translation probability ϕ
(
(t1, . . . , tk)|s

)
,

(3) the backward lexical translation probability lex
(
s|(t1, . . . , tk)

)
,

(4) the forward lexical translation probability lex
(
(t1, . . . , tk)|s

)
,

(5) the target side language model, scored directly on (t1, . . . , tk),

(6) the word penalty, i.e. a constant for each word in (t1, . . . , tk),

(7) the rule penalty, i.e. a constant for each applied rule,

(8) the gap penalty, i.e. a constant for each target tree fragment,

(9) a constant for each glue grammar rule, and

(10) a constant for each `MBOT glue grammar rule.

The rule weights required for (1) are relative frequencies normalized over all

rules with the same right-hand side. In the same fashion, the rule weights required

for (2) are relative frequencies normalized over all rules with the same left-hand

side. Additionally, rules that were extracted at most 10 times are discounted by

multiplying the rule weight by 10−2.

The lexical weights for (3) and (4) are obtained by multiplying the word transla-

tions w(fi|ej) [respectively, w(ej|fi)] of lexically aligned words (fi, ej) across (pos-

sibly discontinuous) target tree fragments.14 Whenever a source word ej is aligned

to multiple target words, we average over the word translations.15

13Note that every rule ρ contains a shallow sentential form by definition (see Definition 5).
14The lexical alignments are different from the alignments used with a sentential form.
15If the word ej has no alignment to a target word, then it is assumed to be aligned to a special

NULL word and this alignment is scored.
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h3(〈s, (t1, . . . , tk)〉) =
∏

lexical item e
occurs in s

average {w(f |e) | f aligned to e}

The computation of the language model estimates for (5) is adapted to score par-

tial translations consisting of discontinuous units. This is explained in more detail

in Section 3.3.

The features (8) and (10) are specific to the `MBOT model. The gap penalty is

defined as 1001−k, where k is equal to the rank of the rule. This feature is intended to

allow the model to tune the amount of discontinuity to the specific target language,

i.e. use rules with a higher or lower rank k. Finally, the `MBOT glue grammar

is similar to the standard glue grammar (see Section 2.1.1). Either the sentential

forms are built by substituting (discontinuous) rules or `MBOT glue rules are used

to concatenate them in a continuous way.

Features (6), (7), and (9) coincide with the corresponding features explained in

Section 2.1.4.

3.5 Experimental Results

In this section we report the setup and results as presented by Braune et al. (2013).

3.5.1 Setup

The baseline system for the experiments is the syntax-based component of the

MOSES open-source toolkit (Koehn et al., 2007; Hoang et al., 2009). Linguistic

syntactic annotation is used on both the source and the target language side (tree-

to-tree). The contrastive system is the `MBOT-based translation system presented

here. We provide this system with a set of minimal `MBOT rules (as presented in

Section 3.2) as well as a set of SCFG rules. We do not impose any maximal span
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Minimal Tree-to-Tree `MBOT

English to German
training data 4th Europarl corpus (Koehn, 2005); News commentary

training data size ≈ 1.5M sentence pairs
source-side parser Charniak and Johnson (2005)
target-side parser BitPar (Schmid, 2004)

language model 4-gram SRILM (Stolcke, 2002)
add. LM data SdeWaC (Web-as-Corpus Consortium, 2008)
LM data size ≈ 44M sentences
tuning data part of WMT 2009 (Callison-Burch et al., 2009)
tuning size 1,025 sentences

test data part of WMT 2009
test size 1,026 sentences

Table 3.1: Summary of the experimental setup.

VP-OC/PP

PP-MO/V

APPR-AC/Dat

zu

ART-HD-Dat.Pl.Fem

den

NN-HD-Dat.Pl.Fem

abstimmungen

VVPP-HD

beendet

Figure 3.11: Labels with functional and morphological annotations.

restriction on either system.

For both systems, the used training data is from the 4th version of the Europarl

Corpus (Koehn, 2005) and the News Commentary corpus. The corpora were length-

ratio filtered up to 50 tokens per sentence. Both translation models were trained

with approximately 1.5 million bilingual sentences. The word alignments were

generated by GIZA++ (Och and Ney, 2003) with the grow-diag-final-and heuris-

tic (Koehn et al., 2005). The English side of the bilingual data was parsed using the

Charniak parser (Charniak and Johnson, 2005), and the German side was parsed

using BitPar (Schmid, 2004). The German labels provided by BitPar are typically

enriched with functional and morphological annotations. To avoid possible sparse-

ness issues, those additional annotations were removed. Figure 3.11 shows the full

labels assigned by BitPar for an excerpt of the German parse tree for our running

example from Figure 3.5. We obtain our labels by removing everything after the

first dash and the dash.
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3.5 Experimental Results

System BLEU
tree-to-tree SCFG baseline 12.60

`MBOT 13.06

Table 3.2: Evaluation results. The bold result is a statistically significant improve-
ment over the baseline (at confidence p < 0.05).

The 4-gram language model was trained on the German sentences in the training

data augmented by the SdeWaC corpus (Web-as-Corpus Consortium, 2008), whose

generation is detailed in Baroni et al. (2009). The weights λm in the log-linear

model were trained using minimum error rate training (Och, 2003). We used the

News 2009 test set to generate the tuning and the test set. The even numbered

sentences were used for tuning and the odd numbered sentences for test. Table 3.1

gives additional information about the setup for our experiments.

Both systems use glue-rules as introduced before, which allow them to concate-

nate partial translations without performing any reordering.

3.5.2 Evaluation

We measured the overall translation quality with the help of 4-gram BLEU (Papineni

et al., 2002), which was computed on tokenized and lowercased data for both

systems. The results of our evaluation are reported in Table 3.2.

We can observe from Table 3.2 that our `MBOT-based system outperforms the

baseline. We obtain a BLEU score of 13.06, which is a gain of 0.46 BLEU points over

the baseline. This improvement is statistically significant at confidence p < 0.05,

which we computed using the pairwise bootstrap resampling technique of Koehn

(2004b).

Additionally, we report the number of `MBOT rules used by our system when

decoding the test set. We try to estimate their impact on the translation quality

by inspecting the statistics on the rules used in the sentential forms. Consequently,

only rules that produce part of the final output counts. The current tools of MBOT-
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Minimal Tree-to-Tree `MBOT

Target tree fragments
Lex Struct Total 2 3 4

continuous 23,175 18,355 41,530
discontinuous 315 2,516 2,831 2,480 323 28

Table 3.3: Number of rules per type used when decoding test (Lex = lexical rules;
Struct = structural rules).

MOSES (Braune et al., 2013) only allow the counting of rules used during decoding.

At present, it is infeasible to track discontinuous fragments through the sentential

forms to decide whether they are actually assembled continuously or discontinu-

ously. Thus, discontinuous rules only indicate a potential discontinuity. We show

the statistics in Table 3.3. By Lex we denote rules containing only lexical items. The

label Struct stands for rules containing at least one leaf nonterminal. The results

show that approx. 6% of all rules used by our `MBOT-system have discontinuous

target tree fragments. Furthermore, the reported numbers show that the system

also uses rules in which lexical items are combined with nonterminals. Moreover,

Table 3.3 presents the number of rules with n target tree fragments used during

decoding.

3.6 Summary

We presented a tree-to-tree `MBOT-based machine translation system which allows

for discontinuous target tree fragments. A rule extraction algorithm as well as a

decoder were already available but not yet evaluated. To this end, we implemented

the algorithm to obtain a set of minimal rules. Furthermore, we evaluated our ob-

tained translation system on an English-to-German translation task and obtained

significant improvements over a standard (continuous) MOSES tree-to-tree transla-

tion system based on SCFG rules. Additionally, we inspected the statistics on the

rules used in the sentential forms and can confirm that indeed discontinuous rules

were used to decode the test set.
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Chapter 4

Non-Minimal Tree-to-Tree `MBOT

We start this chapter with the motivation for non-minimal tree-to-tree `MBOT. Then

we will introduce a new notion that enables us to sketch an efficient algorithm and

explain the underlying idea of our rule extraction before presenting it in pseudo-

code. Finally, we evaluate the obtained non-minimal `MBOT in three large-scale

translation tasks. In addition, we will compare it to its minimal variant and a SCFG

baseline as well as to a (hierarchical) phrase-based system.

4.1 Motivation

The `MBOT rule extraction (Maletti, 2011) presented in Chapter 3 extracts min-

imal rules only. It yields a unique decomposition of the sentence pair into tree

fragments that do not overlap. Particularly, each lexical item of a sentence pair oc-

curs in exactly one rule extracted from that sentence pair (as already explained in

Section 3.2). However, minimal rules are unsuitable for fixed phrases consisting

of rare words because minimal rules encourage small fragments and thus word-

by-word translations. Consequently, such fixed phrases will often be assembled in-

consistently by substitution from small fragments. Non-minimal rules encourage a

consistent translation by covering larger parts of the sentence. This is shown by
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Non-Minimal Tree-to-Tree `MBOT

DeNeefe et al. (2007), who used composed (i.e., non-minimal) rules to improve

translation quality in the string-to-tree setting of Galley et al. (2004). With the

hope of achieving similar improvements for `MBOT, we develop a rule extraction

for non-minimal rules.

4.2 Rule Extraction

For the task at hand, the development of an efficient rule extraction algorithm

for non-minimal tree-to-tree `MBOT rules, we essentially follow the approaches

of Koehn et al. (2003), Och and Ney (2004), and Chiang (2007) which are all

based on consistently aligned phrase pairs. We show how to extend this notion to

consistently aligned rule spans. Since the algorithm works on the input and output

strings, we first adjust our view on the training data. Instead of a word-aligned

tree pair (s, t) as in the minimal case, we primarily use a word-aligned sentence

pair 〈e, A, f〉 for which parses are available. Our training corpus consists of word-

aligned sentence pairs 〈e, A, f〉 as introduced in Hierarchical Phrase-based Model of

Section 2.1.1. Recall that a source phrase is a span [i, i′] ⊆ [1, `e] and correspond-

ingly, a target phrase is a span [j, j′] ⊆ [1, `f ]. A rule span is a pair 〈p, ϕ〉 consist-

ing of a source phrase p and a sequence ϕ = p1 · · · pn of (non-overlapping) target

phrases p1, . . . , pn.1 If n = 1 (i.e., there is exactly one target phrase in ϕ) then 〈p, ϕ〉
is also a phrase pair (Koehn et al., 2003).

Next, we lift the notion of consistently aligned phrase pairs to our rule spans.

Simply put, for a consistently aligned rule span 〈p, p1 · · · pn〉 we require that it re-

spects the alignment A in the sense that the origin i of an alignment (i, j) ∈ A is

covered by p if and only if the destination j is covered by p1, . . . , pn. Formally, the

rule span 〈p, p1 · · · pn〉 is consistently aligned if for every (i, j) ∈ A we have i ∈ p if

and only if j ∈
⋃n
k=1 pk. For example, given the word-aligned sentence pair in Fig-

ure 4.1, the rule span 〈[2, 4], [2, 4] [8, 8]〉 is consistently aligned, whereas the phrase

1Spans overlap if their intersection is non-empty.
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4.2 Rule Extraction

that1 concludes2 the3 explanations4 of5 vote6

damit1 sind2 die3 Erklärungen4 zu5 den6 Abstimmungen7 beendet8

Figure 4.1: Word-aligned sentence pair.
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VAFIN[2,2]
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die3
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ART[6,6]

den6

NN[7,7]

Abstimmungen7

VVPP[8,8]

beendet8

Figure 4.2: Bi-parsed word-aligned sentence pair.

pair 〈[2, 4], [2, 8]〉 is not.

We still incorporate parse trees for both our source and target language. Thus, for

each word-aligned sentence pair 〈e, A, f〉 we have a parse tree s for e and a parse

tree t for f . This is illustrated in Figure 4.2. In the minimal tree-to-tree `MBOT,

we addressed a tree fragment u by its position w. Each such node w of a parse

tree governs a unique phrase. We have indicated those phrases as subscript to the

non-lexical node labels in the source and the target parse trees of Figure 4.2 for

our running example. A consistently aligned rule span 〈p, p1 · · · pn〉 of 〈e, A, f〉 is

compatible with s and t if (i) there exists a node η of s such that η governs p and

(ii) there exist nodes η1, . . . , ηn of t such that ηk governs pk for all 1 ≤ k ≤ n. For
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Non-Minimal Tree-to-Tree `MBOT

example, given the word-aligned sentence pair and parse trees s and t in Figure 4.2,

the consistently aligned rule span 〈[2, 4], [2, 4] [8, 8]〉 is (i) not compatible with s

because there is no node in s that governs [2, 4] and (ii) not compatible with t

because there is no node in t that governs [2, 4]. However, we can have two separate

rule spans that cover this data. The rule spans 〈[2, 2], [2, 2] [8, 8]〉 and 〈[3, 4], [3, 4]〉
are both consistent with the alignment and compatible with s and t. Note that not

every consistently aligned rule span compatible with s is necessarily compatible

with t. For example 〈[3, 6], [3, 7]〉 is consistently aligned and compatible with s but

not compatible with t. For the same data, rule span 〈[3, 6], [3, 4] [5, 7]〉 is consistently

aligned and compatible with both s and t.

Now we can sketch the algorithm. At first, we extract initial rules and from those

we derive additional rules. We continue to work with the word-aligned sentence

pair 〈e, A, f〉 with parse trees s for e and t for f . For each consistently aligned rule

span 〈p, p1 · · · pn〉 that is compatible with both s and t we extract the rule flat(sη)→(
flat(tη1), . . . , flat(tηn)

)
, where

• flat(u) removes all internal nodes from u,

• sη is the tree fragment rooted in a node η of s that governs p, and

• tηk is the tree fragment rooted in ηk of t for each selection of nodes η1, . . . , ηn

such that nk governs pk for each 1 ≤ k ≤ n.

The rules obtained in this manner are called initial rules for 〈e, A, f〉, s, and t. For

example, for the rule span 〈[2, 2], [2, 2] [8, 8]〉 we extract only one initial rule. More

precisely, we have

• sη = (VBZ concludes),

• tη1 = (VAFIN sind),

• and tη2 = (VVPP beendet).

The function flat leaves sη, tη1, and tη2 unchanged. But for the rule span 〈[3, 4], [3, 4]〉
we extract

• sη = (NP (DT the) (NNS explanations)) and
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4.2 Rule Extraction

• tη1 =
(
NP (ART die) (NN Erklärungen)

)
for which the function returns flat(sη) = (NP the explanations) and flat(tη1) =

(NP die Erklärungen). We display all initial rules extractable for our running exam-

ple in Figure 4.3. In principle there are even further nonsense initial rules like those

that introduce unnecessary discontinuity which we want to prevent. The boxed

rules in Figure 4.3 are such nonsense rules. The rule on the left introduces a un-

necessary discontinuity because the target parse tree allows for a consecutive span

and hence a continuous rule which is displayed on top. For the rule on the right

a continuous span is not given by the target parse tree but we still consider it an

unnecessary discontinuity because the token ‘den’ at [6,6] is an unaligned word

and we do not wish to induce more discontinuity by such tokens.

All initial rules are completely lexical in the sense that they never contain a

non-lexical leaf in the source nor in any target tree fragment. We introduce non-

lexical rules using the same approach as for the hierarchical rules of Chiang (2007).

Roughly speaking, we obtain a new rule r′′ by “excising” an initial rule r from

another rule r′ and replacing the removed part by

• the root label of the left-hand side of r in the source tree fragment of r′

• the root label(s) of the right-hand side of r in the target tree fragment(s) of r′,

and

• linking the removed parts appropriately,

so that the flatted substitution of r into r′′ can yield r′. This “excision” process is

illustrated in Figure 4.4, where we remove the middle initial rule from the topmost

initial rule. The result is displayed at the bottom in Figure 4.4. Formally, the set of

extractable rules R for a given word-aligned sentence pair 〈e, A, f〉with parse trees s

for e and t for f is the smallest set subject to the following two conditions:

• Each initial rule is in R and thus extractable.

• For every initial rule r and extractable rule r′ ∈ R, any flat rule r′′, into which

we can substitute r to obtain ρ with flat(ρ) = r′, is in R and thus extractable.2

2A rule ρ = s→ (t1, . . . , tn) is flat if flat(ρ) = ρ, where flat(ρ) = flat(s)→ (flat(t1), . . . ,flat(tn)).
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rule span 〈[1, 1], [1, 1]〉:
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that
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( PROAV
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)
rule span 〈[2, 2], [2, 2] [8, 8]〉:
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)
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)

rule span 〈[3, 4], [3, 3] [4, 4]〉:
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→
( ART
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,

NN
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) rule span 〈[6, 6], [6, 6] [7, 7]〉:
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vote
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( ART
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,
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)

rule span 〈[3, 6], [3, 4] [5, 7]〉:
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→
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,

PP
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)

rule span 〈[2, 6], [2, 2] [3, 4] [5, 8]〉:

VP
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→
( VAFIN
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,
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die Erklärungen
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)

rule span 〈[1, 6], [1, 8]〉:
S

that concludes the explanations of vote
→
( TOP

damit sind die Erklärungen zu den Abstimmungen beendet

)

Figure 4.3: Some initial rules extractable from the bi-parsed and word-aligned sen-
tence pair of Figure 4.2.
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r′ :
NP

the explanations of vote
→
( NP

die Erklärungen
,

PP

zu den Abstimmungen

)

r :
PP

of vote → ( PP

zu den Abstimmungen)
Extractable rule obtained after excision:

r′′ :
NP

the explanations PP
→
( NP

die Erklärungen
,

PP

PP

)

Figure 4.4: Excision of the middle initial rule from the topmost initial rule.

As known from the literature, obtaining the set of all extractable rules is not

feasible. This set is generally too large and leads to slow training, slow decoding,

and spurious ambiguity. Hence, it is sensible to restrict the number of extracted

rules. This typically results in a trade-off between speed and translation quality.

Our `MBOT rules are restricted by the parse trees for the source and target sen-

tences, but due to the presence of multiple target tree fragments, the `MBOT model

permits additional flexibility. Consequently, the following additional constraints on

rules s→ (t1, . . . , tn) are enforced.3

(a) We only consider source phrases p of length at most 10 (i.e., i′ − i < 10 for

p = [i, i′]). This restricts the set of initial rules. Allowing a greater length results

in very slow training. In Figure 4.5 we show the increase of training times for

different span sizes and corpus sizes. Interestingly, there is no real difference

between a span of 40 and a span of 60 as both settings result in equally slow

training.

(b) We only excise initial rules with source phrase p of length at least 2 (i.e. i′−i ≥ 1

for p = [i, i′]). This restricts the set of extractable rules. I believe that there is

not much to be gained from the excision of a rule containing only a single leaf

3The constraints are handled by name-value parameters given to the algorithm. The default
values can be easily modified during training.
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Figure 4.5: Training times with different settings of maximum size.

System
Number of extracted rules

English-To-German English-To-Arabic English-To-Chinese
tree-to-tree SCFG 6,630,590 24,358,001 8,161,362
minimal tree-to-tree `MBOT 12,478,160 28,725,229 10,162,325
tree-to-tree `MBOT 40,736,687 151,322,970 84,220,528

Table 4.1: Number of extracted rules for the different rule extractions.

terminal.

(c) The leaves of the source tree fragment s consist of at most 5 occurrences of

lexical items or nonterminals (i.e. `s ≤ 5). This has an effect on both initial and

extractable rules. While we still consider an initial rule with source phrase p of

length 6–10, we do not keep it for decoding. Its only purpose is to allow us to

derive extractable rules from it. For example, we do not output the bottom rule

in Figure 4.3.

To give a quick overview, we report the number of extracted rules for all transla-

tion tasks and rule extractions in Table 4.1. We can immediately confirm that—even

in the restricted tree-to-tree setting—the number of extracted `MBOT rules for each

translation task greatly increases when compared to the SCFG baseline.

The pseudo-code of the extraction algorithm is given in Algorithm 2. We obtain

initial rules by iterating over the length of the source sentence. In fact, we start by
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4.2 Rule Extraction

looking at source spans of increasing length up to length maxSpan4. We define the

span [i, i′] of the source phrase p by the index of the current source word plus the

current length (see lines 2–4). This source span has to be compatible with s and we

check if a node η spans [i, i′]. When there is no node that covers this span, we stop

immediately and continue with the iteration (lines 5–9). The function FINDCONSIS-

TENTALIGNED is called with the alignment, the current compatible source span, and

the parse tree t. Given the span [i, i′] and the alignment A, we obtain the alignment

points (k, j) ∈ A for all k ∈ [i, i′]. Based on these alignments, we determine the

consistently aligned target spans p1, . . . , pn. Given these spans, we access the tree

fragments rooted at tηk for each pk with 1 ≤ k ≤ n and the function returns these

(line 10). Finally, in line 11 we add the initial rule to R. We obtain a new rule ρ with

unaligned words on the target language side by searching for each target tree frag-

ment tk whether there are unaligned words to the left or right.5 We do not want to

introduce more discontinuities by unaligned words, hence we ensure in the function

FINDUNALIGNEDWORDS that there is a node that covers the new span consisting of

the original span pk plus the span of the unaligned word(s). When this is given, we

add the rule to R (lines 13–17). We obtain extractable rules for each initial rule

as well as for possible rules with unaligned words by calling EXTRACTABLERULES

(line 12 and line 16). In this function (lines 23–34) we are basically using the same

approach as for initial rules. We iterate over the source span of r′ incrementally

increasing the length. In the first iteration, we make sure that the span covers the

minimum size (see constraint (b); lines 24–25). Given this new source span, we

retrieve all initial rules from R that cover this span (line 26). There can be multiple

rules due to unaligned words. In lines 27–31 we excise each rule r from r′ as shown

in Figure 4.4 and add the result to RE. Then EXTRACTABLERULES is called again but

with r′′ and next_i is defined as the position that comes right after the excised part

(line 30). By calling EXTRACTABLERULES recursively, all possible combinations of

excisions are considered. The last step is to output all initial and extractable rules

4This is the implementation of constraint (a).
5Unaligned source words are automatically considered as we iterate over the source sentence.
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Excising rule span 〈[3, 4], [3, 4]〉:
VP

concludes NP of vote
→
( VAFIN
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,

NP
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)

Excising rule span 〈[5, 6], [5, 7]〉:
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concludes the explanations PP
→
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,
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,
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)

Excising rule span 〈[3, 4], [3, 4]〉 and rule span 〈[5, 6], [5, 7]〉:
VP

concludes NP PP
→
( VAFIN

sind
,

NP

NP
,

VP

PP beendet

)

Excising rule span 〈[3, 6], [3, 4] [5, 7]〉:
VP

concludes NP
→
( VAFIN

sind
,

NP

NP
,

VP

PP beendet

)

Figure 4.6: Some extractable rules for the rule span 〈[2, 6], [2, 2] [3, 4] [5, 8]〉.

for the given sentence pair that are conform with constraint (c) (line 20).

Figure 4.6 shows some extractable rules for the initial rule 〈[2, 6], [2, 2][3, 4][5, 8]〉.

4.3 Translation Model

We use the log-linear model introduced in Section 3.4 to estimate the features

hm(·) with weights λm scored on sentential forms 〈s, (t)〉 of our extracted `MBOT

such that the yield of s reads e and the yield of t reads f . Our model uses the

same ten features and scores them as explained in Section 3.4. There is only one

minor difference when computing the translation weights for ϕ
(
s|(t1, . . . , tn)

)
and

ϕ
(
(t1, . . . , tn)|s

)
, respectively: The probabilities of all rules that were extracted at
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Algorithm 2 Rule extraction for non-minimal tree-to-tree `MBOT rules
Require: word-aligned sentence pair 〈e,A, f〉 with parse trees s and t
Ensure: `MBOT rules R
1: function INITIALRULES(e,A, f, s, t)
2: for length← 1, length ≤ maxSpan, length+ + do // ensures constraint (a)
3: for i← 0, i < |e| − (length− 1), i+ + do
4: i′ ← i+ length− 1
5: if there exists node η of s spanning [i, i′] then // p compatible with s
6: s← subtree rooted in η
7: else
8: continue
9: end if

10: (t1, . . . , tn)← FINDCONSISTENTALIGNED(A, i, i′, t)
11: R[i, i′]← R[i, i′] ∪ {r′ : 〈s→ (t1, . . . , tn)〉} // add initial rule to R
12: EXTRACTABLERULES(i, i′, r′) // find extractable rules
13: for all 1 ≤ k ≤ n do
14: ρ← FINDUNALIGNEDWORDS(r′, tk, A)
15: R[i, i′]← R[i, i′] ∪ ρ
16: EXTRACTABLERULES(i, i′, ρ)
17: end for
18: end for
19: end for
20: OUTPUTRULES(R,RE) // ensures constraint (c)
21: end function
22:
23: function EXTRACTABLERULES(next_i, end, r′)
24: for i← next_i, i ≤ end, i+ + do
25: for i′ ← i+ (minSpanSource− 1), i′ ≤ end, i′ + + do // ensures constraint (b)
26: R′ ← R[i, i′] // retrieve initial rules covering this span
27: for all r ∈ R′ do
28: r′′ ← EXCISE(r, r′)
29: RE [i, i′]← RE [i, i′] ∪ {r′′}
30: EXTRACTABLERULES(i+ 1, end, r′′)
31: end for
32: end for
33: end for
34: end function
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most 10 times get discounted by applying Good-Turing smoothing (Good, 1953).6

This smoothing technique penalizes low frequency rules more than rules with a

higher frequency.

In the following experiments, the log-linear model with the adjusted discounting

is used to score the minimal and the non-minimal `MBOT. The decoder for the

`MBOT model is provided by the MBOTMOSES branch (Braune et al., 2013) of

MOSES as presented in Section 3.3.

4.4 Experimental Results

In this section, we show the setup and results as presented in Seemann et al.

(2015b). The main contribution is the experimental evaluation of `MBOTs in the

tree-to-tree setting. We also compare to standard models in order to evaluate the

effect of the discontinuities offered by the `MBOT models. We chose to perform ex-

periments for the translation directions English-to-German, English-to-Arabic, and

English-to-Chinese. The languages were selected such that constituency parsers and

large parallel corpora are readily available. In addition, we selected target lan-

guages in which the discontinuity offered by the `MBOT models might be useful.

4.4.1 Setup

We summarize the experimental setup in Table 4.2. We applied length-ratio filtering

to all training sets by limiting the numbers of token to 80 per sentence. Further-

more, all training sets have been word aligned using GIZA++ (Och and Ney, 2003)

using the grow-diag-final-and heuristic (Koehn et al., 2005).

The tasks required various forms of preprocessing of the data. The English

(source) side of the training data was true-cased and parsed with the provided

grammar of the Berkeley parser (Petrov et al., 2006). Next, we comment on the

6For the experiments presented in Section 3.5, these rules were discounted by a fixed value.
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English to German English to Arabic English to Chinese
training data 7th Europarl (Koehn, 2005) MultiUN (Eisele and Chen, 2010)

training data size ≈ 1.8M sentence pairs ≈ 5.7M sentence pairs ≈ 1.9M sentence pairs
source-side parser Berkeley parser (Petrov et al., 2006)
target-side parser BitPar (Schmid, 2004) Berkeley parser (Petrov et al., 2006)

language model 5-gram SRILM (Stolcke, 2002)
add. LM data WMT 2013 (Bojar et al., 2013) Arabic in MultiUN Chinese in MultiUN
LM data size ≈ 57M sentences ≈ 9.7M sentences ≈ 9.5M sentences
tuning data WMT 2013 cut from MultiUN NIST 2002, 2003, 2005
tuning size 3,000 sentences 2,000 sentences 2,879 sentences

test data WMT 2013 cut from MultiUN NIST 2008 (NIST, 2010)
test size 3,000 sentences 1,000 sentences 1,859 sentences

Table 4.2: Summary of the used resources.

preprocessing tasks that are specific for each translation task.

• English-to-German: The German text was also true-cased and parsed with the

provided grammar of BitPar (Schmid, 2004). As for the experiments in Sec-

tion 3.5.1, we removed the functional and morphological annotation from the

tags used in the parses.

• English-to-Arabic: The Arabic text was tokenized with MADA (Habash et al.,

2009) and transliterated according to Buckwalter (2002). Since the Berkeley

parser also provides a grammar for Arabic, we parsed the Arabic training data

with it.

• English-to-Chinese: The Chinese sentences were word-segmented using the

Stanford Word Segmenter (Chang et al., 2008). Again, the Berkeley parser-

with its provided grammar delivers the parse trees for the Chinese training

data.

After the preprocessing steps, we obtained a word-aligned, bi-parsed parallel cor-

pus, to which we applied the rule extractions as described in Sections 3.2 and 4.2

together with the SCFG rule extraction provided by MOSES (Koehn et al., 2007;

Hoang et al., 2009), which we use as a baseline.

In all experiments the feature weights λm of the log-linear model were trained

using minimum error rate training (Och, 2003).
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BLEU
System En-De En-Ar En-Zh

tree-to-tree SCFG (baseline) 14.50 43.49 17.63
minimal `MBOT 14.09 32.88 12.01

non-minimal `MBOT 14.41 41.37 16.77
hierarchical phrase-based 17.00 51.71 18.74

phrase-based 16.80 51.90 18.09

Table 4.3: BLEU evaluation results for all 3 translation tasks.

4.4.2 Evaluation

We start by comparing all systems to each other using the BLEU score (Papineni

et al., 2002). We also present the results obtained by a phrase-based system (Koehn

et al., 2003) and a hierarchical phrase-based system (Chiang, 2005). Both systems

were trained with their respective standard settings within the MOSES toolkit. All

systems were tuned for BLEU on the tuning data, and we report the BLEU scores

obtained by the tuned systems on the true-cased test set for German, on the translit-

erated test set for Arabic, and on the word-segmented test set for Chinese.

We performed large scale experiments on three major translation tasks, namely

English-to-German (En-De), English-to-Arabic (En-Ar), and English-to-Chinese (En-

Zh). The goal was to evaluate the following `MBOT systems: (i) the minimal tree-to-

tree system (Chapter 3), and (ii) the non-minimal tree-to-tree system. The obtained

results are reported in Table 4.3.

Let us now discuss the results for the various settings. Overall, we observe that

the tree-to-tree systems perform worse than a system incorporating no syntax or a

system that is only formally syntax-based. For the baseline system using SCFG rules

(i.e., `MBOT rules with a single tree fragment on both the left- and right-hand side),

this result is not surprising. Already, Lavie et al. (2008) have shown that tree-to-tree

rules are too restrictive to achieve good lexical coverage. However, our results show

that making rules more flexible by allowing several target tree fragments hurts the

performance instead of yielding improvements. This effect is particularly visible
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when only using minimal rules. On the English-to-Arabic and English-to-Chinese

translation tasks, the minimal `MBOT system loses 10.61 and 5.62 BLEU points,

respectively, over the baseline. Interestingly, on the English-to-German translation

task the loss is only 0.41 BLEU points. Adding non-minimal `MBOT rules yields the

expected large improvements, but is overall still not good enough to beat the tree-

to-tree baseline. This result is interesting insofar as it does not confirm the results

of Sun et al. (2009) on large scale experiments with target side discontinuities.7

4.4.3 Analysis of Discontinuity

Another goal was to identify whether discontinuous rules are useful and to what

extent these are useful. Consequently, we inspected the statistics on the rules used

to derive the final sentential forms. Table 4.4 shows the statistics on the rules used

during decoding. Continuous rules (i.e., rules with a single tree fragment in the

right-hand side) are abbreviated by cont, and (potentially)8 discontinuous rules are

abbreviated by discont. To provide a deeper analysis, we also distinguish between

lexical and structural rules. Lexical rules, abbreviated Lex, are rules that contain no

leaf nonterminal. Similarly structural rules, abbreviated Struct, are rules containing

at least one such nonterminal. In this sense, lexical rules are purely lexical and

structural rules can contain lexical material.

Minimal `MBOT If we only use minimal `MBOT rules, then 13.7% on the English-

to-German, 12.7% on the English-to-Arabic, and 10.0% on the English-to-Chinese

translation task of the rules used during decoding are discontinuous. For all the

translation tasks, the majority of the discontinuous rules are structural. This fact is

not very surprising since the leaves of the minimal tree-to-tree rules are either lexi-

7The experiments of Sun et al. (2009) report scores for the translation task Chinese-to-English
for systems trained on less than 500,000 sentences only. Their model allows discontinuities on the
source language side, which should be comparable to target-side discontinuities for the opposite
translation direction English-to-Chinese.

8As explained in Section 3.5.2, we do not know whether a rule was used in a real discontinuous
fashion or not.
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English-to-German English-to-Arabic English-to-Chinese
`MBOT Type cont. discont. cont. discont. cont. discont.

minimal

Lex 55,910 2,167 18,389 1,138 34,275 516
Struct 4,492 7,386 2,855 1,920 8,820 4,292

Total 60,402 9,553 21,244 3,085 43,095 4,808
69,955 24,329 47,903

non-minimal

Lex 44,951 4,149 9,826 1,605 35,031 771
Struct 2,850 2,348 1,581 746 2,045 744

Total 47,801 6,497 11,407 2,315 37,076 1,515
54,298 13,722 38,591

Table 4.4: Number of rules per type used when decoding test (Lex = lexical rules;
Struct = structural rules; [dis]cont. = [dis]continuous).

cal items or leaf nonterminals. The minimality constraint encourages word-by-word

translation, and once the lexical rules are excised, only structural rules remain.

Based on the observed high BLEU score losses, it seems that minimal tree-to-tree

rules are, at present, unable to correctly assemble discontinuous parts.

Non-minimal `MBOT If we additionally use non-minimal tree-to-tree rules, it is

observable that we overall need fewer rules to decode the test sets. This is expected

as non-minimal rules can cover larger parts of a sentence. Furthermore, the rate

of discontinuous rules changes. For English-to-German the rate drops to 12.0%,

whereas for the English-to-Arabic translation task it increases to 16.9%. Finally, for

English-to-Chinese suddenly only 4% of the rules applied during decoding are dis-

continuous. The non-minimality encourages large rules, which are more likely to

contain only lexical items. As expected, the number of discontinuous lexical rules is

always larger than the number of discontinuous structural rules in this setting. This

is particularly true for English-to-German and English-to-Arabic, where almost two

thirds of the discontinuous rules are lexical, whereas the distribution is almost even

for English-to-Chinese. We believe that these lexical discontinuous rules capture rel-

evant idiomatic expressions or encode agreement or correspondences, which yield

the large improvements in translation quality over minimal rules only.

In Table 4.5 we distinguish the discontinuous rules further with respect to the

84



4.5 Summary

Target tree fragments
Language Pair `MBOT 2 3 4 5 ≥ 6

English-to-German
minimal 6,458 2,389 471 34 1

non-minimal 5,601 821 62 13 –

English-to-Arabic
minimal 2,525 455 67 8 3

non-minimal 1,577 565 158 38 13

English-to-Chinese
minimal 3,816 900 82 6 4

non-minimal 1,222 248 36 4 5

Table 4.5: Number of target tree fragments for all three translation tasks and the
two different settings.

number of target tree fragments. For all three translation tasks, the majority of dis-

continuous rules used to decode the test sets have two target tree fragments. On

the English-to-German translation task, those rules account to 67.6% for the mini-

mal setting and increase to 86.2% for the non-minimal setting. On the other hand,

in the minimal setting for the English-to-Arabic translation task, those rules are ac-

counted for by 81.8% but drop to 68.1% in the non-minimal setting. For the trans-

lation from English-to-Chinese, the percentage is almost equal: 79.4% vs 80.6%

(minimal vs non-minimal setting).

4.5 Summary

We presented the first parameterized algorithm for the extraction of non-minimal

`MBOT rules. The original algorithm extracts minimal rules only which are partic-

ularly inappropriate for translating fixed phrases. Hence, we hoped to overcome

the limitation of the minimal rules. We evaluated the new algorithm together with

several other systems in three large scale translation tasks (English-to-German,

English-to-Arabic, and English-to-Chinese). As expected, the non-minimal tree-to-

tree system performs much better than the corresponding system using only min-

imal rules, but even the system with non-minimal rules does not beat the SCFG

baseline (using non-minimal rules). It seems that discontinuity remains a challenge
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for tree-to-tree rules. Furthermore, the analysis of the (possible) discontinuous rules

used to decode the test sets shows a strong shift from structural discontinuous rules

(used in the minimal system) to lexical discontinuous rules (used more in the non-

minimal system).
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Chapter 5

Non-Minimal String-to-Tree `MBOT

We start this chapter with the motivation of string-to-tree `MBOTs. Moving from

trees to strings on the source language side makes it necessary to adapt our the-

oretical model. Furthermore, we will readjust the algorithm from Section 4.2 to

extract a set of string-to-tree `MBOT rules. Finally, we evaluate our system on three

large scale experiments. To put our results in perspective, we compare against a

string-to-tree SCFG baseline as well as against systems that are not syntax-based.

5.1 Motivation

The minimal `MBOT rule extraction presented in Chapter 3 as well as its non-

minimal counterpart presented in the previous chapter extract rules from the sen-

tence pairs of a word-aligned and bi-parsed parallel corpus. In such a corpus, parses

are available for the source language sentences and the target language sentences,

which might be difficult to obtain. Even if constituent parsers are available, we need

to parse the large training corpus, which usually takes significant time and adds a

source for errors and specificity, which can lead to lower translation performance

and to lower coverage (Wellington et al., 2006). We confirm this in our experi-

ments of Section 4.4.2, where we observe a huge gap between the BLEU scores
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of tree-to-tree based systems (SCFG and `MBOT) and (hierarchical) phrase-based

systems. Furthermore, it is well known (Chiang, 2010) that string-to-tree systems

— i.e., parses only on the target-side — generally yield higher translation qual-

ity compared to tree-to-tree systems. Hence, we decided to adapt the algorithm

presented in Section 4.2 to extract non-minimal string-to-tree rules that still offer

discontinuities on their right-hand sides. Simply removing the tree structure from

the left-hand side of the tree-to-tree `MBOT rules is not an option. First, this would

preserve parse errors and second, tree-to-tree rules are linguistically motivated as

only rules are extracted that match a constituent in the parse tree. But the left-hand

sides of string-to-tree rules have no such motivation and thus encourage a consis-

tent translation of larger parts of the source sentence which do not necessarily

match syntactic constituents.

5.2 Theoretical Model

As our translation model, we use a string-to-tree variant of the shallow `MBOT as

introduced in Section 3.1. We keep on calling our variant `MBOT for simplicity. The

model still works on pairs 〈s, (t1, . . . , tn)〉 but with a single source string s and po-

tentially several target tree fragments t1, . . . , tn. The source string s is built from the

lexical items and the special placeholder X which can occur several times. This pair

is a sentential form of rank n and it is shallow if all target tree fragments t1, . . . , tn

in it are shallow. We still have to store an alignment between the placeholders X

and the nonterminal leaves in the target tree fragments. Just like in the tree-to-tree

setting, each placeholder occurrence can link to several leaves in the target tree

fragments indicating that these parts are supposed to develop synchronously. How-

ever, each non-lexical leaf in the target tree fragments links to exactly one place-

holder occurrence. As the left-hand sides of the rules are now based on strings, let

us recap strings. A string is of the form s = w1 . . . wk and its length is denoted by

|s| = k. We can access the x-th letter in w by wx = s[x] for all 1 ≤ x ≤ k. We obtain
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explanations →
( NN

Erklärungen

)
X X →

( NP

NP
,

PP

PP

)

concludes X →
( VAFIN

sind
,

NP

NP
,

VP

PP beendet

)

Figure 5.1: Several valid rules for our string-to-tree `MBOT.

the set of placeholders in s by ph(s) = {x | wx = X}. Now we can formally define

the alignment as an injective mapping ψ : leaf
(n)
N (t1, . . . , tn)→ ph(s)×N such that if

(x, i) ∈ ran(ψ), then also (x, j) ∈ ran(ψ) for all 1 ≤ j ≤ i. Furthermore, the x-rank

rk(ρ, x) of a rule ρ for each x ∈ ph(s) is

rk(ρ, x) = max {i ∈ N | (x, i) ∈ ran(ψ)} .

Hence, a string-to-tree `MBOT is a finite set of rules which have the form s →ψ

(t1, . . . , tn), containing a shallow sentential form, written 〈s, (t1, . . . , tn)〉, and an

alignment ψ for it (see Definition 5). Figure 5.1 depicts some valid string-to-tree

rules.

Before we can formulate how to obtain weighted sentential forms, we need one

additional notation. Let x ∈ ph(s) be the x-th letter and v a string. Then s[x ← v]

denotes the string that is obtained from s by replacing the x-th letter by v. Now we

can define how to obtain the set τ(R, c).

Definition 7 The set τ(R, c) of weighted sentential forms of the string-to-tree

`MBOT (R, c) is the smallest set T subject to the following restriction: If there exist

• a rule ρ = s→ψ (t1, . . . , tn) ∈ R,

• a weighted sentential form 〈sx, cx, (tx1 , . . . , txnx
)〉 ∈ T for every x ∈ ph(s) with

– rk(ρ, x) = nx,1

1If x has n alignments, then the sentential form selected for it has to have suitably many target
tree fragments.
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– ti(x
′) = tvj (ε) with ψ(ix′) = (v, j) for every ix′ ∈ leaf

(n)
N (t1, . . . , tn),2

then 〈s′, c′, (t′1, . . . , t′n)〉 is a weighted sentential form, where

• s′ = s[x← sx | x ∈ ph(s)],

• c′ = c(ρ) ·
∏

x∈ph(s) cx, and

• t′k = tk[x
′ ← tvj | ψ(ix′) = (v, j)] for every 1 ≤ k ≤ n.

Given a rule ρ containing a placeholder X that is linked to nonterminal leaves

N1, . . . , Nl in the target tree fragments, we select a sentential form whose roots of

its target tree fragments read N1, . . . , Nl. Again, the rank of the placeholder X in ρ

should match the number l of target tree fragments in the selected weighted sen-

tential form. When those requirements are fulfilled, the placeholder X is replaced

by the source string of the sentential form and the linked leaves of ρ are replaced by

the target tree fragments of the selected sentential form. Ideally, the process is re-

peated until the complete source sentence is derived. As in the tree-to-tree setting,

completely lexical rules are automatically weighted sentential forms. Furthermore,

the last rule applied must dissolve any earlier introduced discontinuities and the

final weighted sentential form is of the form 〈s, c, (t)〉. We illustrate the process in

Figure 5.2, where we replace the placeholder X in the source string, which is linked

to the leaves NP and PP in the target tree fragments. The sentential form below

matches since its root labels of the target tree fragments read ‘NP PP’. Thus, we can

substitute the sentential form into ρ and obtain the sentential form shown at the

bottom.

5.3 Rule Extraction

In the string-to-tree setting, our training corpus still consists of word-aligned sen-

tence pairs 〈e, A, f〉, but only for the target side a parse tree is available. We keep

on using the notion of a consistently aligned rule span 〈p, p1 · · · pn〉. We yet have

2The labels for the target tree fragments have to coincide.
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Combining a rule with a sentential form:

ρ : concludes X →
( VAFIN

sind
,

NP

NP
,

VP

PP beendet

)

〈
the explanation of vote ,

( NP

die Erklärungen
,

PP

zu den Abstimmungen

) 〉

Obtained new sentential form:

〈
concludes the explanations of vote ,

( VAFIN

sind
,

NP

NP

die Erklärungen

,

VP

PP

zu den Abstimmungen

longer beendet
) 〉

Figure 5.2: Substitution of sentential forms.

available parses for the target language sentences, thus we have a parse tree t for f

for each word-aligned sentence pair 〈e, A, f〉. As before, a consistently aligned rule

span 〈p, p1 · · · pn〉 of 〈e, A, f〉 is compatible with t if there exist nodes η1, . . . , ηn of t

such that ηk governs pk for all 1 ≤ k ≤ n.

We depict our running example of a word-aligned sentence pair for the string-to-

tree setting in Figure 5.3. If we reconsider the example rule span 〈[2, 4], [2, 4] [8, 8]〉
from Section 4.2, then this rule span is still consistently aligned, whereas

〈[2, 4], [2, 8]〉 is still not. But given the parse tree t in Figure 5.3, the consis-

tently aligned rule span 〈[2, 4], [2, 4] [8, 8]〉 is not compatible with t because there

is no node in t that governs [2, 4]. However, for the same data, the rule span

〈[2, 4], [2, 2] [3, 4] [8, 8]〉 is consistently aligned and compatible with t.3

As before, we start with the extraction of initial rules for 〈e, A, f〉 and t. For

each consistently aligned rule span 〈p, p1 · · · pn〉 that is compatible with t and each

selection of nodes η1, . . . , ηn of t such that nk governs pk for each 1 ≤ k ≤ n, we can

extract the rule e(p)→
(
flat(tη1), . . . , flat(tηn)

)
, where

3Note that in the non-minimal tree-to-tree setting this rule span was not compatible with the
parse tree s for the source sentence because there was no syntactic constituent at [2,4].
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that1 concludes2 the3 explanations4 of5 vote6

TOP[1,8]

PROAV[1,1]

damit1

VAFIN[2,2]

sind2

NP[3,4]

ART[3,3]

die3

NN[4,4]

Erklärungen4

VP[5,8]

PP[5,7]

APPR[5,5]

zu5

ART[6,6]

den6

NN[7,7]

Abstimmungen7

VVPP[8,8]

beendet8

Figure 5.3: Word-aligned sentence pair with target-side parse.

• e(p) is the substring of e at span p,4

• flat(u) removes all internal nodes from u, and

• tη is the subtree rooted in η for node η of t.

For the rule span 〈[2, 4], [2, 2] [3, 4] [8, 8]〉 we can extract one initial rule with

• e([2, 4]) = concludes the explanations,

• tη1 = (VAFIN sind),

• tη2 =
(
NP (ART die) (NN Erklärungen)

)
,

• and tη3 = (VVPP beendet).

The function flat leaves tη1 and tη3 unchanged, but flat(tη2) = (NP die Erklärungen).

Thus, we obtain the boxed rule of Figure 5.4 where we additionally display some

other initial rules. As before, the initial rules are completely lexical and we obtain

a new rule r′′ by “excising” an initial rule r from another rule r′ and replacing the

removed part by

• the placeholder X in the source string of r′,

• the root label(s) of the right-hand side of r in the target tree fragment(s) of r′,

and

• linking the removed parts appropriately.

We illustrate this process in Figure 5.5. Formally, the set of extractable rules R for a

4If p = [i, i′], then e(p) = e[i, i′] is the substring of e ranging from the i-th token to the i′-th token.
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rule span 〈[2, 2], [2, 2] [8, 8]〉:

concludes →
( VAFIN

sind
,

VVPP

beendet

)
rule span 〈[3, 3], [3, 3]〉:

the →
( ART

die

)
rule span 〈[4, 4], [4, 4]〉:

explanations →
( NN

Erklärungen

)

rule span 〈[3, 4], [3, 4]〉:

the explanations →
( NP

die Erklärungen

)
rule span 〈[4, 5], [4, 4] [5, 5]〉:

explanations of →
( NN

Erklärungen
,

APPR

zu

)

rule span 〈[5, 6], [5, 7]〉:

of vote →
( PP

zu den Abstimmungen

)
rule span 〈[1, 3], [1, 1] [2, 2] [3, 3] [8, 8]〉:

that concludes the →
( PROAV

damit
,

VAFIN

sind
,

ART

die
,

VVPP

beendet

)

rule span 〈[2, 4], [2, 2] [3, 4] [8, 8]〉:

concludes the explanations →
( VAFIN

sind
,

NP

die Erklärungen
,

VVPP

beendet

)

rule span 〈[3, 5], [3, 4] [5, 5]〉:

the explanations of →
( NP

die Erklärungen
,

APPR

zu

)

rule span 〈[3, 6], [3, 4] [5, 7]〉:

the explanations of vote →
( NP

die Erklärungen
,

PP

zu den Abstimmungen

)

rule span 〈[1, 5], [1, 1] [2, 2] [3, 4] [5, 5] [8, 8]〉:

that concludes the explanations of →
( PROAV

damit
,

VAFIN

sind
,

NP

die Erklärungen
,

APPR

zu
,

VVPP

beendet

)

rule span 〈[2, 6], [2, 2] [3, 4] [5, 8]〉:

concludes the explanations of vote →
( VAFIN

sind
,

NP

die Erklärungen
,

VP

zu den Abstimmungen beendet

)

Figure 5.4: Some initial rules extracted from the word-aligned sentence pair and
parse of Figure 5.3.
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r′ : the explanations of vote →
( NP

die Erklärungen
,

PP

zu den Abstimmungen

)

r : of vote → ( PP

zu den Abstimmungen)
Extractable rule obtained after excision:

r′′ : the explanations X →
( NP

die Erklärungen
,

PP

PP

)

Figure 5.5: Excision of the middle initial rule from the topmost initial rule. Substi-
tuting the middle rule into the result yields the topmost rule.

given word-aligned sentence pair 〈e, A, f〉 with parse tree t for f is the smallest set

subject to the following two conditions:

• Each initial rule is in R and thus extractable.

• For every initial rule r and extractable rule r′ ∈ R, any flat rule r′′, into which

we can substitute r to obtain ρ with flat(ρ) = r′, is in R and thus extractable.5

As already explained in Section 4.2, it is sensible to restrict the number of ex-

tracted rules. While in the tree-to-tree setting the parse trees for both the source

and target language side constrained the size, this is not given in the string-to-

tree setting. Although our `MBOT rules are still restricted by the parses for the

target sentences, this is not a real limitation for a model that permits the unlim-

ited presence of multiple target tree fragments. Consequently, we have to impose

the existing constraints stated in Section 4.2 and even define additional ones. The

following constraints on rules s→ (t1, . . . , tn) are enforced.6

(a) We only consider source phrases p of length at most 10 (i.e., i′ − i < 10 for

p = [i, i′]).

(b) We only excise initial rules with source phrase p of length at least 2 (i.e. i′−i ≥ 1

5A rule ρ = s→ (t1, . . . , tn) is flat if flat(ρ) = ρ, where flat(ρ) = s→ (flat(t1), . . . ,flat(tn)).
6Again, the default values can be easily modified during training.
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5.3 Rule Extraction

for p = [i, i′]).

(c) The source string s contains at most 5 occurrences of lexical items or X (i.e.

`s ≤ 5).

(d) We only excise initial rules with target phrases p1 · · · pn of length at least 2 (i.e.

j′ − j ≥ 1 for pk = [j, j′] for 1 ≤ k ≤ n).

(e) The left-most token of the source string s cannot be X (i.e., s[1, 1] 6= X).

(f) The source string contains at least one lexical item that was aligned in 〈e, A, f〉.
(g) The source string s cannot have consecutive Xs (i.e., XX is not a substring of s).

For the effects of and the reasoning behind constraints (a)–(c) see Section 4.2.

Constraint (d) is an extension of constraint (b). In the string-to-tree setting, also

each target tree fragment has to span at least two tokens. Otherwise, training is

very slow. In Figure 5.6 we show the steep incline for different corpus sizes when

this constraint is not enforced. Constraints (e)–(g) have an effect on extractable

rules. Adjacent Xs on the left-hand side are the major cause for spurious ambiguity

and are thus prohibited. By requiring that the left-hand side starts with a terminal

(constraint (e)), the rules remain lexicalized which allows effective rule filtering

before decoding. In addition, without lexical material the chart-based decoder has

too many choices for the span of a placeholder X7 (see Section 2.1.3) which results

in very slow decoding. Constraint (f) forces the decoder to take lexical evidence

into account. This avoids rules that have lexical material only on one side. Such

rules typically either lose lexical information8 or add (probably) wrong lexical in-

formation9.

In Table 5.1 we report the number of extracted rules for all translation tasks.

Relaxing the conditions during rule extraction from non-minimal tree-to-tree to

string-to-tree greatly increases the number of extracted rules for each translation

task. The string-to-tree rule extraction for `MBOTs yields 2–3 times more rules than

the non-minimal tree-to-tree rule extraction. In addition, the availability of several

7The standard setting in the MBOTMOSES decoder is 20.
8If there is a word on the left-hand side but not on the right-hand side.
9If there is a word on the right-hand side but not on the left-hand side.
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Figure 5.6: Training times for different corpus sizes when not enforcing con-
straint (d).

System
Number of extracted rules

English-To-German English-To-Arabic English-To-Chinese
tree-to-tree `MBOT 40,736,687 151,322,970 84,220,528
string-to-tree SCFG 14,092,729 55,169,043 17,047,570
string-to-tree `MBOT 143,661,376 491,307,787 162,240,663

Table 5.1: The number of extracted rules for different extraction algorithms.

target tree fragments (and thus discontinuities) also leads to additional freedom

during rule extraction, which is evidenced by the larger numbers of rules extracted

for `MBOTs compared to those extracted for the SCFG baselines.

As in the tree-to-tree setting, we need a special `MBOT glue grammar. We collect

glue rules again from completely lexical rules. The grammar allows the decoder to

use discontinuous rules in a continuous way by concatenating the root nodes of the

target tree fragments as siblings under a special nonterminal.

We present the pseudo-code for extraction of string-to-tree `MBOT rules in Algo-

rithm 3. It is an extension of the non-minimal tree-to-tree version of the algorithm

(see Section 4.2). In the following, we will point out the important differences.

Lines 2 to 4 are exactly as in the tree-to-tree variant as we still iterate by increas-

ing span length over the source sentence. Since the current source span does not
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5.4 Translation Model

need to be compatible with a parse tree, we simply obtain the source string that is

covered by it (line 5). Line 6 is identical to the non-minimal tree-to-tree algorithm

and provides us with the consistently aligned target tree fragments for the current

source span. In line 7 we add the initial rule to R. We again obtain additional rules

with unaligned words on the target language side by using the same approach as

in the non-minimal tree-to-tree algorithm (lines 9–13). As before, we obtain ex-

tractable rules for each initial rule and possible rules containing unaligned material

(line 8 and line 12). To ensure that an extractable rule starts with a terminal (see

constraint (e)), we call EXTRACTABLERULES with the index of the next token, i.e.

i + 1 for source span [i, i′]. In general, the function EXTRACTABLERULES does the

same as in the tree-to-tree version (lines 19 to 36). One difference is that we have

to ensure for each rule r in our set that each target tree fragment has the required

minimum size (constraint (d); line 24). If that is true, then we excise r from r′ as

shown in Figure 5.5. The other difference is to make sure that there is (at least)

one aligned word pair left in our new rule r′′ (constraint (f); line 26). If this is also

given, we add r′′ to RE and call EXTRACTABLERULES with r′′ and define the index of

the next token as i′ + 2, thus assuring that there will be at least one token between

the placeholders in the left-hand side (constraint (g); line 28). The last step is once

again to output all rules from R and RE that conform with constraint (c) (line 16).

As for the non-minimal tree-to-tree algorithm, we display some possible ex-

tractable rules for the initial rule 〈[2, 6], [2, 2] [3, 4] [5, 8]〉 in Figure 5.7.

5.4 Translation Model

Again, the task of the decoder is to find the best corresponding target language

translation f̂ of the source language sentence e licensed by the translation model

and the language model. We use the same log-linear model as introduced in Sec-

tion 4.3 to tune the features hm(·) with weights λm scored on sentential forms

〈s, (t)〉 of our extracted `MBOT M such that s reads e and the yield of t reads f .
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Algorithm 3 Rule extraction for non-minimal string-to-tree `MBOT rules
Require: word-aligned sentence pair 〈e,A, f〉 with parse tree t
Ensure: `MBOT rules R
1: function INITIALRULES(e,A, f, t)
2: for length← 1, length ≤ maxSpan, length+ + do // ensures constraint (a)
3: for i← 0, i < |e| − (length− 1), i+ + do
4: i′ ← i+ length− 1
5: s← e([i, i′])
6: (t1, . . . , tn)← FINDCONSISTENTALIGNED(A, i, i′, t)
7: R[i, i′]← R[i, i′] ∪ {r′ : 〈s→ (t1, . . . , tn)〉}
8: EXTRACTABLERULES(i+ 1, i′, r′) // ensures constraint (e)
9: for all 1 ≤ k ≤ n do

10: ρ← FINDUNALIGNEDWORDS(r′, tk, A)
11: R[i, i′]← R[i, i′] ∪ ρ
12: EXTRACTABLERULES(i+ 1, i′, ρ) // ensures constraint (e)
13: end for
14: end for
15: end for
16: OUTPUTRULES(R,RE) // ensures constraint (c)
17: end function
18:
19: function EXTRACTABLERULES(next_i, end, r′)
20: for i← next_i, i ≤ end, i+ + do
21: for i′ ← i+ (minSpanSource− 1), i′ ≤ end, i′ + + do // ensures constraint (b)
22: R′ ← R[i, i′] // retrieve initial rules covering this span
23: for all r ∈ R′ do
24: if minSpanTarget(r) == true then // ensures constraint (d)
25: r′′ ← EXCISE(r, r′)
26: if requireAlignedWord(r′′, A) == true then // ensures constraint (f)
27: RE [i, i′]← RE [i, i′] ∪ {r′′}
28: EXTRACTABLERULES(i+ 2, end, r′′) // ensures constraint (g)
29: else
30: continue
31: end if
32: end if
33: end for
34: end for
35: end for
36: end function
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Excising rule span 〈[3, 4], [3, 4]〉:

concludes X of vote →
( VAFIN

sind
,

NP

NP
,

VP

zu den Abstimmungen beendet

)

Excising rule span 〈[5, 6], [5, 7]〉:

concludes the explanations X →
( VAFIN

sind
,

NP

die Erklärungen
,

VP

PP beendet

)

Excising rule span 〈[3, 6], [3, 4] [5, 7]〉:

concludes X →
( VAFIN

sind
,

NP

NP
,

VP

PP beendet

)

Figure 5.7: Some extractable rules for the rule span 〈[2, 6], [2, 2] [3, 4] [5, 8]〉.

We use the MBOTMOSES decoder (Braune et al., 2013) which uses a CYK+ chart

parsing algorithm using a standard X-style parse tree which is sped up by cube

pruning (Chiang, 2007) with integrated language model scoring. The model uses

the same ten features as described in Section 3.4.

5.5 Experimental Results

In this section we report the setup and results of the experiments as presented

in Seemann et al. (2015a).

5.5.1 Setup

As a baseline system for our experiments we use the syntax-based component of

the MOSES toolkit (Hoang et al., 2009; Koehn et al., 2007). Our system is the trans-

lation system based on `MBOTs as presented in this chapter. Our and the baseline
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English to German English to Arabic English to Chinese
training data 7th Europarl (Koehn, 2005) MultiUN (Eisele and Chen, 2010)

training data size ≈ 1.8M sentence pairs ≈ 5.7M sentence pairs ≈ 1.9M sentence pairs
target-side parser BitPar (Schmid, 2004) Berkeley parser (Petrov et al., 2006)

language model 5-gram SRILM (Stolcke, 2002)
add. LM data WMT 2013 (Bojar et al., 2013) Arabic in MultiUN Chinese in MultiUN
LM data size ≈ 57M sentences ≈ 9.7M sentences ≈ 9.5M sentences
tuning data WMT 2013 cut from MultiUN NIST 2002, 2003, 2005
tuning size 3,000 sentences 2,000 sentences 2,879 sentences

test data WMT 2013 cut from MultiUN NIST 2008 (NIST, 2010)
test size 3,000 sentences 1,000 sentences 1,859 sentences

Table 5.2: Summary of the experimental setup.

system use linguistic syntactic annotation (parses) only on the target side (string-

to-tree). We apply the rule extraction algorithm as proposed in Section 5.3 and

impose the restrictions stated there. Additional glue-rules that concatenate partial

translations without performing any reordering are used in all systems.

For all experiments (English-to-German, English-to-Arabic, and English-to-

Chinese), we use exactly the same data as presented in Section 4.4.1. The only

difference is that there are no parses for the source language side anymore, hence

the source sentences are simply tokenized and truecased strings. The preprocessing

of the target language is the same as in Section 4.4.1. For convenience reasons, we

repeat the resources used in Table 5.2.

Again, in all experiments the feature weights λm of the log-linear model were

trained using minimum error rate training (Och, 2003).

5.5.2 Evaluation

The overall translation quality was measured with 4-gram BLEU (Papineni et al.,

2002) on true-cased data for German, on transliterated data for Arabic, and on

word-segmented data for Chinese. Significance was computed with Gimpel’s im-

plementation (Gimpel, 2011) of pairwise bootstrap resampling with 1,000 samples.

Table 5.3 lists the evaluation results. In all three setups the `MBOT system signifi-

cantly outperforms the baseline. For German we obtain a BLEU score of 15.90 which
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BLEU
System En-De En-Ar En-Zh

string-to-tree SCFG (baseline) 15.22 48.32 17.69
string-to-tree `MBOT 15.90 49.10 18.35
MOSESGHKM 17.10 46.66 18.12
hierarchical phrase-based 16.95 51.71 18.49
phrase-based 16.73 50.27 18.09

Table 5.3: Evaluation results. The bold results are statistically significant improve-
ments over the baseline (at confidence p < 1%).

is a gain of 0.68 points. For Arabic we get an increase of 0.78 points which results

in 49.10 BLEU. For Chinese we obtain a score of 18.35 BLEU gaining 0.66 points.10

We also report the BLEU scores for a phrase-based, a hierarchical phrase-based, and

a MOSESGHKM system. All three systems were trained with the same data as de-

scribed in Table 5.2 with their respective standard settings in MOSES. For English-to-

German, all three systems are better with differences from 0.83 to 1.20 points. For

English-to-Arabic, the hierarchical and the phrase based systems are better (2.61

and 1.17 points) but MOSESGHKM underperforms the `MBOT by 2.44 points. On

the English-to-Chinese translation task, MOSESGHKM and the phrase-based system

perform worse than the `MBOT (0.23 and 0.26 points) but the hierarchical phrase-

based system outperforms our system by a small margin (0.14 points).

5.5.3 Analysis of Discontinuity

Again, we try to estimate the impact of multiple target tree fragments. Table 5.4 re-

ports how many rules of each type are used during decoding. Out of the rules used

for German, 27% were (potentially) discontinuous and 5% were structural. For Ara-

bic, we observe 67% discontinuous rules and 26% structural rules. For translating

into Chinese 30% discontinuous rules were used and the structural rules account to

18%. These numbers show that the usage of discontinuous rules tunes to the spe-

10NIST-08 also shows BLEU for word-segmented output (http://www.itl.nist.gov/iad/mig/
tests/mt/2008/doc/mt08_official_results_v0.html). Best constrained system: 17.69 BLEU;
best unconstrained system: 19.63 BLEU.

101



Non-Minimal String-to-Tree `MBOT

Target tree fragments
Language pair Type Lex Struct Total 2 3 4 5 ≥ 6

English-to-German
cont. 27,351 635 27,986

discont. 9,336 1,110 10,446 5,565 3,441 1,076 312 52

English-to-Arabic
cont. 1,839 651 2,490

discont. 3,670 1,324 4,994 3,008 1,269 528 153 36

English-to-Chinese
cont. 17,135 1,585 18,720

discont. 4,822 3,341 8,163 6,411 1,448 247 55 2

Table 5.4: Number of rules per type used when decoding test (Lex = lexical rules;
Struct = structural rules; [dis]cont. = [dis]continuous).

cific language pair. For instance, Arabic utilizes them more compared to German

and Chinese. Furthermore, German uses a lot of lexical rules which is probably due

to the fact that it is a morphologically rich language. On the other hand, Arabic and

Chinese make good use of structural rules.

In addition, Table 5.4 presents a finer-grained analysis based on the number of

target tree fragments. Only rules with at most 8 target tree fragments were used.

Again, mostly discontinuous rules with two target tree fragments were used. Tak-

ing the numbers from the non-minimal tree-to-tree setting into account, we notice

for the English-to-German translation task that the rate of 53,2% is much lower

(86,2%). For the translation direction English-to-Arabic, there is also a decrease

but much smaller: 60.2% vs 68.1%. Interestingly, the percentage for the English-to-

Chinese translation task is almost equal with the non-minimal tree-to-tree system:

78.5% and 80.6%. In general, it seems that German and Arabic require some rules

with 6 target tree fragments, while Chinese probably does not. We conclude that

the number of target tree fragments can be restricted to a language-pair specific

number during rule extraction.

5.6 Incorporating Dependency Parses

We obtained significant improvements for our string-to-tree `MBOT in terms of

translation quality on three different translation tasks. Hence, we want to apply
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S

OC HD SB

VP

OA HD

NP

NK NK

den Mann ließ er enthaupten

ART NN VVFIN PPER VVINF

Figure 5.8: German example of a crossing edge taken from TIGER. Gloss: ‘the man
he let be beheaded’.

our approach on other languages. In fact, we want to adjust our translation sys-

tem to Eastern European languages. Those languages admit a relatively free word

order and we expect that discontinuities occur frequently, making our `MBOT an

ideally suited syntax-based translation system. But due to the free word order, it

is often difficult to express the syntax of such languages in terms of constituency

structure (Kallestinova, 2007). Since the parts that need to (grammatically) agree

can occur spread out over the whole sentence, constituents cannot be hierarchi-

cally organized as in a classical constituency parse tree. In Figure 5.8 we illustrate

a German constituency parse tree for the sentence ‘den Mann ließ er enthaupten’

(‘the man he let be beheaded’) taken from the TIGER treebank (Brants et al., 2004).

The sentence displays two peculiarities. First, there are two main verbs, ‘ließ’ (‘let’)

and ‘enthaupten’ (‘behead’) where ‘er’ is the subject of ‘ließ’ and ‘der Mann’ is the

accusative object of ‘enthaupten.11 Second, the sentence exhibits a marked word or-

der as the accusative object ‘den Mann’ is in subject position. The unmarked word

order would be ‘er ließ den Mann enthaupten’ (‘he let the man be beheaded’). The

graphical representation shows how the ‘VP’ governs the ‘OA’ and the verb ‘ent-

11The accusative object ‘OA’ of the verb ‘ließ’ is not realized. A sentence with an OA could have the
structure ‘[er]SB ließ [den Henker]OA/SB [den Mann]OA enthaupten’ in which the OA ‘den Henker’
(‘the hangman’) is the logical subject of the embedded verb ‘enthaupten’.
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haupten’. Due to the marked word order, the OA and the verb are separated by ‘ließ

er’. The edge from ‘VP’ to ‘HD’ is called a crossing edge and does not allow for an hi-

erarchical tree. Dependency parses do not pre-suppose such a hierarchical structure

and are thus often more suitable for languages with free word order. For the target

languages discussed here (we translate into Polish and Russian), only dependency

parses are readily available. Those parses relate the lexical items of the sentence

via edges that are labeled with the syntactic function between the head and its de-

pendent. Overall, these structures also form trees but they can be non-projective

(see Section 5.6.2) for our target languages. Such non-projective dependency trees

do not admit a constituent-like tree representation, so the existing string-to-tree

`MBOT system cannot readily be applied. We first need to convert the dependency

trees into projective dependency trees, which can then be converted easily into

a constituent-like tree representation. The conversion into projective dependency

trees is known to preserve discontinuities, so we expect that our model is an ideally

suited syntax-based translation model for those target languages.

In the remainder of this chapter, we first give an overview of dependency parsing

and show the structure of the resulting parses. Furthermore, we explain how to

convert non-projective parse trees into projective ones and how to transform those

into constituent trees. Finally, we evaluate our system on two translation tasks.

5.6.1 Related Work

The idea of utilizing dependency trees in machine translation is not novel. Bo-

jar and Hajič (2008) built a experimental system for English-to-Czech that models

tree-based transfer at a deep syntactic layer. The target sentences are projective de-

pendency trees while the source sentences are constituency parse trees. From those,

they extract treelets based based on synchronous tree substitution grammars. Xie

et al. (2011) present a dependency-to-string model that extracts head-dependent

rules with reordering information. Their model requires a custom decoder to deal

with the dependency information in the input. Li et al. (2014) follow up on this
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work by transforming these dependency trees into (a kind of) constituency trees. In

this approach, they are able to use the conventional syntax-based models of MOSES.

In contrast to our work, these two models do not use the syntactic functions pro-

vided by the parser but rather extract head-dependent rules based on the lexical

items. Sennrich et al. (2015) transformed (non-projective) dependency trees into

constituency trees using the syntactic functions provided by the parser. They used

the string-to-tree GHKM model (Williams and Koehn, 2012) of MOSES and eval-

uated their approach on an English-to-German translation task. It shows that the

system utilizing the (transformed) dependency parses outperforms competing sys-

tems utilizing various variants of constituent parses for the German side. We follow

up on their work for translation tasks, where constituent parses are not readily

available.

5.6.2 From Dependency Trees to Constituency Trees

We start with a short overview of dependency parsing (Kübler et al., 2009) and

introduce the non-projective tree structures that occur as parses. Next, we explain

how to convert these structures into projective trees. In the last step, we transform

the projective dependency trees into the shape of classical constituency trees.

Dependency Parsing

In a dependency parse, each occurrence of a lexical item (i.e., token) in the in-

put sentence forms a node. The dependency parser constructs a tree structure over

those nodes by relating them via edges pointing from a head node h to its depen-

dent node d. Such an edge is denoted by h→ d. In addition, each edge is assigned a

label indicating the type of the syntactic dependence. Often an artificial root node

is added for convenience. An example parse for a Polish sentence is depicted in

Figure 5.9. The edges can be projective or non-projective. The edge h → d is pro-
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pierwszą z nich jest realizacja polityki konkurencji

ROOT

MWE

ADJUNCT

MWE

CONJUNCT

CONJUNCT

MWE

Figure 5.9: Non-projective Polish dependency tree (gloss: The first is the operation
of competition policy)

jective if and only if its head node h dominates12 all nodes representing the tokens

in the linear span between h and d. A dependency parse is projective if and only if

all its edges are projective. A non-projective dependency parse is easily recognized

in graphical representations because it has a crossing edge provided that all the

edges are drawn on one side of the sentence as in Figure 5.9 (where we marked

the non-projective edges in red).

Non-projective dependency structures cannot be directly used in our translation

framework, so we first have to turn them into projective trees. Kahane et al. (1998)

were the first to introduce lifting. Given a non-projective edge h→ d there exists at

least one node n that occurs in the linear span between h and d such that n is not

dominated by h. In the lifting process, the edge h→ d is replaced by an edge g → d,

where g is the lowest node that dominates both h and n (i.e., the least common an-

cestor of h and n). Repeating this process for all non-projective edges eventually

yields a projective tree. Nivre and Nilsson (2005) refined this approach by per-

forming the same replacement but introducing three ways to document the lifting

operation in the labels: ‘head’, ‘head+path’, and ‘path’.13 The annotation schemes

‘head’ and ‘head+path’ might increase the number of labels quadratically, whereas

‘path’ only introduces a linear number of new labels. Since we deal with millions

12A node n dominates a node d iff n is an ancestor of d; i.e., there is a path from n to d.
13Kahane et al. (1998) use lifting to realize a polynomial-time rule-based parsing algorithm while

Nivre and Nilsson (2005) use it to train a parser on lifted edges and recover the former non-
projective edges by inverting the annotated lifts.
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pierwszą z nich jest realizacja polityki konkurencji

ROOT

MWE

ADJUNCT CONJUNCT

CONJUNCT↓

MWE↑ MWE

Figure 5.10: Non-projective Polish dependency tree after one ‘path’-lifting opera-
tion.

pierwszą z nich jest realizacja polityki konkurencji

ROOT

ADJUNCT

MWE CONJUNCT↓↑ MWE↑

CONJUNCT↓

MWE

Figure 5.11: Projective dependency parse obtained after second ‘path’-lifting oper-
ation.

of trees in our syntax-based machine translation experiments, we need to select a

compromise between (i) inflating the number of labels and (ii) documenting the

lifts. Therefore, we decided to use the ‘path’ scheme to obtain projective parse trees

for our experiments (see Section 5.6.3). Let us explain the ‘path’ scheme. In the sit-

uation described earlier, in which the edge h→ d was replaced by the edge g → d,

we set the label of g → d to the label of the original edge h → d annotated by ↑ to

indicate that this edge was lifted. Additionally, all edges connecting the new head g

and the syntactical head h are annotated with ↓ indicating where the syntactic head

is found.

We will now illustrate the lifting operation. In Figure 5.9 we have two non-

projective edges which are marked in red. The edge ‘nich → realizacja’ is non-

projective because ‘nich’ does not dominate ‘jest’, which occurs in the relevant linear

span. Likewise, the edge ‘polityki → nich’ is non-projective because ‘polityki’ does

not dominate ‘jest’, which occurs in the relevant linear span. We first apply the lift-
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ing operation to the most nested14 non-projective edge which is ‘nich→ realizacja’

and obtain the (still) non-projective tree in Figure 5.10. In it we have the new edge

‘polityki → realizacja’ with the label ‘MWE↑’, indicating that the edge got lifted.

Moreover, the edge ‘polityki → nich’ now has the label CONJUNCT↓ because it is

the edge that connects the new head with the syntactical head of ‘realizacja’. The

edge ‘polityki → nich’ is still non-projective. Applying lifting once more results in

the tree shown in Figure 5.11. Now we have a new edge ‘jest → nich’ with the la-

bel CONJUNCT↓↑ and the edge ‘jest→ polityki’ has the label CONJUNCT↓ because

it is the edge that connects the new head with the syntactical head of ‘nich’.

In principle, one can imagine other ways to projectivize a tree; e.g., we can just

replace the head of a non-projective edge by the root. From a linguistic point of

view, it makes more sense to attach it (as described) to the least common ances-

tor, which in a sense is the minimal required change that leaves the remaining

edges in place. Furthermore, the used implementation always lifts the most nested

non-projective edge until the tree is projective. In this way, the minimal number of

lifts required to projectivize the tree is achieved as demonstrated by Buch-Kromann

(2005). We used the lifting implementation by ANDERS BJÖRKELUND in our experi-

ments.

Conversion

Our goal is the investigation of the performance of our string-to-tree `MBOT system,

so we need syntactic annotations on the target side. First, the target-side sentences

(in Polish and Russian) are annotated with part-of-speech tags with the help of

TREETAGGER (Schmid, 1994). The TREETAGGER output is then converted into the

(comma-separated) CONLL-X format15, which lists each token of the sentence in

one line with 10 attributes like word position, word form, lemma, and part-of-

speech tag. A new sentence is started by an empty line. This representation is passed

14deepest or most distant from the root
15documented on http://ilk.uvt.nl/conll/
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Number of labels
Corpus Lang. original new
EUROPARL PL 25 67
YANDEX RU 75 118
Commoncrawl RU 71 84
News commentary RU 71 84
Patronymic names RU 13 0
Names RU 31 0
WIKI headlines RU 54 19

Table 5.5: Number of parse labels before and after the ‘path’-lifting.

to the MALT parser (Nivre et al., 2006; Sharoff and Nivre, 2011), which fills the

remaining attribute fields like position of the head and the label of the dependency

edge. The resulting output represents the (potentially) non-projective dependency

parses of the target-side sentences.

In the next step, we apply the ‘path’-lifting as described in Section 5.6.2. The

Polish parses have 2.2% non-projective edges and we performed 500,507 lifts in

total to obtain the corresponding projective parses (corpus size: ≈ 600K sentences

with 14,147,378 tokens). The Russian parses have only 0.4% non-projective edges

and we performed 137,893 lifts in total to make the parses projective (corpus size:

≈ 1.7M sentences with 30,808,946 tokens). As described in Section 5.6.2 we in-

troduce at most 3 additional labels for each existing label. In Table 5.5 we report

for each corpus the exact number of original parse labels and the number of labels

newly introduced by the transformation into projective parses.

Finally, we transform the projective dependency parse trees directly into the stan-

dard representation of constituent parse trees in MOSES and MBOTMOSES, respec-

tively. We use the part-of-speech tags as pre-terminal nodes. Additionally, we make

the labels and part-of-speech tags more uniform as follows:

• All parentheses are labeled ‘PAR’.

• All slashes, quotation marks, and dashes are labeled ‘PUNCT’ and their part-

of-speech tag is ‘INTJ’.
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ROOT

CONJUNCT↓↑

ADJUNCT

A

pierwsza

MWE

P

z

P

nich

F

jest

CONJUNCT↓

MWE↑

S

realizacja

S

polityki

MWE

S

konkurencji

Figure 5.12: Final constituency representation for the parse of Figure 5.11.

• All punctuation marks are labeled ‘PUNCT’ and their part-of-speech tag is ‘,’.

• If the tagger did not assign a part-of-speech tag, then we label it ‘UNK’.

The final constituency tree representation obtained from the projective dependency

tree of Figure 5.11 is shown in Figure 5.12.

5.6.3 Experimental Results

In this section we report the setup and results of the experiments as presented

in Seemann and Maletti (2015). The `MBOT-based system is evaluated on two

translation tasks: English-to-Polish and English-to-Russian. For both target lan-

guages only (potentially) non-projective dependency parses are easily available.

Our goal is to evaluate whether the discontinuity offered by the `MBOT model

helps in tasks involving such dependency parses. Consequently, the baseline sys-

tem is again the syntax-based component (Hoang et al., 2009) of the MOSES

toolkit (Koehn et al., 2007), which uses a translation model that only permits con-

tinuous rules. Both systems are string-to-tree in the sense that the projectivized

parses are only used on the target side.
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5.6 Incorporating Dependency Parses

English to Polish English to Russian
training data 7th Europarl (Koehn, 2005) WMT 2014 (Bojar et al., 2014)

training data size ≈ 618K sentence pairs ≈ 1.7M sentence pairs
target-side parser Malt parser (Nivre et al., 2006; Sharoff and Nivre, 2011)

parser grammar (Wróblewska and Przepiórkowski, 2012) (Nivre et al., 2008)
language model (LM) 5-gram SRILM (Stolcke, 2002)

additional LM data Polish sentences in Europarl WMT 2014
LM data size ≈ 626K sentences ≈ 43M sentences
tuning data cut from Europarl WMT 2014
tuning size 3,030 sentences 3,000 sentences

test data cut from Europarl WMT 2014
test size 3,029 sentences 3,003 sentences

Table 5.6: Summary of the experimental setup.

Setup

We use standard and freely available resources to build our machine translation

systems. In summary, for Russian we use the resources provided by the 2014 Work-

shop on Statistical Machine Translation (Bojar et al., 2014). The Polish data is taken

from the EUROPARL corpus (Koehn, 2005).

Next, we describe the preparation and evaluation for both tasks (English-to-

Polish and English-to-Russian). First, the training data was tokenized, lowercased

and length-ratio filtered up to 80 tokens. We use MGIZA++ (Gao and Vogel, 2008)

with the grow-diag-final-and heuristic (Koehn et al., 2005) to automatically derive

the word alignments. We obtain our `MBOT by applying the rule extraction with

the restrictions given in Section 5.3. In all our experiments a CYK+ chart parser

is used as decoder. The decoder for the baseline is provided by the syntax compo-

nent (Hoang et al., 2009) of the MOSES framework, and the decoder for the `MBOT

model is provided by the MBOTMOSES branch (Braune et al., 2013). Glue-rules in

both systems ensure that partial translation candidates can always be concatenated

without any reordering. The feature weights of the log-linear models were trained

with the help of minimum error rate training (Och, 2003) and optimized for 4-gram

BLEU (Papineni et al., 2002) on the tuning set (lowercased, tokenized). In the end,

the systems were evaluated (also using 4-gram BLEU) on the test set. Significance
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judgments of the differences in the reported translation quality (as measured by

BLEU) were computed with the pairwise bootstrap resampling technique of Koehn

(2004b) on 1,000 samples. Table 5.6 summarizes the setup information.

A particular detail is worth mentioning. We were unable to identify standard

tuning and test sets for the English-to-Polish translation task. Consequently, we

manually removed one session16 of the EUROPARL corpus. After removing dupli-

cate sentences, we used the odd numbered sentences as tuning set and the even

numbered sentences as test set.

Evaluation

We present the quantitative evaluation for both experiments in Table 5.7. In both

cases (English-to-Polish and English-to-Russian) the `MBOT system significantly

outperforms the baseline, which is the syntax-based component of MOSES. For Pol-

ish we obtain a BLEU score of 23.43 resulting in a gain of 2.14 points over the base-

line. Similarly, for Russian we achieve a BLEU score of 26.13, which is an increase

of 1.47 points over the baseline. To put our results in perspective, we also train

a MOSESGHKM system, a phrase-based system, and a hierarchical phrase-based

system with standard settings for each translation task on the same resources as

described in Table 5.6 and present their evaluation also in Table 5.7. The `MBOT

system is better than the MOSESGHKM system on both translation tasks (but not

statistically significant) which shows that our system performs best among all sys-

tems utilizing parses. Overall on the English-to-Polish translation task, the hierar-

chical system is the best performing system with an increase of 1.13 points over the

`MBOT system. Similarly, the phrase-based system does outperform all systems on

the English-to-Russian translation task with 1.77 points over the `MBOT system.

Based on the observed BLEU scores, it seems likely that our `MBOT-based ap-

proach can almost completely avoid the large quality drop observed between a (hi-

16More specifically, we removed sentences 468,743–474,883 from the corpus and only used the
remaining sentences for training.
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BLEU
System En-Pl En-Ru

string-to-tree SCFG (baseline) 21.29 24.66
string-to-tree `MBOT 23.43 26.13
MOSESGHKM 23.31 25.97
hierarchical phrase-based 24.56 27.72
phrase-based 24.35 27.90

Table 5.7: Evaluation results incl. MOSESGHKM-based system, hierarchical system,
and phrase-based system for reference. The bold `MBOT results are statistically
significant improvements over the baseline (at confidence p < 1%).

erarchical) phrase-based system, which does not utilize the syntactic annotation,

and a continuous string-to-tree syntax-based model. The availability of discontinu-

ous tree fragments yields significant improvements in translation quality (as mea-

sured by BLEU) and an overall performance similar to (hierarchical) phrase-based

systems. However, we also observe that outscoring a (hierarchical) phrase-based

system remains a challenge, so it remains to be seen whether syntactic information

can actually help the translation quality in those translation tasks.

Analysis of Discontinuity

To quantitatively support our claim that the multiple target tree fragments (and

the discontinuity) of an `MBOT are useful, we once again provide statistics on the

`MBOT rules that were used to decode the test sets. In Table 5.8 we report how

many rules of each type are used during decoding.17

For Polish, 41% of all used rules were discontinuous and only 4% were structural.

Similarly, 35% of the used Russian rules were discontinuous and again only 4%

were structural. The low proportion of structural rules is not very surprising since

both target languages are known to be morphologically rich and thus have large

lexicons (167,657 lexical items in Polish and 911,397 lexical items in Russian).

17The provided analysis tools currently do not support an analysis whether a discontinuous rule
was actually used in a discontinuous manner or whether the components were later combined in a
continuous manner. The reported numbers thus represent potential discontinuity.

113



Non-Minimal String-to-Tree `MBOT

Target tree fragments
Translation task Type Lex Struct Total 2 3 4 5 ≥ 6

English-to-Polish
cont. 25,327 307 25,634

discont. 16,312 1,595 17,907 15,805 1,818 254 27 3

English-to-Russian
cont. 24,100 664 24764

discont. 12,767 1,108 13,875 11,087 2,308 412 58 10

Table 5.8: Number of rules per type used when decoding test (Lex = lexical rules;
Struct = structural rules; [dis]cont. = [dis]continuous).

Another interesting point is the distribution of discontinuous structural rules. Polish

and Russian use 83% and 62% such rules, respectively, showing that the majority of

the used structural rules is discontinuous in both tasks. Additionally using the data

of Seemann et al. (2015a) (see Section 5.5.2), we can confirm that morphologically

rich languages have a small minority of structural rules (4%, 4%, and 5% for Polish,

Russian, and German, respectively), whereas Arabic and Chinese use a much larger

proportion of structural rules (26% and 18%, respectively). In addition, we suspect

that the additional non-projectivity of Polish makes discontinuous rules more useful

(as an indicator for induced discontinuity). Whereas for Russian, German, Arabic,

and Chinese approx. 2 out of 3 used structural rules are discontinuous (62%, 64%,

67%, and 68%, respectively), more than 4 out of 5 (83%) used structural rules are

discontinuous for Polish.

Finally, we present a fine-grained analysis based on the number of target tree

fragments in Table 5.8. Useful Polish rules have at most 6 target tree fragments,

whereas Russian rules with up to 9 target tree fragments have been used. Similar

numbers have been reported in Seemann et al. (2015a). Using their data, we also

note that Polish, Russian, and Chinese seem to use a larger percentage of discon-

tinuous rules with 2 target tree fragments (80%–90%) compared to German and

Arabic (50%–60%).
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5.7 Summary

We presented an application of a string-to-tree variant of `MBOTs to statistical ma-

chine translation. Originally, only tree-to-tree rules were extracted, but to overcome

the typically lower translation quality of tree-to-tree systems, we abolish the syntac-

tic annotation on the source side and develop a string-to-tree rule extraction algo-

rithm. The obtained system uses rules with a string on the source language side and

a sequence of target tree fragments on the target language side. The availability of

several target tree fragments in a single rule enables the model to realize discon-

tinuous translations. We expected that particularly translation into languages with

discontinuous constituents would benefit from our model. We demonstrate that our

string-to-tree `MBOT system significantly outperforms the standard MOSES string-

to-tree SCFG system on three different large-scale translation tasks (English-to-

German, English-to-Arabic, and English-to-Chinese) with a gain between 0.53 and

0.87 BLEU points. In comparison to the best performing system, the `MBOT system

is only 1.05 BLEU points worse on English-to-German and 0.14 BLEU points worse

for English-to-Chinese. On the English-to-Arabic translation task, the best perform-

ing system does outscore the `MBOT system by 2.61 BLEU points. An analysis of

the rules used to decode the test sets suggests that the usage of discontinuous rules

is tuned to each language pair. Furthermore, it shows that only discontinuous rules

with at most 8 target tree fragments are used. Thus, further research could investi-

gate a hard limit on the number of target tree fragments during rule extraction.

Next, we demonstrate that the discontinuous string-to-tree system significantly

outperforms the standard MOSES string-to-tree system on another two transla-

tion tasks (English-to-Polish and English-to-Russian) with large gains of 2.14 and

1.47 BLEU points, respectively. Those two target languages have rather free word

order, so we expect discontinuities to occur frequently. For both languages, we use

a (non-projective) dependency parser to obtain the required target trees, which we

projectivize. We then train our translation model on the constituent-like parse trees

obtained from the projective dependency trees and evaluate the obtained machine
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translation systems. To put our evaluation scores into perspective, we also trained a

vanilla phrase-based system, a MOSESGHKM-based system, and a hierarchical sys-

tem for each translation task. In comparison to the best performing system, the

discontinuous string-to-tree system is only 1.13 BLEU points worse on English-to-

Polish and 1.77 BLEU points worse for English-to-Russian. It thus remains to be

seen whether machine translation systems can benefit from syntactic information

in those translation tasks, but the proposed model at least avoids the large quality

drop observed for the continuous string-to-tree system. It shows that our system

suffers much less from the syntactic discontinuities and is thus much better suited

for syntax-based translation systems in such settings.
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Chapter 6

Non-Minimal String-to-String `MBOT

Finally, we want to completely abandon the syntactic annotations and derive a rule

extraction for string-to-string `MBOT rules. To this end, we adjust the theoretical

model once more and modify the algorithm from Section 5.3 to extract a set of

string-to-string `MBOT rules. Naturally, we again evaluate our system on two large

scale experiments. To put our results in perspective, we compare against a string-

to-string SCFG baseline as well as against a phrase-based system.

6.1 Motivation

Our experiments in Chapter 5 showed that in the string-to-tree setting, the `MBOT

system can beat a SCFG baseline on five different translation tasks. This is a very

promising result but for all five language pairs, a hierarchical phrase-based system

outperforms the `MBOT system. Consequently, we decided to abandon the syntactic

annotations and extract non-minimal string-to-string rules that still offer discontinu-

ities on their right-hand sides. As before, we do not want to remove the tree struc-

ture from the string-to-tree `MBOT rules by replacing the syntactic nonterminals by

the placeholder X. This would again preserve parse errors and the right-hand sides

of the rules would still be linguistically motivated. Hence, we adapt the algorithm
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explanations →
(

Erklärungen
)

X X →
(

X , X
)

concludes X →
(

sind , X , X , beendet
)

Figure 6.1: Several valid rules for our string-to-string `MBOT.

presented in Section 5.3 to extract non-minimal string-to-string rules.

6.2 Theoretical Model

As our translation model, we use a string-to-string variant of the shallow local multi

bottom-up tree transducer. We keep on calling our variant `MBOT. Our rules are of

the form s → (t1, . . . , tn) with a single source string s and a (potential) sequence of

target strings (t1, . . . , tn), i.e. the source string and the sequence of target strings are

built from lexical items and the placeholder X. Both the left- and right-hand side can

contain (several occurrences of) the placeholder X. As before, a placeholder in the

source string can link to several placeholders in the sequence of target strings but

each placeholder occurrence in the right-hand side links to exactly one placeholder

on the left-hand side. Again, a string-to-string `MBOT is simply a finite collection

of such rules. Several valid rules are depicted in Figure 6.1.

Recall from Section 5.2 that a string is of the form s = w1 . . . wk and we access

the x-th letter by wx = s[x] for all 1 ≤ x ≤ k. A sequence of strings is of the form

(t1, . . . , tn) and we access the l-th string by tl for all 1 ≤ l ≤ n. Again, we access the

x-th letter in tl by tl[x] for all 1 ≤ x ≤ k. Now we can obtain the set of placeholders

in (t1, . . . , tn) by ph(t1, . . . , tn) =
⋃n
i=1{ix | ti[x] = X}, i.e. we first access the i-th

string inside the sequence and then the x-th letter of the string itself. We obtain the

set ph(s) of placeholders in s as explained in Section 5.2. Formally, the alignment

between the placeholders is an injective mapping ψ : ph(t1, . . . , tn)→ ph(s)×N such

that if (x, i) ∈ ran(ψ), then also (x, j) ∈ ran(ψ) for all 1 ≤ j ≤ i. The x-rank rk(ρ, x)
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of a rule ρ is

rk(ρ, x) = max {i ∈ N | (x, i) ∈ ran(ψ)} .

Finally, we extend the substitution for strings as introduced in Section 5.2 to a

sequence of strings. Let x1, . . . , xn ∈ ph(t1, . . . , tn) be positions in a sequence of

strings and v1, . . . , vn a sequence of strings. Then t[xi ← vi]1≤i≤n denotes the string

that is obtained from (t1, . . . , tn) by replacing in parallel the xi-th letter by vi for all

1 ≤ i ≤ n.

Definition 8 The set τ(R, c) of weighted sentential forms of the string-to-string

`MBOT (R, c) is the smallest set T subject to the following restriction: If there exist

• a rule ρ = s→ψ (t1, . . . , tn) ∈ R,

• a weighted sentential form 〈sx, cx, (tx1 , . . . , txnx
)〉 ∈ T for every x ∈ ph(s) with

rk(ρ, x) = nx,1

then 〈s′, c′, (t′1, . . . , t′n)〉 is a weighted sentential form, where

• s′ = s[x← sx | x ∈ ph(s)],

• c′ = c(ρ) ·
∏

x∈ph(s) cx, and

• t′k = tk[x
′ ← txj | ψ(ix′) = (x, j)] for every 1 ≤ k ≤ n.

In a rule ρ, we can replace a placeholder X that is linked to the placeholders

X1, . . . , Xl in the sequence of target strings by any sentential form whose sequence

of target strings match the rank of X. We illustrate substitution in Figure 6.2, where

we replace the placeholder X in the source string, which is linked to two placehold-

ers in the right-hand side. The sentential form below matches since its sequence

of target strings contains two strings. Thus, we can substitute the sentential form

into ρ and obtain the sentential form shown at the bottom of Figure 6.2. Ideally, the

substitution process is repeated until the complete source sentence is derived. As

before, completely lexical rules are automatically weighted sentential forms and the

1If x has n alignments, then the sentential form selected for it has to have suitably many strings
inside the sequence of target strings.
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Combining a rule with a sentential form:

concludes X →
(

sind X den X beendet
)

〈
the explanations of vote →

(
die Erklärungen zu , Abstimmungen

) 〉

Combined sentential form:〈
concludes the explanations of vote →

(
sind die Erklärungen zu den Abstimmungen beendet

) 〉
Figure 6.2: Substitution of sentential forms.

that1 concludes2 the3 explanations4 of5 vote6

damit1 sind2 die3 Erklärungen4 zu5 den6 Abstimmungen7 beendet8

Figure 6.3: Word-aligned sentence pair.

last rule applied must not contain any discontinuities. The final weighted sentential

form is again of the form 〈s, c, (t)〉.

6.3 Rule Extraction

For the string-to-string setting, our training corpus still consists of word-aligned

sentence pairs 〈e, A, f〉 but there are no parses available for either side. We continue

to use the notion of a consistently aligned rule span 〈p, p1 · · · pn〉. Since we do not

use any syntactic annotation, we do not require compatibility with any parse tree r.

Hence, we can immediately start with the extraction of initial rules for 〈e, A, f〉.
For each consistently aligned rule span 〈p, p1 · · · pn〉, we can extract the rule e(p)→(
f(p1), . . . , f(pn)

)
, where

• e(p) is the substring of e at span p,

• f(pk) is the substring of f at span pk for each 1 ≤ k ≤ n.
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For the task at hand, we depict our word-aligned sentence pair for the string-

to-string setting in Figure 6.3. We once more consider our example rule

span 〈[2, 4], [2, 4] [8, 8]〉. It is still consistently aligned and as we do not require com-

patibility with a target parse tree, we can extract

• e([2, 4]) = concludes the explanations

• f([2, 4]) = sind die Erklärungen2

• f([8, 8]) = beendet

We display this rule and several other initial rules extracted for the sentence pair of

Figure 6.3 in Figure 6.4.

Again, we derive a new extractable rule r′′ by “excising” an initial rule r from

another rule r′ and replacing the removed part by

• the placeholder X in the source string,

• the placeholder X in the sequence of target strings, and

• linking the removed parts appropriately,

so that the substitution of r into r′′ can yield r′. We illustrate this process in Fig-

ure 6.5, where we remove the middle initial rule from the topmost initial rule.

The result is displayed at the bottom of said figure. Formally, the set of extractable

rules R for a given word-aligned sentence pair 〈e, A, f〉 is the smallest set subject to

the following two conditions:

• Each initial rule is in R and thus extractable.

• For every initial rule r and extractable rule r′ ∈ R, any rule r′′, into which we

can substitute r to obtain r′, is in R and thus extractable.

To restrict the set of extracted rules, we apply the same constraints as for the

string-to-tree rule extraction (see Section 5.3) on a rule s → (t1, . . . , tn). We once

again report the number of extracted rules for all translation tasks in Table 6.1. The

table shows that the number of extracted rules for string-to-string `MBOT increases

almost threefold compared to the hierarchical SCFG baselines.

2In the string-to-tree setting, we had to split this span because there was no constituent in the
target parse tree that matched it.
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rule span 〈[2, 2], [2, 2] [8, 8]〉:

concludes →
(

sind , beendet
) rule span 〈[3, 3], [3, 3]〉:

the →
(

die
) rule span 〈[4, 4], [4, 4]〉:

explanations →
(

Erklärungen
)

rule span 〈[3, 4], [3, 4]〉:

the explanations →
(

die Erklärungen
) rule span 〈[4, 5], [4, 5]〉:

explanations of →
(

Erklärungen zu
)

rule span 〈[3, 5], [3, 5]〉:

the explanations of →
(

die Erklärungen zu
) rule span 〈[1, 3], [1, 3] [8, 8]〉:

that concludes the →
(

damit sind die , beendet
)

rule span 〈[2, 4], [2, 4] [8, 8]〉:

concludes the explanations →
(

sind die Erklärungen , beendet
)

rule span 〈[1, 5], [1, 5] [8, 8]〉:

that concludes the explanations of →
(

damit sind die Erklärungen zu , beendet
)

rule span 〈[2, 6], [2, 5] [7, 8]〉:

concludes the explanations of vote →
(

sind die Erklärungen zu , Abstimmungen beendet
)

rule span 〈[2, 6], [2, 8]〉:

concludes the explanations of vote →
(

sind die Erklärungen zu den Abstimmungen beendet
)

Figure 6.4: Some initial rules extractable for the sentence pair of Figure 6.3.
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r′ : the explanations of vote →
(

die Erklärungen zu den Abstimmungen
)

r : of vote →
(

zu den Abstimmungen
)

Extractable rule obtained after excision:

r′′ : the explanations X →
(

die Erklärungen X
)

Figure 6.5: Excision of the middle initial rule from the topmost initial rule. Substi-
tuting the middle rule into the result yields the topmost rule.

System
Number of extracted rules

English-To-German English-To-Arabic English-To-Chinese
hierarchical SCFG 406,433,344 842,290,537 209,482,192
string-to-string `MBOT 1,084,007,782 2,208,445,501 682,505,767

Table 6.1: Number of extracted rules for the different rule extractions.

We present the pseudo-code for the extraction of string-to-string `MBOT rules in

Algorithm 4. It is a further extension of the non-minimal string-to-tree algorithm

(see Section 5.3). Lines 2 to 5 are exactly the same as in the string-to-tree variant.

We still iterate by increasing span length over the source sentence and obtain the

source string that is covered by it. In line 6 we call FINDCONSISTENTALIGNED. It

differs from the string-to-tree variant as it provides us with the consistently aligned

target strings (and not target tree fragments) for the current source span. Having

the left- and right-hand side for this rule, we add it to R (line 7). The next step is to

find unaligned words for each string in the sequence of target strings (lines 9–13).

In the tree-to-tree and string-to-tree algorithm we only obtained new rules if no fur-

ther discontinuities were introduced by the unaligned word(s) and the target parse

tree guided this process. We still do not want to have unnecessary discontinuities

by adding unaligned words. Given a discontinuous target span to which we add

unaligned words, we check whether we can obtain a continuous target span. For

example, consider the second to last rule displayed in Figure 6.4. Its target spans are
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[2, 5] [7, 8]. By adding the unaligned word ‘den’ spanning [6, 6], we obtain the bottom

rule of Figure 6.4 where no actual discontinuity is left as the spans [2, 5] [6, 6] [7, 8]

are in fact now the continuous span [2, 8]. We obtain extractable rules in the same

manner as in the string-to-tree algorithm (lines 8 and 12). As before, we ensure

that a extractable rule starts with a terminal by calling EXTRACTABLERULES with

the index of the next token, i.e. i + 1 for source span [i, i′]. The function itself is

identical to the one shown in Algorithm 3 and we therefore omit its presentation in

Algorithm 4. In line 16 we output all rules that follow constraint (c).

Algorithm 4 Rule extraction for non-minimal string-to-string `MBOT rules
Require: word-aligned sentence pair 〈e,A, f〉
Ensure: `MBOT rules R
1: function INITIALRULES(e,A, f)
2: for length← 1, length ≤ maxSpan, length+ + do // ensures constraint (a)
3: for i← 0, i < |e| − (length− 1), i+ + do
4: i′ ← i+ length− 1
5: s← e([i, i′])
6: (t1, . . . , tn)← FINDCONSISTENTALIGNED(A, i, i′)
7: R[i, i′]← R[i, i′] ∪ {r′ : 〈s→ (t1, . . . , tn)〉}
8: EXTRACTABLERULES(i+ 1, i′, r′) // ensures constraint (e)
9: for all 1 ≤ k ≤ n do

10: ρ← FINDUNALIGNEDWORDS(r′, tk, A)
11: R[i, i′]← R[i, i′] ∪ ρ
12: EXTRACTABLERULES(i+ 1, i′, ρ) // ensures constraint (e)
13: end for
14: end for
15: end for
16: OUTPUTRULES(R,RE) // ensures constraint (c)
17: end function

In Figure 6.6 we display some extractable rules for the rule

span 〈[2, 6], [2, 5] [7, 8]〉.
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Excising rule span 〈[3, 4], [3, 4]〉:

concludes X of vote →
(

sind X zu , Abstimmungen beendet
)

Excising rule span 〈[3, 5], [3, 5]〉:

concludes X vote →
(

sind X , Abstimmungen beendet
)

Excising rule span 〈[4, 5], [4, 5]〉:

concludes the X vote →
(

sind die X , Abstimmungen beendet
)

Figure 6.6: Some extractable rules for the rule span 〈[2, 6], [2, 5] [7, 8]〉.

6.4 Translation Model

Again, the task of the decoder is to find the best corresponding target language

translation f̂ of the source language sentence e licensed by the translation model

and the language model. We use once again the log-linear model as introduced in

Section 4.3 to tune the features hm(·) with weights λm scored on sentential forms

〈s, (t)〉 of our extracted `MBOT M such that s reads e and t reads f .

We use the MBOTMOSES decoder (Braune et al., 2013) which uses a CYK+ chart

parsing algorithm using a standard X-style parse tree which is sped up by cube

pruning (Chiang, 2007) with integrated language model scoring. The model uses

the same ten features as described in Section 3.4.

6.5 Experimental Results

In this section we report the setup and results as presented by Seemann et al.

(2015b). We experimentally evaluate the `MBOT system in the string-to-string set-

ting. As a baseline system, we use the hierarchical SCFG model of MOSES. We chose
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Non-Minimal String-to-String `MBOT

English to German English to Arabic English to Chinese
training data 7th Europarl Koehn (2005) MultiUN Eisele and Chen (2010)

training data size ≈ 1.8M sentence pairs ≈ 5.7M sentence pairs ≈ 1.9M sentence pairs
language model 5-gram SRILM Stolcke (2002)

add. LM data WMT 2013 Arabic in MultiUN Chinese in MultiUN
LM data size ≈ 57M sentences ≈ 9.7M sentences ≈ 9.5M sentences
tuning data WMT 2013 cut from MultiUN NIST 2002, 2003, 2005
tuning size 3,000 sentences 2,000 sentences 2,879 sentences

test data WMT 2013 Bojar et al. (2013) cut from MultiUN NIST 2008 NIST (2010)
test size 3,000 sentences 1,000 sentences 1,859 sentences

Table 6.2: Summary of the used resources.

to perform experiments for the translation directions English-to-German, English-

to-Arabic, and English-to-Chinese.

6.5.1 Setup

For better comparison, we once again use exactly the same resources as in Sec-

tion 4.4 and Section 5.5 for the evaluation. We summarize the experimental setup

in Table 6.2.

Since there are no parses for the target language side, the German text is

now simply tokenized and true-cased. For Arabic, the text is tokenized with

MADA (Habash et al., 2009) and transliterated according to Buckwalter (2002).

The Chinese sentences were word-segmented using the Stanford Word Seg-

menter (Chang et al., 2008). As in the string-to-tree setting, the English (source)

side of the training data was tokenized and true-cased. After the preprocessing

steps, we obtained a word-aligned parallel corpus, to which we applied the rule

extraction as described in Section 6.3 together with the baseline rule extraction

provided by MOSES (Koehn et al., 2007; Hoang et al., 2009).
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6.5 Experimental Results

BLEU
System En-De En-Ar En-Zh

string-to-string SCFG (baseline) 17.00 51.71 18.74
string-to-string `MBOT 16.57 — 18.60

phrase-based Moses 16.80 51.90 18.09

Table 6.3: BLEU evaluation results for all 3 translation tasks. Bold baseline result is
a statistically significant improvement over our system (at confidence p < 1%).

6.5.2 Evaluation

In this section, we first compare all systems to each other using the BLEU score (Pa-

pineni et al., 2002). We also present the results obtained by a phrase-based sys-

tem (Koehn et al., 2003). All systems were tuned for BLEU on the tuning data,

and we report the BLEU scores obtained by the tuned systems on the test sets.

The `MBOT-based systems were evaluated against their corresponding syntax com-

ponent (Hoang et al., 2009) of the MOSES toolkit, which implements hierarchi-

cal (string-to-string) rule extraction. All of them follow essentially the procedure

outlined in Chiang (2005), which was also the basis for our string-to-string rule

extraction.

We performed large scale experiments on three major translation tasks, namely

English-to-German (En-De), English-to-Arabic (En-Ar), and English-to-Chinese (En-

Zh). The goal was to evaluate the string-to-string `MBOT system. Unfortunately, the

rule table of the string-to-string `MBOT for the English-to-Arabic translation task

— although already filtered on the given input — was too large to load into 500GB

of main memory.

Let us now discuss the results for this setting. The experiments for the English-

to-German and English-to-Chinese translation task show that our string-to-string

`MBOT system does not improve performance in these cases. Indeed, the analy-

sis presented below suggests that the string-to-string rules are flexible enough to

achieve high coverage even without the need for a sequence of target strings. This

is slightly disappointing as Galley and Manning (2010) incorporated discontinu-
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Non-Minimal String-to-String `MBOT

ous phrases into a phrase-based system, and their evaluation on Chinese-to-English

showed significant improvements over a standard phrase-based baseline as well

as over a hierarchical baseline. However, the differences are generally not large

(0.43 points and 0.14 points), and even the phrase-based system achieves similar

performance.

6.5.3 Analysis of Discontinuity

Naturally, we want to identify whether discontinuous rules were used at all when

translating the test sets. We again inspect the statistics on the rules used in the

sentential forms. Table 6.4 shows the statistics and we use the already estab-

lished abbreviations and types. We can confirm that the number of discontin-

uous rules is indeed marginal. On the English-to-German translation task only

1.1% of 33,962 rules are discontinuous. The English-to-Chinese system also only

uses 2.3% discontinuous rules (out of 25,575 rules). This is a large drop compared

to the numbers for the string-to-tree setting where 27% and 30% discontinuous

rules were used, respectively. In fact, these numbers constitute the new lower bound

across the different settings we have explored so far. Until now, the non-minimal

tree-to-tree setting had the lowest numbers with 12% and 4% discontinuous rules

(see Section 4.4.2). Furthermore, only rules with a sequence of at most three target

strings were used in both translation tasks. We believe that the low use of discontin-

uous string-to-string rules can be explained by the absence of linguistic annotations.

Without them, the rules become extremely flexible, thus removing the need for dis-

continuous `MBOT rules in this setting. Since the number of used discontinuous

rules is so low, it can be assumed that essentially the same rules were used dur-

ing decoding when comparing the `MBOT system to the baseline. This would also

explain their comparable BLEU scores.
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6.6 Summary

Language pair Type Lex Struct Total

English-to-German
cont. 29,972 3,600 33,572
discont. 259 131 390

English-to-Chinese
cont. 15,769 9,208 24,977
discont. 108 490 598

Table 6.4: Number of rules per type used when decoding test (Lex = lexical rules;
Struct = structural rules; [dis]cont. = [dis]continuous).

6.6 Summary

We have extended the existing rule extraction techniques for shallow local multi

bottom-up tree transducers to the last logical setting. We designed an algorithm

that extracts string-to-string `MBOT rules, thus using no syntactical information

on either side. Naturally, we evaluated the new rule extraction together with two

other systems in two large scale translation tasks (English-to-German and English-

to-Chinese). The BLEU scores show comparable results for the `MBOT system and

the baseline with a difference of 0.43 and 0.14 points. An analysis of the rules

used to decode the test sets shows that discontinuous rules are hardly ever used. So

when compared to the SCFG baseline essentially the same performance is obtained.

Most likely, hierarchical rules are flexible enough to handle most common forms of

discontinuity without the need to explicitly represent it in its rules.
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Chapter 7

`MBOTs across all Settings

In this chapter, we present additional analyses of the `MBOT systems across the

different settings. We start by presenting how many full sentential forms were ob-

tained and by trying to approximate the use of discontinuous rules as truly discon-

tinuous using an inspection of the number of used glue rules. We also present a

linguistic analysis for the English-to-German translation tasks on which we gained

significant improvements in translation quality. Furthermore, we point out which

kinds of construction an `MBOT system can handle well.

7.1 Analysis of `MBOT Glue Rules

As explained in Section 2.1.1 and illustrated in Section 2.1.3, there are different

kinds of glue rules. These different kinds enable us to derive additional statistics.

First, we present in Table 7.1 an overview of how many complete sentential forms

were obtained in the different settings.1 Overall, we note that those numbers are not

very high. For the English-to-German and the English-to-Chinese translation tasks, a

strong decrease is visible from the minimal tree-to-tree to the non-minimal tree-to-

tree to the non-minimal string-to-tree setting. Interestingly, for the translation into

1Note that the glue rules of a string-to-string translation system do not allow for such an analysis.
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Complete Sentential Forms
Setting En-De En-Ar En-Zh
minimal t-to-t `MBOT + SCFG 13.1% — —
minimal t-to-t `MBOT 8.3% 22.6% 13.5%
non-minimal t-to-t `MBOT 4.5% 21.8% 2.0%
non-minimal s-to-t `MBOT 0.7% 20.1% 0.6%

Table 7.1: Percentage of sentences with complete sentential forms.

Arabic, we note almost identical percentages of complete sentential forms which is

probably due to the fact that the test set is excised from the training corpus.

We analyzed the use of discontinuous rules in Sections 3.5.2, 4.4.3, 5.5.3

and 6.5.3. As pointed out across these sections, at present, the analysis tools are not

able to distinguish whether a discontinuous rule was actually used discontinuously

or rather continuously. We try to approximate by inspecting the number of `MBOT

glue rules used to decode the test sets. Recall that the application of a `MBOT glue

rule always results in continuous translation (see explanation on page 59) and we

exploit this fact here. Hence, we first count all `MBOT glue rules and all rules with

two or more target tree fragments, and then compute the percentage of discon-

tinuous rules that are used sequentially. In Table 7.2 we present those numbers.

Note that the numbers are collected over the complete test sets. In general, those

numbers show that the percentage increases with the introduction of non-minimal

rules as well as with the move from trees to strings on the source language side.

We note the highest numbers on the English-to-German translation task, while for

the translation into Chinese, the lowest numbers are collected. This is interesting

insofar, as this is not mirrored in the number of complete sentential forms. For both

translation tasks, those numbers are almost equal. In particular, while for English-

to-German and English-to-Chinese a strong increase of 24% and 35%, respectively,

from the minimal to the non-minimal tree-to-tree setting is noted, there is a mod-

erate increase of 14% for the translation into Arabic.

Additionally, we want to find out whether only rules with more than n target

tree fragments were glued. We presented the numbers of rules with n target tree
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Setting En-De En-Ar En-Zh
minimal t-to-t `MBOT + SCFG 72% — —
minimal t-to-t `MBOT 56% 54% 34%
non-minimal t-to-t `MBOT 80% 68% 71%
non-minimal s-to-t `MBOT 99% 97% 91%
non-minimal s-to-s `MBOT 93% — 95%

Table 7.2: Percentage of rules with 2 or more target tree fragments being sequen-
tially applied.

fragments in previous sections (see Figures 3.3, 4.5, 5.4, and 6.4). Our analysis

script allows us to distinguish `MBOT glue rules according to the number of target

tree fragments which they glue together. Hence, we can estimate for all rules with

n target tree fragments how many of those were glued. In the minimal setting, we

do not find such evidence for all three translation tasks. For example, a rule with

6 target tree fragments was (probably) used discontinuously for translating into

German and Arabic, while on the English-to-Chinese translation task, a rule with

7 target tree fragments was used discontinuously. In the non-minimal tree-to-tree

setting, all rules with 6 or more target tree fragments were glued for the English-

to-Arabic translation task. For the translation into Chinese, all rules with 5 or more

target tree fragments were glued. But for the English-to-German translation task,

we did not find a pattern. In the non-minimal string-to-tree setting, we find that all

rules with 4 or more target tree fragments were glued for all three language pairs.

7.2 Qualitative Analysis

In this section we present an analysis of the English-to-German translations gener-

ated by decoding the test sets. This analysis is done for the experiments in which we

gained significant improvements on BLEU over the respective baselines. We show

translations for both systems and how we obtain better results. Furthermore, we

point out linguistic phenomena that are well handled by our `MBOT systems.
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7.2.1 Minimal Tree-to-Tree `MBOT

We start with the evaluation of the minimal tree-to-tree `MBOT with additional

minimal SCFG rules. All examples are taken from the translation of the test set

used for automatic evaluation as presented in Section 3.5.2. We present some evi-

dence that shows how the presence of discontinuous target tree fragments can help

model certain linguistic phenomena on the English-to-German translation task. We

identified (a) the realization of relative pronouns, reflexive pronouns, and pronomi-

nal adverbs, (b) the realization of expletives, (c) the translation of gerunds, (d) the

translation into multi-word expressions, and (e) local and long distance reorder-

ing to be well realized by discontinuous rules. Ungrammatical constructions are

enclosed in brackets and marked with a star.

An analysis of the sentential forms shows that `MBOT takes advantage of rules

having several target tree fragments. Through its ability to use these discontinuous

rules, our system correctly translates English verbs into German ones that require

either reflexive pronouns or pronominal adverbs. For example, ‘focuses’ translates

into the German ‘konzentriert sich’ or the German verb ‘besteht’ requires a pronom-

inal adverb ‘darauf ’ (for the English ‘insist’). Similarly, our system handles the gen-

eration of necessary relative pronouns after commata well. Pronouns such as ‘that’

or ‘whose’ are systematically translated into both ‘,’ and ‘dass’ or ‘,’ and ‘deren’. In

Figure 7.1 we show the realization of a verb requiring a pronominal adverb as well

as a relative pronoun after a comma. The translation in Figure 7.2 shows the real-

ization of a required reflexive pronoun. The discontinuous rules that were used in

those cases are displayed in Figure 7.3.

Similar rules for verbs requiring an expletive “it” in German (e.g. “managed”

translates to “es geschafft”; “allow” to “es ermöglichen”) are used in the sentential

forms. Furthermore, there are rules that translate gerunds like “commemorating”

into “zum gedenken an” or “overcoming” into “die Überwindung”. The translation of

a single English word into a German multi-word expression is also well handled

by using rules that transform e.g. “questioned” into “in frage gestellt” or “given” into
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. . . die serbische delegation bestand darauf , dass jede entscheidung . . .

. . . the serbian delegation insisted that every decision . . .

. . . die serbische delegation bestand []* , []* jede entscheidung . . .

Figure 7.1: Relative Clause marked in green and pronominal adverb marked in blue
(top: our system, bottom: baseline)

. . . die [roadmap von bali]* , konzentriert sich auf die bemühungen . . .

. . . the bali roadmap that focuses on efforts . . .

. . . die [bali roadmap]* , konzentriert []* auf bemühungen . . .

Figure 7.2: Reflexive Pronoun (top: our system, bottom: baseline)

IN

that
→
( $,

,
,

KOUS

dass

) VBZ

focuses
→
( VVFIN

konzentriert
,

PRF

sich

) VBD

insisted
→
( VVFIN

bestand
,

PROAV

darauf

)

Figure 7.3: `MBOT rules generating a relative pronoun, reflexive pronoun, and
pronominal adverb.
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. . . geplant hatten 8 geschosse in das königreich zu schmuggeln

. . . had planned to smuggle 8 projectiles into the kingdom

. . . [vorhatten zu schmuggeln 8 geschosse in das königreich]*

Figure 7.4: Verbal Reordering (top: our system, bottom: baseline)

S

TO VP
→
( VP

NP PP PTKZU VVINF

)

TO

to
→
( PTKZU

zu

) VP

VB NP PP
→
( NP

NP
,

PP

PP
,

VVINF

VVINF

)

Figure 7.5: Used `MBOT rules for verbal reordering shown in Figure 7.4.

“in Anbetracht”. In general, these phenomena are not actually discontinuous, but

rather just realized at different levels of the parse trees. These structures make it

hard for a SCFG system to extract similar rules.

Finally, we show the ability of our system to correctly reorder multiple segments

in the source sentence where the baseline translates those segments sequentially. An

analysis of the generated sentential forms shows that our system produces the cor-

rect translation by taking advantage of rules with discontinuous units on the target

language side. Our first example is shown in Figure 7.4. To achieve this translation,

our system begins by translating ‘((smuggle)VB (eight projectiles)NP (into the king-

dom)PP)VP’ into the discontinuous sequence composed of (i) ‘(acht geschosse)NP’ ;

(ii) ‘(in das königreich)PP’ and (iii) ‘(schmuggeln)VP’. In a second step, we assemble

all sequences in a rule with a continuous right-hand side and, at the same time,

insert the word ‘(zu)PTKZU’ between ‘(in das königreich)PP’ and ‘(schmuggeln)VP’. The

rules used are shown in Figure 7.5.
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7.2 Qualitative Analysis

das problem der globalen erwärmung hat präsident václav klaus wieder kommentiert

president václav klaus has again commented on the problem of global warming

präsident václav klaus [hat wieder kommentiert]* das problem der globalen erwärmung

Figure 7.6: Verbal Reordering (top: our system, bottom: baseline)

The second example (Figure 7.6) illustrates an even more complex reordering.

First, we translate ‘((again)ADV commented on (the problem of global warming)NP)VP’

into the discontinuous sequence composed of (i) ‘(das problem der globalen er-

wärmung)NP’; (ii) ‘(wieder)ADV’ and (iii) ‘(kommentiert)VPP’. In a second step, we

translate the auxiliary ‘(has)VBZ’ by inserting ‘(hat)VAFIN’ into the sequence. We thus

obtain, for the input segment ‘((has)VBZ (again)ADV commented on (the problem of

global warming)NP)VP’, the sequence (i) ‘(das problem der globalen erwärmung)NP’;

(ii) ‘(hat)VAFIN’; (iii) ‘(wieder)ADV’; (iv) ‘(kommentiert)VVPP’. In a last step, the con-

stituent ‘(president václav klaus)NP’ is inserted between the discontinuous units

‘(hat)VAFIN’ and ‘(wieder)ADV’ to form the continuous sequence ‘((das problem der

globalen erwärmung)NP (hat)VAFIN (präsident václav klaus)NP (wieder)ADV (kommen-

tiert)VVPP)TOP’. The rules used to achieve this translation are shown in Figure 7.7.

7.2.2 Non-minimal String-to-Tree `MBOT

In this section, we inspect some English-to-German translations generated by the

SCFG baseline and our `MBOT system in order to provide some evidence for lin-

guistic constructions that our system handles better. Again, we identified (a) the re-

alization of reflexive pronouns, pronominal adverbs, and relative pronouns, (b) the

realization of expletives, (c) the translation of gerunds, (d) the translation of fixed

expressions, and (e) local and long distance reordering to be well realized by dis-

continuous rules. In this setting, a lot of rules realize a combination of above stated
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TOP

NP VP
→
( TOP

NP VAFIN NP ADV VVPP

)

NP

president václav klaus
→
( NP

präsident václav klaus

) VP

VBZ VP
→
( NP

NP
,

VAFIN

VAFIN
,

ADV

ADV
,

VVPP

VVPP

)

VBZ

has
→
( VAFIN

hat

) VP

ADV commented on NP
→
( NP

NP
,

ADV

ADV
,

VVPP

kommentiert

)

Figure 7.7: Used `MBOT rules for verbal reordering shown in Figure 7.6.

linguistic constructions. In most cases, these translations are better than in the base-

line system. All examples are (parts of) translations of sentences from the test data

used in Section 5.5.2 for automatic evaluation. Again, ungrammatical constructions

are enclosed in brackets and marked with a star. We focus on instances that seem

relevant to the new ability of having a string on the left-hand side of the rules by

showcasing some examples of string-to-tree rules that allow the consistent transla-

tion of large segments of the input sentence which are not possible in a tree-to-tree

system.

We start with an example (see Figure 7.8) showing the realization of a verb with

its required reflexive pronoun ‘sich’.

Bitcoin unterscheidet sich von anderen Arten [der virtuellen Währung]* .

Bitcoin differs from other types of virtual currency .

Bitcoin unterscheidet []* von anderen Arten [der virtuellen Währung]* .

Figure 7.8: Realization of a verb with reflexive pronoun marked in green (top: our
system; bottom: baseline).
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Here the baseline drops the reflexive pronoun sich, which is correctly realized by

the `MBOT system. The rule used is displayed in Figure 7.9.

differs from other →
( VVFIN

unterscheidet

,
PRF

sich

,
APPR

von

,
ADJA

anderen

)

Figure 7.9: Rule realizing the reflexive pronoun of Figure 7.8.

In Figure 7.10, we show how a particle verb as well as its necessary pronominal

adverb is realized. The English verb ‘assuming’ translates into the German ‘davon

ausgehen’. Due to word order of the sentence, it is necessary to split the German

verb into ‘gehen’ and ‘aus’ as well as realizing the pronominal adverb inbetween

those parts as shown in Figure 7.10. This translation is achieved by the rule of

Figure 7.11. Furthermore, this rule allows for the correct translation of ‘that’ into ‘,

dass’.

Wissenschaftler gehen davon aus , dass Eis . . .

scientists are assuming that ice . . .

die Wissenschaftler [rechnen]* das Eis . . .

Figure 7.10: Example translation for a particle verb with pronominal adverb (top:
our system; bottom: baseline).

are assuming that →
( VVFIN

gehen
,

PROAV

davon
,

PTKVZ

aus
,

$,

,
,

KOUS

dass

)

Figure 7.11: `MBOT rule with split particle verb and necessary pronominal adverb
for the translation shown in Figure 7.10.

Next, we show a translation in Figure 7.12 in which our system correctly trans-

lates an English segment that constitutes a fixed expression in both languages. The

conversion is achieved by one `MBOT rule. The baseline drops the construction
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es stellte sich heraus , dass nicht . . .

it turned out that not . . .

[heraus]* , nicht . . .

Figure 7.12: A translation showcasing a fixed expression in both English and Ger-
man (top: our system; bottom: baseline).

almost completely whereas the large string-to-tree rule of Figure 7.13 allows our

`MBOT system to avoid that drop. Again, the required reflexive pronoun sich is

realized as well as the necessary comma before the conjunction dass.

it turned out that →
( PPER

es

,
VVFIN

stellte

,
PRF

sich

,
PTKVZ

heraus

,
$,

,

,
KOUS

dass

)

Figure 7.13: `MBOT rule for the fixed expression shown in Figure 7.12.

A similar example is shown in Figure 7.14. The baseline does not generate a

verb whereas the `MBOT system uses a large rule to translate the expression ‘don’t

worry’ into its correct German counterpart.

. . . nach Israel fahren , machen Sie sich keine Sorgen [um]* . . .

. . . go to Israel , don’t worry about . . .

. . . nach Israel gehen , keine Sorgen [um]* . . .

Figure 7.14: Translation of the expression ‘don’t worry’.

The `MBOT rule responsible for the correct translation of the verbal segment

don’t worry is displayed in Figure 7.15. Note how the required reflexive pronoun

sich is realized.

Our manual analysis of the baseline translations showed that verbal drop is a

common mistake, whereas it only rarely happens in the `MBOT system.
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don’t worry →
( VVFIN

machen

,
PPER

Sie

,
PRF

sich

,
NP

keine Sorgen

)

Figure 7.15: `MBOT rule used for translation shown in Figure 7.14.

Moreover, we observe that the `MBOT system handles reorderings better. In the

following example shown in Figure 7.16, it correctly reorders the words whereas

the baseline fails. The correct local reorderings are achieved with the help of the

rules depicted in Figure 7.17, which translate large parts of the input sentence using

several discontinuous target tree fragments. The top rule allows for the reordering

of ‘isV difficultADJ ’ into ‘schwierigADJ istV ’ while the bottom rule reorders ’[to inter-

pret]V C [the data]NP ’ into ’[die Daten]NP [zu interpretieren]V C ’ and, additionally,

models the required commata before this subordinate clause.

. . . zwischen [Kontrolle Gruppen]* , weshalb es schwierig ist , die Daten zu interpretieren und . . .

. . . between control groups , so it is difficult to interpret the data and . . .

. . . zwischen den [Gruppen die Kontrolle]* , [also , es ist schwierig zu interpretieren die Daten]* und . . .

Figure 7.16: Translation with local reorderings marked in green (top: our system;
bottom: baseline).

, so it is difficult →
( $,

,

,
PWAV

weshalb

,
PPER

es

,
ADJD

schwierig

,
VAFIN

ist

)

to interpret the data and →
( $,

,

,
VP

die Daten zu interpretieren

,
KON

und

)

Figure 7.17: Rules enabling the better local reorderings shown in Figure 7.16.

In Figure 7.18, we depict another example of local reordering which is of a more

complex nature. The example shows how our system reorders the verbal phrase

into the German verb final position as required for subordinate clauses. The base-
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. . . Ministerpräsident []* , Jean Charest , nur schweren Herzens zugestimmt [hatten]* .

. . . Prime Minister at the time , Jean Charest , had consented only reluctantly .

. . . Ministerpräsident zu der Zeit , Jean Charest , [der seinerzeit zugestimmt hatte sich nur widerwillig]* .

Figure 7.18: Translation with correct complex reordering into verb final position.

had X . →
( $,

,

,
NP

NP

,
VP

VP

,
VAFIN

hatten

,
$.

.

)

consented X →
( NP

NP

,
VP

zugestimmt

)

only X →
( NP

nur NP

)

reluctantly →
( NP

schweren Herzens

)

Figure 7.19: Rules enabling the complex reordering of Figure 7.18.

line completely fails to correctly reorder the translation of ‘had consented only re-

luctantly’. The combination of several discontinuous `MBOT rules depicted in Fig-

ure 7.19 successfully achieves the reordering, but selects the wrong verb form as

indicated in the translation.

Another feature of the `MBOT system is its power to perform long distance re-

ordering with the help of several discontinuous target tree fragments. The next

example (Figure 7.20) shows how our system reorders the verbal phrase ‘to protect

[. . . ]’ into the German ‘[. . . ] zu schützen’ over a long distance. The lexical choices

of the `MBOT system are wrong, but it correctly reorders the English segment ‘the

main goal [. . . ] is to protect the system from corruption’ using its discontinuous rules

displayed in Figure 7.21. The baseline fails to reorder the verbal complex.
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. . . , dass das Hauptziel in der nahen Zukunft ist []* das System [von]* Korruption zu schützen .

. . . that the main goal in the near future is to protect the system from corruption .

. . . , dass das Hauptziel in der nahen Zukunft [zu schützen ist]* das System [von]* Korruption .

Figure 7.20: Translation with long distance reordering of verbal phrase.

is to protect X →
( VAFIN

ist

,
VP

NP PP zu schützen

,
$,

,

)

the system X →
( NP

das System

,
PP

PP

)

from corruption →
( PP

von Korruption

)

Figure 7.21: `MBOT rules enabling the long distance reordering of Figure 7.20.

Another successful long distance reordering is shown in Figure 7.22. Our system

uses again several discontinuous `MBOT rules to move the German translation of

the verb ‘endure’ in the verb final position over a long distance. Figure 7.23 shows

. . . [Waffen Fabriken nun]* , die Konkurrenz auf dem internationalen Markt nicht ertragen und . . .

. . . weapon factory now , which do not endure competition on the international market and . . .

. . . [Waffen in den Fabriken nun] , die nicht einem Wettbewerb auf dem internationalen Markt []* . . .

Figure 7.22: Showing a translation that correctly reorders the verb into verb final
position (top: our system; bottom: baseline).

the rules which enable the `MBOT system to produce the correct reordering. Note

how ‘endure X ’ is reordered into ‘NP ertragen’ and the rule on top adds the nega-
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tion ‘nicht’ between the NP and the VP in its right-hand side.

which do not X →
( PRELS

die

,
NP

NP

,
PTKNEG

nicht

,
VP

VP

)

endure X →
( NP

NP

,
VP

ertragen

)

competition X →
( NP

Konkurrenz PP

)

on the international market →
( PP

auf dem internationalen Markt

)

Figure 7.23: `MBOT rules used for the long distance reordering shown in Fig-
ure 7.22.

7.3 Summary

We presented an evaluation of `MBOT systems across all settings. We started by

showing for how many sentences in each test set a complete sentential form was

obtained by our system. We find that there is a drop for the English-to-German and

the English-to-Chinese translation task when moving from minimal rules to non-

minimal rules. Also the move from trees to strings on the left-hand side of our rules

resulted in another drop. But for the English-to-Arabic translation task, the reported

numbers are almost equal.

Next, we inspected the used `MBOT glue rules to decide whether discontinu-

ous rules were actually used discontinuously or rather continuously. Our analysis

showed that there is an increase of used `MBOT glue rules when moving from the

minimal to the non-minimal setting as well as moving on to strings on the left-hand

side of our rules. A further analysis revealed that in the string-to-tree setting and
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for all three translation tasks, the rules with more than two target tree fragments

were glued. Since our systems achieved significant improvements over the respec-

tive baselines in this setting, we conclude that those rules most probably realize

linguistic patterns that do not need to be used discontinuously. In the non-minimal

tree-to-tree setting, rules with more than 4 and more than 3 target tree fragments

were glued for the English-to-Arabic and English-to-Chinese translation tasks, re-

spectively. For the translation into German we did not find a pattern. Also for the

minimal tree-to-tree setting we could not find a pattern in either translation task.

Finally, we presented an qualitative analysis of our English-to-German transla-

tion systems which obtained significant improvements over their respective base-

lines. We found that our translation system systematically realizes certain aspects

of the German language, like the realization of reflexive pronouns or local and long

distance reordering to be well realized by rules with more than two target tree

fragments.
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Chapter 8

Conclusion

In this chapter we first summarize our contributions and conclude with an overview

of future work.

8.1 Contributions

This thesis contributes to the field of syntax-based statistical machine translation.

We introduced a translation model that is based on multi bottom-up tree transduc-

ers. In contrast to the traditional continuous SCFG models widely used in syntax-

based SMT, an `MBOT translation model allows discontinuities on the target lan-

guage side. A decoder that can handle discontinuous translations was already avail-

able (Braune, 2015) as well as a minimal rule extraction algorithm (Maletti, 2011),

but the algorithm was neither implemented nor evaluated yet. This work closes the

gap. The evaluation of the minimal tree-to-tree `MBOT translation system led to

further models based on `MBOTs with different amounts of linguistic annotation.

In the following, we will recap our contributions.

Tree-to-Tree Models We implemented the rule extraction of Maletti (2011) and

obtained a set of minimal tree-to-tree `MBOT rules which were combined with a
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set of minimal SCFG rules. The evaluation on an English-to-German translation task

showed significant improvement over a tree-to-tree SCFG baseline. An analysis of

the rules used to decode the test set showed that discontinuous rules play indeed a

role to translate the sentences.

In general, minimal rules are not well suited for machine translation. Hence,

we presented and implemented the first parameterized non-minimal tree-to-

tree `MBOT rule extraction algorithm. We evaluated the non-minimal tree-to-

tree `MBOT system and the minimal tree-to-tree `MBOT system (without additional

minimal SCFG rules) on three different translation tasks. The non-minimal `MBOT

systems achieve the expected improvements over the minimal `MBOT systems but

do not beat either SCFG baseline. Our analysis of the rules used to decode the test

sets showed a strong shift from discontinuous structural rules (minimal rules) to

discontinuous lexical rules (non-minimal rules).

String-to-Tree Models With the encouraging findings from the evaluation of the

tree-to-tree `MBOTs, we decided to move from syntactic parse trees to simple

strings on the source language side. It is well known that tree-to-tree models are

too restrictive to achieve good translation results and string-to-tree models yield

better translation quality in general. Hence, we presented and implemented a non-

minimal string-to-tree `MBOT rule extraction algorithm. We evaluated it on the

same three translation tasks as for the tree-to-tree models and obtained significant

improvements over all string-to-tree SCFG baselines. The scores show increases

from 0.66 to 0.78 BLEU points.

Having obtained such significant improvements, we naturally wanted to apply

our model on other language pairs for which we expected a gain from discontinu-

ous rules. We decided to evaluate on an English-to-Russian and an English-to-Polish

translation task. But for those target languages, only dependency parsers are avail-

able which might return non-projective dependency parse trees. This is due to the

rather free word order of these languages, which do not allow for a constituent-
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like tree representation. Consequently, we applied a (non-projective) dependency

parser on our target languages and applied a lifting technique that not only pro-

jectivizes the non-projective parses but also documents the lifts in the labels. Next,

we transformed the dependency tree structures into constituent-like tree structures.

Then we were able to obtain our `MBOT systems. On the English-to-Russian trans-

lation task, we achieved a significant improvement of 1.47 BLEU points over the

string-to-tree SCFG baseline. For the translation into Polish we even gained an im-

pressive improvement of 2.14 BLEU points, thus confirming our claim that a trans-

lation system based on `MBOTs is quite suitable for such translation tasks.

String-to-String Models For all different syntax-based settings we have explored

so far, we noticed that a hierarchical SCFG system achieves the best translation

quality in terms of BLEU. As a consequence, we moved from syntactic parse trees

to strings on the target language side as well, hoping that the discontinuous rules

contribute in this setting. We presented and implemented the third parameterized

rule extraction algorithm to obtain a set of (non-minimal) string-to-string `MBOT

rules. We trained once again our translation system on the already established three

translation tasks. Unfortunately, the rule-table for the English-to-Arabic was too

large to load into main memory. The evaluation on the English-to-German and

English-to-Chinese translation tasks revealed that our `MBOT achieves compara-

ble results compared to the hierarchical SCFG baseline system. For the translation

into German, the baseline outperforms our system by 0.43 BLEU points and by

0.14 BLEU points on the English-to-Chinese translation task. An analysis of the

rules used to decode the test sets showed that hardly any discontinuous rules were

used. It seems that string-to-string SCFG rules are flexible enough and do not need

the additional flexibility introduced by discontinuities.

Analysis of `MBOTs across all Settings We showed for how many sentences in

each test set a complete sentential form was obtained by our system. We noticed a

drop for the English-to-German and the English-to-Chinese translation task when
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moving from minimal rules to non-minimal rules. Another drop became obvious

with the move from trees to strings on the left-hand side of our rules. But for the

translation into Arabic, the numbers were almost equal for all settings.

We try to estimate the use of discontinuous rules as truly discontinuous by in-

specting the used `MBOT glue rules. Our analysis revealed an increase of glued

discontinuous rules when moving from the minimal to the non-minimal setting as

well as moving on to strings on the left-hand side of our rules. Next, we further

analyzed whether discontinuous rules with a certain number of target tree frag-

ments were glued. In the string-to-tree setting and for all three translation tasks,

all rules with more than two target tree fragments were glued. For the minimal

tree-to-tree setting we could not find a pattern in either translation task. In the

non-minimal tree-to-tree setting, we found a pattern for the English-to-Arabic and

English-to-Chinese translation tasks but not for the translation into German.

Finally, we presented a qualitative analysis of our English-to-German translation

systems which obtained significant improvements over their respective baselines.

We found that our translation system systematically realizes certain aspects of the

German language, like the realization of reflexive pronouns and pronominal ad-

verbs, well by rules with more than two target tree fragments. In the string-to-tree

setting we also notice how fixed expressions are well translated. Furthermore, our

system is able to correctly model local and long distance reorderings.

Software and Analysis tools We publicly release all our software and analysis

tools to enable the SMT community to experiment and improve on our work.

8.2 Future Work

Restriction on Target Tree Fragments Our analysis for the different translation

tasks showed that some languages use discontinuous rules with up to a specific

number of target tree fragments. It is possible to implement a restriction that ex-
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tracts only rules with up to n target tree fragments and specify n for the desired

target language.

Given this restriction, it would also be possible to allow only rules with two

target tree fragments or a sequence of two target strings . The experiments for the

discontinuous tree-to-tree setting of Sun et al. (2009) and the discontinuous string-

to-string setting of Kaeshammer (2015) showed significant improvements over a

corresponding baseline with a strict limitation to two discontinuities per rule. As

we did not beat the baselines in the tree-to-tree and string-to-string setting, maybe

we can gain improvements with this restriction.

English-to-German translation task For the English-to-German translation tasks

we removed the full parse tags which we obtained from BitPar (Schmid, 2004) to

avoid data sparsity. Our manual inspection of translations for this language pair (see

Section 7.2) showed that the lexical choices of the `MBOT system are sometimes

wrong. It could help the translation quality, if some information from the full tags

like number and gender would be kept.

Incorporating Dependency Parses It would also be interesting to experiment

with dependency parses where the lifts are not documented. Since there were not

that many non-projective structures present for both Russian and Polish, it could be

that the same results can be obtained.

Composition All three variants of our parameterized (non-minimal) rule extrac-

tion algorithms apply a heuristic to obtain a set of rules. Further research could

investigate a rule extraction that first extracts minimal rules only and obtains from

those additional rules by composition. Galley et al. (2006) use this approach to im-

prove the performance of Galley et al. (2004). Furthermore, Williams and Koehn

(2012) use composition for the extraction of MOSESGHKM rules.
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Tree-to-String Setting Another point of research could be the implementation

of a tree-to-string variant. Especially for the translation direction into English, this

could provide insights whether a language with “simple” grammar can benefit from

discontinuous rules.
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