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Abbreviations

If not temporarily defined otherwise within the text the following definitions 
hold:

LP Combined Lorentz and polarization corrections

CCD Charge coupled device

PSF Point spread function

FWHM Full width at half maximum

2q Angle of diffracted beam to primary beam

q Half the above angle

D Distance of the detector from the 
sample along the primary beam

tilt Maximum angle between the primary 
beam normal plane and the detector

rot Rotation of the tilted plane

a Angle of azimuth

Y Incidence angle of the diffracted 
beam on the detector

l Semi-latus rectum

c Distance between focus and centre of an ellipse

a Semi-major axis of an ellipse

b Semi-minor axis of an ellipse

e Eccentricity of a conic section

r Radius

L Lorentz correction
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0	 Introduction

With the general availability of high intensity parallel synchrotron radiation, 
the use of two-dimensional detectors like CCD-detectors or on-line image 
plate readers for fast high resolution data acquisition enjoys a growing 
popularity. As a consequence, the field of X-ray powder diffraction has 
experienced a renaissance. For the first time it is now possible to record 
the entire Debye-Scherrer rings up to high angular range with high angular 
resolution within a few seconds or even less. The field of applications is 
vast with current experiments including texture analysis (Wenk & Grigull, 
2003) and in situ powder diffraction measurements in dependence on 
pressure (Hanfland et al., 1999), temperature (Norby, 1997), chemical 
composition (Meneghini et al., 2001), electric and magnetic fields (Knapp 
et al., 2004) or external strains (Poulsen et al., 2005). 

The experimenters is faced with two major challenges. Firstly, large area 
detectors produce large numbers of two-dimensional images which need 
to be reproducibly reduced to one dimensional powder patterns. Secondly, 
the sets of hundreds or even thousands of powder patterns need to be 
evaluated and graphically presented.

It is interesting to note that for both tasks only very few generally available 
programs exist. These are keyed toward single powder patterns involving 
extensive manual interaction. This approach is unsuitable for mass data 
analysis: not only is the manual workload exorbitant but the induced 
subjectivity hinders reproducible results.

The key to solve the first problem lies in the reliable extraction of a powder 
diffraction pattern unaffected by “graininess” effects, detector aberrations, 
and scattering from other sources like reaction cells, diamond anvils and 
gaskets. The diffraction pattern from a two-dimensional image can be 
reduced to a simple geometric figure: the ellipse, calling for the application 
of modern pattern recognition techniques (Paulus & Hornegger, 1995, 
Theodoridis & Koutroumbas, 1999) to determine the parameters describing 
their arcs. As to the representation and evaluation of the integrated 
powder patterns, a high level graphically powerful programming language 
offers the basis for an efficient solution. We decided on the Interactive 
Data Language IDL (ITT-VIS, 2006) to develop a general program for 
automatic data reduction and the evaluation of two-dimensional powder 
diffraction data called Powder3D. 

Various aspects necessary to solve problems encountered during the 
investigation of crystal structures at high pressure are described here. 
The geometrical basis of two-dimensional diffraction has been assimilated 
and transformed to a useful coordinate system. This was most useful 
as most diffraction corrections functions for two-dimensional data were 
devised for single crystal diffraction. The effective Lorentz correction for 
a highly collimated beam was deduced. A calibration method based on 
pattern recognition was developed to determine the detector position and 
orientation automatically. These parameters were refined using a new 
approach termed whole image refinement in which the entire diffraction 
image is reconstructed, and this used as a basis for the calculation of a least 
squares residual. This method improves the accuracy of the calibration 
parameters by more than one order of magnitude. Filtering methods 
based on fractile filtering have been introduced The intensity distribution of 
high pressure experiments, which in many aspects deviate from standard 
powder diffraction experiments, was found to follow a somewhat blurred 
(due to the detector point spread) Pareto distribution. This distribution 
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model was used to develop a method of extracting normally distributed 
intensities from the image, a fundamental necessity of all minimization 
routines based on least squares. An image reliability value was devised 
for quantifying the quality of a powder diffraction image.

Two applications of the methodological development are presented. The 
structural evolution of FeSb2O4 and SnSO4 under extreme pressures. It has 
been mentioned that high pressure experiments using diamond anvil cell 
techniques are the most challenging experiments in two-dimensional X-
ray diffraction, not only in sample preparation, but also in the data analysis. 
Many results are published without structural Rietveld refinements, as a 
direct result of the difficulties in extracting reliable intensities from the raw 
images. That this is routinely and efficiently possible has been shown 
exemplarily in the presented studies. The tin sulphate experiment shows 
which precision this method is capable of. Most subtle changes in the 
symmetry of the crystal structure become apparent after the raw data has 
been treated accordingly.



�

The experimental setup

1	 The experimental setup

1.1	 Two-dimensional detectors

The first two-dimensional detector in X-ray diffraction was conventional 
film. It remained for decades the detector of choice for both single crystal 
as well as powder diffraction experiments. In the field of two-dimensional 
detection it has been surpassed initially by image plates and later by CCD 
cameras. Today virtually no film is in use, with perhaps the exception of 
Polaroid used for single crystal images. To be able to compare various 
detectors with one another and to select the most appropriate detector for 
a specific experiment certain key technical qualities are important. These 
are in general the detective quantum efficiency, the spatial response 
characteristics, the size, speed and dynamic range (Westbrook, 1999).

The detective quantum efficiency (DQE) (Gruner et al., 1978) is a measure 
of the signal to noise degradation caused by the instrument. It is defined 
in equation 1.1.
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I and σ represent the input (Iin) and output (Iout) intensities and the input 
(σin) and output (σout) standard deviations of the signal intensities, N is the 
number of incident X-ray photons and Rout is the relative variance of the 
output signal. A detector with a DQE of 50% has to count twice the time 
a detector with a DQE of 100% has to count to record a signal of equal 
variance.

The spatial response characteristics (Ponchut, 2006) are normally 
characterized by the point spread function (PSF) – the detectors signal to 
a delta function stimulus. Ideally the point spread is also a delta function. 
Experimentally this is seldom the case as detector characteristics 
generally give the signal a Gaussian spread. It is the point spread function 
which is the main cause of the limited resolution in powder diffraction 
experiments.

The size of the detector is an important factor determining the size of 
the accessible reciprocal (or q-) space. Larger detectors offer a greater 
area and thus a greater q-space which can be imaged in one exposure. 
Greater size also opens the possibility of moving the detector further from 
the sample to improve resolution.

Speed is of ultimate importance when acquiring data at a synchrotron 
beam line. The readout time should be minimal to ensure a high time 
resolution for in-situ experiments and a most efficient use of the costly 
synchrotron rays. 

The dynamic range of the detector limits the intensity differences that are 
recordable on one image. The higher the dynamic range the better one is 
able to characterize signals having a strong contrast. 
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Figure 1.1: Detector types. Five different detector designs are shown in their fundamental units. This is an adaptation 
of an image in Chotas (Chotas et al., 1999).

1.1.1	 CCD Detectors

Probably the widest spread detector type utilized today in X-ray 
crystallography is the CCD camera. These detectors are in use in 
multifarious fields and their general ongoing development has been of 
benefit to the relatively small X-ray detector segment. The great advantages 
of these detectors are their high resolution and short readout times. This 
is of importance especially in single crystal diffraction in which dead times 
can make up a great part of the measurement time. The drawbacks stem 
from three basic elements of the detector. The fluorescent screen has to 
be optimised for the required wavelength. The higher energy radiation 
requires a thicker layer to fully absorb the incident rays. Thicker layers 
are disadvantageous as the PSF increases with the strength of the layer. 
This is due to the spherical dissipation of excited electrons within the 
fluorescent layer. Fibre optical tapers channel the light from the large 
fluorescent layer to the smaller CCD chip. The tapering often leads to an 
imperfect representation of the original image onto the CCD. This has to be 
corrected as much as possible within the detector electronics (firmware). 
Some detectors have a CCD area of equal size to the fluorescent layer 
and can circumvent this source of errors. Finally one major drawback is 
the substantial dark current from the CCD chip which requires permanent 
cooling to reduce these effects. 
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1.1.2	 Imaging plate detectors

Imaging plates were the first digital technology to replace films in 
synchrotron and laboratory equipment. The concept is extremely simple. 
A layer of BaF(Br,l):Eu2+ which contains colour centres, is deposited 
on a robust film like base ‘plate’. The plate is then exposed to X-rays. 
The image is later scanned by an online or a more cumbersome offline 
scanner. Scanning the image comprises exciting the colour centres and 
then detecting the induced radiation. Stimulating colour centres does not 
require much energy, generally red lasers suffice. The stimulated green 
light is detected by a photomultiplier following in the path of the laser.

The great advantages of imaging plates are their large size, low cost and 
their high dynamic range. The latter quality has made it the detector of 
choice for two-dimensional powder diffraction. Their major drawback is 
the high dead time associated with the time consuming scanning. This 
can take the best part of two minutes for large images. Rigaku MSC has 
developed a practical solution to this problem. The detector system is 
comprised of two or even three detectors. When one is being scanned the 
other can be exposed. A precision rotation system transports the imaging 
plate from one position to the other. The future for this detector type does 
seem rather bleak especially in view of flat panel detectors and the single 
photon counting hybrid pixel detectors.

1.1.3	 Flat panel detectors

Thin film transistor (TFT) arrays are produced inexpensively and in large 
numbers for use in modern computer monitors and televisions. This 
readout system can be combined with amorphous hydrated Silicon or 
amorphous Selenium which is deposited over the large surface of the 
TFT array and acts as the X-ray conversion layer. Having established 
themselves firmly as an X-ray detector for medical imaging already, they 
have until now failed to make an impact on the field of crystallography 
(Ross et al., 1997), their high noise level being the main drawback. It can 
be surmised with some confidence that this type of detector will become 
standard equipment in the near future.

A very general categorization into direct and indirect conversion types can 
be made for these detectors (Chotas et al., 1999). Within direct converters 
X-rays are transformed to electrons in a single step, for example by a 
layer of amorphous Selenium. One further step is required for the indirect 
sensors: here a scintillating layer (photoconductor) converts the X-rays into 
visible light, which is in turn converted to an electronic charge by a further 
amorphous Silicon layer. This brings with it the inevitable resolution loss 
associated with the radial diffusion of photons and again their interaction 
with the amorphous Silicon. As with all detection layer systems they can 
be optimized using various layer thicknesses and scintillating substances 
which can be selected according to the X-ray wavelength and the photon 
detection properties of the lower layer. Currently vapour grown CsI:Tl 
as an extremely popular material. It grows in columnar structures and 
can act as a guide in a similar fashion to fibre optics, thereby reducing 
lateral scattering. Its high atomic number secures a high X-ray absorption 
and thus good conversion. Other materials under study as possible 
photoconductors are HgI2, PbI2 and CdZnTe (CZT). Especially CZT, 
grown using a high-pressure Bridgeman technique, has been rapidly 
implemented in a wide variety of medical detectors (Darambara, 2006).



12

Two-dimensional X-ray powder diffraction

1.1.4	 Hybrid pixel detectors

Silicon pixel array detectors are based, as the name suggests, on Silicon as 
the primary detecting layer. The photoelectric effect causes one electron/
hole pair to be created for each 3.65eV of incident X-rays. This leads 
to 3220 electrons from each X-ray photon at 12keV in a one millimetre 
layer, which absorbs 98% of that radiation. In contrast a CCD would only 
produce roughly 10 electrons. The readout time of a few nanoseconds 
also contrasts impressively with all other detector systems. Further no 
distortions are to be expected as no intermediary tapering or disconnected 
readout systems are involved. In spite of these overwhelming advantages 
the price of prototyping and the expense of the readout electronics design 
has inhibited the speedy development of this detector type. Nevertheless 
a few groups have been working on realizing a detector specifically for 
crystallography. Workers around Christian Broennimann (Broennimann 
et al., 2006, Hulsen et al., 2006) have succeeded in building a one mega-
pixel detector for protein crystallography with a pixel size of 217x217µm². 
Although this might be larger than the pixels of a CCD the perfect point 
spread function of a single pixel still represents a marked resolution 
improvement over the CCD detector types. The detector was built up of 
an array of 18 modules covering a total area of 210 x 240 mm². A full frame 
readout time of this detector takes 6.7 ms allowing a continual rotation 
single crystal data collection without the shutter closing between frames.

Detectors of this type are already in operation (Fauth et al., 2000) in the 
field of powder diffraction. Large manufacturers of diffraction equipment 
have these detectors among their products, disappointingly reduced to 
point detectors and not implemented as area detectors. An installation 
at the material science beam line at the Swiss Light Source (SLS) of the 
Paul Scherrer Institute (PSI) in Switzerland is an equatorial type detector, 
covering a fixed angle of 60° in 2θ. This is again no real two-dimensional 
detector. It has a faster readout time than the two-dimensional detector 
mentioned earlier and can acquire entire diffractograms in a fraction of a 
second. Most probably this type of detector will establish itself in the field 
of two-dimensional diffraction.

1.2	 Diffraction geometry

Early powder diffraction experiments relied mostly on the Debye-Scherrer 
experiment to record a diffractogram. A broad film strip set into a cylindrical 
chamber produced the first known two-dimensional powder diffraction 
data. In contrast to modern methods the thin equatorial strip was the only 
part of interest and intensities merely optically and qualitatively analysed. 
This changed drastically with the use of electronic scintillation counters. 
Intensities were no longer a matter of quality but quantity. Inevitably the 
introduction of intensity correction functions long known to the single 
crystal metier i.e. Lorentz and polarization corrections (see page 22), 
made their way into the field of powder diffraction.

Continuous detector development brought about the next revolution in 
the field of powder diffraction. Large area detectors made their debut 
in powder diffraction at synchrotron beam-lines in the beginning of the 
nineties, having first been used in the field of single crystal diffraction. First 
experiments only utilized thin equatorial strips (Norby, 1997) of the image 
but with the introduction of freely available software (Hammersley et al., 
1996), the integration of the entire image to a standard one-dimensional 
powder diffraction pattern became commonplace.
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The term two-dimensional powder diffraction does not imply any specific 
geometry; it merely states the two-dimensionality of the detected signal. 
It could be conceived that this detector be cylindrical as in a Weissenberg 
camera. Such detectors are still common in modern single crystal 
diffractometers in both standard laboratories (Rigaku, 2004) as well 
as at neutron beam-lines (Cole et al., 2001); however the concept has 
never gained great popularity in the modern powder diffraction field. The 
ubiquity of large flat image plate detectors, their unparalleled dynamic 
range as well as a speedy read-out time are the reasons for their current 
prominence in the field. 

A precise determination of the experimental geometry is a prerequisite 
for highly accurate and well resolved diffraction angles, peak profiles, 
absorption effects or even good filtering. Especially the separation of micro-
structural effects from the instrumental contribution to the peak profile 
needs exact 2θ values. An accurate calibration remains the single most 
significant factor in the extraction of high quality powder diffractograms 
from two-dimensional images.

Generally the detectors are set up perpendicularly to the primary beam, 
with the intersection of the primary beam at the detector centre. This 
setting has some advantages: the entire Bragg cones are detected and 
the deviation of the cone projection from an ideal circle is usually small. 
Sometimes a detector can be placed off-centre and non-orthogonally 
to the primary beam. This can enlarge the detectable q-space in a very 
cost effective manner. The down-sides are the strongly elliptical conical 
projections and the loss of the entire azimuthal information of a diffraction 
cone.

Extraction of standard powder diffractograms from two-dimensional 
images requires knowledge of the diffraction angle at each pixel. These 
angles have to be known to a precision equal to or less than the detector 
resolution. The detector resolution is mainly governed by the point spread 
function (PSF). In addition the calculation of air absorption would require 
the sample to pixel distance in each case. The azimuthal angle is vital 
for the application of the Lorentz and polarization corrections as is the 
incident angle for a detector dependent correction. The following chapter 
will deal with the derivation of all possible geometrical values which could 
be of importance during data reduction.

1.2.1	 Resolution and FWHM in two-dimensional diffraction

The resolution of a two-dimensional detector is governed to a dominant 
extant by the PSF. This can be very well observed by the behaviour of 
the FWHM distribution of reflections over an image plate. The PSF of a 
standard image plate is roughly 300µm. The projection ∆l of the diffracted 
beam width d on the image plate in the case of a fully parallel beam is 
given by:

d
l

cos( )


This would result in the projection of the diffracted beam leaving a 
larger footprint on the image plate at higher incident angles (Ψ); we 
should therefore expect higher FWHM of the diffracted beams at higher 
incident angles. Experimentally we find an inverted relation. How can this 
seemingly aberrant behaviour be explained? The answer lies in the PSF 
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of the detector. Detectors do not resolve differences in the half-width of the 
incident beam if they lie well below the point spread of the detector. The 
increasing footprint of the incident beam is overshadowed by the detectors 
point spread, thus leading to no discernable effect. So it is no surprise that 
with changing incident angle and sample distance the ‘number of points 
(pixels) across the peak … is not changed’ (Norby, 1997). The reduction 
in the FWHM of the diffracted X-rays at higher incident angles is more 
intrinsically connected to the angular resolution per pixel (figure 1.2). 

Figure 1.2: The effect of the incident angle on the sharpness of the final angular projection. The point 
spread of the detector does not change. The difference in the angular resolution between the 
perpendicular and the tilted detector is the cause of the sharper peak.

Taking into account both the effect of the incident angle and the distance 
of the detector from the sample the resolution of an experimental set-
up can be calculated as the half-width (FWHM) of the diffracted beam 
by its diffraction angle (2θ), the PSF of the detector and the sample to 
detector distance (D). For simplicity we assume that the detector tilt is 
negligible. The radius is then related to the sample detector distance and 
the diffraction angle by the following equation (see figure 1.8):

D rtan 2q  (1.3)

Adding the FWHM and the point spread contribution would lead to:

D FWHM r PSFtan( )2q    (1.4)

As equation 1.3 still holds 1.4 would become:

D FWHM D PSFtan( ) tan2 2q q   (1.5)

Solving for FWHM in terms of 2θ and the PSF then leads to:
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FWHM
D PSF

D










arctan

tan 2
2

q
q (1.6)

To show the effect of the PSF on the FWHM of a diffracted beam a surface 
spanning a 2θ range from 0° to 70° and a detector distance range from 
100mm to 1000mm has been calculated, estimating the point spread to 
be 300µm (figure 1.3).

Figure 1.3: The effect of the point spread of a two-dimensional detector upon the FWHM of a diffracted 
beam is represented. The detector is assumed to be ideally aligned normal to the primary beam. The 
point spread is taken to be 300µm. Sample contributions to the peak width have not been considered.

 The effect of the diffracted beam projection onto the image plate 1.2 has 
not yet been included into the FWHM calculation. Adding this factor to the 
broadening leads to the following estimation 1.7, again for an idealized 
non-tilted detector.

To verify the applicability of this estimation the theoretical values have 
been plotted against experimental data from a calibration image(see 
Figure 1.4). The image had a minimal tilt of 0.2°, the sample to detector 
distance was 141 mm, the diffracted beam was 0.2 mm and the point 
spread was estimated to be 0.32 mm.

FWHM
D PSF d
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





arctan

tan *sec2 2
2

q q
q (1.7)
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Figure 1.4: Calculated full width at half maximum (FWHM) and observed FWHM for a calibration image 
of LaB6 are plotted against one another. The solid line represents the calculated values, whereas the 
crosses represent the measured values. To calculate the theoretical values the diffracted beam width 
was taken to be 0.2 mm the point spread of the detector was set to 0.32 mm and the sample to detector 
distance was taken as refined by the calibration at 141 mm.

It is possible to estimate the line width of an orthogonally aligned 
diffraction experiment by knowing the width of the diffracted beam, the 
PSF of the detector and the distance to the detector. Adding tilt to the 
two-dimensional detector makes the situation a lot more complicated. 
Essentially an azimuthal factor is added to the incident angle as well as 
to the angular resolution. This results in an azimuth dependent FWHM of 
the diffraction image. The dependence of the line width on the detector 
orientation is given in its complete form by equation 1.8. This equation is 
deduced in the same manner as equation 1.6, however starting from the 
more complex formulation of a tilted detector given by equation 1.12.

FWHM

x rot y rot tilt yPSF PSF PSF


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arctan

cos( ) sin( ) cos ( ) cos(
2 2 rrot x rot
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PSF PSF

) sin( )
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 
  

2

))

arctan
cos( ) sin( ) cos ( ) cos( ) si

 


   

2

2 2x rot y rot tilt y rot x nn( )

cos( ) sin( ) sin( )
,

,

rot

D x rot y rot tilt
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 

   
 

2

2

PPSF y PSF 

(1.8)

For a precise explanation of the terms rot and tilt please refer to figure 1.9 
and figure 1.11. The line width can also be expressed in the more general 
terms of diffraction angle (2q), azimuthal angle (a), detector orientation 
(D, rot, tilt) and the detector point spread (PSF). To deduce the formula 
we start with equation 1.3 but alter it to fit a tilted detector. This implies 
adding a distance z to the sample to detector distance. It represents the 
change of the distance to the reflection point on the detector projected 
onto the primary beam vector. This change is brought about by the tilt and 
can easily be derived as is shown in Figure 1.10a. The factor narrowing 
the effective width of the tilted beam (figure 1.2) has to be added, leading 
to modified form of equation 1.5.
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Figure 1.5. A theoretical two-dimensional diffraction pattern. Notice the effect of the broadening by the 
incident angle and the point spread function on the pattern. The high density of diffraction lines in the 
bottom left is caused by the extreme tilt (45°) of the detector.

D z FWHM tilt D z PSF         tan cos cos tan2 2q a q (1.9)

The change in distance is given by the following equation:

z r tilt sin( ) (1.10)

The radius has been derived and is given by equation 1.37. Substituting 
all values of z and r in equation 1.10 and equation 1.9, solving for the 
FWHM and simplifying leads to the fundamental formulation of equation 
1.9.
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(1.11)

Such a situation can be simplified if only a thin Debye-Scherrer type strip 
along an azimuthal angle is considered (Norby, 1997). The effects of 
diffracted beam projection and the point spread function on the image 
can be seen in figure 1.5. This figure displays a theoretical image of LaB6, 
setting the detector at a tilt as well as a rotation angle of 45°. At large incident 
angles the beam projection contributes most to the line broadening, while 
at low incident angles both contribute to the line broadening. 

The projection of this image into reciprocal space Figure 1.6 is enlightening. 
When compared to the initial pattern used to generate the image it can 
be clearly seen how the line width alters for different peaks. Instead of the 
typical orthogonal setup behaviour in which the line width diminishes with 
higher diffraction angle because of its equivalence to the incident angle, 
a non-orthogonal detector can give peak widths that broaden at higher 
diffraction angles.
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Figure 1.6. A comparison of the initial pattern (black line) used to generate a two-dimensional image 
and the integrated pattern from the image (in red).The detector was highly tilted leading to a large 
difference in the incident angle between the low angle peaks, which had large parts of their arc at high 
incident angles, and the high angle peaks had low incident angles, leading to greater peak widths. 

The reason why the peaks at low diffraction angles are still so much 
narrower than those at high angles although parts of their ellipses are 
in a region of low incidence is simple. The fraction of their ellipse arc 
at low incidence angles is relatively small, the majority of the arc lies in 
a region of high incidence and therefore this dominates the signal. The 
difference in peak width becomes quite clear when the peak width at 
different azimuthal angles is viewed figure 1.7. The high incident angle 
region in this case lies at an azimuth of 45°. The low incidence angles lie 
diametrically opposite.

When using focusing optics (von Dreele et al., 2006) the detector distance 
to the optics is fixed and the focal spot of the beam well below the PSF of 
the detector. The resolution is governed solely by the PSF of the detector. 
To decrease the resulting line width the only solution is to increase the 
distance between the sample and the detector, as tilting the detector 
would move it out of the focal point.

Figure 1.7. The effect of extreme detector tilt on the line width at different azimuthal angles. A point 
spread of 300µm and a detector tilt of 45° has been the basis of this computation.
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1.2.2	 Diffraction angle transformation

The fundamental function relating the non-orthogonality of the detector 
to the primary beam and the sample to detector distance into diffraction 
angles is given by 1.12. This equation can easily be deduced from two 
rotations of the plane out of its position orthogonal to the cones axis.  The 
first rotation is performed around the x-axis. As can be seen in figure 
1.8 it causes the conic section to become elliptical. The axis of the cone 
now intersects the plane at a focal point of the ellipse. What was the 
radius in the circular conic section now has become the semi-latus rectum 
figure 1.13. A second rotation is performed around the plane normal 
centred on the focal point which is the intersection of the cones axis. The 
effect of this rotation is shown in figure 3. This transformation provides a 
general formulation of a conic section using experimentally accessible 
parameters.

2
2 2

q 
    

arctan
cos ( ) cos( ) sin( ) sin( ) cos(tilt x rot y rot x rot y rrot

D tilt x rot y rot

)

sin( ) cos( ) sin( )

  
   

2

2
(1.12)

The parameters x, y, tilt, rotation and D are depicted in figure 1.8 to 
figure 1.11. A deduction of this equation has been given by (Hammersley 
et al., 1996) and is described with the aid of figure 1.8 to figure 1.11. 
(Kumar, 2006) gave a good overview of the transformations involved in 
calculating the conic section. He however chose to use three angles to 
describe the detector orientation relative to the scattering cone. As any 
detector orientation can be described by two angles alone, this is the 
transformation we chose to use. 

Figure 1.8: A circular conic section resulting from an orthogonal detector to primary X-ray beam setting. 
On the left is a view perpendicular to the detector, on the right is a side view, showing the primary beam 
entering from the right. The primary and diffracted beams from the sample S intersect the detector on 
the detector plane. The primary beam intersects the detector at the centre of the circle. For clarity only 
one diffraction cone has been drawn. The distance from the sample to the detector along the primary 
beam is given by D. The detector coordinate system is denoted in x and y relative to the beam 
centre. 
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In figure 1.8 a conic section normal to the cones axis is displayed. The 
diffraction angle, which is half the cones opening angle, is given by 
equation 1.13. All the coordinates are given in the cone coordinate system 
wherein z is the cones axis, and x and y describe the plane perpendicular 
to it. The position of the plane is at a distance D from the cones apex 
along the cones axis.

x y D2 2 2 2 2  tan q (1.13)

In our case the cones axis is synonymous with the primary beam. For the 
conic section to change from a circle to an ellipse the angle between the 
plane normal and the cones axis has to be greater nought. 

Dx tilt
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Dy
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


 



 









 

cos( )
sin( ) sin( )

2 2
22 2 2tan q (1.14)

This is realized in figure 1.9 and figure 1.10 by rotating the cones axis 
around the horizontal plane axis, this is equal to the x-axis. For sake of 
compatibility with the established formulation (Hammersley et al., 1996) 
the detector is tilted around the y-axis. The coordinate system changes to 
that of the tilted detector and is denoted by x’ and y’ (figure 1.10).

Figure 1.9: The elliptical conic section resulting from a tilting of the detector around a horizontal axis. 
This results in an ellipse which is mirror symmetrical along the central vertical axis. 

The equation 1.14 then simplifies to 1.15.

      x tilt y D x tilt2 2 2 2 2 2cos ( ) sin( ) tan q (1.15)
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Figure 1.10: Constructions after Kumar (Kumar, 2006) to deduce the tilted x’ and y’ values in terms of 
the orthonormal x and y values. Image a) shows the construction used to calculate the relation between 
x and x’. The similarity of the triangle spanned by D and x (small triangle), and the triangle spanned 
by D+x’sin(tilt) and x’cos(tilt) is used to set up the relation. Image b) shows the construction used to 
elucidate the relation between y and y’. Here again the similarity of the smaller and larger triangles are 
used to set up the relation.

Adding a rotation angle around the normal to the focus of the ellipse leads 
us to the general ellipse represented in figure 1.11.

Figure 1.11: The general description of an arbitrary tilt. The added rotation angle suffices to describe 
any possible detector tilt.

This adds a cosine and a sine term of the rotation to the x and y values in 
the following form. Again a separate notation is used to denote the rotated 
values x’’ and y’’.
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   

   

x x rot y rot
y y rot x rot

cos( ) sin( )
cos( ) sin( )

(1.16)

On inserting these rotational equations into equation 1.15 one obtains the 
equation 1.17.

       x rot y rot tilt y rot x rocos( ) sin( ) cos ( ) cos( ) sin(2 2 tt
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)

cos( ) sin( ) sin( ) tan

 

      

2

2 2 2q
(1.17)

Equation 1.6 can be rearranged to the initial form equalling equation 
1.12.
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2

2 (1.18)

1.2.3	 Incident angle and ray distance calculations

The incident angle of the reflected beam onto the detector is utilized in 
a factor often described as correcting for the flatness of a detector. The 
diffracted beam penetrates into the image plate or fluorescent layer of the 
detector. The penetration length is dependent on the angle of incidence 
and the linear attenuation factor for the utilised wavelength and fluorescent 
material. 

Figure 1.12: Incident angle calculation. The small triangle containing the complementary angle to the 
incident angle Ψ and tilt is used to deduce the formula for the calculation of the incident angle.

As can be seen from figure 1.12 the minimum and the maximum incident 
angle are given by the following equation 1.19.
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
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2
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q

q

tilt
tilt

(1.19)

The tilt can be replaced with the effective tilt, tilt eff according to:

tilt tilt roteff  sin( )a (1.20)

Resulting in an effective incident angle of:

eff tilt rot  2q asin( ) (1.21)

To determine the distance of the diffracted ray from the sample to the 
each point on the detector we use the construction presented in figure 
1.12. The application of the sine rule results in the following equation:

sin( ) sin ( )90 180 2 90


    

D
q

ray distance
(1.22)

This simplifies to:

ray distance   D cos sin tan2 2q q  (1.23)

1.2.4	 General transformations

As most pattern recognition algorithms use conventional geometric 
parameters of ellipses, namely semi-major and semi-minor axes 
and eccentricity, the following chapter will deduce all the necessary 
transformations between the crystallographic and standard system. Further 
transformations are needed to calculate the exact Cartesian coordinates 
of a reflection on the detector. This corresponds to the determination of 
x,y=f(2θ,α, D,tilt,rot,X0,Y0). This information is important for calculating and 
plotting theoretical ellipse positions.

The semi-latus rectum l is independent of the tilt and can be given in 
terms of the scattering angle and the sample to detector distance as in 
equation 1.24.

D ltan 2q  (1.24)

From figure 1.12 and the sine rule we can deduce the following relation

sin( ) sin( )2 90 2q q
a c

tilt
D


 

(1.25)

This can be reformed to 

c a D tilt  sec( )sin2 2q q (1.26)
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Figure 1.13: Common ellipse parameters. The centre is denoted by C, one focal point by F, the semi-
major axis by a, the semi-minor axis by b and the semi-latus rectum by l.

However we also know from figure 1.12 and the sine rule that the following 
relation holds.

sin( ) sin( )2 90 2q q
a c

tilt
D


 

(1.27)

This can be reformed to 

c a D tilt  sec( )sin2 2q q (1.28)

Setting equations 1.26 and 1.28 equal and solving for a leads to the 
following formulation:

D tilt
tilt

a
cos( )sin

cos( ) cos
4

2 4
q
q

 (1.29)

The same method can be used to find an expression of c in alignment 
variables. This leads to the very similar formulation

2 2
2 4

2D tilt
tilt

c
sin( )sin

cos( ) cos
q
q

 (1.30)

al b 2 (1.31)

Because of the well known identity 1.31 the semi-minor axis can be 
described using the scattering angle, the tilt and the detector to sample 
distance, as given in equation 1.32.
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D tilt
tilt

b
cos( ) sin tan

cos( ) cos
2 2

2 4
q q

q
 (1.32)

Now a and c can be inserted into the well known identity e=c/a to denote 
the eccentricity in calibration parameters.

tan( ) tantilt e2q  (1.33)

1.2.4.0.1	 Detector coordinate transformations

We will now attempt to deduce the detector coordinates from the calibration 
values and the reflection parameters. Some well known elliptical identities 
1.34 and 1.35 shall be used in these calculations. 

e
b
a

 1
2

2
(1.34)

c a b 2 2 (1.35)

The ellipse radius as measured from the focus can be described in terms 
of eccentricity, semi-major axis and the angle of the azimuth 1.36.

r
a e

efocus ellipse 



( ²)

cos( )
1

1 a
(1.36)

Inserting equations 1.34 and 1.35 into the equation 1.36 leads to:

r
D

tiltfocus ellipse 


tan
cos tan( ) tan

2
1 2

q
a q

(1.37)

The Cartesian coordinates take the following values:

y r rotd focus ellipse  sin( )a (1.38)

x r rotd focus ellipse  cos( )a (1.39)

Here xd and yd are the x and y positions relative to the focus. The ellipse 
has been made non-parallel to the axes by subtracting the rotation from 
the azimuth angle.
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1.3	 Corrections

1.3.1	 Intensity corrections

As important as the diffraction angles are to the exact lattice parameters, the 
intensities are for the precise determination of atomic position, elemental 
species, and their occupation and displacement parameters. The great 
popularity of equatorial point detectors and later one dimensional position 
sensitive detectors in laboratory diffractometers has hindered the spread of 
generally applicable correction formula and canonized equatorial specific 
corrections. These are often incorrectly applied to data collected from 
two-dimensional detectors. Important experimental factors influencing the 
intensity of a diffracted beam are discussed and the corresponding two-
dimensional correction functions are given. 

1.3.1.1	 Lorentz corrections

Lorentz correction applied to powder diffraction data are slightly different to 
those applied to single crystal data. Whereas the single crystal correction 
only comprises a rotational factor, the powder correction contains an 
additional statistical factor (Zevin, 1990). This corrects for the likelihood 
of a crystallite being in diffraction position. This factor has a simple (sinθ)-1 
dependence, and is found in the common Lorentz correction 1.40.

L sin 1 2q qsin (1.40)

The well known correction for the speed of the transition of a reflection 
through the Ewald membrane is attributed to a lecture given by Lorentz 
(Azaroff, 1968). In its form applicable to a perfect single crystal it normalizes 
the intensity of a single reflection to the shortest traversal of the Ewald 
sphere. This motion is brought about by the rotation of the crystal in direct 
space. A consequence is that the correction is not only dependent upon 
the rotation vector of the crystal but also on the detection method. The 
general formulation (McIntyre & Stansfield, 1988) takes the form:

F z s I s shkl xy
2
µ ( / ) ( )d d d (1.41)

Here Ixy is the reflection intensity measured as a function of a scan variable 
s. z is the direction normal to the Ewald sphere at the reflection position. 
Integrating over s for a typical four-circle diffractometer (Busing & Levy, 
1967) and approximating sine and cosine values for the small angular 
range of a reflection leads to the following formalism:

L i i

i

 
 
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







 (1.42)

When regarding rotation around a single axis, an experimental set-up 
most commonly used in two-dimensional powder diffraction the function 
reduces to (Buerger, 1970):

L cos sin cos 1    (1.43)
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Where

µ = angle between axis of sample rotation and the primary beam normal 
plane,

γ = angle of horizontal reflection displacement and

ν = angle of vertical reflection displacement.

The well known equatorial form of equation 1.43 is obtained when setting 
the axis of rotation perpendicular to the primary beam and reducing the 
vertical displacement to nought, γ is then the diffraction angle.

L sin 1 2q (1.44)

The reduction from the two-dimensional form to the one-dimensional 
equatorial form was a requirement of the equatorial diffractometer 
geometries utilizing point detectors or at most linear position sensitive 
detectors. It is important to note that this correction is neither applicable 
to the Bragg-Brentano nor to the flat transmission geometry, but is only 
valid for the Debye-Scherrer geometry.

With the onset of area detection in powder diffraction a two-dimensional 
correction has to be applied. A formulation of 1.43 in dependence on the 
more accessible scattering angle 2θ and the azimuthal angle α has been 
derived:

L 
 

1
2 2 2 2

2
1 2 1 2

cos
cos tan

cos tan sin tan


a q

a q a q
(1.45)

Combining this with the statistical factor leads to the general formulation 
of the Lorentz correction for powder samples rotated within the beam.

L 
 

1
2 2 2 2

2
1 2 1 2

sin cos
cos tan

cos tan sin tan
q 

a q

a q a q
(1.46)

Figure 1.14: The two-dimensional single crystal Lorentz correction for an ideally aligned detector. Note 
the zero values in the central valley. These cause divergent intensities as they are multiplied with the 
inverse of the Lorentz correction. Therefore the intensities in that region have no meaning. The central 
valley is parallel to the sample rotation axis.
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1.3.1.1.1	 Lorentz correction for highly collimated beams

The rotational correction should be used if the powder sample is rotated 
within the beam in the single crystal sense i.e. all crystallites should 
complete their rotation within the beam. Should the beam be collimated 
to dimensions below those of the sample containment then this further 
reduces the rotational impact on the cumulative Lorentz factor. A term RL 
can be introduced to quantify the rotational Lorentz factor from 0 for no 
rotational element to 1 for full rotation of all crystallites within the beam. 
The introduction of this factor leads to equation 1.47.

L RL
 

 
1

2 2 2 2

2
1 2 1 2

sin cos
cos tan

cos tan sin tan
q 

a q

a q a q
(1.47)

RL has been deduced for the case of the rotational axis being normal to 
the primary beam. The common Lorentz formulation is valid if a crystallite 
is rotated within the beam by ω =2π. For a certain number of crystallites 
with a rotational radius less than the beam radius this is true. Crystallites 
outside this radius experience a rotation ωeff which is dependent upon 
their rotational radius and the width of the primary beam. It can be given 
as

eff
W

R  4arcsin (1.48)

where W is the beam width and R is the rotational radius. As all crystallites 
between R=W and R=L (where L is capillary diameter) are affected 
differently by rotational radius an integration over that range has to be 
made. 

eff eff
y

y y y y y W
L         

1
22 2 1 2dy arcsin , (1.49)

Interestingly the integration tends to a value of roughly 33° as the beam 
width to sample radius ratio tends to nought. 

lim
y eff

y

y


   
0

1

2 1 dy (1.50)

Now this rotation needs to be put into relation to the entire illuminated 
area. The normalization takes the form of the average rotational angle 
of the entire illuminated area relative to the full 2π rotation of standard 
Lorentz correction.

R
f f

f fL
eff


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2
2








(1.51)

Where f is the area in which the crystallites experience a complete rotation 
in the collimated primary beam and fω is the area in which the crystallites 
only experience a partial rotation within the beam figure 1.16. These are 
computed in the following manner:
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Figure 1.15: Relative Lorentz factor. The image depicts a perpendicular section of a capillary of diameter 
L being illuminated by a beam of width W. Only crystallites falling in the light grey inner circle are rotated 
completely (2π) within the beam. Crystallites outside this region but still within the beam path only 
experience a limited rotation ω thus reducing the effective single crystal Lorentz factor to be applied to 
them.
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Reforming equation 1.54 and simplifying leads to 1.55.

f L W W L W L
W
L       



















1

2
2 2 2 2 1cos (1.55)

Equation 1.51 then becomes 
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When reduced to the fundamental parameters the function takes the final 
form of 1.57:
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Figure 1.16: Relative Lorentz factor. The image depicts the trend of the correction factor for a primary 
beam that is collimated to below the sample size, which is given by S. Should the primary beam be 
larger than the sample, the factor is unity.

In order to see the effect this correction factor has for differing beam sizes 
and capillaries a simple two-dimensional plot has been made. In figure 
1.16 you see that as the beam size approaches zero so does RL approach 
zero, whereas when the beam size equals or is larger than the sample 
diameter the standard correction factor of unity is applied.

1.3.1.2	 Polarization correction

When X-rays are diffracted by a lattice plane they are partially polarized. 
This leads to an intensity reduction that can be expressed as a function 
of the diffraction angle. For a completely unpolarized primary beam this 
leads to the following correction (Lipson & Langford, 1999):

P   1
2

1 22cos q (1.58)

Should the primary beam be polarized this changes the correction to 
(Azaroff, 1955, 1956, Kahn et al., 1982, Whittaker, 1953):

P P P  0 (1.59)

P0
21

2
1 2  cos q (1.60)

 P
1
2

2 22 cos sina q (1.61)

where
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Figure 1.17: The two-dimensional polarization correction for an ideally aligned detector. The polarization 
factor has been set to 0.1 resulting in the black dome shaped surface and to 0.99 which results blue 
saddle shaped surface. The correction is applied by dividing the intensities by the displayed correction 
values. 
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Here Iπ and Iσ are the vertical and horizontal intensities respectively. The 
monochromator angle is related to µ by the following equation.

 qcos2 2 m (1.63)

With knowledge of the monochromator angle (2θm) and that of the initial 
polarization of the X-ray beam one can calculate the effective polarization 
factor. However it is possible to refine this parameter against two-
dimensional reflection intensities, and thereby retrieve a reliable value. 
In figure 1.17 one can see the effect of the polarization correction for two 
different polarization factors.

1.3.1.3	 Incident angle correction

An intensity correction based on the angle at which the reflected beam 
strikes the detector plane was initially proposed by Gruner (Gruner et al., 
1978) in his work on CCD detectors. Since then the development of this 
correction has been mainly driven by electron density researchers striving 
to attain high quality intensity data from area detectors. From 

figure 1.18 it becomes clear how the incident angle affects the path of the 
beam through the detecting layer. The distance traversed by the beam in 
the detecting layer is d/cosΨ, where Ψ is the incident angle and d is the 
thickness of the detecting layer. 
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Figure 1.18: Incident angle correction. The path of the incident ray through the detecting layer of 
thickness d depends upon the incident angle Ψ. The length traveled within the layer is then d/cosΨ. 
This correction is necessary should the beam not be completely absorbed by the layer. Reflections at 
high incident angles would have a falsified higher intensity because of the greater detection length. 
This correction attempts to normalize the intensity to an incident reflection normal to the plain.

If the absorption of the visible light generated within the layer is disregarded 
then the correction (Zaleski et al., 1998) is independent of the detector 
type (CCD or IP). 
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with

I I
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and T↓ being the transmission of the detector layer at normal incidence. 
This leads to the complete correction function of:
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An empirical correction that is used by some single crystal diffractometers 
equipped with CCD cameras takes the following form:

K m  1 1( cos ) (1.67)
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Figure 1.19: Incident angle correction factor. The correction factor of (Zaleski et al., 1998) has been 
calculated for an incident angle range from 0° to 90° and for a vertical transmission ratio from T=0 to 
T=1. The correction is applied by dividing the observed intensities by correction factor K. The correction 
factor remains unity for complete X-ray absorption (T=1) as well as for incident angles of 0°.

Here m is a coefficient that parameterizes a detector-wavelength 
combination. For example a CCD detector optimized for copper radiation 
used m = 0.1763. One optimized for Molybdenum radiation had m = 
0.3274. No deduction of this formulation has to date been published.

The correction implemented in the Fit2D package (Hammersley et al., 
1996) is given by 1.7. Again no formal deduction of this correction has 
been published.

K cos3  (1.68)

A more complex function for imaging plates taking into consideration of 
the additional absorption of the excitation and emitted light has been 
proposed (Tanaka et al., 2005).
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This was reported to provide a better normalization when applied to single 
crystal data collected for electron density studies of CeB6. In this equation 
µg, µp and µy represent the linear absorption coefficients of the excitation, 
X-ray and emitted light within the image plate layer. The corresponding 
incident angles are ν, κ and Ψ. The vector of the incident X-ray is given 
by z.
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2	 Calibration

 The calibration of a two-dimensional diffraction image is the most 
fundamental step in the process of the reduction of two-dimensional 
powder diffraction data. The distance of the sample to the detector, 
the position of the primary beam on the detector, the parameters of the 
detector tilt and the X-ray wavelength have to be known to the highest 
possible precision. Only if these values have been determined well can 
the single pixels of the image be tagged with reliable diffraction angle 
values. If the calibration has been done optimally the resulting integrated 
diffraction pattern will not suffer from unnecessary reflection broadening. 
Especially those reflections contributing large arcs to the images are 
sensitive to precise calibration values. In addition filtering routines pose 
high demands on the calibration quality.

2.1	 The calibration image 

All calibrations of powder diffraction images begin with the exposure of a 
calibration image. This image should be of the highest attainable quality 
as it is the foundation for the data quality of the final diffractogram. It is 
advisable to utilize as much of the dynamic range provided by the detector 
as possible, and to achieve high contrast between the diffraction ellipses 
and the background intensity. The second step is the manual selection of 
the inner ellipse; at least five points are required to determine the ellipse 
parameters (Hammersley et al., 1996). 

The diffraction image should show well defined solid uninterrupted ellipses, 
with, if possible, no aberrant intensities. Images from standard samples as 
those distributed by the NIST (NIST, 2006) produce satisfactory results. 
However the preparation of an own standard sample is relatively simple. 
There are a few properties that determine the applicability of a crystalline 
powder as a calibration standard. The compound should possess a 
high symmetry, leading to highly intense and well distributed peaks. The 
composition should comprise strongly scattering, high atomic number 
elements so that even a sample of small volume can produce a strong 
signal. A small monodisperse grain size as well as only small contributions 
from micro-structural (crystallite size and micro-strain) effects guarantee 
well defined peak profiles. Substances that fulfil these requirements and 
that are often used for calibration images are LaB6, CeO2 and Si (figure 
2.1).

2.2	 Starting parameter estimation

The calibration refinement is a local minimization. For the refinement to 
produce a reliable calibration the starting parameters need to be close to 
the final true values. The most widely used method is the manual selection 
of at least five points on the inner ellipse of the calibration image. An ellipse 
is fitted to the points (Fitzgibbon et al., 1999) and the extracted calibration 
parameters are used to provide the initial estimation (Hammersley et al., 
1996). An automatic method has been proposed by Cervellino (Cervellino 
et al., 2006). They have presented a method to reduce 2D diffraction data, 
providing both a mechanism to calibrate as well as to integrate such data 
sets. Another approach is to use traditional pattern recognition methods 
to estimate the initial parameters.
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Figure 2.1 Three calibration images of varying quality are shown. The left image is a good example of 
a perfect calibration image, utilizing a fine-grained rotating sample of LaB6. The central image is one 
of a stationary sample of CeO2. Here shadowing causes a slight deviation in the background intensity 
and the lack of rotation leads to a non-normal intensity distribution within the rings. However the rings 
are continuous and intense and the detector can still be well calibrated using this image. The right 
image is again one of a stationary sample, this time of Si. The coarseness of the sample results in an 
extremely discontinuous intensity distribution along the rings. In addition there is a strong signal at low 
angles from the capton foil holding the primary beam stop. These factors results in a less stable and 
less reliable calibration.

2.2.1	 The Cervellino method 

The calibration routine presented requires the sample to detector distance 
and wavelength to be well defined using alternative methods. A simulated 
annealing algorithm is used to determine the beam centre. The cost 
function utilized is the inverse normalized variance of the radial distribution 
function. In effect this value gives the ‘sharpness’ of the integrated peaks 
for a trial beam centre, ignoring the effects of detector tilt. The temperature 
parameter for the simulated annealing is the domain size of the trial beam 
centre.

In the second step the tilt and rotation of the detector are approximated. 
Certain high intensity ellipses are selected and their inverse squared radii 
as a function of the azimuth are fitted to a summation of three exponentially 
damped complex sinusoids. The fitting routine is a modification of the 
robust singular value decomposition (SVD) method called Hankel Lanczos 
SVD (Press et al., 1992). A Hankel matrix is filled with parameters from the 
summation and solved by SVD using the fast Lanczos bidiagonalization 
algorithm. The refined parameters from the summation can be directly 
used for calibration.

The advantage of this method is that it returns reliable calibration values 
for a detector that has a near orthogonal setting to the primary beam. It 
could become a standard method especially for laboratory experiments 
using radiation of a well defined wavelength, in which the diffracted beam 
has a substantial half-width. It is however questionable whether the centre 
estimation suffices to locate the detector/beam intersection with enough 
precision to calibrate synchrotron data sets. The doubts stem from the 
difference between the ellipse centre and the confocus of the ellipses, 
which is the true intersection of the primary beam with the detector (Norby, 
1997). 
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2.2.2	 Pattern recognition

To overcome the first hurdle of finding precise starting parameters, 
we have developed a robust method for the automatic detection and 
characterization of ellipses. The method involves no mathematical 
complexity and exhibits excellent overall efficiency.

2.2.2.1	 Ellipse detection

An ellipse can be described by five parameters, the major axis a, minor-
axis b, centre co-ordinates x0 and y0 and angle of rotation. A widely 
used pattern recognition technique used in image analysis is the Hough 
transformation. This has been applied lately (Bennett et al., 1999, Dammer 
et al., 1997, Fitzgibbon et al., 1999, Lei & Wong, 1999) to ellipse detection 
in an attempt to facilitate computer vision and biometrics.

The first step in a Hough transformation is setting up a parameter 
space. The dimensionality of the space corresponds to the number of 
parameters that are to be determined. The size of a dimension depends 
on the resolution and range required by the corresponding parameter. 
Parametrical requirements dictate the volume of the parameter space. 
The next step is to transform the image into the parameter space. This 
is done by tracing the pattern described by a single pixel in parameter 
space over the real image. The value of all image pixels touched by the 
traced pattern are summed and then written to the pixel in parameter 
space. It is immediately obvious that this process scales with the volume 
of the parameter space. Reducing the number of dimensions, the 
required resolution and the range can greatly improve the processing 
time. Computing all five parameters simultaneously using a Hough 
transformation is to computationally expensive (Bennett et al., 1999). In 
order to diminish the size of the required parameter space, the complete 
process of ellipse detection is decomposed into different steps. The Hough 
transformation is used for the calculation of the parameter b alone. Hence 
we require only a one-dimensional parameter space.

Figure 2.2. The intensity along a grid line of a powder diffraction image made for calibration purposes. 
The original image and the overlaid grid are shown in the top right corner.
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2.2.2.1.1	 Approximate centre determination

 Many methods have been used for the determination of the centre of an 
ellipse (Dammer et al., 1997, Lei & Wong, 1999). Most of the methods 
suffer either a lack of accuracy or inefficient memory usage. We propose 
a generic two-step approach to determine the centre co-ordinates of 
an ellipse. In the first step we find the approximate centre by using the 
intensity patterns of vertical and horizontal grids drawn on the image. 

All pixel intensities along a grid are copied to an array (figure 2.2). 
The mirror plane of this distribution is detected by finding the absolute 
difference of the mirrored intensities. This absolute difference is calculated 
for each possible mirror plane position and copied to another array (figure 
2.3). The lowest point in this difference plot is the position of maximum 
peak overlap and represents the approximate mirror plane. Each grid line 
results in one such point.

Two lines, one for the points from the vertical grids and the other from 
the horizontal grid, are fitted, using the robust least absolute deviation 
(Press et al., 1992) method. The approximate centre of the ellipse is the 
point of intersection. This algorithm for centre determination is both robust 
against the outliers in the image and against the position of the ellipses 
with respect to the image centre. This method requires the centre of the 
ellipses to be on the image, but not necessarily in or even close to the 
middle.

The further parameters of rotation and tilt are found using the Hough 
transform, as has been described by Rajiv and by Fisker (Fisker et al., 
1998, Rajiv et al., 2007). The approximate distance and wavelength have 
to be entered manually as to date no viable method has been found to 

estimate these parameters reliably.

Figure 2.3. The intensity difference of the overlaid intensities upon folding along one pixel of figure 2.2. 
The strong dip in the centre is the mirror axis of the intensity array shown in figure 2.2.
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2.3	 Parameter refinement

2.3.1	 The radial line intersection method

A successful refinement of the ellipse parameters requires that all ellipses 
are characterized by a number of points on the accessible ellipse arcs. 
To do this the generally accepted method is to draw radial lines from 
the common focal point of the ellipses to the image edge. The intensity 
extracted along these lines is very similar to that of a normal diffractogram 
(figure 2.4), except that the axis normally representing the diffraction angle 
now represents the radial length. The optimal ellipse intersection is then 
computed using peak profile fitting. 

Figure 2.4. The intensities as traced along a 5 pixel wide line from the common focus to the edge of the 
image are shown. The blue lines represent the Gaussian peak as it is automatically fitted to the data 
points around the region presumed to contain the intersection. The presumption is based on the initial 
parameter estimates. All the peaks are fitted and the details of the fit stored for an automated selection 
process in which ill fitting peaks are discarded.

2.3.1.1	 Peak recognition and peak refinement

As the starting parameters for the calibration are known it is possible to 
compute the resulting radius of the peak position for the given azimuthal 
angle a using equation (1.37, 2.1). 
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For a delta equivalent to 0.5° 2θ around the speculative peak position a 
peak profile refinement is made using a Gaussian profile function. This 
method enables sub-pixel precision in the determination of the ellipse 
intersection on the radial line. The positional statistical uncertainty 
returned by the covariance matrix of the least squares procedure can be 
used to weight the individual data points in the final parameter refinement. 
Refined peaks from the same diffraction cone with strong aberrations in 
intensity or position can be automatically extracted from the data pool. 
The polar coordinates are transformed to Cartesian coordinates for use 
within the refinement routine.
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Figure 2.5. Here the intersection points of 90 lines with the diffraction cones of a LaB6 sample are 
shown. Some points have been automatically removed as their positional errors were outside the 1-
sigma limit imposed on the positional error. It can be seen that this eliminates the peaks that would 
have been within the shadow of the primary beam holder. As can be expected the intersections with 
weak cones are slightly more affected by this removal than are the intersections with intense cones.

2.3.1.2	 Least squares weighting

The final parameter refinement is in the best case a straightforward matter. 
Some hundred data points have been collected by the peak recognition 
and refinement routine, with the majority of them being of very high quality. 
The weighting scheme is based initially on the statistical uncertainty of the 
position of the ellipse markers. This is a good choice aiding the stability 
and reliability of the refinement. An additional weighting factor is added 
to take into consideration that the inner ellipses cover a smaller area 
than the outer ellipses. The large arcs of the outer ellipses contain more 
highly resolved calibration information than the inner rings, the resolution 
scales proportionally to the arc area of the ellipse. The weighting for an 
orthogonal detector can take the simple form 2.2 describing the area of 
an idealized circle.
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2.3.1.3	 Errors and pitfalls

One source of systematic errors stems from the difference between the 
estimated (fitted) peak positions on the ellipse and the true intersection 
of the radial line with the central arc of the ellipse. This error is effectively 
identical to the physical effect of axial divergence and equatorial aberration 
which are experienced by equatorial point detectors. Numerous methods 
dealing with the profile, ranging from an asymmetrical Pseudo-Voigt 
function (Finger et al., 1994) to the fundamental parameters method 
(Cheary & Coelho, 1992, Cheary & Coelho, 1998) to a conic section 
functional (Zuev, 2006) have been published. 
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One of the most difficult problems for calibration procedures is that of 
highly tilted detectors. It is not problematic determining the intersection of 
a radial line with an ellipse, it is however difficult to determine all effects 
of line broadening in detector space that affect highly eccentric ellipses 
differently in different parts of the arc. The angle of intersection between a 
radial line and an eccentric ellipse can be very acute - again causing the 
trace of the peak along the line to become broadened. Peak broadening 
considered on its own is not a serious problem in calibration. However 
weighting schemes and automatic rejection algorithms aimed at eliminating 
outliers are generally based on the positional error consistence of the 
Gaussian peak, this value correlates strongly with the width. Should the 
width of an ellipse vary along its arc so does the estimated error - directly 
leading to the elimination of good data points. Most disadvantageous 
are the removal of data points of an intersection through an ellipse arc 
with a high incident angle. The width of the peak in length scales is high, 
but is extremely narrow in reciprocal space, thus potentially contributing 
important information to the minimization algorithm.

Switching off these checks in turn also has a detrimental effect on the 
quality of the calibration refinement. 

Other sources of errors are calibration images of less than perfect quality 
and sub-optimal user interaction when selecting the starting parameters. 
When the initial estimation of the ellipse intersections is not ideal then 
the algorithm designed to refine the ellipse intersections from the starting 
parameters might fail. The fitting of peaks to the data presumed to be 
an intersection of an ellipse is again a local optimization. The algorithm 
cannot see the ellipse and therefore cannot differentiate between data 
containing a peak or data containing only background. The quality of such 
a refinement can deteriorate very strongly should not enough care have 
been given to ensure good starting values. Here restarting the refinement 
with better starting parameters remains the only option for a successful 
calibration.

It poses a great challenge to extract good calibration data from a poor 
calibration image. The quality of an image can be imperfect for numerous 
reasons. The first is the contamination by single crystallite reflections. 
Combining a highly parallel beam with little or no sample rotation, as is the 
case for high pressure or high temperature experiments, can lead to these 
very intense ‘spots’. These spots are in general not numerous enough to 
be normally distributed, thereby strongly biasing the base powder signal 
on integration. They can severely undermine the calibration routine by 
causing the peak position to be removed from the ideal centre of the ellipse 
arc. Masking these peaks is therefore a prerequisite to the successful use 
of such an image for calibration purposes. Another reason for an image 
to be of inferior quality is poor signal to noise contrast. What might seem 
to the eye to be an acceptably resolved image is not necessarily ideal for 
calibration algorithms. Low signal to noise ratios tend to have detrimental 
effects on the quality of the peak fitting algorithms designed to return exact 
ellipse positions. Should a weak signal be combined with non-continuous 
intensity along the ellipse arc, then the peak refinement algorithm might 
be refining a peak profile against background data, returning highly 
suspect positional values. Statistical methods can be used to recognize 
such damaging data points, however even if the set is filtered successfully 
less data remains for the parameter refinement than in the ideal case. 
Generally higher angle and therefore larger elliptical arc intensities are 
weaker merely as a cause of the atomic scattering factor. Regrettably it is 
exactly these intensities that generally contain the most highly resolved 
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calibration information. There is no substitute for a carefully and diligently 
made calibration image.

2.3.2	 Whole image refinement

A way to overcome most of the mentioned problems related to image 
calibration has recently been proposed (Hinrichsen et al., 2007a). This 
method is able to compute all detector and geometry genetic peak 
broadening, as well as intensity effects such as polarization and Lorentz 
corrections. Using this method the entire image is reconstructed and 
subtracted from the measured image. This difference is weighted and 
used as the residual for the refinement process.

Conventional image calibration compared to whole image refinement 
(WIR) is in many ways similar to the comparison between the indexing 
of a powder diffraction pattern and the following whole powder pattern 
fit (WPPF). Results obtained from indexing programmes are never used 
‘as is’, but are further refined against the raw data using WPPF methods. 
In conventional image calibration ellipse positions are given by points 
extracted from an image. These points are used to calculate and refine 
the calibration parameters. However the values obtained from an image 
calibration are taken at face value without further refining these against 
the raw data.

This gap is closed by WIR. The values obtained from the refinement 
routine are used to calculate a theoretical two-dimensional image, much 
the way a WPPF is calculated from indexing results. The parameters used 
to create the image are then refined until the fit is optimal.

The steps required to construct such an image and the parameters that 
determine various aspects of the image shall be discussed in detail.

2.3.2.1	 Whole pattern construction

In the step of refining the radial line/ellipse intersection the intensities and 
the full width at half maximum (FWHM) of the reflections was determined. 
These values are taken as starting parameters for the intensities and the 
peak widths. For each reflection a profile is calculated, these are added 
up to a final pattern (figure 2.6). Now the one-dimensional diffractogram 
has to be converted to a two-dimensional image.
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Figure 2.6. One dimensional diffractogram generated as starting pattern for the two-dimensional image 
construction.

2.3.2.2	 Image construction

To construct a two-dimensional image two ingredients are required: 
a calculated one-dimensional diffractogram and the computed two-
dimensional array representing the 2θ values for each pixel of the 
experimental image (figure 2.7). One prerequisite is that the diffractogram 
resolves the peak profile sufficiently, ideally with five data points per 
FWHM.

Constructing an image with the correct intensities on elliptical arcs is done 
by interpolation of the intensities of the one-dimensional diffractogram 
to the diffraction angles of the two-dimensional array. This results in an 
image representing the ideal projection of the diffraction cones on the 
plane of the detector (figure 1.5). 

2.3.2.3	 Calculating detector characteristics

The only detector characteristic affecting the spatial signal that requires 
consideration is the PSF. All other aberrations are corrected by modern 
detector recording software or firmware. The point spread function (PSF) 
has a rather complex projection into reciprocal space, but in detector 
space it reduces to a convolution with a Gaussian function. This effect, 
also known in image processing as a ‘Gaussian blur’, can be easily 
applied to the image after the initial Bragg ellipses have been computed. 
The half-width of the Gaussian convolution corresponds directly to the 
point spread of the detector.

Further two-dimensional corrections that can be applied are the incident 
angle correction, polarization correction, and if applicable a Lorentz 
correction. In these cases two-dimensional correction arrays of equal 
dimensions to the image can be calculated and applied pixel by pixel.
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Figure 2.7. A colour coded image of the computed two-theta values which will be used for the interpolation 
of the one-dimensional diffractogram to the two-dimensional image is shown. Overlaid are the 
interpolated intensities from the pattern in figure 2.6. The centre lies in the lower left quarter of the 
image. The extreme detector tilt of 45° combined with the rotation of the tilt plane of 45° causes the 
highest diffraction angle to be in the bottom left corner.

Figure 2.8. The observed two-dimensional diffraction pattern. The intensities have been translated into 
heights above the base plain. A colour gradient from red at low intensities to white at higher ones has 
been added to improve their visualization. Notice the effect of the polarization and absorption on the 
equatorial intensities. A shadow of the primary beam stop is visible at the lower edge.
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Figure 2.9. The calculated two-dimensional diffraction pattern. The polarization correction leads to the 
dip in the equatorial intensities. There is no scatter in the intensites, and obviously no shadowing can 
be observed.

Figure 2.10. The two-dimensional diffraction residual. Correct weighting of unexposed areas leads to a 
sensible residual. The remaining intensity at the poles is caused by the uncorrected sample absorption. 
This image resembles the one dimensional residual seen in standard powder diffraction fitting analyses. 
The remaining noise scales directly to the intensities
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2.3.2.4	 Least squares refinement

Essentially there is no difference in the least squares refinement strategy 
between WPPF and WIR. The parameters of the detector calibration, its 
PSF, and optionally two-dimensional polarization and Lorentz correction 
factors are added to the standard parameter set. The main computational 
challenge is the number of data points which have to be simulated. The 
weighted residual (figure 2.10), which is the difference between the 
observed and calculated image (figures 2.8 and 2.9) represents the cost. 
This operation can lead to exorbitant computational costs in both time and 
memory and is a challenge for currently available personal computers.

Once the tilt becomes appreciable the necessity becomes apparent for 
an alternative weighting scheme. The weighting scheme based on an 
idealized circular diffraction pattern is no more appropriate. A value that 
can improve the quality of a tilted refinement appreciably is that of the 
incident angle. Adding a weighting factor that is based on the incident 
angles (figure 2.11) improves the refinement notably.

Figure 2.11. An image showing the weighting factors based on the incident angle weighting scheme. 
The detector orientation is identical to that of figure 2.7 and figure 1.5. 

2.4	 Comparison of methods

It is quite surprising to see how successful the current standard software 
package Fit2D is in determining very slight deviations from a perfectly or 
nearly perfect orthogonal experimental setup and how unsuccessful it is 
refining strongly tilted detector setups. The reason is that the software 
was never devised for this kind of refinement. The initial tilt values are 
always 0°. Calibration images from detectors at different angle cannot be 
processed. This causes a possible substantial loss in resolution should 
no other reliable method be available to determine the exact detector 
position.
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In order to ascertain the value of the method it has been decided against 
using real data, but rather using the methods described to create 
datasets computationally. This has the distinct advantage in that the exact 
calibration parameters are known - enabling a more simple comparison. 
The results can be seen in table 1. Here the Chi² values of the refined 
calibration parameters compared to the true values are given. It can be 
seen that whole image refinement is capable of determining the calibration 
parameters to at least one order of magnitude more exactly than the 
traditional methods.

Table 2.1. Calibration parameters extracted form a synthetic image of a perfectly aligned detector 
(tilt=0°). Calibration has been performed using standard methods in Fit2D and Powder3D as well as 
using whole image refinement (WIR). 

Software/method X0[pixels] Y0[pixels] Tilt[°]
Real Values 1150 1150 0
Fit2D (traditional) 1150 1150 7.60E-07
Powder3D (traditional) 1150.001 1150.0007 -0.00020402
Powder3D WIR 10*10 binning 1149.9966 1149.9971 -0.000687
Powder3D WIR 2*2 binning 1150.0007 1150.0001 -0.000104
Powder3D WIR no binning 1150.0005 1150 -0.00010347

Distance[mm] Wavelength[ Å] Chi²
Real Values 100 1
Fit2D (traditional) 99.99296 1.000053 4.92E-07
Powder3D (traditional) 100.00384 0.99998171 1.89E-07
Powder3D WIR 10*10 binning 99.999813 0.999989 4.90E-07
Powder3D WIR 2*2 binning 99.999886 0.999999 1.14E-08
Powder3D WIR no binning 99.999881 0.99999842 1.11E-08
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3	 Intensity distributions and their application to filtering

3.1	 Why filter 2D powder diffraction images?

 Many powder diffraction experiments impede the realisation of ideal 
circumstances, namely the contribution of a very large number of equally 
sized and randomly oriented crystallites to the diffraction pattern. This 
would lead to an ideal binomial intensity distribution (Yao, 2006) over 
the entire Bragg cone. Despite the great experimental effort expended 
to ensure good quality data, in situ experiments habitually suffer from 
weaker signal quality than standard diffraction experiments. Of the in situ 
experiments high pressure powder diffraction poses probably the greatest 
challenge to data interpretation. Sample rotation is confined to small, if 
any angular rocking due to the diamond anvil cell’s (DAC) opening angle, 
the wish to limit the effect of gasket shadowing and the avoidance of 
diamond reflections. This can lead to an extremely ‘spotty’ diffraction 
cone, the result of relatively few crystallites passing through a diffraction 
position, an effect that is enhanced by highly parallel synchrotron beams. 
Spotty cones are also often found due to recrystallization in the course of 
a phase transition.

To remedy this effect the intensity of the entire diffraction cone is 
integrated. This method generally results in powder patterns with reliable 
intensities. The situation is not quite as daunting in high temperature (HT) 
experiments, as generally larger amounts of sample can be used. Spotty 
rings can be avoided by carefully preparing a finely ground sample. 
Artefacts originating from the sample environment do however have 
to be filtered from the image, a task that can be accomplished with the 
presented filters.

3.1.1	 Current standard method

The accepted manner of filtering such data is to mask the high intensity 
peaks manually using software such as Fit2D (Hammersley et al., 1996). 
Manual masking is time consuming, lacks reproducibility and relies too 
heavily on visual inspection to produce reliable results. Two exceptions 
known to the authors are Two2One (Vogel & Knorr, 2005) which contains 
a filter based on Poisson statistics, and Datasqueeze (Heiney, 2005) 
which contains an averaging filter aimed at removing bad pixels. These 
methods are extremely useful when the average intensity is not affected 
strongly by outliers, once the outliers dominate the mean value these 
can no longer be used as a filter criterion and the methods inexorably fail 
(Hinrichsen et al., 2006).

3.2	 Detector signal distribution

The general goal of signal filtering is the separation of the required signal 
from artefacts or noise. To do this successfully knowledge of the statistical 
distribution of the data is required.

3.2.1	 Distribution models

The binomial distribution is generally regarded as the model of choice 
for the analysis of counting statistics. The discrete binomial probability 
distribution (Abdi, 2007) is given by equation 3.1. This returns the probability 
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PB of exactly n successes out N trials where each trial has the probability 
of success p and probability of failure q=1-p. In two-dimensional powder 
diffraction success would represent an intensity count at a pixel, failure 
would represent no intensity.
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The limits of this distribution are represented by the normal- and the 
Poisson-distribution (Poisson, 1838). When n→∞ and p remains 
unchanged the continuous normal (Gaussian) estimation 3.2 is valid (de 
Moivre, 1738).  
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Here σ ² is the variance. The discrete Poisson estimation is valid if n → ∞ 
and p → 0, with Np = ν  > 0.
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Established experience shows that the Poisson estimation holds well for 
mean values less than 20 and the normal estimation holds well for mean 
values above that threshold. From a computational point of view testing 
the Poisson estimation is limited to n less than 170 as the factorial for IEEE 
standard floating point variables cannot be computed for higher values. 
On the other hand the Poisson estimation offers an extremely reduced 
formalism for the distribution function, containing only one free parameter 
ν  which represents the mean and the variance. Two free parameters are 
used to describe the normal distribution – the variance σ ² is free as is the 
mean Np.

3.2.2	 Arithmetic statistical values

Fitting the population of each bin� to a distribution function is computationally 
unfeasible. This is due to instabilities when dealing with small populations 
and to the high computational cost involved with nonlinear fitting routines. 
For standard integration computations arithmetic means, medians 
and variances are calculated. The arithmetic mean x of N number of 
observations x is given by equation 3.4.

x
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xi
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


1

1

(3.4)

The variance is defined by equation 3.5.

�	 A bin is a container into which pixels are grouped. It spans a 2D region of 2θ which is identical to the 2θ step width of the 
integrated pattern. The intensities of the pixels within a bin determine the corresponding intensity of a step in the integrated pattern
.
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The median x  is given by equation 3.6 for a population Y of the size N 
that has been previously sorted.
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In evaluating the filter performance we will compare the values returned by 
the arithmetic functions with those returned by fitting the model functions 
to the histograms.

3.2.3	 Model testing on ideal data

To determine the statistical characteristics of the data an ideal image 
was selected. This image is a typical calibration image using a well 
defined standard substance, in our case LaB6. Contrary to what might 
be expected the distribution of intensities within a Bragg peak are not 
ideally suited for the statistical characterization. Although polarization 
and Lorentz effects can be corrected a substantial azimuthal intensity 
deviation probably stemming from sample absorption mars a rational 
model selection. Background intensity caused by air scattering is however 
ideal for statistical analysis. Polarization correction results in a perfectly 
flat intensity distribution along the azimuth. A histogram of such intensities 
contributing to a 0.02° bin is shown in figure 3.1.

Figure 3.1 The black line shows a histogram of the intensities contributing to one bin of 0.02° in 2θ of 
the final integrated background intensity. Two distribution models have been overlaid, in blue the normal 
(Gaussian) probability distribution function and in red the Poisson probability mass function. The 
Poisson distribution is not continuous as might be suggested by the line but discrete.

Two small peaks can be seen at lower intensities; these originate from 
the primary beam holder and the capillary shadowing as can be seen in 
the azimuthal plot in figure 3.2. Two solid lines representing the statistical 
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models are overlaid, the blue line represents the normal distribution and 
the red line corresponds to the Poisson distribution. Contrary to common 
belief (Chall et al., 2000) the Poisson distribution overestimates the 
variance of the data sample. 

Figure 3.2 The distribution of the intensity contained in the histogram in figure 3.1 is shown as a 
function of the azimuth. The intensity is the background between the first two Bragg reflections of the 
standard LaB6 calibration sample. Air scattering is the main source of the background radiation. The 
black symbols represent the intensity of a single pixel. The main drop in intensity at 270° is due to 
shadowing by the primary beam stop arm. The intensity reduction at 0°/360° and 180° is due to 
shadowing by the sample capillary.

A normal distribution is clearly the most convincing model describing the 
signal statistics of a very small diffraction angle range and the complete 
azimuthal range. This is the typical data entering a single bin when 
integrating the 2D image into a conventional 1D powder diffractogram. 
The intensities are seldom so small as to make the Poisson distribution a 
sensible alternative.

3.3	 Filter models – inclusive or exclusive filters?

Attempts to extract the most probable mean value from a set of 
observations can be divided into two general approaches. The first is 
an inclusive model, whereby the value is selected based on the entire 
set. A popular method of this type is the median value (equation 3.6) 
intensity estimation. The exclusive model selects only a subset to act as 
the basis for determining the descriptive value for the set. Both methods 
can lead to similar intensities; however they differ strongly in one respect, 
the estimation of the statistical distribution. The inclusive filters invariably 
estimate the distribution too liberally, as all outliers are incorporated into 
this estimation. Alternative Poisson-based estimations of the distribution 
do not portray the distribution correctly.

A promising filter is a robust type of band pass filter based on fractile 
statistics (Hinrichsen et al., 2006). A fraction x of the low intensity data 
and a fraction y of the high intensity data are removed (equation 3.7).
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I x I I I I y I Ifilteredmin max min min max min        1 (3.7)

Unlike mean based filters, the fractile method is insensitive to strong 
statistical aberrations and has been successfully applied to series of 
high temperature (Schmidt et al., 2007) and high pressure (Hinrichsen 
et al., 2006) powder diffraction data. A defined fraction of the highest or 
lowest intensities within a 2θ range is masked. For the application of such 
intensity sensitive filtering procedures it is important to have previously 
applied all two-dimensional intensity corrections. Of greatest significance 
are those corrections which are a function of the azimuth. These include 
polarization and Lorentz corrections, for which the experimental geometry 
has to be determined. As the filter is applied sequentially to a small 2θ 
range, the effects of corrections which are only a function of the diffraction 
angle have little impact. It should be further noted that for correct error 
estimation a precise intensity distribution is essential. This can only be 
achieved by prior two-dimensional corrections.

For reliable integrated intensities and variances only exclusive filters give 
good results.

3.4	 Filter applications

3.4.1	 Ideal Data

Calibration images are as close to perfect as two-dimensional powder 
diffraction images get (figure 3.5). To ascertain the distribution characteristic 
of a very monodisperse rotated sample of high scattering power and 
micro-structural perfection a calibration image of a NIST LaB6 standard 
SRM660a was analyzed.
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Figure 3.3 Two data samples showing the effect of fractile filtering on the intensities of a Bragg reflection 
as it would contribute to a two-theta bin. The intensity of the unfiltered sample is represented by the red 
histogram and the filtered data by the blue histogram.  Curves show the normal probability distribution 
function fitted to the data. Parameters of the fitted distributions are given in table 3.1. Arithmetic 
statistical values for this data are presented in table 3.2.

Figure 3.4 The intensity contained in the histograms of figure 3.3 (a single bin of 0.02° in 2θ) as a 
function of the azimuth. The coloured crosses at high and low intensities represent the data which is 
removed by the fractile filter. The intensity drop at 270° is the primary beam stop arm shadow, sample 
absorption is the cause of the dips in intensity at 0°/360° and 180°.
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The histograms in figure 3.3 show the effect of masking on the intensity 
distribution for a 0.02° 2θ bin of the first LaB6 peak (001). The red 
histogram represents the unfiltered data, the blue the filtered data. The 
fractile filter was set to remove 4.5% of the lowest intensities and 4.5% 
of the highest intensities within the bin. The red line is a fit of the normal 
distribution density function to the unfiltered data, the blue line is a fit of 
the same function to the filtered data. The extracted values from the fit 
are identical within the standard deviation as can be seen from table 1. In 
general standard arithmetical values of the mean or median and variance 
are computed. The intensities as a function of the azimuth can be seen 
in figure 3.4. Little scattering and no outlier data are discernable - only 
uncorrected sample absorption causes a slight sinusoidal trend.

Table 3.1 Parameters of the fit of the normal distribution function to filtered and unfiltered data from a 0.02° bin of 
the first LaB6 peak. The values are equal within the standard deviation.

Unfiltered data Filtered data
Mean 9399(41) 9481(40)
Variance 1713 1645

Those values for the filtered and unfiltered datasets can be seen in table 
3.2. Here the deviation from the ideal values that have been determined 
by the fitting of the normal distribution function to the data is evident. 
The ideal intensity of ca. 9500 a.u. is not attained by either the filtered 
or the unfiltered dataset. The large average value of the filtered dataset 
is caused in part by the aggressive low-intensity filtering. The most 
fundamental reason for the large discrepancies between the true and the 
arithmetic values is the small sample size. The population of the raw data 
was 693 pixels, after filtering only 636 pixels remained. This small data 
base is the main cause of the strong local deviations (noise) from the 
fitted distribution although the histogram follows the normal distribution 
function well. This phenomenon is also the cause for the attenuation of 
the noise level towards higher angle data, as higher angle bins contain 
more pixels.

Table 3.2 Statistical values of the filtered and unfiltered data from a 0.02° bin of the first LaB6 peak. The values show 
a small difference to those from the fit to the normal distribution in table 3.1. Only the variance of the unfiltered data 
is unrealistically high.

Unfiltered data Filtered data
Median 9760 9758
Mean 9764(51) 9793(43)
Variance 2639 1807

In conclusion it can be said that the filtering of ideal data such as that 
provided by standard samples (figure 3.5) is not necessary or even 
beneficial to the overall data quality. Outliers cause hardly any aberrations 
as can be seen by the proximity of the median value to the mean and the 
small variance. Filters reduce the scattering of the data as is shown by the 
reduced variance of the filtered data.
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Figure 3.5 A rendered image of a calibration powder diffraction data set collected by a two-dimensional 
detector. The fine monodisperse grains of LaB6 cause the light red rings to be of such an even intensity. 
The high absorption of the sample at this wavelength of 0.92 A causes the intensity reduction along the 
horizontal axes.

3.4.2	 High temperature data

As an example of a realistic data set, an image from a HT experiment 
(Sugimoto & Dinnebier, 2007) has been chosen. These were performed 
in a sapphire capillary (Chupas et al., 2001), resulting in images (figure 
3.6) containing large high intensity single crystal peaks.

The intensity of these peaks tends to be an order of magnitude higher than 
those of the sample. To estimate the value of filtering an exemplary Bragg 
cone is selected, it has a high intensity, a relatively high angle (35.33°) 
and intersects the tails of two sapphire reflections. The bin size of 0.02° 
is selected to portray data in a typical integration bin. The comparison of 
the datasets via a histogram as is shown above is hindered by the fact 
that the histogram of the unfiltered data is singular. Virtually the entire 
histogram density is collected in the first histogram bin with a constant 
further density of two pixels for each of the following intensity bins. With 
such a distribution no model fitting can be undertaken. Once the top 2.5% 
of the intensities per bin have been filtered from the data a histogram with 
a discernable normal distribution presents itself (figure 3.7).
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Figure 3.6 A rendered image of a high temperature powder diffraction data set collected by a two-
dimensional detector in a study of the decomposition products of Bischofite (Mg Cl2(H2O)6). The fine 
monodisperse grains of cause the rings to have such an even intensity. The high intensity spikes are 
caused by reflections of the high temperature sapphire capillary.

The normal probability distribution function is fitted to the data. The 
parameters from the fit are then compared with the arithmetical values. 
Now the use of the filtering becomes visible. Whereas the mean and 
the variance of the unfiltered data are unrelated to the true values, the 
arithmetic mean and variance computed from the filtered data are virtually 
identical to those values given by the fitting procedure. The median is an 
excellent estimation of the true value.

Figure 3.7 Two data samples showing the effect of fractile filtering on the intensities of a Bragg reflection 
in a high temperature experiment. Left the histogram of the unfiltered data is shown using double 
logarithmic axes. On the right the histogram of the filtered data is shown. The normal distribution 
function is fitted to the data and the fitted and arithmetic parameters are listed in table 3.3.
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Figure 3.8 The intensity is shown as a function of the azimuth for the data depicted in the histograms 
of figure 3.7. The green symbols (+) represent the highest fraction, the blue symbols represent the 
lowest fraction of the data. These fractions are removed by the filter. The barely visible sinusoidal 
perception of the intensity is due to sample absorption effects that have not been corrected.

It is clear that simple filtering algorithms have a substantial and positive 
effect on the quality of the resulting integral mean values and arithmetic 
variances. The effect of the filter on the resulting diffractogram can be 
seen in figure 3.9.

Table 3.3 The table compares ideal and arithmetic statistical values within an integration bin. The ideal values have 
been extracted from fitting a normal probability density function to the histogram of the filtered data. The arithmetic 
values are based on the entire data set.

Unfiltered data Filtered data
Mean (fit) N/A 1619(14)
Variance (fit) N/A 198
Median 1602 1600
Mean 6896(310) 1604(13)
Variance 95878 172
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Figure 3.9 The dramatic effect of the fractile filter on the final integrated pattern from figure 3.6 is 
shown. The red line is the pattern extracted from the unfiltered image, the blue pattern is the pattern 
extracted from the image which has 5% of the highest and 5% of the lowest intensity filtered from it.

3.4.3	 High pressure data

As already mentioned the quality of high pressure data poses probably 
the greatest challenge to filtering techniques. An example of such data 
can be seen in figure 3.10.

Figure 3.10 A rendered image of a high pressure powder diffraction data set collected by a two-
dimensional image plate detector. The white spikes are high intensity peaks originating from larger 
grains within a fine grained matrix. The fine grains contribute the light red rings visible at the base. 
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Figure 3.11 The intensity is shown as a function of the azimuth. The displayed intensity originates from 
a typical high pressure experiment, in this case of SnSO4 at a pressure of P = 20GPa. The filtered 
pixels have been coloured, green the high intensities, blue the low intensities. The effect of the filters 
on the intensity distribution can also be seen in the histogram in figure 3.12. 

The high number of high intensity pixels is caused by the lack of sample 
rotation, the highly collimated and highly parallel beam used in such 
experiments as well as from large grain size differences within the sample. 
Strong peaks resulting from larger grains lie within a ring of moderate 
intensities generated by small crystallites. In most cases the number of 
high intensity pixels tends to be a couple of orders of magnitude lower 
than the number of low intensity pixels. On account of the small number of 
intense spots they inevitably fail to ensure a ‘statistical’ distribution. Due to 
their intensity which often lies orders of magnitude above the low intensity 
pixels, they have a great effect on the integrated pattern, falsifying the 
intensities considerably. This effect is not alleviated by a mere integration. 
Incorrectly filtered images can result in peaks that cannot be fitted by 
conventional peak profile models as well as error bars that are completely 
meaningless.

To obtain an acceptably resolved histogram from an integration bin of 
such highly dispersed intensities an initial fractile filter of the upper 5% 
was required (figure 3.11). The resulting histogram can be seen in figure 
3.12. The distribution of the intensities is markedly different to those 
distributions studied before. Fitting a normal distribution, which has been 
so successful describing normal and HT intensity distributions, to the HP 
data set leads to a most unconvincing result (the magenta line in figure 
3.12 and the Chi² value in table 3.4).

The intensity distribution is exclusively a sample characteristic – no sample 
environment contamination affects them. As the distribution has many 
low intensity and few high pixels the power law distributions seem the 
appropriate descriptive choice. Of these the most promising is the Pareto 
distribution (Pareto, 1896) (equation 3.8) which was initially devised to 
model the wealth distribution among individuals of a society. This has 
become generally known as the 80/20 rule. Eighty percent of the wealth 
is owned by twenty percent of the population. Wide applications of this 
distribution in the fields of biology, geology and physics (Newman, 2005) 
have been found to date.
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Figure 3.12 The intensity distribution of a filtered bin from a high pressure experiment is displayed. 
Fitted intensity distributions of the normal, the Pareto and proposed normal Pareto distribution are 
overlaid in colour. The best fit is given by the normal Pareto distribution.
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The two parameters of the Pareto distribution (3.8) describe the smallest 
possible value of x which is b, and a form parameter a. The Pareto 
probability density function is sharp containing a singularity at x=b. This 
is not compatible with the experimental data in which mainly the detector 
causes a ‘Gaussian blur’ of the Pareto distribution (see figure 3.12). To 
make allowance for this effect the Pareto distribution is folded with a 
normal distribution function leading to what will be called a normal Pareto 
function (3.9). This convolution gives the best Chi² of any distribution 
model tested (Table 3.4). 

P x P x P xNP normal Pareto( )     (3.9)

This formalism for the intensity distribution is most attractive as when the 
parameter a in equation 3.8 tends toward infinity the Pareto distribution 
tends toward a Dirac delta function, thereby reducing the convoluted 
function to the normal distribution of perfectly monodisperse grains. The 
influence of the parameter a especially on the tail of the function can 
be seen in figure 3.13. Here one can quite clearly see that ‘infinity’ is 
effectively reached at the modest value of a=20.

Table 3.4 The table displays the chi-squared statistical test results (goodness of fit) of the distribution models to the 
filtered intensities contained in a single bin from a high pressure experiment. The best fit is given by the smooth 
Pareto distribution.

Model Chi²
Normal distribution 1431
Pareto distribution 564
Normal Pareto distribution 109
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Figure 3.13 The effect of parameter a is shown on the convoluted Pareto probability density function . 
At values of a below 20 a shift of the peak to higher intensities can be seen. The slower falloff of the 
distribution function to higher intensities is the most pronounced characteristic of small a-values in the 
distribution function.

Figure 3.14 A normal Pareto distribution is compared to a normal distribution of an ideal sample. To the 
low intensity side of the functions an almost perfect correspondence of the two functions is observed. 
To higher intensities the greyed area represents the additional high intensity pixels of a normal Pareto 
distributed signal.
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Some practical use of the otherwise rather academic knowledge of the 
distribution function is the calculation of optimal filtering values (figure 
3.14) for 2D powder diffraction images. Under the main peak of the 
normal Pareto distribution a normal distribution fits very snugly. This 
distribution tells us the characteristics of the largest and weakest portion 
of the population. To estimate arithmetically the values of this distribution 
the following steps were taken. Both the integrals of ideal normal and the 
Pareto distribution were computed. Their difference is an estimation of the 
normal fraction to the entire (Pareto) distribution according to 3.10. This 
is equivalent to estimating the high intensity fraction to be filtered, under 
the approximation that the high intensity slope of the normal distribution is 
infinite and the low intensity slopes of both distributions are equal.

P x dx P x dx FracN NP hi       1 (3.10)

Figure 3.15 As the high intensity tail is directly related to the a parameter of the Pareto function, the 
fraction of the integral of the normal probability density function to the integral of the entire normal 
Pareto function can be plotted as a function of parameter a. Different plots have been made to show 
the influence of varying the sigma of Pnormal. The lines from the red through to the blue represent the 
results for sigma values of 0.5 0.7, 0.9, 1.1, 1.3 times I respectively. For high values of parameter a 
the normal fraction approaches 1 asymptotically. For a filter setting which would reduce the Pareto 
distribution to a roughly normal distribution 1-normal fraction of the highest intensities should be 
removed.

Frachi from equation 3.10 is then the high intensity filtering fraction to be 
set. In the present case it leads to a high intensity filter fraction of 0.43. 
As the histogram already has been filtered by 5% of the high intensities, 
these have to be added. This leads us to a high intensity filter setting 
of 48%. The effect on the arithmetic statistical values can be seen in 
table 3.5. The arithmetic standard deviation and the mean correspond 
excellently to the model values. In general the fraction to be filtered is not 
merely dependent on the parameter a of the Pareto distribution but also 
on the width of the normal distribution Pnormal with which it is convolved. 
The effect of both parameters is shown in figure 3.15.

It is quite surprising that the removal of such a substantial amount of the 
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data leads to such a dramatic improvement in the least squares sense 
of the data quality. This underlines once more the absolute necessity of 
large 2D detectors for the success of these types of experiments.

Table 3.5 The table displays the fitted mean of the normal Pareto distribution and the arithmetic mean from the 
filtered data, and the associated errors. The values are virtually identical within error.

Mean(model) 4014(103)

Mean(filtered) 4244(124)

Once applied to the entire image (figure 3.16) the effect on the final 
diffraction pattern can be seen in figure 3.17. Even more pronounced 
is the effect of the filtering on the standard deviation of the integrated 
pattern (figure 3.18).

Figure 3.16 The effect of filtering on the diffraction image is shown. The green mask represents the 
pixels which belong to the top 48% of the intensities per integration bin. The blue mask shows the 
pixels which belong to the bottom 2% of the intensities per integration bin. The yellow mask is the beam 
stop mask filtering the first 2° 2θ of the diffraction image. Only the grey region of the image is used for 
the integration to a 1D diffractogram.
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Figure 3.17 The effect of filtering on the final integrated and background corrected pattern is shown. In 
red the integrated pattern of the unfiltered image is shown. In blue the diffractogram of the image is 
shown that had 48% of the highest intensities and 2% of the lowest intensities removed.

Figure 3.18 The effect of filtering on the standard deviation is shown. In red the standard deviations of 
the unfiltered image are shown. In blue the standard deviations of the image are shown that had 48% 
of the highest intensities and 2% of the lowest intensities removed.
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3.5	 Conclusion

A study on the effects of fractile filtering two-dimensional powder 
diffraction images has been made, taking into consideration optimal data, 
and typical high temperature and high pressure data. The applicability of 
the normal intensity distribution to optimal and high temperature data has 
been shown. However high pressure data are quite differently distributed. 
They follow a Pareto function convoluted with a normal distribution 
function. As a direct cause this data can impossibly be used in a reliable 
fashion with least squares minimization analyses. A method has been 
developed to circumnavigate this problem allowing the extraction of data 
describing a near normal distribution from high pressure data. To do this 
the parameters of the normal Pareto distribution have to be determined, 
this allows a numerical approximation of the normal distribution within the 
peak of the normal Pareto distribution to be made. The dependence of this 
normal distribution on the parameters of the normal Pareto distribution 
were analyzed. 

In essence it is now feasible to extract fundamentally reliable intensities from 
high pressure powder data. This task was until present unachievable.



65

Quality assessment

4	 Quality assessment

4.1	 How good are my data? Suggestions for an image reliability value

 It has already been mentioned the two dimensional powder diffraction 
images often suffer from extreme spottiness. There is however no really 
comparative measure of spottiness. The presented function provides a 
single value that can describe the quality of a two-dimensional powder 
diffraction image with respect to spottiness.

The underlying idea is to use the variance of the pixel intensities 
associated with a single step in the one-dimensional powder histogram 
(∆2θ) to estimate the quality of the image.

The unbiased variance is given by the well known relation:
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This is calculated for each step of the associated histogram and is 
averaged over the total image:
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The average is normalized to the average pixel intensity making the value 
independent of the beam intensity and detector sensitivity, resulting in the 
following expression:
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A complete single expression of the value is:
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Where l is the total number of pixels in the image, n is the number of bins 
used to integrate the image and m is the number of pixels within each 
bin.

This reliability value has shown itself a robust estimator of the powder 
diffraction image quality; however it is biased in the case of elevated 
background intensity. This is especially prevalent in diamond anvil cell 
experiments. Replacing the intensities with background reduced intensities 
resolves this weakness, leading to the following equations:
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where IkB is the background intensity of the kth pixel.

4.2	 Comparison of reliability values originating from different data

Image reliability values are not only a matter of interest for the quality 
of the diffraction pattern, but also are very sensitive to the calibration 
quality. In table 4.1 various images from different in situ experiments have 
been analyzed before and after filtering. The image reliability values not 
only prove useful in the quality estimation, but also show prove the great 
improvements filters offer in the image reduction process.

Table 4.1 Image reliability values for different images before and after filtering are listed. The first two lines compare 
high quality calibration images with good and bad calibrations with one another. The ‘bad’ calibration was created 
by merely changing the sign of the tilt value. The experimental datasets are relatively standard high temperature 
(sapphire tube) and high pressure (DAC) images. The high temperature image has peaks from the enveloping 
sapphire capillary and the high pressure image has an intrinsically high intensity distribution.

LaB6 Rim(filter applied)*100 Rim (no filter)*100
good calibration 0.414 25.9
bad calibration 10.1 45.9
Experimental data    
sapphire tube 1.12 4512
DAC 15.3 7532
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5	 Schafarzikite (FeSb2O4) at high pressure

5.1	 Abstract

Methods have been developed to facilitate the data analysis of multiple 
two-dimensional powder diffraction images. These include, among others, 
automatic detection and calibration of Debye-Scherrer ellipses using 
pattern recognition techniques, and signal filtering employing established 
statistical procedures like fractile statistics.

All algorithms are implemented in the freely available program package 
Powder3D developed for the evaluation and graphical presentation of 
large powder diffraction data sets.

As a case study, we report the pressure dependence of the crystal structure 
of iron antimony oxide FeSb2O4 (p  ≤  21 GPa, T= 298K) using high 
resolution angle dispersive X-ray powder diffraction. FeSb2O4 shows two 
phase transitions in the measured pressure range. The crystal structures 
of all modifications consist of frameworks of Fe+2O6 octahedra and 
irregular Sb+3O4 polyhedra. At ambient conditions, FeSb2O4 crystallizes 
in space group P42/mbc (phase I). Between p = 3.2 GPa and 4.1 GPa it 
exhibits a displacive second order phase transition to a structure of space 
group P21/c (phase II, a = 5.7792(4)Å, b = 8.3134(9)Å, c = 8.4545(11)Å, 
b = 91.879(10)°, at p = 4.2 GPa). A second phase transition occurs 
between p = 6.4 GPa and p = 7.4 GPa to a structure of space group P42/m 
(phase III, a = 7.8498(4)Å, c = 5.7452(5)Å, at p = 10.5 GPa). A non-linear 
compression behaviour over the entire pressure range is observed, which 
can be described by three Vinet equations in the ranges from p = 0.52 
GPa to p = 3.12 GPa, p = 4.2 GPa to p = 6.3 GPa and from p = 7.5 GPa to 
p = 19.8 GPa. The extrapolated bulk moduli of the high-pressure phases 
were determined to K0 = 49(2) GPa for phase I, K0 = 27(3) GPa for phase 
II and K0 = 45(2) GPa for phase III. The crystal structures of all phases 
are refined against X-ray powder data measured at several pressures 
between p = 0.52 GPa, and p = 10.5 GPa.

5.2	 Introduction 

FeSb2O4, also known as the mineral Schafarzikite (Krenner, 1921) 
belongs to a group of compounds crystallizing in space group P42/mbc 
with the general formula AB2O4 A= Pb, Cu, Sn, Ni, Zn, Mn, Fe, B = Pb, As, 
Sb where B represents ions with a stereochemically active lone electron 
pair. Generally they are regarded as pseudo-ligands that are able to 
replace one or more of the regular ligands in a given coordination sphere 
leading to irregular polyhedra of a low coordination number. The resulting 
stereochemical implications have been discussed in depth (Gillespie, 
1967, Gillespie & Robinson, 1996).
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Table 5.1 Structural parameters of the ambient and low pressure structure of Schafarzikite which 
crystallizes in the space group P42/mbc. The parameters were refined to data collected at p = 0.5 
GPa.

Atom:Wyck. Fe:4d Sb:8h O:8g O:8h
x/a 0 0.175(1) 0.676(1) 0.099(1)
y/b ½ 0.164(1) 1.176(1) 0.651(1)
z/c ¼ 0 ¼ 0
a = 8.5758(1) Å, c = 5.8983(1) Å

The crystal structure of Schafarzikite is characterized by the presence 
of edge-sharing iron octahedra connected with corner-sharing antimony 
tetrahedra leading to open channels containing the lone pairs (Fischer & 
Pertlik, 1975). The open channel structure (see table 5.1 for the ambient 
and low pressure structural parameters) and the high polarizability of the 
cations exhibiting the ‘lone-pair’ make it highly susceptible to pressure 
induced phase transitions. A previous high pressure investigation of the 
related compound Minium Pb4+Pb2+

2O4 (Dinnebier et al., 2003)) showed 
two phase transitions towards two phases of higher density at pressures 
of p = 0.11 GPa - 0.3 GPa and p = 5.54 GPa - 6.6 GPa respectively, where 
the lone pair of the latter phase almost vanished tending towards an s-
state character. While minium also shows several phase transitions upon 
cooling (Gavarri et al., 1978), no phase transitions of Schafarzikite on 
cooling to T = 2K have been observed (Chater et al., 1985, Gonzalo et al., 
1966). In this work, we have investigated the pressure dependence of the 
crystal structure of Schafarzikite up to a pressure of p = 19.8 GPa. For this 
purpose, in situ X-ray powder diffraction measurements were performed 
at room temperature and elevated pressures using a diamond anvil cell 
(DAC).

5.3	 Experimental 

5.3.1	 Synthesis and X-ray diffraction measurements

FeSb2O4 has been prepared according to procedures as described in the 
literature (Chater et al., 1985).

For the X-ray powder diffraction experiments, the hand ground sample of 
Schafarzikite was loaded in a membrane driven diamond-anvil cell (DAC) 
(Letoullec et al., 1988), using nitrogen (cryogenic loading) as pressure 
medium. The DAC had 300µm culet and 125µm hole diameters. The 
pressure was determined by the ruby luminescence method using the 
wavelength shift calibration of Mao (Mao et al., 1982). High pressure X-ray 
powder diffraction data were collected at room temperature at beamline 
ID9 of the European Synchrotron Radiation Facility (ESRF) using an 
experimental configuration following that described by Schulze (Schulze 
et al., 1998). Monochromatic radiation for the high-pressure experiment 
was selected at 30.0keV (0.41325Å). The beam-size was 30 x 30μm. 
Diffracted intensities were recorded with a Marresearch Mar345 online 
image plate system. A set of 22 images at selected pressures between 
p= 0.56 GPa and p= 19.8 GPa were recorded. 3 of the 22 images were 
taken during the decompression of the sample. An exposure time of 120 
seconds was chosen.
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5.3.2	 Crystal structure determination and refinement

Following the successful filtering and integration of the two-dimensional 
images to conventional powder diffraction patterns, the scattering profile 
of FeSb2O4 in dependence of pressure (figure 5.1) gives evidence for a 
second order phase transition followed by a first order phase transition. 
The phase with tetragonal symmetry (P42/mbc) (phase I) which is stable 
at ambient conditions is retained up to at least p = 2.2 GPa. A transition 
into a phase with monoclinic symmetry (P21/c) (phase II) is observed to 
occur between p = 2.2 GPa and p = 3.1 GPa which is stable to at least p = 
8.3 GPa. Between p = 8.3 GPa and p = 9.5 GPa a second phase transition 
occurs to another tetragonal phase (P42/m) (phase III) which stays stable 
until at least p = 19.8 GPa (figure 5.1). For all data sets, lattice parameters 
as a function of pressure were obtained by Le Bail type fits using the 
programmes FULLPROF (Rodriguez-Carvajal, 2001) and GSAS (Larson 
& Von Dreele, 1994). 

Figure 5.1 Simulated guinier plot showing the progression of the powder pattern over the measured 
pressure range.

The background was modelled using the program Powder3D (figure 
5.1)(Hinrichsen et al., 2004). The peak-profile was described by a pseudo-
Voigt function. The phenomenological microstrain model of Stephens  
(Stephens, 1999)as implemented in GSAS was used to model the 
anisotropy of the FWHM. Four parameters were refined for the tetragonal 
phase. The quality of the powder patterns of all phases was sufficient to 
extract lattice parameters and to verify the crystal structures via Rietveld 
refinement (tables 1,2 and 4). 
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Table 5.2 Details of the refinement of phases I, II and III of FeSb2O4 

Pressure (GPa) 0.5 4.2 10.5
Space group P42/mbc P21/c P42/m
ρcalc (g/cm³) 5.564 5.945 6.818
Formula weight 363.37 363.37 363.37
Temperature (K) 290 290 290
Rp (%)1 2.0 1.7 1.9
Rwp (%)1 2.8 2.5 3.1
Rexp (%)1 5.6 5.7 5.8
RF² (%)1 29.9 14.7 17.4
No. of reflections 133 187 212
No. of variables 21 43 30
No. of refined atoms 4 7 6
Wavelength (Å) 0.413251 0.413251 0.413251
2Θ range(°), counting time 2.0-24.46, 120 2.0-24.46, 120 2.0-24.46, 120
Step size (° 2Θ) (after rebinning) 0.01 0.01 0.01
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I0/Ic = observed/calculated intensity, F0/Fc = observed/calculated structure factor, w = 
weighting per data point, n = number of data points, p= number of parameters

The powder patterns of phases II and III contained sufficiently resolved 
diffraction peaks to allow for ab initio crystal structure determination as well 
as for Rietveld refinement. The direct method program EXPO (Altomare 
et al., 2005) was used to determine the positions of the Iron and Antimony 
atoms. Subsequent Rietveld refinements in combination with difference-
Fourier analyses then revealed the positions of the oxygen atoms in the 
asymmetric unit. For the Rietveld refinements using the program GSAS, 
the lattice and reflection profile parameters were first kept at the values 
as obtained from the LeBail fits. Slack soft constraints for the four Fe+2-O 
bond lengths of 2.1(1) Å were used to stabilize the refinements. The atomic 
displacement parameters for the oxygen had to be restrained to be equal 
in the monoclinic phase, to hinder some parameters having physically 
meaningless negative values. For the same reason one oxygen atom in 
the low pressure phase and all oxygen atoms in the high pressure phase 
had to be refined with fixed isotropic atomic displacement parameters.

5.3.3	 Equation of State

Lattice parameters as a function of pressure were extracted from 
each diffraction pattern. The derived volume/pressure dependence is 
represented by the equation of state (EoS). An EoS is typically fit to a 
model based either on series expansion of Eulerian strain (Murnaghan, 
1944) or on cohesive energies in a condensed system (Vinet et al., 
1986). 

The programme EOSFIT 5.2 (Angel, 2002) was used to fit the Vinet EoS 
defined as 

P K
f

f
K fv

v
v

 
    3

1 3
2 1 10 2 0exp (5.1)
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Figure 5.2 Scattered X-ray intensity for the low-pressure phase of FeSb2O4 at p= 0.52 GPa as a 
function of diffraction angle 2q. Shown are the observed pattern (crosses), the best Rietveld fit (thick 
black line), the difference curve (thin black line) and the reflection markers (vertical bars). The wavelength 
was 0.41325Å.
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with volume at zero pressure V0, the bulk modulus K0, and its pressure 
derivative at zero pressure K’0. In all calculations K’0 was selected 4. The 
experimentally obtained values for the bulk modulus K0 presented in table 
5.3 show good agreement with calculated values for the low pressure 
tetragonal phase I, being identical within experimental error. Higher 
compressibility expressed by the lower bulk modulus for the intermediate 
phase II of FeSb2O4 is a feature shared by the intermediate phase II of 
Pb3O4. The increase in compressibility of the monoclinic phase is roughly 
by a factor of two. No difference within experimental error is registered for 
the EoS between the low-pressure and high-pressure phases. It should be 
noted that the EoS of the first and second phases have been determined 
using only four and three data points respectively. Thus the interpretation 
of these values is somewhat speculative.
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Table 5.3 The Vinet equation of state for the three phases of FeSb2O4 and related compounds.

Vinet EoS V0 (Å³) K0 (GPa) K´0 Rw (%)
FeSb2O4 (phase I) 438(1) 49(2) 4 (fix) 2.21
FeSb2O4 (phase II) 459(6) 27(3) 4 (fix) 1.12
FeSb2O4 (phase III) 425(2) 45(2) 4 (fix) 2.28
FeSb2O4 50a

Pb3O4 (phase II) 511(1) 20.8(4)b 4 (fix) 3.65
Pb3O4 (phase III) 222(2) 98(3)b 4 (fix) 4.25
Pb3O4 67(16)c

SnSb2O4 49(8)c

NiSb2O4 57a,65(5)d

ZnSb2O4 52(9)c

MnSb2O4 55a

a Gavarri and Chater (1989) (calculated values)
b Dinnebier et al. (2003) 
c Gavarri (1982) (calculated values)
d Chater et al. (1987) (measured at T=63K and T=240K)

An anisotropy in the change of lattice parameters induced by pressure has 
also been observed in the high pressure study of Pb3O4. The monoclinic 
phase II of FeSb2O4 shows a strong distortion of the lattice. The highest 
observed discontinuities of the lattice constants relate however to the re-
entry of the tetragonal symmetry above p = 7.4 GPa (figure 5.3 and figure 
5.4). A moderate compression of the c-axis until this pressure can be 
noted. For the remaining range up to p = 19.8 GPa the c-axis remains 
virtually unchanged, The entire compression in this range takes place 
within the ab-plane and is directly related to the constriction of the open 
channels containing the lone electron pairs.

Figure 5.3 Dependence of the lattice parameters of FeSb2O4 on pressure in the range of p = 0-19.8 
GPa.
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Figure 5.4 Dependence of the volume of FeSb2O4 on pressure in the range of p = 0-19.8 GPa. Smooth 
solid lines correspond to the least square fits of the Vinet equations of state.

5.3.4	 Symmetry relations

Translationengleiche group sub-group relations can be found for all 
phases. They are P 42/m b c t4 P21/c t8 P42/m and P 42/m b c 
t2  P42/m. The initial path leads over Pbam, a space group type known 
from the high pressure phase of Pb3O4 but not observed for FeSb2O4. 
Four possible paths lead back from P21/c to P42/m as can be seen in 
figure 5.5. 

Figure 5.5 Group sub-group tree of the observed phases. Grey lines are possible transition paths.

Symmetrical considerations would suggest the orthorhombic space group 
Pbam to bridge the higher and lower space groups (figure 5.5). The 
space group type Pbam is a known low temperature/high pressure space 
group type for minium (Pb3O4). A direct transition path from the ambient 
pressure space group P42/mbc to the high pressure space group P42/m is 
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symmetrically plausible as P42/m is a non-isomorphic maximal subgroup 
of P42/mbc. The second transformation from P21/c to P42/m would require 
two further space groups (figure 5.5).

Table 5.4 Wyckoff splitting for the phase transitions P 42/m b c  P21/c  P42/m

Atom:Wyck. Fe:4d Sb:8h O:8g O:8h
Site symm. ..2 m.. 2.22 m..
x/a 0 0.175(1) 0.676(1) 0.099(1)
y/b ½ 0.164(1) 1.176(1) 0.651(1)
z/c ¼ 0 ¼ 0
ui/Å

2 0.018(1) 0.004(2) 0.096(11) 0.001
↓ ↓ ↓ ↓ ↓ ↓ ↓

Atom:Wyck. Fe:4e Sb:4e Sb:4e O:4e O:4e O:4e O:4e
Site symm. 1 1 1 1 1 1 1
x/a 0.224(3) -0.010(2) 0.498(2) 0.223(6) 0.269(6) 0.017(6) 0.500(4)
y/b 0.0000(2) 0.172(2) 0.842(2) 0.697(5) 0.333(5) 0.094(2) 0.352(4)
z/c 0.496(3) 0.158(2) 0.181(2) 0.163(4) 0.804(5) 0.680(3) 0.088(2)
ui/Å

2 0.003(5) 0.022(6) 0.050(4) 0.06(1) 0.06(1) 0.06(1) 0.06(1)
↓ ↓ ↓ ↓ ↓ ↓ ↓

Atom:Wyck. Fe:4i Sb:4j Sb:4j O:8k O:4j O:4j
Site symm. 2.. m.. m.. m.. m.. 1
x/a 0 0.164(2) 0.328(2) 0.681(5) 0.113(8) 0.483(8)
y/b ½ 0.154(3) 0.653(3) 1.132(5) 0.636(9) 0.246(8)
z/c 0.222(5) 0 0 0.220(8) 0 0
ui/Å

2 0.007(6) 0.016(8) 0.028(5) 0.001 0.001 0.001

The structure of FeSb2O4 (figure 5.6) is dominated by infinite chains of 
edge linked distorted Fe2+O6 octahedra. The chains project down the c-
axis and lie centred on the a- and b-axes akin to the orientation of the TiO6 
octahedra in the rutile structure. All Sb3+ ions are located in the planes 
spanned by the shared edges of neighbouring octahedral chains. Their 
polyhedra link the [FeO6]

1
∞ chains. Sb is coordinated by three O atoms, 

two representing the apex of neighbouring FeO6 octahedra from one 
chain and one equatorial oxygen from a neighbouring chain. This results 
in a slightly irregular SbO3 pyramid with oxygen forming the base and the 
lone pair electrons representing the apex. Four of these pairs point inward 
to the channel, resulting in a large unoccupied space. Thus the channels 
are lined by trigonal pyramids of SbO3, the closest Sb-Sb distance being 
3.53 Å. 

In the monoclinic phase II all atoms are on the general 4e position (table 
5.4). The special positions and the high tetragonal symmetry are recovered 
at higher pressures. The mechanism of the first phase transition can 
be interpreted as an initial continuous shearing toward the monoclinic 
symmetry. The shearing presents itself in the growing monoclinic 
angle, corresponding to the angle of the c-axis to the ab-plane in the 
tetragonal phases I and III. The distortion of the iron octahedra increases 
with pressure. All changes are however continuous, characteristic of a 
second order phase transition. The second transition is different. Sharp 
discontinuities of the lattice constants speak for a first order phase 
transition. The iron octahedra remain distorted, however the orientation 
has changed substantially to the phases I and II.
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Figure 5.6 Low pressure tetragonal FeSb2O4 (phase I) viewed down the c-axis, green spheres represent 
Fe, grey spheres Sb.

The change in the antimony environment is substantial for the second 
phase transition. Here one of the symmetry independent antimony atoms 
takes on a fourfold coordination in contrast to the dominant threefold 
coordination for the remaining phases. It should be kept in mind that the 
refinement of atomic position of weak X-ray scatterers such as oxygen in 
the vicinity of heavy atoms such as antimony, which are strong scatterers, 
is inherently difficult.

5.4	 Conclusion

The general applicability of two-dimensional signal filtering to powder 
diffraction data has been demonstrated. In the presented case study of 
FeSb2O4, high-pressure data has been analysed, successfully identifying 
two new phases at non-ambient pressures. All applied filters have been 
implemented in the freely available software Powder3D.
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6	 Tin sulphate at high pressures

6.1	 Introduction

The structure of tin sulphate can be considered to have a highly distorted 
Barite structure (Donaldson & Puxley, 1972). Unbonded lone pair electrons 
of the sp3 hybridized Sn2+ orbitals can explain the high degree of distortion. 
Tin sulphate was studied as part of a systematic survey of effects of high 
pressure on the structures of substances containing lone pair electrons. 
High pressure powder diffraction experiments were performed at the High 
Pressure Collaborative Access Team at the Advanced Photon Source, 
Argonne National Laboratories, Argonne, Illinois, USA. Three phase 
transitions were observed, one between p = 0.15 GPa and p = 0.2 GPa, 
one at p ≈ 5 GPa, and one at p ≈ 15 GPa.

The initial space group type Pnma (phase I) only remained stable at near 
ambient conditions. A sub-group of this space group is P1121/a (phase 
II at p = 0.2 GPa: a = 8.7022(9) Å, b = 5.3393(5) Å, c = 7.0511(6) Å,  = 
89.90(1)°). This space group type describes the crystal structure of the 
medium pressure phase. The two high pressure phases both crystallize in 
the space group type 1P  (phase III at p = 13.5 GPa: a = 8 .067(3) Å, b = 
5.141(2) Å, c = 6.609(2) Å,  = 90.56(3)°,  = 90.65(2)°,  = 89.46(2)° and 
phase IV at p = 20.5 GPa: a = 7.889(5) Å, b = 5.028(3) Å, c = 6.462(3) Å, 
 = 90.99(3)°,  = 91.01(3)°,  = 89.89(4)°).

6.2	 Experimental

6.2.1	 Synthesis and X-ray diffraction measurements

Tin sulphate of a purity of 99% was used as bought from Acros Organics. 
The starting substance was analyzed using laboratory X-ray powder 
diffraction and was found to contain no detectable traces of impurities. 

The sample was hand ground in an agate mortar for twenty minutes. A 
small amount of sample was loaded in a Merrill-Basset (Merrill & Bassett, 
1974) type diamond anvil cell (DAC). Silicon oil was used as a pressure 
medium. The pressure was measured off-line by the ruby line shift method 
(Forman et al., 1972, Mao et al., 1982). Monochromatic radiation of a 
wavelength of 0.368194 Å (33keV) was used. The diffraction pattern was 
recorded by a Marresearch Mar345 online image plate system. A set of 34 
images at pressures ranging from p = 0 GPa to p = 20.5 GPa were made. 
Nine images were taken during decompression. Exposure times ranged 
from 60s to 180s. 

6.2.2	 Data filtering and reduction 

The image plate orientation and position were determined using a 
nanocrystalline CeO2 sample. As with the samples within the DAC no 
rotation during the exposure was performed. This ensured the intensity 
of the diffracted beams to be normal Pareto distributed (Hinrichsen et 
al., 2007b). An initial traditional calibration routine was run using the 
Powder3D IP software (Hinrichsen, Dinnebier & Jansen, 2006). The 
results obtained were later refined using the whole image refinement 
(WIR). To do this successfully the background had to be determined and 
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the outlier intensities had to be filtered prior to the refinement. 

All images were filtered before integration. A fractile filter removing a 
fraction of the highest and lowest intensities from each bin was used. 
The fraction to be removed was determined using the relation of the 
normal to the normal Pareto distributed intensities of a strong peak 
(Hinrichsen et al., 2007b). This resulted in 58% of the highest intensity 
being removed from each bin before integration. This filtering method led 
to approximately normally distributed intensities, ideally suited for least 
squares refinement. 

Figure 6.1. A simulated Guinier plot showing the progression of the intensity normalized powder pattern 
over the measured pressure range.

6.2.3	 Crystal structure determination and refinement

Following successful reduction the scattering profile gave little direct 
evidence of a phase transition. The first patterns showed excellent 
convergence using the starting model. The third pattern converged 
less well, the fit getting progressively worse up to p = 15 GPa where 
only a triclinic setting lead to an acceptable correspondence to the 
experimental data. To ensure the structures were described using the 
correct symmetry a Rietveld refinement of all datasets in the triclinic 
setting 1P  was performed, with the idea to deduce the true symmetry 
of the structure from its triclinic pendant. All patterns were refined in 1P
, leading to excellent convergence, low residuals and meaningful atomic 
displacement coefficients in every case. All refinements were performed 
using the TOPAS3 (Coelho, 2004) software. 

A closer look at the lattice parameter evolution (figures 6.2 and 6.3) with 
increasing and decreasing pressure did however hold some surprises.
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Figure 6.2. Three plots showing the progression of the unit cell angles as a function of pressure. For 
better clarity only data points from compression have been shown. Lines have been drawn for some 
regions, these are merely guides for the eyes and not the result of a fit. The g angle shows the greatest 
deviation. It breaks the orthorhombic symmetry at the third pattern leading to a monoclinic phase. 
Following the p = 5 GPa mark only a triclinic cell can successfully describe the cell. Another phase 
transition is visible at ca. p = 15 GPa.

Figure 6.3. Three plots showing the progression of the unit cell axes over the measured pressuare 
range. The black open circles are those values refined from data measured during compression; the 
red open circles originate from data measured during decompression.
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Figure 6.4. The volume is shown as a function of pressure. The solid lines are those of a Vinet equation 
of state function fitted to the data points. Above the lines the bulk modulus (K0) is given. The open red 
circles represent data measured during decompression. 

The unit cell axes and the volume show a marked phase transition on 
decompression. The decompression values are designated by open red 
circles in figure 6.3 and figure 6.4. Taking into account the ‘hysteresis 
effect’ well known from temperature dependent experiments, this can be 
taken to imply a phase transition on compression at higher pressures.

When looking at the unit cell angles (figure 6.2) from the triclinic Rietveld 
refinement a phase transition at p = 15 GPa seems to be supported 
by both the beta and gamma angle progression. Both have sharp 
discontinuities at p = 15 GPa and the gamma angle abruptly changes its 
inclination. But this was not the only feature made evident by inspection 
of the angular progression. From the third pattern (p = 0.2 GPa) onward, 
the gamma angle shows a deviation from the orthorhombic right angle. It 
rises linearly, crossing 90° at about p = 2.5 GPa until at p = 5 GPa it starts 
falling again. The reason for this is another phase transition to the triclinic 
crystal system. This can easily be followed from the beginning and steady 
increasing deviation of the alpha and beta angles with higher pressures. 
The strongest deviation within this phase is shown by the gamma angle, 
which reaches a maximum deviation of 0.6° from the original orthorhombic 
angle.

The phase transitions have only a very slightly effect on the diffraction 
patterns (figure 6.1), but show interesting structural changes. 

The ambient pressure orthorhombic structure is dominated by isolated 
sulphate tetrahedra that are bonded to tin atoms at a lengths of 2.25 Å 
and 2.27 Å. Tin is 12-fold coordinated by oxygen in this position, however 
the distances to the rest of the oxygen atoms is substantially higher than 
those of the first three. The long distances range from 2.95 Å to 3.34 Å and 
cannot be regarded as having very strong interactions with the tin atom. 
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The effect of the lone pair electron on the structure is quite visible figure 
6.5. Channels down the b-axis are forced open by the lone pair electrons 
from the only symmetrically independent tin atom. The channels are 
reminiscent of those in the AB2O4 type structures in which the lone-pairs of 
B-atoms caused large channels running through the structure (Dinnebier 
et al., 2003, Hinrichsen et al., 2006). The edge linked octahedra of the 
latter structures are replaced by isolated tetrahedra in the sulphate. These 
promise to be more dynamic under pressure (Crichton et al., 2005).

Figure 6.5. The ambient pressure structure of SnSO4 viewed down the b-axis. The open channels 
down the b-axis are a result of the lone pair electrons of tin. The light grey atoms are tin, the yellow 
tetrahedra represent the sulphate anions. Bonds have been drawn for Sn-O distances less than 2.6 
Å.

Figure 6.6. The Rietveld refinement plot of the orthorhombic ambient pressure phase of tin sulphate 
showing the experimental data as open circles, the calculated pattern as the upper solid line, and the 
difference pattern as the lower solid line. The positions of the reflections are marked by vertical lines. 
The scale of the difference plot is identical to the upper plot.



81

Tin sulphate at high pressures

Table 6.1. Structural parameters of the monoclinic low pressure structure of tin sulphate which crystallizes in the 
space group P21/a. The parameters were refined to data collected at p= 0.2 GPa.

Phase I II III IV
Pressure [GPa] 0 0.2 20.5
a (Å) 8.8153(5) 8.7022(9) 7.975(4) 7.889(5)
b (Å) 5.3254(3) 5.3393(5) 5.079(2) 5.028(3)
c (Å) 7.1272(4) 7.0511(6) 6.546(3) 6.462(3)
α (°) 90.71(3) 90.99(4)
β (°) 90.56(3) 91.01(3)
γ (°) 89.897(12) 89.67(3) 89.89(4)
V(Å3) 334.59(4) 327.83(5) 274.1(2) 256.2(2)
V/Z(Å3)
Z 4 4 4 4
Space Group Pnma P1121/a P-1 P-1
ρ-calc(g/cm3) 4.2535(5) 4.3515(7) 5.205(3) 5.568(5)
Formula weight(g/mol) 859.094 859.094 859.094 859.094
µ(cm-1) 79.567(9) 81.40(1) 97.36(6) 104.15(7)
Temperature (K) 293 293 293 293
R-p (%) 18.1 16.0 13.4 15.5
R-wp (%) 13.9 11.4 12.0 14.8
No. of reflections 299 517 874 821
No. of variables 16 30 65 60
No. of refined atoms 5 6 12 12
Wavelength (Å) 0.368194 0.368194 0.368194 0.368194
2Θ range (°), counting 
time (sec) 3.2-24 3.2-24 3.2-24 3.2-24
Step size (°2Θ) (after 
rebinning) 0.01 0.01 0.01 0.01

Figure 6.6. The low pressure monoclinic structure of SnSO4 viewed down the b-axis. The light grey 
atoms are tin, the yellow tetrahedra represent the sulphate anions. Bonds have been drawn where the 
Sn-O distance is less than 2.6 Å. 

Initially the monoclinic structure was refined using centrosymmetric triclinic 
symmetry. The refinement was stabilized by the use of rigid bodies for the 
sulphate anions. After the correct symmetry (P21/a) was determined the 
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structure was transformed and refined in that symmetry, again with rigid 
body constraints. The final refinement cycles were performed without 
positional restraints. The isotropic atomic displacement factors were 
however constrained to be equal for identical elements. The refinement 
converged well with no distinctive discrepancies in the difference plot 
figure 6.7.

The monoclinic structure differs from orthorhombic in the orientation of the 
sulphate tetrahedron. They are rotated moving the oxygen and sulphur 
atoms out of the orthorhombic symmetry. The Wyckoff positions split 
according to table 6.2. This causes all atoms within the sulphate anion to 
be symmetrically independent. The effect of the symmetry breakdown is 
visible in the comparison of sulphate orientation in figure 6.5 and figure 
6.6. 

Figure 6.7 The Rietveld refinement plot of the monoclinic low pressure phase of tin sulphate showing 
the experimental data as open circles, the calculated pattern as the upper solid line, and the difference 
pattern as the lower solid line. The positions of the reflections are marked by vertical lines. The scale 
of the difference plot is identical to the upper plot.

The following triclinic phase (table 6.2) emerges at p=5 GPa. Most 
impressive in comparison to the latter phase is the increase in the density 
of oxygen atoms surrounding tin. Eleven oxygen atoms are closer than 
2.6 Å to the two symmetry independent tin atoms. When these distances 
are drawn as bonds (figure 6.8) it gives the impression of a highly 
interconnected structure.
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Figure 6.8. The structure of the intermediate pressure triclinic phase III is shown viewed down the b-
axis. The light grey atoms are tin, the yellow tetrahedra represent the sulphate anions. Bonds have 
been drawn where the Sn-O distance is less than 2.6 Å.

Figure 6.9 The Rietveld refinement plot of the first triclinic phase (phase III showing the experimental 
data as open circles, the calculated pattern as the upper solid line, and the difference pattern as the 
lower solid line. The positions of the reflections are marked by vertical lines. The scale of the difference 
plot is identical to the upper plot.
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Table 6.2. A Bärnighausen tree showing the relations between the phases of the ambient and high pressure 
modifications of tin sulphate. All of the transitions are translationengleich without an origin shift, making the 
comparison of atomic positions straightforward.

Sn : 4c S : 4c O1 : 4c O2 : 4 O3 : 8d
Pnma m m M m 1

0.291(1) 0.916(1) 0.055(3) 0.817(3) 0.889(1) [0.889(1)]
¾ ¾ ¾ ¾ -0.004(2) [0.504(2)]

0.714(4) 0.316(2) 0.402(3) 0.467(3) 0.213(2) [0.213(2)]
t1

a,b,c
0,0,0

Sn : 4e S : 4e O : 4e O : 4e O : 4e O : 4e
P21/a 1 1 1 1 1 1

0.288(1) [0.212(1)] 0.919(1) [0.581(1)] 0.051(3) [0.449(3)] 0.808(2) [0.692(2)] 0.916(2) [0.584(2)] 0.862(2) [0.638(2)]
0.755(2) [0.245(1)] 0.771(5) [0.229(5)] 0.655(3) [0.345(3)] 0.824(3) [0.176(3)] 0.027(3) [0.973(3)] 0.542(4) [0.458(4)]
0.707(1) [0.207(1)] 0.316(1) [0.816(2)] 0.409(3) [0.909(3)] 0.468(2) [0.968(2)] 0.247(5) [0.747(5)] 0.185(3) [0.685(3)]

t1
a,b,c
0,0,0

Sn : 2i Sn : 2i S : 2i S : 2i O : 2i O : 2i O : 2i O : 2i O : 2i O : 2i O : 2i O : 2i
P-1 1 1 1 1 1 1 1 1 1 1 1 1

0.312(1) 0.189(1) 0.938(1) 0.578(8) 0.116(5) 0.393(2) 0.829(6) 0.607(2) 0.920(7) 0.564(8) 0.850(6) 0.682(2)
0.714(2) 0.259(2) 0.725(1) 0.253(14) 0.647(8) 0.325(10) 0.787(9) 0.095(9) 0.009(7) 0.070(8) 0.527(8) 0.487(2)
0.650(1) 0.194(1) 0.311(9) 0.845(10) 0.348(7) 0.906(2) 0.482(6) 0.028(9) 0.217(3) 0.641(9) 0.147(8) 0.806(2)

t1
a,b,c
0,0,0

Sn : 2i Sn : 2i S : 2i S : 2i O : 2i O : 2i O : 2i O : 2i O : 2i O : 2i O : 2i O : 2i
P-1 1 1 1 1 1 1 1 1 1 1 1 1

0.303(2) 0.193(2) 0.951(5) 0.619(5) 0.065(6) 0.565(7) 0.994(2) 0.596(5) 0.931(6) 0.477(4) 0.779(4) 0.767(3)
0.732(4) 0.303(3) 0.711(9) 0.170(7) 0.545(6) 0.388(9) 0.996(11) 0.356(3) 0.756(4) 0.984(6) 0.674(10) 0.074(8)
0.630(2) 0.211(2) 0.305(7) 0.845(5) 0.364(5) 0.706(5) 0.332(3) 0.022(3) 0.079(7) 0.844(3) 0.380(6) 0.822(6)

The phase transition causes a doubling of the number of parameters 
(table 6.1) needed to describe the structure. Two tetrahedral rigid bodies 
representing the sulphates were therefore used to stabilize the refinement. 
The isotropic atomic displacement factors were constrained to be equal 
for identical elements. For the final cycles the positional constraints were 
removed. 

Probably the most interesting phenomenon to be observed in this study 
is the last phase transition which is an isostructural phase transition. The 
indicators of this phase transition were mentioned earlier, namely two 
angular anomalies in the lattice constants and the observed hysteresis 
effect in the volume on decompression. The structural change is quite 
fascinating. The evolution starts with sparse single layers of sulphate 
anions connected via tin atoms parallel to (101). It ends in a dense 
double layer structure with the layers nearly perpendicular to the original 
orientation, namely parallel to (110). This change is brought about solely 
by the rotation of the sulphate anions and the volume reduction, the tin 
atoms are hardly displaced throughout the entire compression process 
(table 6.1,and table 6.2). From the polyhedral distortion of its surroundings 
it can be assumed that one of the symmetry independent tin atoms (Sn1, 
see table 6.2) has its lone pair electrons facing the neighbouring layer. 
The other tin atom (Sn2) still fills a small channel parallel to [010] with its 
lone pair electrons. 
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Figure 6.10. The structure of the high pressure triclinic phase IV is shown viewed down the b-axis. The 
light grey atoms are tin, the yellow tetrahedra represent the sulphate anions. Bonds have been drawn 
where the Sn-O distance is less than 2.6 Å. 

The structure has been refined using the identical methods to the previous 
triclinic structural refinement. On the whole the refinement suffered from 
the noticeable peak broadening, which can be attributed to the loss 
of hydrostaticity within the pressure medium at these pressures. The 
deterioration of the diffraction pattern was the reason for beginning the 
decompression after this data collection.

Figure 6.11 The Rietveld refinement plot of the high pressure triclinic phase, showing the experimental 
data as open circles, the calculated pattern as the upper solid line, and the difference pattern as the 
lower solid line. The positions of the reflections are marked by vertical lines. The scale of the difference 
plot is identical to the upper plot.
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6.3	 Conclusion

Three new high pressure phases of tin sulphate (SnSO4) could be 
characterized. The unit cell compression seemed to be continuous when 
taking into account only the change in volume and the change in length 
of the unit cell axes. The phase transitions could at first only be identified 
from well defined discontinuities in the unit cell angles extracted from a 
serial triclinic Rietveld refinement. The highest pressure phase shows a 
dense layered structure, which seems to support the idea that layered 
structures might be more favoured at high pressures than their dense 
three-dimensionally connected counterparts (Murakami et al., 2004). 
This study shows the supreme importance of high quality data and data 
reduction methods to extract Rietveld quality powder diffraction patterns 
from two-dimensional data with extreme intensity distributions.
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7.1	 Précis

The combination two-dimensional detectors, powder diffraction and 
synchrotron light sources has been staggeringly successful, opening doors 
to many new experiments. The great advantages of such data collection 
lie in the short exposure times as well as in the huge redundancy. A large 
angular region of the Bragg cone is recorded in a single exposure; indeed 
most detectors are set up perpendicular and centrally to the primary 
beam, intercepting the Bragg cone over the entire azimuthal range. The 
standard practice is to integrate the image along the ellipses described 
by the intersection of the cone with the planar detector to a conventional 
powder pattern. This commonly reduces the amount of information by 
the square root of the number of pixels. Does this represent the gamut 
of information contained in a powder diffraction image? A glance at an 
image from a calibration standard might lend itself to such a conclusion. 
Less perfect samples, as well as sample environments leave distinctive 
artefacts on images. How can they be extracted, filtered or interpreted? 
Methods offering answers to these questions are introduced. 

The origins of powder diffraction were based on diffraction images, 
however with the onset of equatorial electronic point detectors all high 
quality powder diffraction experiments switched to this method. It has 
remained the experimental doctrine to this day. Only recently have powder 
diffraction scientists rediscovered the allure of diffraction images. Indeed 
high pressure powder diffraction experiments are unthinkable without two-
dimensional detectors. What seems like such a positive development does, 
on closer inspection have its problems. Two dimensional correction factors 
effectively do not exist for powder diffraction experiments. All commonly 
used Lorentz and polarization (LP) corrections are meaningless outside 
the thin equatorial strip for which they were determined. Furthermore 
various other detector and geometry dependent factors have to be 
considered should a high quality powder diffraction pattern be extracted 
from the image. The first chapter of this thesis takes on this challenge and 
presents all applicable two-dimensional correction factors, as well as the 
basis for their application: the experimental set-up.

Determining the geometry to the highest possible precision is paramount 
to the quality of the experiment. How can one achieve this goal, without 
losing oneself in diverging refinements and renitent analysis software? 
Pattern recognition methods and whole image refinement have been 
used to solve the two main problems of calibration and are presented in 
the second chapter. The first global search gives sensible starting values 
for what is probably the most extreme refinement single pattern powder 
diffraction has to offer: whole image refinement. Here the entire two-
dimensional image is rebuilt, based on the initial values, and subtracted 
from the experimental image. This residual is then minimized using a 
Levenberg-Marquardt non-linear least squares refinement algorithm. 
This method leads to calibrations that are at least one order of magnitude 
more precise than traditional calibration routines. This is of fundamental 
importance for the effective use of future high resolution area detectors.

A perfect calibration does not suffice to ensure a successful data reduction. 
Especially in situ experiments - the forte of two-dimensional detectors 
cause intensity aberrations that need to be removed before the image 
can successfully be integrated to a conventional powder diffractogram. 
The source of deviations can be sorted into two camps: those originating 
from the sample environment and those emanating from the sample itself. 
Of course the former is both more easily recognized visually and also 
removed more simply by the fractile filters presented in the third chapter. 
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When intensity deviations originate from the sample the matter becomes 
far more complex. A new distribution function, the normal Pareto function, 
has been shown to describe the intensity distribution that results from 
small sample amounts without substantial sample rotation, as is the case 
in high pressure powder diffraction. The great benefit of this function is 
that it opens the possibility of extracting a fractional filtering setting which 
ultimately leads to normally distributed intensities.

Structural analysis from diffraction data is always connected to a plethora of 
reliability values, describing the raw data as well as the refinement quality. 
Powder diffraction images completely lack any numerical estimation of their 
quality. Functions giving universally comparable, detector independent 
reliability values for images can be found in chapter four.

The final chapters represent the application of the tools developed in the 
foregoing chapters to the most challenging data produced by modern 
in situ powder diffraction experiments: high pressure powder diffraction 
images. Two substances have been described undergoing in total 5 
phase transitions under elevated pressures. All substances possess lone 
pair electrons which have a profound effect on the structures, at ambient 
conditions, as well as under pressure. The data collected has undergone 
data reduction using software developed by the author. All patterns 
extracted in this manner were of such high quality that they directly could 
undergo full Rietveld refinement, giving excellent residuals and sensible 
atomic displacement parameters.

Manuals to the author’s software, ‘Powder3D’ and ‘Powder3D IP’ are 
appended to this work.
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7.2	 Zusammenfassung

Die Kombination von Pulverdiffraktometrie, großen Flächendetektoren und 
Synchrotronquellen ist phänomenal erfolgreich und ermöglicht viele neue 
Experimente. Die großen Vorteile solcher Datengewinnung liegen in den 
kurzen Belichtungszeiten sowie in der enormen Redundanz. Ein großer 
Winkelbereich des Brechungskegels wird in einer einzigen Belichtung er
fasst, häufig wird sogar der gesamte Kegelschnitt detektiert, da die meisten 
Kameras rechtwinklig und mittig zum Primärstrahl positioniert sind. Es ist dann 
gebräuchlich, die gesamten Ellipsen, die die Kegelschnitte beschreiben, zu 
einem konventionellen Pulverdiffraktogramm zu integrieren. Üblicherweise 
wird die Datenmenge um eine Quadratwurzel der Anzahl der Pixel reduziert. 
Gibt dieses jedoch die komplette Information aus dem Streuungsbild 
zufrieden stellend wieder? Ein Blick auf ein ideales Kalibrierungsbild könnte 
einen solchen Schluss nahe legen. Minder perfekte Proben sowie Effekte von 
Probenumgebungen hinterlassen jedoch starke Spuren auf den Bildern. Hier 
liegt das Problem: Wie können auch solche Daten gefiltert und interpretiert 
werden? In dieser Arbeit werden Methoden vorgestellt, die darüber Aufschluss 
geben und die Ergebnisse von verblüffender Qualität ermöglichen.

Ursprünglich basierte die Pulverdiffraktometrie auf Streubilder. Mit der 
Ankunft der äquatorialen Punktzählrohren übernahm diese Methode 
die Messherrschaft über qualitativ hochwertige Pulverdiffraktogramme. 
Bis heute setzt sich diese experimentelle Doktrin durch. Kürzlich haben 
Wissenschaftler aber die Vorzüge der Streubilder wiederentdeckt. So ist 
beispielsweise die gesamte Hochdruckpulverdiffraktometrie ohne den 
Einsatz von großen zweidimensionalen Detektoren undenkbar. Was auf 
dem ersten Blick als Segen daherkommt, bringt allerdings auch einige 
Probleme mit sich. Es existieren effektiv kaum zweidimensionale Korrek
turfunktionen für die Pulverdiffraktometrie. Alle gebräuchlichen Lorentz- 
und Polarisationskorrekturen (LP) sind außerhalb des dünnen äquatorialen 
Bereichs, für den sie entwickelt wurden bedeutungslos. Weiterhin müssen 
viele geometrische und detektorische Eigenschaften in die Korrekturen 
einfließen, um ein qualitativ hochwertiges Pulverdiffraktogramm aus dem Bild 
zu extrahieren. Diesem Problem nimmt sich das erste Kapitel dieser Arbeit 
an: Es stellt alle nötigen Korrekturfunktionen dar, zusammen mit ihrer Basis: 
der geometrischen Beschreibung des experimentellen Aufbaus.

Die Bestimmung aller geometrischen Parameter zur höchstmöglichen Präzision 
ist bedeutsam für die Qualität des Experiments. Wie erreicht man dieses Ziel, 
ohne sich in den Wirren divergierender Verfeinerungen und Analysesoftware 
zu verlieren? Hier werden Methoden der Mustererkennung und das so 
genannte ‚whole image refinement‘ also die Komplettbildverfeinerung 
eingesetzt um die beiden Hauptprobleme der Kalibrierung zu lösen. Methode 
eins, die Mustererkennung, ist eine globale Optimierung, gibt vernünftige 
Startwerte für die zweite Methode, eine lokale Optimierung der Parameter 
durch ‚whole image refinement‘. Hier wird das gesamte zwei-dimensionale 
Bild basierend auf den Startwerten und den Probeneigenschaften berechnet 
und vom experimentellen Bild abgezogen. Die Differenz wird gewichtet und 
stellt für den Minimierungsalgorithmus den zu reduzierenden Kostenfaktor dar. 
Diese Methode führt zu Kalibrierungen, die mindestens eine Größenordnung 
genauer sind, als solche die man mittels traditioneller Methoden errechnet. 
Dieses ist für die effektive Nutzung zukünftiger hoch auflösender Detektoren 
von fundamentaler Bedeutung.

Eine perfekte Kalibrierung reicht allerdings nur in der seltensten Fällen für 
eine gelungene Integration. Gerade in situ Experimente welche die Stärke 
der zwei-dimensionalen Detektoren sind verursachen stark abweichende 
Intensitäten. Diese lassen sich nach Ihrem Ursprung unterscheiden: Ent
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weder sie stammen von der Probenumgebung oder von der Probe. Natür
lich sind die ersteren leichter mit dem Auge zu erkennen und auch leicht mit 
Filter zu entfernen die in Kapitel drei vorgestellt werden. Schwieriger gestaltet 
es sich bei den letzteren. Eine neue Verteilungsfunktion, die normale Pareto 
Verteilung, beschreibt die Intensitätsverteilung von kleinen Probenmengen, 
die kaum im Strahl rotiert werden. Diese Verhältnisse werden gerade bei 
Hochdruckuntersuchungen realisiert. Der große Vorteil dieser Beschreibung 
ist: Sie eröffnet die Möglichkeit, vernünftige Filtereinstellungen zu berechnen, 
die dann eine normale Verteilung wieder herstellen können.

Strukturanalysen werden immer von einer Vielzahl von R-(reliability) Werten 
begleitet, die die Rohdatenqualität sowie die Verfeinerungsqualität bewerten. 
Pulverstreuungsbilder sind in dieser Beziehung bisher leer ausgegangen. 
In Kapitel vier werden Funktionen für universell vergleichbare, Detektor 
unabhängige R-Werte vorgestellt.

In den letzten Kapiteln werden exemplarisch zwei Beispiele beschrieben, 
die mit den vorgestellten Werkzeugen analysiert wurden. Es handelt sich 
um die schwierigsten Daten die moderne in situ Pulverdiffraktometrie zu 
bieten hat: Hochdruckstreubilder. Zwei Substanzen durchlaufen insgesamt 
fünf Phasenübergange unter erhöhtem Druck. Alle besitzen freie Elektronen
paare, die große Auswirkungen auf die Kristallstruktur unter Normaldruck, 
sowie unter hohem Druck haben. Alle Pulverdiffraktogramme wurden mit der 
eigenen Software und den vorgestellten Methoden reduziert. Sie waren von 
solch hoher Qualität, dass sie sofort volle Rietveldverfeinerung durchgehen 
konnten. Die Ergebnisse waren durchweg überzeugend, sogar die der 
thermischen Auslenkung.

Gebrauchsanleitungen zu der vom Autor entwickelten Software ‚Powder3D‘ 
und ‚Powder3D IP‘ sind angehängt.
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13.1	 Introduction

Powder3D is a program for data reduction and publication quality 
visualisation aimed specifically at large data sets collected in time resolved 
powder diffraction experiments. The program is in ongoing development, so 
there shall be regular updates and extensions to the present functionality. 
For comments or suggestions please contact r.dinnebier@fkf.mpg.de .

13.2	 Getting Started

13.2.1	Installation

The latest version of Powder3D can be downloaded from http://www.fkf.
mpg.de/xray. As Powder3D is written in the programming language IDLTM 
you will need to install the IDL virtual machine (IDL VMTM) before being 
able to run Powder3D.

Virtual machines for various platforms can be downloaded from the RSI 
website http://www.rsinc.com/idlvm/ free of charge. When you have 
installed IDL VMTM unpack Powder3D into a directory of your choice and 
double click on the file ‘Powder3D.sav’. After dismissing the IDL VMTM 
(current version 6.3 only) splash screen the following window (Figure 12) 
should welcome you.

Please note: the libraries necessary for the AVI export and peak 
refinement, namely ‘IDLtoAVI.dll’, ‘IDLtoAVI.dlm’, ‘p3d.dlm’ and ‘p3d.dll’ 
should be in the same directory as Powder3D. The functions only work 
on the Windows® operating system. Other operating systems are not 
supported. UNC (unmapped network) paths will cause the program to 
fail.

mailto:r.dinnebier@fkf.mpg.de
http://www.fkf.mpg.de/xray
http://www.fkf.mpg.de/xray
http://www.rsinc.com/idlvm/
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Figure 12. : Welcome screen

13.2.2	The sample data set
The data set that is the basis for the graphics displayed in the manual is available for download from http://
www.fkf.mpg.de/xray. The data stems from an experiment carried out at the X7B beamline of the NSLS 
(Dinnebier et al., 2005). The wavelength was 0.9224 Å. The initial substance was δ-Rb2[C2O4]. Seven phases 
can be identified and are tabulated below:

Table 1: Phases identified in the sample data set
Phase SG a/Å b/Å c/Å β/° Range
δ-Rb2[C2O4] Pbam 11,29 6,29 3,62  653K
γ-Rb2[C2O4] P21/c 6,33 10,45 8,22 98,02  653K
β-Rb2[C2O4] Pnma 8,16 6,58 10,9  661K
α-Rb2[C2O4] P63/mmc 6,47 8,26  723K
α-Rb2[CO3] P63/mmc 5,89 7,80
β-Rb2[CO3] Pnma 7,68 5,89 10,14  830K
γ-Rb2[CO3] P21/c 5,87 10,13 7,31 97,3  600K

The temperature ramp was set to 298  838  298 K. The sample 
was heated at a rate of 2.8 Kmin-1 and cooled at a rate of 4.8 Kmin-1.  
Considering the exposure and development time this leads to a heating 
rate of 4.2 Kframe-1 and a cooling rate of 7.62 Kframe-1.

http://www.fkf.mpg.de/xray
http://www.fkf.mpg.de/xray
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Figure 13. : Powder diffraction patterns, lattice parameters, and cell volumes of Rb2[C2O4] and Rb2[CO3] 
as a function of temperature in the range from 298 to 838 K (2.4 K min-1 and back down to 298 K (4.8 
K min-1). Taken from (Dinnebier et al., 2005).

13.2.3	Import

One of the first things you shall want to do is to import data. To do that 
press the import button (Figure 14) or select ‘File’ > ‘Import’.

Figure 14.: Import menu

Six different formats are available, although XY and Chi formats are 
identical. You shall be prompted to select a file (Figure 15). Standard 
versions of GSAS (GDA), Fullprof (DAT), Bruker (UXD) and DASH (XYE) 
data files are imported.
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Figure 15.: Select import files

Select all files you wish to import. This is different to the previous version 
in which you only had to select a single file for the entire directory to be 
imported. The files are sorted by the operating system, so please ensure 
they are displayed in the correctly. Should your files have a different suffix, 
type *.<your suffix here> <Enter> in the ‘File name’ field to display them. 

Upon pressing enter the file names in the directory are read, then the first 
file is loaded and the theta range read. The next window prompts you for 
the wavelength and the two theta range and increment. The increment 
entered cannot be altered later. The range can only be cropped. Should the 
range of your files differ from the set values the intensities are interpolated 
using the selected function: linear(recommended), quadratic or spline. 
The entries correspond to the values of the sample data provided.

Figure 16.: Import settings

After the files have been read a message displays a few details on the 
current database (Figure 17). There is no set limit to the number of files 
that can be read, the only limitation is the available memory.
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Figure 17.: Import report

As soon as you acknowledge the message you are displayed the first of 
your powder patterns (

Figure 21).

 

13.2.4	Later pattern loading and deletion

Should you wish to load a single pattern only, or wish to compare a 
pattern to already loaded data, this can be done by using the function, 
‘File’ > ‘Import’ (Figure 72.). The pattern is added to the end of the pattern 
array. Should the pattern differ with regard to the step width or position the 
intensities are interpolated to match the range and step width of the data 
already loaded. A dialog requiring you to enter the wavelength for this 
pattern is displayed. If one or more patterns need to be deleted, select 
them in the ‘Main controls’ window and press ‘Delete pattern’ in the ‘Edit’ 
menu.

Figure 73.: Adding a single patter

Figure 74.: Pattern selection tool
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Figure 21.: The first powder pattern

13.3	 Data reduction

13.3.1	Cropping tool

The limits of the powder patterns can often be reduced. This is conveniently 
done by means of the cropping tool. A click on the crop button (Figure 76) 
draws two vertical lines, which you can drag to define the desired range 
(Figure 77).

 Figure 76.: Crop button
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Figure 77.: Cropping bars

On pressing the enter button the entire array is cropped to the new 
range. 

Please note: It is a good idea to save the data regularly to avoid possible 
data loss. (‘File’ > ‘Save’).
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13.3.2	Single pattern visualization

 Figure 78.: Zoom button

Figure 79.: Zoom tool

The default tool in the 2D-plot window is the zoom box (Figure 79). Pull it 
over a region you wish to enlarge. Once the enlarged window is displayed 
click in the borders around the plot to navigate. A click to the right of the 
X-axis moves the pattern(s) to the left and displays the pattern in a 2Θ 
region shifted 10% higher. Clicking in the other borders works in analogous 
fashion. A single click in the plot window resizes it to the maximum view.

Selecting multiple patterns from the list displays them up to 6 colour coded 
overlaid patterns (Figure 80).
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Figure 80.: Multiple pattern display

An interesting feature is the ability to export an AVI film of the single 
patterns cycling through the selected sets and the zoomed range. To do 
this press ‘Export > AVI’ in the context menu. To make this export as 
versatile as possible it creates a film only of the currently selected data 
range (2Θ, intensity and selected data sets). You will have to select an 
appropriate compression algorithm for the video. In our experience DiVX4 
high motion gives the best results. This feature is only available on the 
Windows® operating system. Please note the installation of the library for 
this function are described above (see Installation).

13.3.3	Normalizing Patterns

Data collected using image plates generally lacks a beam decay correction. 
This can be partially alleviated by normalization. Two or more patterns 
can be corrected using this function (Menu Edit>Normalize patterns). 
Select the patterns via the list or select patterns belonging to a phase by 
choosing the appropriate phase. Next ensure the method of normalization 
is correct. All patterns that have been selected are superimposed over 
one another. It is possible to zoom by dragging open a zoom box with 
a left click. Select the region you wish to normalize the patterns with 
by dragging over a range with a right click. The range selected in this 
manner is used to normalize the data. By pressing ‘Test’ you can preview 
the results of the normalization. Press ‘Cancel’ to discard or ‘OK’ to accept 
the normalization.
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Figure 81.: Normalization function

13.3.4	Wavelength
The wavelength dialog accessible via the menu Edit>Wavelength allows you to alter the radiation wavelength 
(Figure 82). Should you wish to recalculate the pattern, select the radio button ‘recalculate patterns’. The 
wavelengths for some standard anode elements have integrated in the top list.

Figure 82.: Wavelength  dialog

13.3.5	Phases and ranges

The increments between the patterns can be entered into a table (Figure 
83) which is called by ‘Edit’ > ‘Increments and phase ranges’. For unvarying 
increments the fields on the right of the window can be used to insert 
values into the table. Once two of the first three fields are filled the other 
is calculated and filled automatically. Should all fields contain values no 
updating takes place. Pressing the ‘Insert’ button fills the table with the 
calculated values. These values are used for labelling purposes only.
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Figure 83.: Insert increments

Adding phase ranges can either be done manually by editing the fields of the range table (Figure 84). Please 
note: while editing you have to leave the cell you are editing for the values to be read properly by the ‘Insert’ 
command. The assistant for entering the values at the bottom of the window works in the same fashion as 
the one used in the increment window. These values are necessary for the Le Bail assistant of which a first 
version is included.

Figure 84.: Define phase ranges

13.3.6	Kα
2
 stripping

Should you have collected laboratory data using Kα1 and Kα2 rays these 
can be separated using the menu ‘Edit’ > ‘K-alpha stripping’. Select which 
wavelength you wish to keep (Figure 85). 
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Figure 85.: Kα2 stripping

The following dialog (Figure 86) enables you to select the sets, which 
should be stripped. The raw data is overwritten and therefore this 
action cannot be undone.

Figure 86.: Batch stripping
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13.3.7	Smoothing

An advanced full width at half maximum (FWHM) optimised smoothing 
(Figure 87) algorithm described by Dinnebier (Dinnebier, 2003) is 
implemented (‘Edit’ > ‘Smoothing’). The variation of the FWHM of the peaks 
is generally described by the Caglioti (Caglioti et al., 1958) formula:

WVUFWHM ++= qq tantan 2

This can be graphically set with aid of the function window on the left. 
Here the function can be dragged to the desired shape with the aid of 
three red boxes.

Figure 87.: Smoothing window 

The correct selection of the function shape has great effect on the 
smoothing efficacy.
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13.3.8	Background

Figure 88.: Background reduction

Background determination (‘Edit’ > ‘Background’) can be done in two 
modes. Either a pattern can be loaded (XY format as for import) or it can 
be calculated (Figure 88).

Should a pattern be loaded, it is displayed, as is the calculated background. 
The ‘normalize’ button then interpolates the background, giving it the same 
number of data points as the diffraction pattern. Then a linear function 
fitted using the least absolute deviation method is added to correct the 
background. Should the background be higher than the powder pattern at 
any point, it is lowered.

The ‘Calculate background’ method utilises a robust algorithm based on 
an low-pass filter as proposed by Sonneveld and Visser (Sonneveld & 
Visser, 1975). Select the number of iterations, curvature value and number 
of background points to attain an optimal background. Please note that 
every iteration costs computing power – for large data sets many iterations 
can make the automatic background reduction time consuming.

The apply button greets you with the following dialog (Figure 89).
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Figure 89.: Batch background reduction

To edit background points manually select the edit tool (Figure 90). This can become necessary if the 
background varies strongly from pattern to pattern.  You can now remove background points with a shift-click 
(left click while pressing the shift button) and add background points with a click. 

 
Figure 90.: The edit tool

You can cycle through the patterns in the usual fashion, either by selecting the ‘next’ and ‘previous’ buttons 
in the context menu or by pressing the arrow buttons on the ‘Main’ tab. If a background has been calculated 
for the pattern it will be displayed.

Should phases have been defined it is possible to select the data sets associated to the phase by choosing 
the appropriate phase. The Fullprof (Rodriguez-Carvajal, 2001) format is a simple XY ASCII file containing 
2Θ values in the first column and intensities in the second. The GSAS (Larson & Von Dreele, 1994) format 
contains four columns the first contains a single ‘i’, the second contains 2Θ values, the third the intensities 
and the fourth the standard errors. 

13.3.9	Peak hunting
By selecting the menu ‘Edit’ > ’Peak search’ and clicking the search button you shall see the following 
window (Figure 91). Changing the mouse to edit mode enables you to remove peaks with a right click and 
add peaks with the left click. You can drag the borders of the peak search to encompass all important areas 
of the powder pattern by selecting the range tool in the context menu (right click on the image). Peaks are 
searched by a multiple pass, variable FWHM, second derivative method. The convolution range is set via 
the Caglioti diagram, the threshold and minimum distance between peaks can be set via the sliding bar. The 
radio buttons under the Caglioti diagram determine if a new peak list is written with every run or the current 
peak list appended with the newly found peaks.
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Figure 91.: Peak searching

The peak positions and intensities can be saved to a Crysfire (Shirley, 2002) format file via the button ‘Save’ 
on the ‘Peak search’ tab. Peaks can be added and removed manually by selecting the ‘edit’ button as with 
the background points.
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13.3.10	 Single peak fitting
Once the peaks have been found their position can be (Figure 92) using a pseudo-Voigt function corrected 
for axial divergence (Finger et al., 1994). All refined values are stored for later use. You can select the peak 
by dragging over it. A light blue box fills the border of the selection. Pressing enter starts the refinement with 
the default values. The fit is overlaid in blue for visual inspection. 

Please note: The FWHM (estimated using the Caglioti function) has a profound effect on the 
convergence of the fit. Should the procedure fail ensure the FWHM distribution is set to a realistic value.
Peak markers can be added and removed manually by returning to the peak search window (Figure 90); the 
modus operandi is identical to the addition and removal of background points.

13.3.10.1	 Data export

13.3.10.2	 By pressing the export button, you are able to export the peak data of the pattern 
in a variety of methods. The positions and heights can be exported to Crysfire format 
file (*.cdt). The refined values can be exported to text file. Should you have refined more 
than six peaks an instrument resolution file (in Fullprof format *.irf) can be exported.

Figure 92.: Peak refinement

13.3.11		 Peak Indexing
Powder3D has no own indexing capabilities, but does provide a simple interface to the powerful indexing 
suite ‘Crysfire’ (http://www.ccp14.ac.uk/ccp/web-mirrors/crys-r-shirley/) (Shirley, 2002). Two very similar 
methods can be chosen for interaction:
1. Save the peak file in the Crysfire format and start Crysfire manually.

http://www.ccp14.ac.uk/ccp/web-mirrors/crys-r-shirley/
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2. Should Crysfire be installed (only Windows® operating systems) according to the installation instructions 
in the Crysfire manual it can be called by pressing the ‘Crysfire’ button. The file is exported to the current 
working directory and Crysfire is started in there. A message is displayed with the name of the file that has 
been exported.

Figure 93.: Crysfire button

13.3.12	 Le Bail refinement assistant
Selecting ‘Refine’ > ‘Le Bail’ via the menu opens the following window (Figure 96). Here you can set up the 
starting values for a Le Bail refinement (Le Bail et al., 1988) using Fullprof. Should a (single pattern format) 
PCR file exist you can load it by pressing the button ‘Import Fullprof’. All the values displayed in the window 
are then imported.

Figure 94.: Le Bail menu

The cell dimensions can alternatively be imported from a Crysfire summary file. Pressing ‘Import’ in the 
cell frame does this. You can select a .SUM file and the cell dimensions are displayed in a table. Select the 
desired cell by marking the entry (Figure 95). The lengths and angles are imported on clicking ‘OK’. 



116

Two-dimensional X-ray powder diffraction

Figure 95.: Crysfire import

The peak shape descriptors can also be imported if a peak refinement has been done for the pattern. 
Otherwise enter your desired starting values (Figure 97). 
The background correction is integrated into the refinement if a background was defined  using the background 
function.
The space group should be entered, and then you can start the refinement by pressing ‘Refine’. If the 
refinement is successful some statistics of the refinement are displayed at the bottom of the window. 
The button ‘Reset’ sets the phase information back to zero. The button ‘Remove HKL’ removes all HKL files 
for this pattern and forces Fullprof to recalculate them.
Please note: The assistant expects sequentially numbered Fullprof compatible data sets. Please 
make sure that you export your patterns immediately before attempting a Le Bail fit. All the data is 
written to that directory.

Figure 96.: Le Bail refinement, cell parameters

Once the refinements for all the data sets have been completed close the window by pressing cancel. The 
cell dimensions can be exported to a text file by selecting the menu ‘Refine’ > ’Export cell data’.
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Figure 97.: Le Bail refinement, profile parameters

Figure 98.:Le Bail refinement
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13.3.13	 Peak analysis
A new tool has been designed to assist in the sequential refinement of peak profiles. To call it you should 
select the menu ‘Tool’ > ‘Peak analysis’

 Figure 99.: Peak analysis menu

The window in (Figure 100.) shall appear. The pattern ranges that have been set in the main program 
interface are the initial ranges displayed by the peak progression tool. It is therefore very useful to select 
the interesting range using the ‘film plot’ display and the zoom function before starting the tool. The 
rendering of a couple of hundred patterns might be slow on older hardware so it is in your own interest to 
reduce the amount of information.
The aim was to create a module which does sequential peak profile refinement in a robust manner. The 
tools that you can select on the left are 

1.	 a zoom tool: works in very much the same manner as the normal zoom tool.
2.	 select ranges. Drag this tool across a peak to select it and have the peaks displayed or found, 

should none have been determined.
3.	 a peak editor. Add/remove peaks using this tool.

Once you have selected a range with the range tool, you can start refining those peaks. The refinement 
will start with the strongest peak and work its way down to the smallest peak, fixing the peak position 
automatically once the peak intensity drops below a threshold of 3σI. A maximum of two ranges can be 
refined together. This is equivalent to refining them separately should there be no overlap. 
Should you wish to plot the peak development, first select the peaks with the ‘Select peaks’ (Figure 101) 
tool. Now press the plot button The main program window is brought forward and a rudimentary plot of the 
refined parameters is displayed ().
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          Figure 101.: Peak analysis window: initial display

                 Figure 102.: Peak analysis window: range selected and peaks marked
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Figure 103.: Peak analysis window: peak refinement in progress

Figure 104.: Peak analysis, a rudimentary initial plot of peak development

13.1	



121

13.2	 Graphics

13.2.1	2D film plot
This module simulates a Guinier film (Figure 105). Two sliding bars enable you set the brightness and contrast 
of the plot. Colour inversion and square root scaling can be set. A tick box ‘Interpolate’ allows you to do a 
bicubic interpolation between your patterns. This smoothes plots of small data sets. Of course the data range 
displayed can be set via the ‘2Θ' and ‘Data range‘ fields. Needless to say, background corrected data has a 
far higher contrast. The zoom and pan tools are available for this display.

Figure 105.: 2D-film plot

13.2.2	
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13.2.2	3D line (waterfall) plot

Figure 106.: 3D line plot

By clicking the 3D plot button, the default 3D line plot is displayed (Figure 106). The data range can be set 
as with the 2D-film plot. Rotation around X and Y-axes can be controlled via slides. Two preset views are 
stored and can be accessed via the buttons ‘Top’ and ‘Slant’. Mouse rotation is enabled by default; pressing 
the appropriate radio buttons activates translation and scaling modes. Finally the line plot can be immediately 
changed to a rendered surface plot by selecting the ‘Surface’ radio button.

13.2.3	3D surface plot
The surface plot (Figure 107) is identical to the line plot in handling. As rendering the surface can be a slow 
process – dependant on the amount data displayed, the surface mode requires more patience while adjusting 
the view. All images can be exported either by copying to the clipboard (‘Edit’ > ‘Copy’), exporting to an image 
file (‘File’ > ‘Export’ > ‘Image’) or printing (‘File’ > ‘Print’). For the latter two operations the image is rendered 
from scratch and, dependant on the resolution of the image file or printer, can take a considerable amount of 
time. 
Lights
The 2nd tab on the 3D display control board is ‘Lights’ (Figure 107). Four light sources can be controlled. One 
ambient and three positional light sources can be manipulated.
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Figure 107.: 3D surface plot showing the lights control panel

13.2.4	iToolsTM presentation graphics (Version 2.0)
For the very ambitious there is the extremely powerful data visualisation and manipulation software iToolsTM 
that is called by pressing the button ‘Presentation Graphics’ (Figure 108). iToolsTM has been developed by 
RSI Inc. and is a completely independent of Powder3D. Powder3D passes on the data to iToolsTM and is free 
for user interaction again.

Figure 108.: iToolsTM 

The iToolsTM do represent an excellent set of programmes and contain complex architecture. For this reason, 
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I shall extend the tutorial to cover the creation of an image like that in Figure 26.
First we shall have to subtract the background from all the data sets so that we rid ourselves of the undulations 
of background intensity visible in Figure 26. A value of 1° smoothing box and 3 iterations worked well for this 
data set. It is convenient to decide on with part of the pattern array you wish to use by previewing it in the 3D 
surface mode in Powder3D. Once you are happy with your selection a click on ‘Presentation graphics’ copies 
the data over to the iSurfaceTM programme. It is always possible to further reduce the displayed data in the 
iToolsTM programme suite should you find it necessary. 
A right-click on the data opens a context menu, which lets you select the properties of the view (Figure 
110). 

Figure 109.:The primary iToolsTM display

Open the properties window to the full extent by pressing an unobtrusive left arrow in the top left corner of 
the window (Figure 110 left).

		   
Figure 110.: The iToolsTM property window, folded and unfolded

In the left side of ‘Visualisation Browser’ (Figure 110), You see the various elements that make up the image. 
Once an element is highlighted its properties are displayed in the right part of the window. We shall change 
the surface values to the following:
Color: (145,145,145), Fill shading: Gouraud, Draw method: Triangles. The last two changes make the 
rendering slower, but the picture better.
We open up the ‘Axes’ branch and delete the Z-axis by a right-click and ‘delete’ (Figure 111).
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Figure 111.: Deleting an element

We also alter X-axis properties to: Titel: 2Q /°, Font: Symbol
And the Y-axis to: Titel: Scan number, Font: Times
These changes give us a 2Θ on the X-axis and a similar font for the Y-axis.

Now we create that semi transparent 2D visualization hovering over the surface. Select the menu item 
‘Insert’ > ‘Visualization’ (Figure 112). You shall then be prompted for the type and variables defining the 
item. We chose an ‘Image’ type (top right box), opened the ‘Surface’ branch on the left – that is where 
the data is – and assigned the Z-value to the pixels, Y-values to the Y axis and X values to the X-axis. 
To do the assigning mark the data value on the left and click on the small right arrow in front of the fields 
you wish to be associated with the data. Leave palette empty and press ‘OK’.

So that is done, but where is the image? Find your way back to the ‘Visualization Browser’ or properties 
window as described above. It shall have a new entry for the image. Highlight the image and alter the 
‘Z value’ to well above the maximum intensity in your data array. In our case it is 85000 (Figure 114). 
Further set the transparency to 40.

Figure 112.: Insert visualization
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Figure 113.: Define the type and variables for the visualization

Figure 114.: Correcting the height of the image

Now our image is complete. All that remains to be done is to improve the lighting and export a high-
resolution image. 

You might have become aware of the ‘Lights’ branch on the left in the ‘Visualization Browser’ (Figure 
114). Open this branch and select the directional light. You should observe something like Figure 115.
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Figure 115.: Lighting in iToolsTM

Now you can manipulate the geometric coordinates with the mouse and alter the intensity in the 
properties window. This you can do three different light types: ambient, positional and directional. Add 
further lighting via ‘Insert’ > ‘Light’. The mouse has two modes while manipulating lights, positional and 
rotational. Change between the two by selecting the pointer or the circled arrow (Figure 116).

Figure 116.: Mouse modus buttons

This should be the last fine-tuning the image needs. When complete export the image via ‘File’ > ‘Export’. 
Select ‘To a file’ in the following dialog. When questioned whether ‘Window, View or Data’ are to be exported 
either ‘Window’ or ‘View’ shall suffice. Next specify your export file name and type and resolution.
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13.2.5	Recipe
This section will give you a run down on how to reduce your data sets effectively using the sample data. 

1.The data format is ‘CHI’, the wavelength is roughly 0.9184 Ångstroms. These values should be used to 
import the data successfully. The temperature ramp of the experiment was 298-->838-->298 K. These 
values can be entered into ‘Increments and phase ranges’ dialog available via the menu ‘Edit’>’Increments 
and phase ranges’.

2. A first step in the data reduction would be to crop the data to a sensible range (3.4-46.7° 2Θ). 

3. Next we define the background. As the background lacks great relief high values for the smoothing box 
(smoothing box: 0.9, iterations: 4) – resulting in a flatter underground – do the job well. For the data sets 
from 80 to 140 slightly lower values were chosen due to the higher background at around 18°(smoothing 
box: 0.7, iterations: 4).

4. For the next step it is recommended to have the indexing package ‘Crysfire’ installed. Select the first 
pattern and do a peak search. Save the found peaks to your working directory and then start Crysfire, 
preferably by pressing the Crysfire button. Using the peak refinement the profile can be refined and the 
position of the peaks determined more precisely.

5. Should you have indexed your phase(s) using Crysfire you can import them back into Powder3D in the 
‘Le Bail’ fit dialog. For this step to be successful Fullprof ( > Version 3.3) has to be installed.

Figure 117.: Cell data for Le Bail fit

On the phase tab press import and choose a Crysfire summary file, then select the appropriate cell from the 
table and the values shall be inserted into the cell fields. 
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Figure 118.: Import Crysfire summary file

Should you have refined profiles you can load these to the profile mask by pressing the import button on 
the profile tab.

Data from an existing Fullprof file (*.pcr) can be loaded using the “Import Fullprof’ button. 

On pressing “Refine” a Fullprof file is written and, should Fullprof be installed on the system, a LeBail 
refinement is started. The refined data are read back to the fields.
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Introduction

Powder3D IP is a program designed to integrate powder diffraction images from two-dimensional detectors 
to standard powder diffractograms. In the following a short introduction is given to the functionalities of 
the software. This software is similar in functionality to Fit2D(Hammersley et al., 1996) and uses the same 
projection functions.

Installation

Powder3D IP has up to now no installation routine, but it does have one general prerequisite: the IDL virtual 
machine. This is similar to the Java virtual machine and can be downloaded from the site of “ITT Visual 
Information Solutions” for free. Once that software has been installed starting Powder3D IP is only a matter 
of unzipping and saving the program files to a convenient directory and double-clicking on the Powder3DIP.
sav file

13.3	 Image loading

Figure 119: The initial view of Powder3D IP showing the file menu.

Loading an image can either be done using the “Open” or the “Import” function found in the “File” menu. 
The “Open” function can only open files written by Powder3D IP, whereas the “Import” function can import 
various different image types. These include binary, mar345, Stoe IPDS, tiff and bmp image formats.

Once a file has been selected and successfully loaded the screen should resemble figure 2.
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Figure 120: A calibration image has been loaded.

13.4	 Opening and saving
The current data and settings can be saved using the save option “File”>”Save”. These files can become 
extremely large! They can be loaded using the open option “File”>”Open”.

Exporting
Images and data can be exported using the “File”>”Export” functionality. Data is saved as a diffractogram, 
the image is saved directly from the main image display into a graphical file format.

13.5	 Calibration
The first step when analyzing two-dimensional data is to calibrate the detector parameters. To do that a 
carefully taken image of a well prepared sample is needed. The calibration parameters are then determined 
as exactly as possible. These are applied to all subsequent images to extract the standard powder 
diffractograms. As this step affects all the subsequent data, much care should be taken during this step.

Open the calibration dialog (figure 121) by selecting “Calibrate” from the “Edit” menu. You are prompted for 
information on experimental details. The d-spacings of the sample are required for the calibration. These 
should be well known, their precision is important for a successful calibration. The wavelength and detector 
to sample distance (measured along the primary beam, not normal to the detector) should also be entered 
in the first window. 
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Figure 121: The calibration wizard. Setting d-spacings, wavelength and detector distance.

Press “Next” to enter the effective pixel size. This value is sometimes contained in the file header, and if it 
was read out it will be given here.

Figure 122: The calibration wizard. Setting the effective pixel size.

In the next dialog you can enter the intersection point of the primary beam with the detector. An automated 
function can help locate the centre precisely should it be on the image. The rotation will then be set to a 
sensible starting value.
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Figure 123: The calibration wizard. Setting the centre and rotation. These can be found automatically 
in most images.

The value of the detector tilt is then given in the following dialog. This is the tilt of the detector out of the 
ideal orthogonal setting. Normally this value is rather small.

Figure 124: The calibration wizard. Setting the detector tilt.

The last step is to refine the starting values using the intersection of radial lines with the diffraction ellipses. 
These are refined automatically using the values determined so far. Once all the intersections have been 
computed they are used to refine the calibration parameters.
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Figure 125: The calibration wizard. Refinement settings for the calibration image.

The parameters you wish to refine can be ticked using the tick boxes to the right of the parameter values.

Figure 126: The calibration wizard. Refining the radial line intersections with the ellipses.

If you have chosen to have the graphics displayed while determining the intersection points you will see 
something like the image in figure 126.
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Figure 127: The calibration wizard. The refined parameters of the detector alignment.

Once the parameters have been refined the values will be updated with those from the least square 
refinement. If you are satisfied with the values you can now press “Done”. The refined values will then be 
used to compute the diffraction, azimuth and incident angle for each pixel of the image. This can take some 
time with large images.
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Figure 128: The calibration wizard. A converged whole image refinement.

A whole image refinement (WIR) is a rather complex refinement of an entire synthetic image against 
the measured image. Outliers in the measured image should already be masked, and the background 
should be well determined. Then the starting values from the initial refinement can be used to improve the 
calibration as well as refine polarization values and the detectors point spread function. Of course each 
peak’s intensity and width has to be refined as well. This can be set by pressing the “Peak properties” 
button (figure 129).

Figure 129: The calibration wizard. Setting and refining peak and detector properties.
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The intensities can be viewed but not altered by pressing the “View” button.

Figure 130: The calibration wizard. Setting and refining Polarization factor and phase.

The polarization factor and the phase angle can be refined, to determine these to a higher precision using 
WIR. The Lorentz refinement is not yet functional.

13.6	 Filters
One of the most interesting features of the software is the provision of simple but powerful filters for 
diffraction images. In the following pages the controls will be introduced. 

13.6.1	Fractile filter
“Edit”>”Mask”. A fractile filter removes a fraction of the data in an attempt to eliminate outlier data. The 
concept is similar to the use of the median value instead of the mean. The median is well known to be a 
more robust estimator than the mean, generally unaffected by strong outlier signals. In a similar vein fractile 
filtering ensures, by removing highest and lowest fractions of the data, that the mean value becomes a 
sensible estimator. The great advantage of fractile filtering is that the variance (standard deviation)² become 
more meaningful to. Fractile statistics is also referred to as quantile or percentile statistics.

Figure 131: The mask dialog, and the effect of fractile masking on the image.

In Powder3D IP the filtering is done on the entire image with user set fractions and step width. The step 
width should be similar to the step width of the integration.

Another alternative offered to the setting of a fixed fraction is the dynamic fraction filter. This especially 
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interesting when only very few striking artefacts need to be filtered. This is the case in some high 
temperature diffraction images in which only a few sapphire peaks (stemming from an enveloping capillary) 
need to be removed. Here the upper two text fields are now the convergence criteria. 
This is a more computationally expensive filter which works in the following fashion. For each step width 
(bin) the filter fraction is enlarged incrementally by the value entered in the last field. The variance of the 
filtered population is compared to the previous value, and if the change is less than the convergence criteria 
the filtering of that bin is complete.
The advantage of this filtering method is that, if the values have been chosen well, it is less aggressive than 
fixed fractile filtering, which removes a lot of the good signal when filtering only a few strong outliers.

13.6.4	Mask growth

Figure 132: The mask dialog, and the effect of mask dilatation on the image.

“Edit”>”Mask”. Mask growth is a useful method to ensure a good coverage of outlier peaks or instrument 
shadow (figure 132). Generally the peak spread of the detector ensures that outlier peaks cover many 
neighbouring pixels. The mask might however not cover the full extent (tails) of the outlier peak. Growing 
the mask ensures that this happens.
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13.6.3	Beam stop mask

Figure 133: The mask dialog, and the effect of the primary beam stop mask on the image.

Large intensity aberrations exist close to the primary beam stop. Masking this region is done by simply 
selecting the first angles of the diffraction image to be disregarded (figure 133).

13.7	 Intensity corrections
The intensity corrections of two-dimensional diffractograms are slightly more complex than the equatorial 
correction functions. It is sensible to apply these corrections before integrating the image, as they reduce 
the data variance as well as ensuring more accurate integrated data. These corrections then need not be 
applied by the Rietveld software.

13.7.1	Lorentz correction

Figure 134: The separate Lorentz corrections can be made. The statistical powder correction and the 
angular speed (single crystal) correction can be computed separately.
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“Edit”>”Corrections”. Traditionally Lorentz factors(Buerger, 1970, Zevin, 1990), which originally only were 
only angular speed corrections, have been conveniently combined in powder diffraction formalisms with 
diffraction probability factor (sinθ)-1 and the polarization correction to the enigmatic LP correction. As in two 
dimensions no current “simple” LP corrections exist or are even appropriate, they are separated here. 
The angular speed correction is called the “single crystal correction”, here the angular speed is dependent 
the angle of the rotational vector to the primary beam (generally 90°), as well as the “phase angle”. This 
angle is the projection of the rotational axis on the detector (more simply: the capillary shadow) relative to 
the detector coordinates. 0° in detector coordinates is at 3 o’clock.
It should be mentioned that the “single crystal Lorentz correction” does become undefined in the region 
close to the “capillary shadow”. This effect is well known in single crystal area detector reduction. This 
region cannot be used for integration and should be excluded.
The “powder Lorentz correction” is the simple probability factor correction of (sinθ)-1.

13.7.2	Polarization correction

Figure 135: The polarization factor and its phase angle, which is dependent on the detector setup 
relative to the polarization plane.

“Edit”>”Corrections”. The polarization factor (Azaroff, 1955, 1956, Kahn et al., 1982, Lipson & Langford, 
1999, Whittaker, 1953) is determined by the intensity relations of the horizontally and vertically polarized 
radiation as well as the monochromator angle. For polarization factors close to 0 the polarization correction 
has little or no azimuthal variation, therefore the phase angle becomes unimportant. For values close 
to 1 (as is typical for synchrotron radiation) there is a very strong azimuthal dependence. The correct 
polarization phase angle is then very important. Normally it is at right angles to the detector coordinates (0°, 
90°)
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13.7.3	Incidence angle correction

Figure 136: The incident angle correction can be applied using this tick box. This is similar to the 
correction in the Fit2D software.

“Edit”>”Corrections”. Various incidence angle correction functions are in use in single crystal diffraction 
(Tanaka et al., 2005, Wu et al., 2002, Zaleski et al., 1998). The only implemented one currently is the rather 
simple cos³(incident angle) correction that is known as “geometry correction” in Fit2D (Hammersley et al., 
1996).

13.7.4	Background correction

Figure 137: The background can be computation can be configured and started using this dialog. 

“Edit”>”Corrections”. A median algorithm is used for the background determination (figure 137). The 
structure size is the diameter of the circle which is sampled to calculate the median. The background pixel 
in the centre of this circle then takes the value of the median. It is clear that the larger this value is the 
higher the computational cost of the background calculation is. The reduction factor is a simple method 
to keep this cost low. The image is initially reduced by this factor, then the background is determined, the 
background is then scaled up to the original image size again.



147

13.7.5	Display properties

Figure 138: The display dialog for setting the optimal display range.

“Edit”>”Display”. To aid in selecting an appropriate intensity range for the display of powder diffraction 
images, an interactive histogram is made available showing the currently selected intensity distribution. By 
pressing the “Apply” button, the user can see the effect on the image.

Figure 139: A direct appreciation of the effect of the intensity corrections applied to the image can be 
previewed by selecting the appropriate tick box.

“Edit”>”Display”. To estimate the correctness of the background determination as well as the polarization 
correction these can be applied to the displayed image. The default setting is not to display intensity 
corrections.

13.8	 Intensity analyses
A few tools are provided to allow a closer look at the intensity distributions over the image.
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13.8.1	Area selection

Figure 140: The area selection interface. Selecting the theta region.

The area selection tool is the most fundamental setting for intensity 
analysis. The central theta value is set in the top field, while the width of 
the theta region is set in the lower field. The selected area then covers a 
region from theta-width/2 to theta+width/2.

Figure 141: The area selection interface, selecting the azimuth region.

13.8.2	Intensity displays

Once the region of interest has been selected it is possible to view data 
within this region as a histogram or as a function of the azimuth.
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13.8.2.1	Intensity histogram

Figure 142: A histogram of two intensity distributions. The black distribution is the raw data. The blue 
distribution is the masked data. The two distributions do not share the same x-axis.

“Window”>”Histogram”. The histogram provides insight the intensity 
distribution of the selected region as well as the effect that filtering has on 
the intensities in that region. Generally the intensities describe a normal 
“Gaussian” distribution. Sometimes different distribution models are better. 
A more careful analysis of this data is possible by simply clicking the right 
mouse button within the histogram window and selecting “Analyze”. The 
data is then transferred to iTools® a software provided by ITTVIS free of 
charge.

One the most useful tools (Hinrichsen et al., 2007b) within the histogram 
display is accessed via the context menu as well. This is the normal Pareto 
distribution fitter which estimates the high intensity fractile setting to 
achieve a more or less normal intensity distribution. To start it is generally 
a good idea to filter a few percent off the top 

Figure 143: A histogram showing an exemplary normal Pareto distribution. Using the context menu 
item “Fit NP” an analysis of the distribution is made.
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Figure 144: The distribution curves computed during the analysis are displayed for closer perusal.

Figure 145: The really nitty gritty information is displayed by an information message box. In this case 
it recommends us to cut off an ADDITIONAL 55% off the top intensity to achieve a normal distribution. 
This leads to a whopping 59% = 55% + 4% (initial filter) top fractile. 

After clicking on the “Fit NP” context menu item the window shown in 

figure 144 is displayed. The reason for this is to give you an idea of 
the reliability of the filtering suggestion. If the normal Pareto curve (the 
skew one) describes your data well, then the chances are good that the 
suggestion in the information box 

figure 145 is sensible. Of course the Gaussian curve the automatic routine 
tries to fit into the normal Pareto curve should fit snugly, as in 

figure 144.
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13.8.2.2	Azimuthal intensity display

Figure 146: An azimuth plot of the intensities within the selected area

“Window”>”Azimuth”. In order to see which and how azimuthal corrections 
should be made to the data, the azimuthal plot is most useful. The coloured 
intensities are those masked by the filters. Here, similarly to the histogram 
window, the data can be analyzed with iTools by a right click.

13.9	 Integration

The integration is the final step of the two-dimensional powder data 
reduction. In general a large number of images need to be reduced 
to powder diffractograms. These can be named as well as the output 
directory and output format. Filters and intensity corrections can be applied 
to all images in the process. An arbitrary number of integration bins can 
be selected. One image can be reduced to a number of diffractograms 
using wedge integration. Lastly the method of intensity extraction can be 
switched between mean and median.

Figure 147: The integration interface. On the left the input files can be entered. On the right the output 
directory and the output format are set.
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Figure 148: On the second integration tab the applied filters can be set. By pressing the “Settings” 
button the details of the filters can be set. These are applied individually to each image before 
integration.

Figure 149: The intensity corrections that have been computed are applied to each image before 
integration. These are computed only once after the calibration and are applied quickly.

Figure 150: In this tab the number of bins is set. As an aid the effective step width is computed and 
displayed. 
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Figure 151: The integration can be divided into any number of wedges. An offset angle can be set if 
required. 0° is 3 o’clock.

Figure 152: The intensity of each bin can be computed as mean or as median value. The median is 
known to be a more robust estimator than the mean. However the default setting is the mean.
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Sprachen

Englisch 		  – Muttersprache

Deutsch 		  – Muttersprache

Afrikaans 		  – sehr gut

Niederländisch	 – fließend


