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Symbols and Abbreviations 

Symbols 

 

a    Contact radius or radius of small spheres (m) 

acrit   Critical contact radius according to spring model (m) 

appA    Apparent contact area (m²) 

cA    Actual contact area (m²) 

fA    Contact area of single fiber (m²) 

Aproj   Projected contact area of one contact (m²) 

projA′    Projected contact area of small contact (m²) 

b    Characteristic length of surface interactions (m) 

C   Geometrical factor (-) 

E   Young’s modulus (Pa) 

E
*   Reduced Young’s modulus (Pa) 

effE    Effective Young’s modulus (Pa)  

Eopt   Optimum Young’s modulus (Pa) 

f    Pillar packing density (-) 

h    Pillar height or tape thickness (m) 

k    Thermal conductivity (W/(m·K)) 

K   Reduced Stiffness (Pa) 

n    Number of hemispheres in contact (-) 

nr   Refractive index (-) 

N(Pp)   Number of pillars in contact at preload Pp (-) 

Nmin   Minimal number of small contacts for efficient splitting (-) 

P   Compressive load (N) 

Pc   Pull-off force (N) 
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cP′    Pull-off force for split contacts (N) 

Pc(max)   Maximum pull-off force according to spring model (N)  

Pp   Compressive preload (N)  

q    Shape parameter (-) 

r    Pillar radius (m) 

R   Fiber or sphere radius, or relative radius of curvature (m) 

R′    Pillar radius after splitting (m) 

Ropt   Optimal fiber radius (m) 

S    Interpillar spacing (m) 

Tg   Glass transition temperature (°C) 

z0   Equilibrium separation (m) 

α   Peel-off angle of elastic tape (°) 

αc   Contact radius at pull-off (m) 

αt   Linear coefficient of thermal expansion (1/K) 

γ    Work of adhesion (J/m²) 

'γ    Work of adhesion between two fiber tips (J/m²) 

γeff   Effective work of adhesion (J/m²) 

δ    Indenter displacement (m) 

ε    Dielectric constant (-) 

η Viscosity (Pa·s) 

λ = h/2r   Pillar aspect ratio (-)  

λopt   Optimal fiber aspect ratio (-) 

µ Coefficient of friction, or Tabor parameter (-) 

ν Poisson’s ratio (-) 

ρ    Specific gravity (g/cm³) 

σ*   Interfacial strength (Pa) 

opt

appσ    Ultimate apparent contact strength (Pa)  

σc   Pull-off strength (Pa) 

fσ    Axial fiber stress (Pa) 

σm   Tensile strength (Pa) 

thσ    Theoretical contact strength of van der Waals bonds (Pa) 

f

thσ    Theoretical fiber fracture strength (Pa) 



Symbols and Abbreviations 
 

 

 13

 

Abbreviations 

 

AFM    Atomic force microscope 

CNT    Carbon nanotube 

DMT    Derjaguin-Muller-Toporov 

JKR    Johnson-Kendall-Roberts 

MEMS    Micro electromechanical system 

MWCNT   Multiwalled carbon nanotube 

PC    Polycarbonate 

PDMS    Polydimethylsiloxane 

PI    Polyimide 

PMMA    Polymethylmethacrylate 

PS    Polystyrene 

PVB    Polyvinylbutyral 

PVS    Polyvinylsiloxane 

RMS    Root mean square 

SEM    Scanning electron microscope 

UV    Ultraviolet 

VdW    Van der Waals 
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Christian Greiner 
 
Size and Shape Effects in Bioinspired Fibrillar Adhesives 

 

Institute of Physical Metallurgy, University of Stuttgart and 
Max Planck Institute for Metals Research, Stuttgart, 2007 
 
207 pages, 45 figures, 7 tables 

Abstract: Over the last years, the striking ability of geckos and several insects to cling to 

walls and ceilings has inspired large research efforts. The reasons for this interest is the 

strong and completely reversible adhesion of these dry adhesive systems, which is based 

on van der Waals interactions and thus universal on almost any kind of surfaces. Therefore 

the structures are not only interesting for fundamental science, but also for industrial 

application. Theoretical contact mechanical treatment of fibrillar systems has shown that 

the main physical principle behind their adhesion abilities is that of contact splitting, which 

states that the adhesion force increases upon splitting up one large contact into many small 

ones. Theory has also shown that the tip shape of the contacting fibers is of great 

importance for adhesion performance. Both influences – the one of size and the one of 

shape – were experimentally and theoretically treated in the present thesis. In order to 

allow for systematic and controlled adhesion experiments, elastomeric model systems were 

fabricated by soft molding techniques based on photolithographic master structures in the 

micrometer regime. Taking advantage of the filling mechanisms of the molding step and 

the viscosity of polydimethylsiloxane, it was not only possible to generate flat punch, but 

also hemispherical, concave, spatula- and mushroom-shaped pillars, and structures which 

resembled a flat punch, but with rounded edges. Systematic adhesion testing revealed that 

the adhesion strength increased with decreasing pillar diameter, as was theoretically 

predicted. This increase was found to be strongest for the mushroom-shaped pillars which 

also showed the highest overall adhesion values reaching the performance of geckos. The 

second highest gain upon contact splitting was found for spatular structures followed by 

hemispherical and flat punch-like tip shape. Also, the adhesion forces increased with 

increasing pillar aspect ratio. The “adhesion design maps” presented in this thesis, which 

were developed for different contact shapes, together with the conclusions drawn from the 

experimental data, will allow for a more strategic approach when designing fibrillar 

attachment systems in the future. 
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Christian Greiner 
 
Size and Shape Effects in Bioinspired Fibrillar Adhesives 

 

Institut für Metallkunde, Universität Stuttgart und 
Max-Planck-Institut für Metallforschung Stuttgart, 2007 
 
207 Seiten, 45 Abbildungen, 7 Tabellen 

Kurzzusammenfassung: Geckos, aber auch einige Insekten und Spinnen besitzen die 

faszinierende Fähigkeit an der Wand und an der Decke laufen zu können. Diese starke, 

aber zugleich absolut reversible Haftung ist sowohl wissenschaftlich, als auch technisch 

von größtem Interesse. Sie basiert auf der Aufspaltung eines großen, in viele kleine 

Haftkontakte welche über van der Waals Wechselwirkungen mit der gegenüberliegenden 

Oberfläche in Kontakt treten. Theoretische Untersuchungen ergaben nicht nur die 

Vorhersage des Aufspaltungseffektes, d.h. dass viele kleine Hafthaare stärkere Haftkräfte 

erzeugen als einige wenige große, sondern zeigten auch an, dass die Endkontur der 

jeweiligen Haare einen starken Einfluss auf die Kontaktmechanik und die Stärke der 

Adhäsion haben sollte. Diese beiden Parameter, Größe und Kontur der Haftelemente, 

wurden in der vorliegenden Arbeit sowohl experimentell, als auch theoretisch untersucht. 

Um reproduzierbare und eindeutig interpretierbare Experimente zu ermöglichen, wurden 

Elastomeroberflächen mittels der sog. “Soft Lithography”, basierend auf 

mikrostrukturierten Photolackoberflächen, hergestellt. Durch die geschickte Ausnutzung 

der Viskositäts- und Aushärteeigenschaften von Polydimethylsiloxan gelang es 

Modellsysteme solcher Haftsysteme herzustellen. Diese hatten nicht nur die Kontur eines 

flachen Stempels, sondern waren auch halbkugel-, spatel- und pilzförmig. Auch konkave 

Strukturen und flache Stempel mit runden Kanten wurden erzeugt. Die systematische 

Untersuchung der Haftkräfte ergab, dass die Adhäsion für kleiner werdende Kontakte 

ansteigt. Dabei war die Zunahme für die pilzförmigen Haftkontakte am stärksten, gefolgt 

von den spatulären Strukturen, der hemisphärischen und der stempelförmigen Kontur. Die 

pilzförmigen Modellsysteme zeigten auch die höchsten absoluten Haftfestigkeiten, die jene 

des Geckos erreichten. Um die experimentellen Ergebnisse theoretisch abzurunden, 

werden “Adhesion Design Maps” für verschiedene Kontaktformen vorgestellt. Diese 

stellen Leitlinien für ein zukünftiges strategisches Entwickeln fibrillärer Adhäsive dar, 

welches zusammen mit den Schlußfolgerungen aus den Experimenten durch diese Arbeit 

erleichtert werden sollte. 
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1 Introduction and Motivation 

“The woodpecker […] can run up and down a tree in any way, even with the head 

downwards, like the gecko-lizard.”(1) With these words the great Greek philosopher 

Aristotle introduced the gecko into written language in the forth century B.C. Since then 

humans wondered about the fascinating ability of this animal to walk and run along walls 

and even ceilings. But only with the emergence of electron microscopy in the 20th century 

was it possible to investigate the nanostructured topography of the gecko toe pads and to 

resolve their complicated ultrastructure (2-5). These pads are covered with long micron to 

nano sized hairs which terminate in so-called “spatulae”. These are about 20 nm thick and 

200 nm wide and long (6). The hierarchical design of the entire structure is the key to the 

gecko’s adhesion behavior which enables strong and yet easily reversible attachment to 

almost any kind of surfaces. 

In recent years, researchers have been able to theoretically understand and model 

aspects of the complex interplay of physical, chemical and engineering factors behind this 

outstanding adhesion performance, which is dominated by van der Waals forces with 

capillary contributions (6-9). One of the main results of these efforts has been the so-called 

“principle of contact splitting”, which states that, from the viewpoint of maximizing 

adhesion force, it is beneficial to split one large contact into many small subcontacts since 

by doing so an increase in overall pull-off force is predicted (10, 11). When moving away 

from the gecko and focusing on spiders and insects (like flies and beetles) with similar 

properties, different shapes were found for the contacting elements terminating the 
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individual hairs (called “setae”). This shape is band-like (spatular) in the case of the gecko, 

but can also be hemispherical or toroidal in other animals. For each of these shapes a 

different benefit for splitting a large contact into many small ones was theoretically 

predicted (12).  

In part, the research in this field is driven by the enormous potential that is 

envisioned for artificial fibrillar adhesives. They would posses a high adhesion force on 

almost any kind of surface and could be easily detached without leaving behind any 

residue. Also, they would be self-cleaning. As a consequence, a “race” for fabricating the 

first – working – artificial, gecko-inspired adhesive has started, recently reviewed by del 

Campo and Arzt (13) and Chan et al. (14). This impetus has been possible through the 

rapid development of micro- and nanofabrication techniques experienced in the last years. 

But still, the intrinsic difficulties and the early stage of the research field limit the 

availability of artificial analogues with satisfactory adhesion performance. We are not even 

close to the desired smart structures for tunable adhesion or with self-cleaning properties, 

as they are demonstrated by the biological example. Another hindering factor is the 

complexity of the hierarchical biological structures that need to be understood and 

mimicked and the difficulty to reproducibly perform and interpret adhesion measurements.  

The work presented here focuses on the fabrication and adhesion testing of 

microstructured surfaces possessing hairs, or rather pillars. With this approach several 

design parameters for artificial adhesives were investigated since merely coping nature is a 

poor approach for bioinspired design. Rather, the fundamental physics behind this kind of 

contact mechanical problem has to be understood. From there on, systematically designing 

artificial analogues, which might even be superior to their original biological counterparts, 

is envisioned. To gain this kind of understanding, the length, the diameter and the shape of 
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the pillars were varied systematically and independently. The results of the corresponding 

adhesion tests were compared with theoretical predictions. The main goal of this approach 

was to experimentally investigate whether the principle of contact splitting can be verified. 

Also different tip shapes were fabricated and their adhesion behavior was compared with 

theoretical predictions. Finally, the concept of “adhesion design maps” (15), which so far 

only existed for hemispherical contacts, was extended to other shapes. Thereby, another 

step towards efficient and rational design of bioinspired fibrillar adhesives was taken. 

This thesis is organized in the following way: In chapter 2, the basic laws of contact 

mechanics will be presented and the current literature on fibrillar adhesives will be 

reviewed. Chapters 3 to 5 will deal with the fabrication and testing of elastomeric model 

systems. Chapter 6 will present the design and material selection principles developed in 

the context of adhesion design maps for different tip shapes. Finally, in chapter 7 a short 

summary of the thesis together with a brief outlook will be given. But now, we will have a 

look at the physics behind two contacting bodies. 
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2 Literature Review 

In this chapter, the basic physical principles of contact mechanics will be introduced 

and explained, followed by a review of the up-to-date published literature on bioinspired 

fibrillar adhesives. This review will be organized by describing the individual fabrication 

approaches and by discussing the different methods to quantify adhesion and the 

subsequent adhesion performance of the structures. 

2.1 Contact Mechanics 

One of the first comments on a classical contact mechanics problem goes back to Sir 

Isaac Newton who in his 1704 published book “Opticks” stated that he observed a “clink-

like” sound upon separating two contacting glass lenses. For the contact between them, he 

also observed a black contact zone and what later became known as Newton rings.  

2.1.1 The Hertz theory 

Even though the observations made by Isaac Newton clearly indicated that there are 

attractive forces present between two contacting bodies, even when contributions by 

electrostatics and magnetism can be excluded, the first step in establishing the field of 

contact mechanics was taken by Heinrich Hertz in 1881, without considering attractive 

forces between the two bodies. Hertz studied the stress distribution, the contact radius and 

the penetration depth for two elastic spheres in a frictionless contact, compressed by a 

force P (see Figure 2.1) (16). 
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Figure 2.1: Frictionless contact between two smooth spheres (radii R1 and R2) compressed by the force P. 

This force leads to a circular contact area with radius a and a penetration depth δ.  

The Hertzian theory for elastic contact assumes that the contact region – described by 

the contact radius a – is small compared to the radii of the contacting spheres R1 and R2. 

It gives the following relation for a: 

*
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* the reduced Young’ modulus, 
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where E1, ν1 and E2, ν2 are the Young’s moduli and Poisson’s ratios for sphere 1 and 2. 

From this starting point of two contacting spheres, the Hertzian theory has been extended 
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to other shapes, such as flat punches and cylinders. A thorough treatment of these and 

other cases can be found in the book written by Maugis (17). 

2.1.2 The Johnson-Kendall-Roberts theory 

Obviously, the biggest drawback of the Hertzian approach to contact mechanics is 

the neglect of attractive surface forces. This gap in the theoretical description was closed in 

1971 when Johnson, Kendall and Roberts published their meanwhile famous paper on the 

surface energy and contact of elastic solids (18). Their approach, known as the JKR theory 

since, starts with the Hertzian description of the contact, but takes into account attractive 

van der Waals interactions inside the contact area. The theory balances elastic, potential 

and surface energies. In the presence of surface energy the contact area is predicted to be 

larger than in the Hertzian case. It is again described by the contact radius a (under fixed 

load conditions) (18): 
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where γ describes the work of adhesion γ = γ1 + γ2 - γ12, with γ1 and γ2 being the 

respective surface energies and γ12 the interfacial energy for the two contacting materials. 

K is the reduced stiffness which is defined as: 
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The contact sustains infinite stresses at its periphery. Due to the attractive forces, the 

contact area remains finite until a critical negative (tensile) load is applied which is found 

to be: 

RPc πγ
2

3
−=      (2.6) 

When this force, known as the pull-off force Pc, is reached, the two spheres separate 

suddenly. For γ = 0, the JKR solutions reduce to the Hertzian ones. 

2.1.3 The Derjaguin-Muller-Toporov theory 

The JKR theory was derived for soft spheres with large radii (compared to the 

contact area) and high adhesion energies. In 1975, Derjaguin, Muller and Toporov treated 

exactly the opposite case of a contact between hard solids, with small radii of curvature 

and low adhesion energies (19). In their approach – the DMT theory – they assume that the 

attractive forces inside the contact can be neglected and only consider van der Waals 

interactions outside the contact area. With these assumptions, the DMT results for the 

pull-off force Pc and the contact radius a are: 

RPc πγ2−=      (2.7) 
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It was the famous tribologist David Tabor who proposed that there should be a 

continuous transition between the two theories (20). In 1980, Muller et al. (21) showed that 

a single dimensionless parameter µ – known as the Tabor parameter – describes this 

transition. It is defined as follows (20): 
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where z0 represents the equilibrium separation of the two surfaces (usually taken to 

be between 0.3 and 0.5 nm). One finds that for µ > 5 the JKR theory and for µ < 0.1 the 

DMT theory applies. In all the cases discussed in the following chapters, where mainly 

elastomeric, thus soft surfaces, will be treated, the Tabor parameter is well above five, so 

that only the Johnson-Kendall-Roberts approach will be taken into account. 

2.2 Research on Bioinspired Fibrillar Adhesives 

2.2.1 Theoretical considerations 

After the micro and nanostructure of biological attachment pads was resolved by 

electron microscopy, theories were developed to explain the split contact surface found in 

nature. One of the main results of these JKR-based contact mechanical considerations was 

the theory of “contact splitting”. Arzt et al. demonstrated an increase for the pull-off force 

by a factor of n , when one large hemispherical contact (see Figure 2.2a) is split up into 

n subcontacts (10, 11):  

cc PnP =′      (2.10) 
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This finding can explain why heavier animals are equipped with finer attachment 

hairs. It describes the scaling relation between animal body mass and setae density very 

well over more than six orders of magnitude in mass (10, 22). 

(a) 

 

 

 

(b) 

 

 

 

(c) 

  

 

 

 

 

Figure 2.2: (a) Schematic to explain the principle of contact splitting: One large contact is split up into n 

smaller ones while keeping the projected contact area constant. (b) Shapes of attachment devices found in 

nature (picture taken from (12)). (c) Pull-off force vs. feature size for single contacts with various shapes 

demonstrating the different scaling behavior (taken from (12)).  
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As shown in Figure 2.2b, natural attachment systems exhibit not only hemispherical 

contact shapes, but a whole variety of contours (12). When treating these contours 

theoretically, Spolenak et al. found that different contact shapes also show different scaling 

relations between feature size and pull-off force (given by the slopes in Figure 2.2c) and 

thus different efficiencies for the process of contact splitting (12).  

One would now think that for artificial fibrillar systems the minimization of feature 

radius and the highest packing density of fibers has to be the aim of any design since this, 

according to contact splitting, should yield the best adhesion performance. However, when 

investigating this in more detail, Spolenak et al. found that there are limitations to this 

approach. For example, fibers start to “condense”, build clusters and rather stick to one 

another than to the counter surface (15). This “fiber condensation” dramatically reduces 

the pull-off force generated by a fibrillar adhesive and has to be avoided by the design 

rules. These rules where visualized in so-called “adhesion design maps” which allow for a 

more strategic design of artificial structures, but to-date have only been constructed for 

hemispherical contacts (15). 

Research groups all over the world embarked upon the task of fabricating such 

structures and characterizing their pull-off behavior. For both the fabrication and the 

measurement methods, a variety of techniques was developed and published in the 

literature. In the following, the publications will be grouped according to the fabrication 

method chosen and the adhesion results will be discussed in this context. At the end of the 

chapter a summarizing plot of all adhesion data published so far will be given. 
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2.2.2 Fabrication methods 

2.2.2.1 Manual cutting 

This simplest and crudest method imaginable to create fibrillar systems, which will 

be more on the millimeter range, was used by Glassmaker et al. (23), Chung and 

Chaudhury (24) and Ghatak et al. (25). The authors used polyvinylbutyral (PVB) or 

polydimethylsiloxane (PDMS) films and cut the surfaces with a razor blade. Glassmaker 

et al. brought the structures in contact with a glass slide by pressing them together on 

a hotplate. They measured very high pull-off strengths as a consequence of the resulting 

intimate contact between sample and reference surface (23). 

2.2.2.2 Filling of commercial porous membranes 

Filling a prefabricated porous template with a polymer melt, polymer precursor or a 

polymer solution is the fabrication method most frequently used to obtain arrays of pillars 

on a planar backing. After filling, the polymer is cooled down, cured or the solvent is 

evaporated. Subsequently, the structures are separated from the template either by 

demolding or by selective dissolution of the template. Templates with micro to nanometer 

sized pores of various dimensions are commercially available (e.g. anodic alumina 

membranes or track-etched polycarbonate (PC) membranes used in filtration technologies). 

In most cases commercial PDMS precursors (especially developed for microcontact 

printing) are used as polymer source. These systems have the advantage of easy handling 

and of rendering accurate reproductions of the template. 

Sitti and co-workers (26-33), later Jin et al. (34) and more recently Kim et al. (35) 

used anodic alumina and PC membranes as templates, which were filled with PDMS (26, 

28, 30), polyurethane (31), polyimide (27), a polystyrene (PS) solution (34), or a UV 

curable resin (35). Pore diameters ranged from 20 nm to 20 µm and pore densities from 
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105 to 108 cm-2 (30). The average membrane thickness was in the range of 5 to 60 µm. 

In most cases the membrane was chemically etched to release the fibers. Only low aspect 

ratio fibers and flexible PC membranes could be used to peel-off the template. Depending 

on the wetting properties of polymer and template, the fibers were hollow. 

The advantages of this method are the availability of templates with different pore 

diameters, lengths and packing densities as well as the possibility of using different 

polymers for filling the membranes. It yields densely packed fibers with high aspect ratios 

and small diameters. Especially the filter membranes are very inexpensive as well. 

The major drawback of this structuring method is frequent fiber condensation as a 

consequence of the wet etch process needed to release the fibers from the template. The 

evaporating solvent exerts capillary forces on the individual fibers bringing them into 

contact with each other. In addition, the hairs often are of irregular length. Another 

problem of the wet etch process is that the polymer might be affected by the etching 

solution and the structures may lose their initial shape or collapse due to swelling or partial 

dissolution. 

Applying this method, Jin et al. reported structured polystyrene surfaces with a water 

contact angle above 160°. Adhesive forces were determined by means of a highly sensitive 

micro electromechanical balance system which measured the force necessary to pull-off a 

water droplet from the nano fiber surface (34). Pull-off forces as high as 75 µN were 

reported and a dependence on the packing density of the fibers was found (34). As the 

volume of the water droplet used for the force measurements is unknown, an adhesion 

strength (force per contact area) cannot be calculated. With water as the counter surface for 

the measurements, contributions of capillary forces will be present. This is not discussed 

by the authors. 
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Kim et al. (35), who prepared the nanoporous molds themselves, also tried to 

quantify the adhesion behavior of their highly condensed fiber systems. Therefore, they 

glued a glass microsphere of 20 µm diameter to the end of an atomic force microscope 

(AFM) tip. By bringing the sphere in contact with the sample and measuring the force 

necessary to separate the two, they determined the adhesion performance. Kim et al. found 

that fibers with larger diameters and higher aspect ratios increased the pull-off forces. 

Especially the first results is in conflict with all theoretical predictions and with the results 

presented in this thesis. Since Kim et al. did not take into account any preload effect on the 

adhesion behavior (see the following chapters) and measured on highly condensed 

structures their results are the subject of substantial doubt. 

2.2.2.3 Filling of micromachined templates 

Peressandko and Gorb fabricated polyvinylsiloxane (PVS) pins by filling a steel 

template into which elliptic holes had been cut using a laser (36). The resulting elliptic 

pillars had a height of about 400 µm and a cross section of approx. 250 × 150 µm². With 

these structures adhesion experiments were performed bringing the pins into contact with a 

glass surface using a micromanipulator. The forces were measured with a load cell and the 

contact area was monitored with a video microscope. The authors showed that the adhesive 

force of the structured surface was higher than that of a flat control when normalizing the 

forces to the actual contact area, resulting in the so-called tenacity (36). Due to a limit in 

laser focusing, it is not possible with this method to fabricate smaller structures than the 

ones published, and the process is not very reproducible (37). 

Sitti and Fearing indented a wax layer with an AFM tip and used the resulting hole 

pattern as template for molding with a silicone rubber or a polyester resin (26, 28, 29, 38). 

The adhesion properties of individual bumps were characterized using a tipless AFM 
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cantilever. Pull-off forces of approx. 180 nN for the silicone rubber and 290 nN for the 

polyester bumps were measured. Both results were compared to JKR theory and to 

calculations of the van der Waals forces. Good agreement between theoretical and 

experimental values was found (26). This fabrication approach is applicable for generating 

small pillars, but it is slow and not suitable for generating high aspect ratio structures, as 

well as it lacks control over the tip shape. 

Together with Dr. Stanislav Gorb from the Max Planck Institute for Metals Research, 

the German company Gottlieb Binder GmbH (Holzgerlingen, Germany) developed a 

commercial, fibrillar dry adhesive. The exact processing technology remains unknown, but 

the structures are made out of PVS elastomer. The resulting pillars have a diameter of 

about 60 µm at the base, show mushroom-like tip shape (40 µm tip diameter) and are 

packed in a hexagonal fashion with approx. 40 % of the area being covered (39). So far 

two research groups investigated the tribological behavior of these structures (39-42). 

Bhushan and Sayer concentrated on friction and contact angle investigations (41), whereas 

Gorb et al. (39), Varenberg et al. (42) and Varenberg and Gorb (40) examined the adhesion 

properties in much detail. All adhesion measurements were performed with a home-built 

microtribometer setup (43), which allowed for testing in vertical and lateral direction and 

for a flat-on-flat contact scheme through a self-aligning system. The use of a high 

magnification video microscope allowed to visualize the contact area. When testing 

surfaces with pillars or with dimples (fabricated through punching flat PVS with a hollow 

needle) of different radii (20 to 120 µm), Varenberg et al. found that the pull-off force did 

not correlate systematically with the real contact area, but depended linearly on the real 

contact perimeter (42). This result so far lacks theoretical explanation but might be 

connected to the rather high surface roughness for these structures. In another study, Gorb 

et al. found out that for the flat-on-flat scheme used to quantify adhesion, pull-off force did 
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not depend on preload (39). The authors measured an adhesion force of up to 400 mN for 

the mushroom-shaped pillars which corresponds to a pull-off strength of about 60 kPa (39). 

In the same publication the authors performed peel tests and showed that after cleaning of 

a contaminated sample, a large part of the adhesion performance was recovered (39). More 

recently, Varenberg and Gorb studied the influence of shear on the pull-off behavior of 

these pillars (40). They found that the pull-off force could be switched on and off in close 

to binary fashion by moving the test stage by a certain lateral displacement (about 

0.3 mm).  

2.2.2.4 Molding of photolithographic templates 

Photolithography allows the fabrication of templates with controlled and well-

defined dimensions. Glassmaker et al. fabricated PDMS plate-like structures with 

diameters from 5 to 50 µm and a height of around 30 µm by casting PDMS prepolymer 

onto photolithographic templates (44). Crosby et al. applied the same technique and 

fabricated low aspect ratio PDMS structures with diameters and spacings between 50 and 

500 µm (45). Thomas and Crosby also applied this technique to generate hole patterns with 

very interesting adhesion properties (46). To test adhesion, they utilized a custom-built 

setup which indented the test surfaces with a polished fused silica sphere (5 mm in radius). 

The contact area was monitored in situ using an inverted optical microscope. Crosby et al. 

normalized the measured adhesion force by the theoretically predicted one based on JKR 

theory. They reported a maximum in normalized pull-off force at about 200 to 250 µm 

structure radius with very little dependence on pillar spacing. The coupling between 

individual pillars and the applicability of the JKR theory were investigated as well.  

The maximum aspect ratio of the structures fabricated by Crosby et al. was 0.08. 

Optical micrographs of the contact area during adhesion testing demonstrated that not only 
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the pillars but also the PDMS in-between them was in contact with the sphere. 

The normalized pull-off force was found to be smallest for the smallest pillars in the 

densest packing. This result is unexpected and might be due to an influence of the PDMS 

in-between the pillars, which in this case will contribute least. 

Cheung et al. (47) in 2005 fabricated fibers out of SU-8, an epoxy based 

UV-sensitive photoresist, but did not systematically test adhesion performance. The same 

approach of generating SU-8 pillars with 17 to 25 µm in diameter and a length between 

48 and 100 µm was chosen by Aksak et al. (48). Through inclined lithography, first 

published by Han et al. (49), they fabricated not only vertical pillars, but also structures 

under a tilt angle of 18°. Applying a double-molding step with a flexible silicon rubber 

which subsequently was vacuum-molded with a polyurethane, they transferred the original 

SU-8 into PU pillars, which were well suited for adhesion testing. To investigate the 

influence of the tilt angle on adhesion, the authors used a 12 mm diameter glass sphere and 

connected it to a load cell. The main result of a rather systematic study, which also took 

into account the preload dependence of the pull-off force, was that angled fibers showed 

less adhesion performance than vertical ones, but that their compliance was higher (48). 

2.2.2.5 Molding of plasma etched templates 

Plasma etching of prestructured wafers can be used for creating templates with high-

aspect ratio holes. Glassmaker et al. applied an ion etching process on deep-UV 

photolithographically structured wafers to fabricate 10 µm deep and 1.2 µm wide holes 

with different lateral spacings (44). Replication of the templates with PDMS resulted in 

well-defined polymer pillars, which surprisingly did not collapse under their own weight. 

This contradicts claims published by Roca-Cusachs et al. stating that PDMS pillars should 

collapse when the aspect ratio exceeds five (50). The structures were tested in adhesion 
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against a flat glass slide and against a glass sphere while the contact area was monitored 

using an inverted microscope, which allowed for very controlled testing. Menon et al. 

applied a similar process to fabricate pillars with a diameter of 4 µm and 40 µm height. 

Adhesive forces were not measured (30).  

Kustandi et al. recently submitted a paper in which they described the fabrication of 

fibrillar structures – minimal diameter 150 nm and maximum aspect ratio around 10 –

relying on colloidal nanolithography (51). A monolayer of polystyrene spheres was used as 

a mask for an etching process leading to holes in a silicon wafer which subsequently were 

filled with polyparylene. Since wet etching of the silicon template often resulted in 

condensed pillar structures, the authors applied a dry etching process using XeF2 gas. The 

authors measured the adhesive properties of their structures using a tipless silicon AFM 

cantilever. The adhesive force of a single fiber was calculated from this data. In order to 

ensure that static interactions did not play an important role, Kustandi et al. adhered a 

macroscopic piece of their structures to a glass slide and put it into an ionized atmosphere. 

They observed that the structures stayed attached to the glass and concluded that static 

forces were not significantly contributing to overall adhesion.  

The fabrication method chosen by Kustandi et al. is suitable to manufacture fibrillar 

structures. Closer inspection of the published SEM micrographs reveals the presence of 

some fiber bundles, indicating that the dry etching process does not avoid condensation of 

fibers completely. Due to the self assembly process controlling the packing of polystyrene 

spheres, colloidal lithography is much faster than processes like e-beam lithography, but 

lacks their accuracy. By choosing different sphere diameters and varying other parameters, 

different fiber radii and pitches are possible. The entire process is still very time-

consuming, and since it includes many different steps, is not expected to have a very 
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high yield. The published force-displacements curves are very irregular and with the setup 

used by Kustandi et al. the contribution of friction forces to overall adhesion, as well as the 

calculation of the pull-off force for one individual pillar, is not clear. 

Several publications from the Sitti group also rely on fabrication approaches based 

on lithography and dry etching. In the earlier ones, the authors showed that this fabrication 

approach yields fibrillar structures but did not test adhesion (30, 47). More recently, Kim 

and Sitti fabricated polyurethane microfibers with spatula-like tips by molding a deep 

reactive ion etched silicon-on-insulator wafer (52). The resulting structures had a fiber 

diameter of 4.5 µm and a tip diameter of 9 µm. Fiber length was 20 µm and packing 

density around 44 % for the tips. The spatula-like shape was the result of an under etching 

approach once the etch reached the insulator layer. The adhesion behavior of these 

structures was tested with a 6 mm diameter glass sphere attached to a load cell, allowing 

very accurate measurements. The main results were a very high pull-off force of up to 

60 mN and, even more important, an adhesion strength value as high as 180 kPa. This is in 

the regime of gecko adhesion. The fabrication approach chosen by Kim and Sitti allows 

high control over fiber diameter and length and to a certain degree also over tip shape. 

The whole process is fully integrable into standard microfabrication and areas up to entire 

wafers can be patterned. The drawback is that the wafer has to be etched away to release 

the structures in different etch media; this makes the process slow and expensive, and the 

template is lost. The adhesion testing was performed in a careful manner and preload 

effects were taken into account. 

Appling a double-molding technique (53), Yoon et al. fabricated nano-size cone-

shaped pillars out of PMMA with diameters of 50 nm at the top and three different heights 

which were not specified any further in their publication, but the aspect ratio did not 
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exceed two (54). The authors mainly tested friction properties, but in addition found that 

adhesion slightly increased with pillar aspect ratio. The adhesion tests were carried out 

with an AFM and a 1.25 µm diameter borosilicate ball clued to the tip. Even though the 

trend of increasing pull-off forces with feature aspect ratio seems plausible, close 

inspection of the SEM picture of the pillars given in the original publication reveals that 

the authors did not have control over the tip shape. The pillars are not homogeneous in 

height, so that the corresponding adhesion data does not allow for solid conclusions. 

2.2.2.6 Pattern transfer by plasma etching 

Plasma etching of prestructured surfaces can also be used for creating high-aspect 

ratio pillars directly on polymer layers. Usually, the polymer is coated with a patterned 

photoresist layer and a protective metallic film. After development, the system is exposed 

to an oxygen plasma which transfers the primary pattern into the polymer layer and thus 

extends the structuring into the third dimension. The process relies on different etch rates 

of the polymer and the metallic film on top of the photoresist, which acts as a mask during 

the etching process. 

 Geim et al. used polyimide films covered by a photoresist layer which was 

structured by electron beam lithography (55). After plasma etching, the resulting 

PI structures were transferred to a scotch tape. Pillars with diameters between 0.2 to 4 µm, 

heights ranging from 0.15 to 2 µm and different spacings from 0.4 to 4.5 µm were 

obtained. The adhesive properties of their structures were measured by atomic force 

microscopy with a custom-made flat cantilever (55). They found that the pull-off force was 

proportional to the density of hairs and had a weak dependence on the pillar height and 

diameter. Geim et al. stated that the pillar shape was less important (55). The adhesive 

properties of larger areas were tested using glass wedges and a laboratory balance. 
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The authors concluded that the adhesion increased with increasing contact area. When 

testing with the AFM, the authors always applied the same preload, which resulted in 

different contact areas when testing structures with different effective stiffnesses. In 

addition, not all pillars were in contact. Their conclusion that the adhesive force depended 

mainly on packing density and less on diameter, height and shape, contradicts theoretical 

predictions. Since they varied pillar radius, height and packing density at the same time 

and gave pull-off forces in arbitrary units with the contact area and the precise geometry of 

the indenter being unknown, the interpretation of their data is difficult, even though it 

seems to show an increase in pull-off force with decreasing pillar radius. With the 

microbalance experiments, a preload of more than 0.5 MPa was used, which seems quite 

high and might be the reason for the structures to stick. Hui et al. tried to reproduce the 

data collected by Geim et al. and measured other effects (56). Especially, they found a 

decrease in adhesion for the structured compared to the unstructured polyimide surface. 

Since Hui et al. backed their structures with PDMS rather than scotch tape, they argue that 

viscoelastic contributions might have affected Geim’s results (56). 

2.2.2.7 Arrays of carbon nanotubes 

The idea of creating synthetic adhesive structures with carbon nanotubes was 

realized by Yurdumakan et al. (57) and Zhao et al. (58). Yurdumakan et al. chemically 

deposited multiwalled carbon nanotubes (MWCNT) on top of a silicon wafer and 

completely embedded them in polymethylmethacrylate (PMMA). The PMMA sheet was 

then peeled off the silicon wafer and partially dissolved in acetone (57). The resulting 

structures were entangled carbon nanotube bundles of around 50 nm diameter, which were 

irregular in length. Every individual tube had a diameter of approx. 10 nm. Varying the 

time of exposure to the solvent, different aspect ratios of the carbon nanotubes sticking out 

of the PMMA were possible. The authors performed adhesion measurements on these 
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structures by using a standard scanning probe tip. The pull-off force per area is reported to 

be about two orders of magnitude higher than that for a gecko seta (16 000 kPa compared 

to about 100 kPa). Yurdumakan et al. explain the high adhesion strength by a combination 

of van der Waals forces and energy dissipation in the carbon nanotubes during elongation 

due to their material properties (57). The high pull-off strengths obtained most probably 

are a consequence of frictional forces acting when testing such an irregular surface with an 

AFM tip. Their hypothesis that energy might be dissipated in the fibers does not seem to 

explain the very high adhesion values.  

Zhao et al. (58) synthesized their structures – MWCNTs – by chemical-vapor-

deposition on silicon substrates. The tubes had heights between 5 and 10 µm. For 

measuring adhesion, the samples were pressed against a laboratory balance with a preload 

of about 20 N and than retracted. The authors measured adhesion strengths of 120 kPa. 

In repetitive experiments Zhao et al. found that the adhesion performance decreased over 

time as some nanotubes lost contact to the substrate. Interestingly, another result was that 

pull-off force increased with decreasing fiber height, an effect not understood or explained 

by the authors and against theoretical considerations. In general, the adhesion performance 

found by the authors is impressive but might be an artifact due to very high preloads. 

2.2.2.8 Hierarchical structures by microfabrication and plasma etching 

The fabrication of hierarchical biomimetic adhesives was demonstrated by Northen 

et al. (59-61). The authors fabricated square silicon dioxide platforms with 2 µm thickness 

and an edge length of 100 to 150 µm using the BOSCH process. The platforms were 

supported by silicon pillars with 1 µm thickness and 50 µm height. After the platforms had 

been fabricated, they were coated with a photoresist layer and treated with an oxygen 

plasma for 5 minutes. This resulted in the generation of nanoscale fibrils on the polymer 
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surface which were 2 µm tall and 50 to 200 nm wide. The authors attributed this growth to 

electrohydrodynamic instabilities of polymer films in an electrical field according to the 

mechanism investigated by Russell et al. (62, 63). Contact angle measurements were 

performed on hydrophilic and hydrophobic samples. Hydrophobicity was achieved by a 

CF4 plasma treatment. Adhesive properties of the hierarchical structures were tested with a 

Hysitron Triboindenter and a spherical aluminum tip having a root mean square (RMS) 

roughness of 500 nm, thus called “rough” by the authors (59). Additionally, an aluminum 

flat punch of 5 mm diameter (RMS roughness of 2.5 µm) was used for adhesion 

testing (60). The adhesive force was found to be zero for flat photoresist, increased when 

the photoresist was plasma treated and was highest when the photoresist nanorods where 

situated on top of the silicon dioxide platforms. In the last two cases, adhesion was found 

to be strongly dependent on applied normal preload which in the case of the spherical 

indenter was explained by an increase in contact area. When testing the hydrophobic 

compared to the hydrophilic nanorods, an increase in adhesion was found; this was 

explained by an increase in nanorod diameter through plasma treatment and a 

conformational change in the rods under applied pressure which was not found in the 

hydrophilic ones (59). When testing with a flat punch, similar results as for the spherical 

indenter were found, but no influence of the applied load was measured (60). Over five 

iterations the pull-off force for the nanorods on top of the silicon dioxide platforms 

remained stable, whereas it decreased significantly for the ones on the solid substrate. This 

behavior was explained by the flexibility of the platforms which was thought to prevent 

permanent damage of the nanorods (60).  

This fabrication method is capable of manufacturing hierarchical structures up to the 

overall area of a silicon wafer resulting in 2,500 SiO2 platforms on a 100 mm wafer (60). 

It is based on complex and sophisticated processing for micro electromechanical systems 
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(MEMS). It requires excellent cleanroom facilities and extensive experience in 

microfabrication techniques. The formation of nanoscale fibers through plasma treatment 

is a very interesting method to structure polymer surfaces, which could easily be upscaled, 

but suffers from a lack in theoretical understanding of the fibril formation process. The 

adhesion data show much scatter which the authors justify by the rough nature of the 

spherical aluminum tip. One would expect less noise in the data due to the very well 

defined adhesion test setup. Although the authors do not mention the sphere displacement 

into the test surface, it was more than 3 µm (64). With this indentation depth it is very 

likely that no individual pillars are left, but that they all are pressed into the SiO2 surface. 

Thus, not the adhesive properties of individual nanorods but of several compressed ones 

were tested, which might explain the scatter in the data. Certainly, JKR theory for 

individual fibers should not be applied as was done by the authors. The measured pull-off 

forces, especially when compared to the other approaches, were very low. More recently, 

Northen et al. developed a switchable adhesive which allows to control adhesion via a 

magnetic field (65, 66), but again the overall adhesion was relatively small.  

2.2.2.9 Direct drawing of micro and nanofibers 

This method, although no paper has been published so far, is used to mimic fibrillar 

adhesives (67) and it holds the potential for successfully fabricating such structures (68-

71). The process relies on the stretching of a polymer melt (68, 70), or a polymer solution 

(69-71). After the elongation, the polymer is either cooled or the solvent is evaporated. 

No adhesion data have been published. 
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2.2.3 Summary of current literature  

In order to give a well-arranged and easy to grasp overview over the current efforts 

to fabricate fibrillar dry adhesives and especially to visualize the adhesion performance, in 

Figure 2.3, the published adhesion strength data (pull-off force per apparent contact area) 

is plotted vs. the feature size.  
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Figure 2.3: A comparison of the up-to-date published adhesion strength (pull-off force per area, σc) data 

versus the fiber radius. 

The literature review demonstrates that many different approaches for the fabrication 

of bioinspired fibrillar adhesives have been developed and applied. This results in 

structures with a wide range of pillar radii and aspect ratios. As well, a whole variety of 

materials has been used, ranging from soft elastomers to very stiff carbon nanotubes. The 

adhesion properties of these structures have been investigated applying a broad range of 

test methods, e.g. AFM and nanoindenter based techniques. This diversity in structures, 

materials and test methods shows very little systematics and, as the interpretation of the 
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test data is not consistent, makes a quantitative comparison difficult. When using an 

adhesive, the most important characteristic is the adhesion force that is generated per area. 

This measure is called pull-off strength and is the best parameter to compare between 

individual adhesives. The pull-off strength however is rarely specified in publications 

specifically or it cannot be worked out with the information given in the papers, making it 

very difficult to determine systematic trends in the published data. Therefore, the present 

thesis focuses on the fabrication of well-defined model systems (mainly presented in 

chapter 3) and systematic adhesion testing. The results of these tests will be the main topic 

of chapters 4 and 5, concentrating on a systematic study of size (chapter 4) and shape 

(chapter 5) effects, which so far is missing in the literature. Chapter 6 will round off the 

experimental results with theoretical design guidelines for different contact shapes, 

developed in the form of adhesion design maps. 
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3 Experimental: Fabrication of Pillars 

with Controlled and 3D Tip Shape 

 

Abstract – A new method for the fabrication of structured polymer surfaces 

possessing pillars with controlled 3D tip shapes resembling those found in biological 

attachment devices is reported. The fabrication strategy exploits the filling mechanism of 

2D lithographic templates, combined with inking and printing steps using elastomeric 

precursors with various viscosities and crosslinking kinetics. Homogeneously structured 

areas about one square centimeter in size were obtained which allow reproducible and 

reliable testing of the adhesion behavior. With these structures it is possible to investigate 

the influence of contact shape (chapter 5) on the adhesion of structured surfaces and pave 

the road to a better understanding of biological attachment systems and to optimum 

designs of artificial analogues. 
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3.1 Introduction 

The literature review given in the previous chapter clearly illustrates the need for 

systematic adhesion testing on well-controlled fibrillar model systems allowing the 

investigation of size and shape effects on dry adhesion. The structures published so far, 

with only two exceptions (39, 52), all terminated in flat punch-like pillars. In contrast, the 

tips of the fine hairs in biological systems show different shapes: spherical, conical, 

filament-like, band-like, sucker-like, flat and toroidal tips (see Figure 2.2b and (12)). 

At least as important, many biological structures are built with several levels of hierarchy. 

Although recent theoretical work already points out the importance of the tip shape 

(in particular the importance of a compliant tip, as in the gecko spatulae), this factor has 

not been considered in the artificial systems up to now (12). The main reason is the 

intrinsic difficulty and scarce availability of 3D micro and nanofabrication methods to 

obtain such structures over medium size areas (several cm2) required for adhesion testing. 

This fact presently limits further achievements in this area.  

In this chapter, a strategy which allows the fabrication of different 

3D microstructured surfaces resembling those found in the attachment pads of different 

animals is presented (Figure 3.1). The method provides flexibility in the choice of 

dimensions, 3D shape, feature packing and polymer material from which the structured 

surfaces are fabricated. The obtained contact shapes were: pillars terminated with flat (a), 

spherical (b), mushroom-like (c) and spatula (d) tips, tips with concave shape (e), and 

pillars with split terminals (f). 
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(a) (b) (c) (d) (e) (f)
 

Figure 3.1: Different contact shapes obtained and tested (except for (f)). 

 

3.2 Experimental 

3.2.1 Photolithography 

In a first step, a suitable fabrication route for the 2D masters had to be chosen. This 

method had to yield well-defined structures, allow control over pillar radius and aspect 

ratio, be reasonable fast and be able to generate structures over large enough areas for 

reproducible adhesion testing. The method of choice was contact photolithography with 

SU-8 as photoresist. SU-8, first developed by Shell Chemicals for IBM, is an epoxy-based 

negative tone photoresist for the fabrication of high aspect ratio structures. It can be 

exposed by ultraviolet light, electrons (e-beam lithography) and X-rays (72, 73). 

Conventional spin-coating allows resist thicknesses between 1 and 300 µm. Multilayer 

coatings yield thicknesses up to 2 mm (72). After curing, SU-8 has a Young’s modulus of 

4.9 GPa, a glass transition temperature above 200°C and a degradation temperature above 

380°C (74). These, and other physical properties, are summarized in Table 3.1. 

Figure 3.2 presents the molecular structure of SU-8. 
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Table 3.1: Physical properties of the SU-8 photoresist (74). 
 

Property Value 

Young’s modulus, E (postbake at 95°C) 4.02 GPa 

Young’s modulus, E (hardbake at 200°C) 4.95±0.42 GPa 

Biaxial modulus of elasticity, E/(1-ν) 5.18±0.89 GPa 

Film stress (postbake at 95°C) 16-19 MPa 

Maximum stress (hardbake at 200°C) 34 MPa 

Coefficient of friction, µ (postbake at 95°C) 0.19 

Glass temperature, Tg (unexposed) ~ 50°C 

Glass temperature, Tg (fully crosslinked) > 200°C 

Degradation temperature (fully crosslinked) ~ 380°C 

Coefficient of thermal expansion, αt (postbake at 95°C) 52±5.1 ppm/K 

Polymer shrinkage upon crosslinking 7.5 % 

 

 
Figure 3.2: Chemical structure of the Bisphenol A Novolak epoxy oligomer contained in SU-8 formulations. 

Eight reactive epoxy functionalities allow a high degree of cross-linking after photoactivation. 

Photolithography is a complex multi-step processing route. Depending on the resist 

thickness and the actual conditions in the cleanroom, all steps require well optimized 

processing parameters in order to yield optimum structures and maximum resolution, 

especially when fabricating high aspect structures. The processing steps for standard 

photolithography are schematically shown in Figure 3.3. 
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Figure 3.3: Photolithographic steps with the negative tone photoresist SU-8. 

In the following the processing will be detailed. A tabular summary of the actually 

used processing parameters to obtain SU-8 structures with different thicknesses is given in 

Table 3.2. 

Materials and equipment: Silicon Wafers (100 orientation) were provided by Crystec 

(Berlin, Germany), SU-8 types 2, 5, 25, 50 and 2075 covering a thickness range from 

1.5 to 200 µm, and the developer mr-dev 600 were provided by Micro Resist Technology 

(Berlin, Germany). Masks were provided by ML&C (Jena, Germany) in quartz with 

0.8 x 0.8 cm2 chrome patterned fields. 

Lithographic SU-8 templates: Wafers were first cleaned in piranha solution 

(5:1 H2SO4:H2O2) overnight and rinsed with deionized water. The wafers were transferred 

into the cleanroom and rinsed with acetone and blown dry with nitrogen before 

lithographic processing. A filter WG 320 supplied by Edmund Optics (Karlsruhe, 

Germany) was used for cutting off irradiation wavelengths below 320 nm, which is 

Masked irradiation
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Soft bake

Hard bake

Silicon

Silica

Substrate preparation

Post-exposure bake

Development

Masked irradiation

Spin-coating

Soft bake

Hard bake

Silicon
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Substrate preparation
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important since SU-8 is very sensitive to smaller wavelengths resulting in a strong negative 

profile and limited resolution. Lithography with SU-8 was performed using a mask aligner 

Karl Suss MJB3 (Garching, Germany). The structured surfaces were characterized using a 

white light interferometer ZYGOLOT New View 5000, scanning electron microscopes 

Hitachi S4800 and LEO 1530 VP, and a contact angle equipment from Data Physics OCA 

H 150 Plus. 

Table 3.2: SU-8 characteristic processing times (in minutes) for different variants and film thicknesses. 
 
 

Resist Thickness (µm) 2.5 5 10 20 40 50 60 80 

SU-8 resist type 2 5 5 25 25 50 50 50 

Spin-coating 

5 s at 500 rpm + 60 s at (rpm) 
1150 2050 970 1750 900 1710 1490 1200 

Soft bake 

(min) at 65°C 

(min) at 95°C 

 

1 

3 

 

1 

3 

 

2 

5 

 

3 

7 

 

5 

15 

 

6 

20 

 

7 

22 

 

8 

26 

Exposure time (s) 10.5 12.0 13.5 23.0 30.5 39.8 42.8 44.4 

Post-exposure bake 

(min) at 65°C 

(min) at 95°C 

 

1 

1 

 

1 

1 

 

1 

2 

 

1 

3 

 

1 

4 

 

1 

5 

 

1 

6 

 

1 

8 

Development (min) 1 1 2 4 6 6 7 9 

Hard bake 30 min at 150°C 

 

The lithographic masters fabricated in the present study contained arrays of high 

aspect ratio cylindrical holes. Their lateral dimensions ranged from 2 to 50 µm in diameter 

and aspect ratios from 1 to 6.  
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Two step lithography: Lithographic fabrication by superposition of coating and 

irradiation steps enabled the fabrication of hierarchical structures like the ones shown in 

Figure 3.4 using traditional 2D setups and alignment markers on the mask for guiding 

superposition. In a first step, a pattern with 50 µm structures was imaged on a 40 µm thick 

film. After a second coating step, seven features with 9 µm diameter were imaged on the 

top of each 50 µm feature. Development was performed in a single step after the second 

irradiation. See Figure 3.4 for a schematic of the processing steps. 

 

1) Coating photoresist, soft bake

SU-8

Si wafer

3) Coating new photoresist layer

4) 2nd masked irradiation

5) Development

6) Soft molding, demolding

50 µm50 µm

2) Masked irradiation

Mask

 
Figure 3.4: Schematic processing steps for the fabrication of hierarchical model systems and SEM picture of 

real structure. 
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3.2.2 Soft lithography and inking 

Since SU-8 is a rather stiff polymer, it is close to impossible to reproducibly measure 

its adhesion properties. Therefore, the SU-8 master structures were replicated with 

polydimethylsiloxane (Sylgard 184, Dow Corning, MI, USA), the standard material for 

soft lithography (75, 76). The high chemical and mechanical stability of SU-8 makes it an 

optimum material to be used as master for molding soft elastomers. Several mechanical 

and other physical properties of Sylgard 184 PDMS are summarized in Table 3.3. 

Table 3.3: Physical properties of Dow Corning Sylgard 184 PDMS (77-81). 

 

Property (as cured) Value 

Young’s modulus, E 1.2-2.0 MPa 

Tensile strength, σm 6.2 MPa 

Durometer hardness 50 Shore A 

Viscosity, η 3900 mPa·s  

Specific gravity, ρ 1.03 g/cm³ 

Thermal conductivity, k 0.18 W/(m·K) 

Linear coefficient of thermal expansion, αt 310·10-6 1/K 

Dielectric constant, ε 2.65 

Refractive index, nr 1.430 

 

The fabrication strategy is based on complete (Figure 3.5a) or partial soft molding 

(Figure 3.5e) on 2D masters made by lithography with elastomeric precursors with various 

viscosities, followed in some cases by inking (Figure 3.5b) and printing (Figure 3.5c, d) 

steps. The SU-8 masters were filled with different elastomeric precursors: Sylgard 184, 

President, Provil novo and P2. Filling with Sylgard 184 afforded arrays of pillars with flat 

ends (Figure 3.5a) and diameters between 2 and 50 µm. The dimensions reproduced 

accurately those of the templates.  
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1) Coating photoresist, soft bake

SU-8

Si wafer

2) Masked irradiation

Mask

3) Development, hard bake

Planar contacts

Downwards curing Printing, curing Tilted printing, curing

Spherical tips Symmetric spatulae Asymmetric spatulae

4) Soft molding (complete filling of master cavaties) and curing

5) Demolding

5) Retarded molding (partial filling)

Master with holesMaster with pillars

Mold with pillarsMold with holes

Elastomer precursor

6) Inking

6) Double molding

7) Demolding

Thin film of
elastomer precursor

(a) (b) (c) (d) (e)

4) Spin-coat a thin film and
wait for partial hardening

Film of elastomer precursor

Concave tips

20 µm 20 µm 20 µm 20 µm 20 µm

θ

 
Figure 3.5: Overview of the fabrication strategies and SEM micrographs showing examples of the structures 

obtained. 

Arrays of pillars with spherical and spatular tips were obtained by inking the Sylgard 

184 structured substrates in a thin film (~ 6 µm) of Sylgard 184 precursor (Figure 3.4b, 

c, d). A small drop of precursor remained on the top of the pillars. Curing of the array in 

upside-down orientation yielded hemispherical tips as a consequence of gravity and 

surface tension acting on the fluid drop (Figure 3.4b). The curvature of these structures 

depended on the thickness of the spin-coated film and was characterized by white light 

interferometry. Alternatively, the inked stamps were pressed against a flat substrate and 
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then cured. This rendered pillars with a flexible and flat roof. The tip diameter was a 

function of the spin-coated film’s thickness (Figure 3.4c). The roofs could be symmetric or 

asymmetric depending on the tilt of the substrate during curing (Figure 3.4c, d). 

Molding was also performed with elastomeric impression silicones used in the dental 

clinic for making denture impressions: Provil Novo, President and P2 (see below for 

details). These materials possess higher initial viscosities and much faster crosslinking 

kinetics (full crosslinking after 6 minutes at room temperature) than Sylgard 184 (fully 

crosslinking takes 48 hours at room temperature). They were supplied as two component 

systems which start crosslinking upon mixing. By soft molding these materials, pillars 

terminated by concave tips were obtained. The exact mechanism for the formation of this 

tip shape was investigated by Irma Álvarez in her diploma thesis. She provided the 

samples investigated in the present work. The dimensions of the resulting structures 

depended on the material, the delay time for starting the soft molding process after mixing 

the components and on the cavity dimensions of the master (diameter and height). Exact 

details for each step and process of the fabrication approach are given below. 

Materials and equipment: Hexadecafluoro-1,1,2,2,-tetrahydrooctyltrichlorosilane 

was bought from ABCR (Karlsruhe, Germany). The dental impression elastomers P2 and 

Provil Novo Light Body were supplied by Heraeus Kulzer Dental (Hanau, Germany) 

together with the necessary mixing tools. President Light Body was purchased from 

Coltène Whaledent (Langenau, Germany). Modralit 3K was purchased from Dreve 

Dentamid GmbH (Unna, Germany), Sylgard 184 from Dow Corning (MI, USA). 
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Silanization of the SU-8 templates: Perfluorination of the SU-8 patterned wafers was 

performed by silanization with Hexadecafluoro-1,1,2,2-tetrahydrooctyltrichlorosilane. 

Silanization over the gas phase was conducted in an evacuated desiccator for 30 minutes 

using 20-50 µl of the fluoroderivative. The wafers were baked for 30 minutes at 95°C in 

vacuum to stabilize the coating by increasing lateral crosslinking and by reaction with free 

OH groups at the resist surface. Silanization increased the contact angle of the silicon 

wafer from 10° to 113° and for the cured SU-8 from 73° to 115°. 

Soft molding on lithographic templates: A 10:1 ratio of Sylgard 184 prepolymer and 

crosslinker was mixed, degassed and poured on the silanized SU-8 structured wafer. 

Curing 14 h at 65°C under light vacuum ensured complete filling of the template and 

formation of accurate elastomeric negatives. Careful peel-off of the negative from the mold 

was necessary especially with high aspect ratios to avoid template damage. 

Inking: A 10:1 ratio of Sylgard 184 prepolymer and crosslinker was mixed, degassed 

and spin-coated onto a silicon wafer to obtain film thicknesses ~ 6 µm. Typical spinning 

rate and time was 9000 rpm for 100 s. Higher spinning speeds were not achievable with the 

equipment available for this thesis. Previously molded Sylgard arrays of pillars were inked 

in the spin-coated film and cured upside-down in an oven during 14 hours at 65°C. 

A nearly hemispherical cap formed at the top of the pillars as a consequence of gravity and 

surface tension. The dimensions and radii of curvature were characterized by white light 

interferometry. 

Printing: The inked patterns were pressed against a perfluorosilanized wafer before 

curing for obtaining mushroom- and spatula-like structures. Curing of the assembly was 

performed in horizontal and tilted arrangements in an oven during 14 hours at 65°C. 
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Retarded molding with Provil Novo and President: A 1:1 ratio of polymer base and 

catalyst paste were mixed for 30 seconds. Homogeneous ~ 0.5 mm thick films were 

prepared by spin-coating the mixture on a silicon wafer during different times. Delay times 

ranged between 4 and 6 minutes. The SU-8 mold was deposited vertically against the film 

and pressed with a 250 g weight. The systems were allowed to harden for at least 

10 minutes. 

Retarded molding with P2: The mixture of the polymer base and the catalyst paste 

were deposited on a silicon wafer via a mini-extruder provided by the supplier. Approx. 

0.5 mm thick films were prepared by dragging a spatula across the mixture. The SU-8 

mold was deposited vertically against the film and pressed with a 250 g weight. Delay 

times ranged between 1 and 5 minutes. The system was allowed to harden for at least 

10 minutes. 

3.3 Results and Discussion 

Arrays of pillars terminating in flat (Figure 3.1a), spherical (b), mushroom-like (c), 

spatula (d) and concave tips (e) and pillars with hierarchical structure (f) were obtained. 

The method does not require use of complex 3D structuring techniques like multiphoton, 

holographic lithography, or nanomachining with focused ion beam (82, 83). Its flexibility 

and wide applicability rely on the fact that it exploits intrinsic polymer properties to obtain 

pillar patterns with well-defined 3D tip shapes from simple 2D arrays of holes. 

Homogeneously structured areas of one cm2 were obtained which will allow reproducible 

and reliable testing of adhesion properties (see the following two chapters). 

The shape of the structures was reproducible, controllable and remained constant 

across the whole patterned field. These effects were not unique for these systems, but were 
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general to any filling process and could be exploited for controlled 3D micro and 

nanopatterning using simple 2D molds (84). A recent work has been published where 

Sylgard 184 pillars of different heights were obtained by controlled incomplete filling of 

2D molds, but no information on the tip shapes was given (85). 

The low Young’s modulus of the Sylgard 184 material limits the aspect ratio of the 

pillars that can be obtained (75). Gravity, adhesion and capillary forces exert stress on the 

pillars and may cause them to collapse. In fact, pillar collapse was observed in pillars with 

aspect ratios > 5, in accordance to theoretical predictions (50, 86-92). Higher aspect ratios 

can be obtained by molding with harder materials, e.g. composite PDMS (90, 91, 93), 

bilayer PDMS (91, 92, 94), photocurable PDMS (53, 95), polyolefins (96), PDMS with 

polymer-reinforced sidewalls (97), fluoropolymers (95, 98, 99), photocurable 

perfluoropolyethers (100), photocurable fluorinated organic-inorganic hybrids (95, 101-

105) or photocurable polyurethane acrylates (106, 107). 

Arrays of PDMS pillars were also fabricated by double molding of SU-8 masters 

containing arrays of pillars. This method was applied to the cases where SU-8 masters with 

holes could not be obtained, due to limits in lithographic resolution. In a first step, Sylgard 

184 molds containing arrays of holes were fabricated, silanized with a perfluorosilane, 

cured at high temperature, and refilled with Sylgard 184 precursor. After curing at lower 

temperatures and careful peel-off, a positive replica of the initial SU-8 pillar pattern was 

obtained. That the shape of those pillars was slightly different from the one obtained by 

direct molding will be discussed and demonstrated to be important for the adhesion 

performance in chapter 5. 
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The inking and printing steps were successfully performed manually for pillars with 

diameters between 2 and 50 µm and heights above 5 µm. Shorter pillars got completely 

dipped in the 6 µm thick Sylgard 184 film during printing and an inhomogeneous film 

covering the whole structure was obtained. Thinner Sylgard 184 films could not be 

obtained (the maximum spinning rate was 9000 rpm). In the cases were inking and printing 

failed, a continuous film connecting all pillars, or inhomogeneously distributed patches of 

elastomeric precursor bridging groups of pillars were obtained (see Figure 8.1 in 

appendix A). This was a consequence of misalignment between the pillar array and the 

precursor film during printing. It is believed that the use of a positioning stage to control 

printing depth, printing force and vertical pull-out would lead to significant improvements 

in the homogeneity. 

In order to understand the filling mechanism and the forces driving the formation of 

tips with concave shape, the influence of the following processing parameters on the final 

shape was tested independently: applied external pressure, mold surface energy, polymer 

film thickness, initial precursor viscosity, the cavity geometry of the master (diameter and 

depth of the holes), as well as the crosslinking kinetics. This was the work of Irma Álvarez 

during her diploma thesis (84). No differences were found in molded structures obtained 

under different external pressures (applied weights from 120 to 500 g), from different film 

thicknesses (between 0.2 and 1.5 mm, well above structure height), or from molds with 

different surface energies (perfluorinated against non-perfluorinated molds with contact 

angles 73° and 115° respectively). Note that the contact angles of the materials in cured 

state are not significantly different: President 94°, Provil Novo 90°, PDMS 108°, 

and P2 62°. 
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3.4 Conclusions 

In this chapter a novel approach to fabricate bioinspired adhesive surfaces with 

different 3D microtopographies using a single rigid 2D mold and combining micromolding 

and printing/inking approaches is described. The interplay of polymer viscosity and curing 

kinetics during mold filling has been exploited, thereby overcoming the need of expensive 

master molds for each variant. This fabrication approach does not require any complex 

3D patterning technique or special equipment and can be extended to the fabrication of 3D 

nanostructured surfaces by using micro and nanopositioning stages instead of manual 

inking and printing. Arrays of pillars terminated with flat, spherical, concave, mushroom- 

and spatula-like tips and hierarchical structures have been obtained. Even though they are 

meant as model systems, they strikingly well resemble the shapes found in natural 

attachment organs. Adhesion studies on these structures will be presented in the following 

two chapters. 



 
 
 

 58



4 Effects of Pillar Radius, Aspect Ratio, and Preload  
 

 

 59

4 Effects of Pillar Radius, Aspect Ratio, 

and Preload 

 

Abstract – Inspired by biological attachment systems, micropatterned elastomeric 

surfaces with pillars of different heights (between 2.5 and 80 µm) and radii (between 

2.5 and 25 µm) were fabricated. Their adhesion properties were systematically tested and 

compared with flat controls. Micropatterned surfaces with aspect ratios above 0.5 are 

found to be more compliant than flat surfaces. The adhesion significantly increases with 

decreasing pillar radius and increasing aspect ratio of the patterned features. A preload 

dependence of the adhesion force has been identified and demonstrated to be crucial for 

obtaining adhesives with tunable adherence. 



4 Effects of Pillar Radius, Aspect Ratio, and Preload 
 

 

 60

 

4.1 Introduction 

The attachment pads of many insects and geckos are covered with long micro to 

nanosized hairs with characteristic shapes and mechanical properties. This remarkable 

surface topography enables these animals to firmly attach to and easily detach from almost 

any kind of surface. Much recent work has been directed to a theoretical understanding and 

modeling of the complex interplay of physical, chemical and engineering factors behind 

this adhesion mechanism (6, 7, 10, 108, 109). However, the role of many of these 

parameters still remains unclear. 

As nature reveals, this adhesion concept promises enormous application potential. As 

a consequence, research efforts have turned to obtaining artificial, bioinspired adhesives 

(55). First, simplified analogues consisting of microsized vertical pillars with modest 

aspect ratios were obtained by soft molding elastomeric precursors on microfabricated 

templates, by hot-embossing polymer melts with microfabricated masters, by 

lithographically structuring resist films, or by direct drawing polymer fibers (24-26, 34, 39, 

45, 52, 55, 56, 58, 59, 110). Nanosized pillars with higher aspect ratios were also 

fabricated by filling nanoporous membranes with polymer solutions or low-viscosity 

precursors (26) or as vertically oriented multiwall carbon nanotubes (57, 58). Judging the 

progress is made difficult by the fact that questionable adhesion tests, e.g. with AFM tips, 

are sometimes employed. Also, few detailed and systematic studies (44, 45, 55, 56, 59) of 

fibrillar adhesives are available. 
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The manufacture of more complex structures, closer in design and performance to 

those in nature, is still a difficult task with state-of-the-art micro and nanofabrication 

technologies. In addition, the difficulty of performing and interpreting adhesion tests on 

patterned surfaces complicates the analysis of published data and the extraction of 

significant experimental information. In this context, this work focuses on the fabrication 

and testing of elastomeric model surfaces possessing pillars with controlled shape and 

material properties. The pillar arrays were made by soft molding polydimethylsiloxane 

(PDMS, Sylgard 184) on patterned SU-8 films on Si wafers. The radius (r), the height (h) 

and the aspect ratio (λ = h/2r), of the pillars were systematically and independently varied. 

The influence of these parameters on the adhesion properties of the surface will be 

described and compared with theoretical predictions. The discussion of the results 

presented in this chapter will contribute to a better understanding and more accurate 

identification of the relevant factors responsible for adhesion in biological systems and will 

guide the design of bioinspired artificial analogues. 

4.2 Experimental 

Soft molding of Sylgard 184 was performed on arrays of holes made by lithographic 

patterning of thick SU-8 films as described in chapter 3. The high chemical and 

mechanical stability of SU-8 makes it an optimum system for molding soft polymers. The 

dimensions of fabricated Sylgard 184 pillars ranged from r = 2.5 to 25 µm in radius and 

h = 2.5 and 80 µm in height. The aspect ratio λ was between 0.5 and 4. The interpillar 

distance was identical to the pillar diameter and the packing geometry was hexagonal or 

square. The resulting pillar packing density was 22.7 % for the hexagonal and 19.6 % for 

the square patterns. The patterned area was 0.8 × 0.8 cm2 for each geometry. 
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The adhesion performance of the hexagonal patterned surfaces and flat controls was 

tested by recording load-displacement curves obtained with a home-built indentation 

equipment (111). This apparatus consists of a glass spring mounted on a piezoelectric 

crystal (P-611 NanoCube from Physik Instrumente, Karlsruhe, Germany) and coupled to a 

hexapod nanopositioning stage (F-206 from Physik Instrumente, Karlsruhe, Germany). 

A sapphire sphere with a diameter of 5 mm provided by Goodfellow (Huntingdon, U.K.) 

was glued to the free end of the glass spring. Using a spherical tip solves the problem of 

possible misalignment between probe and surface occurring in flat-flat contacts. 

The patterned sample was placed on the positioning stage and the sphere was brought in 

contact. After compressive preloading, the sphere was retracted at a constant rate of 1 µm/s 

until pull-off occurred. The maximum vertical displacement of the piezo was 100 µm and 

the positioning accuracy was 1 nm. The stage had a maximum travel range of 12 mm with 

an accuracy of 100 nm. Spring deflection during contact was monitored via a laser 

interferometer (SP 120 from SIOS, Ilmenau, Germany). Calibration of the spring allowed 

conversion of the deflection into force. Using a spring with stiffness 130 Nm-1, forces up to 

4 mN could be measured with a resolution of 1 µN. Data collection was performed with a 

Labview software package. The sapphire sphere was cleaned with high-purity ethanol 

before each test. 

Since the mechanical properties of polymers may change over time, all adhesion 

experiments were performed on one-day old samples fabricated under the same 

experimental conditions. The laboratory temperature (~ 22°C) and humidity (~ 20 %) were 

registered for each measurement. A minimum of five measurements was performed for 

each data point. For comparison, adhesion tests under the same conditions were also 

conducted with flat specimens. 
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4.3 Results 

Arrays of elastomeric pillars with dimensions ranging from 1 to 25 µm in radius and 

2.5 and 80 µm in height could be successfully fabricated. SEM images of selected arrays 

are shown in Figure 4.1 (see also Figure 8.2 in appendix B). Fig. 4.1b is a close-up of 

Fig. 4.1a which exhibits flat-ended punches with sharp contours. Condensation (lateral 

collapse) of pillars was observed in arrays with aspect ratio greater than 3 for all pillar radii 

(see condensation patterns in Figure 4.1c and 4.1d). The demolding step during fabrication 

seemed to be critical for avoiding condensation. In fact, arrays with λ up to 4 and radius 

r > 2.5 µm showing no evidence of condensation could be obtained by careful demolding 

(Figure 4.1a). Condensation occurs when the adhesive forces between pillar tips in contact 

overcome the forces required for bending the pillar. Theoretical models predict critical 

aspect ratios for condensation between 2.5 and 5.2 for pillars with r = 2.5 µm, and between 

5.4 and 11.2 for pillars with r = 25 µm, assuming E = 2.6 MPa, packing density 0.2267, 

and γPDMS-PDMS = 0.044 Jm-2 (see (26, 44, 50, 88, 112)). These values agree with the 

experimental data. 
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Figure 4.1: SEM micrographs showing arrays of pillars made by soft molding Sylgard 184 on SU-8 

photolithographic templates. Pillars have a radius of 2.5 µm and a height of about 20 µm. The minimum 

interpillar distance is 5 µm. The hexagonal symmetry is highlighted by the superimposed line. Specimens 

were coated with 10 nm Au/Pd before taking pictures. Micrographs (a) and (b) show pillars in hexagonal 

packing. In (c) and (d) images of collapsed pillars with hexagonal and cubic symmetry are shown. 

A characteristic distribution of clusters was observed depending on the packing symmetry. See Figure 8.2 in 

appendix B for images of additional patterns. 

The geometry of the adhesion tests is depicted in Figure 4.2, together with a 

representative experimental force-distance curve obtained on patterned surfaces with 

pillars with r = 25 µm. Additional curves at different preloads can be seen in Figure 8.3 in 

appendix B. During loading, the curves initially show a non-linear response related to the 

change in the stiffness as the number of pillars in contact increased. No significant 

approach-retraction hysteresis could be noticed as an indication that the deformation of the 

sample is predominantly elastic and viscoelastic effects, while present, can be neglected. 

During retraction, the curves showed several points of instability where the force changed 

abruptly. The resulting saw-tooth profile was associated with isolated detachment events of 

the peripheral pillars in the contact area. These effects were not seen when measuring 
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adhesion to a planar surface. The final detachment event gives the value of the 

pull-off force (Pc). 
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Figure 4.2: Details of the test procedure: (a) Schematic of the adhesion test geometry: δ indentation depth, 

a radius of projected contact area, r pillar radius, h pillar height, s spacing between pillars. The lower 

schematic shows a plan view of the adhesion test. Note that in actual tests a >> r unlike in this simplified 

schematic. (b) Load-displacement curve obtained from a patterned surface with r = 25 µm and λ = 1. A saw-

tooth profile can be observed during retraction before pull-off occurs. See Figure 8.3 in appendix B for 

additional data. 
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The influence of the fabrication procedure, the environmental conditions 

(temperature and humidity), and the experimental parameters (indentation rate, preload) on 

the adhesion results were first tested and later carefully controlled to allow meaningful 

comparison of data obtained from different specimens. The time elapsed between the 

fabrication process and the adhesion measurements was critical for reproducibility. 

Because Sylgard 184 hardens upon storage, older samples show more than twice the 

Young’s modulus than as-prepared samples and therefore different load-indentation curves 

(80). Changes in humidity can also influence the experimental Pc values as liquid bridges 

around the contact areas result in higher adhesion. Meniscus forces on patterned surfaces 

depend on the geometry and radius of the contact surfaces, the hydrophobicity of the 

materials and the number of contact points (109, 113-115). To exclude meniscus effects as 

an additional variable, all measurements were performed at 20 % humidity. 

Figure 4.3 shows the experimental value of Pc for different compressive preloads on 

flat and patterned samples with constant λ = 1. It is seen that for flat samples Pc does not 

vary significantly with the preload. In contrast, Pc increases significantly with the preload 

for patterned surfaces until a plateau is reached. This increase is more pronounced for 

pillars with smaller radii; for r = 2.5 µm, Pc increases up to five times with increasing 

preload. Patterns with higher λ were also measured and gave similar profiles (data shown 

in appendix B). 
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Figure 4.3: Dependence of the pull-off force, Pc, on the preload, Pp, in adhesion experiments on flat and 

patterned surfaces with pillars of different radii and constant aspect ratio λ of 1. The solid lines represent the 

theoretical values according to contact splitting theory assuming JKR behavior (10) (E
*
 = 1.43 MPa, 

γ = 0.068 Jm
-2

). The dotted lines represent the theoretical values according to the spring model (116). 

The experimental error is within the size of the symbols. 

Patterned surfaces with decreasing pillar radius showed higher Pc at any preload, in 

agreement with the contact splitting principle (10). The flat surface showed higher Pc at 

low preloads than the patterned ones. This is mainly due to its higher actual contact area 

(Figure 4.2), which outweighs adhesion enhancement due to split contact at low preloads. 

At preloads exceeding 0.4 mN, Pc of patterned surfaces with r = 2.5 µm surpassed that of 

the flat surface. 

A more meaningful parameter to compare adhesion performance is given by the pull-

off strength, σc, which is obtained by dividing Pc by the apparent contact area, 2
aπ . This 

area is different for each preload value and can be calculated from the experimental 

indentation depth by simple geometrical considerations. Figure 4.4a shows how σc 

decreases with increasing preload in both flat and patterned surfaces. 
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Figure 4.4b represents the same data as a function of the maximum indenter 

displacement δ divided by the pillar height h. Higher σc is clearly obtained for patterned 

surfaces with smaller pillar radius. 
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Figure 4.4: Dependence of the pull-off strength σc (force per apparent contact area) on preload: 

(a) Variation of σc with preload for adhesion experiments on planar and patterned surfaces with pillars of 

different radius and λ = 1. (b) The same data as in (a) but represented in terms the relative indenter 

displacement δ/h. The solid lines represent the theoretical values according to contact splitting theory 

assuming JKR behavior (10) (E
*
 = 1.43 MPa, γ = 0.068 Jm

-2
). The experimental error is within the size of 

the symbols. 
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The benefit of patterning on adhesion performance can be also expressed in terms of 

the adhesion force divided by the actual contact area (tenacity). The tenacity of the 

patterned surfaces is in all cases higher than the tenacity of the flat surface, even for the 

largest pillars with r = 25 µm (see Figure 8.5 in appendix B). 

Similar experiments were performed on samples with pillars of various heights 

maintaining a constant pillar radius. Figure 4.5 shows the results obtained for pillars with 

r = 5 µm. A clear increase in Pc is observed at any preload when λ increases. The same 

tendency was observed in patterns with radius 10 and 2.5 µm (see appendix B Figure 8.6 

for data on the 10 µm radius pillars). The patterns with λ > 2 show higher Pc than the flat 

samples at preload values above 0.25 mN or indentation depths above 2.5 µm. 



4 Effects of Pillar Radius, Aspect Ratio, and Preload 
 

 

 70

0 1 2 3 4

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

 Flat

 λ = 4

 λ = 2

 λ = 1

 λ = 0.5

 

 

 Preload P
p
 (mN)

 P
u

ll-
o
ff
 f
o

rc
e

 P
c
 (

m
N

)

r = 5 µm

(a)

 

0 1 2 3 4

0

10

20

30

40

50

60

0 1 2 3 4

0

10

20

30

40

50

60

 λ = 4

 λ = 2

 λ = 1

 λ = 0.5
 

 

P
u

ll-
o

ff
 s

tr
e

n
g

th
 σ

c
 (

k
P

a
)

Preload P
p
 (mN)

(b)

 Flat

r = 5 µm

 

Figure 4.5: The influence of the aspect ratio on adhesion of patterned surfaces. Data correspond to pillar 

patterns with radius 5 µm and different heights, measured at different preloads. Solid lines correspond to 

theoretical values according to the JKR theory. The experimental error in the upper graph is within the size 

of the symbols. 
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4.4 Discussion 

This study reports the first systematic results of radius and aspect ratio effects on the 

adhesion of micropatterned fibrillar surfaces. Several quantitative observations were made 

which will be discussed in turn. 

4.4.1 Condensation patterns for different array geometries 

Interesting condensation patterns with clusters of different sizes were observed for 

equal inter-pillar spacing depending on the array symmetry. On average, hexagonal lattices 

afforded bigger clusters than cubic lattices (Figure 4.1). Taking into account that 

condensation is detrimental to adhesion, square packing of pillars seems to be more 

advantageous than hexagonal packing in this respect. This has indeed been observed in 

biological systems (in most gecko species setae are arranged in cubic symmetry (27)) and 

is in agreement with theoretical modeling (27). However, there will be an obvious trade-off 

with the actual contact area: Because of the higher fiber packing density, a hexagonal 

lattice would be preferred provided that condensation can be avoided by other means. 

4.4.2 Backing contact and buckling of pillars during adhesion testing 

The load-displacement curves do not show any significant evidence of contact 

between the sphere and the backing from which pillars protrude, even at indentation depths 

well above the pillar height. This result agrees with data reported by Crosby et al. (45), 

who observed such contact only in the case of low aspect ratio pillars with large 

separations. The condition for contact with the backing has also been modeled 

theoretically (88, 89). If applied to the pattern geometries, backing contact would happen 
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in pillars with less than 1 nm height, three orders of magnitude smaller than the smallest 

pillar height (2.5 µm). 

Buckling of high aspect ratio pillars at high preloads is another issue to be 

considered. Buckling would cause loss of contact between the pillar end and the sphere and 

would, consequently, reduce adhesion (44). The theoretical buckling criterion (88) predicts 

a minimum compressive load required for buckling (41 mN), which is well above the 

maximum preload (~ 4 mN), even for the pillars with the highest aspect ratio. For this 

reason, buckling events can be neglected in the experiments discussed here. 

4.4.3 Effective Young’s moduli of patterned surfaces 

The compressive parts of the load-displacement curves were analyzed using the 

Hertz theory of elastic contact (16) (see section 2.1.1). When applied to a patterned 

surface, this approach will be valid if the contact region is considerably larger than the 

pillar radius, and if the extracted Young’s modulus is interpreted as effective quantity (44). 

With these assumptions, the loading cycle of the load-displacement curves can be fitted 

with the Hertzian indentation model following 

3*

3

4
δREP =      (4.1) 

where P is the applied compressive load, E
* = E/(1-ν2) the effective Young’s 

modulus of the surface, ν = 0.5 Poisson’s ratio, R is the radius of the indenting sphere and 

δ the indentation depth. All indentation curves from planar and patterned surfaces fitted 

well to this expression and the obtained values of E*
 are represented in Figure 4.6 (see also 

Figure 8.7 in appendix B). Flat and patterned surfaces with short pillars (h = 5 µm) show 

the highest effective modulus, with similar values at around 1.4 MPa. Increasing the pillar 
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height at constant r causes a significant decrease in E*, down to 0.6 MPa in the case of 

h = 100 µm. The drop of E
* is more pronounced for λ < 2 and less significant at 

higher values. The pillar radius does not seem to influence E
* significantly as might be 

expected from arrays with equal packing density. 
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Figure 4.6: Variation of the effective Young’s modulus E

*
 with pillar height and aspect ratio for arrays with 

different radius. E
*
 was calculated by fitting the loading curves with the Hertzian indentation model. 
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According to the results presented in this chapter, patterned surfaces are significantly 

more compliant than flat ones only for aspect ratios above 0.5. For plate-like fibrillar 

PDMS structures with a minimum λ of 0.6, other authors also reported a reduction of 

effective modulus with increasing aspect ratio (44). It is not immediately obvious why 

low λ patterned surfaces (with packing density 22.7 %) have similar modulus values as flat 

controls. The author believes that the backing material also contributes to the mechanical 

deformation of the surface during indentation and, for this reason, the actual contact area 

may not influence E* in low λ patterns. 

An increasing pillar height at constant radius seems to enhance compliance more 

than a decrease in pillar radius at constant height. These results are difficult to compare 

with similar studies in literature (44) since there the height was kept constant and the width 

of plate-like structures was varied. The result of Glassmaker et al. (44) that the effective 

modulus decreases with decreasing structure radius, or width in their case, is qualitatively 

also found in the data presented here. 

4.4.4 Pull-off force versus preload 

The pull-off force does not vary significantly with the preload in flat samples 

(Figure 4.3). This observation is in accordance with the Johnson-Kendall-Roberts (JKR) 

theory, which predicts a value of Pc independent of preload and modulus (18): 

RPc πγ
2

3
−=      (4.2) 
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where γ is the work of adhesion and R the radius of a sphere adhering to a plane. 

Taking R = 2.5 mm and the experimental value Pc = 78 mN, the work of adhesion for the 

non-patterned PDMS surface amounts to γ = 0.068 Jm-2. 

In contrast, Pc increases with preload in patterned surfaces up to a saturation level. 

The author attempts to describe this behavior by the JKR-based contact splitting theory 

(10). According to this model, Pc would be given by (10, 12): 

( ) γπ 3*8)( rEPNPP ppc =     (4.3a) 

where 

2

2

)(
r

af
PN p

π

π
=       (4.3b) 

is the number of pillars in contact at preload Pp. The square-root factor in eq. 4.3a is 

the standard solution for an adhering flat punch; it is applicable only when the punch has 

higher modulus than the counter surface (117). For an elastic pillar in contact with a stiff 

indenter, as is the case here, the pull-off force is reduced by ca. 10 % and this equation can 

still be used as a first-order approximation (12). The theoretical pull-off strength can be 

derived by dividing Pc(Pp) by the apparent contact area at a certain preload. Since the area 

fraction of pillars in the case here is constant, the theoretical σc should not show any 

dependence on preload. The results of the JKR theoretical predictions for Pc and σc are 

represented as solid lines in Figures 4.3 and 4.4. Obviously, this model does not describe 

the experimental observations. 



4 Effects of Pillar Radius, Aspect Ratio, and Preload 
 

 

 76

The JKR model assumes that all pillars in contact are in tension at the pull-off event, 

which is not the case for a spherical indenter. A theoretical model which describes this case 

has been recently proposed (116). It models the contact between the pillar pattern and the 

spherical indenter as an array of independent elastic springs attached to a rigid hemisphere 

and compressed against a flat surface. During unloading, the springs at the periphery of the 

contact area are elongated, while the springs near the center of the contact remain in 

compression. When the outer springs reach the maximum elongation, they detach from the 

surface. As a consequence, the contact radius (and therefore the number of attached 

springs) decreases gradually during retraction. The contact holds until the remaining 

springs are no longer able to compensate the pulling force. This occurs at a critical contact 

radius, acrit, at which the rest of the springs detach simultaneously. The pulling force at this 

point is the plateau force Pc(max) and is given by (116): 

4
*

(max)
4

critc a
Rh

E
P

π
=    if critaa ≥      (4.4) 

where h is the spring (or pillar) height and E
* is the effective elastic modulus as 

discussed above. Note that Pc(max) is independent of the preload and that this expression is 

only valid if acrit has been reached during loading. Otherwise, Pc is smaller and given 

by (116): 

ppcpc PPPPP −= (max)2)(    if critaa ≤     (4.5) 

It is evident that the spring model describes the experimental data qualitatively well 

(see dotted lines in Fig. 4.3). Pc increases with preload until it reaches a saturation level, 

above which Pc remains constant (Pc(max)). The discrepancy between the experimental and 

the theoretical plateau forces can be attributed to the error in determining ac (see Fig. 4.8 
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below), which enters with the power of 4 (eq. 4.4). This error might originate in the 

coupling between the pillars which is neglected by the spring model. 

These data suggest an interesting mechanism for tuning the effective adhesion 

performance of a patterned surface by modulating the applied preload. Note that wider Pc 

tuning ranges are possible in patterns with smaller pillar radii (Figure 4.3). 

4.4.5 Pull-off force versus pillar radius 

As shown in Figures 4.3 and 4.4, a decrease in the pillar radius causes a significant 

increase in pull-off force and strength. This is more clearly illustrated in Fig. 4.7a, where 

the pull-off strength is plotted against the pillar radius, on log-log scales, for three different 

preload values. The slope of these data defines the potential for improving σc by scaling 

the contact size and has been termed “splitting efficiency” (10, 12). Larger absolute values 

of the slopes result in higher gains in Pc by splitting the contact. Slopes between -0.40 and 

-0.46 were obtained, very close to the theoretical value predicted by the contact splitting 

theory (12) for pillars with flat ends, i.e. -0.50 (shown as dotted line in Fig. 4.7a). The good 

agreement between the JKR-based theoretical prediction and the experiments suggests that 

this theory can be used to explain adhesion of patterned elastomeric surfaces. 
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Figure 4.7: Pull-off strength as a function of pillar parameters: (a) σc vs. pillar radius showing the 

beneficial effect of smaller pillars. (b) σc vs. aspect ratio. In both plots, dotted lines represent the expected 

theoretical slope (12, 118). 
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4.4.6 Pull-off force versus pillar aspect ratio 

Figure 4.5 has shown a 3-fold increase in Pc (at high preloads) when the aspect ratio 

was raised from 0.5 to 4. The increased adhesion of patterns with high λ has been 

attributed to a higher elastic energy dissipated at pull-off (24, 118-120), in analogy to the 

mechanism of crack propagation in rubbery materials (120). Assuming full dissipation, the 

elastic energy stored has to be added to the work of adhesion, resulting in an effective 

work of adhesion: 

λ
σ

γγ
E

rf
eff

2*

+=      (4.6) 

Taking a value for the interfacial strength, σ*, typical for a soft, good adhesive 

(σ∗ = 1 MPa (118)), and taking the experimental values E* = 1.43 MPa, γ = 0.068 J/m2 and 

f = 0.2267, the values of γeff corresponding to λ = 0.5 and 4 were calculated, resulting in 

γeff(λ = 0.5) = 0.464 J/m² and γeff(λ = 4) = 3.239 J/m². As in eq. 4.3a, Pc is expected to scale 

with the square root of the work of adhesion. This results in a theoretical 2.6-fold increase 

in Pc, when going from λ = 0.5 to 4, close to the experimental value. Figure 4.7b represents 

the increase in σc with increasing λ at three different preload values. The expected 

theoretical slope (0.37) according to the mentioned theories is also represented as 

dotted line. 

Published data for the influence of the aspect ratio on the adhesion of patterned 

surfaces are scarce and contradictory. With some scatter range, no influence of λ on the 

adhesion of polyvinylbutyral fibrils with E = 3.4 MPa, radius 1 mm and λ between 1 and 

15 was reported (23). A decrease in the adhesion force of pillar structures with r = 100 nm 

with increasing λ was also published (113), although measurements were performed only 



4 Effects of Pillar Radius, Aspect Ratio, and Preload 
 

 

 80

at aspect ratios of 1 and 3 . The author believes that the data of this thesis represent the first 

systematic values for the increase of adhesion by increasing λ. 

Finally, the influence of λ on acrit and the number of pillars in contact at acrit 

according to the spring model are addressed. These parameters can be extracted from the 

value of Pc(max) as shown in Figure 4.8 (and Figure 8.8 in appendix B). At constant radius, 

acrit and the number of pillars in contact at acrit increase with increasing height or λ. For 

patterns with r = 5 µm, the critical radius is found to be acrit = 39 µm for λ = 0.5 and 

acrit = 91 µm for λ = 4. This increase is more pronounced for small radii and is almost 

imperceptible in pillars with r = 25 µm. This means that, in order to reach the maximum 

pull-off force of a patterned surface with high aspect ratio features, higher preloads are 

required than for low λ features. Taking the preload dependence of Pc as an effective 

mechanism to modulate adhesion performance, high λ patterns will thus offer a much 

wider modulation range than low λ patterns. Since fitting the data presented in Fig. 4.3 

with the spring model is not perfect and the critical contact radius is sensible to small 

changes in the saturation value of the pull-off force, the acrit values have rather large error 

bars as can be seen in Figure 4.8a. 
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Figure 4.8: Critical contact radius acrit and number of pillars in contact at acrit for different pillar radii and 

heights. The values were determined by fitting the Pc vs. Pp data with the spring model (116). 
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4.4.7 Comparison with biological systems 

Microscopy studies have demonstrated that the fibrillar attachment pads of flies, 

spiders and geckos show fibrils (“setae”) with decreasing radii with increasing animal body 

mass (10, 22). Whereas micron dimensions of the fibrils are sufficient for reliable 

attachment of flies or beetles, geckos must resort to sub-micron structures to ensure 

adhesion. The results of this thesis have demonstrated that adhesion enhancement by 

contact splitting is also applicable to artificial fibrillar structures. However, in spite of the 

adhesion improvement observed in the micropatterned surfaces with decreasing pillar radii, 

these still demonstrate lower Pc than flat controls in some cases (see Figure 4.3, low 

preload values). Patterns with smaller radii or more densely packed pillars are required to 

take real advantage of a split contact surface. In biology, packing densities of about 30 % 

are found in the hairs of the attachment pad of flies with hair radii around 1 µm (121, 122). 

Gecko setae are not made of a soft material, as PDMS, but of harder β-keratin with a 

Young’s modulus around 1 to 3 GPa. This makes the setae mechanically stable even at 

aspect ratios up to 100 without showing condensation. As a consequence of the high aspect 

ratio, the effective Young’s modulus of the surface is decreased to 100 kPa (123). This 

value is 6 times lower than that of the patterned surfaces with an aspect ratio of 4. Such a 

high compliance enables the gecko to adhere also to rough surfaces, where adhesion 

behavior to the artificial structures of this thesis remains yet to be determined. 

A preload dependence of the pull-off force has also been found in adhesion 

measurements performed on the attachment pads of the great green bush cricket (124). The 

authors point out that this mechanism may enable controlled attachment and detachment in 

animal locomotion (116, 124). According to the results discussed here, the high aspect 

ratio of the fibrils also contributes positively to this capability. High aspect ratio fibrils 
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require larger preloads to reach the maximum pull-off force than low aspect ratio fibrils; 

hence animals with high aspect ratio hairs will be able to modulate their adhesion force 

within a much wider range than those with low λ hairs. Artificial high λ structures thus 

remain a worthwhile challenge for microfabrication. 

4.5 Conclusions 

Sylgard 184 PDMS surfaces were microstructured with pillars of different radii 

(2.5 to 25 µm) and aspect ratios (0.5 to 4). Adhesion tests with a spherical probe indenter 

at different preloads were carried out. The data provide systematic and quantitative 

evidence of the positive influence of reducing the radius and/or increasing the fibril height 

on adhesion. The main results can be summarized as follows: 

• Size effect: The pull-off strength σc increased with r-0.4, where r is the pillar radius 

(at constant aspect ratio). This splitting efficiency is in good agreement with the 

JKR-based theoretical prediction of -0.5. 

• Aspect ratio effect: The pull-off strength σc increased with λ0.3, where λ is the 

aspect ratio of the pillars (at constant pillar radius). This increase in adhesion is 

attributed to higher elastic energy dissipation at pull-off with higher aspect ratio 

fibers. 

• Preload dependence: For the spherical probe surface used, the compressive preload 

affects the adhesion force and strength; this dependence is more significant in 

high λ patterns, which allows modulating adhesion within wider ranges. This effect 

can be explained by a previous model (116). 
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• Optimum patterns: The highest pull-off forces can be expected for pillars with 

small radii and high aspect ratios, while avoiding their adhesive condensation. This 

highlights again the need for a trade-off between geometrical and elastic 

parameters as illustrated e.g. in adhesion design maps (15). 

• Data comparison: The preload dependence can obscure comparison of adhesion 

data obtained by different groups as measurements are usually performed with 

different indenter geometries and at different preloads. It is suggested that the 

entire Pc vs. preload curve or its saturation value should be represented for 

meaningful comparison. 
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5 Contact Shape Controls Adhesion of 

Bioinspired Fibrillar Surfaces 

 

Abstract – Following a recent bioinspired paradigm, patterned surfaces can exhibit 

better intermolecular adhesion than flat contacts. Previous studies have verified that finer 

contact structures give rise to higher adhesion forces. This study reports on the effect of 

contact shape, which was varied systematically in fibrillar PDMS surfaces, produced by 

lithographic and soft molding methods. For fiber radii between 2.5 and 25 µm, it is found 

that shape exerts a stronger effect on adhesion than size. The highest adhesion is measured 

for mushroom-like and spatular terminals, which attain values 30 times in excess of the flat 

controls and similar to a gecko toe. These results explain the shapes commonly found in 

biological systems, and help in the exploration of the parameter space for artificial 

attachment systems.
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5.1 Introduction 

Patterned surfaces, with a large number of regular micro to nanoscale features, are of 

increasing scientific interest because of their enhanced adhesion properties. Inspired by the 

attachment pads of insects and geckos (7-9, 125, 126), theoretical contact and fracture 

mechanics models (10, 23, 56, 127-129) have been established for fibrillar adhesion. First 

artificial analogues were produced as proof of principle, with mixed results with regard to 

adhesion performance (24-26, 34, 45, 55-59, 110). 

To advance the subject and to provide a rational basis for the creation of superior 

surfaces, systematic studies of the different design parameters are required. So far, mainly 

the effects of fibril size, for a constant flat punch-like tip shape, have been investigated in 

detail (see chapter 4). In that study, the principle of contact splitting, which favors a large 

number of smaller contacts over a small number of large ones (10, 11), was validated. 

However, nature provides a variety of contact shapes, ranging from spherical to 

conical, filament-like, flat, toroidal and concave terminals (12). Two recent experimental 

reports (39, 52) have stressed the significance of shape also in artificial systems; however 

in systematic terms, this degree of freedom so far has been largely neglected in the design 

of artificial analogues. 

The objective of the present study is to provide the first experimental and systematic 

evidence of the role of contact shape in adhesion of split contact surfaces. For this purpose, 

different lithographic and soft molding methods were combined to fabricate elastomeric 

surfaces (Sylgard 184) patterned with micropillars of different shapes (flat, spherical, 
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concave, mushroom-type and spatular terminals) and dimensions. Their adhesion behavior 

was systematically characterized in terms of tip shape and pillar radius, and compared with 

theoretical predictions. Indeed, a strong effect of shape was identified which can 

overshadow the influence of size. 

5.2 Experimental 

Pillar arrays with different terminal shapes were obtained by combination of soft 

molding, inking and printing steps using elastomeric precursors and lithographic masters, 

as described in chapter 3. The dimensions of the fabricated structures ranged from 

r = 2.5 to 25 µm in radius and h = 5 and 50 µm in height. In all structures the aspect ratio 

was set to λ =1 to allow comparison of the results. The interpillar distance was identical to 

the pillar diameter and the packing geometry was hexagonal. The resulting pillar packing 

density was 22.7 %. The patterned area was 0.8 × 0.8 cm2 for each geometry. The 

fabrication of pillars with different tip shapes has been presented in chapter 3. To make it 

easier to comprehend this chapter, parts of the fabrication approaches will be repeated in 

the following paragraphs. 

Fabrication of pillars with flat tips by soft molding on SU-8 lithographic templates: 

A 10:1 ratio of Sylgard 184 prepolymer and crosslinker was mixed, degassed and poured 

on the silanized SU-8 patterned wafer. Curing for 14 hours at 65°C in light vacuum 

ensured complete filling of the template and fabrication of accurate replicas. Careful 

demolding was necessary to avoid template damage. The total thickness of the elastomer 

samples was 7 mm in all cases. Further details on the procedure can be found in chapters 

3 and 4. 
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Fabrication of pillars with spherical terminals by inking: A 10:1 ratio of Sylgard 184 

prepolymer and crosslinker was mixed, degassed and spin-coated onto a silicon wafer to 

obtain film thicknesses below 6 µm. Previously soft molded Sylgard arrays of pillars were 

inked in the spin-coated film and cured upside-down in an oven during 14 hours at 65°C. 

A nearly hemispherical cap formed at the top of the pillars as a consequence of gravity and 

surface tension. The dimensions and radii of curvature were characterized by white light 

interferometry and are specified in Table 5.1. 

Fabrication of pillars with mushroom-like terminals by soft molding on quenched 

lithographic molds: Lithographically structured wafers with holes were processed as in 

chapter 4, but using rapid cooling after soft, post-exposure and hard bake. Rapid cooling 

(by putting the hot wafers on a glass petri dish at room temperature) seemed to cause 

stresses in the SU-8 layer due to the mismatch in the thermal expansion coefficients of 

resist and wafer. As a consequence, delamination occurred at the edge of the holes. Soft 

molding Sylgard 184 on these templates rendered pillars with a thin, compliant ring, 

resembling a mushroom profile. 

Fabrication of pillars with mushroom-like terminals by printing: The inked patterns 

were pressed against a perfluorosilanized wafer before curing in an oven during 14 hours at 

65°C. Special care had to be taken to maintain the wafer in horizontal position for 

obtaining symmetric mushroom-like tips. 

Fabrication of spatula-like terminals by tilted printing: The inked patterns were 

pressed against a perfluorosilanized wafer before curing. Curing of the assembly was 

performed in tilted arrangement in an oven during 14 hours at 65°C. Tilting slightly shifts 

the pillars from their initial printed position and creates an asymmetric terminal profile. 
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Fabrication of pillars with rounded edges by double molding: Sylgard hole patterns 

were first obtained by soft molding on SU-8 masters and then silanized by vapor exposure 

in vacuum to Hexadecafluoro-1,1,2,2-tetrahydrooctyltrichlorosilane for 30 minutes, 

followed by a second curing step at 200°C during 8 hours. After this treatment, a 10:1 ratio 

of Sylgard 184 prepolymer and crosslinker was cast and cured at 65°C for 14 h. The 

silanization and curing steps at 200°C are essential for avoiding sticking of the cured and 

fresh Sylgard 184. The pillars obtained after demolding had the expected dimensions but 

rounded edges, presumably as a consequence of the perfluorinated layer hindering wetting 

of the cavity corners by the Sylgard 184 precursor. 

Fabrication of pillars with concave tips by soft molding with Provil Novo and P2: 

A 1:1 ratio of Provil Novo base paste and catalyst paste was mixed for 30 seconds and 

deposited on a silicon wafer. In the case of P2, the polymer base paste and catalyst paste 

were mixed in a mini-extruder provided by the supplier. Homogeneous ∼ 0.5 mm thick 

films with different viscosities were prepared by spin-coating on a silicon wafer for 

defined times (between 4 and 6 minutes when using Provil Novo and between 1 and 4 

minutes when using P2). Subsequently, the SU-8 mold was deposited vertically against the 

film and pressed with a weight having a mass of 250 g. The system was allowed to harden 

for 10 minutes. Pillars of decreasing height and with increasing concave profile were 

obtained by increasing the spin-coating time. The dimensions and radii of curvature for 

each case were characterized by white light interferometry (Table 5.1). This, as well as the 

replication of the pillars in PDMS (described below) was work performed by Irma Álvarez 

during her diploma thesis. She provided the samples tested here. 
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Replication of the pillars with concave tips in Sylgard 184: The concave structures 

obtained from Provil Novo were replicated in Sylgard 184 by using Modralit 3K as 

intermediate material for obtaining a negative copy. Subsequent soft molding Sylgard 184 

on the Modralit 3K mold gave accurate replicas. The concave structures obtained from P2 

were replicated in Sylgard 184 by using Provil Novo as intermediate material and a 

perfluorosilanized layer to avoid sticking of Sylgard 184 to Provil Novo. 

Adhesion measurements: Using the same procedure as reported previously in 

chapter 4, the adhesion performance of the hexagonal patterned surfaces and flat controls 

was tested by recording load-displacement curves obtained with a home-built indentation 

equipment (111). A sapphire sphere with a diameter of 5 mm was pressed against the 

patterned sample and retracted at a constant rate of 1 µm/s until pull-off. The experimental 

value of the pull-off force, Pc, was extracted from the minimum of the retraction curves. 

Spring deflection during contact was monitored via a laser interferometer, which allowed 

us to measure forces up to 4 mN and 25mN – depending on the spring stiffness – with a 

resolution of 1 µN. Data collection was performed with a Labview software package. The 

sapphire sphere was cleaned with high-purity ethanol before each test. 

Since the mechanical properties of polymers may change over time, all adhesion 

experiments were performed on one-day old samples fabricated under the same 

experimental conditions, unless specified. The laboratory temperature (∼ 22°C) and 

humidity (∼ 20 %) were registered for each measurement. A minimum of 5 measurements 

was performed for each data point. For control purposes, adhesion tests under the same 

conditions were also conducted with flat specimens. 
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5.3 Results 

5.3.1 Pull-off behavior 

Figure 5.1 shows SEM images of representative patterned surfaces: pillars with flat, 

spherical, flat with rounded edges, mushroom, spatular and concave terminals. A more 

detailed description of the fabrication processes and structures can be found in the previous 

two chapters. The radii and curvatures of the different tips, as characterized by white light 

interferometry are given in Table 5.1 (see Figure 8.9 in appendix C for an example of a 

whitelight profile for spherical tips). It is seen that the fabrication process rendered 

homogeneous, well-defined structures. The pillars exhibit smooth surfaces in contrast, for 

example, to the structures investigated by Varenberg et al. (42). 
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Figure 5.1: SEM images of selected patterns with different tip shapes: (a) flat, (b) spherical, (c) flat with 

rounded edges, (d) spatular, (e) mushroom (inked/printed), (f) mushroom (molding), (g) concave tips. Pillars 

have a radius of 10 µm and a height of about 20 µm except for pillars terminating in concave shapes (height 

9 µm). Specimens were coated with 10 nm Au/Pd before taking pictures. 
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Table 5.1: Shapes and dimensions of the surface patterns, including mechanical parameters: The effective 

Young’s modulus E
*
 was determined from the compressive behavior and the splitting efficiency corresponds 

to the slope of the data in Fig. 5.7. 
 

Contact shape 

Pillar 

radius, r 

(µµµµm) 

Tip 

dimensions 

(µµµµm) 

E
*
 (MPa) 

 

Splitting 

efficiency 

(at Pp = 1mN) 

Exp. (Theory) 

2.5 2.5 1.38 

5 5 1.30 

10 10 0.95 

Flat tip 

 

 

  

r 

 25 25 0.76 

-0.48 (-0.5) 

2.5 r1 = 9.3 1.34(*) 

5 r1 = 16.4 1.13(*) 

10 r1 = 24.1 1.02(*) 

Spherical tip 

r

r1

r

r1

 
25 r1 = 39.3 0.58(*) 

-1.00 (-1) 

2.5 
r = 2.9 
r2 = 2.7 

1.38 

5 
r = 5.2 
r2 = 4.8 

1.00 

10 
r = 10.0 
r2 = 9.0 

1.16 

Flat tip with rounded edges 

r

r2

r

r2

 
25 r = 25.5 

r2 = 21.6 
0.85 

 

10 r1 ~ 12.9 2.50(*) 

Mushroom tip (fabricated by 
printing) 

 

r 

r 1 

r 

r 1 

 

25 r1 ~ 32.0 1.81(*) 

-2.26 

9.1 r1 ~ 9.7 2.29 Mushroom tip (fabricated by 
molding on quenched wafers) 23.5 r1 ~ 25.2 1.47 
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Contact shape 

Pillar 

radius, r 

(µµµµm) 

Tip 

dimensions 

(µµµµm) 

E
*
 (MPa) 

 

Splitting 

efficiency 

(at Pp = 1mN) 

Exp. (Theory) 

10 
r1 = 11.3 

r2 = 10.1 
2.29(*) 

Spatular tip 

r

r1
r2

r

r1
r2

 

25 
r1 ~ 33.8 

r2 ~ 30.1 
1.81(*) 

-1.54 

5 
r1 ~ 3 

h = 9 
0.60 

10 
r1 ~ 3 

h = 9 
0.59 

Concave tip 

r

r1

r

r1

 
25 

r1 ~ 6 

h = 9 
0.50 

 

(*) These surfaces were cured twice during the fabrication process. 

Figure 5.2 shows the measured pull-off forces, Pc, as functions of preload, Pp, for 

patterns with different tip shapes and radii. For comparison, the values obtained from a flat 

sample are also included. Pc measured on flat samples did not vary significantly with 

preload, as was expected from the Johnson-Kendall-Roberts (JKR) theory (18). In contrast, 

Pc increased strongly with preload for all patterned surfaces, except for the concave tips, 

until a plateau was reached. Pillars with concave tips behaved differently: starting with a 

very low plateau, Pc increased with preload and, finally, reached a higher saturation level; 

all pull-off values for concave tips were significantly below the ones for the other shapes. 
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Figure 5.2: Pull-off force vs. preload for the different shapes: (a) flat tip, (b) spherical tip, (c) spatular tip, 

(d) mushroom-like tip, (e) flat tip with rounded edges and (f) concave tip. The data for the flat punch pillars 

is taken from chapter 4. 

Patterned surfaces with planar, spherical, mushroom and spatular tip shapes showed 

increasing Pc for decreasing pillar radius at any preload, in agreement with the contact 

splitting principle (10-12). In the case of tips with rounded edges, a similar tendency was 



5 Contact Shape Controls Adhesion of Bioinspired Fibrillar Surfaces 
 

 

 98

found for pillars with radii 25, 10 and 5 µm; however, Pc dropped for patterns with smaller 

radius (2.5 µm). At low preloads, patterns with concave tip shape showed very low 

adhesion independently of the radius. Pc started increasing at lower preloads for smaller 

radii, but reached similar plateau values for all radii. A split contact surface does not seem 

to favor adhesion for this shape. 

Comparison with flat controls depends on the contact shape: The pull-off force of 

patterned surfaces with flat tips exceeded Pc of the flat surface for r < 5 µm. In the case of 

mushroom and spatular tips, Pc was much higher than for the flat surface for all measured 

radii. In contrast, spherical, rounded edge and concave tips showed lower Pc than the flat 

control substrate. This may be attributed to the loss of actual contact area in patterned 

cases, which does not seem to be outweighed by the adhesion enhancement due to contact 

splitting for these shapes. To check whether the high adhesion values of the mushroom-like 

pillars correlated with the diameter of the mushroom terminal, samples with the same pillar 

radius but different mushroom tip radii were measured. Results for the two fabrication 

methods are represented in Figure 5.3 for pillar radii 25 and 10 µm. No significant 

difference in the adhesion performance could be detected in samples with differences in 

the tip diameter of up to 7 µm. 
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Figure 5.3: Pull-off force vs. preload for pillars with mushroom tips having the same pillar radius 

(10 or 25 µm) but different mushroom tip radius, obtained by different methods (printing or molding on 

quenched wafers). 

A comparison of pull-off force vs. preload for pillars with different tip shapes but the 

same radius and height is given in Figure 5.4. Large Pc values were found for mushroom 

and spatular tips in comparison with all other shapes (note that the Pc-axis is split). The 

following ranking of adhesive performance for the different tip shapes can be extracted: 

mushroom tips are far superior, followed by spatula tips; flat tips have considerably weaker 

adhesion, but are stronger than flat tips with rounded edges, spherical and concave tips. 
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Figure 5.4: Comparison of pull-off force vs. preload data for the different shapes. Pillar radius is fixed at 

10 µm. Note that the ordinate is split to include the experimental values for the mushroom tip. 

The experimental error is within the size of the symbols. 

A more meaningful parameter to compare adhesion performance is given by the pull-

off strength, σc, which is obtained by dividing Pc by the apparent contact area. This area is 

different for each preload value and can be calculated from the experimental indentation 

depth by simple geometrical considerations as πa², where a is the radius of contact for the 

sphere with the substrate at maximum preload (same approach as in chapter 4). Figure 5.5 

shows how σc decreases with increasing preload in all cases except for pillars with concave 

tip shape, which show a small increase in σc with preload. 
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Figure 5.5: Pull-off strength vs. preload for the different shapes: (a) flat punch tip, (b) spherical tip, 

(c) spatular tip, (d) mushroom-like tip, (e) tip with rounded edges and (f) concave tip. The data for the flat 

punch pillars is taken from chapter 4. 

 

5.3.2 Compressive behavior 

The compressive parts of the load-displacement curves were further analyzed by 

applying the Hertz theory of elastic contact (16), neglecting the fibrillar nature of 
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the surfaces. An effective Young’s modulus E* = E/(1-ν2), where ν = 0.5 is Poisson’s ratio, 

was obtained by fitting the experimental data to the expression: 

3*

3

4
δREP =      (5.1) 

where P is the applied compressive load, R is the radius of the indenting sphere and δ 

the indentation depth. The fits are shown in Figure 5.6 for pillars with r = 10 µm and the 

resulting values of E* are listed in Table 5.1. For a given radius, pillars with flat, spherical 

and rounded edge tips gave similar results; pillars with concave tips showed much lower 

E
*, by up to a factor 1/2, presumably as a consequence of the thin, flexible tip walls. 

Surfaces with mushroom and spatular tips had significantly higher values, typically by 

a factor of 2 to 3. 
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Figure 5.6: Compressive portions of the load-displacement curves for patterns with a radius of 10 µm and 

different contact shapes. Lines represent fits to the Hertz theory of elastic contact (16). The values of the 

effective Young’s moduli, E
*
, obtained from the fits are given in Table 5.1. 
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5.4 Discussion 

This chapter reports on the first systematic study of the effects of fiber tip shape on 

adhesion. It is clear from the results that fiber shape augments the role of fiber radius, 

which was studied systematically for flat ends in chapter 4. In the following, these results 

are discussed in detail. 

5.4.1 Influence of tip shape on pull-off force 

The results presented here show clearly that contact shape strongly influences the 

adhesion behavior. For a given radius, pillars with flat punch tip shape have significantly 

higher Pc than spherical contacts. This is expected from contact mechanics considerations, 

e.g. ref. (12). The flat contact with rounded edges shows an intermediate behavior for pillar 

radii below 5 µm. Such pillars with smaller radius (2.5 µm) give a smaller Pc than 

spherical contacts. This could be due to the decreased flat to edge ratio for small pillar 

radius, which lowers the actual contact surface. The contact mechanics for such rounded 

structures has recently been described (108). It was shown that the pull-off force is 

different for a truncated sphere than for a flat punch with rounded edges. This sensitivity to 

the exact contact perimeter might be the reason why the experimental values drop for the 

smallest pillar radius. 

Pillars with mushroom tips show the highest pull-off force, suggesting that the 

presence of a thin, compliant ring at the top of the pillar favors adhesion. The effect is 

considerable: the adhesion strength increases by a factor of 30 compared with the 
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flat control and amounts to 170 kPa in mushroom type pillars with r = 10 µm. 

This adhesion performance is comparable to that of the gecko (6). 

Two recent studies have already shown results on mushroom type structures and also 

pointed out their benefit in adhesion (39, 52) – see also literature review in chapter 2. 

However, when comparing the effect of the pattern density, which is around 40 % in the 

above mentioned studies and about 22 % here, it is found that our structures possess 

superior adhesion performance, with equal (compared to Kim and Sitti, σc = 180 kPa) – or 

higher adhesion strength (compared to Gorb et al., σc = 58 kPa), than the more densely 

patterned surfaces. In this more systematic study, the influence of the different parameters 

of the mushroom shape is also analyzed. Surprisingly, the radius and thickness of the upper 

ring does not seem to influence the final adhesion performance. Only the pillar radius, and 

therefore the number of contact points, seems to be important. 

Pillars with spatular tips show an intermediate behavior between flat and mushroom 

tips. To the authors knowledge, this is the first example of an artificial adhesive surface 

with asymmetric pillars, close in design to attachment organs observed in flies. The 

adhesion performance of these asymmetric structures may change depending on the 

direction of the retracting force. This could be advantageous in applications where repeated 

attachment/release events are required, as in animal locomotion. 

In comparison to all other shapes, concave tips give by far the lowest Pc. It is 

possible that such tips adhere through a suction mechanism, which would be insensitive to 

the fiber radius for a given pressure difference (12). If verified, this different adhesion 

mechanism could be an explanation for the variant behavior exhibited by concave tips in 

the measurements presented in this thesis. 
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According to theoretical models, the differences in adhesion force due to contact 

shape decrease with decreasing contact size and Young’s modulus (i.e. softer 

materials) (130). For a material like Sylgard 184 (E ≈ 2 MPa), these differences are 

predicted to become negligible for radii below 100 nm. 3D patterns with such small 

dimensions are difficult to obtain with the current procedures, but will be matter of 

future studies. 

5.4.2 Size effect for different shapes: “splitting efficiency” 

The results in Figures 5.2 and 5.5 show that a decrease in pillar radius causes a 

significant increase in pull-off force and strength in pillars with flat, spherical, spatular and 

mushroom tips. This is illustrated more clearly in Figure 5.7, where the pull-off strength is 

plotted against the pillar radius, on log-log scale, for a constant preload value of 1 mN. The 

slope of these data defines the potential for improving σc by down scaling of the contact 

size and has been termed “contact splitting efficiency” (12). Larger absolute values of the 

slopes result in higher gains in σc by splitting the contact. Values of the slopes are given in 

Table 1. A slope of -0.48 ± 0.03 was obtained for flat tips, close to the theoretical value of 

-0.50 (12). A higher negative slope was found for spherical contacts, where the 

experimental value of -1.00 ± 0.02, also equals the theoretical predictions. The highest 

splitting efficiency is observed in mushroom and spatular contacts, with estimated slope 

values of -2.26 and -1.54 respectively. These values are yet to be explained theoretically. 
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Figure 5.7: Tip radius dependence of the pull-off force (“splitting efficiency”) for flat, spherical, spatular 

and mushroom-like contacts. Data correspond to a preload of Pp = 1 mN. In the case of spherical tips, the 

radius corresponds to the radius of curvature measured by white light interferometry (Table 5.1). For all 

other shapes the pillar radius is used. 

Not shown is the case of concave tips, where the fiber radius did not seem to 

influence Pc at low or high preloads. Only at intermediate Pp did these tips display slight 

radius effects. This insensitivity to scaling is a possible indication for a suction effect (12). 

5.4.3 Preload dependence of pull-off force for different tip shapes 

The preload dependence of Pc for patterned surfaces has been described theoretically 

(116) and shown experimentally for pillars with flat tips in chapter 4. By modeling the 

contact between the pillar pattern and the spherical indenter as an array of independent 

elastic springs attached to a rigid hemisphere and compressed against a flat surface, an 

increase of Pc with preload up to a plateau value, Pc(max) was predicted (116). When applied 

to the experimental results (not shown here), this model seems to reproduce the preload 

dependence of Pc in spherical, rounded edge, mushroom and spatular tip shapes, but it does 

not describe the case of concave tips. 
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Pc(max), as given by the fit to the spring model, is represented in Figure 5.8 for the 

different radii and shapes. An increase in Pc(max) was found for decreasing pillar radii, as 

expected also from contact splitting (10). The indentation radius of the contacting sphere 

acrit at which Pc(max) is reached can also be obtained from the fit. Figure 5.8 shows that acrit 

increases slightly with pillar radius (for constant aspect ratio) in the case of spherical, flat 

and rounded edge tips. Similar values of acrit were found for these tip shapes at constant 

pillar radius. This was not the case for patterns with mushroom-like tips, which show much 

higher values of acrit. Higher acrit means that higher preloads are required in order to reach 

the maximum pull-off force of the patterned surface. Taking the preload dependence of Pc 

as an effective mechanism to modulate adhesion performance, pillars with mushroom-like 

patterns will thus offer a much wider modulation range than pillars with other shapes. This 

design can be advantageous for the fabrication of adhesives with tunable adherence. 
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Figure 5.8: Maximum value (plateau) of the pull-off force, Pc(max), and critical contact radius, acrit, for 

different pillar radii and tip shapes. The values were determined by fitting the Pc vs. Pp data with the spring 

model (116). In (a), note the split ordinate in order to accommodate the values for the mushroom-like tips. 

It is important to remember that the patterned surfaces with spherical, mushroom and 

spatular tips obtained by inking and printing have undergone two sequential curing 

processes. Because of more extensive crosslinking, this implies a higher Young’s modulus 

of the pillar material. For flat Sylgard 184, E* amounts to 1.42 MPa after a single, and to 
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3.04 MPa after a double curing process. However, this does not seem to be the determining 

factor for the values obtained since surfaces with mushroom terminals obtained by molding 

(single curing) or by printing and inking (double curing) show similar E* values (to within 

20 %). 

Table 5.1 shows that E* decreases notably with decreasing radius at constant aspect 

ratio for all shapes except for the concave tip. Regarding these data it is unclear whether 

the change can be attributed to the decreasing radius or to the increasing height of the 

pillars. In chapter 4 it was demonstrated for pillars with flat terminals that E
* is not 

influenced significantly by the pillar radius, but decreases with increasing pillar height or 

aspect ratio. For this reason, it is assumed that this effect is common to all the shapes. 

Patterns with concave tips possess the same height (9 µm) for all radii. This is a 

consequence of the fabrication process, which entails reduced flexibility in the choice of 

pillar dimensions. In accordance with the reported invariance of E* with radius at constant 

height, patterns with h = 9 µm and r = 5 and 10 µm show similar E
*. Patterns with 

h = 9 µm and r = 25 µm show a slight smaller E
*, presumably due to their higher 

curvature. 

5.5 Conclusions 

From the results and discussions in this chapter, the following conclusions can be 

drawn: 

• Patterned elastomeric surfaces with widely different tip shapes can be produced 

reproducibly using variations of lithography and soft molding methods. The pillar 

radii can be varied between 2.5 and 25 µm, with the aspect ratio kept constant at a 

value of 1.  
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• The contact shape strongly influences the adhesion behavior of patterned surfaces. 

The highest pull-off forces were found for mushroom-like pillars, which showed an 

increase of up to 30 times over the flat controls. Flat and spherical shapes showed 

lower adhesion, while concave shapes resulted in the poorest performance, coupled 

with an unusual preload dependence. 

• The fiber radius effect studied previously augments the shape effect, creating vastly 

different “splitting efficiencies” for the different shapes. Within the size range 

tested, mushroom and spatular shapes hold the greatest promise for further 

adhesion improvement through size reduction. 

• Further studies are required to explain the outstanding performance of the 

mushroom-type and the spatular shapes. They benefit very likely from a significant 

reduction of the deleterious stress concentration that is present at the perimeter of 

conventional flat punch contacts. 

The chapter is based on the concept of adhesion driven by van der Waals type 

interactions and does not consider capillarity effects, although their contributions may also 

be significant (6). Recent theoretical calculations already indicated that capillary forces 

also depend on contact shape (115). Such effects will be the focus of future studies. 
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6 Design Criteria for Dry Adhesive 

Systems: The Effect of Shape 

 

Abstract – The biomimetic reproduction of the gecko adhesion system has been a 

topic of intense research over the past years. Successes, however, has so far been limited. 

This is due to the extremely small structures in conjunction with complex shapes that need 

to be replicated. In previous studies, design and materials selection charts to determine the 

optimum materials and design combination for dry adhesive systems have been 

established. Also the effect of shape on the adhesive properties of single fibers and fiber 

arrays has been a research focus. In this chapter both approaches are combined to provide 

even better guidelines for the design of optimal adhesive structures. 
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6.1 Introduction 

The origins of gecko adhesion are still under debate. It has recently become clear that 

van der Waals interactions are mostly responsible for the adhesive forces (7-9). In humid 

environments capillary forces may contribute equally to the adhesion mechanism (6). For 

the adhesion of a hemisphere to a semi-infinite half space both pull-off forces scale linearly 

with the hemisphere dimension. The splitting of big contacts into many smaller ones leads 

to an improvement of adhesion (10, 11) and is the explanation for the finding that bigger 

(heavier) animals exhibit finer adhesive structures. In a recent paper (15), these concepts 

were distilled into design maps that can guide the implementation of artificial adhesion 

systems by providing optimal materials and dimensional properties. In another paper, the 

deviation in shape from the ideal hemispherical contour was explored and a variety of 

scaling laws was found for different shapes (12). This chapter attempts to combine the 

influence of shape and the design predictions. Design maps will be developed for several 

contact shapes including such that exhibit an asymmetry and thus allow easy detachment in 

the appropriate pulling direction (Figure 6.1). Hemispherical tips have been treated in a 

previous publication on adhesion design maps (15), but will be discussed in this thesis 

mainly for comparison. 
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Figure 6.1: Side and plan view of contact shapes considered for adhesion design maps: (a) hemisphere, 

(b) flat tip, (c) toroidal tip, (d) elastic band. In each case, the shaded area indicates contact 

(adapted from ref. (12)).  

 

6.2 Review of Design Maps 

First, a brief overview of the general construction of adhesion design maps and the 

equations behind the different criteria is given. The equations for the pull-off force cP  can 

be found in a previous publication (12). There it is also shown that concentrating only on 

the Johnson-Kendall-Roberts theory (instead of the Derjaguin-Muller-Toporov approach) 

is justified. Nevertheless, DMT might be applicable for very small and stiff fibers. This can 

be seen when considering the Tabor parameter (see equation 2.9) (20) for multiwalled 

carbon nanotube based dry adhesives as published by Zhao et al. (58) and by Yurdumakan 

et al. (57). With typical values for the effective modulus (200 GPa), the relative radius 

(25 nm), the work of adhesion (0.05 J/m²) and the equilibrium separation of the contacting 

surfaces (0.4 nm), a Tabor parameter of around 0.03 is calculated. Thus, DMT theory 

should be applied in these cases, but the difference in pull-off forces is smaller than 25 % 

between the two theories and is not expected to overshadow general trends. 
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In adhesion design maps, the following five design criteria are displayed: “fiber 

fracture”, “condensation”, “ideal contact strength”, “adaptability” and “apparent contact 

strength”. The “fiber fracture criterion” acknowledges that for very thin fibers the adhesion 

strength might become larger than the theoretical fracture strength of the fibers f

thσ . 

The axial stress fσ in the fibers is: 

f

c
f

A

P
=σ      (6.1) 

where cP is the pull-off force for a single fiber and fA is the cross-sectional area of a 

single fiber. Both take different values for the different fiber tip shapes which will be 

discussed in the following paragraphs.  

The condition for fiber fracture is expressed as follows: 

f

thf σσ ≥      (6.2) 

which gives a lower limit for the useful fiber radius R. For the theoretical fracture 

strength we use the approximation that f

thσ  equals E/10,where E is the Young’s modulus of 

the fiber material. 

The limit of “ideal contact strength” describes the theoretical maximum contact 

strength which cannot be surpassed. It is transmitted at the moment of pull-off through the 

actual contact area and is expressed as follows: 

th

c

c
c

A

P
σσ ≤=      (6.3) 
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In this equation cσ is the contact strength, cA the actual contact area at pull-off 

(a function of tip shape) and thσ  the ideal strength of van der Waals bonds, which can be 

described as: 

b
th

γ
σ ≈       (6.4) 

Here, γ represents the work of adhesion and b the characteristic length of surface 

interactions. For both we choose typical values, which are γ = 0.05 J/m² and b = 2·10-10 m. 

Solving equation 6.3 for R in the case of the different tip shapes will yield a lower limit 

for R. 

As a certain elastic compliance is necessary to adapt to rough surfaces, the limit of 

“adaptability” was introduced in ref. (15). This will also address the fact that the elastic 

strain energy stored in the fibers cannot exceed the work of adhesion (129). Persson’s 

result (129) for the effective modulus prescribes an upper limit for the Young’s modulus as 

follows: 

24
λ

π

Cf
EE eff<       (6.5) 

where effE is the effective Young’s modulus of the fiber structure. Here we chose to 

set effE  to the – somewhat arbitrary – value of 1 MPa which should ensure contact 

adaptability. C is a dimensionless geometrical constant with a value close to 10 and f is the 

areal fiber packing density. The fiber aspect ratio λ is defined as (L/2R) with L being the 

fiber length. 
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The “apparent contact strength” describes the pull-off force divided by the apparent 

contact area appA , which is a function of tip shape. For the construction of the maps we 

consider different values for the apparent contact strength σapp to ensure reasonable 

adhesion performance of the fibrillar system. Contours of constant σapp will be 

superimposed in all maps. 

For the “fiber condensation” criterion, different approaches can be chosen which will 

be discussed in the following. Sticking of fibers to each other, rather than to the contact 

surfaces will greatly diminish their adhesive capabilities. 

6.2.1 What is the appropriate condensation criterion? 

The condensation criterion used so far when constructing adhesion design maps is 

that derived by Sitti and Fearing (38). They modeled the fibers as elastic beams subjected 

to a point load at their tips. This load was considered as the JKR adhesion force between 

two fiber ends modeled as spheres. This results in a lower limit for the fiber radius which 

avoids condensation: 

3

21
'8

λ
γ

E

h
R

f≥      (6.6) 

In this equation, 'γ denotes the work of adhesion between two fibers tips, which 

might differ from γ. The function hf is defined as: 

( )

2

1
4

11










−==

ffhh f

π
    (6.7) 
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When using this condensation limit below, we will assume spherical tips, even for 

other tip shapes. For flat tips, this approach has proven to be reasonable as it describes 

experimental data well (131) (see chapter 4). 

In another approach, Glassmaker et al. derived conditions to avoid fiber 

condensation by considering a line contact between the fibers (44, 88). They calculated the 

strain energy associated with bending the fibers so that they touched, and assumed that 

under equilibrium conditions this energy was equal to the energy required to separate the 

two surfaces. The end result again gives a lower limit for R: 

43
3

35.8 fh
E

R
π

γλ
≥      (6.8) 

This criterion, which has been derived for fibers with circular cross-section 

disregarding the tip shape, will below be used for all shapes, even for the elastic tape. 

When comparing the theoretical predictions of this limit with experimental data, the 

criterion has proven to be useful (44, 131) (see chapter 4). 

For a comparison between the criteria developed by Sitti and Fearing and by 

Glassmaker et al., the quotient of eq. 6.6 and eq. 6.8 is plotted as a function of f in 

Figure 6.2. 
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Figure 6.2: Quotient of equations 6.6 and 6.8, to illustrate the differences between the condensation criteria 

developed by Sitti and Fearing and Glassmaker et al. as a function of fiber area fraction f.  

A third approach to the problem of fiber condensation was put forward by Persson 

(129). He considered thin and long elastic fibers which were attached perpendicular to a 

rigid substrate. Above a critical length, the fibers bend and form a compact layer of tilted 

fibers. With this model Persson calculated the elastic energy stored in the fibers, the van 

der Waals fiber-fiber binding energy per unit length and the total energy of the system. 

At the end, this yielded the following lower limit for R: 

31

42

422

32arccos

12



























≥

π

λγ

f
E

b
R     (6.9) 

Note that Persson did not make any assumptions about the tip shape so that 

equation 6.9 can be used universally to describe the condensation criterion in all our cases. 
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6.2.2 Minimal number of contacts 

In connection with the phenomenon of „contact splitting“ (10, 11), the question 

arises whether the gain in adhesion force can be offset by a smaller total contact area. 

Obviously, it will not increase total pull-off force when one big contact is substituted by 

only one small contact. Thus, a minimal number Nmin of small contact elements is 

necessary to gain pull-off force. In the following this minimal number will be calculated as 

a function of tip shape. 

Let us consider one big hemispherical contact with radius R. According to the JKR 

theory, this sphere will exert a pull-off force given by: 

RPc πγ
2

3
−=      (6.10) 

The sphere occupies a projected apparent contact area Aproj: 

2
RAproj π=      (6.11) 

We now substitute this contact by a single smaller one with radius R′ . For this small 

hemisphere, cP′  and projA′  are as follows: 

RPc
′−=′ πγ

2

3
     (6.12) 

2
RAproj

′=′ π      (6.13) 
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Since R′  < R, it follows that cP′  < Pc, hence at least Nmin small pillars are required to 

achieve the same adhesion force. These pillars will be packed with a finite areal density f, 

so that (f·Aproj) is available for the small contacts. When N is the number of small pillars, 

we can write: 

f

RN
R

2
2 ′

=
π

π      (6.14) 

or, 

R
N

f
R =′      (6.15) 

We equate the pull-off forces for one and Nmin contacts: 

cc PNP ′= min      (6.16) 

R
N

f
NR

min

min
2

3

2

3
πγπγ =     (6.17) 

This results in the following condition for the minimum number of small contacts to 

exceed the force of one contact: 

f
N

1
min =      (6.18) 

Performing similar analyses for the other tip shapes – as they are described in 

ref. (12) – yields the solutions given in Table 6.1. 
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Table 6.1: Minimum number of small contacts Nmin substituting a large one for efficient splitting for 

spherical, tape-, flat punch-like, toroidal and general axisymmetric tip shape (with q being a shape 

parameter (130)). 
 

Tip shape Nmin 

Sphere, Tape 1/f 

Torus (self similar) 1/f² 

Flat punch 1/f³ 

General axisymmetric profile 
1

)1(3

1

+

−

q

q

f

 

 

6.3 Design Maps for Punches 

For the construction of the adhesion design maps for flat punches we make the 

following assumptions: 

• Perfect contact (no surface roughness) 

• Condensation and adaptability criterion are unchanged compared to spherical 

contacts 

• *E E≈ ,γ γ ′≈  

• Modulus symmetry (hard punch on compliant substrate behaves similarly to soft 

punch on hard substrate) 

• Young’s moduli up to 200 GPa will be considered since for almost all technical 

contact pairs the reduced Young’s modulus will not exceed this value 
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6.3.1 Contours of constant apparent contact strength 

As described in section 6.2, we construct this limit with the pull-off force of a 

flat punch (12, 17, 117): 

38
c

P ERπ γ=      (6.19) 

The apparent contact area is given by: 

2

app

R
A

f

π
=      (6.20) 

Following Spolenak et al. (15) we determine the apparent contact strength: 

8c
app

app

P E
f

A R

γ
σ

π
= =      (6.21) 

The result defines the maximum fiber radius if a specified apparent contact strength 

σapp needs to be achieved: 

2

2

8

app

E f
R

γ

πσ
≤      (6.22) 

Note that for the flat punch, the contours of apparent contact strength scale linearly 

with Young’s modulus, in contrast to the scaling for the spherical contact, which is 

independent of Young’s modulus (15). 
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6.3.2 The limit of fiber fracture 

Fiber fracture is avoided when the apparent contact strength (eq. 6.21) is smaller then 

f

thfσ , where 10E
f

th =σ . This gives the following lower bond for R : 

800
R

E

γ

π
≥      (6.23) 

6.3.3 The limit of ideal contact strength 

Following the idea presented by Spolenak et al. (15) and explained in section 6.2 of 

this chapter, the following limit can be determined: 

28Eb
R

πγ
≥      (6.24) 

Having now calculated all necessary limits, we can construct an adhesion design 

map. As condensation criteria, we choose the condition by Sitti and Fearing (eq. 6.6). 

The resulting plot is shown in Figure 6.3a. 



6 Design Criteria for Dry Adhesive Systems: The Effect of Shape 
 

 

 126

1E-4 1E-3 0.01 0.1 1 10 100
1E-3

0.01

0.1

1

10

100

σ ap
p
 =

 0
.1

 M
Pa

λ = 300

λ = 100

λ = 30

λ = 10

λ = 3

λ = 1

λ
 =

 1
0
0

λ
 =

 1

λ
 =

 1
0

σ ap
p
 =

 1
0 

M
Pa

σ ap
p
 =

 1
 M

Pa

 

 

F
ib

e
r 

ra
d

iu
s
 R

 (
µ
m

)

Young's modulus E (GPa)

Punch, f = 10 %, γ = 0.05 J/m
2
, b = 0.2 nm, E

eff
=1 MPa, S/F

fiber fracture

id
ea

l c
on

ta
ct

 s
tre

ng
th

(a)

optimum

 

1E-4 1E-3 0.01 0.1 1 10 100
1E-3

0.01

0.1

1

10

100

optimum

fiber fracture

id
ea

l c
on

ta
ct

 s
tre

ng
th

λ  = 300

λ  = 100

λ  = 30

λ  = 10

λ  = 3

λ = 1

λ
 =

 1
0
0

λ
 =

 1

λ
 =

 1
0

σ ap
p
 =

 0
.1

 M
Pa

σ ap
p
 =

10
 M

Pa
σ ap

p
 =

 1
 M

Pa

 

 

F
ib

e
r 

ra
d

iu
s
 R

 (
µ
m

)

Young's modulus E (GPa)

Punch, f = 10 %, γ = 0.05 J/m
2
, b = 0.2 nm, E

eff
=1 MPa, G

(b)

 



6 Design Criteria for Dry Adhesive Systems: The Effect of Shape  
 

 

 127

1E-4 1E-3 0.01 0.1 1 10 100
1E-3

0.01

0.1

1

10

100

fiber fracture

id
ea

l c
on

ta
ct

 s
tre

ng
th

λ = 300λ = 100
λ = 30

λ = 10
λ = 3

λ = 1

λ
 =

 1
0
0

λ
 =

 1

λ
 =

 1
0

σ ap
p
 =

 0
.1

 M
Pa

σ ap
p
 =

 1
0 

M
Paσ ap

p
 =

 1
 M

Pa

 

 

F
ib

e
r 

ra
d

iu
s
 R

 (
µ
m

)

Young's modulus E (GPa)

Punch, f = 10 %, γ = 0.05 J/m
2
, b = 0.2 nm, E

eff
=1 MPa, P

optimum

(c)

 
Figure 6.3: Adhesion design map for flat tips, constructed using the condensation limit developed by (a) Sitti 

and Fearing, (b) Glassmaker et al. and (c) Persson. The following parameters are assumed: γ = 0.05 J/m², 

f = 10 %, b = 0.2 nm and Eeff = 1 MPa. The criteria for fiber fracture (blue line) and ideal contact strength 

(red line) are indicated. The black lines are contours of equal apparent contact strength. The condensation 

limits for different aspect ratios are indicated by cyan lines, whereas the criterion of adaptability is drawn as 

green lines. The dashed line (orange) is the “conode”. In (a) and (b), its intersection with the ideal contact 

strength criterion would indicate optimum parameters, but leads to a Young’s modulus value which is above 

that of carbon nanotubes. The red circle thus indicates the optimum solution. In (c) the intersection of the 

“conode” with the ideal contact strength limit is below the criterion for fiber fracture; the optimum is 

nevertheless indicated. 

6.3.4 Intersection with the conode 

As suggested by Spolenak et al. (15) we can define a “conode” in the maps. It links 

the loci of optimum apparent contact strength, while avoiding condensation and ensuring 

adaptability. It is mathematically given by: 

3 3

3 3

( )

eff

h f EC f
R

E
γ

π
=      (6.25) 

In the log-log plot of the adhesion design map, the conode has a slope of 1/2. It is 

now instructive to compare the conode slope to the slope of the apparent contact strength 

criterion. In the case of a spherical contact, the slope of the apparent contact strength 
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criterion was smaller than the slope of the conode, namely nil (15). In this case optimum 

adhesion was ensured by moving to smaller fiber radii until the conode crossed the fiber 

fracture limit, which determined the absolute optimum. In the current case of the flat 

punch, the contours of apparent contact strength have a slope of one. Here, bigger radii 

would imply better adhesion and the absolute optimum would be found at the intersection 

between the conode and the ideal contact strength limit: 

πγπ
γ

2

33

33
8Eb

E

fECh
R

eff

f ==     (6.26) 

This condition results in the following optimal modulus: 

π

γ
43

433

64 bE

fC
hE

eff

fopt =     (6.27) 

The optimum values for the aspect ratio λ and the fiber radius R can be deduced in an 

analogous way (see Table 8.1). The result for the optimum apparent contact 

strength opt

appσ  is: 

b

fopt

app

γ
σ =      (6.28) 

6.3.5 Condensation limit after Glassmaker et al. 

As laid out in section 6.2.1, Glassmaker et al. developed another condition for fiber 

condensation which we will employ as an alternative input criterion for the maps (44). 

Using equation 6.8 yields Figure 6.3b. The conode is plotted as a dashed line. It is 

given by: 
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53

2333

π

γ

eff

f

E

hEfC
R =     (6.29) 

With equation 6.29 and its intersection with the ideal contact strength limit, we get 

the following results for the optimum Young’s modulus Eopt and the optimal apparent 

contact strength opt

appσ : 

21

3532188

f

eff

opt
Cfh

E
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π
=     (6.30) 

21231

35

15

3

f

effopt

app
hC

E π
σ =      (6.31) 

6.3.6 Condensation limit after Persson 

Using Persson’s equation 6.9 we constructed the design map shown in Figure 6.3c. 

As above, for the calculation of the conode, the condensation and the adaptability limit 

are used. The result is the following: 





















=

32arccos

3

34

31
32

π

π

γ

f

b

E

Cf
R

eff

   (6.32) 

which is independent of E! In Figure 6.3c, the conode is shown as a dashed line. For 

the given set of parameters – Eeff = 1 MPa, C = 10, f = 0.1, γ = 0.05 J/m², b = 0.2 nm, the 

conode is found at R ≈ 4.65 nm. In Figure 6.3c this is below the intersection of the fiber 

fracture and the ideal contact strength limit, so that in this particular case no ideal values 

are found; the intersection is nevertheless indicated with a red circle. For the general 
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optimum Young’s modulus, we insert (6.32) into the limit of ideal contact strength. 

The result is shown in eq. 6.33. The optimum apparent contact strength is given in 

eq. 6.34: 
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32arccos
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34

313532
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πγ

fbE

Cf
E

eff

opt    (6.33) 

b

fopt

app

γ
σ =      (6.34) 

 

6.4 Surface Roughness in the Adhesion Design 

Maps for Flat Tips 

So far, the effect of surface roughness is not considered. We now model the surface 

as having periodic roughness and approximate its contour by hemispheres. In a 

2D representation, the surface is a series of half-circles (Figure 6.4). We still assume that 

the punches themselves are absolutely flat. 

 
Figure 6.4: 2D sketch of the assumed periodic model for surface roughness. We model the individual arcs as 

half circles. Schematic of the three cases considered in the roughness analysis: (a) one sphere per punch, 

(b) flat on flat, (c) in-between case. 
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There are three cases imaginable: 

a) The periodicity of the roughness is of the same order as the punch diameter. Then we 

have only one sphere tough each punch (see Figure 6.4a). This case leads to the 

adhesion design map of spheres as previously published (15). 

b) The periodicity is so small that the substrate can be considered as a smooth surface (see 

Figure 6.4b). This leads to the adhesion design maps introduced in section 6.3. 

c) The in-between case (Figure 6.4c) will be analyzed in the following paragraph.  

We assume that the hemispheres are in a closest 2D packing which leads to a 

maximum packing density of 
32

π
, or approximately 90.7 %. From there on, we can 

calculate the number n of spheres in contact with a single flat punch of radius R. 

The surface roughness is described by the radius a of the hemispheres. According to 

surface roughness definitions (132), this radius corresponds to Rz/2. We find for the 

number of contacting spheres: 

2

2

34 a

R
n

π
=      (6.35) 

Since in the adhesion design maps, one of the parameters is R, a new equation for Pc 

has to be derived. As we model the surface roughness with hemispherical protrusions, the 

standard JKR solution for the pull-off force of spheres (eq. 2.6) can be used. Instead of R, 

a is inserted for the radius. It has to be taken into account the n spheres are in contact with 

the punch. Together with (6.35) the result is: 

a

R
Pc

8

3 22γπ
=       (6.36) 
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Note that Pc now has a quadratic dependence on R so that we can expect invariance 

to contact splitting. As can be seen in eq. 6.36, there are limits for the radius of the 

hemispheres: For very small values of a, Pc would reach unreasonably high values, 

whereas it would go close to zero for very large a. This has to be considered when 

constructing adhesion design maps with this model. 

6.4.1 Construction of adhesion design map 

The effect of introducing surface roughness is expected to be strongest in the maps 

constructed with the Sitti and Fearing condensation limit. Therefore we will consider only 

this approach to fiber condensation. To do so, we make the same assumptions as in section 

6.3 for the flat punches against smooth surfaces and get the following results for the limits 

which are affected (the derivation is the same as laid out in chapters 6.2 and 6.3): 

Apparent contact strength: 

a
fapp

8

3πγ
σ =      (6.37) 

Interestingly, equation 6.37 is independent of punch radius and Young’s modulus, 

but depends on the surface roughness. Here we find a splitting effect: For smaller 

roughness (thus, smaller radius a), the apparent contact strength increases. 

Fiber fracture: 

a
E

8

310 γπ
=      (6.38) 
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We find that the fiber fracture limit is also independent of R. Therefore, invariance to 

contact splitting is expected. 

Ideal contact strength: 

Following Spolenak et al. (15), the contact radius αc at the instant of pull-off is 

defined as: 

31
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a
c

πγ
α      (6.39) 

for one spherical contact, so that for n hemispheres in contact we get: 

th

c

c
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P
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σ ≤=

2
    (6.40) 
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π
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With this result, 
b

th

γ
σ ≈ , 

2

*

1 ν−
=

E
E  and the assumption that ν = 0.3 we find the 

following limit: 

( )
21

43
34.1 








≥

πγ

E
abR     (6.42) 

Having calculated all the necessary criteria, we now construct the adhesion design 

map for flat tips against a substrate with periodic roughness. The result is shown in 

Figure 6.5, where a has been chosen with 500 nm. For R ≈ a, when the punch is of the 



6 Design Criteria for Dry Adhesive Systems: The Effect of Shape 
 

 

 134

same dimension as the hemispherical protrusions, the above derived model can no longer 

be applied. When R ≈ a/10, the case for a flat punch against a smooth surface is reached 

and the map for this part is the same as in Figure 6.3a, with one exception: For the contours 

of constant apparent contact strength it has been taken into account that some of the 

punches do not contact the counter surface: eq. 6.22 is divided by a factor of 10. For the 

intermediate part of a/10 ≤ R ≤ a, we interpolated the limits of fiber fracture and ideal 

contact strength accordingly.  
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Figure 6.5: Adhesion design map for a flat tip against a substrate with periodical roughness. 

The condensation limit after Sitti and Fearing is employed and the following parameters are assumed: 

γ = 0.05 J/m², f = 10 %, b = 0.2 nm and Eeff = 1 MPa. For the surface roughness, a radius of the small 

spheres of a = 500 nm is considered. The dashed, orange line is the “conode”. For R > 500 nm, the 

presented model for a flat punch against a rough surface is employed and for R < a/10, where the contact is 

that of a flat punch against a smooth surface, the same limits as in Fig. 6.3a are used. For the contours of 

constant apparent contact strength the punches which don’t make contact with the counter surface, have 

been considered by dividing eq. 6.22 by a factor of 10. For the intermediate case of a/10 ≤ R ≤ a, the limits of 

fiber fracture and ideal contact strength were interpolated. For R > a, the apparent contact strength is 

constant over the entire map – contact splitting invariance – and the minimum Young’s modulus is 

determined by the fiber fracture limit. 
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Intersection with the conode: 

As the apparent contact strength is constant for R > a, neither small nor large radii 

are favored. A minimum value for the Young’s modulus is determined through the fiber 

fracture criterion. On and right of this vertical line all radii give the same adhesion 

performance. The fiber fracture limit is not altered for the different condensation limits, 

therefore this result is the same for the other two condensation approaches. 

 

6.5 Design Maps for Toroidal Tips 

When constructing design maps for toroidal tips we make the same assumptions as 

for the flat punches. As in (12) self-similar scaling is assumed, i.e. r = R/10, with r being 

the radius of the ring part of the torus (see Figure 6.1c). 

6.5.1 Contours of constant apparent contact strength 

From Spolenak et al. (12) we get the pull-off force of a torus: 

( ) 34312
REPc πγπ=     (6.43) 

As described in section 6.2, we determine the apparent contact strength: 
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which results in a limit for R of: 

γ
σ

π
21

3

3














≤

app

Ef
R     (6.45) 

Note that for the torus, the contours of apparent contact strength scale with the square 

root of the Young’s modulus. This is in contrast to the scaling for the spherical contact, 

which is independent of Young’s modulus. It is also different from the flat tips, which 

scale linearly with E. 

6.5.2 The limit of fiber fracture 

Following the previously mentioned approach, we obtain the following fiber 

fracture limit: 
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R
γ

π1000≥     (6.46) 

6.5.3 The limit of ideal contact strength 

Following Spolenak et al. (15), 
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the following limit can be determined: 
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R >      (6.48) 
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With all these limits at hand we can draw them into the double-logarithmic space of 

the adhesion design maps and for the condensation limit developed by Sitti and Fearing 

yield the plot shown in Figure 6.6a. 
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Figure 6.6: Adhesion design map for toroidal tips, constructed using the condensation limit developed by 

(a) Sitti and Fearing, (b) Glassmaker et al. and (c) Persson. The following parameters are assumed: 

γ = 0.05 J/m², f = 10 %, b = 0.2 nm and Eeff = 1 MPa. The dashed line (orange) is the “conode”. In (a) and 

(b) it has the same slope as the apparent contact strength limit. The whole sector between fiber fracture and 

ideal contact strength limit – indicated by the solid red line – yields optimal adhesive properties. In (c), the 

intersection of the “conode” with the ideal contact strength criterion indicates the optimum parameters and 

is highlighted with a red circle. 

 

6.5.4 Intersection with the conode 

For the condensation limit after Sitti and Fearing, as for the other ones, we can use 

the conode equations derived in the section about the maps for the punches, so that here 

only the optimal adhesion parameters will be derived. For the Sitti and Fearing (38) and for 

the Glassmaker et al. (44) limit, the conode equations, 6.25 and 6.29 respectively, have a 

slope of one half in the log-log plot of the maps. The adhesion design map for the latter 

limit is plotted in Figure 6.6b. 

It is interesting that the conode and the apparent contact strength criterion have the 

same slope. This implies that all points on the conode have the same apparent 
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contact strength. The intersection of the conode with the ideal contact strength is defined 

by (Sitti and Fearing case): 
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resulting in the following maximum modulus: 
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The intersection with the fiber fracture criterion leads to: 
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resulting in the following minimum modulus: 
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=     (6.52) 

The other parameters such as the aspect ratio and the radius can be deduced in an 

analogous way (see Table 8.1). The maximum and minimum apparent contact strength 

value is given below: 
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For the Glassmaker et al. approach (Figure 6.6b), we calculate the following 

maximum and minimum Young’s moduli and apparent contact strength value: 
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For the condensation criterion after Persson (129) we get the adhesion design map 

shown in Figure 6.6c. For this limit the conode has been derived in equation 6.32. Here, 

the conode has a smaller slope than the contours of constant apparent contact strength, so 

that the intersection of the conode and the ideal contact strength limit determines the 

optimum design parameters. For the optimum Young’s modulus and apparent contact 

strength, we get the following conditions: 
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6.6 Design Maps for Tapes 

Next, adhesion design maps for elastic tapes are presented. We make the following 

assumptions: 

• The tape has a square contact area of dimensions 2R × 2R 

• Scaling of the tape thickness h is self similar: 10/Rh =  

• In the first part, the peel-off angle will be kept constant at α = 60° 

• The condensation and adaptability criterion are unchanged compared to spherical 

contacts 

• Perfect contact without surface roughness 

6.6.1 Contours of constant apparent contact strength 

From Kendall (12, 133) we get the pull-off force of an elastic band: 

( )2 ,cP Rgγ α λ=     (6.59) 

where two variables are defined as follows: 
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With the assumptions stated above, this leads to the following expression for Pc: 

ER

R
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=      (6.61) 

From this, we determine the condition for R (for a more detailed derivation see 

appendix D, 8.4.1.1) (15): 
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Note that for the elastic band, the contours of constant apparent contact strength are 

independent of Young’s modulus for large moduli, but scale inversely with Young’s 

modulus for small moduli. 

6.6.2 The limit of fiber fracture 

For the fiber fracture limit, we get (15), 
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P E
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this yields (see appendix D, 8.4.1.2): 
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6.6.3 The limit of ideal contact strength 

Following Spolenak et al. (15), we derive the following equation for R (see 

appendix D, 8.4.1.3, for a more detailed derivation): 

2

2

2

9

1600

3

40
b

EE
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γγ
    (6.65) 

For the three different condensation criteria considered and the above derived limits, 

the resulting adhesion design maps for elastic tapes at a peel-off angle of 60° are presented 

in Figure 6.7. 
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Figure 6.7: Adhesion design map for an elastic tape at a peel-off angle of 60°, constructed using the 

condensation limit developed by (a) Sitti and Fearing, (b) Glassmaker et al. and (c) Persson. The following 

parameters are assumed: γ = 0.05 J/m², f = 10 %, b = 0.2 nm and Eeff = 1 MPa. The dashed line (orange) is 

the “conode”. In (a) and (b), its intersection with the fiber fracture limit indicates the optimum parameters 

and is highlighted with a red circle. In (c), right of the fiber fracture criterion, the conode has about the same 

slope as the apparent contact strength limit, so that this entire domain – indicated by the solid line – yields 

optimum design parameters. 
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6.6.4 Intersection with the conode 

In the log-log plot of Figure 6.7a, the conode for the condensation limit after Sitti and 

Fearing (38) has a slope of one half (eq. 6.25). It is now instructive to compare the conode 

slope to the slope of the apparent contact strength criterion. Here, the slope of the apparent 

contact strength criterion is zero at high moduli and -1 at low moduli. This means that the 

optimum can be found at the intersection between the conode and the fiber fracture 

criterion, which leads to the following condition: 

EE

fECh
e

eff

f γ

π
γ

188
3

33

=     (6.66) 

resulting in the optimum modulus: 

Cf

E

h
E

eff

f

opt

π

3

32188
=     (6.67) 

The optimum apparent contact strength is given by: 

f

effopt

app
hC

E10.1
≈σ      (6.68) 

For the condensation criterion brought forward by Glassmaker et al. (44), we get the 

adhesion design map presented in Figure 6.7b. In equation 6.29 we calculated the 

according conode. As in the Sitti and Fearing case, the intersection between the conode and 

the fiber fracture limit gives the optimal design parameters. Here, we calculate Eopt and 

opt

appσ  (see Table 8.1 for Ropt and λopt) : 
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f

eff

opt
hCf

E
E

3/520 π
≈     (6.69) 

f

effopt

app
hC

E10.1
≈σ      (6.70) 

For the condensation limit developed by Persson (129), the log-log plot of the design 

maps is shown in Figure 6.7c. In the region right of the fiber fracture criterion, the conode, 

see equation 6.32, has about the same slope as the apparent and the ideal contact strength 

limits (namely nil). So this entire domain, which in theory goes up to infinite 

Young’s moduli, will yield optimal design parameters. We thus calculate the minimum 

Young’s modulus Emin and the minimum apparent contact strength min
appσ : 
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6.6.5 Limits and maps for other peel-off angles 

As it might be instructive to compare adhesion design maps for elastic tapes for 

different peel-off angles α, we derive the limiting conditions as a function of α. Because 

the calculation itself is similar to the one described above, only the results for the limits 

and some basic steps will be given. 
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Apparent contact strength: 

The general solution for the contours of constant apparent strength is found to be: 

Y

fY
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222
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2 sin10010

σ

αγγγ
++−

≤     (6.73) 

with  

( ) ( )[ ]αα cos1cos1
2

−+−=Y     (6.74) 

Fiber fracture: 
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2

2222 sin20010010 αγγγ +
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≥    (6.75) 

Ideal contact strength: 
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γγ 22
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sin
10010

++−
≥     (6.76) 

Because the design maps published so far (15) were constructed using the 

condensation limit after Sitti and Fearing and since the general trends for different peel-off 

angles α will be the same for all three condensation criteria, we only consider the Sitti and 

Fearing approach for the construction of maps at different angles. In Figure 8.10 

(appendix D) the adhesion design maps are plotted for seven different peel-off angles, 

i.e. α = 5, 15, 30, 45, 60, 75 and 90°. 
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Intersection with the conode: 

As for the case of α = 60°, the optimal design parameters can be found at the 

intersection of the conode with the fiber fracture limit. This yields the following equation 

for the optimum Young’s modulus: 

( )
f

efffff

opt
fChY

EYhYhh
E

2

32
2232 )sin(40010 πα++−

=   (6.77) 

With this knowledge of the optimal Young’s modulus as a function of the peel-off 

angle, we ask the question at which angle Eopt is maximal. Here also Ropt would be largest. 

In order to determine those values, the maximum of the above derived equation is 

calculated. This is the case when the following equation is satisfied: 

( )( ) ( )
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800
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+++− ffff
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hEY
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ααπ
       (6.78) 

Inserting values for C = 10, f = 0.1, Eeff = 1 MPa, results in a peel-off angle for the 

Young’s modulus to be maximal of α ≈ 39°. 
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6.7 Discussion 

6.7.1 Critical number for change in hierarchy 

The critical number of new contacts necessary to substitute one big contact strongly 

depends on tip shape, as is demonstrated in Table 6.1. Not surprisingly, this is correlated 

with what is called “splitting efficiency”, as shapes which benefit more from splitting will 

need less small contacts on a next level of hierarchy to increase total pull-off force. 

Considering a fiber packing density of f = 0.1, one needs 10 new fibers for hemispherical 

tip shape and 1.000 new ones for flat tips. The reason is that, the splitting efficiency of the 

punch is a factor of 2 smaller than that of the sphere. Since the splitting efficiency of the 

tape is the same as that of the sphere, Nmin for tapes has the same dependence on f. 

For constructing hierarchical artificial adhesives it will thus be best to choose 

hemispherical or band-like shape. This is of importance, as fabrication techniques, or even 

more the limit of fiber condensation, will constrain the packing density, so that the only 

choice for reaching high numbers of contacts is going to very small fiber radii. That again 

is a severe challenge in the fabrication process. In first experiments, the fabrication of 

elastomeric pillars with different tip shapes – among them also ones which remind of 

gecko spatulae – has already been demonstrated (39, 52, 134, 135), see chapters 3, 4 and 5. 

Even though pillar dimensions were still in the micrometer range and the aspect ratios very 

small, these structures showed that the fabrication of complex tip shapes is possible. The 

concept of hierarchical systems is very important once surface roughness is considered, as 

was theoretically demonstrated by Kim and Bhushan, who showed that multi-level 

hierarchical structures are beneficial for adapting to rough surfaces (136). 
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6.7.2 Comparison of spheres and tapes 

When looking at the gecko adhesive system with modern scanning electron 

microscopy, one discovered the spatular structure that terminates the individual attachment 

hairs (setae). Therefore, it is reasonable to assume that among the tip shapes treated in this 

chapter, the elastic tape is best suited to describe what we find with the gecko. 

Interestingly, the elastic tape and the hemispherical tip shape have the same splitting 

efficiency (12), even though they differ in their modulus dependence. According to classic 

JKR theory, the adhesion of spheres is independent of Young’s modulus, whereas the 

pull-off force of elastic tapes scales with the square root of E. Because of this and the 

different peel-off angles that have to be considered, the contact mechanical treatment of 

tapes is more complicated than that of spheres. As they both show the same splitting 

efficiency, the idea of approximating the tape with spheres is evident. In this paragraph, we 

ask the question whether this is an appropriate assumption, or not. Therefore, we plot the 

limits for spherical and tape contact in one adhesion design map, considering peel-off 

angles between 15° and 90° for the elastic band. The resulting plot is presented in 

Figure 6.8 where the intervals for constant apparent contact strength and the fiber fracture 

limit are marked as hatched areas. 
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Figure 6.8: Adhesion design map for hemispherical and band-like tip shape, constructed using the 

condensation limit developed by Sitti and Fearing. The following parameters are assumed: γ = 0.05 J/m², 

f = 10 %, b = 0.2 nm and Eeff = 1 MPa. For the elastic band, peel-off angles between 15° and 90° are 

considered and the resulting areas for constant apparent contact strength (gray lines) and for the fiber 

fracture limit (light blue) are hatched. The limits belonging to the spherical contact are indicated. 

The adaptability and condensation criteria are invariant to contact shape. The dashed line (orange) is the 

“conode”. Its intersections with the fiber fracture limits yield the optimum parameters and are indicated with 

a red circle in the case of the sphere and by a solid red line for the tape contact. 

A first observation in Figure 6.8, is the strong dependence of the apparent contact 

strength on Young’s modulus for the tape contact. For small moduli it scales inversely with 

E, whereas for high E, it is independent of the Young’s modulus and reaches the value for 

the hemispherical contact for which the apparent contact strength is no function of E. The 

point most interesting to mention when considering only hemispheres instead of elastic 

bands are the optimum values. For the spheres, an optimum Young’s modulus of around 

30 MPa and an optimum fiber radius of approx. 30 nm was found. In the case of the elastic 

band, the regimes for the those parameters are 100 - 300 GPa for Eopt and 50 - 100 nm 

for Ropt. This shows that for finding the optimal fiber radius, the hemispherical 

approximation is appropriate, whereas for the Young’s modulus it yields values about one 

order of magnitude higher than for the tape itself. Generally speaking, it is surprising how 
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little the modulus effect is, and how well the spherical contact can be used as a first order 

approximation for the elastic band. 

6.7.3 Discussion of adhesion design maps 

In Figure 6.3, the adhesion design maps for the flat tips are shown. As for all three 

condensation models the slope of the conode is smaller than that for the contours of 

apparent contact strength, the intersection of the conode with the ideal contact strength 

yields the optimum design parameters. This is somewhat surprising as we usually 

experience that softer materials “stick” more than stiffer ones. The reason for this 

surprising result is found in the relationship between pull-off force and Young’s modulus 

for the flat punch (eq. 6.19): The pull-off force scales with the square root of the modulus. 

Thus, the stiffer the punch, the higher the adhesion force. This relationship, which is valid 

only for a punch stiffer than the half space it is in contact with, was derived neglecting 

surface roughness. Introducing roughness changes those results as is demonstrated by the 

periodical model presented in this chapter. With roughness, the adhesion performance of 

the punch is dramatically reduced (Figure 6.4) and the results are more like what one 

would expect intuitively. This strong roughness influence has already been investigated by 

Fuller and Tabor in 1975. They theoretically treated the reduction in adhesion force due to 

a gaussian distribution of surface asperities heights on a rough flat, in contact with a 

smooth sphere (137). Fuller and Tabor found that even a relatively small surface roughness 

(in the nanometer regime) can reduce adhesion to very small values. Also in 1975, Johnson 

treated the effect of surface roughness on adhesion forces very similar to the approach 

taken by Fuller and Tabor (138). He chose an exponential distribution of asperity heights 

and found that the influence of surface roughness can be so strong that no overall adhesion 

is developed (138). More recently, Persson in his theory for the adhesion between rough 

bodies, described the surfaces with a roughness power spectrum (139, 140). In good 
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qualitative agreement with experimental results by Fuller and Tabor, he found that the 

pull-off force was dramatically reduced with increasing roughness (139, 140). Persson’s 

theory can also be applied for the contact between two rough plates; the combination we 

are dealing with in the maps for the flat tips. Compared with those approaches for rough 

surfaces, our model is very simplified and could be improved by introducing a statistic 

distribution for the radii of the hemispheres. Still, it very well demonstrates the dramatic 

influence of surface roughness on adhesion performance. For Persson’s approach to fiber 

condensation (129), in Figure 6.3c the intersection of the conode with the ideal contact 

strength limit is below the criterion for fiber fracture, so that here no optimum would be 

found for the given parameters. As the conode is only slightly below the cross-over of the 

fiber fracture and the ideal contact strength limit, the optimum parameters are calculated 

nevertheless and are presented in Table 6.2 (see below). 

For the toroidal tips presented in Figure 6.6, the conodes for the condensation models 

developed by Sitti and Fearing (38) and Glassmaker et al. (44), have the same slope as the 

contours of constant apparent contact strength. Thus, the whole conode between the fiber 

fracture and the ideal contact strength limit yields optimum parameters. For the Sitti and 

Fearing case this means that one can change the Young’s modulus by over three orders of 

magnitude (from ca. 0.6 to 200 GPa) and still obtain the same adhesion performance. The 

optimum radius would change from about 0.04 to 2 µm in this process. The reason for this 

behavior is a balance between contact splitting and the dependence of the pull-off force on 

Young’s modulus. The latter scales with E
1/3 and favors larger moduli, whereas contact 

splitting shifts optimum values to smaller radii. 

For the tapes, which have the same splitting efficiency as spheres (12), contact 

splitting is “stronger” than the dependence on Young’s modulus (Pc ~ E
1/2). For the 
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condensation limits after Sitti and Fearing and Glassmaker et al., the optimum values are 

found at smaller Young’s moduli and radii. Both, the contours of constant apparent contact 

strength and the limit of ideal contact strength are shifted to smaller radius values than in 

the maps for the other shapes. The limit of ideal contact strength, for the Young’s moduli 

considered, is found at radii smaller then the ones included in the maps. As the contours of 

apparent contact strength for σapp = 0.1 and 1 MPa are at such small radius values, in 

Figure 6.6 contours for σapp = 1 and 10 kPa are added. Inserting values for C = 10, f = 0.1, 

Eeff = 1 MPa, yields a peel-off angle for the Young’s modulus to be maximal of α ≈ 39°. 

Eopt then is 66 MPa. Interestingly, the angle at which gecko spatulae make contact with a 

substrate (109) is between 50 and 55° which is quite close to our result. As well, other 

theoretical treatment of gecko attachment by Gao et al. demonstrated that the attachment 

force was maximal for a pulling angle of around 30° (141). Again, this is close to what was 

found here. What is quite different than in natural systems is the optimum Young’s 

modulus, which is around 1 - 10 GPa in nature (142), whereas we calculated a value of 

66 MPa. This difference might originate in the assumptions made when constructing the 

maps and which seem to have more influence on the modulus than on the peel-off angle. 

6.7.4 What is the optimum shape? 

As we constructed adhesion design maps for several contact shapes, it is only fitting 

to ask the question which shape will yield the optimal adhesive. For each contour, 

the conditions for the optimum Young’s moduli and the optimum apparent contact 

strengths have already been presented. In Table 8.1 (appendix D) these results are 

summarized and supplemented with the equations for the optimum radii and aspect ratios. 

In order to be able to compare all contact shapes, including the hemisphere which was 

treated in an earlier publication (15), the results for spheres have been added. As it is quite 
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difficult to see trends with these equations only, we insert the typical values for b, C, f, Eeff, 

α and γ that were used to construct the maps in Figures 6.3 to 6.8 (b = 0.2 nm, C = 10, 

f = 0.1, Eeff = 1 MPa, α = 60°, γ = 0.05 J/m²). The resulting numerical values for the 

optimal design parameters are summarized in Table 6.2. 

 

Table 6.2: To ease the comparison between the different tip shapes and fiber condensation models, we insert 

typical values (Eeff = 1 MPa, C = 10, f = 0.1, γ = 0.05 J/m², b = 0.2 nm) into the equations for Eopt, Ropt, λopt 

and the ultimate apparent contact strength 
opt

appσ , listed in Table 8.1, and present the numerical results. In (a) 

for the condensation limit after Sitti and Fearing, in (b) for the Glassmaker et al. approach and in (c) for the 

condition developed by Persson. For the spherical tips a Poisson’s ratio of ν = 0.3 is assumed. 
 

(a) Condensation limit after Sitti and Fearing 
 

Tip shape Eopt (Pa) Ropt (m) λλλλopt (-) 
opt

appσ (Pa) 

Sphere 2.83·107 2.65·10-8 1.50 2.83·106 

Flat punch 5.98·1012 1.22·10-5 735.80 2.5·107 

Torus (self similar) 
4.71·1011 
6.81·107 

3.42·10-6 
4.11·10-8 

193.60 
2.30 

6.81·105 

Elastic tape  
(α = 60°) 

1.53·108 6.16·10-8 3.49 7.44·104 

 

(b) Condensation limit after Glassmaker et al. 
 

Tip shape Eopt (Pa) Ropt (m) λλλλopt (-) 
opt

appσ (Pa) 

Sphere 1.07·108 6.99·10-9 2.90 1.07·106 

Flat punch 3.36·1011 6.85·10-7 163.50 2.50·107 

Torus (self similar) 
1.78·108 
1.80·1011 

5.02·10-7 
1.58·10-8 

119.80 
3.76 

1.78·106 

Elastic tape  
(α = 60°) 

3.99·108 2.36·10-8 5.63 1.98·105 
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(c) Condensation limit after Persson 
 

Tip shape Eopt (Pa) Ropt (m) λλλλopt (-) 
opt

appσ (Pa) 

Sphere 
1.61·108 
2.11·109 

4.65·10-9 
4.65·10-9 

3.58 
12.95 

1.61·106 
1.61·106 

Flat Punch 2.28·109 4.65·10-9 13.47 2.50·107 

Torus (self similar) 1.74·1010 4.65·10-9 37.16 1.85·107 

Elastic tape  
(α = 60°) 

2.02·109 4.65·10-9 12.69 1.01·106 

With these values and for all three condensation criteria, the flat punch results in the 

highest values for the optimum apparent contact strength. It reaches a value of 

opt

appσ  = 25 MPa, which is well above that of the gecko (0.1 to 0.2 MPa (6, 8)). The resulting 

values for the optimal Young’s moduli reach numbers which for the Sitti and Fearing 

condensation model (Eopt = 6 TPa) even surpass moduli reached by to-date materials 

(1 TPa). In the maps, we limited the Young’s modulus to a maximum of 200 GPa, as in 

real contact pairs the effective modulus will very rarely exceed this value. The radius 

values seem to be more plausible in the Persson case, as one would expect that pillars in 

the nanometer regime are superior to those in the micrometer range. Interestingly, the 

value for the pillar aspect ratio is very small for the Persson criterion (λopt ≈ 17) and thus 

much more feasible than the high numbers predicted by the other two limits (λopt ≈ 160 

and 735). For a fiber packing density of 10 %, simple geometrical considerations yield a 

minimum aspect ratio of around 8 for the Persson limit to be applicable. Thus, only the 

minimal aspect ratio in the hemispherical case is below what is describable after Persson. 

Introducing surface roughness and using our simple model of periodic hemispherical 

bumps, the performance of the punch drops dramatically and the apparent contact strength 

for a roughness of Rz = 1 µm is no higher than approx. 7 kPa (about a factor of 80.000 
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smaller than without roughness!). As discussed in the previous section, such drastic 

reductions in adhesion performance were modeled in the literature and found 

experimentally (111, 137, 139, 140) as well. 

For the other tip shapes, it depends on the condensation model which shape has the 

second highest value for the optimum apparent contact strength. For the Sitti and Fearing 

limit, the spherical contact shows the second highest adhesion performance 

( opt

appσ  = 2.8 MPa) followed by the torus (0.7 MPa) and the elastic tape (74 kPa). In all three 

cases, the predicted optimal Young’s modulus and radius values are plausible and in the 

range possible in artificial systems. 

In the case of the other two condensation criteria, the torus adheres second best 

( opt

appσ  = 1.8 MPa for the Glassmaker et al. limit and 18.5 MPa for the Persson criterion), 

and is followed be the hemispherical contact (about 1 MPa for both limits). The elastic tape 

always shows the lowest adhesion performance (0.2 and 1.0 MPa), but we still calculated 

apparent contact strengths in the range of gecko attachment (0.1 to 0.2 MPa) (6, 8). This is 

remarkable, as the elastic tape does thereby not only promise significant adhesion, but due 

to its asymmetric nature allows easy detachment; a property very desirable in technical 

systems. For the Glassmaker et al. limit, the optimum Young’s moduli are all in the 

0.1 GPa range and the radii are between 7 and 500 nm. This is quite small, but still feasible 

with today’s fabrication techniques; especially as the optimal aspect ratios for these three 

tip shapes are below 10. We can state that all optimal aspect ratio values, with the 

exception of the flat punch, are quite small; the highest being about 40 for the torus after 

Persson, and the rest mainly being below 10. In summary, for ideal surfaces without 

roughness, flat tips are by far the ones with the best adhesion performance. This breaks 

down once roughness comes into play. For the ideal case, the flat punches are either 
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followed by the torii, or the hemispheres, depending on the condensation limit, whereas the 

elastic tape always adheres least. But even the tapes give maximum values for the apparent 

contact strength well in the range of gecko adhesion. All shapes, independent of the 

condensation limit, take high optimum Young’s modulus values, which are above the MPa 

range and, with the exception of the flat punch and the torus after Sitti and Fearing, 

optimum radii below one micrometer. The optimum aspect ratios for the elastic tape, 

the torus and the sphere are mainly below ten, but even exceed 700 for the flat punch. 

The question which condensation limit is best suited for the construction of adhesion 

design maps is difficult to answer. For the punch, the Sitti and Fearing model leads to an 

intersection point of the conode with the ideal contact strength limit at a Young’s modulus 

above those realized in up-to-date materials. We thus expect the strongest adhesion for the 

stiffest materials at hand. Interestingly, there are two experimental studies showing very 

promising adhesion performance of carbon nanotube based dry adhesives (57, 58). Also for 

the Glassmaker et al. approach the intersection point of the conode with the ideal contact 

strength limit is at a Young’s modulus value of 300 GPa, which is still very high. The 

model after Persson thus seems to be best suited to describe the punch shape as it yields the 

most reasonable results. It has to be stated though that, when being compared with 

experimental data from microstructured elastomer surfaces, both the Sitti and Fearing and 

the Glassmaker et al. approach, describe the experimental reality very well (131), see 

chapter 4. For the other tip shapes, the model after Persson demands for the smallest radii, 

with the optimum being independent of tip shape. As one would expect that the optimum 

radius is a function of contact shape, one could argue that the Glassmaker et al. approach 

(in our context) is more feasible than that developed by Persson. The Sitti and Fearing 

model, which assumes spherical tips for all contact shapes, perhaps should only be used for 

hemispheres. At the end, the Glassmaker et al. limit might be the one of choice for the 
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construction of adhesion design maps. In this context it is interesting to mention that 

considering the quite different approach for calculating the attractive forces between two 

fibers, the Sitti and Fearing and the Glassmaker et al. model give surprisingly similar 

results. This is demonstrated in Figure 6.2 where the ratio between the condensation 

condition after Sitti and Fearing and after Glassmaker et al. is plotted as a function of fiber 

area fraction f. For most technical systems f will range between 0.1 and 0.6. In this regime 

the ratio of the two limits is between one and four, demonstrating how little the difference 

between them really is. Still, this small difference in some cases can yield quite different 

optimum design parameters in the log-log plot of the maps. Another idea to circumvent 

condensation problems is to choose a quadratic fiber cross-section and packing the fibers 

such that they can touch their nearest neighbors only with the edges and not with the faces. 

By doing so, the attractive forces between the fibers and thus the problem of fiber 

condensation is minimized. Additionally, one could coat the fiber surface, not the tip, with 

a material with low work of adhesion, reducing attractive forces. The same effect could be 

achieved by roughening the fiber surfaces. 

6.7.5 Limitations and problems 

A word of caution is necessary. The adhesion design maps presented in this chapter 

are based on severe simplifications. For example, the fiber fracture limit is based on the 

approximation that the theoretical fracture strength is one tenth of the Young’s modulus. 

This can only be derived for perfect crystalline materials (143), but is not valid for 

polymers. For PDMS, the fracture strength is about a factor of four higher than the 

Young’s modulus (see Table 3.3). As polymers very often are amorphous, or have large 

amorphous fractions, it is not possible to derive a similar, elegant relationship between 

fracture strength and modulus. Moreover, the mechanical properties of polymers depend 

on parameters that do not exist in metals and ceramics, e.g. polydispersity. 
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Thus, f

thσ = E/10 is used knowing that it is under debate. It still is a good first order 

approximation over the entire modulus range covered in the maps. Especially as the limit 

of fiber fracture is shifted to smaller radii for higher ratios like f

thσ  ≈ 4E and therefore 

becomes even less important compared to the criterion of fiber condensation. 

For the flat punch contact, the equation for the pull-off force (eq. 6.19) was originally 

derived assuming that the contact radius is equal to the radius of the punch. This is only 

valid for a punch with higher stiffness than that of the substrate it is in contact with. This 

will not be the case for the entire modulus range of the design maps. Spolenak et al. 

showed that for the contact radius being reduced to 80 % of the punch radius, the pull-off 

force is reduced by ca. 10 % (12). We follow this argument and use eq. 6.19 for all moduli 

considered in the maps. 

Examples for results that might be misleading, are the low optimum aspect ratios that 

are predicted in this chapter. One possible reason has already been mentioned; the neglect 

of surface roughness. As in the real world animals with fibrillar adhesives have to adhere 

to surfaces with considerable roughness, they are equipped with setae of larger aspect 

ratios (about 25 for the gecko (144)). In the future, it would be interesting to include 

roughness into the maps for all shapes and in a more sophisticated manner than presented 

in this chapter. As well, there is experimental evidence that the gecko adhesion benefits 

from humidity and that capillary effects might play a role (6). One can imagine artificial 

adhesives combining capillary and van der Waals type interactions. This might also be part 

of future design maps, in order to find out about the optimum design parameters in wet or 

humid environments. Finally, a parameters which should be considered more in the future 

is the effect of aspect ratio on adhesion performance. Both, theoretical and experimental 

investigations have shown that adhesion increases with aspect ratio (118-120, 131), see 
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chapter 4. This effect has so far not been considered in the maps, but it would favor higher 

aspect ratios automatically. 

The adhesion design maps as they are presented here, are meant as first 

approximations to learn more about the effect of shape on the adhesion behavior. They are 

another step to find out how different tip shapes influence the process of choosing the right 

design parameters for optimal adhesives and they give first indications which shape is most 

promising when it comes to maximizing adhesion performance. They also might help to 

understand biological attachment systems as nature provides a variety of different contact 

shapes (12).  

 

6.8 Conclusions 

In the present chapter we extended the existing concept of adhesion design maps for 

hemispherical contacts to three other tip shapes. These shapes are flat, toroidal and elastic 

band. Keeping in mind the assumptions made when constructing the maps, and comparing 

the three new shapes with the already presented hemispherical one (15), we draw the 

following main conclusions when it comes to the design of an optimal adhesive system: 
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• When hierarchical structures are considered, one has to keep in mind that there is a 

critical number for new pillars substituting one big contact so that this change is 

beneficial for the adhesion performance. This critical number is a function of fiber 

packing density and tip shape, reflecting the different splitting efficiencies. It is 

easiest to switch to another level of hierarchy for spherical and band-like structures. 

One has to create most new contacts for adhesives with flat tips. 

• For ideal surfaces without any roughness, flat tips yield the strongest adhesives. 

This breaks down once roughness is considered. The second best adhesion 

performance results from toroidal tips, followed by spheres and tapes. For the 

elastic band, maximum adhesion performance is still found to be in the range of the 

gecko. This is very promising as the asymmetric tape allows for an easy release of 

the contact. 

• Among the three condensation models considered, the one put forward by 

Glassmaker et al. seems to be best suited for the construction of adhesion design 

maps, as it is independent of contact shape and could even be expanded to square 

fiber cross sections.  
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7 Summary and Outlook 

The present study clearly demonstrates that there are significant size and shape 

effects in bioinspired dry adhesives. To understand these phenomena in more detail, 

different 3D tip shapes were fabricated from standard 2D SU-8 molds which were 

microstructured using contact mode photolithography. By variations of the soft molding 

techniques, standard flat punch, spherical, concave, spatula-like and mushroom-shaped tip 

geometries, as well as flat punches with rounded edges were successfully fabricated. With 

the development of a two step process, first hierarchical model systems were demonstrated. 

Synthesis of these structures was possible homogeneously over one square centimeter, but 

up-scaling to entire wafer level is expected to be feasible. The feature dimensions of the 

fabricated structures ranged from 2 to 50 µm in diameter and from 2.5 to 200 µm in height. 

Systematic adhesion experiments on these structures revealed a number of size and 

shape effects. First, the principle of contact splitting was found to be valid for flat tips and 

such terminated by hemispheres. The splitting efficiencies were in strikingly exact 

agreement with JKR-based adhesion theory. When comparing the performance of the other 

shapes, it is most interesting that spatula- and mushroom-shaped pillars generated very 

high pull-off forces. For the mushroom shape pull-off strengths in the region of gecko 

adhesion were determined. A flat control specimen was exceeded by over a factor of 30, 

even for large pillar diameters. Since the splitting efficiency of the mushroom shape is 

largest, even higher strengths with decreasing feature size will be possible in the future. 

Flat and spherical shapes showed lower adhesion, while concave tips resulted in the 
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poorest performance, coupled with an unusual preload dependence. In Figure 7.1 the same 

literature data as in Figure 2.3 are presented as adhesion strength plotted versus feature 

radius on a log-log scale. Additionally, the data presented in this thesis were added. They 

fit well into the published results and demonstrate the influence of size and shape on the 

adhesion of fibrillar systems. 
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Figure 7.1: A comparison of the published adhesion strength (pull-off force per area, σc) data represented as 

pull-off strength versus fiber radius and the data presented in this thesis (all for aspect ratio one and at 

Pp = 1 mN).  

The adhesion testing also revealed a strong preload dependence of the pull-off force, 

which increased with increasing preloads. This effect was more pronounced in pillars with 

higher aspect ratios and could be explained by the spherical nature of the indenter used to 

measure adhesion. Interestingly, not only a reduction of feature size increased adhesion 

performance but also an increase of pillar aspect ratio. A possible explanation for this 

result was found in a model originally developed for the rupture of rubbery solids, which 

describes the behavior found in this work very well. Thus, the highest pull-off forces can 

be expected for pillars with small radii and high aspect ratios, while avoiding fiber 
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condensation. This highlights again the need for a trade-off between geometrical and 

elastic parameters as it is demonstrated by the adhesion design maps which in this thesis 

have been extended to further contact shapes besides the hemispherical one. These shapes 

were that of a flat punch, a torus and of an elastic tape, for which different peel-off angles 

were considered. For contact with an ideal smooth surface it was found that flat tips give 

the strongest adhesives followed by toroidal tips, spheres and tapes. The elastic tapes seem 

to be very promising, as the adhesion performance is in the regime of natural systems and 

their asymmetric shape allows for easy release. By putting forward a simple model for 

rough surfaces it was demonstrated that even small roughnesses reduce adhesion 

dramatically. 

There is still a lot that can and should be done for future experiments on fibrillar 

model systems. First, the analysis presented in this thesis is based on van der Waals 

interactions only, not considering any humidity or capillary effects. Since experiments on 

natural fibrillar systems showed a strong humidity dependence of the pull-off forces (6), it 

would be interesting to see if such effects are found with artificial surfaces as well. Recent 

theoretical calculations already indicated that capillary forces also depend on contact 

shape (115). First experiments in this direction are under way. Of course, the high splitting 

potential of the spatula- and the mushroom-like tip shape should be investigated further, 

mainly by scaling down the contact size to confirm the high pull-off strengths of these 

structures predicted by the data shown in this thesis. In 2005 Suh et. al already presented a 

method of fabricating high aspect ratio nanostructures with diameters around 150 nm based 

on capillary lithography which allowed them to generate spatula-like structures (145). To 

exploit this method further and to measure adhesion performance of such small structures 

would be fascinating and should yield unpreceded pull-off forces. In order to further 

understand the high splitting efficiencies and the absolute pull-off forces, it would also be 
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necessary to model the contact mechanics of mushroom and spatular structures either 

numerically or analytically. They benefit very likely from a significant reduction of the 

deleterious stress concentration that is present at the perimeter of conventional flat punch 

contacts. With this theoretical understanding at hand the fabrication of optimized structures 

with even better adhesion performance might be possible. 

A structure that is presented in this thesis but only as far as the fabrication is 

concerned and without any adhesion measurements performed, are the hierarchical 

systems. Performing adhesion tests on these structures, once they are successfully 

fabricated in PDMS and not only in SU-8, should help to better understand the role of 

hierarchy on the adhesion of fibrillar systems, especially when combining this method with 

gradients in Young’s modulus and different pillar packing densities and shapes. By doing 

so, an experimental investigation of the minimum number of small contacts necessary for 

efficient splitting derived in chapter 6 will be possible. First experiments in this direction 

have already been performed successfully. 

Finally, active systems are very interesting since they allow the switching of the 

pull-off behavior from a sticky to a non-sticky state. First adhesives based on shape 

memory polymers (146) or magnetic actuation (66) have already successfully been 

fabricated but still many approaches for designing and fabricating active systems remain 

open for future developments. Such efforts will benefit from the knowledge gained about 

size and shape effects on fibrillar adhesives presented in this thesis. 
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8 Appendices 

8.1 Appendix A: Additional Information to 

Chapter 3 

 

   

   

 
Figure 8.1: SEM micrographs showing examples of failed inking and printing experiments. 
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8.2 Appendix B: Additional Information to 

Chapter 4 

 

8.2.1 SEM micrographs of selected pillars structures 

 

   

   
Figure 8.2: SEM micrographs of selected pillar structures with r = 5 µm and λ =  0.5, 1, 2 and 4. Specimens 

were coated with 10 nm Au/Pd before taking pictures. 
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8.2.2 Load-displacement curves 
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Figure 8.3: Load-displacement curves at different preloads obtained on patterned surfaces (r = 25 µm, 

λ = 1). Each graph contains data corresponding to five experiments to demonstrate the high reproducibility 

of the measurements. 
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8.2.3 Pull-off force and strength vs. preload for aspect ratio λ = 2 
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Figure 8.4: Dependence of the pull-off force, Pc, and the pull-off strength, σc, on the preload, Pp, in adhesion 

experiments on flat and patterned surfaces with pillars of different radii and constant aspect ratio (λ = 2). 
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8.2.4 Tenacity 
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Figure 8.5: Tenacity of pillars arrays of different radius (λ = 1) compared to flat surface. 
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8.2.5 Pull-off force as a function of aspect ratio at radius r = 10 µm 
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Figure 8.6: The influence of the aspect ratio on adhesion of patterned surfaces. Data correspond to pillar 

patterns with radius 10 µm and different heights, measured at different preloads. 
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8.2.6 Dependence of E* on radius, height and aspect ratio 
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Figure 8.7: Variation of E
*
 of patterned surfaces with different radii, heights and λ. E

*
 has been calculated 

by fitting the loading curves to the Hertz model. 
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8.2.7 Critical contact radius and number of pillars in contact at acrit 
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Figure 8.8: Critical contact radius, acrit and number of pillars in contact at acrit for different pillar radii, 

heights and λ. The values for acrit were determined by fitting the Pc-Pp data with the spring model (116). 
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8.3 Appendix C: Additional Information to 

Chapter 5 

 

 
Figure 8.9: White light interferometer profile of a sample with spherical tips confirming the hemispherical 

tip shape. 
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8.4 Appendix D: Additional Information to 

Chapter 6 

8.4.1 Design maps for tapes: detailed derivation 

8.4.1.1 Contours of constant apparent contact strength 

The apparent area fraction is given by: 
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Since only positive values for R have a physical meaning we write: 
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8.4.1.2 The limit of fiber fracture 

For the fiber fracture limit, we get (15), 
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8.4.1.3 The limit of ideal contact strength 

Following Spolenak et al. (15), 
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8.4.2 Adhesion design maps for tapes at different peel-off angles 
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Figure 8.10: Adhesion design maps for elastic tapes at different peel-off angles α, constructed using the 

condensation limit developed by Sitti and Fearing. The following parameters are assumed: γ = 0.05 J/m², 

f = 10 %, b = 0.2 nm and Eeff = 1 MPa. The dashed line is the “conode”. Its intersection with the fiber 

fraction limit indicates the optimum parameters and is highlighted with a red circle. The following angles α 

were considered: (a) 5°, (b) 15°, (c) 30°, (d) 45°, (e) 60°, (f) 75°, (g) 90°. 



8 Appendices 
 

 

 184

 

8.4.3 Adhesion design maps for spherical tip shape 
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Figure 8.11: Adhesion design maps for hemispherical contact shape and the condensation limits after 

(a) Glassmaker et al. and (b) Persson. 
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The conode equation after Glassmaker et al.: 
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Equating the conode with the fiber fracture limit yields Eopt and σopt: 
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The conode after Persson: 
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As the conode has the same slope as the contours of constant apparent contact 

strength, Emax and Emin can be calculated. In-between these two parameters, the optimal 

adhesive can be found. 
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The optimum apparent contact strength is: 
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8.4.4 Optimum design parameters for all three condensation limits 
 

Table 8.1: Summary of the optimum design parameters found by intersecting the conode with the appropriate 

limit. Besides the optimum Young’s modulus Eopt, the optimal fiber radius, Ropt, aspect ratio, λopt, and the 

ultimate apparent contact strength,
opt

appσ  are presented. All three models for fiber condensation are 

considered: In (a) Sitti and Fearing, in (b) Glassmaker et al. and in (c) Persson. 
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(b) Condensation limit after Glassmaker et al. 
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(c) Condensation limit after Persson 
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10.1 Motivation und Literaturüberblick 

Seit Jahrtausenden fasziniert es den Menschen wie sich Geckos, Spinnen und einige 

Insekten scheinbar mühelos an der Wand und kopfüber an der Decke hängend 

fortbewegen. So schrieb schon der griechische Philosoph und Naturforscher Aristoteles in 

seinem Werk “De Anima” über die erstaunliche Fähigkeit des Geckos kopfüber einen 

Baum hinunterklettern zu können (1). Allerdings gelang es erst in der zweiten Hälfte des 

20. Jahrhunderts die Struktur der Haftorgane des Geckos zu untersuchen (2, 3). Dies hat 

mit ihrer Aufspaltung in Milliarden feinster Haftelemente, sog. Spatulae, zu tun, deren 

Dimensionen im 100 nm Bereich liegen und somit erst mit verbesserter 

rasterelektronenmikroskopischer Technik aufzulösen waren. Durch Wissenschaftler um 

den amerikanischen Biologen Kellar Autumn gelang es zu Beginn des neuen Jahrtausends 

auch die Natur der Wechselwirkungskräfte, auf denen die Adhäsion des Geckos beruht zu 

klären. Diese sind Van-der-Waals-Kräfte (VdW-Kräfte) und somit universell zwischen 

allen Oberflächen vorhanden, da sie auf induzierten Dipolen beruhen (7-9). Dies erklärt 

auch, warum Geckos auf nahezu allen Materialien haften können. Neuere Messungen an 

einzelnen Gecko-Spatulae weisen jedoch darauf hin, dass auch kapillare Effekte einen 

nicht zu vernachlässigend Beitrag zur Haftkraft dieser Tiere leisten (6). Vergleicht man die 

Haftorgane verschiedener Spezies, die die Eigenschaft besitzen in der Senkrechten und 

kopfüber laufen zu können, so fallen mehrere Dinge auf: Zum einen werden die 
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Haftstrukturen mit zunehmendem Körpergewicht kleiner, zum anderen finden sich 

verschiedene Formen in denen der Endkontakt ausgeführt ist. Die erste Beobachtung 

wurde theoretisch durch das sog. “Prinzip des Kontaktaufspaltens” erklärt. Dieses beruht 

auf der am meisten angewandten kontaktmechanischen Theorie für VdW-

Wechselwirkungen die nach den Wissenschaftlern die sie entwickelt haben – Johnson, 

Kendall und Roberts (JKR) – benannt ist. Das Prinzip des Kontaktaufspaltens besagt, dass 

wenn man unter Beibehaltung der projizierten Kontaktfläche einen großen, bspw. 

hemisphärischen, Kontakt in viele kleine Kontakte aufspaltet, die Haftkraft zunimmt (10, 

11). Eben jenes Phänomen verdeutlicht warum schwerere Tiere ihre Hafthaare in feinere 

Strukturen aufspalten müssen. Es wird auf Grund einer höheren Anzahl an Einzelkontakten 

mehr Haftkraft gewonnen. Berechnet man die Effizienz des Aufspaltens, so stellt man fest, 

dass diese eine Funktion der Endkontur des Kontaktes ist und sich z.B. für stempelförmige 

Elemente deutlich von der für Halbkugeln unterscheidet (12). All jene Überlegungen 

führten zur Entwicklung von sog. “Adhesion Design Maps” (Design-Karten), die ein 

strategisches Auslegen von künstlichen, fibrillären Haftstrukturen erleichtern sollten. In 

ihnen werden in einem doppelt-logarithmischen Radius-E-Modul-Raum, limitierende 

Bedingungen für diese Systeme aufgetragen und letztlich das Optimum für Radius, 

E-Modul und Aspektverhältnis der Strukturen ermittelt, bei denen die Haftkräfte maximal 

sind. Ein Beispiel für eine solche limitierende Randbedingung ist die sog. Kondensation 

einzelner Säulen, bei der sich auf Grund eines zu hohen Aspektverhältnisses (bei 

gegebener Steifigkeit) eher ein Kontakt zwischen zwei Säulen, als der beiden einzeln mit 

der gegenüberliegenden Oberfläche, ausbildet. Dieses Phänomen ist der Haftkraft stark 

abträglich und gilt es zu vermeiden. Alles bisher Angeführte über die Leistungsfähigkeit 

des biologischen Vorbildes, die Theorie der Kontaktaufspaltung sowie die Design-Karten, 

zeigt auf, welch hohes Potential in künstlichen Haftstrukturen steckt. Dies ist Grund und 

Anreiz genug für zahlreiche Forschungsgruppen weltweit die Entwicklung von 
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funktionsfähigen fibrillären Haftsystemen voranzutreiben. Dennoch wurde in der Literatur 

der Einfluss einer Radiusverkleinerung auf die Haftkräfte sowie die Rolle der Endkontur 

der Säulen bis heute nicht systematisch untersucht. Um sich diesen Fragen experimentell 

zu nähern und Licht auf die Effekte von Größe und Form der Haftkontakte zu werfen, 

wurden in der vorliegenden Arbeit fibrilläre Modellsysteme, die sich für kontrollierte und 

reproduzierbare Messungen eignen hergestellt und auf ihre Hafteigenschaften hin 

untersucht. Des Weiteren wurde das bereits erwähnte Konzept der “Adhesion Design 

Maps” auf zusätzliche Endkonturen erweitert. Das experimentelle Vorgehen wird im 

Folgenden beschrieben sowie die wichtigsten Ergebnisse vorgestellt. 

10.2 Experimentelles 

Es war das Ziel dieser Arbeit präzise Messungen an Modellsystemen fibrillärer 

Haftsysteme vorzunehmen. Um sowohl Radius, als auch Aspektverhältnis der Säulen, 

welche als Modell fibrillärer Haftsysteme verwendet wurden, unabhängig voneinander 

variieren und kontrollieren zu können, wurden mittels optischer Lithographie 

Masterstrukturen angefertigt. Ausgehend von Siliziumwafern, welche man mit Piranha-

Lösung (fünf Teile Wasserstoffperoxyd auf einen Teil Schwefelsäure) gereinigt hatte, 

wurden in Reinraumatmosphäre mittels Spincoating verschieden dicke Schichten eines 

Photolacks aufgebracht. Verwendet wurde SU-8, ein epoxidbasierender UV-sensitiver 

Negativ-Photolack, der sich besonders für sehr dicke Lackschichten eignet (147). Durch 

die Wahl geeigneter chromfreier Stellen auf der verwendeten lithographischen Maske 

konnte der Durchmesser der späteren Säulen festgelegt werden, wobei die Lackdicke die 

Höhe vorgab. Die mit Erfolg hergestellten Strukturdurchmesser lagen zwischen 2 und 

50 µm, die Höhen zwischen 2 und 200 µm. In die SU-8-Schicht wurden im Normalfall 

Löchern strukturiert und diese mit einem siloxanbasierenden Elastomer namens 
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Polydimethylsiloxan (PDMS) (Dow Corning Sylgard 184) abgeformt. Das Ergebnis dieses 

Schrittes waren nach dem Aushärten des PDMS (14 h bei 65°C) und einem vorsichtigem 

Ablösen der Elastomerstruktur vom Wafer, Säulen im Mikrometerbereich die sich auf 

Grund des niedrigen E-Moduls von PDMS (ca. 2 MPa) sehr gut für Adhäsionsmessungen 

eigneten. Dies war mit SU-8-Säulen, die ebenfalls hergestellt wurden, auf Grund einer 

Steifigkeit von ca. 5 GPa nicht der Fall. Um das Ablösen des PDMS vom Photolack zu 

vereinfachen, wurden die Wafer vor dem erstmaligen Abgießen einem 

Silanisierungsschritt, bei dem sich mittels eines Perflourosilans (Heptadecafluoro-1,1,2,2-

tetrahydrooctyltrichlorosilan) eine teflonartige Oberflächenschicht ausbildete, unterworfen. 

Durch diese Art des sog. “Soft Molding” konnten aber nur Säulen mit dem Profil eines 

flachen Stempels hergestellt werden. Um den Einfluss verschiedener Endkonturen der 

Säulen auf die Adhäsionseigenschaften untersuchen zu können, wurde deshalb ein 

Verfahren entwickelt, um unter Verwendung der lithographischen Master komplexere 

Formen darstellen zu können (siehe dazu Kapitel 3 dieser Arbeit). Dazu wurden zuerst 

Säulen mit der Kontur eines flachen Stempels hergestellt. Diese ergaben sich aus dem oben 

beschriebenen Abformen der SU-8-Masterstrukturen. In einem zweiten Schritt wurde 

mittels Spincoating eine Schicht von unvernetztem PDMS mit einer Dicke von ca. 6 µm 

auf einem Siliziumwafer aufgebracht. Von Hand wurden nun die Spitzen der 

Elastomersäulen in diese Schicht eingetaucht und wieder herausgezogen. Wurden die 

Säulen nun mit ihrem Ende nach unten weisend in einem Ofen kuriert, so ergaben sich 

unter dem Einfluss der Oberflächenspannung des unvernetzten PDMS und der 

Schwerkraft, Säulen mit halbkugelförmiger Endkontur. Wurden die Säulen nach dem 

Eintauchen in flüssiges PDMS, auf einen waagerecht liegenden, silanisierten Wafer 

gegeben, so konnten Säulen pilzförmiger Natur hergestellt werden. Lag der Wafer 

hingegen leicht gekippt, ergaben sich Säulen mit spatelförmigen Spitzen. Durch einen sog. 

Doppelabguß ausgehend von SU-8-Säulen, über PDMS welches nach dem Abziehen 
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silanisiert und erneut mit PDMS abgegossen wurde, gelang es stempelförmige Säulen mit 

abgerundeten Kanten anzufertigen. Ausgehend von sog. Dentalwachsen (PDMS-

basierenden Elastomeren, die in Zahnarztpraxen Verwendung finden und die deutlich 

schneller vernetzen als Sylgard 184) gelang die Herstellung von Säulen mit konkaver 

Geometrie (siehe Figure 3.5 für das Fabrikationsschema der Endkonturen). Die Herstellung 

hierarchischer Modellsysteme gelang durch zwei aufeinanderfolgende lithographische 

Belichtungsschritte an deren Ende beide Ebenen zusammen entwickelt wurden (siehe dazu 

Figure 3.4 in Kapitel 3). 

Die Untersuchung der Adhäsionseigenschaften solch mikrostrukturierter PDMS-

Oberflächen erfolgte mittels eines im Eigenbau entstandenen Adhäsionsmeßgerätes. Dieses 

beruht auf der Auslenkung eines Glascantilevers welche laseroptisch bestimmt wird. Durch 

eine präzise Kalibrierung der Federkonstante des Cantilevers konnte später auf die Kraft 

zurückgerechnet werden. An das Ende des Cantilevers wurde in den hier präsentierten 

Versuchen eine polierte Saphirkugel mit 5 mm Durchmesser angebracht. Um die 

Haftkräfte einer Probe zu bestimmen, wurde der gesamte Cantilever mittels eines 

Piezoaktuators in Richtung der durch einen Hexapod positionierten Probe bewegt. Die 

Saphirkugel wurde bis zu einer gewissen Vorlast in die Probe gedrückt und anschließend 

wieder von jener abgezogen. Hierbei sorgte die Adhäsion für eine gewisse Haftkraft (siehe 

Figure 4.2b in Kapitel 4 für eine typische Kraft-Abstands-Kurve). Die Messungen wurden 

bei Raumtemperatur und Luftfeuchtigkeiten um 20 % durchgeführt. In allen Versuchen 

wurde die Vorlast schrittweise erhöht.  
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10.3 Ergebnisse und Diskussion 

Das erste wichtige Ergebnis der vorliegenden Arbeit ist, dass es gelang auf elegante 

Art und Weise Säulen mit dreidimensionalen Spitzengeometrien aus einfachen 

lithographischen Mastern herzustellen. Dazu wurden wie oben beschrieben die 

Viskositätseigenschaften von PDMS und PDMS-basierenden Elastomeren ausgenutzt. Die 

hier vorgestellten Geometrien sind die eines flachen Stempels, halbkugel-, spatel- und 

pilzförmig. Ebenso wurden konkave Säulen und flache Stempel mit abgerundeten Kanten, 

neben hierarchischen Modellsystemen, erzeugt. 

Bei den Adhäsionsmessungen zeigte sich, dass die ermittelten Haftkräfte eine 

Funktion der Vorlast waren (siehe dazu z.B. Figure 4.3 in Kapitel 4). Mit steigender 

Vorlast, nahm die Haftkraft zuerst zu, um dann in einem Plateau zu saturieren. Beides 

konnte erfolgreich mit einem einfachen Federmodell (116) erklärt werden. In diesem 

Modell werden die einzelnen Säulen als rein elastische und voneinander unabhängig 

Federn angenähert. Sie stehen auf einer Seite in Kontakt mit einer Kugel und einer Ebene 

andererseits. Vereinfacht formuliert, nimmt die Haftkraft anfangs zu, da mit steigender 

Vorlast eine zunehmende Anzahl an Säulen (Federn) in Kontakt mit der Kugel kommt und 

somit auch mehr einzelne Kontakte zur Adhäsion beitragen. Steigt die Indentationstiefe 

weiter, sie ist über die Steifigkeit der Probe direkt mit der Vorlast verknüpft, kommt es im 

Moment des Kontaktabrisses aber zu einem Gleichgewicht zwischen Federn im Zentrum 

und am Rand des Kontaktes. Die Säulen im Zentrum befinden sich in Kompression und 

wirken der Adhäsion entgegen. Die Strukturen am Rand sind im Zug und sorgen für die 

eigentliche, aktuelle Haftkraft. Ist das Gleichgewicht zwischen beiden Beiträgen erreicht, 

erhöht eine größere Vorlast die Haftkraft nicht weiter. Dieses Modell beschreibt den 

experimentell gefundenen Verlauf der Haftkräfte über der Vorlast sehr zufriedenstellend, 

wenn auch für verschiedene Säulenradien unterschiedlich gut (siehe Figure 4.3 in 
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Kapitel 4). Diese Vorlastabhängigkeit spielt eine große Rolle beim Vergleich der Daten 

untereinander sowie mit in der Literatur veröffentlichten Ergebnissen. Im letztgenannten 

Fall wird nur sehr selten die gesamte Haftkraft-Vorlastkurve angegeben, bzw. erläutert bei 

welcher Vorlast die Haftkräfte ermittelt wurden. Dieser Umstand erschwert eine sinnvolle 

Interpretation der Literaturdaten häufig beträchtlich. 

Durch die systematische Reduktion des Säulenradius von 25 über 10 und 5 auf 

2.5 µm zeigte sich, dass die Haftkräfte mit kleiner werdendem Säulenradius zunehmen. Da 

die Absolutkräfte eine Funktion der Größe der für die Versuche verwendeten Saphirkugel 

waren, wurden die Kräfte durch die sog. projizierte Kontaktfläche – die maximale 

Kontaktfläche zwischen Probe und Kugel (siehe Figure 4.2a Kapitel 4) – normiert und 

dadurch die Kontaktfestigkeit ermittelt. Da die Kontaktfestigkeit unabhängig von der 

Größe der Saphirkugel ist, stellt diese Haftkraft pro Fläche das wohl beste Maß zum 

Vergleich des Adhäsionsverhaltens verschiedener Strukturen dar (siehe Figure 4.4 in 

Kapitel 4 für eine Auftragung der Haftfestigkeit gegen die Vorlast für Strukturen mit 

einem konstanten Aspektverhältnis von eins). Durch die doppelt-logarithmische 

Auftragung der Haftfestigkeit gegen den Säulenradius ergab sich die Effizienz der 

Kontaktaufspaltung. Diese wurde für stempelförmige Säulen mit -0.5 bestimmt. Somit 

bestätigte sich die theoretische Erwartung, die nach JKR ebenfalls diesen Wert vorsieht.  

In weiteren Versuchen an ähnlichen Strukturen wurde der Säulenradius konstant 

gehalten (5 µm) und gleichzeitig das Aspektverhältnis von 0.5 über 1 und 2 auf 4 erhöht. 

Hierbei zeigte sich, dass die Haftkräfte und Festigkeiten mit steigendem Aspektverhältnis 

zunahmen. Dieses Verhalten könnte mit einer Theorie die ursprünglich für die Festigkeit 

von kautschuk-elastischen Materialen entwickelt (120) und später auf fibrilläre Adhäsive 

erweitert wurde (118, 119), erklärt werden (siehe dazu Figure 4.5 in Kapitel 4). 
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Um Einblick in die Frage zu erhalten, wie sehr die Spitzenkontur der Säulen die 

Hafteigenschaften der Adhäsive beeinflusst, wurden von allen sechs oben erwähnten 

Formen die Haftkräfte als Funktion der Vorlast bestimmt. Dabei zeigte sich, dass das 

Prinzip der Kontaktaufspaltung bei allen Formen, bis auf die Stempel mit abgerundeten 

Kanten und die konkaven Spitzen, Gültigkeit zu haben scheint. Bei den Stempeln mit 

abgerundeten Kanten, nimmt der flache gegenüber dem runden Anteil der Spitze mit 

kleiner werdendem Radius ab. Somit sank für den kleinsten der untersuchten Durchmesser 

(5 µm) die Haftkraft sogar unter die für den größten (50 µm). Die konkave Säulenform 

scheint invariant gegenüber einer Veränderung des Säulendurchmessers zu sein. Die 

Ergebnisse für diese und die anderen Konturen als Auftragungen der Kraft, bzw. der 

Festigkeit gegen die Vorlast sind in Figures 5.2 bzw. 5.5 in Kapitel 5 dargestellt. Trägt 

man wiederum die Haftfestigkeit bei einer konstanten Vorlast von einem Millinewton 

gegen den Säulen, bzw. Spitzenradius doppelt-logarithmisch auf, so ergibt sich der in 

Abbildung 10.1 gezeigte Graph. 

 
Abbildung 10.1: Abhängigkeit der Haftspannung vom Säulen bzw. Spitzenradius (für die hemisphärische 

Kontur) in einer doppelt-logarithmischen Auftragung. Gezeigt sind Daten für Säulen mit der Form eines 

flachen Stempels, Spitzen mit hemisphärischer, spatulärer und pilzförmiger Struktur. Die Vorlast ist konstant 

bei 1 mN und das Aspektverhältnis beträgt in allen Fällen 1. 
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Diese Abbildung illustriert das Prinzip der Kontaktaufspaltung: Die Haftspannung 

nimmt für kleiner werdende Strukturen jeweils zu. Für die Säulen mit hemisphärischer 

Endkontur ergibt sich eine Aufspaltungseffizienz von -1, was mit dem nach der JKR-

Theorie zu erwarteten Wert übereinstimmt. Für die spatuläre und pilzförmige Spitzenform, 

existieren bislang noch keine theoretischen Vorhersagen für die Aufspaltungseffizient. Es 

ist aber hervorzuheben, dass beide experimentell sehr hohe Werte erreichen, so dass sich 

eine weitere Miniaturisierung der Kontakte besonders anbietet, da sich die Haftfestigkeit 

dadurch nochmals deutlich erhöhen lassen sollte. Dies gilt im Besonderen für die 

pilzförmigen Strukturen, da diese Absolutwerte für die Haftfestigkeit von annähernd 

200 kPa erreichen. Dies liegt im Bereich der Haftfestigkeiten einzelner Geckospatulae, die 

je nach Meßmethode zwischen 100 kPa (8) und 200 kPa (6) erreichen. Damit wäre es also 

für noch kleinere, aber im Mikrometerbereich befindliche, Strukturen möglich, die 

Hafteigenschaften des Geckos, zumindest was die Kräfte betrifft, zu übertreffen. Auch in 

der Literatur (39, 52) findet sich, dass die pilzförmigen Säulen an dieser Stelle besonders 

vielversprechend sind.  

Um diese z.T. erstaunlich starke Abhängigkeit der Hafteigenschaften fibrillärer 

Systeme von einzelnen Variablen nicht nur experimentell zu untersuchen und den Prozeß 

der Material- und Parameterauswahl zu vereinfachen, wurden im Rahmen der vorliegenden 

Arbeit die für hemisphärische Kontakte bereits bekannten “Adhesion Design Maps” auf 

weitere Endkonturen ausgeweitet. Diese waren die des flachen Stempels, des Toruses und 

der eines bandförmigen Kontaktes (siehe Figure 6.1). Für letzteren wurden verschiedene 

Winkel zur Oberfläche untersucht, während für den flachen Stempel auch ein einfaches 

Rauhigkeitsmodell angenommen wurde. Hierdurch sollten erste Hinweise auf den Einfluss 

der Oberflächenrauhigkeit auf die Hafteigenschaften erhalten werden. Ein Vergleich 

zwischen den verschiedenen Endkonturen zeigte, dass für den Kontakt mit einer ideal 
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glatten Oberfläche, flache Stempel am stärksten haften, gefolgt, von toroidalen Spitzen und 

Halbkugeln, während das elastische Band die schwächste Adhäsion aufweist. Es ist aber 

hervorzuheben, dass auch für das Band Haftspannungen in der Größenordnung natürlicher 

Systeme gefunden wurden. Dadurch ist diese Kontur sehr vielversprechend, da sie stark 

haftet und durch ihre Asymmetrie gleichzeitig leicht abzulösen sein sollte. Für die 

„Adhesion Design Map“ für die flachen Stempel in Kontakt mit einer rauhen Oberfläche 

(Figure 6.5) ergab sich, dass die Haftspannung um einen Faktor von ungefähr 80.000 

reduziert wurde. Dies verdeutlicht den starken Effekt selbst kleinster Rauhigkeiten auf die 

Adhäsionseigenschaften und fügt sich sehr gut in das aus der Literatur bekannte Bild ein 

(137, 138, 140). Da in der Literatur drei verschiedene Modelle für die Berechnung des 

Kondensationslimits, also für die Vermeidung des Verklumpens der einzelnen Säulen zu 

größeren Bündeln, existieren, wurde alle drei Kriterien für die Rechnungen herangezogen 

und verglichen. Dabei zeigte sich, dass das Modell von Glassmaker et al. (44) für die 

Konstruktion der Maps am besten geeignet zu sein scheint. 

Insgesamt konnte im Rahmen der vorliegenden Arbeit gezeigt werden, dass es 

möglich ist komplexe dreidimensionale Endkonturen für wohldefinierte Modellsysteme 

fibrillärer Adhäsive herzustellen. Diese Modellsysteme wurden anschließend auf ihre 

Hafteigenschaften hin untersucht und festgestellt, dass sich ein Aufspaltungs- und somit 

ein Größeneffekt einstellt. Die Haftkräfte nahmen mit kleiner werdendem Säulenradius zu. 

Höhere Aspektverhältnisse führten ebenso zu verbesserten Hafteigenschaften. Sowohl die 

experimentellen, als auch die theoretischen Untersuchungen zum Einfluss der 

Spitzenkontur der Säulen zeigten eine sehr starke Abhängigkeit der Hafteigenschaften von 

diesem Parameter. Insbesondere die pilzförmigen Säulen ergaben sehr hohe Absolutwerte 

der Haftfestigkeit. Diese lagen im Bereich der Geckoadhäsion. Gleichzeitig wiesen Säulen 

dieser Form die günstigste Effizienz für weiteres Aufspalten auf, so dass für kleinere 
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Strukturen noch deutlich höhere Kräfte zu erwarten sind. Mit den hier dargelegten 

experimentellen Erkenntnissen, insbesondere in Verbindung mit den Leitlinien für die 

Konstruktion fibrillärer Haftsysteme wie sie in den Designkarten vorgestellt wurden, sollte 

die vorliegende Arbeit einen wichtigen Beitrag zur zukünftigen, strategischen Entwicklung 

bio-inspirierter, fibrillärer Haftsysteme leisten. 

S.D.G. 
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