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Abstract

The serialisation system SKilL stores mutually referenced objects in a binary file format. Thus, a
special programme is required to view the serialised data or perform ad hoc modification. This
thesis discusses the implementation of such an editor in the programming language Scala.

After giving a sketch of the SKilL system, the main part of this thesis is concerned with the
visualisation of the data. Due to references, the contents of an object can usually not be
understood in isolation but only in combination with the objects which it references. The
objects and their mutual references are, therefore, visualised as a node-link diagram of the
neighbourhood of a given object. For the layout of the diagram, existing force directed
placement algorithms are reviewed and solutions from different sources are combined. In
order to produce comprehensible layouts, an additional constraint, which aligns all links
that represent the same field in the underlying data, is added to the placement algorithm.
The implementation works reasonably well with small graphs, but the quality of the layout
deteriorates for larger or highly connected graphs.

The remainder covers the modification, creation, and deletion of objects. No satisfying solution
was found for nested maps. Finally, a simple search function is sketched.
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1 Introduction

SKilL (serialisation killer language, Felden [Fel17]) is a language and platform independent
serialisation format which targets applications involving large data sets. For efficiency reasons
the data are stored in a binary format, thus a special editor program is required for performing
ad hoc lookups and modifications in the serialised files. The development of such an editor is
the scope of this thesis.

The cases that the editor has to cover depend on the file format. We therefore begin with a
description of the structure of SKilL files in chapter 2. We do so from a high level perspective,
because we use an existing program library to access SKilL data. As the library deals with the
byte level representation of the data, the description starts at the level of abstraction provided
by the SKilL library for the implementation language Scala [Oa04].

SKilL files store user data records, which can, and usually do, refer to each other. It is quite
possible, that a record stores nothing but references, and so the meaning of a record can not
usually be understood in isolation. They must therefore be viewed together with the records
to which they refer, but care must be taken not to show too much. In chapter 3 we develop
a way to show the records and their references in a node-link diagram, which the user can
interactively explore.

The records in a SKilL file conform to a user defined type system which is stored in the binary
files along the user data. How the type system is displayed is quickly described in chapter 4.

In chapter 3, we will argue, that it is easier to grasp the contents of a SKilL file when irrelevant
parts of the data are hidden. When it comes to modifying the file, we will, however, need the
complete contents available. To this end, we define a second editing view of the objects in
chapter 5.

No editor is complete without a search function; in chapter 6 a simple query language is
outlines, which is inspired by the semantic web query language SPARQL [PS08]. The queries
permit searching records not only based on the values of their fields but also on the values of
the fields of referenced objects.

Chapter 7 concludes with a summary of the results and recommendations for further develop-
ments.
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2 The SKilL Serialisation System

The core of SKilL is a platform and language independent binary file format which stores user
data records, called SKilL objects, together with a description of their format or data type. This
binary format is accompanied with a specification language that describes the data types of the
records one wants to store in the binary files. The system is completed by program generators,
which translate specifications into language specific bindings. A binding is a program library
which reads and writes SKilL binaries that conform to the specification it was built for. The
application programming interface (API) of the binding represents the contents of a SKilL file
with the native data types of the host language. The SKilL implementation currently used at
the Institute of Software Technology at the University of Stuttgart (ISTE) can generate bindings
for the programming languages Ada, C, C++, Haskell, Java, and Scala.

SKilL stores the description of the data types in the binary files in order to guarantee type
safety. The bindings check that the type system in the binary file matches their specification.
However, specifications are subject to change, and one does not want to lose existing of binary
data when a specification is amended. Therefore, bindings accept some deviations between
the specification and the binary file. For example, when record type in the binary lacks a field
that is present in the specification, the binding can add the field and supply a default value.
So, when a program opens a SKilL file, the effective type system is a combination of the one
already present in the file and the one from the specification built into the program. This
combined type system is written back to the file, and so SKilL files can collect several unrelated
extensions from mutually compatible specifications.

The bindings, therefore, provide a reflective API, through which the type system as stored
in a file can be inspected, and fields and types which are not part of the specification can be
accessed. As an extreme case, one can build a binding for an empty specification and use
the reflective API throughout. Such a binding can open all SKilL files since all types in the
specification are trivially compatible with the binary file. This is how the editor is accessing
SKilL files.

This chapter contains a description of the SKilL type system, for this determines the data that
the editor has to be able to show and manipulate. We also establish the terminology used in
the remaining chapters. The binary format is not covered here, because the existing binding
takes care of it; interested readers are referred to the work of Felden [Fel17]. At the end of the
chapter we look how the user data can be retrieved from the file and inspect some properties

9



2 The SKilL Serialisation System

of real world skill data which we cannot derive from the specification of the file format but
which will guide our later decisions.

2.1 The SKilL Type System

SKilL uses a type system which is similar to those of object oriented programming languages.
The data types of objects that exist independently resemble class types—without methods, of
course—and are called user types. Fields of user type objects have a field type, which is either a
built-in type like integer, boolean, and string, a compound type like array and set, or a reference
type. Like in the Java programming language, user types are only nested through references.
Also, there are no references to built-in or compound types.

User types and fields can be refined by restrictions like ‘singleton’ for user types or ranges for
numeric fields.

2.1.1 User Types

A user type consists of a sequence of typed fields. An object having a user type stores a tuple of
values which have the type of its fields. Optionally, a user type can extend another user type,
that is, it inherits all fields of the extended type. The former is then called a sub-type of the
latter, which, in turn, is called the per-type of the former. A type which has no super type is
called a base type.

User types and their fields are identified by names. Upper case and lower case letters are not
distinguished, because that would cause implementation problems in languages like Ada which
do not do so either. For efficiency reasons, the names are converted to lower case before they
are stored to SKilL binaries. Therefore, the identifiers displayed in the editor do not always
read nicely and may require some guesswork as to where the words end.

SKilL permits the re-use of a field name in a sub-type. This allows users to extend ‘foreign’
specifications by sub-typing without causing binary incompatibilities when fields are added to
the super type. Consequently, field names may have to be disambiguated by stating the name
of the type that introduced the field.

Every user type can be used as a field type. A user type field stores a reference to an object of
the indicated type or one of its transitive sub-types. Objects are uniquely identified by their
base type and a consecutive number, which is called their SKilL ID. User type references are
usually nullable, i.e. they can be set to refer to nothing.

10



2.1 The SKilL Type System

2.1.2 Built-in Types

Aiming for language independence means that the built-in types have to be representable by
the types of the host language, therefore most of them are well-known to any programmer and
listed without much comment:

• A field of type bool stores one of the truth values false and true.

• Fields of type i8, i16, i32, i64, and v64 store signed1 integer numbers occupying the
number of bits indicated in the type name.

v64 is serialised using a variable length encoding, but for an application this is abstracted
away by the binding.

• Fields of type f32 and f64 store floating-point numbers in the IEEE 754 single and double
format.

• A field of type string can store an unbounded sequence of Unicode characters.

• An annotation field stores a reference to an arbitrary other object.

The one outlier in this list is annotation, which stores a reference to an object having an
arbitrary user type. A program must enquire the type of the referenced object before it can
access its fields. In the following, annotations will usually be discussed together with references
to user type object under the heading reference types. The remaining built-in types are called
primitive types.

Strings are implemented as reference types, which improves space efficiency by removing
duplicate strings from the binary file. However, the language bindings expose a value semantics
in that they will allocate a new string or re-use an existing one when a string field is written
instead of changing the value of the potentially shared string object. We can largely ignore
this implementation detail, but we will have to be aware of the fact that string fields can store
null-references.

2.1.3 Compound Types

When τ1, τ2, . . . are ground types, i.e. built-in types or references to user types, the following
types are compound types:

• List types list<τ1> and variable length array types τ1[]. Fields having one of those types
can store unbounded sequences of values of type τ1.

1Though not mentioned explicitly in the specification [Fel17], negative numbers use two’s complement represen-
tation and the extra negative number—−128,−32768, ...—is a valid value.
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2 The SKilL Serialisation System

• Fixed length array types τ1[n]. Fields having this type store a sequence of exactly n
values of type τ1.

• Set types set<τ1>, fields of which store a sequence of distinct values of type τ1.

• Map types map<τ1, τ2, . . ., τn>, fields of which store a partial function with maps a
key of type τ1 to a value of type τn if n = 2 or map<τ2,~. . .,~τn> otherwise.

The difference between lists and variable length arrays is how the language binding maps them
to the data types of the host language. Lists have to support resizing while arrays need not
to.

Note that, while the grammar of specification language appears to make it possible to define
containers of containers, sets of sets, say, through typedefs, this is explicitly forbidden in
section 4.4.3 of the specification [Fel17].

2.1.4 Constant Fields

Constant fields are different from the other fields encountered so far in that their values are
not stored in objects but in type itself; after all they are constant. Their values are integers
which are used as magic numbers or version numbers to prevent a binding from reading a file
with an unrelated or incompatible type system. For every type that is present in the binary file
as well as in the specification, the values of the constant fields must be equal in both places or
the specification must explicitly accept the value found in the file. As the editor does not use a
specification, it just displays the values of the constants found in the binary.

2.1.5 Restrictions

User type and field definitions can be annotated with restrictions, which serve different purposes.
Most of them restrict the instances which a user type or the values which a field can have—
hence the name. Some control the way the data are serialised and are semantically transparent.
A last one defines initial default values. In SKilL specification files, restrictions start with an @
sign, a practice which we will follow.

User types and fields each have a separate set of restrictions that can be applied to them.
User type restriction are not handled by the current Scala binding. We list them merely for
completeness:

• When a type is annotated with @unique, any two instances of this type must differ in the
value of at least one field.

• A type restricted with @singleton can have at most one instance. Singleton types must
not have sub-types.

12



2.1 The SKilL Type System

• Instances of a @monotone-restricted type must, once written to a file, not be modified or
deleted, but new instances may be appended. Sub-types of monotone types are monotone
as well.

• A type with restriction @abstract must not have any instances itself. Its sub-types usually
have.

• The restriction @default(τ2), where τ2 is a singleton-restricted sub-type of the default-
restricted type, specifies that the default value of fields referencing this type should by
the single object of type τ2; fields can override this type-wide default by specific ones.
Sub-types inherit the default but may change it—and may have to if the default type is
not one of their sub-types.

The fields in a user type can be subject to the following restrictions, which, if the field has a
compound type, apply to its members. Fields with a map type can not be restricted.

• A @nonnull-restricted string or user-object-reference must not be set to null, i.e. it must
refer to some string or object.

Can not be used with numeric, boolean, and annotation fields.

• When a field has a @default(x) restriction, it is initialised with x when a new object
is created or when an object is read from a binary file which does not contain the field.
The second case applies only to bindings generated for a specification that contains the
default restriction.

For fields that have numeric, boolean, or string type, x is a constant value of the
corresponding type. For reference and annotation fields, x is a singleton restricted
user type and the field is initialised with a reference to the single instance of that type,
provided it exists.

• A numeric field with restriction @range(min, max), where min and max are constant
values of the numeric type in question, will only store values in the range from min to
max inclusive.

The one-sided forms @min() and @max() and the forms with exclusive bounds are mainly2

notational variants and translated to inclusive ranges internally.

• The restriction @coding(x) can add a further encoding layer between the in-memory
and on-disk representations of the value of the field; for example, one might add LZMA
compression for large fields.

The coding restriction does not change the semantics of a field from the user’s point
of view, provided the language binding knows the encoding in question. If it does not,

2Min and max add to the expressiveness of the specification language because the user can not specify the
floating-point values −∞ or +∞ as lower or upper bound in a range restriction.
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2 The SKilL Serialisation System

which is well possible because SKilL leaves the set of codings undefined, the field can not
be accessed.

• A reference or annotation field with @constantLengthPointer restriction is serialised
with the object ID stored as a fixed width integer instead of the usual variable length
one. This does not change the behaviour from an abstract point of view, but helps
implementations to modify contents of large files on disk.

Only applies to reference fields.

• A reference field with restriction @oneOf(τ1, . . . , τn) can only refer to instances of the
types τ1, . . . , τn; this does not preclude null values.

Regarding the restrictions that really restrict the set of possible values of a field, there is the
question whether they have to be obeyed throughout, and, if not, when they are to be enforced.
In particular, enforcing the @nonNull restriction without exception can make the creation of
new objects tricky to impossible. Therefore, one usually wants to accept that restrictions are
temporarily violated. As the SKilL type system can be seen as a contract between the programs
that successively process a file, SKilL bindings check restrictions when a file is written or read.3

Thereby, every program gets an input that fulfills the contract and has to produce an output
that does as well, but is not constrained in its operation.

In an interactive editor, more frequent checks are desirable. The user should be immediately
notified when a restriction is violated. This allows them to fix the problem before they turn
their attention to other matters. The Scala binding supports such early checks by exporting a
method that checks whether a value fulfills a restriction in its reflective API.

Restrictions that modify the serialisation format are dealt with by the binding.

2.2 Non-Serialised Features

The SKilL specification includes a lot of features not addressed above, viz. transient (auto)
fields, hints, typedefs, views, enumerations, interfaces, and customisations. Those appear in
specification files and affect the generated bindings, but they are not part of the serialised data,
therefore we will never encounter them.

Enumerated types are a special case, here, because they are translated to the serialised type
system systematically in a way that would allow their detection and recovery: an enumerated
type with name T with values with names A,B,C, . . . is realised as an abstract user type
with name T with singleton sub-types named TA, TB, TC, . . .. This can be easily detected,

3The check after reading is necessary because the specification of the reading program can introduce new
restrictions, which the previous program did, of course, not validate.
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2.3 SKilL Data

but it is dubious whether we would gain anything from doing this. The intended semantics,
that the value of an enumeration field is one of the enumerated values, is already covered
by the translated representation. As far as the editor is concerned, changing the value of an
enumeration field amounts to the selection of an object, which is covered anyway.

2.3 SKilL Data

We said initially, that a SKilL file stores user data objects and their types. After having described
the type system, we now turn our attention to the objects. From the user’s point of view, objects
are often parts of complex data structures, like trees. This is explicitly expressed by linking
objects through reference fields. It is, however, entirely up to the user which structures are
built from the links and how they are traversed. This is necessarily so, because the conditions
that describe the intended data structure—like ‘must not form cycles’ for trees—can not be
expressed in the type system. From the perspective of SKilL the organisation of objects is,
therefore, very simple: every user type has a flat list of instances. A program can iterate these
lists and start following references from a suitable start object.

The editor is, of course, also unaware of the intended organisation of the data. Like SKilL itself,
it can only show lists of instances and follow references.

2.3.1 Characteristics of the Example Data

An editor for SKilL files should be able to cope with all valid files. But it’s the common cases
that especially should be handled well. We therefore inspect the properties of the SKilL files
that were generated in other projects at ISTE. Many subsequent decisions are based on the
observations made here; if reference fields were rare compared to primitive type fields, or if
the references would mostly form trees, we would have taken different turns at some points.

To get an idea of actual data, we collected statistical data from 32 comparatively small files
containing a total of 4,5 · 106 objects. The analysed files are just those of the provided samples
that have a file size between 2 MB and 3 MB. The reason is this: the example data was
generated from different source data sets by different tools. Therefore, we want to include
a fair number of cases in our analysis. The program we wrote to gather the statistics is kept
very simple and does not cope well with large data sets. Consequently, the larger the files,
the smaller the number of files it can handle. The chosen set of file is just a range delimited
by round numbers that can be analysed with reasonable space and time requirements. We
select files that have roughly the same size, because larger files also have a larger impact on
the numbers, and would thereby hide the data gathered from smaller files.

Our first question is, how many fields a user type typically has and how they are distributed
among the field types. In order to summarise the counts of all objects in our sample, we

15



2 The SKilL Serialisation System

Average
Quartiles

Q0 Q1 Q2 Q3 Q4

Reference fields per object 4.4 0 3 4 6 12
Primitive fields per object 4.6 0 2 6 7 15
Compound fields per object 0.43 0 0 0 0 12
Total fields per object 9.5 1 5 11 13 30

Table 2.1: Number of fields per object for different classes of field types (4,5 · 106 objects).

Average
Quartiles

Q0 Q1 Q2 Q3 Q4

Size of compound field 1.2 0 0 0 0 4249
Size of non-empty compound field 5.8 1 1 2 3 4249

Table 2.2: Number of elements per compound field (1,9 · 106 fields, 0,41 · 106 of them non-
empty).

calculate the average numbers and, because the average tells nothing about the distribution,
quartiles. We use Q0 and Q4 to denote the minimum and maximum counts.4 The result, is
given in table 2.1. We find, that, although the number of fields per object is not limited, 75 % of
the objects have a relatively modest size of 13 fields or less. But we must be prepared to handle
objects with 30 fields. Reference types and primitive types are roughly equally frequent and
deserve equal attention. Compound fields, however, are comparatively rare.

There may be only few compound fields, but each of them can store an arbitrary number of
elements. A statistic of their actual sizes is shown in table 2.2: more than three quarters of the
containers are empty, and more than three quarters of the non-empty ones are small and have
three or fewer elements. At the upper end, however, compound types can contain thousands of
elements. Thus, we must, on the one hand, be prepared to handle very large containers. But,
on the other hand, the majority of them is very small and may merit a special treatment.

An empty container is just the default value of a compound field. Given their frequency, one
wonders, how common default values are for other field types. The result of counting fields
with default values, i.e. null, zero, the empty string, an empty container, or false, and non-
default fields separately is shown in table 2.3. We find, that about half of the fields have default
values. A field with a default value has probably never been written. Their high frequency, and
the inspection of some specific cases, indicates that this, indeed, is what happens. The reason

4Note that the quartiles are calculated for each count independently. Thus, for example, in table 2.1, the object
with the least number of reference type fields has zero reference type fields but may have other fields. In fact,
we can tell, that it has: there is no object with zero fields total.
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2.3 SKilL Data

Average
Quartiles

Q0 Q1 Q2 Q3 Q4

Null reference fields per object 1.3 0 0 1 2 10
Non-null reference fields per object 3.1 0 2 3 4 10
Default primitive fields per object 3.0 0 1 5 7 24
Non-default primitive fields per object 1.6 0 1 2 2 8
Empty compound fields per object 0.34 0 0 0 0 11
Non-empty compound fields per object 0.091 0 0 0 0 7
Total default fields per object 4.7 0 1 5 7 24
Total non-default fields per object 4.8 0 3 5 6 21

Table 2.3: Number of default and non-default fields per object for different classes of field
type (4,5 · 106 objects).

Average
Quartiles

Q0 Q1 Q2 Q3 Q4

Fields total 41 2 15 31 67 168
Non-default fields 20 0 10 15 29 105

Table 2.4: Number distinct fields reachable from an object by following one reference (4,5 ·
106 objects).

for this is, that the inspected data was generated by programs which in parts use different
fields, but still share a specification. Fields that were never written to bear little information,
so displaying them will be of little use to the user. Displaying many of them will even do harm,
for makes the fields that are actually in use harder to find. It, thus, should be possible to filter
out default fields.

We said in the introduction, that objects can not be comprehended in isolation. Thus, we
conclude this section by examining the fields of the next objects. To this end, we count the
fields of each object together with those of the objects that it references. We remove duplicates
that arise when the same object is referenced by two fields or when the object stores a reference
to itself. The results are given in table 2.4. The average counts are in line with what one would
expect from the number of fields per object and the number of non-null reference fields. We
can take this as a reassurance that nothing weird is happening in the usage of references that
would need investigation. This means, however, that we encounter a huge number of fields
and can not show all of them.

17





3 Showing objects and drawing graphs

The first task of an editor is to display the contents of a file. For SKilL files, this means displaying
the type system and displaying objects. We consider objects first.

Objects have a data type, a SKilL ID1, and fields. Data types have a meaningful name and
the ID is an integer number, so those are straightforward to display. Displaying fields means
displaying their names and values. It is reasonably clear how to do that for the values of
primitive types and collections thereof. The main concern of this chapter is how to handle
references. On an implementation level, user type references just store the SKilL ID of the
referenced object; annotations additionally store the type. It is not sufficient to display the ID,
because it is meaningless to the user, and tells them little except that the object exists. Thus,
we are back to showing the whole referenced object, including its fields. We can not do so
indiscriminately, however, for the number of fields that are reachable when we transitively
follow references is usually far too high: as seen in section 2.3.1, for a quarter of the nodes,
we find more than 60 distinct fields when following references once.

The object inspector functions of debugging tools, which face the same problem, usually solve
this by allowing users to interactively show or hide the fields of any object according to their
needs. A screen-shot of a typical specimen, the debugger of the Eclipse IDE, is shown in
figure 3.1. This approach gets the job done and has the advantage that it is well-known to
users. We will, therefore, adopt it in chapter 5 when we come to modifying objects. There are,
however, some issues with this representation, which we want to improve upon.

First, the binary choice—to show all fields or none of them—can lead to a high number of
visible fields that the user is not actually interested in. Especially after following a chain of
references, all fields of the intermediate objects are visible. This makes it hard to locate the
relevant information on the screen and quickly exceeds the available space. We rather want to
show a short summary, which contains only relevant fields. Therefore, we add an option to
hide selected fields completely and support keeping a remote object visible without showing
all fields of the intermediate objects. As it would be rather pointless to hide the fields for every
object separately, the choice is applied to all objects that have the field.

Which brings us to the second issue, namely that one always has to start following references ab
initio. For every object, one has to ‘click through’ to the relevant fields again. This is especially

1But see section 5.2.2 for newly created objects
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3 Showing objects and drawing graphs

Figure 3.1: Object representation in the Eclipse debugger (the example is taken from
the reflective SKilL API for Scala). The objects dataFields, dataFields.array,
dataFields.array(1), and dataFields.array(1).t are expanded. The user might
be more interested in the name fields of array entry (0) than in most of the visible
values.

a problem when looking through a list of objects; which is just what we have to begin with:
the list of all objects of a selected type. It is usually a reasonable assumption, that the user
wants to see the same fields in all comparable objects. In other words, the short summary
should already contain all relevant fields. We, therefore, store, for each type, the sequences
of fields that lead to the objects that are fully shown. Unless barred by null references, the
corresponding referenced objects can then be shown for every start object.

The next point to consider is the frequent occurrence of cycles in the reference graph of SKilL
files. A cycle means that more than one of the visible fields hold a reference to the same object.
This should be easily detectable, so that the user does not have to inspect the same object
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twice. It would also be nice, if the linked data structures that exist in the file could be made
explicitly visible. Thus, we deviate from the common hierarchical tree view and switch to a
largely unconstrained node-link diagram. We say largely unconstrained because we need some
constraints to prevent the diagram from changing its layout erratically.

What we aim for is a representation that summarises the relevant information about an object,
including its relation to other objects and the values of selected fields, without cluttering the
output with irrelevant information. While the decision what is relevant has to lie with the user,
it should be carried over from one object to the next, when possible, so that objects can be
easily compared. For comparing objects, we also need stable layouts, where the fields shown
for two objects of the same type occupy the similar positions in the output.

In this chapter, we first describe in section 3.1 how a graph, in the abstract sense, is constructed
from SKilL data. Then, we cover in section 3.2 how the user can select which part of that
graph is visible, and how this selection is generalised to other objects. Finally, in section 3.3,
we give the force directed placement algorithm that is used to lay out the node-link diagram of
the visible part. The chapter then concludes in section 3.4with the results obtained with this
procedure.

There are some topics regarding the layout and style of the link-node diagram that we can
quickly dismiss here.

First is the idea of creating a layout for the whole file and using a zoom function to show the
surroundings of the currently inspected object. This layout would not only take prohibitively
long to create: Hu [Hu05] gives minutes for rendering graphs with 10’000 nodes, big skill files
have millions. It also would run into problems with nodes that are referenced a lot. Obviously
no layout can place a highly connected node next to all its neighbours.

Second one may wish to see which objects hold references to an inspected current object. But
this not only would cause trouble with the layout for nodes that are referenced frequently but
also require a full scan of all objects that could, qua type, store a reference. We rather aim to
keep the application responsive and perform exhaustive searches only when the user explicitly
requests them. Incoming edges are therefore not usually displayed.

Third, one may think of flow diagrams, entity relationship diagrams, or the like, and think
about using different styles or decorations—like rectangular nodes, round nodes, diamond
nodes, and solid line, dotted lines, crow’s feet if you like—to keep edges and nodes of different
kinds apart. However, we easily have 100 distinct user types, the number of fields being
considerably higher. There are just not enough different shapes that are easily distinguished.
Further, the fields and types already have names, which the user knows, unlike the putative
shapes and styles which they would first have to remember. Shapes are, therefore, only used
sparingly for few dedicated purposes, and not to distinguish user types.
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3 Showing objects and drawing graphs

3.1 Graph Representation of SKilL Data

As the first step towards displaying a node-link diagram, we define the underlying graph. The
basic idea is straightforward:

• Objects are represented by nodes and reference fields are represented by directed edges.

• Nodes are labeled with the type and ID of the object they symbolise.

• Edges point from the object that contains the field to the object the field refers to and are
labeled with the field name.

We also have handle primitive and compound types, which involves many special cases.
Therefore, we give a detailed definition of the graph we construct from a SKilL file. To keep
memory usage low, this graph is never built as a whole. Instead, the parts of it that are needed
for displaying an object and its neighbourhood are instantiated on demand.

A labeled digraph G = (V,E, s, t,ΣV ,ΣE , lV , lE) is a tuple consisting of a set V of nodes, a
set E of directed edges, two total functions s, t ∈ E → V that map an edge e ∈ E to the
ordered pair (s(e), t(e)) of the nodes which it connects, two sets ΣV and ΣE of labels, and two
total functions lV ∈ V → ΣV , lE ∈ E → ΣE which assign a label to every node and edge. We
often have to take care that nodes and edges are distinct. The labels are elements of the user
interface which can be rendered on screen and react to user interactions. They are described
informally.

The simple case involving SKilL objects and reference types is displayed as shown in figure 3.2.
This is handled by the following two definitions, where o.f denotes the value of field f in
object o:

Definition 1 (Objects). If o is a SKilL object, then:

• o ∈ V and

• lV (o) displays the type and ID of o.

Definition 2 (References). If o is a SKilL object and f is a reference field in o with o.f 6= null,
then:

• (o, f) ∈ E,

• s((o, f)) = o,

• t((o, f)) = o.f , and

• lE((o, f)) contains the name of f .
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3.1 Graph Representation of SKilL Data

Figure 3.2: Representation of objects and reference fields. Field nameaswritten in object
includestatement#38 refers to object identifier#5573.

Figure 3.3: Representation of null references. Field parent in object includestatement#38
is null.

The next question is how to deal with null references. We found in section 2.3.1, that half of
the objects have null references. Therefore, a single null node, which all null references points
to, would be highly connected and hard to place nicely in the layout. We prefer introducing
more nodes over tangled edges and represent all null values by distinct nodes. The final
representation on screen is shown in figure 3.3. In order to keep null nodes distinct, we use a
constructor function null(·, ·) which is meant to yield a new entity which is not a SKilL object,
nor a field, nor a value of another constructor.

Definition 3 (Nulls). If o is a SKilL object and f a reference field in o with o.f = null, then:

• (o, f) ∈ E,

• null(o, f) ∈ V ,

• s((o, f)) = o,

• t((o, f)) = null(o, f),

• lE((o, f)) contains the name of f , and

• lV (null(o, f)) is a small bottom sign.

Concerning the primitive type fields (string, boolean, and numbers), we pursue two different
lanes. Either we display their value in the label of the node that represents the object that
contains them, or we render them as separate nodes. We didn’t find a reason to prefer one way
over the other, so the user can select the preferred representation for every field. Figure 3.4
shows an example of both representations. When the value is shown in a node, like for null
references, two fields with the same value point to separate nodes.

Definition 4 (Values). If o is a SKilL object and f is a boolean, integer, float, or string field in
o, then:

• value(o, f) ∈ V ,

• (o, f) ∈ E,
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3 Showing objects and drawing graphs

Figure 3.4: Representation of primitive type values. Field nodeid in identifier#5573 is
shown inside the node of the identifier object, field name as separate node.

• s((o, f)) = o,

• t((o, f)) = value(o, f),

• lE((o, f)) contains the name of f , and

• lV (value(o, f)) shows the value o.f as text.

As it is impossible to find a good position for huge nodes when the graph is laid out, the labels
of string nodes leave out the middle part of long strings. The full value is included as mouse
over text.

Next consider sets. Sets of references can be viewed as many-to-many-relations. Their natural
representation would be a set of edges from the object containing the set to the members of
the set. This would work for small sets, but would leave no trace of empty ones and overflow
the screen for huge sets. We, therefore, first add a node that represents the collection itself. For
small sets, we can then add links from the collection to the elements, and for large sets we can
at least add a button that opens the list of all members. The node representing the collection is
defined for all kinds of compound types—sets, lists, arrays, and maps—alike.

Definition 5 (Collections). If o is a SKilL object and f a compound field in o, then:

• compound(o, f) ∈ V ,

• (o, f) ∈ E,

• s((o, f)) = o,

• t((o, f)) = compound(o, f),

• lE((o, f)) contains the name of f , and

• lV (compound(o, f)) shows the kind and size of o.f .

For small collections, we add edges and nodes that represent elements to the graph. Small
means, that the number of elements is not above an adjustable threshold which defaults to
five.

How exactly the elements are represented depends on the kind of collection as well as on
the type of the elements. As above, we have to handle object references, null references, and
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3.1 Graph Representation of SKilL Data

Figure 3.5: Representation of sets. Field someset in object container#1 contains the three
members, somethingelse#1, somethingelse#2, and null.

primitive values separately. At least, lists and arrays can be treated in the same way and nine
cases suffice.

The members of sets are linked from the collection node by unlabeled edges. References, null
references, and values of primitive type are treated analogously to simple fields. Figure 3.5
gives an example how a set of references is shown. The definition of the graph is tedious but
simple:

Definition 6 (Members of sets, objects). If o is a SKilL object, f is a field in o, o.f is a set of
references, e ∈ o.f is a member of the set, e 6= null, and the size |o.f | of the set is below a
threshold, then:

• member(o, f, e) ∈ E,

• s(member(o, f, e)) = compound(o, f),

• t(member(o, f, e)) = e, and

• lE(member(o, f, e)) is blank.

Definition 7 (Members of sets, nulls). If o is a SKilL object, f is a field in o, o.f is a set of
references, e ∈ o.f is a member of the set, e = null, and the size |o.f | of the set is below a
threshold, then:

• memberNull(o, f) ∈ V ,

• member(o, f, e) ∈ E,

• s(member(o, f, e)) = compound(o, f),

• t(member(o, f, e)) = memberNull(o, f),

• lE(member(o, f, e)) is blank, and

• lV (memberNull(o, f)) shows the bottom sign.
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3 Showing objects and drawing graphs

Definition 8 (Members of sets, values). If o is a SKilL object, f is a field in o, o.f is a set
of primitive values, e ∈ o.f is a member of the set, and the size |o.f | of the set is below a
threshold, then:

• memberValue(o, f, e) ∈ V ,

• member(o, f, e) ∈ E,

• s(member(o, f, e)) = compound(o, f),

• t(member(o, f, e)) = memberValue(o, f, e),

• lE(member(o, f, e)) is blank, and

• lV (memberValue(o, f, e)) displays the value e.

For lists and arrays, we display the index of the element in the label of the edge. Besides this,
they are very similar to sets, but we must take care in the definition of the graph that we keep
members that have the same value distinct—unless they are objects.

Definition 9 (Members of lists and arrays, objects). If o is a SKilL object, f is a field in o, o.f is
a list or array of references, 0 ≤ i < |o.f | an index into the list, o.fi 6= null is the i-th element
of the list, and the size |o.f | of the set is below a threshold, then:

• member(o, f, i) ∈ E,

• s(member(o, f, i)) = compound(o, f),

• t(member(o, f, i)) = o.fi, and

• lE(member(o, f, i)) shows the value of the index i.

Definition 10 (Members of lists and arrays, nulls). If o is a SKilL object, f is a field in o, o.f is
a list or array of references, 0 ≤ i < |o.f | an index into the list, o.fi = null, and the size |o.f |
of the set is below a threshold, then:

• memberNull(o, f, i) ∈ V ,

• member(o, f, i) ∈ E,

• s(member(o, f, i)) = compound(o, f),

• t(member(o, f, i)) = memberNull(o, f, i),

• lE(member(o, f, i)) shows the value i, and

• lV (memberNull(o, f, i)) shows the bottom sign.

Definition 11 (Members of lists and arrays, values). If o is a SKilL object, f is a field in o, o.f
is a list or array of primitive values, 0 ≤ i < |o.f | an index into the list, and the size |o.f | of the
set is below a threshold, then:

26



3.1 Graph Representation of SKilL Data

• memberValue(o, f, i) ∈ V ,

• member(o, f, i) ∈ E,

• s(member(o, f, i)) = compound(o, f),

• t(member(o, f, i)) = memberValue(o, f, i),

• lE(member(o, f, i)) shows the value i, and

• lV (memberValue(o, f, i)) displays the value o.fi.

Maps are a difficult topic, because they involve an unbounded number of ground types, and
each of them can be a reference or a value type. Maps store partial functions with a finite
domain. They can be considered to be sets of ordered pairs with the constraint that the first
member of the pair, the key, is unique. The second member of the pair is the result of looking
up the value in the map. If the map has more than two type parameters, the value is another
map that takes care of the rest of the keys. Ordered pairs and sets are already dealt with in the
previous definitions. Representing maps as sets of pairs would then lead to a graph as shown
in figure 3.6.

We think, however, that this representation would consume too much screen space. Almost
half of the nodes in figure 3.6 represent not actual data but auxiliary tuples and sub-maps.
It would not make sense to build a representation which is never actually used because
it overflows the screen. We therefore use a simplified representation, and only add edges
from the collection node to the values of the last ground type. The sequences of keys that
are mapped to these values are shown in the labels of the edges. We, thus, see nested
maps not as function to functions, but as a function from a tuple to a value. For example
{a 7→ {1 7→ 2, 3 7→ 4}, b 7→ {5 7→ 6}} is read as {(a, 1) 7→ 2, (a, 3) 7→ 4, (b, 5) 7→ 6}. This is
displayed as shown in figure 3.6. Note that this transformation also allows us to speak of the
size of the whole map.

The chosen representation has two serious shortcomings. First, keys which have reference
types are not represented with an object node but only mentioned in the label of an edge by
their type name and ID. Therefore, one can not reach the field of a key object in the graph.
This is remedied by the fact that the editing function described in chapter 5 can dereference
keys. The second problem is, that nested maps may contain inner empty functions, which we
can not represent. For example, we can not show the c in the map {a 7→ {1 7→ 2, 3 7→ 4}, b 7→
{5 7→ 6}, c 7→ ∅}. This can not be solved with null values, like {. . . , (c,⊥) 7→ ⊥}, because null
already is a legal value of reference types. We will come back to this issue in chapter 5.

We found no satisfying solution to the problem of representing maps generally. However, we
did not encounter non-empty maps in the example data, thus it is unclear whether the maps
that occur in practice are small enough to admit being shown as graph in the first place and
whether empty functions are an issue. Therefore, we implement the compact but incomplete
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Figure 3.6: Example of a complete representation of the map {a 7→ {1 7→ 2, 3 7→ 4}, b 7→ {5 7→
6}}.

Figure 3.7: Example of the implemented representation of the map {a 7→ {1 7→ 2, 3 7→ 4}, b 7→
{5 7→ 6}}.
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3.1 Graph Representation of SKilL Data

representation. The definitions, then, are very similar to the definition of lists, with indices
replaced by sequences of keys:

Definition 12 (Members of maps, objects). If o is a SKilL object, f is a field in o, o.f is a map
with type τ1 → τ2 → · · · → τn where τn is a reference type, xi : τi for 1 ≤ i < n are keys of the
map, o.f(x1) . . . (xn−1) is defined and not null, and the size of the map is below a threshold,
then:

• member(o, f, x1, . . . , xn−1) ∈ E,

• s(member(o, f, x1, . . . , xn−1)) = compound(o, f),

• t(member(o, f, x1, . . . , xn−1)) = o.f(x1) . . . (xn−1), and

• lE(member(o, f, x1, . . . , xn−1)) shows the values of the keys x1 to xn−1.

Definition 13 (Members of maps, nulls). If o is a SKilL object, f is a field in o, o.f is a map
with type τ1 → τ2 → · · · → τn where τn is a reference type, xi : τi for 1 ≤ i < n are keys of
the map, o.f(x1) . . . (xn−1) is defined and equal to null, and the size of the map is below a
threshold, then:

• memberNull(o, f, x1, . . . , xn−1) ∈ V ,

• member(o, f, x1, . . . , xn−1) ∈ E,

• s(member(o, f, x1, . . . , xn−1)) = compound(o, f),

• t(member(o, f, x1, . . . , xn−1)) = memberNull(o, f, x1, . . . , xn−1),

• lE(member(o, f, i)) shows the values of the keys x1 to xn−1, and

• lV (memberNull(o, f, x1, . . . , xn−1)) shows the bottom sign.

Definition 14 (Members of maps, values). If o is a SKilL object, f is a field in o, o.f is a map
with type τ1 → τ2 → · · · → τn where τn is a primitive type, xi : τi for 1 ≤ i < n are keys of the
map, o.f(x1) . . . (xn−1) is defined, and the size of the map is below a threshold, then:

• memberValue(o, f, x1, . . . , xn−1) ∈ V ,

• member(o, f, x1, . . . , xn−1) ∈ E,

• s(member(o, f, x1, . . . , xn−1)) = compound(o, f),

• t(member(o, f, x1, . . . , xn−1)) = memberValue(o, f, x1, . . . , xn−1),

• lE(member(o, f, x1, . . . , xn−1)) shows the values of the keys x1 to xn−1, and

• lV (memberValue(o, f, x1, . . . , xn−1)) displays the value o.f(x1) . . . (xn−1).

Constant fields describe the type and not any individual object. They are, therefore, not
included in the graph. We, thus, finish with:

Definition 15 (Closure). V and E have no members except those from definitions 1 to 14
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3.2 Exploring the Graph

The graph defined in the previous section is far too large to be shown at once. We now define,
how the user can select which part of it is displayed at a given instance. Here we have to
ensure, that the selection is done in a way that allows its generalisation to all objects of a
type.

The first and simpler part of the selection procedure concerns what is not shown. We have
seen, that objects can have a lot of fields. When all fields are shown, there is little space left for
the fields of adjacent objects, which the user might be more interested in. We thus add, for
every field, the option to remove it from the graph completely. This option applies to the field
in general, that is, it is hidden in all objects of the type that contains the field. In combination
with sub-typing, one might wish to treat a field differently depending on the sub-type of the
object. We reject this idea because it would become hard to predict the behaviour of the
program when the preference can be overridden repeatedly in the sub-type hierarchy. Thus,
the user can only hide the field completely, but will face no surprises.

We also noticed in section 2.3.1, that half of the fields have default values, and are thus obvious
candidates for hiding. The default behaviour of the editor is thus to hide all default values.
This is often valid treatment of defaults, even if the field has non-default values in other objects.
For example, boolean fields, are often used to indicate that an object is unusual in some
respect, like isSpecial. When the field is false, the object is just a normal specimen of its class,
which the user would already assume by default. Therefor it is not very informative to display
isSpecial = false. This does, however, not work for all fields—the Royal Observatory in
Greenwich has a longitude, it just happens to be 0.0—, and can, therefore, be disabled on a
per field basis.

Those preferences—whether a field is hidden completely, hidden if default, or always visible—
are available in the type viewer described in chapter 4. They can also be accessed directly
through a pop-up menu from the object nodes in the graph view.

Having clarified what is hidden, we now turn to the second part: deciding what to show. Our
approach is based on the assumption that the user is, at a given instant, mainly interested on
one object. The adjacent objects are only interesting because they are referenced by the main
one. This makes it possible to associate every visible object with the sequence of fields through
which it was found. Those sequences enable us to transfer user choices from one main object
to the next.

From the user’s point of view, the selection of visible objects is very simple. Like in the tree
views of object inspectors, the user can toggle every object node between two states: either it is
expanded, and all its fields are shown—unless explicitly hidden—, or it is collapsed, and they
are not shown. We indicate the current state of a node by drawing a box around expanded
nodes but not around collapsed ones. We assume this to be the most frequent action and
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trigger it by clicks on nodes. When the user wants to shift their attention to another object
entirely, they can select it as the new main object using a pop-up menu.

Internally, the toggling between collapsed and expanded state is handled by updating a set of
paths to expanded objects. As an object can be reachable through multiple paths, we need to
take care that the resulting behaviour matches the expectations of the user. In particular, when
a user collapses a node, it must not stay expanded through a second path. When they expand
an object that is reachable in multiple ways, we must decide which path or paths are probably
meant.

In the description of the algorithm, we use the following conventions: F is the set of fields.
A path p = f1f2 · · · fn ∈ F ∗ is a sequence of fields. When dealing with paths, we follow the
usual conventions for free monoids and use ε to denote the empty path and juxtaposition for
concatenation. A path can be considered a partial function from objects to values, or, more
suitable to our present purpose, from nodes to nodes. A singleton path f maps an object node
v to the target of the edge (v, f) that represents f and starts a v: f(v) = t((v, f)) if (v, f) ∈ E.
Longer paths fp follow edges recursively: fp(v) = p(f(v)). The empty path is the identity
function ε(v) = v.

The visible part of the graph is now defined as follows: given a main object v0 and a set X of
paths to expanded nodes, we first determine the set X of expanded nodes as the set of nodes
reachable from v0 via the paths in X :2

X = {v | ∃p ∈ X : v = p(v0)}

The visible nodes are, in a first take, the expanded nodes and their successors. But, it is possible
to have a distant node expanded without expanding all intermediate nodes. In order to keep
the graph connected, nodes that lie on the paths to expanded nodes must also be visible. The
set V of visible nodes is, thus:

V = X

∪ {v | ∃w ∈ X, e ∈ E : s(e) = w ∧ t(e) = v}
∪ {v | ∃pq ∈ X : pq(v0) ∈ X ∧ v = p(v0)}

Finally, we have to decide which edges become visible. Initially, we showed all edges that
connect visible nodes, but were not satisfies with the results. The edges between visible nodes
include fields of collapsed nodes when their target is already visible. They consume space on
the screen and often have adverse effects on the produced layout, even though the user did
not request to see them. What is worse, they can not be easily hidden in order to free space.

2It is clear, that p(v) can only be defined when the type of v or one of its super types defines first field in p. Thus,
the implementation speeds up access to X by partitioning it according to the type that the first field belongs to.
This is not spelled out, here, because we consider it to complicate the description unnecessarily.
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Figure 3.8: Example of a graph in which the number of different shortest paths between two
nodes grows exponentially with the number of nodes.

Therefore, edges are only shown when they represent fields of expanded nodes or lie on a path
to an expanded node. This concludes the determination of the visible part of the graph.

Expanding or collapsing a node is done by updating the set X of expanded paths. When a node
v is collapsed, all paths p that cause a node to be expanded, i.e. v = p(v0), are removed from
X . For expanding, a path has to be added. Due to cycles, a node can be reachable through
many paths, and we have to decide which one, or which subset of them, to use. We do not let
the user select a path, because expanding a node is a very common operation which should
be simple: the user wants to expand a particular node and gets it expanded without further
interaction. The generalisation to other objects is handled automatically by the editor.

A modest generalisation seems to be to pick all shortest paths to the node. This will not work,
however: consider the graph shown in figure 3.8. It has 2n nodes, but there are 2n−1 different
shortest paths from node 0 to node n: for the first n− 1 edges of those paths, one can freely
choose a successor from the top or bottom row of nodes. This is, by the way, another reason
not to let the user select a path. Although the set of visibly nodes is probably always small
enough to keep 2n in a manageable range, we still want to avoid exponential growth.

This is easily achieved by never adding more than a small constant number of paths to X at
once. The size of X is then bounded linearily by the number of user actions, which we accept
because an editor is usually closed after a session. The only negative consequence of this safety
measure is, that a node that the user expects to be expanded is shown collapsed.

We should now discuss a topic which we have passed over so far, namely the members of
compound types. We defined paths as sequences of fields, hence they can not identify a member
of a compound type. This could be handled by extending the definition to include indices for
lists, keys for maps, and so on. We will, however, not do that: paths are used, because we
assume that, when the user expands a field, they also want to see it expanded elsewhere. We
consider it unlikely that this assumption holds for members of compound types. A use case
where one always wants to see, say, the third element of a list is, in our opinion, too uncommon
to justify the extension. Members of containers and their successors are, therefore, handled
individually. The member node itself is added to a set of expanded nodes, which is kept locally
inside the viewer window.
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3.3 Graph Layout

There are many solutions to the problem of turning an abstract graph into a node-link diagram,
or ‘laying out the graph’, of which Di Battista et al. [DBETT94] give an overview. As we have
to display arbitrary user data, we do not consider algorithms which require the graph to have
certain properties, like planarity, a limited number of edges per node, or the absence of directed
cycles. The algorithms they list for laying out arbitrary, unconstrained graphs are the force
directed placement algorithms, also called spring embedders, which simulate the layout as a
physical system where a distance-dependant ‘repulsive force’ spreads the nodes evenly and
an attractive force pulls connected nodes together. We will now review the common layout
algorithms and the goals they pursue, discuss which one can be adapted to meet our additional
stability goal, and then present our implementation of the layout algorithm.

3.3.1 Existing Force Directed Placement Algorithms

To state the layout task more formally: given a digraph (V,E, s, t,ΣV ,ΣE , lV , lE) as defined in
the previous chapter and a rectangular frame C = [0 . . .width]× [0 . . . height], find a placement
~x : V 7→ C that assigns to every node a position on the frame and that is ‘aesthetically-pleasing’,
or, to be more explicit, meets a set of goals, which we quote from Fruchterman and Reingold
[FR91]:

• Distribute the vertices evenly in the frame.

• Minimize edge crossings.

• Make edge lengths uniform.3

• Reflect inherent symmetry.

• Conform to the frame.

Those goals usually can not be met at once. A cycle graph Cn, for example, should be laid
out with the nodes on a circle as far as symmetry is concerned, but should curl up in order
to achieve a uniform distribution of vertices. Therefore, a compromise between the different
goals has to be found. In order to get an objective measure for the ‘overall layout quality’,
one proceeds to quantify how well each of the sub-goals are met and specify cost functions
that translate the badness according to each criterion into a ‘common currency’ that allows
specifying how much, say, pixels standard deviation of the edge length distribution one is
willing to trade off for removing one edge crossing.

3Though Gansner et al. argue that edge length should depend on the number of adjacent edges, for otherwise the
layout becomes too crowded in the vicinity of high degree nodes [GKN04]. This should be seen as a refinement
of this goal, not a refutation, for every edge should still have its, now variable, ideal length.
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Symmetry and edge crossings are usually not explicitly optimised for: symmetry is hard to
quantify4, and edge crossings would complicate the algorithm, where the results are usually
good enough without explicitly optimising for it.

The two criteria that are addressed are then uniform distribution and of nodes and uniform
edge length. The first is expressed by a cost function that penalises pairs of unconnected
vertices which are located close together, and the second by a function that penalises deviations
from a desired edge length5. Both are functions of the distance of a pair of nodes, and their
gradient tells us whether the distance between the nodes should increase or decrease in order
to improve the quality of the layout. This can be likened to a physical system where the penalty
function is viewed as potential energy and its gradient is a force, hence the name force directed
placement. A layout algorithm can specify the energies and search for a position where the
energy is minimal. Alternatively, one can specify the forces and search for an equilibrium, i.e. a
position where all forces acting on a vertex cancel each other out. We consider examples of
both cases, below.

In the following discussion of the algorithms, we use v, w ∈ V to denote two nodes of the graph,
~δvw = ~x(w) − ~x(v) their distance on the canvas with magnitude δvw = |~δvw| and direction
δ̂vw = ~δvw

δvw
. Two vertices v and w are connected when there is an edge between them in either

direction: we abbreviate this as v ↔ w iff ∃e ∈ E :{v, w} = {s(e), t(e)}. We write ~F (v, . . .) to
denote forces exerted on node v by some other entity that takes the place of the ellipsis.

Eades [Ead84] gives the goal of the optimisation as a pair of force functions, viz. a logarithmic
attractive force

~FA(v, w) = δ̂vwc1 log δvw
c2

between connected nodes and inverse square repelling force

~FR(v, w) = −δ̂vw
c3
δ2
vw

between unconnected nodes. The constant c2 specifies the desired distance of adjacent nodes,
the ratio of c1 and c3 gives the trade-off between uniform edge length and separation of nodes.
The absolute values of c1 and c3 only scale the forces and do not affect the layout; this can be
relevant for the algorithm that searches the minimum.

4Hard can be read in two ways, here: it might be hard to define, for, to the best of our knowledge, no one
attempted to quantify how well a graph reflects symmetry. But this may be attributed to the fact that a definition
would probably involve comparing the placement of isomorphic subgraphs. Graph isomorphism is not known to
be solvable in polynomial time [GJ79], and, thus, the quantity would be hard to compute, anyway.

5To achieve truly uniform distribution, the desired edge length must equal the distance between close unconnected
nodes. Fruchterman and Reingold [FR91] use C

√
area

number of nodes as desired edge length for some experimentally
determined constant C. We can, unfortunately, see that the constant should actually depend on the data
when we consider graphs that form regular rectangular and triangular grids: the latter is more densely packed,
therefore the edges would need to be longer in order to fill the available space. However, the uniform distribution
is usually not the first priority.
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Fruchterman and Reingold [FR91]reject the logarithmic force function for its computational
cost. They instead use the force functions

~FR(v, w) = −δ̂vw
k2

δvw

between all pairs of vertices and additionally

~FA(v, w) = δ̂vw
δvw
k

between connected ones. Here, k is the optimum edge length; there is no separate constant to
specify the trade-off between the forces, because the relative weight of the forces determines
the edge length.6

The algorithm of Kamada and Kawai [KK89] uses a different approach and tries to find a layout
where the distance of two nodes v and w on the frame is proportional to their shortest path
distance dvw in the graph. If unconnected graphs are laid out, some sensible default value has
to be supplied for nodes from different components. Their algorithm minimises the energy

∑
v 6=w

1
d2
vw

(δvw − Ldvw)2

which penalises, for each pair of nodes, the deviation from the desired edge length L. This is
equivalent to a force

~F (v, w) = δ̂vw
1
dvw

(δvw − Ldvw)

on vertex v by vertex w.

Most recent work is based upon the algorithms of Kamada and Kawai and Fruchterman and
Reingold—practitioners will know them from the neato and fdp layout engines of the software
tool Graphviz [GN00]. However, we found during initial experiments, that they determine the
placement of nodes too firmly for our purposes. In section 3.3.4, we add a further force to
keep fields in a stable position relative to their containing object. This appears to work better if
the basic layout leaves some slack. Therefore, we adopt the quickly decaying inverse square
repulsive and slowly increasing logarithmic attractive forces from Eades. We do not consider
the calculation of the logarithm a problem for the small graphs we are concerned with.

3.3.2 Overlap Removal

The algorithms given so far only cover the problem of placing point nodes. When one wants to
show node labels, the nodes may be too close together and the labels will overlap. The overlap

6The constant C used by Hu [Hu05] can be seen to simultaneously change the edge length and scale the force
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can either be removed in a separate step or by taking the extent of the label into account when
calculating the forces during node placement.

The simplest approach to overlap removal is to change the scale of the layout. This is not
an option, because we only have a fixed area of screen space available. Other approaches
to remove overlaps post hoc distort the layout. As we want to keep the relative positions of
certain nodes fixed, we would have to impose additional constraints on the node movements
allowed for during overlap removal; this seems to complicate matters unnecessarily.

Therefore, the extent of the node is taken into account during the initial placement. Following
one of the approaches explored by Harel and Koren [HK02], the forces are calculated based
on length of the line segment connecting the centres of two nodes that is not obstructed by
their labels. This will not guarantee that nodes do not overlap—consider a high node and a
wide node intersecting at their ends—, but is usually sufficient to ensure that the labels of
both nodes are legible. As noted there, considering node extent leads to slower convergence
of the search for an equilibrium placement and prevents the layout from overcoming local
minima: due to their extent, the nodes can not get past each other any more. We, therefore,
also adopt their solution of starting to factor in the extent of nodes only after an initial layout
was found.

3.3.3 Conforming to the Frame

In order to be visible, the nodes must be placed inside the available frame. Confining nodes
to the frame can distort the placement badly: for example, a chain has to curl up when it is
longer than the diagonal. For a clear layout, it is best when the frame is not a limiting factor.
Fruchterman and Reingold [FR91] indicate that they often choose the edge length ‘so that the
resulting graph is small enough that it never nears the borders’ and scale the graph afterwards.
Kamada and Kawai [KK89] suggest using a suitable ideal edge length in order to ensure that
the layout fits inside the frame. In our application, with labeled nodes and edges, there is,
however, not much room for scaling and changing edge lengths. The distortions caused by the
frame are, therefore, accepted.

In the literature, we found essentially two ways to confine the nodes to the frame. Fruchterman
and Reingold [FR91] consider the borders of the frame to be solid walls that absorb all forces
orthogonal to them and thus prevent nodes from passing through. For a rectangular frame that
is aligned with the coordinate system, this amounts to clamping the component of the position
vectors to the ranges 0 . . .width and 0 . . . height respectively. The alternative approach uses a
long range repelling force between the borders and the nodes. A naïve way to implement this
is to place immovable dummy nodes at the circumference. This is, however, generally rejected
because a high number of dummy nodes is needed to ensure confinement [FR91, DH96].
Davidson and Harel [DH96] instead add terms to their energy function, which repel a node
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from each of the four borders separately. In a rectangle aligned with the coordinate system,
this is, again, computable component wise.

We adopted the solution of Davidson and Harel. Like in their implementation, the power of
the distance in the frame function is the same as for the node-node repulsion. That is, with
xv = (x, y) and basis vectors ex = (1, 0), ey = (0, 1), the force of the frame on vertex v is:

FFrame(v) = c3

(
ex

1
x2 − ex

1
(width − x)2 + ey

1
y2 − ey

1
(height − y)2

)

3.3.4 Enforcing Stability

We said initially, that graphs representing objects of the same type should look alike. This
means that nodes representing objects that are referenced by the same field stay in the same
position relative to the node representing the object which stores the reference. Fortunately,
the layout produced by force directed placement algorithms can be easily adjusted by adding
suitable forces.

A literal reading of the requirement to keep the same field in the same position would suggest
using an ideal relative displacement between an object node and the value of the field. A force
that causes the layout to maintain this displacement could, for example, be proportional to
the difference between ideal and actual displacement. However, we consider this to be too
restrictive. Due to inheritance, and the fact that we usually hide default values, the same field
occurs in nodes with few and with many neighbours. Nodes, therefore, have to move away
from their ideal position, otherwise parts of the layout would become too densely populated.
In cases where the ideal displacement can not be maintained, we consider it more tolerable
to change the distance than the direction. We, therefore, restrict the directions of edges
representing fields and leave it to the forces of the basic algorithm to determine the length.

In order to determine the direction of an edge, we need to add a force that rotates an edge
without influencing its length. Borrowing, again, from physics, we consider what happens when
the ends of an inelastic bar are pulled in different directions: the components of the forces that
are parallel to the bar are transmitted through it and cancel each other out. The components
perpendicular to it accelerate its ends into opposite directions and effect a rotation that aligns
the bar with the direction of the force. This leads directly to the following implementation:
let ~p(e) denote the ideal direction of edge e and c4 a constant that determines the relative
importance of achieving the ideal direction. Then, for every edge e with distance ~δe = ~δs(e)t(e)
in the graph, add the forces

~Fp(t(e), e) = −~Fp(s(e), e) = c4

(
p(f)−

~δe(~δe~p(e))
~δ2
e

)

to the forces acting on the endpoints s(e) and t(e).
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s(e)

t(e)

e

−~p(e)

−~Fp(s(e), e)

~p(e)

~Fp(t(e), e)

Figure 3.9: Forces ~Fp added in order to prefer layouts where the edge e is parallel to ~p(e)
without influencing edge length.

This does not work correctly anymore as soon as the extent of nodes is taken into account.
Consider a vertical edge: when this edge is rotated, the centres of the nodes at its ends
keep their distance. But the labels of the nodes do not rotate and the unobstructed distance
decreases. Therefore, the basic repulsive force starts to push their centres farther apart. This is
usually no issue because most nodes are restrained in their position by multiple edges. But
when multiple pending nodes are connected to the same node and compete for the same
direction, the direction forces on them are not aligned properly and do not cancel each other in
an equilibrium. Instead, the pending nodes start to orbit each other. We did not find a solution
to this for rectangular labels. However, we see no adverse consequences of this behaviour.

The direction preference ~p(e) of an edge e is meant to keep all edges representing the same
field aligned. It therefore depends on the direction preference ~p(f) of the field f which is
represented by e = (o, f). Treating all edges that represent a field in the same way does,
however, lead to problems with the layout. Two or more edges which represent the same
field may point to the same target node. Their source nodes can, then, not be placed in a
way that satisfies all goals at the same time. In order to achieve similar directions, the nodes
have to be placed close together or the edges have to become longer. In the end none of the
goals is satisfied. We found it preferable to relax the direction goal when such a conflict arises.
The direction force on an edge e = (o, f) is, therefore, divided by the number of conflicting
edges.

This leaves the problem of how to determine the value of ~p(f) for all fields f . In some cases,
like a field called parent in a type that represents nodes of a tree, the user has a strong opinion
what ~p(f) should be, and is able to specify the direction of their choice. But for a stable
layout, we need a direction preference for all fields. This, we can not ask the user to provide.
Therefore, the directions are determined automatically.

It is not possible to assign the directions randomly. The graph contains cycles, and the directions
of the edges in a cycle are mutually dependent: the last edge must return to the beginning.
Direction preferences that are not compatible with the cycles in the data can obviously not
be met. That we can not find suitable directions by inspecting the type system can be seen
by considering binary trees and doubly linked lists. Both have two link fields that refer to
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another node of the same type. But, in the case of lists, they have to be represented by edges
in opposite directions, while the links to the child nodes in a tree should be represented by
roughly perpendicular edges.

We therefore have to derive the edge directions from the actual data. Considering the fact
we have to deal with large files, we do not inspect the whole file before showing the first
graph, but instead iteratively refine the ideal directions every time a graph is rendered: the
directions start unconstrained (i.e. ~p(f) = (0, 0)) and are updated to reflect the direction that
the edges have in the produced layout. A, direction that the layout was able to respect becomes
determined more strongly, while the ones that were overridden by the other forces adapt
towards a direction that is possible to achieve.

As the direction that a field has in a layout, we use the average of the normalised distances of
the edges that represent the field:

~a(f) = 1
|{o.f |o.f ∈ E}|

∑
o.f∈E

~r(o.f)
|~r(o.f)|

This is a unit vector if all edges are parallel and close to zero if their directions are unrelated.
The ideal direction is then updated with exponential smoothing. Thus, the mutual dependencies
of field directions that are present in any given layout contribute to the preferences but do not
completely override the dependencies encountered before.

~p(f)← c~p(f) + (1− c)~a(f)

The constant c should be relatively close to 1 because the directions, once found, should
remain relatively stable. But then, on the other hand, it takes a long time until strong direction
preferences emerge. We implement a fast start behaviour by using c = min{c5, |p(f)|}. When
p(f) is weak, it quickly adapts to the directions found in the layout. Once it is strongly
determined, it only changes slowly. Fields for which the user has defined a direction do not
participate in this iterative process.

An example of this process is shown in figure 3.10. With edge direction unconstrained, a doubly
linked tree is laid out as shown in part (a) with nodes evenly distributed but random edge
directions. But, given the small size of the graph, the average directions a(f) will be non-zero.
In the example, the field rightoperand accidentally never points to the left. This unevenness in
the distribution of edge directions gets the determination of the directions started. Because
c is initially zero, the preferred directions are set to the average directions in (a). These are:
(−0.18, 0.29) for parent, (0.61,−0.24) for rightoperand, and (−0.18,−0.34) for leftoperand.
When the same graph is rendered again, the tree structure clearly emerges in sub-figure (b).
The bold lines at the node arithmeticadd#2887 indicate the preferred directions inside a unit
circle. The edges do not point into the preferred direction exactly, but this is expected. The tree
is doubly linked, therefore every edge is subject to two direction preferences. Also, meeting
all direction preferences would place the leftoperand of a rightoperand and the rightoperand
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of a leftoperand at the same location, which is prevented by the repulsive force. Repeatedly
updating the edge directions and placing the nodes leads to drawing (c) after 10 iterations.
The visual appearance has not changed greatly, but the edge direction preferences became
stronger and can now transfer the achieved layout to other sub-graphs.

3.3.5 Searching an Optimum

After defining the forces that determine the layout, we have to find a placement where the
forces are in an equilibrium. For this we adapt the placement algorithm with adaptive cooling
scheme from Hu [Hu05] and include the gradual phase-in of node overlap avoidance from
Harel and Koren [HK02]. Hu’s algorithm is given in algorithm 1: nodes are repeatedly moved
by a fixed step size into the direction indicated by sum of the forces acting upon them. The
step size changes between the iterations and is ultimately decreased (in the else branch)
by multiplication with a constant factor 0 < t < 1, which allows the nodes to move closer
and closer towards a force equilibrium or energy minimum. However, when the step size
is decreased in every iteration, the search is likely to get stuck in a local minimum, which
is overcome by not decreasing, or even increasing, the step size while the algorithm makes
progress. The progress is measured with an energy function, which is the sum of squared
forces on all vertices.7

As to when to end the search, we follow Eades [Ead84] and Fruchterman and Reingold [FR91]
and simply stop after a fixed number of iterations. This makes it easy to integrate the gradual
increase of the importance of overlap avoidance, which is suggested but not explicitly spelled
out by Harel and Koren [HK02]. Specifically, an initial placement is found by running k

iterations of the search assuming point nodes. During the next l iterations, the size of the
nodes is increased step-wise. Finally, m iterations are dedicated to the fine-tuning of the layout
with the full size of the nodes taken into account. The node size is increased step by step
because a continuous increase is not compatible with Hu’s algorithm for determining the step
size. When the node size is increased, nodes have to move, which leads to an increase of the
total energy. Rising energy usually indicates, that a minimum was overshot, hence the step size
is decreased. If the node size is increased continuously, the step size gets smaller and smaller,
and no progress is made. Increasing the node size step-wise allows the search algorithm to
relax the layout to the new equilibrium. Experimentation shows, that k = l = m = 50 is
usually sufficient to lead to sub pixel step sizes, thus more iterations would not lead to an
improvement.

The calculation of the repulsive forces loops over all pairs of vertices. Quadratic growth is
usually undesirable, and there are techniques to calculate such forces in log-lin time. However,

7This does not correspond to the physical notion of potential energy, except for the linear force functions in the
algorithm of Kamada and Kawai. But it still indicates whether the layout is close to an equilibrium, and one
must not take the force metaphor too far.
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(a) Arbitrary edge directions.
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Figure 3.10: Determination of directions preferences from data. See text.
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Algorithm 1: Force directed placement algorithm with adaptive step length update
scheme from Hu [Hu05].

Input: x ∈ V → C initial placement
Input: 0 < t < 1 rate of change of step-size
Result: x optimised placement
step ← initial step length;
energy ←∞;
progress ∈ N← 0 number of successive steps which improved the layout;
repeat

energy′ ← 0;
forall the v ∈ V do

~F (v) =
∑
v′ 6↔v

~FR(v, v′) +
∑
v′↔v

~FA(v, v′) +
∑
e
~Fp(v, e) + ~FFrame(v);

x(v)← x(v) + step ∗ ~F (v)
|~F (v)|

;

energy′ ← energy′ + ~F (v)2;
if energy′ < energy then Layout has improved

progress ← progress + 1;
if progress = 5 then

progress ← 0;
stepSize ← 1

t stepSize;
else

stepSize ← t stepSize
energy ← energy′

until done;

we can only display graphs with a modest number of nodes, otherwise the labels will start to
overlap and the graph is not readable anyway. The simple implementation with nested loops
needs about 100 ms to layout graphs with 30 nodes on a 2,4 GHz Core i7, which we consider
fast enough. With 50 nodes, run-time is around 300 ms, but graphs of this size are usually too
cluttered to be of interest. Therefore, we did not investigate the advanced techniques. Besides,
it is not clear how they can be extended to include node size.

3.3.6 Minor Topics

The field dependent edge directions help to keep the layouts of nodes of the same type similar.
Yet it has to permit nodes to move in order to adapt to the constraints imposed by different
reference structures. When the user expands and collapses nodes, those movements are usually
a nuisance and have to be avoided. To this end, we clamp all nodes to their position once a
graph is displayed. Only newly added nodes will then be subject to the force directed placement
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algorithm. This clamping pertains only to the individual nodes visible in one window and is
not transfered to other objects of the same type.

Finally, the graph display must be prepared to handle changes. Whenever a field of one of the
visible nodes is modified, the graph has to be updated. This is handled in the simplest possible
way: the set of visible nodes is determined again and a new layout is calculated. Nodes which
were visible before stay clamped at their previous position.

3.4 Results

We now present some examples of the layouts that are produced by the algorithm described
above. The first example concerns the selection of visible nodes. Figure 3.11 (a) shows some
neighbours of routine#21. The expanded node tvoid#963 is reachable over two different
paths of length two, viz. definition–returntype and statements–itstype. As both are considered
equally likely, both, tpointer#984 and tvoid#963 are expanded in sub-figure (b). This is also a
case, where field directions are preserved well.

We, secondly, look at small graphs with a fairly low number of cycles. Such graphs are usually
handled well. As reference case, we use the graph around implicitconversion#3111, which is
shown in figure 3.12; this graph was chosen almost arbitrarily by visiting objects of random
types with all fields expanded until a graph of the desired size was found. Therefore, the edge
directions have already emerged: itstype points to the right, and sloc to the left. Parent was set
to point upwards initially. Note, that this graph admits a better layout by placing sloc#1 below
tpointer#964. But this will not work in the later examples.

We now examine some objects having the same type. Graphs with an identical structure
usually produce identical layouts, such as for example figure 3.13. Without the edge direction
preference, the positions of the four pending neighbours of initialise#3683 would be equivalent,
and the four fields could swap their positions arbitrarily. The direction force keeps them in
place. For graphs like this, the optimisation algorithm produces the desired layout reliably.

When the occurring edges are not too different, the layout is usually only changed locally.
Consider the graph around implicitconversion#3114 in 3.14. Unlike in the reference case,
the implicitconversion and its parent have the same object as value of their itstype field. The
shared type tpointer#964 moves to a compromise position, but the rest of the layout is not
affected.

Now, consider unaryminus#3083 in figure 3.15. Its parent is distinctly more to the right than
the parents of the previous examples. This is partially caused by the fact that the backward
edge is rightoperand instead of source, as it was in the previous cases. Thus, the layout must
find a compromise between showing a good unaryminus and showing a good unequal.

43



3 Showing objects and drawing graphs

(a)

(b)

Figure 3.11: Expanding node tvoid#963 in (a) translates to expanding the returntype of the
definition and the itstype of the statements. In (b), this expands two different
nodes and the graph is adjusted to accommodate both.
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Figure 3.12: Reference case for the exampled concerning the preservation of the direction of
fields: a graph chosen almost arbitrarily.

Figure 3.13: A graph with the same structure as the one in figure 3.12. The nodes are placed
almost identically.
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Figure 3.14: A graph with a cycle which was not present in figure 3.12. The position of the
node tpointer#964 is a compromise between the requirements of the itstype
edges. The rest of the layout is not affected.

However, the examination of further examples showed, that the node was also displaced
by sloc#1, for which no good position was found. It would preferably be placed closer to
tcint#960. We tried to improve this by implementing using different ideal edge lengths as
suggested by Gansner et al. [GKN04]. However, as we need to keep the shortest edges long
enough to accommodate a label, the resulting layout becomes too sparse and even fewer
objects can be shown simultaneously. There can also not be solved with a better direction
for sloc edges because they are so common. The placement of macroinvocation#274 is a
non-optimal equilibrium. When this graph was laid out repeatedly, it was usually placed above
sloc#976.

Finally, we turn to the problematic cases, which are exemplified in figure 3.16. Recall the
example in figure 3.10, where the tree structure of the graph was recognised and neatly
represented. However, only the links fields of the tree were considered there. When we add the
remaining fields to the picture, the layout deteriorates rapidly. For one thing, many nodes are
stuck in a local optimum. For example, consider read#4825, the leftoperand of divide#2926.
The only positive thing about its placement is that it is in a good position for a leftoperand.
The likelihood of a bad placement decreases with a larger frame, but still a good layout is not
found reliably for a graph of this size. The gradual phase-in of the node size improves matters
but does not overcome the problem completely. In order to deal with graphs of this size, a
more elaborate search procedure has to be employed.
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3.4 Results

Figure 3.15: The node unequal#3064 is displaced from the desired position of a parent by the
rightoperand link and the new position for sloc#1.

The next issue is the node tcint#957, which is the itstype of every expanded node. If we
would we align all itstype edges with the preferred direction, tcint#957 would be pushed to
one side and distort the remaining graph badly. Hence, the direction force is scaled down in
cases like this one, and the node is placed somewhere near the centre. When the algorithm
finds good layout of this graph, the tree structure is well represented. It is, however, hardly
recognisable due to the crossing itstype edges. It seems clear, that there is no placement of
such a highly connected node that prevents this problem. A solution would probably involve a
more sophisticated handling of edges, which is an issue we did not investigate.
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3 Showing objects and drawing graphs

Figure 3.16: A low quality layout of a highly connected graph in a small frame.
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4 Viewing the Type System

The type system of the serialised data is an important part of the contents of a SKilL file. Its
modification is not in scope of the present work, but it still has to be displayed. Besides being
of interest on its own right, the user needs to inspect the type system when they want to create
a new object. Also, objects can only be found by enumerating the instances of a type, which
has to be selected.

The preceding chapter suggest displaying a class diagram. The sub-type relation would be
represented by inheritance edges, fields by associations. However, initial experiments showed
that the layout algorithm in chapter 3 is not well suited for this task. While fields of the same
type often refer to different objects which can be distributed across the frame, the associations
in the type system refer to the same type. Together with sub-type edges, the resulting graph
becomes too highly connected and results in visual clutter. We, then, did not pursue a graph
representation in the final implementation.

Therefore, the type system is visualised using simple standard approaches. The sub-type
hierarchy is displayed in a tree view, and associations with field types become hyper links. As
users can be assumed to be familiar with SKilL specification files, type definitions are shown in
specification syntax. This is also the only place where constant fields are shown. An example
of this representation is given in figure 4.1. The selected type, includestatement, defines three
fields—fullname, issysteminclude, and nameaswritten—and inherits from imlroot. Its position
in the sub-type hierarchy is shown in the tree on the left side: it has no sub-types and eight
siblings. The figures in the middle give the number of instances, both direct and including
sub-types.

4.1 Field Preferences

In chapter 3, we introduced some user preferences which apply to fields, viz.

• whether a field is hidden (section 3.2),

• whether a field is represented by an edge in the graph or inside the label of the containing
object (section 3.1), and,

• whether the edges representing it should point into a fixed direction (section 3.3.4).
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4 Viewing the Type System

Figure 4.1: Representation of the sub-type hierarchy (left) and type definitions (right).

These settings have nothing to do with the SKilL file itself. Still, there must be a way to edit
them for every single field. As every field is already included in the visualisation of the type
system, it is convenient to locate the settings there. The visualisation of the type system, thus,
serves a second purpose as editor for field preferences.

A user may spend some time to set up the field preferences. They therefore are retained
between runs of the program. Of course, identical settings should be used in all SKilL files that
adhere to the same specification. It would, however, be too restrictive to use a given set of
settings only for files which have an identical type system. After all, SKilL allows every program
that processes a file to extend the type system with new fields and types. We, therefore,
implemented a liberal approach and simply use identical preferences whenever two fields have
the same name and belong to a type with the same name.
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5 Editing Objects

The graph view described in chapter 3 is not well suited for modifying objects. The goal, there,
was to provide a summary of the relevant information. Therefore, fields were hidden in order
to allow following longer chains of references. For editing objects, all fields have to be available
and large collections have to be handled. Therefore, objects are displayed a second time in way
better suited for editing. This second user interface is described in section 5.1. In section 5.2
we note some issues that arise with the creation and deletion of objects.

5.1 Modifying Fields

This chapter describes how the SKilL fields are translated systematically into elements of a user
interface that display the current value of a field and allow the user to modify it. We try to
take care, that every possible value of a field can be displayed and also entered by the user,
and note where this is not achieved.

The editor for a skill object is then composed from the editors for the fields and labels which
identify them. We use a simple layout which places labels above input fields. This keeps the
resulting user interface narrow and permits showing it next to the graph viewer. In order to
keep the user interface clean and simple, extended functions are only available through pop-up
menus.

As the same field can be visible in multiple locations, input fields notify each other about
modifications and update their content accordingly.

5.1.1 Primitive Type Fields

Editing booleans and integers poses no problems. Booleans are represented as switches which
the user can toggle. Integers are rendered as decimal numbers in text fields and modified by
typing the desired new value. Examples of those basic input elements are shown in figure 5.1.

Floating-point numbers are also edited via their string representation as semi-logarithmic
decimal figures. How floating-point numbers are represented as strings is completely left to
the standard Java libraries [Jav16], which laudably handle all cases one could ask for correctly.
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5 Editing Objects

Figure 5.1: Editor elements for primitive type fields: switches and text input.

The displayed string always includes enough significant figures to permit the recovery of
the original binary number. Also, the special values ‘infinity’, ‘negative infinity’, and ‘not a
number’ can be entered as the strings Infinity, -Infinity, and NaN. There is still a possibility
of data loss because different bit patterns are interpreted as the value not-a-number and
indiscriminately displayed NaN. We do not consider this to be a problem, because storing user
data in the mantissa of a not-a-number value is clearly an abuse of floating-point numbers
which we do not have to support.

Editing strings, which already are text, should pose no problems at the first sight, but this
is not so. First, though strings exhibit a value semantic, they are implemented as references
internally and can be null. SKilL treats null string and empty strings, therefore the editor has
to reflect the distinction. However, printing null values as null will not do either, because this
also is a valid string. Also, while strings superficially resemble text, they can contain all kinds
of non-printable control characters which can not be displayed and are hard-to-impossible to
input.1 We solve both issues at once by displaying strings as quoted string literals with control
characters represented by backslash escape sequences. The supported escape sequences are
those defined by the Scala language [Oa04], which can be processed by existing functions in
the Scala runtime library. This also frees the string (null) for null references.

There are some issues with the treatment of strings. The implemented solution to ensure
that nulls and control characters are treated correctly makes it awkward to work with normal
strings. It would also be desirable to display strings which contain multiple lines with their line
breaks intact. We also took no precautions to prevent excessively large strings from crashing
the editor. Finding a general solution for the handling of string was, however, not in the scope
of this work.

5.1.2 Reference Type Fields

References are represented by text fields showing the type and SKilL ID of the object they refer
to or literal (null). Non-null reference fields can be expanded to show the values of the fields
of the referenced object. Unlike the view in chapter 3, no fields are filtered out, here, and

1Our experience is, that after one has found a way to type most of them, like Ctrl-letter or Windows Alt-sequences,
the backspace control character stubbornly back-deletes instead of being inserted.
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5.1 Modifying Fields

Figure 5.2: Editor elements for reference fields. The field mangledname is expanded and
shows the fields of the object it refers to.

nothing is expanded automatically. Figure 5.2 shows how reference fields are displayed in the
edit view.

The most direct way to modify a reference field is to enter a type name and ID manually. This
is, however, not sufficient, because the ID is a meaningless number and has to be looked up
first. The user can, therefore, also browse a list of existing objects and select one of them.
Of course, the considerations from chapter 3 about displaying objects apply again, and we
want to have the full set of features mentioned there available. Also, the user might be able
to locate the object they want to use, or at least restrict the set of candidates, by a search
query. Therefore, the graph viewer can operate in an object selection mode. In this mode, the
currently viewed object can be accepted by pressing an ‘OK’ button and is passed to a function
provided by the action that started the selection process. In the present case of selecting a
new value for a field, this updates the field and returns the editor to the object in which the
selection process was started.

5.1.3 Restrictions

Field restrictions are checked as part of the validation of user inputs. Values that do not
pass all restrictions stay in the user interface and are not written to the SKilL data structures.
Text inputs indicate violated restrictions—as well as other validation failures, like ‘is not a
number’—with red background colour and an error message is shown below the input field.
Figure 5.3 gives an example of this. For field restrictions, the SKilL binding already provides us
with error messages why a value violated a restriction, which are shown directly.
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5 Editing Objects

Figure 5.3: An editor element which violates a SKilL restriction.

Figure 5.4: Editor elements for a list. The second page of the list locallifetimedefinitions is
visible.

5.1.4 Compound Types

Of the compound types, lists and arrays are most easily dealt with. Their members have a
primitive or reference type, and we have already covered how we handle values of those types.
The editors for members of a list are, therefore, extensions of the editors for ground type fields.
The only difference is, that they access a specific index in a list field instead of the field itself.
The editor for a complete list combines editors for the members and adds labels. Lists and
variable length arrays also support the deletion and insertion of elements. Deletion poses
no problem, insertion is easily implemented by inserting a default-initialised element at the
indicated position.

Displaying a long list completely would lead to excessive scrolling and would make it hard
to find fields that come between two long collections. Therefore, all collections are split into
groups of a few—per default 10—entries and shown one group at a time. To access entries
that are not in the first group, the user can page to other groups. An example of a list editor is
shown in figure 5.4.

Sets are handled similarly. However, we must keep in mind that they can not contain the same
element twice. The input elements for set members add, therefore, a restriction that prevents
entering a value that is already a member of the set. We also can not insert default-initialised
elements here, because the default value could already be part of the set. The value of a new
element is, therefore, queried with a dialogue. In the case of reference types, it would be
desirable to be able to select an existing object or create a new one. This is, however, not
implemented.

Maps are, again, the hard case. Like in chapter 3, they are treated as containers that are
indexed with a key tuple. The desired consequence of this is, that this makes it possible to
speak of the size of the map as a whole. Consequently, it is possible to show the map page
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by page and keep the size which it occupies in the user interface small. Treating maps as
chained functions would lead to showing a page of maps, all of which can have many entries
themselves. We did not notice that this misses empty functions, thus, a better solution has to
be found.

They are, thus, displayed like lists where the values of the keys take the place of the index.
Keys can not be modified, but reference keys admit the inspection of their fields. For adding
a new entry, values for all keys are queried successively. Like with sets, an object selection
function is missing.

5.2 Object Deletion and Creation

Some peculiarities have to be taken care of when it comes to the deletion and creation of
objects. We have to take precautions for the proper operation of the undo/redo function across
deletions and creations, and address the issue, that newly created objects do not have a SKilL
ID.

An issue, that is not addressed is the restrictions which can be violated when an object is
created or deleted. Those violations will be detected by the binding when a file is saved, but
this does not help the user to find the offending fields in order to fix them. Deletions can
violate non-null restrictions anywhere in the file, therefore this is an issue. The editor should
therefore detect violated restrictions and provide quick navigation to the objects that contain
them. This was, however, not implemented.

5.2.1 Undoing Deletions

When the user undoes a deletion, the object must be re-created. But then, older edits become
available for undo, some of which might be modifications of the fields of the undeleted object.
It is therefore important, that the original object, which the other edits in the undo-redo-chain
refer to, reappears when a deletion is undone. The same problem arises when a newly created
object is deleted via undo and later re-created via redo. Unfortunately, the Scala SKilL binding
does not export functions that would restore a deleted object to its previous, not yet deleted,
state. Therefore, we keep a set of objects marked for deletion and defer the actual deletion to
the moment immediately before the changes are written back to disk, at which point we simply
discard the undo/redo chain. So all cases of object deletion—the user explicitly deletes an
object, a deletion is re-done, or a creation is un-done—just add the object to the set of objects
that are deleted before saving. This can be safely undone by removing it from the set.

As we do not actually delete the objects, we should take care, that virtually deleted objects are
not shown to the user. All references to an object are removed before it is deleted, therefore
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it is not reachable from other objects anymore. The search function removes deleted objects
from the result. Thus, one can not navigate to a deleted object.

It can, however, still be visible in another window of the editor and found through the
back-navigation buffer. We did, however, not complete an implementation that addresses
this.

5.2.2 IDs for New Objects

SKilL IDs are derived from the object’s position in the file and are assigned to newly created
objects upon serialisation. A new object has therefore no ID, or, to be precise, all new objects
share the dummy ID −1. As the ID is valuable for telling objects of the same type apart, we
provide surrogate IDs for newly created objects. To keep things simple and the surrogated
IDs recognisable, all newly created objects are assigned consecutive descending IDs starting
with -1. Lookup tables are used to find the surrogate ID of objects and objects by their ID. The
lookups only have to be performed if the actual ID of the object is -1, otherwise the functions
of the SKilL binding are used.
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6 Search

As discussed before in chapter 3, the meaning of an object can not be understood from the
values of it fields alone. Rather, the fields of the objects it refers to have also to be taken into
consideration. Likewise, when the user searches an object, or a set of objects, they need to be
able to put constraints on referenced objects in order to sufficiently narrow down the results
set.

This very same problem is already addressed by the SPARQL query language [PS08], which is
used to query information from semantic web data repositories. The simplest SPARQL query is
the triple pattern ?x r c, where ?x is a variable, r is a relation in the queried data set, and c is
a literal or the name of an object. This query will retrieve all objects that are in r-relation with
c. The basic pattern can be combined to form more sophisticated queries like ?x r ?y . ?y s c,1
which returns all pairs of objects (?x, ?y) where ?x is r-related to ?y and ?y is s-related to
c. This neatly translates to SKilL files when we treat fields as relations and say that o r x iff
o.r = x.

The implementation of the search function was not out main objective. It is, however, necessary
to provide a way to list all objects of a type as well as the members of a large container.
Therefore, a search function, albeit not very elaborate, is still included because it is a convenient
place for handling those lists as special cases.

6.1 The Query Language

We implemented a query language that resembles a highly simplified subset of SPARQL. In
fact, it is confined to triples and joins. We now specify the syntax and semantics of the query
language in lock step.

We state the semantics by means of a partial assignment function g that maps variables to
values of a universe U . The universe contains the values of the primitive types and the set of
all SKilL objects. A valuation function Vg(·) is then defined, which specifies whether a query
is satisfied under a given assignment in a SKilL file. The search result is then the set of all
assignments that satisfy the query and are defined exactly for the variables that occur it.

1One may, in the tradition of Peano and Russel, read the dot as and, here, but it is actually inherited from the RDF
triple notation where it terminates the statement of a fact.
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6.1.1 Lexical Tokens

The query language uses the following symbols and reserved words:

. type directType (6.1)

Further lexical tokens are:

• Identifiers (Ident), which follow the usual C rules, i.e. their first character is a Latin letter,
underscore, or universal character name. All further characters also admit numbers.
Keeping with the SKilL specification [Fel17], we also allow all Unicode characters above
\u007f.

For cases where a reserved word hides an identifier, identifiers can be stropped with single
straight quotation marks (apostrophes), thus: ’type’. The use of universal character
names is not possible in this case.

• Integer number literals (Int), i.e. decimal numbers with an optional sign.

• Floating-point number literals (Float), floating-point numbers, optionally in exponential
notation.

• String literals (String), arbitrary text enclosed in quotation marks with the usual process-
ing of backslash escape sequences.

• Object names (ObjId), which consist of an identifier part which names the base pool or
the storage pool the object belongs to, a pound sign, and the SKilL-ID of the object as
integer literal, e.g. unit#5 or ’type’#7.

• Variables (Var), which consist of a dollar sign or a question mark followed by an identifier
without intervening white space. ?x and $x can be used interchangeably.

6.1.2 Terms

The terms of the queries are the literals and variables:

Term ::=Var | Int |Float |String | true | false |ObjId

A term t has a value JtKg. The value of a literal term is just the value of the literal itself, thus,
for example, J1Kg = 1, JtrueKg = >, and so on. The value of an object name is the object in
the skill file: Jt#1Kg is the object of user type t with SKilL ID 1. The value of a variable v is the
determined by the assignment function: JvKg = g(v).
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6.1.3 Basic Triple Pattern

The basic query is one of the triples:

Triple ::=Term Ident Term
|Term Ident.Ident Term
| . . .

Informally, a triple o f v means, that the value of field f in object o is v. Thus, Vg(o f v) = 1
if JoKg is a SKilL object which has a field with name f and JoKg.f = JvKg. Note the sufficient
condition; there are other ways to satisfy a triple which involve compound types. These are
explained later. However, a triple can be never satisfied when the left term is not an object.

The second variant, o t.f v, is used to disambiguate between multiple fields with the same
name: here, o must have a field with name f that was defined in a type with name t itself, not
one of its super types. The basic form, o f v, uses all fields with a given name, i.e. it depends
on the type of o which one is used. This may change dynamically during the execution of the
query because the objects o can have different types.

6.1.4 Pseudo Triple Patterns

Unlike SPARQL, we do not treat types as first-class values. Therefore, there are two special
cases for restricting the types of objects:

Triple ::=Term type Ident
|Term directType Ident
| . . .

A query o type t is satisfied if o is an object of type t, i.e. Vg(o type t) = 1 iff JoKg is a SKilL
object of type t. With directType, it must also be an instance of t directly, not of a sub-type of
it.

6.1.5 Collections

The simplest query one may run against a set is the enumeration of its elements. This query
uses the basic triple pattern. It depends on the type of the collection how the elements in it
are retrieved. For sets, the reading is clear: Vg(o f v) = 1 if JoKg is a SKilL object which has
a set field with name f and JvKg ∈ JoKg.f . The elements of arrays and lists are just returned
disregarding their index: Vg(o f v) = 1 if JoKg is a SKilL object which has a list or array field
with name f and ∃i :JoKg.fi = JvKg. Maps, in line with their treatment in previous chapters, are
regarded to be collections of values indexed by a key tuple and return their rightmost elements:
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Vg(o f v) = 1 if JoKg is a SKilL object which has a map field with type τ1 → · · · → τn and name
f and ∃x1 : τ1, . . . xn−1 : τn−1 :JoKg.f(x1) · · · (xn−1) = JvKg.

For lists, and especially for maps, it would be desirable to be able to retrieve the indices
and keys. We suggest a syntax along the lines of o f(k1, k2, . . .) v, but did not finish an
implementation.

6.1.6 Join

A join is a sequence of triples separated by dots:

JoinFactor ::=Triple
Join ::=JoinFactor (. JoinFactor)∗ [.]

In a join, all factors have to be satisfied, therefore Vg(f1 . f2 . . . . . fn) = 1 iff Vg(fi) = 1 for
every 1 ≤ i ≤ n.

6.1.7 Special Cases

We add two special queries: a single identifier is taken to be an abbreviation for a type query,
which we assume to be common. A single object literal finds the identified object. This does
not correspond to any normal query and is added in order to allow direct navigation to an
object of which the ID is known.

Query ::=Join
|Ident
|ObjId

So, for an identifier i, object literal o, and a new variable ?v: Vg(t) = Vg(?v type t) and
Vg(o) = 1 iff g(v) = o.

6.2 Query Execution

A query can easily produce a huge set of results: ?a type t. ?b type t would return all pairs of
objects of type t. We consider such queries too expensive and reject their execution. Search
being not our main priority, we did not investigate how and which queries can be executed
efficiently in general. The only composite queries we want to handle are the ones that filter
objects based on the value of a field in a child object. For example, in order to allow looking

60



6.2 Query Execution

up all objects a with a.definition.mangledname.name = “main”, execution of the query
?a definition ?b. ?b mangledname ?c. ?c name "main" is supported.

The joins are implemented by a simple procedure that can handle this special case efficiently.
The procedure would be lengthy to spell out in detail, because a lot of cases have to be
considered. As it is rather simpleminded, we do not consider it noteworthy and confine the
description to one example.

First, the search expressed by one of the factors is executed. This may involve a scan over a large
part of the SKilL file. The factor ?a definition ?b, for example, requires the enumeration
of all instances of types which have a field ‘definition’. This yields an initial list of results
which include an assignment (?a 7→ a, ?b 7→ b) iff a.definition = b. The result of this initial
search is then filtered or extended by each of the other factors in turn. This must be possible
without enumerating all instances of a type a second time. Therefore, factors of the form
?v f x are only allowed, if the variable ?v is already assigned in the result obtained so far.
New values can only be obtained by reading the fields of objects that are already known.
In the example, ?b mangledname ?c is processed next. Every assignment (?a 7→ a, ?b 7→ b)
from the initial set is extended to (?a 7→ a, ?b 7→ b, ?c 7→ c) with b.mangledname = c. Now ?c
is bound and ?c name "main" can be processed, which restricts the results to the instances
(?a 7→ a, ?b 7→ b, ?c 7→ c) with c.name = “main”. That is a.definition.mangledname.name =
“main” as intended.

Thus, one factor contributes a potentially huge list of candidate results. The remaining factors
extend or filter this list entry by entry. The list can only be lengthened when enumerating
elements of containers. The order in which the factors have to be processed to admit execution
by this procedure is found by an exhaustive search. If no such order is found, the query is
rejected.

After the execution of a query, the search results are tabulated in textal form. When a row of
the result is selected, the first object in row is shown in the graphical editor.
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7 Conclusion

The functions presented in the preceding chapters permit the inspection and modification of
the contents of binary SKilL files in a graphical user interface.

A plain representation was chosen for the type system that is stored in the binary file. The
sub-type hierarchy is visualised in a hierarchical outline. The definition of the type of a field
can be looked up through a hyper link. Modification of the type system is outside the scope of
this work. Consequently, no new binary files can be created.

The focus of this thesis is the visual representation of the objects and their mutual references
in a node-link diagram. Fields of objects can be freely shown and hidden in the output. The
choice which fields are shown is reused when another object of the same type is encountered
later by associating it with the sequence of references through which an object was found.
For the layout of the node-link diagram, classical solutions for force directed graph layout
were reviewed, and solutions for different sub-problems were combined. In order to produce
comprehensible layouts, the algorithm is extended to constrain the mutual position of objects
depending on the references between them. The presented solution produces reasonable
results as long as the number of visible objects is small enough and the edges do not form too
many cycles. The object graph can be navigated by following references and by search.

With a few exceptions, fields of objects can be modified in accordance with the serialised type
system. Deletion and creation of objects is supported and all modifications can be undone.
However, no suitable solution was found for nested maps, and the implemented representation
does not cover maps with empty sub-maps. The implementation is further not prepared to
handle huge string fields. While most modifications are supported, there is room for improving
the usability. Notable issues are the lack of the possibility to select existing objects in all places
where this would be desirable and the poor handling of multi line strings.

Objects can be located by a search function which supports a limited set of join queries in
order to filter objects based on indirectly referenced fields. The solution is based on established
technology but incomplete. It is mainly included in order to provide a few essential functions
like the enumeration of all objects of a type. For practical purposes, a more powerful solution
is desirable. The inclusion of numerical inequalities and negative queries could follow the
established model. How to satisfyingly handle maps needs to be investigated.

Whether the presented solution meets the needs of users has to be seen in practice. The
unconstrained node-link diagrams used in the present work appear to require a lot of space
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for a clear layout. Thus, the number of objects which can be visible simultaneously is severely
limited. To investigate whether this can be addressed with a better placement algorithm, or
whether a different approach, which permits the information to be packed more densely, for
example based on hierarchical outlines, would be preferable, is left for future work.
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Glossary

API Application programming interface, the set of subroutines and data types through which
an application program uses the services of a software library. 9

base type A type which has no super type. A root of the sub-type hierarchy. 10

built-in type One of the basic data types available in SKilL. A primitive type or an annotation.
11

compound type A data type which is composed of other types. The SKilL, compound types
are formed by instantiating the type schemata list-of-type, set-of-type, &c. with ground
types. 11, 24, 54

field type A type that can be used as the type of the field of a user type. A ground type or a
compound type. 10

per-type A user type that, directly or indirectly, is extended by another user type is a super
type of the latter. The inverse relation is sub-type. 10

primitive type One of the integer, floating point number, boolean, and string data types. 11,
23, 51

reference type A type, the values of which are references to SKilL objects. A user type
reference or an annotation. 11, 22, 52

Scala A multi paradigm object oriented functional programming language based on Java. The
name is from ‘scalable language’. 7, 9

SKilL Serialisation killer language, a platform independent file format for storing complex
data structures. 9

SKilL ID A tuple of a type name and a consecutive number which uniquely identifies a SKilL
object within a file. 10, 58

SKilL object A record of user data stored in a SKilL file. Has a user type. 9, 22
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Glossary

sub-type A user type that, directly or indirectly, extends another user type is a sub-type of the
latter. The inverse relation is super type. 10

user type A type consisting of named fields which have field types and optionally extending
another user type. 10
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