
Institute of Parallel and Distributed Systems

University of Stuttgart
Universitätsstraße 38

D–70569 Stuttgart

Masterarbeit Nr. 88

Local Data Plane Event Handling in
Software-defined Networking

Matthias Fetzer

Course of Study: Softwaretechnik

Examiner: Prof. Dr. rer. nat. Dr. h. c. Kurt Rothermel

Supervisor: M. Sc. Thomas Kohler

Commenced: October 15, 2015

Completed: April 15, 2016

CR-Classification: C.2.0, C.2.1, C.2.3, C.2.4, C.2.6





Abstract

Software-defined networking is a rising technology for handling traffic in large networks.
To ensure a high flexibility, software-defined networking separates the control plane
from the data plane. The data plane forwards packets while the control plane defines
the forwarding rules. In case packets or events need to be processed in a way that is not
covered by these rules, the packets or events have to be forwarded to the control plane.
This imposes latency to the processing of network traffic and events.

This master’s thesis proposes a concept for generic handling of local events in software-
defined networks, using local data plane applications directly on the switch devices.
During this thesis, a concept for local data plane event handling is developed and
implementation details are discussed. The evaluation shows that processing of events
directly on the data plane improves network performance and saves resources on the
switch devices.
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Kurzfassung

Software-defined Networking ist eine aufkommende Technologie zur Verarbeitung von
Netzwerkverkehr in großen Netzwerken. Um eine höhere Flexibilität zu ermöglichen,
sieht Software-defined Networking eine Trennung der Kontroll- und der Weiterleitungs-
schicht vor. Die Weiterleitungsschicht übernimmt das Verteilen von Paketen während
die Kontrollschicht definiert, mit welchen Regeln dies zu erfolgen hat. Sofern man
Pakete oder Ereignisse verarbeiten möchte, welche nicht mit diesen Regeln ausgedrückt
werden können, müssen diese Pakete und Ereignisse an die Kontrollschicht weitergeleitet
werden. Durch Latenzen in Netzwerken wird jedoch die benötigte Verarbeitungszeit der
Ereignisse und Pakete erhöht.

In dieser Masterarbeit wird ein Konzept zur lokalen Behandlung von Ereignissen in
der Weiterleitungsschicht beschrieben. Diese lokalen Ereignisse werden mittels An-
wendungen auf Netzwerkswitches behandelt. Weiterhin wird auf die Details der Im-
plementierung eingegangen. Die Evaluation zeigt, dass das lokale Verarbeiten von
Ereignissen die Performanz erhöht und zusätzlich die Ressourcen auf den Netzwerk-
switches schont.
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1 Introduction

The internet has a massively growing number of users and connected devices. More and
more users gain access to the internet, not only using traditional computers or laptops,
but also via smartphones and tablet computers. But not only the personal usage of the
internet is rising. With the advent of the internet of things and the internet of services
the internet becomes even more crucial to business success.

This shift towards ubiquitous computing highly increases the level of mobility for internet
devices. This mobility requires the underlying network to react fast to changing network
topologies and changing network load. As traditional networks were not intended to
support mobility to that degree, the pressure on organizations to be more agile than it is
possible with traditional networking approaches increases.

Traditionally, most network functionality is implemented in dedicated hardware appli-
ances, such as switches, routers or firewalls. These appliances unify the control and the
data plane on a single device. While the data plane is used for the actual forwarding of
traffic in the network, the control plane is used for defining the forwarding rules in the
data plane. For example the forwarding of packets in a hardware switch is implemented
in an application specific integrated circuit (ASIC) [Cit14] while the control plane is using
a general purpose CPU. Implementing forwarding logic in ASCIs enables forwarding to
be very fast, while using a CPU enables the switches to execute more sophisticated logic.
On the other hand, the switches are limited in functionality by the ASIC.

Software-defined networking tries to overcome these limitations by shifting networking
logic from the hardware-centric architectures towards a more distributed and less
coupled software-centric approach. This software-centric approach can be described as
a global controlling instance that configures the ASICs on the switches.

One of the most used software-defined networking standards is OpenFlow. OpenFlow
specifies the communication between the global controlling instance and the switching
ASICs. While OpenFlow addresses most parts of the upcoming challenges, such as
support for high mobility, it in itself is a closed system. Reacting to packets can only be
done by a predefined set of actions, and packet recognition is limited to a predefined set
of header fields.

11



1 Introduction

These limitations can be overcome by the global controller. Data packets need to be sent
to the controller in order to apply custom logic. This adds latency to the processing of
data packets as they need to be transmitted to the controller. This latency can be up
to a few milliseconds in local area networks or up to tens of milliseconds in wide area
networks.

This thesis proposes an approach for stateful data plane event processing - that is the
processing of events that do not need a controller to be handled properly.

This thesis is therefore structured as follows: Chapter 2 discusses the foundations for
this thesis, Chapter 3 gives an overview of related approaches and Chapter 4 defines the
underlying system model and the problem statement. The actual concept is presented in
Chapter 5 and the implementation details are discussed in Chapter 6. The prototype is
evaluated in Chapter 7. Chapter 8 summarizes the findings of this thesis and gives an
overview of further required research.
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2 Foundations

Before going into the development of a concept to locally handle events on the data
plane, this chapter introduces its foundations. First, software-defined networking in
general is presented. Then OpenFlow, as a software-defined networking standard, is
discussed. In the last section Open vSwitch, as an implementation of the OpenFlow
standard, is examined.

2.1 Software-defined Networking

Software-defined networking has been one of the most popular topics in networking
during the last years. The goal of software-defined networking is to enable network
engineers and administrators to dynamically and quickly react to changing business
requirements, end-users and market needs [Ope12; Cit14].

As mentioned in the introduction, most network traditional network functionality is
implemented in dedicated hardware appliances, such as switches and routers. Within
these dedicated appliances, most of their functionality is implemented in hardware such
as an application specific integrated circuit. The key characteristics of those proprietary
appliances can be described as follows:

• The improvement of the appliance rests with the proprietary vendor.

• Each appliance is configured individually.

• Provisioning, change management and de-provisioning are very time consuming.

Networking organizations are under pressure to be more agile than it is possible with
the traditional approach [Cit14]. A further source of that pressure is the rising usage
of server virtualization that requires virtual machines (VMs) to be moved around hosts
dynamically in a matter of seconds or minutes [PPK+09; Cit14]. However if moving the
VM crosses a Layer 3 boundary, reconfiguring traditional networks to support the new
location of the VM can take much longer.
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2 Foundations

Figure 2.1: Traditional architecture for control plane and data plane compared to seper-
ated planes in SDN. In (a) the data plane and the control plan reside on the
same physical device while in (b) those two planes are separated into two
logical partitions which typically run in distinct hardware

In contrary to the traditional architecture of network components, software-defined
networking proposes an architecture that separates the control plane from the data
plane as depicted in Figure 2.1. Those separate planes can be described as follows:

• Data plane: The data plane (or forwarding plane) forwards network packets to
other switches or end hosts by using fixed rule sets. The rules in the data plane
are installed by the control plane.

• Control plane: The control plane is responsible for higher level protocols. The
control plane decides which set of rules are installed on the data plane.

The rules on the data plane can either be installed proactively or reactively. When
proactively installing rules on the data plane, rules that match future packets are
installed. When installing rules reactively, rules are installed as a direct reaction to
received packets.

As implied in Figure 2.1 (b) software-defined networking splits the control plane from
the data plane and moves the control plane into an independent entity called the
controller. According to the Open Networking Foundation (ONF) this architecture offers
the following characteristics (directly cited from [Fou]):
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2.1 Software-defined Networking

• Directly programmable: Network control is directly programmable because it is
decoupled from forwarding functions.

• Agile: Abstracting control from forwarding lets administrators dynamically adjust
network-wide traffic flow to meet changing needs.

• Centrally managed: Network intelligence is (logically) centralized in software-
based SDN controllers that maintain a global view of the network, which appears
to applications and policy engines as a single, logical switch.

• Programmatically configured: SDN lets network managers configure, manage,
secure, and optimize network resources very quickly via dynamic, automated SDN
programs, which they can write themselves because the programs do not depend
on proprietary software.

• Open standards-based and vendor-neutral: When implemented through open
standards, SDN simplifies network design and operation because instructions
are provided by SDN controllers instead of multiple, vendor-specific devices and
protocols.

The architecture as envisioned by the ONF can be seen in Figure 2.2. This architecture
involves the following key components:

• Business Applications: Applications consumable by the end user.

• Northbound API: The API between the business applications and the SDN control
software. There is currently no standardized northbound API [Cit14].

• SDN Control Software: The traditional control plane in a separated and logically
centralized manner. This layer includes network services such as security, firewalls
or distributed denial-of-service (DDoS) protection. This is often referred to as the
SDN Controller.

• Southbound API: The southbound API enables communication between the con-
trol plane and the infrastructure layer. There are some standardized protocols for
southbound communications such as OpenFlow, XMPP [Jun13] or the Network
Configuration Protocol [eEnn11].

A downside introduced by this architecture are increased latencies. If data plane packets
are handled reactively, they are sent to the control plane. The control plane then decides
how to handle the received packet. The instructions to handle the packet have to
be pushed down to the data plane. Furthermore increasing load within a (logical)
centralized control plane for a greater set of data plane elements may lead to scalability
issues or might provide single points of failures.
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2 Foundations

Figure 2.2: SDN System architecture as proposed by the ONF.
Source: Open Networking Foundation [Pro13]

16



2.2 OpenFlow

2.2 OpenFlow

As mentioned in section 2.1 there are several protocols for the southbound API. This
section covers the southbound protocol proposed by the Open Networking Foundation.

OpenFlow was the first standard communication interface between the control and
forwarding layers of an SDN architecture [Ope12].

The OpenFlow standard [Pro13] defines the following components, as seen in Fig-
ure 2.3:

• One or more flow tables and a group table: Those perform packet lookups and
forwarding.

• One or more OpenFlow channels: Communication channels to communicate with
the controllers.

The OpenFlow protocol enables the controller to add, update and delete flow table
entries in the flow tables. This can be done reactively (after receiving packets from the
switch) or proactively (by adding flow table entries that may be needed later). Each
flow table consists of a set of flow entries.

2.2.1 OpenFlow Flow Entries

Flow entries are a set of rules and actions to be executed if a packet matches a rule. Ta-
ble 2.2 shows the matchable header fields for OpenFlow v1.0 as well as their description.
The associated actions can either describe how the packets are forwarded, how they
are modified or if they need to be forwarded to other flow tables. Table 2.3 exemplary
shows available actions for OpenFlow v1.0. Since OpenFlow v1.0 many actions and
match fields were added. A full and up to date list of fields and actions can be found in
the OpenFlow Switch Specification v1.5.0 [Pro13]. Table 2.1 shows how the numbers of
header fields and actions have increased from OpenFlow v1.0 to OpenFlow v1.5 [Kre15].
This shows that there is an increasing demand for new header fields and new actions.

Match-action pairs consist of a match and an action set. They are in the form of <{
matches }, { actions }>. This means: If all matches match, all actions in the action set
will be executed.

For example a match-action pair of <{ in_port=1 }, { output=2 }> will match any
packet that was coming from the first switch port and will output this packet on the
second switch port.
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2 Foundations

A more sophisticated example would be the pair of <{ in_port=1, dl_type=0x0800 }, {
set_dl_src=DE:AD:BE:EF:CA:FE ,output=2 }>. This will match any packet coming from
the first switch port and being an IPv4 packet. It will rewrite the source MAC address
and then output the modified packet on the second switch port.

Table 2.1: Numbers OpenFlow header fields and OpenFlow actions. The headers and
actions increased much during the different OpenFlow versions.

Version Date # Header Fields # Actions & Instructions

OpenFlow v1.0 Dec 2009 12 14
OpenFlow v1.1 Feb 2011 15 31
OpenFlow v1.2 Dec 2011 36 56
OpenFlow v1.3 Jun 2012 40 64
OpenFlow v1.4 Oct 2013 41 65
OpenFlow v1.5 Dec 2014 44 68

Figure 2.3: Main components of an OpenFlow switch. The OpenFlow protocol defines
the communication between the controllers and the OpenFlow Switch.
Source: OpenFlow Switch Specification v1.5.0 [Pro13]
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2.2 OpenFlow

Table 2.2: Overview of OpenFlow v1.0 match header fields.
Header field Description

in_port Ingress switch port at which the packet arrived
dl_vlan The vlan tag of the packet
dl_src The ethernet source address
dl_dst The ethernet destination address
dl_type The Ethernet frame type
nw_proto The IP protocol
tp_src The TCP/UDP destination port
tp_dst The TCP/DUP source port
nw_src The IP source address
nw_dst The IP destination address
dl_vlan_pcp The input vlan priority
nw_tos The IPv4 type of service field

Table 2.3: Overview of OpenFlow v1.0 actions.
Action Description

Output Output packet to a given port.
SetVLANID Set a VLAN id.
SetVLANPCP Set VLAN PCP.
StripVLAN Strip VLAN.
SetDLSrc Set data layer source address.
SetDLDst Set data layer destination address.
SetNWSrc Set network layer source address.
SetNWDst Set network layer destination address.
SetNWTos Set the network TOS.
SetTPSrc Set the transport layer source address.
SetTPDst Set the transport layer destination address.
Enqueue Map a flow to a existing queue.
Vendor Execute a vendor defined action.
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2 Foundations

2.2.2 OpenFlow Packet Processing

Matching ingress packets starts at the first flow table. The first matching flow entry is
used and the associated actions are executed. If there is no match in the flow table, the
following scenarios are possible, depending on the switch configuration:

1. The packet may be forwarded to the controllers.

2. The packet may continue to the next flow table.

3. The packet may be dropped.

Forwarding packets to the controller was the default behaviour in OpenFlow v1.0 but
the default has since been changed to dropping packets in more recent versions.

2.2.3 OpenFlow Communication

As seen in Figure 2.4 the communication between the switch and the controller in
OpenFlow supports three kinds of messages types:

(a) Controller-to-Switch messages: These messages are initated by the controller
and are used to directly manage or inspect the switch [Pro13].

(b) Asynchronous messages: These messages are sent from the switch and are used
to notify the controller of events or the current switch state [Pro13].

(c) Symmetric messages: These messages are sent by either the switch or the con-
troller [Pro13].

Important and often used controller initiated messages are:

• FlowMod: This message adds, removes or modifies flow table entries on the switch.

• PortMod: This message modifies the state of OpenFlow ports.

• PacketOut: This message is used to inject packets into the data plane.

Important messaged initiated by the switch are:

• FlowRemoved: This message is sent to the controller to notify that a flow entry from
the flow table has been removed.

• PortStatus: This message is sent to the switch asynchronously indicating the
change of status for a port.

• PacketIn: This message is used to send raw packets to the controller. This either
happens explicitly as an action in a flow or from a miss in the match tables.

20



2.2 OpenFlow

Upon receiving messages from the switch, the controller may execute any business
logic and react to the received message. The controller then influences the switch by
sending messages towards the switch. In many cases this will be FlowMod or PacketOut
messages.

Figure 2.4: OpenFlow Communication: (a) Controller-to-switch message, (b) Asyn-
chronous switch-to-controller message, (c) Symmetric bi-directional mes-
sages.
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2 Foundations

2.3 Open vSwitch

This section describes the architecture and implementation details of Open vSwitch.
Open vSwitch is an open-source implementation of a distributed software switch for
major VM hypervisor platforms [PPK+15]. Open vSwitch is designed for networking in
virtual environments such as Xen, KVM and Docker.

2.3.1 Open vSwitch Architecture

As a conceptual foundation the architecture of Open vSwitch is used, because it is
widely used in production and considered stable. For performance reasons, but also for
reasons of being accepted to upstream Linux, Open vSwitch uses a two layered table
layout [PPK+15]. These two layers can bee seen in Figure 2.5 and can be described as
follows:

• Kernel flow table: The kernel flow table contains less sophisticated flow table
entries [PPK+15]. As those flow entries are of a more simple nature they can be
processed faster and directly in the kernel. Furthermore the kernel flow table acts
as a cache for flow table entries in the user space flow table. Less sophisticated
flow entries from the user space table get cached in the kernel flow table. Those
less sophisticated flow table entries do not contain wildcards or priorities and
therefore match at most packets of a single transport connection [PPK+15]. This
ensures that processing of packets that match a recently used flow entry will be
done in the kernel.

• User space flow table: The user space flow table contains OpenFlow flow entries.
If possible, these flow entries are propagated to the kernel flow table when they
are needed. This table can hold more sophisticated flow entries than the kernel
flow table and may hold more entries in general [PPK+15].

New OpenFlow rules are installed into the user space table. Hence the user space
components are used for the actual OpenFlow communication. This two layered table
layout enables Open vSwitch to be very fast for simple forwarding tasks using the kernel
flow table but still be able to process more complex flow table entries using the user
space flow table. As a downside this may reduce the performance for fast changing flow
table entries as it is only periodically validated if existing flow table entries need to be
changed.
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2.3 Open vSwitch

Figure 2.5: Open vSwitch kernel space (a) and user space (b) flow tables. The kernel
space flow table is populated using the user space table, while the user
space table is populated using OpenFlow.

2.3.2 Open vSwitch Packet Processing

Combining the information from subsection 2.3.1 and subsection 2.2.3 the packet flow
as shown in the activity diagram in Figure 2.6 can be concluded.

When an ingress packet arrives at the switch, the following steps are executed:

1. The packet headers are matched against those in the kernel flow table. If all
headers match, the packet it is directly processed in the kernel module.

2. If there is no match in the kernel flow table, a lookup in the user space table is
performed. If this lookup is successful, the packet is processed.

3. If the user space lookup did not yield any results and the switch is set to fail-open,
then the packet is sent to the controller. Otherwise the packet is discarded.

23



2 Foundations

Figure 2.6: Open vSwitch packet processing, including both flow tables.

2.3.3 Open vSwitch Database Management Protocol

Open vSwitch uses a local Open vSwitch Database Management Protocol server (ovsdb-
server) [Pfa] to store and retrieve local data. The ovsdb-server is used to configure the
switch and to retrieve information about the switch status. The saved information is
persisted on disk and survives reboots.
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3 Related Work

Recently there have been several approaches to overcome the limitations of fixed sets of
OpenFlow matches and actions as well as the disadvantages that come with the latency
from the switch to the controllers.

Bianchi et al. [BB14] proposed in their OpenState paper the use of eXtended Finite State
Machines (XFSM). They argue that programmers should be able to formally specify how
states on the switch should be handled and this specification should be executed directly
on the device without any controller interaction. According to Bianchi et al. the solution
must not violate the vendor-agnostic principles that had driven OpenFlow. Regarding
the actions to be executed, they limit themselves to standard OpenFlow actions. Their
main contribution is an abstraction to formally describe stateful processing of network
flows directly on the switch device.

FAST, proposed by Moshref et al. in their Flow-level State Transition as a New Switch
Primitive for SDN paper [MBG+14], recommends a similar approach, using state ma-
chines. They suggest flow-level state transitions as a new switch abstraction that allows
the controller to program the state transitions proactively. The switches then run these
dynamic actions based on their local information. Moshref et al. show that their FAST
data plane is slightly slower than proactive but much faster than reactive processing of
packets.

In contrast to the state machine approaches Mekky et al. [Mek14] suggest the use of
more abstract local data plane applications. Their proposed applications are similar to
the applications defined in this thesis. Furthermore they discuss where incoming packets
should be handled by the applications. They argue that adding application actions into
the flow tables would require these actions to be implemented in user space as well as in
kernel space. In contrast, the concept developed in this thesis allows application specific
actions inside the user space tables. This allows the combination of standard OpenFlow
and application specific actions. Mekky et al. point out that further work has to be done
on the dynamic adding of applications to the data plane. To address this issue, this thesis
proposes a concept that includes the addition and removal of applications as well as a
generic approach to the data storages used by these applications. They conclude that
local processing of incoming packets increases performance, but might be not suitable if
all packets need to be processed in user space.
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3 Related Work

Focusing on the actual matching of packets, Bosshart et al. [BDI13] propose a high-level
programming language P4 to program protocol-independent packet processors. Their
three goals are:

1. Reconfigurability in the field: Programmers should be able to change the way
switches process packets once they are deployed.

2. Protocol independence: Switches should not be tied to any specific network
protocols.

3. Target independence: Programmers should be able to describe packet-processing
functionality independently of the specification of the underlying hardware.

Their solution should overcome the fixed set of matching fields (see section 2.2) and
allow to dynamically add (or remove) new header fields for the needed match-action
pairs. To achieve this, they compile their P4 programs into table dependency graphs and
map these graphs to the target switches.

The works done by Bianchi et al. [BB14], Moshref et al. [MBG+14] and Mekky et al.
[Mek14] focus on the event of incoming packets at the data plane. This thesis goes a
step further and suggests a more generic way of handling events of any type. Although,
in this thesis, the handling of incoming packets is still treated as a special case.
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After presenting the foundations for this thesis, this section discusses shortcomings with
software-defined networks and how this thesis proposes a concept for solving these
issues. Afterwards, the underlying system model is defined.

4.1 Problem Statement

Software-defined networking separates the data plane from the control plane. The
decapsulation of these components enables to scale the control plane irrespective of the
data plane. To achieve this, the communication between the data plane and the control
plane has to be standardized. This limits the data plane to react with a predefined set of
actions to a predefined set of rules.

For more sophisticated logic, packets have to be forwarded to the control plane. Then
the control plane can decide on the processing of the received packet. As the control
plane is logically centralized, global knowledge from the whole data plane can be used
when processing packets.

This reactive approach adds latency to the processing of packets that cannot be processed
with the predefined sets of rules and actions. The added latency depends on the latency
between the data plane and the control plane, i.e. the latency between the switch and its
controllers. Packets have to be forwarded to the control plane and the control plane has
to forward instructions to the data plane. This imposed latency amplifies with increasing
latency between the control and the data plane.

While networking logic that requires a global view to be handled, requires information
to be sent to the controller, events that only require local knowledge might be handled
locally on the switch.

This thesis analyzes event types that can be processed locally and suggests a way on
how to handle them. A prototype of the local event processing is being implemented
and evaluated against the approaches that involve a controller.
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In order to achieve this, the following research goals were defined:

• G1: Generalization of data plane events and data plane actions.

• G2: Design of a data plane event handling interface.

• G3: Design of a data storage.

• G4: Analysis & modification of an existing software switch.

• G5: Evaluation of prototypical implementation.

The goals G1-G3 are discussed in chapter 5. Chapter 6 covers G4. G5 is discussed in
chapter 7.

4.2 System Model

This section describes the underlying system model for the developed concept of this
thesis. First, the components and their cardinalities are defined. Afterwards, the failure
model is described.

4.2.1 Components and Cardinalities

Figure 4.1 shows the network components and the relations between these network
components. Network components are illustrated as square boxes while the links are
depicted as diamonds. The link types are depicted as circles specifying the type of link.
The cardinalities are denoted along the edges.

The components and their cardinalities are as follows:

• Controller: A controller is a OpenFlow SDN controller. There are any number of
controllers in the network.

• Switch: A switch that supports the OpenFlow standard. There are any number of
switches in the network.

• End Host: Any number of end hosts are in the network. Each end host is connected
to exactly one switch using a physical link.

The links between these components can be of the following two types:

• Data plane links: Data plane links are links between data plane components,
such as switches or end hosts. These links are physical connections between two
components.
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• Control plane links: The control plane links are links from switches to controllers
and between controllers. This might be a direct physical link, but can also be a
link using multiple physical links.

The relations between these components can be formally described as follows:

• Network := { Components } × { Links }

• Components := { Switches ∪ Controllers ∪ End hosts }

• Links := { Linkdata ∪ Linkcontrol }

• Linkdata := { linkd(c1, c2) | linkd(c1, c2) = true }

• Linkcontrol := { linkc(c1, c2) | linkc(c1, c2) = true }

The values for linkd(c1, c2) are defined for end hosts and switches. The exact values are
defined as follows:

1. linkd(c1, c2) = true, if c1 or c2 are directly connected. Each host can only be
connected to one switch.

2. linkd(c1, c2) = false, if both c1 and c2 are end hosts. This means: End hosts might
not be directly connected to each other.

The relation linkc(c1, c2) is defined as follows:

• linkc(c1, c2) = true, if c1 or c2 there exists a path in the network that enables c1 to
reach c2 and vice versa. One of both components needs to be a controller.

• linkc(c1, c2) = false, if both c1 and c2 are switches. Switches are not connected
via data plane links.

4.2.2 Failure Model

For the previously defined components and their channels the following failure model is
assumed:

1. Controller and switch processes never crash.

2. Communication channels between the switches may drop or duplicate packages.

3. Communication channels between the controller and the switches have no failures.
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Figure 4.1: The components and their relations in the system model.

As this thesis focuses on events at the local data plane, the control plane is assumed to
be working correctly at all times. For the same reason, the channels between control
and data plane are assumed to have no failures. As the concept focuses on a higher
abstraction level, it is assumed that the switch processes always behave correctly.
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This section discusses the developed concept to handle data plane events locally. First,
the event and action types are generalized and some motivating examples are given.
Afterwards, local data plane applications are introduced and the event processing is
explained. Lastly, the interaction between the controller and the switches is described.

5.1 Generalization of Data Plane Actions and Events

Prior to developing a concept on how to handle local data plane events, possible use
cases were analyzed in order to classify events on the data plane and the possible actions
when handling those events locally. The following section covers these events and
actions.

A selection of motivating example use cases for local data plane event processing can be
found in Table 5.1. The bold use cases have been implemented in the prototype.

5.1.1 Data Plane Events

The data plane events found during the analysis of the motivating examples and other
use cases, can be categorized as follows:

• Packet-In: The most basic event to react to would be the event of ingress packets
at the switch. The switch itself might then parse the packet headers and react to
them accordingly.

• State: The switch may handle state events locally. This might be from state
machines or a more abstract form of state, such as local switch port failures.

• Local counters: The switch may monitor and handle events from local counters
independently. This includes packet counters or the current buffers of the physical
switch ports. Local processing logic can be applied to these counters which decide
when to trigger local event processing.
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• Payload: Matching of the payload of ingress packets may trigger local events.
Those events then can be handled locally. This includes the introduction of new
matching headers or naive string matching of packet payload.

Table 5.1: Example use cases for local data plane event processing.
Use case Brief description

Stateful firewall Stateful firewall rules may be handled
locally. This includes connection track-
ing, payload matching or port knocking.

Load balancing Load balancing could be done directly
on the switch. The switch may even
take current link saturation into ac-
count.

Link failure recovery A switch may locally recover from a
broken link, if the backup routes are
known. This would ensure much faster
recovery times instead of waiting for
the controller to propagate new flow
entries.

Multicast snooping Multicast snooping can be done to lo-
cally keep track of multicasting groups
and members. This allows the switch
to only notify the controller if global
changes are needed.

MAC learning MAC learning (also known as simple
switching) could be directly done on
the switch, not involving the controller.

Pub-Sub Pub-Sub could be implemented directly
on the switch.
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5.1.2 Data Plane Actions

In addition to the existing OpenFlow actions, the following actions should be executable
from inside the switch when handling the local events explained in subsection 5.1.1.

• State: Data plane actions should be able to locally change, add or remove local
states. This can be state machines or more abstract form of data.

• Controller interaction: Data plane actions should be able to notify the controller
of their current state or progress. Furthermore they should be able to request new
information from the controller.

• Payload modification: When implementing the handling of packets that match a
self defined packet format, it might be needed to be able to modify the payload of
these packets. This can be compared to TCP port rewriting in standard OpenFlow
actions but might also be used for more extensive modifications.

• Local counter rules: Local data plane actions should be able to create, read,
remove or update rules that decide whether a local counter may trigger local event
processing.

5.2 Local Data Plane Applications

To be able to process packets and events locally, the switch needs to be able to apply
custom logic to local events. This concept introduces data plane applications on the data
plane to existing OpenFlow switches. OpenFlow switches augmented with the ability
to execute applications are introduced as OpenFlow application switches. This section
describes the concept of local data plane applications

Figure 5.1 shows an overview of the conceptual elements inside the switch. The following
sections describe the elements of these elements.
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Figure 5.1: Overview of the in-switch concept. Events are denoted on the left border and
interaction with the controller on the right. The kernel flow table holds flow
matches (FM) and kernel flow actions (KFA). The flow table contains flow
matches and flow actions (FA). The application table contains application
flow matches (AFM) and application actions (AF). The applications get
called by these tables. The applications can access distinct application
storages (AS).
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5.2.1 Applications

The introduced applications are a set of instructions that run locally on the switch and
may be triggered from local data plane events occurring at the switch. Each application
has a local associated data storage to be able to persist its state or save meta information
for later processing. Each application has an unique identifier to be able to reference the
application during the processing of local data plane events.

Applications are portable packages that can be installed, removed or modified using a
SDN controller. Upon execution, applications may modify the flow table or the application
table. The application flow table defines when to execute which applications and is
explained in more detail in section 5.3. Applications can send notifications to the
controller using custom OpenFlow messages. Furthermore, applications may generate
packets and send them through physical switch ports.

5.2.2 Application Repository

An OpenFlow application switch maintains a local repository of applications. Using
this repository, applications can be referenced from the flow table and the application
table. This repository can only be modified by a controller and not by the applications
themselves.

5.2.3 Application Storage

As the applications are designed to be stateful, they need a data storage. Data storage is
required to persist application state across reboots and allows the freeing of memory, if
an application is currently not used. The following two data storages are introduced:

• Local data storage: Local data storage can be directly used by the applications
that are executed. The main criteria for this storage is to be fast. The data can be
volatile and does not need to be persisted during reboots. This can be seen as a
temporary storage. Each switch has its own instance of the local data storage. The
controller may access or write to this database. Each application should have its
own namespace in the local data storage to ensure that application data does not
interfere.

Figure 5.2 illustrates the local data storage and the namespaces for sample applica-
tions.
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• Distributed data storage: The distributed data storage can be directly accessed
from all application switches in the network as well as from the controller. Each
switch runs its own database instance which is then synchronized across the
control network. This data storage is intended for global information such as
global application configuration, applications themselves or topology metadata. As
synchronization across nodes introduces some overhead, this data storage should
be used as little as possible.

Figure 5.3 illustrates the distributed data storage. Several applications on several
switches may all access a single database.

Figure 5.2: Local data storage for application switch
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Figure 5.3: Distributed data storage for application switch

5.3 Local Data Plane Event Processing

To be able to process local data plane events, the just defined local data plane applications
have to be executed. The control flow as seen in Figure 2.6 needs to be intercepted.
The current control flow offers several interception points. This section discusses the
possible points and whether they qualify to be extended.

The following interception options are possible:

1. Injection of applications inside the kernel flow table. Application execution during
the kernel packet processing.

2. Packet interception between the kernel table lookup and the user space table
lookup. Application processing is done before the user space table lookup.

3. Injection of applications inside the user space flow table. Application execution is
done during the user space packet processing.

4. Packet interception between the user space table lookup and the controller commu-
nications. Applications are executed before the packets are sent to the controller.
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Option (1) would be the fastest approach as applications are directly processed inside
the kernel. But since application logic could be very complex, a direct processing inside
the kernel does not seem very rational. As mentioned in [Pro13] the current kernel
processing is as slim as possible for performance reasons.

Option (2) would require an own application table where packet headers are matched.
This should be done in user space for the reasons above. This seems to be a reasonable
approach but would break the existing semantics. User space flow table entries would
only be looked up when no matching applications could be found. The main purpose of
a switch however should still be simple packet processing.

Option (3) seems like a good extension point. The user space flow tables could be
augmented with application specific actions. This enables the combination of standard
OpenFlow actions and the newly introduced application. The applications would be
executed in user space (unlike Option (1)).

Option (4) would be the least intrusive extension. Current state packet processing will
not be modified until the packet would be passed to the controller. This means that
packets would only be processed if standard OpenFlow processing could not be done.

In this concept Option (3) and Option (4) are considered to be very valuable. Hence
both options are considered in the concept. Other event types, such as switch port
failures, will be directly forwarded to the application flow table.

5.3.1 Flow Tables

To be able to inject application actions inside the user space flow table (Option (3)) new
OpenFlow actions have to be defined. An OpenFlow experimenter action can be used to
encapsulate the newly defined actions. This experimenter action ensures that the newly
defined actions do not break the OpenFlow specification. Hence newly defined actions
can integrated into flow entries using custom OpenFlow messages.

To consider Option (3) the existing table concept had to be modified. This concept now
includes the following three flow tables:

• Kernel flow table: The kernel flow table includes only flow entries that are
compliant to standard OpenFlow matches and actions. No application actions can
be inside the kernel flow table.

• Flow table: The (user space) flow table contains flow entries that consist of
standard OpenFlow matches and OpenFlow action sets. Application actions can
be part of these action sets. This is only recommended if applications need to be
executed during standard OpenFlow processing.
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Figure 5.4: OpenFlow application switch with application table

• Application table: The application table is a table that only includes flow entries
that have application execution actions in their action sets. The flow matches can
be either standard OpenFlow matches or may special matches for specific event
types. No standard OpenFlow actions are allowed inside the application flow table.

Figure 5.4 illustrates the newly added application flow tables. The application flow
table is populated using standard OpenFlow messages. Lookups in this table will be
done if there is no match in the user space flow table, for performance reasons. This
ensures that standard OpenFlow processing is still preferred before executing a custom
application.

5.3.2 Generic Event Processing

Generic events, such as local switch port failures (see subsection 5.1.1), are directly
forwarded to the application table. This table includes non-OpenFlow matches for more
generic events. The occurring event is matched against the application table and the
assigned applications are executed.

For all events that generate OpenFlow messages to the controller, these messages will
be sent after executing the application. The described control flow can be seen in
Figure 5.5.

As an example, in case of a failed switch port, the local port failure event will be handled
by an assigned port failure application. After executing the application the controller
is still notified that a switch port just failed. This ensures that the controllers keep a
consistent view of the network and the switches.
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Figure 5.5: OpenFlow application switch generic event processing.

5.3.3 Ingress Packet Event Processing

Because the processing of incoming packets is the main purpose of a switch, the pro-
cessing of ingress packet events is treated as a special case. The processing of ingress
packets can be seen in Figure 5.6. When an ingress packet arrives at the switch, the
following steps are executed:

1. The packet headers are matched against those in the kernel flow table. If they
match the packet is directly processed in the kernel module.

2. If there is no match in the kernel flow table, a lookup at the user space table is
performed. If this lookup is successful, the packet is processed.

3. If the user space lookup did not yield any results, the packet is looked up in the
application flow table. If this lookup is successful, the corresponding application is
executed.

4. If the application table lookup did not yield any results and the switch is set
to fail-open, then the packet is sent to the controller. Otherwise the packet is
discarded.
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Figure 5.6: OpenFlow application switch packet processing.
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5.4 Application Controller

After explaining the OpenFlow application switch, this sections discusses the how the
controllers interact with the described applications. The communication from the
controllers with the switch are done using custom OpenFlow messages.

5.4.1 Interaction with the Application Repository

In order to manage the application repository, the controllers need to be able to execute
the following operations on the repository:

• Installation of applications: This operation installs an application onto the ap-
plication switch. The operation must either directly supply an application or a
reference to the application on one of the data storages.

• Removal of applications: This operation removes an application from the appli-
cation repository. All flows entries containing this application in the action set
should be removed prior to removing it.

• Modification of applications: This operation modifies an application on the
switch. All flows entries containing this application in their action set should be
removed prior to modifying it.

• Listing of applications: This operation retrieves a list of installed applications
from the switch.

• Status retrieval of applications: This operation retrieves application specific
status of an application.

5.4.2 Interaction with the Data Storages

The controllers have full access to the distributed storage as well as to every local storage
on the switches (see subsection 5.2.3). The controllers can read and write data to these
storages. This ensures that the controllers are still the most important entity and may
overwrite application state if needed. The controller needs to consider that modifying
local storage on the switches may break application semantics. The controller must
ensure, when modifying local data storages, that the local data is consistent.

Examples for local storage modifications might be the updating of a knocking sequence
for port knocking or predefining MAC addresses for a MAC learning application.
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Figure 5.7: Communication between application switch and controller.

A scenario for global storage modification could be global failover routes for fast failover
applications or the applications themselves.

Upon installing applications the controllers can populate the switch-local data storages
with initial data (if needed). When removing applications form the application reposito-
ries, the controllers are in charge of clearing persisted application data. If the data is not
cleared by the controller, the same data storage will be used, if the removed application
is installed again.

As an example, the controller might want to keep the list of saved MAC addresses in a
simple switching application, when removing the application from the switch. When
re-installing the simple switching application, the application is able to use the previously
learned MAC addresses.
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5.4.3 Interaction with Applications

Controllers interact indirectly with applications using the data stores. However applica-
tions themselves can send two types of messages to the controllers:

• Status messages: The applications may send status messages towards the con-
troller. Status messages can report any information such as application failure,
application success or any other desired information.

• Standard messages: Applications may send standard OpenFlow messages, such
as Packet-In or PortMod messages. For the controllers, these messages cannot be
distinguished from messages that originate from standard OpenFlow processing.

5.4.4 Controller to Controller Interaction

Controllers interact with each other using the distributed data storage. This enables con-
trollers to synchronize meta information about applications or their states. Furthermore
controllers synchronize the available applications and required pre-defined values for
these applications.

The controllers ensure that all of them keep a consistent and up-to-date view of the
network. This includes standard OpenFlow information and application specific infor-
mation.

For example, when a new version of a MAC learning application is introduced to
a controller, the application itself will be synchronized among all controllers. This
ensures that each controller uses the same applications and the same versions. Global
information, such as lists of which applications are on installed on which switches are
synchronized as well.
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This chapter describes the prototypical implementation of the concept presented in
chapter 5. The prototype covers the crucial parts of the concept to verify that the concept
works in a testing environment. The chapters structure is based on the structure in
chapter 5. Hence, first the implementation of applications and then the handling of
events is explained.

6.1 Applications

The section describes the implementation of the applications defined in subsection 5.2.1.
For the prototype, two design options for applications have been considered:

• Statically compiled applications: Applications could be programmed, using the
C programming language, directly in the Open vSwitch code. This allows for good
debugging possibilities as well as faster code.

• Dynamically loaded applications: Applications could be dynamically loaded by
the switch. This adds a great portability feature to the applications and enables
the conceptual adding and removing of applications.

Both options have been prototypically implemented. The dynamic approach has been
realized with linking a Lua interpreter to the Open vSwitch code. Lua is designed to be
a fast, lightweight and embeddable scripting language [IdFC07]. Furthermore there are
Lua bindings for the Open vSwitch libraries that would allow Lua to directly interact
with the vSwitch. Lua code could be distributed using the distributed data storage to all
switches.

For the implementation of the experimental use cases, code has been directly added into
Open vSwitch. This is mainly due to debugging reasons. Debugging injected C code was
much less complicated than debugging interpreted Lua code inside the C code. For each
event type those static applications have a common function signature as exemplary
seen for the event processing of ingress packets in Listing 6.1.
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Listing 6.1 Generic application function signature.
void applicationName(

struct flow *flow,

struct ofproto_dpif *ofproto,

struct dp_packet *packet

);

The function parameters for ingress packet event applications are as follows. The
depicted data structures are part of Open vSwitch.

• struct flow *flow: The flow struct represents a flow in the network. This is not to
be mixed up with a flow entry in a flow table that may contain wildcards. It will
contain all header fields and meta-information that triggered the handling of the
application.

• struct ofproto_dpif *ofproto: An OpenFlow protocol data path interface. This
allows to install and remove flow entries.

• struct dp_packet *packet: The actual packet without any meta information. This
struct allows to directly access required packet information. Furthermore functions
from dp-packet.h can be used to extract information or modify the packet.

6.2 Application Repository

The application repository has been realized as a static list of applications. For the
experimental use cases this is a selector that maps an application ID to a previously
defined application. The repository will then execute the application. The repository has
different functions for each event type. The implemented function signatures for the
application repository can be seen in Listing 6.2.

In addition to the parameters that are passed to the applications themselves, the exe-
cuteApplicationAction receives the ID of the application that has to be executed. The
application will then be selected and the required information will be passed to the
application.

The executeApplicationPortState function has the following parameters:

• int applicationId: The ID of the application to be executed.

• struct ofport *port: A structure representing an OpenFlow switch port.

• bool alive: The new state of the port. A flag to denote whether the port is
connected or disconnected.
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Listing 6.2 Application repository function signatures.
/*

* Executed on application table match or action in user space flow table.

*/

void executeApplicationAction(

int applicationId,

struct dp_packet *packet,

struct flow *flow,

struct ofproto_dpif *ofproto

);

/*

* Executed when a switch port changes its state.

*/

void executeApplicationPortState(

int applicationId,

struct ofport *port,

bool alive

)

The executeApplicationPortState function is executed when the state of a physical switch
port changes. That might be a failing or a recovering switch port.

6.3 Application Storage

As described in subsection 5.2.3 the applications need two type of data storages. This sec-
tion describes the implementation of these storages. The data storages are implemented
using different database engines. The interfaces of both data storages can be seen in
Listing 6.3. As the listing shows, the data storages are implemented as pure key-value
stores. This allows for great portability and, if needed, the changing of database engines.
If more complex data needs to be saved, a serialization format such as JSON [JSO14]
might be used.

The function semantics for both, the local as well as the distributed data are similar.

The write functions write given data to a given key. The local version of the write
function allows to set an expiry time for the key. Even if technically possible, this is not
permitted on the distributed data storage, as the controllers or other applications may
rely on the existence of the key. The read functions retrieve saved data for a given key,
while the exists functions check whether data for a given key exists.

As applications should only locally read from and write to their own application storage,
namespaces for the applications should be used when saving data.
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Listing 6.3 Application data storage, application_db.h
/* Initialization and initialization checks. */

int appdb_inititialize(void);

int appdb_is_initialized(void);

/* Distributed data storage. */

int appdb_write(char* key, char* data);

char* appdb_read(char* key);

int appdb_exists(char* key);

/* Local data storage */

int appdb_write_local(char* key, char* data, time_t expiration);

char* appdb_read_local(char* key);

int appdb_exists_local(char* key);

Listing 6.4 Application data storage prefix for local databases.
key_prefix := /applications/<application_id>/

In the experiments each application stores their required data using key prefixes as
shown in Listing 6.4.

The next two sections will describe the specific implementations for the data storages.

6.3.1 Local Data Storage

The local data storage is implemented using memcached. Memcached is a high-
performance in-memory key-value store for small chunks of data [NFG13]. Memcached
was initially designed to act as a cache for web applications but is now used for many
other applications of in-memory databases.

The ovsdb-server (see subsection 2.3.3) could be used for the same purpose. But it
was found to be less convenient to integrate into the developed applications. Using the
ovsdb-server would have the advantage that no additional database engine on the switch
is required. On the other hand this would dilute the clean cut between the application
data storage and the existing Open vSwitch configuration database.
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6.3.2 Distributed Data Storage

For the distributed data storage etcd has been used. Etcd is a distributed consistent
key-value store for shared data. Etcd is developed as a part of CoreOS Linux - a
container-focused operating system. The focus lies on the following principles (from
[Cor]):

• Simple: curl’able user-facing API (HTTP+JSON)

• Secure: optional SSL client cert authentification

• Fast: benchmarked 1000s of write/s per instance

• Reliable: properly distributed using raft.

The raft algorithm is a consensus algorithm for managing a replicated log [OO14]. It
was developed by Ongaro and Ousterhout at Stanford University in 2014 and is already
used in a variety of projects.

6.4 Ingress Packet Event Processing

This section deepens the implementation of the concept for local data plane event
processing as described in section 5.3. To implement the Options (3) and (4) from the
concept, new OpenFlow actions had to be defined. To ensure OpenFlow compatibility,
OpenFlow experimenter actions are used. Experimenter actions allow to implement
custom actions without violating the OpenFlow standard. Hence application actions can
be chained with standard OpenFlow actions.

6.4.1 Application Actions

In order to add custom experimenter actions into Open vSwitch, a custom vendor has to
be defined. Otherwise Open vSwitch would not accept custom OpenFlow experimenter
actions. The defined vendor ID can be seen in Listing 6.5. In Listing 6.6 the structure of
the experimenter action can be seen. The defined subtype specifies which experimenter
action to execute. Currently only the EXECUTE_APPLICATION experimenter action has
been fully implemented.

To add this application to the flow tables, functions to encode, decode, parse and format
this struct to Open vSwitch internal data formats had to be implemented. The actual
code of these functions can be seen in the Appendix A.
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Listing 6.5 OpenFlow vendor id, openflow-common.h
#define NX_VENDOR_ID 0x00002320 /* Nicira. */

#define ONF_VENDOR_ID 0x4f4e4600 /* Open Networking Foundation. */

#define FMS_VENDOR_ID 0x00001234 /* Vendor ID used in this thesis. */

Listing 6.6 OpenFlow experimenter action struct, ofp-actions.c
/* FMS1.0+(1): struct fms_execute_application. */

FMS_RAW_EXECUTE_APPLICATION,

/* EXECUTE_APPLICATION instruction */

struct fms_execute_application{

ovs_be16 type; /* OFPAT_EXPERIMENTER. */

ovs_be16 len; /* Length is padded to 64 bits. */

ovs_be32 experimenter; /* FMS_VENDOR_ID. */

ovs_be16 subtype; /* FMS_RAW_EXECUTE_APPLICATION */

uint8_t application_id;

bool slow_action;

uint8_t pad[2];

};

6.4.2 Flow Tables

The application table, as described in subsection 5.3.1, is currently implemented as a
special OpenFlow table. After implementing the experimenter actions, this is rather a
logical than a technical separation. The application table is simulated using a special
flow table which will only contain match-action pairs that will executed applications. In
order to obtain the packet flow as described in Figure 5.6, low priority catch-all flow
entries are installed into the other flow tables. These catch-all flow table entries will
forward packets to the application table if no other flow entry matched. On matching
packets the application table will execute the referenced applications. Otherwise the
packet will be forwarded to the controller.

6.5 Generic Event Processing

Generic event processing has been implemented for changes in port states. This allows
to locally react to failing or recovering switch ports.

In order to execute applications on port changes, code had to be added to ofproto.c, right
before the switch informs the controller of a new port state. As seen in Listing 6.7, the
event of a changing port-state is directly forwarded to application repository.
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Listing 6.7 Handling of port change events, ofproto.c
static void

ofport_modified(struct ofport *port, struct ofputil_phy_port *pp)

{

[...]

if(port->pp.state == OFPUTIL_PS_LINK_DOWN

|| port->pp.state == OFPUTIL_PS_LINK_DOWN

|| port->pp.config == OFPUTIL_PC_PORT_DOWN)

{

VLOG_INFO("Link is down: %"PRIu16, port->ofp_port);

executeApplicationPortState(1, port, false);

}

else

{

VLOG_INFO("Link is up: %"PRIu16, port->ofp_port);

executeApplicationPortState(1, port, true);

}

[...]

}

This differs from the application table proposed in the concept, where generic processing
and the processing of ingress packets is done in the same application table. The reason
for this deviation from the concept is that OpenFlow tables are used for the processing
of ingress packets. Using a standard OpenFlow tables allowed to use existing Open
vSwitch logic for the matching of ingress packets, but disallowed to match anything that
is not an ingress packet. Hence a static function call from the port failure event to the
associated application has been implemented.

6.6 Application Controller

To enable the controllers to send application specific instructions to the switches, custom
OpenFlow messages had to be implemented. The implementation used OpenFlow
experimenter messages, to not violate the OpenFlow standard. The same vendor ID as
for the experimenter action has been used (see Listing 6.5).

The structs for the messages can be seen in Listing 6.8. Currently these messages
are implemented as stubs, as the experimental use cases are directly coded into Open
vSwitch. Hence no implementation for the installation and removal messages was
needed.

When implementing the installation and removal of dynamic applications, the applica-
tions need to be distributed among all controllers using the distributed data storages.

51



6 Implementation

Listing 6.8 Implemented OpenFlow experimenter messages, ofp-msgs.h
/* FMS extensions. */

OFPTYPE_APPLICATION_INSTALL, /* OFPRAW_FMS_APPLICATION_INSTALL. */

OFPTYPE_APPLICATION_REMOVE, /* OFPRAW_FMS_APPLICATION_REMOVE. */

/* FMS 1.0+ (1): struct fms_application. */

OFPRAW_FMS_APPLICATION_INSTALL,

/* FMS 1.0+ (2): struct fms_application. */

OFPRAW_FMS_APPLICATION_REMOVE,

struct fms_application {

struct ofp_header header;

ovs_be32 vendor; /* FMS_VENDOR_ID */

ovs_be32 subtype; /* Action type. See OFPRAW_FMS_* in ofp-msgs.h */

ovs_be32 application_id;

ovs_be32 is_active;

};

Controllers then can install application on the switches by sending installation messages
to the switch. The installation message contains an ID and a location of the application
on the distributed storage. The switch will retrieve the application from the distributed
storage and installs the application into the application repository. To remove an applica-
tion, a controller will send a application removal message. Upon receiving the removal
message, the switch will remove the application from its application repository.

6.7 Implementation of Use Cases

This section covers the implementation of the use cases which are used for the evaluation
of the concept and the prototype. Each use case application has been implemented
directly in Open vSwitch using C. The same applications are implemented as a Ryu
modules using Python as well.

6.7.1 Use Case #1 Port Knocking

Port knocking is a technique that opens a firewall for a client, after the client has knocked
(by sending TCP-SYN or UDP-Packets) at certain ports in a previously defined sequence.
If the knocking sequence is valid, the firewall is opened for the client. The client now
can access the requested service.
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The port knocking application is triggered by incoming packets at the switch. Figure 6.1
shows the conceptual implementation of the use case. For the ease of implementation a
fixed set of four knocking ports was used. Furthermore the application only reacts to
UDP packets.

For each ingress UDP packet, the current state for the sender of the UDP packet is
retrieved. The current state denotes in which port knocking stage the sender is. If the
UDP port of the ingress packet equals the port to reach the next stage, the next stage is
assigned. If the port is not equal, the starting stage is assigned. If the sender reaches
the “open” stage, flow entries to allow other traffic are installed. The current stage is
persisted using the local data storage is used.

6.7.2 Use Case #2 Multicasting

This use case takes care of an IP multicasting scenario. In the remote controller approach
the switch forwards host membership report messages to the controller. The controller
then decides which rules to install (in the global network) and makes sure that the
requesting host receives the multicast traffic for the requested groups. This is done for
every host that joins or leaves a multicasting group. The controller keeps track of the
multicast members and installs or removes flow entries.

In this scenario the switch keeps track of multicasting members and only informs the
controller if global rule changes may need to be done. There are only two cases when
this might happen:

1. The first member of a group joins.

2. The last member of a group leaves.

Both cases may yield global rule changes. For the first case the controller might need to
install flow entries to ensure that multicasting traffic for the requested group is actually
received by the switch. For the latter case the controller might remove these flow
entries.

In all other cases when a group member joins or leaves the switch can adjust his local
flow entries to make sure that those hosts receive the multicasting traffic. No global
action is needed as the switch already receives the requested traffic.

The multicasting application is triggered by incoming packets at the switch. Figure 6.2
depicts the implemented control flow.

For each IGMP membership report message the application checks whether the host
wants to join or leave a group. Depending on this, the following is executed:
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Figure 6.1: Activity diagram of the port knocking implementation.
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• Joining a group: If the host joins a group, the hosts switch port is added to a list
of switch ports for the requested multicasting group. The number of group clients
is increased. If this was the first member for the requested multicasting group, the
application notifies the controller that there is a new multicasting group at the
switch. This ensures that traffic for this multicasting groups is routed.

• Leaving a group: If the host leaves a group, the hosts switch port is removed
from the list of switch ports for the leaving multicasting group. The number
of group clients is decreased. If this was the last member of the group, the
application notifies the controller that multicasting traffic for this group is not
needed anymore. The controller can now remove global routes towards this switch
for this multicasting group.

In both cases, the application modifies flow table entries, using the port list of the
multicasting group, to direct traffic towards the registered hosts. The described port lists
for the multicasting groups are persisted on the local data storage.

6.7.3 Use Case #3 Simple Switch

The simple switch application adds very simple MAC learning to the vSwitch. When
receiving a packet, the application verifies whether it knows which MAC addresses are
reachable through which switch ports. If the port for the destination address is known,
a flow entry that routes traffic from the currently incoming port to the port where the
destination MAC is reachable is installed. Otherwise the packet is flooded to all switch
ports. The MAC addresses and the corresponding switch port are saved in the local data
storage.

Figure 6.3 illustrates the simple switching application. After two hosts send a single
packet to each other, flow entries to direct traffic between these two hosts are installed.

6.7.4 Use Case #4 Fast Failover

The fast failover use case is an application that, in contrary to the previous use cases, is
triggered if a switch port changes its state. This uses the event defined in section 6.5.
This use case utilizes redundant links in a topology, such as a fat-tree topology [ALV08].
The application knows which links are redundant. This knowledge may be stored in the
local data storage. For the example use case, this is a fixed pair of two switch ports. If
one of these switch ports fails, the application will update the flow entries to route the
traffic through the redundant port. If the failed port recovers the previous routing is
restored. The described control flow is illustrated in Figure 6.4.
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Figure 6.2: Activity diagram of the multicast implementation
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Figure 6.3: Activity diagram of the simple switch implementation
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Figure 6.4: Activity diagram of the fast failover implementation
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7 Evaluation

The implementation of the application approach has been evaluated with the use cases
described in section 6.7. These implementations are compared against the controller
approach. It is evaluated if the application approach provides faster performance than
the controller approach, and if yes, to what extent. To be able to draw a conclusion,
benchmarks regarding the in-switch performance as well as benchmarks regarding
the end host performance have been carried out. Lastly, an experiment regarding the
scalability of a local application is performed.

Each of the following experiments uses the same hardware and software setup (see
section 7.1). Prior to each run, the data storages have been cleared and the switch as
well as the virtualization environment (see section 7.1) have been restarted. The flow
entries to execute the applications are installed prior to starting the experimental run.

7.1 Testbed Setup

In order to compare the application switch approaches to the approaches involving a
controller, a testing environment had to be set up. Mininet v2.2.1 [LHM10] is used
to virtualize/simulate the testing network. Mininet allows to rapidly prototype large
SDN networks on a single machine. The controller Ryu [Ryu] v3.30 has been chosen, as
it supports the most recent OpenFlow specification. Ryu can easily be extended with
modules, using the Python programming language.

The whole software stack is being setup on a Ubuntu v14.04.4 LTS installation, running
on an Intel Core i7-3770K with Hyper-Threading CPU and 16 GB of RAM.

For the experimental switch, a fork of Open vSwitch v2.5.90 that has been modified to
support local data plane applications. For the local data storage memcached v1.4.14 is
used. The distributed data storage is realized using etcd v2.2.5.

To evaluate how the latency between the switch and the controller influences the
experiments, the Linux tc utility is used to add latency to the switch to controller links.
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7.2 In-switch Benchmarks

In order to be able to interpret the end host benchmarks, in-switch benchmarks have
been done. This allows to include or exclude some variables when discussing the results
of the end host benchmarks later on.

7.2.1 Flow Installation Time

To compare the flow installation time using OpenFlow messages with the installation
time using a local data plane application, the time it takes from receiving the flow entry
modification until finishing the installation of the flow is measured.

In order to measure the flow installation using OpenFlow messages, the following
procedure is used:

1. Upon receiving a FlowMod message, record the time t1.

2. After installing the flow entry, record the time t2. The installation of a flow is done,
when the function for handling the FlowMod message returns from execution.

3. Compute the flow installation time t∆ = t2 − t1.

To measure the flow installation time from within applications, the following steps are
done:

1. Upon application execution, record the time t1.

2. After application execution, record the time t2.

3. Compute the flow installation time t∆ = t2 − t1.

The experiment measured n = 500 flow installations using both, OpenFlow messages
sent from the controller and a local application. Both approaches are installing the same
flow table entries.

Experimental Results

Figure 7.1 shows the results from the experiment. The measured time is denoted in
microseconds (µs). The distribution of values for the application can be seen on the left,
while the values for the OpenFlow flow installations can be seen on the right.

The installation of flow entries from within a local application is faster than using
OpenFlow messages, since the unwrapping of the received OpenFlow message is not
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Figure 7.1: Flow installation time from within an application (a) and using OpenFlow
messages (b).

required. Because the measurement is started after the FlowMod message was received
by the switch, it is notable that this plot does not consider the communication overhead
introduced by the TCP handshake during the switch to controller communication.

The latency between the switch and the controller is not considered in the graph as well.
When considering latency between the switch and the controller, the flow installation
times using a controller should increase even more.
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7.2.2 CPU Usage

To compare the consumed CPU utilization between a local data plane application
approach and the approach involving a remote controller, the used CPU time of the
switch process is compared. The simple switch use case (see subsection 6.7.3) is run for
a time period of 10 minutes. While the use case is running, the CPU time is measured
each millisecond for the duration of ten minutes. The actual measurements are done
using the Linux top command.

During this time, a host H1 permanently sends ICMP echo queries towards H2, waiting
for one millisecond between each request. This makes up to an packet rate of 1000
packets per second. The application (respectively the controller) set up flow entries for
the traffic to be forwarded. When receiving the ICMP echo reply, H1 removes the just
installed flow entries again. The last step, where H1 removes the flow entries on the
switch ensures a clean state before starting the next cycle and is not part of the actual
use case.

During this experiment the switch process is bound to one CPU core, using the Linux
taskset utility. This ensures the occurrence of less side effects.

Experimental Results

A box plot of the CPU usage can be viewed in Figure 7.2. It can be seen, that using local
application processing lowers the CPU usage on the switch itself. The reason for this
phenomenon is, that the switch does not have to encapsulate the incoming packets into
Packet-In messages and send them to the controller. Furthermore, using an application,
the switch does not have to decapsulate Packet-Out messages from the controller. Nor
does the switch have to decode the FlowMod messages. This adds up to a lowered CPU
utilization when using a local data plane application.

The lowered CPU utilization matches the faster flow installation time. Hence, while
handling events locally, the CPU usage as well as the processing time can be reduced.
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Figure 7.2: Evaluational results of the CPU measurement. Side by side comparision of
(a) the application approach and (b) the one involving a controller.
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7.3 End Host Benchmarks

After evaluating the performance gain on the switches directly, this section evaluates
how these findings may affect the end host performance. During these experiments, the
use cases from section 6.7 are used. The measured performance depends on the use
cases and is explained for each use case separately.

For each use case, the performance is measured using a local data plane application
and using a controller. In order to emulate remote controllers, that do not directly run
on the switch, different latencies on the control path are considered. For the controller
experiments the following two types of latencies are considered:

1. Local area network (LAN) latencies: Latencies in the range from 0 ms to 10 ms
are used to emulate latencies in a local network. The lower parts of this range can
be considered as typical latency in a local network, while the upper part of this
range can be considered as quite high latency for a local network.

2. Wide area network (WAN) latencies: To emulate latencies in a wide area net-
work, latencies in the range from 10 ms to 100 ms are used. This covers well
connected networks as well as higher latency networks.

For each type of network the experiments using a controller are executed. For the LANs
each latency inside the range, with a step size of 1 ms is considered. For the WANs the
step size is increased to 10 ms. Increasing the latencies in linear steps allows to observe
how much performance gain a local data plane application yields. This results in 11 LAN
and 10 WAN executions. Considering the experimental execution for the application
approach, this can be summed up to 22 executions for each experiment.

Each experimental execution consists of 500 cycles. That means, that the very same
procedure is executed for 500 times per experimental execution. This ensures that
outliers do not influence the results too much. If flow table entries are installed during
a cycle, they are removed before starting the next experimental cycle. A pause of 1
second is made between each cycle. This ensures that the removal of flow table entries
is completed and that no packets from previous runs are still en route.

All experiments use smallest size IPv4 UDP packets for the measurements. Smallest
size IPv4 UDP packets have a size of 42 bytes (14 bytes ethernet frame + 20 bytes IPv4
frame + 8 byte UDP packet). Experimental runs with bigger packet sizes have been
executed and did yield the same phenomenons. Hence only the experimental runs for
smallest size IPv4 UDP packets are presented.

Each experimental execution is run twice with different packet sending rates. The
smallest size IPv4 UDP packets are sent with a packet rate of 1000 packets per second
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(pps) and with a packet rate of 100.000 pps. Increasing the packet rate raises the
resolution of the experimental executions, but did not result in different phenomenons.

The following experiments compare the use case performance using a local data plane
application with the use case performance using a controller. The controller side
applications are implemented as Ryu modules in Python. Both, the application and the
Ryu module, apply the same logic and use the same database engines and operations.
This ensures that the database does not influence the measurement.

7.3.1 Use Case #1: Port Knocking

This experiment examines the port knocking performance of the implemented use case
as described in subsection 6.7.1. The performance of the use case is measured as the
time that is needed to knock a port sequence and send traffic through a just opened
port.

The topology used for this experiment can be seen in Figure 7.3. H1 denotes the host
that wants to send traffic towards H2. To send traffic towards H2, H1 needs to use
port knocking to have flows that route the traffic to H2 installed. The controller is only
connected for the controller approaches.

Prior to starting the experiment, flow table entries to direct traffic from H2 towards H1
are installed. This enables H2 to start the experimental cycles by sending initialization
packets to H1. Furthermore flow table entries to direct traffic towards the controller,
respectively to execute the port knocking application, are installed.

Each experimental cycle consists of the following procedure:

1. H2 sends an initialization packet to H1 and saves the time t1. This starts the
experimental cycle. t1 denotes the time when the experimental cycle started.

2. When H1 receives the initialization packet, H1 starts knocking a predefined knock-
ing sequence of four ports, waiting 0.01 seconds between each knock. Waiting
between each knock is required to ensure that the knocks are received in the right
order. Experimental cycles with smaller pauses between each knock have been
executed but sometimes resulted in wrong ordered knocks.

3. After sending the last knock, H1 starts sending UDP packets towards H2.

4. When H2 receives the first packet from H1, H2 saves the time t2 and calculates
t∆ = (t2 − t1). t∆ now denotes the time between the initialization and the first
received packet.
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Figure 7.3: Topology for the experimental evaluation of the port knocking use case. H1
wants to send traffic towards H2 and therefore sends a knocking sequence,
using UDP packets. When the port knocking was successful, flow table
entries to direct traffic from H1 to H2 are installed. The controller is only
connected for the non-application experimental executions.

When comparing the performance between the different approaches, the 0.01 waiting
time between the knocks is subtracted from the resulting values.

Experimental Results

The measured performance can be seen in Figure 7.4 (LAN) and in Figure 7.5 (WAN).
The average waiting time in milliseconds can be seen on the y-axis. The different control
channel latencies are denoted on the x-axis. The red line displays the average waiting
time for the application experiment while the blue line shows the average waiting time
for the controller approach. The mean sample standard deviation across all experimental
runs is 0.592 ms. This shows that the measured values are distributed near the plotted
mean values.

It can be seen that using a local port knocking application is faster in both, LAN and
WAN, scenarios. While the performance gain for latencies below 4 ms is relatively
small, it linearly increases with increasing control channel latencies. Hence using a local
application, especially in WAN networks is beneficial. Furthermore a local port knocking
application also outperforms even a switch-local controller (controller directly on the
switch hardware, with 0 ms latency).

The reasons for the phenomenon in lower latencies are the reduced flow installation time
(see subsection 7.2.1) as well as the reduced CPU processing time (see subsection 7.2.2)
when using a local data plane application.

For higher LAN and WAN control channel latencies, the relevance of the reduced CPU
processing time and the flow installation time decreases. The latencies in these networks
influence the performance with a much bigger relevance.
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Figure 7.4: Evaluational results for port knocking in local area networks.

7.3.2 Use Case #2: Multicasting

This section evaluates the performance gain for a multicasting scenario as described in
subsection 6.7.2. The performance in this experiment is measured as the time difference
between requesting to join a multicasting group MCgrp and actually receiving group
traffic. The multicasting application requires that there always is at least one known
member for MCgrp. Otherwise the joining and leaving of group members cannot be
handled locally. Hence, one host should always be a member of MCgrp.

The topology for the multicasting experiment can be seen in Figure 7.6. Host H3
permanently sends group messages to multicasting group MCgrp. Prior to starting the
experiment, H1 already is a member of MCgrp and therefore flow table entries to route
MCgrp traffic towards H1 are installed. H1 ensures the invariant of one constant group
member.
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Figure 7.5: Evaluational results for port knocking in wide area networks.

In each experimental cycle, H2 joins MCgrp and waits for traffic. After receiving traffic,
H2 leaves MCgrp and starts the next cycle. The multicasting application (or the controller)
needs to ensure that flow table entries are modified accordingly. Each cycle follows the
following procedure:

1. H2 saves the time t1 and sends a host membership report message to join MCgrp.
t1 now denotes the starting time of this cycle.

2. Upon receiving the membership report message the application (or the controller)
needs to ensure that H2 receives MCgrp traffic. Hence the existing flow table entries
are updated to route MCgrp traffic to H2.

3. Upon receiving MCgrp traffic, H2 saves the time t2 and calculates t∆ = (t2 − t1). t∆
now denotes the elapsed time between joining and actually receiving multicasting
traffic for MCgrp.

4. H2 leaves MCgrp with sending a host membership report message to leave MCgrp
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Figure 7.6: Topology setup for multicasting. H3 permanently sends messages to a
multicasting group while H1 and H2 receive traffic. The controller is only
connected for the experiments that involve a controller.

5. Upon receiving the membership report message the application (or the controller)
needs to ensure that H2 does not receive traffic for MCgrp anymore. Hence the
previously added flow table entries are reverted.

Experimental Results

The experimental results for LAN latencies can be seen in Figure 7.7. The plot for the
WAN latencies is depicted in Figure 7.8. The average waiting time between joining and
receiving traffic for MCgrp is denoted on the y-axis while the x-axis denotes the switch to
controller latencies. The red line shows the average waiting time using the multicasting
application on the switch. The blue line depicts the average waiting time using the switch
to controller latencies as shown on the x-axis. The mean sample standard deviation
across all experimental runs is 0.325 ms. Hence all measured values are distributed near
the plotted mean values.

The graphs show that, regardless of the latencies, using local multicasting application
outperforms using a controller. This is caused by leaving out the required connection
overhead as well as the encapsulation and decapsulation of OpenFlow messages. If the
controller to switch latency increases, this en- and decapsulation of packets yields less
relevance, but the relevance latencies increase. Local data plane event processing then
becomes much faster and thus more efficient than OpenFlow communication towards
the controller.

With an increasing control channel latency in LAN, the average time until receiving
traffic, the graph shows a stairway pattern. While for WAN latencies this experiment
shows the expected linear pattern. The source for this phenomenon probably lies
inside the Open vSwitch code. Some experiments with altering the revalidation rate
of flow entries and the number of revalidators have been done, but did not yield any
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Figure 7.7: Evaluational results for multicasting with a packet rate of 100k pps in LANs.

useful results. Another source for this phenomenon might be the controller side Python
implementation of this use case.

Nevertheless, in this use case, local processing of multicasting events outperforms the
sending of applications to the controller as well. The performance gain by processing
these events locally increases dramatically in high latency networks.

7.3.3 Use Case #3: Simple Switch

In this section, the performance for the simple switching use case (see subsection 6.7.3)
is examined. The measured performance is the round trip time (rtt) for the first ICMP
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Figure 7.8: Evaluational results for multicasting with a packet rate of 100k pps in WANs.

ping request. This first ping request triggers MAC learning at the switch (respectively at
the controller).

The topology for this experiment an be viewed in Figure 7.9. Prior to starting the
experiment no flows regarding the sending and receiving of traffic between H1 and H2
are installed. When H1 initiates the ARP protocol, H1’s MAC address is learned at the
switch (respectively at the controller). When H2 replies to the ARP request, both MAC
addresses are known and flow entries to route traffic between H1 and H2 are installed.
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Figure 7.9: Topology used by the simple switch use case. H1 pings H2 during the
experiment. The controller is only connected during the experiments that
require a controller.

Flow table entries to execute the data plane application, respectively to forward packets
to the controller are installed. The experimental cycles in detail are as follows:

1. H1 wants to send an ICMP echo message towards H2. As H1 does not know the
MAC address of H2, H1 sends a ARP request beforehand.

2. When the application (respectively controller) receives the ARP request, it saves
the originating switch port and MAC address. The ARP query is then flooded to all
other switch ports.

3. When H2 receives the ARP request, it replies to this query with an ARP reply.

4. When the application (respectively controller) receives the ARP reply, it saves the
originating switch port and MAC address. The ARP reply is then forwarded to H1.
Flow table entries to forward traffic between both MAC addresses are installed.

5. After receiving the ARP reply, H1 sends an ICMP echo message to H2.

6. Upon receiving the ICMP echo message, H2 replies accordingly.

7. H1 receives the ICMP reply and calculates t∆. t∆ now denotes the time for the
ARP handling and the round trip time for the ICMP echo message.

8. In preparation for the next cycle, the just added flow entries are removed again.
The saved MAC addresses are removed from the databases. The ARP tables on H1
and H2 are cleared.

For the initiation of the ARP handling and the ICMP ping, the Linux ping utility is used.
Hence the packet rates defined earlier are not used in this use case. One ping packet is
sent per cycle.
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Experimental Results

The plot for the LAN experimental runs can be viewed in Figure 7.10. The average
round trip time is denoted on the y-axis. The control channel latencies are displayed on
the x-axis. The red line shows the average round trip time for the application. The blue
line shows the round trip time for the controller approach. The values are measured
in milliseconds and are rounded up to the hundredths. The mean sample standard
deviation for all experimental runs is 0.882 ms. Therefore the distribution of values is
near the plotted mean values.

The experimental results for the WAN experiment are analogous to the ones in the
LAN experiment. The average round trip time ascends linearly with increasing control
channel latency.

The average round trip time using a controller linearly ascends with increasing latency
in the control channel. A local application outperforms a controller in any case. This is
due to the missing communication overhead and the missing latency.

7.3.4 Use Case #4: Fast Failover

In this section, the fast failover use case (as described in subsection 6.7.4) is examined.
When a link between two switches fails, the application (or the controller) changes
the routing to use a backup route. The performance is measured as the percentage
of lost packets in case of a link failure between two switches. In contrast to the other
experiments and use cases, this experiment evaluates a non-ingress-packet event.

The evaluational setup can be seen in Figure 7.11. The solid red line denotes the
standard route for traffic from H1 to H2. The dashed red line denotes the backup route
that will be used in case the link between S1 and S2 stops working.

Prior to starting the experiment, flow entries to forward traffic from H1 towards H2, via
S1, S2 and S4 are installed. Furthermore a flow entry to direct traffic from S3 towards
S4 is installed. The application and the controller have a predefined rule set, to change
the flow entries on S1 to direct traffic towards S3, in case the link to S2 fails.

Traffic is captured at the link between H1 and S1 and at the link between S4 and
H2. Capturing is done with TShark, which is a terminal based version of Wireshark.
TShark/Wireshark uses pcap to capture all packets at the interfaces [Fil10]. These
captures are saved in pcapng file format, as this preserves the interface ids on which the
actual packet has been captured [Tue16].
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Figure 7.10: Evaluational results for simple switching.

While capturing the packets, H1 constantly sends at 5000 packets per second. This
differs from the packet rate for the other experiments because using higher rates would
result in packet loss, even without a failing link.

This experiment is executed for ten cycles. The exact procedure per cycle is as follows:

1. Wait one second, then bring the link S1-S2 down

2. Wait two seconds then bring S1-S2 back up.

The captured packets are then analyzed using python-pcapng. The captured packets at
H1-S1 are counted as SH1, the captured packets at S4-H2 are counted as RH2. Then, the
loss of packets is calculated: PL = SH1

SH1−RH2
∗ 100.
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7.3 End Host Benchmarks

Figure 7.11: Evaluational setup for the fast failover use case. The red solid line denote
the traffic route from H1 towards H2. The red dashed line describes the
route that is used in case the link between S1 and S2 fails. The controller
is only used during the controller experiments.

Experimental Results

Figure 7.12 shows the LAN results of the described experiment. The graph illustrates
the percentage of lost packets on the y-axis and the switch to controller latencies on the
x-axis. The red line represents the measured values using a local failover application, the
blue line denotes the use of a remote controller. While local failover is only slightly better
than using a local controller, the effect increases linearly. This is due to the missing en-
and decapsulation of OpenFlow messages for the local (0 ms) controller, and because of
the network latency for the other tests.

The result for the WAN latencies is analogous and hence not presented separately.
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Figure 7.12: Evaluational results for the fast failover use case.

7.4 Scalability Benchmark

After evaluating how data plane applications perform, compared to the controller
approaches, this section compares how well both approaches perform in bigger scale.
As a baseline for this experiment, the multicasting experiment is used. The use case
was previously described in subsection 6.7.2. The previous experiment was discussed in
subsection 7.3.2. It is compared how the average time until receiving multicasting traffic
is influenced by multiple multicasting clients joining and leaveing the group MCgrp.

76



7.4 Scalability Benchmark

The topology used for this experiment can be viewed in Figure 7.13. As with the
multicasting experiment before, a sender permanently sends message to multicasting
group MCgrp while H1 is a steady member of MCgrp.

To evaluate how the approaches perform at scale, the number of simultaneous mul-
ticasting clients is increased by five clients in each experimental execution. The first
execution starts with five clients. The experiment is stopped after 20 executions. This
results in 100 multicasting clients that join or leave the group during the experiments.
Using more than 100 multicasting clients led to issues with the experimental host system
and mininet, as the open file descriptor limit was reached. Raising the limit worked to
a certain extend but left the experiment to be relatively unstable. Furthermore up to
100 simultaneous multicasting clients at a single switch are considered to be enough in
many use cases.

Each execution runs for one minute. All clients run cycles with a pause of 0.5 seconds
between each cycle. The pause between the cycles is needed to ensure that flow table
entries from previous cycles are either installed or removed. Experimental runs with a
pause of 0.1 seconds and 0.01 seconds have been evaluated but did contain too many
false positives, because the previous flow table entries were not removed yet. In each
cycle, the client decides to change its membership status with a probability of 0.5.

The steps executed by all clients in each cycle can be summarized as follows:

1. Wait 0.5 seconds for the next cycle.

2. With a probability of 0.5, change the group membership status.

If the client changes its member ship status, there are two possibilities:

1. If the client already is a member of the group, the client leaves the group. After
leaving, the client starts the next cycle.

2. If the client currently is not a member of the group, the client joins the group
and waits for traffic. Just like in the previous multicasting experiment (subsec-
tion 7.3.2), the client measures the time until it receives multicasting traffic. After
receiving traffic, the client starts the next cycle.

After one minute five more clients join the group and start their cycles.

Evaluational Results

The results for the scalability evaluation can be seen in Figure 7.14. The average
time until receiving traffic is denoted on the y-axis and the number of simultaneous
multicasting client is denoted on the x-axis. The red line shows the data plane application
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Figure 7.13: Evaluational setup for multicasting with multiple clients.

while the blue line shows the approach involving a controller. The mean sample standard
deviation across the application experiments is 1.498 ms and 2.182 ms across the
controller experiments.

When increasing the initial number of five clients by an order of magnitude to 50 clients,
the application approach scales better and adds 1.18 ms to the average processing
time, while the controller approach adds 1.51 ms to the average processing time. When
doubling the number of clients from 50 clients to 100 clients, the multicasting application
results in an average processing time that is 1.97 ms longer than the initial average
processing time. For the controller approach, the average time for 100 clients is 3,25 ms
longer than for the initial five clients.

For both approaches the average time until receiving traffic increases with the number
of multicasting clients. The values for the multicasting application increase slower than
the values for the controller approach. The reason for this is, as with the previous
experiments, due to the reduced CPU processing time and the reduced flow installation
times.

Increasing the probability for the clients to change their membership status would
add more dynamics to MCgrp. The effect is expected to be analogous to adding more
multicasting clients.
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Figure 7.14: Evaluational results for scaling the multicasting application.
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7.5 Evaluation Summary

After describing the experiments and their results, this section summarizes the results of
the experiments done during this thesis.

Using a local data plane application directly on the switch reduces the CPU usage as
well as the needed time for installing flow table entries. This is due to the fact that the
en- and decapsulation of OpenFlow messages is not needed, when processing events
locally. Because of this fact, it is of a great advantage to use local applications, even if a
local controller (running directly on the switch) would be an option.

When comparing local data plane applications with controller applications in LANs and
WANs, the performance gain increases even more. The use cases showed and examined
sample use cases for local processing of data plane events. In all use cases the local
applications outperformed the approaches that involved a controller. This is due to the
fact that sending messages in LANs and WANs adds latency to the processing of events.
Furthermore, OpenFlow messages do not need to be en- and decapsulated.

When scaling the multicasting use case, it can be seen that a local application scales
better than the controller approach. The reasons are the same as for the performance
measurements.
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8 Conclusion and Future Work

Latency can be an issue in software-defined networks. This thesis introduced applications
on the data plane to software-defined networks. This allows to handle events directly on
the data plane. In the thesis, events on the data plane and their corresponding actions
were generalized (research goal G1) in order to develop a concept for the execution of
data plane applications (research goals G2-G3).

A prototype for the data plane applications has been implemented (research goal G4) in
order to evaluate the developed approach (research goal G5).

The evaluation shows that, especially in high latency networks, local processing of events
might be highly beneficial. Even in lower latency networks using local applications will
yield some performance benefits, while lowering CPU usage on the data plane. While
the results are satisfactory, there are still some aspects to be analyzed. The paragraphs
below discuss some of these aspects:

On the conceptual side it might be beneficial to directly process applications inside the
kernel flow table of a network switch. This promises high performance improvements,
but it needs to be evaluated how this may be implemented. Furthermore security
needs to be considered when executing third-party applications inside the switch kernel
module.

This thesis proposed a local and a distributed data storage for applications. It needs to
be evaluated when it is beneficial to use either the local or the distributed data storage.
Furthermore, while this concept proposes abstract data storages it might be favourable
to standardize the data formats used in the data storages. It needs to be evaluated if
and how this would influence the performance of the implementation.

On the implementational side, the dynamic addition and removal of applications needs to
be implemented and evaluated. First prototypes for the dynamic loading for applications
have been done during this thesis, but a more detailed concept and implementation for
the loading and removal of applications needs to be implemented and evaluated.

As the implementation of this concept is based on Open vSwitch, it needs to be evaluated
how this concept performs on other software switches as well as on hardware switches.
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8 Conclusion and Future Work

On the experimental side, the remote controller approaches were implemented in Python.
An evaluation of how much this influences the measurements would be necessary.

Lastly, the experiments during the evaluation of this thesis are based on synthetic and
simulated data. Evaluating this approach in an in-production environment would allow
to evaluate how local data plane applications would perform in real world usage.
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A Implementation

Listing A.1 OpenFlow experimenter action struct, ofp-actions.h
struct ofpact_execute_application {

struct ofpact ofpact;

uint8_t application_id; /* Application id */

bool slow_action; /* slow action */

};

Listing A.2 Decoding of raw experimenter message, ofp-actions.c
static enum ofperr

decode_FMS_RAW_EXECUTE_APPLICATION(const struct fms_execute_application *nea,

enum ofp_version ofp_version OVS_UNUSED,

struct ofpbuf *out)

{

struct ofpact_execute_application *ea;

ea = ofpact_put_EXECUTE_APPLICATION(out);

ea->application_id = nea->application_id;

ea->slow_action = nea->slow_action;

if(nea->slow_action){

appdb_inititialize();

}

return 0;

}
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Listing A.3 Encoding to openflow action, ofp-actions.c
static void

encode_EXECUTE_APPLICATION(const struct ofpact_execute_application *execute_application,

enum ofp_version ofp_version, struct ofpbuf *out)

{

struct fms_execute_application *nea;

nea = put_FMS_EXECUTE_APPLICATION(out);

nea->type = 0xFFFF;

nea->len = htons(16);

nea->experimenter = htonl(FMS_VENDOR_ID);

nea->subtype = htons(1);

nea->application_id = execute_application->application_id;

nea->slow_action = execute_application->slow_action;

}
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