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Abstract

The large-scale integration of variable renewable energies (VRE) like Photovoltaics and wind power into the power
system is crucial for the transition towards a sustainable electricity supply. However, due to the inherent
characteristics of VRE, i.e. the site-specific, highly variable, and unreliable power generation, as well as their low
variable generation costs, the large-scale deployment of VRE causes adequacy-, grid-related, and balancing-impacts
for the residual system. These impacts and the related costs need to be considered for a concerted capacity
expansion planning with VRE in order to identify cost-efficient and reliable transition pathways. Traditionally
applied capacity expansion planning models have limitations to consider the value of energy at its time of the
delivery of VRE and their impacts on the system due to the applied low system-operational detail. Hence, new
planning methods are required to ensure a successful transition towards a sustainable electricity supply.

This work enhances the REMix energy system modelling framework to allow for a concerted long-term capacity
expansion planning with VRE. The outcome of this is the REMix-Capacity Expansion Model (REMix-CEM). The
optimization model bridges the gap between traditional long-term capacity expansion planning and short-term
power system operation models. This enables the model to consider the value and the impacts of a large-scale
integration of VRE into the power system accurately within capacity expansion planning. This thesis describes the
challenges of long-term capacity expansion planning with VRE and presents the developed model in detail. This
includes a principle description of how REMix-CEM is typically applied by DLR for a science-based consultancy of
planning authorities in developing and emerging countries. To demonstrate its capabilities, the flexible formulation
of the model is used to investigate two important issues within a model-based long-term capacity expansion
planning with VRE - the model foresight and the applied system-operational detail. Both issues can have a
significant influence on results and computational effort of the model. These correlations are investigated within
two case studies for a fictitious but representative power system of a developing country.

Results of the first case study indicate that the type of model foresight (single-year myopic, multi-annual rolling
horizon, or perfect foresight) has a strong influence when some of the input parameters change suddenly at one
point of the planning time frame, while its influence is less pronounced when parameters changes rather
continuously over the period of study. Only a large model foresight enables the model to anticipate future
occurrences well in advance and to adopt its investment strategies accordingly. Furthermore, the analysis shows
that the larger the model foresight the higher is the competitiveness of VRE and dispatchable RE, because their
advantage to produce electricity at stable costs over the lifetime can be captured more precisely. However, it is
also demonstrated that a larger model foresight means also a higher computational effort to solve the capacity
expansion optimization problem. In addition, a large model foresight with perfect information over the planning
time frame might not fully capture the decision frame-work of real-life decision makers.

To keep computational effort manageable for long-term capacity expansion planning with VRE, investment
decisions are typically based on a limited number of representative dispatch periods. These dispatch periods have
the aim to represent the temporal variability of load and RE resources over the year as accurate as possible. Within
the second case study it is shown that the average day method, which uses average values to assign values for RE
resource availability to the utilized dispatch periods, is inappropriate for capacity expansion planning with VRE. The
value of energy at its time of the delivery of VRE is modeled inaccurately and system flexibility requirements,
caused by the integration of VRE, are underestimated systematically. The representative day method, which uses a
sample of “real” historical days instead of average values, is significantly more suitable because extreme values are
not averaged. This leads to a better approximation of VRE electricity generation, which allows a more accurate
consideration of the value of energy at its time of the delivery of VRE and system flexibility requirements.

System flexibility requirements can be captured within capacity expansion optimization especially by considering
unit commitment constraints (UCCs) of thermal generators. However, this requires a large number of integer
decision variables that describes the unit commitment status. This leads to high computational complexity. Hence,
UCCs are typically neglected during capacity expansion optimization. Within the second case study it is however
demonstrated that neglecting UCCs within capacity expansion planning with VRE leads to an overestimation of the
competitiveness of VRE and an underestimation of the need for flexible generation and storage technologies. This
work shows that by a linear relaxation for UCCs system flexibility restrictions can be captured accurately during
long-term capacity expansion optimization with comparably low additional computational effort.



Zusammenfassung

Die groftechnische Integration variabler regenerativer Energien (VRE) wie Photovoltaik und Windkraft in das
Stromversorgungssystem ist fur die Transformation hin zu einer nachhaltigen Stromversorgung von entscheidender
Bedeutung. Aufgrund der spezifischen Eigenschaften von VRE, wie die standortspezifische, stark fluktuierende und
unsichere Stromproduktion, sowie geringe variable Erzeugungskosten, hat die Integration von VRE jedoch
Auswirkungen auf die Versorgungsicherheit, die Stromnetze und den Systembetrieb. Diese Auswirkungen und die
damit einhergehenden Kosten missen fiir eine ausgewogene Ausbauplanung mit VRE bericksichtigt werden.
Traditionell angewendete Ausbauplanungsmodelle konnen aufgrund ihres geringen Detailierungsgrades hinsichtlich
der Modellierung des Systembetriebs nur begrenzt die Wertigkeit der zeitlichen Einspeisung von VRE und die
Auswirkungen der Integration von VRE auf das residuale Versorgungsystem abbilden. Fiir eine erfolgreiche
Transformation hin zu einer nachhaltigen Stromversorgung bedarf es deshalb neuer Methoden.

Diese Arbeit entwickelt das Energiesystemmodell REMix weiter um eine ausgewogene Ausbauplanung mit VRE zu
ermoglichen. Das Resultat dieser Weiterentwicklung ist das Optimierungsmodel REMix-CEM. Das entwickelte
Model schlagt die Bricke zwischen traditionellen langfristigen  Ausbau- und  kurzfristigen
Kraftwerkseinsatzoptimierungsmodellen, um die Wertigkeit und die Auswirkungen der Integration von VRE
wahrend der Ausbauplanung maéglichst akkurat zu beriicksichtigen. Die Arbeit thematisiert die Herausforderungen
der Ausbauplanung mit VRE und beschreibt das entwickelte Optimierungsmodell im Detail. Zudem wird aufgezeigt,
in welcher Form REMix-CEM typischerweise fiir die wissenschaftsbasierte Beratung von Energieplanungsbehérden
in Entwicklungs- und Schwellenldndern durch das DLR eingesetzt wird. Um die Fahigkeiten des Modells zu
demonstrieren, wird dessen flexible Formulierung dazu genutzt, um zwei wichtige Faktoren der modellgestutzten
langfristigen Ausbauplanung mit VRE zu untersuchen - die angenommene Modellvoraussicht Gber den
Planungszeitraum und der angewandte Detaillierungsgrad bzgl. der Modellierung des Systembetriebs. Beide
Faktoren konnen einen wesentlichen Einfluss auf die Ergebnisse und den zeitlichen Rechenaufwand des
Optimierungsmodells haben. Diese Zusammenhange werden im Rahmen zweier Fallstudien untersucht.

Ergebnisse der ersten Fallstudie zeigen, dass die Modellvoraussicht (einjahrig-myopisch, mehrjahrig-rollierend,
oder perfekte Voraussicht) einen starken Einfluss auf die Modellergebnisse hat, wenn sich Inputparameter des
Modells an einem Punkt des Planungszeitraums unvermittelt andern. Dahingegen ist der Einfluss moderat, wenn
sich die Inputparameter kontinuierlich entwickeln. Nur eine grofle Voraussicht erlaubt es dem Modell zukiinftige
Ereignisse zu antizipieren und Investitionsentscheidungen friihzeitig anzupassen. Die Analyse zeigt zudem, dass die
Konkurrenzfahigkeit von VRE und regelbarer RE mit der GroRe der Modellvoraussicht zunimmt, da deren Vorteil
einer kostenstabilen Stromerzeugung (ber die betriebliche Lebensdauer akkurater erfasst werden kann. Jedoch
geht eine groRe Modellvoraussicht mit perfekter Voraussicht mit einem erhdhten zeitlichen Rechenaufwand einher
und spiegelt nur unzureichend den realen Entscheidungsrahmen in der Energiewirtschaft wieder.

Um den zeitlichen Rechenaufwand in Grenzen zu halten, werden bei der Ausbauplanung mit VRE normalerweise
wenige reprdsentative Zeitschritte herangezogen, um die zeitliche Schwankung der Last und der Verfligbarkeit von
regenerativen Ressourcen abzubilden. In der zweiten Fallstudie wird aufgezeigt, dass die , average day method”,
welche Durchschnittswerte fiir die zeitliche Verfligbarkeit von regenerativen Ressourcen nutzt, ungeeignet fiur die
Ausbauplanung mit VRE ist. Die Wertigkeit der zeitlichen Stromerzeugung durch VRE kann nur ungenau abgebildet
werden und die Anforderungen an die Systemflexibilitdt werden systematisch unterschatzt. Die , representative day
method”, welche anstatt Durchschnittswerte ,reale” reprasentative Tage nutz, ist wesentlich geeigneter, da eine
Mittelung der zeitlichen Einspeisung von VRE vermieden wird. Dies flhrt zu einer akkurateren Erfassung der
Wertigkeit von VRE und der Flexibilitdtsanforderungen fir das residuale Versorgungssystem.

Flexibilitatsrestriktionen des Versorgungssystems konnen innerhalb der modellgestiitzten Ausbauplanung vor allem
durch die Bericksichtigung von Kraftwerkseinsatzrestriktionen fiir thermische Kraftwerke abgebildet werden. Da
dies eine hohe Anzahl an ganzzahligen Entscheidungsvariablen fiir den diskreten Kraftwerkseinsatz bendtigt, wird
innerhalb der Ausbauplanung aufgrund der hohen Rechenkomplexitit aber typischerweise darauf verzichtet.
Innerhalb der zweiten Fallstudie wird jedoch gezeigt, dass dies zu einer Uberschitzung der Konkurrenzfahigkeit von
VRE und einer gleichzeitigen Unterschatzung des Bedarfs an flexiblen Stromerzeugungs- und Speichertechnologien
fahrt. Die Arbeit zeigt, dass mit Hilfe einer Relaxation fir die ganzzahligen Kraftwerkseinsatzentscheidungsvariablen
dieser Problematik mit vertretbarem Rechenmehraufwand begegnet werden kann.
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List of symbols
The diurnal temporal resolution of the optimization model is denoted by the time step At, in
hours.
Table 1: Utilized sets within presented modules of REMix-CEM
Sets Description
B Set of blocks of piecewise linear fuel consumption curve
CPeP Set of candidate projects
CSPeG Set of CSP generators
CTGEG Set of conventional thermal generators
D Set of representative days/weeks of a season
DGeG Set of dispatchable generators
FSGeG Set of thermal generators with fast start-up capabilities
FT First dispatch period of representative day/week of season
G Set of existing and candidate generators and storage facilities
LPY Last year of planning horizon
LT Last dispatch period of representative day/week of season
N Set of model nodes of system
P Set of all existing and candidate generation, storage, and transmission projects
R Set of model regions of system (balancing areas)
S Set of seasons of a year
STOEG Set of storage facilities
T Set of dispatch periods of a representative day/week
VREEG Set of VRE generators
Y Set of milestone years
Table 2: Variables of module System Planner & Operator
Variables Description Unit Type
CAP Installed gross capacity at generator [(MW] Positive
CAPEX Annual capital expenditures [kUuSD/y] Positive
cmvest Overnight investment costs [kUSD] Positive
EXPORT Export to other nodes of the system [MW] Positive
IMPORT Imports from other nodes of the system [MW] Positive
NPy System Net present value of total system costs (objective variable) [kUSD] Positive
OFF Indicates the number of offline units at the generator [-] Positive
OPEX Annual operational expenditures [kUSD/y] Positive
ORSPIn- Negative spinning reserve capacity [(MW] Positive
OQRSPint Positive spinning reserve capacity [(MW] Positive
pCharge Charging of storage [(MW] Positive
pGrid,Aux Grid consumption to cover auxiliaries [MW] Positive

phet Net power generation [(MW] Positive
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Table 3: Parameters of module System Planner & Operator

Parameter Description Unit
P Gross capacity of single unit [MW]
Ec.life Economic life-time vl
a Availability factor [%]
af Annuity factor [%]
aux Auxiliary power expressed as percentage of installed capacity [%]
cc Capacity credit expressed as percentage of installed gross capacity [%]
cf? Correction factor for available capacity according to ambient temperature [%]
ct Construction time of generator [yl
aMy Duration of period represented by milestone year [yl
df System discount factor (discounts values to basis year of the analysis) [%]
for Forced outage rate [%]
idc Factor for interest during construction [%]
load Temporal load [MW]
orctomin- Negative spinning reserve which must be available within 10 minutes [MW]
orctomint Positive spinning reserve that must be available within 10 minutes IMW]
orcfomint Positive standing reserve capacity that must be available within 60 minutes [MW]
rm Adequacy reserve margin [%]
wacc Weighted average cost of capital [%]
mor Maintenance outage rate [%]
Table 4: Variables of module Conventional Thermal Generators
Variables Description Unit Type
BUILD Number of units installed at generator [-] Integer
BUILD%™ Cumulative number of installed units at generator [-] Positive
CAP Cumulative installed gross capacity at generator [(MW] Positive
cmvest Overnight investment costs [kUSD] Positive
CR Ramping costs [At kUSD/h] Positive
csP Shut-down costs [At kUSD/h]  Positive
CSRMC Short-run marginal cost [At kUSD/h]  Positive
csY Start-up costs [At kUSD/h]  Positive
FC Fuel consumption [At MW,/h]  Positive
OFF Indicates the number of offline units at the generator [-] Positive
ON Indicates the number of online units at the generator [-] Integer
OPEX Annual operational expenditures [kUSD/y] Positive
OQRSPare- Negative spare capacity [MW] Positive
QRSParet Positive spare capacity [MW] Positive
ORSPIn- Negative spinning reserve capacity [(MW] Positive
QRSPin+ Positive spinning reserve capacity [(MW] Positive
P Power generation above minimum generation level [MW] Positive
phet Net power generation [(MW] Positive
SD Indicates a shut-down of a unit [-] Integer
SU Indicates a start-up of a unit [-] Integer
1) Generation in block b of piecewise linear production curve (MW] Positive
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Table 5: Parameters of module Conventional Thermal Generators

Parameter Description Unit
P Gross capacity of single unit [MW]
p Minimum generation of single unit [(MW]
T Maximum ramping per dispatch period [MW/At]
u Maximum installable units at generator [-]
n Gross efficiency at minimum generation level [%]
A Maximum generation within the block of the piecewise linear fuel [MW]
consumption curve
a Availability factor [%]
at Ambient temperature [°C]
aux Auxiliary power expressed as percentage of installed capacity [%]
cE Specific emission costs (e.g. for CO,) [kusD/t]
croM Fixed O&M costs expressed as percentage of investment costs [%]
cFuel Primary fuel cost [At KUSD/MWhy]
clnvest Specific overnight investment costs [kusSD/MW]
ck Specific ramping costs [kUSD/MW]
cSP Costs for a unit shut-down [kUSD]
csv Costs for a unit start-up (fuel and CO, emission costs excluded) [kUsD]
cVoM Variable O&M costs [At kUSD/MWh]
cf? Correction factor for available capacity according to ambient [%]
temperature
cf" Correction factor for efficiency according to ambient temperature [%]
dP? Weighting factor for dispatch period [-]
e Emission intensity of fuel (e.g. CO,) [At t/MWhy]
fuel®? Fuel usage per unit start-up [MWhy,]
fy First possible year of operation [-]
ly Last possible year of operation [-]
m Slope of piecewise linear fuel consumption curve [At MW,/ MWh]
mdt Minimum down time of single unit [At]
mut Minimum up time of single unit [At]
p*P Shut-down capability of unit MW/ At]
Y Start-up capability of unit MW/ At]
rMax Maximum ramping per minute expressed as percentage of installed [%/min]
capacity
tcPo1-1o Coefficients for piecewise linear approach for impact of ambient [-]
temperature on power generation
tcmo1-1o Coefficients for piecewise linear approach for impact of ambient [-]

temperature on efficiency
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Table 6: Variables of module Concentrating Solar Power

Variables Description Unit Type
AUXSETES Auxiliary power for solar field and thermal storage operation [MW] Positive
BUILDBE Installed back-up burner capacity expressed as percentage of [%] Positive
installed gross capacity of the generator
BUILD *™PE  Cumulative number of installed power blocks at generator [-] Positive
BUILD?® Number of installed power blocks at generator [-] Integer
BUILDSF Number of installed SM 1 solar fields at generator [-] Positive
BUILDTES Installed thermal energy storage capacity expressed in hours to [h] Positive
operate the generator with full capacity
CAP Cumulative installed gross capacity of generator [(MW] Positive
CAPBB Total back-up burner capacity expressed as percentage of [%] Positive
installed gross capacity of a single power block
CAPTES Total thermal energy storage capacity expressed in hours to [h] Positive
operate a single power block with full capacity
crmwest Overnight investment costs [kusD] Positive
cR Ramping costs [At kUSD/h]  Positive
csP Shut-down costs [At kUSD/h] Positive
csY Start-up costs [At kUSD/h] Positive
FC Thermal energy consumption [At MW /h]  Positive
LTES Maximum fill level of thermal energy storage [MWhy] Positive
ON Indicates the number of online units at the generator [-] Integer
OPEX Annual operational expenditures [kUSD/y] Positive
P Power generation above minimum generation level (MW] Positive
pGrid.Aux Grid consumption to cover auxiliaries of the generator [MW] Positive
phet Net power generation [MW] Positive
QBB Thermal power generation of back-up burner [MW,] Positive
QCTES Charging of thermal energy storage [MW,] Positive
QCurtail Curtailment of thermal energy [MW,4] Positive
QP TES Discharging of thermal energy storage [MW,] Positive
QSF Thermal power generation of solar field [MW,] Positive
SM5F Total solar field size expressed as SM (related to the thermal [-] Positive
capacity of one single power block)
SU Indicates a start-up of a unit [-] Integer
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Table 7: Parameters of module Concentrating Solar Power

Parameter Description Unit
bb Minimum back-up burner capacity expressed as percentage of gross [%]
capacity of a single power block
bb Maximum back-up burner capacity expressed as percentage of gross [%]
capacity of a single power block
P Gross capacity of single power block [MW]
p Minimum generation of single power block (MW]
7" Thermal capacity of single power block [MW,4]
sm Minimum solar multiple [-]
sm Maximum solar multiple [-]
tes Minimum thermal energy storage capacity expressed in hours to [h]
operate a single power block with full capacity
tes Maximum thermal energy storage capacity expressed in hours to [h]
operate a single power block with full capacity
a Availability factor [%]
aux Auxiliary power of a single power block expressed as percentage of [%]
power block capacity
aux>F Auxiliaries for SM1 solar field at design point [MW/SM]
auxTES Specific auxiliaries for thermal energy storage operation [MW/MW,,]
cBB Specific investment costs of back-up burner [kUSD/MW,]
cE Specific emission costs (e.g. for CO,) [kUSD/t]
ckoM Fixed O&M costs expressed as percentage of investment costs (%]
cFuet Fuel cost of back-up burner [At kUSD/MWhy]
cPB Specific investment costs of power block [kUSD/MW]
cSML Specific investment costs of solar field [kUSD/SM]
cTES Specific investment costs of thermal energy storage [kUSD/MWhy]
cvomM Variable O&M costs [At kUSD/MWh]
cf? Correction factor for available capacity according to ambient [-]
temperature
dP? Weighting factor for dispatch period [-]
e Emission intensity of fuel (e.g. CO,) [At t/MWhy]
fuel®? Fuel usage per unit start-up [MWhy,]
fy First possible year of operation [-]
ly Last possible year of operation [-]
maxBB Maximum thermal energy generation from the back-up burner [%]
expressed as percentage of annual thermal energy generation from
the solar field
pb Maximum number of installable power blocks at generator [-]
norm,SF Normalized generation of solar field (capacity factor of solar field in  [%]
dispatch period)
nself'TES Losses of thermal energy storage due to self-discharge [%/At)
CTES Thermal energy storage charging efficiency (%]
n®TES Thermal energy storage discharging efficiency (%]
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1 Introduction

This chapter describes the background of this work (Section 1.1) and highlights the objective

and the structure of this PhD thesis (Section 1.2).

1.1 Background
The Paris Agreement, which was negotiated during the 2015 United Nations Climate Change

conference (COP 21), entered into force on 4 November 2016. The signing parties agreed on the
target of limiting global warming to less than two degrees Celsius above pre-industrial levels [1].
This requires a significant reduction of global anthropogenic greenhouse gas (GHG) emissions.
One key-factor to achieve this ambitious goal is the transition of the mainly fossil fuel
dominated power systems of today towards a sustainable electricity supply [2]. Levelized cost of
electricity (LCOE) of Photovoltaics (PV) and wind power has decreased to a very competitive
level, making them an attractive investment option from a single investor and also from an
entire system planning perspective [123]. There is no doubt that PV and wind power will play a
major role for the transition of power systems worldwide towards a sustainable electricity
supply and large shares of future electricity demand will be covered by these low-cost power
generation technologies [116]. However, due to the inherent characteristics of PV and wind
power, i.e. the site-specific, highly variable, and unreliable power generation, as well as low
variable generation costs, a large-scale integration of these variable renewable energy (VRE)
technologies has significant impacts on the power system and creates challenges on different
timescales [37], [39]. A large-scale deployment of VRE causes adequacy-impacts and related
costs for the system due to required back-up capacity and reduced utilization of dispatchable
generators. Grid-related impacts and associated costs occur due to required extensions and
reinforcements of the transmission grid to balance continuously demand and supply and avoid
extensive curtailment of VRE. The large-scale integration of VRE leads to a higher variability of
the residual load. This causes balancing impacts and related costs because larger amounts of
operating reserve capacity and a more flexible operation of dispatchable generators is required
to balance out unreliable and fluctuating power generation from VRE [38], [40], [47], [72]. These
impacts and the related integration costs caused by VRE need to be considered by planning

authorities when designing the transition towards a sustainable electricity supply.



Introduction 2

Several flexibility options are available to back-up and balance out fluctuating power generation
from low-cost PV and wind power and therefore support grid integration of VRE. Flexibility
options comprise dispatchable conventional thermal generators, energy storage facilities,
electricity exchange via transmission lines, sector-coupling, demand side management, and
dispatchable renewable energy (DRE) technologies, such as biomass, geothermal, reservoir
hydro power, and concentrating solar thermal power (CSP) generators. Besides increasing the
share of electricity generation from renewable energy sources (RES - E) itself without increasing
flexibility requirements of the system, DRE can ideally complement the integration of VRE due

to their capability to deliver firm and flexible generation capacity on demand [3], [4].

By 2040, the power systems of the Middle East and North Africa (MENA), Southern Africa, Latin
America, China, and India will consume more than 50% of global electricity demand due to the
strongly increasing electricity demand in these world regions [116]. Besides high demand
growth rates, these developing and emerging economies have in common that they have access
to excellent and abundant solar resources [5—10]. This makes the CSP technology a promising
option for the transition of power systems towards a sustainable electricity supply and to
support grid integration of VRE. Due to the application of a thermal energy storage and a fossil
or bio fuel fired back-up burner, CSP generators can not only produce large quantities of
electricity from solar resources but can also provide firm and dispatchable capacity to back-up
fluctuating power generation from VRE. Especially for the MENA and Southern Africa region, the
CSP technology could be one of the key-factors for a successful transition towards a sustainable
electricity supply because resource potentials for other DRE technologies, such as reservoir
hydro power or biomass, are very limited. But also for the power systems of India, China, and
Latin America, CSP could be a valuable option to complement other DRE for which further
deployment often experiences difficulties because of environmental concerns and low public

acceptance [10], [62], [86], [87].

In order to design reliable, economically efficient, and environmentally friendly power systems,
planning authorities rely on long-term capacity expansion planning models that are able to
consider the value of VRE for the system but also the impacts caused by a large-scale integration

of VRE. Furthermore, long-term capacity expansion planning models must be able to identify
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suitable flexibility options to support grid integration of VRE. Widely used models, such as e.g.
WASP, LEAP, or MESSAGE, have proven their value for designing hydro-thermal dominated
power systems [11-13]. However, most of this type of planning models have been developed
during times when global warming was of less concern and VRE, such as PV and wind power,
were far away from economic competitiveness. As a consequence, an adequate modelling
approach for VRE and their impacts on the power system as well as for flexibility options, such
as CSP or energy storage, is often missing in these traditionally applied models [96]. However,
for a successful transition towards a sustainable electricity supply, planning authorities require
adequate planning tools which allow for a concerted and reliable capacity expansion planning
with VRE. The outcome of this is the need for new methods in the field of power system

capacity expansion planning.

1.2 Objective and structure of this work
The objective of this work is the enhancement of the REMix energy system modelling

framework to allow long-term capacity expansion optimization over a multi-annual planning
time frame for identifying cost-efficient and reliable transition pathways towards a sustainable
electricity supply. During capacity expansion optimization the value of energy at its time of the
delivery and the impacts of a large-scale integration of VRE into the power system shall be taken
into consideration in order to identify concerted and cost-efficient capacity expansion pathways

for VRE, dispatchable power plants and other flexibility options, such as e.g. energy storage.

The Renewable Energy Mix (REMix) modelling framework has been developed within several
PhD theses at the Department of Systems Analysis and Technology Assessment of the German
Aerospace Center (DLR-SYS) [15-17], [67], [69], [70]. The enhancements of the modelling
framework during this work led to the Capacity Expansion Model REMix-CEM (see Figure 1).
Besides the newly developed model, the REMix modelling framework consists of the Energy
Data Analysis Tool REMix-EnDAT and the Optimization Model REMix-OptiMo. REMix-EnDAT can
be used to calculate global potentials and temporal resource availability of RES-E technologies.
REMix-OptiMo is a linear programming (LP) optimization model with focus on large
interconnected energy systems dominated by RES-E. Based on high temporal and spatial

resolution, the model is rather used to validate long-term energy supply scenarios by modelling
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system operation over one year (e.g. the final year of the proposed scenario) on an aggregated
technology level and to investigate economic competiveness of additional flexibility options,
such as energy storage, transmission grid expansion, or sector-coupling. In contrast, the newly
developed REMix-CEM is a mixed integer linear programming (MILP) optimization model which
has the aim to identify concerted transition pathways for national power systems over a multi-
annual planning time frame, while considering the impacts of a large-scale integration of VRE
into the power system in detail. The model identifies discrete cost-efficient investment options
and can apply a high system-operational detail by modelling on a single unit level instead of an
aggregated technology level. However, one of the drawbacks of a higher modelling detail is
higher computational complexity. Therefore, systems analyzed by REMix-CEM have typically a

smaller size than those analyzed by REMix-OptiMo.*

/ REMix Energy System Modelling Framework \

Optimization Models formulated in GAMS

REMix-EnDAT REMix-OptiMo 4 REMix-CEM
Quantification of global LP optimization model with I Detailed MILP optimization
potentials and hourly focus on sector-coupling I echaiiEaengiiciibing |
R and flexibility options for concer_‘ted transition pathways

. for national power systems
energy resources large interconnected I
renewable energy l
dominated energy systems /

é Modelling detail
KDLR System size /

Figure 1: Overview of the REMix energy system modelling framework

REMix-CEM is used by DLR-SYS mainly for supporting national planning authorities of especially
developing and emerging countries in the process of determining cost-efficient, reliable, and

robust transition pathways for their power systems [99], [127]. Typically, this science-based

! The formulation of REMix-CEM allows a flexible application of various constraints on system and single unit level.
Computational effort of the model can be reduced significantly by neglecting certain constraints. Hence, the model
can be applied also for very large systems when compromises in terms of model fidelity are made.
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advisory process is carried out in close collaboration with international cooperation institutions.
In this process REMix-CEM is used as decision support tool to answer the key questions of long-
term capacity expansion planning with VRE (see Figure 2). Which technologies should be
installed when, where, and how much of it in order to meet future electricity demand in the
most cost-efficient way, while ensuring applied reliability standards and defined strategic
targets for the system? To answer these general planning questions when VRE are included in
the analysis, the value of energy at its time of the delivery for different supply options and the
impacts of a large-scale deployment of VRE must be analyzed and competitive flexibility options

to back-up and balance-out unreliable and fluctuating power generation from VRE must be

identified.
VRE related questions General questions
Value of energy at Which
time of delivery? technologies?

e e
Capacity
expansion
planning
Competitive with VRE
flexibility options? J When? J

How to operate? How much? J

Figure 2: Key questions for capacity expansion planning with VRE
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This work comprises a detailed description of the enhancement of the REMix energy system
modelling framework and demonstrates the application of the newly developed model REMix-
CEM for a fictitious power system.? The flexible formulation of the enhanced modelling
framework allows performing capacity expansion optimization under myopic, rolling horizon,
and perfect foresight approaches as well as considering different system-operational detail
levels. The utilized foresight approach determines how possible future occurrences, such as a
large-scale integration of VRE or increasing fuel and CO, emission costs, can be anticipated by
the model in advance and investment decisions can be adopted accordingly. The applied
system-operational detail determines how accurate the value of energy at its time of the
delivery and the flexibility challenge for the residual system caused by a large-scale integration
of VRE is considered during capacity expansion optimization. While performing long-term
capacity expansion optimization for the fictitious power system the impact of the applied
foresight approach and the applied system-operational detail on model results and
computational effort is investigated. Results of this systematic analysis will help to identify the
optimal trade-off between required model fidelity and computational effort for a meaningful

long-term capacity expansion planning with VRE.

Figure 3 presents the structure of this work. Chapter 1 provides a brief introduction to the
REMix energy system modelling framework and describes the enhancements made within this
work in a qualitative way. Principles of capacity expansion planning with VRE are discussed in
Chapter 3. The chapter contains an overview of power system model types that are applied for
different timescales by power system planners and operators. Furthermore, the impacts of a
large-scale integration of VRE into the power system are described. The chapter ends with an
overview about current developments in model-based capacity expansion planning with VRE.
Chapter 4 describes the developed optimization model REMix-CEM in detail and presents the
mathematical formulation of the major enhancements of the REMix modelling framework made
within this work. Chapter 5 contains the systematic analysis of the impact of the assumed model

foresight and the applied system-operational detail on results and computational effort for

? Please note that results from real-life model applications during projects e.g. for the World Bank (Botswana) and
the GIZ (Morocco) cannot be presented in this PhD thesis due to secrecy clauses that are currently in place.
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capacity expansion optimization. Chapter 6 describes how REMix-CEM is typically applied as
decision support tool for science-based consultancy of national planning authorities of
developing and emerging countries in collaboration with international cooperation institutions.
Chapter 7 concludes and discusses the results of this work and highlights further research

requirements.

Chapter 1

Introduction
Chapter 2

Enhancement of the REMix energy system modelling framework

Capacity expansion optimization model REMix-CEM

Chapter 6

Using REMix-CEM for a science-based consulting of national energy system planning authorities
Chapter 7

Conclusions and future research requirements

Figure 3: Structure of this work
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2 Enhancements of the REMix energy system modelling framework

Section 2.1 introduces briefly the REMix energy system modelling framework which was
developed within several PhD theses during the last ten years. The contribution of this work to

the modelling framework is described in Section 2.2 in a qualitative way.

2.1 Briefintroduction to the REMix energy system modelling framework
The REMix energy system modelling framework consists of two main elements: the Energy Data

Analysis Tool REMix-EnDAT and the Optimization Model REMix-OptiMo (see Figure 4). Both
elements of the modeling framework were initially developed by Scholz [70]. REMix-EnDAT
contains a global data base for RES-E potentials in high spatial and temporal resolution. The
model is written in C++ and uses geospatial data as well as renewable energy (RE) resource time
series and other climate data to calculate hourly generation profiles and maximum technical
potentials for various RES-E technologies. In addition, the model can be used to calculate hourly
electricity and heat demand profiles with a flexible spatial resolution [17], [67], [70]. Maximum
potentials and normalized generation patterns of RES-E technologies, as well as demand profiles

and techno-economic scenario data, serve as input for the energy system model REMix-OptiMo.

REMix-OptiMo is a deterministic bottom-up LP optimization model with a modular structure
written in GAMS?>. REMix-OptiMo is used as a validation tool for energy supply scenarios with
high shares of RES-E rather than as a long-term capacity expansion planning model that
provides economically efficient multi-annual expansion pathways to meet future demand. The
model calculates the economic dispatch on an aggregated technology level of a proposed
generation fleet of a certain target year (e.g. 2050) with high temporal and spatial resolution
and thereby validates if demand and supply can be balanced in each hour of the year [17].
Additional sectors, such as the heat or transport sector, can be included in the analysis [67],
[69]. Taking into account annuities for investment costs, REMix-OptiMo is also able to optimize
capacity expansion from a least-cost system approach. Typically, the model is used to optimize

for large interconnected systems the deployment of flexibility options, such as energy storage

* General Algebraic Modeling System, www.gams.com


http://www.gams.com/

Enhancements of the REMix energy system modelling framework

systems, transmission grid expansion, or demand side measurement, in add

ition to the

proposed generation fleet of the scenario [15], [16], [67]. However, investment decisions are

based only on the performance of the system in the investigated year irrespective of the

previous or subsequent years. This approach is often referred to as static capacity expansion

planning [14], [33]. Although static capacity expansion planning provides some useful

information for the investigated year, it leads to impractical results as the solution for a single

year cannot be independent from the preceding or subsequent years.
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Figure 4: Overview REMix-EnDAT and REMix-OptiMo, extracted from [67]
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2.2 Enhancements within this work
The REMix energy system modelling framework is continuously enhanced within projects and

especially within various PhD theses at DLR-SYS [15-17], [67], [69], [70]. Figure 5 provides an
overview about the different contributions through PhD theses so far. Also this work
contributes to the enhancements of the modelling framework. It clearly focuses on the
enhancement of the optimization procedure of the modelling framework. The starting point of
this work was the initial REMix-OptiMo version developed by Scholz [70]. The enhancements of
this work lead to the optimization model REMix-CEM. The objective and characteristics of the
newly developed model differ in a certain extent from the model version that was used as a
starting point, even though many similarities exist (see Table 8). Instead of focusing on scenario
validation for large interconnected system, REMix-CEM aims to identify reliable, concerted, and

cost-efficient transition pathways for national power systems.

+ Initial development of
REMix-EnDAT and

REMix-OptiMo
- Optimal Mix of VRE and PhD
DRE for a sustainable Scholz . Development of global
energy supply PhD RE database for
Stetter REMix-EnDAT
* Role of CSP-HVDC
for EU-NA
« Enhancement of
transmission grid
modeling PhD PhD ¢ Coupling with
+ Role of transmission Cao de Tena transport sector
grid as a flexibility
option in Europe

PhD Coupling with heat sector

* Role of storage systems Cebulla . « Potential of demand-side
as a flexibility option in measures

Europe

+ Enhancement to multi-annual
capacity expansion model

+ Detailed representation of REMix-CEM
thermal generators (incl. CSP)

+ Impacts of VRE

Figure 5: Contribution of different PhD theses to the REMix modelling framework

The major enhancements compared to the REMix-OptiMo version that was used as a starting

point (PhD Scholz) can be summarized as follow:
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1. Conversion from a scenario validation tool to a dynamic, long-term capacity expansion
planning model that allows path-optimization over the planning time frame

The original optimization model is converted from a scenario validation tool, which can be used
to perform static capacity expansion optimization for a single year, to a dynamic long-term
capacity expansion optimization model with a multi-annual planning time frame. This
enhancement allows for computing the least-cost capacity expansion pathway for the power
system over a defined planning time frame for a given set of input parameters and model
restrictions. The enhanced modelling framework can be used to identify cost-efficient transition
pathways for power systems towards a sustainable electricity supply. The path-optimization
over the planning time frame allows for considering the risk of a technology lock-in within
capacity expansion planning and for identifying strategies to achieve defined targets for the
planning time frame with highest economic efficiency. With this enhancement, the modelling
framework can be used as the central tool for developing long-term scenarios for a sustainable
electricity supply. The optimization model can be used to develop innovative, explorative, or
normative scenarios, in order to investigate the impact of innovative technologies in future
power systems (e.g. the role of CSP or Lithium-ion batteries), to identify optimal strategies to
achieve specific targets (e.g. GHG mitigation), or to analyze the consequence of policy decisions

(e.g. quotas for RES-E) respectively.

Capacity expansion for the system can be optimized under the assumption of a single-year
myopic, a multi-annual rolling horizon, or a perfect foresight over the planning time frame.
While under the single-year myopic foresight approach each considered year of the planning
time frame is optimized successively by the model, the perfect foresight approach optimizes all
years simultaneously with perfect information over the period of study. The multi-annual rolling
horizon foresight approach is a compromise between the myopic and perfect foresight
approach, as capacity expansion is optimized for several years of the planning time frame
simultaneously, before the model foresight rolls forward and capacity expansion is optimized
for the next group of years. The suitability of the foresight approach depends on the objective of
the analysis, and the applied approach can have a significant impact on results and on
computational effort for capacity expansion optimization. The impact of the applied model

foresight within long-term capacity expansion planning with VRE is investigated in Section 5.2.
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In order to reduce computational effort, long-term capacity expansion optimization within the
enhanced modelling framework is typically based on a sample of representative days or weeks
with a high number of diurnal dispatch periods. The impact of the method to assign values for
load and RE resource availability to the considered representative dispatch periods on results

for capacity expansion optimization is investigated in Section 5.3.

2. Increased modelling detail for conventional thermal generators

An appropriate modelling approach to represent the interaction between conventional thermal
power plants and VRE generators is of major importance when designing concerted and reliable
transition pathways towards a sustainable electricity supply. Increased flexibility requirements
for the system, which come along with a large-scale deployment of VRE, should be considered
already within capacity expansion planning [55], [56], [77]. To consider flexibility constraints of
conventional thermal generators, so called unit commitment constraints (UCCs) are introduced
into the model (minimum generation levels, minimum on- and offline times, part-load
performance, start-up and ramping costs). In this context, the mathematical approach of the
optimization model is converted from LP to MILP. Considering UCCs ensures a more detailed
representation of techno-economic operational characteristics of conventional thermal
generators within capacity expansion planning. Generators are dispatched not only according to
their position in the merit order but also according to their capability to meet the variable
(residual) load. However, considering UCCs means also an increased computational effort due to
the large number of integer decision variables, which describe the unit commitment status in
each dispatch period. Therefore, single UCCs can be included in a flexible way and a linear
relaxation for integer unit commitment decision variables can be applied. This allows the user to
identify the model setup which provides the best compromise between computational effort
and model accuracy required for the respective analysis. The impact of considering UCCs of

thermal generators within capacity expansion planning with VRE is investigated in Section 5.3.

A positive side effect of the enhanced modelling detail for conventional thermal generators is
the possibility to apply the optimization model also as detailed production cost model (REMix-
PCM), which can be used to model system operation of a given asset fleet in detail. Within

annual production cost modelling, a high spatial and temporal resolution (typically 8760 h) and
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the full set of UCCs of thermal generators are applied. Annual production cost modelling for a
given asset fleet can support capacity expansion planning by providing further details about the
annual operation of the proposed system or to investigate the role of a specific technology

within the system in detail.

Countries with high solar resource potentials have also high average ambient temperatures.
High ambient temperatures have however a significant impact on the performance of thermal
generators. This is especially the case for gas turbines and air-cooled Rankine-Cycles [83—85].
The influence of ambient temperature on generator performance is introduced into the model

and is considered with the same temporal resolution as other operational aspects.

3. Increased focus on a reliable system design

A reliability system design, despite high shares of VRE on total annual electricity supply, is a
prerequisite of a successful transition towards a sustainable electricity supply. Future power
systems with high shares of VRE must ensure adequacy of the system by holding available
enough firm generation capacity to guarantee that peak load periods can be met by the asset
fleet reliably. In addition, enough operating reserve capacity must be hold available to perform
frequency stabilization action in the case of an imbalance between demand and supply. To
ensure that computed capacity expansion pathways allow a reliable system operation, several
restrictions are introduced into the model, which ensure that computed solutions contain

sufficient adequacy and operating reserve capacities over the planning time frame.

4. Enhanced modelling approach for CSP

CSP has the potential to play an important role for the transition towards RES-E dominated
power systems for countries with high solar resource potentials. An accurate modelling
approach that considers technical characteristics of the technology is mandatory when aiming
to investigate the potential role of this DRE technology. Enhancements of the modelling
approach for CSP comprise a more detailed representation of the thermal power block (similar
to the approach for conventional thermal generators) and solar field performance, as well as
considering the capability of CSP to provide several system services, such as the provision of

firm capacity and different kind of operating reserves, within capacity expansion optimization.
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Table 8: Comparison of REMix-CEM and initial REMix-OptiMo version developed by Scholz

REMix-CEM

Starting Point Version of
REMix-OptiMo [70]

Type
Modeling language

Mathematical approach

Scope

Perspective

Focus

Capacity expansion
planning approach

Planning time frame

Dispatch periods

Sector coverage
Geographical coverage
Aggregation level

Dispatch strategy

Unit commitment
constraints

Reliability restrictions

Bottom-up optimization model
GAMS

Deterministic mixed integer linear
programming (MILP)

Minimizing total system costs over multi-
annual planning time frame

Central planning authority

Identification of transition pathways for
national power systems

Dynamic (perfect foresight) or semi-
dynamic (rolling horizon, myopic
foresight)

Multi-annual

Flexible, typically hourly for
representative days/weeks of a year

Power sector
Flexible, typically at national level
Single unit level

Flexible, merit order or unit commitment
optimization

Yes (optional)

Demand and supply balance, adequacy
and operating reserves

Bottom-up optimization model
GAMS

Deterministic linear programming (LP)

Minimizing total system costs over one
year

Central planning authority

Validation of long-term electricity supply
scenarios

Static (single year)

Single year

Flexible, typically hourly for entire year
(8760 dispatch periods)

Power sector
Flexible, typically at multi-national level
Technology level (aggregated units)

Merit order optimization

No

Demand and supply balance
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3 Capacity expansion planning with variable renewable energies

In this chapter an overview about different types of power system models utilized by system
planners, policy makers, and engineers is provided (Section 3.1). Models are categorized
according to the timescale of the study from very short-term system operation to long-term
system planning models. Furthermore, the impacts of a large-scale integration of VRE into the
power system are described (in Section 3.2) and an overview about recent developments in

capacity expansion planning with VRE is provided (Section 3.3).

3.1 Timescales of power system models
Power system models can be subdivided into planning and operation models. Power system

models are applied by system planners, policy makers, and engineers to manage, operate, and
plan power systems over timescales from milliseconds to several decades [18], [30], [31].
Figure 6 shows different timescales and issues covered by various power system models. In
general, the engineering detail (model fidelity) and temporal resolution of applied models
decreases with increasing duration of the investigated time frame due to computational
limitations. In contrast, uncertainty regarding input parameters and results increases with the

duration of the study period.

Timescale Models Issues
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Plant retirement/refurbishment
Long-term hydrological cycles
Targets (e.g. CO, mitigation)
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Figure 6: Timescales of power system models (own illustration based on [18], [30], [31])
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Very short-term models for transient stability management and power-frequency regulation
cover time frames of milliseconds to seconds and are applied to model power system dynamics
and transients and to manage a reliable system operation during regular operation and system

disturbances [19].

Power flow models (PFMs), economic dispatch models (EDMs), optimal power flow models
(OPFMs), and unit commitment models (UCMs) are considered as short-term power system
operation planning models. PFMs are used to examine whether the instantaneous balance of
generation and supply is ensured by the assessed power system and how power flows according
to Kirchhoff’s and Ohm’s law [20]. EDMs are applied to plan the optimized generation level of
online generators to meet temporal load of the system with maximum economic efficiency.
OPFMs combine calculations of EDMs with PFMs and plan the least cost dispatch of online
generators considering transmission constraints and losses [21]. UCMs are applied for weekly
generation planning. Within unit commitment optimization, flexibility constraints of thermal
generators (UCCs), such as minimum online and offline times as well as start-up times and
ramping limits with their associated costs, are considered. UCMs have typically a temporal
resolution of 5 - 60 minutes for the dispatch periods in which demand and supply must be

balanced and operating reserve requirements be met by the existing asset fleet [22].

Models for maintenance scheduling and coordination of seasonal power generation of hydro
power and conventional thermal units (hydro-thermal coordination) are considered as medium-
term power system planning models. Such models cover typically time frames of few weeks to
several months [23], [24]. Compared to short-term system operation models, the temporal
resolution of these medium-term models is typically significantly lower and load chronology is
neglected in most cases. Instead of chronological load curves, load duration curves (LDC)* with a
relative low number of load levels are applied to match seasonal generation with demand while

considering restrictions of fossil fuel and hydro resource availability.

* A LDC is constructed from the original chronological load curve by reorganizing values from the highest load
values to the lowest ones. The resulting LDC is divided into some dispatch periods (often also called time-slices) in
order to represent the different load levels over a period of time (e.g. a season or a year).
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Production cost models (PCMs) are used to support long-term capacity expansion planning by
calculating annual operation costs of a proposed generation fleet in detail with high temporal
resolution (typically hourly). PCMs take into account short-term considerations of EDMs and
UCMs as well as medium-term issues addressed by hydro-thermal coordination and
maintenance scheduling. Recently, PCMs have been extensively applied in a large number of
wind power and PV integration studies to investigate impacts of a large-scale integration of VRE
into the power system (wind power, e.g. [41-43], [47] and PV, e.g. [44-46], [75]). PCMs have
also been used to analyze the value of CSP and electricity-storage technologies from a system
perspective [25], [26], [86]. PCMs are typically computationally demanding due to the high
temporal resolution (number of dispatch periods) and the high modelling detail for thermal

generators (UCCs) [27].

Generation expansion planning (GEP) and transmission expansion planning (TEP) models are
used by power system planners, regulators, and policy makers to identify cost-efficient capacity
expansion plans to meet future electricity demand while ensuring a reliable system design and
meet other boundary constraints (e.g. CO, mitigation or RES-E deployment). GEP and TEP are
considered as long-term planning models as investigated time frames cover typically several
years or even decades. Within GEP and TEP bottom-up power system models are applied that
use optimization, simulation, or equilibration methodologies based on mathematical
approaches such as linear programming, integer programming, and dynamic programming [28—

31], [57].

Solutions for generation and transmission expansion are often substitutes as loads can be met
either by local generators or power transmission from remote sites. However, historically in
most cases GEP and TEP were kept separate and treated as two independent expansion
planning problems due to computational complexity. Established practice has been that TEP
follows GEP. The problem of GEP consists of deciding the type (which?), the quantity (how
much?), the timing (when?), and the location (where?) of new generation capacity to meet
future demand in the most economic manner. Within TEP, the optimal transmission expansion
plan to accompany the previous defined generation expansion plan is determined. This

decoupled approach is justified by the fact that transmission costs of current fossil fuel fired
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dominated power systems represent typically less than 10% of the total system costs [32], [33].
However, capacity expansion models (CEMs) that cover GEP and TEP simultaneously (co-
optimization) can identify solutions that are economically more efficient compared to solutions
identified by a decoupled approach. This is especially the case for capacity expansion planning
with RES-E as models can identify if it is more cost efficient to invest largely in grid expansion to
tap the best available RE resources or to use less excellent resources that are however closer to
demand centers and hence require less investments in the transmission grid. However, the
drawback of co-optimizing GEP and TEP within one integrated CEM is the higher complexity that

causes higher computational efforts.

CEMs have typically a significant lower temporal resolution than PCMs due to the multi-annual
planning time frame and the resulting large problem size. In order to keep CEMs manageable
only a limited number of annual dispatch periods is used to model the operation of the system
within a year. Historically, CEMs used LDCs to describe electricity demand over the year and
applied screening-curve algorithms to determine the least-cost expansion plan to balance
demand and supply over the planning time frame, following a merit order dispatch rule.
Haydt et al. call this approach integral balance method [97]. The integral balance method
estimates the utilization of each investment option, based on its variable generation costs and
its average (annual or seasonal) capacity factor for resource availability, and select the
appropriate units for investments by optimizing capital and operating expenditures compared
to expected operating hours (see Figure 7). The advantages of the integral balance method are
its computational simplicity and low data requirements to describe the demand and the supply

side.

Within the integral balance method, UCCs of conventional thermal generators, such as start-up
costs, minimum generation levels, or minimum on- and offline times are neglected. Hence,
generators are dispatched solely according to their position in the merit order without
considering any flexibility constraints. Furthermore, the value of energy at its time of the
delivery for the various supply options cannot be taken into account because using LDCs comes
along with the loss of load chronology and information about the correlation of technology

specific resource availability and electricity demand. These simplifications weren’t an issue
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during times when most CEMs were initially developed because existing power systems and
investment options were dominated by dispatchable conventional thermal and hydro power
plants, daily load patterns were highly predictable, and (residual) load ramps were only
moderate. However, this has changed fundamentally today because VRE (PV, wind power) have
become a very competitive investment option and have been integrated into power systems on
a large-scale in many power systems. Recently it becomes more and more clear that the
described simplifications of the integral balance method are inadequate for capacity expansion
planning with VRE because the impacts of a large-scale integration of VRE into the power

system cannot be captured sufficiently [96].
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Figure 7: Integral balance method based on LDCs and screening curve algorithms to describe annual electricity
demand and to determine the least-cost expansion plan to balance demand and supply [34]
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3.2 Impacts of a large-scale integration of VRE into the power system
Today, onshore wind power and PV are well established and mature power generation

technologies. Global wind power and PV capacity reached about 430 GW and 230 GW
respectively in the end of 2015 [35]. This large-scale deployment has resulted in a significant
cost reduction making these VRE technologies an attractive investment option from a single
investor but also from an entire system perspective. Today, LCOEs of onshore wind power are in
the range of 0.06-0.12 USD/kWh and generation cost of utility-scale PV has fallen around 50%
between 2010 and 2014 resulting in LCOEs of 0.06 - 0.08 USD/kWh or lower at sites with
excellent resources [36]. Therefore, LCOEs of onshore wind power and utility-scale PV are in the
range of variable generation costs of conventional thermal generators fired by oil, natural gas,
and sometimes even coal. This makes them a very attractive fossil “fuel saver”. There is no
doubt that PV and wind power will play a major role within the transition towards RES-E
dominated power systems and that a large share of electricity demand will be supplied by these

VRE technologies in the future.

However, due to the inherent characteristics of VRE, i.e. the site-specific, highly variable, and
unreliable power generation, as well as their low variable generation costs, the large-scale
deployment of PV and wind power has significant impacts on the power system and creates
challenges on different timescales that need to be considered by power system planners and
operators [37], [39]. An overview of studies covering the impacts of integrating VRE into the
power system is given e.g. by [38] where impacts and related integration costs (often also called
external costs of VRE) from a long-term planning and short-term system operation perspective

are distinguished into i) adequacy ii) balancing, and iii) grid-related impacts (see Figure 8).

Adequacy impacts and related costs refer to the fact that on the one hand deployment of VRE
contributes only marginally to adequacy of the system due to their comparably low capacity
credits, but on the other hand reduce significantly the utilization of conventional thermal
generators due to their low variable generation costs. This effect is referred to as utilization
effect [40]. The utilization effect can be further distinguished into the transitional utilization

effect and the persistent utilization effect [39].
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The transitional utilization effect describes the effect of decreasing utilization of existing
conventional thermal generators with increasing VRE deployment. In a first step, utilization of
peaking generators with high variable generation costs, e.g. oil-fired open-cycle gas turbines,
will be reduced. With increasing VRE deployment, also mid-merit and base-load generators will
be affected. The persistent utilization effect describes the structural shift of the residual
generation fleet dominated originally by base-load generators towards a higher share of flexible
mid-merit and peaking generators. In the framework of a large-scale VRE deployment, future
investments in new dispatchable generators will be dominated by investments in flexible
generation technologies with rather low investment costs (mid-merit and peaking units) due to
expected low capacity factors and the need for flexible generation capacity that is capable to

serve the highly variable residual load and the increased need for operating reserve.

Both, the transitional utilization effect and the persistent utilization effect imply an increase in
average generation costs of the residual system. Decreasing capacity factors of the existing
conventional thermal generation fleet will increase the generation costs of the residual system
due to lower utilization but constant investment related capital costs (transitional utilization
effect). With proceeding transformation towards a VRE dominated power system the
transitional utilization effect will be more and more absorbed due to the shift of the residual
system towards flexible mid-merit and peaking generators (persistent utilization effect).
However, even with a shift towards a more flexible residual generation fleet, the average
generation costs of the residual system will increase due to the higher share of mid-merit and

peaking generators with higher generation costs than base load generators.

Balancing impacts and related costs refer to an increasing demand for operating reserves due to
forecast errors of VRE generation and the need for more extensive cycling of dispatchable
generators caused by an increasing variability of the residual load. Following [40], the latter
circumstance is referred to as flexibility effect. Balancing impacts and associated costs have
been investigated in several studies, with the emphasis on wind power in e.g. [41-43], [47] and
for PV in e.g. [44-46], [75]. An increase in operating reserve requirements implies that an
increasing number of dispatchable units, mainly conventional thermal generators, need to be

operated in part-load mode meaning less fuel efficiency and consequently higher generation
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costs and emissions. The higher variability of the residual load leads to more extensive cycling of
dispatchable generators, which causes higher specific generation costs and emissions of the
residual asset fleet (flexibility effect). To avoid an extensive cycling of dispatchable generators
the flexibility of the residual load must be increased, e.g. by an increased deployment of
electricity storage facilities and demand-side measures or spatial smoothing of VRE generation
by long-distance electricity exchange via transmission lines. However, this causes additional

integration costs of VRE and therefore increases overall system costs.

Grid-related impacts and associated costs occur due to the location-specific and modular
characteristics of VRE. In most cases, relevant VRE resources are located far away from demand
centers making considerable investments in new transmission capacity necessary to tap these
resources for power generation”. Furthermore, the large-scale deployment of VRE leads to large
amounts of variable output that requires a reinforcement of the existing transmission grid due

to increased load flows with associated network losses and constraints [47].

* Low capacity credits of VRE
* Low variable generation costs of VRE
- Decreasing utilization of dispatchable units (Utilization Effect)
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- More cycling of dispatchable units (Flexibility Effect) * (V)RE often far away from demand centers
- Higher needs for operating reserve - Grid extensions and reinforcements necessary

Figure 8: Impacts of integrating VRE into the power system

> This is also true for DRE technologies like reservoir hydro power or CSP
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3.3 Recent developments in capacity expansion planning with VRE
Recently it becomes clear that the historically applied integral balance method is insufficient for

capacity expansion planning with VRE because flexibility challenges and the value of energy at
its time of the delivery cannot be represented correctly. The low temporal resolution and the
consideration of LDCs by the integral balance method cannot capture the fluctuating nature of
VRE electricity production and its impact on the residual system (balancing impacts).
Furthermore, a simultaneous capacity expansion planning with dispatchable and non-
dispatchable technologies requires that the competiveness of an investment option is evaluated
not only on the basis of its generation costs but also on its value for the system, mainly
described by the capability to deliver energy reliably at high (residual) demand. As using LDCs
within capacity expansion planning comes along with the loss of load chronology and
information about the correlation of VRE availability with system load, the value of energy at its
time of the delivery of VRE technologies cannot be considered for the investment decision.
Hence, in many cases system planners set VRE deployment model exogenously and use the
integral balance method to optimize capacity expansion for the conventional residual system to
balance residual demand and supply [48], [49]. This approach allows considering the utilization
effect caused by a large-scale integration of VRE into the power system but does not allow a
simultaneous and concerted capacity expansion optimization for VRE, dispatchable generators,
and additional flexibility options, such as e.g. energy storage. Furthermore, the flexibility effect
cannot be considered within capacity expansion optimization because UCCs of conventional

thermal generators cannot be modeled by the integral balance method.

In order to improve long-term capacity expansion planning with VRE, several researchers
attempt to bridge the gap between traditional long-term CEMs and short-term system
operation planning models (PCMs or UCMs), which have a significant higher system-operational
detail (see Figure 9). Thereby, it can be distinguished between two fundamentally different
approaches. A first group of approaches examines results of the CEM with a detailed system
operation model with the aim to better interpret results of the, in terms of system operation,
less detailed long-term planning model (unidirectional soft-link, e.g. [50]) or to adjust input

parameters of the planning model (bidirectional soft-link, e.g. [51], [52]).
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In a second group of approaches researchers put efforts in increasing the level of system-
operational detail directly in the long-term CEM. Some researchers improved the temporal
representation [53], [54], [97], [102] whereas others focus on a higher modelling detail for
conventional thermal generator and operating reserve requirements [56], [77]. The increased
system-operational detail increases computational complexity significantly. However, it can be
concluded that the higher computational effort is justified by a significant higher accuracy for
capacity expansion planning with VRE. It was shown that long-term CEMs which apply a low
temporal resolution tend to overestimate competiveness of less flexible baseload technologies
(nuclear, lignite) and non-dispatchable VRE (PV, wind power), while competiveness of flexible
dispatchable mid-merit and peaking generators is underestimated [53], [54]. Nweke et al. [55],
Palmintier and Webster [77], and Welsch et al. [56] demonstrated that neglecting UCCs of
thermal generators and other flexibility requirements, such as operating reserve requirements,
during capacity expansion planning with VRE can lead to non-optimal investment decisions

resulting in significant higher generation costs and CO, emissions of the system.

Long-term
system
planning
issues

Short-term
system

operation
issues

Concerted
capacity expansion
planning with VRE

Figure 9: Combining long-term system planning with short-term system operation issues for a concerted capacity
expansion planning with VRE



Chapter 3: Capacity expansion planning with variable renewable energies 25

In countries with high solar resource potentials, one option to meet increased system flexibility
requirements due to a large-scale integration of VRE is the utilization of CSP with thermal
energy storage and fossil/bio fuel fired back-up burner system. However, as CSP is a relatively
new commercially available technology, many long-term capacity expansion models do not have
the capability to include CSP at all in the analysis or do apply an insufficient modelling approach,
which underestimates the value of the technology from a system perspective and its capability
to support VRE integration. In the case CSP is included in the analysis, in many cases CSP is
modeled as a non-dispatchable VRE technology instead of a DRE technology. In such models,
the only difference between CSP and PV is that non-dispatchable power generation of CSP is
extended for several hours after sunset in the case CSP units are equipped with a thermal
energy storage system [57]. An example of this CSP modelling approach is given in [58]. Some
researchers have improved the modelling approach for CSP within long-term capacity expansion
planning by enabling CSP generators to be dispatched according to the needs of the system. This
modelling approach represents already a significant improvement because the value of energy
at its time of the delivery is captured for dispatchable CSP generators [59], [131]. However, the
value of entirely firm power generation from CSP by the back-up burner system is not
considered in these models, even though this represents a major advantage especially for
power systems with increasing peak load and total annual electricity demand like it is the case in

MENA, Southern Africa, Latin America, China, and India.
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4 Capacity expansion optimization model REMix-CEM

This chapter introduces the optimization model REMix-CEM that was developed in this work.
REMix-CEM aims to bridge the gap between traditional long-term CEMs and detailed short-term
PCMs to consider the different impacts of a large-scale deployment of VRE (adequacy,
balancing, and grid-related impacts) and the value of energy at its time of the delivery for the
various supply options during capacity expansion optimization. A qualitative description of the
model is provided in Section 4.1. The mathematical formulation of the major enhancements

compared to the initial REMix-OptiMo version is presented in Section 4.2.

4.1 Qualitative model description
REMix-CEM was developed to support national system planning authorities of developing and

emerging economies in the process of defining concerted and reliable transition pathways
towards a sustainable electricity supply. Figure 10 shows how REMix-CEM is typically embedded

in the overall advisory process for national system planning authorities.
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Figure 10: Methodology for national power system planning consultancy



Chapter 4: Capacity expansion optimization model REMix-CEM 27

In the first step of the advisory process, a geographical information system (GIS) is applied to
qguantify overall potentials and to identify favorable sites for utility-scale RES-E using geospatial
data for resource availability and land coverage (see Figure 11). Hourly meteorological data at
the identified RES-E sites serve as input for the optimization model REMix-CEM. Additionally,
parameters describing demand over the planning time frame (chronological load curve, annual
peak load, and electricity demand), the techno-economic characteristics of existing units and
available investment options (investment and fuel costs, generator efficiencies, etc.) and the

storyline of the analysis (e.g. political targets) serve as input for the optimization model.

In the second step of the advisory process, REMix-CEM is used to compute the least-cost
capacity expansion plan to meet future electricity demand over the planning time frame, while
ensuring adequacy of the system from a long-term planning perspective and a reliable system
operation from a short-term system operation perspective. The least-cost system expansion
plan can be computed for various targets over the planning time frame, such as maximum
threshold for CO, emission or minimum RES-E quotas. To investigate the consequences of
certain policy targets and robustness of results, capacity expansion modelling for the power

system typically contains several what-if analyses and sensitivity studies.

In the third and last step of the advisory process, investment and implementation strategies are
developed based on the results and lessons learned from capacity expansion modelling.
Thereby, various implementation and financing options are considered and evaluated to define
a detailed investment roadmap for the power sector (e.g. different types of project financing,

concessional financing, tax incentives, de-risking measures, feed-in tariffs, etc.).

REMix-CEM is a power sector specific deterministic mixed integer linear programming (MILP)
optimization model, formulated in the modelling language GAMS. From a central system
planning perspective the bottom-up optimization model optimizes capacity expansion for a
given power system to meet future electricity demand within defined reliability standards by
minimizing the net present value of total systems costs over the planning time frame. The
geographical coverage of the model is typically at national level. However, multi-national or sub-

national power systems can also be modelled.
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Figure 11: Site-ranking analysis for identifying favorable RES-E sites using geo-spatial data and GIS. The example

shows a site-ranking analysis to identify favorable CSP areas in the Hashemite Kingdom of Jordan. For a more

detailed description please refer to Fichter et al. [60].
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Planning time frames can be defined flexibly and are typically between 10 - 40 vyears.
Formulated as multi-node model, REMix-CEM provides not only optimal investment strategies
for new generation and storage assets and their spatial distribution and operation but also
delivers first indications for required transmission grid reinforcements and extensions
associated with the respective supply side expansion plan®. The least-cost expansion plan for
the system is complemented by detailed information about generation costs (separated by
capital and operational related costs), utilization, emissions (CO,, NOx, SO,, and PM,;s), and

water usage over the planning time frame for single assets and the entire system.

REMix-CEM is formulated in a modular way. The model structure and the available modules are
presented in Figure 12. The module System Planner & Operator contains the objective function
of the optimization model (minimizing total system costs) and all restrictions on system level,
which are required to ensure a reliable system design over the planning time frame.
Furthermore, the module contains so-called user constraints which can be applied flexibly. User-
constraints can be applied to perform the least-cost capacity expansion optimization for the
power system under defined targets or boundary conditions (e.g. annual CO, emissions of the
power system or maximum deployment rates for a certain technology). Hence, the user-
constraints have the function of guide rails that restrict the solution space for the optimization
problem. The System Planner & Operator can make use of several supply side options to meet
electricity demand, reliability standards, and targets for the power system with highest
economic efficiency (least-cost). The different supply side options are modeled in technology
specific modules whereby several sub-technologies are represented by each module. The
modelling approach applied for the various sub-technologies of a module is always the same but
techno-economic input parameters describing the respective sub-technology differ. For
example, in the module Conventional Thermal Generators, nuclear power plants and open-cycle
gas turbines are modeled with the same set of equations, but different techno-economic input

parameters are utilized.

® This however does not replace a subsequent detailed transmission grid expansion study.
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Figure 12: Overview of modules and available technologies in REMix-CEM

REMix-CEM can be used to test innovative, explorative, or normative scenarios, in order to
investigate the impact of innovative technologies in future power systems (e.g. the role of CSP
or energy storage), to identify optimal strategies to achieve specific targets (e.g. GHG
mitigation), or to analyze the consequence of policy decisions (e.g. quotas for RES-E or
implementation of CO, certificate prices) respectively. The least-cost system expansion plan for
the planning time frame can be identified under different foresight approaches. The user can
chose between a perfect, a rolling horizon, and a myopic foresight approach (see Figure 13).
Examples for the model application with myopic foresight are given in [60], [61] where capacity
expansion optimization is executed for the power system of Jordan. An example for applying the
perfect foresight approach is provided in [62], where capacity expansion is optimized for the

Northeast power system of Brazil.
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Figure 13: Different foresight approaches available in REMix-CEM

Under the perfect foresight approach, REMix-CEM calculates the optimal (least-cost) capacity
expansion pathway for the power system to meet electricity demand over the planning time
frame in one single model run. This approach enables decision makers to identify optimal short-
and long-term investment strategies under defined boundary conditions (scenario story lines)
because the results represent the global optimum to meet electricity demand over the planning
time frame. However, a disadvantage of the perfect foresight approach is its high computational
effort (due to the large optimization problem) and the implicit assumptions that all information
characterizing the investigated planning time frame is known apriori, which not fully captures

the decision framework of system planning authorities.

Another available approach in REMix-CEM is the single-year myopic foresight approach. In this
approach, the capacity expansion problem is solved for each year of the planning time frame
sequentially, taking into account results of the previous optimization period. The large
optimization problem created under the perfect foresight approach is separated into several
smaller sub-problems, which can be solved with significant less computational effort. However,
the disadvantage of this approach is that the optimization model is provided with no

information that goes beyond the current optimization period (one year). Hence, investment
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decisions are made exclusively on the basis of the current situation (e.g. electricity demand, fuel
and technology costs, political targets) without anticipating any changes in future years of the
planning time frame. The assumption that system planning authorities have no information
about future occurrences of the planning time frame at all is just as unrealistic as the
assumption of having perfect foresight about all future developments as it is the case in the
perfect foresight approach. Naturally, computed solutions for capacity expansion optimization
under the myopic foresight approach are more costly than under the perfect foresight approach
because results of the former approach do not represent the global optimum for the planning

time frame anymore.

The third available foresight approach in REMix-CEM is the multi-annual rolling horizon
approach. This approach is a compromise between the perfect foresight and the single-year
myopic foresight approach. Several years of the planning time frame are grouped together and
are optimized simultaneously under perfect foresight. After solving the sub-problem of the first
optimization period, the foresight horizon rolls forward to the next group of years while taking
into account investment decisions made in the previous optimization periods. If desired, an

overlap between the defined optimization periods can be applied.

In order to avoid so-called end effects during capacity expansion optimization, annualized
investment costs are considered in REMix-CEM and perpetuity is applied for all system costs of
the final year of the finite planning horizon. Neglecting end effects during long-term capacity
expansion optimization lead to anomalies in investment decisions towards the end of the finite
planning horizon. A typical anomaly is that in the final years of the planning time frame
candidate units with low investment costs but high operational costs are installed. Due to the
truncation of the (in reality) infinite planning horizon, the advantage of candidate units with low
operational costs over their lifetime but rather high investment costs cannot be considered. By
using annualized investment costs this end effect can be mitigated. Another effect of a finite
planning horizon is that potentially decreasing utilization of assets (e.g. conventional thermal
generators) towards the end of the planning time frame and beyond is not fully captured due to
the truncation of the planning horizon itself and the highly discounted costs towards the end of

the planning time frame. Considering decreasing utilization of conventional thermal generators
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is however of high importance for capacity expansion planning with VRE (utilization effect). By
applying perpetuity for the system costs of the final year of the planning time frame, the
importance of the finite year of the planning time frame increases considerably. This
accommodates the utilization effect within capacity expansion planning with VRE. For further

reading about end effects and different strategies for mitigation please refer e.g. to [63].

To overcome the limitations of the integral balance method described in Chapter 3, capacity
expansion modelling in REMix-CEM is based on high temporal resolution (typically hourly) using
chronological time-series for system loads and RE resource availability for representative
periods of the year (e.g. one representative week per season or one representative day per
month). The utilized periods have the aim to represent seasonal and diurnal load and RE
resource variability over the year as accurately as possible. According to Haydt et al. this
approach is referred to as semi-dynamic balance method [97]. Taking into account all days of a
year (dynamic balance method) would result in the highest accuracy in terms of considering
temporal load and RE resource variability over the year. However, this would increase
computational effort for long-term capacity expansion optimization extremely. Hence, the semi-
dynamic balance method represents a compromise between capturing in some extent the
short-term dynamics of demand and supply of the power system and being in the same time
less data intensive and computationally demanding. Applying the semi-dynamic balance method
enables REMix-CEM to consider the value of energy at its time of the delivery during least-cost
capacity expansion optimization from a central planning perspective. This is crucial for capacity
expansion planning with VRE because the competiveness of a technology from a system
perspective is not only determined by its generation costs over the planning time frame but also
by its value for the system (e.g. capability to produce electricity during high demand and

contributing to system adequacy and a reliable system operation).

REMix-CEM has a flexible inter- and intra-annual temporal resolution (see Figure 14). The
applied temporal resolution determines the number of dispatch periods that are considered

over the planning time frame.” As the number of dispatch periods influences computational

’ Time slices is another expression for dispatch periods often used in the literature
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efforts directly, a trade off exists in terms of accuracy and manageability of the model. The
multi-annual planning time frame can be separated into several periods with user-defined
durations (inter-annual dimension). For each period only one so-called milestone year is
modelled, assuming system costs and operational behavior are constant over the period
represented by the milestone year. In addition, a year can be represented by several dispatch
periods for which values for system load and RE resource availability are assigned. Three intra-
annual dimensions are available to represent seasonal and diurnal load and RE resource
variability over the year. For example, a year can be split into several seasons (intra-annual
dimension 1), each represented by a representative day or week (intra-annual dimension 2),
which in turn can be described by a defined number of chronological dispatch periods (intra-
annual dimension 3). In the optimization model, only the representative dispatch periods are
used to model the operation of the system. However, each dispatch period is multiplied with a
weighting factor to ensure that the time period of the year which is represented by the
representative dispatch period is considered correctly. To reduce computational effort, the
intra-annual dimensions 1 and 2 are typically not linked chronologically. However, this approach

limits the possibility to model seasonal storage technologies.

Planning time-frame

Inter annual
dimension:

Y01 Y02 YO3 || YO4 YO5 Y06 (| YO7 Y09 || Y10 Y11 Y12 || Y13 Y14 Y15

Intra annual
(Seasons or months)

S04 j

dimension 1:

Intra annual

dimension 2: (Weeks or days)

Intra annual

Di I
dimension 3: (Diurnal)

Figure 14: Exemplary dispatch period tree of REMix-CEM. Inter- and intra-annual temporal resolution can be
determined flexibly. The example shows a 15 year planning time frame represented by five milestone years (Y),
four seasons (S), one working and one weekend day (WD, WE), each described by 24 diurnal dispatch periods.

In addition to the value of energy at its time of the delivery, the semi-dynamic balance method

enables REMix-CEM to consider the flexibility effect caused by a large-scale deployment of VRE
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within capacity expansion optimization. The utilization of chronological dispatch periods allows
for considering inter-temporal operational constraints of thermal generators (UCCs) which
describe the flexibility characteristics of a generator. Only when considering these UCCs the
flexibility effect can be captured within capacity expansion optimization. However, considering
UCCs of thermal generators within capacity expansion optimization comes at high
computational costs because a large number of integer variables are required to describe the
commitment status of each unit in each considered dispatch period of the planning time frame.
Therefore, REMix-CEM has a flexible formulation that allows a flexible application of UCCs
where single constraints, such as start-up costs, minimum generation level, or minimum offline
times, can be included individually. Furthermore, a linear relaxation for integer variables that
describe the unit commitment status of a generator can be applied. With this flexibility, the user
can identify the optimal trade-off between computational effort and accuracy of the model in

capturing the flexibility effect.

Due to its flexible formulation, the developed optimization model can be applied not only as
CEM but also as detailed PCM. The possible forms of application are highlighted in Figure 15.
One option is to execute long-term capacity expansion optimization in a first step (REMix-CEM)
and a detailed annual production cost modelling (REMix-PCM) for the proposed asset fleet of
the CEM in a subsequent second step (soft-link). Typically, the CEM uses the semi-dynamic
balance method to keep computational effort of the CEM manageable. Furthermore, also to
reduce computing time, operational details of thermal generators are often simplified (e.g.
considering not the full set of UCCs of thermal generators). Results of the CEM are the least-cost
capacity expansion plan (asset fleet) and a first indication for the operation of the proposed
system over the planning time frame. Applying the optimization model subsequently as a
detailed PCM provides further insights into the operation of the proposed asset fleet and
validates how reduced temporal resolution and simplified operational details bias results for the
operation of the system assumed in the CEM. The subsequent PCM optimizes the annual
operation of the proposed asset fleet with at least hourly resolution (dynamic balance method)
for a certain year of the planning time frame (e.g. the final year) taking into account the full set

of UCCs of thermal generators.
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Figure 15: Possible forms of application of the developed optimization model

Another form of application is using the optimization model solely as PCM to perform
production cost modelling for an asset fleet derived from an external source to provide further
insights about the operation of the power system or to analyze the role of a certain technology
for the operation of the system in detail. Examples for this form of model application are given
e.g. in Soria et al. [64], where the model is used to validate results of capacity expansion
optimization for the Brazilian power sector derived from the energy system models TIMES and
MESSAGE, or in Cebulla and Fichter [65], where the model is applied to highlight the need of a
detailed modelling approach for conventional thermal generators to assess electricity storage
requirements for power systems with high shares of VRE. In Moser et al. the model is used to

optimize the dispatch of dry-cooled CSP generators for different operation strategies [66].

Table 9 summarizes the characteristics of the developed power system optimization model,
which aims to bridge the gap between traditional long-term CEMs and short-term PCMs for a

concerted capacity expansion planning with VRE.
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Table 9: Characteristics and features of the optimization model REMix-CEM

REMix-CEM

Model type
Methodology

Scope

Objective
Perspective

Sectoral scope
Planning time frame
Spatial resolution
Temporal resolution
Model foresight

Operational details
for thermal units

Reliability constraints
Environmental

aspects

Additional feature

Bottom-up optimization model

Deterministic mixed integer linear programming (MILP)

Co-optimization for capacity expansion of generation, storage and transmission assets
Minimization of net present value of total system costs

Central system planning authority

Power sector

Flexible, typically 10 - 40 years

Flexible, typically national with multiple sub-regions

Flexible, typically hourly for representative days (semi-dynamic balance method)
Flexible, perfect foresight, rolling horizon foresight, or myopic foresight

Flexible application. Single constraints can be included individually. Constraints
comprises: Start-up and shut down costs, minimum generation level, minimum online
and offline times, online ramping costs, part-load efficiency

Long-term planning (adequacy reserve) and short-term operating reserve capacity
(spinning and standing reserve) can be considered

Consideration of CO,, SO,, NOx, and PM2.5 emissions and water consumption of thermal
generators

Can be applied solely as detailed production cost model (REMix-PCM)

4.2 Mathematical formulation of the major enhancements of the REMix
energy system modelling framework

The following section provides the mathematical formulation of the major enhancements of the
REMix energy system modelling framework within this work (see section 2.2), i.e. the
conversion from a scenario validation tool to a dynamic, long-term capacity expansion
optimization model that allows path-optimization over the planning time frame, an increased
modelling detail for conventional thermal power plants in order to consider flexibility
constraints of generators, a detailed consideration of system reliability constraints in order to
ensure a reliable system design, and an enhanced modelling approach for CSP in order to assess

the potential role of this DRE technology in countries with high solar resource potentials.

These enhancements led to the development of the capacity expansion optimization model
REMix-CEM. In the following, only the mathematical formulation of the modules System Planner
& Operator, Conventional Thermal Generators, and Concentrating Solar Power of REMix-CEM

are described as these modules compromise the major enhancements within this work.
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However, all other modules of the original REMix-OptiMo version developed by Scholz [70] have
been enhanced to be used for long-term capacity expansion optimization. This comprises
additional equations necessary to perform capacity expansion optimization over a multi-annual
planning time frame under different foresight approaches and equations to consider system
adequacy and operating reserve allocations. For a detailed description of the principle and the
basic mathematical formulation of modules that are not described in this work, please refer to
[67-70].

4.2.1 Module System Planner & Operator

The module System Planner & Operator contains the objective function of the optimization
problem and all restrictions on system level that are required to ensure a reliable system design
over the planning time frame. Furthermore, the module contains so-called user-constraints,
which can be applied to perform least-cost capacity expansion optimization under defined
targets and boundary conditions for the investigated power system (e.g. RES-E quotas or CO,
emission limits). The user-constraints act as guide rails for the optimization model and restrict
the solution space for the least-cost capacity expansion plan to meet the electricity demand

over the planning time frame.

A power system represented in REMix-CEM can be composed of multiple balancing regions (R).
Each balancing region comprises at least one model node (N) with a time-dependent load that
might vary over the planning time frame. Power demand at each model node can be covered by
existing and candidate supply side assets sited at the model node or by power transmission
from other nodes of the system via existing and candidate transmission lines. At each balancing
region enough firm generation and operating reserve capacity must be hold available to ensure
generation adequacy from a long-term planning perspective and a reliable system operation
from a short-term operation perspective. An illustrative example of a power system composed
of multiple balancing regions, nodes, as well as existing and candidate generation and

transmission assets is shown in Figure 16.
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Figure 16: lllustrative example of a power system represented in REMix-CEM

Objective function
The objective function of the optimization problem is presented in equation (1). The model

seeks to minimize the net present value of total system costs [NPVSYSt™] py discounting
annual capital and operational expenditures of all existing and candidate generation, storage,
and transmission projects [p] over the planning time frame [CAPEX,, ,, OPEX,,]. The planning
time frame is represented by a set of milestone years [y]. Annual CAPEX and OPEX are
multiplied by the duration of each period represented by the respective milestone year [d;,”y],
and discounted to the base year of the analysis by a discount factor [df,]. Additionally, the
objective function contains a cost component that deals with end effects. End effects are
treated within REMix-CEM by assuming that results of the final year of the planning time frame
[LPY] are repeated an infinite number of times. The perpetuity calculated in equation (2) is

applied for all CAPEX and OPEX of the final year of the planning time frame.

Npysystem = Z Z df, - dj* - (CAPEX,, + OPEX, ) + END EFFECT = Minimize! (1)
y p

dfipy - (CAPEX, 1py + OPEX,, ;py) @)
discount_rate

END EFFECT =
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Annual capital expenditures
Annual CAPEX of each candidate project are computed in equation (3). Total overnight

investment costs are multiplied with a factor for interests during construction and transformed
into equal annual annuities using an annuity factor. The factor for interests during construction
is calculated according to equation (4). Equation (5) determines the annuity factor based on the

project specific weighted average cost of capital (WACC) and the economic lifetime of the

project.
CAPEX,, = et - (1 + idc,) - af, VpECP (3)
. waccy, - ctp
ide, = ———F—=L VgECP (4

(1 + waccy) e - wacc,
a = .
fp (1 + Waccp)Ec.ltfep -1

vpeECP (5

Supply and demand balance
The supply and demand balance for each model node of the power system is given in equation

(6). In each dispatch period of the planning time frame, power generation of the node’s
generation fleet plus imports from other nodes must be equal to the load, electricity
consumption from storage facilities and CSP generators, and exports to other nodes of the
system. CSP generators can use electricity from the grid to cover auxiliaries required to operate
the solar field and the thermal energy storage. Power generation and grid consumption of
assets is reduced by an availability factor [ay] that depends on the unit specific forced and
maintenance outage rate [fory, mory]. The power transmission network is modeled as generic
transportation model with maximum transfer capacities and defined network losses between

model nodes [70].

Z PNet .. - ay +IMPORT, 4.

gEN vn; vy;
(6)
i Vs, Vvd, Vvt
_ Charge Grid,Aux ’ ’
= loady,ysac + EXPORT, ;4. + Z P it Z Pt |- ag
gESTO gECSP
gEN gEN

with a, = 100% — for, — mor,



Chapter 4: Capacity expansion optimization model REMix-CEM 41

Generation adequacy reserve (long-term planning reserve)
Generation adequacy can be defined as a measure for the ability of the available domestic

generation capacity to satisfy the load of a system in all steady states that may exist. Reasonable
amounts of unavailable capacities due to operating reserve requirements, overhauls, forced and
planned outages, and non-usable capacities due to a lack of primary energy resources of RES-E
technologies must be considered when assessing the adequacy of the system [71]. To maintain
a reliable system design over the planning time frame a dynamic approach to ensure generation
adequacy for each balancing region of the system is applied. For each considered dispatch
period of the planning time frame equation (7) ensures that in each balancing region of the
system the sum of the domestic firm net capacity is equal or greater than the domestic load
including a defined reserve margin (rm). The asset-specific firm net capacity is calculated by
multiplying the gross capacity with a factor for auxiliary requirements [aux,], a time-dependent

correction factor for the influence of ambient temperature on available capacity [cfgpsd ¢, anda

time-dependent capacity credit [ccy g g,.].°

P
load, 54 (1 +7m) < Z CAF,, - (1 - auxg) “Cfgsae CCosat vr,Vy, Vs, vd, vt )
JER

For conventional thermal, CSP, and reservoir hydro generators as well as for energy storage
systems, the time-dependent capacity credit is assumed to be constant for each dispatch
period. The capacity credit of conventional thermal generators depends entirely on the
technically forced outage rate because it is assumed that there is a very low risk for a lack of
primary energy resources (fuel shortages). For CSP generators the capacity credit depends on
the capacity of the back-up burner, which is subject for optimization, and the assumed
technically forced outage rate for the entire CSP generator. For energy storage systems and
reservoir hydro generators the capacity credit depends on the size of the storage reservoir and
the technically forced outage rate. The capacity credit of VRE generators varies for each
considered intra-annual dispatch period because the capacity credit of VRE generators depends

not only on the technically forced outage rate (probability of generator tripping) but also on the

8 . P
The correction factor ¢f

section). For all other technologies the correction factor is set to one.

4, for thermal generators is calculated according to equation (36) (see following
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seasonal and diurnal availability of the primary energy resource. The methodology to determine

time-dependent capacity credits of VRE generators using the simulation software INSEL? is

presented and explained in Figure 17.

Hourly capacity factor
Historical climate data | calculation for VRE
of several years | generators using
INSEL
v

Capacity Factor

0.30

000102030405060708091011121314151617 181920212223
Dispatch period

lllustrative example for definition of time-dependent VRE capacity credits:
Assume that in the capacity expansion model each month is represented by one

representative day with 24 diurnal dispatch periods and five years of historical

climate data are available. The time-dependent capacity credit of a PV generator

in January would be determined as follow: The software INSEL is used to

calculate hourly capacity factors of the PV generator for all days in January for
the five historical years (5 times 31 days = 155 capacity factors for each diurnal

dispatch period). The lowestof the 155 values of each dispatch period is
determined as the representative capacity credit for the respective diurnal

dispatch period in January. This procedure is repeated for all month of the year.

The resulting time series of time-dependent capacity credits serve as input for
REMix-CEM.

Selection of minimum
capacity factors

Capacity Factor

000102030405060708091011121314151617 181920212223
Dispatch period

A 4

Time-dependent
capacity credits as
input for the

optimization model
REMix-CEM

Figure 17: Methodology for determining temporal capacity credits of VRE generators

The dynamic approach for ensuring generation adequacy for each balancing area in

combination with the concept of time-dependent capacity credits of VRE generators allows for

considering the effect of decreasing contribution of VRE generators that rely on the same

primary energy resource to meet critical load periods (diurnal peak loads) with increasing

penetration rates. This effect is highlighted in Figure 18. With increasing penetration rates of a

VRE technology the critical diurnal load periods shift towards periods of low availability of the

VRE technology (diurnal residual peak load periods). Due to the correlated generation patterns

9 . . . .
Integrated Simulation Environment Language, www.insel.eu
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of VRE generators that rely on the same primary energy resource, there is a high probability that
an additionally installed VRE generator will produce electricity just in the same moment as an
already existing VRE generator of this technology type. This results in a low contribution of the
additionally installed VRE generator to serve the critical residual load periods. This effect can be

reduced by a spatial distribution of VRE generators [72-76].

However, also a more conservative and straight forward approach can be applied for the
generation adequacy reserve restriction in REMix-CEM by setting the capacity credit of VRE to
zero for all intra-annual dispatch periods. In this case, generation adequacy depends entirely on
the assumptions for capacity credits of dispatchable generators. A variation of VRE resource
availability from year to year would than only influence the utilization of the different assets of

the system but not generation adequacy of the system.

Penetration
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Figure 18: Decreasing contribution of VRE (example PV) to meet residual peak load demand.
Left: Mean diurnal residual load curve of a balancing region in Arizona for increasing PV shares. The dot marking
the diurnal residual peak load that continuously shifts later into the evening as the PV share increases. Right:
Average capacity factor of all PV generators at diurnal residual peak load as a function of PV penetration for a
balancing region in Arizona in August [76]. (Note: Original axis label of figures have been adjusted to the
terminology of this work).
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Spinning and standing reserve (short-term operating reserve)
Operating reserve capacity has the aim to ensure a reliable system operation by performing

frequency stabilization actions in the case of an imbalance between demand and supply.
Imbalances can occur due to unforeseen events (e.g. generator tripping) or forecast errors for
expected load and VRE generation. The optimization model contains three types of operating
reserve capacities that must be kept available in each considered dispatch period of the

planning time frame:

e Positive spinning reserve:

o Fully activated within 10 min and maintained for 1h
e Negative spinning reserve:

o Fully activated within 10 min and maintained for 1h
e Positive standing reserve:

o Fully activated within 60 min and maintained for 24h

Positive and negative spinning reserve capacity is restricted by equation (8) and (9) respectively
and can be provided by dispatchable units (generation and storage assets) that operate below
(above) their maximum (minimum) generation level. Negative spinning reserve can also be
provided by VRE generators through curtailment. The minimum available positive standing
reserve capacity is restricted in equation (10). Standing operating reserve can be offered by
offline dispatchable generators with fast start-up capabilities. Operating reserve requirements
to cover load and VRE generation forecast errors are modeled dynamically to avoid an
overestimation of reserve requirements (e.g. during night no reserve capacity is necessary to

balance out forecast errors for PV generation).

Spin+ 10min+
Z OR = 0TCrysdt

& gysdt = vr,Vy,Vs,vd, vt (8)
9JER
Spin— Net 10min—
OR + Z P > orc
,Y,8,d,t gy.sdt = ry,s,d,t
g;a 9y St vr,Vy, Vs, vd, vt 9)
JgER JgER
o 60min+
OFFgysa¢ Dy (1 —auxy) > orc’Jedt

gEFSG vr,Vy, Vs, vd, vt  (10)

JER
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User constraints (guide rails)
Several user constraints are available that can be applied flexibly. User-constraints are applied

to execute least-cost capacity expansion optimization under defined targets or to narrow down
the solution space by introducing guide rails for the optimization model. The introduction of
guide rails is especially important when least-cost and a reliable system design is not the only
criterion for defining the system expansion plan but other issues such as security of supply,
environmental aspects, job creation or steady growth rates for certain industries (e.g. PV
industry) are aimed to be considered during capacity expansion optimization. Hence, user-
constraints/guide rails are often applied when policy driven least-cost expansion pathways for

power systems are aimed to be computed by REMix-CEM. Available user-constraints comprise:

e Maximum annual CO, emission of the system by year

e Maximum total CO2 emissions over the planning time-frame

e Minimum share of RES-E generation by year

e Minimum/maximum annual offtake of a specific fuel

e Minimum/maximum annual capacity addition by technology

e Minimum/maximum total capacity expansion over planning time frame by technology

e Minimum annual utilization for certain types of generators

4.2.2 Module Conventional Thermal Generators
The module Conventional Thermal Generators comprises all generators fired by fossil- and bio-

fuels. The accuracy of the modelling approach for conventional thermal generators applied in
the module was validated with the thermal cycle simulation software KPRO™® during the
THERMVOLT project. Maximum deviations for variables describing the performance of
conventional thermal generators at defined load levels were below 0.3% [132]. The module for
conventional thermal generators is formulated in that way that the level of modelling detail can
be defined flexibly. More precisely, this means that single UCCs, which describe the flexibility
characteristics of conventional thermal generators, such as start-up and shut-down costs,

minimum online and offline times, part-load efficiencies, minimum generation levels, maximum

1 kpRO software, www.kpro-fichtner.de
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ramping and load following costs, can be applied individually. Furthermore, a linear relaxation
for the unit commitment decision variables can be applied. In the case UCCs are not applied at
all, units are dispatched according to their position in the merit-order. The merit-order dispatch
is determined by the short run marginal costs (SRMC) of the various existing and candidate

generators.

One approach to model UCCs is to use binary variables to describe the commitment status
(on/off) for each unit in each dispatch period of the planning time frame. However, due to the
large number of required binary variables this approach comes at very high computational cost.
One strategy to reduce the number of binary variables is the application of a so-called unit
clustering approach, as proposed e.g. by Palmintier and Webster [77]. Figure 19 shows the
principle concept of the clustering approach. Units with similar techno-economic characteristics
are grouped together and modeled as one generator with multiple units (generator = cluster). In
the unit clustering approach, investment and unit commitment decisions at each generator are
represented by integer variables instead of using binary variables for each single unit. This leads
to a large space reduction for the optimization problem, which in turn reduces computational

efforts significantly.

Generator
: Maximum build units, maxg y
Unit n ’
- —— Build units, BUILD,,,,
Unit 3
w— 7 Online units, ONg y ¢ a ¢
Unit 1

Figure 19: Clustering approach for capacity expansion optimization with unit commitment constraints
of thermal generators
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Maximum number of units and cumulative installed capacity at generator
The maximum number of units that can be built at each candidate generator over the planning

time frame is restricted by equation (11). The cumulative number of built units at each
generator over the period of study is calculated in equation (12). Resulting gross capacity is
determined in equation (13). For already existing generators equation (11) is reformulated to a

strict equality and [maxg ] represents the number of existing units at the generator.

Z BUILD,,, < i, Vg € CTG,with BUILD,, = 0if fy, >y  (11)
y

BUILDSY™ = BUILDSY™, + BUILD,,, Vg € CTG,Vy,with BUILDSY™ = 0if ly, <y  (12)

CAP,, = BUILDSY™ - 5

. Vg € CTG,Vy  (13)

Maximum online units at generator
The maximum number of units that can be online at each generator is restricted by equation

(14). The number of online units in each dispatch period of the planning time frame must be
smaller than the cumulative number of installed units at the generator in the respective year.
Equation (15) determines the number of units that are offline and thus can offer standing

reserve capacity in the case they have fast start-up capabilities.
ON,ysa: < BUILDSY™ Vg € CTG,Vy,¥s,Vd,Vt  (14)

OFFyy5a¢ = BUILDSY™ — ONy oy q¢ Vg € CTG,Vy,Vs,vd, vt  (15)

Minimum online and offline times
Restrictions for minimum on- and offline times are formulated aligned to [78] but adjusted to

the unit clustering approach as given in equation (16) and (17) respectively. In addition,
equation (18) ensures the logical condition for the online, start-up, and shut-down status of
each unit of the generator. Equation (19) ensures that the commitment status of each generator
in the first and the last dispatch period [FT, LT] of the second intra-annual dimension

(representative week or day) are equal to avoid biased results for generator start-ups.
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Vg € CTG,Vy,Vs,Vd,
SUg,y,s,d,k < ONg,y,s,d,t (16)

k=t—mutg+1 t € [mUtg, T]

Vg € CTG,Vy,Vs,Vd,

SDg,y,s,d,k < BUILDgC’I;,m - ONg,y,s,d,t (17)
k=t-mdtg+1 te [mdtg, T]
ONg,y,s,d,t - ONg,y,s,d,t—l = SUg,y,s,d,t - SDg,y,s,d,t Vg € CTG,Vy, Vs, Vd, VvVt (18)

ONg,y,s,d,FT = ONg,y,s,d,LT Vg € CTG, Vy,Vs (19)

Generation limits
Equations (20) — (23) restrict the generation limits and the available spare capacity of each

generator. The formulation of these constraints is aligned to [79] and [82] but also adjusted for
the unit clustering approach. The total generation of a single unit of a generator is modelled in

two blocks: the minimum electricity generation [pg] that is generated by the unit just by being

committed, and the electricity generation above this minimum [P, , cq.]. The minimum
generation and the available negative spare capacity are restricted by equation (20). For units
with a minimum up and down time of one dispatch period (e.g. 1h), the upper generation limits
over the power output and the positive spare capacity are restricted by equation (21) and (22).
Note that power generation above the minimum level and the available positive spare capacity
are restricted also by unit start-up and shut-down capabilities. A tighter and more compact
formulation for units with a minimum online time of at least two dispatch periods is given in

equation (23), which replaces both constraints formulated in equation (21) and (22).

0 < Pyysac— ORSea Vg € CTG,Vy,Vs,vd, vt  (20)
Vg € CTG,
Poysac+ ORGSTGT < (?q - By) "ONgysar— (ﬁg - pgu) “SUgysar VCTG € mut; =1, (21
vy, Vs, vd, Vvt
Vg € CTG,
S — —
Poysas + ORI < (B, =pg) - ONgysae — (B, = P5°) - SDgysacrs VCTG € mdty =1, (22)

Vy,Vs,Vd, Vvt
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Spare+
Pg,y,s,d,t + ORg,y,s,d,t Vg € CTG,
=< (5g - Bg) ’ ONg,y,s,d,t - (I_9g - Pgu) ’ SUg,y,s,d,t VCTG € mutg * 1, (23)
_ (59 _ pgD) - SDyysaret Vy,Vs,Vd,Vt

Ramping limits
Equation (24) - (26) restrict the maximum upwards- and downwards-ramping of each unit at the

generator per dispatch period as proposed by [80]. The maximum upwards ramping for units
with a minimum online time of maximum one dispatch period is constraints by equation (24).
Equation (25) does the same for downwards ramping. A tighter formulation of the upwards
ramping restriction for units with a minimum online time of two or more dispatch periods is

given in equation (26), which is aligned to the formulation given in [81].

Spare+ —
PyysattOR e — Poysat-1 =Ty

=)

Npysais+ (P —Dg) SUsysac Vg € CTG,VY,Vs,vd ¥t (24)

S - —
Poysat—s — ORI = Py <7y ONgysar + (D52 = 1g) - SDyysac Vg € CTG,¥y,Vs,Vd, vt (25)

S + Vg e VCTG,
Pyysas + ORI _p 7
i ) o VCTG € mdt, > 2 &
< Tg . ONg,y,s,d,t — (T'g - pg + Rg) : SDg,y,S,d,t+1 _ SD (26)
Tg > pg - Eg;
SU _ o _ =Y.
+ (Pg Dg Tg) SUg,y,s.a.t Vy,Vs,Vd, Vvt

Positive and negative spinning reserve capacity
Positive and negative spinning reserve capacity that can be offered by a conventional thermal

generator within 10 minutes is restricted in equation (27) - (30) respectively. Equation (27)
constraints the maximum spinning reserve that can be theoretically provided by each unit of the
generator. When units operate very close to their upper generation level, the actual spare
capacity might be smaller than the maximum possible spinning reserve capacity that can be
provided within ten minutes. Equation (28) ensures that the maximum spinning reserve capacity
offered by the generator is smaller or equal than its actual spare capacity. Equation (29) and

(30) do the same for negative spinning reserve capacity.

ORSD et < ONgysar Py 1219 - 10 Vg € CTG,Vy, Vs, Vd, vt (27)
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ORP™: < ORI Vg € CTG,Vy,Vs,vd, vt  (28)
ORSD . < ONgysar Py 119 - 10 Vg € CTG,Vy,¥s,vd, vt (29)
ORP™ < ORI, Vg € CTG,Vy,Vs,vd, vt  (30)

Part-load efficiency and influence of ambient temperature
REMix-CEM is a MILP optimization model. Hence, nonlinear functions cannot be represented

directly. For considering non-linear part-load efficiency of thermal generators, a piecewise linear
fuel consumption approach can be applied as proposed e.g. in [82]. The approach is adapted to
the unit clustering approach. Figure 20 presents the principle of the piecewise linear fuel

consumption approach.

Fuel consumption
[MWi,]

|:Cmin

W

W

_ Power generation
Prmin Poiock P max [MW]

Figure 20: Piecewise linear fuel consumption approach:
Piecewise linear approximation of a convex fuel consumption curve with two blocks

The possible generation range of a single unit is subdivided into a user-defined number of
generation blocks (here two). Equation (31) limits the maximum power generation within each
defined generation block. Total power generation above the minimum generation level is

calculated in equation (32) by adding up generation within the individual blocks. Total fuel
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consumption of the generator is calculated in equation (33) by summing up fuel consumption at
minimum load and fuel consumption within the individual generation blocks. Fuel consumption
in each generation block is calculated by multiplying the block-specific slope [mg;] of the
piecewise linear fuel consumption curve with the power generation within the respective

generation block [8; 5 sa.¢]-

Sgbysat < ONgysar ~Dgp Vg € CTG,Vb,¥y,Vs,vd, ¥t  (31)
Pyysat = Z 5g.b.y.s,d,t Vg € CTG,Vy,Vs,Vd,Vt  (32)
b
ONg.y,S,d,t . Bg 1
FChysae = 7+ng_b I Vo € CTG vy s vd e G3)
Qg b ¢ g.sdt
,01 02 o
I( (tc;’ “atgsar + th ), atysa: < 5°C
| (tc]® - atysar +tc)®™),  5°C <atygq, < 15°C
fase = (teg™ - atgsartteg™),  15°C <atgsqe < 25°C Vg € CTG,Vy,Vs,vd, vt  (34)
(] atysae +tp™®),  25°C < atygq. < 35°C
(e - atgoar +tc]™),  atygar > 35°C

The ambient temperature can have a significant, nonlinear impact on the efficiency of thermal
generators. This is especially the case for open-cycle and combined-cycle gas turbines but also
for air-cooled steam power plants [83-85]. Therefore, fuel consumption calculated in
equation (33) is adjusted by a time-dependent correction factor for the influence of the ambient
temperature on generator efficiency. This correction factor is calculated in equation (34). Similar
to the approach to approximate non-linear part-load performance, a piecewise linear approach
is applied to approximate the non-linear influence of the ambient temperature on generator
efficiency. Figure 21 (left-hand side) shows exemplarily the nonlinear development of the
efficiency of an combined-cycle gas turbine power plant as function of ambient temperature
calculated by the thermal cycle simulation software KPRO [132]. The piecewise linear

approximation used in REMix-CEM is presented in Figure 21 (right-hand side). The ambient

" For convex fuel consumption curves, the linearization as described in equations (31) - (33) ensures a correct
order of use of the different blocks of the piecewise linear fuel consumption curve. For concave fuel consumption
curves an additional binary/integer variable has to be used to enforce a correct order of use.
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temperature range is subdivided into five blocks. The correction factor for each temperature

range is calculated by a linear function.
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Figure 21: Correction factor for the efficiency of a combined-cycle gas turbine as function of ambient
temperature. Left-hand side: Nonlinear function as modeled by KPRO. Right-hand side: Piecewise linear
approximation by REMix-CEM

Net power generation and influence of ambient temperature
The ambient temperature has not only a non-linear impact on generator efficiency but also on

the available net capacity [83—-85]. Hence, when calculating net power generation of

conventional thermal generators in equation (35), gross power generation is not only reduced

by the share for auxiliary power but also adjusted by a time-dependent correction factor for the

impact of the ambient temperature. To approximate the non-linear impact of the ambient

temperature, again a piecewise linear approach is applied (see Figure 22). The ambient

correction factor is calculated in equation (36).

Net — — . p
Poy.sae = (ONg.y,s.d,t Pyt Pg.y.s.d.t) (1 - auxy) fosar

(tCZ;'Ol
(tCZ;'OS
Cf;s.d,t = (thOS
i (tch 07

k(tcg'og

catgsac T tey
“atgsac T tey
“atgsac T tey
catgsac T tey

“atgsac T tcg

p,OZ)’
p,04)’
p,06)’
p,08)’

p,lO)’

atgsar < 5°C

5°C < atgeq; < 15°C
15°C < atyeq; < 25°C
25°C < atggq¢ < 35°C
atygae > 35°C

Vg € CTG,Yy,Vs,Vd,Vt (35)

Vg € CTG,Vy,Vs,Vd,Vt (36)
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Figure 22: Correction factor for the available capacity of an open-cycle gas turbine as function of ambient
temperature. Left-hand side: Nonlinear function as modeled by KPRO. Right-hand side: Piecewise linear
approximation utilized in REMix-CEM

Short run marginal costs (SRMC)
SRMC of each conventional thermal generator are calculated in equation (37). Cost components

are fuel costs, emission costs and variable operation and maintenance costs.

GG o = FCyysar (chu + ¢k - eg) + (ONgysac Do+ Poysac) ™ Vg € CTG,¥y,Vs,¥d, vt  (37)

Start-up and shut-down costs
Equation (38) and (39) determine the start-up and shut-down costs for conventional thermal

generators respectively. Start-up costs are composed of fuel and emission costs during the start-
up procedure and other costs related to a unit start-up, such as additional capital and
maintenance expenditures, and costs for chemicals, water, etc. For unit shut-downs, no

additional fuel consumption is considered.

C3Y it =SUgysar - [fuels’ - (cf*e +cE - ey) + 5V Vg € CTG,Vy,Vs,vd,Vt (38)
Coysat =SDgysae Cs" Vg € CTG,Vy,Vs,vd, vt (39)

Load following costs (ramping costs)
Extensive ramping of thermal generators causes additional wear and tear costs. Load-following

costs due to ramping-up and -down the single units of a generator between their minimum and

maximum generation level are taken into account by equation (40) and (41) respectively.
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Clysac = b+ (Poysac — Poysats — Ugysac Dy) Vg € CTG,Vy,Vs,vd,Vt  (40)
C;y,s,d,t 2 Cf; ' (Pg,y,s,d,t—l - Pg,y,s,d,t - SDg,y,s,d,t : ﬁg) Vg € CTG’ Vy, Vs, Vd. vt (41)

Overnight investment costs and annual operational expenditures
Overnight investment costs are calculated in equation (42), where cumulative installed gross

capacity at the generator is multiplied with the specific investment costs. Total OPEX are
calculated by equation (43) and are composed of a variable and fix component. Variable OPEX
include SRMC, start-up, shut-down, and ramping costs. Variable OPEX are multiplied with the

availability factor of the generator [a4] and the weighting factor for the respective dispatch

period [dsD,g,t] to ensure that variable OPEX are scaled correctly to an annual level.
Clnvest = CAP,, - chnvest Vg € CTG,Vy (42)

_ SRMC su SD R DP
OPEX,, = Z Z Z(Cg.y.s.d.t +Coysar T Coysart Cg.y.S.d.t) g dgay
s d t

Invest , ,.FOM
+ Cgy Cg

Vg € CTG,Vy (43)

4.2.3 Module Concentrating Solar Power
Figure 23 presents the principle design of a CSP generator. A CSP plant is typically composed of

four major subsystems: The solar field, the back-up burner, the thermal energy storage, and the
power block. The power block is equipped with a steam turbine and a wet or dry cooling system
to transform thermal energy into electricity. Through the application of the energy storage
system and the back-up burner, CSP generators can provide firm and dispatchable capacity
similar to conventional thermal power plants. With comparably low techno-economic effort,
thermal energy generated by the solar field during the day can be stored in the thermal energy
storage system for later use after sunset. The size of the solar field and storage system
determine the annual electricity generation from solar energy. The back-up burner, which can
be fired with fossil- or bio-fuels, is used to compensate longer periods without sunshine
whereby power generation from CSP can be entirely guaranteed. Hence, the capacity of the
back-up burner ultimately defines the firm capacity of the CSP generator. Utilized steam
turbines are designed for fast unit start-ups, high ramping rates, and efficient part-load

operation. Hence, CSP generators can provide several system services, such as firm and flexible
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capacity, different kind of operating reserves, or reactive power. All of these system services
become particularly important with increasing shares of VRE in the power system. Therefore,
CSP generators can support grid-integration of VRE considerably while at the same time

increasing the overall share of power generation from RES-E.
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Figure 23: Principle design of a CSP generator (Solar Tower) with its major components.
Own illustration based on [132].

CSP generators can be designed to operate in a defined load segment (peak-, mid-merit or base-
load), which can facilitate system integration. First CSP generators could be equipped with a
relatively small solar field and storage system and operate in the peak- and upper mid-merit
segment with a relatively low number of full load hours. In this load segment CSP generators
compete with combined-cycle and open-cycle gas turbines, which typically have significantly
higher generation costs than base load generators like e.g. coal power plants. With decreasing
investment costs due to technological learning, the solar field and storage size, and therefore
the number of full load hours, of subsequent CSP generators can be increased to operate in the
lower mid-merit and even base load segment where competiveness is harder to achieve [86],

[87].
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The modelling approach for CSP generators in REMix-CEM is presented in Figure 24. In a first
step, the hourly performance of the solar field of a Parabolic Trough or Solar Tower power plant
is simulated using a detailed CSP solar field model. The solar field model is implemented in the
modular simulation software INSEL and was developed during the PhD thesis of Moser [88].
Site-specific annual climate data with hourly resolution, such as direct normal irradiation (DNI),
ambient temperature, and wind velocity, serve as input for the solar field model. In a second
step, the hourly thermal generation profile of the solar field is normalized and feed into the

optimization model REMix-CEM.

Site-specific Normalized generation Total thermal energy Power generation
climate data time series of solar field available for power block of CSP generator
|
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Figure 24: INSEL - REMix-CEM soft-link

In the optimization model the four major subsystems of a CSP generator, i.e. solar field, thermal
energy storage system, back-up burner, and power block, are modeled individually (investment
decision and operation), applying a unit clustering approach similar to the approach for
conventional thermal power plants. Hence, a CSP generator can be composed of several units.
The size of the solar field, storage and back-up burner of each CSP generator is optimized
model-endogenously from a system perspective. Optimizing the configuration of a CSP
generator from a system perspective means that the determined configuration for the CSP

generator by the optimization model is not necessarily the configuration which leads to the
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lowest LCOE for the CSP generator itself, but the configuration which provides the highest value
for the system. The accuracy of the modelling approach of the CSP module was validated with
specialized CSP modelling tools of the Solar Research Institute of DLR during the THERMVOLT
project. Maximum deviations in variables describing the operational performance of a CSP

generator were below 2% [132].

In the following the mathematical formulation of the module Concentrating Solar Power is
presented. The performance of the CSP power block is modeled in the same way as
conventional thermal power plants (see section 4.2.2). This comprises also the consideration of
UCCs if desired. The relevant equations to model the power block are not repeated in this

section.

Maximum number of power blocks and cumulative installed capacity at generator
Equation (44) restricts the maximum number of power blocks (PBs) that can be built at each

candidate CSP generator over the planning time frame. Equation (45) and (46) determine the
cumulative number of built PBs and the resulting installed gross capacity at the CSP generator
respectively. For already existing generators equation (44) is reformulated to a strict equality

and [p_bg,y] represents the number of existing PBs at the CSP generator in the respective year.

Z BUILDgY, < pbg,y Vg € CSP,with BUILD,,, = 0if fy, >y  (44)
y
BUILDSY™"® = BUILDJY™F® + BUILDS® Vg € CSP,Yy,with BUILDSY™ P = 0if ly, <y (45

CAP,, = BUILD;Y - p

, Vg € CSP,Yy  (46)

CSP configuration
Equations (47) — (52) are used to optimize the configuration of the CSP generator. Equation (47)

restricts the maximum and minimum size of the SF of the CSP generator (expressed as solar

multiple (SM)™) as a function of the number of installed PBs. Similar to that, the total capacity of

21n the optimization model, the term solar multiple (SM) is defined as follow: A SM of 1 means that the size of the
solar field and the related capacity at design condition equals the thermal capacity of the steam turbine at
maximum load. A SM 2 means that the thermal capacity of the solar field at the design point is twice as much as
the thermal capacity of the steam turbine.
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the thermal energy storage (TES) and the back-up burner (BB) of the CSP generator is restricted
by equation (48) and (49) respectively. The capacity of the TES is expressed as number of full
load hours for which the PB can be solely operated by the TES with full capacity. The size of the
BB is expressed as percentage of gross turbine capacity. For example, a BB with 100% capacity
would allow the operation of one power block at the CSP generator with full capacity solely by
the BB. Equations (50) - (52) determine the cumulative size of the SF and the capacity of the TES

and BB of each CSP generator over the planning time frame.

smg - BUILD}S < BUILDSY, < sm, - BUILDS® Vg € CSP (47)
tes, - BUILDES < BUILD}SS < tes, - BUILDES Vg € CSP (48)
bb, - BUILD}S < BUILDEE < bb, - BUILD}® Vg € CSP (49)
SM;Y, = SM3%_, + BUILDSY, Vg € CSP,¥y (50)

CAPJ}S = CAP;5% 1 + BUILD]SS Vg € CSP,Vy (51)
CAP}} = CAP}S_, + BUILD[Y Vg € CSP,Vy (52)

Performance of solar field and back-up burner
Thermal energy can be produced by the SF and the BB. Equation (53) determines the thermal

energy produced by the SF for each dispatch period of the planning time frame. The site-specific
normalized generation profile of a SM 1 SF (calculated by INSEL) is multiplied by the SM of the
CSP generator and the thermal capacity of a single PB. The maximum generation of the BB is
restricted by equation (54). The share of thermal energy produced by the BB over the year is

constrained by equation (55) as a function of the annual SF generation.

Q3 s = qgf;f;fg” - SM3Y - qhB Vg € CSP,Vy,Vs,vd, vt (53)

B

Qaysar < CARY - qg° Vg € CSP,Vy,Vs,Vd,Vt (54)

Z Z Z Qgysac < max®® - Z Z Z Q3.5 Vg € CSP,Vy (55)
s da t s da t



Chapter 4: Capacity expansion optimization model REMix-CEM 59

Performance of thermal energy storage
The maximum fill level of the TES is restricted by equation (56). Equation (57) ensures that the

fil level in the first and the last dispatch period (FT, LT) of the second intra-annual dimension
(e.g. representative week or day) are equal. The energy balance of the TES for each dispatch

period is calculated in equation (58).

L5 ar < CAPJES - qhB Vg € CSP,Vy,Vs,vd,Vt (56)
Ly sarr = Lgysarr Vg € CSP,Vy,¥s,vd (57)
QD,TES
C,TES .TES 9.y,5,d,t Self , TES
(Qg,y,s,d,t Mg ——irEs ) At =LTES  —LTES - (1=t ) Vg € CSP,Vy,Vs,vd,Vt (58)
g

Performance of power block
The modelling approach for the PB of a CSP generator is identical to the approach for modelling

the operational performance of conventional thermal generators. Please refer to Section 4.2.2.

Energy balance of CSP generator

The thermal energy balance for the entire CSP generator is determined by equation (59). The
sum of thermal energy generated by the SF and the BB, plus the thermal energy discharged
from the TES must be equal to thermal energy consumption due to power generation and unit
start-ups, plus thermal energy stored in the TES and thermal energy that is curtailed. Thermal
energy consumption due to power generation is calculated like for conventional thermal

generators according to the piecewise linear fuel consumption approach (see equation (33)).

SF BB D,TES
Qoysat T Qoysar T Qgysat Vg € CSP,

_ C,TES C il
=FCyysar+SUgysae - fuely’ + Qulysart QY et vy, Vs, vd,Vt

Auxiliary power and net power generation
Auxiliary power for the SF and TES operation can be significant, especially for Parabolic Trough

power plants. Equation (60) calculates the auxiliaries for the SF and TES simplified as linear
function of SF generation and TES charging. As CSP generators can consume electricity from the
grid to cover auxiliaries for SF and TES operation, in equation (60) auxiliary power is reduced by

the grid consumption of the CSP generator.
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SF,TES __ _norm,SF . SF SF C,TES . TES __ Grid,AUX
AUXg’y’S’d’t ={qgsat SMg, - auxy” + Qg,y,s,d,t auxg Pg,y,s,d,t Vg € CSP,Vy, Vs, Vd,Vt (60)

Net power generation of the CSP generator is calculated in equation (61). Gross power
generation is reduced by the auxiliaries of the PBs and adjusted by a correction factor for
ambient temperature. The correction factor is calculated in the same way as for conventional
thermal generators (see equation (36) in Section 4.2.2). In addition, auxiliary power for SF and

TES operation is subtracted.

Pt e = (ONgysae Do+ Paysac) - (1= auxg) - offs,, — AUXSYES, Wg € CSP,¥y,vs,vd, vt  (61)
Overnight investment costs and annual operational expenditures

Overnight investment costs are calculated by equation (62) as a function of the CSP generator
configuration. Total annual OPEX are calculated by equation (63). OPEX are composed of
variable and fix OPEX. The variable OPEX include costs for the back-up fuel itself and eventually
related emissions as well as start-up, variable O&M, shut-down, and ramping costs. Variable
OPEX are reduced by the availability factor of the generator [a;] and multiplied with the
weighting factor for the respective dispatch period [d_?,glt]. Fix OPEX are calculated as function

of the overnight investment costs.

Cinvest = CAP,, - cb® + SMSE - cSMY + (CAPJES - ¢JFS + CAPFPE - cEB) - gbF Vg € CSP,Vy (62)

OPEXg, = Z Z Z [Qgglsld,t (g5 + gy eg) + (ONg.y.s.d.t Pyt Pg.y.s.d.t) g
s d t Vg € CSP,Vy (63)

su SD R o . qDP Invest . .FOM
+Cgysar T Coysact Cg,y,S.d.t] ag * dsae t Cgly g
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5 Impact of applied modelling approach on results of capacity
expansion optimization

The flexible formulation of REMix-CEM allows the application of different approaches for
capacity expansion optimization. On the one hand, the user can select between different
foresight approaches (myopic foresight, rolling horizon, and perfect foresight) to solve the least-
cost optimization problem. On the other hand, the user has the possibility to define the system-
operational detail during capacity expansion optimization in a flexible way. The selected
approach has an impact on the accuracy of the computed results but also on required
computing time to solve the capacity expansion optimization problem. The following chapter
has the aim to investigate the impact of the available modelling approaches of REMix-CEM on
results and computational effort. This is achieved by executing long-term capacity expansion
optimization for a fictitious power system for the planning time frame 2016 - 2040 under the
different available modelling approaches. The fictitious power system has typical characteristics
of power systems of developing and emerging countries of the Sunbelt, i.e. excellent solar and
wind resources but also a strong increase of annual electricity demand and peak load.
Section 5.1 describes the utilized power system and the basic model setup of the optimization
model. Section 5.2 investigates the impact of the foresight approach on results for capacity
expansion optimization. The impact of the applied system-operational detail on results for

capacity expansion optimization is investigated in Section 5.3.

5.1 Description of reference power system and model setup

The fictitious reference power system is composed of four model nodes. Figure 25 shows the
transmission grid topology of the power system and the principle characteristics of each model
node. 90% of total electricity demand occurs at model node N1 (25%) and model node N2
(65%). N1 and N2 represent the industrialized region of the power system. Coal, natural gas, oil,
and biomass are available for power generation at these model nodes. Both model nodes are
characterized by good PV resources with an annual global horizontal irradiation (GHI) of
1950 kWh/m?2. In addition, N1 has good wind resources (average 7.5 m/s at 60m hub height)
and some moderate hydro resources (annual capacity factor of 29%). However, two thirds of

the hydro potential is already deployed. Model node N3 and N4 together represent only 10% of
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the annual electricity demand of the system. Both model nodes are characterized by a low
population density. N3 has excellent wind resources (average 9 m/s at 60m hub height) and very
good PV resources (annual GHI 2050 kWh/m?). Potentials for CSP installations exist only at
model node N4. The annual GHI and direct normal irradiation (DNI) is 2250 kWh/m? and
2700 kWh/m? respectively at N4. Coal, natural gas, and biomass are not available for power
generation at N3 and N4. Hence, CSP generators can use only oil for hybrid operation. At the
beginning of the planning time frame in 2016, the net transfer capacity (NTC) between model
N1 and N2 is 1.8 GW. The NTC between model nodes N2/N3 and N2/N4 is 0.6 GW. No

transmission lines exist between N1/N4 and N3/N4 at the beginning of the planning time frame.
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Figure 25: Overview of fictitious reference power system.
Left-hand side: Transmission grid topology; Right-hand side: Principle characteristics of model nodes

The planning time frame for the reference system is set from 2016 - 2040 (24 years). In the
beginning of the planning time frame in 2016, the peak load of the system is 10 GW. Due to
strong demand growth rates, the system peak load increases to about 27.5 GW until 2040. In

the same time frame, annual electricity demand grows from 63 TWh to 170 TWh (see Table 10).

Figure 26 shows the annual chronological load curve and the annual load duration curve of the
system in 2016. The absolute annual peak load of the system occurs at 10pm during a summer

day in August.
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Table 10: Demand development for the reference system
Year 2016 2019 2022 2025 2028 2031 2034 2037 2040
Growth rate [%/a] 6.5% 6.0% 5.5% 5.0% 4.0% 3.5% 3.0% 2.5% 2.0%
Peak load [GW] 10.00 12.02 14.25 16.66 19.1 21.38 23.59 25.65 27.49
Demand [TWh] 62.7 74.1 87.9 102.7 117.8 131.9 145.5 158.2 169.5
Chronological Load Curve in 2016 Load Duration Curve in 2016
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Figure 26: Hourly chronological load and load duration curve of the reference system in 2016
Figure 27 presents the average daily load curve of a winter and summer day respectively. Daily
load curves in summer and winter are characterized by a pronounced evening peak. However, in
summer a second peak occurs during noon mainly driven by air conditioning. For simplicity, the
shape of the load curve in each model node is assumed to be identical but absolute values

depend on the share on overall electricity demand at the model node.
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Figure 27: Average daily load of a winter and summer day of the reference system
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The installed gross capacity at the beginning of the planning time frame and its spatial
distribution is given in Figure 28. A total gross generation capacity of 13.3 GW is installed in
2016. Coal power plants represent about 50% of the total installed system capacity. Other
conventional thermal capacities account for roughly 22% of installed system capacity. RES-E
installations represent 28% of the total installed capacity of the system. Most RES-E capacity is
provided by hydro power (15%) and onshore wind power (7.5%). Biomass, PV, and CSP together
represent about 5% of total installed capacity. Almost the entire existing generation capacity is
located at model node N1 and N2 (94%). Table 11 presents the spatial distribution of the

existing generator fleet by model node.
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Figure 28: Shares on total installed gross capacity and its spatial distribution in 2016

Table 11: Total installed gross capacity and spatial distribution of existing units

Generator/storage  Gross capacity Total number of Total installed .
Installed units at model node

type per unit installed units capacity
[MW] [-] [MW] N1 N2 N3 N4
NUCLEAR 600 1 600 1
COAL 600 11 6600 3 8
CCGT 400 2 800 1 2
GT-GAS 50 12 600 4 8
GT-OIL 50 12 600 2 4 3 3
BIO 150 1 150 1
HYDRO-ROR 250 4 1000
HYDRO-RES 250 4 1000
PUMPED-HYDRO 250 1 250 1
cspP 100 1 100
PV 100 1 500 1 1
WIND 100 1 1000
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Figure 29 shows the scheduled decommissioning of existing generation capacity until the end of
the study period. Until 2040, 6.4 GW of generation capacity is decommissioned. This represents
almost 50% of the entire existing capacity in 2016. The simultaneous increase of electricity

demand leads to a large capacity gap until 2040.
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Figure 29: Peak load development over the planning time frame and remaining existing gross capacity after
decommissioning of facilities that have reached the end of the technical lifetime

To meet growing electricity demand until 2040 several investment options are available (see
Table 12). Candidate conventional thermal power plants are nuclear power plants (NUCLEAR),
supercritical coal power plants (COAL) with and without carbon capture and storage (CCS),
combined-cycle gas turbines (CCGT) with and without CCS, open-cycle gas turbines (GT), and
internal combustion engines (ICE). Candidate RES-E technologies are onshore wind power
(WIND), fixed-mounted PV, CSP (Solar Tower), hydro-reservoir (HYDRO-RES), and biomass steam
power plants (BIO). Hydro pumped-storage (PUMPED-HYDRO) and Lithium-ion batteries
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(BATTERY) are candidate storage technologies. The candidate units have a fix size and discrete
investment decisions are represented by integer variables. Hence, capacity can be added only in
increments of units. Exceptions of this are PV, wind power, and Lithium-ion batteries, which are
considered as easily scalable technologies. The configuration of CSP generators (size of solar
field, storage, and back-up burner) is optimized model endogenously. Hydro pumped-storage
and Lithium-ion batteries have a fixed storage size of 8 Flh and 4 Flh respectively. High voltage
alternating current (HVAC) transmission lines (TL) are available to increase the NTC between

model nodes.

Table 12: Overview investment options

Conventional Thermal Technologies RES-E Technologies Storage and Transmission
Technologies
NUCLEAR (600 MW) WIND (scalable, min. 100 MW) PUMPED-HYDRO (250 MW)
COAL with and w/o CCS (600 MW) PV (scalable, min. 100 MW ) BATTERY (scalable, min. 50 MW)
CCGT with and w/o CCS (400 MW) CSP (Solar Tower, 100 MW) HVAC 400kV TL (NTC 600 MW)
GT (50 MW) HYDRO-RES (250 MW)
ICE (50 MW) BIO (100 MW)

Figure 30 presents the assumptions for the development of overnight investment costs for the
different investment options over the planning time frame. Investment costs for conventional
thermal, hydro reservoir, and pumped-hydro units are constant over the planning time frame.
Investment costs for PV, wind power, CSP, Lithium-ion batteries, and CCS technologies decrease
considerably until the end of the planning time frame. Investment costs for conventional
thermal generators are taken from the New Policy Scenario of the International Energy Agency
(IEA) [116]. Investment costs for RES-E and storage technologies are aligned to cost data
provided in [121-123], [125], [128-130], [132]. For all investment options a WACC of 5.8% is
applied. Additional techno-economic input data for the candidate units as well as other relevant

input data for the case studies conducted in this work is presented in the Appendix.

Figure 31 presents the development of fuel prices over the planning time frame. Assumptions
for fossil fuel price development are aligned to the New Policy Scenario of the IEA [116]. Fuel
prices for biomass and nuclear power are also taken from the IEA and are assumed to be

constant over the study period [114], [115].
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Figure 30: Assumptions for overnight investment costs for candidate technologies [116], [123], [128], [132] (more
techno-economic data for the candidate units is presented in the Appendix)
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Figure 31: Fossil fuel price assumption (New Policy Scenario of IEA) [116]
Table 13 summarizes the resource availability at each model node. Coal, gas, and biomass are
only available at model node N1 and N2. Wind resources are only available at N1 and N3, hydro

resources at N1, and CSP resources at N4. PV resources are available at all model nodes.
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Table 13: Overview resource availability at model nodes

N1 N2 N3 N4
PV GHI: 1950 kWh/m? GHI: 1950 kWh/m? GHI: 2050 kWh/m? GHI: 2250 kWh/m?
Unlimited Unlimited Unlimited Unlimited
Wind* Wind speed: 7.5 m/s Not available Not available Wind speedy: 9 m/s
Unlimited Unlimited
Hydro Capacity factor: 29% Not available Not available Not available
Maximum potential:
1.0 GW Run-of-river
2.5 GW Reservoir
1.25 GW Pumped-
storage
csP Not available Not available Not available DNI: 2700 kWh/m?
Unlimited
Biomass Potential: 1 TWh/y Potential: 1 TWh/y Not available Not available
Fossil Coal: Unlimited Coal: Unlimited Coal: Not available Coal: Not available
fuels Gas: Unlimited Gas: Unlimited Gas: Not available Gas: Not available
Qil: Unlimited Qil: Unlimited Oil: Unlimited QOil: Unlimited

*) Wind speed at 60m hub height

The seasonality of PV, CSP, wind power, and hydro power resource availability is shown in
Figure 32. Highest resource availability for PV is during summer whereas the highest CSP
resource availability appears during spring and autumn. Wind power resources are highest
during spring and summer. The largest hydro resources are available during the winter and

spring months.

Table 14 presents the basic model setup of REMix-CEM, which is used for all executed model
runs of the following case studies. The 24 year planning time frame from 2016 - 2040 is
represented by nine milestone years. All investment options are available from 2019. The power
system is represented by four model nodes, which are located all in the same balancing region.
A 15% adequacy reserve margin is applied to ensure adequacy of the system over the planning
time frame. The spinning and standing operating reserve capacity must be able to cover the
failure of the largest unit of the system and to cover forecast errors for expected load and VRE
generation. The system discount rate is set to 5%. Finally, it is assumed that for the fictitious
power system the annual capacity additions per technology are not unlimited but restricted to
some extent due to limited administrative and construction resources. This is a common
situation in many developing and emerging countries. Therefore, a user-constraint is applied

that limits the maximum deployment per technology to 4.8 GW per milestone year.
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Figure 32: Seasonality of resource availability for PV, CSP, wind and hydro power

Table 14: General model setup for case study 1 and 2

REMix-CEM setup

Planning time frame

Milestone years

First investment year

Spatial resolution

Temporal resolution

Model foresight

Operational details for thermal units
Adequacy reserve restriction

Spinning reserve restriction

Standing reserve restriction

System discount rate

User constraints

2016 - 2040

2016, 2019, 2022, 2025, 2028, 2031, 2034, 2037, 2040
2019

Country level, one balancing area with four model nodes
Case study specific (see Table 15 and Table 19)

Case study specific (see Table 15 and Table 19)

Case study specific (see Table 15 and Table 19)

15% generation adequacy reserve margin

Failure of largest single unit + 2% of load + 10% of VRE capacity, no
reserve capacity required for PV from dusk till dawn

Failure of largest single unit + 2% of load + 20% of VRE capacity, no
reserve capacity required to back-up PV from dusk till dawn

5%

Maximum deployment per technology: 4.8 GW per milestone year
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5.2 Impact of model foresight
5.2.1 Hypothesis

Considering the uncertainty for certain input parameters is important for long-term capacity
expansion and short-term system operation planning. This is all the more important when RES-E
technologies are included in the analysis due to uncertainty about the development of their
investment costs (long-term planning perspective) and the temporal and spatial availability of
their intermittent primary energy resources (short-term operation perspective). Besides
sensitivity analyses and stochastic programing, the application of different foresight
assumptions can be used to address the highly uncertain nature of certain input parameters,
such as e.g. the development of electricity demand, investment costs, fossil fuel prices, or
resource availability of RES-E technologies [89—91], [94], [95]. In this section the impact of the
applied model foresight on results and computational effort for capacity expansion optimization
is investigated. As described in Chapter 4, REMix-CEM can be applied with three different

foresight approaches:

) Perfect foresight over the entire planning time frame
) Multi-annual rolling horizon foresight

) Single-year myopic foresight

Each foresight approach has its advantages and disadvantages. Providing the optimization
model with perfect foresight enables the model to identify the intertemporal global optimum to
meet demand over the planning time frame, while ensuring reliability standards and meeting
defined strategic targets. Future developments, such as electricity demand, RES-E technology
learning rates, or fuel and CO, price development, can be anticipated by the model and
investment decisions can be adapted accordingly. This makes the perfect foresight approach
especially suitable for e.g. policy makers to identify economically efficient transition pathways
towards a sustainable electricity supply under a set of input parameters. However, the
drawback of the approach is the high computational effort caused by the large optimization
problem which must be solved in one single model run. Another issue of the perfect foresight
approach is the unrealistic assumption that decision makers have perfect information about

future occurrences of the entire planning time frame that often covers several decades.
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Whereas the perfect foresight approach provides the CEM with information about all future
developments until the end of the planning time frame, the single- year myopic foresight
approach provides the CEM with no information at all about future occurrences. Hence,
investment decisions are made only on the basis of current demand and cost figures (e.g. fuel or
investment costs) in the respective optimization period (milestone year) without anticipating
any changes in future years. The advantage of the myopic approach is a significant reduction of
the problem size. The large optimization problem of the perfect foresight approach is separated
into several smaller sub-problems, which can be solved sequentially. Consequently, this leads to
a reduced computational effort. The drawback of the myopic approach is the unrealistic
assumption that decision makers have no information about the future at all and that computed
solutions are more costly compared to solutions determined under perfect foresight. The very
limited foresight of the single-year myopic approach is especially problematic for capacity
expansion planning with RES-E, as future savings due to early investments into RES-E with
almost constant generation costs over their economic life-time cannot be anticipated. Also the
utilization effect for conventional thermal generators cannot be taken into account, which can
lead to stranded investments for conventional thermal generators, as decreasing future

utilization is not considered during the investment decision.

The multi-annual rolling horizon approach is a compromise between the perfect foresight and
single-year myopic foresight approach. Several milestone years of the planning time frame are
grouped together and are optimized simultaneously. After solving the sub-problem of the first
group of milestone years, the foresight horizon rolls forward to the next group of milestone
years, while taking into account investment decisions made in the previous optimization
periods. Hence, investment decisions are not only based on the current situation but also on

information of some future periods.

It can be expected that differences in investment decisions under the different foresight
approaches are relatively small for a continuous development of input parameters (e.g. fossil
fuel or CO; prices). In the case input parameters change suddenly at one or more stages during
the planning time frame, the difference between results is expected to be more pronounced

because these occurrences can only be foreseen by the perfect foresight and partially by the
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multi-annual rolling horizon approach. As providing the CEM with perfect foresight leads to the
largest optimization problem, it can also be expected that computing time to solve the capacity
expansion optimization problem for the 24 year planning time frame is highest for the perfect

foresight approach.

5.2.2 Methodology
The fictitious power system described in the previous section is used to investigate the impact

of the foresight approach on results for capacity expansion optimization. REMix-CEM is applied
to calculate the least-cost expansion plan to meet electricity demand from 2016 to 2040, while
ensuring applied reliability standards of the system. Two groups of model runs are executed,
each composed of three CEM runs. Within one group, all three CEM runs are based on the same
input data and differ only in the applied foresight approach. The only difference between input
parameters of the two groups of model runs is the assumed development of CO, prices over the
planning time frame (see Figure 33). For the CEM runs of Group 1, a monotone development of
CO; prices is assumed, starting with 6 USD/t in 2016 and ending up with 37 USD/t in 2040. In
Group 2, the introduction of CO, prices occurs more suddenly. Until 2025, no CO, prices exist.
Afterwards, CO2 prices are introduced and the price development follows a s-curve function to

reach 37 USD/t in 2040.

For the first CEM run of each group, the single-year myopic foresight approach is applied,
meaning that each single milestone year is optimized consecutively (nine optimization periods).
In the second CEM run of Group 1 and Group 2, the multi-annual rolling horizon approach is
applied to calculate the least-cost expansion plan over the planning time frame. The nine
milestone years are grouped together into three optimization periods (period 1: 2016 - 2022;
period 2: 2025 - 2031; period 3: 2034 - 2040). In the third CEM run of each group, the perfect
foresight approach is applied and hence, the entire planning time frame is optimized as one
large optimization period. Results of the three foresight approaches applied within each group
are compared in terms of investment decisions, composition of power supply, overall system

costs, and computing time (see Figure 34).
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Figure 33: CO, price assumption for CEM runs of Group 1 and Group 2. CO, prices in 2040 are aligned to assumed
CO, prices in China according to the New Policy scenario of the IEA [116].

Table 15 presents the model setup for the CEM runs. The only difference between the CEM runs
is the applied foresight approach and the resulting number of optimization periods into which
the entire planning time frame is divided. Each milestone year in the CEMs is represented by 24
representative days (one working and one weekend day per month). Each day is composed of
24 chronological dispatch periods (hours). UCCs of thermal generators are neglected in this
analysis, meaning that generators are dispatched according to their position in the merit order.
Hence, the flexibility effect is not considered here. The optimization problem is solved on a 2 x

Intel Xeon E5-2640v3 @ 2.60 GHz with 12 x 16 GB RAM.
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Input Data
RUN1 RUN2 RUN3
Capacity Expansion Capacity Expansion Capacity Expansion
Optimization with Optimization with Optimization with
Myopic Foresight Rolling Horizon Perfect Foresight
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» Composition of power supply
« Total system costs

* Computing time

Figure 34: Approach for analyzing the impact of the applied foresight approach on results for capacity expansion
optimization

Table 15: Model setup for the different CEMs of case study 1

Myopic Foresight Rolling Horizon Perfect Foresight
Planning horizon 2016 - 2040
Milestone years 2016, 2019, 2022, ..., 2040
# Milestone years 9
# Seasons 12 (each month of the year)
# Representative days per season 2 (1 working and 1 weekend day)
# Dispatch periods per day 24
# Total annual dispatch periods 576
System-operational detail No unit commitment constraints of thermal generators

# Optimization periods 9 3 1
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5.2.3 Results for monotone CO: price development
Figure 35 presents the total added generation capacity over the planning time frame for the

three CEM runs of Group 1. Several differences can be observed between the model runs:
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Figure 35: Total added gross capacity by foresight approach (Group 1)

Providing the CEM with perfect foresight leads to the largest overall capacity expansion. Almost
67 GW of new capacity is added until 2040 by the perfect foresight model. The myopic foresight
and rolling horizon model invest only in 63 GW and 62 GW of new capacity respectively. The
higher capacity expansion by the perfect foresight model is driven by larger investments in VRE
compared to the myopic foresight and rolling horizon model. VRE generators with a capacity of
more than 39 GW are added by the perfect foresight model. This represents 59% of the total
capacity expansion over the planning time frame. In contrast, the myopic foresight and rolling

horizon model install VRE generators with a capacity of 35 GW and 34 GW respectively (about
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56% of total installations). With more than 17 GW, most wind power capacity is installed by the
perfect foresight model. The myopic foresight and rolling horizon model invest only in about
12 GW of wind power. In all three CEM runs significantly more PV than wind power capacity is
added. PV generators with a total capacity of 23 GW are installed by the myopic foresight
model. The rolling horizon and perfect foresight model invest in about 22 GW of new PV

capacity.

Also for the residual asset fleet differences in investment decisions can be observed. Most CCGT
capacity is installed by the myopic foresight model. 14 units, each with a capacity of 0.4 GW, are
added to the system (in total 5.6 GW). The rolling horizon model installs three CCGT units less
than the myopic foresight model (4.4 GW) because it can partially foresee increasing fossil fuel
and CO, prices as well as a reduced utilization of conventional thermal generators in the future
(utilization effect). The perfect foresight model has information about all occurrences over the
planning time frame. Based on this perfect information, the perfect foresight model evaluates
investments in CCGT as considerably less attractive than the other two CEMs. Only 2.4 GW of
CCGT (6 units) are installed over the planning time frame. Instead, the perfect foresight model
installs more CSP and GT units. CSP generators have nearly constant generation costs over their
economic life-time, which compensates slightly higher generation costs compared to CCGT in
the short-term. Very flexible GT with low investment costs ideally complement the larger
deployment of VRE in the perfect foresight model. Compared to the myopic foresight model,
2.45 GW more GT and 0.8 GW more CSP capacity is installed. The differences between the
rolling horizon model and the perfect foresight model are less pronounced but still considerably.
1.7 GW more GT and 0.5 GW more CSP capacity is added. In total, the perfect foresight model
invests in 14.3 GW of CSP and 8.35 GW of GT generators over the planning time frame. In all
CEM runs, CSP units are equipped with a 10h TES and a BB with 100% of thermal turbine

capacity.

All CEMs deploy the entire additional available reservoir hydro (1.5 GW) and pumped-storage
(1 GW) potential. Investments in Lithium-ion batteries do not belong to the least-cost expansion
plan in the myopic foresight and rolling horizon model. Only in the perfect foresight model

Lithium-ion batteries with a total capacity of 0.35 GW are installed. In all CEM runs, no
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investments in nuclear, coal, and biomass power plants are executed. Also fossil fuel fired

generators equipped with CCS are not part of the least-cost solution in all CEM runs of Group 1.

The newly added net transfer capacity (NTC) between the model nodes of the system is
presented in Figure 36. The perfect foresight model installs the most additional NTC over the
planning time frame (17.4 GW). The myopic foresight and rolling horizon models invest in
15.0 GW and 16.2 GW of NTC respectively. In all CEM runs most NTC is added between N2/N3
and N2/N4. At model node N3 the highest wind power resources of the power system are

located. The excellent CSP resources of the power system are located at model node N4.
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Figure 36: Total added NTC between model nodes by foresight approach (Group 1)
The results of the three CEM runs confirm the theory of the persistent utilization effect (see
Section 3.2). A large-scale deployment of VRE is accompanied by investments in flexible mid-
merit and peaking generators with rather low investment costs. The structural shift of the
residual system from a base-load generator dominated system to a system dominated by mid-

merit and peaking generators can be observed in Figure 37, where the cumulative installed
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generation capacity over the planning time frame for the three different foresight approaches is
presented. Figure 38 highlights the corresponding cumulative NTC between each pair of model
node. The existing system in 2016 is dominated by coal and nuclear base-load generators. Over
the planning time frame this changes fundamentally for all CEM runs due to large investments

in mid-merit and peaking generators that accompany the large-scale deployment of VRE.
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Figure 37: Cumulative installed gross capacity by foresight approach (Group 1)
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Figure 38: Cumulative installed NTC between model nodes by foresight approach (Group 1)

In 2016, base-load generators represented 54% of total installed generation capacity and 61% of
the capacity of the residual system. Until 2040, the share of base-load generators is reduced to
43% of the total installed generation capacity. Related to the residual system, the share of base-
load generators even decrease to 14%. The share of VRE on total installed system capacity is
increased from 18% in 2016 to about 48% in 2040 in all three CEM runs. As a consequence of
the persistent utilization effect, the share of flexible mid-merit and peaking units on the residual
asset fleet increases from 26% to 83% and from 23% to 43% related to the total installed

generation capacity.

Major differences between the three CEM runs can also be observed for the timing of
investments. Figure 39 and Figure 40 present the newly installed generation capacity and NTC
respectively in each milestone year by CEM run. The general trend is that the perfect foresight
model installs more generation capacity in the second half of the planning time frame (after

2028) in contrast to the other two CEMs. Roughly 57% of the entire generation capacity is
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installed after 2028 by the perfect foresight model. In contrast, the myopic foresight and rolling
horizon model add about 55% of the entire new generation capacity before 2028. Investments
in the transmission grid are larger in the second half of the planning time frame in all CEM runs,
even though for the perfect foresight model investments are almost equally distributed

between the first and the second half of the planning time frame.

All CEMs have in common that the entire newly added fossil fuel fired generation capacity is
installed between 2019 and 2028 and that CSP generators are not installed before 2028.
Investments in VRE are economically efficient already in 2019 in all CEM runs, as they reduce
power generation from the most expensive elements of the asset fleet such as GT or old and
inefficient coal power plants (“fuel saver”). However, a significant difference in the timing of
VRE investments exists between the CEM runs. The myopic foresight and rolling horizon model
install 14 GW of PV until 2028. Compared to that, the perfect foresight model installs only 3 GW
of PV in the same time frame. Instead of installing large PV capacities, the perfect foresight
model invests in large wind power capacities until 2028 (about 11 GW). In the same time frame,
the myopic foresight and rolling horizon model invest only in 5 GW and 7.5 GW of wind power
respectively. The large investments in wind power in the perfect foresight model are
accompanied by large-scale investments for transmission grid expansion between model node

N2 and N3 (see Figure 40).

The difference in timing of VRE capacity is a direct consequence of the different foresight
approaches applied in the CEMs. The perfect foresight model has the capability to anticipate
strongly decreasing PV investment costs until the end of the planning time frame. To not
blocking cheap future PV investments with early investments in comparably expensive PV
generators, the perfect foresight model postpones major PV investments until 2028. Instead,
large investments in wind power are executed until 2028 by the perfect foresight model for

which cost reduction is less pronounced over the planning time frame (less steep learning rate).
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Figure 39: Newly added gross capacity by milestone year and foresight approach (Group 1)
4.00
3.50 - I I
3.00 -
2.50 - I I
2 L
3 2.00
150 -~ I
1.00 -
0.50 -
0.00
O ANV AT~ O 0NN At ~OWw AW d s~ O
i NN NN Sl NN N0 Sl N NN DD oD S
ololo olojooo o olboo Qoo o oo oo oooo oo
e NN NN NN NN NN e NN e e e e e e e e e e e e
Myopic foresight Rolling horizon Perfect foresight
Year
EN1-N2 mN1-N4 mN2-N3 N2-N4 mN3-N4

Figure 40: Newly added NTC between model nodes by foresight approach (Group 1)
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Figure 41 presents the spatial distribution of the cumulative installed generation capacity
computed by the three CEM runs. The major difference is the siting of PV generators. Despite
the lower solar resource availability compared to model node N4, the myopic foresight model
installs most PV capacity at model node N2. At the end of the planning time frame in 2040,
9.7 GW of PV is installed at model node N2. At N1 and N4, only 3.7 GW and 8.5 GW are installed
respectively. In contrast, the rolling horizon and perfect foresight model installed most PV
capacity at model node N4, where the highest solar resources are located. At the final year of
the planning time frame, PV generators with an installed capacity of 3.6 GW, 6.7 GW, and 11
GW are sited at model node N1, N2, and N4 respectively by the rolling horizon model. In the
perfect foresight model 2.5 GW, 4.2 GW, and 12.8 GW of PV are installed at model node N1, N2,
and N4 respectively. The difference between the model runs is a consequence of the different
capability of the CEMs to adapt investment decisions over the planning time frame according to
future occurrences. The myopic foresight model does not foresee the large-scale CSP
deployment at model node N4, starting in 2028, and the associated large investments in the
transmission grid that allows also the transportation of electricity generated by PV from N4 to
the demand centers of the power system (N1 and N4). Without this knowledge, the myopic
foresight model executes large-scale PV investments at model node N2 in the milestone years
2022 and 2025 because higher solar resources at N4 do not compensate additional costs
required to increase the NTC between N4 and the rest of the power system to transport

electricity generated by PV at N4 (grid-related impacts of VRE).

Figure 42 presents the composition of the power supply for the entire planning time frame
aggregated by technology. As longer the foresight of the CEM as higher is the share of RES-E on
power supply. Hence, the highest RES-E share is computed by the perfect foresight model.
About 60% of the entire electricity demand for the 24 year planning time frame is served by
RES-E. The myopic foresight and rolling horizon model cover 56% and 57% of the electricity
demand by RES-E. Due to the earlier large-scale wind power investments, the share of wind
power on total produced electricity over the planning time frame is highest in the perfect

foresight model.
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Figure 41: Spatial distribution of cumulative installed gross capacity foresight approaches (Group 1)
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Also power generation from CSP is highest for the perfect foresight model. The share of power
generation from PV and CCGT is largest in the myopic foresight model, which is a result of
investment decisions in the first half of the planning time frame. Power generation shares from

coal, nuclear, hydro power, and biomass are similar in all three models.
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Figure 42: Composition of total power supply for the planning time frame (Group 1)

The asset fleet determined by the perfect foresight model reaches with 82% the highest RES-E
share at the end of the planning time frame in 2040 (see Figure 43). Compared to that, the
least-cost asset fleets computed by the myopic foresight and rolling horizon model reach only a
RES-E share of 78% and 79% respectively in 2040. The results of the three CEM runs are in line
with the theory of the transitional utilization effect. For example, capacity factors of existing

coal generators are reduced by about 50% over the planning time frame in all three CEM runs.
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Figure 43: Composition of power supply by milestone year (Group 1).
Figure 44 presents the average supply costs of the power system over the planning time frame
for the three foresight approaches. Average supply costs are defined according to equation (64).
The sum of annual system CAPEX and OPEX is divided by the annual electricity demand of the

system.

CAPEX,”*™ + OPEX,”**™

System
y

Averrage Supply Costs, = (64)

Demand

As the existing asset fleet in 2016 is the same for all CEM runs, average supply costs of the
system in 2016 are identical for all three CEM runs (71.8 USD/MWh). Average supply costs
increase almost identical until the end of the planning time frame in the myopic foresight and
rolling horizon model and reach 81.0 USD/MWh and 80.6 USD/MWh respectively in 2040.
Average supply costs of the perfect foresight model increase more sharply in the first part of the
planning time frame but this level off after 2028. In 2031, average supply costs are almost

similar to those of the myopic foresight and rolling horizon model. Afterwards, average supply
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costs are considerably lower and reach 79.2 USD/MWh in 2040. The development of the
average supply costs of the power system highlights again the advantage of the perfect
foresight model to adapt investment decisions according to future occurrences. Higher costs in
the short-term are accepted to a certain degree if its pay out in the long-term. In a less extent

this behavior can also be observed for the rolling horizon model.
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Figure 44: Development of average supply costs over the planning time frame by foresight approach (Group 1)

Table 16 presents the net present value (NPV) of the total system costs over the planning time
frame as well as computing time to solve the optimization problem (expressed in percentage of
the myopic foresight model). While significant differences in investment decisions could be
observed for the three different foresight approaches, total system costs over the planning time
frame are very similar. Compared to the myopic foresight model, total system costs of the

rolling horizon and perfect foresight model are only 0.39% and 1.23% lower respectively. This
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indicates that the capacity expansion optimization problem has a very flat optimum, meaning

that several solutions exist with very similar total system costs over the planning time frame.

The myopic foresight model required the less computing time to solve the capacity expansion
optimization problem. However, the computing time of the rolling horizon model was only 8%
higher. The perfect foresight model required significantly more computational effort than the
other two CEMs. Solving the optimization problem in one large optimization period with perfect
foresight requires almost four times more computational effort than solving the optimization
problem with a single-year myopic foresight. The relatively low difference in computing time
between the myopic foresight and the rolling horizon model can be explained by the fact that
for each optimization period (nine in the myopic foresight, three in the rolling horizon model),
the CEM must be compiled again before the actual optimization period can be solved. This
process can take a considerable amount of time and partially levels off reduced computing time

to solve the optimization problem of the respective optimization period.

Table 16: Total system costs and computing time by foresight approaches (Group 1)

Myopic foresight Rolling horizon Perfect foresight
Total system costs (NPV) 100% 99.61% 98.77%
Computing time 100% 108% 396%
343 sec. 370 sec. 1360 sec.

5.2.4 Results for sudden introduction of CO: prices

Figure 45 presents the total newly installed generation capacity over the planning time frame
for the three CEM runs of Group 2. Similar to the CEM runs of Group 1, more than 60 GW of
new capacity is added until 2040 in each CEM run. Again, the perfect foresight model installs
most capacity (66 GW). Investments in VRE by the three CEM runs are also very similar
compared to the CEM runs of Group 1. Firstly, most VRE capacity is installed by the perfect
foresight model due to larger wind power investments, and secondly significantly more PV than
wind power is installed by all CEMs. The share of VRE on total generation capacity expansion is
about 56% in the myopic foresight and rolling horizon model and almost 59% in the perfect

foresight model.
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Whereas investments in VRE are very similar in the respective CEM runs of Group 1 and
Group 2, significant differences can be observed for the residual system. In Group 1, no
investments in coal generators are executed in any of the three CEM runs. In contrast, the
myopic foresight and rolling horizon model of Group 2 make considerable investments in coal
power plants due their limited information about future CO, price developments. The myopic
foresight model invests in 4.8 GW of new coal capacity (eight units). The rolling horizon model
installs new coal power plants with a capacity of 3.6 GW (six units). The perfect foresight model
has information about all future occurrences over the planning time frame and adapts its
investment decisions accordingly. Due to the high CO, prices in the second half of the planning
time frame and the large-scale deployment of VRE, the perfect foresight model avoids

investments in coal generators.
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Figure 45: Total added gross capacity by foresight approach (Group 2)
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Also regarding investments in CCGT generators some differences can be observed between the
three CEM runs of Group 2. The perfect foresight model installs the less CCGT capacity (2.4 GW)
over the planning time frame. The myopic foresight and rolling horizon model install 3.2 GW
(two more units) and 2.8 GW (one more unit) of CCGT capacity respectively. Instead investing in
fossil fuel fired CCGT generators, which would lead to significant CO, emissions, the perfect
foresight model installs significantly more dispatchable CSP generators. CSP units with a total
capacity of 13.9 GW are installed until 2040 by the perfect foresight model. This is 3.1 GW and
2.1 GW more CSP capacity than installed by the myopic foresight and rolling horizon model
respectively. Similar to the CEM runs of Group 1, CSP units are equipped with a 10h TES and a
BB with 100% of thermal turbine capacity in all CEM runs. Also more GT capacity is installed by
the perfect foresight model compared to the other two CEMs. 8.35 GW of GT power plants are
added by the perfect foresight model. The myopic foresight and rolling horizon models invest
only in 6.0 GW and 6.55 GW of new GT capacity respectively. Similar to the CEM runs of
Group 1, all CEMs runs of Group 2 deploy the entire additional available reservoir hydro (1.5
GW) and pumped-storage (1 GW) potential. Also in Group 2, investments in Lithium-ion
batteries do not belong to the least-cost expansion plan in the myopic foresight and rolling
horizon model but do in the perfect foresight model. The perfect foresight model invests in
0.25 GW of Lithium-ion batteries. Also in the CEM runs of Group 2, nuclear and biomass

generators as well as CCS technologies are not part of the least-cost expansion plan.

The newly added NTC between model nodes of the system is presented in Figure 46. With
18 GW, the perfect foresight model installs the most additional NTC (similar as in Group 1). The
myopic foresight and rolling horizon models invest in 13.8 GW and 15.6 GW of NTC respectively.
Hence, the differences between investments in the transmission grid between CEM runs of
Group 2 are significantly higher than between the CEM runs of Group 1 (maximum difference
between CEM runs of Group 1 was 2.4 GW). The higher difference between the perfect
foresight and the other two CEMs is mainly driven by the significant larger investments in CSP in
the perfect foresight model, which requires larger grid investments to transport electricity from

model node N4 to the demand centers of the power system that are located at N1 and N2.
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Figure 46: Total added NTC between model nodes by foresight approach (Group 2)

The timing of investments in new generation capacity for the CEM runs of Group 2 is shown in
Figure 47. The limited foresight and its consequences on investment decisions made by the
myopic foresight and rolling horizon models can be clearly recognized. The myopic foresight
model invests in 4.8 GW of coal power plants until 2028 as the strong increase of CO, prices
after 2028 cannot be foreseen by the CEM. The rolling horizon model has partial information
about the strongly increasing CO, prices between 2028 and 2040 and therefore adapts its
investment decisions. In the first of the three sub-periods of the rolling horizon model (2016 -
2022) 3.0 GW of coal power plants are installed, which is the same quantity that is installed by
the myopic foresight model until 2022. However, in the second optimization period of the
rolling horizon model (2025 - 2031) only one more coal power plant (0.6 GW) is added because
increasing CO, prices in the future can be partially foreseen by the CEM. Compared to that, the
myopic foresight model invests in another three coal units (1.8 GW) until 2028. Instead of
installing additional coal power plants, the rolling horizon model invests in more wind power

and CSP generators. As the perfect foresight model has information about all future



Chapter 5: Impact of applied modelling approach on results of capacity expansion optimization

91

occurrences, investments in coal power plants are completely avoided because high generation

costs of coal power plants due to increasing CO, prices and a large-scale deployment of VRE

over the planning time frame are anticipated by the CEM.
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Figure 47: Newly added gross capacity per milestone year by foresight approach (Group 2).

Table 17 compares the development of the capacity factor, SRMC, and long run marginal costs

(LRMC) of the coal and the CSP units installed in 2028 by the myopic foresight model. The

capacity factor of the coal unit decreases from 75% in 2028 to 50% in 2040, due to a large-scale

deployment of VRE. According to the assumptions for fossil fuel and CO, price development, the

SRMC of the coal unit increase from 37 USD/MWh in the first year of operation to 71 USD/MWh

at the final year of the planning time frame. Combined with the decreasing capacity factor, this

leads to an increase of the LRMC from 67 USD/MWh in 2028 to 117 USD/MWh in 2040. In

contrast, the installed CSP units have a constant capacity factor of 45% until the end of the

planning time frame. The capacity factor is not affected by the large-scale deployment of VRE
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due to the low SRMC of the CSP units. As a consequence of a constant capacity factor and stable
SRMC, also the LRMC of the CSP units are constant until the end of the planning time frame
(86 USD/MWh). The rolling horizon (partially) and the perfect foresight model do have
information about these future occurrences and therefore install significantly more CSP units in

2028 than the myopic foresight model.

Table 17: Performance of coal and CSP units installed by the myopic foresight model in 2028 (Group 2)

COAL (1 unit, 0.6 GW) CSP (6 units, each 0.1 GW)
C?ap;f)':y SRMC LRMC C?apcatf)':y SRMC LRMC
(%] [USD/MWh]  [USD/MWh] (%] [USD/MWh]  [USD/MWh]
2028 75 37 67 45 18 86
2031 62 54 90 45 18 86
2034 54 65 107 45 18 86
2037 51 69 113 45 18 86
2040 50 71 117 45 18 86

The cumulative installed generation capacity over the planning time frame and its spatial
distribution is shown in Figure 48 and Figure 49 respectively. In all CEM runs, the installed VRE
capacity in 2040 represents about 50% of total installed capacity. The persistent utilization
effect for the residual system is significantly more pronounced in the perfect foresight model
due to the abdication of investments in coal power plants. In 2040, base-load generators
represent only 14% of the residual asset fleet due to large investments in dispatchable peak-
and mid-merit generators, such as GT, CCGT, and CSP, which accompanies the large-scale
integration of VRE. The share of base-load generators is considerably higher in the myopic
foresight (30%) and rolling horizon models (25%), which do not at all (myopic foresight) or only
partially (rolling horizon) foresee the strongly increasing CO, prices and high shares of VRE
towards the end of the planning time frame. Similar to the CEM runs of Group 1, significant PV
capacities are installed at model node N2 in the myopic and rolling horizon models, whereas the
perfect foresight model installs most PV capacity at N1 and N4. The additional coal power plants
that are built in the myopic and rolling horizon model are installed at model node N2 where the
largest electricity demand exists. The perfect foresight model instead avoids these coal

installations at N2 and starts to invest earlier in wind power at model node N3. The wind power
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installations are accompanied by large investments in GT at model node N2 in order to ensure
adequacy of the system from a long-term planning and a reliable system operation from short-

term operation perspective.
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Figure 48: Cumulative installed gross capacity by foresight approach (Group 2)

Figure 50 and Figure 51 present the composition of total power supply over the total planning
time frame and its development by milestone year respectively aggregated by technology. As
the myopic foresight and the rolling horizon model invests significantly in coal generators while
the perfect foresight model does not, the share of power production from coal over the entire
planning time frame is considerably lower in the perfect foresight model. Similar to the CEM
runs of Group 1, the highest RES-E generation share is reached by the perfect foresight model.
However, differences between the model runs are more pronounced for the CEMs of Group 2.
The share of power generation from RES-E over the entire planning time frame is 58% in the

perfect foresight model.
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Figure 49: Spatial distribution of cumulative installed gross capacity by foresight approach (Group 2)
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Figure 50: Composition of total power supply for the planning time frame (Group 2)

For the myopic foresight and rolling horizon model, the RES-E share on total power generation
over the planning time frame is only 48% and 49% respectively. Until the end of the planning
time frame in 2040, the RES-E share is increased from 16% in 2016 to 82% in the perfect
foresight model. In the myopic foresight and the rolling horizon model only 74% and 76% of the

electricity is generated by RES-E respectively in 2040.

Figure 52 shows the average supply costs of the power system over the planning time frame for
the three CEM runs of Group 2. The development of average supply costs is very similar for the
myopic foresight and rolling horizon model. The development is characterized by a decrease
until 2022 due to large investments in coal generators with low generation costs at the time of
installation. However, from 2025 until 2034 when CO, emission prices are suddenly introduced
and increase strongly, average supply costs of the myopic foresight and rolling horizon model
increase sharply. After 2034, due to the large-scale deployment of cheap RES-E average supply

costs of the power system decreases again despite a further increase of fossil fuel and CO,;
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prices. From 2031, the rolling horizon model has slightly lower average supply costs than the
myopic foresight model. Until 2028, the average supply costs of the perfect foresight model are
considerably higher compared to the other two CEMs, mainly caused by the early investments
in RES-E instead of large investments in coal generators. The abdication of investments in coal
power plants and the preponed investments in RES-E pays of in the second half of the planning
time frame. The sudden introduction of CO, prices in 2025 and the strong increase of them
between 2028 and 2034 do not affect the generation costs of the asset fleet as much as the
asset fleets of the myopic foresight and rolling horizon model due to higher generation shares of
RES-E and gas-fired generators. Hence, average supply costs between 2025 and 2034 increase
considerably less sharply in the perfect foresight model. In 2031, average supply costs of the
perfect foresight model are already similar to the average supply costs of the other two CEMs
and afterwards significantly lower. In 2040, the perfect foresight model has average supply costs
of only 79.2 USD/MWh, which is a difference of 3.1 USD/MWh and 2.3 USD/MWh to the myopic
foresight (82.3 USD/MWh) and rolling horizon model (81.6 USD/MWh) respectively.
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Figure 51: Composition of power supply by milestone year (Group 2)
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Figure 52: Average supply costs over the planning time frame by foresight approach (Group 2)

Table 18 presents the total system costs (NPV) to meet electricity demand and reliability

standards over the planning time frame as well as computing time to solve the capacity

expansion optimization problem formulated in the three CEM runs of Group 2. The difference

between the total system costs is about twice as much as in the CEM runs of Group 1.

Compared to the myopic foresight model, the total system cost of the rolling horizon and

perfect foresight model is 0.75% and 2.4% lower respectively. The difference for the CEMs runs

of Group 1 is only 0.39% (rolling horizon) and 1.23% (perfect foresight). Computing time of the

rolling horizon model is 35% higher than for the myopic foresight model. The computing time of

the perfect foresight model is more than three times higher than computing time of the myopic

foresight model.

Table 18: Total system costs and computing time by foresight approach (Group 2)

Myopic foresight Rolling horizon Perfect foresight
Total system costs (NPV) 100% 99.25% 97.60%
Computing time 100% 135% 311%
381 sec. 515 sec. 1185 sec.
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5.2.5 Summary and discussion

The analysis has shown that the applied foresight approach has a significant impact on results
for capacity expansion optimization but also on computational effort. For the parameter set of
Group 1, computing time for the perfect foresight model was about 4 times higher than for the
single-year myopic foresight model. For the parameter set of Group 2, the perfect foresight
model required about three times more computing time than the single-year myopic foresight
model. Computing time for the multi-annual rolling horizon model was about 8% (Group 1) and

35% (Group 2) respectively higher than for the single-year myopic foresight model.

Results of the CEM runs of Group 1 showed that if input parameters change continuously over
the planning time frame results for the myopic foresight, rolling horizon, and perfect foresight
model differ only moderately in terms of total system costs. The solution computed by the
perfect foresight model was 0.39% and 1.23% cheaper than the solution determined by the

rolling horizon and myopic foresight model respectively.

However, when results are analyzed in detail, several differences can be observed in terms of
technology choice (which?), siting (where?), and timing (when?) of new capacity. For example,
most CSP units are installed by the perfect foresight model. In contrast to the myopic and rolling
horizon model, the perfect foresight model is able to fully consider the advantage of CSP to
provide dispatchable and firm capacity at stable generation costs over the planning time frame.
Therefore, the CEM increases CSP and decreases CCGT capacity compared to the myopic and
rolling horizon model. CCGT represent also firm and dispatchable capacity but cannot provide

stable generation costs over the period of study because of increasing fuel and CO, prices.

As demonstrated by the CEM runs of Group 2, differences between the foresight approaches
are significantly higher if some of the input parameters change suddenly at one point of the
planning time frame (e.g. in this analysis CO, prices). These findings are in line with results
presented in [92], [94]. The solution computed by the perfect foresight model of Group 2 was
0.75% and 2.4% cheaper than the solutions determined by the rolling horizon and myopic
foresight model of Group 2 respectively. The larger the foresight the higher is the capability of
the CEM to react on future occurrences already in advance and adapt investment decisions

accordingly. The myopic foresight model of Group 2 invests in a large number of coal units in
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the first half of the planning time frame when CO, emissions are on a very low level. In contrast,
the perfect foresight model foresees strongly increasing CO, prices in the second half of the
study period and avoids investments in coal generators completely. Instead, investments in RES-
E are preponed to reduce CO, emission of the system. Due to its limited foresight, the myopic

foresight model misses this opportunity, which leads to higher total system costs.

All foresight approaches have their justification and the suitability depends on the objective of
the analysis. In the case an optimal expansion pathway for a power system under a given set of
input parameters is the aim of the analysis, the perfect foresight approach is the most suitable
approach due to its capability to identify the intertemporal global optimum over the planning
time frame [93]. Derived results represent the optimal allocation of resource usage and can be

interpreted as the upper limit of the performance of the system.

In the case the study aims to investigate the consequences of unpredictable events for the
power system, such as a sudden increase of CO; prices or the introduction of any political target
(e.g. nuclear phase-out), the myopic foresight approach may better represent the real-life
behavior and the evolutionary nature of power systems [94], [95]. However, using the myopic
foresight approach changes the character of the optimization model towards a simulation
model and results cannot be interpreted anymore as the global optimum to meet demand,

reliability standards, and defined targets for the system over the planning time frame.

The rolling horizon approach offers a compromise between the perfect foresight and the
myopic foresight approach in terms of computing time but also in terms of the frame conditions
of real-life decision makers. Both, a perfect foresight and a single-year myopic foresight, do not
reflect the frame conditions of decision makers realistically. In reality future developments of
e.g. technology and fuel costs are characterized by uncertainties that increase with the length of
the planning time frame. Real-life decision makers do not have perfect information about these
developments. However, assuming decision makers have no information at all about future
developments is also unrealistic and underestimates strategic planning capabilities significantly.
Therefore, the multi-annual rolling horizon approach can be an appropriate approach especially
for utilities that want to identify economic efficient investment options under a more

conservative assumption than perfect foresight.
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5.3 Impact of applied system-operational detail

5.3.1 Hypothesis

Long-term CEMs with multi-annual planning time frames have typically a reduced system-
operational detail compared to PCMs due to computational constraints. To keep CEMs
manageable, the temporal resolution is reduced from the hourly or sub-hourly ideal to a limited
number of representative annual dispatch periods. Furthermore, UCCs of thermal generators
are neglected as this would increase complexity of the optimization problem significantly.
Historically, long-term CEMs used the integral balance method for capacity expansion
optimization, as this approach causes low computational effort and is highly suitable for power
systems dominated by conventional thermal power plants whose performance is affected only
marginally by fluctuating external influences such as the weather [96]. However, recently it’s
becoming clear that using the integral balance method is inappropriate for capacity expansion
planning with VRE because the value of energy at its time of the delivery and the flexibility

effect caused by a large-scale deployment of VRE cannot be considered.

To overcome the limitations of the integral balance method, REMix-CEM applies the semi-
dynamic balance method for a better representation of the short-term dynamics of demand and
supply of the power system, for which importance increases with the large-scale deployment of
VRE. The semi-dynamic balance method uses representative days with chronological dispatch
periods to capture seasonal and diurnal variability of load and RE resource availability. This
enables REMix-CEM to consider the value of energy at its time of the delivery for the various
investment options on the one hand and to capture the flexibility effect caused by VRE on the
other hand. The flexibility effect can be considered during capacity expansion optimization by
applying UCCs, which limit the flexibility of thermal generators to follow the chronological
(residual) load. However, the method for assigning values of RE resource availability to the
considered dispatch periods of the CEM is an area of active research and considering UCCs of
thermal generators during capacity expansion optimization comes at high computational costs.
Therefore, this section aims to investigate two important issues for long-term capacity

expansion planning with VRE:
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I) The impact of the applied method to assign values for RE resource availability to the
dispatch periods of the CEM on model results.
II) The impact of considering UCCs of thermal generators, and hence the flexibility effect,

during capacity expansion planning on model results and computational effort.

5.3.2 Methodology

The fictitious power system described in Section 5.1 is used for the analysis. Four CEM runs are
executed, each with a common set of input data. Similar to the case study of the previous
section, variability of system load over the year is represented by one working and one weekend
day per month with hourly dispatch periods. Seasonal and diurnal variability of RE resources is
described by one daily resource profile per month. The only difference between the CEM runs is
the applied method for assigning values of RE resource availability to the dispatch periods and

the way how UCCs of thermal generators are considered.

Figure 53 presents the flow diagram of the analysis. In a first step, the least-cost expansion plans
computed in the four CEM runs are compared to evaluate the impact of the applied approach in
the respective CEM on investment decisions. In addition, the required computing time to solve
the optimization problem formulated in the respective CEM is compared. In a second step, the
accuracy of each capacity expansion modelling approach in approximating system operation is
validated by performing a detailed production cost analysis for the proposed asset fleet of the
last year of the planning time frame (year 2040). For this purpose, the developed optimization
model of this work is used as detailed production cost model (REMix-PCM). For production cost
modelling the dynamic balance method with an hourly resolution (8760 annual dispatch
periods) and the full set of UCCs for conventional thermal generators is applied. Hence, REMix-
PCM applies a significant higher system-operational detail and results can be used to benchmark
the capability of the respective CEM to approximate system operation accurately during
capacity expansion optimization. Results for system operation calculated by the detailed PCM
are compared with results determined by the corresponding less detailed CEM. Values that
describe the operation of the system comprise annual average supply costs of the system,
annual system OPEX, technology-specific generation shares, CO, emissions of the system, and

curtailment of VRE electricity production.
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Figure 53: Approach for analyzing the impact of the applied system-operational detail on results of capacity

expansion optimization
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If not stated otherwise, differences in these values between each pair of CEM and UCM are

expressed by a system operation error term, which is calculated according to equation (65).

ResultsPM

ErrorTerm = | ——— —
<ResultsCEM

1) -100% (65)

As already mentioned, the methodology for assigning values of RE resource availability to a
limited number of dispatch periods that are used for capacity expansion optimization is an area
of active research. The assigned values should characterize seasonal and diurnal RE resource
variability within the year as accurate as possible. The most commonly applied method is the
average day method, often also called integral method [97]. The average day method uses
average values for RE resource availability of all data points of a period (e.g. a month) that
corresponds to that dispatch period. The advantage of the average day method is its ease of use
and that the method ensures that technology-specific annual energy yields are approximated
accurately. However, the disadvantage is that the fluctuating nature of RE resources is

underestimated considerably as high and low values are averaged.

Another method for assigning values of RE resource availability to the dispatch periods of a CEM

|II

is the selection of a set of “real” historical representative days or weeks [102]. The advantage of
the so-called representative day method is a better representation of the short-term variability
of RE resources because high and low values are not averaged. The drawback of the method is
the difficult selection of a set of days (or weeks) that represent technology-specific annual
energy yields as well as seasonal and diurnal variability accurately, while considering regional

and technology-specific balancing effects. No consistent criterion exist to select representative

days or to assess the validity of the assumption that is used for the selection [104].

All four CEM runs of the analysis apply the average day method for assigning values of system
load to the dispatch periods considered. Due to the typically high regular seasonal, daily and
diurnal variation of the load, the average day method provides a good representation of the real
annual hourly load curve. In order to assign values of RE resource availability to the dispatch
period, CEM-1 applies the average day method. CEM-2, CEM-3 and CEM-4 use the

representative day method. As there is no established criterion for selecting representative days
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for RE resource availability, a straight forward approach is applied in this case study. For each
RES-E technology, the day of each month for which the daily energy yield of the respective
technology is closest to the monthly average is selected as representative day. Afterwards, the
selected daily time-series are scaled to meet the technology-specific annual energy vyield.
Technology-specific representative days are determined at each model node. Figure 54
compares the normalized diurnal time-series for potential wind power generation (hourly
capacity factors) at node N1 according to the average day method and the representative day
method for each season of the year. Variability of potential wind power generation is
significantly higher for the representative day method than for the average day method,

because extreme values are not averaged.

1.20

1.00 -

0.80 -

Capacity factor
o
3

U )

0.20

0.00

B B B e B O e O T e T D I S B3 T e IO T e e T e O A N e B M N S B T e B T e B I Y
OO0 -H OO " 00— 00" 00" OO 0[O0 " 00— 00000000 -
[ T o o e T T T o T T = T T T T - T - - - T - - - -1
D\DIO\D\D\DIOID\D\DIOID\D\DIQID\D\OID\D\DIOID\D\DIOID\D\DIOID\D\D\DIO\D\
|-|HHNNNmmmgggmﬂmm&o@hhr\mmwmmmDDDHHHNNN
COCO0OO0C0CCO0OO0 000000000000 00 A dddd A dd A
L7 IV BV I Vo IV IRV IV NV RV IV I Vs TV 7 ¥ IV I R TV TV RV ¥ Vs I W RV, I TRV TV Y I BV IV I BV RV, T )

Diurnal dispatch period of season

——Representative Day ——Average Day

Figure 54: Comparison of average day and representative day method. Daily wind power generation profiles for
each month of the year at model node N1 according to the average day and the representative day method.

UCCs of thermal generators are considered only by CEM-3 and CEM-4. Hence, only in these CEM
runs the flexibility effect caused by a large-scale integration of VRE can be captured. CEM-3
considers UCCs in in a simplified way by modelling only unit start-up and ramping costs during
capacity expansion optimization. Furthermore, a linear relaxation for the integer variables that
describe the commitment status of each unit is applied. The linear relaxation of integer

variables promises a large computing time reduction as the number of integer variables of the
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optimization problem is reduced significantly. This speed-up strategy is sometimes applied for
unit commitment optimization problems with long planning schedules that exceed the typical
daily or weekly planning horizon in order to keep models manageable. An example is given e.g.
in [98]. However, due to the linear relaxation, unrealistic situations, such as e.g. a half unit start-
up can occur, while optimizing capacity expansion for the power system. CEM-4 considers UCCs
in detail during capacity expansion optimization. Besides start-up and ramping costs, also
minimum generation levels and part-load efficiencies of thermal generators are modelled. In
addition, no linear relaxation for integer variables describing the unit commitment status is
applied in CEM-4. Values describing the flexibility of existing and candidate thermal generators
(start-up and ramping costs, minimum generation level, etc.) are presented in the Appendix.
The model setup for the four CEM runs is summarized in Table 19. A rolling horizon foresight is
applied for all CEM runs and CO, prices are assumed to be introduced suddenly after 2025 (see

Figure 33 Group 2, Section 5.2.2).

Table 19: Model setup for the different CEMs of case study 2

CEM-1 CEM-2 CEM-3 CEM-4
Planning horizon 2016 - 2040
Milestone years 2016, 2019, 2022, ..., 2040
# Milestone years 9
Foresight approach Rolling horizon
# Optimization periods 3 (2016 - 2025, 2025 - 2031, 2031 - 2040)
# Seasons 12 (each month of the year)
# Days per season 2 (1 working and 1 weekend day)
# Daily dispatch periods 24
# Total annual dispatch 576
periods
CO, prices Sudden introduction after 2025 (see Figure 33, Group 2 at Section 5.2.2)
Method for assigning load Average day Average day Average day Average day
values to dispatch periods method method method method
Method for assigning values Average day Representative Representative Representative day
of RE resource availability method day method day method method
to dispatch periods
Considered unit e None e None e Start-up and e  Start-up costs
commitment constraints ramping e Ramping costs

costs e  Min. load level
e Linear e  Part-load efficiency

relaxation
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5.3.3 Comparison of investment decisions

Figure 55 presents the total installed generation capacity over the planning time frame by CEM
run. The cumulative installed generation capacity and capacity expansion by milestone year for
each CEM run is shown in Figure 56 and Figure 57 respectively. Several differences can be

observed between the CEM runs:

The by far most wind power capacity is installed by CEM-1, which applies the average day
method for assigning values of RE resource availability to the dispatch periods. In total, 23.5 GW
of wind power is installed over the planning time frame. In CEM-2, CEM-3, and CEM-4, which all
apply the representative day method, only 13.2 GW, 14.6 GW, and 14.3 GW of wind power
capacity is installed respectively. As a consequence of large wind power installations, CEM-1
installs also the most GT generators (11.55 GW). The investments in GT generators in CEM-1 are
about twice as much as in CEM-2, CEM-3 and CEM-4, which all install about 6 GW of new GT
capacities. The large-scale wind power deployment in CEM-1 reduce potential power generation
of mid-merit and base load generators, which in turn makes investment in such technologies
economically inefficient (persistent utilization effect). Instead, very flexible GT generators with
low investment costs are installed. The main purpose of the GT generators is the provision of

firm and flexible reserve capacity to back-up power generation from VRE.

CEM-1 installs not only the most wind power capacity over the planning time frame but also the
most total VRE capacity. The share of VRE on total capacity expansion is about 60% in CEM-1. In
contrast, VRE represents only 56% of capacity expansion in CEM-2. The difference in VRE
installations between CEM-1 and CEM-2 indicates that the average day method assumes a
considerably higher value of energy at its time of the delivery for VRE generators than the
representative day method. This increases competiveness from a system perspective
significantly, which in turn leads to the larger VRE capacity expansion. Compared to CEM-2, the
share of VRE on overall capacity expansion is further decreased in CEM-3 and CEM-4 to about
54.5%. As the only difference between CEM-2 and CEM-3/CEM-4 is that the latter CEMs
consider UCCs of thermal generators, the lower VRE installations are caused by the flexibility
effect. The flexibility effect causes additional integration costs for VRE (balancing costs), which

reduce VRE deployment in CEM-3 and CEM-4.
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Figure 55: Total added gross capacity over the planning time frame by CEM run
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Another observation is that Lithium-ion batteries are only part of the least-cost expansion plan
in CEM-3 and CEM-4. Lithium-ion batteries increase the flexibility of the system and therefore
reduce balancing costs of thermal generators. The higher value for system flexibility in CEM-3
and CEM-4 is also indicated by earlier investments in pumped-hydro generators (see Figure 57).
For example, CEM-4 deploys already 50% (0.5 GW) of the entire remaining pumped-hydro
potential in 2019 and installs the remaining 50% in 2028. In contrast, no investments in
pumped-hydro units are executed in the same time frame by CEM-2, which has however almost

the same VRE deployment until 2028.
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Figure 57: Added generation and storage capacity in each milestone year by CEM run
Figure 58 illustrates the effect of considering the flexibility effect directly during capacity
expansion optimization. The left hand side of the figure shows the system dispatch aggregated
by technology for a weekend day in September 2019 according to CEM-2. The right hand side of
the figure does the same for the least-cost asset fleet determined in CEM-4. It can be clearly

observed that CEM-2 does not consider UCCs of thermal generators while CEM-4 does. CCGT
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generators are shut-down completely at 3 am and brought online again already one hour later
in CEM-2. This is possible because no start-ups costs and minimum offline times are considered
(see Figure 58 a). In contrast, shut-downs and start-ups of CCGT generators are avoided by CEM-
4 between 3 am and 4 am, because this would cause additional costs for the system. Instead of
shutting down the CCGT generator fleet completely, the installed pumped-hydro units are
utilized to store produced electricity by the CCGTs for later use during peak load hours. In
addition, extensive ramping and part-load operation of online CCGT generators is avoided in
CEM-4, as this would also cause additional costs for the system. This is achieved by a higher
utilization of pumped-storage hydro facilities (see Figure 58 b). The high value of system
flexibility increases competiveness of pumped-hydro facilities in CEM-4, which in turn leads to

earlier investments in this flexibility option.

CEM-2: CEM-4:
System dispatch weekend day September 2019 System dispatch weekend day September 2019
12 12
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Figure 58: System dispatch of a weekend day in September 2019 according to CEM-2 and CEM-4.

Another difference between investment decisions of the CEMs is the gradual increase of CSP
installations from CEM-1 to CEM-4. In total, CSP generators with a capacity of 8.2 GW are
installed by CEM-1. In contrast, CEM-4 installs 12.5 GW of CSP, which is an increase of about
52%. The difference between CEM-1 and the other CEMs can be explained by the higher
investments in wind power (and overall VRE capacity), which rather favors investments in peak

load generators, such as GT power plants, instead of mid-merit generators like CSP (persistent
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utilization effect). However, also from CEM-2 to CEM-4, CSP capacity is increased continuously
from 10.9 GW (CEM-2) to 12.3 GW (CEM-3) and 12.5 GW (CEM-4). The difference between
CEM-2 and CEM-3/CEM-4 can again be traced back on the flexibility effect, as this is the only
difference between the three CEMs. Therefore, competiveness of CSP is considerably higher
when the flexibility effect is taken into account in capacity expansion planning. To some extent
this is caused by the general reduced competiveness of VRE compared to dispatchable
generation technologies when integration costs (balancing costs) of VRE are considered.
However, the main reason for the larger CSP capacity expansion in CEM-3 and CEM-4 is the
higher capability of CSP, compared to other dispatchable mid-merit generation technologies like
CCGT, to integrate VRE (especially PV) into the power system. CEM-2 installs 4.4 GW of CCGT
generators whereas CEM-3 and CEM-4 install CCGT generators with a total capacity of only
2.8 GW and 2.4 GW respectively. In CEM-3 and CEM-4, the firm and dispatchable CCGT capacity

installed in CEM-2, is mainly replaced by firm and dispatchable CSP capacity.

The excellent capability of CSP generators to support VRE integration is highlighted in Figure 59,
which shows the system dispatch of a working day in July 2040 according to CEM-4. CSP
generators stop power production completely during times of high PV production and consume
instead electricity from the grid to cover the auxiliaries required to operate the solar field and
the thermal energy storage system to store solar energy for later use after sunset (Figure 58 a).
As system load is increased during times of high PV production through electricity consumption
of CSP generators, the described operation mode of CSP generators helps to integrated
additional PV into the system. This capability, together with good start-up and part-load
operation characteristics, makes the CSP technology ideal for integrating PV into the power
system. The dispatch schedule of CSP generators shown in Figure 59 has also the advantage that
dry-cooled power blocks of CSP generators are operated during lower ambient temperatures
(between evening and early morning), which leads to higher efficiencies of the Rankine-Cycle. A
higher efficiency at lower ambient temperatures is also the reason why pumped-hydro and
batteries systems are discharged first in the afternoon (5 - 6 pm) before CSP generators are

dispatched completely (Figure 59 b).
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Figure 59: System dispatch for a working day in July 2040 according to CEM-4
The development of the average supply costs of the power system over the planning time frame
for the four CEM runs is shown in Figure 60. In 2016, average supply costs of the CEMs are very
similar. CEM-1 and CEM-2 have with 71.7 USD/MWh and 71.8 USD/MWh respectively almost
identical average supply costs. The average supply costs of CEM-3 and CEM-4 in 2016 are with
72.3 USD/MWh and 72.5 USD/MWh respectively slightly higher. As in 2016 all CEMs have the
same asset fleet (first investments possible in 2019), the difference between CEM-1/CEM-2 and
CEM-3/CEM-4 results from the flexibility effect that is considered in the later models. Average

supply costs are kept relatively constant until 2028 in all CEMs and increase strongly until 2034
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due to the introduction of CO, prices (see Figure 33, Group 2). After 2034, average supply costs
are reduced again due to the large-scale integration of cheap RES-E technologies that have
walked down the learning curve considerably until then, and therefore overcompensate further
increasing fossil fuel and CO, prices. The difference in average supply costs between the CEM
runs remains almost constant until 2028 and increases aftwerwards significantly. In 2040, the
final year of the planning time frame, the maximum spread in average supply costs between the
CEMs is about 6.5%. CEM-1 has with 79.0 USD/MWh the lowest average supply costs in 2040.
The least-cost asset fleet determined by CEM-2 leads to average supply costs of 82.3 USD/MWh
in the final year of the planning time frame. Similar to the beginning of the planning time frame,
average supply costs of CEM-3 and CEM-4 are with 83.8 USD/MWh and 84.1 USD/MWh
respectively close together in 2040. Compared to CEM-1 and CEM-2, average supply costs of the
system determined by CEM-3 and CEM-4 are about 6.5% and 2.1% higher respectively in 2040.
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Figure 60: Development of average supply costs over the planning time frame by CEM run
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Table 20 presents the computing time to solve the optimization problem formulated in the four
CEM runs. CEM-1 and CEM-2 required almost the same computing time. This could be expected
as the two CEMs differ only in the applied method for assigning values for RE resource
availability to the dispatch periods. The consideration of start-up and ramping costs in CEM-3
increased computing time considerably. Compared to CEM-1 and CEM-2 computing time of
CEM-3 was about twice as much, even a linear relaxation for integer variables that define the
commitment status of thermal generators was applied. However, the by far highest computing
time was required to solve the optimization problem formulated in CEM-4, where UCCs of
thermal generators are considered in detail. Compared to CEM-1/CEM-2 and CEM-3 computing
time of CEM-4 was about 16 and eight times higher respectively. The high computational effort
of CEM-4 is caused by the large number of integer variables that are required to describe the
discrete commitment status of each existing and candidate thermal generator in each dispatch

period of the optimization problem.

Table 20: Comparison of computing time between CEMs

CEM-1 CEM-2 CEM-3 CEM-4
100% 103% 205% 1641%
715 sec. 735 sec. 1467 sec. 11742 sec.

5.3.4 Comparison of model accuracy regarding system-operational detail
After describing the differences between the applied CEMs regarding investment decisions and

required computing time, the question remains which of the four CEMs is truly more accurate
and describes operational behavior of the system with highest precision during capacity
expansion optimization. To answer this question, a full year production cost optimization with
hourly resolution was executed for the asset fleet suggested by each CEM for the final year of
the planning time frame (2040) applying REMix-PCM. The full set of UCCs for thermal generators
(minimum online- and offline times, minimum generation level, start-up costs, part-load
efficiency, and ramping costs) is applied for the annual production cost modelling. Hence,
together with the higher temporal resolution (8760 vs 572 dispatch periods), the PCM applies a
significant higher system-operational detail than the respective CEM. Results of the more

detailed PCM serve as benchmark for evaluating the accuracy of the respective CEM.
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Table 21 compares the total annual system costs and resulting average supply costs of the
system in 2040 for each pair of CEM and PCM. Total system costs and hence also the average
supply costs are considerably underestimated by CEM-1. According to CEM-1 average supply
costs of the system are 79 USD/MWh in 2040. For the same asset fleet, the detailed PCM
computes average supply costs of 90 USD/MW, which is a difference of 11 USD/MWh. This
difference results in a system costs error term of about 14%. Also the CEM-2, CEM-3, and CEM-4
underestimate the annual system costs in 2040. However, the system costs error term of CEM-2
is only 6% and therefore significantly lower compared to CEM-1. The error terms of CEM-3 and
CEM-4 are even reduced to 4.5% and 4.2% respectively. This indicates that CEM-3 and CEM-4
are considerably more accurate than CEM-1 and CEM-2 in capturing system-operation details

during capacity expansion optimization.

Table 21: Total annual system costs and average supply costs in 2040 for each pair of CEM and PCM

CEM-1 CEM-2 CEM-3 CEM-4

Total annual system costs

REMix-CEM [billion USD] 13.89 13.95 14.21 14.29

REMix-PCM [billion USD] 15.22 14.81 14.81 14.87
Average supply costs

REMix-CEM [USD/MWh] 79.0 82.3 83.8 84.1

REMix-PCM [USD/MWh] 90.0 87.6 87.6 87.6
System costs error term [%] 13.7 6.1 4.2 4.1

Since system CAPEX are identical for each pair of CEM and PCM (same asset fleet), the
difference between CEM and PCM in total annual system costs results from the different annual
OPEX of the asset fleet. As shown in Table 22, CEM-1 underestimates the OPEX of the system in
2040 significantly. This is indicated by the high error term of 36%. The OPEX error term of CEM-
2 is with about 15% considerably lower. With 10.6% and 10.0% respectively, CEM-3 and CEM-4
have the lowest OPEX error term of the four CEMs. Hence, CEM-3 and CEM-4 have the highest
accuracy in approximating the OPEX of the suggested asset fleet during capacity expansion
optimization. The relatively high inaccuracy of all CEMs in terms of OPEX estimation has only a
limited impact on the average supply costs in 2040 because system OPEX represents less than

50% of total annual system costs. This cost structure is common for RES-E dominated systems.
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Table 22: Comparison of total system OPEX in 2040 for each pair of CEM and PCM

CEM-1 CEM-2 CEM-3 CEM-4

Annual OPEX

REMix-CEM [billion USD] 5.14 5.96 5.79 5.84

REMix-PCM [billion USD] 7.01 6.83 6.40 6.44
Specific OPEX

REMix-CEM [USD/MWh] 30.4 35.3 34.2 34.1

REMix-PCM [USD/MWh] 41.4 40.4 37.8 37.5
OPEX error term [%] 36.4 14.6 10.6 10.0

The difference in system OPEX between CEM and PCM results from a different utilization of
single elements of the asset fleet in the respective model. Figure 61 compares the technology-
specific generation shares calculated by the CEMs and their corresponding PCM. The differences
in technology-specific generation shares and the overall generation error term® are presented
in Table 23. It can be observed that CEM-1 overestimates VRE power generation significantly
(mainly wind power) and underestimates likewise power generation especially of mid-merit and
peak load generators. The share of VRE on annual power generation is reduced by 9.3% points
in the PCM due to considerably larger wind power curtailments. For CEM-2, CEM-3, and CEM-4,
differences in generation shares between PCM and CEM are less pronounced. The share of VRE
on annual supply is reduced by about 3.5%-points in all three PCMs compared to their
corresponding CEM. VRE power production is mainly substituted by mid-merit generators
(CCGT, CSP) but also partially by peaking and base load units. The high VRE curtailment leads to
a generation error term of about 10% for CEM-1. The generation error-terms for the asset fleets
of CEM-2, CEM-3, and CEM-4 are considerably lower (4.3%, 3.4% and 3.7% respectively) due to
the significantly better approximation of the system operation during capacity expansion

optimization.
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Figure 61: Comparison of generation shares in 2040 for each pair of CEM and PCM
Table 23: Difference (A) in generation shares between each pair of CEM and PCM
and overall generation error term in 2040
Generator type CEM-1 CEM-2 CEM-3 CEM-4
Base load [%] +3.0 +0.5 +0.4 +0.7
Mid merit [%] +3.1 +2.0 +2.2 +2.1
Peak load [%] +3.2 +1.0 +0.8 +0.7
VRE [%] -9.3 -3.4 -3.4 -3.5
PV [%] -0.9 -1.1 -0.9 -0.8
WIND [%] -8.4 -2.3 -2.5 -2.7
Generation error term [%] 10.2 4.3 3.4 3.7

Base load: NUCLEAR, COAL, BIOMASS

Mid merit: CCGT, CSP

Peak load: GT, HYDRO-RES, PUMPED-HYDRO, BATTERY

VRE: PV, WIND, HYDRO-ROR

AGenerationShare, = GenerationSharef“™ — GenerationShare5™

The difference in technology-specific generation shares between the CEMs and their
corresponding PCM leads also to different CO, emissions of the asset fleet. CEM-1
underestimates CO, emissions of the power system in 2040 by 42% due to the significant

overestimation of VRE uptake and consequently underestimation of power generation of fossil
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fuel fired thermal generators. The CO, emission error terms of CEM-2, CEM-3, and CEM-4 are

with 10.7%, 9.4% and 8.6% respectively comparably low.

Table 24: Total CO, emissions of the system in 2040 for each pair of CEM and PCM

CEM-1 CEM-2 CEM-3 CEM-4
REMix-CEM [million tons] 26.7 38.5 36.8 36.8
REMix-PCM [million tons] 37.8 42.7 40.3 39.9
CO, emission error term [%] 41.8 10.7 9.4 8.6

The analysis for the year 2040 has shown that CEM-1 is not an adequate modelling approach for
long-term capacity expansion planning with VRE. System costs and CO, emissions of the
suggested asset fleet are underestimated significantly by CEM-1, whereas VRE uptake is
overestimated. The wrong representation of especially wind power variability by the average
day method applied in CEM-1 is the main driver for the high inaccuracy of CEM-1 because the
fluctuating nature of wind resources is underestimated significantly. This results in a wrong
consideration of the value of energy at its time of the delivery for wind power generators and its
impact on the residual system. The disregard of UCCs of thermal generators increases the

inaccuracy of CEM-1 additionally.

CEM-2 uses the representative day method instead of the average day method to assign values
of RE resource availability to the dispatch periods of the CEM. The analysis above has shown
that the accuracy of CEM-2 is significantly higher than the accuracy of CEM-1, which indicates
the higher suitability of the representative day method for capacity expansion planning with
VRE. This findings are in line with results presented by [102]. However, in most criterions used
for comparing the accuracy of the respective CEMs, CEM-2 performed worse than CEM-3 and
CEM-4. The latter CEMs apply additionally to the representative day method also UCCs of
thermal generators to capture the flexibility effect during capacity expansion optimization with

VRE.

For CEM-4, the highest modelling detail has been applied during capacity expansion
optimization by considering UCCs of thermal generators in detail. The analysis has shown that
the high modelling detail leads to the highest model accuracy in approximating system

operation during capacity expansion optimization. However, the disadvantage of CEM-4 is that
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the high accuracy of the CEM comes at very high computational cost. Computing time of CEM-4
is more than 16 times higher than computing time of CEM-2. The high computing time makes
the modelling approach relatively unmanageable for capacity expansion planning as high
computing time constraints the number of parameter variations and sensitivity analyses. Such

an analysis is however important to check robustness of results.

CEM-3 represents in terms of model accuracy and computing time a promising compromise. For
all criterions used for comparison the accuracy of CEM-3 is almost as high as the accuracy of
CEM-4 but computing time is about eight times less. The linear relaxation of integer variables
that define the unit commitment status of thermal generators reduces the computational effort
dramatically without biasing results for system operation significantly. This indicates that the
simplified representation of UCCs is a suitable approach to take into account the flexibility effect

during capacity expansion optimization while keeping computational effort manageable.

Detailed comparison of CEM-2 and CEM-3:

The analysis presented above pointed out that CEM-3 is the most suitable approach for capacity
expansion optimization with VRE due to the good trade-off between model accuracy and
computing time. However, also the modelling approach of CEM-2 should not be disregarded
due to the considerably lower computing time (50%) and partially only moderately lower
accuracy in approximating system operation during capacity expansion optimization. To finally
evaluate which of the two modelling approaches offers the best trade-off between model
accuracy and computational effort, the similar analysis that has been executed for the final year
(2040) is performed for each milestone year of the planning time frame. The analysis will show if
the observed difference in model accuracy between CEM-2 and CEM-3 increases or decreases
when the entire planning time frame is considered and therefore the higher computational

effort of CEM-3 is justified or not.

Table 25 shows the development of the system costs error term over the planning time frame
for CEM-2 and CEM-3. The system costs error term of CEM-2 increases from 1.5% in 2016 to
2.8% until 2028. In the same time frame installed VRE capacity increases from 10% to about 70%

of the system peak load (see Figure 62).
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Table 25: Annual total system costs error terms over the planning time frame of CEM-2 and CEM-3

2016 2022 2028 2034 2040 Average A 2040 A 2016 - 2040
CEM-2 1.5% 2.1% 2.8% 4.2% 6.4% 3.4%
30% 41%
CEM-3 0.7% 1.0% 1.1% 3.0% 4.5% 2.0%
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Figure 62: Development of installed VRE capacity at CEM-2 and CEM-3

After 2028, when installed VRE capacity increases further to 100% of the peak load and above,
the system costs error term increases sharply and reach 6.4% at the end of the planning time
frame. The average system costs error term for the whole planning time frame is 3.4% for CEM-
2. CEM-3 has a significantly lower system costs error term in all milestone years of the planning
time frame. For the total planning time frame he average system costs error term of CEM-3 is
2%, meaning that the accuracy of CEM-3 compared to CEM-2 increases significantly when all

milestone years are considered. Whereas the difference between system costs error terms in
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2040 is 30% the difference increases to 41% for the entire planning time frame. Especially until
2028, the error term of CEM-3 remains almost constant on a very low level (between 0.7% and
1.1%). However, when installed VRE capacity increases to more than 100% of the annual peak

load, also the annual system cost error term of CEM-3 increases and reaches 4.5% in 2040.

Table 26 presents the development of the system OPEX error term over the planning time frame
for CEM-2 and CEM-3. The average OPEX error term for the entire planning time frame is
significantly lower than for the last year for both CEMs. The average OPEX error term of CEM-2
and CEM-3 is 7.2% and 4.3% respectively compared to 14.6% and 10.6% respectively for the last
year. The advantage of CEM-3 over CEM-2 is increased significantly when the entire planning

time frame is used for evaluating the accuracy of the model (40% vs 28%).

Table 26: Annual total system OPEX error terms over the planning time frame of CEM-2 and CEM-3

2016 2022 2028 2034 2040 Average A 2040 A 2016 - 2040
CEM-2 2.1% 3.1% 4.7% 8.0% 14.6% 7.2%
28% 40%
CEM-3 0.8% 1.3% 1.8% 5.1% 10.6% 4.3%

Figure 63 shows the technology-specific generation shares over the planning time frame
according to the CEM and PCM for both CEM approaches. In the first half of the planning time
frame until 2028, technology-specific generation shares are very similar in the respective CEM
and its corresponding PCM for both capacity expansion modelling approaches. The major
difference between CEM and PCM is the higher utilization of peak and mid-merit generators
(GT, CCGT and CSP) and a simultaneously lower utilization of base-load generators (coal). In the
second half of the planning time frame the difference between CEM and PCM increases for
CEM-2 and CEM-3 significantly, mainly due to the overestimation of possible VRE uptake in the
respective CEM. The generation share error term for CEM-2 and CEM-3 is presented in
Table 27.' As long installed VRE capacity is well below 100% of the annual peak load (until
2028), the generation share error term is very low for both CEMs (< 1%). With increasing VRE

deployment this changes significantly. Until 2040, the error term of CEM-2 and CEM-3 increases

|GenerationSharegEM—GenerationShare};’CM

2
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to 4.3% and 3.4% respectively. For the entire planning time frame, the average generation share

error term is 2.1% and 1.6% for CEM-2 and CEM-3 respectively.
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Figure 63: Technology specific generation shares by modelling approach
Table 27: Generation error terms over the planning time frame of CEM-2 and CEM-3
2016 2022 2028 2034 2040 Average A 2040 A 2016 - 2040
CEM-2 0.9% 1.0% 0.9% 3.0% 4.3% 2.1%
20% 22%
CEM-3 0.5% 0.6% 0.9% 2.2% 3.4% 1.6%

The CO, emission error term over the planning time frame for CEM-2 and CEM-3 is shown in

Table 28. For the CO, emission error term the same situation as for the other indicators can be

observed. Until 2028, the error terms are relatively low but increase afterwards significantly for

both CEMs. However, accuracy of CEM-3 regarding CO, emissions is considerable higher than

accuracy of CEM-2. The average CO, emission error term for the planning time-frame of CEM-2

and CEM-3 is 3.8% and 2.0 % respectively. Hence, the accuracy of CEM-3 regarding assumed CO,

emissions of the proposed asset fleet is significantly higher when the entire planning time frame

is used for evaluation instead of solely the final year of the study.

Table 28: CO, emission error terms over the planning time frame for CEM-2 and CEM-3

2016 2022 2028 2034 2040 Average A 2040 A 2016 - 2040
CEM-2 0.2% 0.3% 0.6% 6.5% 10.7% 3.8%
13% 48%
CEM-3 0.0% 0.3% 0.3% 2.3% 9.4% 2.0%
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The comparison between CEM-2 and CEM-3 over the entire planning time frame has shown that
the higher computing time of CEM-3 is justified by the significantly higher model accuracy. In all
categories used for comparing the accuracy of the models, the advantage of CEM-3 over CEM-2
increases considerably when the entire planning time frame is used for evaluating the accuracy

of the models.

In fact, CEM-3 has a very high accuracy in approximating system operation of the proposed
least-cost asset fleet over the planning time frame. The simplified consideration of UCCs of
thermal generators through a linear relaxation for integer variables that describe the unit
commitment status of thermal generators and the consideration of only start-up and ramping
costs ensures already a detailed representation of the flexibility effect during capacity expansion
optimization. Especially as long as installed VRE capacity is lower than 70% of the annual peak
load (until the year 2028 in this case study), the system operation is approximated with very
high accuracy. Whereas the various error terms of CEM-2 increases already considerably when
installed VRE capacity increases from 10% of the peak load in 2016 to about 70% in 2028, the
different error terms of CEM-3 remain almost constant on a very low level for these VRE

deployment levels.

However, after 2028 when VRE capacity increases further to 100% of annual system peak load
and above, error terms of CEM-3 also increase considerably. This is caused mainly by an
inaccurate representation of the seasonal and diurnal temporal RE resource availability in the
CEM. Even though the representative day method provides a significant improvement
compared to the average day method, extreme weather situations during a year, such as longer
periods of wind calms, extremely short-term RE resource fluctuations, or periods of very high
simultaneous solar and wind availability are not considered. Until the installed VRE capacity is
well below 100% this lack of the representative day method has a relatively low impact as
proven by the low operation error terms of CEM-3 until 2028. However, when VRE capacity
increases further and enters the base load segment the impact starts to increase significantly.
To overcome these limitations further research is required for a better representation of
seasonal a diurnal resource availability of wind and solar technologies by a limited number of

intra-annual dispatch periods during long-term capacity expansion optimization.
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5.3.5 Summary and discussion

The case study about the influence of applied system-operational detail on results for capacity
expansion optimization has highlighted two important issues for capacity expansion planning
with VRE. On the one hand, it was shown that the average day method is inappropriate for
assigning values of RE resource availability to dispatch periods of a CEM because the variability
of VRE (especially wind power) is underestimated considerably. This leads to non-optimal asset
fleets with significantly higher generation costs and CO, emissions than initially assumed by the
CEM. The seasonal and diurnal fluctuation of RE resources can be better captured by the
representative day method. The method allows for a better representation of the value of

energy at its time of the delivery and the impact of VRE on the residual system operation.

On the other hand it was demonstrated that the flexibility effect should be considered during
long-term capacity expansion planning because otherwise the flexibility requirements of the
system, due to a large-scale deployment of VRE, are underestimated. In the case the flexibility
effect is considered, competiveness of flexible dispatchable generation (GT, CSP) and storage
technologies (pumped-storage, batteries) increases while competiveness of less flexible
dispatchable generators and VRE decreases. However, it was also demonstrated that
considering the flexibility effect during capacity expansion optimization by modelling UCCs of
thermal generators in detail, comes at very high computational cost. A linear relaxation for
integer variables that describe the unit commitment status of each generator can reduce

computational effort dramatically while it biases results only marginally.

It was shown that system operation can be approximated very accurately in REMix-CEM when
the representative day method is applied and the flexibility effect is considered. However, it was
also shown that for very high VRE capacity shares (> 100% of annual peak load), the accuracy of
approximating system operation is reduced considerably even if the representative day method
is applied and the flexibility effect is considered. This is mainly driven by the fact that extreme
weather situations are not considered by the representative days, which were selected in a
straight forward approach in this case study. Future research should focus on improving the
representation of seasonal and diurnal RE resource availability, including extreme weather

situations, during long-term capacity expansion modelling.
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6 Using REMix-CEM for a science-based consulting of national energy
system planning authorities in collaboration with international
cooperation institutions

The optimization model developed during this PhD-thesis is used by DLR-SYS mainly for a
science-based consulting of national energy system planning authorities (EPAs) of developing
countries in the field of strategic power system capacity expansion planning and integration of
RES-E. Typically, the consulting process is carried out in close collaboration with international
cooperation institutions (ICls), such as the World Bank or Deutsche Gesellschaft fir
International Zusammenarbeit (GlIZ). ICls are well connected in developing economies and
typically have own local offices and staff in the countries. Therefore, ICls can act as link between
a scientific advisor (SA), such as DLR-SYS, and the local EPA. This link does not only ease data
access but does also help to setup an iterative advisory process between the foreign SA and the
local EPA. Project examples of this science-based consultancy by DLR-SYS in collaboration with
ICIs are e.g. the “MOREMIx” project (in collaboration with GIZ) and the “Renewable Energy
Strategy for Botswana” project (in collaboration with the World Bank) [99], [100], [127]. In the
former project, REMix-CEM was used to support the Ministry of Energy, Mines, Water and
Environment (MEMEE) of Morocco in defining a long-term strategy (“Lead Scenario”) for the
power sector to meet strongly growing electricity demand until 2050 in a reliable, affordable,
and environmental friendly way. In the latter project, results derived from REMix-CEM were
used as basis for the definition of a RES-E integration strategy and the development of a RES-E
investment roadmap until the year 2030. The investment roadmap is used by the Ministry of
Minerals, Energy and Water Resources (MMEWR) of Botswana to tender RES-E projects, which
shall be developed by independent power producers (IPPs). Results of the projects cannot be

presented in this thesis because of secrecy clauses that are currently in place.

As for any other foreign SA, for DLR-SYS access to data that describes the actual status quo of
the power system accurately is a prerequisite for a meaningful and reliable advisory process.
However, getting access to relevant data for power system modelling in developing countries
can be very challenging and time-consuming for the foreign SA, and sometimes it is even

impossible without any local support. One reason for that is that stakeholders of the national
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power sector often classify specific requested input data (e.g. techno-economic data for single
power plants) as highly sensitive data, which prevent them from sharing it with scientists of
foreign countries. Another reason is the lack of understanding of the importance of specific
input data for a meaningful model-based capacity expansion planning with VRE from part of the
national EPA (e.g. chronological load data with high spatial and temporal resolution). In many
cases, EPAs of developing countries are not fully aware of the challenges of power system
planning with VRE and how these challenges can be captured within a model-based analysis for
capacity expansion planning. Removing these barriers between the foreign SA on the one side
and the local EPA on the other side is often impossible without an extensive face-to-face
contact. The local staff of ICls can act here as intermediary whereby barriers can be reduced and

access to sensitive data can be accelerated considerably.

An iterative process between the foreign SA and the local EPA is crucial for a successful
consulting service because this ensures a common understanding about project targets, the
consideration of the most recent developments in the country (e.g. newly defined political
targets or finalized investment decisions during the project duration), and achieving a high
project commitment and acceptance of results by all project stakeholders. In addition an
iterative process leads to capacity building in both directions. The local staff of ICls is the key for
an iterative and participative advisory process because it can organize major project workshops
efficiently but more importantly it can undertake daily coordination work with the EPA and the

SA, which is of high importance for a successful consulting service.

REMix-CEM is often applied by DLR-SYS to support national EPAs of developing countries in
defining a Lead Scenario for the power system. Within this process, in a first step a large
number of REMix-CEM runs are conducted with the aim to do an extensive scenario and
sensitivity analysis for possible future expansion pathways for the power system under the
least-cost criterion (see Figure 64). This modelling work has the aim to provide the national EPA
with a broad view about possible strategies to meet future electricity demand and to highlight
the consequences of certain political targets (e.g. RES-E quotas) and assumptions for input
parameters (e.g. fossil fuel or CO, prices) on results for capacity expansion optimization. Within

an iterative process between DLR-SYS and the EPA (moderated by the ICl), the lessons-learned
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from the extensive modelling work are used to narrow down step-by-step the large number of
possible scenarios to meet future electricity demand to a limited number of “Main Scenarios”,
which are investigated in more detail. During this process, several guide rails (user-constraints)
are introduced into REMix-CEM to identify the least-cost capacity expansion pathway for the
power system that not only ensures the defined reliability standards to meet future electricity
demand but also the various strategic targets of the national EPA (planning imperatives). After
the detailed analysis of the Main Scenarios and the consequences of certain planning
imperatives, a final story line for the Lead Scenario is formulated. This story line includes all
finally defined strategic planning imperatives of the national EPA and the final set of input
parameters for the optimization model which was agreed upon within the iterative process. In a
last step, REMix-CEM is used to calculate the least-cost capacity expansion plan to meet future
electricity demand over the planning time frame under the story line of the Lead Scenario. The
Lead Scenario is used by the EPA as basis for the formulation of a detailed strategy for the
future development of the power system (targets, implementation strategy, financing options,
grid codes, etc.). Detailed preparation of this strategy and frequent updates are rather done

without DLR-SYS but with support from the ICl and the private sector.

O O O Q O O 1) Providing a broad View
* Large number of story lines
O O O O O « All possible investment options included (technology open analysis)
* Large number of sensitivity analyses for input parameters
O O O O O O - Outcome: Definition of story lines for Main Scenarios

2) Elaboration of selected Main Scenarios

+ Solution space restriction by introducing guide rails (user-constraints)
* Only relevant investment options included

« Limited number of story lines and sensitivity analyses

- Outcome: Definition of story line for Lead Scenario

3) Detailed elaboration of Lead Scenario

+ Solution space further restricted by updating guide rails
« Sensitivity analysis for final story line
- Outcome: Least-cost expansion plan for Lead Scenario

L]

Frequent update of
Lead Scenario

Figure 64: Approach for developing a Lead Scenario for a power system using REMix-CEM
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Figure 65 presents the typically applied project flow of DLR-SYS (SA), when REMix-CEM is used
to support national EPAs of developing countries in the process of determining a Lead Scenario
for the power system. The advisory process has an iterative character and is executed in close
collaboration with an ICI. The ICI initiate the project by setting up a Kick-Off Workshop where
the advisory requirements and project targets are discussed in detail. Furthermore, a detailed
introduction into REMix-CEM is provided by DLR-SYS to provide the EPA with profound
knowledge about the capabilities of the optimization model. After this workshop, the EPA is
able to concretize its advisory requirements due to a better understanding of the applied

model. Based on that, DLR-SYS can adapt REMix-CEM according to the project requirements.
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Figure 65: Process flow of the applied iterative advisory process
Afterwards, a Data & Scenario Workshop is organized by the ICI which has the aim to define
data requirements for the optimization model and to determine a large set of scenarios and
sensitivities that should be calculated by REMix-CEM to provide a broad view on possible
expansion pathways for the power system and its consequences in terms of costs, GHG

emissions, energy independency, and other important issues for a strategic system planning.
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Subsequently to the Data & Scenario Workshop, the EPA collects the relevant data (supported
by the ICI and SA) and provides it as input for REMix-CEM. Based on the provided input data,
REMix-CEM is used to calculate a large number of possible least-cost capacity expansion
pathways for the power system under various political story lines and various assumptions for
input parameters. This provides a broad view on possible expansion pathways for the power
system and the consequences of certain assumptions. The results of this extensive scenario
analysis are presented at a Broad View Workshop. The results of the extensive modelling work
enable the EPA to narrow down potential scenarios to meet electricity demand in the future to

a limited number of Main Scenarios.

At this stage of the project several guide rails (user-constraints) are implemented in REMix-CEM
to identify solutions for least-cost capacity expansion optimization that are compatible with the
defined story lines of the Main Scenarios. To check robustness of results, several sensitivity
analyses are conducted for the Main Scenarios. After finishing the modelling work, results are

presented at a Main Scenario Workshop, which again is organized by the ICI.

After analyzing the results of the Main Scenarios, the EPA defines a story line for the Lead
Scenario. This story line considers all strategic planning imperatives of the EPA for the future
design of the power system. As in this project stage further guide rails are introduced into
REMix-CEM to ensure that the calculated least-cost expansion plans meet the strategic targets
of the EPA, the character of the optimization model is shifted more and more towards a
simulation model (reduced solution space). The definition of the guide rails is again an iterative

process between the EPA and the SA, moderated by the ICI.

After agreeing on the final set of guide rails and input parameters, REMix-CEM is used to
optimize the least-cost capacity expansion plan for the power system under the story line of the
Lead Scenario. Results are presented and discussed in detail at a Lead Scenario Workshop. This
workshop marks the end of the iterative science-based advisory process. Based on the results
for the Lead Scenario, the EPA may define its final strategy to meet future electricity demand

and concretize the necessary actions to implement the strategy.
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7 Conclusions and future research requirements

This PhD thesis extended the REMix energy system modelling framework with the capacity
expansion optimization model REMix-CEM. The developed optimization model bridges the gap
between traditional long-term capacity expansion planning and short-term power system

production cost models for a concerted capacity expansion planning with VRE.

In REMix-CEM, capacity expansion optimization can be conducted under the assumption of a
single-year myopic, a multi-annual rolling horizon, and a perfect foresight over the planning
time frame. It was shown that the model foresight has a significant impact on results when
some of the model input parameters change suddenly at a certain point of the planning time
frame. The influence is less pronounced when input parameters change monotonously. Only the
perfect foresight and partially the multi-annual rolling horizon foresight enable the model to
anticipate future occurrences in advance and adjust investment decisions accordingly. These
foresight approaches are also necessary to consider the utilization effect caused by a large-scale
deployment of VRE during capacity expansion optimization. Without considering the utilization
effect, the computed least-cost expansion plan might contain stranded investments especially in
conventional thermal power plants. The analysis also highlighted that competiveness of RES-E
increases with the length of the model foresight, because the advantage of RES-E to provide

electricity at stable costs over the lifetime is considered and valued.

However, the larger the applied foresight of the model the higher is the computational effort. In
addition, a large model foresight with perfect information might overestimate the capability to
foresee future developments and therefore does not realistically represent the frame conditions
of real-life decision makers. Hence, the suitability of the applied foresight approach depends on

the purpose of the study and the acceptable computational effort.

The perfect foresight approach is especially suitable for policy makers to identify economically
efficient transition pathways towards a sustainable electricity supply, because results represent
the intertemporal global optimum for the planning time frame to meet electricity demand,
reliability standards, and transition targets with lowest costs. Results can be used as basis for a

policy design that enables the evolution of the system towards this ideal world.
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The single-year myopic foresight approach is suitable to investigate the consequences of
unpredictable events for the power system (e.g. sudden introduction of CO, prices), because the
characteristic of the model is shifted towards a simulation model. A short model foresight might
better represent the evolutionary nature of the power system. However, computed results

cannot be interpreted anymore as the global optimum for the planning time frame.

The multi-annual rolling horizon approach offers a compromise between the perfect foresight
and the single-year myopic foresight approach in terms of the model capability to anticipate
future occurrences and in terms of computational effort. The approach is an appropriate
approach especially for utilities that aim to identify economic efficient investment options

under a more conservative assumption than perfect foresight over the entire planning horizon.

Long-term capacity expansion optimization with REMix-CEM is typically based on a limited
number of representative dispatch periods in order to keep computational effort manageable.
This work demonstrated that the average day method is inappropriate to assign values for RE
resource availability to the considered dispatch periods. By averaging values for temporal RE
resource availability the method underestimates the variability of VRE, especially of wind
power, significantly. This overestimates the value of VRE from a system perspective
considerably and underestimates flexibility requirements for the system caused by a large-scale
integration of VRE. As a consequence, non-optimal investment decisions are made by the
optimization model and putative least-cost power systems have higher generation costs and

CO, emissions than initially expected during capacity expansion optimization.

The representative day method, which uses “real” historical days instead of synthetic average
days, models the seasonal and diurnal variability of RE resources more precisely. This allows a
more accurate consideration of the value of energy at its time of the delivery and flexibility
requirements of the system within capacity expansion optimization. Nevertheless, this work
also highlighted that for high VRE shares the accuracy of the representative day method starts
to decrease because extreme situations are also not captured by this method. Future research is
required to improve the temporal representation of VRE generation during capacity expansion

modelling. Such research can set-up on work presented in [101-104].
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This work showed that the flexibility effect and related costs caused by a large-scale integration
of VRE can have a significant impact on investment decisions and should therefore be
considered within long-term capacity expansion optimization. Neglecting the flexibility effect
underestimates significantly the flexibility requirements of the power system. This leads to an
overestimation of VRE competiveness from a system perspective and a simultaneous
underestimation of the competiveness of and the need for flexible power generation and

energy storage technologies.

The flexibility effect can be considered during capacity expansion optimization by modelling unit
commitment constraints of thermal generators. As modelling unit commitment constraints
requires a large number of integer decision variables, this comes typically at very high
computational cost. However, this work demonstrated that the flexibility effect can be
considered already accurately during capacity expansion optimization with comparably low
additional computational effort, when only start-up and ramping costs are considered and a

linear relaxation for integer unit commitment decision variables is applied.

The focus of this work was not to investigate the competiveness of a certain technology.
However, this work indicates that CSP can play a major role for the transition towards a
sustainable electricity supply for power systems with high solar resource potentials. CSP
represents firm and flexible generation capacity with stable generation costs over the lifetime.
In addition, due to its technical characteristics, CSP is highly suitable to support the integration
of VRE (especially of PV). This makes CSP a very attractive investment option from a least-cost

system perspective for countries with excellent solar resource potentials.

The excellent capabilities of CSP to integrate PV has led to the development of CSP-PV hybrid
concepts which combine the advantages of both technologies [132]. Hybrid power plants that
are composed of a PV system, Lithium-ion batteries, and a conventional thermal generator
might become an economic efficient complement in the medium-term, due to expected further

cost reduction of PV and promising recent price reductions of Lithium-ion batteries [105], [106].

However, within the analysis of this work it could also be observed that, based on the applied

cost assumptions, CSP is only competitive from a least-cost system perspective in the medium-
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to long-term. Yet, this is a chicken-and-egg problem because assumed future cost reductions
can only be achieved through technology learning. This however requires the installation of
units. Applying de-risking measures could increase competiveness of CSP in the short-term. This

could ensure the achievement of the required future cost reduction [107], [108].

Results from a least-cost optimization model like REMix-CEM must be interpreted carefully. The
outcome of the model must be taken rather as what-if-analysis than as prediction of the future.
In addition, it must be kept in mind that the simple application of an optimization model will in
most cases not lead to a balanced scenario for the power system that meets all strategic targets
of a national planning authority. Hence, when DLR-SYS applies REMix-CEM to support national
planning authorities of developing and emerging countries to develop a balanced “lead
scenario” for the power system, the model is applied in an iterative way. Planning imperatives
formulated by the national planning authority during the advisory process, such as e.g. GHG
mitigation, diversification of supply, or consistent technology-specific growth rates, are
incorporated step-by-step into the optimization model to narrow down the solution space. This

process is typically supported by international cooperation institutions.

This work leaves spaces for future research and enhancements of the REMix modelling
framework. The method for selecting a limited number of typical days to represent temporal
variability of RE resources within capacity expansion optimization should be improved.
Furthermore, stochastic optimization procedures could be introduced to identify robust least-
cost capacity expansion pathways that consider the uncertainty of input parameters. In this
context, new solution methods to speed up computing times should be developed and
implemented. Here, the Benders’ Decomposition algorithm is a promising option [109], [110].
Subsequent research should also focus on the transformation of the modelling framework from
a single-criterion to a multi-criteria optimization model. This would allow identifying solutions
that are not only driven by the least-cost criterion but also by other criteria like e.g.
environmental aspects. The Energy-Water-Nexus is a huge challenge [111-113]. The modelling
framework could be enhanced for co-optimizing capacity expansion of the energy and water
sector in detail. Such an integrated resource planning could identify possible benefits from

sector-coupling and help to develop sustainable strategies to solve the Energy-Water-Nexus.



Bibliography 133

Bibliography

(1]

(2]

(3]
(4]

(5]

(6]

(7]

(8]

(9]

(10]
(11]
(12]
(13]
(14]

[15]

[16]

(17]
(18]

[19]

UNFCCC, “Paris Agreement.” United Nations Framework Convention on Climate Change
(UNFCCC), http://unfccc.int/paris_agreement/items/9485.php (accessed 6 December 2016),
2016.

IPCC, “Climate Change 2014: Mitigation of Climate Change, Working Group Il Contribution to the
Fifth Assessment Report of the Intergovernmantal Panel on Climate Change,” Cambridge
University Press, 2014.

L. Hirth, “The benefits of flexibility: The value of wind energy with hydropower,” Applied Energy,
vol. 181, pp. 210-223, 2016.

F. Trieb, “Integration erneuerbarer Energie bei hohen Anteilen an der Stromversorgung.,”
Energiewirtschaftliche Tagesfragen, vol. 63:7, pp. 28-32, 2013.

C. Breyer, D. Bogdanov, K. Komoto, T. Ehara, J. Song, and N. Enebish, “North-East Asian Super
Grid: Renewable energy mix and economics,” Japanese Journal of Applied Physics, vol. 54, no.
8S1, p. 08KJ0O1, 2015.

IRENA, “Estimating the Renewable Energy Potential in Africa - A GIS-based approach (Working
Paper),” International Renewable Energy Agency, 2014.

M. G. Pereira, C. F. Camacho, M. A. V. Freitas, and N. F. da Silva, “The renewable energy market in
Brazil: Current status and potential,” Renewable and Sustainable Energy Reviews, vol. 16, no. 6,
pp. 3786—3802, 2012.

F. Trieb, C. Schillings, S. Kronshage, P. Viebahn, M. Kabariti, D. K.M., A. Bennouna, H. El
Nokraschy, S. Hassan, L. G. Yussef, T. Hasni, N. El Bassam, and H. Satoguina, “Concentrating Solar
Power for the Mediterranian Region: MED-CSP,” German Aersopace Center (DLR), 2005.

K. Ummel, “Concentrating Solar Power in China and India: A Spatial Analysis of Technical
Potential and the Cost of Deployment,” Center for Global Development, Jul. 2010.

P. Gauché, “Spatial-temporal model to evaluate the system potential of concentrating solar
power towers in South Africa,” Faculty of Engineering at Stellenbosch University, 2016.

C. G. Heaps, “Long-range Energy Alternatives Planning (LEAP) system,” Stockholm Environment
Institute, Somerville, MA, USA, 2016.

IAEA, “Wien Automatic System Planning (WASP) Package - A Computer code for Power
Generating System Expansion Planning, Version WASP-1V, User’s Manual,” International Atomic
Energy Agency (IAEA), 2001.

L. Schrattenholzer, “The Energy Supply Model MESSAGE,” 1IASA, Dec. 1981.

H. Seifi and M. Sepasian, “Power System Planning, Basic Principles,” in Electric Power System
Planning, Springer Berlin Heidelberg, 2011, pp. 1-14.

K.-K. Cao, “Analyse langfristiger Ausbauszenarien des deutschen und europaischen
Stromibertragungsnetzes und deren Rolle im zukinftigen Energiesystem (working titel of
ongoing PhD thesis),” Universitat Stuttgart, 2017.

F. Cebulla, “Perspectives of electricity storages with respect to the integration of high shares of
renewable energies into the German supply structure (working titel of ongoing PhD thesis),”
Universitat Stuttgart, 2017.

D. Stetter, “Enhancement of the REMix energy system model: Global renewable energy
potentials, optimized power plant siting and scenario validation,” Universitat Stuttgart, 2014.
A. M. Foley, B. P. O. Gallachdir, J. Hur, R. Baldick, and E. J. McKeogh, “A strategic review of
electricity systems models,” Energy, vol. 35, no. 12, pp. 4522-4530, 2010.

M. Moechtar, T. C. Cheng, and L. Hu, “Transient stability of power system - a survey,” in
WESCON/’95. Conference record. ‘Microelectronics Communications Technology Producing
Quality Products Mobile and Portable Power Emerging Technologies, 1995, pp. 166—171.



Bibliography 134

[20]  B. Chowdhury and S. Rahman, “A review of recent advances in economic dispatch,” IEEE
Transactions on Power Systems, vol. 5, no. 4, pp. 1248-1259, Nov. 1990.

[21]  Z. Qiu, G. Deconinck, and R. Belmans, “A literature survey of Optimal Power Flow problems in the
electricity market context,” in Power Systems Conference and Exposition, 2009. PSCE '09.
IEEE/PES, 2009, pp. 1-6.

[22]  N. P. Padhy, “Unit commitment-a bibliographical survey,” IEEE Transactions on Power Systems,
vol. 19, no. 2, pp. 1196-1205, May 2004.

[23]  D. Chattopadhyay, “A practical maintenance scheduling program mathematical model and case
study,” IEEE Transactions on Power Systems, vol. 13, no. 4, pp. 1475-1480, Nov. 1998.

[24]  N. Nabona, J. Castro, and J. A. Gonzalez, “Optimum long-term hydrothermal coordination with
fuel limits,” IEEE Transactions on Power Systems, vol. 10, no. 2, pp. 1054-1062, May 1995.

[25]  P. Denholm, J. Jorgenson, M. Hummon, T. Jenkin, and D. Palchak, “The Value of Energy Storage
for Grid Applications,” National Renewable Energy Laboritory (NREL), NREL/TP-6A20-58465, May
2013.

[26] ). Jorgenson, P. Denholm, M. Mehos, and C. Turchi, “Estimating the Performance and Economic
Value of Multiple Concentrating Solar Power Technologies in a Production Cost Model,” National
Renewable Energy Laboratory (NREL), TP-6A20-58645, Dec. 2013.

[27] ). P. Deane, G. Drayton, and B. P. O. Gallachéir, “The impact of sub-hourly modelling in power
systems with significant levels of renewable generation,” Applied Energy, vol. 113, pp. 152-158,
2014.

[28]  N. V. Beeck, “Classification of Energy Models.,” Tilburg University, Faculty of Economics and
Business Administration, 1999.

[29] G. Latorre, R. D. Cruz, J. M. Areiza, and A. Villegas, “Classification of publications and models on
transmission expansion planning,” IEEE Transactions on Power Systems, vol. 18, no. 2, pp. 938—
946, May 2003.

[30] D.Most and W. Fichtner, Energiesystemanalyse. Universitatsverlag Karlsruhe, 2009, pp. 11-31.

[31] B.S. Palmintier, “Incorporating operational flexibility into electric generation planning: impacts
and methods for system design and policy analysis,” Massachusetts Institute of Technology,
2013.

[32] P. Donohoo-Vallett, M. Milligan, and B. Frew, “Capricious Cables: Understanding the Limitations
and Context of Transmission Expansion Planning Models,” The Electricity Journal, vol. 28, no. 9,
pp. 85-99, 2015.

[33] V.Krishnan, J. Ho, B. F. Hobbs, A. L. Liu, J. D. McCalley, M. Shahidehpour, and Q. P. Zheng, “Co-
optimization of electricity transmission and generation resources for planning and policy analysis:
review of concepts and modeling approaches,” Energy Systems, pp. 1-36, 2015.

[34] R.Jones, “Diversity Benefit for Solar and Wind with Increasing Market Penetration. System
Capacity Value,” in Presentation at the Intersolar 2012 Conference.

[35] REN21, “Renewables 2016, Global Status Report,” Renweable Energy Policy Network for the 21st
century, 2016.

[36] IRENA, “Renewable Power Generation Costs in 2014,” International Renewable Energy Agency
(IRENA), 2015.

[37] WB, “Bringing Variable Renewable Energy up to Scale - Options for Grid Integration Using Natural
Gas and Energy Storage,” The World Bank (WB)- Energy Sector Management Assistance Program
(ESMAP), 2015.

[38] J.P. M. Sijm, “Cost and revenue related impacts of integrating electricity from variable renewable
energy into the power system - A review of recent literature.” ECN, May-2014.

[39] IEA, “The Power of Transformation,” International Energy Agency (IEA), 2014.



Bibliography 135

[40]

[41]

[42]

[43]

[44]

(45]

[46]

[47]
(48]
[49]
(50]
(51]
(52]
(53]
(54]

[55]

(56]

M. Nicolosi, “The Economics of Renewable Electricity Market Integration. An Empirical and
Model-Based Analysis of Regulatory Frameworks and their Impacts on the Power Market,”
Universitat Koln, 2012.

D. Lew, G. Brinkman, E. Ibanez, A. Florita, M. Heaney, B.-M. Hodge, M. Hummon, G. Stark, J. King,
S. A. Lefton, N. Kumar, D. Agan, G. Jordan, and S. Venkataraman, “The Western Wind and Solar
Integration Study Phase 2,” National Renewable energy Laboratory (NREL), NREL/TP-5500-55588,
Sep. 2013.

H. Holttinen, J. Kiviluoma, A. Robitaille, N. Cutululis, A. Orths, F. van Hulle, I. Pineda, B. Lange, M.
O’Malley, J. Dillon, E. Carline, C. Vergine, J. Kondoh, M. Gibescu, J. Tande, A. Stanqueiro, E.
Gomez, L. Séder, J. Smith, M. Milligan, and D. Lew, “Design and operation of power systems with
large amounts of wind power - Final summary report, IEA WIND Task 25, Phase two 2009-2011,”
Technical Research Centre of Finland (VTT), 2013.

H. Holttinen, P. Meibom, A. Orths, B. Lange, M. O’Malley, J. O. Tande, A. Estanqueiro, E. Gomez,
L. Séder, G. Strbac, J. C. Smith, and F. van Hulle, “Impacts of large amounts of wind power on
design and operation of power systems, results of IEA collaboration,” Wind Energy, vol. 14, no. 2,
pp. 179-192, 2011.

L. Hirth, “Market value of solar power: Is photovoltaics cost-competitive?,” Renewable Power
Generation, IET, vol. 9, no. 1, pp. 37-45, 2015.

S. Lu, M. Warwick, N. Samaan, J. Fuller, D. Meng, R. Diao, F. Chassin, T. Nguyen, Y. Zhang, C. Jin,
and B. Vyakaranam, “Duke Energy Photovoltaic Integration Study: Carolinas Service Areas,”
Pacific Northwest National Laboratory, Mar. 2014.

J. Wu, A. Botterud, A. Mills, Z. Zhou, B.-M. Hodge, and M. Heaney, “Integrating solar PV
(photovoltaics) in utility system operations: Analytical framework and Arizona case study,”
Energy, vol. 85, pp. 1-9, 2015.

L. Hirth, F. Ueckerdt, and O. Edenhofer, “Integration costs revisited: An economic framework for
wind and solar variability,” Renewable Energy, vol. 74, pp. 925-939, 2015.

A. S. Malik and C. Kuba, “Power Generation Expansion Planning Including Large Scale Wind
Integration: A Case Study of Oman,” Journal of Wind Energy, vol. 2013, p. 7, 2013.

NEA, “Nuclear Energy and Renewables System Effects in Low-carbon Electricity Systems,” Nuclear
Energy Agency (NEA), 2012.

J. P. Deane, A. Chiodi, M. Gargiulo, and B. P. O. Gallachéir, “Soft-linking of a power systems model
to an energy systems model,” Energy, vol. 42, no. 1, pp. 303-312, 2012.

A. Pina, C. Silva, and P. Ferrdo, “High-resolution modeling framework for planning electricity
systems with high penetration of renewables,” Applied Energy, vol. 112, pp. 215-223, 2013.

J. Rosen, |. Tietze-Stockinger, and O. Rentz, “Model-based analysis of effects from large-scale
wind power production,” Energy, vol. 32, no. 4, pp. 575-583, 2007.

S. Ludig, M. Haller, E. Schmid, and N. Bauer, “Fluctuating renewables in a long-term climate
change mitigation strategy,” Energy, vol. 36, no. 11, pp. 6674-6685, 2011.

A. Pina, C. Silva, and P. Ferrdo, “Modeling hourly electricity dynamics for policy making in long-
term scenarios,” Energy Policy, vol. 39, no. 9, pp. 4692—-4702, 2011.

C. . Nweke, F. Leanez, G. R. Drayton, and M. Kolhe, “Benefits of chronological optimization in
capacity planning for electricity markets,” in Power System Technology (POWERCON), 2012 IEEE
International Conference, 2012, pp. 1-6.

M. Welsch, P. Deane, M. Howells, B. O. Gallachéir, F. Rogan, M. Bazilian, and H.-H. Rogner,
“Incorporating flexibility requirements into long-term energy system models - A case study on
high levels of renewable electricity penetration in Ireland,” Applied Energy, vol. 135, pp. 600—615,
2014.



Bibliography 136

(57]

(58]
(59]
(60]
(61]

(62]

(63]

(64]

(65]

(66]
(67]
(68]
(69]
[70]
[71]

[72]

[73]

[74]

[75]

[76]

P. Sullivan, K. Eurek, and R. Margolis, “Advanced Methods for Incorporating Solar Energy
Technologies into Electric Sector Capacity-Expansion Models: Literature Review and Analysis,”
National Renewable Energy Laboritory (NREL), NREL/TP-6A20-61185, Jul. 2014.

J. Johnston, A. Mileva, and J. H. Nelson, “SWITCH-WECC Data, Assumptions, and Model
Formulation,” Energy Resource Group, University of California, Berkeley, Oct. 2013.

B. Brand, A. B. Stambouli, and D. Zejli, “The value of dispatchability of CSP plants in the electricity
systems of Morocco and Algeria,” Energy Policy, vol. 47, pp. 321-331, 2012.

T. Fichter, F. Trieb, and M. Moser, “Optimized Integration of Renewable Energy Technologies Into
Jordan’s Power Plant Portfolio,” Heat Transfer Engineering, vol. 35, no. 3, pp. 281-301, 2014.

T. Fichter, F. Trieb, M. Moser, and J. Kern, “Optimized Integration of Renewable Energies into
Existing Power Plant Portfolios,” Energy Procedia, vol. 49, pp. 1858-1868, 2014.

T. Fichter, R. Soria, A. Szklo, R. Schaeffer, and A. F. P. Lucena, “Assessing the potential role of
concentrated solar power (CSP) for the northeast power system of Brazil using a detailed power
system model,” Energy, vol. 121, pp. 695-715, 2017.

V. Krishnan and J. D. McCalley, “Building Foresight in Long-Term Infrastructure Planning Using
End-Effect Mitigation Models,” Systems Journal, IEEE, vol. PP, no. 99, pp. 1-12, 2015.

R. Soria, A. F. P. Lucena, J. Tomaschek, T. Fichter, T. Haasz, A. Szklo, R. Schaeffer, P. Rochedo, U.
Fahl, and J. Kern, “Modelling concentrated solar power (CSP) in the Brazilian energy system: A
soft-linked model coupling approach,” Energy, vol. 116, Part 1, pp. 265-280, 2016.

F. Cebulla and T. Fichter, “Merit order or unit-commitment: How does thermal power plant
modeling affect storage demand in energy system models?,” Renewable Energy, vol. 105, pp.
117-132, 2017.

M. Moser, F. Trieb, T. Fichter, J. Kern, H. Maier, and P. Schicktanz, “Techno-economic Analysis of
Enhanced Dry Cooling for CSP,” Energy Procedia, vol. 49, pp. 1177-1186, 2014.

H. C. Gils, “Balancing of Intermittent Renewable Power Generation by Demand Response and
Thermal Energy Storage,” Universitat Stuttgart, 2015.

H. C. Gils, Y. Scholz, T. Pregger, D. L. de Tena, and D. Heide, “Integrated modelling of variable
renewable energy-based power supply in Europe,” Energy, vol. 123, pp. 173-188, 2017.

D. L. de Tena, “Large Scale Renewable Power Integration with Electric Vehicles,” Universitat
Stuttgart, 2014.

Y. Scholz, “Renewable energy based electricity supply at low costs: development of the REMix
model and application for Europe,” Universitat Stuttgart, 2012.

ENTSO-E, “Scenario Outlook And Adequacy Forecast 2013-2030,” European Network of
Transmission System Operators for Electricity (ENTSO-E), Apr. 2013.

A.S. Brouwer, M. van den Broek, A. Seebregts, and A. Faaij, “Impacts of large-scale Intermittent
Renewable Energy Sources on electricity systems, and how these can be modeled,” Renewable
and Sustainable Energy Reviews, vol. 33, no. 0, pp. 443-466, 2014.

R. Doherty, H. Outhred, and M. O’Malley, “Establishing the role that wind generation may have in
future generation portfolios,” Power Systems, IEEE Transactions on, vol. 21, no. 3, pp. 1415-
1422, Aug. 2006.

S. H. Madaeni, R. Sioshansi, and P. Denholm, “Comparing Capacity Value Estimation Techniques
for Photovoltaic Solar Power,” IEEE Journal of Photovoltaics, vol. 3, no. 1, pp. 407-415, Jan. 2013.
D. Pudjianto, P. Djapic, J. Dragovic, and G. Strbac, “Grid Integration Cost of PhotoVoltaic Power
Generation - Direct Costs Analysis related to Grid Impacts of Photovoltaics,” Imperial College
London, 2013.

B. Sirgin, P. Sullivan, E. Ibanenz, and R. Margolis, “Representation of Solar Capacity Value in the
ReEDS Capacity Expansion Model,” National Renewable energy Laboratory (NREL), NREL/TP-
6A20-61182, Mar. 2014.



Bibliography 137

[77]

(78]

[79]

(80]

(81]

(82]

(83]
(84]

(85]

(86]

(87]
(88]

(89]

[90]

[91]

[92]

(93]

[94]

[95]

B. Palmintier and M. Webster, “Impact of unit commitment constraints on generation expansion
planning with renewables,” in Power and Energy Society General Meeting, 2011 IEEE, 2011, pp.
1-7.

D. Rajan and S. Takriti, “Minimum up/down polytopes of the unit commitment problem with
start-up costs.,” IBM Research Report RC23628, 2005.

G. Morales-Espana, J. M. Latorre, and A. Ramos, “Tight and Compact MILP Formulation for the
Thermal Unit Commitment Problem,” Power Systems, IEEE Transactions on, vol. 28, no. 4, pp.
4897-4908, Nov. 2013.

J. M. Arroyo and A. J. Conejo, “Optimal response of a thermal unit to an electricity spot market,”
Power Systems, IEEE Transactions on, vol. 15, no. 3, pp. 1098—-1104, Aug. 2000.

J. Ostrowski, M. F. Anjos, and A. Vannelli, “Tight Mixed Integer Linear Programming Formulations
for the Unit Commitment Problem,” Power Systems, IEEE Transactions on, vol. 27, no. 1, pp. 39—
46, Feb. 2012.

M. Carrdin and J. M. Arroyo, “A computationally efficient mixed-integer linear formulation for the
thermal unit commitment problem,” Power Systems, IEEE Transactions on, vol. 21, no. 3, pp.
1371-1378, 2006.

F.R. P. Arrieta and E. E. S. Lora, “Influence of ambient temperature on combined-cycle power-
plant performance,” Applied Energy, vol. 80, no. 3, pp. 261-272, 2005.

A. D. Sa andS. A. Zubaidy, “Gas turbine performance at varying ambient temperature,” Applied
Thermal Engineering, vol. 31, no. 14-15, pp. 2735-2739, 2011.

H. Zhai and E. S. Rubin, “Performance and cost of wet and dry cooling systems for pulverized coal
power plants with and without carbon capture and storage,” Energy Policy, vol. 38, no. 10, pp.
5653-5660, 2010.

P. Denholm, Y.-H. Wan, M. Hummon, and M. Mehos, “An Analysis of Concentrating Solar Power
with Thermal Energy Storage in a California 33% Renewable Scenario,” National Renewable
Energy Laboratory (NREL), NREL/TP-6A20-58186, Mar. 2013.

F. Trieb, T. Fichter, and M. Moser, “Concentrating solar power in a sustainable future electricity
mix,” Sustainability Science, vol. 9, no. 1, pp. 47-60, 2014.

M. Moser, “Combined electricity and water production based on solar energy,” Universitat
Stuttgart, 2015.

P. Seljom and A. Tomasgard, “Short-term uncertainty in long-term energy system models - A case
study of wind power in Denmark,” Energy Economics, vol. 49, no. Supplement C, pp. 157-167,
2015.

A. Tuohy, P. Meibom, E. Denny, and M. O’Malley, “Benefits of Stochastic Scheduling for Power
Systems with Significant Installed Wind Power,” in Proceedings of the 10th International
Conference on Probablistic Methods Applied to Power Systems, 2008, pp. 1-7.

W. Usher and N. Strachan, “Critical mid-term uncertainties in long-term decarbonisation
pathways,” Energy Policy, vol. 41, no. Supplement C, pp. 433—444, 2012.

M. Babiker, A. Gurgel, S. Paltsev, and J. Reilly, “Forward-looking versus recursive-dynamic
modeling in climate policy analysis: A comparison,” Economic Modelling, vol. 26, no. 6, pp. 1341—
1354, 2009.

V. Krey, “Vergleich kurz- und langfristig ausgerichteter Optimierungsansatze mit einem multi-
regionalen Energiesystemmodell unter Beriicksichtigung stochastischer Parameter,” Ruhr-
Universitdt Bochum, 2006.

S. Babrowski, T. Heffels, P. Jochem, and W. Fichtner, “Reducing computing time of energy system
models by a myopic approach,” Energy Systems, vol. 5, no. 1, pp. 65-83, 2014.

I. Keppo and M. Strubegger, “Short term decisions for long term problems - The effect of
foresight on model based energy systems analysis,” Energy, vol. 35, no. 5, pp. 2033-2042, 2010.



Bibliography 138

[96]

[97]

(98]

[99]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

[109]

[110]

[111]
[112]

[113]

[114]

S. Pfenninger, A. Hawkes, and J. Keirstead, “Energy systems modeling for twenty-first century
energy challenges,” Renewable and Sustainable Energy Reviews, vol. 33, pp. 74-86, 2014.

G. Haydt, V. Leal, A. Pina, and C. A. Silva, “The relevance of the energy resource dynamics in the
mid/long-term energy planning models,” Renewable Energy, vol. 36, no. 11, pp. 3068-3074,
2011.

A. Ceselli, A. Gelmini, G. Righini, and A. Taverna, “Mathematical Programming bounds for Large-
Scale Unit Commitment Problems in Medium-Term Energy System Simulations,” in 4th Student
Conference on Operational Research, 2014, vol. 37, pp. 63-75.

DLR, “MOREMIix project.” Project conducted for the Ministry of Energy, Mines, Water and
Environment (MEMEE) of Morocco on behalf of GIZ,
http://www.dIr.de/tt/en/desktopdefault.aspx/tabid-2885/4422 read-43923/ (accessed 10
December 2016).

J. Kern, T. Fichter, M. Moser, F. Trieb, F. Seidel, K. Heising, and P. Lempp, “MOREMix - Power
sector optimization for Morocco,” AIP Conference Proceeding, vol. 1734, no. 1, May 2016.

P. Nahmmacher, E. Schmid, L. Hirth, and B. Knopf, “Carpe diem: A novel approach to select
representative days for long-term power system modeling,” Energy, vol. 112, pp. 430-442, 2016.
K. Poncelet, E. Delarue, D. Six, J. Duerinck, and W. D’haeseleer, “Impact of the level of temporal
and operational detail in energy-system planning models,” Applied Energy, vol. 162, pp. 631-643,
2016.

K. Poncelet, H. Hoschle, E. Delarue, and W. D’haeseleer, “Selecting representative days for
investment planning models,” KU Leuven, Division of applied mechanics and energy conversion,,
vol. Working paper EN2015-10, 2015.

F. ). de Sisternes and M. D. Webster, “Optimal selection of sample weeks for approximating the
net load in generation planning problems,” Massachusetts Institute of Technology (MIT)
Engineering Systems Division (ESD), no. ESD-WP-2013-03, Mar. 2013.

S. Afanasyeva, C. Breyer, and M. Engelhard, “Impact of Battery Cost on the Economics of Hybrid
Photovoltaic Power Plants,” Energy Procedia, vol. 99, pp. 157-173, 2016.

C. Cader, P. Bertheau, P. Blechinger, H. Huyskens, and C. Breyer, “Global cost advantages of
autonomous solarr-battery-diesel systems compared to diesel-only systems,” Energy for
Sustainable Development, vol. 31, pp. 14-23, 2016.

F. Trieb, H. Miller-Steinhagen, and Jirgen Kern, “Financing concentrating solar power in the
Middle East and North Africa - Subsidy or investment?,” Energy Policy, vol. 39, no. 1, pp. 307—-
317, 2011.

O. Waissbein, Y. Glemarec, H. Bayraktar, and T. S. Schmidt, “Derisking Renewable Energy
Investment - A Framework to Support Policymakers in Selecting Public Instruments to Promote
Renewable Energy Investment in Developing Countries,” United Nation Development Programme
(UNDP), 2013.

J. Linderoth and S. Wright, “Decomposition Algorithms for Stochastic Programming on a
Computational Grid,” Computational Optimization and Applications, vol. 24, no. 2, pp. 207-250,
2003.

C. Skar, G. Doorman, and A. Tomasgard, “Large-scale power system planning using enhanced
Benders decomposition,” in 2014 Power Systems Computation Conference, 2014, pp. 1-7.

IEA, “World Energy Outlook 2012,” OECD Publishing, 2012.

IRENA, “Renewable Energy in the Water, Energy & Food Nexus,” International Renewable Energy
Agency (IRENA), 2015.

A. Siddigi and L. D. Anadon, “The water-energy nexus in Middle East and North Africa,” Energy
Policy, vol. 39, no. 8, pp. 4529-4540, 2011.

IEA, “Biomass for Heat and Power, Energy Technology Systems Analysis Program (ETSAP),
Technology Brief EQ5,” International Energy Agency (IEA), May 2010.



Bibliography 139

[115]

[116]
[117]

[118]

[119]

[120]

[121]

[122]

[123]

[124]

[125]

[126]

[127]

[128]

[129]
[130]

[131]

[132]

International Energy Agency (IEA), “Nuclear Power, Energy Technology Systems Analysis Program
(ETSAP), Technology Brief E03,” International Energy Agency IEA, Apr. 2010.

IEA, “World Energy Outlook 2015,” OECD Publishing, 2015.

IPCC, “2006 IPCC Guidelines for National Greenhouse Gas Inventories — Chapter 2: Stationary
Combustion,” Intergovernmental Panel on Climate Change IPCC, 2006.

IRENA, “Biomass for Power Generation - Renewable Energy Technoogies: Cost Analysis Series
Volume 1: Power Sector, Issue 1/5,” International Renewable Energy Authority (IRENA), Jun.
2012.

IEA, “World Energy Outlook 2014,” OECD Publishing, 2014.

A.S. Brouwer, M. van den Broek, A. Seebregts, and A. Faaij, “Operational flexibility and
economics of power plants in future low-carbon power systems,” Applied Energy, vol. 156, pp.
107-128, 2015.

IEA, “Technology Roadmap - Solar Photovoltaic Energy - 2014,” International Energy Agency
(IEA), 2014.

IRENA, “Renewable Energy Technologies: Cost Analysis Series, Volume 1: Power Sector Issue 5/5
Wind Power,” International Renewable Energy Agency (IRENA), 2012.

IRENA, “The Power to Change: Solar and Wind Cost Reduction Potential to 2025,” International
Renewable Energy Agency, Jun. 2016.

P. Konstantin, “Praxisbuch Energiewirtschaft: Energieumwandlung, -transport und -beschaffung
im liberalisierten Markt,” Springer, 2009.

IEA, “Technology Roadmap - Solar Thermal Electricity - 2014,” International Energy Agency (IEA),
2014.

N. Kumar, P. Besuner, S. Lefton, and D. Agan, “Power Plant Cycling Costs,” NREL, Intertek
APTECH, Jul. 2012.

DLR, “Renewable Energy Strategy for Botswana.” Project conducted for the Ministry of Minerals,
Energy and Water Resources (MMEWR) of Botswanathe on behalf of the World Bank,
http://www.dIr.de/tt/en/desktopdefault.aspx/tabid-2885/4422_ read-45668/ (accessed 10
December 2016).

A. Moser, N. Rotering, and A. Schafer, “Unterstltzung der Energiewende in Deutschland durch
einen Pumpspeicherausbau — Potentiale zur Verbesserung der Wirtschaftlichkeit und der
Versorgungssicherheit. Wissenschaftliche Studie im Auftrag der Voith Hydro GmbH & Co. KG,”
Institut fur Elektrische Anlagen und Energiewirtschaft, RWTH Aachen, Apr. 2014.

IRENA, “Renewable Energy Technologies: Cost Analysis Series, Volume 1: Power Sector Issue 3/5
Hydropower,” International Renewable Energy Agency (IRENA), 2012.

BV, “Cost and Performance Data for Power Generation Technologies - Prepared for the National
Renewable Energy Laboratory,” Black & Veatch, 2012.

C. Kost, “Renewable energy in North Africa: Modeling of future electricity scenarios and the
impact on manufacturing and employment,” Technischen Universitat Dresden, Fakultat
Wirtschaftswissenschaften, 2015.

S. Giuliano, M. Puppe, H. Schenk, T. Hirsch, M. Moser, T. Fichter, J. Kern, F. Trieb, M. Engelhard, S.
Hurler, A. Weigand, D. Brakemeier, J. Kretschmann, U. Haller, R. Klingler, C. Breyer, and S.
Afanasyeva, “THERMVOLT - Systemvergleich von solarthermischen und photovoltaischen
Kraftwerken fir die Versorgungssicherheit, Schlussbericht,” Deutsches Zentrum fir Luft- und
Raumfahrt e.V. (DLR), Fichtner GmbH, M&W GmbH, Lappeenranta University of Technology (LTU)
on behalf of the Federal Minstry for Economic Affairs and Energy (BMWi), 2016.



Appendix 140
Appendix
A1: Characteristics of fictitious power system
Table 29: Existing generation capacity [GW] by model node in 2016
N1 N2 N3 N4 Total
NUCLEAR 0 0.6 0 0 0.6
BIO 0 0.15 0 0 0.15
COAL 1.8 4.8 0 0 6.6
CCGT 0.4 0.8 0 0 1.2
GT-GAS 0.2 0.4 0 0 0.6
GT-OIL 0.1 0.2 0.15 0.15 0.6
cspP 0 0 0 0.1 0.1
HYDRO-RES 1.0 0 0 0 1.0
HYDRO-ROR 1.0 0 0 0 1.0
BATTERY 0 0 0 0 0
PUMPED-HYDRO 0.25 0 0 0 0.25
PV 0.1 0.1 0.1 0.2 0.5
WIND 0.5 0 0.5 0 1.0
Total 5.35 7.05 0.75 0.45 13.6
Table 30: Existing generation capacity [GW] by milestone year aggregated by technology
2016 2019 2022 2025 2028 2031 2034 2037 2040
NUCLEAR 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6
BIO 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15
COAL 6.6 6.6 6.6 5.4 5.4 5.4 5.4 4.2 4.2
CCGT 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 0
GT-GAS 0.6 0.6 0.4 0.4 0.4 0.2 0.2 0
GT-OIL 0.6 0.6 0 0 0 0 0
csP 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
HYDRO-RES 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
HYDRO-ROR 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
PUMPED-HYDRO 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25
PV 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0 0
WIND 1.0 1.0 1.0 1.0 1.0 0.5 0.5 0 0
Total 13.6 13.6 12.8 11.6 11.6 10.9 10.9 8.5 7.3
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Table 31: Fuel price development over planning time frame [USD/MWh,;]

Fossil fuel prices aligned to the “New Energy Policy” scenario of IEA [116]. Biomass and nuclear fuel prices also
from IEA [114], [115].

Year Oil Natural gas Coal Nuclear Biomass
2016 344 30.7 10.0 10.0 5.0
2019 45.4 27.6 11.2 10.0 5.0
2022 53.2 28.9 11.7 10.0 5.0
2025 59.3 324 12.0 10.0 5.0
2028 65.3 35.9 12.3 10.0 5.0
2031 70.3 38.6 12.6 10.0 5.0
2034 73.1 39.8 12.8 10.0 5.0
2037 75.9 41.1 13.0 10.0 5.0
2040 78.6 42.3 13.3 10.0 5.0

Table 32: CO, price development over planning time frame [USD/t]

aligned to assumed CO, prices in China in 2040 according to the New Policy scenario of the IEA [116]

Year Group 1 Group2
2016 0 0
2019 5 0
2022 9 0
2025 14 0
2028 18 3
2031 23 20
2034 28 32
2037 32 36
2040 37 37

Table 33: CO, content of fuel [117]

Fuel tCO,/MWh,,
oil 0.275
Natural gas 0.202
Coal 0.346
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Wind Power at N3: Average Day vs Representative Day
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Table 34: Assumed technology-specific capacity credits

Technology Capacity credit [%]
(incl. technically forced outage rate)

NUCLEAR 96

COAL 94

CCGT 96

OCGT 97

ICE 97

BIO 91

Ccsp 94 (related to capacity of back-up burner)

PUMPED-HYDRO

0 (only for operating reserve)

BATTERY 0 (only for operating reserve)
HYDRO-RES 95

HYDRO-ROR Time-dependent

PV Time-dependent

WIND Time-dependent
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A2: Major techno-economic parameters of existing and candidate units

Table 35: Techno-economic parameters of existing VRE and hydro power units

Generator type Capacity of single Number of units Fix O&M Variable O&M Maintenance Forced outage rate
unit costs costs outage rate
[MW] [-] [kuSD/MW] [kUSD/MWNh] [%] [%]
PV 100 5 17 0 2.0 0.0
WIND 100 10 23 0.0075 0.6 5.0
HYDRO-ROR 250 4 35 0 1.9 5.0
HYDRO-RES 250 4 35 0 1.9 5.0
(500 Flh reservoir)
References/notes Own assumption Own assumption [123], [129], [132] [123], [129], [132] [130] [130]

Table 36: Techno-economic parameters of existing thermal generators |

Generator type Capacity of Number of units Fix O&M Start-up Ramping Maintenance Forced outage
single unit costs costs costs outage rate rate
[MW] [-] [kuSD/MW] [kUSD/MW] [kUSD/MW] [%] [%]
NUCLEAR 600 1 124 0.08 0.0026 6.0 4.0
COAL 600 11 62 0.08 0.0026 10.0 6.0
CCGT 400 3 27 0.07 0.0014 6.0 4.0
GT 50 24 22 0.03 0.0019 5.0 3.0
BIO 150 1 172 0.18 0.0042 7.6 9.0
CSP (10h TES) 100 1 124 0.00 0.0013 0.0 6.0
Reference Own assumption Own assumption [118],[119], [132] [126], [132], warm  [126], CSP = gas-fired [130] [130]

start values, biomass  steam power plants,
=small coal biomass = small coal
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Table 37: Techno-economic parameters of existing thermal generators Il

Generator type Efficiency Efficiency Total Minimum Fuel use start- Minimum Minimum Maximum
(gross, LHV) (gross, LHV) auxiliaries output up online time offline time ramp rate
at max. load at min. load

(%] (%] (%] (MW] [MWhi,/MW] (h] (h] [%/min]
NUCLEAR 33.0 30.7 4.5 300.0 5.00 24 24 5.0
COAL 34.0 31.6 7.5 240.0 5.00 24 24 2.0
CCGT 57.0 51.3 1.5 252.0 0.06 4 2 4.0
GT 37.0 30.1 1.0 27.5 0.05 1 1 10.0
BIO 35.0 32.6 14.0 60.0 1.95 8 8 2.0
CSP (10h TES) 42.5 34.4 9.8 20.0 1.18 1 1 8.0
References/notes [119], [132], IEA Based on [120], [124], [132], For [130], [132] [126], [132], Based on [120], Based on [120], Based on [120],
values for Africa, [132], own biomass same warm start values, [132] [132] [130], [132]
coal units assumptions values as for small nuclear = large
subcritical coal coal, biomass =
small coal
Table 38: Major techno-economic parameters of candidate supercritical coal power plants | (unit size 600 MW)
Year of Investment Fix O&M Start-up Ramping Construction Economic Maintenance Forced
commissioning costs costs costs costs time lifetime outage rate outage rate
[kUSD/MW] [%] [kUSD/MW] [kUSD/MW)] [years] [years] [%] [%]
2019 1765 3.5 0.08 0.0026 3.0 35 10 6
2022 1765 3.5 0.08 0.0026 3.0 35 10 6
2025 1765 3.5 0.08 0.0026 3.0 35 10 6
2028 1765 3.5 0.08 0.0026 3.0 35 10 6
2031 1765 3.5 0.08 0.0026 3.0 35 10 6
2034 1765 3.5 0.08 0.0026 3.0 35 10 6
2037 1765 3.5 0.08 0.0026 3.0 35 10 6
2040 1765 3.5 0.08 0.0026 3.0 35 10 6
References/notes [119], IEA values [119] [126] [126] [124] [124] [130] [130]

for Africa
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Table 39: Major techno-economic parameters of candidate supercritical coal power plants Il (unit size 600 MW)

Year of Efficiency* Efficiency Total Minimum Fuel use Minimum Minimum Maximum
commissioning (gross, LHV) (gross, LHV) auxiliaries output start-up online time offline time ramp rate
at max. load at min. load
(%] [%] (%] (MW] [MWh,/MW] [h] [h] [%/min]
2019 39.0 36.3 7.5 240 5.00 6 6 2.0
2022 39.0 36.3 7.5 240 5.00 6 6 2.0
2025 39.0 36.3 7.5 240 5.00 6 6 3.0
2028 39.0 36.3 7.5 240 5.00 6 6 3.0
2031 39.0 36.3 7.5 240 5.00 6 6 3.0
2034 39.0 36.3 7.5 240 5.00 4 4 4.5
2037 39.0 36.3 7.5 240 5.00 4 4 4.5
2040 39.0 36.3 7.5 240 5.00 4 4 4.5
References/notes [119], IEA values Based on [120] [124] [130] [126] [120] [120] [120]
for Africa

*Best-in-class ultra-supercritical coal power plants can achieve an efficiency of up to 49% until 2040 (investment costs 2450 - 2900 USD/kW) [119].

Table 40: Major techno-economic parameters of candidate coal power plants with CCS | (unit size 600 MW)

Year of Investment Fix O&M Start-up Ramping Construction Economic Maintenance Forced
commissioning costs costs costs costs time lifetime outage rate outage rate
[kUSD/MW)] [%] [kUSD/MW] [kUSD/MW)] [years] [years] [%] [%]
2019 3180 3.5 0.08 0.0026 3.0 35 10 6
2022 3180 35 0.08 0.0026 3.0 35 10 6
2025 2880 3.5 0.08 0.0026 3.0 35 10 6
2028 2880 35 0.08 0.0026 3.0 35 10 6
2031 2880 3.5 0.08 0.0026 3.0 35 10 6
2034 2580 35 0.08 0.0026 3.0 35 10 6
2037 2580 3.5 0.08 0.0026 3.0 35 10 6
2040 2580 35 0.08 0.0026 3.0 35 10 6
References/notes [119], IEA values [119] [126] [126] [124] [124] [130] [130]

for Africa
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Table 41: Major techno-economic parameters of candidate coal power plants with CCS Il (unit size 600 MW)

Year of Efficiency Efficiency Total Minimum Fuel use start- Minimum Minimum Maximum
commissioning  (gross, LHV) (gross, LHV) auxiliaries output up online time offline time ramp rate
at max. load at min. load
(%] [%] (%] (MW] [MWh,/MW] (h] [h] [%/min]
2019 30.0 27.9 7.5 240 5 8 8 2.0
2022 30.0 27.9 7.5 240 5 8 8 2.0
2025 30.0 27.9 7.5 240 5 6 6 3.0
2028 30.0 27.9 7.5 240 5 6 6 3.0
2031 30.0 27.9 7.5 240 5 6 6 3.0
2034 31.0 27.9 7.5 240 5 4 4 4.5
2037 31.0 27.9 7.5 240 5 4 4 4.5
2040 31.0 27.9 7.5 240 5 4 4 4.5
References/notes [119], IEA values Based on [120], [124] [130] [126] [120] [120] [120]
for Africa

Table 42: Major techno-economic parameters of candidate CCGT power plants | (unit size 400 MW)

Year of Investment Fix O&M Start-up Ramping Construction Economic Maintenance Forced
commissioning costs costs costs costs time lifetime outage rate outage rate
[kUSD/MW)] [%] [kUSD/MW] [kUSD/MW)] [years] [years] [%] [%]
2019 775 3.5 0.07 0.0014 2.0 25 6 4
2022 775 35 0.07 0.0014 2.0 25 6 4
2025 775 3.5 0.07 0.0014 2.0 25 6 4
2028 775 35 0.07 0.0014 2.0 25 6 4
2031 775 3.5 0.07 0.0014 2.0 25 6 4
2034 775 35 0.07 0.0014 2.0 25 6 4
2037 775 3.5 0.07 0.0014 2.0 25 6 4
2040 775 35 0.07 0.0014 2.0 25 6 4
References/notes [119], IEA values [119] [126] [126] [124] [124] [130] [130]

for Africa
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Table 43: Major techno-economic parameters of candidate CCGT power plants Il (unit size 400 MW)

Year of Efficiency Efficiency Total Minimum Fuel use start- Minimum Minimum Maximum
commissioning  (gross, LHV) (gross, LHV) auxiliaries output up online time offline time ramp rate
at max. load at min. load
(%] [%] (%] (MW] [MWh,/MW] [h] [h] [%/min]

2019 59.0 53.1 1.5 252 0.06 4 2 4
2022 59.0 53.1 1.5 252 0.06 4 2 4
2025 60.0 54.0 1.5 252 0.06 4 2 6
2028 60.0 54.0 1.5 252 0.06 4 2 6
2031 60.0 54.0 1.5 252 0.06 4 2 6
2034 62.0 55.8 1.5 252 0.06 4 2 8
2037 62.0 55.8 1.5 252 0.06 4 2 8
2040 62.0 55.8 1.5 252 0.06 4 2 8

References/notes [119], IEA values Based on [132] [132] [132] [126] [132] [132] [120], [132]

for Africa

Table 44: Major techno-economic parameters of candidate CCGT power plants with CCS | (unit size 400 MW)

Year of Investment Fix O&M Start-up Ramping Construction Economic Maintenance Forced
commissioning costs costs costs costs time lifetime outage rate outage rate
[kUSD/MW] [%] [kUSD/MW] [kuSD/MW] [years] [years] [%] [%]
2019 1390 3.5 0.07 0.0014 2.0 25 6 4
2022 1390 3.5 0.07 0.0014 2.0 25 6 4
2025 1300 3.5 0.07 0.0014 2.0 25 6 4
2028 1300 3.5 0.07 0.0014 2.0 25 6 4
2031 1300 3.5 0.07 0.0014 2.0 25 6 4
2034 1205 3.5 0.07 0.0014 2.0 25 6 4
2037 1205 3.5 0.07 0.0014 2.0 25 6 4
2040 1205 3.5 0.07 0.0014 2.0 25 6 4

References/notes [119], IEA values [119] [126] [126] [124] [124] [130] [130]
for Africa
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Table 45: Major techno-economic parameters of candidate CCGT power plants with CCS Il (unit size 400 MW)

Year of Efficiency Efficiency Total Minimum Fuel use start- Minimum Minimum Maximum
commissioning  (gross, LHV) (gross, LHV) auxiliaries output up online time offline time ramp rate
at max. load at min. load
(%] [%] (%] (MW] [MWh,/MW] [h] [h] [%/min]

2019 51.0 45.9 1.5 252 0.06 4 2 4
2022 51.0 45.9 1.5 252 0.06 4 2 4
2025 53.0 47.7 1.5 252 0.06 4 2 6
2028 53.0 47.7 1.5 252 0.06 4 2 6
2031 53.0 47.7 1.5 252 0.06 4 2 6
2034 55.0 49.5 1.5 252 0.06 4 2 8
2037 55.0 49.5 1.5 252 0.06 4 2 8
2040 55.0 49.5 1.5 252 0.06 4 2 8

References/notes [119], IEA values Based on [132] [132] [132] [126] [132] [132] [120], [132]

for Africa

Table 46: Major techno-economic parameters of candidate nuclear power plants I (unit size 600 MW)

Year of Investment Fix O&M Start-up Ramping Construction Economic Maintenance Forced
commissioning costs costs costs costs time lifetime outage rate outage rate
[USD/kW] [%] [kUSD/MW] [kUSD/MW)] [years] [years] [%] [%]
2019 4415 3.5 0.08 0.0026 5.0 50 6 4
2022 4415 35 0.08 0.0026 5.0 50 6 4
2025 4415 3.5 0.08 0.0026 5.0 50 6 4
2028 4415 35 0.08 0.0026 5.0 50 6 4
2031 4415 3.5 0.08 0.0026 5.0 50 6 4
2034 4415 35 0.08 0.0026 5.0 50 6 4
2037 4415 3.5 0.08 0.0026 5.0 50 6 4
2040 4415 35 0.08 0.0026 5.0 50 6 4
References/notes [119], IEA values [119] Based on [126], Based on [126], [124] [124] [130] [130]

for Africa = large coal = large coal
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Table 47: Major techno-economic parameters of candidate nuclear power plants Il (unit size 600 MW)

Year of Efficiency Efficiency Total Minimum Fuel use Minimum Minimum Maximum
commissioning  (gross, LHV) (gross, LHV) auxiliaries output start-up online time offline time ramp rate
at max. load at min. load
(%] [%] (%] (MW] [MWh,/MW] (h] (h] [%/min]
2019 33.0 30.7 4.5 300 5.0 24 24 5
2022 33.0 30.7 4.5 300 5.0 24 24 5
2025 33.0 30.7 4.5 300 5.0 24 24 5
2028 33.0 30.7 4.5 300 5.0 24 24 5
2031 33.0 30.7 4.5 300 5.0 24 24 5
2034 33.0 30.7 4.5 300 5.0 24 24 5
2037 33.0 30.7 4.5 300 5.0 24 24 5
2040 33.0 30.7 4.5 300 5.0 24 24 5
References/notes [119], IEA values Based on [120] [124] [130] Based on [126], Own assumption Own assumption [130]
for Africa = large coal

Table 48: Major techno-economic parameters of candidate GT power plants | (unit size 50 MW)

Year of Investment Fix O&M Start-up Ramping Construction Economic Maintenance Forced
commissioning costs costs costs costs time lifetime outage rate outage rate
[kUSD/MW] [%] [kUSD/MW)] [kUSD/MW] [years] [years] [%] [%]
2019 440 5.0 0.03 0.0019 1.0 25 5 3
2022 440 5.0 0.03 0.0019 1.0 25 5 3
2025 440 5.0 0.03 0.0019 1.0 25 5 3
2028 440 5.0 0.03 0.0019 1.0 25 5 3
2031 440 5.0 0.03 0.0019 1.0 25 5 3
2034 440 5.0 0.03 0.0019 1.0 25 5 3
2037 440 5.0 0.03 0.0019 1.0 25 5 3
2040 440 5.0 0.03 0.0019 1.0 25 5 3
References/notes [119], IEA values [119] [126] [126] [124] [124] [130] [130]

for Africa
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Table 49: Major techno-economic parameters of candidate GT power plants Il (unit size 50 MW)

Year of Efficiency Efficiency Total Minimum Fuel use start- Minimum Minimum Maximum
commissioning  (gross, LHV) (gross, LHV) auxiliaries output up online time offline time ramp rate
at max. load at min. load
(%] [%] (%] (MW] [MWh,/MW] [h] (h] [%/min]

2019 38.0 30.9 1.0 27.5 0.05 1 1 10.0
2022 38.0 30.9 1.0 27.5 0.05 1 1 10.0
2025 39.5 32.2 1.0 27.5 0.05 1 1 12.5
2028 39.5 32.2 1.0 27.5 0.05 1 1 12.5
2031 39.5 32.2 1.0 27.5 0.05 1 1 12.5
2034 41.0 334 1.0 27.5 0.05 1 1 15.0
2037 41.0 33.4 1.0 27.5 0.05 1 1 15.0
2040 41.0 334 1.0 27.5 0.05 1 1 15.0

References/notes [119], IEA values Based on [132] [132] [132] [126] [132] [132] [120], [132]

for Africa

Table 50: Major techno-economic parameters of candidate ICE power plants | (unit size 50 MW)

Year of Investment Fix O&M Start-up Ramping Construction Economic Maintenance Forced
commissioning costs costs costs costs time lifetime outage rate outage rate
[kUSD/MW] [%] [kUSD/MW] [kUSD/MW] [years] [years] [%] [%]
2019 980 1.8 0.015 0.0010 1.0 25 5 3
2022 980 1.8 0.015 0.0010 1.0 25 5 3
2025 940 1.8 0.015 0.0010 1.0 25 5 3
2028 940 1.8 0.015 0.0010 1.0 25 5 3
2031 940 1.8 0.015 0.0010 1.0 25 5 3
2034 900 1.8 0.015 0.0010 1.0 25 5 3
2037 900 1.8 0.015 0.0010 1.0 25 5 3
2040 900 1.8 0.015 0.0010 1.0 25 5 3
References/notes [132] [132] Based on [126], Based on [126], Based on [124], Based on [124], Based on [130], Based on [130],

=50% of GT =50% of GT =GT =GT =GT =GT
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Table 51: Major techno-economic parameters of candidate ICE power plants Il (unit size 50 MW)

Year of Efficiency Efficiency Total Minimum Fuel use start- Minimum Minimum Maximum
commissioning  (gross, LHV) (gross, LHV) auxiliaries output up online time offline time ramp rate
at max. load at min. load
(%] (%] [%] (%] [MWh,/MW] [h] [h] [%/min]

2019 44.0 42.9 2.5 5 0 1 1 8.0
2022 44.0 42.9 2.5 5 0 1 1 8.0
2025 44.5 43.4 2.5 5 0 1 1 9.0
2028 44.5 43.4 2.5 5 0 1 1 9.0
2031 44.5 43.4 2.5 5 0 1 1 9.0
2034 45.0 43.9 2.5 5 0 1 1 10.0
2037 45.0 43.9 2.5 5 0 1 1 10.0
2040 45.0 43.9 2.5 5 0 1 1 10.0
References/notes [132] [132] [132] [132] [132] [132] [132] [132]

Table 52: Techno-economic parameters of candidate biomass power plants | (unit size 150 MW)

Year of Investment Fix O&M Start-up Ramping Construction Economic Maintenance Forced
commissioning costs costs costs costs time lifetime outage rate outage rate
[kUSD/MW] [%] [kUSD/MW] [kuSD/MW] [years] [years] [%] [%]
2019 4300 4.0 0.18 0.0042 3.0 25 7.6 9.0
2022 4300 4.0 0.18 0.0042 3.0 25 7.6 9.0
2025 4300 4.0 0.18 0.0042 3.0 25 7.6 9.0
2028 4300 4.0 0.18 0.0042 3.0 25 7.6 9.0
2031 4300 4.0 0.18 0.0042 3.0 25 7.6 9.0
2034 4300 4.0 0.18 0.0042 3.0 25 7.6 9.0
2037 4300 4.0 0.18 0.0042 3.0 25 7.6 9.0
2040 4300 4.0 0.18 0.0042 3.0 25 7.6 9.0
References/notes [130] [118] Based on [126], Based on [126], [130] [124] [130] [130]

= small coal = small coal
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Table 53: Techno-economic parameters of candidate biomass power plants Il (unit size 150 MW)

Year of Efficiency Efficiency Total Minimum Fuel use start- Minimum Minimum Maximum
commissioning  (gross, LHV) (gross, LHV) auxiliaries output up online time offline time ramp rate
at max. load at min. load
(%] [%] (%] (MW] [MWh,/MW] [h] [h] [%/min]
2019 35.0 32.6 14 60 5 8 8 2.0
2022 35.0 32.6 14 60 5 8 8 2.0
2025 35.0 32.6 14 60 5 8 8 2.0
2028 35.0 32.6 14 60 5 8 8 2.0
2031 35.0 32.6 14 60 5 8 8 2.0
2034 35.0 32.6 14 60 5 8 8 2.0
2037 35.0 32.6 14 60 5 8 8 2.0
2040 35.0 32.6 14 60 5 8 8 2.0
References/notes [119], IEA values Based on [120], Based on [124], Based on [130], Based on [126], Based on [120], Based on [120], Based on [120],

for Africa

own assumption

= small coal

= coal

=small coal

own assumption

own assumption

own assumption

Table 54: Techno-economic parameters of candidate reservoir hydro power plants (unit size 250 MW, 500 Flh reservoir size)

Year of Investment Fix O&M Variable Construction Economic Maintenance Forced
commissioning costs costs O&M costs time lifetime outage rate outage rate
[kUSD/MW] [%] [%] [years] [years] [%] [%]
2019 1750 2.0 0 2.0 50 1.9 5
2022 1750 2.0 0 2.0 50 1.9 5
2025 1750 2.0 0 2.0 50 1.9 5
2028 1750 2.0 0 2.0 50 1.9 5
2031 1750 2.0 0 2.0 50 1.9 5
2034 1750 2.0 0 2.0 50 1.9 5
2037 1750 2.0 0 2.0 50 1.9 5
2040 1750 2.0 0 2.0 50 1.9 5
References/notes [129], IEA values [129] In fix O&M costs [130] [129] [130] [130]
for Africa included
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Table 55: Techno-economic parameters of candidate utility-scale PV (unit size min. 100 MW)

Year of Investment Fix O&M Variable Construction Economic Maintenance Forced
commissioning costs costs O&M costs time lifetime outage rate outage rate
[kUSD/MW] [%] [%] [years] [years] [%] [%]
2019 945 1.5 0 1.0 20 2.0 0
2022 840 1.5 0 1.0 20 2.0 0
2025 770 1.5 0 1.0 20 2.0 0
2028 695 1.5 0 1.0 20 2.0 0
2031 640 1.5 0 1.0 20 2.0 0
2034 620 1.5 0 1.0 20 2.0 0
2037 605 1.5 0 1.0 20 2.0 0
2040 590 1.5 0 1.0 20 2.0 0
References/notes Based on [121], [132] In fix O&M costs [130] [124] [130] [130]
[132] included

Table 56: Techno-economic parameters of candidate onshore wind power (unit size min. 100 MW)

Year of Investment Fix O&M Variable Construction Economic Maintenance Forced
commissioning costs costs O&M costs time lifetime outage rate outage rate

[kUSD/MW] [%] [kUSD/MWh] [years] [years] [%] [%]
2019 1505 1.5 0.0075 1.0 20 0.6 5.0
2022 1450 1.5 0.0075 1.0 20 0.6 5.0
2025 1400 1.5 0.0075 1.0 20 0.6 5.0
2028 1380 1.5 0.0075 1.0 20 0.6 5.0
2031 1360 1.5 0.0075 1.0 20 0.6 5.0
2034 1335 1.5 0.0075 1.0 20 0.6 5.0
2037 1315 1.5 0.0075 1.0 20 0.6 5.0
2040 1295 1.5 0.0075 1.0 20 0.6 5.0

References/notes Based on [122], [123] [123] [130] [124] [130] [130]
[123]
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Table 57: Techno-economic parameters of candidate CSP reference plant | (Solar Tower, 100 MW, SM 2, TES 10h, back-up burner 30%)

Year of Investment Fix O&M Start-up Ramping Construction Economic Maintenance Forced outage
commissioning costs costs costs costs time lifetime outage rate rate
[kUSD/MW] [%] [kUSD/MW] [kUSD/MW] [years] [years] [%] [%]

2019 4305 2.5 0 0.0013 2.0 30 0 6

2022 4050 2.5 0 0.0013 2.0 30 0 6

2025 3740 2.5 0 0.0013 2.0 30 0 6

2028 3450 2.5 0 0.0013 2.0 30 0 6

2031 3365 2.5 0 0.0013 2.0 30 0 6

2034 3290 2.5 0 0.0013 2.0 30 0 6

2037 3220 2.5 0 0.0013 2.0 30 0 6

2040 3150 2.5 0 0.0013 2.0 30 0 6
References/notes Based on [125], [132] No additional cost Based on [126], [130] Based on [130] [130]

[132] as designed for = gas-fired steam financing experts
daily cycling power plants involved in [127]
Table 58: Techno-economic parameters of candidate CSP reference plant Il (Solar Tower, 100 MW, SM 2, TES 10h, back-up burner 30%)
Year of Efficiency Efficiency Auxiliaries Auxiliaries Minimum  Fuel use start- Minimum Minimum Maximum
commissioning  (gross, LHV)  (gross, LHV) power block solar field output up online time  offline time ramp rate
at max. load at min. load
(%] (%] (MW] (MW] (MW] [MWh¢,/MW] [h] [h] [%/min]

2019 42.5 34.4 5.0 4.8 20 1.18 1 1 8.0

2022 42.5 344 5.0 4.8 20 1.18 1 1 8.0

2025 42.5 34.4 5.0 4.8 20 1.18 1 1 8.0

2028 42.5 344 5.0 4.8 20 1.18 1 1 8.0

2031 42.5 34.4 5.0 4.8 20 1.18 1 1 8.0

2034 42.5 344 5.0 4.8 20 1.18 1 1 8.0

2037 42.5 34.4 5.0 4.8 20 1.18 1 1 8.0

2040 42.5 344 5.0 4.8 20 1.18 1 1 8.0
References/notes [132] [132] [132] [132] [132] [132] [132] [132] [132]
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Table 59: Techno-economic parameters of candidate pumped-storage hydro power plants (unit size 250 MW)

Year of Investment costs Investment Fix O&M Construction Economic Maintenance Forced Round-trip
commissioning - Converter costs - Storage costs time lifetime outage rate outage rate efficiency
[kUSD/MW] [kUSD/MWAh] [%] [years] [years] [%] [%] [%]
2019 600 25 2.0 2.5 50 3.8 3.0 80
2022 600 25 2.0 2.5 50 3.8 3.0 80
2025 600 25 2.0 2.5 50 3.8 3.0 80
2028 600 25 2.0 2.5 50 3.8 3.0 80
2031 600 25 2.0 2.5 50 3.8 3.0 80
2034 600 25 2.0 2.5 50 3.8 3.0 80
2037 600 25 2.0 2.5 50 3.8 3.0 80
2040 600 25 2.0 2.5 50 3.8 3 80
References/notes Based on [128], Based on [128], [129] [130] [129] [130] [130] [130]
aligned to recent aligned to recent
projects in Africa projects in Africa

Table 60: Techno-economic parameters of candidate Lithium-ion batteries (unit size min. 50 MW)

Year of Investment costs Investment Fix O&M Construction Economic Maintenance Forced Round-trip
commissioning - Converter costs - Storage costs time lifetime outage rate outage rate efficiency
[kUSD/MW] [kUSD/MWh] [%] [years] [years] [%] [%] [%]
2019 175 350 2.5 0.5 15 0.55 2.0 93
2022 145 295 2.5 0.5 20 0.55 2.0 93
2025 125 250 2.5 0.5 20 0.55 2.0 93
2028 105 205 2.5 0.5 20 0.55 2.0 94
2031 89 172 2.5 0.5 20 0.55 2.0 94
2034 83 163 2.5 0.5 20 0.55 2.0 94
2037 77 154 2.5 0.5 20 0.55 2.0 94
2040 73 145 2.5 0.5 20 0.55 2.0 94
References/notes Until 2030 [132], after Until 2030 [132], [132] [130] [132] [130] [130] [132]

2030: 2.5% reduction after 2030: 2.5%
p.a. reduction p.a.
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Table 61: Techno-economic parameters of candidate transmission lines ([131] and own assumptions)
Voltage level [kV] 400
NTC [MW] 600
Investment costs [kUSD/(MW km)] 0.785
Construction time [years] 1.0
Economic lifetime [years] 50
Losses [%/100km] 0.8
Table 62: Coefficients for piecewise linear approach for impact of ambient temperature on power generation
Ambient <5 5-<15 15-<25 25-<35 >35 References/notes
temperature [°C]
tc! tcP? tcP3 tc%* tcP0® tcP0¢ tc”%’ tc’8 tc?”? tcht?
NUCLEAR 0 1 0 1 0 0 0 0 0 0 Wet cooling
COAL 0 1 0 1 1 1 1 1 1 1 Wet cooling
CCGT -0.003 1.060 -0.004 1.060 -0.006 1.090 -0.008 1.130 -0.008 1.140 [132]
OCGT -0.005 1.072 -0.005 1.072 -0.005 1.072 -0.005 1.072 -0.005 1.072 [132]
ICE 0 1 0 1 0 0 0 0 -0.007 1.230 [132]
BIO 0 1 0 1 1 1 1 1 1 1 Wet cooling
csp -0.0002 1.0438 -0.00025 1.0436 -0.003 1.085 -0.00415 1.114 -0.0041 1.114 [132]
Table 63: Coefficients for piecewise linear approach for impact of ambient temperature on efficiency
Ambient <5 5-<15 15-<25 25-<35 >35 References/notes
temperature [°C]
tc™! tc""? tc" tc"™ "% ™0 tc™"’ tc™"® tc™"? tc™0
NUCLEAR 0 1 0 1 0 0 0 0 0 0 Wet cooling
COAL 0 1 0 1 1 1 1 1 1 1 Wet cooling
CCGT 0.0017 0.9973 -0.00001 1.0108 -0.001 1.0243 -0.0013 1.0311 -0.0013 1.0313 [132]
OCGT -0.0002 1.0057 -0.00055 1.0074 -0.001 1.0156 -0.0013 1.0215 -0.0017 1.0340 [132]
ICE 0 1 0 1 0 0 -0.0005 1.0125 -0.0005 1.0125 [132]
BIO 0 1 0 1 1 1 1 1 1 1 Wet cooling
csp -0.0002 1.0438 -0.00025 1.0436 -0.003 1.085 -0.00415 1.114 -0.0041 1.114 [132]
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A3: Major results of case study 1 (model foresight)

Table 64: Capacity addition [GW] according to myopic foresight approach (Group 1)

(2]
w '
E g g 2 = S o & £ o a
5 S o % %2 B & 9 , 2 s & 6zE 258 . 2
= 2 @ O O O O © Q © 4] T T o© aT & =
2019 0.00 000 000 000 160 000 245 000 000 000 000 000 000 000 1123 0.69
2022 0.00 000 000 000 200 000 130 0.00 000 000 150 000 0.00 0.00 4.80 0.98
2025 0.00 000 000 000 200 000 120 000 000 000 000 000 000 000 462 174
2028 0.00 000 000 000 000 000 095 000 OO0 140 0.00 0.00 0.00 0.75 339 1.60
2031 0.00 0.00 000 000 000 000 000 0.00 000 350 000 000 000 0.25 346 1.10
2034 0.00 000 000 000 000 000 000 o000 OO0 280 000 000 000 000 182 1.56
2037 0.00 0.00 000 000 000 000 000 0.00 000 340 o000 000 o000 000 141 241
2040 0.00 000 000 000 000 000 000 000 000 240 0.00 000 000 000 240 210
Table 65: Capacity addition [GW] according to rolling horizon approach (Group 1)
(%] wv) m
© Q 4] e« . > a
.z 15 £ 5 . £ E.EF £g8 o
$ 2 = 8 8 8 8 6 ¢ & ¢ z z23 =2z Z2 =
2019 000 000 0.00 000 200 000 215 000 0.00 000 000 000 000 000 070 0.53
2022 0.00 0.00 0.00 0.00 160 0.00 155 000 000 000 150 0.00 0.00 0.00 480 115
2025 000 000 0.00 000 080 000 225 000 000 000 000 000 000 000 092 480
2028 0.00 0.00 0.00 0.00 000 000 070 000 000 160 0.00 0.00 0.00 100 480 106
2031 000 000 000 000 000 000 OO0 OO0 000 360 000 000 000 0.00 414 0.66
2034 0.00 0.00 0.00 0.00 000 000 000 000 000 29 0.00 0.00 0.00 0.00 0.78 0.00
2037 000 000 000 000 000 000 o000 O00O0 000 340 000 000 000 0.00 358 0.27
2040 0.00 0.00 0.00 0.00 000 000 000 000 000 230 0.00 0.00 000 0.00 223 381
Table 66: Capacity addition [GW] according to perfect foresight approach (Group 1)
7} i :
g S g 2 = g o E @ Q a
5 S o & % 8 & 9 L, % o & SxE 325 z
= z @ ] ] o o O Qo © 4] T I o aT a =
2019 0.00 0.00 0.00 0.00 0.40 0.00 375 0.00 0.00 0.00 0.00 0.00 0.00 0.00 245 4.0
2022 000 000 000 000 120 000 195 000 000 000 150 0.00 0.35 0.00 0.00 0.00
2025 0.00 0.00 0.00 0.00 0.80 0.00 250 0.00 0.00 0.00 0.00 0.00 0.00 0.00 o0.00 4.03
2028 0.00 000 0.00 0.00 000 000 0.15 000 000 210 000 000 000 100 0.34 307
2031 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 370 0.00 0.00 0.00 0.00 480 0.5
2034 000 000 000 000 000 000 o000 O00O0 000 280 000 000 000 000 480 0.00
2037 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 340 0.00 0.00 0.00 0.00 480 1.03
2040 000 000 000 000 000 000 o000 000 000 230 000 000 000 000 480 4.80
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Table 67: Cumulative installed gross capacity [GW] according to myopic foresight approach (Group 1)

(2]
= '
E g g 2 = S 6 & @ o o
; § ¢ 2 2 5 B T o, F . B BgE B g
= 2 @ O O O O © Q © 4] T T o© aT & =
2016 060 0.15 6.60 0.00 120 0.00 0.60 000 060 010 1.00 1.00 0.00 0.25 0.50 1.00
2019 060 0.15 6.60 0.00 280 0.00 305 000 060 010 1.00 1.00 0.00 0.25 163 1.69
2022 060 0.15 540 0.00 480 0.00 4.15 000 000 0.10 250 1.00 0.00 0.25 6.43 266
2025 060 0.15 540 0.00 6.80 0.00 535 000 000 010 250 1.00 0.00 0.25 111 441
2028 0.60 0.15 540 0.00 6.80 000 630 000 000 150 250 1.00 0.00 100 144 ©6.01
2031 060 0.15 480 000 6.80 000 610 000 0.00 500 250 100 000 125 179 ©6.61
2034 060 0.15 480 0.00 6.80 0.00 610 000 000 780 250 1.00 0.00 125 19.7 8.17
2037 060 0.15 420 000 6.80 000 59 000 000 11.2 250 100 0.00 125 206 101
2040 060 0.15 420 0.00 6.80 0.00 59 000 000 136 250 1.00 0.00 125 219 115
Table 68: Cumulative installed gross capacity [GW] according to rolling horizon approach (Group 1)
0 &2 .
g S g 2 = S 6 & @ o o
; § g % 2 8 B T o, P . B BgE B g
= 3 @ O O O O © o © 4] T T o© aT & =
2016 060 0.15 6.60 0.00 120 0.00 060 000 060 0.10 1.00 1.00 0.00 0.25 0.50 1.00
2019 060 0.15 6.60 0.00 320 000 275 000 060 0.10 100 100 0.00 0.25 120 153
2022 060 0.15 540 0.00 480 0.00 410 000 000 010 250 1.00 0.00 0.25 6.00 2.68
2025 060 0.15 540 000 560 000 635 000 000 010 250 100 0.00 0.25 6.92 7.48
2028 0.60 0.15 540 0.00 560 000 705 000 000 170 250 1.00 0.00 125 11.7 854
2031 060 0.15 480 000 560 000 68 000 000 530 250 100 000 125 159 871
2034 060 0.15 480 0.00 560 000 6.8 000 000 820 250 1.00 0.00 125 16.6 8.71
2037 060 0.15 420 000 560 000 665 000 000 116 250 100 0.00 125 19.7 8.8
2040 060 0.15 420 0.00 560 0.00 665 000 000 130 250 1.00 0.00 125 213 118
Table 69: Cumulative installed gross capacity [GW] according to perfect foresight approach (Group 1)
0 2 .
5 s g 2 = S5 9 & 2 g a
5 S o & % 8 & 9 ., % o & SxfE =25 z
= z @ ] ] o o O Qo © 4] T I o aT a =
2016 0.60 0.15 6.60 0.00 1.20 0.00 0.60 0.00 0.60 0.10 1.00 1.00 0.00 0.25 0.50 1.00
2019 060 0.15 660 000 160 000 435 000 060 010 100 100 000 025 295 5.01
2022 0.60 0.15 540 0.00 280 0.00 6.10 0.00 0.00 0.10 250 1.00 035 0.25 295 5.01
2025 060 0.15 540 000 360 000 860 000 000 010 250 100 035 025 295 9.03
2028 0.60 0.15 540 0.00 3.60 0.00 875 0.00 0.00 220 250 1.00 0.35 125 328 121
2031 060 0.15 480 000 360 000 855 000 000 59 250 100 035 125 8.08 121
2034 060 0.15 480 0.00 360 0.00 855 0.00 0.00 870 250 1.00 035 125 129 121
2037 060 0.15 420 000 360 000 835 000 000 121 250 100 035 125 17.2 126
2040 0.60 0.15 420 0.00 360 0.00 835 0.00 0.00 144 250 1.00 035 125 195 134
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Table 70: NTC addition [GW] according to myopic foresight approach (Group 1)

Year N1 - N2 N1-N4 N2 -N3 N2 - N4 N3 - N4
2019 0.0 0.0 0.0 0.0 0.0
2022 0.0 0.6 0.6 0.0 0.0
2025 0.0 0.0 1.2 0.0 0.0
2028 0.0 0.0 0.6 0.0 0.6
2031 0.0 0.0 0.6 1.8 0.0
2034 0.0 0.6 0.6 1.8 0.6
2037 0.0 0.6 1.2 0.6 0.0
2040 0.0 0.6 0.6 1.2 0.6

Table 71: NTC addition [GW] according to rolling horizon approach (Group 1)

Year N1 - N2 N1-N4 N2 -N3 N2 - N4 N3 - N4
2019 0.0 0.6 0.0 0.0 0.0
2022 0.0 0.0 0.6 0.0 0.0
2025 0.0 0.0 3.6 0.0 0.0
2028 0.0 0.0 0.0 0.0 0.6
2031 0.0 0.0 0.0 2.4 0.6
2034 0.0 0.6 0.0 1.2 0.0
2037 0.0 0.6 0.0 1.8 0.0
2040 0.0 0.6 1.8 1.2 0.0

Table 72: NTC addition [GW] according to perfect foresight approach (Group 1)

Year N1 - N2 N1- N4 N2 -N3 N2 - N4 N3 - N4
2019 0.0 0.6 2.4 0.0 0.0
2022 0.0 0.0 0.0 0.0 0.0
2025 0.0 0.0 3.0 0.0 0.0
2028 0.0 0.6 1.2 0.0 0.6
2031 0.0 0.6 0.0 2.4 0.6
2034 0.0 0.0 0.0 1.8 0.0
2037 0.0 0.6 0.0 1.8 0.0

2040 0.0 0.6 0.0 0.6 0.6
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Table 73: Cumulative installed NTC [GW] according to myopic foresight approach (Group 1)

Year N1 - N2 N1-N4 N2 -N3 N2 - N4 N3 - N4
2016 1.8 0 0.6 0.6 0
2019 1.8 0 0.6 0.6 0
2022 1.8 0.6 1.2 0.6 0
2025 1.8 0.6 2.4 0.6 0
2028 1.8 0.6 3 0.6 0.6
2031 1.8 0.6 3.6 2.4 0.6
2034 1.8 1.2 4.2 4.2 1.2
2037 1.8 1.8 5.4 4.8 1.2
2040 1.8 2.4 6 6 1.8

Table 74: Cumulative installed NTC [GW] according to rolling horizon approach (Group 1)

Year N1 - N2 N1-N4 N2 -N3 N2 - N4 N3 - N4
2016 1.8 0 0.6 0.6 0
2019 1.8 0.6 0.6 0.6 0
2022 1.8 0.6 1.2 0.6 0
2025 1.8 0.6 4.8 0.6 0
2028 1.8 0.6 4.8 0.6 0.6
2031 1.8 0.6 4.8 3 1.2
2034 1.8 1.2 4.8 4.2 1.2
2037 1.8 1.8 4.8 6 1.2
2040 1.8 24 6.6 7.2 1.2

Table 75: Cumulative installed NTC [GW] according to perfect foresight approach (Group 1)

Year N1 - N2 N1- N4 N2 -N3 N2 - N4 N3 - N4
2016 1.8 0 0.6 0.6 0
2019 1.8 0.6 3 0.6 0
2022 1.8 0.6 3 0.6 0
2025 1.8 0.6 6 0.6 0
2028 1.8 1.2 7.2 0.6 0.6
2031 1.8 1.8 7.2 3 1.2
2034 1.8 1.8 7.2 4.8 1.2
2037 1.8 2.4 7.2 6.6 1.2

2040 1.8 3 7.2 7.2 1.8
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Table 76: Capacity addition [GW] according to myopic foresight approach (Group 2)
[7,] wv m
e« O 4} e« . > a
. 2 1 5 £ 5 . £ £.F &8 g
$ 2 = 8 8 8 8 6 ¢ & ¥ T z23 2z 2 =
2019 0.00 0.00 0.00 0.00 200 000 210 000 000 000 0.00 0.00 000 0.00 074 049
2022 0.00 0.00 3.00 0.00 0.00 0.00 175 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.84 0.00
2025 0.00 0.00 120 0.00 080 000 045 000 000 000 075 0.00 000 0.00 270 084
2028 0.00 0.00 0.0 0.00 040 0.00 040 000 000 060 0.75 0.00 0.00 0.00 480 041
2031 0.00 0.00 0.00 000 000 000 130 000 000 200 0.00 0.00 000 075 480 480
2034 000 000 000 000 000 000 o000 O00O0 000 250 000 000 000 025 312 208
2037 0.00 0.00 0.00 0.00 000 000 o000 000 000 340 0.00 0.00 000 0.00 217 211
2040 000 000 0.00 000 000 000 o000 000 000 230 000 000 000 000 230 151
Table 77: Capacity addition [GW] according to rolling horizon approach (Group 2)
(%] v m
© Q 4] e« . > a
- 3 . £ E.E 2 ¢
$ 2 2 8 8 88 8 6 ¢ & ¢ z 23 =2z Z2 =
2019 000 OO0 060 000 160 000 195 000 0.00 000 000 000 000 000 045 0.30
2022 0.00 0.00 240 0.00 040 000 195 000 000 000 0.00 0.00 000 0.00 209 0.23
2025 000 000 060 000 08 000 060 000 000 000 100 0.00 0.00 0.00 2.03 0.98
2028 0.00 0.00 0.00 0.00 000 000 150 000 000 080 050 0.00 000 0.25 480 189
2031 000 000 000 000 000 000 055 000 000 250 000 000 000 075 480 4.76
2034 0.00 0.00 0.00 0.00 000 000 000 000 000 280 0.00 0.00 000 0.00 157 o0.00
2037 000 000 0.00 000 000 000 o000 OO0 000 340 000 000 000 0.00 3.8 0.32
2040 0.00 0.00 0.00 0.00 000 000 000 000 000 230 0.00 0.00 000 0.0 160 429
Table 78: Capacity addition [GW] according to perfect foresight approach (Group 2)
" " 2
e« O O o« . > a
£ 2 2 8 8 & 8 6 ¢ & ¢ z 23 =2z Z2 =
2019 0.00 0.00 0.00 0.00 0.40 0.00 355 0.00 0.00 0.00 0.00 0.00 0.00 o0.00 212 329
2022 000 000 000 000 120 000 195 000 0.00 000 150 0.00 0.25 0.00 0.00 0.00
2025 0.00 0.00 0.00 0.00 0.80 0.00 235 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 255
2028 0.00 000 000 000 000 000 050 000 000 170 000 000 000 100 0.10 450
2031 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 370 0.00 0.00 0.00 0.00 480 181
2034 000 000 000 000 000 000 o000 O00O0 000 280 000 000 000 000 480 0.00
2037 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 340 0.00 0.00 0.00 0.00 480 0.33
2040 000 000 000 000 000 000 o000 000 000 230 000 000 000 000 480 4.80
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Table 79: Cumulative installed gross capacity [GW] according to myopic foresight approach (Group 2)

(7]
w I
E g g 2 = S 6 & @ o o
: f .03 :ip ;8.8 .8 8sF fB
S 2 @ O O O O (0] ] (0] o T I o aT a S
2016 060 0.15 660 000 120 000 060 000 060 010 100 100 000 025 050 100
2019 060 015 660 000 3.20 000 270 000 060 010 1.00 1.00 000 025 124 149
2022 060 0.5 840 000 3.20 000 425 000 000 010 1.00 1.00 000 025 3.08 149
2025 060 0.5 960 000 400 000 470 000 000 010 175 1.00 000 025 578 2.33
2028 060 0.5 102 000 440 000 510 000 000 070 250 1.00 000 025 10.6 2.74
2031 060 015 960 000 440 000 620 000 000 270 250 1.00 000 1.00 154 7.04
2034 060 0.15 960 000 440 000 620 000 000 520 250 1.00 000 125 185 9.12
2037 060 0.5 900 000 440 000 600 000 000 860 250 1.00 000 1.25 202 10.7
2040 060 0.5 9.00 000 440 000 600 000 000 109 250 1.00 000 1.25 21.7 11.8
Table 80: Cumulative installed gross capacity [GW] according to rolling horizon approach (Group 2)
]
E g g 2 = g o) E @ o
5 S o % E B B 2 4 2 4 & S5k 35, £
S z @ o o o o o (] © 3 T I o aT & E
2016 g0 015 660 000 1.20 0.00 060 000 060 010 1.00 1.00 000 025 050 1.00
20139 560 015 7.20 000 280 000 255 000 060 010 100 1.00 000 025 095 1.30
2022 460 015 840 000 3.20 000 430 000 000 010 1.00 1.00 000 025 3.04 153
2025 560 015 9.00 000 400 000 490 000 000 010 200 1.00 000 025 506 251
2028 460 015 9.00 000 400 000 640 000 000 090 250 1.00 000 050 9.86 4.40
2031 560 015 840 000 400 000 675 000 000 3.40 250 1.00 000 125 147 866
2034 460 015 840 000 400 000 675 000 000 620 250 1.00 000 125 162 8.66
2037 560 015 7.80 000 400 000 655 000 000 9.60 250 1.00 000 125 19.6 8.48
2080 560 015 7.80 000 4.00 0.00 655 000 000 119 250 1.00 000 125 207 125
Table 81: Cumulative installed gross capacity [GW] according to perfect foresight approach (Group 2)
]
g g g 2 = 3 o & g‘ o
5 S o %2 %2 8B B ¢ ., ¥ . & SzfEt 35 2
S z o o o o o o Q © 3 T T o azT & =
2016 060 0.5 660 000 120 000 060 000 060 010 1.00 100 000 025 050 100
2019 060 0.15 660 000 1.60 000 415 000 060 010 1.00 1.00 000 025 2.62 429
2022 060 015 540 000 280 000 590 000 000 010 250 1.00 025 025 2.62 4.29
2025 060 0.5 540 000 3.60 000 825 000 000 010 250 1.00 025 025 2.62 685
2028 060 0.5 540 000 3.60 000 875 000 000 1.80 250 1.00 025 125 272 114
2031 060 0.15 480 000 3.60 000 855 000 000 550 250 1.00 025 125 7.52 12.7
2034 060 0.15 480 000 3.60 000 855 000 000 830 250 1.00 025 125 123 12.7
2037 060 015 420 000 3.60 000 835 000 000 117 250 1.00 025 125 166 12.5
2040 060 0.5 420 000 3.60 000 835 000 000 140 250 1.00 025 125 193 14.0
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Table 82: NTC addition [GW] according to myopic foresight approach (Group 2)

Year N1 - N2 N1-N4 N2 -N3 N2 - N4 N3 - N4
2019 0.0 0.0 0.0 0.0 0.0
2022 0.0 0.6 0.0 0.0 0.0
2025 0.0 0.0 0.6 0.0 0.0
2028 0.0 0.0 0.0 0.0 0.0
2031 0.0 0.0 3.0 0.6 0.6
2034 0.0 0.6 1.2 1.2 0.0
2037 0.0 0.6 0.6 1.2 0.6
2040 0.0 0.6 0.6 1.2 0.0

Table 83: NTC addition [GW] according to rolling horizon approach (Group 2)

Year N1 - N2 N1-N4 N2 -N3 N2 - N4 N3 - N4
2019 0.0 0.6 0.0 0.0 0.0
2022 0.0 0.0 0.0 0.0 0.0
2025 0.0 0.0 0.6 0.0 0.0
2028 0.0 0.0 1.2 0.0 0.0
2031 0.0 0.6 3.0 1.2 0.6
2034 0.0 0.0 0.0 1.8 0.0
2037 0.0 0.6 0.0 1.8 0.0
2040 0.0 0.6 1.8 0.6 0.6

Table 84: NTC addition [GW] according to perfect foresight approach (Group 2)

Year N1 - N2 N1- N4 N2 -N3 N2 - N4 N3 - N4
2019 0.0 0.6 1.8 0.0 0.0
2022 0.0 0.0 0.0 0.0 0.0
2025 0.0 0.0 1.8 0.0 0.0
2028 0.0 0.0 3.0 0.0 0.6
2031 0.0 0.6 0.0 2.4 1.2
2034 0.0 0.0 0.0 1.8 0.0
2037 0.0 0.6 0.0 1.8 0.0

2040 0.0 0.6 0.0 0.6 0.6
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Table 85: Cumulative installed NTC [GW] according to myopic foresight approach (Group 2)

Year N1 - N2 N1-N4 N2 -N3 N2 - N4 N3 - N4
2016 1.8 0 0.6 0.6 0
2019 1.8 0 0.6 0.6 0
2022 1.8 0.6 0.6 0.6 0
2025 1.8 0.6 1.2 0.6 0
2028 1.8 0.6 1.2 0.6 0
2031 1.8 0.6 4.2 1.2 0.6
2034 1.8 1.2 5.4 2.4 0.6
2037 1.8 1.8 6 3.6 1.2
2040 1.8 2.4 6.6 4.8 1.2

Table 86: Cumulative installed NTC [GW] according to rolling horizon approach (Group 2)

Year N1 - N2 N1-N4 N2 -N3 N2 - N4 N3 - N4
2016 1.8 0 0.6 0.6 0
2019 1.8 0.6 0.6 0.6 0
2022 1.8 0.6 0.6 0.6 0
2025 1.8 0.6 1.2 0.6 0
2028 1.8 0.6 2.4 0.6 0
2031 1.8 1.2 5.4 1.8 0.6
2034 1.8 1.2 5.4 3.6 0.6
2037 1.8 1.8 5.4 5.4 0.6
2040 1.8 2.4 7.2 6 1.2

Table 87: Cumulative installed NTC [GW] according to perfect foresight approach (Group 2)

Year N1 - N2 N1-N4 N2 -N3 N2 - N4 N3 - N4
2016 1.8 0 0.6 0.6 0
2019 1.8 0.6 2.4 0.6 0
2022 1.8 0.6 2.4 0.6 0
2025 1.8 0.6 4.2 0.6 0
2028 1.8 0.6 7.2 0.6 0.6
2031 1.8 1.2 7.2 3 1.8
2034 1.8 1.2 7.2 4.8 1.8
2037 1.8 1.8 7.2 6.6 1.8

2040 1.8 2.4 7.2 7.2 2.4
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A4: Major results of case study 2 (system-operational detail)

Table 88: Capacity addition [GW] according to CEM-1 (average day method & no UCC)

(2]
w '
E g g 2 = S o & £ o a
5 S o % %2 B & 9 , 2 s & 6zE 258 . 2
= 2 @ O O O O © Q © 4] T T o© aT & =2
2019 0.00 0.00 0.00 0.00 200 000 210 000 000 000 0.00 0.00 000 0.00 045 0.62
2022 0.00 0.00 3.00 0.00 0.00 0.00 1.80 0.00 0.00 0.00 0.00 0.00 0.00 0.00 193 0.32
2025 0.00 0.00 0.00 0.00 000 000 165 000 000 000 125 0.00 0.00 0.00 0.12 3.77
2028 0.00 000 0.00 000 000 000 250 000 0.00 010 0.25 000 000 0.25 456 4.14
2031 000 0.00 0.00 0.00 000 000 125 000 000 190 0.00 0.00 000 0.75 480 480
2034 000 000 0.00 000 000 000 o000 O00O0 000 270 000 000 000 000 0.1 1.29
2037 0.00 0.00 0.00 0.00 000 000 225 000 000 100 0.00 0.00 000 0.00 18 371
2040 000 000 0.00 000 000 000 o000 O00O0 000 250 000 000 000 000 2.8 480
Table 89: Capacity addition [GW] according to CEM-2 (representative day method & no UCC)
(%] wv) m
© Q 4] e« . > a
- A 5 . £ E.EF £g8 o
$ 2 2 8 8 88 8 6 ¢ & ¢ z 23 =2z Z2 =
2019 000 000 060 000 160 000 18 000 000 000 000 o000 000 000 040 0.31
2022 0.00 0.00 240 0.00 040 000 195 000 000 000 0.00 0.00 000 0.00 202 0.27
2025 000 000 120 000 080 000 035 000 000 000 075 000 000 000 173 0.00
2028 0.00 0.00 0.00 0.00 040 000 145 000 000 070 0.75 0.00 0.00 0.00 4380 2.69
2031 000 OO0 000 000 000 000 08 000 000 220 000 000 000 075 480 4.80
2034 0.00 0.00 0.00 0.00 000 000 000 000 000 230 0.00 0.00 000 0.25 210 0.00
2037 000 000 0.00 000 000 000 o000 OO0 000 340 000 000 000 0.00 353 0.8
2040 0.00 0.00 0.00 0.00 000 000 000 000 000 230 0.00 0.00 000 0.00 241 430
Table 90: Capacity addition [GW] according to CEM-3 (representative day method & simplified UCC)
0 2 .
g S g 2 = S 6 & @ o o
5 % o £ % B B 2 . 2 o & Sk 385, =
= z @ ] ] o o O Qo © 4] T I o aT a =
2019 000 000 060 000 160 000 18 000 000 000 000 000 000 000 041 0.22
2022 0.00 0.00 240 0.00 0.00 0.00 130 0.00 0.00 0.00 1.00 0.00 0.00 0.00 152 0.34
2025 000 000 180 0.00 000 000 050 000 000 000 050 000 000 025 0.39 0.97
2028 0.00 0.00 0.00 0.00 0.00 0.00 1.8 0.00 0.00 0.80 0.00 0.00 0.00 0.50 480 2.60
2031 000 000 000 000 000 000 050 000 000 300 000 000 010 025 480 4.10
2034 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 280 0.00 0.00 0.00 0.00 1.40 o0.00
2037 000 000 000 000 000 000 o000 000 000 340 000 000 000 000 313 151
2040 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 230 0.00 0.00 130 0.00 317 480
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Table 91: Capacity addition [GW] according to CEM-4 (representative day method & detailed UCC)

(%]
= :

E g g 2 = S 6 & @ o o
;50 £ 2 8 B ¢ o4 3 5 B Bgf B, g
= 2 @ O O O O © Q © 4] T T o© aT & =
2019 0.00 0.00 120 0.00 080 000 160 000 000 000 0.00 0.00 000 050 0.38 0.18
2022 0.00 0.00 240 0.00 040 0.00 170 0.05 0.00 0.00 0.25 0.00 0.00 0.00 135 0.37
2025 0.00 0.00 120 0.00 0.00 000 045 000 000 000 125 0.00 0.00 0.00 0.8 145
2028 0.00 0.00 0.00 0.00 0.00 0.00 1.75 0.00 0.00 0590 0.00 0.00 0.00 0.50 453 246
2031 0.00 0.00 0.00 0.00 000 000 070 000 000 3.00 0.00 0.00 030 0.00 480 3.63
2034 000 0.00 0.00 0.00 000 000 o000 000 000 290 000 000 000 o0.00 100 0.87
2037 0.00 0.00 0.00 0.00 000 000 000 000 000 340 0.00 0.00 000 0.00 344 108
2040 0.00 0.00 0.00 0.00 000 000 o000 000 000 230 000 000 115 o0.00 384 423
Table 92: Cumulative installed capacity [GW] according to CEM-1 (average day method & no UCC)

(%] (7] m
© Q 4] e« . > a
- A 5 . £ E.EF 88 o
$ 2 2= 8 8 8 8 6 ¢ & ¢ z 23 =2z 2 =
2016 060 0.15 6.60 0.00 120 0.00 060 000 060 010 100 1.00 0.00 0.25 0.50 1.00
2019 060 0.15 6.60 0.00 320 0.00 270 000 060 0.10 1.00 1.00 0.00 0.25 0.95 1.62
2022 060 0.15 840 0.00 320 0.00 430 000 000 010 100 100 0.00 0.25 288 194
2025 060 0.15 840 0.00 320 0.00 595 000 000 010 225 1.00 0.00 0.25 299 571
2028 060 0.15 840 0.00 320 0.00 845 000 000 020 250 100 0.00 050 7.55 9385
2031 060 0.15 7.80 0.00 320 0.00 950 000 000 210 250 1.00 0.00 125 124 142
2034 060 0.15 780 0.00 320 0.00 950 000 000 480 250 100 0.00 125 130 154
2037 060 0.15 7.20 0.00 320 0.00 11,6 000 000 580 250 1.00 0.00 125 143 18.7
2040 060 0.15 7.20 0.00 320 0.00 116 000 000 830 250 1.00 0.00 125 16.8 228
Table 93: Cumulative installed capacity [GW] according to CEM-2 (representative day method & no UCC)
3
2 g 8 o . s s F Eg
s 8 o 2 2 % &5 © o . & E«E 58 2
S 2 = 8 8 8 8 6 ¢ & g z 23 =2z 2 =
2016 0.60 0.15 6.60 0.00 1.20 0.00 060 0.00 0.60 0.10 1.00 1.00 0.00 0.25 0.50 1.00
2019 060 0.15 720 0.00 280 0.00 245 000 060 0.10 100 1.00 0.00 0.25 0.90 1.31
2022 0.60 0.15 840 0.00 320 0.00 420 0.00 0.00 0.10 1.00 1.00 0.00 0.25 292 158
2025 060 0.15 960 0.00 400 0.00 455 000 000 010 175 100 0.00 0.25 465 1.58
2028 0.60 0.15 9.60 0.00 4.40 0.00 6.00 0.00 0.00 0.80 250 1.00 0.00 0.25 9.45 4.27
2031 060 0.15 9.00 0.00 440 0.00 665 000 000 3.00 250 100 0.00 100 143 8.57
2034 0.60 0.15 9.00 0.00 4.40 0.00 6.65 0.00 0.00 530 250 1.00 0.00 125 164 8.7
2037 060 0.15 840 0.00 440 0.00 645 000 000 870 250 1.00 0.00 125 194 8387
2040 0.60 0.15 840 0.00 440 0.00 6.45 0.00 0.00 11.0 250 1.00 0.00 125 214 129
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Table 94: Cumulative installed capacity [GW] according to CEM-3 (representative day method & simplified UCC)

(7]

x 9 8 €, x 4

§ <Q Q 2 = Q Q & o a
= o = = o o U Q 8 8« E S8 z
8 =) ° g o o] o] ht w t & > >C « S5 > s
S 2 @ O O o o (0] o (0] o T I o & T & =
2016 060 0.15 6.60 000 120 000 0.60 000 0.60 0.10 1.00 100 0.00 025 050 1.00
2019 060 015 720 000 280 000 245 000 060 0.10 1.00 1.00 000 0.25 091 1.22
2022 060 015 840 000 280 000 355 000 0.00 0.10 2.00 1.00 000 025 242 156
2025 060 0.15 102 0.00 2.80 000 4.05 000 0.00 0.10 250 1.00 000 0.50 282 2.53
2028 060 015 102 000 2.80 000 590 000 0.00 090 250 1.00 000 1.00 7.62 5.3
2031 060 015 960 000 280 000 620 000 0.00 390 250 1.00 010 125 12.4 873
2034 060 0.15 9.60 000 280 000 620 000 000 670 250 100 0.10 125 138 873
2037 060 015 9.00 000 280 000 600 000 000 101 250 1.00 010 125 164 9.75
2040 0.60 0.15 9.00 000 280 000 600 000 000 124 250 100 140 125 192 143

Table 95: Cumulative installed capacity [GW] according to CEM-4 (representative day method & detailed UCC)

wv
w '

g g g 2 - S 9 z 2 g a
g S o g g § § i W 2 & E 5 S E. 2 E > =
= 2 @ O O O O © o © 4] T I o© aT & =
2016 060 0.15 6.60 0.00 120 0.00 060 000 060 0.10 1.00 1.00 0.00 0.25 0.50 1.00
2019 060 0.15 780 0.00 200 0.00 220 000 060 0.10 100 1.00 0.00 0.75 0.88 1.18
2022 060 0.15 9.00 0.00 240 000 370 005 000 010 125 1.00 0.00 0.75 223 155
2025 060 0.15 102 0.00 240 0.00 415 005 000 010 250 100 0.00 0.75 3.07 3.01
2028 0.60 0.15 102 0.00 240 0.00 59 005 000 100 250 1.00 0.00 125 7.60 547
2031 060 0.15 960 0.00 240 0.00 640 005 000 400 250 100 030 125 124 8.60
2034 060 0.15 960 0.00 240 0.00 640 005 000 690 250 1.00 030 125 134 947
2037 060 0.15 9.00 0.00 240 0.00 620 005 000 103 250 100 030 125 163 101
2040 060 0.15 9.00 0.00 240 0.00 620 005 000 126 250 1.00 145 125 198 141

Table 96: Annual power generation [TWh] according to CEM-1 (average day method & no UCC)

0 2 .

g S g 2 = S 6 & @ o o
5 % o £ % B B 2 . 2 o & Sk 385, =
= z @ ] ] o o O Qo © 4] T I o a T a =
2016 4.5 0.7 42.7 0.0 4.0 0.0 0.8 0.0 0.2 0.3 2.4 2.4 0.0 0.4 0.9 2.9
2019 45 0.9 440 0.0 123 0.0 0.6 0.0 0.0 0.3 2.4 2.4 0.0 0.2 1.8 4.9
2022 45 0.9 55.6 0.0 9.5 0.0 0.9 0.0 0.0 0.3 2.4 2.4 0.0 0.4 5.5 6.0
2025 44 0.9 55.1 0.0 9.2 0.0 0.9 0.0 0.0 0.3 5.5 2.4 0.0 0.4 5.7 18.4
2028 4.0 0.9 499 0.0 7.2 0.0 1.2 0.0 0.0 0.6 6.1 2.4 0.0 0.8 140 320
2031 4.2 0.8 385 0.0 4.9 0.0 0.5 0.0 0.0 7.4 6.1 2.4 0.0 1.3 229 456
2034 43 0.9 37.8 0.0 4.1 0.0 0.3 0.0 0.0 170 6.1 2.4 0.0 0.8 24.0 50.2
2037 4.2 0.8 341 0.0 4.8 0.0 0.6 0.0 0.0 205 6.1 2.4 0.0 1.0 26.6 59.8
2040 3.9 0.7 26.0 0.0 2.2 0.0 0.1 0.0 0.0 293 6.1 2.4 0.0 1.3 313 69.7




Appendix 170
Table 97: Annual power generation [TWh] according to CEM-2 (representative day method & no UCC)
0 i :
E S g 2 = S 6 & @ o o
;50 £ 2 8 B ¢ o4 3 5 B Bgf B, g
= 2 @ O O O O © Q © 4] T T o© aT & =
2016 4.5 0.7 42.7 0.0 3.9 0.0 0.8 0.0 0.2 0.3 2.4 2.4 0.0 0.4 0.9 2.9
2019 45 0.9 476 0.0 9.8 0.0 0.6 0.0 0.0 0.3 2.4 2.4 0.0 0.3 1.7 3.9
2022 45 0.9 55.7 0.0 10.2 0.0 1.2 0.0 0.0 0.3 2.4 2.4 0.0 0.4 5.5 4.8
2025 45 0.9 63.7 0.0 12.1 0.0 13 0.0 0.0 0.3 4.2 2.4 0.0 0.4 8.7 4.8
2028 4.0 0.9 58.5 0.0 11.2 0.0 1.1 0.0 0.0 2.8 6.1 2.4 0.0 0.5 17.4 13.6
2031 4.2 0.8 46.0 0.0 8.8 0.0 0.3 0.0 0.0 10.6 6.1 2.4 0.0 1.0 26.3  27.6
2034 43 0.9 46.6 0.0 9.7 0.0 0.3 0.0 0.0 18.8 6.1 2.4 0.0 0.9 30.3 27.8
2037 43 0.9 42.7 0.0 8.8 0.0 0.1 0.0 0.0 30.8 6.1 2.4 0.0 0.8 358 284
2040 4.0 0.8 376 0.0 4.5 0.0 0.0 0.0 0.0 389 6.1 2.4 0.0 1.3 39.6 38.2
Table 98: Annual power generation [TWh] according to CEM-3 (representative day method & simplified UCC)
0 &2 .
g S g 2 = S 6 & @ o o
g S o g g § § i W 2 & E 5 S E. 2 E > =
= 2 @ O O O O © o © 4] T I o© aT & =
2016 4.5 0.8 426 0.0 4.0 0.0 0.8 0.0 0.2 0.3 2.4 2.4 0.0 0.5 0.9 2.9
2019 45 0.9 46.4 0.0 11.3 0.0 0.7 0.0 0.0 0.3 2.4 2.4 0.0 0.4 1.7 3.6
2022 43 0.9 546 0.0 10.2 0.0 1.1 0.0 0.0 0.3 4.8 2.4 0.0 0.5 4.6 4.7
2025 4.2 0.9 66.3 0.0 8.7 0.0 1.0 0.0 0.0 0.3 6.1 2.4 0.0 0.7 5.4 7.9
2028 4.1 0.9 63.4 0.0 7.4 0.0 1.2 0.0 0.0 2.9 6.1 2.4 0.0 1.3 14.1 16.4
2031 4.2 0.9 51.3 0.0 4.6 0.0 0.2 0.0 0.0 13.2 6.1 2.4 0.1 1.4 23.0 27.9
2034 43 0.9 51.7 0.0 5.2 0.0 0.2 0.0 0.0 226 6.1 2.4 0.1 1.0 256 283
2037 4.2 0.9 47.0 0.0 3.8 0.0 0.1 0.0 0.0 341 6.1 2.4 0.1 1.0 30.7 310
2040 4.0 0.8 37.0 0.0 1.4 0.0 0.0 0.0 0.0 420 6.1 2.4 1.5 1.4 359 431
Table 99: Annual power generation [TWh] according to CEM-4 (representative day method & detailed UCC)
0 2 .
5 s g 2 = S5 9 & 2 g a
5 S o % % 8 & 9 L, % o & SxE 325 z
= z @ ] ] o o O Qo © 4] T I o a T a =
2016 4.4 0.8 426 0.0 4.0 0.0 0.8 0.0 0.2 0.3 2.4 2.4 0.0 0.5 0.9 2.9
2019 44 0.9 51.0 0.0 7.3 0.0 0.7 0.0 0.0 0.2 2.4 2.4 0.0 0.7 1.7 3.5
2022 43 0.9 59.5 0.0 8.0 0.0 1.1 0.0 0.0 0.2 3.0 2.4 0.0 0.9 4.2 4.7
2025 4.2 0.9 66.2 0.0 6.9 0.0 1.1 0.0 0.0 0.2 6.1 2.4 0.0 1.0 5.9 9.5
2028 4.3 0.9 62.9 0.0 6.2 0.0 1.3 0.0 0.0 3.2 6.1 2.4 0.0 1.6 142 17.6
2031 4.2 0.9 51.7 0.0 4.0 0.0 0.3 0.0 0.0 134 6.1 2.4 0.4 1.4 23.0 27.8
2034 43 0.9 50.9 0.0 3.8 0.0 0.2 0.0 0.0 232 6.1 2.4 0.4 0.9 249 30.7
2037 4.2 0.9 46.2 0.0 3.0 0.0 0.2 0.0 0.0 347 6.1 2.4 0.5 1.0 30.6 32.2
2040 4.0 0.8 36.3 0.0 0.9 0.0 0.0 0.0 0.0 427 6.1 2.4 1.8 1.4 371 424
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Table 100: Power generation [TWh] of generation fleet in 2040 calculated by REMix-PCM

[7,]

e 8 a €,z 2
< 5 Q O 2 = S & & uwo

- - - - - < < 4 [a]
E S o & § & &8 2 4 2 o g gskE 39 =
s 2 @ o o o] S © o © 3 T Iz o 2% 2 2
PCM-1 3.8 0.7 31.3 0.0 9.0 0.0 5.1 0.0 0.0 27.8 6.1 2.4 0.0 1.8 29.8 55.2
PCM-2 4.0 0.8 384 0.0 9.4 0.0 1.3 0.0 0.0 374 6.1 2.4 0.0 1.6 37.7 341
PCM-3 4.0 0.8 37.6 0.0 4.5 0.0 1.2 0.0 0.0 425 6.1 2.4 1.7 1.3 34.2 385
PCM-4 3.9 0.8 37.3 0.0 3.8 0.0 1.4 0.0 0.0 432 6.1 2.4 1.7 1.2 354 374







